Science.gov

Sample records for high performance cell

  1. High Performance Perovskite Solar Cells.

    PubMed

    Tong, Xin; Lin, Feng; Wu, Jiang; Wang, Zhiming M

    2016-05-01

    Perovskite solar cells fabricated from organometal halide light harvesters have captured significant attention due to their tremendously low device costs as well as unprecedented rapid progress on power conversion efficiency (PCE). A certified PCE of 20.1% was achieved in late 2014 following the first study of long-term stable all-solid-state perovskite solar cell with a PCE of 9.7% in 2012, showing their promising potential towards future cost-effective and high performance solar cells. Here, notable achievements of primary device configuration involving perovskite layer, hole-transporting materials (HTMs) and electron-transporting materials (ETMs) are reviewed. Numerous strategies for enhancing photovoltaic parameters of perovskite solar cells, including morphology and crystallization control of perovskite layer, HTMs design and ETMs modifications are discussed in detail. In addition, perovskite solar cells outside of HTMs and ETMs are mentioned as well, providing guidelines for further simplification of device processing and hence cost reduction.

  2. High Performance Perovskite Solar Cells

    PubMed Central

    Tong, Xin; Lin, Feng; Wu, Jiang

    2015-01-01

    Perovskite solar cells fabricated from organometal halide light harvesters have captured significant attention due to their tremendously low device costs as well as unprecedented rapid progress on power conversion efficiency (PCE). A certified PCE of 20.1% was achieved in late 2014 following the first study of long‐term stable all‐solid‐state perovskite solar cell with a PCE of 9.7% in 2012, showing their promising potential towards future cost‐effective and high performance solar cells. Here, notable achievements of primary device configuration involving perovskite layer, hole‐transporting materials (HTMs) and electron‐transporting materials (ETMs) are reviewed. Numerous strategies for enhancing photovoltaic parameters of perovskite solar cells, including morphology and crystallization control of perovskite layer, HTMs design and ETMs modifications are discussed in detail. In addition, perovskite solar cells outside of HTMs and ETMs are mentioned as well, providing guidelines for further simplification of device processing and hence cost reduction. PMID:27774402

  3. Achieving High Performance Perovskite Solar Cells

    NASA Astrophysics Data System (ADS)

    Yang, Yang

    2015-03-01

    Recently, metal halide perovskite based solar cell with the characteristics of rather low raw materials cost, great potential for simple process and scalable production, and extreme high power conversion efficiency (PCE), have been highlighted as one of the most competitive technologies for next generation thin film photovoltaic (PV). In UCLA, we have realized an efficient pathway to achieve high performance pervoskite solar cells, where the findings are beneficial to this unique materials/devices system. Our recent progress lies in perovskite film formation, defect passivation, transport materials design, interface engineering with respect to high performance solar cell, as well as the exploration of its applications beyond photovoltaics. These achievements include: 1) development of vapor assisted solution process (VASP) and moisture assisted solution process, which produces perovskite film with improved conformity, high crystallinity, reduced recombination rate, and the resulting high performance; 2) examination of the defects property of perovskite materials, and demonstration of a self-induced passivation approach to reduce carrier recombination; 3) interface engineering based on design of the carrier transport materials and the electrodes, in combination with high quality perovskite film, which delivers 15 ~ 20% PCEs; 4) a novel integration of bulk heterojunction to perovskite solar cell to achieve better light harvest; 5) fabrication of inverted solar cell device with high efficiency and flexibility and 6) exploration the application of perovskite materials to photodetector. Further development in film, device architecture, and interfaces will lead to continuous improved perovskite solar cells and other organic-inorganic hybrid optoelectronics.

  4. Towards high performance inverted polymer solar cells

    NASA Astrophysics Data System (ADS)

    Gong, Xiong

    2013-03-01

    Bulk heterojunction polymer solar cells that can be fabricated by solution processing techniques are under intense investigation in both academic institutions and industrial companies because of their potential to enable mass production of flexible and cost-effective alternative to silicon-based electronics. Despite the envisioned advantages and recent technology advances, so far the performance of polymer solar cells is still inferior to inorganic counterparts in terms of the efficiency and stability. There are many factors limiting the performance of polymer solar cells. Among them, the optical and electronic properties of materials in the active layer, device architecture and elimination of PEDOT:PSS are the most determining factors in the overall performance of polymer solar cells. In this presentation, I will present how we approach high performance of polymer solar cells. For example, by developing novel materials, fabrication polymer photovoltaic cells with an inverted device structure and elimination of PEDOT:PSS, we were able to observe over 8.4% power conversion efficiency from inverted polymer solar cells.

  5. High performance zinc air fuel cell stack

    NASA Astrophysics Data System (ADS)

    Pei, Pucheng; Ma, Ze; Wang, Keliang; Wang, Xizhong; Song, Mancun; Xu, Huachi

    2014-03-01

    A zinc air fuel cell (ZAFC) stack with inexpensive manganese dioxide (MnO2) as the catalyst is designed, in which the circulation flowing potassium hydroxide (KOH) electrolyte carries the reaction product away and acts as a coolant. Experiments are carried out to investigate the characteristics of polarization, constant current discharge and dynamic response, as well as the factors affecting the performance and uniformity of individual cells in the stack. The results reveal that the peak power density can be as high as 435 mW cm-2 according to the area of the air cathode sheet, and the influence factors on cell performance and uniformity are cell locations, filled state of zinc pellets, contact resistance, flow rates of electrolyte and air. It is also shown that the time needed for voltages to reach steady state and that for current step-up or current step-down are both in milliseconds, indicating the ZAFC can be excellently applied to vehicles with rapid dynamic response demands.

  6. High performance vapour-cell frequency standards

    NASA Astrophysics Data System (ADS)

    Gharavipour, M.; Affolderbach, C.; Kang, S.; Bandi, T.; Gruet, F.; Pellaton, M.; Mileti, G.

    2016-06-01

    We report our investigations on a compact high-performance rubidium (Rb) vapour-cell clock based on microwave-optical double-resonance (DR). These studies are done in both DR continuous-wave (CW) and Ramsey schemes using the same Physics Package (PP), with the same Rb vapour cell and a magnetron-type cavity with only 45 cm3 external volume. In the CW-DR scheme, we demonstrate a DR signal with a contrast of 26% and a linewidth of 334 Hz; in Ramsey-DR mode Ramsey signals with higher contrast up to 35% and a linewidth of 160 Hz have been demonstrated. Short-term stabilities of 1.4×10-13 τ-1/2 and 2.4×10-13 τ-1/2 are measured for CW-DR and Ramsey-DR schemes, respectively. In the Ramsey-DR operation, thanks to the separation of light and microwave interactions in time, the light-shift effect has been suppressed which allows improving the long-term clock stability as compared to CW-DR operation. Implementations in miniature atomic clocks are considered.

  7. High performance polymer tandem solar cell

    PubMed Central

    da Silva, Wilson Jose; Schneider, Fabio Kurt; Mohd Yusoff, Abd. Rashid bin; Jang, Jin

    2015-01-01

    A power conversion efficiency of 9.02% is obtained for a fully solution-processed polymer tandem solar cell, based on the diketopyrrolopyrrole unit polymer as a low bandgap photoactive material in the rear subcell, in conjunction with a new robust interconnecting layer. This interconnecting layer is optically transparent, electrically conductive, and physically strong, thus, the charges can be collected and recombined in the interconnecting layer under illumination, while the charge is generated and extracted under dark conditions. This indicates that careful interface engineering of the charge-carrier transport layer is a useful approach to further improve the performance of polymer tandem solar cells. PMID:26669577

  8. High performance internal reforming unit for high temperature fuel cells

    DOEpatents

    Ma, Zhiwen; Venkataraman, Ramakrishnan; Novacco, Lawrence J.

    2008-10-07

    A fuel reformer having an enclosure with first and second opposing surfaces, a sidewall connecting the first and second opposing surfaces and an inlet port and an outlet port in the sidewall. A plate assembly supporting a catalyst and baffles are also disposed in the enclosure. A main baffle extends into the enclosure from a point of the sidewall between the inlet and outlet ports. The main baffle cooperates with the enclosure and the plate assembly to establish a path for the flow of fuel gas through the reformer from the inlet port to the outlet port. At least a first directing baffle extends in the enclosure from one of the sidewall and the main baffle and cooperates with the plate assembly and the enclosure to alter the gas flow path. Desired graded catalyst loading pattern has been defined for optimized thermal management for the internal reforming high temperature fuel cells so as to achieve high cell performance.

  9. Life-cycle costs of high-performance cells

    NASA Technical Reports Server (NTRS)

    Daniel, R.; Burger, D.; Reiter, L.

    1985-01-01

    A life cycle cost analysis of high efficiency cells was presented. Although high efficiency cells produce more power, they also cost more to make and are more susceptible to array hot-spot heating. Three different computer analysis programs were used: SAMICS (solar array manufacturing industry costing standards), PVARRAY (an array failure mode/degradation simulator), and LCP (lifetime cost and performance). The high efficiency cell modules were found to be more economical in this study, but parallel redundancy is recommended.

  10. Performance Characterization of High Energy Commercial Lithium-ion Cells

    NASA Technical Reports Server (NTRS)

    Schneidegger, Brianne T.

    2010-01-01

    The NASA Glenn Research Center Electrochemistry Branch performed characterization of commercial lithium-ion cells to determine the cells' performance against Exploration Technology Development Program (ETDP) Key Performance Parameters (KPP). The goals of the ETDP Energy Storage Project require significant improvements in the specific energy of lithium-ion technology over the state-of-the-art. This work supports the high energy cell development for the Constellation customer Lunar Surface Systems (LSS). In support of these goals, testing was initiated in September 2009 with high energy cylindrical cells obtained from Panasonic and E-One Moli. Both manufacturers indicated the capability of their cells to deliver specific energy of at least 180 Wh/kg or higher. Testing is being performed at the NASA Glenn Research Center to evaluate the performance of these cells under temperature, rate, and cycling conditions relevant to the ETDP goals for high energy cells. The cell-level specific energy goal for high energy technology is 180 Wh/kg at a C/10 rate and 0 C. The threshold value is 165 Wh/kg. The goal is to operate for at least 2000 cycles at 100 percent DOD with greater than 80 percent capacity retention. The Panasonic NCR18650 cells were able to deliver nearly 200 Wh/kg at the aforementioned conditions. The E-One Moli ICR18650J cells also met the specific energy goal by delivering 183 Wh/kg. Though both cells met the goal for specific energy, this testing was only one portion of the testing required to determine the suitability of commercial cells for the ETDP. The cells must also meet goals for cycle life and safety. The results of this characterization are summarized in this report.

  11. Modelling and design of high performance indium phosphide solar cells

    NASA Technical Reports Server (NTRS)

    Rhoads, Sandra L.; Barnett, Allen M.

    1989-01-01

    A first principles pn junction device model has predicted new designs for high voltage, high efficiency InP solar cells. Measured InP material properties were applied and device parameters (thicknesses and doping) were adjusted to obtain optimal performance designs. Results indicate that p/n InP designs will provide higher voltages and higher energy conversion efficiencies than n/p structures. Improvements to n/p structures for increased efficiency are predicted. These new designs exploit the high absorption capabilities, relatively long diffusion lengths, and modest surface recombination velocities characteristic of InP. Predictions of performance indicate achievable open-circuit voltage values as high as 943 mV for InP and a practical maximum AM0 efficiency of 22.5 percent at 1 sun and 27 C. The details of the model, the optimal InP structure and the effect of individual parameter variations on device performance are presented.

  12. Rapid prototype fabrication processes for high-performance thrust cells

    NASA Technical Reports Server (NTRS)

    Hunt, K.; Chwiedor, T.; Diab, J.; Williams, R.

    1994-01-01

    The Thrust Cell Technologies Program (Air Force Phillips Laboratory Contract No. F04611-92-C-0050) is currently being performed by Rocketdyne to demonstrate advanced materials and fabrication technologies which can be utilized to produce low-cost, high-performance thrust cells for launch and space transportation rocket engines. Under Phase 2 of the Thrust Cell Technologies Program (TCTP), rapid prototyping and investment casting techniques are being employed to fabricate a 12,000-lbf thrust class combustion chamber for delivery and hot-fire testing at Phillips Lab. The integrated process of investment casting directly from rapid prototype patterns dramatically reduces design-to-delivery cycle time, and greatly enhances design flexibility over conventionally processed cast or machined parts.

  13. Comprehensive design of omnidirectional high-performance perovskite solar cells

    PubMed Central

    Zhang, Yutao; Xuan, Yimin

    2016-01-01

    The comprehensive design approach is established with coupled optical-electrical simulation for perovskite-based solar cell, which emerged as one of the most promising competitors to silicon solar cell for its low-cost fabrication and high PCE. The selection of structured surface, effect of geometry parameters, incident angle-dependence and polarization-sensitivity are considered in the simulation. The optical modeling is performed via the finite-difference time-domain method whilst the electrical properties are obtained by solving the coupled nonlinear equations of Poisson, continuity, and drift-diffusion equations. The optical and electrical performances of five different structured surfaces are compared to select a best structured surface for perovskite solar cell. The effects of the geometry parameters on the optical and electrical properties of the perovskite cell are analyzed. The results indicate that the light harvesting is obviously enhanced by the structured surface. The electrical performance can be remarkably improved due to the enhanced light harvesting of the designed best structured surface. The angle-dependence for s- and p-polarizations is investigated. The structured surface exhibits omnidirectional behavior and favorable polarization-insensitive feature within a wide incident angle range. Such a comprehensive design approach can highlight the potential of perovskite cell for power conversion in the full daylight. PMID:27405419

  14. Comprehensive design of omnidirectional high-performance perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Zhang, Yutao; Xuan, Yimin

    2016-07-01

    The comprehensive design approach is established with coupled optical-electrical simulation for perovskite-based solar cell, which emerged as one of the most promising competitors to silicon solar cell for its low-cost fabrication and high PCE. The selection of structured surface, effect of geometry parameters, incident angle-dependence and polarization-sensitivity are considered in the simulation. The optical modeling is performed via the finite-difference time-domain method whilst the electrical properties are obtained by solving the coupled nonlinear equations of Poisson, continuity, and drift-diffusion equations. The optical and electrical performances of five different structured surfaces are compared to select a best structured surface for perovskite solar cell. The effects of the geometry parameters on the optical and electrical properties of the perovskite cell are analyzed. The results indicate that the light harvesting is obviously enhanced by the structured surface. The electrical performance can be remarkably improved due to the enhanced light harvesting of the designed best structured surface. The angle-dependence for s- and p-polarizations is investigated. The structured surface exhibits omnidirectional behavior and favorable polarization-insensitive feature within a wide incident angle range. Such a comprehensive design approach can highlight the potential of perovskite cell for power conversion in the full daylight.

  15. Comprehensive design of omnidirectional high-performance perovskite solar cells.

    PubMed

    Zhang, Yutao; Xuan, Yimin

    2016-07-13

    The comprehensive design approach is established with coupled optical-electrical simulation for perovskite-based solar cell, which emerged as one of the most promising competitors to silicon solar cell for its low-cost fabrication and high PCE. The selection of structured surface, effect of geometry parameters, incident angle-dependence and polarization-sensitivity are considered in the simulation. The optical modeling is performed via the finite-difference time-domain method whilst the electrical properties are obtained by solving the coupled nonlinear equations of Poisson, continuity, and drift-diffusion equations. The optical and electrical performances of five different structured surfaces are compared to select a best structured surface for perovskite solar cell. The effects of the geometry parameters on the optical and electrical properties of the perovskite cell are analyzed. The results indicate that the light harvesting is obviously enhanced by the structured surface. The electrical performance can be remarkably improved due to the enhanced light harvesting of the designed best structured surface. The angle-dependence for s- and p-polarizations is investigated. The structured surface exhibits omnidirectional behavior and favorable polarization-insensitive feature within a wide incident angle range. Such a comprehensive design approach can highlight the potential of perovskite cell for power conversion in the full daylight.

  16. Recent advances in high-performance direct methanol fuel cells

    SciTech Connect

    Narayanan, S.R.; Chun, W.; Valdez, T.I.

    1996-12-31

    Direct methanol fuel cells for portable power applications have been advanced significantly under DARPA- and ARO-sponsored programs over the last five years. A liquid-feed direct methanol fuel cell developed under these programs, employs a proton exchange membrane as electrolyte and operates on aqueous solutions of methanol with air or oxygen as the oxidant. Power densities as high as 320 mW/cm{sup 2} have been demonstrated. Demonstration of five-cell stack based on the liquid-feed concept have been successfully performed by Giner Inc. and the Jet Propulsion Laboratory. Over 2000 hours of life-testing have been completed on these stacks. These fuel cells have been also been demonstrated by USC to operate on alternate fuels such as trimethoxymethane, dimethoxymethane and trioxane. Reduction in the parasitic loss of fuel across the fuel cell, a phenomenon termed as {open_quotes}fuel crossover{close_quotes} has been achieved using polymer membranes developed at USC. As a result efficiencies as high as 40% is considered attainable with this type of fuel cell. The state-of-development has reached a point where it is now been actively considered for stationary, portable and transportation applications. The research and development issues have been the subject of several previous articles and the present article is an attempt to summarize the key advances in this technology.

  17. Development of high performance sodium/metal chloride cells

    NASA Astrophysics Data System (ADS)

    Vissers, D. R.; Bloom, I. D.; Hash, M. C.; Redey, L.; Hammer, C. L.; Dees, D. W.; Nelson, P. A.

    Sodium/metal chloride (MCl2) cells and batteries are being studied at Argonne National Laboratory (ANL) for stationary energy storage and transportation applications. The work is being directed toward (1) development of thin, high capacity density electrodes and inexpensive beta double prime alumina-glass composite electrolyte materials to replace beta double prime alumina, and (2) the development of models to project MCl2 system performances. In our NiCl2 electrode work, the effects of charge/discharge rates, temperature, electrode porosity, and sulfur content on electrode performance were determined using annular electrodes fabricated in the uncharged state. Of all electrode design parameters mentioned, electrode porosity, sulfur content, and charge rates have the greatest effect on utilization and on the area-specific impedance. The beta double prime alumina-glass composite electrolyte work has led to the development of a highly conductive (3.3 x 10(exp -2)S/cm at 250 C) composite material. Preliminary modeling studies indicate that the performance of the MCl2 electrodes can be fitted by a mathematic model very successfully and that cell electrolyte configurations of either multiple tubes joined at a header or compartmented flat structures of either beta double prime alumina or of the composite material would result in high performance batteries with power-to-energy ratios of about 5.

  18. High-performance polymer photovoltaic cells and photodetectors

    NASA Astrophysics Data System (ADS)

    Yu, Gang; Srdanov, Gordana; Wang, Hailiang; Cao, Yong; Heeger, Alan J.

    2001-02-01

    Polymer photovoltaic cells and photodetectors have passed their infancy and become mature technologies. The energy conversion efficiency of polymer photovoltaic cells have been improved to over 4.1% (500 nm, 10 mW/cm2). Such high efficiency polymer photovoltaic cells are promising for many applications including e-papers, e-books and smart- windows. The development of polymer photodetectors is even faster. The performance parameters have been improved to the level meeting all specifications for practical applications. The polymer photodetectors are of high photosensitivity (approximately 0.2 - 0.3 A/Watt in visible and UV), low dark current (0.1 - 1 nA/cm2), large dynamic range (> 8 orders of magnitude), linear intensity dependence, low noise level and fast response time (to nanosecond time domain). These devices show long shelf and operation lives. The advantages of low manufacturing cost, large detection area, and easy hybridization and integration with other electronic or optical components make the polymer photodetectors promising for a variety of applications including chemical/biomedical analysis, full-color digital image sensing and high energy radiation detection.

  19. High-performing vapor-cell frequency standards

    NASA Astrophysics Data System (ADS)

    Godone, A.; Levi, F.; Calosso, C. E.; Micalizio, S.

    2015-03-01

    Many nowadays scientific and technological applications need very precise time and frequency reference signals. Very often, only atomic clocks can guarantee the high level of accuracy and stability required by these signals. In the current scenario of atomic frequency standards, vapor-cell clocks are particularly suited to be employed in those activities that demand good frequency stability performances joined to compactness, reliability and low power consumption. Recently, due to better-performing laser sources and to innovative techniques to prepare and detect the atoms, several cell-based prototypes exhibiting unprecedented frequency stability have been developed. We review advances in the field of laser-pumped vapor-cell clocks and we provide an overview of the techniques that allowed to achieve frequency stabilities in the order of 1×10-13 at 1s (short term) and in the range of 10-15 for the medium-long term. These stabilities are two orders of magnitude better than current commercial Rb clocks. We also prospect the possibility of further improving these results.

  20. High Performance InGaAsSb TPV Cells

    NASA Astrophysics Data System (ADS)

    Shellenbarger, Zane A.; Taylor, Gordon C.; Martinelli, Ramon U.; Carpinelli, Joseph M.

    2004-11-01

    Lattice-matched 0.52 eV InGaAsSb/GaSb thermophotovoltaic (TPV) cells are grown using a multi-wafer metal-organic-chemical-vapor-deposition (MOCVD) system. MOCVD growth series of P/N junction epitaxial structures consisting of as many as 30 wafers demonstrate good run-to-run reproducibility, good uniformity across the wafer and exhibit high performance with open circuit voltages of ˜300mV and fill factors of 70% at 25°C. Growth parameters, including temperature, surface preparation and substrate orientation, that directly affect growth have been optimized for the active 0.52 eV InGaAsSb region and GaSb confinement layers. Focus is on increasing TPV diode performance through architectural improvements, specifically by reducing the minority carrier recombination velocity at the emitter and base front and back interfaces. Work in support of incorporating a back surface reflector (BSR) including the growth of N/P diode architectures and the addition of a lattice-matched InAsSb etch stop layer for substrate removal and wafer bonding, is reported. The lattice matched InAsSb stop etch exhibits resiliency to the substrate removal and wafer bonding processes. Substantial improvement in carrier lifetime on test structures with P-type AlGaAsSb layers indicated incorporation of these layers into the TPV cell structure should provide significant improvement in open-circuit voltage. Addition of AlGaAsSb confinement layers to the standard P/N cell structure gave some of the best InGaAsSb TPV cell results to date.

  1. High performance, high bandgap, lattice-mismatched, GaInP solar cells

    DOEpatents

    Wanlass, Mark W.; Carapella, Jeffrey J.; Steiner, Myles A.

    2014-07-08

    High performance, high bandgap, lattice-mismatched, photovoltaic cells (10), both transparent and non-transparent to sub-bandgap light, are provided as devices for use alone or in combination with other cells in split spectrum apparatus or other applications.

  2. High performance, high bandgap, lattice-mismatched, GaInP solar cells

    SciTech Connect

    Wanlass, Mark W; Carapella, Jeffrey J; Steiner, Myles A

    2016-11-01

    High performance, high bandgap, lattice-mismatched, photovoltaic cells (10), both transparent and non-transparent to sub-bandgap light, are provided as devices for use alone or in combination with other cells in split spectrum apparatus or other applications.

  3. Theoretical and experimental considerations for high silicon solar cell performance

    NASA Technical Reports Server (NTRS)

    Spitzer, M. B.; Keavney, C. J.; Geoffroy, L. M.

    1986-01-01

    This paper reviews ongoing research aimed at the attainment of highly efficient silicon solar cells. The importance of low-recombination highly-doped n(+) and p(+) regions and the manner in which such regions are fabricated are discussed. Theoretical light-trapping considerations are combined with experimental reflectance data to show that high quantum efficiency may be obtained from thin (100-micron) cells. The principal finding of this work is that thin solar cells with conversion efficiencies of over 20 percent may be fabricated if recombination at the front and back metal/silicon interfaces is reduced. Large-area cells (53 sq cm) with an efficiency of 18 percent are reported.

  4. Engineering high performance intermediate temperature solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Ahn, Jin Soo

    Solid oxide fuel cells (SOFCs) are an efficient, fuel flexible energy conversion device, capable of operating on fuels ranging from natural gas to gasoline, diesel, and biofuels, as well as hydrogen. However, to this point the marketability of SOFCs has been limited by their high operating temperatures. Achieving high power at intermediate temperatures (IT, 500 -- 700 °C) would be a significant breakthrough, as low temperature operation would result in better stability and allow for a broader range of material options for the SOFC components as well as the balance of plant, such as stainless steel interconnects (which are only viable at <700 °C). Thus far, power densities on the order of 2 W/cm2 have been limited to temperatures above 800 °C. This dissertation contains a series of works to realize exceptionally high power at IT ranges. First, improved fabrication techniques including anode tapecasting and electrolyte spray coating were developed, and a molecular approach to anode functional layer (AFL) was employed using precursor solutions. This newly developed AFL reduced the ASR of a SOFC sample by 60 % and increased the open circuit potential (OCP) by more than 0.1 V resulting in a 140 % increase in power. Further investigations into this molecular AFL showed that a multilayered AFL can further reduce the ASR and increase the maximum power density. Secondly, the potential use of Sm0.075Nd0.075Ce0.85O 2-delta as an electrolyte has been investigated. The current-voltage (I-V) performance of the cell exhibits a maximum power density reaching 1.38 W/cm2 with an area specific resistance (ASR) of 0.087 Ocm 2 at 650 °C with 90 sccm of air and wet hydrogen. Also, the high OCP achieved at 500 °C (0.96 V) as well as the high performance confirmed the viability of Sm0.075Nd0.075Ce0.85 O2-delta as an alternative electrolyte material. The cathode used for this study was La0.6Sr0.4Co0.2Fe 0.8O3 (LSCF) -- Gd0.1Ce0.9O 2 (GDC) composite. Finally, Er0.8Bi1.2O3 (ESB

  5. Long-life high performance fuel cell program

    NASA Technical Reports Server (NTRS)

    Martin, R. E.

    1985-01-01

    A multihundred kilowatt Regenerative Fuel Cell for use in a space station is envisioned. Three 0.508 sq ft (471.9 cm) active area multicell stacks were assembled and endurance tested. The long term performance stability of the platinum on carbon catalyst configuration suitability of the lightweight graphite electrolyte reservoir plate, the stability of the free standing butyl bonded potassium titanate matrix structure, and the long life potential of a hybrid polysulfone cell edge frame construction were demonstrated. A 18,000 hour demonstration test of multicell stack to a continuous cyclical load profile was conducted. A total of 12,000 cycles was completed, confirming the ability of the alkaline fuel cell to operate to a load profile simulating Regenerative Fuel Cell operation. An orbiter production hydrogen recirculation pump employed in support of the cyclical load profile test completed 13,000 hours of maintenance free operation. Laboratory endurance tests demonstrated the suitability of the butyl bonded potassium matrix, perforated nickel foil electrode substrates, and carbon ribbed substrate anode for use in the alkaline fuel cell. Corrosion testing of materials at 250 F (121.1 C) in 42% wgt. potassium identified ceria, zirconia, strontium titanate, strontium zirconate and lithium cobaltate as candidate matrix materials.

  6. Effects of high doping levels on silicon solar cell performance

    NASA Technical Reports Server (NTRS)

    Godlewski, M. P.; Brandhorst, H. W., Jr.; Baraona, C. R.

    1975-01-01

    Open-circuit voltages measured in silicon solar cells made from 0.01 ohm-cm material are 150 mV lower than voltages calculated from simple diffusion theory and cannot be explained by poor diffusion lengths or surface leakage currents. An analytical study was made to determine whether high doping effects, which increase the intrinsic carrier concentration, could account for the low observed voltages and to determine the limits on voltage and efficiency imposed by high doping effects. The results indicate that the observed variation of voltage with base resistivity is predicted by these effects. A maximum efficiency of 19% (AMO) and a voltage of 0.7 volts were calculated for 0.1 ohm-cm cells assuming an optimum diffused layer impurity profile.

  7. High performance, inexpensive solar cell process capable of a high degree of automation

    NASA Technical Reports Server (NTRS)

    Shah, P.; Fuller, C. R.

    1976-01-01

    This paper proposes a process for inexpensive high performance solar cell fabrication that can be automated for further cost reduction and higher throughputs. The unique feature of the process is the use of oxides as doping sources for simultaneous n(+) junction formation and back p(+) layer, as a mask for metallization and as an in situ AR coating for spectrum matching. Cost analysis is performed to show that significant cost reductions over the conventional process is possible using the proposed scheme and the cost intensive steps are identified which can be further reduced to make the process compatible with the needed price goals of 50 cents/watt. The process was demonstrated by fabricating n(+)-p cells using Arsenic doped oxides. Simple n(+)-p structure cells showed corrected efficiencies of 14.5% (AMO) and 12% with doped oxide as an in situ antireflection coating.

  8. High performance spiral wound microbial fuel cell with hydraulic characterization.

    PubMed

    Haeger, Alexander; Forrestal, Casey; Xu, Pei; Ren, Zhiyong Jason

    2014-12-01

    The understanding and development of functioning systems are crucial steps for microbial fuel cell (MFC) technology advancement. In this study, a compact spiral wound MFC (swMFC) was developed and hydraulic residence time distribution (RTD) tests were conducted to investigate the flow characteristics in the systems. Results show that two-chamber swMFCs have high surface area to volume ratios of 350-700m(2)/m(3), and by using oxygen cathode without metal-catalysts, the maximum power densities were 42W/m(3) based on total volume and 170W/m(3) based on effective volume. The hydraulic step-input tracer study identified 20-67% of anodic flow dead space, which presents new opportunities for system improvement. Electrochemical tools revealed very low ohmic resistance but high charge transfer and diffusion resistance due to catalyst-free oxygen reduction. The spiral wound configuration combined with RTD tool offers a holistic approach for MFC development and optimization.

  9. High Performance InGaN-Based Solar Cells

    DTIC Science & Technology

    2012-05-12

    quantum efficiency (EQE) for our solar cells ; increasing the total absorption in our solar ...in Fig. 1.2(a), which shows a typical plot of the dependence of external quantum efficiency (EQE) on wavelength for an InGaN-based solar cell . Aside... solar cells are examined in Section 8. Section 9 then discusses how to best integrate InGaN-based solar cells with GaAs -based multijunction solar

  10. Effects of high doping levels silicon solar cell performance

    NASA Technical Reports Server (NTRS)

    Godlewski, M. P.; Brandhorst, H. W., Jr.; Baraona, C. R.

    1975-01-01

    The significance of the heavy doping effects (HDE) on the open-circuit voltage of silicon solar cells is assessed. Voltage calculations based on diffusion theory are modified to include the first order features of the HDE. Comparisions of the open-circuit voltage measured for cells of various base resistivities are made with those calculated using the diffusion model with and without the HDE. Results indicate that the observed variation of voltage with base resistivity is predicted by these effects. A maximum efficiency of 19% (AM0) and a voltage of 0.7 volts are calculated for 0.1 omega-cm cells assuming an optimum diffused layer impurity profile.

  11. Highly conductive anion exchange membrane for high power density fuel-cell performance.

    PubMed

    Ren, Xiaoming; Price, Samuel C; Jackson, Aaron C; Pomerantz, Natalie; Beyer, Frederick L

    2014-08-27

    Anion exchange membrane fuel cells (AEMFCs) are regarded as a new generation of fuel cell technology that has the potential to overcome many obstacles of the mainstream proton exchange membrane fuel cells (PEMFCs) in cost, catalyst stability, efficiency, and system size. However, the low ionic conductivity and poor thermal stability of current anion exchange membranes (AEMs) have been the key factors limiting the performance of AEMFCs. In this study, an AEM made of styrenic diblock copolymer with a quaternary ammonium-functionalized hydrophilic block and a cross-linkable hydrophobic block and possessing bicontinuous phases of a hydrophobic network and hydrophilic conduction paths was found to have high ionic conductivity at 98 mS cm(-1) and controlled membrane swelling with water uptake at 117 wt % at 22 °C. Membrane characterizations and fuel cell tests of the new AEM were carried out together with a commercial AEM, Tokuyama A201, for comparison. The high ionic conductivity and water permeability of the new membrane reported in this study is attributed to the reduced torturosity of the ionic conduction paths, while the hydrophobic network maintains the membrane mechanical integrity, preventing excessive water uptake.

  12. Method to fabricate high performance tubular solid oxide fuel cells

    SciTech Connect

    Chen, Fanglin; Yang, Chenghao; Jin, Chao

    2013-06-18

    In accordance with the present disclosure, a method for fabricating a solid oxide fuel cell is described. The method includes forming an asymmetric porous ceramic tube by using a phase inversion process. The method further includes forming an asymmetric porous ceramic layer on a surface of the asymmetric porous ceramic tube by using a phase inversion process. The tube is co-sintered to form a structure having a first porous layer, a second porous layer, and a dense layer positioned therebetween.

  13. High performance, high durability non-precious metal fuel cell catalysts

    DOEpatents

    Wood, Thomas E.; Atanasoski, Radoslav; Schmoeckel, Alison K.

    2016-03-15

    This invention relates to non-precious metal fuel cell cathode catalysts, fuel cells that contain these catalysts, and methods of making the same. The fuel cell cathode catalysts are highly nitrogenated carbon materials that can contain a transition metal. The highly nitrogenated carbon materials can be supported on a nanoparticle substrate.

  14. Performance Assessment of Baseline Cells for the High Efficiency Space Power Systems Project

    NASA Technical Reports Server (NTRS)

    Schneidegger, Brianne T.

    2012-01-01

    The Enabling Technology Development and Demonstration (ETDD) Program High Efficiency Space Power Systems (HESPS) Project, formerly the Exploration Technology Development Program (ETDP) Energy Storage Project is tasked with developing advanced lithium-ion cells for future NASA Exploration missions. Under this project, components under development via various in-house and contracted efforts are delivered to Saft America for scale-up and integration into cells. Progress toward meeting project goals will be measured by comparing the performance to these cells with cells of a similar format with Saft s state-of-the-art aerospace chemistry. This report discusses the results of testing performed on the first set of baseline cells delivered by Saft to the NASA Glenn Research Center. This build is a cylindrical "DD" geometry with a 10 Ah nameplate capacity. Testing is being performed to establish baseline cell performance at conditions relevant to ETDD HESPS Battery Key Performance Parameter (KPP) goals including various temperatures, rates, and cycle life conditions. Data obtained from these cells will serve as a performance baseline for future cell builds containing optimized ETDD HESPSdeveloped materials. A test plan for these cells was developed to measure cell performance against the high energy cell KPP goals. The goal for cell-level specific energy of the high energy technology is 180 Wh/kg at a C/10 discharge rate and 0 C. The cells should operate for at least 2000 cycles at 100 percent DOD with 80 percent capacity retention. Baseline DD cells delivered 152 Wh/kg at 20 C. This number decreased to 143.9 Wh/kg with a 0 C discharge. This report provides performance data and summarizes results of the testing performed on the DD cells.

  15. High electron mobility ZnO film for high-performance inverted polymer solar cells

    SciTech Connect

    Lv, Peiwen; Chen, Shan-Ci; Zheng, Qingdong; Huang, Feng Ding, Kai

    2015-04-20

    High-quality ZnO films (ZnO-MS) are prepared via magnetron sputtering deposition with a high mobility of about 2 cm{sup 2}/(V·s) and are used as electron transport layer for inverted polymer solar cells (PSCs) with polymer poly[4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b:4,5-b′] dithiophene-co-3-fluorothieno[3,4-b]thiophene-2-carboxylate]:[6,6]-phenyl C71-butyric acid methyl ester as the active layer. A significant improvement of J{sub SC}, about 20% enhancement in contrast to the devices built on sol-gel derived ZnO film (ZnO-Sol), is found in the ZnO-MS based device. High performance ZnO-MS based PSCs exhibit power conversion efficiency (PCE) up to 8.55%, which is much better than the device based on ZnO-Sol (PCE = 7.78%). Further research on cathode materials is promising to achieve higher performance.

  16. High electron mobility ZnO film for high-performance inverted polymer solar cells

    NASA Astrophysics Data System (ADS)

    Lv, Peiwen; Chen, Shan-Ci; Zheng, Qingdong; Huang, Feng; Ding, Kai

    2015-04-01

    High-quality ZnO films (ZnO-MS) are prepared via magnetron sputtering deposition with a high mobility of about 2 cm2/(V.s) and are used as electron transport layer for inverted polymer solar cells (PSCs) with polymer poly[4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b:4,5-b']dithiophene-co-3-fluorothieno[3,4-b]thiophene-2-carboxylate]:[6,6]-phenyl C71-butyric acid methyl ester as the active layer. A significant improvement of JSC, about 20% enhancement in contrast to the devices built on sol-gel derived ZnO film (ZnO-Sol), is found in the ZnO-MS based device. High performance ZnO-MS based PSCs exhibit power conversion efficiency (PCE) up to 8.55%, which is much better than the device based on ZnO-Sol (PCE = 7.78%). Further research on cathode materials is promising to achieve higher performance.

  17. Characterization of high performance silicon-based VMJ PV cells for laser power transmission applications

    NASA Astrophysics Data System (ADS)

    Perales, Mico; Yang, Mei-huan; Wu, Cheng-liang; Hsu, Chin-wei; Chao, Wei-sheng; Chen, Kun-hsien; Zahuranec, Terry

    2016-03-01

    Continuing improvements in the cost and power of laser diodes have been critical in launching the emerging fields of power over fiber (PoF), and laser power beaming. Laser power is transmitted either over fiber (for PoF), or through free space (power beaming), and is converted to electricity by photovoltaic cells designed to efficiently convert the laser light. MH GoPower's vertical multi-junction (VMJ) PV cell, designed for high intensity photovoltaic applications, is fueling the emergence of this market, by enabling unparalleled photovoltaic receiver flexibility in voltage, cell size, and power output. Our research examined the use of the VMJ PV cell for laser power transmission applications. We fully characterized the performance of the VMJ PV cell under various laser conditions, including multiple near IR wavelengths and light intensities up to tens of watts per cm2. Results indicated VMJ PV cell efficiency over 40% for 9xx nm wavelengths, at laser power densities near 30 W/cm2. We also investigated the impact of the physical dimensions (length, width, and height) of the VMJ PV cell on its performance, showing similarly high performance across a wide range of cell dimensions. We then evaluated the VMJ PV cell performance within the power over fiber application, examining the cell's effectiveness in receiver packages that deliver target voltage, intensity, and power levels. By designing and characterizing multiple receivers, we illustrated techniques for packaging the VMJ PV cell for achieving high performance (> 30%), high power (> 185 W), and target voltages for power over fiber applications.

  18. Relationship between the blue response and open-circuit voltage of high performance silicon solar cells

    NASA Technical Reports Server (NTRS)

    Green, M. A.; Blakers, A. W.

    1983-01-01

    The relationship between the response at blue wavelengths and the open-circuit voltage of high performance silicon solar cells with a virtually 'transparent' emitter is analyzed. It is shown that a one-dimensional cell model cannot simultaneously model the optical collection properties and operating characteristics of such cells. The analysis highlights the importance of surface conditions and shows that previous conclusions regarding bounds on Auger coefficients imposed by correlating these parameters must be treated with caution.

  19. The Environmental Performance at Low Intensity, Low Temperature (LILT) of High Efficiency Triple Junction Solar Cells

    NASA Technical Reports Server (NTRS)

    Stella, Paul M.; Mueller, Robert; Davis, Gregory; Distefano, Salvador

    2004-01-01

    A number of JPL missions, either active or in the p l d g stages, require the accurate LILT flew intensity - low temperate) climate of triple-junction solar. Although triple ignition LILT performance was reported as recently as 2002, there has been an evolutionary advance in cell technology by both U.S. space cell manufacturers that, for mission design purposes, effectively obsoletes the earlier data. As a result, JPL initiated a program to develop a database for the LILT performance of the new high performance triple junction solar cells. JPL obtained Emcore Advanced triple Juntion CIC assemblies and Spectrolab Ultra Triple Junction CIC assemblies. These cells were tested at temperature-intensity ranges designed to cover applications between 1 and 5.18 AU solar distances. 1 MeV electron irradiation from 25 E14 to 1 El5 w were performed on the cells to evaluate the combined effect of particulate radiation and LILT conditions. The effect of LILT conditions was observed to incur an increase in the variation of cell performances such that at simulted 5.18 AU conditions the average performance was approximately 30% with the best cells measuring between 32 and 34% efficiency. The 30% average efficiency compares with approximately 25% average efficiency measured on earlier technology triple junction solar cells.

  20. Performance enhancement of direct ethanol fuel cell using Nafion composites with high volume fraction of titania

    NASA Astrophysics Data System (ADS)

    Matos, B. R.; Isidoro, R. A.; Santiago, E. I.; Fonseca, F. C.

    2014-12-01

    The present study reports on the performance enhancement of direct ethanol fuel cell (DEFC) at 130 °C with Nafion-titania composite electrolytes prepared by sol-gel technique and containing high volume fractions of the ceramic phase. It is found that for high volume fractions of titania (>10 vol%) the ethanol uptake of composites is largely reduced while the proton conductivity at high-temperatures is weakly dependent on the titania content. Such tradeoff between alcohol uptake and conductivity resulted in a boost of DEFC performance at high temperatures using Nafion-titania composites with high fraction of the inorganic phase.

  1. Robust high-performance nanoliter-volume single-cell multiple displacement amplification on planar substrates

    PubMed Central

    Leung, Kaston; Klaus, Anders; Lin, Bill K.; Laks, Emma; Biele, Justina; Lai, Daniel; Bashashati, Ali; Huang, Yi-Fei; Aniba, Radhouane; Moksa, Michelle; Steif, Adi; Mes-Masson, Anne-Marie; Hirst, Martin; Shah, Sohrab P.; Aparicio, Samuel; Hansen, Carl L.

    2016-01-01

    The genomes of large numbers of single cells must be sequenced to further understanding of the biological significance of genomic heterogeneity in complex systems. Whole genome amplification (WGA) of single cells is generally the first step in such studies, but is prone to nonuniformity that can compromise genomic measurement accuracy. Despite recent advances, robust performance in high-throughput single-cell WGA remains elusive. Here, we introduce droplet multiple displacement amplification (MDA), a method that uses commercially available liquid dispensing to perform high-throughput single-cell MDA in nanoliter volumes. The performance of droplet MDA is characterized using a large dataset of 129 normal diploid cells, and is shown to exceed previously reported single-cell WGA methods in amplification uniformity, genome coverage, and/or robustness. We achieve up to 80% coverage of a single-cell genome at 5× sequencing depth, and demonstrate excellent single-nucleotide variant (SNV) detection using targeted sequencing of droplet MDA product to achieve a median allelic dropout of 15%, and using whole genome sequencing to achieve false and true positive rates of 9.66 × 10−6 and 68.8%, respectively, in a G1-phase cell. We further show that droplet MDA allows for the detection of copy number variants (CNVs) as small as 30 kb in single cells of an ovarian cancer cell line and as small as 9 Mb in two high-grade serous ovarian cancer samples using only 0.02× depth. Droplet MDA provides an accessible and scalable method for performing robust and accurate CNV and SNV measurements on large numbers of single cells. PMID:27412862

  2. High-performance ternary blend polymer solar cells involving both energy transfer and hole relay processes

    DOE PAGES

    Lu, Luyao; Chen, Wei; Xu, Tao; ...

    2015-06-04

    The integration of multiple materials with complementary absorptions into a single junction device is regarded as an efficient way to enhance the power conversion efficiency (PCE) of organic solar cells (OSCs). However, because of increased complexity with one more component, only limited high-performance ternary systems have been demonstrated previously. Here we report an efficient ternary blend OSC with a PCE of 9.2%. We show that the third component can reduce surface trap densities in the ternary blend. Detailed studies unravel that the improved performance results from synergistic effects of enlarged open circuit voltage, suppressed trap-assisted recombination, enhanced light absorption, increasedmore » hole extraction, efficient energy transfer and better morphology. The working mechanism and high device performance demonstrate new insights and design guidelines for high-performance ternary blend solar cells and suggest that ternary structure is a promising platform to boost the efficiency of OSCs.« less

  3. High-performance ternary blend polymer solar cells involving both energy transfer and hole relay processes

    SciTech Connect

    Lu, Luyao; Chen, Wei; Xu, Tao; Yu, Luping

    2015-06-04

    The integration of multiple materials with complementary absorptions into a single junction device is regarded as an efficient way to enhance the power conversion efficiency (PCE) of organic solar cells (OSCs). However, because of increased complexity with one more component, only limited high-performance ternary systems have been demonstrated previously. Here we report an efficient ternary blend OSC with a PCE of 9.2%. We show that the third component can reduce surface trap densities in the ternary blend. Detailed studies unravel that the improved performance results from synergistic effects of enlarged open circuit voltage, suppressed trap-assisted recombination, enhanced light absorption, increased hole extraction, efficient energy transfer and better morphology. The working mechanism and high device performance demonstrate new insights and design guidelines for high-performance ternary blend solar cells and suggest that ternary structure is a promising platform to boost the efficiency of OSCs.

  4. Characterization of high-temperature performance of cesium vapor cells with anti-relaxation coating

    NASA Astrophysics Data System (ADS)

    Li, Wenhao; Balabas, Mikhail; Peng, Xiang; Pustelny, Szymon; Wickenbrock, Arne; Guo, Hong; Budker, Dmitry

    2017-02-01

    Vapor cells with antirelaxation coating are widely used in modern atomic physics experiments due to the coating's ability to maintain the atoms' spin polarization during wall collisions. We characterize the performance of vapor cells with different coating materials by measuring longitudinal spin relaxation and vapor density at temperatures up to 95 °C. We infer that the spin-projection-noise-limited sensitivity for atomic magnetometers with such cells improves with temperature, which demonstrates the potential of antirelaxation coated cells in applications of future high-sensitivity magnetometers.

  5. High-performance silicon nanowire array photoelectrochemical solar cells through surface passivation and modification.

    PubMed

    Wang, Xin; Peng, Kui-Qing; Pan, Xiao-Jun; Chen, Xue; Yang, Yang; Li, Li; Meng, Xiang-Min; Zhang, Wen-Jun; Lee, Shuit-Tong

    2011-10-10

    Nanowire solar cells: Pt nanoparticle (PtNP) decorated C/Si core/shell nanowire photoelectrochemical solar cells show high conversion efficiency of 10.86 % and excellent stability in aggressive electrolytes under 1-sun AM 1.5 G illumination. Superior device performance is achieved by improved surface passivation of the nanowires by carbon coating and enhanced interfacial charge transfer by PtNPs.

  6. Optimization of molecular organization and nanoscale morphology for high performance low bandgap polymer solar cells

    NASA Astrophysics Data System (ADS)

    He, Ming; Wang, Mengye; Lin, Changjian; Lin, Zhiqun

    2014-03-01

    Rational design and synthesis of low bandgap (LBG) polymers with judiciously tailored HOMO and LUMO levels have emerged as a viable route to high performance polymer solar cells with power conversion efficiencies (PCEs) exceeding 10%. In addition to engineering the energy-level of LBG polymers, the photovoltaic performance of LBG polymer-based solar cells also relies on the device architecture, in particular the fine morphology of the photoactive layer. The nanoscale interpenetrating networks composed of nanostructured donor and acceptor phases are the key to providing a large donor-acceptor interfacial area for maximizing the exciton dissociation and offering a continuous pathway for charge transport. In this Review Article, we summarize recent strategies for tuning the molecular organization and nanoscale morphology toward an enhanced photovoltaic performance of LBG polymer-based solar cells.

  7. Optimization of molecular organization and nanoscale morphology for high performance low bandgap polymer solar cells.

    PubMed

    He, Ming; Wang, Mengye; Lin, Changjian; Lin, Zhiqun

    2014-04-21

    Rational design and synthesis of low bandgap (LBG) polymers with judiciously tailored HOMO and LUMO levels have emerged as a viable route to high performance polymer solar cells with power conversion efficiencies (PCEs) exceeding 10%. In addition to engineering the energy-level of LBG polymers, the photovoltaic performance of LBG polymer-based solar cells also relies on the device architecture, in particular the fine morphology of the photoactive layer. The nanoscale interpenetrating networks composed of nanostructured donor and acceptor phases are the key to providing a large donor-acceptor interfacial area for maximizing the exciton dissociation and offering a continuous pathway for charge transport. In this Review Article, we summarize recent strategies for tuning the molecular organization and nanoscale morphology toward an enhanced photovoltaic performance of LBG polymer-based solar cells.

  8. Performance degradation of high-power lithium-ion cells-Electrochemistry of harvested electrodes

    NASA Astrophysics Data System (ADS)

    Abraham, D. P.; Knuth, J. L.; Dees, D. W.; Bloom, I.; Christophersen, J. P.

    The performance of 18650-type high-power lithium-ion cells is being evaluated as part of the U.S. Department of Energy's (DOEs) Advanced Technology Development (ATD) program. In this article, we present accelerated aging data acquired on 18650-cells containing LiNi 0.8Co 0.15Al 0.05O 2- or LiNi 0.8Co 0.1Al 0.1O 2-based positive electrodes, MAG-10 graphite-based negative electrodes, and 1.2-M LiPF 6 in EC:EMC (3:7 by wt.) electrolyte. Capacity and impedance data acquired on electrodes harvested from these cells highlight the contributions of the positive and negative electrodes to the degradation of cell performance. We also describe test methodologies used to examine the electrochemical characteristics of the harvested electrodes. Identifying and optimizing cell components responsible for performance degradation should enable the development of new lithium-ion cell chemistries that will meet the 15-year cell calendar life goal established by DOEs FreedomCar initiative.

  9. A low-cost, high-performance zinc-hydrogen peroxide fuel cell

    NASA Astrophysics Data System (ADS)

    An, L.; Zhao, T. S.; Zhou, X. L.; Yan, X. H.; Jung, C. Y.

    2015-02-01

    Electric vehicles (EVs) are primarily limited by the distance they can travel, charge time and cost. Here we report a catalyst-free, high-performance zinc-hydrogen peroxide fuel cell that consists of a redox flow cell with the respective redox couple at the anode (V(II)/V(III)) and cathode (V(IV)/V(V)) regenerated by the fuel (zinc) and the oxidant (hydrogen peroxide). Unlike batteries that have low capacities and need to be frequently charged, the present fuel cell enables future vehicles to travel farther distances on one charge and almost instantaneous charge time. More importantly, it is demonstrated that this novel fuel cell exhibits an extraordinarily high peak power density of 1192 mW cm-2 at 60 °C, a performance which is about five times higher than that of state-of-the-art conventional fuel cells of the kind (265 mW cm-2). Another striking feature of the present fuel cell is that it does not require catalysts, allowing the power pack to be both cost-effective and durable. These important features make the present fuel cell a promising post lithium-ion technology, opening a sustainable way to propel next-generation vehicles.

  10. A switchable pH-differential unitized regenerative fuel cell with high performance

    NASA Astrophysics Data System (ADS)

    Lu, Xu; Xuan, Jin; Leung, Dennis Y. C.; Zou, Haiyang; Li, Jiantao; Wang, Hailiang; Wang, Huizhi

    2016-05-01

    Regenerative fuel cells are a potential candidate for future energy storage, but their applications are limited by the high cost and poor round-trip efficiency. Here we present a switchable pH-differential unitized regenerative fuel cell capable of addressing both the obstacles. Relying on a membraneless laminar flow-based design, pH environments in the cell are optimized independently for different electrode reactions and are switchable together with the cell process to ensure always favorable thermodynamics for each electrode reaction. Benefiting from the thermodynamic advantages of the switchable pH-differential arrangement, the cell allows water electrolysis at a voltage of 0.57 V, and a fuel cell open circuit voltage of 1.89 V, rendering round-trip efficiencies up to 74%. Under room conditions, operating the cell in fuel cell mode yields a power density of 1.3 W cm-2, which is the highest performance to date for laminar flow-based cells and is comparable to state-of-the-art polymer electrolyte membrane fuel cells.

  11. High-performance liquid-catalyst fuel cell for direct biomass-into-electricity conversion.

    PubMed

    Liu, Wei; Mu, Wei; Deng, Yulin

    2014-12-01

    Herein, we report high-performance fuel cells that are catalyzed solely by polyoxometalate (POM) solution without any solid metal or metal oxide. The novel design of the liquid-catalyst fuel cells (LCFC) changes the traditional gas-solid-surface heterogeneous reactions to liquid-catalysis reactions. With this design, raw biomasses, such as cellulose, starch, and even grass or wood powders can be directly converted into electricity. The power densities of the fuel cell with switchgrass (dry powder) and bush allamanda (freshly collected) are 44 mW cm(-2) and 51 mW cm(-2) respectively. For the cellulose-based biomass fuel cell, the power density is almost 3000 times higher than that of cellulose-based microbial fuel cells. Unlike noble-metal catalysts, POMs are tolerant to most organic and inorganic contaminants. Therefore, almost any raw biomass can be used directly to produce electricity without prior purification.

  12. Final Technical Report, Oct 2004 - Nov. 2006, High Performance Flexible Reversible Solid Oxide Fuel Cell

    SciTech Connect

    Guan, Jie; Minh, Nguyen

    2007-02-21

    This report summarizes the work performed for the program entitled “High Performance Flexible Reversible Solid Oxide Fuel Cell” under Cooperative Agreement DE-FC36-04GO14351 for the U. S. Department of Energy. The overall objective of this project is to demonstrate a single modular stack that generates electricity from a variety of fuels (hydrogen and other fuels such as biomass, distributed natural gas, etc.) and when operated in the reverse mode, produces hydrogen from steam. This project has evaluated and selected baseline cell materials, developed a set of materials for oxygen and hydrogen electrodes, and optimized electrode microstructures for reversible solid oxide fuel cells (RSOFCs); and demonstrated the feasibility and operation of a RSOFC multi-cell stack. A 10-cell reversible SOFC stack was operated over 1000 hours alternating between fuel cell (with hydrogen and methane as fuel) and steam electrolysis modes. The stack ran very successfully with high power density of 480 mW/cm2 at 0.7V and 80% fuel utilization in fuel cell mode and >6 SLPM hydrogen production in steam electrolysis mode using about 1.1 kW electrical power. The hydrogen generation is equivalent to a specific capability of 2.59 Nm3/m2 with electrical energy demand of 3 kWh/Nm3. The performance stability in electrolysis mode was improved vastly during the program with a degradation rate reduction from 8000 to 200 mohm-cm2/1000 hrs. This was accomplished by increasing the activity and improving microstructure of the oxygen electrode. Both cost estimate and technology assessment were conducted. Besides the flexibility running under both fuel cell mode and electrolysis mode, the reversible SOFC system has the potentials for low cost and high efficient hydrogen production through steam electrolysis. The cost for hydrogen production at large scale was estimated at ~$2.7/kg H2, comparing favorably with other electrolysis techology.

  13. High Performance Ultrathin GaAs Solar Cells Enabled with Heterogeneously Integrated Dielectric Periodic Nanostructures.

    PubMed

    Lee, Sung-Min; Kwong, Anthony; Jung, Daehwan; Faucher, Joseph; Biswas, Roshni; Shen, Lang; Kang, Dongseok; Lee, Minjoo Larry; Yoon, Jongseung

    2015-10-27

    Due to their favorable materials properties including direct bandgap and high electron mobilities, epitaxially grown III-V compound semiconductors such as gallium arsenide (GaAs) provide unmatched performance over silicon in solar energy harvesting. Nonetheless, their large-scale deployment in terrestrial photovoltaics remains challenging mainly due to the high cost of growing device quality epitaxial materials. In this regard, reducing the thickness of constituent active materials under appropriate light management schemes is a conceptually viable option to lower the cost of GaAs solar cells. Here, we present a type of high efficiency, ultrathin GaAs solar cell that incorporates bifacial photon management enabled by techniques of transfer printing to maximize the absorption and photovoltaic performance without compromising the optimized electronic configuration of planar devices. Nanoimprint lithography and dry etching of titanium dioxide (TiO2) deposited directly on the window layer of GaAs solar cells formed hexagonal arrays of nanoscale posts that serve as lossless photonic nanostructures for antireflection, diffraction, and light trapping in conjunction with a co-integrated rear-surface reflector. Systematic studies on optical and electrical properties and photovoltaic performance in experiments, as well as numerical modeling, quantitatively describe the optimal design rules for ultrathin, nanostructured GaAs solar cells and their integrated modules.

  14. Solvent-Assisted Preparation of High-Performance Mesoporous CH₃NH₃Pbl₃ Perovskite Solar Cells.

    PubMed

    Li, Zhi-Hua; Liu, Jie; Ma, Jing-Yuan; Jiang, Yan; Ge, Qian-Qing; Ding, Jie; Hu, Jin-Song; Wan, Li-Jun

    2016-01-01

    Organometal trihalide perovskite based solar cells have attracted great attention worldwide since their power conversion efficiency (PCE) have risen to over 15% within only 3 years of development. Comparing with other types of perovskite solar cells, mesostructured perovskite solar cells based on CH₃NH₃Pbl₃ as light harvesting material have already demonstrated remarkable advance in performance and reproducibility. Here, we reported a mesoscopic TiO₂/CH₃NH₃Pbl₃ heterojunction solar cell with uniform perovskite thin film prepared via solvent-assisted solution processing method. The best performing device delivered photocurrent density of 20.11 mA cm⁻², open-circuit voltage of 1.02 V, and fill factor of 0.70, leading to a PCE of 14.41%. A small anomalous hysteresis in the J-V curves was observed, where the PCE at forward scan was measured to be 84% of the PCE at reverse scan. Based on a statistical analysis, the perovskite solar cells prepared by the reported method exhibited reproducible and high PCE, indicating its promising application in the fabrication of low-cost and high-efficiency perovskite solar cells.

  15. Achieving high performance polymer tandem solar cells via novel materials design

    NASA Astrophysics Data System (ADS)

    Dou, Letian

    Organic photovoltaic (OPV) devices show great promise in low-cost, flexible, lightweight, and large-area energy-generation applications. Nonetheless, most of the materials designed today always suffer from the inherent disadvantage of not having a broad absorption range, and relatively low mobility, which limit the utilization of the full solar spectrum. Tandem solar cells provide an effective way to harvest a broader spectrum of solar radiation by combining two or more solar cells with different absorption bands. However, for polymer solar cells, the performance of tandem devices lags behind single-layer solar cells mainly due to the lack of suitable low-bandgap polymers (near-IR absorbing polymers). In this dissertation, in order to achieve high performance, we focus on design and synthesis of novel low bandgap polymers specifically for tandem solar cells. In Chapter 3, I demonstrate highly efficient single junction and tandem polymer solar cells featuring a spectrally matched low-bandgap conjugated polymer (PBDTT-DPP: bandgap, ˜1.44 eV). The polymer has a backbone based on alternating benzodithiophene and diketopyrrolopyrrole units. A single-layer device based on the polymer provides a power conversion efficiency of ˜6%. When the polymer is applied to tandem solar cells, a power conversion efficiency of 8.62% is achieved, which was the highest certified efficiency for a polymer solar cell. To further improve this material system, in Chapter 4, I show that the reduction of the bandgap and the enhancement of the charge transport properties of the low bandgap polymer PBDTT-DPP can be accomplished simultaneously by substituting the sulfur atoms on the DPP unit with selenium atoms. The newly designed polymer PBDTT-SeDPP (Eg = 1.38 eV) shows excellent photovoltaic performance in single junction devices with PCEs over 7% and photo-response up to 900 nm. Tandem polymer solar cells based on PBDTT-SeDPP are also demonstrated with a 9.5% PCE, which are more than 10

  16. Development of high-performance Na/NiCl2 cell

    NASA Astrophysics Data System (ADS)

    Redey, L.; Vissers, D. R.; Myles, K. M.; Prakash, J.

    The performance of the Ni/NiCl2 positive electrode for the Na/NiCl2 battery has been significantly improved by lowering the impedance and increasing the usable capacity through the use of chemical additives and a tailored electrode morphology. The improved electrode has excellent performance even below 200 C and can be recharged within one hour. The performance of this new electrode was measured by a conventional galvanostatic method and by a newly developed 'powerdynamic' method. These measurements were used to project the performance of 40 to 60-kWh batteries built with this new electrode combined with already highly developed sodium/beta-alumina negative electrode. These calculated results yielded a specific power of 150-400 W/kg and a specific energy of 110-200 Wh/kg for batteries with single-tube and bipolar cell designs. This high performance, along with the high cell voltage, mid-temperature operation, fast recharge capability, and short-circuited failure mode of the electrode couple, makes the Na/NiCl2 battery attractive for electric vehicle applications.

  17. Efficient electricity production and simultaneously wastewater treatment via a high-performance photocatalytic fuel cell.

    PubMed

    Liu, Yanbiao; Li, Jinhua; Zhou, Baoxue; Li, Xuejin; Chen, Hongchong; Chen, Quanpeng; Wang, Zhongsheng; Li, Lei; Wang, Jiulin; Cai, Weimin

    2011-07-01

    A great quantity of wastewater were discharged into water body, causing serious environmental pollution. Meanwhile, the organic compounds in wastewater are important sources of energy. In this work, a high-performance short TiO(2) nanotube array (STNA) electrode was applied as photoanode material in a novel photocatalytic fuel cell (PFC) system for electricity production and simultaneously wastewater treatment. The results of current work demonstrate that various model compounds as well as real wastewater samples can be used as substrates for the PFC system. As a representative of model compounds, the acetic acid solution produces the highest cell performance with short-circuit current density 1.42 mA cm(-2), open-circuit voltage 1.48 V and maximum power density output 0.67 mW cm(-2). The STNA photoanode reveals obviously enhanced cell performance compared with TiO(2) nanoparticulate film electrode or other long nanotubes electrode. Moreover, the photoanode material, electrolyte concentration, pH of the initial solution, and cathode material were found to be important factors influencing the system performance of PFC. Therefore, the proposed fuel cell system provides a novel way of energy conversion and effective disposal mode of organics and serves well as a promising technology for wastewater treatment.

  18. High performance all polymer solar cells fabricated via non-halogenated solvents (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Zhou, Yan; Bao, Zhenan

    2015-10-01

    The performance of organic solar cells consisting of a donor/acceptor bulk heterojunction (BHJ) has rapidly improved over the past few years.1. Major efforts have been focused on developing a variety of donor materials to gain access to different regions of the solar spectrum as well as to improve carrier transport properties.2 On the other hand, the most utilized acceptors are still restricted to the fullerene family, which includes PC61BM, PC71BM and ICBA.2b, 3 All-polymer solar cells, consisting of polymers for both the donor and acceptor, gained significantly increased interests recently, because of their ease of solution processing, potentially low cost, versatility in molecular design, and their potential for good chemical and morphological stability due to entanglement of polymers. Unlike small molecular fullerene acceptors, polymer acceptors can benefit from the high mobility of intra-chain charge transport and exciton generation by both donor and acceptor. Despite extensive efforts on all-polymer solar cells in the past decade, the fundamental understanding of all-polymer solar cells is still in its inceptive stage regarding both the materials chemistry and structure physics.4 Thus, rational design rules must be utilized to enable fundamental materials understanding of the all polymer solar cells. We report high performance all-polymer solar cells employing polymeric donors based on isoindigo and acceptor based on perylenedicarboximide. The phase separation domain length scale correlates well with the JSC and is found to be highly sensitive to the aromatic co-monomer structures used in the crystalline donor polymers. With the PS polymer side chain engineering, the phase separation domain length scale decreased by more than 45%. The PCE and JSC of the devices increased accordingly by more than 20%. A JSC as high as 10.0 mA cm-2 is obtained with the donor-acceptor pair despite of a low LUMO-LUMO energy offset of less than 0.1 eV. All the factors such as

  19. Demonstrating the potential of yttrium-doped barium zirconate electrolyte for high-performance fuel cells.

    PubMed

    Bae, Kiho; Jang, Dong Young; Choi, Hyung Jong; Kim, Donghwan; Hong, Jongsup; Kim, Byung-Kook; Lee, Jong-Ho; Son, Ji-Won; Shim, Joon Hyung

    2017-02-23

    In reducing the high operating temperatures (≥800 °C) of solid-oxide fuel cells, use of protonic ceramics as an alternative electrolyte material is attractive due to their high conductivity and low activation energy in a low-temperature regime (≤600 °C). Among many protonic ceramics, yttrium-doped barium zirconate has attracted attention due to its excellent chemical stability, which is the main issue in protonic-ceramic fuel cells. However, poor sinterability of yttrium-doped barium zirconate discourages its fabrication as a thin-film electrolyte and integration on porous anode supports, both of which are essential to achieve high performance. Here we fabricate a protonic-ceramic fuel cell using a thin-film-deposited yttrium-doped barium zirconate electrolyte with no impeding grain boundaries owing to the columnar structure tightly integrated with nanogranular cathode and nanoporous anode supports, which to the best of our knowledge exhibits a record high-power output of up to an order of magnitude higher than those of other reported barium zirconate-based fuel cells.

  20. Demonstrating the potential of yttrium-doped barium zirconate electrolyte for high-performance fuel cells

    PubMed Central

    Bae, Kiho; Jang, Dong Young; Choi, Hyung Jong; Kim, Donghwan; Hong, Jongsup; Kim, Byung-Kook; Lee, Jong-Ho; Son, Ji-Won; Shim, Joon Hyung

    2017-01-01

    In reducing the high operating temperatures (≥800 °C) of solid-oxide fuel cells, use of protonic ceramics as an alternative electrolyte material is attractive due to their high conductivity and low activation energy in a low-temperature regime (≤600 °C). Among many protonic ceramics, yttrium-doped barium zirconate has attracted attention due to its excellent chemical stability, which is the main issue in protonic-ceramic fuel cells. However, poor sinterability of yttrium-doped barium zirconate discourages its fabrication as a thin-film electrolyte and integration on porous anode supports, both of which are essential to achieve high performance. Here we fabricate a protonic-ceramic fuel cell using a thin-film-deposited yttrium-doped barium zirconate electrolyte with no impeding grain boundaries owing to the columnar structure tightly integrated with nanogranular cathode and nanoporous anode supports, which to the best of our knowledge exhibits a record high-power output of up to an order of magnitude higher than those of other reported barium zirconate-based fuel cells. PMID:28230080

  1. Demonstrating the potential of yttrium-doped barium zirconate electrolyte for high-performance fuel cells

    NASA Astrophysics Data System (ADS)

    Bae, Kiho; Jang, Dong Young; Choi, Hyung Jong; Kim, Donghwan; Hong, Jongsup; Kim, Byung-Kook; Lee, Jong-Ho; Son, Ji-Won; Shim, Joon Hyung

    2017-02-01

    In reducing the high operating temperatures (>=800 °C) of solid-oxide fuel cells, use of protonic ceramics as an alternative electrolyte material is attractive due to their high conductivity and low activation energy in a low-temperature regime (<=600 °C). Among many protonic ceramics, yttrium-doped barium zirconate has attracted attention due to its excellent chemical stability, which is the main issue in protonic-ceramic fuel cells. However, poor sinterability of yttrium-doped barium zirconate discourages its fabrication as a thin-film electrolyte and integration on porous anode supports, both of which are essential to achieve high performance. Here we fabricate a protonic-ceramic fuel cell using a thin-film-deposited yttrium-doped barium zirconate electrolyte with no impeding grain boundaries owing to the columnar structure tightly integrated with nanogranular cathode and nanoporous anode supports, which to the best of our knowledge exhibits a record high-power output of up to an order of magnitude higher than those of other reported barium zirconate-based fuel cells.

  2. Systems and methods for advanced ultra-high-performance InP solar cells

    DOEpatents

    Wanlass, Mark

    2017-03-07

    Systems and Methods for Advanced Ultra-High-Performance InP Solar Cells are provided. In one embodiment, an InP photovoltaic device comprises: a p-n junction absorber layer comprising at least one InP layer; a front surface confinement layer; and a back surface confinement layer; wherein either the front surface confinement layer or the back surface confinement layer forms part of a High-Low (HL) doping architecture; and wherein either the front surface confinement layer or the back surface confinement layer forms part of a heterointerface system architecture.

  3. Metal based gas diffusion layers for enhanced fuel cell performance at high current densities

    NASA Astrophysics Data System (ADS)

    Hussain, Nabeel; Van Steen, Eric; Tanaka, Shiro; Levecque, Pieter

    2017-01-01

    The gas diffusion layer strongly influences the performance and durability of polymer electrolyte fuel cells. A major drawback of current carbon fiber based GDLs is the non-controlled variation in porosity resulting in a random micro-structure. Moreover, when subjected to compression these materials show significant reduction in porosity and permeability leading to water management problems and mass transfer losses within the fuel cell. This study investigated the use of uniform perforated metal sheets as GDLs in conjunction with microchannel flowfields. A metal sheet design with a pitch of 110 μm and a hole diameter of 60 μm in combination with an MPL showed superior performance in the high current density region compared to a commercially available carbon paper based GDL in a single cell environment. Fuel cell testing with different oxidants (air, heliox and oxygen) indicate that the metal sheet offers both superior diffusion and reduced flooding in comparison to the carbon based GDL. The presence of the MPL has been found to be critical to the functionality of the metal sheet suggesting that the MPL design may represent an important optimisation parameter for further improvements in performance.

  4. Cooperative tin oxide fullerene electron selective layers for high-performance planar perovskite solar cells

    SciTech Connect

    Ke, Weijun; Zhao, Dewei; Xiao, Chuanxiao; Wang, Changlei; Cimaroli, Alexander J.; Grice, Corey R.; Yang, Mengjin; Li, Zhen; Jiang, Chun-Sheng; Al-Jassim, Mowafak; Zhu, Kai; Kanatzidis, Mercouri G.; Fang, Guojia; Yan, Yanfa

    2016-01-01

    Both tin oxide (SnO2) and fullerenes have been reported as electron selective layers (ESLs) for producing efficient lead halide perovskite solar cells. Here, we report that SnO2 and fullerenes can work cooperatively to further boost the performance of perovskite solar cells. We find that fullerenes can be redissolved during perovskite deposition, allowing ultra-thin fullerenes to be retained at the interface and some dissolved fullerenes infiltrate into perovskite grain boundaries. The SnO2 layer blocks holes effectively; whereas, the fullerenes promote electron transfer and passivate both the SnO2/perovskite interface and perovskite grain boundaries. With careful device optimization, the best-performing planar perovskite solar cell using a fullerene passivated SnO2 ESL has achieved a steady-state efficiency of 17.75% and a power conversion efficiency of 19.12% with an open circuit voltage of 1.12 V, a short-circuit current density of 22.61 mA cm-2, and a fill factor of 75.8% when measured under reverse voltage scanning. We find that the partial dissolving of fullerenes during perovskite deposition is the key for fabricating high-performance perovskite solar cells based on metal oxide/fullerene ESLs.

  5. Printable nanostructured silicon solar cells for high-performance, large-area flexible photovoltaics.

    PubMed

    Lee, Sung-Min; Biswas, Roshni; Li, Weigu; Kang, Dongseok; Chan, Lesley; Yoon, Jongseung

    2014-10-28

    Nanostructured forms of crystalline silicon represent an attractive materials building block for photovoltaics due to their potential benefits to significantly reduce the consumption of active materials, relax the requirement of materials purity for high performance, and hence achieve greatly improved levelized cost of energy. Despite successful demonstrations for their concepts over the past decade, however, the practical application of nanostructured silicon solar cells for large-scale implementation has been hampered by many existing challenges associated with the consumption of the entire wafer or expensive source materials, difficulties to precisely control materials properties and doping characteristics, or restrictions on substrate materials and scalability. Here we present a highly integrable materials platform of nanostructured silicon solar cells that can overcome these limitations. Ultrathin silicon solar microcells integrated with engineered photonic nanostructures are fabricated directly from wafer-based source materials in configurations that can lower the materials cost and can be compatible with deterministic assembly procedures to allow programmable, large-scale distribution, unlimited choices of module substrates, as well as lightweight, mechanically compliant constructions. Systematic studies on optical and electrical properties, photovoltaic performance in experiments, as well as numerical modeling elucidate important design rules for nanoscale photon management with ultrathin, nanostructured silicon solar cells and their interconnected, mechanically flexible modules, where we demonstrate 12.4% solar-to-electric energy conversion efficiency for printed ultrathin (∼ 8 μm) nanostructured silicon solar cells when configured with near-optimal designs of rear-surface nanoposts, antireflection coating, and back-surface reflector.

  6. A high performance intermediate temperature fuel cell based on a thick oxide-carbonate electrolyte

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Lan, Rong; Xu, Xiaoxiang; Tao, Shanwen; Jiang, Yinzhu; Kraft, Arno

    A high performance intermediate temperature fuel cell (ITFC) with composite electrolyte composed of co-doped ceria Ce 0.8Gd 0.05Y 0.15O 1.9 (GYDC) and a binary carbonate-based (52 mol% Li 2CO 3/48 mol% Na 2CO 3), 1.2 mm thick electrolyte layer has been developed. Co-doped Ce 0.8Gd 0.05Y 0.15O 1.9 was synthesized by a glycine-nitrate process and used as solid support matrix for the composite electrolyte. The conductivity of both composite electrolyte and GYDC supporting substrate were measured by AC impedance spectroscopy. It showed a sharp conductivity jump at about 500 °C when the carbonates melted. Single cells with thick electrolyte layer were fabricated by a dry-pressing technique using NiO as anode and Ba 0.5Sr 0.5Co 0.8Fe 0.2O 3- δ or lithiated NiO as cathode. The cell was tested at 450-550 °C using hydrogen as the fuel and air as the oxidant. Excellent performance with high power density of 670 mW cm -2 at 550 °C was achieved for a 1.2 mm thick composite electrolyte containing 40 wt% carbonates which is much higher than that of a cell based on pure GYDC with a 70 μm thick electrolyte layer.

  7. A high-performance Raman-Ramsey Cs vapor cell atomic clock

    NASA Astrophysics Data System (ADS)

    Abdel Hafiz, Moustafa; Coget, Grégoire; Yun, Peter; Guérandel, Stéphane; de Clercq, Emeric; Boudot, Rodolphe

    2017-03-01

    We demonstrate a high-performance coherent-population-trapping (CPT) Cs vapor cell atomic clock using the push-pull optical pumping technique in the pulsed regime, allowing the detection of high-contrast and narrow Ramsey-CPT fringes. The impact of several experimental parameters onto the clock resonance and short-term fractional frequency stability, including the laser power, the cell temperature, and the Ramsey sequence parameters, has been investigated. We observe and explain the existence of a slight dependence on laser power of the central Ramsey-CPT fringe line-width in the pulsed regime. We report also that the central fringe line-width is commonly narrower than the expected Ramsey line-width given by 1 / ( 2 T R ) , with TR the free-evolution time, for short values of TR. The clock demonstrates a short-term fractional frequency stability at the level of 2.3 × 10 - 13 τ - 1 / 2 up to 100 s averaging time, mainly limited by the laser amplitude modulation noise. Comparable performances are obtained in the conventional continuous wave regime, with the use of an additional laser power stabilization setup. The pulsed interaction allows to reduce significantly the clock frequency sensitivity to laser power variations, especially for high values of TR. This pulsed CPT clock, ranking among the best microwave vapor cell atomic frequency standards, could find applications in telecommunication, instrumentation, defense or satellite-based navigation systems.

  8. Epitaxial 1D electron transport layers for high-performance perovskite solar cells.

    PubMed

    Han, Gill Sang; Chung, Hyun Suk; Kim, Dong Hoe; Kim, Byeong Jo; Lee, Jin-Wook; Park, Nam-Gyu; Cho, In Sun; Lee, Jung-Kun; Lee, Sangwook; Jung, Hyun Suk

    2015-10-07

    We demonstrate high-performance perovskite solar cells with excellent electron transport properties using a one-dimensional (1D) electron transport layer (ETL). The 1D array-based ETL is comprised of 1D SnO2 nanowires (NWs) array grown on a F:SnO2 transparent conducting oxide substrate and rutile TiO2 nanoshells epitaxially grown on the surface of the 1D SnO2 NWs. The optimized devices show more than 95% internal quantum yield at 750 nm, and a power conversion efficiency (PCE) of 14.2%. The high quantum yield is attributed to dramatically enhanced electron transport in the epitaxial TiO2 layer, compared to that in conventional nanoparticle-based mesoporous TiO2 (mp-TiO2) layers. In addition, the open space in the 1D array-based ETL increases the prevalence of uniform TiO2/perovskite junctions, leading to reproducible device performance with a high fill factor. This work offers a method to achieve reproducible, high-efficiency perovskite solar cells with high-speed electron transport.

  9. Development and Characterization of New Donor-Acceptor Conjugated Polymers and Fullerene Nanoparticles for High Performance Bulk Heterojunction Solar Cells

    DTIC Science & Technology

    2011-01-14

    Nanoparticles for High Performance Bulk Heterojunction Solar Cells Jan. 14,2011 Name of Principal Investigators: Kung-Hwa Wei - e-mail address : khwei...donor-π-bridge-acceptor side chains for high efficiency polymer solar cells . Different from the commonly used linear D-A conjugated polymers, the...Development and Characterization of New Donor-Acceptor Conjugated Polymers and Fullerene Nanoparticles for High Performance Bulk Heterojunction Solar Cells

  10. Tunable High Performance Cross-Linked Alkaline Anion Exchange Membranes for Fuel Cell Applications

    SciTech Connect

    Robertson, Nicholas J.; Kostalik, IV, Henry A.; Clark, Timothy J.; Mutolo, Paul F.; Abruña, Héctor D.; Coates, Geoffrey W.

    2010-02-23

    Fuel cells are energy conversion devices that show great potential in numerous applications ranging from automobiles to portable electronics. However, further development of fuel cell components is necessary for them to become commercially viable. One component critical to their performance is the polymer electrolyte membrane, which is an ion conductive medium separating the two electrodes. While proton conducting membranes are well established (e.g., Nafion), hydroxide conducting membranes (alkaline anion exchange membranes, AAEMs) have been relatively unexplored by comparison. Operating under alkaline conditions offers significant efficiency benefits, especially for the oxygen reduction reaction; therefore, effective AAEMs could significantly advance fuel cell technologies. Here we demonstrate the use of ring-opening metathesis polymerization to generate new cross-linked membrane materials exhibiting high hydroxide ion conductivity and good mechanical properties. Cross-linking allows for increased ion incorporation, which, in turn supports high conductivities. This facile synthetic approach enables the preparation of cross-linked materials with the potential to meet the demands of hydrogen-powered fuel cells as well as direct methanol fuel cells.

  11. Control of geometrical properties of carbon nanotube electrodes towards high-performance microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Erbay, Celal; Pu, Xiong; Choi, Woongchul; Choi, Mi-Jin; Ryu, Yeontack; Hou, Huijie; Lin, Furong; de Figueiredo, Paul; Yu, Choongho; Han, Arum

    2015-04-01

    In microbial fuel cells (MFCs), physical and electrochemical interactions between microbes and electrode surfaces are critical to performance. Nanomaterial-based electrodes have shown promising performances, however their unique characteristics have not been fully utilized. The developed electrodes here consist of multi-wall carbon nanotubes (MWCNTs) directly grown in the radial direction from the wires of stainless steel (SS) meshes, providing extremely large three-dimensional surfaces while ensuring minimal ohmic loss between CNTs and SS meshes, fully utilizing the advantages of CNTs. Systematic studies on how different lengths, packing densities, and surface conditions of CNTs affect MFC power output revealed that long and loosely packed CNTs without any amorphous carbon show the highest power production performance. The power density of this anode is 7.4-fold higher compared to bare carbon cloth, which is the highest reported improvement for MFCs with nanomaterial-decorated electrodes. The results of this study offer great potential for advancing the development of microbial electrochemical systems by providing a highly efficient nanomaterial-based electrode that delivers large surface area, high electrochemical activity, and minimum ohmic loss, as well as provide design principles for next-generation nanomaterial-based electrodes that can be broadly applicable for highly efficient microbial electrochemical cells.

  12. Applications of ion implantation to high performance, radiation tolerant silicon solar cells

    NASA Technical Reports Server (NTRS)

    Kirkpatrick, A. R.; Minnucci, J. A.; Matthei, K. W.

    1979-01-01

    Progress in the development of ion implanted silicon solar cells is reported. Effective back surface preparation by implantation, junction processing to achieve high open circuit voltages in low-resistivity cells, and radiation tolerance cells are among the topics studied.

  13. High Performance Nano-Crystalline Oxide Fuel Cell Materials. Defects, Structures, Interfaces, Transport, and Electrochemistry

    SciTech Connect

    Barnett, Scott; Poeppelmeier, Ken; Mason, Tom; Marks, Lawrence; Voorhees, Peter

    2016-09-07

    This project addresses fundamental materials challenges in solid oxide electrochemical cells, devices that have a broad range of important energy applications. Although nano-scale mixed ionically and electronically conducting (MIEC) materials provide an important opportunity to improve performance and reduce device operating temperature, durability issues threaten to limit their utility and have remained largely unexplored. Our work has focused on both (1) understanding the fundamental processes related to oxygen transport and surface-vapor reactions in nano-scale MIEC materials, and (2) determining and understanding the key factors that control their long-term stability. Furthermore, materials stability has been explored under the “extreme” conditions encountered in many solid oxide cell applications, i.e, very high or very low effective oxygen pressures, and high current density.

  14. Fundamental limitations imposed by high doping on the performance of pn junction silicon solar cells

    NASA Technical Reports Server (NTRS)

    Lindholm, F. A.; Li, S. S.; Sah, C. T.

    1975-01-01

    Fundamental limitations imposed on the performance of silicon junction solar cells by physical mechanisms accompanying high doping are described. The one-dimensional mechanisms divide into two broad categories: those associated with band-gap shrinkage and those associated with interband transition rates. By extending the traditional method of analysis and comparing with measurement, it is shown that the latter kind of mechanism dominates in determining the open-circuit voltage in a one-dimensional model of a 0.1 ohm-cm cell at 300 K. As an alternative dominant mechanism, a three-dimensional model involving thermodynamically stable clusters of impurities in the highly-doped diffused layer is suggested.

  15. High Performance Fuel Cell and Electrolyzer Membrane Electrode Assemblies (MEAs) for Space Energy Storage Systems

    NASA Technical Reports Server (NTRS)

    Valdez, Thomas I.; Billings, Keith J.; Kisor, Adam; Bennett, William R.; Jakupca, Ian J.; Burke, Kenneth; Hoberecht, Mark A.

    2012-01-01

    Regenerative fuel cells provide a pathway to energy storage system development that are game changers for NASA missions. The fuel cell/ electrolysis MEA performance requirements 0.92 V/ 1.44 V at 200 mA/cm2 can be met. Fuel Cell MEAs have been incorporated into advanced NFT stacks. Electrolyzer stack development in progress. Fuel Cell MEA performance is a strong function of membrane selection, membrane selection will be driven by durability requirements. Electrolyzer MEA performance is catalysts driven, catalyst selection will be driven by durability requirements. Round Trip Efficiency, based on a cell performance, is approximately 65%.

  16. High Performance Liquid Chromatography-mass Spectrometry Analysis of High Antioxidant Australian Fruits with Antiproliferative Activity Against Cancer Cells

    PubMed Central

    Sirdaarta, Joseph; Maen, Anton; Rayan, Paran; Matthews, Ben; Cock, Ian Edwin

    2016-01-01

    g/mL). All other extracts were nontoxic. A total of 145 unique mass signals were detected in the lemon aspen methanolic and aqueous extracts by nonbiased high-performance liquid chromatography-mass spectrometry analysis. Of these, 20 compounds were identified as being of particular interest due to their reported antioxidant and/or anticancer activities. Conclusions: The lack of toxicity and antiproliferative activity of the high antioxidant plant extracts against HeLa and CaCo2 cancer cell lines indicates their potential in the treatment and prevention of some cancers. SUMMARY Australian fruit extracts with high antioxidant contents were potent inhibitors of CaCo2 and HeLa carcinoma cell proliferationMethanolic lemon aspen extract was particularly potent, with IC50 values of 480 μg/mL (HeLa) and 769 μg/mL (CaCo2)High-performance liquid chromatography-mass spectrometry-quadrupole time-of-flight analysis highlighted and putatively identified 20 compounds in the antiproliferative lemon aspen extractsIn contrast, lower antioxidant content extracts stimulated carcinoma cell proliferationAll extracts with antiproliferative activity were nontoxic in the Artemia nauplii assay. Abbreviations used: DPPH: di (phenyl)- (2,4,6-trinitrophenyl) iminoazanium, HPLC: High-performance liquid chromatography, IC50: The concentration required to inhibit by 50%, LC50: The concentration required to achieve 50% mortality, MS: Mass spectrometry. PMID:27279705

  17. Epitaxial 1D electron transport layers for high-performance perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Han, Gill Sang; Chung, Hyun Suk; Kim, Dong Hoe; Kim, Byeong Jo; Lee, Jin-Wook; Park, Nam-Gyu; Cho, In Sun; Lee, Jung-Kun; Lee, Sangwook; Jung, Hyun Suk

    2015-09-01

    We demonstrate high-performance perovskite solar cells with excellent electron transport properties using a one-dimensional (1D) electron transport layer (ETL). The 1D array-based ETL is comprised of 1D SnO2 nanowires (NWs) array grown on a F:SnO2 transparent conducting oxide substrate and rutile TiO2 nanoshells epitaxially grown on the surface of the 1D SnO2 NWs. The optimized devices show more than 95% internal quantum yield at 750 nm, and a power conversion efficiency (PCE) of 14.2%. The high quantum yield is attributed to dramatically enhanced electron transport in the epitaxial TiO2 layer, compared to that in conventional nanoparticle-based mesoporous TiO2 (mp-TiO2) layers. In addition, the open space in the 1D array-based ETL increases the prevalence of uniform TiO2/perovskite junctions, leading to reproducible device performance with a high fill factor. This work offers a method to achieve reproducible, high-efficiency perovskite solar cells with high-speed electron transport.We demonstrate high-performance perovskite solar cells with excellent electron transport properties using a one-dimensional (1D) electron transport layer (ETL). The 1D array-based ETL is comprised of 1D SnO2 nanowires (NWs) array grown on a F:SnO2 transparent conducting oxide substrate and rutile TiO2 nanoshells epitaxially grown on the surface of the 1D SnO2 NWs. The optimized devices show more than 95% internal quantum yield at 750 nm, and a power conversion efficiency (PCE) of 14.2%. The high quantum yield is attributed to dramatically enhanced electron transport in the epitaxial TiO2 layer, compared to that in conventional nanoparticle-based mesoporous TiO2 (mp-TiO2) layers. In addition, the open space in the 1D array-based ETL increases the prevalence of uniform TiO2/perovskite junctions, leading to reproducible device performance with a high fill factor. This work offers a method to achieve reproducible, high-efficiency perovskite solar cells with high-speed electron transport

  18. Performance of particle in cell methods on highly concurrent computational architectures

    NASA Astrophysics Data System (ADS)

    Adams, M. F.; Ethier, S.; Wichmann, N.

    2007-07-01

    Particle in cell (PIC) methods are effective in computing Vlasov-Poisson system of equations used in simulations of magnetic fusion plasmas. PIC methods use grid based computations, for solving Poisson's equation or more generally Maxwell's equations, as well as Monte-Carlo type methods to sample the Vlasov equation. The presence of two types of discretizations, deterministic field solves and Monte-Carlo methods for the Vlasov equation, pose challenges in understanding and optimizing performance on today large scale computers which require high levels of concurrency. These challenges arises from the need to optimize two very different types of processes and the interactions between them. Modern cache based high-end computers have very deep memory hierarchies and high degrees of concurrency which must be utilized effectively to achieve good performance. The effective use of these machines requires maximizing concurrency by eliminating serial or redundant work and minimizing global communication. A related issue is minimizing the memory traffic between levels of the memory hierarchy because performance is often limited by the bandwidths and latencies of the memory system. This paper discusses some of the performance issues, particularly in regard to parallelism, of PIC methods. The gyrokinetic toroidal code (GTC) is used for these studies and a new radial grid decomposition is presented and evaluated. Scaling of the code is demonstrated on ITER sized plasmas with up to 16K Cray XT3/4 cores.

  19. High-Performance GaAs Nanowire Solar Cells for Flexible and Transparent Photovoltaics.

    PubMed

    Han, Ning; Yang, Zai-xing; Wang, Fengyun; Dong, Guofa; Yip, SenPo; Liang, Xiaoguang; Hung, Tak Fu; Chen, Yunfa; Ho, Johnny C

    2015-09-16

    Among many available photovoltaic technologies at present, gallium arsenide (GaAs) is one of the recognized leaders for performance and reliability; however, it is still a great challenge to achieve cost-effective GaAs solar cells for smart systems such as transparent and flexible photovoltaics. In this study, highly crystalline long GaAs nanowires (NWs) with minimal crystal defects are synthesized economically by chemical vapor deposition and configured into novel Schottky photovoltaic structures by simply using asymmetric Au-Al contacts. Without any doping profiles such as p-n junction and complicated coaxial junction structures, the single NW Schottky device shows a record high apparent energy conversion efficiency of 16% under air mass 1.5 global illumination by normalizing to the projection area of the NW. The corresponding photovoltaic output can be further enhanced by connecting individual cells in series and in parallel as well as by fabricating NW array solar cells via contact printing showing an overall efficiency of 1.6%. Importantly, these Schottky cells can be easily integrated on the glass and plastic substrates for transparent and flexible photovoltaics, which explicitly demonstrate the outstanding versatility and promising perspective of these GaAs NW Schottky photovoltaics for next-generation smart solar energy harvesting devices.

  20. Materials and Modules for Low Cost, High Performance Fuel Cell Humidifiers

    SciTech Connect

    Johnson, William B

    2012-12-31

    The objective of this program was to demonstrate a durable, high performance water transport membrane; and a compact, low-cost, membrane-based module utilizing that membrane for use in an automotive, stationary and/or portable fuel cell water transport exchangers. Over the past 20 years, great technical progress has been made in improving power density and durability of fuel cell stacks. Yet, operating durably at high performance levels under very dry conditions, e.g., < 20% RH at 80°C or above, remains beyond even the best fuel cell membrane electrode assemblies. Thus, today it is essential to humidify the gases supplied to the fuel cell inlets. In this work, we have produced a new, inexpensive, composite membrane capable of very high water vapor transport and low air cross-over. The composite structure consists of a very thin ionomer layer (e.g., < 5 micron) sandwiched between two microporous polymer layers. The thin ionomer layer facilitates the rapid water transport and provides an impermeable layer to prevent gas cross-over. Such an approach reduces cost, but maintains performance. The microporous layer protects the thin ionomer layer from mechanical damage during handling; confers strength to the thin layer allowing it to be more durable during use; and allows it to withstand higher automotive pressures and temperatures. The composite structure will therefore allow lower total cost while still meeting automotive humidifier water transport and durability targets. Because the transport rates of these new materials are so high, existing planar membrane humidifier module designs available at the start of the program were incapable of efficiently utilizing the high rates. Therefore, the assembled team designed, tested and demonstrated an innovative, low-cost humidifier module with customized channel geometries that can take advantage of the high the water transport rates. The objectives of the program have been fully met. The optimized membrane produced in the

  1. Solution-Processable Organic Molecule for High-Performance Organic Solar Cells with Low Acceptor Content.

    PubMed

    Wang, Kun; Guo, Bing; Xu, Zhuo; Guo, Xia; Zhang, Maojie; Li, Yongfang

    2015-11-11

    A new planar D2-A-D1-A-D2 structured organic molecule with bithienyl benzodithiophene (BDT) as central donor unit D1 and fluorine-substituted benzothiadiazole (BTF) as acceptor unit and alkyl-dithiophene as end group and donor unit D2, BDT-BTF, was designed and synthesized for the application as donor material in organic solar cells (OSCs). BDT-BTF shows a broad absorption in visible region, suitable highest occupied molecular orbital energy level of -5.20 eV, and high hole mobility of 1.07 × 10(-2) cm(2)/(V s), benefitted from its high coplanarity and strong crystallinity. The OSCs based on BDT-BTF as donor (D) and PC71BM as acceptor (A) at a D/A weight ratio of 3:1 without any extra treatment exhibit high photovoltaic performance with Voc of 0.85 V, Jsc of 10.48 mA/cm(2), FF of 0.66, and PCE of 5.88%. The morphological study by transmission electron microscopy reveals that the blend of BDT-BTF and PC71BM (3:1, w/w) possesses an appropriate interpenetrating D/A network for the exciton separation and charge carrier transport, which agrees well with the good device performance. The optimized D/A weight ratio of 3:1 is the lowest acceptor content in the active layer reported so far for the high-performance OSCs, and the organic molecules with the molecular structure like BDT-BTF could be promising high-performance donor materials in solution-processable OSCs.

  2. Three-dimensional carbon nanotube-textile anode for high-performance microbial fuel cells.

    PubMed

    Xie, Xing; Hu, Liangbing; Pasta, Mauro; Wells, George F; Kong, Desheng; Criddle, Craig S; Cui, Yi

    2011-01-12

    Microbial fuel cells (MFCs) harness the metabolism of microorganisms, converting chemical energy into electrical energy. Anode performance is an important factor limiting the power density of MFCs for practical application. Improving the anode design is thus important for enhancing the MFC performance, but only a little development has been reported. Here, we describe a biocompatible, highly conductive, two-scale porous anode fabricated from a carbon nanotube-textile (CNT-textile) composite for high-performance MFCs. The macroscale porous structure of the intertwined CNT-textile fibers creates an open 3D space for efficient substrate transport and internal colonization by a diverse microflora, resulting in a 10-fold-larger anolyte-biofilm-anode interfacial area than the projective surface area of the CNT-textile. The conformally coated microscale porous CNT layer displays strong interaction with the microbial biofilm, facilitating electron transfer from exoelectrogens to the CNT-textile anode. An MFC equipped with a CNT-textile anode has a 10-fold-lower charge-transfer resistance and achieves considerably better performance than one equipped with a traditional carbon cloth anode: the maximum current density is 157% higher, the maximum power density is 68% higher, and the energy recovery is 141% greater.

  3. High-Performance Chemically Regenerative Redox Fuel Cells Using a NO3(-) /NO Regeneration Reaction.

    PubMed

    Han, Sang-Beom; Kwak, Da-Hee; Park, Hyun Suk; Choi, In-Ae; Park, Jin-Young; Kim, Si-Jin; Kim, Min-Cheol; Hong, Seongho; Park, Kyung-Won

    2017-03-06

    In this study, we proposed high-performance chemically regenerative redox fuel cells (CRRFCs) using NO3(-) /NO with a nitrogen-doped carbon-felt electrode and a chemical regeneration reaction of NO to NO3(-) via O2 . The electrochemical cell using the nitrate reduction to NO at the cathode on the carbon felt and oxidation of H2 as a fuel at the anode showed a maximal power density of 730 mW cm(-2) at 80 °C and twofold higher power density of 512 mW cm(-2) at 0.8 V, than the target power density of 250 mW cm(-2) at 0.8 V in the H2 /O2 proton exchange membrane fuel cells (PEMFCs). During the operation of the CRRFCs with the chemical regeneration reactor for 30 days, the CRRFCs maintained 60 % of the initial performance with a regeneration efficiency of about 92.9 % and immediately returned to the initial value when supplied with fresh HNO3 .

  4. Stable operation of air-blowing direct methanol fuel cells with high performance

    NASA Astrophysics Data System (ADS)

    Park, Jun-Young; Lee, Jin-Hwa; Kim, Jirae; Han, Sangil; Song, Inseob

    A membrane electrode assembly (MEA) that is a combination of a catalyst-coated membrane (CCM) for the anode and a catalyst-coated substrate (CCS) for the cathode is studied under air-blower conditions for direct methanol fuel cells (DMFCs). Compared with MEAs prepared by only the CCS method, the performance of DMFC MEAs employing the combination method is significantly improved by 30% with less methanol crossover. This feature can be attributed to an enhanced electrode|membrane interface in the anode side and significantly higher catalyst efficiency. Furthermore, DMFC MEAs designed by the combination method retain high power density without any degradation, while the CCM-type cell shows a downward tendency in electrochemical performance under air-blower conditions. This may be due to MEAs with CCM have a much more difficult structure of catalytic active sites in the cathode to eliminate the water produced by electrochemical reaction. In addition, DMFCs produced via combination methods exhibit a lower water crossover flux than CCS alternatives, due to the comparatively dense structure of the CCM anode. Hence, DMFCs with a combination MEA structure demonstrate the feasibility of a small fuel cell system employing the low noise of a fan, instead of a noisy and large capacity air pump, for portable electronic devices.

  5. Metal chloride-treated graphene oxide to produce high-performance polymer solar cells

    SciTech Connect

    Choi, Eun-Su; Noh, Yong-Jin; Kwon, Sung-Nam; Na, Seok-In; Jeon, Ye-Jin; Kim, Seok-Soon; Kim, Tae-Wook

    2015-07-13

    We introduce a simple but effective graphene oxide (GO) modification with metal chloride treatments to produce high-performance polymer solar cells (PSCs). The role of various metal chlorides on GO and their effects on device performances of PSCs was investigated. X-ray photoelectron spectroscopy, ultraviolet photoemission spectroscopy, and current-voltage measurement studies demonstrated that metal chloride can induce a p-doping effect and increase the GO work-function, thus resulting in an improved built-in potential and interfacial resistance in PSCs. The resultant PSCs with metal chloride exhibited improved device efficiency than those with the neat GO. Furthermore, with the metal chloride-doped GO, we finally achieved an excellent PSC-efficiency of 6.58% and a very desirable device stability, which constitute a highly similar efficiency but much better PSC life-time to conventional device with poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS). This study could be a valuable way to produce various PEDOT:PSS alternatives and beneficial for producing high-performance and cost-efficient polymeric devices.

  6. High-performance hybrid organic-inorganic solar cell based on planar n-type silicon

    NASA Astrophysics Data System (ADS)

    Chi, Dan; Qi, Boyuan; Wang, Jizheng; Qu, Shengchun; Wang, Zhanguo

    2014-05-01

    Hybrid organic-inorganic solar cells were fabricated by spin coating the hole transporting conductive poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) film on n-type crystalline silicon (n-Si). By incorporating different additives into the PEDOT:PSS, the conductivity and wettability of PEDOT:PSS film are markedly improved, and the device performance is greatly enhanced accordingly. To further optimize the device performance, poly(3-hexylthiophene) (P3HT) layer was inserted between the n-Si and PEDOT:PSS layer. The P3HT layer blocks electrons from diffusing to the PEDOT:PSS, and hence reduces recombination at the anode side. The device eventually exhibits a high power conversion efficiency of 11.52%.

  7. High-Performance Nonfullerene Polymer Solar Cells based on Imide-Functionalized Wide-Bandgap Polymers.

    PubMed

    Fan, Baobing; Zhang, Kai; Jiang, Xiao-Fang; Ying, Lei; Huang, Fei; Cao, Yong

    2017-03-23

    High-performance nonfullerene polymer solar cells (PSCs) are developed by integrating the nonfullerene electron-accepting material 3,9-bis(2-methylene-(3-(1,1-dicyanomethylene)-indanone))-5,5,11,11-tetrakis(4-hexylphenyl)-dithieno[2,3-d:2',3'-d']-s-indaceno[1,2-b:5,6-b']dithiophne) (ITIC) with a wide-bandgap electron-donating polymer PTzBI or PTzBI-DT, which consists of an imide functionalized benzotriazole (TzBI) building block. Detailed investigations reveal that the extension of conjugation can affect the optical and electronic properties, molecular aggregation properties, charge separation in the bulk-heterojunction films, and thus the overall photovoltaic performances. Single-junction PSCs based on PTzBI:ITIC and PTzBI-DT:ITIC exhibit remarkable power conversion efficiencies (PCEs) of 10.24% and 9.43%, respectively. To our knowledge, these PCEs are the highest efficiency values obtained based on electron-donating conjugated polymers consisting of imide-functionalized electron-withdrawing building blocks. Of particular interest is that the resulting device based on PTzBI exhibits remarkable PCE of 7% with the thickness of active layer of 300 nm, which is among the highest values of nonfullerene PSCs utilizing thick photoactive layer. Additionally, the device based on PTzBI:ITIC exhibits prominent stability, for which the PCE remains as 9.34% after thermal annealing at 130 °C for 120 min. These findings demonstrate the great promise of using this series of wide-bandgap conjugated polymers as electron-donating materials for high-performance nonfullerene solar cells toward high-throughput roll-to-roll processing technology.

  8. Three-dimensional porous carbon nanotube sponges for high-performance anodes of microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Erbay, Celal; Yang, Gang; de Figueiredo, Paul; Sadr, Reza; Yu, Choongho; Han, Arum

    2015-12-01

    Highly-porous, light-weight, and inexpensive three-dimensional (3D) sponges consisting of interconnected carbon nanotubes (CNTs) without base materials are synthesized with a facile and scalable one-step chemical vapor deposition process as anode of microbial fuel cells (MFCs). The MFCs generates higher power densities of 2150 W m-3 (per anode volume) or 170 W m-3 (per anode chamber volume), comparable to those of commercial 3D carbon felt electrodes under the same conditions. The high performances are due to excellent charge transfer between CNTs and microbes owing to 13 times lower charge transfer resistance compared to that of carbon felt. The material cost of producing these CNT sponge estimates to be ∼0.1/gCNT, significantly lower than that of other methods. In addition, the high production rate of about 3.6 g h-1 compared to typical production rate of 0.02 g h-1 of other CNT-based materials makes this process economically viable. The one-step synthesis method allowing self-assembly of 3D CNT sponges as they grow is low cost and scalable, making this a promising method for manufacturing high-performance anodes of MFCs, with broad applicability to microbial electrochemical systems in general.

  9. Highly nitrogen-doped carbon capsules: scalable preparation and high-performance applications in fuel cells and lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Hu, Chuangang; Xiao, Ying; Zhao, Yang; Chen, Nan; Zhang, Zhipan; Cao, Minhua; Qu, Liangti

    2013-03-01

    Highly nitrogen-doped carbon capsules (hN-CCs) have been successfully prepared by using inexpensive melamine and glyoxal as precursors via solvothermal reaction and carbonization. With a great promise for large scale production, the hN-CCs, having large surface area and high-level nitrogen content (N/C atomic ration of ca. 13%), possess superior crossover resistance, selective activity and catalytic stability towards oxygen reduction reaction for fuel cells in alkaline medium. As a new anode material in lithium-ion battery, hN-CCs also exhibit excellent cycle performance and high rate capacity with a reversible capacity of as high as 1046 mA h g-1 at a current density of 50 mA g-1 after 50 cycles. These features make the hN-CCs developed in this study promising as suitable substitutes for the expensive noble metal catalysts in the next generation alkaline fuel cells, and as advanced electrode materials in lithium-ion batteries.Highly nitrogen-doped carbon capsules (hN-CCs) have been successfully prepared by using inexpensive melamine and glyoxal as precursors via solvothermal reaction and carbonization. With a great promise for large scale production, the hN-CCs, having large surface area and high-level nitrogen content (N/C atomic ration of ca. 13%), possess superior crossover resistance, selective activity and catalytic stability towards oxygen reduction reaction for fuel cells in alkaline medium. As a new anode material in lithium-ion battery, hN-CCs also exhibit excellent cycle performance and high rate capacity with a reversible capacity of as high as 1046 mA h g-1 at a current density of 50 mA g-1 after 50 cycles. These features make the hN-CCs developed in this study promising as suitable substitutes for the expensive noble metal catalysts in the next generation alkaline fuel cells, and as advanced electrode materials in lithium-ion batteries. Electronic supplementary information (ESI) available: More experimental details and characterization. See DOI: 10

  10. A new class of semiconducting polymers for bulk heterojunction solar cells with exceptionally high performance.

    PubMed

    Liang, Yongye; Yu, Luping

    2010-09-21

    Solar cells based on the polymer-fullerene bulk heterojunction (BHJ) concept are an attractive class of low-cost solar energy harvesting devices. Because the power conversion efficiency (PCE) of these solar cells is still significantly lower than that of their inorganic counterparts, however, materials design and device engineering efforts are directed toward improving their output. A variety of factors limit the performance of BHJ solar cells, but the properties of the materials in the active layer are the primary determinant of their overall efficiency. The ideal polymer in a BHJ structure should exhibit the following set of physical properties: a broad absorption with high coefficient in the solar spectrum to efficiently harvest solar energy, a bicontinuous network with domain width within twice that of the exciton diffusion length, and high donor-acceptor interfacial area to favor exciton dissociation and efficient transport of separated charges to the respective electrodes. To facilitate exciton dissociation, the lowest unoccupied molecular orbital (LUMO) energy level of the donor must have a proper match with that of the acceptor to provide enough driving force for charge separation. The polymer should have a low-lying highest occupied molecular orbital (HOMO) energy level to provide a large open circuit voltage (V(oc)). All of these desired properties must be synergistically integrated to maximize solar cell performance. However, it is difficult to design a polymer to fulfill all these requirements. In this Account, we summarize our recent progress in developing a new class of semiconducting polymers, which represents the first polymeric system to generate solar PCE greater than 7%. The polymer system is composed of thieno[3,4-b]thiophene and benzodithiophene alternating units. These polymers have low bandgaps and exhibit efficient absorption throughout the region of greatest photon flux in the solar spectrum (around 700 nm). The stabilization of the

  11. Room temperature, air crystallized perovskite film for high performance solar cells

    SciTech Connect

    Dubey, Ashish; Kantack, Nicholas; Adhikari, Nirmal; Reza, Khan Mamun; Venkatesan, Swaminathan; Kumar, Mukesh; Khatiwada, Devendra; Darling, Seth; Qiao, Qiquan

    2016-05-31

    For the first time, room temperature heating free growth and crystallization of perovskite films in ambient air without the use of thermal annealing is reported. Highly efficient perovskite nanorod-based solar cells were made using ITO/PEDOT:PSS/CH3NH3PbI3 nanorods/PC60BM/rhodamine/Ag. All the layers except PEDOT:PSS were processed at room temperature thereby eliminating the need for thermal treatment. Perovskite films were spin coated inside a N-2 filled glovebox and immediately were taken outside in air having 40% relative humidity (RH). Exposure to humid air was observed to promote the crystallization process in perovskite films even at room temperature. Perovskite films kept for 5 hours in ambient air showed nanorod-like morphology having high crystallinity, with devices exhibiting the highest PCE of 16.83%, which is much higher than the PCE of 11.94% for traditional thermally annealed perovskite film based devices. Finally, it was concluded that moisture plays an important role in room temperature crystallization of pure perovskite nanorods, showing improved optical and charge transport properties, which resulted in high performance solar cells.

  12. Room temperature, air crystallized perovskite film for high performance solar cells

    DOE PAGES

    Dubey, Ashish; Kantack, Nicholas; Adhikari, Nirmal; ...

    2016-05-31

    For the first time, room temperature heating free growth and crystallization of perovskite films in ambient air without the use of thermal annealing is reported. Highly efficient perovskite nanorod-based solar cells were made using ITO/PEDOT:PSS/CH3NH3PbI3 nanorods/PC60BM/rhodamine/Ag. All the layers except PEDOT:PSS were processed at room temperature thereby eliminating the need for thermal treatment. Perovskite films were spin coated inside a N-2 filled glovebox and immediately were taken outside in air having 40% relative humidity (RH). Exposure to humid air was observed to promote the crystallization process in perovskite films even at room temperature. Perovskite films kept for 5 hours inmore » ambient air showed nanorod-like morphology having high crystallinity, with devices exhibiting the highest PCE of 16.83%, which is much higher than the PCE of 11.94% for traditional thermally annealed perovskite film based devices. Finally, it was concluded that moisture plays an important role in room temperature crystallization of pure perovskite nanorods, showing improved optical and charge transport properties, which resulted in high performance solar cells.« less

  13. Atomistic Origins of High-Performance in Hybrid Halide Perovskite Solar Cells

    PubMed Central

    2014-01-01

    The performance of organometallic perovskite solar cells has rapidly surpassed that of both conventional dye-sensitized and organic photovoltaics. High-power conversion efficiency can be realized in both mesoporous and thin-film device architectures. We address the origin of this success in the context of the materials chemistry and physics of the bulk perovskite as described by electronic structure calculations. In addition to the basic optoelectronic properties essential for an efficient photovoltaic device (spectrally suitable band gap, high optical absorption, low carrier effective masses), the materials are structurally and compositionally flexible. As we show, hybrid perovskites exhibit spontaneous electric polarization; we also suggest ways in which this can be tuned through judicious choice of the organic cation. The presence of ferroelectric domains will result in internal junctions that may aid separation of photoexcited electron and hole pairs, and reduction of recombination through segregation of charge carriers. The combination of high dielectric constant and low effective mass promotes both Wannier-Mott exciton separation and effective ionization of donor and acceptor defects. The photoferroic effect could be exploited in nanostructured films to generate a higher open circuit voltage and may contribute to the current–voltage hysteresis observed in perovskite solar cells. PMID:24684284

  14. High performance polymer solar cells with as-prepared zirconium acetylacetonate film as cathode buffer layer

    PubMed Central

    Tan, Zhan'ao; Li, Shusheng; Wang, Fuzhi; Qian, Deping; Lin, Jun; Hou, Jianhui; Li, Yongfang

    2014-01-01

    Low-work-function active metals are commonly used as cathode in polymer solar cells (PSCs), but sensitivity of the active metals towards moisture and oxygen results in poor stability of the devices. Therefore, solution-proceessable and stable cathode buffer layer is of great importance for the application of PSCs. Here we demonstrate high performance PSCs by employing as-prepared zirconium acetylacetonate (a-ZrAcac) film spin-cast from its ethanol solution as cathode buffer layer. The PSCs based on a low bandgap polymer PBDTBDD as donor and PC60BM as acceptor with a-ZrAcac/Al cathode demonstrated an average power conversion efficiency (PCE) of 8.75% which is significantly improved than that of the devices with traditional Ca/Al cathode. The improved photovoltaic performance is benefitted from the decreased series resistance and enhanced light harvest of the PSCs with the a-ZrAcac/Al cathode. The results indicate that a-ZrAcac is a promising high performance cathode buffer layer for fabricating large area flexible PSCs. PMID:24732976

  15. A passive microfluidic hydrogen-air fuel cell with exceptional stability and high performance.

    PubMed

    Mitrovski, Svetlana M; Nuzzo, Ralph G

    2006-03-01

    We describe an advanced microfluidic hydrogen-air fuel cell (FC) that exhibits exceptional durability and high performance, most notably yielding stable output power (>100 days) without the use of an anode-cathode separator membrane. This FC embraces an entirely passive device architecture and, unlike conventional microfluidic designs that exploit laminar hydrodynamics, no external pumps are used to sustain or localize the reagent flow fields. The devices incorporate high surface area/porous metal and metal alloy electrodes that are embedded and fully immersed in liquid electrolyte confined in the channels of a poly(dimethylsiloxane) (PDMS)-based microfluidic network. The polymeric network also serves as a self-supporting membrane through which oxygen and hydrogen are supplied to the cathode and alloy anode, respectively, by permeation. The operational stability of the device and its performance is strongly dependent on the nature of the electrolyte used (5 M H2SO4 or 2.5 M NaOH) and composition of the anode material. The latter choice is optimized to decrease the sensitivity of the system to oxygen cross-over while still maintaining high activity towards the hydrogen oxidation reaction (HOR). Three types of high surface area anodes were tested in this work. These include: high-surface area electrodeposited Pt (Pt); high-surface area electrodeposited Pd (Pd); and thin palladium adlayers supported on a "porous" Pt electrode (Pd/Pt). The FCs display their best performance in 5 M H2SO4 using the Pd/Pt anode. This exceptional stability and performance was ascribed to several factors, namely: the high permeabilities of O2, H2, and CO2 in PDMS; the inhibition of the formation of insoluble carbonate species due to the presence of a highly acidic electrolyte; and the selectivity of the Pd/Pt anode toward the HOR. The stability of the device for long-term operation was modeled using a stack of three FCs as a power supply for a portable display that otherwise uses a 3 V

  16. High performance solar cells: It's all about the optics (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Yablonovitch, Eli

    2016-09-01

    For solar cells at 25%, good electron-hole transport is already a given. Further improvements of efficiency above 25% are all about the photon management! Our mantra is: "A good solar cell has to be a good LED; A great solar cell has to be a great LED! It has been found that thin-film cells are more efficient than the best wafer cells. Even more counter-intuitively, solar cells perform best when some of the solar photons are returned as external fluorescence. That is, the external luminescence yield ext, should be maximized. Good external fluorescence produces record output voltage.

  17. Final Report: Materials and Modules for Low Cost, High Performance Fuel Cell Humidifiers

    SciTech Connect

    Johnson, William B

    2012-12-31

    Over the past 20 years, great technical progress has been made in improving power density and durability of fuel cell stacks. Yet, operating durably at high performance levels under very dry conditions, e.g., < 20% RH at 80 °C or above, remains beyond even the best fuel cell membrane electrode assemblies. Thus, today it is essential to humidify the gases supplied to the fuel cell inlets. In this work, we have produced a new, inexpensive, composite membrane capable of very high water vapor transport and low air cross-over. The composite structure consists of a very thin ionomer layer (e.g., < 5 m) sandwiched between two microporous polymer layers. The thin ionomer layer facilitates the rapid water transport and provides an impermeable layer to prevent gas cross-over. Such an approach reduces cost, but maintains performance. The microporous layer protects the thin ionomer layer from mechanical damage during handling; confers strength to the thin layer allowing it to be more durable during use; and allows it to withstand higher automotive pressures and temperatures. The composite structure will therefore allow lower total cost while still meeting automotive humidifier water transport and durability targets. Because the transport rates of these new materials are so high, existing planar membrane humidifier module designs available at the start of the program were incapable of efficiently utilizing the high rates. Therefore, the assembled team designed, tested and demonstrated an innovative, low-cost humidifier module with customized channel geometries that can take advantage of the high the water transport rates. Program Results The objectives of the program have been fully met. The optimized membrane produced in the program has very high transport rates, nearly twice that of the closest competitive option, a homogeneous perfluorosulfonic acid (PFSA) membrane. Furthermore, the composite structure imparts significant durability advantages, allowing the membrane to

  18. Performance, Performance System, and High Performance System

    ERIC Educational Resources Information Center

    Jang, Hwan Young

    2009-01-01

    This article proposes needed transitions in the field of human performance technology. The following three transitions are discussed: transitioning from training to performance, transitioning from performance to performance system, and transitioning from learning organization to high performance system. A proposed framework that comprises…

  19. High performance zirconia-bismuth oxide nanocomposite electrolytes for lower temperature solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Joh, Dong Woo; Park, Jeong Hwa; Kim, Do Yeub; Yun, Byung-Hyun; Lee, Kang Taek

    2016-07-01

    We develop a novel nanocomposite electrolyte, consisting of yttria-stabilized zirconia (YSZ) and erbia-stabilized bismuth oxide (ESB). The 20 mol% ESB-incorporated YSZ composite (20ESB-YSZ) achieves the high density (>97%) at the low sintering temperature of 800 °C. The microstructural analysis of 20ESB-YSZ reveals the characteristic nanocomposite structure of the highly percolated ESB phase at the YSZ grain boundaries (a few ∼ nm thick). The ionic conductivity of 20ESB-YSZ is increased by 5 times compared to that of the conventional YSZ due to the fast oxygen ion transport along the ESB phase. Moreover, this high conductivity is maintained up to 580 h, indicating high stability of the ESB-YSZ nanocomposite. In addition, the oxygen reduction reaction at the composite electrolyte/cathode interface is effectively enhanced (∼70%) at the temperature below 650 °C, mainly due to the fast dissociative oxygen adsorption on the ESB surface as well as the rapid oxygen ion incorporation into the ESB lattice. Thus, we believe this ESB-YSZ nanocomposite is a promising electrolyte for high performance solid oxide fuel cells at reduced temperatures.

  20. Determining the optimum morphology in high-performance polymer-fullerene organic photovoltaic cells

    PubMed Central

    Hedley, Gordon J.; Ward, Alexander J.; Alekseev, Alexander; Howells, Calvyn T.; Martins, Emiliano R.; Serrano, Luis A.; Cooke, Graeme; Ruseckas, Arvydas; Samuel, Ifor D. W.

    2013-01-01

    The morphology of bulk heterojunction organic photovoltaic cells controls many of the performance characteristics of devices. However, measuring this morphology is challenging because of the small length-scales and low contrast between organic materials. Here we use nanoscale photocurrent mapping, ultrafast fluorescence and exciton diffusion to observe the detailed morphology of a high-performance blend of PTB7:PC71BM. We show that optimized blends consist of elongated fullerene-rich and polymer-rich fibre-like domains, which are 10–50 nm wide and 200–400 nm long. These elongated domains provide a concentration gradient for directional charge diffusion that helps in the extraction of charge pairs with 80% efficiency. In contrast, blends with agglomerated fullerene domains show a much lower efficiency of charge extraction of ~45%, which is attributed to poor electron and hole transport. Our results show that the formation of narrow and elongated domains is desirable for efficient bulk heterojunction solar cells. PMID:24343223

  1. Highly nitrogen-doped carbon capsules: scalable preparation and high-performance applications in fuel cells and lithium ion batteries.

    PubMed

    Hu, Chuangang; Xiao, Ying; Zhao, Yang; Chen, Nan; Zhang, Zhipan; Cao, Minhua; Qu, Liangti

    2013-04-07

    Highly nitrogen-doped carbon capsules (hN-CCs) have been successfully prepared by using inexpensive melamine and glyoxal as precursors via solvothermal reaction and carbonization. With a great promise for large scale production, the hN-CCs, having large surface area and high-level nitrogen content (N/C atomic ration of ca. 13%), possess superior crossover resistance, selective activity and catalytic stability towards oxygen reduction reaction for fuel cells in alkaline medium. As a new anode material in lithium-ion battery, hN-CCs also exhibit excellent cycle performance and high rate capacity with a reversible capacity of as high as 1046 mA h g(-1) at a current density of 50 mA g(-1) after 50 cycles. These features make the hN-CCs developed in this study promising as suitable substitutes for the expensive noble metal catalysts in the next generation alkaline fuel cells, and as advanced electrode materials in lithium-ion batteries.

  2. Amide group anchored glucose oxidase based anodic catalysts for high performance enzymatic biofuel cell

    NASA Astrophysics Data System (ADS)

    Chung, Yongjin; Ahn, Yeonjoo; Kim, Do-Heyoung; Kwon, Yongchai

    2017-01-01

    A new enzyme catalyst is formed by fabricating gold nano particle (GNP)-glucose oxidase (GOx) clusters that are then attached to polyethyleneimine (PEI) and carbon nanotube (CNT) with cross-linkable terephthalaldehyde (TPA) (TPA/[CNT/PEI/GOx-GNP]). Especially, amide bonds belonging to TPA play an anchor role for incorporating rigid bonding among GNP, GOx and CNT/PEI, while middle size GNP is well bonded with thiol group of GOx to form strong GNP-GOx cluster. Those bonds are identified by chemical and electrochemical characterizations like XPS and cyclic voltammogram. The anchording effect of amide bonds induces fast electron transfer and strong chemical bonding, resulting in enhancements in (i) catalytic activity, (ii) amount of immobilized GOx and (ii) performance of enzymatic biofuel cell (EBC) including the catalyst. Regarding the catalytic activity, the TPA/[CNT/PEI/GOx-GNP] produces high electron transfer rate constant (6 s-1), high glucose sensitivity (68 μA mM-1 cm-2), high maximum current density (113 μA cm-2), low charge transfer resistance (17.0 Ω cm2) and long-lasting durability while its chemical structure is characterized by XPS confirming large portion of amide bond. In EBC measurement, it has high maximum power density (0.94 mW cm-2) compatible with catalytic acitivity measurements.

  3. Identification of some key parameters limiting the performance of high-efficiency silicon solar cells

    NASA Technical Reports Server (NTRS)

    Mokashi, Anant R.; Daud, Taher; Kachare, Ram H.

    1986-01-01

    This paper presents, for the first time, a detailed sensitivity analysis of key cell parameters on silicon-cell efficiency by incorporating advanced solar cell physics in a sophisticated numerical simulation program. It delineates the true physical barriers to obtaining a high-efficiency silicon solar cell. Specific parameters presently limiting cell efficiency are identified to be the minority carrier lifetime and the recombination velocities at the front and back surfaces. Practical cell efficiencies in the vicinity of 22 percent are estimated to be attainable by using good quality silicon crystal and substantially reducing surface recombination velocities.

  4. Tropolone as a High-Performance Robust Anchoring Group for Dye-Sensitized Solar Cells.

    PubMed

    Higashino, Tomohiro; Fujimori, Yamato; Sugiura, Kenichi; Tsuji, Yukihiro; Ito, Seigo; Imahori, Hiroshi

    2015-07-27

    A tropolone group has been employed for the first time as an anchoring group for dye-sensitized solar cells (DSSCs). The DSSC based on a porphyrin, YD2-o-C8T, with a tropolone moiety exhibited a power-conversion efficiency of 7.7 %, which is only slightly lower than that observed for a reference porphyrin, YD2-o-C8, with a conventional carboxylic group. More importantly, YD2-o-C8T was found to be superior to YD2-o-C8 with respect to DSSC durability and binding ability to TiO2 . These results unambiguously demonstrate that tropolone is a highly promising dye-anchoring group for DSSCs in terms of device durability as well as photovoltaic performance.

  5. Study of relationships of material properties and high efficiency solar cell performance on material composition

    NASA Technical Reports Server (NTRS)

    Sah, C. T.

    1983-01-01

    The performance improvements obtainable from extending the traditionally thin back-surface-field (BSF) layer deep into the base of silicon solar cells under terrestrial solar illumination (AM1) are analyzed. This extended BSF cell is also known as the back-drift-field cell. About 100 silicon cells were analyzed, each with a different emitter or base dopant impurity distribution whose selection was based on physically anticipated improvements. The four principal performance parameters (the open-circuit voltage, the short-circuit current, the fill factor, and the maximum efficiency) are computed using a FORTRAN program, called Circuit Technique for Semiconductor-device Analysis, CTSA, which numerically solves the six Shockley Equations under AM1 solar illumination at 88.92 mW/cm, at an optimum cell thickness of 50 um. The results show that very significant performance improvements can be realized by extending the BSF layer thickness from 2 um (18% efficiency) to 40 um (20% efficiency).

  6. Electrocatalytic performance of fuel cell reactions at low catalyst loading and high mass transport.

    PubMed

    Zalitis, Christopher M; Kramer, Denis; Kucernak, Anthony R

    2013-03-28

    An alternative approach to the rotating disk electrode (RDE) for characterising fuel cell electrocatalysts is presented. The approach combines high mass transport with a flat, uniform, and homogeneous catalyst deposition process, well suited for studying intrinsic catalyst properties at realistic operating conditions of a polymer electrolyte fuel cell (PEFC). Uniform catalyst layers were produced with loadings as low as 0.16 μgPt cm(-2) and thicknesses as low as 200 nm. Such ultra thin catalyst layers are considered advantageous to minimize internal resistances and mass transport limitations. Geometric current densities as high as 5.7 A cm(-2)Geo were experimentally achieved at a loading of 10.15 μgPt cm(-2) for the hydrogen oxidation reaction (HOR) at room temperature, which is three orders of magnitude higher than current densities achievable with the RDE. Modelling of the associated diffusion field suggests that such high performance is enabled by fast lateral diffusion within the electrode. The electrodes operate over a wide potential range with insignificant mass transport losses, allowing the study of the ORR at high overpotentials. Electrodes produced a specific current density of 31 ± 9 mA cm(-2)Spec at a potential of 0.65 V vs. RHE for the oxygen reduction reaction (ORR) and 600 ± 60 mA cm(-2)Spec for the peak potential of the HOR. The mass activity of a commercial 60 wt% Pt/C catalyst towards the ORR was found to exceed a range of literature PEFC mass activities across the entire potential range. The HOR also revealed fine structure in the limiting current range and an asymptotic current decay for potentials above 0.36 V. These characteristics are not visible with techniques limited by mass transport in aqueous media such as the RDE.

  7. Graphene Oxide Derivatives as Hole- and Electron-Extraction Layers for High-Performance Polymer Solar Cells

    DTIC Science & Technology

    2013-11-20

    Graphene oxide derivatives as hole- and electron- extraction layers for high-performance polymer solar cells Jun Liu,*a Michael Durstockb and Liming...oxide (GO) and its derivatives have been used as a new class of efficient hole- and electron-extraction materials in polymer solar cells (PSCs...new class of efficient hole- and electron-extraction materials in polymer solar cells (PSCs). Highly efficient and stable PSCs have been fabricated

  8. Alcohol-soluble Star-shaped Oligofluorenes as Interlayer for High Performance Polymer Solar Cells

    PubMed Central

    Zou, Yang; He, Zhicai; Zhao, Baofeng; Liu, Yuan; Yang, Chuluo; Wu, Hongbin; Cao, Yong

    2015-01-01

    Two star-shaped oligofluorenes with hexakis(fluoren-2-yl)benzene as core are designed and sythesized for interfacial materials in polymer solar cell. Diethanolamino groups are attached to the side chain of fluorene units for T0-OH and T1-OH to enable the alcohol solubility, and additional hydrophobic n-hexyl chains are also grafted on the increased fluorene arms for T1-OH. In conventional device with PCDTBT/PC71BM as active layer, a 50% enhanced PCE is obtained by incorporating T0-OH and T1-OH as the interlayer compared with device without interlayer. By optimizing the active material with PTB7 and with the inverted device structure, a maximum PCE of 9.30% is achieved, which is among the highest efficiencies for PTB7 based polymer solar cells. The work function of modified electrode, the surface morphology and the suraface properties are systematically studied. By modifying the structures of the star-shaped molecules, a balance between the hydrophobic and hydrophilic property is finely tuned, and thus facilitate the interlayer for high performance of PSCs. PMID:26612688

  9. Double-resonance spectroscopy in Rubidium vapour-cells for high performance and miniature atomic clocks

    NASA Astrophysics Data System (ADS)

    Gharavipour, M.; Affolderbach, C.; Kang, S.; Mileti, G.

    2017-01-01

    We report our studies on using microwave-optical double-resonance (DR) spectroscopy for a high-performance Rb vapour-cell atomic clock in view of future industrial applications. The clock physics package is very compact with a total volume of only 0.8 dm3. It contains a recently in-house developed magnetron-type cavity and a Rb vapour cell. A homed-made frequency-stabilized laser system with an integrated acousto-optical-modulator (AOM) – for switching and controlling the light output power– is used as an optical source in a laser head (LH). The LH has the overall volume of 2.5 dm3 including the laser diode, optical elements, AOM and electronics. In our Rb atomic clock two schemes of continuous-wave DR and Ramsey-DR schemes are used, where the latter one strongly reduces the light-shift effect by separation of the interaction of light and microwave. Applications of the DR clock approach to more radically miniaturized atomic clocks are discussed.

  10. MATERIAL AND PROCESS DEVELOPMENT LEADING TO ECONOMICAL HIGH-PERFORMANCE THIN-FILM SOLID OXIDE FUEL CELLS

    SciTech Connect

    Jie Guan; Nguyen Minh

    2003-12-01

    This report summarizes the results of the work conducted under the program: ''Material and Process Development Leading to Economical High-Performance Thin-Film Solid Oxide Fuel Cells'' under contract number DE-AC26-00NT40711. The program goal is to advance materials and processes that can be used to produce economical, high-performance solid oxide fuel cells (SOFC) capable of achieving extraordinary high power densities at reduced temperatures. Under this program, anode-supported thin electrolyte based on lanthanum gallate (LSMGF) has been developed using tape-calendering process. The fabrication parameters such as raw materials characteristics, tape formulations and sintering conditions have been evaluated. Dense anode supported LSGMF electrolytes with thickness range of 10-50 micron have been fabricated. High performance cathode based on Sr{sub 0.5}Sm{sub 0.5}CoO{sub 3} (SSC) has been developed. Polarization of {approx}0.23 ohm-cm{sup 2} has been achieved at 600 C with Sr{sub 0.5}Sm{sub 0.5}CoO{sub 3}cathode. The high-performance SSC cathode and thin gallate electrolyte have been integrated into single cells and cell performance has been characterized. Tested cells to date generally showed low performance because of low cell OCVs and material interactions between NiO in the anode and lanthanum gallate electrolyte.

  11. A high-performance solid oxide fuel cell anode based on lanthanum strontium vanadate

    NASA Astrophysics Data System (ADS)

    Park, Jong-Sung; Hasson, Ian D.; Gross, Michael D.; Chen, Chen; Vohs, J. M.; Gorte, R. J.

    Ceramic composites were prepared by infiltration of La 0.7Sr 0.3VO 3.85 (LSV) into porous scaffolds of yttria-stabilized zirconia (YSZ) and tested for use as solid oxide fuel cell (SOFC) anodes. There was no evidence for solid-state reaction between LSV and YSZ at calcination temperatures up to 1273 K. For calcination at 973 K, LSV formed a continuous film over the YSZ. The LSV phase reduced easily upon heating in H 2 to 973 K, with the reduction forming pores in the LSV and greatly increasing its surface area. The electrodes showed high electronic conductivity after reduction, with a 10-vol% LSV-YSZ composite exhibiting a conductivity of 2 S cm -1 at 973 K. In the absence of an added catalyst, the LSV-YSZ electrodes showed relatively poor performance; however, an electrode impedance of approximately 0.1 Ω cm 2 was achieved at 973 K in humidified H 2 following addition of 0.5 vol% Pd and 2.8 vol% ceria The LSV-YSZ composites were stable in CH 4 but there was evidence for poisoning of the Pd catalyst by V following high-temperature oxidation.

  12. Thermal abuse performance of high-power 18650 Li-ion cells

    NASA Astrophysics Data System (ADS)

    Roth, E. P.; Doughty, D. H.

    High-power 18650 Li-ion cells have been developed for hybrid electric vehicle applications as part of the DOE Advanced Technology Development (ATD) program. The thermal abuse response of two advanced chemistries (Gen1 and Gen2) were measured and compared with commercial Sony 18650 cells. Gen1 cells consisted of an MCMB graphite based anode and a LiNi 0.85Co 0.15O 2 cathode material while the Gen2 cells consisted of a MAG10 anode graphite and a LiNi 0.80Co 0.15 Al 0.05O 2 cathode. Accelerating rate calorimetry (ARC) and differential scanning calorimetry (DSC) were used to measure the thermal response and properties of the cells and cell materials up to 400 °C. The MCMB graphite was found to result in increased thermal stability of the cells due to more effective solid electrolyte interface (SEI) formation. The Al stabilized cathodes were seen to have higher peak reaction temperatures that also gave improved cell thermal response. The effects of accelerated aging on cell properties were also determined. Aging resulted in improved cell thermal stability with the anodes showing a rapid reduction in exothermic reactions while the cathodes only showed reduced reactions after more extended aging.

  13. Molecular helices as electron acceptors in high-performance bulk heterojunction solar cells

    DOE PAGES

    Yu M. Zhong; Nam, Chang -Yong; Trinh, M. Tuan; ...

    2015-09-18

    Despite numerous organic semiconducting materials synthesized for organic photovoltaics in the past decade, fullerenes are widely used as electron acceptors in highly efficient bulk-heterojunction solar cells. None of the non-fullerene bulk heterojunction solar cells have achieved efficiencies as high as fullerene-based solar cells. Design principles for fullerene-free acceptors remain unclear in the field. Here we report examples of helical molecular semiconductors as electron acceptors that are on par with fullerene derivatives in efficient solar cells. We achieved an 8.3% power conversion efficiency in a solar cell, which is a record high for non-fullerene bulk heterojunctions. Femtosecond transient absorption spectroscopy revealedmore » both electron and hole transfer processes at the donor–acceptor interfaces. Atomic force microscopy reveals a mesh-like network of acceptors with pores that are tens of nanometres in diameter for efficient exciton separation and charge transport. As a result, this study describes a new motif for designing highly efficient acceptors for organic solar cells.« less

  14. Molecular helices as electron acceptors in high-performance bulk heterojunction solar cells

    NASA Astrophysics Data System (ADS)

    Zhong, Yu; Trinh, M. Tuan; Chen, Rongsheng; Purdum, Geoffrey E.; Khlyabich, Petr P.; Sezen, Melda; Oh, Seokjoon; Zhu, Haiming; Fowler, Brandon; Zhang, Boyuan; Wang, Wei; Nam, Chang-Yong; Sfeir, Matthew Y.; Black, Charles T.; Steigerwald, Michael L.; Loo, Yueh-Lin; Ng, Fay; Zhu, X.-Y.; Nuckolls, Colin

    2015-09-01

    Despite numerous organic semiconducting materials synthesized for organic photovoltaics in the past decade, fullerenes are widely used as electron acceptors in highly efficient bulk-heterojunction solar cells. None of the non-fullerene bulk heterojunction solar cells have achieved efficiencies as high as fullerene-based solar cells. Design principles for fullerene-free acceptors remain unclear in the field. Here we report examples of helical molecular semiconductors as electron acceptors that are on par with fullerene derivatives in efficient solar cells. We achieved an 8.3% power conversion efficiency in a solar cell, which is a record high for non-fullerene bulk heterojunctions. Femtosecond transient absorption spectroscopy revealed both electron and hole transfer processes at the donor-acceptor interfaces. Atomic force microscopy reveals a mesh-like network of acceptors with pores that are tens of nanometres in diameter for efficient exciton separation and charge transport. This study describes a new motif for designing highly efficient acceptors for organic solar cells.

  15. Molecular helices as electron acceptors in high-performance bulk heterojunction solar cells.

    PubMed

    Zhong, Yu; Trinh, M Tuan; Chen, Rongsheng; Purdum, Geoffrey E; Khlyabich, Petr P; Sezen, Melda; Oh, Seokjoon; Zhu, Haiming; Fowler, Brandon; Zhang, Boyuan; Wang, Wei; Nam, Chang-Yong; Sfeir, Matthew Y; Black, Charles T; Steigerwald, Michael L; Loo, Yueh-Lin; Ng, Fay; Zhu, X-Y; Nuckolls, Colin

    2015-09-18

    Despite numerous organic semiconducting materials synthesized for organic photovoltaics in the past decade, fullerenes are widely used as electron acceptors in highly efficient bulk-heterojunction solar cells. None of the non-fullerene bulk heterojunction solar cells have achieved efficiencies as high as fullerene-based solar cells. Design principles for fullerene-free acceptors remain unclear in the field. Here we report examples of helical molecular semiconductors as electron acceptors that are on par with fullerene derivatives in efficient solar cells. We achieved an 8.3% power conversion efficiency in a solar cell, which is a record high for non-fullerene bulk heterojunctions. Femtosecond transient absorption spectroscopy revealed both electron and hole transfer processes at the donor-acceptor interfaces. Atomic force microscopy reveals a mesh-like network of acceptors with pores that are tens of nanometres in diameter for efficient exciton separation and charge transport. This study describes a new motif for designing highly efficient acceptors for organic solar cells.

  16. Molecular helices as electron acceptors in high-performance bulk heterojunction solar cells

    SciTech Connect

    Yu M. Zhong; Nam, Chang -Yong; Trinh, M. Tuan; Chen, Rongsheng; Purdum, Geoffrey E.; Khlyabich, Petr P.; Sezen, Melda; Oh, Seokjoon; Zhu, Haiming; Fowler, Brandon; Zhang, Boyuan; Wang, Wei; Sfeir, Matthew Y.; Black, Charles T.; Steigerwald, Michael L.; Loo, Yueh -Lin; Ng, Fay; Zhu, X. -Y.; Nuckolls, Colin

    2015-09-18

    Despite numerous organic semiconducting materials synthesized for organic photovoltaics in the past decade, fullerenes are widely used as electron acceptors in highly efficient bulk-heterojunction solar cells. None of the non-fullerene bulk heterojunction solar cells have achieved efficiencies as high as fullerene-based solar cells. Design principles for fullerene-free acceptors remain unclear in the field. Here we report examples of helical molecular semiconductors as electron acceptors that are on par with fullerene derivatives in efficient solar cells. We achieved an 8.3% power conversion efficiency in a solar cell, which is a record high for non-fullerene bulk heterojunctions. Femtosecond transient absorption spectroscopy revealed both electron and hole transfer processes at the donor–acceptor interfaces. Atomic force microscopy reveals a mesh-like network of acceptors with pores that are tens of nanometres in diameter for efficient exciton separation and charge transport. As a result, this study describes a new motif for designing highly efficient acceptors for organic solar cells.

  17. Interface Engineering through Atomic Layer Deposition towards Highly Improved Performance of Dye-Sensitized Solar Cells

    NASA Astrophysics Data System (ADS)

    Lu, Hao; Tian, Wei; Guo, Jun; Li, Liang

    2015-08-01

    A composite photoanode comprising ultralong ZnO nanobelts and TiO2 nanoparticles was prepared and its performance in dye-sensitized solar cells (DSSCs) was optimized and compared to the photoanode consisting of conventional TiO2 nanoparticles. The ultralong ZnO nanobelts were synthesized in high yield by a facile solution approach at 90 oC followed by annealing at 500 oC. The effect of the ratio of ZnO nanobelts to TiO2 nanoparticles on the light scattering, specific surface area, and interface recombination were investigated. An optimum amount of ZnO nanobelts enhanced the photon-conversion efficiency by 61.4% compared to that of the conventional TiO2 nanoparticles. To further reduce the recombination rate and increase the carrier lifetime, Atomic Layer Deposition (ALD) technique was utilized to coat a continuous TiO2 film surrounding the ZnO nanobelts and TiO2 nanoparticles, functioning as a barrier-free access of all electrons to conductive electrodes. This ALD treatment improved the interface contact within the whole photoanode system, finally leading to significant enhancement (137%) in the conversion efficiency of DSSCs.

  18. Interface Engineering through Atomic Layer Deposition towards Highly Improved Performance of Dye-Sensitized Solar Cells

    PubMed Central

    Lu, Hao; Tian, Wei; Guo, Jun; Li, Liang

    2015-01-01

    A composite photoanode comprising ultralong ZnO nanobelts and TiO2 nanoparticles was prepared and its performance in dye-sensitized solar cells (DSSCs) was optimized and compared to the photoanode consisting of conventional TiO2 nanoparticles. The ultralong ZnO nanobelts were synthesized in high yield by a facile solution approach at 90 oC followed by annealing at 500 oC. The effect of the ratio of ZnO nanobelts to TiO2 nanoparticles on the light scattering, specific surface area, and interface recombination were investigated. An optimum amount of ZnO nanobelts enhanced the photon-conversion efficiency by 61.4% compared to that of the conventional TiO2 nanoparticles. To further reduce the recombination rate and increase the carrier lifetime, Atomic Layer Deposition (ALD) technique was utilized to coat a continuous TiO2 film surrounding the ZnO nanobelts and TiO2 nanoparticles, functioning as a barrier-free access of all electrons to conductive electrodes. This ALD treatment improved the interface contact within the whole photoanode system, finally leading to significant enhancement (137%) in the conversion efficiency of DSSCs. PMID:26238737

  19. A High Performance H2-Cl2 Fuel Cell for Space Power Applications

    NASA Technical Reports Server (NTRS)

    Anderson, Everett B.; Taylor, E. Jennings; Wilemski, Gerald; Gelb, Alan

    1993-01-01

    NASA has numerous airborne/spaceborne applications for which high power and energy density power sources are needed. The proton exchange membrane fuel cell (PEMFC) is an attractive candidate for such a power source. PEMFC's offer many advantages for airborne/spaceborne applications. They have high power and energy densities, convert fuel to electrical power with high efficiency at both part and full load, and can rapidly startup and shutdown. In addition, PEMFC's are lightweight and operate silently. A significant impediment to the attainment of very high power and energy densities by PEMFC's is their current exclusive reliance on oxygen as the oxidant. Conventional PEMFC's oxidize hydrogen at the anode and reduce oxygen at the cathode. The electrode kinetics of oxygen reduction are known to be highly irreversible, incurring large overpotential losses. In addition, the modest open circuit potential of 1.2V for the H2-O2 fuel cell is unattainable due to mixed potential effects at the oxygen electrode. Because of the high overpotential losses, cells using H2 and O2 are capable of achieving high current densities only at very low cell voltages, greatly curtailing their power output. Based on experimental work on chlorine reduction in a gas diffusion electrode, we believe significant increases in both the energy and power densities of PEMFC systems can be achieved by employing chlorine as an alternative oxidant.

  20. High performance radiation-grafted membranes and electrodes for polymer electrolyte fuel cells

    SciTech Connect

    Nezu, Shinji; Seko, Hideo; Gondo, Masaki; Ito, Naoki

    1996-12-31

    Polymer electrolyte fuel cells (PEFC) have attracted much attention for stationary and electric vehicle applications. Much progress has been made to improve their performance recently. However there are still several problems to overcome for commercialization. Among them, the cost of polymer electrolyte membranes seems to be rather critical, because a cost estimate of a practical fuel cell stack shows that the membrane cost must be reduced at least by two orders of magnitude based on current perfluorosulfonic acid membranes eg. Nafion{reg_sign}. Thus the development of new membrane materials is strongly desired. Styrene grafted tetrafluoroethylene-hexafluoropropylene copolymer (FEP) membranes have been studied for a fuel cell application by G. Scherer et al. These authors showed that membranes obtained by radiation grafting served as an alternative membrane for fuel cells although there were several problems to overcome in the future. These problems include shorter life time which was concluded to result from the decomposition of grafted polystyrene side chains. We report here the performance of our fuel cells which were fabricated from our radiation grafted membranes (IMRA MEMBRANE) and gas diffusion electrodes.

  1. High performance dye-sensitized solar cell based on hydrothermally deposited multiwall carbon nanotube counter electrode

    NASA Astrophysics Data System (ADS)

    Siriroj, Sumeth; Pimanpang, Samuk; Towannang, Madsakorn; Maiaugree, Wasan; Phumying, Santi; Jarernboon, Wirat; Amornkitbamrung, Vittaya

    2012-06-01

    Conductive glass was coated with multiwall carbon nanotubes (MWCNTs) by a hydrothermal method. MWCNTs films were subsequently used as dye-sensitized solar cell (DSSC) counter electrodes. The performance of hydrothermal MWCNT DSSC was ˜2.37%. After film annealing in an Ar atmosphere, annealed-hydrothermal MWCNT (AHT-CNT) DSSC efficiency was significantly increased to ˜7.66%, in comparison to ˜8.01% for sputtered-Pt DSSC. Improvement of AHT-CNT DSSC performance is attributed to a decrease in charge-transfer resistance from 1500 Ω to 30 Ω as observed by electrochemical impedance spectroscopy.

  2. Morphology evolution in high-performance polymer solar cells processed from nonhalogenated solvent

    DOE PAGES

    Cai, Wanzhu; Liu, Peng; Jin, Yaocheng; ...

    2015-05-26

    A new processing protocol based on non-halogenated solvent and additive is developed to produce polymer solar cells with power conversion efficiencies better than those processed from commonly used halogenated solvent-additive pair. Morphology studies show that good performance correlates with a finely distributed nanomorphology with a well-defined polymer fibril network structure, which leads to balanced charge transport in device operation.

  3. High-Performance Fully Printable Perovskite Solar Cells via Blade-Coating Technique under the Ambient Condition

    SciTech Connect

    Yang, Zhibin; Chueh, Chu-Chen; Zuo, Fan; Kim, Jong H.; Liang, Po-Wei; Jen, Alex K. -Y.

    2015-04-30

    A fully printable perovskite solar cell (PVSC) is demonstrated using a blade-coating technique under ambient conditions with controlled humidity. The influence of humidity on perovskite's crystallization is systematically investigated to realize the ambient processing condition. A high power conversion efficiency of 10.44% is achieved after optimizing the blade-coating process and, more importantly, a high-performance flexible PVSC is demonstrated for the first time. A high efficiency of 7.14% is achieved.

  4. Non-basic high-performance molecules for solution-processed organic solar cells.

    PubMed

    van der Poll, Thomas S; Love, John A; Nguyen, Thuc-Quyen; Bazan, Guillermo C

    2012-07-17

    A new small molecule, p-DTS(FBTTh(2))(2), is designed for incorporation into solution-fabricated high-efficiency organic solar cells. Of primary importance is the incorporation of electron poor heterocycles that are not prone to protonation and thereby enable the incorporation of commonly used interlayers between the organic semiconductor and the charge collecting electrodes. These features have led to the creation of p-DTS(FBTTh(2))(2)/PC(71)BM solar cells with power conversion efficiencies of up to 7%.

  5. High-performance imaging of stem cells using single-photon emissions

    NASA Astrophysics Data System (ADS)

    Wagenaar, Douglas J.; Moats, Rex A.; Hartsough, Neal E.; Meier, Dirk; Hugg, James W.; Yang, Tang; Gazit, Dan; Pelled, Gadi; Patt, Bradley E.

    2011-10-01

    Radiolabeled cells have been imaged for decades in the field of autoradiography. Recent advances in detector and microelectronics technologies have enabled the new field of "digital autoradiography" which remains limited to ex vivo specimens of thin tissue slices. The 3D field-of-view (FOV) of single cell imaging can be extended to millimeters if the low energy (10-30 keV) photon emissions of radionuclides are used for single-photon nuclear imaging. This new microscope uses a coded aperture foil made of highly attenuating elements such as gold or platinum to form the image as a kind of "lens". The detectors used for single-photon emission microscopy are typically silicon detectors with a pixel pitch less than 60 μm. The goal of this work is to image radiolabeled mesenchymal stem cells in vivo in an animal model of tendon repair processes. Single-photon nuclear imaging is an attractive modality for translational medicine since the labeled cells can be imaged simultaneously with the reparative processes by using the dual-isotope imaging technique. The details our microscope's two-layer gold aperture and the operation of the energy-dispersive, pixellated silicon detector are presented along with the first demonstration of energy discrimination with a 57Co source. Cell labeling techniques have been augmented by genetic engineering with the sodium-iodide symporter, a type of reporter gene imaging method that enables in vivo uptake of free 99mTc or an iodine isotope at a time point days or weeks after the insertion of the genetically modified stem cells into the animal model. This microscopy work in animal research may expand to the imaging of reporter-enabled stem cells simultaneously with the expected biological repair process in human clinical trials of stem cell therapies.

  6. Research of silicon solar cells' performance after being irradiated by high power laser

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Li, Yunfei; Li, Yanjie; Zhao, Guomin; Chen, Minsun

    2016-11-01

    Compared with traditional methods of energy supply, there is a great possibility to get a more remarkable enhancement of conversion efficiency for laser power (of proper wavelength and intensity) beaming to silicon solar cells. However, it should be noticed that cells may be damaged by high power laser. Based on the background, this essay explores high-power-laser's possible damage to silicon solar cells by analyzing IV curves (obtained by IV tester) and minority-carrier lifetime (measured by open-circuit-voltage-decay method). Research shows that, for 30s irradiation, minority-carrier lifetime decreases to some extent when irradiated by laser of over 5.5W/cm2 and the higher laser power density, the more degradation. Similarly, IV curves see a downward trend under laser of over 5.5W/cm2. In addition, there is a roughly linear relationship between lifetime and the decrease amount of short circuit current. Moreover, the degradation degree has a close relation with the maximum temperature. The prolonged illumination would not bring about more serious damage if one cell had already reached an equilibrium temperature.

  7. Graphene/carbon cloth anode for high-performance mediatorless microbial fuel cells.

    PubMed

    Liu, Jing; Qiao, Yan; Guo, Chun Xian; Lim, Sierin; Song, Hao; Li, Chang Ming

    2012-06-01

    Graphene was electrochemically deposited on carbon cloth to fabricate an anode for a Pseudomonas aeruginosa mediatorless microbial fuel cell (MFC). The graphene modification improved power density and energy conversion efficiency by 2.7 and 3 times, respectively. The improvement is attributed to the high biocompatibility of graphene which promotes bacteria growth on the electrode surface that results in the creation of more direct electron transfer activation centers and stimulates excretion of mediating molecules for higher electron transfer rate. A parallel bioelectrocatalytic mechanism consisting of simultaneous direct electron transfer and cell-excreted mediator-enabled electron transfer was established in the P. aeruginosa-catalyzed MFC. This study does not only offer fundamental insights into MFC reactions, but also suggests a low cost manufacturing process to fabricate high power MFCs for practical applications.

  8. Tuning the Thickness of Ba-Containing "Functional" Layer toward High-Performance Ceria-Based Solid Oxide Fuel Cells.

    PubMed

    Gong, Zheng; Sun, Wenping; Shan, Duo; Wu, Yusen; Liu, Wei

    2016-05-04

    Developing highly efficient ceria-based solid oxide fuel cells with high power density is still a big concern for commercial applications. In this work, a novel structured Ce0.8Sm0.2O2-δ (SDC)-based fuel cell with a bilayered anode consisting of Ni-SDC and Ni-BaZr0.1Ce0.7Y0.2O3-δ (Ni-BZCY) was designed. In addition to the catalysis function, the Ni-BZCY anode "functional" layer also provides Ba source for generating an electron-blocking layer in situ at the anode/electrolyte interface during sintering. The Ni-BZCY thickness significantly influences the quality of the electron-blocking layer and electrochemical performances of the cell. The cell with a 50 μm thick Ni-BZCY layer exhibits the best performance in terms of open circuit voltage (OCV) and peak power density (1068 mW cm(-2) at 650 °C). The results demonstrate that this cell with an optimal structure has a distinct advantage of delivering high power performance with a high efficiency at reduced temperatures.

  9. A high-performance aluminum-feed microfluidic fuel cell stack

    NASA Astrophysics Data System (ADS)

    Wang, Yifei; Leung, Dennis Y. C.

    2016-12-01

    In this paper, a six-cell microfluidic fuel cell (MFC) stack is demonstrated. Low-cost aluminum is fed directly to the stack, which produces hydrogen fuel on site, through the Al-H2O reaction. This design is not only cost-efficient, but also eliminates the need for hydrogen storage. Unlike the conventional MFC stacks which generally require complex electrolyte distribution and management, the present Al-feed MFC stack requires only a single electrolyte stream, flowing successively through individual cells, which is finally utilized for hydrogen generation. In this manner, the whole system is greatly simplified while the operational robustness is also improved. With 2 M sodium hydroxide solution as electrolyte and kitchen foil Al as fuel, the present six-cell stack (in series) exhibits an open circuit voltage of nearly 6 V and a peak power density of 180.6 mWcm-2 at room temperature. In addition, an energy density of 1 Whg-1(Al) is achieved, which is quite high and comparable with its proton exchange membrane-based counterparts. Finally, pumpless operation of the present stack, together with its practical applications are successfully demonstrated, including lightening LED lights, driving an electric fan, and cell phone charging.

  10. Defect Engineering, Cell Processing, and Modeling for High-Performance, Low-Cost Crystalline Silicon Photovoltaics

    SciTech Connect

    Buonassisi, Tonio

    2013-02-26

    The objective of this project is to close the efficiency gap between industrial multicrystalline silicon (mc-Si) and monocrystalline silicon solar cells, while preserving the economic advantage of low-cost, high-volume substrates inherent to mc-Si. Over the course of this project, we made significant progress toward this goal, as evidenced by the evolution in solar-cell efficiencies. While most of the benefits of university projects are diffuse in nature, several unique contributions can be traced to this project, including the development of novel characterization methods, defect-simulation tools, and novel solar-cell processing approaches mitigate the effects of iron impurities ("Impurities to Efficiency" simulator) and dislocations. In collaboration with our industrial partners, this project contributed to the development of cell processing recipes, specialty materials, and equipment that increased cell efficiencies overall (not just multicrystalline silicon). Additionally, several students and postdocs who were either partially or fully engaged in this project (as evidenced by the publication record) are currently in the PV industry, with others to follow.

  11. High Performance Photovoltaic Solar Cells: Cooperative Research and Development Final Report, CRADA Number CRD-05-169

    SciTech Connect

    Steiner, M.

    2012-07-01

    NREL will provide certified measurements of the conversion efficiency at high concentration for several multijunction solar cells that were fabricated by Cyrium Technologies. In an earlier phase of the CRADA, Cyrium provided epitaxially-grown material and NREL processed the samples into devices and measured the performance.

  12. The effect of minority carrier mobility variations on the performance of high voltage silicon solar cells

    NASA Technical Reports Server (NTRS)

    Weizer, V. G.; Godlewski, M. P.

    1980-01-01

    A multistep diffusion processing schedule is described which allows the attainment of high open circuit voltages in 0.1 ohm/cm silicon cells. The schedule consists of a deep primary diffusion, followed by an acid etch of emmitter surface which is then followed by a shallow secondary diffusion. A correlation is made between the observed voltage increases and the time of primary diffusion. Results indicate that as the primary diffusion time increases, the voltage rises monotonically.

  13. Design of Radial pin Si Nanowires for High Performance Solar Cells

    SciTech Connect

    Nguyen, Binh-Minh; Yoo, Jinkyoung; Dayeh, Shadi; Picraux, Samuel Thomas

    2012-09-03

    The quantum efficiency of solar cells, like of any photon detector, is dictated by the ability to absorb photons to create conducting carriers, and the efficiency to drive such carriers to electrodes for collection. Having a medium that enables full photon absorption in a short length, together with a long carrier lifetime that allows photo-generated carriers to reach electrodes before recombining are ideal, but are not always realistic. For example, silicon photovoltaics, despite being a major player in the solar cell market, suffer from the low absorption coefficient, thus requiring a thick absorbing layer which impairs the efficiency with which photogenerated carriers are collected. Radial silicon nanowires have been proposed as a candidate for reducing the optical absorption length and required processing purity in Si based solar cells without compromising their quantum efficiency and yet reducing the overall cell cost. On the one hand, incident light propagates along the axial dimension of the wires, and thus has a greater chance of being absorbed when the wire length extends beyond 10m due to inter-array light scattering effects. On the other hand, the core/shell p-i-n structure leads electrical current flow along sub-micron radii, which enables rapid collection of most photogenerated carriers as the transport length is typically less than the diffusion lengths of minority carriers. In this work, we perform Finite Difference Time Domain (FDTD) simulation to investigate the absorption process in arrayed radial nanowires.

  14. Medium Bandgap Conjugated Polymer for High Performance Polymer Solar Cells Exceeding 9% Power Conversion Efficiency.

    PubMed

    Jung, Jae Woong; Liu, Feng; Russell, Thomas P; Jo, Won Ho

    2015-12-02

    Two medium-bandgap polymers composed of benzo[1,2-b:4,5-b']dithiohpene and 2,1,3-benzothiadiazole with 6-octyl-thieno[3,2-b]thiophene as a π-bridge unit are synthesized and their photovoltaic properties are analyzed. The two polymers have deep highest occupied molecular orbital energy levels, high crystallinity, optimal bulk-heterojunction morphology, and efficient charge transport, resulting in a power conversion efficiency of as high as 9.44% for a single-junction polymer solar-cell device.

  15. Origin of the high performance of perovskite solar cells with large grains

    SciTech Connect

    Chen, Jian; Shi, Tongfei Li, Xinhua; Zhou, Bukang; Cao, Huaxiang; Wang, Yuqi

    2016-02-01

    Due to excellent carrier transport characteristics, CH{sub 3}NH{sub 3}PbI{sub 3} film made of large single crystal grains is considered as a key to improve upon already remarkable perovskite solar cell (PSC) efficiency. We have used a simple and efficient solvent vapor annealing method to obtain CH{sub 3}NH{sub 3}PbI{sub 3} films with grain size over 1 μm. PSCs with different grain size films have been fabricated and verified the potential of large grains for improving solar cells performance. Moreover, the larger grain films have shown stronger light absorption ability and more photon-generated carriers under the same illumination. A detailed temperature-dependent PL study has indicated that it originates from larger radius and lower binding energy of donor-acceptor-pair (DAP) in larger grains, which makes the DAP is easily to be separated and difficult to be recombine.

  16. Development of a High Volume Capable Process to Manufacture High Performance Photovoltaic Cells: Cooperative Research and Development Final Report, CRADA Number CRD-08-322

    SciTech Connect

    Geisz, J. F.

    2012-11-01

    The intent of the work is for RFMD and NREL to cooperate in the development of a commercially viable and high volume capable process to manufacture high performance photovoltaic cells, based on inverted metamorphic (IMM) GaAs technology. The successful execution of the agreement will result in the production of a PV cell using technology that is capable of conversion efficiency at par with the market at the time of release (reference 2009: 37-38%), using RFMD's production facilities. The CRADA work has been divided into three phases: (1) a foundation phase where the teams will demonstrate the manufacturing of a basic PV cell at RFMD's production facilities; (2) a technology demonstration phase where the teams will demonstrate the manufacturing of prototype PV cells using IMM technology at RFMD's production facilities, and; (3) a production readiness phase where the teams will demonstrate the capability to manufacture PV cells using IMM technology with high yields, high reliability, high reproducibility and low cost.

  17. Development of high-performance transparent conducting oxides and their impact on the performance of CdS/CdTe solar cells

    SciTech Connect

    Coutts, T.J.; Wu, X.; Sheldon, P.; Rose, D.H.

    1998-09-01

    This paper begins with a review of the modeled performance of transparent conducting oxides (TCOs) as a function of their free-carrier concentration, mobility, and film thickness. It is shown that it is vital to make a film with high mobility to minimize the width and height of the free-carrier absorption band, and to optimize the optical properties. The free-carrier concentration must be kept sufficiently small that the absorption band does not extend into that part of the spectrum to which the solar cell responds. Despite this consideration, a high electrical conductivity is essential to minimize series resistance losses. Hence, a high mobility is vital for these materials. The fabrication of thin-films of cadmium stannate is then discussed, and their performance is compared with that of tin oxide, both optically and as these materials influence the performance of CdTe solar cells.

  18. Utilization of Tabula Rasa to Stabilize Bulk Lifetimes in n-Cz Silicon for High-Performance Solar Cell Processing

    SciTech Connect

    LaSalvia, Vincenzo; Jensen, Mallory Ann; Youssef, Amanda; Nemeth, William; Page, Matthew; Buonassisi, Tonio; Stradins, Paul

    2016-11-21

    We investigate a high temperature, high cooling-rate anneal Tabula Rasa (TR) and report its implications on n-type Czochralski-grown silicon (n-Cz Si) for photovoltaic fabrication. Tabula Rasa aims at dissolving and homogenizing oxygen precipitate nuclei that can grow during the cell process steps and degrade the cell performance due to their high internal gettering and recombination activity. The Tabula Rasa thermal treatment is performed in a clean tube furnace with cooling rates >100 degrees C/s. We characterize the bulk lifetime by Sinton lifetime and photoluminescence mapping just after Tabula Rasa, and after the subsequent cell processing. After TR, the bulk lifetime surprisingly degrades to <; 0.1ms, only to recover to values equal or higher than the initial non-treated wafer (several ms), after typical high temperature cell process steps. Those include boron diffusion and oxidation; phosphorus diffusion/oxidation; ambient annealing at 850 degrees C; and crystallization annealing of tunneling-passivating contacts (doped polycrystalline silicon on 1.5 nm thermal oxide). The drastic lifetime improvement during high temperature cell processing is attributed to improved external gettering of metal impurities and annealing of intrinsic point defects. Time and injection dependent lifetime spectroscopy further reveals the mechanisms of lifetime improvement after Tabula Rasa treatment. Additionally, we report the efficacy of Tabula Rasa on n-type Cz-Si wafers and its dependence on oxygen concentration, correlated to position within the ingot.

  19. An integrated approach to realizing high-performance liquid-junction quantum dot sensitized solar cells

    PubMed Central

    McDaniel, Hunter; Fuke, Nobuhiro; Makarov, Nikolay S.; Pietryga, Jeffrey M.; Klimov, Victor I.

    2013-01-01

    Solution-processed semiconductor quantum dot solar cells offer a path towards both reduced fabrication cost and higher efficiency enabled by novel processes such as hot-electron extraction and carrier multiplication. Here we use a new class of low-cost, low-toxicity CuInSexS2−x quantum dots to demonstrate sensitized solar cells with certified efficiencies exceeding 5%. Among other material and device design improvements studied, use of a methanol-based polysulfide electrolyte results in a particularly dramatic enhancement in photocurrent and reduced series resistance. Despite the high vapour pressure of methanol, the solar cells are stable for months under ambient conditions, which is much longer than any previously reported quantum dot sensitized solar cell. This study demonstrates the large potential of CuInSexS2−x quantum dots as active materials for the realization of low-cost, robust and efficient photovoltaics as well as a platform for investigating various advanced concepts derived from the unique physics of the nanoscale size regime. PMID:24322379

  20. Organic Small Molecule as the Underlayer Toward High Performance Planar Perovskite Solar Cells.

    PubMed

    Cong, Shan; Yang, Hao; Lou, Yanhui; Han, Liang; Yi, Qinghua; Wang, Haibo; Sun, Yinghui; Zou, Guifu

    2017-01-25

    The underlayer plays an important role for organic-inorganic hybrid perovskite formation and charge transport in perovskite solar cells (PSCs). Here, we employ a classical organic small molecule, 5,6,11,12-tetraphenyltetracene (rubrene), as the underlayer of perovskite films to achieve 15.83% of power conversion efficiency with remarkable moisture tolerance exposed to the atmosphere. Experiments demonstrate rubrene hydrophobic underlayer not only drives the crystalline grain growth of high quality perovskite, but also contributes to the moisture tolerance of PSCs. Moreover, the matching energy level of the desirable underlayer is conductive to extracting holes and blocking electrons at anode in PSCs. This introduction of organic small molecule into PSCs provides alternative materials for interface optimization, as well as platform for flexible and wearable solar cells.

  1. High-performance semitransparent perovskite solar cells with solution-processed silver nanowires as top electrodes.

    PubMed

    Guo, Fei; Azimi, Hamed; Hou, Yi; Przybilla, Thomas; Hu, Mengyao; Bronnbauer, Carina; Langner, Stefan; Spiecker, Erdmann; Forberich, Karen; Brabec, Christoph J

    2015-02-07

    In this work, we report efficient semitransparent perovskite solar cells using solution-processed silver nanowires (AgNWs) as top electrodes. A thin layer of zinc oxide nanoparticles is introduced beneath the AgNWs, which fulfills two essential functionalities: it ensures ohmic contact between the PC60BM and the AgNWs and it serves as a physical foundation that enables the solution-deposition of AgNWs without causing damage to the underlying perovskite. The as-fabricated semitransparent perovskite cells show a high fill factor of 66.8%, Voc = 0.964 V, Jsc = 13.18 mA cm(-2), yielding an overall efficiency of 8.49% which corresponds to 80% of the reference devices with reflective opaque electrodes.

  2. High-performance membrane-electrode assembly with an optimal polytetrafluoroethylene content for high-temperature polymer electrolyte membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Jeong, Gisu; Kim, MinJoong; Han, Junyoung; Kim, Hyoung-Juhn; Shul, Yong-Gun; Cho, EunAe

    2016-08-01

    Although high-temperature polymer electrolyte membrane fuel cells (HT-PEMFCs) have a high carbon monoxide tolerance and allow for efficient water management, their practical applications are limited due to their lower performance than conventional low-temperature PEMFCs. Herein, we present a high-performance membrane-electrode assembly (MEA) with an optimal polytetrafluoroethylene (PTFE) content for HT-PEMFCs. Low or excess PTFE content in the electrode leads to an inefficient electrolyte distribution or severe catalyst agglomeration, respectively, which hinder the formation of triple phase boundaries in the electrodes and result in low performance. MEAs with PTFE content of 20 wt% have an optimal pore structure for the efficient formation of electrolyte/catalyst interfaces and gas channels, which leads to high cell performance of approximately 0.5 A cm-2 at 0.6 V.

  3. High performance polymer development

    NASA Technical Reports Server (NTRS)

    Hergenrother, Paul M.

    1991-01-01

    The term high performance as applied to polymers is generally associated with polymers that operate at high temperatures. High performance is used to describe polymers that perform at temperatures of 177 C or higher. In addition to temperature, other factors obviously influence the performance of polymers such as thermal cycling, stress level, and environmental effects. Some recent developments at NASA Langley in polyimides, poly(arylene ethers), and acetylenic terminated materials are discussed. The high performance/high temperature polymers discussed are representative of the type of work underway at NASA Langley Research Center. Further improvement in these materials as well as the development of new polymers will provide technology to help meet NASA future needs in high performance/high temperature applications. In addition, because of the combination of properties offered by many of these polymers, they should find use in many other applications.

  4. Role of Metal Oxide Electron-Transport Layer Modification on the Stability of High Performing Perovskite Solar Cells.

    PubMed

    Singh, Trilok; Singh, Jai; Miyasaka, Tsutomu

    2016-09-22

    Organic-inorganic hybrid perovskite light absorbers have recently emerged as a "holy grail" for next generation thin-film photovoltaics with excellent optoelectronics properties and low fabrication cost. In a very short span of time, we have witnessed a pronounced and unexpected progress in organic- inorganic perovskite solar cells (PSCs) with a vertical rise in power conversion efficiency from 3.8 to 22.1 %. In this manuscript we focus specifically on the recent development of metal oxide-based electron-transporting layer (ETL) modification for high performing PSCs and their stability. This review highlights various methodologies to modify existing compact/scaffold layers for improving device performance and stability. Various aspects of the ETL are discussed with different metal oxide compact layers in their relation to modification in mesoporous layers towards the design of a cell structure with high performance and stability.

  5. CoS-Graphene Composite Counter Electrode for High Performance Dye-Sensitized Solar Cell.

    PubMed

    Wang, Fen; Wu, Congcong; Tan, Yuan; Jin, Tetsuro; Chi, Bo; Pu, Jian; Jian, Li

    2015-02-01

    CoS-graphene composite counter electrode for dye-sensitized solar cell (DSSC) was prepared by coating hydrothermal synthesized CoS with graphene onto the FTO conductive glass. SEM shows that CoS particles are uniformly dispersed in the graphene. The result confirms that the prepared composite counter electrode is of highly electrocatalytic activity towards iodine reduction, which is even better than Pt electrode. And cyclic voltammetry measurement also shows that the composite counter electrode has good stability after 100 scan cycles. DSSC with CoS-graphene as composite counter electrode achieves a maximum power conversion efficiency of 6.31%, which is better than Pt electrode.

  6. Extraocular muscle satellite cells are high performance myo-engines retaining efficient regenerative capacity in dystrophin deficiency.

    PubMed

    Stuelsatz, Pascal; Shearer, Andrew; Li, Yunfei; Muir, Lindsey A; Ieronimakis, Nicholas; Shen, Qingwu W; Kirillova, Irina; Yablonka-Reuveni, Zipora

    2015-01-01

    Extraocular muscles (EOMs) are highly specialized skeletal muscles that originate from the head mesoderm and control eye movements. EOMs are uniquely spared in Duchenne muscular dystrophy and animal models of dystrophin deficiency. Specific traits of myogenic progenitors may be determinants of this preferential sparing, but very little is known about the myogenic cells in this muscle group. While satellite cells (SCs) have long been recognized as the main source of myogenic cells in adult muscle, most of the knowledge about these cells comes from the prototypic limb muscles. In this study, we show that EOMs, regardless of their distinctive Pax3-negative lineage origin, harbor SCs that share a common signature (Pax7(+), Ki67(-), Nestin-GFP(+), Myf5(nLacZ+), MyoD-positive lineage origin) with their limb and diaphragm somite-derived counterparts, but are remarkably endowed with a high proliferative potential as revealed in cell culture assays. Specifically, we demonstrate that in adult as well as in aging mice, EOM SCs possess a superior expansion capacity, contributing significantly more proliferating, differentiating and renewal progeny than their limb and diaphragm counterparts. These robust growth and renewal properties are maintained by EOM SCs isolated from dystrophin-null (mdx) mice, while SCs from muscles affected by dystrophin deficiency (i.e., limb and diaphragm) expand poorly in vitro. EOM SCs also retain higher performance in cell transplantation assays in which donor cells were engrafted into host mdx limb muscle. Collectively, our study provides a comprehensive picture of EOM myogenic progenitors, showing that while these cells share common hallmarks with the prototypic SCs in somite-derived muscles, they distinctively feature robust growth and renewal capacities that warrant the title of high performance myo-engines and promote consideration of their properties for developing new approaches in cell-based therapy to combat skeletal muscle wasting.

  7. Ambient Engineering for High-Performance Organic-Inorganic Perovskite Hybrid Solar Cells.

    PubMed

    Huang, Jiabin; Yu, Xuegong; Xie, Jiangsheng; Xu, Dikai; Tang, Zeguo; Cui, Can; Yang, Deren

    2016-08-24

    Considering the evaporation of solvents during fabrication of perovskite films, the organic ambience will present a significant influence on the morphologies and properties of perovskite films. To clarify this issue, various ambiences of N,N-dimethylformamide (DMF), dimethyl sulfoxide (DMSO), and chlorobenzene (CBZ) are introduced during fabrication of perovskite films by two-step sequential deposition method. The results reveal that an ambient CBZ atmosphere is favorable to control the nucleation and growth of CH3NH3PbI3 grains while the others present a negative effect. The statistical results show that the average efficiencies of perovskite solar cells processed in an ambient CBZ atmosphere can be significantly improved by a relatively average value of 35%, compared with those processed under air. The efficiency of the best perovskite solar cells can be improved from 10.65% to 14.55% by introducing this ambience engineering technology. The CH3NH3PbI3 film with large-size grains produced in an ambient CBZ atmosphere can effectively reduce the density of grain boundaries, and then the recombination centers for photoinduced carriers. Therefore, a higher short-circuit current density is achieved, which makes main contribution to the improvement in efficiency. These results provide vital progress toward understanding the role of ambience in the realization of highly efficient perovskite solar cells.

  8. Three-dimensional graphene-carbon nanotube hybrid for high-performance enzymatic biofuel cells.

    PubMed

    Prasad, Kenath Priyanka; Chen, Yun; Chen, Peng

    2014-03-12

    Enzymatic biofuel cells (EBFCs) are promising renewable and implantable power sources. However, their power output is often limited by inefficient electron transfer between the enzyme molecules and the electrodes, hindered mass transport, low conductivity, and small active surface area of the electrodes. To tackle these issues, we herein demonstrated a novel EBFC equipped with enzyme-functionalized 3D graphene-single walled carbon nanotubes (SWCNTs) hybrid electrodes using the naturally abundant glucose as the fuel and oxygen as the oxidizer. Such EBFCs, with high stability, can nearly attain the theoretical limit of open circuit voltage (∼1.2 V) and a high power density ever reported (2.27 ± 0.11 mW cm(-2)).

  9. Loss mechanisms in high-efficiency solar cells: Study of material properties and high-efficiency solar-cell performance on material composition: Project tasks

    NASA Technical Reports Server (NTRS)

    Sah, C. T.

    1985-01-01

    Loss mechanisms in high-efficiency solar cells were discussed. Fundamental limitations and practical solutions were stressed. Present cell efficiency is limited by many recombination sites: emitter, base, contacts, and oxide/silicon interface. Use of polysilicon passivation was suggested. After reduction of these losses, a 25% efficient cell could be built. A floating emitter cell design was shown that had the potential of low recombination losses.

  10. Performance of high resistivity n+pp+ silicon solar cells under 1 MeV electron irradiation

    NASA Technical Reports Server (NTRS)

    Weinberg, I.; Goradia, C.; Swartz, C. K.; Hermann, A. M.

    1981-01-01

    High resistivity (1250 and 84 ohm-cm) n(+)pp(+) silicon solar cells were irradiated and their performance evaluated as a function of fluence. The greatest degradation in power occurred for the higher resistivity cell. The data were analyzed under open circuit conditions, and the components of V sub oc determined as a function of fluence. It was found that the voltage contributions from the front and back junctions decreased while the base component (V sub B) increased with fluence. The anomalous behavior of V sub B was attributed to an increase in the base minority carrier gradient with fluence. An argument that the increased power degradation in the 1250 ohm-cm cells was attributable to an increased voltage drop in the base is presented. Diffusion lengths calculated under high injection conditions were significantly greater than those determined under low injection. This was attributed to a saturation of recombination centers under high injection conditions.

  11. New stopping cell capabilities: RF carpet performance at high gas density and cryogenic operation

    NASA Astrophysics Data System (ADS)

    Ranjan, M.; Purushothaman, S.; Dickel, T.; Geissel, H.; Plass, W. R.; Schäfer, D.; Scheidenberger, C.; Van de Walle, J.; Weick, H.; Dendooven, P.

    2011-12-01

    We have developed a stopping cell to be used at the FRS and Super-FRS (Super-conducting FRagment Separator) at the GSI Helmholtz Centre for Heavy-Ion Research and the Facility for Antiproton and Ion Research (FAIR), both in Darmstadt, Germany. The cell has a stopping volume with a length of 1 m and a diameter of 25 cm. It is aimed at operation with high-density helium gas (up to 0.2 mg/cm3). Ours is the first realisation of a stopping cell in which the required purity of the helium stopping gas is ensured by operation at cryogenic temperatures. On the exit side, the ions are guided to the exit hole by an RF carpet with 4 electrodes per mm, operating at a frequency of 5.8 MHz. We present the first commissioning results of the cryogenic stopping cell. Using 219Rn ions emitted as alpha-decay recoils from a 223Ra source, a combined ion survival and extraction efficiency between 10 and 25% is measured for helium gas at a temperature of 85 K and with a density up to 0.07 mg/cm3 (equivalent to a pressure of 430 mbar at room temperature). This density is almost two times higher than demonstrated up to now for RF ion repelling structures in helium gas. Given the operational and design parameters of the system, it is projected that this technology is useful up to a helium gas density of at least 0.2 mg/cm3.

  12. High-performance anode-supported solid oxide fuel cell with impregnated electrodes

    NASA Astrophysics Data System (ADS)

    Osinkin, D. A.; Bogdanovich, N. M.; Beresnev, S. M.; Zhuravlev, V. D.

    2015-08-01

    The 61%NiO + 39%Zr0.84Y0.16O1.92 (NiO-YSZ) and 56%NiO + 44%Zr0.83Sc0.16Ce0.01O1.92 (NiO-CeSSZ) composite powders have been prepared using two-steps and one-step combustion synthesis, respectively. The Ni-YSZ anode substrate with a low level of electrical resistance (less than 1 mOhm cm) and porosity of about 53% in the reduced state was fabricated. The functional layer of the anode with the high level of electrochemical activity was made of NiO-CeSSZ. The single anode-supported solid oxide fuel cell with the bi-layer Ni-cermet anode, Zr0.84Sc0.16O1.92 film electrolyte and the Pt + 3% Zr0.84Y0.16O1.92 cathode was fabricated. The power density and the U-I curves of the fuel cell at initial state and after impregnation of the cathode and anode by praseodymium and cerium oxides, respectively, have been measured at different temperatures. The maximum of power density of the initial fuel cell was 0.35 W cm-2 at conditions of wet hydrogen (air) supply to the anode (cathode) at 900 °C. After the electrodes were impregnated, the value of power density increased by seven times and was approximately 2.4 W cm-2 at 0.6 V. It was suggested that after the electrodes impregnation the polarization resistance of the fuel cell was determined by the gas diffusion in the supported anode.

  13. High-performance integrated perovskite and organic solar cells with efficient near-infrared harvesting

    NASA Astrophysics Data System (ADS)

    Kim, Junghwan; Lee, Kwanghee

    2016-09-01

    The integration of planar-type perovskite (Eg 1.5 eV) solar cells (PSCs) with a bulk-heterojunction (BHJ) composite comprising a near-infrared (NIR) absorbing conjugated polymer (Eg < 1.4 eV) and a fullerene derivative is a promising approach to overcoming the narrow absorption limit of typical PSCs. Nevertheless, integrated solar cells (ISCs) suffer from low fill factors (FFs) and inefficient NIR harvesting, mainly due to poor charge transport in the BHJ films. Here, we successfully demonstrate highly efficient P-I-N perovskite/BHJ ISCs with an enhanced FF and improved NIR harvesting by introducing a novel n-type semiconducting polymer and a new processing additive into the BHJ films. The optimized ISCs exhibit a power conversion efficiency (PCE) of 16.36%, which far surpasses that of the reference PSCs ( 14.70%) due to the increased current density (Jsc 20.04 mA cm-2) resulting from the additional NIR harvesting. Meanwhile, the optimized ISCs maintain a high FF of 77% and an open-circuit voltage (Voc) of 1.06 V. These results indicate that this approach is a versatile means of overcoming the absorption and theoretical efficiency limits of state-ofthe- art PSCs.

  14. A complete carbon counter electrode for high performance quasi solid state dye sensitized solar cell

    NASA Astrophysics Data System (ADS)

    Arbab, Alvira Ayoub; Peerzada, Mazhar Hussain; Sahito, Iftikhar Ali; Jeong, Sung Hoon

    2017-03-01

    The proposed research describes the design and fabrication of a quasi-solid state dye sensitized solar cells (Q-DSSCs) with a complete carbon based counter electrode (CC-CE) and gel infused membrane electrolyte. For CE, the platinized fluorinated tin oxide glass (Pt/FTO) was replaced by the soft cationic functioned multiwall carbon nanotubes (SCF-MWCNT) catalytic layer coated on woven carbon fiber fabric (CFF) prepared on handloom by interlacing of carbon filament tapes. SCF-MWCNT were synthesized by functionalization of cationised lipase from Candida Ragusa. Cationised enzyme solution was prepared at pH ∼3 by using acetic acid. The cationic enzyme functionalization of MWCNT causes the minimum damage to the tubular morphology and assist in fast anchoring of negative iodide ions present in membrane electrolyte. The high electrocatalytic activity and low charge transfer resistance (RCT = 2.12 Ω) of our proposed system of CC-CE shows that the woven CFF coated with cationised lipase treated carbon nanotubes enriched with positive surface ions. The Q-DSSCs fabricated with CC-CE and 5 wt% PEO gel infused PVDF-HFP membrane electrolyte exhibit power conversion efficiency of 8.90% under masking. Our suggested low cost and highly efficient system of CC-CE helps the proposed quasi-solid state DSSCs structure to stand out as sustainable next generation solar cells.

  15. Ternary Blend Composed of Two Organic Donors and One Acceptor for Active Layer of High-Performance Organic Solar Cells.

    PubMed

    Lee, Jong Won; Choi, Yoon Suk; Ahn, Hyungju; Jo, Won Ho

    2016-05-04

    Ternary blends composed of two donor absorbers with complementary absorptions provide an opportunity to enhance the short-circuit current and thus the power conversion efficiency (PCE) of organic solar cells. In addition to complementary absorption of two donors, ternary blends may exhibit favorable morphology for high-performance solar cells when one chooses properly the donor pair. For this purpose, we develop a ternary blend with two donors (diketopyrrolopyrrole-based polymer (PTDPP2T) and small molecule ((TDPP)2Ph)) and one acceptor (PC71BM). The solar cell made of a ternary blend with 10 wt % (TDPP)2Ph exhibits higher PCE of 7.49% as compared with the solar cells with binary blends, PTDPP2T:PC71BM (6.58%) and (TDPP)2Ph:PC71BM (3.21%). The higher PCE of the ternary blend solar cell is attributed mainly to complementary absorption of two donors. However, a further increase in (TDPP)2Ph content in the ternary blend (>10 wt %) decreases the PCE. The ternary blend with 10 wt % (TDPP)2Ph exhibits well-developed morphology with narrow-sized fibrils while the blend with 15 wt % (TDPP)2Ph shows phase separation with large-sized domains, demonstrating that the phase morphology and compatibility of ternary blend are important factors to achieve a high-performance solar cell made of ternary blends.

  16. Rational material, interface, and device engineering for high-performance polymer and perovskite solar cells (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Jen, Alex K.

    2015-10-01

    The performance of polymer and hybrid solar cells is also strongly dependent on their efficiency in harvesting light, exciton dissociation, charge transport, and charge collection at the metal/organic/metal oxide or the metal/perovskite/metal oxide interfaces. Our laboratory employs a molecular engineering approach to develop processible low band-gap polymers with high charge carrier mobility that can enhance power conversion efficiency of the single junction solar cells to values as high as ~11%. We have also developed several innovative strategies to modify the interface of bulk-heterojunction devices and create new device architectures to fully explore their potential for solar applications. In this talk, the integrated approach of combining material design, interface, and device engineering to significantly improve the performance of polymer and hybrid perovskite photovoltaic cells will be discussed. Specific emphasis will be placed on the development of low band-gap polymers with reduced reorganizational energy and proper energy levels, formation of optimized morphology of active layer, and minimized interfacial energy barriers using functional conductive surfactants. At the end, several new device architectures and optical engineering strategies to make tandem cells and semitransparent solar cells will be discussed to explore the full promise of polymer and perovskite hybrid solar cells.

  17. Novel p-Type Conductive Semiconductor Nanocrystalline Film as the Back Electrode for High-Performance Thin Film Solar Cells.

    PubMed

    Zhang, Ming-Jian; Lin, Qinxian; Yang, Xiaoyang; Mei, Zongwei; Liang, Jun; Lin, Yuan; Pan, Feng

    2016-02-10

    Thin film solar cells, due to the low cost, high efficiency, long-term stability, and consumer applications, have been widely applied for harvesting green energy. All of these thin film solar cells generally adopt various metal thin films as the back electrode, like Mo, Au, Ni, Ag, Al, graphite, and so forth. When they contact with p-type layer, it always produces a Schottky contact with a high contact potential barrier, which greatly affects the cell performance. In this work, we report for the first time to find an appropriate p-type conductive semiconductor film, digenite Cu9S5 nanocrystalline film, as the back electrode for CdTe solar cells as the model device. Its low sheet resistance (16.6 Ω/sq) could compare to that of the commercial TCO films (6-30 Ω/sq), like FTO, ITO, and AZO. Different from the traditonal metal back electrode, it produces a successive gradient-doping region by the controllable Cu diffusion, which greatly reduces the contact potential barrier. Remarkably, it achieved a comparable power conversion efficiency (PCE, 11.3%) with the traditional metal back electrode (Cu/Au thin films, 11.4%) in CdTe cells and a higher PCE (13.8%) with the help of the Au assistant film. We believe it could also act as the back electrode for other thin film solar cells (α-Si, CuInS2, CIGSe, CZTS, etc.), for their performance improvement.

  18. MATERIAL AND PROCESS DEVELOPMENT LEADING TO ECONOMICAL HIGH-PERFORMANCE THIN-FILM SOLID OXIDE FUEL CELLS

    SciTech Connect

    Jie Guan; Nguyen Minh

    2003-10-01

    This document summarizes the technical progress from April to September 2003 for the program, Material and Process Development Leading to Economical High-Performance Thin-Film Solid Oxide Fuel Cells, contract number DE-AC26-00NT40711. Characteristics of doped lanthanum gallate (LSGMF) powder suitable for thin electrolyte fabrication have been defined. Bilayers with thin LSGMF electrolyte supported on an anode were fabricated and the fabrication process was improved. Preliminary performance was characterized. High performance cathode material Sr{sub 0.5}Sm{sub 0.5}CoO{sub 3} has been down-selected and is being optimized by modifying materials characteristics and processing parameters. The selected cathode exhibited excellent performance with cathode polarization of {approx}0.23 ohm-cm{sup 2} at 600 C.

  19. Plasma nitriding induced growth of Pt-nanowire arrays as high performance electrocatalysts for fuel cells

    PubMed Central

    Du, Shangfeng; Lin, Kaijie; Malladi, Sairam K.; Lu, Yaxiang; Sun, Shuhui; Xu, Qiang; Steinberger-Wilckens, Robert; Dong, Hanshan

    2014-01-01

    In this work, we demonstrate an innovative approach, combing a novel active screen plasma (ASP) technique with green chemical synthesis, for a direct fabrication of uniform Pt nanowire arrays on large-area supports. The ASP treatment enables in-situ N-doping and surface modification to the support surface, significantly promoting the uniform growth of tiny Pt nuclei which directs the growth of ultrathin single-crystal Pt nanowire (2.5–3 nm in diameter) arrays, forming a three-dimensional (3D) nano-architecture. Pt nanowire arrays in-situ grown on the large-area gas diffusion layer (GDL) (5 cm2) can be directly used as the catalyst electrode in fuel cells. The unique design brings in an extremely thin electrocatalyst layer, facilitating the charge transfer and mass transfer properties, leading to over two times higher power density than the conventional Pt nanoparticle catalyst electrode in real fuel cell environment. Due to the similar challenges faced with other nanostructures and the high availability of ASP for other material surfaces, this work will provide valuable insights and guidance towards the development of other new nano-architectures for various practical applications. PMID:25241800

  20. Plasma nitriding induced growth of Pt-nanowire arrays as high performance electrocatalysts for fuel cells

    NASA Astrophysics Data System (ADS)

    Du, Shangfeng; Lin, Kaijie; Malladi, Sairam K.; Lu, Yaxiang; Sun, Shuhui; Xu, Qiang; Steinberger-Wilckens, Robert; Dong, Hanshan

    2014-09-01

    In this work, we demonstrate an innovative approach, combing a novel active screen plasma (ASP) technique with green chemical synthesis, for a direct fabrication of uniform Pt nanowire arrays on large-area supports. The ASP treatment enables in-situ N-doping and surface modification to the support surface, significantly promoting the uniform growth of tiny Pt nuclei which directs the growth of ultrathin single-crystal Pt nanowire (2.5-3 nm in diameter) arrays, forming a three-dimensional (3D) nano-architecture. Pt nanowire arrays in-situ grown on the large-area gas diffusion layer (GDL) (5 cm2) can be directly used as the catalyst electrode in fuel cells. The unique design brings in an extremely thin electrocatalyst layer, facilitating the charge transfer and mass transfer properties, leading to over two times higher power density than the conventional Pt nanoparticle catalyst electrode in real fuel cell environment. Due to the similar challenges faced with other nanostructures and the high availability of ASP for other material surfaces, this work will provide valuable insights and guidance towards the development of other new nano-architectures for various practical applications.

  1. High-performance resistive switching characteristics of programmable metallization cell with oxidized Cu-Ti electrodes

    NASA Astrophysics Data System (ADS)

    Huang, Yu-Chih; Chou, Chia-Hsin; Liao, Chan-Yu; Tsai, Wan-Lin; Cheng, Huang-Chung

    2013-09-01

    Programmable metallization cell (PMC) memory devices with oxidized Cu-Ti alloy films as the bottom electrodes have been shown to exhibit a superior on/off state current ratio (memory window) of as high as 103 and endurance of 3000 cycles as compared to conventional pure copper and unoxidized Cu-Ti alloy electrodes. It was conjectured that the Cu-Ti alloy electrodes could obtain the appropriate amount of copper atoms to format and rupture the conductive filaments in the resistive switching layer. Furthermore, the oxidized Cu-Ti alloys could control the Cu cations from the Cu and Cu2O to the appropriate amountto achieve the most favorable PMC characteristics.

  2. GaInP/GaAs/GaInAs Monolithic Tandem Cells for High-Performance Solar Concentrators

    SciTech Connect

    Wanlass, M. W.; Ahrenkiel, S. P.; Albin, D. S.; Carapella, J. J.; Duda, A.; Emery, K.; Geisz, J. F.; Jones, K.; Kurtz, S.; Moriarty, T.; Romero, M. J.

    2005-08-01

    We present a new approach for ultra-high-performance tandem solar cells that involves inverted epitaxial growth and ultra-thin device processing. The additional degree of freedom afforded by the inverted design allows the monolithic integration of high-, and medium-bandgap, lattice-matched (LM) subcell materials with lower-bandgap, lattice-mismatched (LMM) materials in a tandem structure through the use of transparent compositionally graded layers. The current work concerns an inverted, series-connected, triple-bandgap, GaInP (LM, 1.87 eV)/GaAs (LM, 1.42 eV)/GaInAs (LMM, {approx}1 eV) device structure grown on a GaAs substrate. Ultra-thin tandem devices are fabricated by mounting the epiwafers to pre-metallized Si wafer handles and selectively removing the parent GaAs substrate. The resulting handle-mounted, ultra-thin tandem cells have a number of important advantages, including improved performance and potential reclamation/reuse of the parent substrate for epitaxial growth. Additionally, realistic performance modeling calculations suggest that terrestrial concentrator efficiencies in the range of 40-45% are possible with this new tandem cell approach. A laboratory-scale (0.24 cm2), prototype GaInP/GaAs/GaInAs tandem cell with a terrestrial concentrator efficiency of 37.9% at a low concentration ratio (10.1 suns) is described, which surpasses the previous world efficiency record of 37.3%.

  3. High power, gel polymer lithium-ion cells with improved low temperature performance for NASA and DoD applications

    NASA Technical Reports Server (NTRS)

    Smart, M. C.; Ratnakumar, B. V.; Whitcanack, L. D.; Chin, K. B.; Surampudi, S.; Narayanan, S. R.; Alamgir, Mohamed; Yu, Ji-Sang; Plichta, Edward P.

    2004-01-01

    Both NASA and the U.S. Army have interest in developing secondary energy storage devices that are capable of meeting the demanding performance requirements of aerospace and man-portable applications. In order to meet these demanding requirements, gel-polymer electrolyte-based lithium-ion cells are being actively considered, due to their promise of providing high specific energy and enhanced safety aspects.

  4. Solution-Processible Crystalline NiO Nanoparticles for High-Performance Planar Perovskite Photovoltaic Cells

    PubMed Central

    Kwon, Uisik; Kim, Bong-Gi; Nguyen, Duc Cuong; Park, Jong-Hyeon; Ha, Na Young; Kim, Seung-Joo; Ko, Seung Hwan; Lee, Soonil; Lee, Daeho; Park, Hui Joon

    2016-01-01

    In this work, we report on solution-based p-i-n-type planar-structured CH3NH3PbI3 perovskite photovoltaic (PV) cells, in which precrystallized NiO nanoparticles (NPs) without post-treatment are used to form a hole transport layer (HTL). X-ray diffraction and high-resolution transmission electron microscopy showed the crystallinity of the NPs, and atomic force microscopy and scanning electron microscopy confirmed the uniform surfaces of the resultant NiO thin film and the subsequent perovskite photoactive layer. Compared to the conventional poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) HTL, the NiO HTL had excellent energy-level alignment with that of CH3NH3PbI3 and improved electron-blocking capability, as analyzed by photoelectron spectroscopy and diode modeling, resulting in Voc ~0.13 V higher than conventional PEDOT:PSS-based devices. Consequently, a power conversion efficiency (PCE) of 15.4% with a high fill factor (FF, 0.74), short-circuit current density (Jsc, 20.2 mA·cm−2), and open circuit voltage (Voc, 1.04 V) having negligible hysteresis and superior air stability has been achieved. PMID:27465263

  5. Solution-Processible Crystalline NiO Nanoparticles for High-Performance Planar Perovskite Photovoltaic Cells

    NASA Astrophysics Data System (ADS)

    Kwon, Uisik; Kim, Bong-Gi; Nguyen, Duc Cuong; Park, Jong-Hyeon; Ha, Na Young; Kim, Seung-Joo; Ko, Seung Hwan; Lee, Soonil; Lee, Daeho; Park, Hui Joon

    2016-07-01

    In this work, we report on solution-based p-i-n-type planar-structured CH3NH3PbI3 perovskite photovoltaic (PV) cells, in which precrystallized NiO nanoparticles (NPs) without post-treatment are used to form a hole transport layer (HTL). X-ray diffraction and high-resolution transmission electron microscopy showed the crystallinity of the NPs, and atomic force microscopy and scanning electron microscopy confirmed the uniform surfaces of the resultant NiO thin film and the subsequent perovskite photoactive layer. Compared to the conventional poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) HTL, the NiO HTL had excellent energy-level alignment with that of CH3NH3PbI3 and improved electron-blocking capability, as analyzed by photoelectron spectroscopy and diode modeling, resulting in Voc ~0.13 V higher than conventional PEDOT:PSS-based devices. Consequently, a power conversion efficiency (PCE) of 15.4% with a high fill factor (FF, 0.74), short-circuit current density (Jsc, 20.2 mA·cm‑2), and open circuit voltage (Voc, 1.04 V) having negligible hysteresis and superior air stability has been achieved.

  6. High molecular weight insulating polymers can improve the performance of molecular solar cells

    NASA Astrophysics Data System (ADS)

    Huang, Ye; Wen, Wen; Kramer, Edward; Bazan, Guillermo

    2014-03-01

    Solution-processed molecular semiconductors for the fabrication of solar cells have emerged as a competitive alternative to their conjugated polymer counterparts, primarily because such materials systems exhibit no batch-to-batch variability, can be purified to a greater extent and offer precisely defined chemical structures. Highest power conversion efficiencies (PCEs) have been achieved through a combination of molecular design and the application of processing methods that optimize the bulk heterojunction (BHJ) morphology. However, one finds that the methods used for controlling structural order, for example the use of high boiling point solvent additives, have been inspired by examination of the conjugated polymer literature. It stands to reason that a different class of morphology modifiers should be sought that address challenges unique to molecular films, including difficulties in obtaining thicker films and avoiding the dewetting of active photovoltaic layers. Here we show that the addition of small quantities of high molecular weight polystyrene (PS) is a very simple to use and economically viable additive that improves PCE. Remarkably, the PS spontaneously accumulates away from the electrodes as separate domains that do not interfere with charge extraction and collection or with the arrangement of the donor and acceptor domains in the BHJ blend.

  7. U.S. DOE Progress Towards Developing Low-Cost, High Performance, Durable Polymer Electrolyte Membranes for Fuel Cell Applications

    PubMed Central

    Houchins, Cassidy; Kleen, Greg J.; Spendelow, Jacob S.; Kopasz, John; Peterson, David; Garland, Nancy L.; Ho, Donna Lee; Marcinkoski, Jason; Martin, Kathi Epping; Tyler, Reginald; Papageorgopoulos, Dimitrios C.

    2012-01-01

    Low cost, durable, and selective membranes with high ionic conductivity are a priority need for wide-spread adoption of polymer electrolyte membrane fuel cells (PEMFCs) and direct methanol fuel cells (DMFCs). Electrolyte membranes are a major cost component of PEMFC stacks at low production volumes. PEMFC membranes also impose limitations on fuel cell system operating conditions that add system complexity and cost. Reactant gas and fuel permeation through the membrane leads to decreased fuel cell performance, loss of efficiency, and reduced durability in both PEMFCs and DMFCs. To address these challenges, the U.S. Department of Energy (DOE) Fuel Cell Technologies Program, in the Office of Energy Efficiency and Renewable Energy, supports research and development aimed at improving ion exchange membranes for fuel cells. For PEMFCs, efforts are primarily focused on developing materials for higher temperature operation (up to 120 °C) in automotive applications. For DMFCs, efforts are focused on developing membranes with reduced methanol permeability. In this paper, the recently revised DOE membrane targets, strategies, and highlights of DOE-funded projects to develop new, inexpensive membranes that have good performance in hot and dry conditions (PEMFC) and that reduce methanol crossover (DMFC) will be discussed. PMID:24958432

  8. U.S. DOE Progress Towards Developing Low-Cost, High Performance, Durable Polymer Electrolyte Membranes for Fuel Cell Applications.

    PubMed

    Houchins, Cassidy; Kleen, Greg J; Spendelow, Jacob S; Kopasz, John; Peterson, David; Garland, Nancy L; Ho, Donna Lee; Marcinkoski, Jason; Martin, Kathi Epping; Tyler, Reginald; Papageorgopoulos, Dimitrios C

    2012-12-18

    Low cost, durable, and selective membranes with high ionic conductivity are a priority need for wide-spread adoption of polymer electrolyte membrane fuel cells (PEMFCs) and direct methanol fuel cells (DMFCs). Electrolyte membranes are a major cost component of PEMFC stacks at low production volumes. PEMFC membranes also impose limitations on fuel cell system operating conditions that add system complexity and cost. Reactant gas and fuel permeation through the membrane leads to decreased fuel cell performance, loss of efficiency, and reduced durability in both PEMFCs and DMFCs. To address these challenges, the U.S. Department of Energy (DOE) Fuel Cell Technologies Program, in the Office of Energy Efficiency and Renewable Energy, supports research and development aimed at improving ion exchange membranes for fuel cells. For PEMFCs, efforts are primarily focused on developing materials for higher temperature operation (up to 120 °C) in automotive applications. For DMFCs, efforts are focused on developing membranes with reduced methanol permeability. In this paper, the recently revised DOE membrane targets, strategies, and highlights of DOE-funded projects to develop new, inexpensive membranes that have good performance in hot and dry conditions (PEMFC) and that reduce methanol crossover (DMFC) will be discussed.

  9. Sequential deposition: optimization of solvent swelling for high-performance polymer solar cells.

    PubMed

    Liu, Yao; Liu, Feng; Wang, Hsin-Wei; Nordlund, Dennis; Sun, Zhiwei; Ferdous, Sunzida; Russell, Thomas P

    2015-01-14

    Organic solar cells based on a typical DPP polymer were systematically optimized by a solvent swelling assisted sequential deposition process. We investigated the influence of solvent swelling on the morphology and structure order of the swollen film and the resultant device performance. Morphological and structural characterization confirmed the realization of ideal bulk heterojunctions using a suitable swelling solvent. A trilayered morphology was also found with the conjugated polymer concentrated bottom layer, PC71BM concentrated top layer, and interpenetrated networks of donor and acceptor in the middle by solvent swelling instead of thermal annealing in the sequential solution processing method. We proposed a simple strategy to optimize the sequential deposition fabricated devices by tuning the concentration of the PC71BM solution instead of thermal annealing. The best device showed a PCE of 7.59% with a Voc of 0.61 V, Jsc of 17.95 mA/cm(2), and FF of 69.6%, which is the highest reported efficiency for devices fabricated by a sequential processing method and among the best results for DPP polymers.

  10. Temperature-dependent Schottky barrier in high-performance organic solar cells

    PubMed Central

    Li, Hui; He, Dan; Zhou, Qing; Mao, Peng; Cao, Jiamin; Ding, Liming; Wang, Jizheng

    2017-01-01

    Organic solar cells (OSCs) have attracted great attention in the past 30 years, and the power conversion efficiency (PCE) now reaches around 10%, largely owning to the rapid material developments. Meanwhile with the progress in the device performance, more and more interests are turning to understanding the fundamental physics inside the OSCs. In the conventional bulk-heterojunction architecture, only recently it is realized that the blend/cathode Schottky junction serves as the fundamental diode for the photovoltaic function. However, few researches have focused on such junctions, and their physical properties are far from being well-understood. In this paper based on PThBDTP:PC71BM blend, we fabricated OSCs with PCE exceeding 10%, and investigated temperature-dependent behaviors of the junction diodes by various characterization including current-voltage, capacitance-voltage and impedance measurements between 70 to 290 K. We found the Schottky barrier height exhibits large inhomogeneity, which can be described by two sets of Gaussian distributions. PMID:28071700

  11. Working from Both Sides: Composite Metallic Semitransparent Top Electrode for High Performance Perovskite Solar Cells.

    PubMed

    Dai, Xuezeng; Zhang, Ye; Shen, Heping; Luo, Qiang; Zhao, Xingyue; Li, Jianbao; Lin, Hong

    2016-02-01

    We report herein perovskite solar cells using solution-processed silver nanowires (AgNWs) as transparent top electrode with markedly enhanced device performance, as well as stability by evaporating an ultrathin transparent Au (UTA) layer beneath the spin-coated AgNWs forming a composite transparent metallic electrode. The interlayer serves as a physical separation sandwiched in between the perovskite/hole transporting material (HTM) active layer and the halide-reactive AgNWs top-electrode to prevent undesired electrode degradation and simultaneously functions to significantly promote ohmic contact. The as-fabricated semitransparent PSCs feature a Voc of 0.96 V, a Jsc of 20.47 mA cm(-2), with an overall PCE of over 11% when measured with front illumination and a Voc of 0.92 V, a Jsc of 14.29 mA cm(-2), and an overall PCE of 7.53% with back illumination, corresponding to approximately 70% of the value under normal illumination conditions. The devices also demonstrate exceptional fabrication repeatability and air stability.

  12. Temperature-dependent Schottky barrier in high-performance organic solar cells.

    PubMed

    Li, Hui; He, Dan; Zhou, Qing; Mao, Peng; Cao, Jiamin; Ding, Liming; Wang, Jizheng

    2017-01-10

    Organic solar cells (OSCs) have attracted great attention in the past 30 years, and the power conversion efficiency (PCE) now reaches around 10%, largely owning to the rapid material developments. Meanwhile with the progress in the device performance, more and more interests are turning to understanding the fundamental physics inside the OSCs. In the conventional bulk-heterojunction architecture, only recently it is realized that the blend/cathode Schottky junction serves as the fundamental diode for the photovoltaic function. However, few researches have focused on such junctions, and their physical properties are far from being well-understood. In this paper based on PThBDTP:PC71BM blend, we fabricated OSCs with PCE exceeding 10%, and investigated temperature-dependent behaviors of the junction diodes by various characterization including current-voltage, capacitance-voltage and impedance measurements between 70 to 290 K. We found the Schottky barrier height exhibits large inhomogeneity, which can be described by two sets of Gaussian distributions.

  13. Temperature-dependent Schottky barrier in high-performance organic solar cells

    NASA Astrophysics Data System (ADS)

    Li, Hui; He, Dan; Zhou, Qing; Mao, Peng; Cao, Jiamin; Ding, Liming; Wang, Jizheng

    2017-01-01

    Organic solar cells (OSCs) have attracted great attention in the past 30 years, and the power conversion efficiency (PCE) now reaches around 10%, largely owning to the rapid material developments. Meanwhile with the progress in the device performance, more and more interests are turning to understanding the fundamental physics inside the OSCs. In the conventional bulk-heterojunction architecture, only recently it is realized that the blend/cathode Schottky junction serves as the fundamental diode for the photovoltaic function. However, few researches have focused on such junctions, and their physical properties are far from being well-understood. In this paper based on PThBDTP:PC71BM blend, we fabricated OSCs with PCE exceeding 10%, and investigated temperature-dependent behaviors of the junction diodes by various characterization including current-voltage, capacitance-voltage and impedance measurements between 70 to 290 K. We found the Schottky barrier height exhibits large inhomogeneity, which can be described by two sets of Gaussian distributions.

  14. Bismuth sulfide nanoflakes and nanorods as high performance photodetectors and photoelectrochemical cells

    NASA Astrophysics Data System (ADS)

    Chao, Junfeng; Xing, Shumin; Zhao, Yanchun; Gao, Suling; Song, Qinghua; Guo, Lixia; Wang, Di; Zhang, Tingliang

    2016-11-01

    Flake-like and rod-like bismuth sulfide nanostructures were synthesized via a facile polyol refluxing process. The rigid photodetectors based on both nanomaterials have the features of linear photocurrent characteristics and good sensitivity. Especially, the rigid bismuth sulfide nanoflakes photodetector has fast response time of 0.5 s and recovery time of 0.7 s. The flexible photodetectors were then fabricated on PET substrate, and this caused both the response time and the recovery time to increase by a factor of ∼2.5. Moreover, the photoelectrochemical (PEC) devices exhibited photosensitivity with the features of rapid response and recovery time, high on/off ratio and stable switching cycle performance. Our results imply that the two types of bismuth sulfide nanomaterials are prospective candidates for next generation photodetectors and optoelectronic switches.

  15. A novel strategy to construct high performance lithium-ion cells using one dimensional electrospun nanofibers, electrodes and separators

    NASA Astrophysics Data System (ADS)

    Aravindan, Vanchiappan; Sundaramurthy, Jayaraman; Kumar, Palaniswamy Suresh; Shubha, Nageswaran; Ling, Wong Chui; Ramakrishna, Seeram; Madhavi, Srinivasan

    2013-10-01

    We successfully demonstrated the performance of novel, one-dimensional electrospun nanofibers as cathode, anode and separator-cum-electrolyte in full-cell Li-ion configuration. The cathode, LiMn2O4 delivered excellent cycle life over 800 cycles at current density of 150 mA g-1 with capacity retention of ~93% in half-cell assembly (Li/LiMn2O4). Under the same current rate, the anode, anatase phase TiO2, rendered ~77% initial reversible capacity after 500 cycles in half-cell configuration (Li/TiO2). Gelled electrospun PVdF-HFP exhibits liquid-like conductivity of ~3.2 mS cm-1 at ambient temperature conditions (30 °C). For the first time, a full-cell is fabricated with enitrely electrospun one-dimensional materials by adjusting the mass loading of cathode with respect to anode in the presence of gelled PVdF-HFP membrane as a separator-cum-electrolyte. Full-cell LiMn2O4|gelled PVdF-HFP|TiO2 delivered good capacity characteristics and excellent cyclability with an operating potential of ~2.2 V at a current density of 150 mA g-1. Under harsh conditions (16 C rate), the full-cell showed a very stable capacity behavior with good calendar life. This clearly showed that electrospinning is an efficient technique for producing high performance electro-active materials to fabricate a high performance Li-ion assembly for commercialization without compromising the eco-friendliness and raw material cost.We successfully demonstrated the performance of novel, one-dimensional electrospun nanofibers as cathode, anode and separator-cum-electrolyte in full-cell Li-ion configuration. The cathode, LiMn2O4 delivered excellent cycle life over 800 cycles at current density of 150 mA g-1 with capacity retention of ~93% in half-cell assembly (Li/LiMn2O4). Under the same current rate, the anode, anatase phase TiO2, rendered ~77% initial reversible capacity after 500 cycles in half-cell configuration (Li/TiO2). Gelled electrospun PVdF-HFP exhibits liquid-like conductivity of ~3.2 mS cm-1 at

  16. A novel strategy to construct high performance lithium-ion cells using one dimensional electrospun nanofibers, electrodes and separators.

    PubMed

    Aravindan, Vanchiappan; Sundaramurthy, Jayaraman; Kumar, Palaniswamy Suresh; Shubha, Nageswaran; Ling, Wong Chui; Ramakrishna, Seeram; Madhavi, Srinivasan

    2013-11-07

    We successfully demonstrated the performance of novel, one-dimensional electrospun nanofibers as cathode, anode and separator-cum-electrolyte in full-cell Li-ion configuration. The cathode, LiMn2O4 delivered excellent cycle life over 800 cycles at current density of 150 mA g(-1) with capacity retention of ~93% in half-cell assembly (Li/LiMn2O4). Under the same current rate, the anode, anatase phase TiO2, rendered ~77% initial reversible capacity after 500 cycles in half-cell configuration (Li/TiO2). Gelled electrospun PVdF-HFP exhibits liquid-like conductivity of ~3.2 mS cm(-1) at ambient temperature conditions (30 °C). For the first time, a full-cell is fabricated with enitrely electrospun one-dimensional materials by adjusting the mass loading of cathode with respect to anode in the presence of gelled PVdF-HFP membrane as a separator-cum-electrolyte. Full-cell LiMn2O4|gelled PVdF-HFP|TiO2 delivered good capacity characteristics and excellent cyclability with an operating potential of ∼2.2 V at a current density of 150 mA g(-1). Under harsh conditions (16 C rate), the full-cell showed a very stable capacity behavior with good calendar life. This clearly showed that electrospinning is an efficient technique for producing high performance electro-active materials to fabricate a high performance Li-ion assembly for commercialization without compromising the eco-friendliness and raw material cost.

  17. High performance systems

    SciTech Connect

    Vigil, M.B.

    1995-03-01

    This document provides a written compilation of the presentations and viewgraphs from the 1994 Conference on High Speed Computing given at the High Speed Computing Conference, {open_quotes}High Performance Systems,{close_quotes} held at Gleneden Beach, Oregon, on April 18 through 21, 1994.

  18. High-performance inverted polymer solar cells based on thin copper film

    NASA Astrophysics Data System (ADS)

    Luo, Guoping; Cheng, Xiaoping; He, Zhicai; Wu, Hongbin; Cao, Yong

    2015-01-01

    We report the fabrication of cost-effective indium-free polymer solar cells (PSCs) with an inverted structure that incorporates an ultrathin copper (Cu) film as a bottom cathode via thermal evaporation. The average optical transmittance of the 15-nm Cu coated glass substrate in the visible region of the spectrum was found to be around 80% with a highest value of 84.5%. The Cu electrode was modified by an interfacial layer of an alcohol-/water-soluble conjugated polymer, poly[(9,9-bis(3'-(N,N-dimethylamino)propyl)-2,7-fluorene)-alt-2,7-(9,9-dioctylfluorene)] (PFN) interlayer to ensure a very smooth surface. Upon the use of the PFN interfacial layer, the work function of Cu was decreased from 4.68 to 4.31 eV, which can form an Ohmic contact with photoactive layer and facilitate electrode transport and extraction. As a result, a power conversion efficiency of 3.6% was achieved when poly[N-9'-heptadecanyl-2,7-carbazole-alt-5,5-(4',7'-di-2-thienyl-2',1',3'-benzothiadiazole)] and a [6,6]-phenyl C71-butyric acid methyl ester blend were utilized as the photoactive layers, demonstrating that the thermally evaporated Cu thin-film electrode can be a promising candidate to replace indium tin oxide for highly efficient PSCs.

  19. Cell viability and MRI performance of highly efficient polyol-coated magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Arteaga-Cardona, Fernando; Gutiérrez-García, Eric; Hidalgo-Tobón, Silvia; López-Vasquez, Ciro; Brito-Barrera, Yazmín A.; Flores-Tochihuitl, Julia; Angulo-Molina, Aracely; Reyes-Leyva, Julio R.; González-Rodríguez, Roberto; Coffer, Jeffery L.; Pal, Umapada; Diaz-Conti, Mario Pérez-Peña; Platas-Neri, Diana; Dies-Suarez, Pilar; Fonseca, Rebeca Sosa; Arias-Carrión, Oscar; Méndez-Rojas, Miguel A.

    2016-11-01

    This work aimed at determining conditions that would allow us to control the size of the NPs and create a system with characteristics apt for biomedical applications. We describe a comprehensive study on the synthesis and physical characterization of two highly sensitive sets of triethylene glycol (TREG) and polyethylene glycol (PEG)-coated superparamagnetic iron oxide nanoparticles (SPIONs) to be evaluated for use as magnetic resonance (MR) contrast agents. The ferrofluids demonstrated excellent colloidal stability in deionized water at pH 7.0 as indicated by dynamic light scattering (DLS) data. The magnetic relaxivities, r 2, were measured on a 1.5 T clinical MRI instrument. Values in the range from 205 to 257 mM-1 s-1 were obtained, varying proportionally to the SPIONs' sizes and coating nature. Further in vitro cell viability tests and in vivo biodistribution analyses of the intravenously administered nanoparticles showed that the prepared systems have good biocompatibility and migrate to several organs, mainly the meninges, spleen, and liver. Based on these results, our findings demonstrated the potential utility of these nanosystems as clinical contrast agents for MR imaging.

  20. Scattering effect of the high-index dielectric nanospheres for high performance hydrogenated amorphous silicon thin-film solar cells

    NASA Astrophysics Data System (ADS)

    Yang, Zhenhai; Gao, Pingqi; Zhang, Cheng; Li, Xiaofeng; Ye, Jichun

    2016-07-01

    Dielectric nanosphere arrays are considered as promising light-trapping designs with the capability of transforming the freely propagated sunlight into guided modes. This kinds of designs are especially beneficial to the ultrathin hydrogenated amorphous silicon (a-Si:H) solar cells due to the advantages of using lossless material and easily scalable assembly. In this paper, we demonstrate numerically that the front-sided integration of high-index subwavelength titanium dioxide (TiO2) nanosphere arrays can significantly enhance the light absorption in 100 nm-thick a-Si:H thin films and thus the power conversion efficiencies (PCEs) of related solar cells. The main reason behind is firmly attributed to the strong scattering effect excited by TiO2 nanospheres in the whole waveband, which contributes to coupling the light into a-Si:H layer via two typical ways: 1) in the short-waveband, the forward scattering of TiO2 nanospheres excite the Mie resonance, which focuses the light into the surface of the a-Si:H layer and thus provides a leaky channel; 2) in the long-waveband, the transverse waveguided modes caused by powerful scattering effectively couple the light into almost the whole active layer. Moreover, the finite-element simulations demonstrate that photocurrent density (Jph) can be up to 15.01 mA/cm2, which is 48.76% higher than that of flat system.

  1. Scattering effect of the high-index dielectric nanospheres for high performance hydrogenated amorphous silicon thin-film solar cells

    PubMed Central

    Yang, Zhenhai; Gao, Pingqi; Zhang, Cheng; Li, Xiaofeng; Ye, Jichun

    2016-01-01

    Dielectric nanosphere arrays are considered as promising light-trapping designs with the capability of transforming the freely propagated sunlight into guided modes. This kinds of designs are especially beneficial to the ultrathin hydrogenated amorphous silicon (a-Si:H) solar cells due to the advantages of using lossless material and easily scalable assembly. In this paper, we demonstrate numerically that the front-sided integration of high-index subwavelength titanium dioxide (TiO2) nanosphere arrays can significantly enhance the light absorption in 100 nm-thick a-Si:H thin films and thus the power conversion efficiencies (PCEs) of related solar cells. The main reason behind is firmly attributed to the strong scattering effect excited by TiO2 nanospheres in the whole waveband, which contributes to coupling the light into a-Si:H layer via two typical ways: 1) in the short-waveband, the forward scattering of TiO2 nanospheres excite the Mie resonance, which focuses the light into the surface of the a-Si:H layer and thus provides a leaky channel; 2) in the long-waveband, the transverse waveguided modes caused by powerful scattering effectively couple the light into almost the whole active layer. Moreover, the finite-element simulations demonstrate that photocurrent density (Jph) can be up to 15.01 mA/cm2, which is 48.76% higher than that of flat system. PMID:27455911

  2. Scattering effect of the high-index dielectric nanospheres for high performance hydrogenated amorphous silicon thin-film solar cells.

    PubMed

    Yang, Zhenhai; Gao, Pingqi; Zhang, Cheng; Li, Xiaofeng; Ye, Jichun

    2016-07-26

    Dielectric nanosphere arrays are considered as promising light-trapping designs with the capability of transforming the freely propagated sunlight into guided modes. This kinds of designs are especially beneficial to the ultrathin hydrogenated amorphous silicon (a-Si:H) solar cells due to the advantages of using lossless material and easily scalable assembly. In this paper, we demonstrate numerically that the front-sided integration of high-index subwavelength titanium dioxide (TiO2) nanosphere arrays can significantly enhance the light absorption in 100 nm-thick a-Si:H thin films and thus the power conversion efficiencies (PCEs) of related solar cells. The main reason behind is firmly attributed to the strong scattering effect excited by TiO2 nanospheres in the whole waveband, which contributes to coupling the light into a-Si:H layer via two typical ways: 1) in the short-waveband, the forward scattering of TiO2 nanospheres excite the Mie resonance, which focuses the light into the surface of the a-Si:H layer and thus provides a leaky channel; 2) in the long-waveband, the transverse waveguided modes caused by powerful scattering effectively couple the light into almost the whole active layer. Moreover, the finite-element simulations demonstrate that photocurrent density (Jph) can be up to 15.01 mA/cm(2), which is 48.76% higher than that of flat system.

  3. Enhanced performance and stability of high temperature proton exchange membrane fuel cell by incorporating zirconium hydrogen phosphate in catalyst layer

    NASA Astrophysics Data System (ADS)

    Barron, Olivia; Su, Huaneng; Linkov, Vladimir; Pollet, Bruno G.; Pasupathi, Sivakumar

    2015-03-01

    Zirconium hydrogen phosphate (ZHP) together with polytetrafluoroethylene (PTFE) polymer binder is incorporated into the catalyst layers (CLs) of ABPBI (poly(2,5-benzimidazole))-based high temperature polymer electrolyte membrane fuel cell (HT-PEMFCs) to improve its performance and durability. The influence of ZHP content (normalised with respect to dry PTFE) on the CL properties are structurally characterised by scanning electron microscopy (SEM) and mercury intrusion porosimetry. Electrochemical analyses of the resultant membrane electrode assemblies (MEAs) are performed by recording polarisation curves and impedance spectra at 160 °C, ambient pressure and humidity. The result show that a 30 wt.% ZHP/PTFE content in the CL is optimum for improving fuel cell performance, the resultant MEA delivers a peak power of 592 mW cm-2 at a cell voltage of 380 mV. Electrochemical impedance spectra (EIS) indicate that 30% ZHP in the CL can increase the proton conductivity compared to the pristine PTFE-gas diffusion electrode (GDE). A short term stability test (∼500 h) on the 30 wt.% ZHP/PTFE-GDE shows a remarkable high durability with a degradation rate as low as ∼19 μV h-1 at 0.2 A cm-2, while 195 μV h-1 was obtained for the pristine GDE.

  4. MoS2 Quantum Dots with a Tunable Work Function for High-Performance Organic Solar Cells.

    PubMed

    Xing, Wang; Chen, Yusheng; Wang, Xinlong; Lv, Lei; Ouyang, Xinhua; Ge, Ziyi; Huang, Hui

    2016-10-12

    An efficient hole extraction layer (HEL) is critical to achieve high-performance organic solar cells (OSCs). In this study, we developed a pinhole-free and efficient HEL based on MoS2 quantum dots (QDs) combined with UV-ozone (UVO) treatment. The optophysical properties and morphology of MoS2 QDs and their photovoltaic performance are investigated. The results showed that MoS2 QDs can form homogeneous films and can be applied as an interfacial layer not only for donors with shallow highest occupied molecular orbital (HOMO) but also for those with deep HOMO energy levels after UVO treatment (O-MoS2 QDs). The solar cells based on O-MoS2 QDs yield a power conversion efficiency (PCE) of 8.66%, which is 71% and 12% higher than those of the OSCs with pristine MoS2 QD and O-MoS2 nanosheets, respectively, and the highest PCEs for OSCs containing MoS2 materials. Furthermore, the stability of solar cells based on MoS2 QDs is greatly improved in comparison with state-of-the-art PEDOT:PSS. These results demonstrate the great potential of O-MoS2 QDs as an efficient HEL for high-performance OSCs.

  5. Ultra-thin silicon solar cells for high performance panel applications

    NASA Technical Reports Server (NTRS)

    Gay, C. F.

    1978-01-01

    Solar cells have been fabricated which achieved the highest power to mass ratios and radiation stability yet reported for silicon devices. The thinnest cells (.04 mm) had initial efficiencies in excess of 2 watts per gram (AMO) and 1.7 watts per gram after an irradiation of 1 x 10 to the 15th equivalent 1 MeV electrons per square centimeter. The cells have been successfully interconnected by welding and filtered using a FEP bonded, ceria-doped microsheet of six mil thickness. Handling losses during cell manufacture and panel assembly may be minimized through the use of an integral reinforcing perimeter or ribs which remove almost all restrictions on cell thickness and area. Such a cell is typically composed of a main section which can be as thin as 0.015 mm and is supported at the edge by a thicker border (0.20 mm) of silicon.

  6. Reconfiguration of lithium sulphur batteries: "Enhancement of Li-S cell performance by employing a highly porous conductive separator coating"

    NASA Astrophysics Data System (ADS)

    Stoeck, Ulrich; Balach, Juan; Klose, Markus; Wadewitz, Daniel; Ahrens, Eike; Eckert, Jürgen; Giebeler, Lars

    2016-03-01

    Li-S batteries are an emerging technology and the most promising successor of current lithium ion technology. While there is great perspective in terms of superior theoretical specific capacity and energy density great challenges have to be addressed. One major challenge, severely limiting cycle performance and capacity retention, is the shuttling of polysulphide species. In this contribution we show a reconfiguration of the usual Li-S cell. Instead of generating a carbon/sulphur composite by melt infiltration a highly porous, conductive nitrogen-rich carbon material (TNC) is coated onto a commercial polypropylene separator foil. The thin conductive coating of TNC on the separator enables the application of very simple sulphur/carbon black cathodes. Because the melt infiltration of sulphur in a porous host material becomes unnecessary the electrode processing is significantly simplified. The specific capacity and cycling stability of reconfigurated cells are both improved significantly compared to the performance of a standard cell setup using a pristine separator. At a constant charging rate of C/5 cells with modified separator showed 2.5 times higher residual capacity (1016 mAh g-1) than cells with pristine separator (405 mAh g-1).

  7. Realization of Both High-Performance and Enhanced Durability of Fuel Cells: Pt-Exoskeleton Structure Electrocatalysts.

    PubMed

    Kim, Ok-Hee; Cho, Yoon-Hwan; Jeon, Tae-Yeol; Kim, Jung Won; Cho, Yong-Hun; Sung, Yung-Eun

    2015-07-01

    Core-shell structure nanoparticles have been the subject of many studies over the past few years and continue to be studied as electrocatalysts for fuel cells. Therefore, many excellent core-shell catalysts have been fabricated, but few studies have reported the real application of these catalysts in a practical device actual application. In this paper, we demonstrate the use of platinum (Pt)-exoskeleton structure nanoparticles as cathode catalysts with high stability and remarkable Pt mass activity and report the outstanding performance of these materials when used in membrane-electrode assemblies (MEAs) within a polymer electrolyte membrane fuel cell. The stability and degradation characteristics of these materials were also investigated in single cells in an accelerated degradation test using load cycling, which is similar to the drive cycle of a polymer electrolyte membrane fuel cell used in vehicles. The MEAs with Pt-exoskeleton structure catalysts showed enhanced performance throughout the single cell test and exhibited improved degradation ability that differed from that of a commercial Pt/C catalyst.

  8. High Performance Polymers

    NASA Technical Reports Server (NTRS)

    Venumbaka, Sreenivasulu R.; Cassidy, Patrick E.

    2003-01-01

    This report summarizes results from research on high performance polymers. The research areas proposed in this report include: 1) Effort to improve the synthesis and to understand and replicate the dielectric behavior of 6HC17-PEK; 2) Continue preparation and evaluation of flexible, low dielectric silicon- and fluorine- containing polymers with improved toughness; and 3) Synthesis and characterization of high performance polymers containing the spirodilactam moiety.

  9. High-performance single CdS nanowire (nanobelt) Schottky junction solar cells with Au/graphene Schottky electrodes.

    PubMed

    Ye, Yu; Dai, Yu; Dai, Lun; Shi, Zujin; Liu, Nan; Wang, Fei; Fu, Lei; Peng, Ruomin; Wen, Xiaonan; Chen, Zhijian; Liu, Zhongfan; Qin, Guogang

    2010-12-01

    High-performance single CdS nanowire (NW) as well as nanobelt (NB) Schottky junction solar cells were fabricated. Au (5 nm)/graphene combined layers were used as the Schottky contact electrodes to the NWs (NBs). Typical as-fabricated NW solar cell shows excellent photovoltaic behavior with an open circuit voltage of ∼0.15 V, a short circuit current of ∼275.0 pA, and an energy conversion efficiency of up to ∼1.65%. The physical mechanism of the combined Schottky electrode was discussed. We attribute the prominent capability of the devices to the high-performance Schottky combined electrode, which has the merits of low series resistance, high transparency, and good Schottky contact to the CdS NW (NB). Besides, a promising site-controllable patterned graphene transfer method, which has the advantages of economizing graphene material and free from additional etching process, was demonstrated in this work. Our results suggest that semiconductor NWs (NBs) are promising materials for novel solar cells, which have potential application in integrated nano-optoelectronic systems.

  10. Acid-doped polymer nanofiber framework: Three-dimensional proton conductive network for high-performance fuel cells

    NASA Astrophysics Data System (ADS)

    Tanaka, Manabu; Takeda, Yasushi; Wakiya, Takeru; Wakamoto, Yuta; Harigaya, Kaori; Ito, Tatsunori; Tarao, Takashi; Kawakami, Hiroyoshi

    2017-02-01

    High-performance polymer electrolyte membranes (PEMs) with excellent proton conductivity, gas barrier property, and membrane stability are desired for future fuel cells. Here we report the development of PEMs based on our proposed new concept ;Nanofiber Framework (NfF).; The NfF composite membranes composed of phytic acid-doped polybenzimidazole nanofibers (PBINf) and Nafion matrix show higher proton conductivity than the recast-Nafion membrane without nanofibers. A series of analyses reveal the formation of three-dimensional network nanostructures to conduct protons and water effectively through acid-condensed layers at the interface of PBINf and Nafion matrix. In addition, the NfF composite membrane achieves high gas barrier property and distinguished membrane stability. The fuel cell performance by the NfF composite membrane, which enables ultra-thin membranes with their thickness less than 5 μm, is superior to that by the recast-Nafion membrane, especially at low relative humidity. Such NfF-based high-performance PEM will be accomplished not only by the Nafion matrix used in this study but also by other polymer electrolyte matrices for future PEFCs.

  11. Room-temperature, solution-processable organic electron extraction layer for high-performance planar heterojunction perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Kim, Jong H.; Chueh, Chu-Chen; Williams, Spencer T.; Jen, Alex K.-Y.

    2015-10-01

    In this work, we describe a room-temperature, solution-processable organic electron extraction layer (EEL) for high-performance planar heterojunction perovskite solar cells (PHJ PVSCs). This EEL is composed of a bilayered fulleropyrrolidinium iodide (FPI)-polyethyleneimine (PEIE) and PC61BM, which yields a promising power conversion efficiency (PCE) of 15.7% with insignificant hysteresis. We reveal that PC61BM can serve as a surface modifier of FPI-PEIE to simultaneously facilitate the crystallization of perovskite and the charge extraction at FPI-PEIE/CH3NH3PbI3 interface. Furthermore, the FPI-PEIE can also tune the work function of ITO and dope PC61BM to promote the efficient electron transport between ITO and PC61BM. Based on the advantages of room-temperature processability and decent electrical property of FPI-PEIE/PC61BM EEL, a high-performance flexible PVSC with a PCE ~10% is eventually demonstrated. This study shows the potential of low-temperature processed organic EEL to replace transition metal oxide-based interlayers for highly printing compatible PVSCs with high-performance.In this work, we describe a room-temperature, solution-processable organic electron extraction layer (EEL) for high-performance planar heterojunction perovskite solar cells (PHJ PVSCs). This EEL is composed of a bilayered fulleropyrrolidinium iodide (FPI)-polyethyleneimine (PEIE) and PC61BM, which yields a promising power conversion efficiency (PCE) of 15.7% with insignificant hysteresis. We reveal that PC61BM can serve as a surface modifier of FPI-PEIE to simultaneously facilitate the crystallization of perovskite and the charge extraction at FPI-PEIE/CH3NH3PbI3 interface. Furthermore, the FPI-PEIE can also tune the work function of ITO and dope PC61BM to promote the efficient electron transport between ITO and PC61BM. Based on the advantages of room-temperature processability and decent electrical property of FPI-PEIE/PC61BM EEL, a high-performance flexible PVSC with a PCE ~10% is

  12. High-Performance Organic Solar Cells Based on a Non-Fullerene Acceptor with a Spiro Core.

    PubMed

    Sun, Hua; Sun, Po; Zhang, Cong; Yang, Yingguo; Gao, Xingyu; Chen, Fei; Xu, Zongxiang; Chen, Zhi-Kuan; Huang, Wei

    2017-01-26

    Derived from perylenediimide (PDI) building blocks, 3D PDI molecules are considered as a type of promising structure to overcome molecular aggregation, thus improving the performance of organic solar cells. Herein, we report a novel PDI-based derivative, SCPDT-PDI4 , with four PDI units connected to a unique spiro core. Attributed to this novel molecular design, SCPDT-PDI4 exhibits a rigid 3D structure, in which the aggregation tendency of PDI chromophores could be effectively attenuated. Additionally, strong intramolecular charge transfer and high charge mobility are achieved due to the well-conjugated structure and electron-rich property of SCPDT. Therefore, fullerene-free organic solar cells based on SCPDT-PDI4 and PTB7-Th achieve a remarkable high efficiency of 7.11 %. Such an excellent result demonstrates the opportunity of SCPDT to be a promising building block for non-fullerene acceptors.

  13. High performance polymer electrolytes based on main and side chain pyridine aromatic polyethers for high and medium temperature proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Geormezi, M.; Chochos, C. L.; Gourdoupi, N.; Neophytides, S. G.; Kallitsis, J. K.

    Novel aromatic polyether type copolymers bearing side chain polar pyridine rings as well as combination of main and side chain pyridine units have been evaluated as potential polymer electrolytes for proton exchange membrane fuel cells (PEMFCs). The advanced chemical and physicochemical properties of these new polymers with their high oxidative stability, mechanical integrity and high glass transition temperatures (T g's up to 270 °C) and decomposition temperatures (T d's up to 480 °C) make them promising candidates for high and medium temperature proton exchange membranes in fuel cells. These copolymers exhibit adequate proton conductivities up to 0.08 S cm -1 even at moderate phosphoric acid doping levels. An optimized terpolymer chemical structure has been developed, which has been effectively tested as high temperature phosphoric acid imbibed polymer electrolyte. MEA prepared out of the novel terpolymer chemical structure is approaching state of the art fuel cell operating performance (135 mW cm -2 with electrical efficiency 45%) at high temperatures (150-180 °C) despite the low phosphoric acid content (<200 wt%) and the low platinum loading (ca. 0.7 mg cm -2). Durability tests were performed affording stable performance for more than 1000 h.

  14. High-performance analysis of single interphase cells with custom DNA probes spanning translocation break points

    NASA Astrophysics Data System (ADS)

    Weier, Heinz-Ulli G.; Munne, S.; Lersch, Robert A.; Marquez, C.; Wu, J.; Pedersen, Roger A.; Fung, Jingly

    1999-06-01

    The chromatin organization of interphase cell nuclei, albeit an object of intense investigation, is only poorly understood. In the past, this has hampered the cytogenetic analysis of tissues derived from specimens where only few cells were actively proliferating or a significant number of metaphase cells could be obtained by induction of growth. Typical examples of such hard to analyze cell systems are solid tumors, germ cells and, to a certain extent, fetal cells such as amniocytes, blastomeres or cytotrophoblasts. Balanced reciprocal translocations that do not disrupt essential genes and thus do not led to disease symptoms exit in less than one percent of the general population. Since the presence of translocations interferes with homologue pairing in meiosis, many of these individuals experience problems in their reproduction, such as reduced fertility, infertility or a history of spontaneous abortions. The majority of translocation carriers enrolled in our in vitro fertilization (IVF) programs carry simple translocations involving only two autosomes. While most translocations are relatively easy to spot in metaphase cells, the majority of cells biopsied from embryos produced by IVF are in interphase and thus unsuitable for analysis by chromosome banding or FISH-painting. We therefore set out to analyze single interphase cells for presence or absence of specific translocations. Our assay, based on fluorescence in situ hybridization (FISH) of breakpoint-spanning DNA probes, detects translocations in interphase by visual microscopic inspection of hybridization domains. Probes are prepared so that they span a breakpoint and cover several hundred kb of DNA adjacent to the breakpoint. On normal chromosomes, such probes label a contiguous stretch of DNA and produce a single hybridization domain per chromosome in interphase cells. The translocation disrupts the hybridization domain and the resulting two fragments appear as physically separated hybridization domains in

  15. Self-assembled plasmonic electrodes for high-performance organic photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Luhman, Wade A.; Hoon Lee, Si; Johnson, Timothy W.; Holmes, Russell J.; Oh, Sang-Hyun

    2011-09-01

    We investigate thin Ag films incorporating plasmonic nanohole arrays as transparent conducting electrodes for organic photovoltaic cells. Plasmonic electrodes are fabricated using nanosphere lithography to create hexagonal nanohole arrays over centimeter-sized areas. Devices constructed using a nanopatterned Ag anode show power conversion efficiencies that exceed those of devices constructed on conventional indium-tin-oxide, independent of light polarization. In comparison to cells constructed on unpatterned Ag, the power conversion efficiency is noted to double with patterning.

  16. Fabrication Method for Laboratory-Scale High-Performance Membrane Electrode Assemblies for Fuel Cells.

    PubMed

    Sassin, Megan B; Garsany, Yannick; Gould, Benjamin D; Swider-Lyons, Karen E

    2017-01-03

    Custom catalyst-coated membranes (CCMs) and membrane electrode assemblies (MEAs) are necessary for the evaluation of advanced electrocatalysts, gas diffusion media (GDM), ionomers, polymer electrolyte membranes (PEMs), and electrode structures designed for use in next-generation fuel cells, electrolyzers, or flow batteries. This Feature provides a reliable and reproducible fabrication protocol for laboratory scale (10 cm(2)) fuel cells based on ultrasonic spray deposition of a standard Pt/carbon electrocatalyst directly onto a perfluorosulfonic acid PEM.

  17. High-Performance Solution-Processed Non-Fullerene Organic Solar Cells Based on Selenophene-Containing Perylene Bisimide Acceptor.

    PubMed

    Meng, Dong; Sun, Dan; Zhong, Chengmei; Liu, Tao; Fan, Bingbing; Huo, Lijun; Li, Yan; Jiang, Wei; Choi, Hyosung; Kim, Taehyo; Kim, Jin Young; Sun, Yanming; Wang, Zhaohui; Heeger, Alan J

    2016-01-13

    Non-fullerene acceptors have recently attracted tremendous interest because of their potential as alternatives to fullerene derivatives in bulk heterojunction organic solar cells. However, the power conversion efficiencies (PCEs) have lagged far behind those of the polymer/fullerene system, mainly because of the low fill factor (FF) and photocurrent. Here we report a novel perylene bisimide (PBI) acceptor, SdiPBI-Se, in which selenium atoms were introduced into the perylene core. With a well-established wide-band-gap polymer (PDBT-T1) as the donor, a high efficiency of 8.4% with an unprecedented high FF of 70.2% is achieved for solution-processed non-fullerene organic solar cells. Efficient photon absorption, high and balanced charge carrier mobility, and ultrafast charge generation processes in PDBT-T1:SdiPBI-Se films account for the high photovoltaic performance. Our results suggest that non-fullerene acceptors have enormous potential to rival or even surpass the performance of their fullerene counterparts.

  18. High performance thylakoid bio-solar cell using laccase enzymatic biocathodes.

    PubMed

    Rasmussen, Michelle; Shrier, Alexander; Minteer, Shelley D

    2013-06-21

    Thylakoid membranes have previously been used for electrochemical solar energy conversion, but the current output and open circuit voltage are low, in part due to limitations of the cathode. In this paper, a thylakoid bioanode and laccase biocathode were combined in the construction of a bio-solar cell capable of light-induced generation of electrical power. This two-compartment cell showed a greater than 5-fold increase in short circuit current density and an open circuit voltage 0.275 V larger than that of a thylakoid bio-solar cell incorporating an air-breathing Pt cathode. The electrodes were then tested in several solutions of varying pH to evaluate the possibility of constructing a compartment-less bio-solar cell. This membrane-less cell, operating at pH 5.5, generated a short circuit photocurrent density of 14.0 ± 1.8 μA cm(-2) which is 25% larger than the two-compartment cell and a similar open circuit voltage of 0.720 ± 0.018 V.

  19. Ternary PtRuPd/C catalyst for high-performance, low-temperature direct dimethyl ether fuel cells

    DOE PAGES

    Dumont, Joseph Henry; Martinez, Ulises; Chung, Hoon T.; ...

    2016-08-19

    Here, dimethyl ether (DME) is a promising alternative fuel option for direct-feed low-temperature fuel cells. Until recently, DME had not received the same attention as alcohol fuels, such as methanol or ethanol, despite its notable advantages. These advantages include a high theoretical open-cell voltage (1.18 V at 25 °C) that is similar to that of methanol (1.21 V), much lower toxicity than methanol, and no need for the carbon–carbon bond scission that is needed in ethanol oxidation. DME is biodegradable, has a higher energy content than methanol (8.2 vs. 6.1 kWh kg–1), and, like methanol, can be synthesized from recycledmore » carbon dioxide. Although the performance of direct DME fuel cells (DDMEFCs) has progressed over the past few years, DDMEFCs have not been viewed as fully viable. In this work, we report much improved performance from the ternary Pt55Ru35Pd10/C anode catalyst, allowing DDMEFCs to compete directly with direct methanol fuel cells (DMFCs). We also report results involving binary Pt alloys as reference catalysts and an in situ infrared electrochemical study to better understand the mechanism of DME electro-oxidation on ternary PtRuPd/C catalysts.« less

  20. Ternary PtRuPd/C catalyst for high-performance, low-temperature direct dimethyl ether fuel cells

    SciTech Connect

    Dumont, Joseph Henry; Martinez, Ulises; Chung, Hoon T.; Zelenay, Piotr

    2016-08-19

    Here, dimethyl ether (DME) is a promising alternative fuel option for direct-feed low-temperature fuel cells. Until recently, DME had not received the same attention as alcohol fuels, such as methanol or ethanol, despite its notable advantages. These advantages include a high theoretical open-cell voltage (1.18 V at 25 °C) that is similar to that of methanol (1.21 V), much lower toxicity than methanol, and no need for the carbon–carbon bond scission that is needed in ethanol oxidation. DME is biodegradable, has a higher energy content than methanol (8.2 vs. 6.1 kWh kg–1), and, like methanol, can be synthesized from recycled carbon dioxide. Although the performance of direct DME fuel cells (DDMEFCs) has progressed over the past few years, DDMEFCs have not been viewed as fully viable. In this work, we report much improved performance from the ternary Pt55Ru35Pd10/C anode catalyst, allowing DDMEFCs to compete directly with direct methanol fuel cells (DMFCs). We also report results involving binary Pt alloys as reference catalysts and an in situ infrared electrochemical study to better understand the mechanism of DME electro-oxidation on ternary PtRuPd/C catalysts.

  1. A simple high-performance matrix-free biomass molten carbonate fuel cell without CO2 recirculation

    PubMed Central

    Lan, Rong; Tao, Shanwen

    2016-01-01

    In previous reports, flowing CO2 at the cathode is essential for either conventional molten carbonate fuel cells (MCFCs) based on molten carbonate/LiAlO2 electrolytes or matrix-free MCFCs. For the first time, we demonstrate a high-performance matrix-free MCFC without CO2 recirculation. At 800°C, power densities of 430 and 410 mW/cm2 are achieved when biomass—bamboo charcoal and wood, respectively–is used as fuel. At 600°C, a stable performance is observed during the measured 90 hours after the initial degradation. In this MCFC, CO2 is produced at the anode when carbon-containing fuels are used. The produced CO2 then dissolves and diffuses to the cathode to react with oxygen in open air, forming the required CO32− or CO42− ions for continuous operation. The dissolved O2− ions may also take part in the cell reactions. This provides a simple new fuel cell technology to directly convert carbon-containing fuels such as carbon and biomass into electricity with high efficiency. PMID:27540588

  2. A simple high-performance matrix-free biomass molten carbonate fuel cell without CO2 recirculation.

    PubMed

    Lan, Rong; Tao, Shanwen

    2016-08-01

    In previous reports, flowing CO2 at the cathode is essential for either conventional molten carbonate fuel cells (MCFCs) based on molten carbonate/LiAlO2 electrolytes or matrix-free MCFCs. For the first time, we demonstrate a high-performance matrix-free MCFC without CO2 recirculation. At 800°C, power densities of 430 and 410 mW/cm(2) are achieved when biomass-bamboo charcoal and wood, respectively-is used as fuel. At 600°C, a stable performance is observed during the measured 90 hours after the initial degradation. In this MCFC, CO2 is produced at the anode when carbon-containing fuels are used. The produced CO2 then dissolves and diffuses to the cathode to react with oxygen in open air, forming the required [Formula: see text] or [Formula: see text] ions for continuous operation. The dissolved [Formula: see text] ions may also take part in the cell reactions. This provides a simple new fuel cell technology to directly convert carbon-containing fuels such as carbon and biomass into electricity with high efficiency.

  3. Fast stack activation procedure and effective long-term storage for high-performance polymer electrolyte membrane fuel cell

    NASA Astrophysics Data System (ADS)

    Yang, Seung Yong; Seo, Dong-Jun; Kim, Myeong-Ri; Seo, Min Ho; Hwang, Sun-Mi; Jung, Yong-Min; Kim, Beom-Jun; Yoon, Young-Gi; Han, Byungchan; Kim, Tae-Young

    2016-10-01

    Time-saving stack activation and effective long-term storage are one of most important issues that must be resolved for the commercialization of polymer electrolyte membrane fuel cell (PEMFC). Herein, we developed the cost-effective stack activation method to finish the whole activation within 30 min and the long-term storage method by using humidified N2 without any significant decrease in cell's performance for 30 days. Specifically, the pre-activation step with the direct injection of DI water into the stack and storage at 65 or 80 °C for 2 h increases the distinctive phase separation between the hydrophobic and hydrophilic regions in Nafion membrane, which significantly reduces the total activation time within 30 min. Additionally, the long-term storage with humidified N2 has no effect on the Pt oxidation and drying of Nafion membrane for 30 days due to its exergonic reaction in the cell. As a result, the high water content in Nafion membrane and the decrease of Pt oxidation are the critical factors that have a strong influence on the activation and long-term storage for high-performance PEMFC.

  4. Interface-designed Membranes with Shape-controlled Patterns for High-performance Polymer Electrolyte Membrane Fuel Cells

    NASA Astrophysics Data System (ADS)

    Jeon, Yukwon; Kim, Dong Jun; Koh, Jong Kwan; Ji, Yunseong; Kim, Jong Hak; Shul, Yong-Gun

    2015-11-01

    Polymer electrolyte membrane fuel cell is a promising zero-emission power generator for stationary/automotive applications. However, key issues, such as performance and costs, are still remained for an economical commercialization. Here, we fabricated a high-performance membrane electrode assembly (MEA) using an interfacial design based on well-arrayed micro-patterned membranes including circles, squares and hexagons with different sizes, which are produced by a facile elastomeric mold method. The best MEA performance is achieved using patterned Nafion membrane with a circle 2 μm in size, which exhibited a very high power density of 1906 mW/cm2 at 75 °C and Pt loading of 0.4 mg/cm2 with 73% improvement compared to the commercial membrane. The improved performance are attributed to the decreased MEA resistances and increased surface area for higher Pt utilization of over 80%. From these enhanced properties, it is possible to operate at lower Pt loading of 0.2 mg/cm2 with an outstanding performance of 1555 mW/cm2 and even at air/low humidity operations.

  5. Interface-designed Membranes with Shape-controlled Patterns for High-performance Polymer Electrolyte Membrane Fuel Cells

    PubMed Central

    Jeon, Yukwon; Kim, Dong Jun; Koh, Jong Kwan; Ji, Yunseong; Kim, Jong Hak; Shul, Yong-Gun

    2015-01-01

    Polymer electrolyte membrane fuel cell is a promising zero-emission power generator for stationary/automotive applications. However, key issues, such as performance and costs, are still remained for an economical commercialization. Here, we fabricated a high-performance membrane electrode assembly (MEA) using an interfacial design based on well-arrayed micro-patterned membranes including circles, squares and hexagons with different sizes, which are produced by a facile elastomeric mold method. The best MEA performance is achieved using patterned Nafion membrane with a circle 2 μm in size, which exhibited a very high power density of 1906 mW/cm2 at 75 °C and Pt loading of 0.4 mg/cm2 with 73% improvement compared to the commercial membrane. The improved performance are attributed to the decreased MEA resistances and increased surface area for higher Pt utilization of over 80%. From these enhanced properties, it is possible to operate at lower Pt loading of 0.2 mg/cm2 with an outstanding performance of 1555 mW/cm2 and even at air/low humidity operations. PMID:26552839

  6. High Performance PbS Quantum Dot/Graphene Hybrid Solar Cell with Efficient Charge Extraction.

    PubMed

    Kim, Byung-Sung; Neo, Darren C J; Hou, Bo; Park, Jong Bae; Cho, Yuljae; Zhang, Nanlin; Hong, John; Pak, Sangyeon; Lee, Sanghyo; Sohn, Jung Inn; Assender, Hazel E; Watt, Andrew A R; Cha, SeungNam; Kim, Jong Min

    2016-06-08

    Hybrid colloidal quantum dot (CQD) solar cells are fabricated from multilayer stacks of lead sulfide (PbS) CQD and single layer graphene (SG). The inclusion of graphene interlayers is shown to increase power conversion efficiency by 9.18%. It is shown that the inclusion of conductive graphene enhances charge extraction in devices. Photoluminescence shows that graphene quenches emission from the quantum dot suggesting spontaneous charge transfer to graphene. CQD photodetectors exhibit increased photoresponse and improved transport properties. We propose that the CQD/SG hybrid structure is a route to make CQD thin films with improved charge extraction, therefore resulting in improved solar cell efficiency.

  7. A Green Route to Conjugated Polyelectrolyte Interlayers for High-Performance Solar Cells.

    PubMed

    Subbiah, Jegadesan; Mitchell, Valerie D; Hui, Nicholas K C; Jones, David J; Wong, Wallace W H

    2017-03-03

    Synthesis of fluorene-based conjugated polyelectrolytes was achieved via Suzuki polycondensation in water and completely open to air. The polyelectrolytes were conveniently purified by dialysis and analysis of the materials showed properties expected for fluorene-based conjugated polyelectrolytes. The materials were then employed in solar cell devices as an interlayer in conjunction with ZnO. The double interlayer led to enhanced power conversion efficiency of 10.75 % and 15.1 % for polymer and perovskite solar cells, respectively.

  8. High-temperature "spectrochronopotentiometry": correlating electrochemical performance with in situ Raman spectroscopy in solid oxide fuel cells.

    PubMed

    Kirtley, John D; Halat, David M; McIntyre, Melissa D; Eigenbrodt, Bryan C; Walker, Robert A

    2012-11-20

    Carbon formation or "coking" on solid oxide fuel cell (SOFC) anodes adversely affects performance by blocking catalytic sites and reducing electrochemical activity. Quantifying these effects, however, often requires correlating changes in SOFC electrochemical efficiency measured during operation with results from ex situ measurements performed after the SOFC has been cooled and disassembled. Experiments presented in this work couple vibrational Raman spectroscopy with chronopotentiometry to observe directly the relationship between graphite deposited on nickel cermet anodes and the electrochemical performance of SOFCs operating at 725 °C. Raman spectra from Ni cermet anodes at open circuit voltage exposed to methane show a strong vibrational band at 1556 cm(-1) assigned to the "G" mode of highly ordered graphite. When polarized in the absence of a gas-phase fuel, these carbon-loaded anodes operate stably, oxidizing graphite to form CO and CO(2). Disappearance of graphite intensity measured in the Raman spectra is accompanied by a steep ∼0.8 V rise in the cell potential needed to keep the SOFC operating under constant current conditions. Continued operation leads to spectroscopically observable Ni oxidation and another steep rise in cell potential. Time-dependent spectroscopic and electrochemical measurements pass through correlated equivalence points providing unequivocal, in situ evidence that identifies how SOFC performance depends on the chemical condition of its anode. Chronopotentiometric data are used to quantify the oxide flux necessary to eliminate the carbon initially present on the SOFC anode, and data show that the oxidation mechanisms responsible for graphite removal correlate directly with the electrochemical condition of the anode as evidenced by voltammetry and impedance measurements. Electrochemically oxidizing the Ni anode damages the SOFC significantly and irreversibly. Anodes that have been reconstituted following electrochemical oxidation of

  9. Room-temperature, solution-processable organic electron extraction layer for high-performance planar heterojunction perovskite solar cells.

    PubMed

    Kim, Jong H; Chueh, Chu-Chen; Williams, Spencer T; Jen, Alex K-Y

    2015-11-07

    In this work, we describe a room-temperature, solution-processable organic electron extraction layer (EEL) for high-performance planar heterojunction perovskite solar cells (PHJ PVSCs). This EEL is composed of a bilayered fulleropyrrolidinium iodide (FPI)-polyethyleneimine (PEIE) and PC61BM, which yields a promising power conversion efficiency (PCE) of 15.7% with insignificant hysteresis. We reveal that PC61BM can serve as a surface modifier of FPI-PEIE to simultaneously facilitate the crystallization of perovskite and the charge extraction at FPI-PEIE/CH3NH3PbI3 interface. Furthermore, the FPI-PEIE can also tune the work function of ITO and dope PC61BM to promote the efficient electron transport between ITO and PC61BM. Based on the advantages of room-temperature processability and decent electrical property of FPI-PEIE/PC61BM EEL, a high-performance flexible PVSC with a PCE ∼10% is eventually demonstrated. This study shows the potential of low-temperature processed organic EEL to replace transition metal oxide-based interlayers for highly printing compatible PVSCs with high-performance.

  10. Room-temperature, solution-processable organic electron extraction layer for high-performance planar heterojunction perovskite solar cells

    SciTech Connect

    Kim, Jong H.; Chueh, Chu-Chen; Williams, Spencer T.; Jen, Alex K. -Y.

    2015-09-24

    Here in this work, we describe a room-temperature, solution-processable organic electron extraction layer (EEL) for high-performance planar heterojunction perovskite solar cells (PHJ PVSCs). This EEL is composed of a bilayered fulleropyrrolidinium iodide (FPI)-polyethyleneimine (PEIE) and PC61BM, which yields a promising power conversion efficiency (PCE) of 15.7% with insignificant hysteresis. We reveal that PC61BM can serve as a surface modifier of FPI-PEIE to simultaneously facilitate the crystallization of perovskite and the charge extraction at FPI-PEIE/CH3NH3PbI3 interface. Furthermore, the FPI-PEIE can also tune the work function of ITO and dope PC61BM to promote the efficient electron transport between ITO and PC61BM. Based on the advantages of room-temperature processability and decent electrical property of FPI-PEIE/PC61BM EEL, a high-performance flexible PVSC with a PCE ~10% is eventually demonstrated. Lastly, this study shows the potential of low-temperature processed organic EEL to replace transition metal oxide-based interlayers for highly printing compatible PVSCs with high-performance.

  11. Room-temperature, solution-processable organic electron extraction layer for high-performance planar heterojunction perovskite solar cells

    DOE PAGES

    Kim, Jong H.; Chueh, Chu-Chen; Williams, Spencer T.; ...

    2015-09-24

    Here in this work, we describe a room-temperature, solution-processable organic electron extraction layer (EEL) for high-performance planar heterojunction perovskite solar cells (PHJ PVSCs). This EEL is composed of a bilayered fulleropyrrolidinium iodide (FPI)-polyethyleneimine (PEIE) and PC61BM, which yields a promising power conversion efficiency (PCE) of 15.7% with insignificant hysteresis. We reveal that PC61BM can serve as a surface modifier of FPI-PEIE to simultaneously facilitate the crystallization of perovskite and the charge extraction at FPI-PEIE/CH3NH3PbI3 interface. Furthermore, the FPI-PEIE can also tune the work function of ITO and dope PC61BM to promote the efficient electron transport between ITO and PC61BM. Basedmore » on the advantages of room-temperature processability and decent electrical property of FPI-PEIE/PC61BM EEL, a high-performance flexible PVSC with a PCE ~10% is eventually demonstrated. Lastly, this study shows the potential of low-temperature processed organic EEL to replace transition metal oxide-based interlayers for highly printing compatible PVSCs with high-performance.« less

  12. Performance comparison of long and short-side chain perfluorosulfonic membranes for high temperature polymer electrolyte membrane fuel cell operation

    NASA Astrophysics Data System (ADS)

    Stassi, A.; Gatto, I.; Passalacqua, E.; Antonucci, V.; Arico, A. S.; Merlo, L.; Oldani, C.; Pagano, E.

    A new Aquivion™ E79-03S short-side chain perfluorosulfonic membrane with a thickness of 30 μm (dry form) and an equivalent weight (EW) of 790 g/equiv recently developed by Solvay-Solexis for high-temperature operation was tested in a pressurised (3 bar abs.) polymer electrolyte membrane (PEM) single cell at a temperature of 130 °C. For comparison, a standard Nafion™ membrane (EW 1100 g/equiv) of similar thickness (50 μm) was investigated under similar operating conditions. Both membranes were tested for high temperature operation in conjunction with an in-house prepared carbon supported Pt electrocatalyst. The electrocatalyst consisted of nanosized Pt particles (particle size ∼2 nm) dispersed on a high surface area carbon black. The electrochemical tests showed better performance for the Aquivion™ membrane as compared to Nafion™ with promising properties for high temperature PEM fuel cell applications. Beside the higher open circuit voltage and lower ohmic constraints, a higher electrocatalytic activity was observed at high temperature for the electrocatalyst-Aquivion™ ionomer interface indicating a better catalyst utilization.

  13. High performance methanol-oxygen fuel cell with hollow fiber electrode

    NASA Technical Reports Server (NTRS)

    Lawson, Daniel D. (Inventor); Ingham, John D. (Inventor)

    1983-01-01

    A methanol/air-oxygen fuel cell including an electrode formed by open-ended ion-exchange hollow fibers having a layer of catalyst deposited on the inner surface thereof and a first current collector in contact with the catalyst layer. A second current collector external of said fibers is provided which is immersed along with the hollow fiber electrode in an aqueous electrolyte body. Upon passage of air or oxygen through the hollow fiber electrode and introduction of methanol into the aqueous electrolyte, a steady current output is obtained. Two embodiments of the fuel cell are disclosed. In the first embodiment the second metal electrode is displaced away from the hollow fiber in the electrolyte body while in the second embodiment a spiral-wrap electrode is provided about the outer surface of the hollow fiber electrode.

  14. High performance polymeric foams

    SciTech Connect

    Gargiulo, M.; Sorrentino, L.; Iannace, S.

    2008-08-28

    The aim of this work was to investigate the foamability of high-performance polymers (polyethersulfone, polyphenylsulfone, polyetherimide and polyethylenenaphtalate). Two different methods have been used to prepare the foam samples: high temperature expansion and two-stage batch process. The effects of processing parameters (saturation time and pressure, foaming temperature) on the densities and microcellular structures of these foams were analyzed by using scanning electron microscopy.

  15. High performance and eco-friendly chitosan hydrogel membrane electrolytes for direct borohydride fuel cells

    NASA Astrophysics Data System (ADS)

    Choudhury, Nurul A.; Ma, Jia; Sahai, Yogeshwar

    2012-07-01

    Novel, cost-effective, and environmentally benign polymer electrolyte membranes (PEMs) consisting of ionically cross-linked chitosan (CS) hydrogel is reported for direct borohydride fuel cells (DBFCs). The membranes have been prepared by ionic cross-linking of CS with sulfate and hydrogen phosphate salts of sodium. Use of Na2SO4 and Na2HPO4 as cross-linking agents in the preparation of ionically cross-linked CS hydrogel membrane electrolytes (ICCSHMEs) not only enhances cost-effectiveness but also environmental friendliness of fuel cell technologies. The DBFCs have been assembled with a composite of nickel and carbon-supported palladium as anode catalyst, carbon-supported platinum as cathode catalyst and ICCSHMEs as electrolytes-cum-separators. The DBFCs have been studied by using an aqueous alkaline solution of sodium borohydride as fuel in flowing mode using a peristaltic pump and oxygen as oxidant. A maximum peak power density of about 810 mW cm-2 has been achieved for the DBFC employing Na2HPO4-based ICCSHME and operating at a cell temperature of 70 °C.

  16. High performance parallel architectures

    SciTech Connect

    Anderson, R.E. )

    1989-09-01

    In this paper the author describes current high performance parallel computer architectures. A taxonomy is presented to show computer architecture from the user programmer's point-of-view. The effects of the taxonomy upon the programming model are described. Some current architectures are described with respect to the taxonomy. Finally, some predictions about future systems are presented. 5 refs., 1 fig.

  17. High-Performance Happy

    ERIC Educational Resources Information Center

    O'Hanlon, Charlene

    2007-01-01

    Traditionally, the high-performance computing (HPC) systems used to conduct research at universities have amounted to silos of technology scattered across the campus and falling under the purview of the researchers themselves. This article reports that a growing number of universities are now taking over the management of those systems and…

  18. Industrial-grade rare-earth and perovskite oxide for high-performance electrolyte layer-free fuel cell

    NASA Astrophysics Data System (ADS)

    Xia, Chen; Wang, Baoyuan; Ma, Ying; Cai, Yixiao; Afzal, Muhammad; Liu, Yanyan; He, Yunjuan; Zhang, Wei; Dong, Wenjing; Li, Junjiao; Zhu, Bin

    2016-03-01

    In the present work, we report a composite of industrial-grade material LaCePr-oxide (LCP) and perovskite La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) for advanced electrolyte layer-free fuel cells (EFFCs). The microstructure, morphology, and electrical properties of the LCP, LSCF, and LCP-LSCF composite were investigated and characterized by XRD, SEM, EDS, TEM, and EIS. Various ratios of LCP to LSCF in the composite were modulated to achieve balanced ionic and electronic conductivities. Fuel cell with an optimum ratio of 60 wt% LCP to 40 wt% LSCF reached the highest open circuit voltage (OCV) at 1.01 V and a maximum power density of 745 mW cm-2 at 575 °C, also displaying a good performance stability. The high performance is attributed to the interfacial mechanisms and electrode catalytic effects. The findings from the present study promote industrial-grade rare-earth oxide as a promising new material for innovative low temperature solid oxide fuel cell (LTSOFC) technology.

  19. High performance air electrode for solid oxide regenerative fuel cells fabricated by infiltration of nano-catalysts

    NASA Astrophysics Data System (ADS)

    Lee, Sung-il; Kim, Jeonghee; Son, Ji-Won; Lee, Jong-Ho; Kim, Byung-Kook; Je, Hae-June; Lee, Hae-Weon; Song, Huesup; Yoon, Kyung Joong

    2014-03-01

    A high performance air electrode fabricated by infiltration of highly active nano-catalysts into a porous scaffold is demonstrated for high-temperature solid oxide regenerative fuel cells (SORFCs). The nitrate precursor solution for Sm0.5Sr0.5CoO3 (SSC) catalyst is impregnated into a porous La0.6Sr0.4Co0.2Fe0.8O3 (LSCF)-gadolinia-doped ceria (GDC) composite backbone, and extremely fine SSC nano-particles are uniformly synthesized by in-situ crystallization at the initial stage of SORFC operation via homogeneous nucleation induced by urea decomposition. The SSC nano-catalysts are in the size range of 40-80 nm and stable against coarsening upon the SORFC operation at 750 °C. The electrochemical performance is significantly improved by incorporation of SSC nano-catalysts in both power generation and hydrogen production modes. Systematic analysis on the impedance spectra reveals that the surface modification of the air electrode with nano-catalysts remarkably accelerates the chemical surface exchange reactions for both O2 reduction and O2- oxidation, which are the major limiting processes for SORFC performance.

  20. Low cost and high performance Al nanoparticles for broadband light trapping in Si wafer solar cells

    NASA Astrophysics Data System (ADS)

    Zhang, Yinan; Ouyang, Zi; Stokes, Nicholas; Jia, Baohua; Shi, Zhengrong; Gu, Min

    2012-04-01

    In this paper low cost and earth abundant Al nanoparticles are simulated and compared with noble metal nanoparticles Ag and Au for plasmonic light trapping in Si wafer solar cells. It has been found tailored Al nanoparticles enable broadband light trapping leading to a 28.7% photon absorption enhancement in Si wafers, which is much larger than that induced by Ag or Au. Once combined with the SiNx anti-reflection coating, Al nanoparticles can produce a 42.5% enhancement, which is 4.3% higher than the standard SiNx due to the increased absorption in both the blue and near-infrared regions.

  1. Improvement in Direct Methanol Fuel Cell Performance by Treating the Anode at High Anodic Potential

    DTIC Science & Technology

    2014-01-01

    method. Despite causing a slight decrease in the electrochemical surface area (ECSA) of the anode, associated with ruthenium dissolution, AT results...in the electrochemical surface area (ECSA) of the anode, associated with ruthenium dissolution, AT results in signi?cant improvement in DMFC...electrochemical surface area (ECSA) of the anode, associated with ruthenium dissolution, AT results in significant improvement in DMFC performance in the

  2. Enhanced carrier collection efficiency in hierarchical nano-electrode for a high-performance photoelectrochemical cell

    NASA Astrophysics Data System (ADS)

    Hien, Truong Thi; Van Lam, Do; Kim, Chunjoong; Vuong, Nguyen Minh; Quang, Nguyen Duc; Kim, Dahye; Chinh, Nguyen Duc; Hieu, Nguyen Minh; Lee, Seung-Mo; Kim, Dojin

    2016-12-01

    The photoelectrochemical properties of CdS-sensitized ZnO nanorods grown on Pt-coated WO3 nanoplates are investigated to evaluate their effectiveness in hydrogen production. WO3 nanonanoplates are synthesized on glass substrates, followed by atomic layer deposition of Pt thin films as the terminal electrode to efficiently collect the photo-carriers generated from the ZnO/CdS absorption layers. Optimization of the fabrication process for the 3D hierarchical structure is performed, and the morphology and its effect on the photoelectrochemical performance of the electrodes are carefully studied using scanning electron microscopy, x-ray diffraction, and measurements of the photocurrent density and photo-conversion efficiencies. The enhanced PEC performance is elucidated by the 3D hierarchical geometry of the electrode. The optimized electrode shows a photocurrent density of ∼ 13 mA cm-2 and a conversion efficiency of ∼8.0% at -0.83 V (vs. SCE) in 0.5 M Na2S solution under the illumination of simulated solar light.

  3. High Performance, Dependable Multiprocessor

    NASA Technical Reports Server (NTRS)

    Ramos, Jeremy; Samson, John R.; Troxel, Ian; Subramaniyan, Rajagopal; Jacobs, Adam; Greco, James; Cieslewski, Grzegorz; Curreri, John; Fischer, Michael; Grobelny, Eric; George, Alan; Aggarwal, Vikas; Patel, Minesh; Some, Raphael

    2006-01-01

    With the ever increasing demand for higher bandwidth and processing capacity of today's space exploration, space science, and defense missions, the ability to efficiently apply commercial-off-the-shelf (COTS) processors for on-board computing is now a critical need. In response to this need, NASA's New Millennium Program office has commissioned the development of Dependable Multiprocessor (DM) technology for use in payload and robotic missions. The Dependable Multiprocessor technology is a COTS-based, power efficient, high performance, highly dependable, fault tolerant cluster computer. To date, Honeywell has successfully demonstrated a TRL4 prototype of the Dependable Multiprocessor [I], and is now working on the development of a TRLS prototype. For the present effort Honeywell has teamed up with the University of Florida's High-performance Computing and Simulation (HCS) Lab, and together the team has demonstrated major elements of the Dependable Multiprocessor TRLS system.

  4. Enhance the optical absorptivity of nanocrystalline TiO2 film with high molar extinction coefficient ruthenium sensitizers for high performance dye-sensitized solar cells.

    PubMed

    Gao, Feifei; Wang, Yuan; Shi, Dong; Zhang, Jing; Wang, Mingkui; Jing, Xiaoyan; Humphry-Baker, Robin; Wang, Peng; Zakeeruddin, Shaik M; Grätzel, Michael

    2008-08-13

    We report two new heteroleptic polypyridyl ruthenium complexes, coded C101 and C102, with high molar extinction coefficients by extending the pi-conjugation of spectator ligands, with a motivation to enhance the optical absorptivity of mesoporous titania film and charge collection yield in a dye-sensitized solar cell. On the basis of this C101 sensitizer, several DSC benchmarks measured under the air mass 1.5 global sunlight have been reached. Along with an acetonitrile-based electrolyte, the C101 sensitizer has already achieved a strikingly high efficiency of 11.0-11.3%, even under a preliminary testing. More importantly, based on a low volatility 3-methoxypropionitrile electrolyte and a solvent-free ionic liquid electrolyte, cells have corresponding >9.0% and approximately 7.4% efficiencies retained over 95% of their initial performances after 1000 h full sunlight soaking at 60 degrees C. With the aid of electrical impedance measurements, we further disclose that, compared to the cell with an acetonitrile-based electrolyte, a dye-sensitized solar cell with an ionic liquid electrolyte shows a feature of much shorter effective electron diffusion lengths due to the lower electron diffusion coefficients and shorter electron lifetimes in the mesoporous titania film, explaining the photocurrent difference between these two type devices. This highlights the next necessary efforts to further improve the efficiency of cells with ionic liquid electrolytes, facilitating the large-scale production and application of flexible thin film mesoscopic solar cells.

  5. High efficiency solar cell processing

    NASA Technical Reports Server (NTRS)

    Ho, F.; Iles, P. A.

    1985-01-01

    At the time of writing, cells made by several groups are approaching 19% efficiency. General aspects of the processing required for such cells are discussed. Most processing used for high efficiency cells is derived from space-cell or concentrator cell technology, and recent advances have been obtained from improved techniques rather than from better understanding of the limiting mechanisms. Theory and modeling are fairly well developed, and adequate to guide further asymptotic increases in performance of near conventional cells. There are several competitive cell designs with promise of higher performance ( 20%) but for these designs further improvements are required. The available cell processing technology to fabricate high efficiency cells is examined.

  6. C18 ceramide analysis in mammalian cells employing reversed-phase high-performance liquid chromatography tandem mass spectrometry.

    PubMed

    Haynes, Teka-Ann S; Duerksen-Hughes, Penelope J; Filippova, Maria; Filippov, Valery; Zhang, Kangling

    2008-07-01

    Ceramides play an important role in diverse cellular functions such as differentiation, cell cycle progression, cell-cell adhesion, senescence, and apoptosis. Here we report a method of extracting lipids from mammalian cells and quantifying ceramide, where the assay conditions were optimized for reproducibility, linearity, recovery, and sensitivity. Simultaneous chromatographic separations were carried out by reversed-phase high-performance liquid chromatography coupled to electrospray ionization using a Pursuit 3 Diphenyl column (50 x 2.0 mm) and supported by a mobile phase consisting of acetonitrile plus 0.1% formic acid and 25 mM ammonium acetate. Ceramides were detected in the multiple reaction mode by tandem mass spectrometry in the positive ion mode, and all extracted ion peaks were integrated for quantitative analysis. The limits of detection and quantification achieved were 0.2 and 1.0 pg on column, respectively. Using this method, we successfully quantified and compared differences in C(18) ceramide levels induced by two DNA-damaging agents, mitomycin C and daunorubicin, and two apoptosis-inducing ligands, tumor necrosis factor alpha (TNF-alpha) and TNF-related apoptosis-inducing ligand (TRAIL). This work, therefore, describes a method that will be helpful for investigating how ceramide is regulated by different chemotherapeutic agents and will help us to better understand the mechanisms of signal transduction involving ceramide.

  7. Solvothermal derived crystalline NiOx nanoparticles for high performance perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Yin, Xingtian; Liu, Jie; Ma, Jiaqi; Zhang, Chongxin; Chen, Peng; Que, Meidan; Yang, Yawei; Que, Wenxiu; Niu, Chunming; Shao, Jinyou

    2016-10-01

    A solvothermal method is employed to synthesize NiOx nanoparticles with good dispersibility. The synthesized NiOx nanoparticles are very homogenous with an average size of about 3-5 nm, and the X-ray diffraction suggests a good crystallinity for the nanoparticles. NiOx films are spin coated from a colloid precursor which is prepared by dispersing the NiOx nanoparticles into ethanol using a certain amount of acetic as the stabilizer. To obtain an efficient hole extraction layer, an annealing process at 300 °C degree is necessary to remove the residual acetic in the NiOx film. Finally, hysteresis-less NiOx-based perovskite solar cells with good reproducibility are achieved, and a highest power conversion efficiency (PCE) of 16.68% and a constant steady state PCE of 16.49% are also demonstrated.

  8. High performance steam development

    SciTech Connect

    Duffy, T.; Schneider, P.

    1995-12-31

    DOE has launched a program to make a step change in power plant to 1500 F steam, since the highest possible performance gains can be achieved in a 1500 F steam system when using a topping turbine in a back pressure steam turbine for cogeneration. A 500-hour proof-of-concept steam generator test module was designed, fabricated, and successfully tested. It has four once-through steam generator circuits. The complete HPSS (high performance steam system) was tested above 1500 F and 1500 psig for over 102 hours at full power.

  9. Numerical study of a flat-tube high power density solid oxide fuel cell. Part II: Cell performance and stack optimization

    NASA Astrophysics Data System (ADS)

    Lu, Yixin; Schaefer, Laura

    The flat-tube high power density (HPD) solid oxide fuel cell (SOFC) is a geometry based on a tubular type SOFC, and is being developed by Siemens Westinghouse and other international companies in Japan and Korea. It has increased power density, but still maintains the beneficial feature of secure sealing for a tubular SOFC. In this paper, the electric performance of a flat-tube HPD SOFC is studied. This paper also investigates the effects of the stack chamber number, stack shape, and other stack geometry features on the performance of the flat-tube HPD SOFC. The results show that the performance of a flat-tube HPD SOFC is better than a tubular SOFC with the same active cell surface, and that increasing the number of chambers number can improve the overall performance of a flat-tube HPD SOFC. The height of a flat-tube HPD SOFC and the thickness of the ribs do not have much effect on the performance of the cell as is expected. This study will help to design and optimize the flat-tube HPD SOFC.

  10. Pinning down high-performance Cu-chalcogenides as thin-film solar cell absorbers: A successive screening approach.

    PubMed

    Zhang, Yubo; Wang, Youwei; Zhang, Jiawei; Xi, Lili; Zhang, Peihong; Zhang, Wenqing

    2016-05-21

    Photovoltaic performances of Cu-chalcogenides solar cells are strongly correlated with the absorber fundamental properties such as optimal bandgap, desired band alignment with window material, and high photon absorption ability. According to these criteria, we carry out a successive screening for 90 Cu-chalcogenides using efficient theoretical approaches. Besides the well-recognized CuInSe2 and Cu2ZnSnSe4 materials, several novel candidates are identified to have optimal bandgaps of around 1.0-1.5 eV, spike-like band alignments with CdS window layer, sharp photon absorption edges, and high absorption coefficients. These new systems have great potential to be superior absorbers for photovolatic applications if their carrrier transport and defect properties are properly optimized.

  11. Sub-100 °C solution processed amorphous titania nanowire thin films for high-performance perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Wu, Wu-Qiang; Chen, Dehong; Huang, Fuzhi; Cheng, Yi-Bing; Caruso, Rachel A.

    2016-10-01

    The present work demonstrates a facile one-step process to fabricate thin films of amorphous titania nanowires on transparent conducting oxide substrates via hydrolysis of potassium titanium oxide oxalate in an aqueous solution at 90 °C. The resultant titania nanowire thin films (that have not undergone further annealing) are efficient electron transport layers in CH3NH3PbI3 perovskite solar cells, yielding full sun solar-to-electricity conversion efficiencies of up to 14.67% and a stabilized efficiency of 14.00% under AM 1.5G one sun illumination, comparable to high temperature sintered TiO2 counterparts. The high photovoltaic performance is attributed to the porous nanowire network that facilitates perovskite infiltration, its unique 1D geometry and excellent surface coverage for efficient electron transport, as well as suppressed charge recombination between FTO and perovskite.

  12. Highly flexible InSnO electrodes on thin colourless polyimide substrate for high-performance flexible CH3NH3PbI3 perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Park, Jeong-Il; Heo, Jin Hyuck; Park, Sung-Hyun; Hong, Ki Il; Jeong, Hak Gee; Im, Sang Hyuk; Kim, Han-Ki

    2017-02-01

    We fabricated high-performance flexible CH3NH3PbI3 (MAPbI3) perovskite solar cells with a power conversion efficiency of 15.5% on roll-to-roll sputtered ITO films on 60 μm-thick colourless polyimide (CPI) substrate. Due to the thermal stability of the CPI substrate, an ITO/CPI sample subjected to rapid thermal annealing at 300 °C showed a low sheet resistance of 57.8 Ω/square and high transmittance of 83.6%, which are better values than those of an ITO/PET sample. Outer and inner bending tests demonstrated that the mechanical flexibility of the ITO/CPI was superior to that of the conventional ITO/PET sample owing to the thinness of the CPI substrate. In addition, due to its good mechanical flexibility, the ITO/CPI showed no change in resistance after 10,000 cycle outer and inner dynamic fatigue tests. Flexible perovskite solar cells with the structure of Au/PTAA/MAPbI3/ZnO/ITO/CPI showed a high power conversion efficiency of 15.5%. The successful operation of these flexible perovskite solar cells on ITO/CPI substrate indicated that the ITO film on thermally stable CPI substrate is a promising of flexible substrate for high-temperature processing, a finding likely to advance the commercialization of cost-efficient flexible perovskite solar cells.

  13. Pt-Bi decorated nanoporous gold for high performance direct glucose fuel cell

    NASA Astrophysics Data System (ADS)

    Guo, Hong; Yin, Huiming; Yan, Xiuling; Shi, Shuai; Yu, Qingyang; Cao, Zhen; Li, Jian

    2016-12-01

    Binary PtBi decorated nanoporous gold (NPG-PtBi) electrocatalyst is specially designed and prepared for the anode in direct glucose fuel cells (DGFCs). By using electroless and electrochemical plating methods, a dense Pt layer and scattered Bi particles are sequentially coated on NPG. A simple DGFC with NPG-PtBi as anode and commercial Pt/C as cathode is constructed and operated to study the effect of operating temperatures and concentrations of glucose and NaOH. With an anode noble metal loading of only 0.45 mg cm‑2 (Au 0.3 mg and Pt 0.15 mg), an open circuit voltage (OCV) of 0.9 V is obtained with a maximum power density of 8 mW cm‑2. Furthermore, the maximum gravimetric power density of NPG-PtBi is 18 mW mg‑1, about 4.5 times higher than that of commercial Pt/C.

  14. Pt-Bi decorated nanoporous gold for high performance direct glucose fuel cell

    PubMed Central

    Guo, Hong; Yin, Huiming; Yan, Xiuling; Shi, Shuai; Yu, Qingyang; Cao, Zhen; Li, Jian

    2016-01-01

    Binary PtBi decorated nanoporous gold (NPG-PtBi) electrocatalyst is specially designed and prepared for the anode in direct glucose fuel cells (DGFCs). By using electroless and electrochemical plating methods, a dense Pt layer and scattered Bi particles are sequentially coated on NPG. A simple DGFC with NPG-PtBi as anode and commercial Pt/C as cathode is constructed and operated to study the effect of operating temperatures and concentrations of glucose and NaOH. With an anode noble metal loading of only 0.45 mg cm−2 (Au 0.3 mg and Pt 0.15 mg), an open circuit voltage (OCV) of 0.9 V is obtained with a maximum power density of 8 mW cm−2. Furthermore, the maximum gravimetric power density of NPG-PtBi is 18 mW mg−1, about 4.5 times higher than that of commercial Pt/C. PMID:27966629

  15. Pt-Bi decorated nanoporous gold for high performance direct glucose fuel cell.

    PubMed

    Guo, Hong; Yin, Huiming; Yan, Xiuling; Shi, Shuai; Yu, Qingyang; Cao, Zhen; Li, Jian

    2016-12-14

    Binary PtBi decorated nanoporous gold (NPG-PtBi) electrocatalyst is specially designed and prepared for the anode in direct glucose fuel cells (DGFCs). By using electroless and electrochemical plating methods, a dense Pt layer and scattered Bi particles are sequentially coated on NPG. A simple DGFC with NPG-PtBi as anode and commercial Pt/C as cathode is constructed and operated to study the effect of operating temperatures and concentrations of glucose and NaOH. With an anode noble metal loading of only 0.45 mg cm(-2) (Au 0.3 mg and Pt 0.15 mg), an open circuit voltage (OCV) of 0.9 V is obtained with a maximum power density of 8 mW cm(-2). Furthermore, the maximum gravimetric power density of NPG-PtBi is 18 mW mg(-1), about 4.5 times higher than that of commercial Pt/C.

  16. Low temperature synthesis of hierarchical TiO2 nanostructures for high performance perovskite solar cells by pulsed laser deposition

    DOE PAGES

    Yang, Bin; Mahjouri-Samani, Masoud; Rouleau, Christopher M.; ...

    2016-06-10

    A promising way to advance perovskite solar cells is to improve the quality of the electron transport material e.g., titanium dioxide (TiO2) in a direction that increases electron transport and extraction. Although dense TiO2 films are easily grown in solution, efficient electron extraction suffers due to a lack of interfacial contact area with the perovskite. Conversely, mesoporous films do offer high surface-area-to-volume ratios, thereby promoting efficient electron extraction, but their morphology is relatively difficult to control via conventional solution synthesis methods. Here, a pulsed laser deposition method was used to assemble TiO2 nanoparticles into TiO2 hierarchical nanoarchitectures having the anatasemore » crystal structure, and prototype solar cells employing these structures yielded power conversion efficiencies of ~ 14%. Our approach demonstrates a way to grow high aspect-ratio TiO2 nanostructures for improved interfacial contact between TiO2 and perovskite materials, leading to high electron-hole pair separation and electron extraction efficiencies for superior photovoltaic performance. In addition, compared to conventional solution-processed TiO2 films that require 500 °C to obtain a good crystallinity, our relatively low temperature (300 °C) TiO2 processing method may promote reduced energy-consumption during device fabrication as well as enable compatibility with various flexible polymer substrates.« less

  17. Low temperature synthesis of hierarchical TiO2 nanostructures for high performance perovskite solar cells by pulsed laser deposition.

    PubMed

    Yang, Bin; Mahjouri-Samani, Masoud; Rouleau, Christopher M; Geohegan, David B; Xiao, Kai

    2016-10-21

    A promising way to advance perovskite solar cells is to improve the quality of the electron transport material -e.g., titanium dioxide (TiO2) - in a direction that increases electron transport and extraction. Although dense TiO2 films are easily grown in solution, efficient electron extraction suffers due to a lack of interfacial contact area with the perovskites. Conversely, mesoporous films do offer high surface-area-to-volume ratios, thereby promoting efficient electron extraction, but their morphology is relatively difficult to control via conventional solution synthesis methods. Here, a pulsed laser deposition method was used to assemble TiO2 nanoparticles into TiO2 hierarchical architectures exhibiting an anatase crystal structure, and prototype solar cells employing these structures yielded power conversion efficiencies of ∼14%. Our approach demonstrates a way to grow high aspect-ratio TiO2 nanostructures for improved interfacial contact between TiO2 and perovskite materials, leading to high electron-hole pair separation and electron extraction efficiencies for superior photovoltaic performance. Compared to previous pulsed laser deposition-synthesized TiO2 mesoporous crystalline networks that needed post-thermal annealing at 500 °C to form mesoporous crystalline networks, our relatively low temperature (300 °C) TiO2 processing method may promote reduced energy-consumption during device fabrication, as well as enable compatibility with flexible polymer substrates such as polyimide.

  18. High Performance FORTRAN

    NASA Technical Reports Server (NTRS)

    Mehrotra, Piyush

    1994-01-01

    High performance FORTRAN is a set of extensions for FORTRAN 90 designed to allow specification of data parallel algorithms. The programmer annotates the program with distribution directives to specify the desired layout of data. The underlying programming model provides a global name space and a single thread of control. Explicitly parallel constructs allow the expression of fairly controlled forms of parallelism in particular data parallelism. Thus the code is specified in a high level portable manner with no explicit tasking or communication statements. The goal is to allow architecture specific compilers to generate efficient code for a wide variety of architectures including SIMD, MIMD shared and distributed memory machines.

  19. Catalyzed double layer cathodes for high performance and long life molten carbonate fuel cells

    SciTech Connect

    Bischoff, M.; Jantsch, U.; Rohland, B.

    1996-12-31

    NiO/LiCoO{sub 2} double layer cathodes (DLCs) were prepared with a thin highly active LiCoO{sub 2}-layer by a new double layer tape casting/sintering procedure. The resulting metallic porous precursor plates were mounted into the MCFC and heated up by a special procedure to form LiCoO{sub 2} from air, Co and Li{sub 2}CO{sub 3} in a solid/gas reaction. MCFCs with highly active NiO/LiCoO{sub 2}-DLCs can operate over prolonged periods of time with a Ni-precipitation which is 10% lower than one finds with state of the art NiO cathodes. According to LiCoO{sub 2}-cathodes have theoretical life times of more than 100 000 hours at nonpressurized conditions. MCFCs with new NiO/LiCoO{sub 2} double layer cathodes (DLC) were investigated with regard to variable parameters of their microstructure. From the agglomerate model of the porous MCFC cathode, the dependence of the polarization resistance from the radius of the agglomerates and the inner agglomerate surface area was calculated.

  20. High performance monolithic power management system with dynamic maximum power point tracking for microbial fuel cells.

    PubMed

    Erbay, Celal; Carreon-Bautista, Salvador; Sanchez-Sinencio, Edgar; Han, Arum

    2014-12-02

    Microbial fuel cell (MFC) that can directly generate electricity from organic waste or biomass is a promising renewable and clean technology. However, low power and low voltage output of MFCs typically do not allow directly operating most electrical applications, whether it is supplementing electricity to wastewater treatment plants or for powering autonomous wireless sensor networks. Power management systems (PMSs) can overcome this limitation by boosting the MFC output voltage and managing the power for maximum efficiency. We present a monolithic low-power-consuming PMS integrated circuit (IC) chip capable of dynamic maximum power point tracking (MPPT) to maximize the extracted power from MFCs, regardless of the power and voltage fluctuations from MFCs over time. The proposed PMS continuously detects the maximum power point (MPP) of the MFC and matches the load impedance of the PMS for maximum efficiency. The system also operates autonomously by directly drawing power from the MFC itself without any external power. The overall system efficiency, defined as the ratio between input energy from the MFC and output energy stored into the supercapacitor of the PMS, was 30%. As a demonstration, the PMS connected to a 240 mL two-chamber MFC (generating 0.4 V and 512 μW at MPP) successfully powered a wireless temperature sensor that requires a voltage of 2.5 V and consumes power of 85 mW each time it transmit the sensor data, and successfully transmitted a sensor reading every 7.5 min. The PMS also efficiently managed the power output of a lower-power producing MFC, demonstrating that the PMS works efficiently at various MFC power output level.

  1. High Performance Window Retrofit

    SciTech Connect

    Shrestha, Som S; Hun, Diana E; Desjarlais, Andre Omer

    2013-12-01

    The US Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) and Traco partnered to develop high-performance windows for commercial building that are cost-effective. The main performance requirement for these windows was that they needed to have an R-value of at least 5 ft2 F h/Btu. This project seeks to quantify the potential energy savings from installing these windows in commercial buildings that are at least 20 years old. To this end, we are conducting evaluations at a two-story test facility that is representative of a commercial building from the 1980s, and are gathering measurements on the performance of its windows before and after double-pane, clear-glazed units are upgraded with R5 windows. Additionally, we will use these data to calibrate EnergyPlus models that we will allow us to extrapolate results to other climates. Findings from this project will provide empirical data on the benefits from high-performance windows, which will help promote their adoption in new and existing commercial buildings. This report describes the experimental setup, and includes some of the field and simulation results.

  2. High-performance of PEDOT/PSS free organic solar cells on an air-plasma-treated ITO substrate.

    PubMed

    Choi, Jong Kil; Jin, Ming Liang; An, Cheng Jin; Kim, Dae Woo; Jung, Hee-Tae

    2014-07-23

    In this work, we demonstrate the high-performance of a PEDOT:PSS free organic photovoltaic cell (OPVC) using an air-plasma modified ITO surface, followed by controlled solvent evaporation and annealing of the P3HT:PCBM photoactive layer. Ultraviolet photoelectron spectroscopy (UPS), X-ray photoelectron spectroscopy (XPS), and conductive atomic force microscopy (c-AFM) results show that the work function of ITO was increased to as high as that of PEDOT:PSS (5.2 eV) after air-plasma treatment, along with significantly enhanced electrical homogeneity. From the dynamic secondary ion mass spectroscopy (DSIMS) results, we confirm that the thermodynamic stability of the slow-dried active layer is attributed to the uniform vertical compositional distribution on the air plasma treated ITO surface, even after thermal annealing at 150 °C for 10 min. The resulting device has an open-circuit voltage of 0.65 V, a fill factor of 63%, and a power conversion efficiency of 3.38%, providing a high performance PEDOT:PSS free OPVC device.

  3. An organic surface modifier to produce a high work function transparent electrode for high performance polymer solar cells.

    PubMed

    Choi, Hyosung; Kim, Hak-Beom; Ko, Seo-Jin; Kim, Jin Young; Heeger, Alan J

    2015-02-04

    Modification of an ITO electrode with small-molecule organic surface modifier, 4-chloro-benzoic acid (CBA), via a simple spin-coating method produces a high-work-function electrode with high transparency and a hydrophobic surface. As an alternative to PEDOT:PSS, CBA modification achieves efficiency enhancement up to 8.5%, which is attributed to enhanced light absorption within the active layer and smooth hole transport from the active layer to the anode.

  4. Ground and excited state properties of high performance anthocyanidin dyes-sensitized solar cells in the basic solutions

    NASA Astrophysics Data System (ADS)

    Prima, Eka Cahya; Yuliarto, Brian; Suyatman, Dipojono, Hermawan Kresno

    2015-09-01

    The aglycones of anthocyanidin dyes were previously reported to form carbinol pseudobase, cis-chalcone, and trans-chalcone due to the basic levels. The further investigations of ground and excited state properties of the dyes were characterized using density functional theory with PCM(UFF)/B3LYP/6-31+G(d,p) level in the basic solutions. However, to the best of our knowledge, the theoretical investigation of their potential photosensitizers has never been reported before. In this paper, the theoretical photovoltaic properties sensitized by dyes have been successfully investigated including the electron injections, the ground and excited state oxidation potentials, the estimated open circuit voltages, and the light harvesting efficiencies. The results prove that the electronic properties represented by dyes' LUMO-HOMO levels will affect to the photovoltaic performances. Cis-chalcone dye is the best anthocyanidin aglycone dye with the electron injection spontaneity of -1.208 eV, the theoretical open circuit voltage of 1.781 V, and light harvesting efficiency of 56.55% due to the best HOMO-LUMO levels. Moreover, the ethanol solvent slightly contributes to the better cell performance than the water solvent dye because of the better oxidation potential stabilization in the ground state as well as in the excited state. These results are in good agreement with the known experimental report that the aglycones of anthocyanidin dyes in basic solvent are the high potential photosensitizers for dye-sensitized solar cell.

  5. Study of Arylamine-Substituted Porphyrins as Hole-Transporting Materials in High-Performance Perovskite Solar Cells.

    PubMed

    Chen, Song; Liu, Peng; Hua, Yong; Li, Yuanyuan; Kloo, Lars; Wang, Xingzhu; Ong, Beng; Wong, Wai-Kwok; Zhu, Xunjin

    2017-04-04

    To develop new hole-transporting materials (HTMs) for efficient and stable perovskite solar cells (PSCs), 5,10,15,20-tetrakis{4-[N,N-di(4-methoxylphenyl)amino-phenyl]}-porphyrin was prepared in gram scale through the direct condensation of pyrrole and 4-[bis(4-methoxyphenyl)amino]benzaldehyde. Its Zn(II) and Cu(II) complexes exhibit excellent thermal and electrochemical stability, specifically a high hole mobility and very favorable energetics for hole extraction that render them a new class of HTMs in organometallic halide PSCs. As expected, ZnP as HTM in PSCs affords a competitive power conversion efficiency (PCE) of 17.78%, which is comparable to that of the most powerful HTM of Spiro-MeOTAD (18.59%) under the same working conditions. Meanwhile, the metal centers affect somewhat the photovoltaic performances that CuP as HTM produces a lower PCE of 15.36%. Notably, the PSCs employing ZnP show a much better stability than Spiro-OMeTAD. Moreover, the two porphyrin-based HTMs can be prepared from relatively cheap raw materials with a facile synthetic route. The results demonstrate that ZnP and CuP can be a new class of HTMs for efficient and stable PSCs. To the best of our knowledge, this is the best performance that porphyrin-based solar cells could show with PCE > 17%.

  6. Ground and excited state properties of high performance anthocyanidin dyes-sensitized solar cells in the basic solutions

    SciTech Connect

    Prima, Eka Cahya; Yuliarto, Brian; Suyatman; Dipojono, Hermawan Kresno

    2015-09-30

    The aglycones of anthocyanidin dyes were previously reported to form carbinol pseudobase, cis-chalcone, and trans-chalcone due to the basic levels. The further investigations of ground and excited state properties of the dyes were characterized using density functional theory with PCM(UFF)/B3LYP/6-31+G(d,p) level in the basic solutions. However, to the best of our knowledge, the theoretical investigation of their potential photosensitizers has never been reported before. In this paper, the theoretical photovoltaic properties sensitized by dyes have been successfully investigated including the electron injections, the ground and excited state oxidation potentials, the estimated open circuit voltages, and the light harvesting efficiencies. The results prove that the electronic properties represented by dyes’ LUMO-HOMO levels will affect to the photovoltaic performances. Cis-chalcone dye is the best anthocyanidin aglycone dye with the electron injection spontaneity of −1.208 eV, the theoretical open circuit voltage of 1.781 V, and light harvesting efficiency of 56.55% due to the best HOMO-LUMO levels. Moreover, the ethanol solvent slightly contributes to the better cell performance than the water solvent dye because of the better oxidation potential stabilization in the ground state as well as in the excited state. These results are in good agreement with the known experimental report that the aglycones of anthocyanidin dyes in basic solvent are the high potential photosensitizers for dye-sensitized solar cell.

  7. Development of real time digital holographic microscope for cell flow interactions using a High Performance Computing (HPC) cluster

    NASA Astrophysics Data System (ADS)

    Hojjati, Avesta; Molaei, Mehdi; Sheng, Jian

    2013-11-01

    Real-time imaging and analysis of 3D cell migration and locomotion is crucial to understand the underlying physics of cell environment interactions. In addition, such a microscopy would provide vital diagnostic capability in cell detection, particle sorting and drug screening with large throughput. However, 3D holographic imaging and subsequent analysis are computational intensive and up-to-date prohibitive for real-time applications. With the advances in high performance computing, we are developing a real-time digital holographic microscope (DHM) that includes an in-line DHM, a large format CCD camera, and a 24-node windows-based HPC cluster. The cluster is organized as the master-slave parallel computing paradigm with Message Passing Interface (MPI) as its communication protocol. The holograms are recorded, streamed and analyzed by the HPC cluster in real time, the 3D distributions and in focus images are rendered back on the data acquisition computer. The system will be applied to study marine protest interacting with oil droplets. Supports from GoMRI are acknowledged.

  8. Simultaneous determination of quercetin, kaempferol and isorhamnetin accumulated human breast cancer cells, by high-performance liquid chromatography.

    PubMed

    Wang, Yi; Cao, Jiang; Weng, Jian-Hua; Zeng, Su

    2005-09-01

    Quercetin, kaempferol and isorhamnetin are the most important constituents in ginkgo flavonoids. A simple, rapid and sensitive high-performance liquid chromatography method was developed to simultaneously determine quercetin, kaempferol and isorhamnetin absorped by human breast cancer cells. Cells were treated with ginkgo flavonols and then lysed with Triton-X 100. The flavonols in the samples were measured by RP-HPLC with a C18 column after a simple extraction with a mixture of ether and acetone. The mobile phase contained phosphate buffer (pH 2.0; 10 mM) tetrahydrofuran, methanol and isopropanol (65:15:10:20, v/v/v/v). The ultraviolet detector was operated at 380 nm. The calibration curve was linear from 0.1 to 1.0 microM (r > 0.999) for each flavonol. The mean extraction efficiency was about 70%. The recovery of the assay was between 98.9 and 100.6%. The limit of detection was 0.01 microM for quercetin and kaempferol and 0.05 microM for isorhamnetin. The limit of quantitation was 0.1 microM (R.S.D.<10%) for each flavonol. The intra- and inter-day coefficients of variation were less than 10% (R.S.D.). The validated method was applied to quantify quercetin, kaempferol and isorhamnetin in human breast cancer Bcap37 and Bcap37/MDR1 cells.

  9. High Performance Buildings Database

    DOE Data Explorer

    The High Performance Buildings Database is a shared resource for the building industry, a unique central repository of in-depth information and data on high-performance, green building projects across the United States and abroad. The database includes information on the energy use, environmental performance, design process, finances, and other aspects of each project. Members of the design and construction teams are listed, as are sources for additional information. In total, up to twelve screens of detailed information are provided for each project profile. Projects range in size from small single-family homes or tenant fit-outs within buildings to large commercial and institutional buildings and even entire campuses. The database is a data repository as well. A series of Web-based data-entry templates allows anyone to enter information about a building project into the database. Once a project has been submitted, each of the partner organizations can review the entry and choose whether or not to publish that particular project on its own Web site.

  10. High-performance method for specific effect on nucleic acids in cells using TiO2~DNA nanocomposites

    NASA Astrophysics Data System (ADS)

    Levina, Asya S.; Repkova, Marina N.; Ismagilov, Zinfer R.; Shikina, Nadezhda V.; Malygin, Ernst G.; Mazurkova, Natalia A.; Zinov'ev, Victor V.; Evdokimov, Alexei A.; Baiborodin, Sergei I.; Zarytova, Valentina F.

    2012-10-01

    Nanoparticles are used to solve the current drug delivery problem. We present a high-performance method for efficient and selective action on nucleic acid target in cells using unique TiO2.PL-DNA nanocomposites (polylysine-containing DNA fragments noncovalently immobilized onto TiO2 nanoparticles capable of transferring DNA). These nanocomposites were used for inhibition of human influenza A (H3N2) virus replication in infected MDCK cells. They showed a low toxicity (TC50 ~ 1800 μg/ml) and a high antiviral activity (>99.9% inhibition of the virus replication). The specificity factor (antisense effect) appeared to depend on the delivery system of DNA fragments. This factor for nanocomposites is ten-times higher than for DNA in the presence of lipofectamine. IC50 for nanocomposites was estimated to be 1.5 μg/ml (30 nM for DNA), so its selectivity index was calculated as ~1200. Thus, the proposed nanocomposites are prospective for therapeutic application.

  11. Performance and characteristics of a high pressure, high temperature capillary cell with facile construction for operando x-ray absorption spectroscopy

    SciTech Connect

    Bansode, Atul; Urakawa, Atsushi; Guilera, Gemma; Simonelli, Laura; Avila, Marta; Cuartero, Vera

    2014-08-15

    We demonstrate the use of commercially available fused silica capillary and fittings to construct a cell for operando X-ray absorption spectroscopy (XAS) for the study of heterogeneously catalyzed reactions under high pressure (up to 200 bars) and high temperature (up to 280 °C) conditions. As the first demonstration, the cell was used for CO{sub 2} hydrogenation reaction to examine the state of copper in a conventional Cu/ZnO/Al{sub 2}O{sub 3} methanol synthesis catalyst. The active copper component of the catalyst was shown to remain in the metallic state under supercritical reaction conditions, at 200 bars and up to 260 °C. With the coiled heating system around the capillary, one can easily change the length of the capillary and control the amount of catalyst under investigation. With precise control of reactant(s) flow, the cell can mimic and serve as a conventional fixed-bed micro-reactor system to obtain reliable catalytic data. This high comparability of the reaction performance of the cell and laboratory reactors is crucial to gain insights into the nature of actual active sites under technologically relevant reaction conditions. The large length of the capillary can cause its bending upon heating when it is only fixed at both ends because of the thermal expansion. The degree of the bending can vary depending on the heating mode, and solutions to this problem are also presented. Furthermore, the cell is suitable for Raman studies, nowadays available at several beamlines for combined measurements. A concise study of CO{sub 2} phase behavior by Raman spectroscopy is presented to demonstrate a potential of the cell for combined XAS-Raman studies.

  12. Robust High-performance Dye-sensitized Solar Cells Based on Ionic Liquid-sulfolane Composite Electrolytes

    PubMed Central

    Lau, Genevieve P. S.; Décoppet, Jean-David; Moehl, Thomas; Zakeeruddin, Shaik M.; Grätzel, Michael; Dyson, Paul J.

    2015-01-01

    Novel ionic liquid-sulfolane composite electrolytes based on the 1,2,3-triazolium family of ionic liquids were developed for dye-sensitized solar cells. The best performing device exhibited a short-circuit current density of 13.4 mA cm−2, an open-circuit voltage of 713 mV and a fill factor of 0.65, corresponding to an overall power conversion efficiency (PCE) of 6.3%. In addition, these devices are highly stable, retaining more than 95% of the initial device PCE after 1000 hours of light- and heat-stress. These composite electrolytes show great promise for industrial application as they allow for a 14.5% improvement in PCE, compared to the solvent-free eutectic ionic liquid electrolyte system, without compromising device stability. PMID:26670595

  13. A low phase noise microwave frequency synthesis for a high-performance cesium vapor cell atomic clock

    SciTech Connect

    François, B.; Boudot, R.; Calosso, C. E.; Danet, J. M.

    2014-09-15

    We report the development, absolute phase noise, and residual phase noise characterization of a 9.192 GHz microwave frequency synthesis chain devoted to be used as a local oscillator in a high-performance cesium vapor cell atomic clock based on coherent population trapping (CPT). It is based on frequency multiplication of an ultra-low phase noise 100 MHz oven-controlled quartz crystal oscillator using a nonlinear transmission line-based chain. Absolute phase noise performances of the 9.192 GHz output signal are measured to be −42, −100, −117 dB rad{sup 2}/Hz and −129 dB rad{sup 2}/Hz at 1 Hz, 100 Hz, 1 kHz, and 10 kHz offset frequencies, respectively. Compared to current results obtained in a state-of-the-art CPT-based frequency standard developed at LNE-SYRTE, this represents an improvement of 8 dB and 10 dB at f = 166 Hz and f = 10 kHz, respectively. With such performances, the expected Dick effect contribution to the atomic clock short term frequency stability is reported at a level of 6.2 × 10{sup −14} at 1 s integration time, that is a factor 3 higher than the atomic clock shot noise limit. Main limitations are pointed out.

  14. A low phase noise microwave frequency synthesis for a high-performance cesium vapor cell atomic clock.

    PubMed

    François, B; Calosso, C E; Danet, J M; Boudot, R

    2014-09-01

    We report the development, absolute phase noise, and residual phase noise characterization of a 9.192 GHz microwave frequency synthesis chain devoted to be used as a local oscillator in a high-performance cesium vapor cell atomic clock based on coherent population trapping (CPT). It is based on frequency multiplication of an ultra-low phase noise 100 MHz oven-controlled quartz crystal oscillator using a nonlinear transmission line-based chain. Absolute phase noise performances of the 9.192 GHz output signal are measured to be -42, -100, -117 dB rad(2)/Hz and -129 dB rad(2)/Hz at 1 Hz, 100 Hz, 1 kHz, and 10 kHz offset frequencies, respectively. Compared to current results obtained in a state-of-the-art CPT-based frequency standard developed at LNE-SYRTE, this represents an improvement of 8 dB and 10 dB at f = 166 Hz and f = 10 kHz, respectively. With such performances, the expected Dick effect contribution to the atomic clock short term frequency stability is reported at a level of 6.2 × 10(-14) at 1 s integration time, that is a factor 3 higher than the atomic clock shot noise limit. Main limitations are pointed out.

  15. A low phase noise microwave frequency synthesis for a high-performance cesium vapor cell atomic clock

    NASA Astrophysics Data System (ADS)

    François, B.; Calosso, C. E.; Danet, J. M.; Boudot, R.

    2014-09-01

    We report the development, absolute phase noise, and residual phase noise characterization of a 9.192 GHz microwave frequency synthesis chain devoted to be used as a local oscillator in a high-performance cesium vapor cell atomic clock based on coherent population trapping (CPT). It is based on frequency multiplication of an ultra-low phase noise 100 MHz oven-controlled quartz crystal oscillator using a nonlinear transmission line-based chain. Absolute phase noise performances of the 9.192 GHz output signal are measured to be -42, -100, -117 dB rad2/Hz and -129 dB rad2/Hz at 1 Hz, 100 Hz, 1 kHz, and 10 kHz offset frequencies, respectively. Compared to current results obtained in a state-of-the-art CPT-based frequency standard developed at LNE-SYRTE, this represents an improvement of 8 dB and 10 dB at f = 166 Hz and f = 10 kHz, respectively. With such performances, the expected Dick effect contribution to the atomic clock short term frequency stability is reported at a level of 6.2 × 10-14 at 1 s integration time, that is a factor 3 higher than the atomic clock shot noise limit. Main limitations are pointed out.

  16. High Performance Liquid Chromatography

    NASA Astrophysics Data System (ADS)

    Talcott, Stephen

    High performance liquid chromatography (HPLC) has many applications in food chemistry. Food components that have been analyzed with HPLC include organic acids, vitamins, amino acids, sugars, nitrosamines, certain pesticides, metabolites, fatty acids, aflatoxins, pigments, and certain food additives. Unlike gas chromatography, it is not necessary for the compound being analyzed to be volatile. It is necessary, however, for the compounds to have some solubility in the mobile phase. It is important that the solubilized samples for injection be free from all particulate matter, so centrifugation and filtration are common procedures. Also, solid-phase extraction is used commonly in sample preparation to remove interfering compounds from the sample matrix prior to HPLC analysis.

  17. High-Performance Platinum-Free Dye-Sensitized Solar Cells with Molybdenum Disulfide Films as Counter Electrodes.

    PubMed

    Hussain, Sajjad; Shaikh, Shoyebmohamad F; Vikraman, Dhanasekaran; Mane, Rajaram S; Joo, Oh-Shim; Naushad, Mu; Jung, Jongwan

    2015-12-21

    By using a radio-frequency sputtering method, we synthesized large-area, uniform, and transparent molybdenum disulfide film electrodes (1, 3, 5, and 7 min) on transparent and conducting fluorine-doped tin oxide (FTO), as ecofriendly, cost-effective counter electrodes (CE) for dye-sensitized solar cells (DSSCs). These CEs were used in place of the routinely used expensive platinum CEs for the catalytic reduction of a triiodide electrolyte. The structure and morphology of the MoS2 was analyzed by using Raman spectroscopy, X-ray diffraction, and X-ray photoemission spectroscopy measurements and the DSSC characteristics were investigated. An unbroken film of MoS2 was identified on the FTO crystallites from field-emission scanning electron microscopy. Cyclic voltammetry, electrochemical impedance spectroscopy, and Tafel curve measurements reveal the promise of MoS2 as a CE with a low charge-transfer resistance, high electrocatalytic activity, and fast reaction kinetics for the reduction of triiodide to iodide. Finally, an optimized transparent MoS2 CE, obtained after 5 min synthesis time, showed a high power-conversion efficiency of 6.0 %, which comparable to the performance obtained with a Pt CE (6.6 %) when used in TiO2 -based DSCCs, thus signifying the importance of sputtering time on DSSC performance.

  18. Advanced Cd(II) complexes as high efficiency co-sensitizers for enhanced dye-sensitized solar cell performance.

    PubMed

    Gao, Song; Fan, Rui Qing; Wang, Xin Ming; Qiang, Liang Sheng; Wei, Li Guo; Wang, Ping; Yang, Yu Lin; Wang, Yu Lei

    2015-11-07

    This work reports on two new complexes with the general formula [Cd3(IBA)3(Cl)2(HCOO)(H2O)]n (1) and {[Cd1.5(IBA)3(H2O)6]·3.5H2O}n (2), which can be synthesized by the reaction of Cd(II) with rigid linear ligand 4-HIBA containing imidazolyl and carboxylate functional groups [4-HIBA = 4-(1H-imidazol-1-yl)benzoic acid]. Single-crystal X-ray diffraction analyses indicate that complex 1 is a 2D "wave-like" layer structure constructed from trinuclear units and complex 2 is just a mononuclear structure. Surprisingly, both complexes 1 and 2 appear as a 3D supramolecular network via intermolecular hydrogen bonding interactions. What's more, due to their strong UV-visible absorption, 1 and 2 can be employed as co-sensitizers in combination with N719 to enhance dye-sensitized solar cell (DSSC) performance. Both of them could overcome the deficiency of the ruthenium complex N719 absorption in the region of ultraviolet and blue-violet, and the charge collection efficiency is also improved when 1 and 2 are used as co-sensitizers, which are all in favor of enhancing the performance. The DSSC devices using co-sensitizers of 1/N719 and 2/N719 show an overall conversion efficiency of 8.27% and 7.73% with a short circuit current density of 17.48 mA cm(-2) and 17.39 mA cm(-2), and an open circuit voltage of 0.75 V and 0.74 V, respectively. The overall conversion efficiency is 27.23% and 18.92% higher than that of a device solely sensitized by N719 (6.50%). Consequently, the prepared complexes are high efficiency co-sensitizers for enhancing the performance of N719 sensitized solar cells.

  19. Cross-linked high conductive membranes based on water soluble ionomer for high performance proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Jiang, Hao; Guo, Xin; Zhang, Gang; Ni, Jing; Zhao, Chengji; Liu, Zhongguo; Zhang, Liyuan; Li, Mingyu; Xu, Shuai; Na, Hui

    2013-11-01

    In this paper, a series of proton exchange membranes prepared by “Click Reaction” are reported. The cross-linked membranes are based on water soluble sulfonated poly (ether ether ketone) containing dipropenyl groups (SDPEEK-nE/nH). Compared with self-crosslinked membranes (SDPEEK-nS), this “Click” cross-linked membranes using 1,2-Ethanedithiol and 1,6-Hexanedithiol as the cross-linker exhibit extremely reduced water uptake and swelling ratio. The lowest proton conductivity at 80 °C of the “Click” cross-linked membranes reaches to 0.168 S cm-1, and the highest methanol permeability of the “Click” cross-linked SDPEEK-8E is only 4.13 × 10-7 cm2 s-1, which is 5 times lower than that of Nafion 117 membrane. All the results imply that the cross-linked membranes with novel thiol cross-linker are promising alternative material for fuel cell application.

  20. Why do proton conducting polybenzimidazole phosphoric acid membranes perform well in high-temperature PEM fuel cells?

    PubMed

    Melchior, Jan-Patrick; Majer, Günter; Kreuer, Klaus-Dieter

    2016-12-21

    Transport properties and hydration behavior of phosphoric acid/(benz)imidazole mixtures are investigated by diverse NMR techniques, thermogravimetric analysis (TGA) and conductivity measurements. The monomeric systems can serve as models for phosphoric acid/poly-benzimidazole membranes which are known for their exceptional performance in high temperature PEM fuel cells. (1)H- and (31)P-NMR data show benzimidazole acting as a strong Brønsted base with respect to neat phosphoric acid. Since benzimidazole's nitrogens are fully protonated with a low rate for proton exchange with phosphate species, proton diffusion and conduction processes must take place within the hydrogen bond network of phosphoric acid only. The proton exchange dynamics between phosphate and benzimidazole species pass through the intermediate exchange regime (with respect to NMR line separations) with exchange times being close to typical diffusion times chosen in PFG-NMR diffusion measurements (ms regime). The resulting effects, as described by the Kärger equation, are included into the evaluation of PFG-NMR data for obtaining precise proton diffusion coefficients. The highly reduced proton diffusion coefficient within the phosphoric acid part of the model systems compared to neat phosphoric acid is suggested to be the immediate consequence of proton subtraction from phosphoric acid. This reduces hydrogen bond network frustration (imbalance of the number of proton donors and acceptors) and therefore also the rate of structural proton diffusion, phosphoric acid's acidity and hygroscopicity. Reduced water uptake, shown by TGA, goes along with reduced electroosmotic water drag which is suggested to be the reason for PBI-phosphoric acid membranes performing better in fuel cells than other phosphoric-acid-containing electrolytes with higher protonic conductivity.

  1. Wide band gap solar cells with high stabilized performance. Annual technical report, 15 July 1995--15 July 1996

    SciTech Connect

    Wronski, C R; Collins, R W; Fujiwara, H

    1997-01-01

    This report describes work on an improved understanding of stability in materials and silicon solar cells. Topics include novel intrinsic materials optimization; solar cells optimized for p- and i-layer performance; novel p-type materials; interfaces; and device modeling.

  2. High Performance Work Practices and Firm Performance.

    ERIC Educational Resources Information Center

    Department of Labor, Washington, DC. Office of the American Workplace.

    A literature survey established that a substantial amount of research has been conducted on the relationship between productivity and the following specific high performance work practices: employee involvement in decision making, compensation linked to firm or worker performance, and training. According to these studies, high performance work…

  3. High Performance Parallel Architectures

    NASA Technical Reports Server (NTRS)

    El-Ghazawi, Tarek; Kaewpijit, Sinthop

    1998-01-01

    Traditional remote sensing instruments are multispectral, where observations are collected at a few different spectral bands. Recently, many hyperspectral instruments, that can collect observations at hundreds of bands, have been operational. Furthermore, there have been ongoing research efforts on ultraspectral instruments that can produce observations at thousands of spectral bands. While these remote sensing technology developments hold great promise for new findings in the area of Earth and space science, they present many challenges. These include the need for faster processing of such increased data volumes, and methods for data reduction. Dimension Reduction is a spectral transformation, aimed at concentrating the vital information and discarding redundant data. One such transformation, which is widely used in remote sensing, is the Principal Components Analysis (PCA). This report summarizes our progress on the development of a parallel PCA and its implementation on two Beowulf cluster configuration; one with fast Ethernet switch and the other with a Myrinet interconnection. Details of the implementation and performance results, for typical sets of multispectral and hyperspectral NASA remote sensing data, are presented and analyzed based on the algorithm requirements and the underlying machine configuration. It will be shown that the PCA application is quite challenging and hard to scale on Ethernet-based clusters. However, the measurements also show that a high- performance interconnection network, such as Myrinet, better matches the high communication demand of PCA and can lead to a more efficient PCA execution.

  4. Enhancement of the fuel cell performance of a high temperature proton exchange membrane fuel cell running with titanium composite polybenzimidazole-based membranes

    NASA Astrophysics Data System (ADS)

    Lobato, Justo; Cañizares, Pablo; Rodrigo, Manuel A.; Úbeda, Diego; Pinar, F. Javier

    2011-10-01

    The fuel cell performance of a composite PBI-based membrane with TiO2 has been studied. The behaviour of the membrane has been evaluated by comparison with the fuel cell performance of other PBI-based membranes, all of which were cast from the same polymer with the same molecular weight. The PBI composite membrane incorporating TiO2 showed the best performance and reached 1000 mW cm-2 at 175 °C. Moreover, this new titanium composite PBI-based membrane also showed the best stability during the preliminary long-term test under our operation conditions. Thus, the slope of the increase in the ohmic resistance of the composite membrane was 0.041 mΩ cm2 h-1 and this is five times lower than that of the standard PBI membrane. The increased stability was due to the high phosphoric acid retention capacity - as confirmed during leaching tests, in which the Ti-based composite PBI membrane retained 5 mol of H3PO4/PBI r.u. whereas the PBI standard membrane only retained 1 mol H3PO4/PBI r.u. Taking into account the results obtained in this study, the TiO2-PBI based membranes are good candidates as electrolytes for high temperature PEMFCs.

  5. Tuning the architectural integrity of high-performance magneto-fluorescent core-shell nanoassemblies in cancer cells.

    PubMed

    Faucon, Adrien; Benhelli-Mokrani, Houda; Fleury, Fabrice; Dubreil, Laurence; Hulin, Philippe; Nedellec, Steven; Doussineau, Tristan; Antoine, Rodolphe; Orlando, Tomas; Lascialfari, Alessandro; Fresnais, Jérôme; Lartigue, Lénaïc; Ishow, Eléna

    2016-10-01

    High-density nanoarchitectures, endowed with simultaneous fluorescence and contrast properties for MRI and TEM imaging, have been obtained using a simple self-assembling strategy based on supramolecular interactions between non-doped fluorescent organic nanoparticles (FON) and superparamagnetic nanoparticles. In this way, a high-payload core-shell structure FON@mag has been obtained, protecting the hydrophobic fluorophores from the surroundings as well as from emission quenching by the shell of magnetic nanoparticles. Compared to isolated nanoparticles, maghemite nanoparticles self-assembled as an external shell create large inhomogeneous magnetic field, which causes enhanced transverse relaxivity and exacerbated MRI contrast. The magnetic load of the resulting nanoassemblies is evaluated using magnetic sedimentation and more originally electrospray mass spectrometry. The role of the stabilizing agents (citrate versus polyacrylate anions) revealed to be crucial regarding the cohesion of the resulting high-performance magneto-fluorescent nanoassemblies, which questions their use after cell internalization as nanocarriers or imaging agents for reliable correlative light and electron microcopy.

  6. Unsubstituted Benzodithiophene-Based Conjugated Polymers for High-Performance Organic Field-Effect Transistors and Organic Solar Cells.

    PubMed

    Chen, Weichao; Xiao, Manjun; Han, Liangliang; Zhang, Jidong; Jiang, Huanxiang; Gu, Chuantao; Shen, Wenfei; Yang, Renqiang

    2016-08-03

    Unsubstituted benzo[1,2-b:4,5-b']dithiophene (BDT) was used to construct a high-performance conjugated polymer with 5,6-difluoro-4,7-bis[4-(2-octyldodecyl)thiophene-2-yl]benzo[c][1,2,5] thiadiazole (DTFFBT), named PBDT-DTFFBT. The polymer shows the low-lying highest occupied molecular orbital (HOMO) energy level (-5.40 eV) and a broad absorption spectra with strong vibronic absorption peak. Pure polymer films exhibit good crystallinity and edge-on orientation, partially attributed to the BDT units without any side chains, and as a result, the corresponding thin-film transistor showed excellent hole mobility over 1 cm(2) V(-1) s(-1). Interestingly, a well-distributed nanofibrillar polymer aggregation with face-on orientation was obviously formed when blending with PC71BM, which was in favor of the charge transportation. Consequently, the bulk heterojunction polymer solar cells based on the blends showed high power conversion efficiency of 9.29% with large short-current density (14.56 mA cm(-2)) and high fill factor (0.751) without any process additives or thermal annealing.

  7. Sustainable design of high-performance microsized microbial fuel cell with carbon nanotube anode and air cathode.

    PubMed

    Mink, Justine E; Hussain, Muhammad Mustafa

    2013-08-27

    Microbial fuel cells (MFCs) are a promising alternative energy source that both generates electricity and cleans water. Fueled by liquid wastes such as wastewater or industrial wastes, the microbial fuel cell converts waste into energy. Microsized MFCs are essentially miniature energy harvesters that can be used to power on-chip electronics, lab-on-a-chip devices, and/or sensors. As MFCs are a relatively new technology, microsized MFCs are also an important rapid testing platform for the comparison and introduction of new conditions or materials into macroscale MFCs, especially nanoscale materials that have high potential for enhanced power production. Here we report a 75 μL microsized MFC on silicon using CMOS-compatible processes and employ a novel nanomaterial with exceptional electrochemical properties, multiwalled carbon nanotubes (MWCNTs), as the on-chip anode. We used this device to compare the usage of the more commonly used but highly expensive anode material gold, as well as a more inexpensive substitute, nickel. This is the first anode material study done using the most sustainably designed microsized MFC to date, which utilizes ambient oxygen as the electron acceptor with an air cathode instead of the chemical ferricyanide and without a membrane. Ferricyanide is unsustainable, as the chemical must be continuously refilled, while using oxygen, naturally found in air, makes the device mobile and is a key step in commercializing this for portable technology such as lab-on-a-chip for point-of-care diagnostics. At 880 mA/m(2) and 19 mW/m(2) the MWCNT anode outperformed the others in both current and power densities with between 6 and 20 times better performance. All devices were run for over 15 days, indicating a stable and high-endurance energy harvester already capable of producing enough power for ultra-low-power electronics and able to consistently power them over time.

  8. High performance sapphire windows

    NASA Technical Reports Server (NTRS)

    Bates, Stephen C.; Liou, Larry

    1993-01-01

    High-quality, wide-aperture optical access is usually required for the advanced laser diagnostics that can now make a wide variety of non-intrusive measurements of combustion processes. Specially processed and mounted sapphire windows are proposed to provide this optical access to extreme environment. Through surface treatments and proper thermal stress design, single crystal sapphire can be a mechanically equivalent replacement for high strength steel. A prototype sapphire window and mounting system have been developed in a successful NASA SBIR Phase 1 project. A large and reliable increase in sapphire design strength (as much as 10x) has been achieved, and the initial specifications necessary for these gains have been defined. Failure testing of small windows has conclusively demonstrated the increased sapphire strength, indicating that a nearly flawless surface polish is the primary cause of strengthening, while an unusual mounting arrangement also significantly contributes to a larger effective strength. Phase 2 work will complete specification and demonstration of these windows, and will fabricate a set for use at NASA. The enhanced capabilities of these high performance sapphire windows will lead to many diagnostic capabilities not previously possible, as well as new applications for sapphire.

  9. Application of high-performance liquid chromatographic methodology to the analysis of hemoglobins synthesized in erythroid progenitor cells.

    PubMed

    Bhaumik, K; Huisman, T H

    1989-11-10

    High-performance liquid chromatography (HPLC) has been successfully used in the quantitation of the relatively minute amounts of hemoglobin types recovered from in vitro cultures of hemoglobin-synthesizing erythroid progenitor (BFU-E) cells. This reversed-phase HPLC method uses the Vydac C4 column and water-acetonitrile-trifluoroacetic acid as mobile phases; it has been applied to the study of fetal hemoglobin synthesis patterns in ten homozygous sickle cell anemia patients and a similar number of their heterozygous relatives along with a few normal control subjects. A significant increase in the total gamma chain level was observed in the BFU-E lysate samples corresponding to the whole blood lysates of all the patients and their heterozygous relatives, except in one patient with the beta S haplotype Mor. On the other hand, the relative level of the G gamma chains appeared to be decreased in the BFU-E lysate samples of all except the individuals carrying the Mor haplotype, where it is reversed. The method has considerable advantages over other chromatographic and electrophoretic procedures; it is extremely sensitive and allows quantitation of all different globin chains in one single chromatogram.

  10. Effect of the catalytic ink preparation method on the performance of high temperature polymer electrolyte membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Lobato, J.; Rodrigo, M. A.; Linares, J. J.; Scott, K.

    Two methods of preparation of the membrane-electrode-assemblies based on polybenzimidazole membranes have been studied for high temperatures PEMFCs. One is called the "colloidal method" (using acetone as solvent), and the other is the "solution method" (using dimethylacetamide as solvent). Physical property studies (SEM micrographs and pore size distribution) and electrochemical analyses in half-cell (Electrochemical Impedance Spectroscopy, Polarization Curves for Oxygen Reduction and Cyclic Voltammetry) were carried out to characterise the structural and electrochemical behaviour of both methods. Finally, a cell performance investigation, using electrodes prepared by both methods was carried out at three different temperatures (125, 150, and 175 °C), in a single PEMFC setup. A better behaviour was obtained for the "solution method" at the two highest temperatures at intermediate current densities, whereas at 125 °C the best results were obtained with the "colloidal method" in all the current densities ranges. A discussion of the behaviours observed with the different characterisation techniques is made.

  11. Binder-free carbon black/stainless steel mesh composite electrode for high-performance anode in microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Zheng, Suqi; Yang, Fangfang; Chen, Shuiliang; Liu, Lang; Xiong, Qi; Yu, Ting; Zhao, Feng; Schröder, Uwe; Hou, Haoqing

    2015-06-01

    Carbon black/stainless steel mesh (CB/SSM) composite electrodes were developed as high-performance anodes of microbial fuel cell (MFC) by using a binder-free dipping/drying method. The acid-treatment and thin layer of CB coating greatly improved the microbial adhesion of the electrode surface and facilitated the electron transfer between the bacteria and the electrode surface. As a result, a single-layer CB/SSM anode with thickness of 0.3 mm could generate a projected current density of about 1.53 ± 0.15 mA cm-2 and volumetic current density of 51.0 ± 5.0 mA cm-3, which was much higher than that of the bare SSM anode and conventional carbon felt anode with thickness of 2 mm. Moreover, three-dimensional (3D) CB/SSM electrode could be prepared by simple folding the singe-layer SSM, and produced a projected current density to 10.07 ± 0.88 mA cm-2 and a volumetric current density of 18.66 ± 1.63 mA cm-3. The MFC equipped with the 3D-CB/SSM anode produced a high maximum power density of 3215 ± 80 mW m-2. The CB/SSM electrodes showed good mechanical and electrical properties, excellent microbial adhesion; it represented a high-performance, low-cost electrode material that is easy to fabricate and scale-up.

  12. High performing micromachined retroreflector

    NASA Astrophysics Data System (ADS)

    Lundvall, Axel; Nikolajeff, Fredrik; Lindstrom, Tomas

    2003-10-01

    This paper reports on the realization of a type of micromachined retroreflecting sheeting material. The geometry presented has high reflection efficiency even at large incident angles, and it can be manufactured through polymer replication techniques. The paper consists of two parts: A theoretical section outlining the design parameters and their impact on the optical performance, and secondly, an experimental part comprising both manufacturing and optical evaluation for a candidate retroreflecting sheet material in traffic control devices. Experimental data show that the retroreflecting properties are promising. The retroreflector consists of a front layer of densely packed spherical microlenses, a back surface of densely packed spherical micromirrors, and a transparent spacer layer. The thickness of the spacer layer determines in part the optical characteristics of the retroreflector.

  13. Sickle cell trait as a limiting factor for high-level performance in a semi-marathon.

    PubMed

    Le Gallais, D; Prefaut, C; Mercier, J; Bile, A; Bogui, P; Lonsdorfer, J

    1994-10-01

    Of 1506 black males participating in the first Abidjan semi-marathon, 123 subjects with sickle cell trait (SCT) were detected, i.e., 8.7%. Twenty-nine of these subjects with hemoglobin S (HbS) were ranked among the first 332 participants to finish the race, a percentage of 8.2. These percentages did not significantly differ from the prevalence of SCT observed in the general Ivory Coast population (12.0%). Only one subject with SCT was found among the 22 internationally-ranked athletes. The concentration of HbS found in this athlete (37.7%), his mean globular volume (87 fl), and his hemoglobin concentration (13.8 g/100 ml) suggest the coexistence of alpha-thalassemia with SCT. These results indicate that the percentage of SCT individuals participating in a semi-marathon is equal to the prevalence of SCT found in the local population. Furthermore, the general ranking of SCT individuals is comparable to that of non-SCT individuals. Nevertheless, at the level of internationally-ranked performance, no subject with SCT only, was ranked; the one ranked subject with SCT presented an associated alpha thalassemia. We thus hypothesize that SCT may be a limiting factor for high level performance in a semi-marathon and alpha-thalassemia, an enhancing factor for subjects with SCT to succeed in long distance races.

  14. Engineering Schottky Contacts in Open-Air Fabricated Heterojunction Solar Cells to Enable High Performance and Ohmic Charge Transport

    PubMed Central

    2014-01-01

    The efficiencies of open-air processed Cu2O/Zn1–xMgxO heterojunction solar cells are doubled by reducing the effect of the Schottky barrier between Zn1–xMgxO and the indium tin oxide (ITO) top contact. By depositing Zn1–xMgxO with a long band-tail, charge flows through the Zn1–xMgxO/ITO Schottky barrier without rectification by hopping between the sub-bandgap states. High current densities are obtained by controlling the Zn1–xMgxO thickness to ensure that the Schottky barrier is spatially removed from the p–n junction, allowing the full built-in potential to form, in addition to taking advantage of the increased electrical conductivity of the Zn1–xMgxO films with increasing thickness. This work therefore shows that the Zn1–xMgxO window layer sub-bandgap state density and thickness are critical parameters that can be engineered to minimize the effect of Schottky barriers on device performance. More generally, these findings show how to improve the performance of other photovoltaic system reliant on transparent top contacts, e.g., CZTS and CIGS. PMID:25418326

  15. Predicted performance of near-optimally designed indium phosphide space solar cells at high intensities and temperatures

    NASA Technical Reports Server (NTRS)

    Goradia, Chandra; Thesling, William; Goradia, Manju Ghalla; Weinberg, Irving; Swartz, Clifford K.

    1988-01-01

    The authors calculated the expected performance dependence of near-optimally designed shallow homojunction n+pp+ InP solar cells on incident intensities up to 200 AM0 and temperatures up to 100 deg C (373 K). Both circular and rectangular cells were considered, the former for use in a Cassegrainian concentrator array at 100 AM0, 80-100 deg C and the latter for use in a Slats concentrator array at 20 AM0, 80-100 deg C. With efficiencies near 22 percent at 80 deg C, both the circular and rectangular InP shallow homojunction solar cells compare very favorably to GaAs cells of the same design and may be preferable to the GaAs cells for space applications because of the superior radiation tolerance of the InP cells.

  16. High Performance Work Systems and Firm Performance.

    ERIC Educational Resources Information Center

    Kling, Jeffrey

    1995-01-01

    A review of 17 studies of high-performance work systems concludes that benefits of employee involvement, skill training, and other high-performance work practices tend to be greater when new methods are adopted as part of a consistent whole. (Author)

  17. High performance anode-supported tubular solid oxide fuel cells fabricated by a novel slurry-casting method

    NASA Astrophysics Data System (ADS)

    Duan, Nan-Qi; Yan, Dong; Chi, Bo; Pu, Jian; Jian, Li

    2015-02-01

    Tubular solid oxide fuel cells were fabricated and evaluated for their microstructure and electrochemical performance. The tubular substrate was prepared by casting NiO-Y2O3 stabilized ZrO2 (YSZ) slurry on the inner wall of a plastic mold (tube). The wall thickness and uniformity were controlled by slurry viscosity and rotation speed of the tube. The cells consisted of Ni-YSZ functional anode, YSZ electrolyte and (La0.8Sr0.2)0.95MnO3-δ (LSM)-YSZ cathode prepared in sequence on the substrate by dip-coating and sintering. Their dimension was 50 mm in length, 0.8 mm in thickness and 10.5 mm in outside diameter. The peak power density of the cell at temperatures between 650 and 850°C was in the range from 85 to 522 mW cm-2 and was greatly enhanced to the range from 308 to 1220 mW cm-2 by impregnating PdO into LSM-YSZ cathode. During a cell testing at 0.7 A cm-2 and 750°C for 282 h, the impregnated PdO particles grew by coalescence, which increased the cathode polarization resistance and so that decreased the cell performance. According to the degradation tendency, the cell performance will be stabilized in a longer run.

  18. High performance anode-supported tubular solid oxide fuel cells fabricated by a novel slurry-casting method.

    PubMed

    Duan, Nan-Qi; Yan, Dong; Chi, Bo; Pu, Jian; Jian, Li

    2015-02-02

    Tubular solid oxide fuel cells were fabricated and evaluated for their microstructure and electrochemical performance. The tubular substrate was prepared by casting NiO-Y2O3 stabilized ZrO2 (YSZ) slurry on the inner wall of a plastic mold (tube). The wall thickness and uniformity were controlled by slurry viscosity and rotation speed of the tube. The cells consisted of Ni-YSZ functional anode, YSZ electrolyte and (La0.8Sr0.2)0.95MnO(3-δ) (LSM)-YSZ cathode prepared in sequence on the substrate by dip-coating and sintering. Their dimension was 50 mm in length, 0.8 mm in thickness and 10.5 mm in outside diameter. The peak power density of the cell at temperatures between 650 and 850°C was in the range from 85 to 522 mW cm(-2) and was greatly enhanced to the range from 308 to 1220 mW cm(-2) by impregnating PdO into LSM-YSZ cathode. During a cell testing at 0.7 A cm(-2) and 750°C for 282 h, the impregnated PdO particles grew by coalescence, which increased the cathode polarization resistance and so that decreased the cell performance. According to the degradation tendency, the cell performance will be stabilized in a longer run.

  19. High performance anode-supported tubular solid oxide fuel cells fabricated by a novel slurry-casting method

    PubMed Central

    Duan, Nan-Qi; Yan, Dong; Chi, Bo; Pu, Jian; Jian, Li

    2015-01-01

    Tubular solid oxide fuel cells were fabricated and evaluated for their microstructure and electrochemical performance. The tubular substrate was prepared by casting NiO-Y2O3 stabilized ZrO2 (YSZ) slurry on the inner wall of a plastic mold (tube). The wall thickness and uniformity were controlled by slurry viscosity and rotation speed of the tube. The cells consisted of Ni-YSZ functional anode, YSZ electrolyte and (La0.8Sr0.2)0.95MnO3-δ (LSM)-YSZ cathode prepared in sequence on the substrate by dip-coating and sintering. Their dimension was 50 mm in length, 0.8 mm in thickness and 10.5 mm in outside diameter. The peak power density of the cell at temperatures between 650 and 850°C was in the range from 85 to 522 mW cm−2 and was greatly enhanced to the range from 308 to 1220 mW cm−2 by impregnating PdO into LSM-YSZ cathode. During a cell testing at 0.7 A cm−2 and 750°C for 282 h, the impregnated PdO particles grew by coalescence, which increased the cathode polarization resistance and so that decreased the cell performance. According to the degradation tendency, the cell performance will be stabilized in a longer run. PMID:25640168

  20. High performance cermet electrodes

    DOEpatents

    Isenberg, Arnold O.; Zymboly, Gregory E.

    1986-01-01

    Disclosed is a method of increasing the operating cell voltage of a solid oxide electrochemical cell having metal electrode particles in contact with an oxygen-transporting ceramic electrolyte. The metal electrode is heated with the cell, and oxygen is passed through the oxygen-transporting ceramic electrolyte to the surface of the metal electrode particles so that the metal electrode particles are oxidized to form a metal oxide layer between the metal electrode particles and the electrolyte. The metal oxide layer is then reduced to form porous metal between the metal electrode particles and the ceramic electrolyte.

  1. Binder-free graphene and manganese oxide coated carbon felt anode for high-performance microbial fuel cell.

    PubMed

    Zhang, Changyong; Liang, Peng; Yang, Xufei; Jiang, Yong; Bian, Yanhong; Chen, Chengmeng; Zhang, Xiaoyuan; Huang, Xia

    2016-07-15

    A novel anode was developed by coating reduced graphene oxide (rGO) and manganese oxide (MnO2) composite on the carbon felt (CF) surface. With a large surface area and excellent electrical conductivity, this binder-free anode was found to effectively enhance the enrichment and growth of electrochemically active bacteria and facilitate the extracellular electron transfer from the bacteria to the anode. A microbial fuel cell (MFC) equipped with the rGO/MnO2/CF anode delivered a maximum power density of 2065mWm(-2), 154% higher than that with a bare CF anode. The internal resistance of the MFC with this novel anode was 79Ω, 66% lower than the regular one's (234Ω). Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) analyses affirmed that the rGO/MnO2 composite significantly increased the anodic reaction rates and facilitated the electron transfer from the bacteria to the anode. The findings from this study suggest that the rGO/MnO2/CF anode, fabricated via a simple dip-coating and electro-deposition process, could be a promising anode material for high-performance MFC applications.

  2. Characterization of local electrochemical doping of high performance conjugated polymer for photovoltaics using scanning droplet cell microscopy.

    PubMed

    Gasiorowski, Jacek; Mardare, Andrei Ionut; Sariciftci, Niyazi Serdar; Hassel, Achim Walter

    2013-12-15

    The electrochemical oxidation of a next generation low bandgap high performance photovoltaic material namely poly[4,8-bis-substituted-benzo[1,2-b:4,5-b0]dithiophene-2,6-diyl-alt-4-substituted-thieno[3,4-b] thiophene-2,6-diyl] (PBDTTT-c) thin film was investigated using a scanning droplet cell microscope. Cyclic voltammetry was used for the basic characterization of the oxidation/doping of PBDTTT-c. Application of the different final potentials during the electrochemical study provides a close look to the oxidation kinetics. The electrical properties of both doped and undoped PBDTTT-c were analyzed in situ by electrochemical impedance spectroscopy giving the possibility to correlate the changes in the doping level with the subsequent changes in the resistance and capacitance. As a result one oxidation peak was found during the cyclic voltammetry and in potentiostatic measurements. From Mott-Schottky analysis a donor concentration of 2.3 × 10(20) cm(-3) and a flat band potential of 1.00 V vs. SHE were found. The oxidation process resulted in an increase of the conductivity by two orders of magnitude reaching a maximum for the oxidized form of 1.4 S cm(-1).

  3. All-nano-TiO2 compact film for high-performance dye-sensitized solar cells.

    PubMed

    Zanoni, Kassio P S; Amaral, Ronaldo C; Murakami Iha, Neyde Y

    2014-07-09

    An innovative all-nano-TiO2 thin film capable of enhancing dye-sensitized solar cell (DSC) photoefficiencies was prepared by a layer-by-layer method beneath the meso-TiO2 film, employing acid and basic nano-TiO2 sols as cations and anions, respectively. TiO2 syntheses were performed under absolute control to lead to appropriate morphological and optical properties to yield high-quality compact films using profilometry, tuning, and scanning electron microscopy. A detailed study by photoelectrochemical parameters, incident photon-to-current efficiency, electron lifetime, and electrochemical impedance spectroscopy demonstrates that the physical contact between FTO and the electrolyte is prevented and the role of the compact film has been elucidated. DSCs with TiO2 bilayers on top of FTO improved the conversion efficiency up to 62%, mainly because of the prevention of FTO/I3(-) charge recombination and an improved contact between FTO and TiO2.

  4. Quantification of miltefosine in peripheral blood mononuclear cells by high-performance liquid chromatography-tandem mass spectrometry

    PubMed Central

    Kip, A.E.; Rosing, H.; Hillebrand, M.J.X.; Castro, M.M.; Gomez, M.A.; Schellens, J.H.M.; Beijnen, J.H.; Dorlo, T.P.C.

    2015-01-01

    Phagocytes, the physiological compartment in which Leishmania parasites reside, are the main site of action of the drug miltefosine, but the intracellular pharmacokinetics of miltefosine remain unexplored. We developed a bioanalytical method to quantify miltefosine in human peripheral blood mononuclear cells (PBMCs), expanding from an existing high performance liquid chromatography-tandem mass spectrometry method for the quantification of miltefosine in plasma. The method introduced deuterated miltefosine as an internal standard. Miltefosine was extracted from PBMC pellets by addition of 62.5% methanol. Supernatant was collected, evaporated and reconstituted in plasma. Chromatographic separation was performed on a reversed phase C18 column and detection with a triple-quadrupole mass spectrometer. Miltefosine was quantified using plasma calibration standards ranging from 4 to 1000 ng/mL. This method was validated with respect to its PBMC matrix effect, selectivity, recovery and stability. No matrix effect could be observed from the PBMC content (ranging from 0.17 to 26.3 × 106 PBMCs) reconstituted in plasma, as quality control samples were within 3.0% of the nominal concentration (precision less than 7.7%). At the lower limit of quantitation of 4 ng/mL plasma, corresponding to 0.12 ng/106 PBMCs in a typical clinical sample, measured concentrations were within 8.6% of the nominal value. Recovery showed to be reproducible as adding additional pre-treatment steps did not increase the recovery with more than 9%. This method was successfully applied to measure intracellular miltefosine concentrations in PBMC samples from six cutaneous leishmaniasis patients up to one month post-treatment. PMID:26160472

  5. High-Performance Integrated Perovskite and Organic Solar Cells with Enhanced Fill Factors and Near-Infrared Harvesting.

    PubMed

    Kim, Junghwan; Kim, Geunjin; Back, Hyungcheol; Kong, Jaemin; Hwang, In-Wook; Kim, Tae Kyun; Kwon, Sooncheol; Lee, Jong-Hoon; Lee, Jinho; Yu, Kilho; Lee, Chang-Lyoul; Kang, Hongkyu; Lee, Kwanghee

    2016-04-01

    Highly efficient P-I-N type perovskite/bulk-heterojunction (BHJ) integrated solar cells (ISCs) with enhanced fill factor (FF) (≈80%) and high near-infrared harvesting (>30%) are demonstrated by optimizing the BHJ morphology with a novel n-type polymer, N2200, and a new solvent-processing additive. This work proves the feasibility of highly efficient ISCs with panchromatic absorption as a new photovoltaic architecture and provides important design rules for optimizing ISCs.

  6. High-performance Fuel Cell with Stretched Catalyst-Coated Membrane: One-step Formation of Cracked Electrode

    NASA Astrophysics Data System (ADS)

    Kim, Sang Moon; Ahn, Chi-Yeong; Cho, Yong-Hun; Kim, Sungjun; Hwang, Wonchan; Jang, Segeun; Shin, Sungsoo; Lee, Gunhee; Sung, Yung-Eun; Choi, Mansoo

    2016-05-01

    We have achieved performance enhancement of polymer electrolyte membrane fuel cell (PEMFC) though crack generation on its electrodes. It is the first attempt to enhance the performance of PEMFC by using cracks which are generally considered as defects. The pre-defined, cracked electrode was generated by stretching a catalyst-coated Nafion membrane. With the strain-stress property of the membrane that is unique in the aspect of plastic deformation, membrane electrolyte assembly (MEA) was successfully incorporated into the fuel cell. Cracked electrodes with the variation of strain were investigated and electrochemically evaluated. Remarkably, mechanical stretching of catalyst-coated Nafion membrane led to a decrease in membrane resistance and an improvement in mass transport, which resulted in enhanced device performance.

  7. High-performance Fuel Cell with Stretched Catalyst-Coated Membrane: One-step Formation of Cracked Electrode

    PubMed Central

    Kim, Sang Moon; Ahn, Chi-Yeong; Cho, Yong-Hun; Kim, Sungjun; Hwang, Wonchan; Jang, Segeun; Shin, Sungsoo; Lee, Gunhee; Sung, Yung-Eun; Choi, Mansoo

    2016-01-01

    We have achieved performance enhancement of polymer electrolyte membrane fuel cell (PEMFC) though crack generation on its electrodes. It is the first attempt to enhance the performance of PEMFC by using cracks which are generally considered as defects. The pre-defined, cracked electrode was generated by stretching a catalyst-coated Nafion membrane. With the strain-stress property of the membrane that is unique in the aspect of plastic deformation, membrane electrolyte assembly (MEA) was successfully incorporated into the fuel cell. Cracked electrodes with the variation of strain were investigated and electrochemically evaluated. Remarkably, mechanical stretching of catalyst-coated Nafion membrane led to a decrease in membrane resistance and an improvement in mass transport, which resulted in enhanced device performance. PMID:27210793

  8. Commoditization of High Performance Storage

    SciTech Connect

    Studham, Scott S.

    2004-04-01

    The commoditization of high performance computers started in the late 80s with the attack of the killer micros. Previously, high performance computers were exotic vector systems that could only be afforded by an illustrious few. Now everyone has a supercomputer composed of clusters of commodity processors. A similar commoditization of high performance storage has begun. Commodity disks are being used for high performance storage, enabling a paradigm change in storage and significantly changing the price point of high volume storage.

  9. Effect of bottom clearance on performance of airlift bioreactor in high-density culture of Panax notoginseng cells.

    PubMed

    Hu, W; Zhong, J

    2001-01-01

    A fed-batch cultivation of Panax notoginseng cells in a concentric-tube airlift reactor was performed to study the effects of bottom clearance on cell growth and the production of ginseng saponin and polysaccharide. At a bottom clearance of 4.0 cm, the highest cell density of 29.1+/-1.6 g/l by dry weight was obtained, and the accumulation of saponin and polysaccharide also reached a maximum, i.e., 2.39+/-0.43 and 2.73+/-0.40 g/l, respectively. Cell growth and metabolite production were limited at a small (2.5 cm) or large (5.0 cm) bottom clearance. By analyzing the time constants of mixing, mass transfer and oxygen consumption, bulk gas-liquid oxygen transfer was found to be responsible for the growth limitation at a small bottom clearance (2.5 cm). The decrease in cell density at a large bottom clearance (5.0 cm) was related to cell sedimentation at the reactor bottom. This work is beneficial for the scale-up and efficient operation of the airlift reactor in cell cultures.

  10. TiO2 derived by titanate route from electrospun nanostructures for high-performance dye-sensitized solar cells.

    PubMed

    Nair, A Sreekumaran; Zhu, Peining; Babu, V Jagadeesh; Yang, Shengyuan; Krishnamoorthy, Thirumal; Murugan, Rajendiran; Peng, Shengjie; Ramakrishna, Seeram

    2012-04-17

    We report the use of highly porous, dense, and anisotropic TiO(2) derived from electrospun TiO(2)-SiO(2) nanostructures through titanate route in dye-sensitized solar cells. The titanate-derived TiO(2) of high surface areas exhibited superior photovoltaic parameters (efficiency > 7%) in comparison to the respective electrospun TiO(2) nanomaterials and commercially available P-25.

  11. Passivated Tunneling Contacts to N-Type Wafer Silicon and Their Implementation into High Performance Solar Cells: Preprint

    SciTech Connect

    Stradins, P.; Essig, S.; Nemeth, W.; Lee, B. G.; Young, D.; Norman, A.; Liu, Y.; Luo, J.-W.; Warren, E.; Dameron, A.; LaSalvia, V.; Page, M.; Rohatgi, A.; Upadhyaya, A.; Rounsaville, B.; Ok, Y.-W.; Glunz, S.; Benick, J.; Feldmann, F.; Hermle, M.

    2014-12-01

    We present a case that passivated contacts based on a thin tunneling oxide layer, combined with a transport layer with properly selected work function and band offsets, can lead to high efficiency c-Si solar cells. Passivated contacts contribute to cell efficiency as well as design flexibility, process robustness, and a simplified process flow. Material choices for the transport layer are examined, including transparent n-type oxides and n+-doped poly-Si. SiO2/n+-poly-Si full-area, induced-junction back surface field contacts to n-FZ and n-Cz Si are incorporated into high efficiency cells with deep, passivated boron emitters.

  12. Lead Iodide Thin Film Crystallization Control for High-Performance and Stable Solution-Processed Perovskite Solar Cells.

    PubMed

    Yang, Lijun; Wang, Jingchuan; Leung, Wallace Woon-Fong

    2015-07-15

    PbI2 thin film crystallization control is a prerequisite of high-quality perovskite thin film for sequentially solution-processed perovskite solar cells. An efficient and simple method has been developed by adding HCl to improve perovskite thin film quality, and an efficiency of 15.2% is obtained. This approach improves coverage, uniformity, and stability of pervoskite thin film.

  13. Dataset demonstrating the modeling of a high performance Cu(In,Ga)Se2 absorber based thin film photovoltaic cell.

    PubMed

    Asaduzzaman, Md; Bahar, Ali Newaz; Bhuiyan, Mohammad Maksudur Rahman

    2017-04-01

    The physical data of the semiconductor materials used in the design of a CIGS absorber based thin film photovoltaic cell have been presented in this data article. Besides, the values of the contact parameter and operating conditions of the cell have been reported. Furthermore, by conducting the simulation with data corresponding to the device structure: soda-lime glass (SLG) substrate/Mo back-contact/CIGS absorber/CdS buffer/intrinsic ZnO/Al-doped ZnO window/Al-grid front-contact, the solar cell performance parameters such as open circuit voltage [Formula: see text], short circuit current density [Formula: see text], fill factor [Formula: see text], efficiency [Formula: see text], and collection efficiency [Formula: see text] have been analyzed.

  14. High performance collectors

    NASA Astrophysics Data System (ADS)

    Ogawa, H.; Hozumi, S.; Mitsumata, T.; Yoshino, K.; Aso, S.; Ebisu, K.

    1983-04-01

    Materials and structures used for flat plate solar collectors and evacuated tubular collectors were examined relative to their overall performance to project effectiveness for building heating and cooling and the feasibility of use for generating industrial process heat. Thermal efficiencies were calculated for black paint single glazed, selective surface single glazed, and selective surface double glazed flat plate collectors. The efficiencies of a single tube and central tube accompanied by two side tube collectors were also studied. Techniques for extending the lifetimes of the collectors were defined. The selective surface collectors proved to have a performance superior to other collectors in terms of the average annual energy delivered. Addition of a black chrome-coated fin system to the evacuated collectors produced significant collection efficiency increases.

  15. High Performance Arcjet Engines

    NASA Technical Reports Server (NTRS)

    Kennel, Elliot B.; Ivanov, Alexey Nikolayevich; Nikolayev, Yuri Vyacheslavovich

    1994-01-01

    This effort sought to exploit advanced single crystal tungsten-tantalum alloy material for fabrication of a high strength, high temperature arcjet anode. The use of this material is expected to result in improved strength, temperature resistance, and lifetime compared to state of the art polycrystalline alloys. In addition, the use of high electrical and thermal conductivity carbon-carbon composites was considered, and is believed to be a feasible approach. Highly conductive carbon-carbon composite anode capability represents enabling technology for rotating-arc designs derived from the Russian Scientific Research Institute of Thermal Processes (NIITP) because of high heat fluxes at the anode surface. However, for US designs the anode heat flux is much smaller, and thus the benefits are not as great as in the case of NIITP-derived designs. Still, it does appear that the tensile properties of carbon-carbon can be even better than those of single crystal tungsten alloys, especially when nearly-single-crystal fibers such as vapor grown carbon fiber (VGCF) are used. Composites fabricated from such materials must be coated with a refractory carbide coating in order to ensure compatibility with high temperature hydrogen. Fabrication of tungsten alloy single crystals in the sizes required for fabrication of an arcjet anode has been shown to be feasible. Test data indicate that the material can be expected to be at least the equal of W-Re-HfC polycrystalline alloy in terms of its tensile properties, and possibly superior. We are also informed by our colleagues at Scientific Production Association Luch (NP0 Luch) that it is possible to use Russian technology to fabricate polycrystalline W-Re-HfC or other high strength alloys if desired. This is important because existing engines must rely on previously accumulated stocks of these materials, and a fabrication capability for future requirements is not assured.

  16. Inks for Ink Jet Printed Contacts for High Performance Silicon Solar Cells: Cooperative Research and Development Final Report, CRADA No. CRD-06-199

    SciTech Connect

    Ginley, D.

    2013-01-01

    The work under the proposed CRADA will be a joint effort by BP Solar and NREL to develop new types of high performance inks for high quality contacts to silicon solar cells. NREL will develop inks that have electronic properties that will allow the formation of high quality ohmic contacts to n- and p-type crystalline silicon, and BP Solar will evaluate these contacts in test contact structures.

  17. Long-life high performance fuel cell program. Interim Report, 28 May 1981-31 October 1984

    SciTech Connect

    Martin, R.E.

    1985-02-01

    A multihundred kilowatt Regenerative Fuel Cell for use in a space station is envisioned. Three 0.508 sq ft (471.9 cm) active area multicell stacks were assembled and endurance tested. The long term performance stability of the platinum on carbon catalyst configuration suitability of the lightweight graphite electrolyte reservoir plate, the stability of the free standing butyl bonded potassium titanate matrix structure, and the long life potential of a hybrid polysulfone cell edge frame construction were demonstrated. A 18,000 hour demonstration test of multicell stack to a continuous cyclical load profile was conducted. A total of 12,000 cycles was completed, confirming the ability of the alkaline fuel cell to operate to a load profile simulating Regenerative Fuel Cell operation. An orbiter production hydrogen recirculation pump employed in support of the cyclical load profile test completed 13,000 hours of maintenance free operation. Laboratory endurance tests demonstrated the suitability of the butyl bonded potassium matrix, perforated nickel foil electrode substrates, and carbon ribbed substrate anode for use in the alkaline fuel cell. Corrosion testing of materials at 250 F (121.1 C) in 42% wgt. potassium identified ceria, zirconia, strontium titanate, strontium zirconate and lithium cobaltate as candidate matrix materials.

  18. High performance solid oxide fuel cells based on tri-layer yttria-stabilized zirconia by low temperature sintering process

    NASA Astrophysics Data System (ADS)

    Liu, Ze; Zheng, Zi-wei; Han, Min-fang; Liu, Mei-lin

    Performance of solid oxide fuel cells (SOFCs) depends critically on the composition and microstructure of the electrodes. It is fabricated a dense yttria-stabilized zirconia (YSZ) electrolyte layer sandwiched between two porous YSZ layers at low temperature. The advantages of this structure include excellent structural stability and unique flexibility for evaluation of new electrode materials for SOFC applications, which would be difficult or impossible to be evaluated using conventional cell fabrication techniques because of incompatibility with YSZ under processing conditions. The porosity of porous YSZ increases from 65.8% to 68.6% as the firing temperature decreased from 1350 to 1200 °C. The open cell voltages of the cells based on the tri-layers of YSZ, co-fired using a two-step sintering at 1200 °C, are above 1.0 V at 700-800 °C, and the peak power densities of cells infiltrated LSCF and Pd-SDC electrodes are about 525, 733, and 935 mW cm -2 at 700, 750, and 800 °C, respectively.

  19. High performance cyclone development

    SciTech Connect

    Giles, W.B.

    1981-01-01

    The results of cold flow experiments at atmospheric conditions of an air-shielded 18 in-dia electrocyclone with a central cusped electrode are reported using fine test dusts of both flyash and nickel powder. These results are found to confirm expectations of enhanced performance, similar to earlier work on a 12 in-dia model. An analysis of the combined inertial-electrostatic force field is also presented which identifies general design goals and scaling laws. From this, it is found that electrostatic enhancement will be particularly beneficial for fine dusts in large cyclones. Recommendations for further improvement in cyclone collection efficiency are proposed.

  20. High Performance Magnets

    DTIC Science & Technology

    2000-03-29

    Our efforts in this project were focused on three different materials, namely; interstitial Sm-Fe carbides and nitrides, high energy product Nd2Fe14B ...magnets with MgO addition, and nanocomposite Nd2Fe14B /alpha-Fe consisting of a fine mixture of hard and soft phases. In the Sm-Fe carbides and

  1. High Performance Biocomputation

    DTIC Science & Technology

    2005-03-01

    view, are failed grand challenges include the "War on Cancer " (circa 1970) and the "Decade of the Brain" in which an NIH report in 1990 argued that...ancestors possible. There have been claims made that DNA may be found in preserved ancient bacteria or even in dinosaur bones, but these claims remain highly

  2. Screening anti-tumor compounds from Ligusticum wallichii using cell membrane chromatography combined with high-performance liquid chromatography and mass spectrometry.

    PubMed

    Zhang, Tao; Ding, Yuanyuan; An, Hongli; Feng, Liuxin; Wang, Sicen

    2015-07-14

    Tyrosine 367 Cysteine-fibroblast growth factor receptor 4 cell membrane chromatography combined with high-performance liquid chromatography and mass spectrometry was developed. Tyrosine 367 Cysteine-HEK293 cells were used as cell membrane stationary phase. Specificity and reproducibility of the cell membrane chromatography was evaluated using 1-tert-butyl-3-{2-[4-(diethylamino)butylamino]-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl}urea, Nimodipine and dexamethasone acetate. Then, anti-tumor components acting on Tyrosine 367 Cysteine-fibroblast growth factor receptor 4 were screened and identified from extracts of Ligusticum wallichii. Components from the extract were retained on the cell membrane chromatographic column. The retained fraction was directly eluted into high-performance liquid chromatography with mass spectrometry system for separation and identification. Finally, Levistolide A was identified as an active component from Ligusticum wallichii extracts. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide-formazan colorimetric assay revealed that Levistolide A inhibits proliferation of overexpressing the mutated receptor cells with dose-dependent manner. Phosphorylation of fibroblast growth factor receptor 4 was also decrease under Levistolide A treatment. Flex dock simulation verified that Levistolide A could bind with the tyrosine kinase domain of fibroblast growth factor receptor 4. Therefore, Levistolide A screened by the cell membrane chromatography combined with high-performance liquid chromatography and mass spectrometry can arrest cell growth. In conclusion, the two-dimensional high-performance liquid chromatography method can screen and identify potential anti-tumor ingredients which specifically act on the tyrosine kinase domain of the mutated fibroblast growth factor receptor 4. This article is protected by copyright. All rights reserved.

  3. Tough high performance composite matrix

    NASA Technical Reports Server (NTRS)

    Pater, Ruth H. (Inventor); Johnston, Norman J. (Inventor)

    1994-01-01

    This invention is a semi-interpentrating polymer network which includes a high performance thermosetting polyimide having a nadic end group acting as a crosslinking site and a high performance linear thermoplastic polyimide. Provided is an improved high temperature matrix resin which is capable of performing in the 200 to 300 C range. This resin has significantly improved toughness and microcracking resistance, excellent processability, mechanical performance, and moisture and solvent resistances.

  4. High-Performance Flexible Perovskite Solar Cells by Using a Combination of Ultrasonic Spray-Coating and Low Thermal Budget Photonic Curing

    SciTech Connect

    Sanjib, Das; Yang, Bin; Gu, Gong; Joshi, Pooran C; Ivanov, Ilia N; Rouleau, Christopher; Aytug, Tolga; Geohegan, David B; Xiao, Kai

    2015-01-01

    Realizing the commercialization of high-performance and robust perovskite solar cells urgently requires the development of economically scalable processing techniques. Here we report a high-throughput ultrasonic spray-coating (USC) process capable of fabricating perovskite film-based solar cells on glass substrates with power conversion efficiency (PCE) as high as 13.04%. Perovskite films with high uniformity, crystallinity, and surface coverage are obtained in a single step. Moreover, we report USC processing on TiOx/ITO-coated polyethylene terephthalate (PET) substrates to realize flexible perovskite solar cells with PCE as high as 8.02% that are robust under mechanical stress. In this case, an optical curing technique was used to achieve a highly-conductive TiOx layer on flexible PET substrates for the first time. The high device performance and reliability obtained by this combination of USC processing with optical curing appears very promising for roll-to-roll manufacturing of high-efficiency, flexible perovskite solar cells.

  5. High performance steam development

    SciTech Connect

    Duffy, T.; Schneider, P.

    1995-10-01

    Over 30 years ago U.S. industry introduced the world`s highest temperature (1200{degrees}F at 5000 psig) and most efficient power plant, the Eddystone coal-burning steam plant. The highest alloy material used in the plant was 316 stainless steel. Problems during the first few years of operation caused a reduction in operating temperature to 1100{degrees}F which has generally become the highest temperature used in plants around the world. Leadership in high temperature steam has moved to Japan and Europe over the last 30 years.

  6. High Performance YBCO Films

    DTIC Science & Technology

    1992-07-01

    growing high quality MgO films on SrF2 substrates is the oxygen partial pressure during the growth. The x-ray data presented in Fig. 13 indicates a...fluo-ide and quartz substrates. The best result with two buffer layers (MgO and YSZ) on SrF2 was an onset temperature (Tc) of 82K and a transition...With a YSZ buffer an onset temperature of 85K and a transition width of 5K was achieved. Recent success was demonstrated by Neocera ( under a NASA

  7. High Voltage SPT Performance

    NASA Technical Reports Server (NTRS)

    Manzella, David; Jacobson, David; Jankovsky, Robert

    2001-01-01

    A 2.3 kW stationary plasma thruster designed to operate at high voltage was tested at discharge voltages between 300 and 1250 V. Discharge specific impulses between 1600 and 3700 sec were demonstrated with thrust between 40 and 145 mN. Test data indicated that discharge voltage can be optimized for maximum discharge efficiency. The optimum discharge voltage was between 500 and 700 V for the various anode mass flow rates considered. The effect of operating voltage on optimal magnet field strength was investigated. The effect of cathode flow rate on thruster efficiency was considered for an 800 V discharge.

  8. Effects of cell positive cans and separators on the performance of high-voltage Li-ion batteries

    SciTech Connect

    Chen, Xilin; Xu, Wu; Xiao, Jie; Engelhard, Mark H.; Ding, Fei; Mei, Donghai; Hu, Dehong; Zhang, Jian; Zhang, Jiguang

    2012-09-01

    The effects of different cell cans and separators on the first-cycle Coulombic efficiency and long-term cycling stability of high voltage spinel cathode were investigated systematically. Compared to stainless steel (SS) positive-cans, aluminum (Al)-clad SS-316 positive-cans have a much better resistance to oxidation at high voltages thus improving the initial Coulombic efficiency of the batteries by more than 13%. Among the five separators studied in this work, polyethylene (PE) separator shows the best electrochemical stability. The cells using LiCr0.05Ni0.45Mn1.5O4 as cathode, Al-clad positive-can, and PE separator exhibit the first-cycle Columbic efficiency of about 90% and a capacity fading of only 0.01% per cycle.

  9. High voltage thermal cells

    NASA Astrophysics Data System (ADS)

    Ryan, David M.

    An experiment aimed at a search for new, high-energy cathodes for thermal cells is described. The experiment has begun to reduce the solubility, volatility, and mobility of the cathode materials by preparing and testing massive, relatively immobile cathode molecules. A good candidate for this is the vanadium series, which forms rings, chains, clusters and Keggin compounds. The first three compounds of this genre have been prepared: K3V5O14, Na6V10O28, and K7(Ni4+V13O30). Only the first of these compounds has been tested as a cathode material. The K3V5O14 demonstrated better performance than V2O5, but it is not as good as the FeS2 cells used for benchmarks.

  10. Tailorable PC71 BM Isomers: Using the Most Prevalent Electron Acceptor to Obtain High-Performance Polymer Solar Cells.

    PubMed

    Zhan, Xin-Xing; Zhang, Xin; Dai, Si-Min; Li, Shu-Hui; Lu, Xu-Zhai; Deng, Lin-Long; Xie, Su-Yuan; Huang, Rong-Bin; Zheng, Lan-Sun

    2016-12-23

    Despite being widely used as electron acceptor in polymer solar cells, commercially available PC71 BM (phenyl-C71 -butyric acid methyl ester) usually has a "random" composition of mixed regioisomers or stereoisomers. Here PC71 BM has been isolated into three typical isomers, α-, β1 - and β2 -PC71 BM, to establish the isomer-dependent photovoltaic performance on changing the ternary composition of α-, β1 - and β2 -PC71 BM. Mixing the isomers in a ratio of α/β1 /β2 =8:1:1 resulted in the best power conversion efficiency (PCE) of 7.67 % for the polymer solar cells with PTB7:PC71 BM as photoactive layer (PTB7=poly[[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b']dithiophene-2,6-diyl][3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl

  11. Electrical characterization of fluorinated benzothiadiazole based conjugated copolymer – a promising material for high-performance solar cells

    SciTech Connect

    Toušek, J. Toušková, J.; Chomutová, R.; Remeš, Z.; Čermák, J.; Helgesen, M.; Carlé, J. E.; Krebs, F. C.

    2015-12-15

    Measurements of electrical conductivity, electron work function, carrier mobility of holes and the diffusion length of excitons were performed on samples of conjugated polymers relevant to polymer solar cells. A state of the art fluorinated benzothiadiazole based conjugated copolymer (PBDT{sub THD} − DTBTff) was studied and benchmarked against the reference polymer poly-3-hexylthiophene (P3HT). We employed, respectively, four electrode conductivity measurements, Kelvin probe work function measurements, carrier mobility using charge extraction by linearly increasing voltage (CELIV) measurements and diffusion length determinaton using surface photovoltage measurements.

  12. High performance alloy electroforming

    NASA Technical Reports Server (NTRS)

    Malone, G. A.; Winkelman, D. M.

    1989-01-01

    Electroformed copper and nickel are used in structural applications for advanced propellant combustion chambers. An improved process has been developed by Bell Aerospace Textron, Inc. wherein electroformed nickel-manganese alloy has demonstrated superior mechanical and thermal stability when compared to previously reported deposits from known nickel plating processes. Solution chemistry and parametric operating procedures are now established and material property data is established for deposition of thick, large complex shapes such as the Space Shuttle Main Engine. The critical operating variables are those governing the ratio of codeposited nickel and manganese. The deposition uniformity which in turn affects the manganese concentration distribution is affected by solution resistance and geometric effects as well as solution agitation. The manganese concentration in the deposit must be between 2000 and 3000 ppm for optimum physical properties to be realized. The study also includes data regarding deposition procedures for achieving excellent bond strength at an interface with copper, nickel-manganese or INCONEL 718. Applications for this electroformed material include fabrication of complex or re-entry shapes which would be difficult or impossible to form from high strength alloys such as INCONEL 718.

  13. Alkaline fuel cell performance investigation

    NASA Technical Reports Server (NTRS)

    Martin, R. E.; Manzo, M. A.

    1988-01-01

    An exploratory experimental fuel cell test program was conducted to investigate the performance characteristics of alkaline laboratory research electrodes. The objective of this work was to establish the effect of temperature, pressure, and concentration upon performance and evaluate candidate cathode configurations having the potential for improved performance. The performance characterization tests provided data to empirically establish the effect of temperature, pressure, and concentration upon performance for cell temperatures up to 300 F and reactant pressures up to 200 psia. Evaluation of five gold alloy cathode catalysts revealed that three doped gold alloys had more that two times the surface areas of reference cathodes and therefore offered the best potential for improved performance.

  14. High Performance Computing at NASA

    NASA Technical Reports Server (NTRS)

    Bailey, David H.; Cooper, D. M. (Technical Monitor)

    1994-01-01

    The speaker will give an overview of high performance computing in the U.S. in general and within NASA in particular, including a description of the recently signed NASA-IBM cooperative agreement. The latest performance figures of various parallel systems on the NAS Parallel Benchmarks will be presented. The speaker was one of the authors of the NAS (National Aerospace Standards) Parallel Benchmarks, which are now widely cited in the industry as a measure of sustained performance on realistic high-end scientific applications. It will be shown that significant progress has been made by the highly parallel supercomputer industry during the past year or so, with several new systems, based on high-performance RISC processors, that now deliver superior performance per dollar compared to conventional supercomputers. Various pitfalls in reporting performance will be discussed. The speaker will then conclude by assessing the general state of the high performance computing field.

  15. Elucidating the reaction pathways in the synthesis of organolead trihalide perovskite for high-performance solar cells.

    PubMed

    Wang, Baohua; Young Wong, King; Xiao, Xudong; Chen, Tao

    2015-05-28

    The past two years have witnessed unprecedentedly rapid development of organic-inorganic halide perovskite-based solar cells. The solution-processability and high efficiency make this technology extraordinarily attractive. The intensive investigations have accumulated rich experiences in the perovskite fabrication; while the mechanism of the chemical synthesis still remains unresolved. Here, we set up the chemical equation of the synthesis and elucidate the reactions from both thermodynamic and kinetic perspectives. Our study shows that gaseous products thermodynamically favour the reaction, while the activation energy and "collision" probability synergistically determine the reaction rate. These understandings enable us to finely tune the crystal size for high-quality perovskite film, leading to a record fill factor among similar device structures in the literature. This investigation provides a general strategy to explore the mechanism of perovskite synthesis and benefits the fabrication of high-efficiency perovskite photoactive layer.

  16. Morphology-insensitive Performance Facilitates Transition from Spin-Coating to Roll-to-Roll Coating For High-Performance, Solution-Processed Solar Cells

    NASA Astrophysics Data System (ADS)

    Delongchamp, Dean

    Solution processing via roll-to-roll (R2R) coating promises a low cost, low thermal-budget, sustainable revolution for the production of solar cells. Yet virtually all high efficiency solution processed research cells have been demonstrated by spin-coating, a low-volume deposition process. We present detailed device and morphology studies of an organic photovoltaic (OPV) system deposited by a high volume manufacturing technique, blade-coating, that achieves greater than 9.5 % power conversion efficiency (PCE). The average crystal domain orientation and characteristic phase separation length distribution are markedly different when deposited by blade-coating rather than spin-coating,. This result allows us to determine which aspects of morphology are not relevant to the PCE of this system. Whether the crystallites are ``face on'' or ``edge on'' does not appear to impact the PCE of system, nor does the length scale or ``hierarchical'' nature of the phase length scale. Persistent morphological qualities that may be associated with high PCE in this system are relatively pure phases and relatively strong diffraction. We posit that OPV systems in which the PCE is less sensitive to morphology may also be less sensitive to film thickness, enabling some to maintain high PCE in active layers thicker than greater than ~200 nm. We confirm that blade-coating is a suitable prototyping technique for R2R coating by demonstrating nominally identical morphologies for both piece blade-coating and continuous-web, slot-die coating.

  17. Label-free enumeration of colorectal cancer cells from lymphocytes performed at a high cell-loading density by using interdigitated ring-array microelectrodes.

    PubMed

    Xing, Xiaoxing; Poon, Randy Y C; Wong, Cesar S C; Yobas, Levent

    2014-11-15

    We report the label-free enumeration of human colorectal-carcinoma cells from blood lymphocytes by using interdigitated ring-array microelectrodes; this enumeration was based on the dielectrophoretic selection of cells. Because of the novel design of the device, a continuous flow of cells is uniformly distributed into parallel streams through 300 rings (~40 μm in diameter each) that are integrated into the electrode digits. Using this array, 82% of cancer cells were recovered and 99% of blood lymphocytes were removed. Most of the cancer cells recovered were viable (94%) and could be cultivated for >8 days, during which period they retained their normal cell morphology and proliferation rates. The recovery rate correlated closely with cancer-cell loadings in spiked samples and this relationship was linear over a range of at least 2 orders of magnitude. Importantly, because of the 3D structure of the rings, these results were obtained at a high cell-loading concentration (10(7)cells/mL). The rings could be further optimized for use in accurate label-free identification and measurement of circulating tumor cells in cancer research and disease management.

  18. High-performance dye-sensitized solar cells based on solvent-free electrolytes produced from eutectic melts.

    PubMed

    Bai, Yu; Cao, Yiming; Zhang, Jing; Wang, Mingkui; Li, Renzhi; Wang, Peng; Zakeeruddin, Shaik M; Grätzel, Michael

    2008-08-01

    Low-cost excitonic solar cells based on organic optoelectronic materials are receiving an ever-increasing amount of attention as potential alternatives to traditional inorganic photovoltaic devices. In this rapidly developing field, the dye-sensitized solar cell (DSC) has achieved so far the highest validated efficiency of 11.1% (ref. 2) and remarkable stability. However, the cells with the best performance use volatile solvents in their electrolytes, which may be prohibitive for outdoor solar panels in view of the need for robust encapsulation. Solvent-free room-temperature ionic liquids have been pursued as an attractive solution to this dilemma, and device efficiencies of over 7% were achieved by using some low-viscosity formulations containing 1-ethyl-3-methylimidazolium thiocyanate, selenocyanate, tricyanomethide or tetracyanoborate. Unfortunately, apart from tetracyanoborate, all of these low-viscosity melts proved to be unstable under prolonged thermal stress and light soaking. Here, we introduce the concept of using eutectic melts to produce solvent-free liquid redox electrolytes. Using a ternary melt in conjunction with a nanocrystalline titania film and the amphiphilic heteroleptic ruthenium complex Z907Na (ref. 10) as a sensitizer, we reach excellent stability and an unprecedented efficiency of 8.2% under air-mass 1.5 global illumination. Our results are of importance to realize large-scale outdoor applications of mesoscopic DSCs.

  19. High Performance Fortran: An overview

    SciTech Connect

    Zosel, M.E.

    1992-12-23

    The purpose of this paper is to give an overview of the work of the High Performance Fortran Forum (HPFF). This group of industry, academic, and user representatives has been meeting to define a set of extensions for Fortran dedicated to the special problems posed by a very high performance computers, especially the new generation of parallel computers. The paper describes the HPFF effort and its goals and gives a brief description of the functionality of High Performance Fortran (HPF).

  20. Analysis of oxysterols and vitamin D metabolites in mouse brain and cell line samples by ultra-high-performance liquid chromatography-atmospheric pressure photoionization-mass spectrometry.

    PubMed

    Ahonen, Linda; Maire, Florian B R; Savolainen, Mari; Kopra, Jaakko; Vreeken, Rob J; Hankemeier, Thomas; Myöhänen, Timo; Kylli, Petri; Kostiainen, Risto

    2014-10-17

    We have developed an ultra-high-performance liquid chromatography-atmospheric pressure photoionization-tandem mass spectrometric (UHPLC-APPI-MS/MS) method for the simultaneous quantitative analyses of several oxysterols and vitamin D metabolites in mouse brain and cell line samples. An UHPLC-APPI-high resolution mass spectrometric (UHPLC-APPI-HRMS) method that uses a quadrupole-time of flight mass spectrometer was also developed for confirmatory analysis and for the identification of non-targeted oxysterols. Both methods showed good quantitative performance. Furthermore, APPI provides high ionization efficiency for determining oxysterols and vitamin D related compounds without the time consuming derivatization step needed in the conventionally used electrospray ionization method to achieve acceptable sensitivity. Several oxysterols were quantified in mouse brain and cell line samples. Additionally, 25-hydroxyvitamin D3 was detected in mouse brain samples for the first time.

  1. Elucidating the Reaction Pathways in the Synthesis of Organolead Trihalide Perovskite for High-Performance Solar Cells

    PubMed Central

    Wang, Baohua; Young Wong, King; Xiao, Xudong; Chen, Tao

    2015-01-01

    The past two years have witnessed unprecedentedly rapid development of organic–inorganic halide perovskite–based solar cells. The solution–processability and high efficiency make this technology extraordinarily attractive. The intensive investigations have accumulated rich experiences in the perovskite fabrication; while the mechanism of the chemical synthesis still remains unresolved. Here, we set up the chemical equation of the synthesis and elucidate the reactions from both thermodynamic and kinetic perspectives. Our study shows that gaseous products thermodynamically favour the reaction, while the activation energy and “collision” probability synergistically determine the reaction rate. These understandings enable us to finely tune the crystal size for high-quality perovskite film, leading to a record fill factor among similar device structures in the literature. This investigation provides a general strategy to explore the mechanism of perovskite synthesis and benefits the fabrication of high–efficiency perovskite photoactive layer. PMID:26020476

  2. High Performance Thin Layer Chromatography.

    ERIC Educational Resources Information Center

    Costanzo, Samuel J.

    1984-01-01

    Clarifies where in the scheme of modern chromatography high performance thin layer chromatography (TLC) fits and why in some situations it is a viable alternative to gas and high performance liquid chromatography. New TLC plates, sample applications, plate development, and instrumental techniques are considered. (JN)

  3. Development of high-performance cathode catalyst of polypyrrole modified carbon supported CoOOH for direct borohydride fuel cell

    NASA Astrophysics Data System (ADS)

    He, Yan; Zhu, Cai; Chen, Kaijian; Wang, Juan; Qin, Haiying; Liu, Jiabin; Yan, Shuai; Yang, Ke; Li, Aiguo

    2017-01-01

    Polypyrrole modified carbon supported CoOOH electrocatalyst (CoOOH-PPy-C) is prepared by impregnation-chemical method, and the catalytic properties for the oxygen reduction reaction (ORR) in alkaline media are investigated. The X-ray diffraction and transmission electron microscopy results confirm the presence of the expected CoOOH. The electrochemical tests show that the CoOOH-PPy-C catalyst exhibits good electrocatalytic activity towards ORR. The direct borohydride fuel cell using CoOOH-PPy-C as the cathode catalyst demonstrates a good stability performance. There is only 4% decrease of the cell voltage after 80-h operation. The ORR occurs an average 4-electron transfer pathway on the CoOOH-PPy-C catalyst. The good catalytic activity towards ORR benefits from the Cosbnd N bond, which is identified by X-ray photoelectron spectroscopy test. X-ray absorption fine structure experiments further show that two nearest O atoms are substituted by two N atoms bonding to Co ion at a distance of 1.64 Å. The CoOOH-PPy-C exhibits better electrochemical properties than the Co(OH)2 counterpart even though the valence state of Co ion is +3 in CoOOH-PPy-C. Those results indicate that the bonding of Co ion with N atoms should be a key issue regardless the valence of Co ion.

  4. Performance degradation studies on an poly 2,5-benzimidazole high-temperature proton exchange membrane fuel cell using an accelerated degradation technique

    NASA Astrophysics Data System (ADS)

    Jung, Guo-Bin; Chen, Hsin-Hung; Yan, Wei-Mon

    2014-02-01

    In this work, the performance degradation of a poly 2,5-benzimidazole (ABPBI) based high-temperature proton exchange membrane fuel cell (HT-PEMFC) was examined using an accelerated degradation technique (ADT). Experiments using an ADT with 30 min intervals were performed by applying 1.5 V to a membrane electrode assembly (MEA) with hydrogen and nitrogen feeding to the anode and cathode, respectively, to simulate the high voltage generated during fuel cell shutdown and restart. The characterization of the MEAs was performed using in-situ and ex-situ electrochemical methods, such as polarization curves, AC impedance, and cyclic voltammetry (CV), and TEM imaging before and after the ADT experiments. The measured results demonstrated that the ADT testing could be used to dramatically reduce the duration of the degradation. The current output at 0.4 V decreased by 48% after performing ADT testing for 30 min. From the AC impedance, CV and RTGA measurements, the decline in cell performance was found to be primarily due to corrosion and thinning of the catalyst layer (or carbon support) during the first 30 min, leading to the dissolution and agglomeration of the platinum catalyst.

  5. Recent advances in the development and utilization of modern anode materials for high performance microbial fuel cells.

    PubMed

    Sonawane, Jayesh M; Yadav, Abhishek; Ghosh, Prakash C; Adeloju, Samuel B

    2017-04-15

    Microbial fuel cells (MFCs) are novel bio-electrochemical device for spontaneous or single step conversion of biomass into electricity, based on the use of metabolic activity of bacteria. The design and use of MFCs has attracted considerable interests because of the potential new opportunities they offer for sustainable production of energy from biodegradable and reused waste materials. However, the associated slow microbial kinetics and costly construction materials has limited a much wider commercial use of the technology. In the past ten years, there has been significant new developments in MFCs which has resulted in several-fold increase in achievable power density. Yet, there is still considerable possibility for further improvement in performance and development of new cost effective materials. This paper comprehensively reviews recent advances in the construction and utilization of novel anodes for MFCs. In particular, it highlights some of the critical roles and functions of anodes in MFCs, strategies available for improving surface areas of anodes, dominant performance of stainless-steel based anode materials, and the emerging benefits of inclusion of nanomaterials. The review also demonstrates that some of the materials are very promising for large scale MFC applications and are likely to replace conventional anodes for the development of next generation MFC systems. The hurdles to the development of commercial MFC technology are also discussed. Furthermore, the future directions in the design and selection of materials for construction and utilization of MFC anodes are highlighted.

  6. Enhancing dye-sensitized solar cell performances by molecular engineering: highly efficient π-extended organic sensitizers.

    PubMed

    Grisorio, Roberto; De Marco, Luisa; Agosta, Rita; Iacobellis, Rosabianca; Giannuzzi, Roberto; Manca, Michele; Mastrorilli, Piero; Gigli, Giuseppe; Suranna, Gian Paolo

    2014-09-01

    This study deals with the synthesis and characterization of two π-extended organic sensitizers (G1 and G2) for applications in dye-sensitized solar cells. The materials are designed with a D-A-π-A structure constituted by i) a triarylamine group as the donor part, ii) a dithienyl-benzothiadiazole chromophore followed by iii) a further ethynylene-thiophene (G1) or ethynylene-benzene (G2) π-spacer and iv) a cyano-acrylic moiety as acceptor and anchoring part. An unusual structural extension of the π-bridge characterizes these structures. The so-configured sensitizers exhibit a broad absorption profile, the origin of which is supported by density functional theory. The absence of hypsochromic shifts as a consequence of deprotonation as well as notable optical and electrochemical stabilities are also observed. Concerning the performances in devices, electrochemical impedance spectroscopy indicates that the structural modification of the π-spacer mainly increases the electron lifetime of G2 with respect to G1. In devices, this feature translates into a superior power conversion efficiency of G2, reaching 8.1%. These results are comparable to those recorded for N719 and are higher with respect to literature congeners, supporting further structural engineering of the π-bridge extension in the search for better performing π-extended organic sensitizers.

  7. Handbook of fuel cell performance

    SciTech Connect

    Benjamin, T.G.; Camara, E.H.; Marianowski, L.G.

    1980-05-01

    The intent of this document is to provide a description of fuel cells, their performances and operating conditions, and the relationship between fuel processors and fuel cells. This information will enable fuel cell engineers to know which fuel processing schemes are most compatible with which fuel cells and to predict the performance of a fuel cell integrated with any fuel processor. The data and estimates presented are for the phosphoric acid and molten carbonate fuel cells because they are closer to commercialization than other types of fuel cells. Performance of the cells is shown as a function of operating temperature, pressure, fuel conversion (utilization), and oxidant utilization. The effect of oxidant composition (for example, air versus O/sub 2/) as well as fuel composition is examined because fuels provided by some of the more advanced fuel processing schemes such as coal conversion will contain varying amounts of H/sub 2/, CO, CO/sub 2/, CH/sub 4/, H/sub 2/O, and sulfur and nitrogen compounds. A brief description of fuel cells and their application to industrial, commercial, and residential power generation is given. The electrochemical aspects of fuel cells are reviewed. The phosphoric acid fuel cell is discussed, including how it is affected by operating conditions; and the molten carbonate fuel cell is discussed. The equations developed will help systems engineers to evaluate the application of the phosphoric acid and molten carbonate fuel cells to commercial, utility, and industrial power generation and waste heat utilization. A detailed discussion of fuel cell efficiency, and examples of fuel cell systems are given.

  8. High Performance Flexible Thermal Link

    NASA Astrophysics Data System (ADS)

    Sauer, Arne; Preller, Fabian

    2014-06-01

    The paper deals with the design and performance verification of a high performance and flexible carbon fibre thermal link.Project goal was to design a space qualified thermal link combining low mass, flexibility and high thermal conductivity with new approaches regarding selected materials and processes. The idea was to combine the advantages of existing metallic links regarding flexibility and the thermal performance of high conductive carbon pitch fibres. Special focus is laid on the thermal performance improvement of matrix systems by means of nano-scaled carbon materials in order to improve the thermal performance also perpendicular to the direction of the unidirectional fibres.One of the main challenges was to establish a manufacturing process which allows handling the stiff and brittle fibres, applying the matrix and performing the implementation into an interface component using unconventional process steps like thermal bonding of fibres after metallisation.This research was funded by the German Federal Ministry for Economic Affairs and Energy (BMWi).

  9. Polydopamine as a promising candidate for the design of high performance and corrosion-tolerant polymer electrolyte fuel cell electrodes

    NASA Astrophysics Data System (ADS)

    Long, Hongtao; Del Frari, Doriane; Martin, Arnaud; Didierjean, Joffrey; Ball, Vincent; Michel, Marc; Ahrach, Hicham Ibn El

    2016-03-01

    Carbon materials such as carbon black or nanotubes suffer from degradation when subjected to harsh conditions occurring in a Polymer Electrolyte Membrane Fuel Cells (PEMFCs) electrode. Hence, nowadays it is more and more important to search for alternative support materials. The present work shows the results for the incorporation of alternative materials into PEMFCs electrode architectures. Commercially available Multi-Walled NanoTubes (MWNTs) are used as a support for Pt nanoparticles in combination with Polydopamine (PDA). The role of MWNTs is to confer a high electronic conductivity and help to form a porous network. On the other side the role of polydopamine is both to promote the proton conductivity similarly to ionomers such as Nafion and to protect the MWNTs against corrosion. The fuel cell polarization test shows a maximum power density of 780 mW cm-2 and a Pt utilization of 6051 mW mg(Pt)-1. The Pt utilization reached in this work is almost three times higher than for Pt/MWNTs electrodes containing the same Pt loading. Beside this, it is also shown for the first time that PDA serves as protective layer against carbon corrosion.

  10. Solution-processed and high-performance organic solar cells using small molecules with a benzodithiophene unit.

    PubMed

    Zhou, Jiaoyan; Zuo, Yi; Wan, Xiangjian; Long, Guankui; Zhang, Qian; Ni, Wang; Liu, Yongsheng; Li, Zhi; He, Guangrui; Li, Chenxi; Kan, Bin; Li, Miaomiao; Chen, Yongsheng

    2013-06-12

    Three small molecules named DR3TBDTT, DR3TBDTT-HD, and DR3TBD2T with a benzo[1,2-b:4,5-b']dithiophene (BDT) unit as the central building block have been designed and synthesized for solution-processed bulk-heterojunction solar cells. Power conversion efficiencies (PCEs) of 8.12% (certified 7.61%) and 8.02% under AM 1.5G irradiation (100 mW cm(-2)) have been achieved for DR3TBDTT- and DR3TBDT2T-based organic photovoltaic devices (OPVs) with PC71BM as the acceptor, respectively. The better PCEs were achieved by improving the short-circuit current density without sacrificing the high open-circuit voltage and fill factor through the strategy of incorporating the advantages of both conventional small molecules and polymers for OPVs.

  11. High Performance Networks for High Impact Science

    SciTech Connect

    Scott, Mary A.; Bair, Raymond A.

    2003-02-13

    This workshop was the first major activity in developing a strategic plan for high-performance networking in the Office of Science. Held August 13 through 15, 2002, it brought together a selection of end users, especially representing the emerging, high-visibility initiatives, and network visionaries to identify opportunities and begin defining the path forward.

  12. Crack-free CH3NH3PbI3 layer via continuous dripping method for high-performance mesoporous perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Chen, Guo; Zheng, Jianghui; Zheng, LingLing; Yan, Xin; Lin, Huangding; Zhang, Fengyan

    2017-01-01

    The past five years have witnessed the uniquely rapid emergence of the mixed organic-inorganic halide perovskite solar cells. Here, a modified deposition process, continuous dripping method, is reported for fabricating high-performance and reproducible perovskite solar cells. We have systematically investigated the impact of different molar ratio of lead iodide (PbI2) to dimethylsulfoxide (DMSO) on the growth, morphology and crystallinity of CH3NH3PbI3 (MAPbI3) films obtained via this process. The high power conversion efficiency (PCE) perovskite solar cell originates in crack-free and highly crystallographic perovskite films prepared with optimized ratio of PbI2 to DMSO in first precursor solution. The best PCE of 17.76% and an average PCE of 16.37 ± 0.51% were obtained via this process. Moreover, the conventional solution two steps method was also carried out as a comparison to this process. This work provides a new simple solution approach to obtain high quality of perovskite thin films for high-performance and reproducible PSCs.

  13. High-Performance Polymer Solar Cells with PCE of 10.42% via Al-Doped ZnO Cathode Interlayer.

    PubMed

    Liu, Xiaohui; Li, Xiaodong; Li, Yaru; Song, Changjian; Zhu, Liping; Zhang, Wenjun; Wang, Hai-Qiao; Fang, Junfeng

    2016-09-01

    High-performance polymer solar cells incorporating a low-temperature-processed aluminum-doped zinc oxide (AZO) cathode interlayer are constructed with power conversion efficiency (PCE) of 10.42% based on PTB7-Th:PC71 BM blends (insensitive to the AZO thickness). Moreover, flexible devices on poly(ethylene terephthalate)/indium tin oxide substrates with PCE of 8.93% are also obtained, and welldistributed efficiency and good device stability are demonstrated as well.

  14. Screening antiallergic components from Carthamus tinctorius using rat basophilic leukemia 2H3 cell membrane chromatography combined with high-performance liquid chromatography and tandem mass spectrometry.

    PubMed

    Han, Shengli; Huang, Jing; Cui, Ronghua; Zhang, Tao

    2015-02-01

    Carthamus tinctorius, used in traditional Chinese medicine, has many pharmacological effects, such as anticoagulant effects, antioxidant effects, antiaging effects, regulation of gene expression, and antitumor effects. However, there is no report on the antiallergic effects of the components in C. tinctorius. In the present study, we investigated the antiallergic components of C. tinctorius and its mechanism of action. A rat basophilic leukemia 2H3/cell membrane chromatography coupled online with high-performance liquid chromatography and tandem mass spectrometry method was developed to screen antiallergic components from C. tinctorius. The screening results showed that Hydroxysafflor yellow A, from C. tinctorius, was the targeted component that retained on the rat basophilic leukemia 2H3/cell membrane chromatography column. We measured the amount of β-hexosaminidase and histamine released in mast cells and the key markers of degranulation. The release assays showed that Hydroxysafflor yellow A could attenuate the immunoglobulin E induced release of allergic cytokines without affecting cell viability from 1.0 to 50.0 μM. In conclusion, the established rat basophilic leukemia 2H3 cell membrane chromatography coupled with online high-performance liquid chromatography and tandem mass spectrometry method successfully screened and identified Hydroxysafflor yellow A from C. tinctorius as a potential antiallergic component. Pharmacological analysis elucidated that Hydroxysafflor yellow A is an effective natural component for inhibiting immunoglobulin E-antigen-mediated degranulation.

  15. Computer-aided 2D and 3D quantification of human stem cell fate from in vitro samples using Volocity high performance image analysis software.

    PubMed

    Piltti, Katja M; Haus, Daniel L; Do, Eileen; Perez, Harvey; Anderson, A J; Cummings, B J

    2011-11-01

    Accurate automated cell fate analysis of immunostained human stem cells from 2- and 3-dimensional (2D-3D) images would improve efficiency in the field of stem cell research. Development of an accurate and precise tool that reduces variability and the time needed for human stem cell fate analysis will improve productivity and interpretability of the data across research groups. In this study, we have created protocols for high performance image analysis software Volocity® to classify and quantify cytoplasmic and nuclear cell fate markers from 2D-3D images of human neural stem cells after in vitro differentiation. To enhance 3D image capture efficiency, we optimized the image acquisition settings of an Olympus FV10i® confocal laser scanning microscope to match our quantification protocols and improve cell fate classification. The methods developed in this study will allow for a more time efficient and accurate software based, operator validated, stem cell fate classification and quantification from 2D and 3D images, and yield the highest ≥94.4% correspondence with human recognized objects.

  16. High-Performance Liquid Chromatography

    NASA Astrophysics Data System (ADS)

    Reuhs, Bradley L.; Rounds, Mary Ann

    High-performance liquid chromatography (HPLC) developed during the 1960s as a direct offshoot of classic column liquid chromatography through improvements in the technology of columns and instrumental components (pumps, injection valves, and detectors). Originally, HPLC was the acronym for high-pressure liquid chromatography, reflecting the high operating pressures generated by early columns. By the late 1970s, however, high-performance liquid chromatography had become the preferred term, emphasizing the effective separations achieved. In fact, newer columns and packing materials offer high performance at moderate pressure (although still high pressure relative to gravity-flow liquid chromatography). HPLC can be applied to the analysis of any compound with solubility in a liquid that can be used as the mobile phase. Although most frequently employed as an analytical technique, HPLC also may be used in the preparative mode.

  17. High-performance Förster resonance energy transfer (FRET)-based dye-sensitized solar cells: rational design of quantum dots for wide solar-spectrum utilization.

    PubMed

    Lee, Eunwoo; Kim, Chanhoi; Jang, Jyongsik

    2013-07-29

    High-performance Förster resonance energy transfer (FRET)-based dye-sensitized solar cells (DSSCs) have been successfully fabricated through the optimized design of a CdSe/CdS quantum-dot (QD) donor and a dye acceptor. This simple approach enables quantum dots and dyes to simultaneously utilize the wide solar spectrum, thereby resulting in high conversion efficiency over a wide wavelength range. In addition, major parameters that affect the FRET interaction between donor and acceptor have been investigated including the fluorescent emission spectrum of QD, and the content of deposited QDs into the TiO2 matrix. By judicious control of these parameters, the FRET interaction can be readily optimized for high photovoltaic performance. In addition, the as-synthesized water-soluble quantum dots were highly dispersed in a nanoporous TiO2 matrix, thereby resulting in excellent contact between donors and acceptors. Importantly, high-performance FRET-based DSSCs can be prepared without any infrared (IR) dye synthetic procedures. This novel strategy offers great potential for applications of dye-sensitized solar cells.

  18. High Efficiency IMM Solar Cells

    NASA Astrophysics Data System (ADS)

    Sharps, P.; Cho, B.; Chumney, D.; Cornfeild, A.; Guzie, B.; Hazlett, D.; Lin, Y.; Mackos, C.; Patel, P.; Stan, M.; Steinfeldt, J.; Tourino, C.

    2014-08-01

    We review the status of currently available commercial multi-junction cells, review options for next generation high efficiency cell architectures, and present the latest developments on the inverted metamorphic multi- junction (IMM) solar cell. Over 20,000 IMM cells have been prototyped to date, and efficiencies of up to 37% have been measured. We present the most recent performance data, including the response to particle radiation. The IMM cell can be used in a number of rigid or flexible configurations, and considerable effort is currently focused on cell packaging and panel integration. We discuss several design options, including a "drop in" replacement for the current 29.5% ZTJ cell technology. We will also address the reliability and cost of the IMM cell.

  19. Correlation between Hierarchical Structure and Processing Control of Large-area Spray-coated Polymer Solar Cells toward High Performance.

    PubMed

    Huang, Yu-Ching; Tsao, Cheng-Si; Cha, Hou-Chin; Chuang, Chih-Min; Su, Chun-Jen; Jeng, U-Ser; Chen, Charn-Ying

    2016-01-28

    The formation mechanism of a spray-coated film is different from that of a spin-coated film. This study employs grazing incidence small- and wide-angle X-ray Scattering (GISAXS and GIWAXS, respectively) quantitatively and systematically to investigate the hierarchical structure and phase-separated behavior of a spray-deposited blend film. The formation of PCBM clusters involves mutual interactions with both the P3HT crystal domains and droplet boundary. The processing control and the formed hierarchical structure of the active layer in the spray-coated polymer/fullerene blend film are compared to those in the spin-coated film. How the different post-treatments, such as thermal and solvent vapor annealing, tailor the hierarchical structure of the spray-coated films is quantitatively studied. Finally, the relationship between the processing control and tailored BHJ structures and the performance of polymer solar cell devices is established here, taking into account the evolution of the device area from 1 × 0.3 and 1 × 1 cm(2). The formation and control of the special networks formed by the PCBM cluster and P3HT crystallites, respectively, are related to the droplet boundary. These structures are favorable for the transverse transport of electrons and holes.

  20. Tailoring the Mesoscopic TiO2 Layer: Concomitant Parameters for Enabling High-Performance Perovskite Solar Cells.

    PubMed

    Hwang, Taehyun; Lee, Sangheon; Kim, Jinhyun; Kim, Jaewon; Kim, Chunjoong; Shin, Byungha; Park, Byungwoo

    2017-12-01

    Architectural control over the mesoporous TiO2 film, a common electron-transport layer for organic-inorganic hybrid perovskite solar cells, is conducted by employing sub-micron sized polystyrene beads as sacrificial template. Such tailored TiO2 layer is shown to induce asymmetric enhancement of light absorption notably in the long-wavelength region with red-shifted absorption onset of perovskite, leading to ~20% increase of photocurrent and ~10% increase of power conversion efficiency. This enhancement is likely to be originated from the enlarged CH3NH3PbI3(Cl) grains residing in the sub-micron pores rather than from the effect of reduced perovskite-TiO2 interfacial area, which is supported from optical bandgap change, haze transmission of incident light, and one-diode model parameters correlated with the internal surface area of microporous TiO2 layers. With the templating strategy suggested, the necessity of proper hole-blocking method is discussed to prevent any direct contact of the large perovskite grains infiltrated into the intended pores of TiO2 scaffold, further mitigating the interfacial recombination and leading to ~20% improvement in power conversion efficiency compared with the control device using conventional solution-processed hole blocking TiO2. Thereby, the imperatives that originate from the structural engineering of the electron-transport layer are discussed to understand the governing elements for the improved device performance.

  1. Correlation between Hierarchical Structure and Processing Control of Large-area Spray-coated Polymer Solar Cells toward High Performance

    PubMed Central

    Huang, Yu-Ching; Tsao, Cheng-Si; Cha, Hou-Chin; Chuang, Chih-Min; Su, Chun-Jen; Jeng, U-Ser; Chen, Charn-Ying

    2016-01-01

    The formation mechanism of a spray-coated film is different from that of a spin-coated film. This study employs grazing incidence small- and wide-angle X-ray Scattering (GISAXS and GIWAXS, respectively) quantitatively and systematically to investigate the hierarchical structure and phase-separated behavior of a spray-deposited blend film. The formation of PCBM clusters involves mutual interactions with both the P3HT crystal domains and droplet boundary. The processing control and the formed hierarchical structure of the active layer in the spray-coated polymer/fullerene blend film are compared to those in the spin-coated film. How the different post-treatments, such as thermal and solvent vapor annealing, tailor the hierarchical structure of the spray-coated films is quantitatively studied. Finally, the relationship between the processing control and tailored BHJ structures and the performance of polymer solar cell devices is established here, taking into account the evolution of the device area from 1 × 0.3 and 1 × 1 cm2. The formation and control of the special networks formed by the PCBM cluster and P3HT crystallites, respectively, are related to the droplet boundary. These structures are favorable for the transverse transport of electrons and holes. PMID:26817585

  2. Tailoring the Mesoscopic TiO2 Layer: Concomitant Parameters for Enabling High-Performance Perovskite Solar Cells

    NASA Astrophysics Data System (ADS)

    Hwang, Taehyun; Lee, Sangheon; Kim, Jinhyun; Kim, Jaewon; Kim, Chunjoong; Shin, Byungha; Park, Byungwoo

    2017-01-01

    Architectural control over the mesoporous TiO2 film, a common electron-transport layer for organic-inorganic hybrid perovskite solar cells, is conducted by employing sub-micron sized polystyrene beads as sacrificial template. Such tailored TiO2 layer is shown to induce asymmetric enhancement of light absorption notably in the long-wavelength region with red-shifted absorption onset of perovskite, leading to 20% increase of photocurrent and 10% increase of power conversion efficiency. This enhancement is likely to be originated from the enlarged CH3NH3PbI3(Cl) grains residing in the sub-micron pores rather than from the effect of reduced perovskite-TiO2 interfacial area, which is supported from optical bandgap change, haze transmission of incident light, and one-diode model parameters correlated with the internal surface area of microporous TiO2 layers. With the templating strategy suggested, the necessity of proper hole-blocking method is discussed to prevent any direct contact of the large perovskite grains infiltrated into the intended pores of TiO2 scaffold, further mitigating the interfacial recombination and leading to 20% improvement in power conversion efficiency compared with the control device using conventional solution-processed hole blocking TiO2. Thereby, the imperatives that originate from the structural engineering of the electron-transport layer are discussed to understand the governing elements for the improved device performance.

  3. High Performance Ceramic Interconnect Material for Solid Oxide Fuel Cells (SOFCs): Ca- and Transition Metal-doped Yttrium Chromite

    SciTech Connect

    Yoon, Kyung J.; Stevenson, Jeffry W.; Marina, Olga A.

    2011-10-15

    The effect of transition metal substitution on thermal and electrical properties of Ca-doped yttrium chromite was investigated in relation to use as a ceramic interconnect in high temperature solid oxide fuel cells (SOFCs). 10 at% Co, 4 at% Ni, and 1 at% Cu substitution on B-site of 20 at% Ca-doped yttrium chromite led to a close match of thermal expansion coefficient (TEC) with that of 8 mol% yttria-stabilized zirconia (YSZ), and a single phase Y0.8Ca0.2Cr0.85Co0.1Ni0.04Cu0.01O3 remained stable between 25 and 1100 degree C over a wide oxygen partial pressure range. Doping with Cu significantly facilitated densification of yttrium chromite. Ni dopant improved both electrical conductivity and dimensional stability in reducing environments, likely through diminishing the oxygen vacancy formation. Substitution with Co substantially enhanced electrical conductivity in oxidizing atmosphere, which was attributed to an increase in charge carrier density and hopping mobility. Electrical conductivity of Y0.8Ca0.2Cr0.85Co0.1Ni0.04Cu0.01O3 at 900 degree C is 57 S/cm in air and 11 S/cm in fuel (pO2=5×10^-17 atm) environments. Chemical compatibility of doped yttrium chromite with other cell components was verified at the processing temperatures. Based on the chemical and dimensional stability, sinterability, and thermal and electrical properties, Y0.8Ca0.2Cr0.85Co0.1Ni0.04Cu0.01O3 is suggested as a promising SOFC ceramic interconnect to potentially overcome technical limitations of conventional acceptor-doped lanthanum chromites.

  4. Method for improving fuel cell performance

    DOEpatents

    Uribe, Francisco A.; Zawodzinski, Thomas

    2003-10-21

    A method is provided for operating a fuel cell at high voltage for sustained periods of time. The cathode is switched to an output load effective to reduce the cell voltage at a pulse width effective to reverse performance degradation from OH adsorption onto cathode catalyst surfaces. The voltage is stepped to a value of less than about 0.6 V to obtain the improved and sustained performance.

  5. Multilayer high performance insulation materials

    NASA Technical Reports Server (NTRS)

    Stuckey, J. M.

    1971-01-01

    A number of tests are required to evaluate both multilayer high performance insulation samples and the materials that comprise them. Some of the techniques and tests being employed for these evaluations and some of the results obtained from thermal conductivity tests, outgassing studies, effect of pressure on layer density tests, hypervelocity impact tests, and a multilayer high performance insulation ambient storage program at the Kennedy Space Center are presented.

  6. A High-Performing Sulfur-Tolerant and Redox-Stable Layered Perovskite Anode for Direct Hydrocarbon Solid Oxide Fuel Cells.

    PubMed

    Ding, Hanping; Tao, Zetian; Liu, Shun; Zhang, Jiujun

    2015-12-09

    Development of alternative ceramic oxide anode materials is a key step for direct hydrocarbon solid oxide fuel cells (SOFCs). Several lanthanide based layered perovskite-structured oxides demonstrate outstanding oxygen diffusion rate, favorable electronic conductivity, and good oxygen surface exchange kinetics, owing to A-site ordered structure in which lanthanide and alkali-earth ions occupy alternate (001) layers and oxygen vacancies are mainly located in [LnOx] planes. Here we report a nickel-free cation deficient layered perovskite, (PrBa)0.95(Fe0.9Mo0.1)2O5 + δ (PBFM), for SOFC anode, and this anode shows an outstanding performance with high resistance against both carbon build-up and sulfur poisoning in hydrocarbon fuels. At 800 °C, the layered PBFM showed high electrical conductivity of 59.2 S cm(-1) in 5% H2 and peak power densities of 1.72 and 0.54 W cm(-2) using H2 and CH4 as fuel, respectively. The cell exhibits a very stable performance under a constant current load of 1.0 A cm(-2). To our best knowledge, this is the highest performance of ceramic anodes operated in methane. In addition, the anode is structurally stable at various fuel and temperature conditions, suggesting that it is a feasible material candidate for high-performing SOFC anode.

  7. A High-Performing Sulfur-Tolerant and Redox-Stable Layered Perovskite Anode for Direct Hydrocarbon Solid Oxide Fuel Cells

    NASA Astrophysics Data System (ADS)

    Ding, Hanping; Tao, Zetian; Liu, Shun; Zhang, Jiujun

    2015-12-01

    Development of alternative ceramic oxide anode materials is a key step for direct hydrocarbon solid oxide fuel cells (SOFCs). Several lanthanide based layered perovskite-structured oxides demonstrate outstanding oxygen diffusion rate, favorable electronic conductivity, and good oxygen surface exchange kinetics, owing to A-site ordered structure in which lanthanide and alkali-earth ions occupy alternate (001) layers and oxygen vacancies are mainly located in [LnOx] planes. Here we report a nickel-free cation deficient layered perovskite, (PrBa)0.95(Fe0.9Mo0.1)2O5 + δ (PBFM), for SOFC anode, and this anode shows an outstanding performance with high resistance against both carbon build-up and sulfur poisoning in hydrocarbon fuels. At 800 °C, the layered PBFM showed high electrical conductivity of 59.2 S cm-1 in 5% H2 and peak power densities of 1.72 and 0.54 W cm-2 using H2 and CH4 as fuel, respectively. The cell exhibits a very stable performance under a constant current load of 1.0 A cm-2. To our best knowledge, this is the highest performance of ceramic anodes operated in methane. In addition, the anode is structurally stable at various fuel and temperature conditions, suggesting that it is a feasible material candidate for high-performing SOFC anode.

  8. A High-Performing Sulfur-Tolerant and Redox-Stable Layered Perovskite Anode for Direct Hydrocarbon Solid Oxide Fuel Cells

    PubMed Central

    Ding, Hanping; Tao, Zetian; Liu, Shun; Zhang, Jiujun

    2015-01-01

    Development of alternative ceramic oxide anode materials is a key step for direct hydrocarbon solid oxide fuel cells (SOFCs). Several lanthanide based layered perovskite-structured oxides demonstrate outstanding oxygen diffusion rate, favorable electronic conductivity, and good oxygen surface exchange kinetics, owing to A-site ordered structure in which lanthanide and alkali-earth ions occupy alternate (001) layers and oxygen vacancies are mainly located in [LnOx] planes. Here we report a nickel-free cation deficient layered perovskite, (PrBa)0.95(Fe0.9Mo0.1)2O5 + δ (PBFM), for SOFC anode, and this anode shows an outstanding performance with high resistance against both carbon build-up and sulfur poisoning in hydrocarbon fuels. At 800 °C, the layered PBFM showed high electrical conductivity of 59.2 S cm−1 in 5% H2 and peak power densities of 1.72 and 0.54 W cm−2 using H2 and CH4 as fuel, respectively. The cell exhibits a very stable performance under a constant current load of 1.0 A cm−2. To our best knowledge, this is the highest performance of ceramic anodes operated in methane. In addition, the anode is structurally stable at various fuel and temperature conditions, suggesting that it is a feasible material candidate for high-performing SOFC anode. PMID:26648509

  9. A facile, solvent vapor-fumigation-induced, self-repair recrystallization of CH3NH3PbI3 films for high-performance perovskite solar cells.

    PubMed

    Zhu, Weidong; Yu, Tao; Li, Faming; Bao, Chunxiong; Gao, Hao; Yi, Yong; Yang, Jie; Fu, Gao; Zhou, Xiaoxin; Zou, Zhigang

    2015-03-12

    A high-quality CH3NH3PbI3 film is crucial in the manufacture of a high-performance perovskite solar cell. Here, a recrystallization process via facile fumigation with DMF vapor has been successfully introduced to self-repair of CH3NH3PbI3 films with poor coverage and low crystallinity prepared by the commonly used one-step spin-coating method. We found that the CH3NH3PbI3 films with dendritic structures can spontaneously transform to the uniform ones with full coverage and high crystallinity by adjusting the cycles of the recrystallization process. The mesostructured perovskite solar cells based on these repaired CH3NH3PbI3 films showed reproducible optimal power conversion efficiency (PCE) of 11.15% and average PCE of 10.25±0.90%, which are much better than that of devices based on the non-repaired CH3NH3PbI3 films. In addition, the hysteresis phenomenon in the current-voltage test can also be effectively alleviated due to the quality of the films being improved in the optimized devices. Our work proved that the fumigation of solvent vapor can modify metal organic perovskite films such as CH3NH3PbI3. It offers a novel and attractive way to fabricate high-performance perovskite solar cells.

  10. High performance flexible heat pipes

    NASA Technical Reports Server (NTRS)

    Shaubach, R. M.; Gernert, N. J.

    1985-01-01

    A Phase I SBIR NASA program for developing and demonstrating high-performance flexible heat pipes for use in the thermal management of spacecraft is examined. The program combines several technologies such as flexible screen arteries and high-performance circumferential distribution wicks within an envelope which is flexible in the adiabatic heat transport zone. The first six months of work during which the Phase I contract goal were met, are described. Consideration is given to the heat-pipe performance requirements. A preliminary evaluation shows that the power requirement for Phase II of the program is 30.5 kilowatt meters at an operating temperature from 0 to 100 C.

  11. High-Performance Regular Perovskite Solar Cells Employing Low-Cost Poly(ethylenedioxythiophene) as a Hole-Transporting Material.

    PubMed

    Jiang, Xiaoqing; Yu, Ze; Zhang, Yuchen; Lai, Jianbo; Li, Jiajia; Gurzadyan, Gagik G; Yang, Xichuan; Sun, Licheng

    2017-02-13

    Herein, we successfully applied a facile in-situ solid-state synthesis of conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) as a HTM, directly on top of the perovskite layer, in conventional mesoscopic perovskite solar cells (PSCs) (n-i-p structure). The fabrication of the PEDOT film only involved a very simple in-situ solid-state polymerisation step from a monomer 2,5-dibromo-3,4-ethylenedioxythiophene (DBEDOT) made from a commercially available and cheap starting material. The ultraviolet photoelectron spectroscopy (UPS) demonstrated that the as-prepared PEDOT film possesses the highest occupied molecular orbital (HOMO) energy level of -5.5 eV, which facilitates an effective hole extraction from the perovskite absorber as confirmed by the photoluminescence measurements. Optimised PSC devices employing this polymeric HTM in combination with a low-cost vacuum-free carbon cathode (replacing the gold), show an excellent power conversion efficiency (PCE) of 17.0% measured at 100 mW cm(-2) illumination (AM 1.5G), with an open-circuit voltage (Voc) of 1.05 V, a short-circuit current density (Jsc) of 23.5 mA/cm(2) and a fill factor (FF) of 0.69, respectively. The present finding highlights the potential application of PEDOT made from solid-state polymerisation as a HTM for cost-effective and highly efficient PSCs.

  12. High-Performance Regular Perovskite Solar Cells Employing Low-Cost Poly(ethylenedioxythiophene) as a Hole-Transporting Material

    NASA Astrophysics Data System (ADS)

    Jiang, Xiaoqing; Yu, Ze; Zhang, Yuchen; Lai, Jianbo; Li, Jiajia; Gurzadyan, Gagik G.; Yang, Xichuan; Sun, Licheng

    2017-02-01

    Herein, we successfully applied a facile in-situ solid-state synthesis of conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) as a HTM, directly on top of the perovskite layer, in conventional mesoscopic perovskite solar cells (PSCs) (n-i-p structure). The fabrication of the PEDOT film only involved a very simple in-situ solid-state polymerisation step from a monomer 2,5-dibromo-3,4-ethylenedioxythiophene (DBEDOT) made from a commercially available and cheap starting material. The ultraviolet photoelectron spectroscopy (UPS) demonstrated that the as-prepared PEDOT film possesses the highest occupied molecular orbital (HOMO) energy level of ‑5.5 eV, which facilitates an effective hole extraction from the perovskite absorber as confirmed by the photoluminescence measurements. Optimised PSC devices employing this polymeric HTM in combination with a low-cost vacuum-free carbon cathode (replacing the gold), show an excellent power conversion efficiency (PCE) of 17.0% measured at 100 mW cm‑2 illumination (AM 1.5G), with an open-circuit voltage (Voc) of 1.05 V, a short-circuit current density (Jsc) of 23.5 mA/cm2 and a fill factor (FF) of 0.69, respectively. The present finding highlights the potential application of PEDOT made from solid-state polymerisation as a HTM for cost-effective and highly efficient PSCs.

  13. Investigation into the Advantages of Pure Perovskite Film without PbI2 for High Performance Solar Cell

    PubMed Central

    Kwon, Uisik; Hasan, Md Mehedi; Yin, Wenping; Kim, Dasom; Ha, Na Young; Lee, Soonil; Ahn, Tae Kyu; Park, Hui Joon

    2016-01-01

    In CH3NH3PbI3-based high efficiency perovskite solar cells (PSCs), tiny amount of PbI2 impurity was often found with the perovskite crystal. However, for two-step solution process-based perovskite films, most of findings have been based on the films having different morphologies between with and without PbI2. This was mainly due to the inferior morphology of pure perovskite film without PbI2, inevitably produced when the remaining PbI2 forced to be converted to perovskite, so advantages of pure perovskite photoactive layer without PbI2 impurity have been overlooked. In this work, we designed a printing-based two-step process, which could not only generate pure perovskite crystal without PbI2, but also provide uniform and full surface coverage perovskite film, of which nanoscale morphology was comparable to that prepared by conventional two-step solution process having residual PbI2. Our results showed that, in two-step solution process-based PSC, pure perovskite had better photon absorption and longer carrier lifetime, leading to superior photocurrent generation with higher power conversion efficiency. Furthermore, this process was further applicable to prepare mixed phase pure perovskite crystal without PbI2 impurity, and we showed that the additional merits such as extended absorption to longer wavelength, increased carrier lifetime and reduced carrier recombination could be secured. PMID:27786257

  14. Advanced cell technology for high performance Li-A1/FeS{sub 2} secondary batteries.

    SciTech Connect

    Henriksen, G. L.

    1998-07-10

    In early 1993. Argonne National Laboratory (ANL) initiated a major R and D effort to develop bipolar Li-Al/LiCl-LiBr-KBr/FeS{sub 2} batteries for electric vehicles, targeting the USABC Long-Term Goals. Significant advancements were achieved in the areas of (i) chemical purity, (ii) electrode and electrolyte additives, and (iii) peripheral seals. It was determined that key chemical constituents contained undesirable impurities. ANL developed new chemical processes for preparing Li{sub 2}S, FeS, and CoS{sub 2} that were >98.5% pure. We evaluated a large variety of electrode and electrolyte additives for reducing cell area specific impedance (ASI). Candidate positive electrode additives offered increased electronic conductivity, enhanced reaction kinetics, and/or improved porous electrode morphology. CoS{sub 2}, CuFeS{sub 2}, MgO, and graphite (fibers) were identified as the most beneficial impedance-reducing positive electrode additives. Although electronically conductive carbon and graphite additives produced measurable ASI reductions in the negative electrode, they degraded its structural integrity and were deemed impractical. Lil and LiF were identified as beneficial electrolyte additives, that enhance positive electrode kinetics. ANL refined its baseline metal/ceramic peripheral seal and increased its strength by a factor of three (achieving a safety factor >10). In parallel, ANL developed a high-strength advanced metal/ceramic seal that offers appreciable cost reductions.

  15. High-Performance Regular Perovskite Solar Cells Employing Low-Cost Poly(ethylenedioxythiophene) as a Hole-Transporting Material

    PubMed Central

    Jiang, Xiaoqing; Yu, Ze; Zhang, Yuchen; Lai, Jianbo; Li, Jiajia; Gurzadyan, Gagik G.; Yang, Xichuan; Sun, Licheng

    2017-01-01

    Herein, we successfully applied a facile in-situ solid-state synthesis of conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) as a HTM, directly on top of the perovskite layer, in conventional mesoscopic perovskite solar cells (PSCs) (n-i-p structure). The fabrication of the PEDOT film only involved a very simple in-situ solid-state polymerisation step from a monomer 2,5-dibromo-3,4-ethylenedioxythiophene (DBEDOT) made from a commercially available and cheap starting material. The ultraviolet photoelectron spectroscopy (UPS) demonstrated that the as-prepared PEDOT film possesses the highest occupied molecular orbital (HOMO) energy level of −5.5 eV, which facilitates an effective hole extraction from the perovskite absorber as confirmed by the photoluminescence measurements. Optimised PSC devices employing this polymeric HTM in combination with a low-cost vacuum-free carbon cathode (replacing the gold), show an excellent power conversion efficiency (PCE) of 17.0% measured at 100 mW cm−2 illumination (AM 1.5G), with an open-circuit voltage (Voc) of 1.05 V, a short-circuit current density (Jsc) of 23.5 mA/cm2 and a fill factor (FF) of 0.69, respectively. The present finding highlights the potential application of PEDOT made from solid-state polymerisation as a HTM for cost-effective and highly efficient PSCs. PMID:28211919

  16. Mass balance research for high electrochemical performance direct methanol fuel cells with reduced methanol crossover at various operating conditions

    NASA Astrophysics Data System (ADS)

    Park, Jun-Young; Lee, Jin-Hwa; Kang, SangKyun; Sauk, Jun-Ho; Song, Inseob

    Mass balance research in direct methanol fuel cells (DMFCs) provides a more practical method in characterizing the mass transport phenomena in a membrane electrode assembly (MEA). This method can be used to measure methanol utilization efficiency, water transport coefficient (WTC), and methanol to electricity conversion rate of a MEA in DMFCs. First, the vital design parameters of a MEA are recognized for achieving high methanol utilization efficiency with increased power density. In particular, the structural adjustment of anode diffusion layer by adding microporous layer (MPL) is a very effective way to decrease WTC with reduced methanol crossover due to the mass transfer limitation in the anode. On the other hand, the cathode MPL in the MEA design can contribute in decreasing methanol crossover. The change of structure of cathode diffusion layer is also found to be a very effective way in improving power density. In contrast, the WTC of DMFC MEAs remains virtually constant in the range of 3.4 and 3.6 irrespective of the change of the cathode GDL. The influence of operating condition on the methanol utilization efficiency, WTC, and methanol to electricity conversion rate is also presented and it is found that these mass balance properties are strongly affected by temperature, current density, methanol concentration, and the stoichiometry of fuel and air.

  17. Investigation into the Advantages of Pure Perovskite Film without PbI2 for High Performance Solar Cell.

    PubMed

    Kwon, Uisik; Hasan, Md Mehedi; Yin, Wenping; Kim, Dasom; Ha, Na Young; Lee, Soonil; Ahn, Tae Kyu; Park, Hui Joon

    2016-10-27

    In CH3NH3PbI3-based high efficiency perovskite solar cells (PSCs), tiny amount of PbI2 impurity was often found with the perovskite crystal. However, for two-step solution process-based perovskite films, most of findings have been based on the films having different morphologies between with and without PbI2. This was mainly due to the inferior morphology of pure perovskite film without PbI2, inevitably produced when the remaining PbI2 forced to be converted to perovskite, so advantages of pure perovskite photoactive layer without PbI2 impurity have been overlooked. In this work, we designed a printing-based two-step process, which could not only generate pure perovskite crystal without PbI2, but also provide uniform and full surface coverage perovskite film, of which nanoscale morphology was comparable to that prepared by conventional two-step solution process having residual PbI2. Our results showed that, in two-step solution process-based PSC, pure perovskite had better photon absorption and longer carrier lifetime, leading to superior photocurrent generation with higher power conversion efficiency. Furthermore, this process was further applicable to prepare mixed phase pure perovskite crystal without PbI2 impurity, and we showed that the additional merits such as extended absorption to longer wavelength, increased carrier lifetime and reduced carrier recombination could be secured.

  18. Investigation into the Advantages of Pure Perovskite Film without PbI2 for High Performance Solar Cell

    NASA Astrophysics Data System (ADS)

    Kwon, Uisik; Hasan, Md Mehedi; Yin, Wenping; Kim, Dasom; Ha, Na Young; Lee, Soonil; Ahn, Tae Kyu; Park, Hui Joon

    2016-10-01

    In CH3NH3PbI3-based high efficiency perovskite solar cells (PSCs), tiny amount of PbI2 impurity was often found with the perovskite crystal. However, for two-step solution process-based perovskite films, most of findings have been based on the films having different morphologies between with and without PbI2. This was mainly due to the inferior morphology of pure perovskite film without PbI2, inevitably produced when the remaining PbI2 forced to be converted to perovskite, so advantages of pure perovskite photoactive layer without PbI2 impurity have been overlooked. In this work, we designed a printing-based two-step process, which could not only generate pure perovskite crystal without PbI2, but also provide uniform and full surface coverage perovskite film, of which nanoscale morphology was comparable to that prepared by conventional two-step solution process having residual PbI2. Our results showed that, in two-step solution process-based PSC, pure perovskite had better photon absorption and longer carrier lifetime, leading to superior photocurrent generation with higher power conversion efficiency. Furthermore, this process was further applicable to prepare mixed phase pure perovskite crystal without PbI2 impurity, and we showed that the additional merits such as extended absorption to longer wavelength, increased carrier lifetime and reduced carrier recombination could be secured.

  19. Highly efficient hybrid solar cell using ZnO nanorods and assessment of changes in cell performance by varying the growth period

    NASA Astrophysics Data System (ADS)

    Mehrabian, Masood; Aslyousefzadeh, Sonya; Maleki, M. Hadi

    2015-05-01

    Zinc oxide nanorod arrays (ZnO NRs) were grown from ZnO seed-coated substrates in an aqueous solution by using the hydrothermal method for different growth periods varying from 5 min to 1 hour. The influence of the growth period of the ZnO nanorods on photovoltaic applications was studied in detail. Experimental results showed that utilization of the nanorod arrays lead to an enhanced the cell performance by increasing of light absorption and creation of a vertical direction for electron transport in the solar cells. A power conversion efficiency of 3.33% with an opencircuit voltage of V OC = 0.58 V, a short-circuit current of J SC = 10.05 mA/cm2 and a fill factor of FF = 54.35% was achieved for solar cells based on ZnO NRs with growth period of 20 min. Such solar cells with an optimal growth period are effective in light trapping, which leads to a significant enhancement in the absorption of light, and thereby, show an obvious increase in the power conversion efficiency.

  20. High performance dielectric materials development

    NASA Astrophysics Data System (ADS)

    Piche, Joe; Kirchner, Ted; Jayaraj, K.

    1994-09-01

    The mission of polymer composites materials technology is to develop materials and processing technology to meet DoD and commercial needs. The following are outlined in this presentation: high performance capacitors, high temperature aerospace insulation, rationale for choosing Foster-Miller (the reporting industry), the approach to the development and evaluation of high temperature insulation materials, and the requirements/evaluation parameters. Supporting tables and diagrams are included.

  1. High performance dielectric materials development

    NASA Technical Reports Server (NTRS)

    Piche, Joe; Kirchner, Ted; Jayaraj, K.

    1994-01-01

    The mission of polymer composites materials technology is to develop materials and processing technology to meet DoD and commercial needs. The following are outlined in this presentation: high performance capacitors, high temperature aerospace insulation, rationale for choosing Foster-Miller (the reporting industry), the approach to the development and evaluation of high temperature insulation materials, and the requirements/evaluation parameters. Supporting tables and diagrams are included.

  2. Analysis of nucleotide sugars from cell lysates by ion-pair solid-phase extraction and reversed-phase high-performance liquid chromatography.

    PubMed

    Räbinä, J; Mäki, M; Savilahti, E M; Järvinen, N; Penttilä, L; Renkonen, R

    2001-10-01

    Analysis of nucleotide sugar metabolism is essential in studying glycosylation in cells. Here we describe practical methods for both extraction of nucleotide sugars from cell lysates and for their analytical separation. Solid-phase extraction cartridges containing graphitized carbon can be used for the purification of nucleotide sugars by using triethylammonium acetate buffer as a ion-pairing reagent for decreasing retention. After that they are separated by high-performance liquid chromatography using a C18 reversed-phase column and the same ion-pairing reagent for increasing retention. These new sample preparation and analysis methods enable good separation of structurally similar sugar nucleotides, compatibility with rapid evaporative concentration, and possibility to automation. Monitoring the production of GDP-deoxyhexoses in genetically engineered yeast and native bacterial cells are described here as specific applications.

  3. Rapid differentiation of Ralstonia solanacearum avirulent and virulent strains by cell fractioning of an isolate using high performance liquid chromatography.

    PubMed

    Zheng, Xuefang; Zhu, Yujing; Liu, Bo; Yu, Qian; Lin, Naiquan

    2016-01-01

    Ralstonia solanacearum is one of the most destructive plant bacterial pathogens worldwide. The population dynamics and genetic stability are important issues, especially when an avirulent strain is used for biocontrol. In this study, we developed a rapid method to differentiate the virulent and avirulent strains of R. solanacearum and to predict the biocontrol efficiency of an avirulent strain using high performance liquid chromatography (HPLC). Three chromatographic peaks P1, P2 and P3 were observed on the HPLC spectra among 68 avirulent and 28 virulent R. solanacearum strains. Based on the HPLC peaks, 96 strains total were assigned to three categories. For avirulent strains, the intense peak is P1, while for virulent strains, P3 is the majority. Based on the HLPC spectra of R. solanacearum strains, a chromatography titer index (CTI) was established as CTIi = Si/(S1+S2+S3) × 100% (i represents an individual HPLC peak; S1, S2 and S3 represent peak areas of P1, P2 and P3, respectively). The avirulent strains had high values of CTI1 ranging from 63.6 to 100.0%, while the virulent strains displayed high values of CTI3 ranging from 90.2 to 100.0%. Biological inoculation studies of 68 avirulent strains revealed that the biocontrol efficacy was the best when CTI1 = 100%. The purity and genetic stability of R. solanacearum strains were confirmed in the P1 fraction of avirulent strain FJAT-1957 and P3 fraction of virulent strain FJAT-1925 after 30 generations of consecutive subculture. These results confirmed that fractioning by HPLC and their deduced CTI can be used for rapid and efficient evaluation and prediction of an isolate of R. solanacearum. To the best of our knowledge, this is the first report that HPLC fractioning can be used for rapid differentiation of virulent and avirulent strains of R. solanacearum.

  4. High-Performance TiO2 -Based Electron-Selective Contacts for Crystalline Silicon Solar Cells.

    PubMed

    Yang, Xinbo; Bi, Qunyu; Ali, Haider; Davis, Kristopher; Schoenfeld, Winston V; Weber, Klaus

    2016-07-01

    Thin TiO2 films are demonstrated to be an excellent electron-selective contact for crystalline silicon solar cells. An efficiency of 21.6% is achieved for crystalline silicon solar cells featuring a full-area TiO2 -based electron-selective contact.

  5. Fluorinated benzothiadiazole-based conjugated polymers for high-performance polymer solar cells without any processing additives or post-treatments.

    PubMed

    Wang, Ning; Chen, Zheng; Wei, Wei; Jiang, Zhenhua

    2013-11-13

    Thanks to their many favorable advantages, polymer solar cells exhibit great potential for next-generation clean energy sources. Herein, we have successfully designed and synthesized a series of new fluorinated benzothiadiazole-based conjugated copolymers PBDT(TEH)-DT(H)BTff (P1), PBDT(TEH)-DT(EH)BTff (P2), and PBDT(HDO)-DT(H)BTff (P3). The power conversion efficiencies of 4.46, 6.20, and 8.30% were achieved for P1-, P2-, and P3-based devices within ~100 nm thickness active layers under AM 1.5G illumination without any processing additives or post-treatments, respectively. The PCE of 8.30% for P3 is the highest value for the reported traditional single-junction polymer solar cells via a simple fabrication architecture without any additives or post-treatments. In addition, it is noteworthy that P3 also allows making high efficient polymer solar cells with high PCEs of 7.27 and 6.56% under the same condition for ~200 and ~300 nm thickness active layers, respectively. Excellent photoelectric properties and good solubility make polymer P3 become an alternative material for high-performance polymer solar cells.

  6. A high-performance photovoltaic concentrator array - The mini-dome Fresnel lens concentrator with 30 percent efficient GaAs/GaSb tandem cells

    NASA Technical Reports Server (NTRS)

    Piszczor, M. F.; Brinker, D. J.; Flood, D. J.; Avery, J. E.; Fraas, L. M.; Fairbanks, E. S.; Yerkes, J. W.; O'Neill, M. J.

    1991-01-01

    A high-efficiency, lightweight space photovoltaic concentrator array is described. Previous work on the minidome Fresnel lens concentrator concept is being integrated with Boeing's 30 percent efficient tandem GaAs/GaSb concentrator cells into a high-performance photovoltaic array. Calculations indicate that, in the near term, such an array can achieve 300 W/sq m at a specific power of 100 W/kg. Emphasis of the program has now shifted to integrating the concentrator lens, tandem cell, and supporting panel structure into a space-qualifiable array. A description is presented of the current status of component and prototype panel testing and the development of a flight panel for the Photovoltaic Array Space Power Plus Diagnostics (PASP PLUS) flight experiment.

  7. High-Performance Protonic Ceramic Fuel Cells with Thin-Film Yttrium-Doped Barium Cerate-Zirconate Electrolytes on Compositionally Gradient Anodes.

    PubMed

    Bae, Kiho; Lee, Sewook; Jang, Dong Young; Kim, Hyun Joong; Lee, Hunhyeong; Shin, Dongwook; Son, Ji-Won; Shim, Joon Hyung

    2016-04-13

    In this study, we used a compositionally gradient anode functional layer (AFL) consisting of Ni-BaCe(0.5)Zr(0.35)Y(0.15)O(3-δ) (BCZY) with increasing BCZY contents toward the electrolyte-anode interface for high-performance protonic ceramic fuel cells. It is identified that conventional homogeneous AFLs fail to stably accommodate a thin film of BCZY electrolyte. In contrast, a dense 2 μm thick BCZY electrolyte was successfully deposited onto the proposed gradient AFL with improved adhesion. A fuel cell containing this thin electrolyte showed a promising maximum peak power density of 635 mW cm(-2) at 600 °C, with an open-circuit voltage of over 1 V. Impedance analysis confirmed that minimizing the electrolyte thickness is essential for achieving a high power output, suggesting that the anode structure is important in stably accommodating thin electrolytes.

  8. A high-performance photovoltaic concentrator array - The mini-dome Fresnel lens concentrator with 30 percent efficient GaAs/GaSb tandem cells

    NASA Astrophysics Data System (ADS)

    Piszczor, M. F.; Brinker, D. J.; Flood, D. J.; Avery, J. E.; Fraas, L. M.; Fairbanks, E. S.; Yerkes, J. W.; O'Neill, M. J.

    A high-efficiency, lightweight space photovoltaic concentrator array is described. Previous work on the minidome Fresnel lens concentrator concept is being integrated with Boeing's 30 percent efficient tandem GaAs/GaSb concentrator cells into a high-performance photovoltaic array. Calculations indicate that, in the near term, such an array can achieve 300 W/sq m at a specific power of 100 W/kg. Emphasis of the program has now shifted to integrating the concentrator lens, tandem cell, and supporting panel structure into a space-qualifiable array. A description is presented of the current status of component and prototype panel testing and the development of a flight panel for the Photovoltaic Array Space Power Plus Diagnostics (PASP PLUS) flight experiment.

  9. INL High Performance Building Strategy

    SciTech Connect

    Jennifer D. Morton

    2010-02-01

    High performance buildings, also known as sustainable buildings and green buildings, are resource efficient structures that minimize the impact on the environment by using less energy and water, reduce solid waste and pollutants, and limit the depletion of natural resources while also providing a thermally and visually comfortable working environment that increases productivity for building occupants. As Idaho National Laboratory (INL) becomes the nation’s premier nuclear energy research laboratory, the physical infrastructure will be established to help accomplish this mission. This infrastructure, particularly the buildings, should incorporate high performance sustainable design features in order to be environmentally responsible and reflect an image of progressiveness and innovation to the public and prospective employees. Additionally, INL is a large consumer of energy that contributes to both carbon emissions and resource inefficiency. In the current climate of rising energy prices and political pressure for carbon reduction, this guide will help new construction project teams to design facilities that are sustainable and reduce energy costs, thereby reducing carbon emissions. With these concerns in mind, the recommendations described in the INL High Performance Building Strategy (previously called the INL Green Building Strategy) are intended to form the INL foundation for high performance building standards. This revised strategy incorporates the latest federal and DOE orders (Executive Order [EO] 13514, “Federal Leadership in Environmental, Energy, and Economic Performance” [2009], EO 13423, “Strengthening Federal Environmental, Energy, and Transportation Management” [2007], and DOE Order 430.2B, “Departmental Energy, Renewable Energy, and Transportation Management” [2008]), the latest guidelines, trends, and observations in high performance building construction, and the latest changes to the Leadership in Energy and Environmental Design

  10. Development and Characterization of a High Performance Thin-Film Planar Solid-Oxide Fuel Cell Stack

    SciTech Connect

    Chung, B W; Chervin, C N; Haslam, J J; Pham, A; Glass, R S

    2004-04-07

    A planar solid oxide fuel cell (SOFC) was fabricated using a tape-cast Ni/yttria-stabilized zirconia (YSZ) anode support, a YSZ thin film electrolyte, and a composite cathode of YSZ and (La{sub 0.85}Sr{sup 0.14}){sub 0.98}MnO{sub 3} (LSM). Using pure hydrogen as the fuel gas, a three cell stack with a cross-flow design and external manifolds produced peak power densities of 0.85 W/cm{sup 2} and 0.41 W/cm{sup 2} at 800 C and 700 C, respectively. Using wet methane as the fuel gas, the stack produced a peak power density of 0.22 W/cm{sup 2} at 700 C. Individual cells in the stack showed identical current-voltage (I -V) characteristics. Stack lifetime was limited because of degradation of the cells from oxidation products coming from the metallic interconnect used.

  11. Simple-design ultra-low phase noise microwave frequency synthesizers for high-performing Cs and Rb vapor-cell atomic clocks

    NASA Astrophysics Data System (ADS)

    François, B.; Calosso, C. E.; Abdel Hafiz, M.; Micalizio, S.; Boudot, R.

    2015-09-01

    We report on the development and characterization of novel 4.596 GHz and 6.834 GHz microwave frequency synthesizers devoted to be used as local oscillators in high-performance Cs and Rb vapor-cell atomic clocks. The key element of the synthesizers is a custom module that integrates a high spectral purity 100 MHz oven controlled quartz crystal oscillator frequency-multiplied to 1.6 GHz with minor excess noise. Frequency multiplication, division, and mixing stages are then implemented to generate the exact output atomic resonance frequencies. Absolute phase noise performances of the output 4.596 GHz signal are measured to be -109 and -141 dB rad2/Hz at 100 Hz and 10 kHz Fourier frequencies, respectively. The phase noise of the 6.834 GHz signal is -105 and -138 dB rad2/Hz at 100 Hz and 10 kHz offset frequencies, respectively. The performances of the synthesis chains contribute to the atomic clock short term fractional frequency stability at a level of 3.1 × 10-14 for the Cs cell clock and 2 × 10-14 for the Rb clock at 1 s averaging time. This value is comparable with the clock shot noise limit. We describe the residual phase noise measurements of key components and stages to identify the main limitations of the synthesis chains. The residual frequency stability of synthesis chains is measured to be at the 10-15 level for 1 s integration time. Relevant advantages of the synthesis design, using only commercially available components, are to combine excellent phase noise performances, simple-architecture, low-cost, and to be easily customized for signal output generation at 4.596 GHz or 6.834 GHz for applications to Cs or Rb vapor-cell frequency standards.

  12. Simple-design ultra-low phase noise microwave frequency synthesizers for high-performing Cs and Rb vapor-cell atomic clocks

    SciTech Connect

    François, B.; Calosso, C. E.; Micalizio, S.; Abdel Hafiz, M.; Boudot, R.

    2015-09-15

    We report on the development and characterization of novel 4.596 GHz and 6.834 GHz microwave frequency synthesizers devoted to be used as local oscillators in high-performance Cs and Rb vapor-cell atomic clocks. The key element of the synthesizers is a custom module that integrates a high spectral purity 100 MHz oven controlled quartz crystal oscillator frequency-multiplied to 1.6 GHz with minor excess noise. Frequency multiplication, division, and mixing stages are then implemented to generate the exact output atomic resonance frequencies. Absolute phase noise performances of the output 4.596 GHz signal are measured to be −109 and −141 dB rad{sup 2}/Hz at 100 Hz and 10 kHz Fourier frequencies, respectively. The phase noise of the 6.834 GHz signal is −105 and −138 dB rad{sup 2}/Hz at 100 Hz and 10 kHz offset frequencies, respectively. The performances of the synthesis chains contribute to the atomic clock short term fractional frequency stability at a level of 3.1 × 10{sup −14} for the Cs cell clock and 2 × 10{sup −14} for the Rb clock at 1 s averaging time. This value is comparable with the clock shot noise limit. We describe the residual phase noise measurements of key components and stages to identify the main limitations of the synthesis chains. The residual frequency stability of synthesis chains is measured to be at the 10{sup −15} level for 1 s integration time. Relevant advantages of the synthesis design, using only commercially available components, are to combine excellent phase noise performances, simple-architecture, low-cost, and to be easily customized for signal output generation at 4.596 GHz or 6.834 GHz for applications to Cs or Rb vapor-cell frequency standards.

  13. Simple-design ultra-low phase noise microwave frequency synthesizers for high-performing Cs and Rb vapor-cell atomic clocks.

    PubMed

    François, B; Calosso, C E; Abdel Hafiz, M; Micalizio, S; Boudot, R

    2015-09-01

    We report on the development and characterization of novel 4.596 GHz and 6.834 GHz microwave frequency synthesizers devoted to be used as local oscillators in high-performance Cs and Rb vapor-cell atomic clocks. The key element of the synthesizers is a custom module that integrates a high spectral purity 100 MHz oven controlled quartz crystal oscillator frequency-multiplied to 1.6 GHz with minor excess noise. Frequency multiplication, division, and mixing stages are then implemented to generate the exact output atomic resonance frequencies. Absolute phase noise performances of the output 4.596 GHz signal are measured to be -109 and -141 dB rad(2)/Hz at 100 Hz and 10 kHz Fourier frequencies, respectively. The phase noise of the 6.834 GHz signal is -105 and -138 dB rad(2)/Hz at 100 Hz and 10 kHz offset frequencies, respectively. The performances of the synthesis chains contribute to the atomic clock short term fractional frequency stability at a level of 3.1 × 10(-14) for the Cs cell clock and 2 × 10(-14) for the Rb clock at 1 s averaging time. This value is comparable with the clock shot noise limit. We describe the residual phase noise measurements of key components and stages to identify the main limitations of the synthesis chains. The residual frequency stability of synthesis chains is measured to be at the 10(-15) level for 1 s integration time. Relevant advantages of the synthesis design, using only commercially available components, are to combine excellent phase noise performances, simple-architecture, low-cost, and to be easily customized for signal output generation at 4.596 GHz or 6.834 GHz for applications to Cs or Rb vapor-cell frequency standards.

  14. High Performance Bulk Thermoelectric Materials

    SciTech Connect

    Ren, Zhifeng

    2013-03-31

    Over 13 plus years, we have carried out research on electron pairing symmetry of superconductors, growth and their field emission property studies on carbon nanotubes and semiconducting nanowires, high performance thermoelectric materials and other interesting materials. As a result of the research, we have published 104 papers, have educated six undergraduate students, twenty graduate students, nine postdocs, nine visitors, and one technician.

  15. High performance bilateral telerobot control.

    PubMed

    Kline-Schoder, Robert; Finger, William; Hogan, Neville

    2002-01-01

    Telerobotic systems are used when the environment that requires manipulation is not easily accessible to humans, as in space, remote, hazardous, or microscopic applications or to extend the capabilities of an operator by scaling motions and forces. The Creare control algorithm and software is an enabling technology that makes possible guaranteed stability and high performance for force-feedback telerobots. We have developed the necessary theory, structure, and software design required to implement high performance telerobot systems with time delay. This includes controllers for the master and slave manipulators, the manipulator servo levels, the communication link, and impedance shaping modules. We verified the performance using both bench top hardware as well as a commercial microsurgery system.

  16. High Efficiency Cell Development

    NASA Technical Reports Server (NTRS)

    Carbajal, B. G.

    1979-01-01

    The specific activity was to improve the tandem junction Cell (TJC) as a high efficiency solar cell. The TJC development was to be consistent with module assembly and should contribute to the overall goals of the Low-Cost Solar Array Project. During 1978, TJC efficiency improved from approximately 11 percent to approximately 16 percent (AMI). Photogenerated current densities in excess of 42 mA/sq cm were observed at AMO. Open circuit voltages as high as 0.615 V were measured at AMO. Fill factor was only 0.68 - 0.75 due to a nonoptimum metal contact design. A device model was conceived in which the solar cell is modelled as a transitor. There are virtually no interconnect or packaging factor systems and the TJC is compatible with all conventional module fabrication systems. A modification of the TJC, the Front Surface Field (FSF) cell, was also explored.

  17. Cell shunt resistance and photovoltaic module performance

    SciTech Connect

    McMahon, T.J.; Basso, T.S.; Rummel, S.R.

    1996-09-01

    Shunt resistance of cells in photovoltaic modules can affect module power output and could indicate flawed manufacturing processes and reliability problems. The authors describe a two-terminal diagnostic method to directly measure the shunt resistance of individual cells in a series-connected module non-intrusively, without deencapsulation. Peak power efficiency vs. light intensity was measured on a 12-cell, series-connected, single crystalline module having relatively high cell shunt resistances. The module was remeasured with 0.5-, 1-, and 2-ohm resistors attached across each cell to simulate shunt resistances of several emerging technologies. Peak power efficiencies decreased dramatically at lower light levels. Using the PSpice circuit simulator, they verified that cell shunt and series resistances can indeed be responsible for the observed peak power efficiency vs. intensity behavior. They discuss the effect of basic cell diode parameters, i.e., shunt resistance, series resistance, and recombination losses, on PV module performance as a function of light intensity.

  18. High Red Blood Cell Count

    MedlinePlus

    Symptoms High red blood cell count By Mayo Clinic Staff A high red blood cell count is an increase in oxygen-carrying cells in your bloodstream. Red blood cells transport oxygen from your lungs to tissues throughout ...

  19. High performance FDTD algorithm for GPGPU supercomputers

    NASA Astrophysics Data System (ADS)

    Zakirov, Andrey; Levchenko, Vadim; Perepelkina, Anastasia; Zempo, Yasunari

    2016-10-01

    An implementation of FDTD method for solution of optical and other electrodynamic problems of high computational cost is described. The implementation is based on the LRnLA algorithm DiamondTorre, which is developed specifically for GPGPU hardware. The specifics of the DiamondTorre algorithms for staggered grid (Yee cell) and many-GPU devices are shown. The algorithm is implemented in the software for real physics calculation. The software performance is estimated through algorithms parameters and computer model. The real performance is tested on one GPU device, as well as on the many-GPU cluster. The performance of up to 0.65 • 1012 cell updates per second for 3D domain with 0.3 • 1012 Yee cells total is achieved.

  20. High performance and durable nanostructured TiN supported Pt50-Ru50 anode catalyst for direct methanol fuel cell (DMFC)

    NASA Astrophysics Data System (ADS)

    Patel, Prasad Prakash; Datta, Moni Kanchan; Jampani, Prashanth H.; Hong, Daeho; Poston, James A.; Manivannan, Ayyakkannu; Kumta, Prashant N.

    2015-10-01

    The design of high performance and durable electro-catalyst has been of particular interest for DMFC anodes. Pt(Ru) has been considered the most active DMFC anode catalyst. In this work, the reaction kinetics of Pt(Ru) electro-catalyst has been improved by synthesizing high active surface area Pt50(Ru50) catalyst supported on highly conductive nanostructured titanium nitride, TiN. The Pt(Ru)/TiN has been synthesized by a complexed sol-gel (CSG) process using non-halide precursors of Pt and Ru. High surface area Pt(Ru)/TiN shows promising electrochemical performance for methanol oxidation, showing ∼52% improved catalytic activity at ∼0.65 V (vs NHE) and stability/durability in comparison with commercial JM-Pt(Ru). Single cell DMFC performance shows 56% improved maximum power density and superior electrochemical stability for CSG-Pt(Ru)/TiN compared to that of commercial JM-Pt(Ru). This is attributed to the uniform dispersion of Pt(Ru) achieved on the nanostructured TiN (support) yielding higher electrochemical active surface area and lower charge transfer resistance than commercial JM-Pt(Ru). Thus, the present study demonstrates the potential of nanostructured TiN as a support for Pt(Ru) based anode electro-catalyst for DMFC applications.

  1. Deep absorbing porphyrin small molecule for high-performance organic solar cells with very low energy losses.

    PubMed

    Gao, Ke; Li, Lisheng; Lai, Tianqi; Xiao, Liangang; Huang, Yuan; Huang, Fei; Peng, Junbiao; Cao, Yong; Liu, Feng; Russell, Thomas P; Janssen, René A J; Peng, Xiaobin

    2015-06-17

    We designed and synthesized the DPPEZnP-TEH molecule, with a porphyrin ring linked to two diketopyrrolopyrrole units by ethynylene bridges. The resulting material exhibits a very low energy band gap of 1.37 eV and a broad light absorption to 907 nm. An open-circuit voltage of 0.78 V was obtained in bulk heterojunction (BHJ) organic solar cells, showing a low energy loss of only 0.59 eV, which is the first report that small molecule solar cells show energy losses <0.6 eV. The optimized solar cells show remarkable external quantum efficiency, short circuit current, and power conversion efficiency up to 65%, 16.76 mA/cm(2), and 8.08%, respectively, which are the best values for BHJ solar cells with very low energy losses. Additionally, the morphology of DPPEZnP-TEH neat and blend films with PC61BM was studied thoroughly by grazing incidence X-ray diffraction, resonant soft X-ray scattering, and transmission electron microscopy under different fabrication conditions.

  2. One-step Conjugation of Glycyrrhetinic Acid to Cationic Polymers for High-performance Gene Delivery to Cultured Liver Cell

    PubMed Central

    Cong, Yue; Shi, Bingyang; Lu, Yiqing; Wen, Shihui; Chung, Roger; Jin, Dayong

    2016-01-01

    Gene therapies represent a promising therapeutic route for liver cancers, but major challenges remain in the design of safe and efficient gene-targeting delivery systems. For example, cationic polymers show good transfection efficiency as gene carriers, but are hindered by cytotoxicity and non-specific targeting. Here we report a versatile method of one-step conjugation of glycyrrhetinic acid (GA) to reduce cytotoxicity and improve the cultured liver cell -targeting capability of cationic polymers. We have explored a series of cationic polymer derivatives by coupling different ratios of GA to polypropylenimine (PPI) dendrimer. These new gene carriers (GA-PPI dendrimer) were systematically characterized by UV-vis,1H NMR titration, electron microscopy, zeta potential, dynamic light-scattering, gel electrophoresis, confocal microscopy and flow cytometry. We demonstrate that GA-PPI dendrimers can efficiently load and protect pDNA, via formation of nanostructured GA-PPI/pDNA polyplexes. With optimal GA substitution degree (6.31%), GA-PPI dendrimers deliver higher liver cell transfection efficiency (43.5% vs 22.3%) and lower cytotoxicity (94.3% vs 62.5%, cell viability) than the commercial bench-mark DNA carrier bPEI (25kDa) with cultured liver model cells (HepG2). There results suggest that our new GA-PPI dendrimer are a promising candidate gene carrier for targeted liver cancer therapy. PMID:26902258

  3. Effect of highly ordered single-crystalline TiO2 nanowire length on the photovoltaic performance of dye-sensitized solar cells.

    PubMed

    Zhou, Zheng-ji; Fan, Jun-qi; Wang, Xia; Zhou, Wen-hui; Du, Zu-liang; Wu, Si-xin

    2011-11-01

    One-dimensional semiconductor nanostructures grown directly onto transparent conducting oxide substrates with a high internal surface area are most desirable for high-efficiency dye-sensitized solar cells (DSSCs). Herein, we present a multicycle hydrothermal synthesis process to produce vertically aligned, single crystal rutile TiO(2) nanowires with different lengths between 1 and 8 μm for application as the working electrode in DSSCs. Optimum performance was obtained with a TiO(2) nanowire length of 2.0 μm, which may be ascribed to a smaller nanowire diameter with a high internal surface area and better optical transmittance with an increase in the incident light intensity on the N719 dye; as well as a firm connection at the FTO/TiO(2) nanowire interface.

  4. High Performance Tools And Technologies

    SciTech Connect

    Collette, M R; Corey, I R; Johnson, J R

    2005-01-24

    This goal of this project was to evaluate the capability and limits of current scientific simulation development tools and technologies with specific focus on their suitability for use with the next generation of scientific parallel applications and High Performance Computing (HPC) platforms. The opinions expressed in this document are those of the authors, and reflect the authors' current understanding and functionality of the many tools investigated. As a deliverable for this effort, we are presenting this report describing our findings along with an associated spreadsheet outlining current capabilities and characteristics of leading and emerging tools in the high performance computing arena. This first chapter summarizes our findings (which are detailed in the other chapters) and presents our conclusions, remarks, and anticipations for the future. In the second chapter, we detail how various teams in our local high performance community utilize HPC tools and technologies, and mention some common concerns they have about them. In the third chapter, we review the platforms currently or potentially available to utilize these tools and technologies on to help in software development. Subsequent chapters attempt to provide an exhaustive overview of the available parallel software development tools and technologies, including their strong and weak points and future concerns. We categorize them as debuggers, memory checkers, performance analysis tools, communication libraries, data visualization programs, and other parallel development aides. The last chapter contains our closing information. Included with this paper at the end is a table of the discussed development tools and their operational environment.

  5. High performance PbS quantum dot sensitized solar cells via electric field assisted in situ chemical deposition on modulated TiO2 nanotube arrays.

    PubMed

    Tao, Liang; Xiong, Yan; Liu, Hong; Shen, Wenzhong

    2014-01-21

    Quantum dot sensitized solar cells (QDSSCs) are attractive photovoltaic devices due to their simplicity and low material requirements. However, efforts to realize high efficiencies in QDSSCs have often been offset by complicated processes and expensive or toxic materials, significantly limiting their useful application. In this work, we have realized for the first time, high performance PbS QDSSCs based on TiO2 nanotube arrays (NTAs) via an in situ chemical deposition method controlled by a low electric field. An efficiency, η, of ~3.41% under full sun illumination has been achieved, which is 133.6% higher than the best result previously reported for a simple system without doping or co-sensitizing, and comparable to systems with additional chemicals. Furthermore, a high open-circuit voltage (0.64 V), short-circuit current (8.48 mA cm(-2)) and fill factor (0.63) have been achieved. A great increase in the quantity of the loaded quantum dots (QDs) in the NTAs was obtained from the in situ electric field assisted chemical bath deposition (EACBD) process, which was the most significant contributing factor with respect to the high JSC. The high VOC and FF have been attributed to a much shorter electron path, less structural and electronic defects, and lower recombination in the ordered TiO2 NTAs produced by oscillating anodic voltage. Besides, the optimal film thickness (~4 μm) based on the NTAs was much thinner than that of the control cell based on nanoporous film (~30.0 μm). This investigation can hopefully offer an effective way of realizing high performance QDSSCs and QD growth/installation in other nanostructures as well.

  6. Influence of D/A ratio on photovoltaic performance of a highly efficient polymer solar cell system.

    PubMed

    Guo, Xia; Zhang, Maojie; Tan, Jiahui; Zhang, Shaoqing; Huo, Lijun; Hu, Wenping; Li, Yongfang; Hou, Jianhui

    2012-12-18

    A new copolymer PIDTDTQx based on indacenodithiophene and quinoxaline is synthesized and characterized. The correlation between the D/A ratio, mobility, and photovoltaic properties, as well as morphology of the D/A blend based on a PIDTDTQx:PC(70) BM system is investigated. The power conversion efficiency of the polymer solar cells based on PIDTDTQx/PC(70) BM (1:4, w/w) reaches 7.51%.

  7. High-performance cadmium sulphide-based planar perovskite solar cell and the cadmium sulphide/perovskite interfaces

    NASA Astrophysics Data System (ADS)

    Peng, Haitao; Sun, Weihai; Li, Yunlong; Yan, Weibo; Yu, Pingrong; Zhou, Huanping; Bian, Zuqiang; Huang, Chunhui

    2016-04-01

    Planar heterojunction perovskite solar cell is one of the most competitive photovoltaic technologies, while charge transport materials play a crucial role. We successfully demonstrated an effective electron transport material, namely chemical bath deposited cadmium sulphide (CdS) film under low temperature, in perovskite-based solar cells. Power conversion efficiency of 16.1% has been achieved, which is comparable to that of devices based on TiO2 film prepared via low-temperature processes. Electronic impedance spectra reveal that the CdS-based device presents a higher recombination resistance than TiO2-based devices, which reduces carrier recombination and increases the open circuit voltage. The interface between CdS and perovskite was characterized with improved characteristics when compared to TiO2, e.g., efficient carrier extraction and reduced surface defect-associated degradation in the devices, which help to alleviate anomalous hysteresis and long-term instability. Furthermore, the entire device was fabricated via solution process with a processing temperature below 100°C, suggesting a promising method of further development of perovskite solar cells and commercial manufacturing.

  8. Combined Protein A and size exclusion high performance liquid chromatography for the single-step measurement of mAb, aggregates and host cell proteins.

    PubMed

    Gjoka, Xhorxhi; Schofield, Mark; Cvetkovic, Aleksandar; Gantier, Rene

    2014-12-01

    Quantification of monoclonal antibody (mAb) monomer, mAb aggregates, and host cell proteins (HCPs) is critical for the optimization of the mAb production process. The present work describes a single high throughput analytical tool capable of tracking the concentration of mAb, mAb aggregate and HCPs in a growing cell culture batch. By combining two analytical HPLC methods, Protein A affinity and size-exclusion chromatography (SEC), it is possible to detect a relative increase or decrease in the concentration of all three entities simultaneously. A comparison of the combined Protein A-SEC assay to SEC alone was performed, demonstrating that it can be useful tool for the quantification of mAb monomer along with trending data for mAb aggregate and HCP. Furthermore, the study shows that the Protein A-SEC method is at least as accurate as other commonly used analytical methods such as ELISA and Bradford.

  9. High performance pyroelectric infrared detector

    NASA Astrophysics Data System (ADS)

    Hu, Xu; Luo, Haosu; Ji, Yulong; Yang, Chunli

    2015-10-01

    Single infrared detector made with Relaxative ferroelectric crystal(PMNT) present excellence performance. In this paper include detector capacitance, characteristic of frequency--response, characteristic of detectivity. The measure result show that detectivity of detector made with relaxative ferroelectric crystal(PMNT) exceed three times than made with LT, the D*achieved than 1*109cmHz0.5W-1. The detector will be applied on NDIR spectrograph, FFT spectrograph and so on. The high performance pyroelectric infrared detector be developed that will be broadened application area of infrared detector.

  10. Morphologic improvement of the PBDTTT-C and PC71BM blend film with mixed solvent for high-performance inverted polymer solar cells.

    PubMed

    Chen, Hsin-Yi; Lin, Shang-Hong; Sun, Jen-Yu; Hsu, Chi-Hsing; Lan, Shiang; Lin, Ching-Fuh

    2013-12-06

    Tracing the evolution of the bulk heterojunction structure, a dramatic promotion in the efficiency of polymer solar cells has been obtained in recent years. The active layer morphology of low-bandgap polymer solar cells is one of the critical factors for high-efficiency performance. In the past, the relationship between morphology improvement and the device's characteristics (such as efficiency, fill factor and short-circuit current) in low-bandgap polymer solar cells has been studied intensively with regards to the conventional structure. Here we demonstrate the morphologic improvement of the poly[(4,8-bis-(2-ethylhexyloxy)-benzo[1,2-b;4,5-b']dithiophene)-2,6-diyl-alt-(4-(2-ethylhexanoyl)-thieno[3,4-b]thiopene)-2,6-diyl]/[6,6]-phenyl C71 butyric acid methyl ester (PBDTTT-C/PC71BM) blend film for inverted solar cells. By utilizing a mixed solvent of dichlorobenzene/chlorobenzene with (1,8-diiodooctane) additives, the device efficiency can be significantly enhanced, from 0.92% to 4.43%. This enhancement is attributed to active layer morphologic improvement promoting carrier transport. Furthermore, the thickness optimization of the active layer and the electron blocking layer MoO3 further contributes to efficiency. The device performance could be achieved with an efficiency as high as 5.35%, an open-circuit voltage of 0.70 V, a short-circuit current density of 13.5 mA cm(-2), and a fill factor of 57%.

  11. Enhanced performance of polybenzimidazole-based high temperature proton exchange membrane fuel cell with gas diffusion electrodes prepared by automatic catalyst spraying under irradiation technique

    NASA Astrophysics Data System (ADS)

    Su, Huaneng; Pasupathi, Sivakumar; Bladergroen, Bernard Jan; Linkov, Vladimir; Pollet, Bruno G.

    2013-11-01

    Gas diffusion electrodes (GDEs) prepared by a novel automatic catalyst spraying under irradiation (ACSUI) technique are investigated for improving the performance of phosphoric acid (PA)-doped polybenzimidazole (PBI) high temperature proton exchange membrane fuel cell (PEMFC). The physical properties of the GDEs are characterized by pore size distribution and scanning electron microscopy (SEM). The electrochemical properties of the membrane electrode assembly (MEA) with the GDEs are evaluated and analyzed by polarization curve, cyclic voltammetry (CV) and electrochemistry impedance spectroscopy (EIS). Effects of PTFE binder content, PA impregnation and heat treatment on the GDEs are investigated to determine the optimum performance of the single cell. At ambient pressure and 160 °C, the maximum power density can reach 0.61 W cm-2, and the current density at 0.6 V is up to 0.38 A cm-2, with H2/air and a platinum loading of 0.5 mg cm-2 on both electrodes. The MEA with the GDEs shows good stability for fuel cell operating in a short term durability test.

  12. High Gradient Induction Cell

    SciTech Connect

    Caporaso, G J

    2004-11-29

    A concept being developed for high current electron beams may have application to HEDP and is described here. It involves the use of planar Blumlein stacks placed inside an induction cell. The output end of the Blumlein stack is applied across a high gradient insulator (HGI). These insulators have been used successfully in the presence of kilo Ampere-level electron beam currents for tens of nanoseconds at gradients of 20 MV/meter.

  13. Toward high performance graphene fibers.

    PubMed

    Chen, Li; He, Yuling; Chai, Songgang; Qiang, Hong; Chen, Feng; Fu, Qiang

    2013-07-07

    Two-dimensional graphene and graphene-based materials have attracted tremendous interest, hence much attention has been drawn to exploring and applying their exceptional characteristics and properties. Integration of graphene sheets into macroscopic fibers is a very important way for their application and has received increasing interest. In this study, neat and macroscopic graphene fibers were continuously spun from graphene oxide (GO) suspensions followed by chemical reduction. By varying wet-spinning conditions, a series of graphene fibers were prepared, then, the structural features, mechanical and electrical performances of the fibers were investigated. We found the orientation of graphene sheets, the interaction between inter-fiber graphene sheets and the defects in the fibers have a pronounced effect on the properties of the fibers. Graphene fibers with excellent mechanical and electrical properties will yield great advances in high-tech applications. These findings provide guidance for the future production of high performance graphene fibers.

  14. High performance ammonium nitrate propellant

    NASA Technical Reports Server (NTRS)

    Anderson, F. A. (Inventor)

    1979-01-01

    A high performance propellant having greatly reduced hydrogen chloride emission is presented. It is comprised of: (1) a minor amount of hydrocarbon binder (10-15%), (2) at least 85% solids including ammonium nitrate as the primary oxidizer (about 40% to 70%), (3) a significant amount (5-25%) powdered metal fuel, such as aluminum, (4) a small amount (5-25%) of ammonium perchlorate as a supplementary oxidizer, and (5) optionally a small amount (0-20%) of a nitramine.

  15. High-performance sports medicine.

    PubMed

    Speed, Cathy

    2013-02-01

    High performance sports medicine involves the medical care of athletes, who are extraordinary individuals and who are exposed to intensive physical and psychological stresses during training and competition. The physician has a broad remit and acts as a 'medical guardian' to optimise health while minimising risks. This review describes this interesting field of medicine, its unique challenges and priorities for the physician in delivering best healthcare.

  16. Reduced Toxicity High Performance Monopropellant

    DTIC Science & Technology

    2011-09-01

    distribution unlimited Propellant Performance Characteristics LMP - 103S AF-M315E Hydrazine Flame Temperature 1600ºC 1900ºC 600 oC Isp 252 (theor)235 sec...public release; distribution unlimited Compatibility and Handling Propellant LMP - 103S AF-M315E Thruster Materials Compatibility High combustion...detonation Bikini gauges indicate > 103 kPa @ 50ft Fragments thrown > 185 m Punched hole in end cap 12 Distribution A: Approved for public

  17. High-performance permanent magnets.

    PubMed

    Goll, D; Kronmüller, H

    2000-10-01

    High-performance permanent magnets (pms) are based on compounds with outstanding intrinsic magnetic properties as well as on optimized microstructures and alloy compositions. The most powerful pm materials at present are RE-TM intermetallic alloys which derive their exceptional magnetic properties from the favourable combination of rare earth metals (RE = Nd, Pr, Sm) with transition metals (TM = Fe, Co), in particular magnets based on (Nd.Pr)2Fe14B and Sm2(Co,Cu,Fe,Zr)17. Their development during the last 20 years has involved a dramatic improvement in their performance by a factor of > 15 compared with conventional ferrite pms therefore contributing positively to the ever-increasing demand for pms in many (including new) application fields, to the extent that RE-TM pms now account for nearly half of the worldwide market. This review article first gives a brief introduction to the basics of ferromagnetism to confer an insight into the variety of (permanent) magnets, their manufacture and application fields. We then examine the rather complex relationship between the microstructure and the magnetic properties for the two highest-performance and most promising pm materials mentioned. By using numerical micromagnetic simulations on the basis of the Finite Element technique the correlation can be quantitatively predicted, thus providing a powerful tool for the further development of optimized high-performance pms.

  18. High-performance permanent magnets

    NASA Astrophysics Data System (ADS)

    Goll, D.; Kronmüller, H.

    High-performance permanent magnets (pms) are based on compounds with outstanding intrinsic magnetic properties as well as on optimized microstructures and alloy compositions. The most powerful pm materials at present are RE-TM intermetallic alloys which derive their exceptional magnetic properties from the favourable combination of rare earth metals (RE=Nd, Pr, Sm) with transition metals (TM=Fe, Co), in particular magnets based on (Nd,Pr)2Fe14B and Sm2(Co,Cu,Fe,Zr)17. Their development during the last 20 years has involved a dramatic improvement in their performance by a factor of >15 compared with conventional ferrite pms therefore contributing positively to the ever-increasing demand for pms in many (including new) application fields, to the extent that RE-TM pms now account for nearly half of the worldwide market. This review article first gives a brief introduction to the basics of ferromagnetism to confer an insight into the variety of (permanent) magnets, their manufacture and application fields. We then examine the rather complex relationship between the microstructure and the magnetic properties for the two highest-performance and most promising pm materials mentioned. By using numerical micromagnetic simulations on the basis of the Finite Element technique the correlation can be quantitatively predicted, thus providing a powerful tool for the further development of optimized high-performance pms.

  19. Superiority of branched side chains in spontaneous nanowire formation: exemplified by poly(3-2-methylbutylthiophene) for high-performance solar cells.

    PubMed

    Chen, Hsieh-Chih; Wu, I-Che; Hung, Jui-Hsiang; Chen, Fu-Je; Chen, I-Wen P; Peng, Yung-Kang; Lin, Chao-Sung; Chen, Chun-Hsien; Sheng, Yu-Jane; Tsao, Heng-Kwong; Chou, Pi-Tai

    2011-04-18

    One-dimensional nanostructures containing heterojunctions by conjugated polymers, such as nanowires, are expected to greatly facilitate efficient charge transfer in bulk-heterojunction (BHJ) solar cells. Thus, a combined theoretical and experimental approach is pursued to explore spontaneous nanowire formation. A dissipative particle dynamics simulation is first performed to study the morphologies formed by rodlike polymers with various side-chain structures. The results surprisingly predict that conjugated polymers with branched side chains are well suited to form thermodynamically stable nanowires. Proof of this concept is provided via the design and synthesis of a branched polymer of regioregular poly(3-2-methylbutylthiophene) (P3MBT), which successfully demonstrates highly dense nanowire formation free from any stringent conditions and stratagies. In BHJ solar cells fabricated using a blend of P3MBT and [6,6]-phenyl-C71-butyric acid methyl ester (PC(71) BM), P3MBT polymers are self-organized into highly crystalline nanowires with a d(100) spacing of 13.30 Å. The hole mobility of the P3MBT:PC(71) BM (1:0.5 by weight) blend film reaches 3.83 × 10(-4) cm(2) V(-1) s(-1) , and the maximum incident photon-to-current efficiency reaches 68%. The results unambiguously prove the spontaneous formation of nanowires using solution-processable conjugated polymers with branched alkyl side chains in BHJ solar cells.

  20. Bacteria-Affinity 3D Macroporous Graphene/MWCNTs/Fe3O4 Foams for High-Performance Microbial Fuel Cells.

    PubMed

    Song, Rong-Bin; Zhao, Cui-E; Jiang, Li-Ping; Abdel-Halim, Essam Sayed; Zhang, Jian-Rong; Zhu, Jun-Jie

    2016-06-29

    Promoting the performance of microbial fuel cells (MFCs) relies heavily on the structure design and composition tailoring of electrode materials. In this work, three-dimensional (3D) macroporous graphene foams incorporated with intercalated spacer of multiwalled carbon nanotubes (MWCNTs) and bacterial anchor of Fe3O4 nanospheres (named as G/MWCNTs/Fe3O4 foams) were first synthesized and used as anodes for Shewanella-inoculated microbial fuel cells (MFCs). Thanks to the macroporous structure of 3D graphene foams, the expanded electrode surface by MWCNTs spacing, as well as the high affinity of Fe3O4 nanospheres toward Shewanella oneidensis MR-1, the anode exhibited high bacterial loading capability. In addition to spacing graphene nanosheets for accommodating bacterial cells, MWCNTs paved a smoother way for electron transport in the electrode substrate of MFCs. Meanwhile, the embedded bioaffinity Fe3O4 nanospheres capable of preserving the bacterial metabolic activity provided guarantee for the long-term durability of the MFCs. With these merits, the constructed MFC possessed significantly higher power output and stronger stability than that with conventional graphite rod anode.

  1. Surface-initiated poly(3-methylthiophene) as a hole-transport layer for polymer solar cells with high performance.

    PubMed

    Yang, Liqiang; Sontag, S Kyle; LaJoie, Travis W; Li, Wentao; Huddleston, N Eric; Locklin, Jason; You, Wei

    2012-10-24

    In this work, uniform poly(3-methylthiophene) (P3MT) films are fabricated on indium-tin oxide (ITO) surfaces using surface-initiated Kumada catalyst-transfer polycondensation (SI-KCTP) from surface-bound arylnickel(II) bromide initiators. The P3MT interfacial layer is covalently bound to the ITO surface, thereby preventing possible delamination during the processing of additional layers. These surface-bound P3MT layers successfully serve as the hole-transport layer for solution-processed bulk heterojunction polymer solar cells. Efficiencies greater than 5% have been achieved on devices based on doped thin P3MT interfacial layers. Moreover, because of the excellent stability of the covalently immobilized P3MT on ITO substrates, devices based on reused P3MT/ITO substrates extracted from old devices exhibit efficiencies similar to those of the original devices.

  2. Verification of high performance two-dimensional particle-in-cell simulations of low-temperature plasmas

    NASA Astrophysics Data System (ADS)

    Leggate, Huw; Turner, Miles

    2016-09-01

    We discuss a two-dimensional implementation of the particle-in-cell algorithm with Monte Carlo collisions. This implementation is designed for multiprocessor environments in which each processor is assumed to offer vector capabilities and multiple execution threads. An appropriate implementation therefore combines OpenMP to exploit multithreading with MPI to coupled computing nodes. This approach promises to achieve accelerations of a least a factor of several hundred, relative to to a simple serial implementation. However, the complexity involved also offers many opportunities for error, and makes correctness demonstrations especially desirable. In this presentation we discuss the characteristics of this parallel implementation, and we describe a suite of verification tests that collectively create a strong presumption that the code is correct. Work supported by the EUROfusion consortium.

  3. High-performance flexible perovskite solar cells exploiting Zn2SnO4 prepared in solution below 100 °C

    PubMed Central

    Shin, Seong Sik; Yang, Woon Seok; Noh, Jun Hong; Suk, Jae Ho; Jeon, Nam Joong; Park, Jong Hoon; Kim, Ju Seong; Seong, Won Mo; Seok, Sang Il

    2015-01-01

    Fabricating inorganic–organic hybrid perovskite solar cells (PSCs) on plastic substrates broadens their scope for implementation in real systems by imparting portability, conformability and allowing high-throughput production, which is necessary for lowering costs. Here we report a new route to prepare highly dispersed Zn2SnO4 (ZSO) nanoparticles at low-temperature (<100 °C) for the development of high-performance flexible PSCs. The introduction of the ZSO film significantly improves transmittance of flexible polyethylene naphthalate/indium-doped tin oxide (PEN/ITO)-coated substrate from ∼75 to ∼90% over the entire range of wavelengths. The best performing flexible PSC, based on the ZSO and CH3NH3PbI3 layer, exhibits steady-state power conversion efficiency (PCE) of 14.85% under AM 1.5G 100 mW·cm−2 illumination. This renders ZSO a promising candidate as electron-conducting electrode for the highly efficient flexible PSC applications. PMID:26096202

  4. Improving the performance of quantum dot-sensitized solar cells by using TiO2 nanosheets with exposed highly reactive facets.

    PubMed

    You, Ting; Jiang, Lei; Han, Ke-Li; Deng, Wei-Qiao

    2013-06-21

    We demonstrated CdS quantum dot-sensitized solar cells (QDSSCs) based on anatase TiO2 nanosheets with exposed {001} and {100} facets. Under the illumination of one Sun (AM 1.5 G, 100 mW cm(-2)), the photovoltaic conversion efficiencies were 2.29% for a QDSSC based on {001}-TiO2 nanosheets, 2.18% for a QDSSC based on {100}-TiO2 nanosheets, and 1.46% for a QDSSC based on commercial Degussa P25. It was found that the exposed highly reactive facets of TiO2 nanosheets had a remarkable influence on the QDSSCs due to their better adsorption abilities for QDs, leading to the high short current density and the enhanced photovoltaic performance.

  5. High Performance Parallel Computational Nanotechnology

    NASA Technical Reports Server (NTRS)

    Saini, Subhash; Craw, James M. (Technical Monitor)

    1995-01-01

    At a recent press conference, NASA Administrator Dan Goldin encouraged NASA Ames Research Center to take a lead role in promoting research and development of advanced, high-performance computer technology, including nanotechnology. Manufacturers of leading-edge microprocessors currently perform large-scale simulations in the design and verification of semiconductor devices and microprocessors. Recently, the need for this intensive simulation and modeling analysis has greatly increased, due in part to the ever-increasing complexity of these devices, as well as the lessons of experiences such as the Pentium fiasco. Simulation, modeling, testing, and validation will be even more important for designing molecular computers because of the complex specification of millions of atoms, thousands of assembly steps, as well as the simulation and modeling needed to ensure reliable, robust and efficient fabrication of the molecular devices. The software for this capacity does not exist today, but it can be extrapolated from the software currently used in molecular modeling for other applications: semi-empirical methods, ab initio methods, self-consistent field methods, Hartree-Fock methods, molecular mechanics; and simulation methods for diamondoid structures. In as much as it seems clear that the application of such methods in nanotechnology will require powerful, highly powerful systems, this talk will discuss techniques and issues for performing these types of computations on parallel systems. We will describe system design issues (memory, I/O, mass storage, operating system requirements, special user interface issues, interconnects, bandwidths, and programming languages) involved in parallel methods for scalable classical, semiclassical, quantum, molecular mechanics, and continuum models; molecular nanotechnology computer-aided designs (NanoCAD) techniques; visualization using virtual reality techniques of structural models and assembly sequences; software required to

  6. A high precision gas flow cell for performing in situ neutron studies of local atomic structure in catalytic materials

    NASA Astrophysics Data System (ADS)

    Olds, Daniel; Page, Katharine; Paecklar, Arnold; Peterson, Peter F.; Liu, Jue; Rucker, Gerald; Ruiz-Rodriguez, Mariano; Olsen, Michael; Pawel, Michelle; Overbury, Steven H.; Neilson, James R.

    2017-03-01

    Gas-solid interfaces enable a multitude of industrial processes, including heterogeneous catalysis; however, there are few methods available for studying the structure of this interface under operating conditions. Here, we present a new sample environment for interrogating materials under gas-flow conditions using time-of-flight neutron scattering under both constant and pulse probe gas flow. Outlined are descriptions of the gas flow cell and a commissioning example using the adsorption of N2 by Ca-exchanged zeolite-X (Na78-2xCaxAl78Si144O384,x ≈ 38). We demonstrate sensitivities to lattice contraction and N2 adsorption sites in the structure, with both static gas loading and gas flow. A steady-state isotope transient kinetic analysis of N2 adsorption measured simultaneously with mass spectrometry is also demonstrated. In the experiment, the gas flow through a plugged-flow gas-solid contactor is switched between 15N2 and 14N2 isotopes at a temperature of 300 K and a constant pressure of 1 atm; the gas flow and mass spectrum are correlated with the structure factor determined from event-based neutron total scattering. Available flow conditions, sample considerations, and future applications are discussed.

  7. Glycerol-mediated nanostructure modification leading to improved transparency of porous polymeric scaffolds for high performance 3D cell imaging.

    PubMed

    Zhao, Shan; Shen, Zhiyuan; Wang, Jingyu; Li, Xiaokang; Zeng, Yang; Wang, Bingjie; He, Yonghong; Du, Yanan

    2014-07-14

    Glycerol is among the most commonly used optical clearing agents for tissues clearance largely due to refractive index (RI) matching between glycerol and the submerged tissues. Here we applied glycerol as structure modifier at both macroscopic (as porogen) and nanoscopic (as nanostructure ameliorant) scales to fabricate transparent porous scaffolds made from poly(ethylene glycol) (PEG) as well as other widely used biomaterials (e.g., PLGA, PA, or gelatin), whose nanostructures, in the scale of light wavelength, dominantly improved the optical transmittance of the scaffolds even when immersed in RI mismatched medium (e.g., culture medium or water). We further exploited the clearing mechanisms based on Mie scattering theory, illustrating that conformational changes of polymer chains induced by solvent effects of glycerol enhanced the anisotropy (i.e., directional alignment) of the nanostructures, leading to reduced crystallinity and scattering of the resulted PEG scaffolds. Our findings represent the first and systematic demonstration with both experimental and theoretical evidence in effectively clearing porous polymeric scaffolds by mechanisms other than RI matching, which could tackle the limitations of current optical imaging of cells cultured within three-dimensional (3D) opaque porous scaffolds, such as poor visibility, low spatial resolution, and small penetration depth.

  8. High Performance Pulse Tube Cryocoolers

    NASA Astrophysics Data System (ADS)

    Olson, J. R.; Roth, E.; Champagne, P.; Evtimov, B.; Nast, T. C.

    2008-03-01

    Lockheed Martin's Advanced Technology Center has been developing pulse tube cryocoolers for more than ten years. Recent innovations include successful testing of four-stage coldheads, no-load temperature below 4 K, and the recent development of a high-efficiency compressor. This paper discusses the predicted performance of single and multiple stage pulse tube coldheads driven by our new 6 kg "M5Midi" compressor, which is capable of 90% efficiency with 200 W input power, and a maximum input power of 1000 W. This compressor retains the simplicity of earlier LM-ATC compressors: it has a moving magnet and an external electrical coil, minimizing organics in the working gas and requiring no electrical penetrations through the pressure wall. Motor losses were minimized during design, resulting in a simple, easily-manufactured compressor with state-of-the-art motor efficiency. The predicted cryocooler performance is presented as simple formulae, allowing an engineer to include the impact of a highly-optimized cryocooler into a full system analysis. Performance is given as a function of the heat rejection temperature and the cold tip temperatures and cooling loads.

  9. Fluorene-based co-polymer with high hole mobility and device performance in bulk heterojunction organic solar cells.

    PubMed

    Watters, Darren C; Yi, Hunan; Pearson, Andrew J; Kingsley, James; Iraqi, Ahmed; Lidzey, David

    2013-07-25

    A new donor-acceptor polymer based on 9,9-dioctylfluorene is synthesized and tested in organic photovoltaic devices. Results show that the polymer exhibits good solubility in a range of organic solvents and has a high hole mobility. When blended with a PC70 BM acceptor and fabricated into a bulk heterojunction, photovoltaic devices having a maximum power conversion efficiency (PCE) of 6.2% and a peak external quantum efficiency of 74% are created. Such efficiencies are realized without any necessity for solvent additives or thermal annealing protocols.

  10. Low temperature synthesis of hierarchical TiO2 nanostructures for high performance perovskite solar cells by pulsed laser deposition

    SciTech Connect

    Yang, Bin; Mahjouri-Samani, Masoud; Rouleau, Christopher M.; Geohegan, David B.; Xiao, Kai

    2016-06-10

    A promising way to advance perovskite solar cells is to improve the quality of the electron transport material e.g., titanium dioxide (TiO2) in a direction that increases electron transport and extraction. Although dense TiO2 films are easily grown in solution, efficient electron extraction suffers due to a lack of interfacial contact area with the perovskite. Conversely, mesoporous films do offer high surface-area-to-volume ratios, thereby promoting efficient electron extraction, but their morphology is relatively difficult to control via conventional solution synthesis methods. Here, a pulsed laser deposition method was used to assemble TiO2 nanoparticles into TiO2 hierarchical nanoarchitectures having the anatase crystal structure, and prototype solar cells employing these structures yielded power conversion efficiencies of ~ 14%. Our approach demonstrates a way to grow high aspect-ratio TiO2 nanostructures for improved interfacial contact between TiO2 and perovskite materials, leading to high electron-hole pair separation and electron extraction efficiencies for superior photovoltaic performance. In addition, compared to conventional solution-processed TiO2 films that require 500 °C to obtain a good crystallinity, our relatively low temperature (300 °C) TiO2 processing method may promote reduced energy-consumption during device fabrication as well as enable compatibility with various flexible polymer substrates.

  11. Copper oxide supported on platinum nanosheets array: High performance carbon-free cathode for lithium-oxygen cells

    NASA Astrophysics Data System (ADS)

    Ang, Huixiang; Zhang, Wenyu; Tan, Hui Teng; Chen, Hongyu; Yan, Qingyu

    2015-10-01

    In this study, we present a new strategy on controlling the interaction between the Li2O2-catalyst interfaces through improving the affinity of catalyst surface towards Li2O2 molecules. A seed-mediated growth approach has been developed to synthesize Pt nanosheets on the stainless steel mesh using Fe as the seed. We further grow a uniform layer of metallic Cu nanoparticles on Pt nanosheets surface through electrochemical deposition. The Cu is converted to CuO by exposing it to air under ambient condition. Such strategy has effectively solved the problem of non-uniform deposition of CuO on Pt surface that arises from the poor interaction of oxides on metals. By converting the oxide-on-metal to metal-on-metal system, a relatively uniform of CuO can be successfully deposited on Pt nanosheets. The CuO on Pt provides multiple nucleation sites on the surface of the cathode, which facilitates the formation of Li2O2 thin layer in the discharge cycle. This process plays a crucial role in achieving a high round-trip efficiency of 88%, reversible specific capacity of 1648 mAh g-1 (683 mAh g-1 with respect to the total electrode mass including Li2O2) at 100 mA g-1 and maintains capacity retention of 98% during the 60th cycle at a high current density of 1 A g-1.

  12. High performance aerated lagoon systems

    SciTech Connect

    Rich, L.

    1999-08-01

    At a time when less money is available for wastewater treatment facilities and there is increased competition for the local tax dollar, regulatory agencies are enforcing stricter effluent limits on treatment discharges. A solution for both municipalities and industry is to use aerated lagoon systems designed to meet these limits. This monograph, prepared by a recognized expert in the field, provides methods for the rational design of a wide variety of high-performance aerated lagoon systems. Such systems range from those that can be depended upon to meet secondary treatment standards alone to those that, with the inclusion of intermittent sand filters or elements of sequenced biological reactor (SBR) technology, can also provide for nitrification and nutrient removal. Considerable emphasis is placed on the use of appropriate performance parameters, and an entire chapter is devoted to diagnosing performance failures. Contents include: principles of microbiological processes, control of algae, benthal stabilization, design for CBOD removal, design for nitrification and denitrification in suspended-growth systems, design for nitrification in attached-growth systems, phosphorus removal, diagnosing performance.

  13. Primary cells - A forecast of performance

    NASA Astrophysics Data System (ADS)

    Hazkany, H.; Peled, E.; Raz, B.

    Of the several existing methods of exploratory forecasting the method of trend extrapolation has been chosen. This method is built upon the assumption that excepting technological revolution, technological characteristics develop in an orderly manner and that development trends are predictable. Attention is given to the Leclanche cell, the alkaline cell, the zinc silver oxide cell, the magnesium cell, the mercury cell, zinc-air cells, and Li cells. It is found that safe commercial high rate cells will have an energy density which is 10 to 20 percent lower than the value corresponding to the maximum capability of the technology. Cells with about 500-630 W-hr/kg are expected to penetrate the market at 1990. Low and high temperature performance and shelf life have almost reached the desirable levels and no vast improvement is expected or needed. Power density is expected to grow to the 500-1000 W/kg range (pulses), but safety problems must be resolved before commercialization.

  14. High Performance Proactive Digital Forensics

    NASA Astrophysics Data System (ADS)

    Alharbi, Soltan; Moa, Belaid; Weber-Jahnke, Jens; Traore, Issa

    2012-10-01

    With the increase in the number of digital crimes and in their sophistication, High Performance Computing (HPC) is becoming a must in Digital Forensics (DF). According to the FBI annual report, the size of data processed during the 2010 fiscal year reached 3,086 TB (compared to 2,334 TB in 2009) and the number of agencies that requested Regional Computer Forensics Laboratory assistance increasing from 689 in 2009 to 722 in 2010. Since most investigation tools are both I/O and CPU bound, the next-generation DF tools are required to be distributed and offer HPC capabilities. The need for HPC is even more evident in investigating crimes on clouds or when proactive DF analysis and on-site investigation, requiring semi-real time processing, are performed. Although overcoming the performance challenge is a major goal in DF, as far as we know, there is almost no research on HPC-DF except for few papers. As such, in this work, we extend our work on the need of a proactive system and present a high performance automated proactive digital forensic system. The most expensive phase of the system, namely proactive analysis and detection, uses a parallel extension of the iterative z algorithm. It also implements new parallel information-based outlier detection algorithms to proactively and forensically handle suspicious activities. To analyse a large number of targets and events and continuously do so (to capture the dynamics of the system), we rely on a multi-resolution approach to explore the digital forensic space. Data set from the Honeynet Forensic Challenge in 2001 is used to evaluate the system from DF and HPC perspectives.

  15. HIGH PERFORMANCE EBIS FOR RHIC.

    SciTech Connect

    ALESSI,J.; BEEBE, E.; GOULD, O.; KPONOU, A.; LOCKEY, R.; PIKIN, A.; RAPARIA, D.; RITTER, J.; SNYDSTRUP, L.

    2007-06-25

    An Electron Beam Ion Source (EBIS), capable of producing high charge states and high beam currents of any heavy ion species in short pulses, is ideally suited for injection into a synchrotron. An EBIS-based, high current, heavy ion preinjector is now being built at Brookhaven to provide increased capabilities for the Relativistic Heavy Ion Collider (RHIC), and the NASA Space Radiation Laboratory (NSRL). Benefits of the new preinjector include the ability to produce ions of any species, fast switching between species to serve the simultaneous needs of multiple programs, and lower operating and maintenance costs. A state-of-the-art EBIS, operating with an electron beam current of up to 10 A, and producing multi-milliamperes of high charge state heavy ions, has been developed at Brookhaven, and has been operating very successfully on a test bench for several years. The present performance of this high-current EBIS is presented, along with details of the design of the scaled-up EBIS for RHIC, and the status of its construction. Other aspects of the project, including design and construction of the heavy ion RFQ, Linac, and matching beamlines, are also mentioned.

  16. Nano-molybdenum carbide/carbon nanotubes composite as bifunctional anode catalyst for high-performance Escherichia coli-based microbial fuel cell.

    PubMed

    Wang, Yaqiong; Li, Bin; Cui, Dan; Xiang, Xingde; Li, Weishan

    2014-01-15

    A novel electrode, carbon felt-supported nano-molybdenum carbide (Mo2C)/carbon nanotubes (CNTs) composite, was developed as platinum-free anode of high performance microbial fuel cell (MFC). The Mo2C/CNTs composite was synthesized by using the microwave-assisted method with Mo(CO)6 as a single source precursor and characterized by using X-ray diffraction and transmission electron microscopy. The activity of the composite as anode electrocatalyst of MFC based on Escherichia coli (E. coli) was investigated with cyclic voltammetry, chronoamperometry, and cell discharge test. It is found that the carbon felt electrode with 16.7 wt% Mo Mo2C/CNTs composite exhibits a comparable electrocatalytic activity to that with 20 wt% platinum as anode electrocatalyst. The superior performance of the developed platinum-free electrode can be ascribed to the bifunctional electrocatalysis of Mo2C/CNTs for the conversion of organic substrates into electricity through bacteria. The composite facilitates the formation of biofilm, which is necessary for the electron transfer via c-type cytochrome and nanowires. On the other hand, the composite exhibits the electrocatalytic activity towards the oxidation of hydrogen, which is the common metabolite of E. coli.

  17. Performance of a novel sieving matrix of poly(vinyl alcohol)/acrylamide copolymer in electrophoretic separations of high molecular weight proteins from red cell membrane.

    PubMed

    Matte, Alessandro; Sola, Laura; Chiari, Marcella; Tomelleri, Carlo; Consonni, Roberto; Turrini, Franco; Franceschi, Lucia De

    2014-04-01

    The analysis of high molecular weight (HMW) proteins from complex mixtures is still a challenge in proteomics. This work introduces a novel hydrogel obtained by the copolymerization of an allyl-PVA derivative with acrylamide and bisacrylamide and applies this matrix to the electrophoretic separation of HMW proteins. By inducing gelation of polyacrylamide in the presence of variable amounts of allyl-PVA, it is possible to control and vary the average gel porosity. This gel is easy to produce and handle and offers the advantage of being highly mechanically resistant and macroporous. The new matrix was tested in mono-dimensional separations of complex protein mixtures extracted from red cell membranes with different detergents. The improved performance of this macroporous matrix allowed to identify new proteins by MS and immunoblot analysis using specific antibodies. In particular, the resolution of proteins ranging in size between 97 and 279 kDa was greatly improved here compared to standard polyacrylamide gels, suggesting that this matrix can be a useful tool in routine analysis of HMW proteins in cell biology.

  18. High Performance and Cost-Effective Direct Methanol Fuel Cells: Fe-N-C Methanol-Tolerant Oxygen Reduction Reaction Catalysts.

    PubMed

    Sebastián, David; Serov, Alexey; Artyushkova, Kateryna; Gordon, Jonathan; Atanassov, Plamen; Aricò, Antonino S; Baglio, Vincenzo

    2016-08-09

    Direct methanol fuel cells (DMFCs) offer great advantages for the supply of power with high efficiency and large energy density. The search for a cost-effective, active, stable and methanol-tolerant catalyst for the oxygen reduction reaction (ORR) is still a great challenge. In this work, platinum group metal-free (PGM-free) catalysts based on Fe-N-C are investigated in acidic medium. Post-treatment of the catalyst improves the ORR activity compared with previously published PGM-free formulations and shows an excellent tolerance to the presence of methanol. The feasibility for application in DMFC under a wide range of operating conditions is demonstrated, with a maximum power density of approximately 50 mW cm(-2) and a negligible methanol crossover effect on the performance. A review of the most recent PGM-free cathode formulations for DMFC indicates that this formulation leads to the highest performance at a low membrane-electrode assembly (MEA) cost. Moreover, a 100 h durability test in DMFC shows suitable applicability, with a similar performance-time behavior compared to common MEAs based on Pt cathodes.

  19. Phase transition of a cobalt-free perovskite as a high-performance cathode for intermediate-temperature solid oxide fuel cells.

    PubMed

    Jiang, Shanshan; Zhou, Wei; Niu, Yingjie; Zhu, Zhonghua; Shao, Zongping

    2012-10-01

    It is generally recognized that the phase transition of a perovskite may be detrimental to the connection between cathode and electrolyte. Moreover, certain phase transitions may induce the formation of poor electronic and ionic conducting phase(s), thereby lowering the electrochemical performance of the cathode. Here, we present a study on the phase transition of a cobalt-free perovskite (SrNb(0.1)Fe(0.9)O(3-δ), SNF) and evaluate its effect on the electrochemical performance of the fuel cell. SNF exists as a primitive perovskite structure with space group P4mm (99) at room temperature. As evidenced by in situ high-temperature X-ray diffraction measurements over the temperature range of 600 to 1000 °C, SNF undergoes a transformation to a tetragonal structure with a space group I4/m (87). This phase transition is accompanied by a moderate change in the volume, allowing a good cathode/electrolyte interface on thermal cycling. According to the electrochemical impedance spectroscopy evaluation, the I4/m phase exhibits positive effects on the cathode's performance, showing the highest oxygen reduction reaction activity of cobalt-free cathodes reported so far. This activity improvement is attributed to enhanced oxygen surface processes.

  20. Enhanced performance of air-cathode two-chamber microbial fuel cells with high-pH anode and low-pH cathode.

    PubMed

    Zhuang, Li; Zhou, Shungui; Li, Yongtao; Yuan, Yong

    2010-05-01

    In the course of microbial fuel cell (MFC) operation, the acidification of the anode and the alkalization of the cathode inevitably occur, resulting in reduction of the overall performance. In an attempt to reverse the membrane pH gradient, a tubular air-cathode two-chamber MFC was developed that allowed pH adjustment in both compartments. With an anodic pH of 10.0 and a cathodic pH of 2.0, the tubular MFC provided an open circuit voltage of 1.04V and a maximum power density of 29.9W/m(3), which were respectively 1.5 and 3.8 times higher than those obtained in the same MFC working at neutral pH. Particularly, the suppression of methanogenesis at high alkaline anode (pH 10.0) contributed to a significant enhancement in coulombic efficiency. The MFC maintained 74% of its performance after 15 days of operation in continuous-flow mode. The appropriate pH adjustment strategy in both compartments ensures a promising improvement in MFC performance.

  1. Superior Light-Harvesting Heteroleptic Ruthenium(II) Complexes with Electron-Donating Antennas for High Performance Dye-Sensitized Solar Cells.

    PubMed

    Chen, Wang-Chao; Kong, Fan-Tai; Li, Zhao-Qian; Pan, Jia-Hong; Liu, Xue-Peng; Guo, Fu-Ling; Zhou, Li; Huang, Yang; Yu, Ting; Dai, Song-Yuan

    2016-08-03

    Three heteroleptic polypyridyl ruthenium complexes, RC-41, RC-42, and RC-43, with efficient electron-donating antennas in the ancillary ligands were designed, synthesized, and characterized as sensitizers for dye-sensitized solar cell. All the RC dye sensitizers showed remarkable light-harvesting capacity and broadened absorption range. Significantly, RC-43 obtained the lower energy metal-ligand charge transfer (MLCT) band peaked at 557 nm with a high molar extinction coefficient of 27 400 M(-1) cm(-1). In conjunction with TiO2 photoanode of submicrospheres and iodide-based electrolytes, the DSSCs sensitizing with the RC sensitizers, achieved impressively high short-circuit current density (19.04 mA cm(-2) for RC-41, 19.83 mA cm(-2) for RC-42, and 20.21 mA cm(-2) for RC-43) and power conversion efficiency (10.07% for RC-41, 10.52% for RC-42, and 10.78% for RC-43). The superior performances of RC dye sensitizers were attributed to the enhanced light-harvesting capacity and incident-photon-to-current efficiency (IPCE) caused by the introduction of electron-donating antennas in the ancillary ligands. The interfacial charge recombination/regeneration kinetics and electron lifetime were further evaluated by the electrochemical impedance spectroscopy (EIS) and transient absorption spectroscopy (TAS). These data decisively revealed the dependences on the photovoltaic performance of ruthenium sensitizers incorporating electron-donating antennas.

  2. High Performance Dye-Sensitized Solar Cells with Enhanced Light-Harvesting Efficiency Based on Polyvinylpyrrolidone-Coated Au-TiO2 Microspheres.

    PubMed

    Ding, Yong; Sheng, Jiang; Yang, Zhenhai; Jiang, Ling; Mo, Li'e; Hu, Linhua; Que, Yaping; Dai, Songyuan

    2016-04-07

    Surface plasmon resonance using noble metal nanoparticles is regarded as an attractive and viable strategy to improve the optical absorption and/or photocurrent in dye-sensitized solar cells (DSSCs). However, no significant improvement in device performance has been observed. The bottleneck is the stability of the noble-metal nanoparticles caused by chemical corrosion. Here, we propose a simple method to synthesize high-performance DSSCs based on polyvinylpyrrolidone-coated Au-TiO2 microspheres that utilize the merits of TiO2 microspheres and promote the coupling of surface plasmons with visible light. When 0.4 wt % Au nanoparticles were embedded into the TiO2 microspheres, the device achieved a power conversion efficiency (PCE) as high as 10.49%, a 7.9% increase compared with pure TiO2 microsphere-based devices. Simulation results theoretically confirmed that the improvement of the PCE is caused by the enhancement of the absorption cross-section of dye molecules and photocurrent.

  3. The High Performance Storage System

    SciTech Connect

    Coyne, R.A.; Hulen, H.; Watson, R.

    1993-09-01

    The National Storage Laboratory (NSL) was organized to develop, demonstrate and commercialize technology for the storage system that will be the future repositories for our national information assets. Within the NSL four Department of Energy laboratories and IBM Federal System Company have pooled their resources to develop an entirely new High Performance Storage System (HPSS). The HPSS project concentrates on scalable parallel storage system for highly parallel computers as well as traditional supercomputers and workstation clusters. Concentrating on meeting the high end of storage system and data management requirements, HPSS is designed using network-connected storage devices to transfer data at rates of 100 million bytes per second and beyond. The resulting products will be portable to many vendor`s platforms. The three year project is targeted to be complete in 1995. This paper provides an overview of the requirements, design issues, and architecture of HPSS, as well as a description of the distributed, multi-organization industry and national laboratory HPSS project.

  4. High-performance inverted planar heterojunction perovskite solar cells based on a solution-processed CuOx hole transport layer

    NASA Astrophysics Data System (ADS)

    Sun, Weihai; Li, Yunlong; Ye, Senyun; Rao, Haixia; Yan, Weibo; Peng, Haitao; Li, Yu; Liu, Zhiwei; Wang, Shufeng; Chen, Zhijian; Xiao, Lixin; Bian, Zuqiang; Huang, Chunhui

    2016-05-01

    During the past several years, methylammonium lead halide perovskites have been widely investigated as light absorbers for thin-film photovoltaic cells. Among the various device architectures, the inverted planar heterojunction perovskite solar cells have attracted special attention for their relatively simple fabrication and high efficiencies. Although promising efficiencies have been obtained in the inverted planar geometry based on poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) sulfonic acid (PEDOT:PSS) as the hole transport material (HTM), the hydrophilicity of the PEDOT:PSS is a critical factor for long-term stability. In this paper, a CuOx hole transport layer from a facile solution-processed method was introduced into the inverted planar heterojunction perovskite solar cells. After the optimization of the devices, a champion PCE of 17.1% was obtained with an open circuit voltage (Voc) of 0.99 V, a short-circuit current (Jsc) of 23.2 mA cm-2 and a fill factor (FF) of 74.4%. Furthermore, the unencapsulated device cooperating with the CuOx film exhibited superior performance in the stability test, compared to the device involving the PEDOT:PSS layer, indicating that CuOx could be a promising HTM for replacing PEDOT:PSS in inverted planar heterojunction perovskite solar cells.During the past several years, methylammonium lead halide perovskites have been widely investigated as light absorbers for thin-film photovoltaic cells. Among the various device architectures, the inverted planar heterojunction perovskite solar cells have attracted special attention for their relatively simple fabrication and high efficiencies. Although promising efficiencies have been obtained in the inverted planar geometry based on poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) sulfonic acid (PEDOT:PSS) as the hole transport material (HTM), the hydrophilicity of the PEDOT:PSS is a critical factor for long-term stability. In this paper, a CuOx hole transport layer from a

  5. Probing anthocyanin profiles in purple sweet potato cell line (Ipomoea batatas L. Cv. Ayamurasaki) by high-performance liquid chromatography and electrospray ionization tandem mass spectrometry.

    PubMed

    Tian, Qingguo; Konczak, Izabela; Schwartz, Steven J

    2005-08-10

    A purple line cell line (PL) generated from the storage root of purple-fleshed sweet potato (Ipomoea batatas L.) cv. Ayamurasaki produces a complex mixture of anthocyanins, and seven major anthocyanins have been isolated and identified to date. All these anthocyanins are exclusively cyanidin or peonidin 3-sophoroside-5-glucosides and their acylated derivatives. High-performance liquid chromatography (HPLC) coupled to photodiode array (PDA) detection and electrospray ionization tandem mass spectrometry (ESI-MS/MS) on a triple quadrupole instrument was employed to further investigate the anthocyanin composition of the PL extract. Precursor-ion analysis, product-ion analysis, and selected reaction monitoring (SRM) MS/MS experiments were conducted sequentially to screen and characterize anthocyanins in the aqueous extract of the PL cell line. Precursor-ion analysis specifically detected the molecular cations of each category of anthocyanins by scanning the precursors of anthocyanidins (cyanidin, peonidin, and pelargonidin). The detected molecular cation of each anthocyanin was fragmented using product-ion analysis by collisionally activated dissociation (CAD). MS/MS using SRM detection was conducted to further confirm the fragmentation observed during product-ion analysis. In comparison to the commonly used product-ion analysis technique, the combined use of precursor-ion analysis, product-ion analysis, and SRM is particularly useful for positive identification of anthocyanins in complex matrixes and provides important information to confirm the proposed structures. Twenty-six anthocyanins were detected and characterized in the aqueous extract of the PL cell line. Several anthocyanins, including two pelargonidin derivatives, were tentatively identified for the first time in these cells.

  6. High-performance size-based microdevice for the detection of circulating tumor cells from peripheral blood in rectal cancer patients.

    PubMed

    Sun, Wenjie; Jia, Chunping; Huang, Ting; Sheng, Weiqi; Li, Guichao; Zhang, Honglian; Jing, Fengxiang; Jin, Qinghui; Zhao, Jianlong; Li, Gang; Zhang, Zhen

    2013-01-01

    Since individualized therapy becomes more and more important in the treatment of rectal cancer, an accurate and effective approach should be established in the clinical settings to help physicians to make their decisions. Circulating tumor cells (CTCs), originated from either primary or metastatic cancer, could provide important information for diagnosis and monitoring of cancer. However, the implication and development of CTCs are limited due to the extreme rarity of these tumor cells. In this study we fabricated a simple and high-performance microfluidic device, which exploited numerous filtered microchannels in it to enrich the large-sized target tumor cells from whole blood. A very high CTC capture efficiency (average recovery rate: 94%) was obtained in this device at the optimum flow rate of 0.5 mL/h and channel height of 5 µm. Additionally, we used this device for detecting CTCs in 60 patients with rectal cancer. The CTC counts of rectal cancer patients were significantly higher than those in healthy subjects. Furthermore, the CTC counts detected by this device were significantly higher than those by EpCAM bead-based method for rectal cancer patients with various stage. Especially, for localized rectal cancer patients, the positive rates of samples with more than 3 CTCs per 5 mL blood by use of microdevice vs. EpCAM-based ones were 100% vs. 47%, respectively. Thus, this device provides a new and effective tool for accurate identification and measurement of CTCs in patients with rectal cancer, and has broad potential in clinical practice.

  7. Ultra-high-performance liquid chromatography electrospray ionization tandem mass spectrometry for accurate analysis of glycerophospholipids and sphingolipids in drug resistance tumor cells.

    PubMed

    Li, Lin; Wang, Linlin; Shangguan, Dihua; Wei, Yanbo; Han, Juanjuan; Xiong, Shaoxiang; Zhao, Zhenwen

    2015-02-13

    Glycerophospholipids and sphingolipids are important signaling molecules which are involved in many physiological and pathological processes. Here we reported an effective method for accurate analysis of these lipids by liquid chromatography electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS). The methanol method was adopted for extraction of lipids due to its simplicity and high efficiency. It was found that two subclasses of sphingolipids, sulfatide (ST) and cerebroside (CB), were heat labile, so a decreased temperature in the ion source of MS might be necessary for these compounds analysis. In addition, it was found that the isobaric interferences were commonly existent, for example, the m/z of 16:0/18:1 PC containing two (13)C isotope being identical to that of 16:0/18:0 PC determined by a unit mass resolution mass spectrometer; therefore, a baseline separation of interferential species was required to maintain selectivity and accuracy of analysis. In this work, an ultra-high-performance liquid chromatography (UHPLC)-based method was developed for separation of interferential species. Moreover, in order to deal with the characteristics of different polarity and wide dynamic range of glycerophospholipids and sphingolipids in biological systems, three detecting conditions were combined together for comprehensive and rational analysis of glycerophospholipids and sphingolipids. The method was utilized to profile glycerophospholipids and sphingolipids in drug resistant tumor cells. Our results showed that many lipids were significantly changed in drug resistant tumor cells compared to paired drug sensitive tumor cells. This is a systematic report about the isobaric interferences and heat labile compounds interferences when analyzing glycerophospholipids and sphingolipids by ESI-MS/MS, which aids in ruling out one potential source of systematic error to ensure the accuracy of analysis.

  8. High performance phenolic pultrusion resin

    SciTech Connect

    Qureshi, S.P.; Ingram, W.H.; Smith, C.

    1996-11-01

    Today, Phenol-Formaldehyde (PF) resins are the materials of choice for aerospace interior applications, primarily due to low FST (flame, smoke and toxicity). Since 1990, growth of PF resins has been steadily increasing in non-aerospace applications (which include mass transit, construction, marine, mine ducting and offshore oil) due to low FST and reasonable cost. This paper describes one component phenol-formaldehyde resin that was jointly developed with Morrison Molded Fiber Glass for their pultrusion process. Physical properties of the resin with flame/smoke/toxicity, chemical resistance and mechanical performance of the pultruded RP are discussed. Neat resin screening tests to identify high-temperature formulations are explored. Research continues at Georgia-Pacific to investigate the effect of formulation variables on processing and mechanical properties.

  9. High-Performance Long-Term-Stable Dopant-Free Perovskite Solar Cells and Additive-Free Organic Solar Cells by Employing Newly Designed Multirole π-Conjugated Polymers.

    PubMed

    Kranthiraja, Kakaraparthi; Gunasekar, Kumarasamy; Kim, Hyunji; Cho, An-Na; Park, Nam-Gyu; Kim, Seonha; Kim, Bumjoon J; Nishikubo, Ryosuke; Saeki, Akinori; Song, Myungkwan; Jin, Sung-Ho

    2017-04-10

    Perovskite solar cells (PSCs) and organic solar cells (OSCs) are promising renewable light-harvesting technologies with high performance, but the utilization of hazardous dopants and high boiling additives is harmful to all forms of life and the environment. Herein, new multirole π-conjugated polymers (P1-P3) are developed via a rational design approach through theoretical hindsight, further successfully subjecting them into dopant-free PSCs as hole-transporting materials and additive-free OSCs as photoactive donors, respectively. Especially, P3-based PSCs and OSCs not only show high power conversion efficiencies of 17.28% and 8.26%, but also display an excellent ambient stability up to 30 d (for PSCs only), owing to their inherent superior optoelectronic properties in their pristine form. Overall, the rational approach promises to support the development of environmentally and economically sustainable PSCs and OSCs.

  10. The high performance solar array GSR3

    NASA Astrophysics Data System (ADS)

    Mamode, A.; Bartevian, J.; Bastard, J. L.; Auffray, P.; Plagne, A.

    A foldout solar array for communication satellites was developed. A wing composed of 4 panels of 1.6 x 1.5 m and a Y-shaped yoke, and a wing with 3 panels of 2.4 x 2.4 m were made. End of life performance goal is greater than 35 W/kg with BSR 180 micron solar cells, and 50 W/kg using 50 micron BSFR cells. Analysis shows that all identified requirements can be covered with current skin made of open weave very high modulus carbon fiber; reinforcements of unidirectional carbon fiber; honeycomb in current section; hold-down inserts made of wound carbon fibers; titanium hinge fitting; and Kapton foil (25 or 50 micron thickness). Tests confirm performance predictions.

  11. Domain Walls Conductivity in Hybrid Organometallic Perovskites and Their Essential Role in CH3NH3PbI3 Solar Cell High Performance

    PubMed Central

    Rashkeev, Sergey N.; El-Mellouhi, Fedwa; Kais, Sabre; Alharbi, Fahhad H.

    2015-01-01

    The past several years has witnessed a surge of interest in organometallic trihalide perovskites, which are at the heart of the new generation of solid-state solar cells. Here, we calculated the static conductivity of charged domain walls in n- and p- doped organometallic uniaxial ferroelectric semiconductor perovskite CH3NH3PbI3 using the Landau-Ginzburg-Devonshire (LGD) theory. We find that due to the charge carrier accumulation, the static conductivity may drastically increase at the domain wall by 3 – 4 orders of magnitude in comparison with conductivity through the bulk of the material. Also, a two-dimensional degenerated gas of highly mobile charge carriers could be formed at the wall. The high values of conductivity at domain walls and interfaces explain high efficiency in organometallic solution-processed perovskite films which contains lots of different point and extended defects. These results could suggest new routes to enhance the performance of this promising class of novel photovoltaic materials. PMID:26088321

  12. Solution-Processable Small Molecules for High-Performance Organic Solar Cells with Rigidly Fluorinated 2,2'-Bithiophene Central Cores.

    PubMed

    Wang, Zhenguo; Li, Zuojia; Liu, Jiang; Mei, Jun; Li, Kai; Li, Ying; Peng, Qiang

    2016-05-11

    Small molecules containing an oligothiophene backbone are simple but effective donor materials for organic solar cells (OSCs). In this work, we incorporated rigid 2,2'-bithiophene (BT) or fluorinated 2,2'-bithiophene (FBT) as the central unit and synthesized two novel small molecules (TTH-D3TRh and TTF-D3TRh) with an oligothiophene backbone and 3-ethylrhodanine end groups. Both molecules exhibit good thermal stability as well as strong and broad absorption. The fluorination of the BT central unit made TTF-D3TRh possess a relatively lower-lying HOMO energy level, better molecular stacking, and higher mobility in comparison with those of TTH-D3TRh. Conventional OSCs were fabricated to evaluate the photovoltaic property of these two molecules. Without extra post-treatments, the conventional devices based on TTH-D3TRh and TTF-D3TRh showed high PCEs of 5.00 and 5.80%, respectively. The TTF-D3TRh device exhibited a higher performance, which can be attributed to the improved Voc of 0.92 V, Jsc of 10.04 mA cm(-2), and FF of 62.8%. Using an inverted device structure, the OSCs based on TTH-D3TRh and TTF-D3TRh showed largely elevated PCEs of 5.89 and 7.14%, respectively. The results indicated that the structurally simple TTH-D3TRh and TTF-D3TR molecules are potential donor candidates for achieving highly efficient OSCs. The strategy of fluorination and rigidity designation is an effective approach to develop oligothiophene-based small molecular donors for highly efficient solar cell applications.

  13. Development of a high-performance liquid chromatography-based assay for carotenoids in human red blood cells: application to clinical studies.

    PubMed

    Nakagawa, Kiyotaka; Kiko, Takehiro; Hatade, Keijiro; Asai, Akira; Kimura, Fumiko; Sookwong, Phumon; Tsuduki, Tsuyoshi; Arai, Hiroyuki; Miyazawa, Teruo

    2008-10-01

    Peroxidized phospholipid-mediated cytotoxicity is involved in the pathophysiology of many diseases; for example, there is an abnormal increase of phospholipid hydroperoxides in red blood cells (RBCs) of dementia patients. Dietary carotenoids have gained attention as potent inhibitors of RBC phospholipid hydroperoxidation, thereby making them plausible candidates for preventing disease. However, the occurrence of carotenoids in human RBCs is still unclear. This is in contradistinction to plasma carotenoids, which have been investigated thoroughly for analytical methods as well as biological significance. In this study, we developed a method to analyze RBC carotenoids using high-performance liquid chromatography (HPLC) coupled with ultraviolet (UV) diode array detection (DAD) and atmospheric pressure chemical ionization (APCI) mass spectrometry (MS). Under optimized conditions that included extraction, separation, and detection procedures, six carotenoids (lutein, zeaxanthin, beta-cryptoxanthin, alpha-carotene, beta-carotene, and lycopene) were separated, detected by DAD, and concurrently identified based on APCI/MS and UV spectra profiles when an extract from human RBCs was subjected to HPLC-DAD-APCI/MS. The amounts of carotenoids varied markedly (1.3-70.2 nmol/L packed cells), and polar oxygenated carotenoids (xanthophylls) were predominant in RBCs. The HPLC-DAD-APCI/MS method would be a useful tool for clinical studies for evaluating the bioavailability of RBC carotenoids.

  14. Composite films of metal doped CoS/carbon allotropes; efficient electrocatalyst counter electrodes for high performance quantum dot-sensitized solar cells.

    PubMed

    Khalili, Seyede Sara; Dehghani, Hossein; Afrooz, Malihe

    2017-05-01

    This study reports the enhanced catalytic ability of metal ions-doped CoS and CoS/carbon allotrope counter electrodes (CEs) (synthesized using a successive ionic layer adsorption and reaction (SILAR) method) to improve the power conversion efficiency (η) in quantum dot-sensitized solar cells (QDSSCs). Firstly, doping effects of different metal ions (Mg(2+), Ca(2+), Sr(2+) and Ba(2+)) in the CoS CE on the QDSSCs performance have been investigated. Overall, among the different metal doped CoS CEs, the best energy conversion efficiency of 2.19%, achieved for Sr, is the highest reported for QDSSCs constructed with metal doped CoS. A sandwich structural Sr- and Ba-CoS/carbon allotrope (graphene sheet (GS), graphene oxide (GO) and carbon nanotube (CNT)) composite CEs have been prepared by repeating electrophoretic deposition (EPD) of carbon materials and deposition of CoS nanoparticles. Dramatic enhancements of η have been observed with the Sr- and Ba-CoS/GO CEs based QDSSCs (∼76% and ∼41%, respectively), which is higher than that of the bare CoS CE. Because of the large specific surface area and superior electrical conductivity of GS, GO and CNT and the high electrocatalytic activity of CoS, these CEs show an improvement in the photocurrent density in the cells, as revealed from electrochemical and spectral data.

  15. Urinary metabolomic study of non-small cell lung carcinoma based on ultra high performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry.

    PubMed

    Wu, Qian; Wang, Yan; Gu, Xue; Zhou, Junyi; Zhang, Huiping; Lv, Wang; Chen, Zhe; Yan, Chao

    2014-07-01

    Metabolic profiles from human urine reveal the significant difference of carnitine and acylcarnitines levels between non-small cell lung carcinoma patients and healthy controls. Urine samples from cancer patients and healthy individuals were assayed in this metabolomic study using ultra high performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry. The data were normalized by the sum of all intensities and creatinine calibration, respectively, before orthogonal partial least squares discriminant analysis. Twenty differential metabolites were identified based on standard compounds or tandem mass spectrometry fragments. Among them, some medium-/long-chain acylcarnitines, for example, cis-3,4-methylene heptanoylcarnitine, were found to be downregulated while carnitine was upregulated in urine samples from the cancer group compared to the control group. Receiver operating characteristic analysis of the two groups showed that the area under curve for the combination of carnitine and 11 selected acylcarnitines was 0.958. This study suggests that the developed carnitine and acylcarnitines profiling method has the potential to be used for screening non-small cell lung carcinoma.

  16. Hemoglobin A2 values in sickle cell disease patients quantified by high performance liquid chromatography and the influence of alpha thalassemia

    PubMed Central

    da Fonseca, Silvana Fahel; Amorim, Tatiana; Purificação, Antônio; Gonçalves, Marilda; Boa-Sorte, Ney

    2015-01-01

    Background In sickle cell disease, the quantification of Hb A2 is important for the differential diagnosis between sickle cell anemia (Hb SS) and Hb S/β0-thalassemia. Objective To determine Hb A2 levels as quantified by high performance liquid chromatography in patients with sickle cell anemia (Hb SS) and with the SC hemoglobinopathy, with or without concomitant alpha thalassemia. Methods This is a retrospective study of 242 children aged between two and six years with diagnoses of Hb SS or Hb SC. The hemoglobin was evaluated using high performance liquid chromatography and alpha thalassemia [3.7 kb deletion (−α3.7)] was detected by polymerase chain reaction. Patients were classified as homozygous (−α3.7/−α3.7), heterozygous (−α3.7/α), or homozygous wild-type. Analysis of variance was used to compare the mean Hb A2 values between the alpha thalassemia groups. Results The mean (± standard deviation) Hb A2 concentrations in the Hb SS group (n = 135) was 3.68 ± 0.65%. The mean values for individuals with Hb SS and heterozygous (n = 28) or homozygous for alpha thalassemia (n = 3) were 3.98 ± 0.64% and 4.73 ± 0.25%, respectively. The mean Hb A2 of all the Hb SC patients (n = 107) was 4.01 ± 0.507 with 4.29 ± 0.41% and 4.91 ± 0.22% in individuals heterozygous (n = 23) and homozygous for alpha thalassemia (n = 7), respectively. All patients homozygous for alpha thalassemia had Hb A2 levels above 3.5%. However, Hb A2 values above 5.2% were seen in patients with Hb SS and Hb SC, independently of alpha thalassemia. Conclusion Hb A2 levels are elevated in patients with Hb S or Hb C, and are directly influenced by the alpha thalassemia genotypes. PMID:26408362

  17. Simultaneous determination of AMN107 and Imatinib (Gleevec, Glivec, STI571) in cultured tumour cells using an isocratic high-performance liquid chromatography procedure with UV detection.

    PubMed

    Guetens, Gunther; Prenen, Hans; De Boeck, Gert; van Oosterom, Allan; Schöffski, Patrick; Highley, Martin; de Bruijn, Ernst A

    2007-02-01

    A reversed phase high-performance liquid chromatographic (HPLC) method with UV detection was developed for the simultaneous determination of imatinib (Gleevec, Glivec, STI571) and AMN107 in cultured tumour cells, using clozapine as an internal standard. The compounds of interest were extracted by liquid-liquid extraction using TOXI-TUBES((R)) A extraction tubes. Chromatographic separation was performed on a Phenomenex Gemini C18 reversed phase column (150 mm x 2.0 mm, 5 microm particle size), using a mixture of 65% CH(3)OH (methanol) and 35% NH(4)Ac (Ammonium acetate) buffer (20mM, pH 10). Separation was achieved under isocratic conditions at a flow rate of 0.5 ml/min. Imatinib, clozapine and AMN107 are detected by UV detection at 260 nm. Calibration curves were linear from 50 to 7500 ng/ml with correlation coefficients (r(2)) better than 0.998. The limit of quantitation (LOD) was 50 ng/ml. The method has been successfully applied to a cellular kinetics study.

  18. Mixed cation FA x PEA 1- x PbI 3 with enhanced phase and ambient stability toward high-performance perovskite solar cells

    DOE PAGES

    Li, Nan; Zhu, Zonglong; Chueh, Chu -Chen; ...

    2016-09-26

    In this study, different from the commonly explored strategy of incorporating a smaller cation, MA+ and Cs+ into FAPbI3 lattice to improve efficiency and stability, it is revealed that the introduction of phenylethylammonium iodide (PEAI) into FAPbI3 perovksite to form mixed cation FAxPEA1–xPbI3 can effectively enhance both phase and ambient stability of FAPbI3 as well as the resulting performance of the derived devices. From our experimental and theoretical calculation results, it is proposed that the larger PEA cation is capable of assembling on both the lattice surface and grain boundaries to form quais-3D perovskite structures. The surrounding of PEA+ ionsmore » at the crystal grain boundaries not only can serve as molecular locks to tighten FAPbI3 domains but also passivate the surface defects to improve both phase and moisture stablity. Consequently, a high-performance (PCE:17.7%) and ambient stable FAPbI3 solar cell could be developed« less

  19. High performance dye-sensitized solar cells using graphene modified fluorine-doped tin oxide glass by Langmuir–Blodgett technique

    SciTech Connect

    Roh, Ki-Min; Jo, Eun-Hee; Chang, Hankwon; Han, Tae Hee; Jang, Hee Dong

    2015-04-15

    Since the introduction of dye-sensitized solar cells (DSSCs) with low fabrication cost and high power conversion efficiency, extensive studies have been carried out to improve the charge transfer rate and performance of DSSCs. In this paper, we present DSSCs that use surface modified fluorine-doped tin oxide (FTO) substrates with reduced graphene oxide (r-GO) sheets prepared using the Langmuir–Blodgett (LB) technique to decrease the charge recombination at the TiO{sub 2}/FTO interface. R-GO sheets were excellently attached on FTO surface without physical deformations such as wrinkles; effects of the surface coverage of r-GO on the DSSC performance were also investigated. By using graphene modified FTO substrates, the resistance at the interface of TiO{sub 2}/FTO was reduced and the power conversion efficiency was increased to 8.44%. - Graphical abstract: DSSCs with graphene modified FTO glass were fabricated with the Langmuir Blodgett technique. GO sheets were transferred to FTO at various surface pressures in order to change the surface density of graphene and the highest power conversion efficiency of the DSSC was 8.44%. - Highlights: • By LB technique, r-GO sheets were coated on FTO without physical deformation. • DSSCs were fabricated with, r-GO modified FTO substrates. • With surface modification by r-GO, the interface resistance of DSSC decreased. • Maximum PCE of the DSSC was increased up to 8.44%.

  20. Co-synthesized Y-stabilized Bi2O3 and Sr-substituted LaMnO3 composite anode for high performance solid oxide electrolysis cell

    NASA Astrophysics Data System (ADS)

    Yan, Jingbo; Zhao, Zhe; Shang, Lei; Ou, Dingrong; Cheng, Mojie

    2016-07-01

    In this study we report a nano-composite anode comprised of Y-stabilized Bi2O3 (YSB) and Sr-substituted LaMnO3 (LSM) for solid oxide electrolysis cell (SOEC). The composite powder with primary particle size ranging from 20 to 80 nm is co-synthesized via a simple citric-nitrate combustion method. X-ray diffraction examination confirms cubic fluorite YSB and rhombohedral perovskite LSM as the main phases in the composite. Temperature programmed O2 desorption identifies remarkable low temperature desorption at 330 °C. Similarly, temperature programmed H2 reduction reveals strong reduction at 385 °C. The facile oxygen evolution on YSB-LSM may result from the increased amount of oxygen vacancies and improved oxygen ion mobility. A cell employing YSB-LSM composite anode achieves current density of -1.52 A cm-2 at 800 °C and 1.28 V, 50% higher than conventional LSM-YSZ cell. Impedance results and analysis of distribution of relaxation times indicate that the rate-determining anode processes are effectively accelerated on YSB-LSM. The activation energy for oxygen evolution reaction on YSB-LSM is reduced to 0.65 eV, notably lower than on LSM-YSZ (1.29 eV). The high performance of YSB-LSM composite anode is attributed to the fast ion decorporation on YSB, the facile O2 formation on LSM, and the abundant phase boundaries that facilitate the two processes.

  1. High performance Cu adhesion coating

    SciTech Connect

    Lee, K.W.; Viehbeck, A.; Chen, W.R.; Ree, M.

    1996-12-31

    Poly(arylene ether benzimidazole) (PAEBI) is a high performance thermoplastic polymer with imidazole functional groups forming the polymer backbone structure. It is proposed that upon coating PAEBI onto a copper surface the imidazole groups of PAEBI form a bond with or chelate to the copper surface resulting in strong adhesion between the copper and polymer. Adhesion of PAEBI to other polymers such as poly(biphenyl dianhydride-p-phenylene diamine) (BPDA-PDA) polyimide is also quite good and stable. The resulting locus of failure as studied by XPS and IR indicates that PAEBI gives strong cohesive adhesion to copper. Due to its good adhesion and mechanical properties, PAEBI can be used in fabricating thin film semiconductor packages such as multichip module dielectric (MCM-D) structures. In these applications, a thin PAEBI coating is applied directly to a wiring layer for enhancing adhesion to both the copper wiring and the polymer dielectric surface. In addition, a thin layer of PAEBI can also function as a protection layer for the copper wiring, eliminating the need for Cr or Ni barrier metallurgies and thus significantly reducing the number of process steps.

  2. ALMA high performance nutating subreflector

    NASA Astrophysics Data System (ADS)

    Gasho, Victor L.; Radford, Simon J. E.; Kingsley, Jeffrey S.

    2003-02-01

    For the international ALMA project"s prototype antennas, we have developed a high performance, reactionless nutating subreflector (chopping secondary mirror). This single axis mechanism can switch the antenna"s optical axis by +/-1.5" within 10 ms or +/-5" within 20 ms and maintains pointing stability within the antenna"s 0.6" error budget. The light weight 75 cm diameter subreflector is made of carbon fiber composite to achieve a low moment of inertia, <0.25 kg m2. Its reflecting surface was formed in a compression mold. Carbon fiber is also used together with Invar in the supporting structure for thermal stability. Both the subreflector and the moving coil motors are mounted on flex pivots and the motor magnets counter rotate to absorb the nutation reaction force. Auxiliary motors provide active damping of external disturbances, such as wind gusts. Non contacting optical sensors measure the positions of the subreflector and the motor rocker. The principle mechanical resonance around 20 Hz is compensated with a digital PID servo loop that provides a closed loop bandwidth near 100 Hz. Shaped transitions are used to avoid overstressing mechanical links.

  3. Low-bandgap poly(thiophene-phenylene-thiophene) derivatives with broaden absorption spectra for use in high-performance bulk-heterojunction polymer solar cells.

    PubMed

    Chen, Chih-Ping; Chan, Shu-Hua; Chao, Teng-Chih; Ting, Ching; Ko, Bao-Tsan

    2008-09-24

    Two low-bandgap (LGB) conjugated polymers ( P1 and P2) based on thiophene-phenylene-thiophene (TPT) with adequate energy levels have been designed and synthesized for application in bulk-heterojunction polymer solar cells (PSCs). The absorption spectral, electrochemical, field effect hole mobility and photovoltaic properties of LGB TPT derivatives are investigated and compared with poly(3-hexylthiophene) (P3HT). Photophysical studies reveal bandgaps of 1.76 eV for P1 and 1.70 eV for P2, which could effectively harvest broader solar spectrum. In addition, the thin film absorption coefficients of P1 and P2 are 1.6 x 10 (5) cm (-1) (lambda approximately 520 nm) and 1.4 x 10 (5) cm (-1) (lambda approximately 590 nm), respectively. Electrochemical studies indicate desirable HOMO/LUMO levels that enable a high open circuit voltage while blending them with fullerene derivatives as electron acceptors. Furthermore, both materials show sufficient hole mobility (3.4 x 10 (-3) cm (2)/Vs for P2) allowing efficient charge extraction and a good fill-factor for PSC application. High-performance power conversion efficiency (PCE) of 4.4% is obtained under simulated solar light AM 1.5 G (100 mW/cm (2)) from PSC device with an active layer containing 25 wt% P2 and 75 wt% [6,6]-phenyl-C71-butyric acid methyl ester (PC 71BM), which is superior to that of the analogous P3HT cell (3.9%) under the same experimental condition.

  4. High-performance all-polymer solar cells via side-chain engineering of the polymer acceptor: the importance of the polymer packing structure and the nanoscale blend morphology.

    PubMed

    Lee, Changyeon; Kang, Hyunbum; Lee, Wonho; Kim, Taesu; Kim, Ki-Hyun; Woo, Han Young; Wang, Cheng; Kim, Bumjoon J

    2015-04-17

    The effectiveness of side-chain engineering is demonstrated to produce highly efficient all-polymer solar cells (efficiency of 5.96%) using a series of naphthalene diimide-based polymer acceptors with controlled side chains. The dramatic changes in the polymer packing, blend morphology, and electron mobility of all-polymer solar cells elucidate clear trends in the photovoltaic performances.

  5. A high-performance, cobalt-free cathode for intermediate-temperature solid oxide fuel cells with excellent CO2 tolerance

    NASA Astrophysics Data System (ADS)

    Bu, Yun-fei; Zhong, Qin; Chen, Dong-Chang; Chen, Yu; Lai, Samson Yuxiu; Wei, Tao; Sun, Hai-bin; Ding, Dong; Liu, Meilin

    2016-07-01

    Compared with some cobalt-rich cathodes which have been proven to yield high performance in SOFCs, interest in cobalt-free cathodes has increased due to their reduced thermal expansion coefficients (TECs), high structural stability, and CO2 tolerance. In this report, a new robust Co-free complex perovskite oxide PrLa0.4Ba0.6Fe0.8Zn0.2O5+δ (PLBFZ) has been synthesized and evaluated. The TEC is 14.4 × 10-6 K-1. With the introduction of Sm0.2Ce0.8O2 (SDC), the composite cathode PLBFZ-SDC with a mass ratio of 7:3 (PLBFZ-SDC 73) exhibited the best electrocatalytic activity for oxygen reduction under OCV conditions, with polarization values of 0.044, 0.079, 0.124, 0.251, 0.572, and 1.297 Ω cm-2 at 800, 750, 700, 650, 600, and 550 °C, respectively. The power densities of the cell were 1309, 1079, 788 and 586 mW cm-2 at 750, 700, 650, and 600 °C, respectively. Moreover, it appears to have good stability in air containing 1% CO2 (volume ratio) for 150 h based on Raman and polarization resistance (Rp) analysis. These results suggest that PLBFZ and its SDC composite are promising cathodes for IT-SOFCs.

  6. Facile fabrication of highly efficient carbon nanotube thin film replacing CuS counter electrode with enhanced photovoltaic performance in quantum dot-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Gopi, Chandu V. V. M.; Venkata-Haritha, Mallineni; Kim, Soo-Kyoung; Kim, Hee-Je

    2016-04-01

    An ideal counter electrode (CE), with high electrocatalytic activity, high performance stability, cost-efficient and applicable fabrication simplicity, is necessary to give full play to the advantages of quantum dot-sensitized solar cells (QDSSCs). Herein, we report a facile one-step preparation for carbon nanotubes (CNTs) have been explored as an electrocatalyst and low-cost alternative to platinum (Pt) and cuprous sulfide (CuS) CEs for polysulfide reduction in QDSSCs. QDSSC using this newly prepared CNT as a CE achieves a higher power conversion efficiency of 4.67% than those with a CuS (3.67%) or Pt CE (1.56%). Besides, a preliminary stability test reveals that the new CNT CE exhibits good stability. The results of Tafel polarization and electrochemical impedance spectroscopy measurements revealed that the CNTs had higher electrocatalytic activity for the polysulfide redox reaction and a smaller charge transfer resistance (8.61 Ω) at the CE/electrolyte interface than the CuS (21.87 Ω) and Pt (54.99 Ω) CEs. These results indicate that the CNT CE has superior electrocatalytic activity and can potentially replace CuS and Pt as CEs in QDSSCs. The preparation method of the CNT CE is simple and shows much promise as an efficient, stable, cost-effective and environmentally friendly CE for QDSSCs.

  7. High-performance plastic dye-sensitized solar cells based on low-cost commercial P25 TiO2 and organic dye.

    PubMed

    Yin, Xiong; Xue, Zhaosheng; Wang, Long; Cheng, Yueming; Liu, Bin

    2012-03-01

    High-performance plastic dye-sensitized solar cells (DSCs) based on low-cost commercial Degussa P25 TiO(2) and organic indoline dye D149 have been fabricated using electrophoretic deposition (EPD) with compression post-treatment at room temperature. The pressed EPD electrode outperformed the sintered EPD electrode and as-prepared EPD electrode in short-circuit current density and power conversion efficiency. About 150% and 180% enhancement in power conversion efficiency have been achieved in DSC devices with sintering and compression post-treatment as compared to the as-prepared electrode, respectively. Several characterizations including intensity modulated photocurrent spectroscopy, incident photon-to-electron conversion efficiency and electrochemical impedance spectra have been employed to reveal the nature of improvement with post-treatment. Experimental results indicate that the sintering and compression post-treatment are beneficial to improve the electron transport and thus lead to the enhancement of photocurrent and power conversion efficiency. In addition, the compression post-treatment is more efficient than sintering post-treatment in improving interparticle connection in the as-prepared EPD electrode. Under optimized conditions, the conversion efficiency of plastic devices with D149-sensitized P25 TiO(2) photoanode has reached 5.76% under illumination of AM 1.5G (100 mW cm(-2)). This study demonstrates that the EPD combined with compression post-treatment provides a way to fabricate highly efficient plastic photovoltaic devices.

  8. Cell shunt resistance and photovoltaic module performance

    SciTech Connect

    McMahon, T.J.; Basso, T.S.; Rummel, S.R.

    1996-05-01

    Shunt resistance of cells in photovoltaic modules can affect module power output and could indicate flawed manufacturing processes and reliability problems. The authors describe a two-terminal diagnostic method to directly measure the shunt resistance of individual cells in a series-connected module non-intrusively, without deencapsulation. Peak power efficiency vs. light intensity was measured on a 12-cell, series-connected, single crystalline module having relatively high cell shunt resistances. The module was remeasured with 0.5-, 1-, and 2-ohm resistors attached across each cell to simulate shunt resistances of several emerging technologies. Peak power efficiencies decreased dramatically at lower light levels. Using the PSpice circuit simulator, the authors verified that cell shunt and series resistances can indeed be responsible for the observed peak power efficiency vs. intensity behavior. The authors discuss the effect of basic cell diode parameters, i.e., shunt resistance, series resistance, and recombination losses, on PV module performance as a function of light intensity.

  9. DOE High Performance Concentrator PV Project

    SciTech Connect

    McConnell, R.; Symko-Davies, M.

    2005-08-01

    Much in demand are next-generation photovoltaic (PV) technologies that can be used economically to make a large-scale impact on world electricity production. The U.S. Department of Energy (DOE) initiated the High-Performance Photovoltaic (HiPerf PV) Project to substantially increase the viability of PV for cost-competitive applications so that PV can contribute significantly to both our energy supply and environment. To accomplish such results, the National Center for Photovoltaics (NCPV) directs in-house and subcontracted research in high-performance polycrystalline thin-film and multijunction concentrator devices with the goal of enabling progress of high-efficiency technologies toward commercial-prototype products. We will describe the details of the subcontractor and in-house progress in exploring and accelerating pathways of III-V multijunction concentrator solar cells and systems toward their long-term goals. By 2020, we anticipate that this project will have demonstrated 33% system efficiency and a system price of $1.00/Wp for concentrator PV systems using III-V multijunction solar cells with efficiencies over 41%.

  10. TMF ultra-high rate discharge performance

    SciTech Connect

    Nelson, B.

    1997-12-01

    BOLDER Technologies Corporation has developed a valve-regulated lead-acid product line termed Thin Metal Film (TMF{trademark}) technology. It is characterized by extremely thin plates and close plate spacing that facilitate high rates of charge and discharge with minimal temperature increases, at levels unachievable with other commercially-available battery technologies. This ultra-high rate performance makes TMF technology ideal for such applications as various types of engine start, high drain rate portable devices and high-current pulsing. Data are presented on very high current continuous and pulse discharges. Power and energy relationships at various discharge rates are explored and the fast-response characteristics of the BOLDER{reg_sign} cell are qualitatively defined. Short-duration recharge experiments will show that devices powered by BOLDER batteries can be in operation for more than 90% of an extended usage period with multiple fast recharges. The BOLDER cell is ideal for applications such as engine-start, a wide range of portable devices including power tools, hybrid electric vehicles and pulse-power devices. Applications such as this are very attractive, and are well served by TMF technology, but an area of great interest and excitement is ultrahigh power delivery in excess of 1 kW/kg.

  11. High-temperature Solar Cell Development

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Merritt, Danielle; Raffaelle, Ryne P.; Scheiman, David

    2005-01-01

    The vast majority of space probes to date have relied upon photovoltaic power generation. If future missions designed to probe environments close to the sun (Figure 1) will be able to use such power generation, solar cells that can function at high temperatures, under high light intensity, and high radiation conditions must be developed. The significant problem is that solar cells lose performance at high temperatures.

  12. High performance electrolytes for MCFC

    DOEpatents

    Kaun, T.D.; Roche, M.F.

    1999-08-24

    A carbonate electrolyte of the Li/Na or CaBaLiNa system is described. The Li/Na carbonate has a composition displaced from the eutectic composition to diminish segregation effects in a molten carbonate fuel cell. The CaBaLiNa system includes relatively small amounts of Ca{sub 2}CO{sub 3} and BaCO{sub 3}, and preferably of equimolar amounts. The presence of both Ca and BaCO{sub 3} enables lower temperature fuel cell operation. 15 figs.

  13. High performance electrolytes for MCFC

    DOEpatents

    Kaun, Thomas D.; Roche, Michael F.

    1999-01-01

    A carbonate electrolyte of the Li/Na or CaBaLiNa system. The Li/Na carbonate has a composition displaced from the eutectic composition to diminish segregation effects in a molten carbonate fuel cell. The CaBaLiNa system includes relatively small amounts of Ca.sub.2 CO.sub.3 and BaCO.sub.3, and preferably of equimolar amounts. The presence of both Ca and BaCO.sub.3 enables lower temperature fuel cell operation.

  14. Histamine H1 receptor cell membrane chromatography online high-performance liquid chromatography with mass spectrometry method reveals houttuyfonate as an activator of the histamine H1 receptor.

    PubMed

    Guo, Ying; Han, Shengli; Cao, Jingjing; Zhang, Tao; He, Langchong

    2014-11-01

    Allergy is an abnormal reaction of the body to an allergen. Histamine is responsible for many of the acute symptoms of allergic diseases. Many of the allergic and inflammatory actions of histamine are mediated by the histamine H1 receptor. In the present study, we established a two-dimensional histamine H1 receptor/cell membrane chromatography with online high-performance liquid chromatography and mass spectrometry method for screening potential histamine-activating components in a traditional Chinese medicine injection. The specification of the method was validated by screening, separating, and identifying a mixed standard solution of diphenhydramine hydrochloride, gefitinib, tamsulosin, and nitrendipine. The Yujin injection, an example of traditional Chinese medicine injection, was screened and potential allergic components acting on the histamine H1 receptor were identified. A Ca(2+) flux assay showed that houttuyfonate and Yujin injection induced calcium release in a dose-dependent manner. This suggests that houttuyfonate is an activator of the histamine H1 receptor. The mechanism of houttuyfonate activation involves phosphorylation of the inositol-1,4,5-trisphosphate receptor. In conclusion, this two-dimensional method can rapidly detect and enrich target components isolated from the Yujin injection. This indicates that individuals with an overexpression of the histamine H1 receptor should be aware of possible allergic reactions when receiving the Yujin injection.

  15. Monosaccharide composition of sweetpotato fiber and cell wall polysaccharides from sweetpotato, cassava, and potato analyzed by the high-performance anion exchange chromatography with pulsed amperometric detection method.

    PubMed

    Salvador, L D; Suganuma, T; Kitahara, K; Tanoue, H; Ichiki, M

    2000-08-01

    The cell wall materials (CWMs) from sweetpotato (Ipomoea batatas cv. Kokei 14), cassava (Manihot esculenta), and potato (Solanum tuberosum cv. Danshaku) and commercial sweetpotato fiber as well as their polysaccharide fractions were analyzed for sugar composition by the high-performance anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD) method. The separation of arabinose and rhamnose, and xylose and mannose, by this method has been improved using a CarboPac PA 10 column. Pretreatment of the CWMs and cellulose fractions with 12 M H(2)SO(4) was required for complete hydrolysis to occur. Commercial sweetpotato fiber was found to be mainly composed of glucose (88.4%), but small amounts of other sugars were also detected. Among the root crops, sweetpotato CWM had the highest amount of pectin and galacturonic acid. Fucose was detected only in cassava CWM and its hemicellulose fraction, while galactose was present in the highest amount in potato CWM. Among the polysaccharide fractions, it was only in the hemicellulose fraction where significant differences in the sugar composition, especially in the galactose content, were observed among the root crops.

  16. Nickel nanocrystals grown on sparse hierarchical CuS microflowers as high-performance counter electrodes for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Shi, Zhaoliang; Zhou, Wei; Ma, Yiran

    2016-07-01

    Three kinds of hierarchical CuS microflowers composed of thin nanosheets have been synthesized by a simple wet chemical method. It is shown that the CuS microflowers provide suitable substrates to grow nickel nanocrystals. The prepared Ni@CuS hybrids combined with conductive glass (FTO) have been used as counter electrodes for dye-sensitized solar cells (DSSCs). The electrode made of the active material of Ni@CuS microflowers with sparsest petals show an optimal photoelectric conversion efficiency of 4.89%, better than those made of single component of Ni (3.39%) or CuS (1.65%), and other two Ni@CuS composites. The improved performances could be ascribed to the synergetic effect of the catalytic effect towards I3-/I- from sparse CuS hierarchical structure and uniformly grown Ni nanocrystals. Besides, the introduced Ni nanocrystals could increase the conductivity of the hybrid and facilitate the transport of electrons. The hybrid Ni@CuS composites serving as counter electrodes have much enhanced electrochemical properties, which provide a feasible route to develop high-active non-noble hybrid counter electrode materials.

  17. High Performance Torso Cooling Garment

    NASA Technical Reports Server (NTRS)

    Conger, Bruce

    2016-01-01

    The concept proposed in this paper is to improve thermal efficiencies of the liquid cooling and ventilation garment (LCVG) in the torso area, which could facilitate removal of LCVG tubing from the arms and legs, thereby increasing suited crew member mobility. EVA space suit mobility in micro-gravity is challenging, and it becomes even more challenging in the gravity of Mars. By using shaped water tubes that greatly increase the contact area with the skin in the torso region of the body, the heat transfer efficiency can be increased. This increase in efficiency could provide the required liquid cooling via torso tubing only; no arm or leg LCVG tubing would be required. Benefits of this approach include increased crewmember mobility, reduced LCVG mass, enhanced evaporation cooling, increased comfort during Mars EVA tasks, and easing of the overly dry condition in the helmet associated with the Advanced Extravehicular Mobility Unit (EMU) ventilation loop currently under development. This report describes analysis and test activities performed to evaluate the potential improvements to the thermal performance of the LCVG. Analyses evaluated potential tube shapes for improving the thermal performance of the LCVG. The analysis results fed into the selection of flat flow strips to improve thermal contact with the skin of the suited test subject. Testing of small segments was performed to compare thermal performance of the tubing approach of the current LCVG to the flat flow strips proposed as the new concept. Results of the testing is presented along with recommendations for future development of this new concept.

  18. High Performance Torso Cooling Garment

    NASA Technical Reports Server (NTRS)

    Conger, Bruce; Makinen, Janice

    2016-01-01

    The concept proposed in this paper is to improve thermal efficiencies of the liquid cooling and ventilation garment (LCVG) in the torso area, which could facilitate removal of LCVG tubing from the arms and legs, thereby increasing suited crew member mobility. EVA space suit mobility in micro-gravity is challenging, and it becomes even more challenging in the gravity of Mars. By using shaped water tubes that greatly increase the contact area with the skin in the torso region of the body, the heat transfer efficiency can be increased. This increase in efficiency could provide the required liquid cooling via torso tubing only; no arm or leg LCVG tubing would be required. Benefits of this approach include increased crewmember mobility, enhanced evaporation cooling, increased comfort during Mars EVA tasks, and easing of the overly dry condition in the helmet associated with the Advanced Extravehicular Mobility Unit (EMU) ventilation loop currently under development. This report describes analysis and test activities performed to evaluate the potential improvements to the thermal performance of the LCVG. Analyses evaluated potential tube shapes for improving the thermal performance of the LCVG. The analysis results fed into the selection of flat flow strips to improve thermal contact with the skin of the suited test subject. Testing of small segments was performed to compare thermal performance of the tubing approach of the current LCVG to the flat flow strips proposed as the new concept. Results of the testing is presented along with recommendations for future development of this new concept.

  19. High Performance Circularly Polarized Microstrip Antenna

    NASA Technical Reports Server (NTRS)

    Bondyopadhyay, Probir K. (Inventor)

    1997-01-01

    A microstrip antenna for radiating circularly polarized electromagnetic waves comprising a cluster array of at least four microstrip radiator elements, each of which is provided with dual orthogonal coplanar feeds in phase quadrature relation achieved by connection to an asymmetric T-junction power divider impedance notched at resonance. The dual fed circularly polarized reference element is positioned with its axis at a 45 deg angle with respect to the unit cell axis. The other three dual fed elements in the unit cell are positioned and fed with a coplanar feed structure with sequential rotation and phasing to enhance the axial ratio and impedance matching performance over a wide bandwidth. The centers of the radiator elements are disposed at the corners of a square with each side of a length d in the range of 0.7 to 0.9 times the free space wavelength of the antenna radiation and the radiator elements reside in a square unit cell area of sides equal to 2d and thereby permit the array to be used as a phased array antenna for electronic scanning and is realizable in a high temperature superconducting thin film material for high efficiency.

  20. High-efficiency photovoltaic cells

    DOEpatents

    Yang, H.T.; Zehr, S.W.

    1982-06-21

    High efficiency solar converters comprised of a two cell, non-lattice matched, monolithic stacked semiconductor configuration using optimum pairs of cells having bandgaps in the range 1.6 to 1.7 eV and 0.95 to 1.1 eV, and a method of fabrication thereof, are disclosed. The high band gap subcells are fabricated using metal organic chemical vapor deposition (MOCVD), liquid phase epitaxy (LPE) or molecular beam epitaxy (MBE) to produce the required AlGaAs layers of optimized composition, thickness and doping to produce high performance, heteroface homojunction devices. The low bandgap subcells are similarly fabricated from AlGa(As)Sb compositions by LPE, MBE or MOCVD. These subcells are then coupled to form a monolithic structure by an appropriate bonding technique which also forms the required transparent intercell ohmic contact (IOC) between the two subcells. Improved ohmic contacts to the high bandgap semiconductor structure can be formed by vacuum evaporating to suitable metal or semiconductor materials which react during laser annealing to form a low bandgap semiconductor which provides a low contact resistance structure.

  1. High-Performance Non-Fullerene Organic Solar Cells Based on a Selenium-Containing Polymer Donor and a Twisted Perylene Bisimide Acceptor.

    PubMed

    Liu, Tao; Meng, Dong; Cai, Yunhao; Sun, Xiaobo; Li, Yan; Huo, Lijun; Liu, Feng; Wang, Zhaohui; Russell, Thomas P; Sun, Yanming

    2016-09-01

    A novel polymer donor (PBDTS-Se) is designed to match with a non-fullerene acceptor (SdiPBI-S). The corresponding solar cells show a high efficiency of 8.22%, which result from synergetic improvements of light harvesting, charge carrier transport and collection, and morphology. The results indicate that rational design of novel donor materials is important for non-fullerene organic solar cells.

  2. Performance of a Branch Chain RNA In Situ Hybridization Assay for the Detection of High-risk Human Papillomavirus in Head and Neck Squamous Cell Carcinoma.

    PubMed

    Kerr, Darcy A; Arora, Kshitij S; Mahadevan, Krishnan K; Hornick, Jason L; Krane, Jeffrey F; Rivera, Miguel N; Ting, David T; Deshpande, Vikram; Faquin, William C

    2015-12-01

    High-risk human papillomavirus (HR-HPV) is a major etiologic agent in a subset of head and neck squamous cell carcinomas (HNSCCs), and its recognition has prognostic and predictive implications. The availability of a sensitive and specific test to assess HR-HPV status is limited. We evaluate an RNA in situ hybridization (ISH) method using branch chain technology to detect HR-HPV and compare its results with DNA ISH, p16 immunohistochemistry, and polymerase chain reaction (PCR). Tissue sections from 54 patients were stained with a manual RNA ISH assay (ViewRNA), which detects 14 HR-HPV types, an automated DNA ISH assay, and p16 immunohistochemistry. Most cases (83%, n=45) were also tested on an automated platform for 14 HR-HPV types and 1 limited to HPV 16/18. PCR was performed in all cases and was successful in 93% (n=50). The RNA ISH assay produced results in 96% of the cases with strong signals and was easily interpreted. HR-HPV was detected in more cases (63%, n=34) by RNA ISH than by DNA ISH (39%, n=21). Compared with PCR, both ISH platforms were 94% specific. RNA ISH was more sensitive (91%) than DNA ISH (65%), and RNA ISH correlated more strongly with p16 immunostaining. HPV 16 represented 89% of HR-HPV detected. The cocktail HPV 16/18 platform was concordant with the pooled HR-HPV assay in all expected cases. The automated assay demonstrated high concordance (96%) with the manual version, showed decreased background, and should allow for easy implementation into the workflow of the diagnostic pathology laboratory.

  3. Indoor Air Quality in High Performance Schools

    EPA Pesticide Factsheets

    High performance schools are facilities that improve the learning environment while saving energy, resources, and money. The key is understanding the lifetime value of high performance schools and effectively managing priorities, time, and budget.

  4. A high performance thermoacoustic engine

    NASA Astrophysics Data System (ADS)

    Tijani, M. E. H.; Spoelstra, S.

    2011-11-01

    In thermoacoustic systems heat is converted into acoustic energy and vice versa. These systems use inert gases as working medium and have no moving parts which makes the thermoacoustic technology a serious alternative to produce mechanical or electrical power, cooling power, and heating in a sustainable and environmentally friendly way. A thermoacoustic Stirling heat engine is designed and built which achieves a record performance of 49% of the Carnot efficiency. The design and performance of the engine is presented. The engine has no moving parts and is made up of few simple components.

  5. High-performance composite chocolate

    NASA Astrophysics Data System (ADS)

    Dean, Julian; Thomson, Katrin; Hollands, Lisa; Bates, Joanna; Carter, Melvyn; Freeman, Colin; Kapranos, Plato; Goodall, Russell

    2013-07-01

    The performance of any engineering component depends on and is limited by the properties of the material from which it is fabricated. It is crucial for engineering students to understand these material properties, interpret them and select the right material for the right application. In this paper we present a new method to engage students with the material selection process. In a competition-based practical, first-year undergraduate students design, cost and cast composite chocolate samples to maximize a particular performance criterion. The same activity could be adapted for any level of education to introduce the subject of materials properties and their effects on the material chosen for specific applications.

  6. High-Performance Composite Chocolate

    ERIC Educational Resources Information Center

    Dean, Julian; Thomson, Katrin; Hollands, Lisa; Bates, Joanna; Carter, Melvyn; Freeman, Colin; Kapranos, Plato; Goodall, Russell

    2013-01-01

    The performance of any engineering component depends on and is limited by the properties of the material from which it is fabricated. It is crucial for engineering students to understand these material properties, interpret them and select the right material for the right application. In this paper we present a new method to engage students with…

  7. Toward High-Performance Organizations.

    ERIC Educational Resources Information Center

    Lawler, Edward E., III

    2002-01-01

    Reviews management changes that companies have made over time in adopting or adapting four approaches to organizational performance: employee involvement, total quality management, re-engineering, and knowledge management. Considers future possibilities and defines a new view of what constitutes effective organizational design in management.…

  8. Sustaining High Performance in Bad Times.

    ERIC Educational Resources Information Center

    Bassi, Laurie J.; Van Buren, Mark A.

    1997-01-01

    Summarizes the results of the American Society for Training and Development Human Resource and Performance Management Survey of 1996 that examined the performance outcomes of downsizing and high performance work systems, explored the relationship between high performance work systems and downsizing, and asked whether some downsizing practices were…

  9. High performance, high density hydrocarbon fuels

    NASA Technical Reports Server (NTRS)

    Frankenfeld, J. W.; Hastings, T. W.; Lieberman, M.; Taylor, W. F.

    1978-01-01

    The fuels were selected from 77 original candidates on the basis of estimated merit index and cost effectiveness. The ten candidates consisted of 3 pure compounds, 4 chemical plant streams and 3 refinery streams. Critical physical and chemical properties of the candidate fuels were measured including heat of combustion, density, and viscosity as a function of temperature, freezing points, vapor pressure, boiling point, thermal stability. The best all around candidate was found to be a chemical plant olefin stream rich in dicyclopentadiene. This material has a high merit index and is available at low cost. Possible problem areas were identified as low temperature flow properties and thermal stability. An economic analysis was carried out to determine the production costs of top candidates. The chemical plant and refinery streams were all less than 44 cent/kg while the pure compounds were greater than 44 cent/kg. A literature survey was conducted on the state of the art of advanced hydrocarbon fuel technology as applied to high energy propellents. Several areas for additional research were identified.

  10. Nanocrystalline high performance permanent magnets

    NASA Astrophysics Data System (ADS)

    Gutfleisch, O.; Bollero, A.; Handstein, A.; Hinz, D.; Kirchner, A.; Yan, A.; Müller, K.-H.; Schultz, L.

    2002-04-01

    Recent developments in nanocrystalline rare earth-transition metal magnets are reviewed and emphasis is placed on research work at IFW Dresden. Principal synthesis methods include high energy ball milling, melt spinning and hydrogen assisted methods such as reactive milling and hydrogenation-disproportionation-desorption-recombination. These techniques are applied to NdFeB-, PrFeB- and SmCo-type systems with the aim to produce high remanence magnets with high coercivity. Concepts of maximizing the energy density in nanostructured magnets by either inducing a texture via anisotropic HDDR or hot deformation or enhancing the remanence via magnetic exchange coupling are evaluated.

  11. Carpet Aids Learning in High Performance Schools

    ERIC Educational Resources Information Center

    Hurd, Frank

    2009-01-01

    The Healthy and High Performance Schools Act of 2002 has set specific federal guidelines for school design, and developed a federal/state partnership program to assist local districts in their school planning. According to the Collaborative for High Performance Schools (CHPS), high-performance schools are, among other things, healthy, comfortable,…

  12. Design and Performance Data for 81 Ah FNC Cells

    NASA Technical Reports Server (NTRS)

    Cohen, F.; Anderman, Menahem

    1997-01-01

    Design and performance data for 81 Ah FNC cells are given. The conclusions are: that a sealed Ni-Cd cells are not limited to 50 Ah with the FNC design; energy densities of 40 Wh/kg in a conservative high Cd, high electrolyte design have been demonstrated; uniform ATP data and LEO cycling performance is being demonstrated; internal cell pressures remain low under all conditions; and no conditioning is necessary under any LEO profile; accelerated LEO cycling exhibits performance well beyond traditional space Ni-Cd cells.

  13. High-Performance Miniature Hygrometer

    NASA Technical Reports Server (NTRS)

    Van Zandt, Thomas R.; Kaiser, William J.; Kenny, Thomas W.; Crisp, David

    1994-01-01

    Relatively inexpensive hygrometer that occupies volume less than 4 in.(3) measures dewpoints as much as 100 degrees C below ambient temperatures, with accuracy of 0.1 degrees C. Field tests indicate accuracy and repeatability identical to those of state-of-the-art larger dewpoint hygrometers. Operates up to 100 times as fast as older hygrometers, and offers simplicity and small size needed to meet cost and performance requirements of many applications.

  14. Optimization and performance of Space Station Freedom solar cells

    NASA Technical Reports Server (NTRS)

    Khemthong, S.; Hansen, N.; Bower, M.

    1991-01-01

    High efficiency, large area and low cost solar cells are the drivers for Space Station solar array designs. The manufacturing throughput, process complexity, yield of the cells, and array manufacturing technique determine the economics of the solar array design. The cell efficiency optimization of large area (8 x 8 m), dielectric wrapthrough contact solar cells are described. The results of the optimization are reported and the solar cell performance of limited production runs is reported.

  15. High Efficiency Cascade Solar Cells

    SciTech Connect

    Shuguang Deng, Seamus Curran, Igor Vasiliev

    2010-09-28

    This report summarizes the main work performed by New Mexico State University and University of Houston on a DOE sponsored project High Efficiency Cascade Solar Cells. The main tasks of this project include materials synthesis, characterization, theoretical calculations, organic solar cell device fabrication and test. The objective of this project is to develop organic nano-electronic-based photovoltaics. Carbon nanotubes and organic conjugated polymers were used to synthesize nanocomposites as the new active semiconductor materials that were used for fabricating two device architectures: thin film coating and cascade solar cell fiber. Chemical vapor deposition technique was employed to synthesized a variety of carbon nanotubes (single-walled CNT, doubled-walled CNT, multi-walled CNT, N-doped SWCNT, DWCNT and MWCNT, and B-doped SWCNT, DWCNT and MWCNT) and a few novel carbon structures (CNT-based nanolance, nanocross and supported graphene film) that have potential applications in organic solar cells. Purification procedures were developed for removing amorphous carbons from carbon nanotubes, and a controlled oxidation method was established for partial truncation of fullerene molecules. Carbon nanotubes (DWCNT and DWCNT) were functionalized with fullerenes and dyes covalently and used to form nanocomposites with conjugated polymers. Biologically synthesized Tellurium nanotubes were used to form composite with the conjugated polymers as well, which generated the highest reported optical limiting values from composites. Several materials characterization technique including SEM/TEM, Raman, AFM, UV-vis, adsorption and EDS were employed to characterize the physical and chemical properties of the carbon nanotubes, the functionalized carbon nanotubes and the nanocomposites synthesized in this project. These techniques allowed us to have a spectroscopic and morphological control of the composite formation and to understand the materials assembled. A parallel 136-CPU

  16. n-Type semiconducting naphthalene diimide-perylene diimide copolymers: controlling crystallinity, blend morphology, and compatibility toward high-performance all-polymer solar cells.

    PubMed

    Hwang, Ye-Jin; Earmme, Taeshik; Courtright, Brett A E; Eberle, Frank N; Jenekhe, Samson A

    2015-04-08

    Knowledge of the critical factors that determine compatibility, blend morphology, and performance of bulk heterojunction (BHJ) solar cells composed of an electron-accepting polymer and an electron-donating polymer remains limited. To test the idea that bulk crystallinity is such a critical factor, we have designed a series of new semiconducting naphthalene diimide (NDI)-selenophene/perylene diimide (PDI)-selenophene random copolymers, xPDI (10PDI, 30PDI, 50PDI), whose crystallinity varies with composition, and investigated them as electron acceptors in BHJ solar cells. Pairing of the reference crystalline (crystalline domain size Lc = 10.22 nm) NDI-selenophene copolymer (PNDIS-HD) with crystalline (Lc = 9.15 nm) benzodithiophene-thieno[3,4-b]thiophene copolymer (PBDTTT-CT) donor yields incompatible blends, whose BHJ solar cells have a power conversion efficiency (PCE) of 1.4%. However, pairing of the new 30PDI with optimal crystallinity (Lc = 5.11 nm) as acceptor with the same PBDTTT-CT donor yields compatible blends and all-polymer solar cells with enhanced performance (PCE = 6.3%, Jsc = 18.6 mA/cm(2), external quantum efficiency = 91%). These photovoltaic parameters observed in 30PDI:PBDTTT-CT devices are the best so far for all-polymer solar cells, while the short-circuit current (Jsc) and external quantum efficiency are even higher than reported values for [70]-fullerene:PBDTTT-CT solar cells. The morphology and bulk carrier mobilities of the polymer/polymer blends varied substantially with crystallinity of the acceptor polymer component and thus with the NDI/PDI copolymer composition. These results demonstrate that the crystallinity of a polymer component and thus compatibility, blend morphology, and efficiency of polymer/polymer blend solar cells can be controlled by molecular design.

  17. High performance Vernier racetrack resonators.

    PubMed

    Boeck, Robert; Flueckiger, Jonas; Yun, Han; Chrostowski, Lukas; Jaeger, Nicolas A F

    2012-12-15

    We demonstrate record performance of series-coupled silicon racetrack resonators exhibiting the Vernier effect. Our device has an interstitial peak suppression (IPS) of 25.5 dB, which is 14.5 dB larger than previously reported results. We also demonstrate the relationship between the inter-ring gap distance and the IPS as well as the 3 dB bandwidth (BW) both theoretically and experimentally. Namely, we show that as the inter-ring gap distance increases, the IPS increases and the 3 dB BW decreases.

  18. High-performance solar collector

    NASA Technical Reports Server (NTRS)

    Beekley, D. C.; Mather, G. R., Jr.

    1979-01-01

    Evacuated all-glass concentric tube collector using air or liquid transfer mediums is very efficient at high temperatures. Collector can directly drive existing heating systems that are presently driven by fossil fuel with relative ease of conversion and less expense than installation of complete solar heating systems.

  19. High specific energy, high capacity nickel-hydrogen cell design

    NASA Technical Reports Server (NTRS)

    Wheeler, James R.

    1993-01-01

    A 3.5 inch rabbit-ear-terminal nickel-hydrogen cell has been designed and tested to deliver high capacity at a C/1.5 discharge rate. Its specific energy yield of 60.6 wh/kg is believed to be the highest yet achieved in a slurry-process nickel-hydrogen cell, and its 10 C capacity of 113.9 AH the highest capacity yet made at a discharge rate this high in the 3.5 inch diameter size. The cell also demonstrated a pulse capability of 180 amps for 20 seconds. Specific cell parameters, performance, and future test plans are described.

  20. Achieving high performance non-fullerene organic solar cells through tuning the numbers of electron deficient building blocks of molecular acceptors

    NASA Astrophysics Data System (ADS)

    Yang, Lei; Chen, Yusheng; Chen, Shangshang; Dong, Tao; Deng, Wei; Lv, Lei; Yang, Saina; Yan, He; Huang, Hui

    2016-08-01

    Two analogous dimer and tetramer compounds, SF-PDI2 and SF-PDI4, were designed, theoretically calculated, synthesized, and developed as electron acceptors for organic solar cells. The effects of the number of the electron deficient building blocks on the optical absorption, energy levels, charge transport, morphology, crystallinity, and photovoltaic performance of the molecules were investigated. In combination with two different donors, PTB7-Th and PffBT4T-2OD, the results showed that increasing the numbers of PDI building blocks is beneficial to photovoltaic performance and leads to efficiency over 5%.

  1. High open-circuit voltage small-molecule p-DTS(FBTTh 2 )2.ICBA bulk heterojunction solar cells – morphology, excited-state dynamics, and photovoltaic performance

    DOE PAGES

    Ko Kyaw, Aung Ko; Gehrig, Dominik; Zhang, Jie; ...

    2014-11-27

    The photovoltaic performance of bulk heterojunction solar cells using the solution-processable small molecule donor 7,7'-(4,4-bis(2-ethylhexyl)-4H-silolo[3,2-b:4,5-b']dithiophene-2,6-diyl)bis(6-fluoro-4-(5'-hexyl-[2,2'-bithiophene]-5-yl)benzo[c][1,2,5]thiadiazole) (p-DTS(FBTTh2)2 in combination with indene-C60 bis-adduct (ICBA) as an acceptor is systematically optimized by altering the processing conditions. A high open-circuit voltage of 1 V, more than 0.2 V higher than that of a p-DTS(FBTTh2)2:PC70BM blend, is achieved. However, the power conversion efficiency remains around 5% and thus is lower than ~8% previously reported for p-DTS(FBTTh2)2:PC70BM. Transient absorption (TA) pump–probe spectroscopy over a wide spectral (Vis-NIR) and dynamic (fs to μs) range in combination with multivariate curve resolution analysis of the TA data reveals thatmore » generation of free charges is more efficient in the blend with PC70BM as an acceptor. In contrast, blends with ICBA create more coulombically bound interfacial charge transfer (CT) states, which recombine on the sub-nanosecond timescale by geminate recombination. Furthermore, the ns to μs charge carrier dynamics in p-DTS(FBTTh2)2:ICBA blends are only weakly intensity dependent implying a significant contribution of recombination from long-lived CT states and trapped charges, while those in p-DTS(FBTTh2)2:PC70BM decay via an intensity-dependent recombination mechanism indicating that spatially separated (free) charge carriers are observed, which can be extracted as photocurrent from the device.« less

  2. Determination of carbohydrates, sugar alcohols, and glycols in cell cultures and fermentation broths using high-performance anion-exchange chromatography with pulsed amperometric detection.

    PubMed

    Hanko, V P; Rohrer, J S

    2000-08-01

    Cell cultures and fermentation broths are complex mixtures of organic and inorganic compounds. Many of these compounds are synthesized or metabolized by microorganisms, and their concentrations can impact the yields of desired products. Carbohydrates serve as carbon sources for many microorganisms, while sugar alcohols (alditols), glycols (glycerol), and alcohols (methanol and ethanol) are metabolic products. We used high-performance anion-exchange chromatography with pulsed amperometric detection (HPAE-PAD) to simultaneously analyze for carbohydrates, alditols, and glycerol in growing yeast (Saccharomyces cerevisiae) cultures and their final fermentation broths. Both cultures were grown on complex undefined media, aliquots centrifuged to remove particulates, and the supernatants diluted and directly injected for analysis. Pulsed amperometry allowed a direct detection of the carbohydrates, alditols, and glycols present in the cultures and fermentation broths with very little interference from other matrix components. The broad linear range of three to four orders of magnitude allowed samples to be analyzed without multiple dilutions. Peak area RSDs were 2-7% for 2, 3-butanediol, ethanol, glycerol, erythritol, rhamnose, arabitol, sorbitol, galactitol, mannitol, arabinose, glucose, galactose, lactose, ribose, raffinose, and maltose spiked into a heat-inactivated yeast culture broth supernatant that was analyzed repetitively for 48 h. This method is useful for directly monitoring culture changes during fermentation. The carbohydrates in yeast cultures were monitored over 1 day. A yeast culture with medium consisting primarily of glucose and trace levels of trehalose and arabinose showed a drop in sugar concentration over time and an increase in glycerol. Yeast growing on a modified culture medium consisting of multiple carbohydrates and alditols showed preference for specific carbon sources and showed the ability to regulate pathways leading to catalysis of

  3. High-performance magnetic gears

    NASA Astrophysics Data System (ADS)

    Atallah, Kais; Calverley, Stuart D.; Howe, David

    2004-05-01

    Magnetic gearing may offer significant advantages such as reduced maintenance and improved reliability, inherent overload protection, and physical isolation between input and output shafts. Despite these advantages, it has received relatively little attention, to date, probably due to the poor torque transmission capability of proposed magnetic gears. The paper describes a magnetic gear topology, which combines a significantly higher torque transmission capability and a very high efficiency.

  4. High performance rotational vibration isolator

    NASA Astrophysics Data System (ADS)

    Sunderland, Andrew; Blair, David G.; Ju, Li; Golden, Howard; Torres, Francis; Chen, Xu; Lockwood, Ray; Wolfgram, Peter

    2013-10-01

    We present a new rotational vibration isolator with an extremely low resonant frequency of 0.055 ± 0.002 Hz. The isolator consists of two concentric spheres separated by a layer of water and joined by very soft silicone springs. The isolator reduces rotation noise at all frequencies above its resonance which is very important for airborne mineral detection. We show that more than 40 dB of isolation is achieved in a helicopter survey for rotations at frequencies between 2 Hz and 20 Hz. Issues affecting performance such as translation to rotation coupling and temperature are discussed. The isolator contains almost no metal, making it particularly suitable for electromagnetic sensors.

  5. High performance rotational vibration isolator.

    PubMed

    Sunderland, Andrew; Blair, David G; Ju, Li; Golden, Howard; Torres, Francis; Chen, Xu; Lockwood, Ray; Wolfgram, Peter

    2013-10-01

    We present a new rotational vibration isolator with an extremely low resonant frequency of 0.055 ± 0.002 Hz. The isolator consists of two concentric spheres separated by a layer of water and joined by very soft silicone springs. The isolator reduces rotation noise at all frequencies above its resonance which is very important for airborne mineral detection. We show that more than 40 dB of isolation is achieved in a helicopter survey for rotations at frequencies between 2 Hz and 20 Hz. Issues affecting performance such as translation to rotation coupling and temperature are discussed. The isolator contains almost no metal, making it particularly suitable for electromagnetic sensors.

  6. Atomic layer deposition of ruthenium surface-coating on porous platinum catalysts for high-performance direct ethanol solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Jeong, Heon Jae; Kim, Jun Woo; Jang, Dong Young; Shim, Joon Hyung

    2015-09-01

    Pt-Ru bi-metallic catalysts are synthesized by atomic layer deposition (ALD) of Ru surface-coating on sputtered Pt mesh. The catalysts are evaluated in direct ethanol solid oxide fuel cells (DESOFCs) in the temperature range of 300-500 °C. Island-growth of the ALD Ru coating is confirmed by transmission electron microscopy and X-ray photoelectron spectroscopy (XPS) analyses. The performance of the DESOFCs is evaluated based on the current-voltage output and electrochemical impedance spectroscopy. Genuine reduction of the polarization impedance, and enhanced power output with improved surface kinetics are achieved with the optimized ALD Ru surface-coating compared to bare Pt. The chemical composition of the Pt/ALD Ru electrode surface after fuel cell operation is analyzed via XPS. Enhanced cell performance is clearly achieved, attributed to the effective Pt/ALD Ru bi-metallic catalysis, including oxidation of Cdbnd O by Ru, and de-protonation of ethanol and cleavage of C-C bonds by Pt, as supported by surface morphology analysis which confirms formation of a large amount of carbon on bare Pt after the ethanol-fuel-cell test.

  7. Novel light-weight, high-performance anode-supported microtubular solid oxide fuel cells with an active anode functional layer

    NASA Astrophysics Data System (ADS)

    Liu, Tong; Wang, Yao; Ren, Cong; Fang, Shumin; Mao, Yating; Chen, Fanglin

    2015-10-01

    Influence of the air-gap, the distance from the tube-in-orifice spinneret to the upper surface of the external coagulant bath during the extrusion/phase-inversion process, on the microstructure of nickel - yttria-stabilized zirconia (Ni-YSZ) hollow fibers has been systematically studied. When the air-gap is 0 cm, the obtained Ni-YSZ hollow fiber has a sandwich microstructure. However, when the air-gap is increased to 15 cm, a bi-layer Ni-YSZ hollow fiber consisting of a thin layer with small pores and a thick support with highly porous fingerlike macrovoids has been achieved. The output power density of microtubular solid oxide fuel cells (MT-SOFCs) with a cell configuration of Ni-YSZ/YSZ/YSZ-LSM increases from 594 mW cm-2 for the cells with the Ni-YSZ anode of sandwich microstructure to 832 mW cm-2 for the cells with the Ni-YSZ anode of bi-layer microstructure at 750 °C, implying that to achieve the same output power density, the weight of the cells with the bi-layer anode support can be reduced to 41.5% compared with that of the cells with the sandwich anode support. Thermal-cycling test shows no obvious degradation on the open-circuit-voltage (OCV), indicating that the MT-SOFCs have robust resistance to thermal cycling.

  8. Photovoltaic Performance and Interface Behaviors of Cu(In,Ga)Se2 Solar Cells with a Sputtered-Zn(O,S) Buffer Layer by High-Temperature Annealing.

    PubMed

    Wi, Jae-Hyung; Kim, Tae Gun; Kim, Jeong Won; Lee, Woo-Jung; Cho, Dae-Hyung; Han, Won Seok; Chung, Yong-Duck

    2015-08-12

    We selected a sputtered-Zn(O,S) film as a buffer material and fabricated a Cu(In,Ga)Se2 (CIGS) solar cell for use in monolithic tandem solar cells. A thermally stable buffer layer was required because it should withstand heat treatment during processing of top cell. Postannealing treatment was performed on a CIGS solar cell in vacuum at temperatures from 300-500 °C to examine its thermal stability. Serious device degradation particularly in VOC was observed, which was due to the diffusion of thermally activated constituent elements. The elements In and Ga tend to out-diffuse to the top surface of the CIGS, while Zn diffuses into the interface of Zn(O,S)/CIGS. Such rearrangement of atomic fractions modifies the local energy band gap and band alignment at the interface. The notch-shape induced at the interface after postannealing could function as an electrical trap during electron transport, which would result in the reduction of solar cell efficiency.

  9. High performance light emitting transistors

    NASA Astrophysics Data System (ADS)

    Namdas, Ebinazar B.; Ledochowitsch, Peter; Yuen, Jonathan D.; Moses, Daniel; Heeger, Alan J.

    2008-05-01

    Solution processed light emitting field-effect transistors (LEFETs) with peak brightness exceeding 2500cd/m2 and external quantum efficiency of 0.15% are demonstrated. The devices utilized a bilayer film comprising a hole transporting polymer, poly(2,5-bis(3-tetradecylthiophen-2-yl)thieno[3,2-b] thiophene) and a light emitting polymer, Super Yellow, a polyphenylenevinylene derivative. The LEFETs were fabricated in the bottom gate architecture with top-contact Ca /Ag as source/drain electrodes. Light emission was controlled by the gate voltage which controls the hole current. These results indicate that high brightness LEFETs can be made by using the bilayer film (hole transporting layer and a light emitting polymer).

  10. Designing high-performance jobs.

    PubMed

    Simons, Robert

    2005-01-01

    Tales of great strategies derailed by poor execution are all too common. That's because some organizations are designed to fail. For a company to achieve its potential, each employee's supply of organizational resources should equal the demand, and the same balance must apply to every business unit and to the company as a whole. To carry out his or her job, each employee has to know the answers to four basic questions: What resources do I control to accomplish my tasks? What measures will be used to evaluate my performance? Who do I need to interact with and influence to achieve my goals? And how much support can I expect when I reach out to others for help? The questions correspond to what the author calls the four basic spans of a job-control, accountability, influence, and support. Each span can be adjusted so that it is narrow or wide or somewhere in between. If you get the settings right, you can design a job in which a talented individual can successfully execute on your company's strategy. If you get the settings wrong, it will be difficult for an employee to be effective. The first step is to set the span of control to reflect the resources allocated to each position and unit that plays an important role in delivering customer value. This setting, like the others, is determined by how the business creates value for customers and differentiates its products and services. Next, you can dial in different levels of entrepreneurial behavior and creative tension by widening or narrowing spans of accountability and influence. Finally, you must adjust the span of support to ensure that the job or unit will get the informal help it needs.

  11. Metal Acetylacetonate Series in Interface Engineering for Full Low-Temperature-Processed, High-Performance, and Stable Planar Perovskite Solar Cells with Conversion Efficiency over 16% on 1 cm(2) Scale.

    PubMed

    Chen, Wei; Xu, Leiming; Feng, Xiyuan; Jie, Jiansheng; He, Zhubing

    2017-02-14

    A series of metal acetylacetonates produced by a full low-temperature (below 100 °C) process are successfully employed to obtain both "multistable" and high-performance planar-inverted perovskite solar cells. All the three kinds of champion cells in small area exhibit over 18% in conversion-efficiency with negligible hysteresis, along with above 16% in conversion-efficiency for planar PSCs in an aperture area of over 1 cm(2) .

  12. HIGH-PERFORMANCE COATING MATERIALS

    SciTech Connect

    SUGAMA,T.

    2007-01-01

    Corrosion, erosion, oxidation, and fouling by scale deposits impose critical issues in selecting the metal components used at geothermal power plants operating at brine temperatures up to 300 C. Replacing these components is very costly and time consuming. Currently, components made of titanium alloy and stainless steel commonly are employed for dealing with these problems. However, another major consideration in using these metals is not only that they are considerably more expensive than carbon steel, but also the susceptibility of corrosion-preventing passive oxide layers that develop on their outermost surface sites to reactions with brine-induced scales, such as silicate, silica, and calcite. Such reactions lead to the formation of strong interfacial bonds between the scales and oxide layers, causing the accumulation of multiple layers of scales, and the impairment of the plant component's function and efficacy; furthermore, a substantial amount of time is entailed in removing them. This cleaning operation essential for reusing the components is one of the factors causing the increase in the plant's maintenance costs. If inexpensive carbon steel components could be coated and lined with cost-effective high-hydrothermal temperature stable, anti-corrosion, -oxidation, and -fouling materials, this would improve the power plant's economic factors by engendering a considerable reduction in capital investment, and a decrease in the costs of operations and maintenance through optimized maintenance schedules.

  13. PROPULSION AND POWER RAPID RESPONSE RESEARCH AND DEVELOPMENT (R&D) SUPPORT. Deliver Order 0002: Power-Dense, Solid Oxide Fuel Cell Systems: High-Performance, High-Power-Density Solid Oxide Fuel Cells - Materials and Load Control

    DTIC Science & Technology

    2010-04-01

    report is published in the interest of scientific and technical information exchange, and its publication does not constitute the Government’s approval...and fuel cell. This controller could be readily adapted to current fuel cell powered vehicles. 15. SUBJECT TERMS solid oxide fuel cell, SOFC , solid...oxide fuel cell electrodes, SOFC systems, hybrid power systems 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT: SAR 18. NUMBER OF

  14. High performance pipelined multiplier with fast carry-save adder

    NASA Technical Reports Server (NTRS)

    Wu, Angus

    1990-01-01

    A high-performance pipelined multiplier is described. Its high performance results from the fast carry-save adder basic cell which has a simple structure and is suitable for the Gate Forest semi-custom environment. The carry-save adder computes the sum and carry within two gate delay. Results show that the proposed adder can operate at 200 MHz for a 2-micron CMOS process; better performance is expected in a Gate Forest realization.

  15. Microwave assisted aqueous synthesis of core-shell CdSe(x)Te(1-x)-CdS quantum dots for high performance sensitized solar cells.

    PubMed

    Luo, Jianheng; Wei, Huiyun; Li, Fan; Huang, Qingli; Li, Dongmei; Luo, Yanhong; Meng, Qingbo

    2014-04-04

    A facile microwave assisted aqueous method has been developed to rapidly prepare stable CdSe(x)Te(1-x)-CdS quantum dots. Based on this material, core-shell type II CdSe(x)Te(1-x)-CdS quantum dot sensitized solar cells have been assembled and a power conversion efficiency as high as 5.04% has been obtained.

  16. Side-Chain Fluorination: An Effective Approach to Achieving High-Performance All-Polymer Solar Cells with Efficiency Exceeding 7.

    PubMed

    Oh, Jiho; Kranthiraja, Kakaraparthi; Lee, Changyeon; Gunasekar, Kumarasamy; Kim, Seonha; Ma, Biwu; Kim, Bumjoon J; Jin, Sung-Ho

    2016-12-01

    Side-chain fluorination of polymers is demonstrated as a highly effective strategy to improve the efficiency of all-polymer solar cells from 2.93% (nonfluorinated P1) to 7.13% (fluorinated P2). This significant enhancement is achieved by synergistic improvements in open-circuit voltage, charge generation, and charge transport, as fluorination of the donor polymer optimizes the band alignment and the film morphology.

  17. Toward All Room-Temperature, Solution-Processed, High-Performance Planar Perovskite Solar Cells: A New Scheme of Pyridine-Promoted Perovskite Formation.

    PubMed

    Zhang, Hong; Cheng, Jiaqi; Li, Dan; Lin, Francis; Mao, Jian; Liang, Chunjun; Jen, Alex K-Y; Grätzel, Michael; Choy, Wallace C H

    2017-01-27

    A new, all room-temperature solution process is developed to fabricate efficient, low-cost, and stable perovskite solar cells (PVSCs). The PVSCs show high efficiency of 17.10% and 14.19%, with no hysteresis on rigid and flexible substrates, respectively, which are the best efficiencies reported to date for PVSCs fabricated by room-temperature solution-processed techniques. The flexible PVSCs show a remarkable power-per-weight of 23.26 W g(-1) .

  18. A Low-Temperature, Solution-Processable Organic Electron-Transporting Layer Based on Planar Coronene for High-performance Conventional Perovskite Solar Cells.

    PubMed

    Zhu, Zonglong; Xu, Jing-Qi; Chueh, Chu-Chen; Liu, Hongbin; Li, Zhong'an; Li, Xiaosong; Chen, Hongzheng; Jen, Alex K-Y

    2016-12-01

    A low-temperature, solution-processable organic electron-transporting material (ETM) is successfully developed for efficient conventional n-i-p perovskite solar cells (PVSCs). This ETM can show a high efficiency over 17% on rigid device and 14.2% on flexible PVSC. To the best of our knowledge, this efficiency is among the highest values reported for flexible n-i-p PVSCs with negligible hysteresis thus far.

  19. Microstructure tailoring of the nickel oxide-Yttria-stabilized zirconia hollow fibers toward high-performance microtubular solid oxide fuel cells.

    PubMed

    Liu, Tong; Ren, Cong; Fang, Shumin; Wang, Yao; Chen, Fanglin

    2014-11-12

    NiO-yttria-stabilized zirconia (YSZ) hollow fiber anode support with different microstructures was prepared using a phase-inversion method. The effect of the solid loading of the phase-inversion suspensions on the microstructure development of the NiO-YSZ anode support was investigated. Solid loading in the suspension was found to have an important influence on the microstructure of the NiO-YSZ anode support and viscosity-related viscous fingering mechanism can be adopted to explain the pore formation mechanism of the as-prepared hollow fibers. NiO-YSZ anode-supported microtubular solid oxide fuel cells (SOFCs) with different anode microstructures were fabricated and tested, and the correlation between the anode support microstructures, porosity, gas permeability, electrical conductivity, and the cell electrochemical performance was discussed. Microtubular SOFCs with a cell configuration of Ni-YSZ/YSZ/YSZ-LSM (LSM = (La(0.8)Sr(0.2))(0.95)MnO(3-x)) and optimized anode microstructure show cell output power density of 833.9 mW cm(-2) at 750 °C using humidified H2 as fuel and ambient air as oxidant.

  20. Statistical properties of high performance cesium standards

    NASA Technical Reports Server (NTRS)

    Percival, D. B.

    1973-01-01

    The intermediate term frequency stability of a group of new high-performance cesium beam tubes at the U.S. Naval Observatory were analyzed from two viewpoints: (1) by comparison of the high-performance standards to the MEAN(USNO) time scale and (2) by intercomparisons among the standards themselves. For sampling times up to 5 days, the frequency stability of the high-performance units shows significant improvement over older commercial cesium beam standards.