High-performance green flexible electronics based on biodegradable cellulose nanofibril paper
Jung, Yei Hwan; Chang, Tzu-Hsuan; Zhang, Huilong; Yao, Chunhua; Zheng, Qifeng; Yang, Vina W.; Mi, Hongyi; Kim, Munho; Cho, Sang June; Park, Dong-Wook; Jiang, Hao; Lee, Juhwan; Qiu, Yijie; Zhou, Weidong; Cai, Zhiyong; Gong, Shaoqin; Ma, Zhenqiang
2015-01-01
Today's consumer electronics, such as cell phones, tablets and other portable electronic devices, are typically made of non-renewable, non-biodegradable, and sometimes potentially toxic (for example, gallium arsenide) materials. These consumer electronics are frequently upgraded or discarded, leading to serious environmental contamination. Thus, electronic systems consisting of renewable and biodegradable materials and minimal amount of potentially toxic materials are desirable. Here we report high-performance flexible microwave and digital electronics that consume the smallest amount of potentially toxic materials on biobased, biodegradable and flexible cellulose nanofibril papers. Furthermore, we demonstrate gallium arsenide microwave devices, the consumer wireless workhorse, in a transferrable thin-film form. Successful fabrication of key electrical components on the flexible cellulose nanofibril paper with comparable performance to their rigid counterparts and clear demonstration of fungal biodegradation of the cellulose-nanofibril-based electronics suggest that it is feasible to fabricate high-performance flexible electronics using ecofriendly materials. PMID:26006731
High-performance green flexible electronics based on biodegradable cellulose nanofibril paper.
Jung, Yei Hwan; Chang, Tzu-Hsuan; Zhang, Huilong; Yao, Chunhua; Zheng, Qifeng; Yang, Vina W; Mi, Hongyi; Kim, Munho; Cho, Sang June; Park, Dong-Wook; Jiang, Hao; Lee, Juhwan; Qiu, Yijie; Zhou, Weidong; Cai, Zhiyong; Gong, Shaoqin; Ma, Zhenqiang
2015-05-26
Today's consumer electronics, such as cell phones, tablets and other portable electronic devices, are typically made of non-renewable, non-biodegradable, and sometimes potentially toxic (for example, gallium arsenide) materials. These consumer electronics are frequently upgraded or discarded, leading to serious environmental contamination. Thus, electronic systems consisting of renewable and biodegradable materials and minimal amount of potentially toxic materials are desirable. Here we report high-performance flexible microwave and digital electronics that consume the smallest amount of potentially toxic materials on biobased, biodegradable and flexible cellulose nanofibril papers. Furthermore, we demonstrate gallium arsenide microwave devices, the consumer wireless workhorse, in a transferrable thin-film form. Successful fabrication of key electrical components on the flexible cellulose nanofibril paper with comparable performance to their rigid counterparts and clear demonstration of fungal biodegradation of the cellulose-nanofibril-based electronics suggest that it is feasible to fabricate high-performance flexible electronics using ecofriendly materials.
High-performance green flexible electronics based on biodegradable cellulose nanofibril paper
NASA Astrophysics Data System (ADS)
Jung, Yei Hwan; Chang, Tzu-Hsuan; Zhang, Huilong; Yao, Chunhua; Zheng, Qifeng; Yang, Vina W.; Mi, Hongyi; Kim, Munho; Cho, Sang June; Park, Dong-Wook; Jiang, Hao; Lee, Juhwan; Qiu, Yijie; Zhou, Weidong; Cai, Zhiyong; Gong, Shaoqin; Ma, Zhenqiang
2015-05-01
Today's consumer electronics, such as cell phones, tablets and other portable electronic devices, are typically made of non-renewable, non-biodegradable, and sometimes potentially toxic (for example, gallium arsenide) materials. These consumer electronics are frequently upgraded or discarded, leading to serious environmental contamination. Thus, electronic systems consisting of renewable and biodegradable materials and minimal amount of potentially toxic materials are desirable. Here we report high-performance flexible microwave and digital electronics that consume the smallest amount of potentially toxic materials on biobased, biodegradable and flexible cellulose nanofibril papers. Furthermore, we demonstrate gallium arsenide microwave devices, the consumer wireless workhorse, in a transferrable thin-film form. Successful fabrication of key electrical components on the flexible cellulose nanofibril paper with comparable performance to their rigid counterparts and clear demonstration of fungal biodegradation of the cellulose-nanofibril-based electronics suggest that it is feasible to fabricate high-performance flexible electronics using ecofriendly materials.
Do, Thanh Nho; Visell, Yon
2017-05-11
Stretchable and flexible multifunctional electronic components, including sensors and actuators, have received increasing attention in robotics, electronics, wearable, and healthcare applications. Despite advances, it has remained challenging to design analogs of many electronic components to be highly stretchable, to be efficient to fabricate, and to provide control over electronic performance. Here, we describe highly elastic sensors and interconnects formed from thin, twisted conductive microtubules. These devices consist of twisted assemblies of thin, highly stretchable (>400%) elastomer tubules filled with liquid conductor (eutectic gallium indium, EGaIn), and fabricated using a simple roller coating process. As we demonstrate, these devices can operate as multimodal sensors for strain, rotation, contact force, or contact location. We also show that, through twisting, it is possible to control their mechanical performance and electronic sensitivity. In extensive experiments, we have evaluated the capabilities of these devices, and have prototyped an array of applications in several domains of stretchable and wearable electronics. These devices provide a novel, low cost solution for high performance stretchable electronics with broad applications in industry, healthcare, and consumer electronics, to emerging product categories of high potential economic and societal significance.
2013-11-20
Graphene oxide derivatives as hole- and electron- extraction layers for high-performance polymer solar cells Jun Liu,*a Michael Durstockb and Liming...oxide (GO) and its derivatives have been used as a new class of efficient hole- and electron-extraction materials in polymer solar cells (PSCs...new class of efficient hole- and electron-extraction materials in polymer solar cells (PSCs). Highly efficient and stable PSCs have been fabricated
Heterogeneous Monolithic Integration of Single-Crystal Organic Materials.
Park, Kyung Sun; Baek, Jangmi; Park, Yoonkyung; Lee, Lynn; Hyon, Jinho; Koo Lee, Yong-Eun; Shrestha, Nabeen K; Kang, Youngjong; Sung, Myung Mo
2017-02-01
Manufacturing high-performance organic electronic circuits requires the effective heterogeneous integration of different nanoscale organic materials with uniform morphology and high crystallinity in a desired arrangement. In particular, the development of high-performance organic electronic and optoelectronic devices relies on high-quality single crystals that show optimal intrinsic charge-transport properties and electrical performance. Moreover, the heterogeneous integration of organic materials on a single substrate in a monolithic way is highly demanded for the production of fundamental organic electronic components as well as complex integrated circuits. Many of the various methods that have been designed to pattern multiple heterogeneous organic materials on a substrate and the heterogeneous integration of organic single crystals with their crystal growth are described here. Critical issues that have been encountered in the development of high-performance organic integrated electronics are also addressed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Control of Spin Wave Dynamics in Spatially Twisted Magnetic Structures
2017-06-27
realize high-performance spintronic and magnetic storage devices. 15. SUBJECT TERMS nano- electronics , spin, wave, magnetic, multi-functional, device 16... electronics has required us to develop high-performance and multi-functional electronic devices driven with extremely low power consumption...Spintronics”, simultaneously utilizing the charge and the spin of electrons , provides us with solutions to essential problems for semiconductor-based
High-performance electronics for time-of-flight PET systems
NASA Astrophysics Data System (ADS)
Choong, W.-S.; Peng, Q.; Vu, C. Q.; Turko, B. T.; Moses, W. W.
2013-01-01
We have designed and built a high-performance readout electronics system for time-of-flight positron emission tomography (TOF PET) cameras. The electronics architecture is based on the electronics for a commercial whole-body PET camera (Siemens/CPS Cardinal electronics), modified to improve the timing performance. The fundamental contributions in the electronics that can limit the timing resolution include the constant fraction discriminator (CFD), which converts the analog electrical signal from the photo-detector to a digital signal whose leading edge is time-correlated with the input signal, and the time-to-digital converter (TDC), which provides a time stamp for the CFD output. Coincident events are identified by digitally comparing the values of the time stamps. In the Cardinal electronics, the front-end processing electronics are performed by an Analog subsection board, which has two application-specific integrated circuits (ASICs), each servicing a PET block detector module. The ASIC has a built-in CFD and TDC. We found that a significant degradation in the timing resolution comes from the ASIC's CFD and TDC. Therefore, we have designed and built an improved Analog subsection board that replaces the ASIC's CFD and TDC with a high-performance CFD (made with discrete components) and TDC (using the CERN high-performance TDC ASIC). The improved Analog subsection board is used in a custom single-ring LSO-based TOF PET camera. The electronics system achieves a timing resolution of 60 ps FWHM. Prototype TOF detector modules are read out with the electronics system and give coincidence timing resolutions of 259 ps FWHM and 156 ps FWHM for detector modules coupled to LSO and LaBr3 crystals respectively.
High-performance electronics for time-of-flight PET systems.
Choong, W-S; Peng, Q; Vu, C Q; Turko, B T; Moses, W W
2013-01-01
We have designed and built a high-performance readout electronics system for time-of-flight positron emission tomography (TOF PET) cameras. The electronics architecture is based on the electronics for a commercial whole-body PET camera (Siemens/CPS Cardinal electronics), modified to improve the timing performance. The fundamental contributions in the electronics that can limit the timing resolution include the constant fraction discriminator (CFD), which converts the analog electrical signal from the photo-detector to a digital signal whose leading edge is time-correlated with the input signal, and the time-to-digital converter (TDC), which provides a time stamp for the CFD output. Coincident events are identified by digitally comparing the values of the time stamps. In the Cardinal electronics, the front-end processing electronics are performed by an Analog subsection board, which has two application-specific integrated circuits (ASICs), each servicing a PET block detector module. The ASIC has a built-in CFD and TDC. We found that a significant degradation in the timing resolution comes from the ASIC's CFD and TDC. Therefore, we have designed and built an improved Analog subsection board that replaces the ASIC's CFD and TDC with a high-performance CFD (made with discrete components) and TDC (using the CERN high-performance TDC ASIC). The improved Analog subsection board is used in a custom single-ring LSO-based TOF PET camera. The electronics system achieves a timing resolution of 60 ps FWHM. Prototype TOF detector modules are read out with the electronics system and give coincidence timing resolutions of 259 ps FWHM and 156 ps FWHM for detector modules coupled to LSO and LaBr 3 crystals respectively.
Nela, Luca; Tang, Jianshi; Cao, Qing; Tulevski, George; Han, Shu-Jen
2018-03-14
Artificial "electronic skin" is of great interest for mimicking the functionality of human skin, such as tactile pressure sensing. Several important performance metrics include mechanical flexibility, operation voltage, sensitivity, and accuracy, as well as response speed. In this Letter, we demonstrate a large-area high-performance flexible pressure sensor built on an active matrix of 16 × 16 carbon nanotube thin-film transistors (CNT TFTs). Made from highly purified solution tubes, the active matrix exhibits superior flexible TFT performance with high mobility and large current density, along with a high device yield of nearly 99% over 4 inch sample area. The fully integrated flexible pressure sensor operates within a small voltage range of 3 V and shows superb performance featuring high spatial resolution of 4 mm, faster response than human skin (<30 ms), and excellent accuracy in sensing complex objects on both flat and curved surfaces. This work may pave the road for future integration of high-performance electronic skin in smart robotics and prosthetic solutions.
NASA Technical Reports Server (NTRS)
Smith, Gerald A.
1999-01-01
Included in Appendix I to this report is a complete set of design and assembly schematics for the high vacuum inner trap assembly, cryostat interfaces and electronic components for the MSFC HI-PAT. Also included in the final report are summaries of vacuum tests, and electronic tests performed upon completion of the assembly.
Power Electronics and Thermal Management | Transportation Research | NREL
Power Electronics and Thermal Management Power Electronics and Thermal Management This is the March Gearhart's testimony. Optical Thermal Characterization Enables High-Performance Electronics Applications New transient thermoreflectance measures the thermal performance of materials and their interfaces that cannot
High energy electron acceleration with PW-class laser system
NASA Astrophysics Data System (ADS)
Nakanii, N.; Kondo, K.; Mori, Y.; Miura, E.; Yabuuchi, T.; Tsuji, K.; Suzuki, S.; Asaka, T.; Yanagida, K.; Hanaki, H.; Kobayashi, T.; Makino, K.; Yamane, T.; Miyamoto, S.; Horikawa, K.; Kimura, K.; Takeda, K.; Fukumochi, S.; Kashihara, M.; Tanimoto, T.; Nakamura, H.; Ishikura, T.; Tampo, M.; Kodama, R.; Kitagawa, Y.; Mima, K.; Tanaka, K. A.
2008-06-01
We performed electron acceleration experiment with PW-class laser and a plasma tube, which was created by imploding a hollow polystyrene cylinder. In this experiment, electron energies in excess of 600 MeV have been observed. Moreover, the spectra of a comparatively high-density plasma ˜1019 cm-3 had a bump around 10 MeV. Additionally, we performed the absolute sensitivity calibration of imaging plate for 1 GeV electrons from the injector Linac of Spring-8 in order to evaluate absolute number of GeV-class electrons in the laser acceleration experiment.
NASA Astrophysics Data System (ADS)
Xu, Wei; Li, Jing-Yi; Huang, Sen-Lin; Z. Wu, W.; Hao, H.; P., Wang; K. Wu, Y.
2014-10-01
The Duke storage ring is a dedicated driver for the storage ring based oscillator free-electron lasers (FELs), and the High Intensity Gamma-ray Source (HIGS). It is operated with a beam current ranging from about 1 mA to 100 mA per bunch for various operations and accelerator physics studies. High performance operations of the FEL and γ-ray source require a stable electron beam orbit, which has been realized by the global orbit feedback system. As a critical part of the orbit feedback system, the electron beam position monitors (BPMs) are required to be able to precisely measure the electron beam orbit in a wide range of the single-bunch current. However, the high peak voltage of the BPM pickups associated with high single-bunch current degrades the performance of the BPM electronics, and can potentially damage the BPM electronics. A signal conditioning method using low pass filters is developed to reduce the peak voltage to protect the BPM electronics, and to make the BPMs capable of working with a wide range of single-bunch current. Simulations and electron beam based tests are performed. The results show that the Duke storage ring BPM system is capable of providing precise orbit measurements to ensure highly stable FEL and HIGS operations.
High performance thermal imaging for the 21st century
NASA Astrophysics Data System (ADS)
Clarke, David J.; Knowles, Peter
2003-01-01
In recent years IR detector technology has developed from early short linear arrays. Such devices require high performance signal processing electronics to meet today's thermal imaging requirements for military and para-military applications. This paper describes BAE SYSTEMS Avionics Group's Sensor Integrated Modular Architecture thermal imager which has been developed alongside the group's Eagle 640×512 arrays to provide high performance imaging capability. The electronics architecture also supprots High Definition TV format 2D arrays for future growth capability.
Performance optimization of detector electronics for millimeter laser ranging
NASA Technical Reports Server (NTRS)
Cova, Sergio; Lacaita, A.; Ripamonti, Giancarlo
1993-01-01
The front-end electronic circuitry plays a fundamental role in determining the performance actually obtained from ultrafast and highly sensitive photodetectors. We deal here with electronic problems met working with microchannel plate photomultipliers (MCP-PMTs) and single photon avalanche diodes (SPADs) for detecting single optical photons and measuring their arrival time with picosecond resolution. The performance of available fast circuits is critically analyzed. Criteria for selecting the most suitable electronics are derived and solutions for exploiting the detector performance are presented and discussed.
NASA Astrophysics Data System (ADS)
Munusami, Ravindiran; Yakkala, Bhaskar Rao; Prabhakar, Shankar
2013-12-01
Magnetic tunnel junction were made by inserting the magnetic materials between the source, channel and the drain of the High Electron Mobility Transistor (HEMT) to enhance the performance. Material studio software package was used to design the superlattice layers. Different cases were analyzed to optimize the performance of the device by placing the magnetic material at different positions of the device. Simulation results based on conductivity reveals that the device has a very good electron transport due to the magnetic materials and will amplify very low frequency signals.
Development of an environmental high-voltage electron microscope for reaction science.
Tanaka, Nobuo; Usukura, Jiro; Kusunoki, Michiko; Saito, Yahachi; Sasaki, Katuhiro; Tanji, Takayoshi; Muto, Shunsuke; Arai, Shigeo
2013-02-01
Environmental transmission electron microscopy and ultra-high resolution electron microscopic observation using aberration correctors have recently emerged as topics of great interest. The former method is an extension of the so-called in situ electron microscopy that has been performed since the 1970s. Current research in this area has been focusing on dynamic observation with atomic resolution under gaseous atmospheres and in liquids. Since 2007, Nagoya University has been developing a new 1-MV high voltage (scanning) transmission electron microscope that can be used to observe nanomaterials under conditions that include the presence of gases, liquids and illuminating lights, and it can be also used to perform mechanical operations to nanometre-sized areas as well as electron tomography and elemental analysis by electron energy loss spectroscopy. The new instrument has been used to image and analyse various types of samples including biological ones.
Gao, Ying; Asadirad, Mojtaba; Yao, Yao; Dutta, Pavel; Galstyan, Eduard; Shervin, Shahab; Lee, Keon-Hwa; Pouladi, Sara; Sun, Sicong; Li, Yongkuan; Rathi, Monika; Ryou, Jae-Hyun; Selvamanickam, Venkat
2016-11-02
Single-crystal-like silicon (Si) thin films on bendable and scalable substrates via direct deposition are a promising material platform for high-performance and cost-effective devices of flexible electronics. However, due to the thick and unintentionally highly doped semiconductor layer, the operation of transistors has been hampered. We report the first demonstration of high-performance flexible thin-film transistors (TFTs) using single-crystal-like Si thin films with a field-effect mobility of ∼200 cm 2 /V·s and saturation current, I/l W > 50 μA/μm, which are orders-of-magnitude higher than the device characteristics of conventional flexible TFTs. The Si thin films with a (001) plane grown on a metal tape by a "seed and epitaxy" technique show nearly single-crystalline properties characterized by X-ray diffraction, Raman spectroscopy, reflection high-energy electron diffraction, and transmission electron microscopy. The realization of flexible and high-performance Si TFTs can establish a new pathway for extended applications of flexible electronics such as amplification and digital circuits, more than currently dominant display switches.
Liu, Yi; He, Bo; Pun, Andrew
2015-11-24
A novel electron acceptor based on bay-annulated indigo (BAI) was synthesized and used for the preparation of a series of high performance donor-acceptor small molecules and polymers. The resulting materials possess low-lying LUMO energy level and small HOMO-LUMO gaps, while their films exhibited high crystallinity upon thermal treatment, commensurate with high field effect mobilities and ambipolar transfer characteristics.
Liu, Yi; He, Bo; Pun, Andrew
2016-04-19
A novel electron acceptor based on bay-annulated indigo (BAI) was synthesized and used for the preparation of a series of high performance donor-acceptor small molecules and polymers. The resulting materials possess low-lying LUMO energy level and small HOMO-LUMO gaps, while their films exhibited high crystallinity upon thermal treatment, commensurate with high field effect mobilities and ambipolar transfer characteristics.
Rylene and related diimides for organic electronics.
Zhan, Xiaowei; Facchetti, Antonio; Barlow, Stephen; Marks, Tobin J; Ratner, Mark A; Wasielewski, Michael R; Marder, Seth R
2011-01-11
Organic electron-transporting materials are essential for the fabrication of organic p-n junctions, photovoltaic cells, n-channel field-effect transistors, and complementary logic circuits. Rylene diimides are a robust, versatile class of polycyclic aromatic electron-transport materials with excellent thermal and oxidative stability, high electron affinities, and, in many cases, high electron mobilities; they are, therefore, promising candidates for a variety of organic electronics applications. In this review, recent developments in the area of high-electron-mobility diimides based on rylenes and related aromatic cores, particularly perylene- and naphthalene-diimide-based small molecules and polymers, for application in high-performance organic field-effect transistors and photovoltaic cells are summarized and analyzed.
Silicon Hot-Electron Bolometers
NASA Technical Reports Server (NTRS)
Stevenson, Thomas R.; Hsieh, Wen-Ting; Mitchell, Robert R.; Isenberg, Hal D.; Stahle, Carl M.; Cao, Nga T.; Schneider, Gideon; Travers, Douglas E.; Moseley, S. Harvey; Wollack, Edward J.
2004-01-01
We discuss a new type of direct detector, a silicon hot-electron bolometer, for measurements in the far-infrared and submillimeter spectral ranges. High performance bolometers can be made using the electron-phonon conductance in heavily doped silicon to provide thermal isolation from the cryogenic bath. Noise performance is expected to be near thermodynamic limits, allowing background limited performance for many far infrared and submillimeter photometric and spectroscopic applications.
NASA Astrophysics Data System (ADS)
Yang, Shuyan; Zhou, Yanxue; Zhang, Peng; Cai, Zhuodi; Li, Yangping; Fan, Hongbo
2017-12-01
Interfacial interaction is one of the key factors to improve comprehensive properties of polymer/inorganic filler nanocomposites. In this work, a new interfacial interaction called electron transferring interaction is reported in the nitrile-butadiene rubber/halloysite nanotubes (NBR/HNTs) nanocomposites. The X-ray photoelectron spectroscopy (XPS) and in-situ controlling temperature Fourier transform infrared spectroscopy (FTIR) have confirmed that electrons of electron-rich -CN groups in NBR can transfer to the electron-deficiency aluminum atoms of HNTs, which packs a part of NBR molecules onto the surface of HNTs to form bound rubber and stabilize the homogeneous dispersion of HNTs with few agglomeration as revealed by scanning electron microscope (SEM) and dynamic mechanical analysis (DMA) performances, even at high HNTs addition, resulting in high light transmittance. The tensile strength of NBR/30wt%HNTs nanocomposites is about 291% higher than pure NBR, without sacrificing the elongation at break.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Printz, Adam D.; Lipomi, Darren J., E-mail: dlipomi@ucsd.edu
The primary goal of the field concerned with organic semiconductors is to produce devices with performance approaching that of silicon electronics, but with the deformability—flexibility and stretchability—of conventional plastics. However, an inherent competition between deformability and charge transport has long been observed in these materials, and achieving the extreme (or even moderate) deformability implied by the word “plastic” concurrently with high charge transport may be elusive. This competition arises because the properties needed for high carrier mobilities—e.g., rigid chains in π-conjugated polymers and high degrees of crystallinity in the solid state—are antithetical to deformability. On the device scale, this competitionmore » can lead to low-performance yet mechanically robust devices, or high-performance devices that fail catastrophically (e.g., cracking, cohesive failure, and delamination) under strain. There are, however, some observations that contradict the notion of the mutual exclusivity of electronic and mechanical performances. These observations suggest that this problem may not be a fundamental trade-off, but rather an inconvenience that may be negotiated by a logical selection of materials and processing conditions. For example, the selection of the poly(3-alkylthiophene) with a critical side-chain length—poly(3-heptylthiophene) (n = 7)—marries the high deformability of poly(3-octylthiophene) (n = 8) with the high electronic performance (as manifested in photovoltaic efficiency) of poly(3-hexylthiophene) (n = 6). This review explores the relationship between deformability and charge transport in organic semiconductors. The principal conclusions are that reducing the competition between these two parameters is in fact possible, with two demonstrated routes being: (1) incorporation of softer, insulating material into a stiffer, semiconducting material and (2) increasing disorder in a highly ordered film, but not enough to disrupt charge transport pathways. The aim of this review is to provide a bridge between the fields interested in electronic properties and mechanical properties of conjugated polymers. We provide a high-level introduction to some of the important electronic and mechanical properties and measurement techniques for organic electronic devices, demonstrate an apparent competition between good electronic performance and mechanical deformability, and highlight potential strategies for overcoming this undesirable competition. A marriage of these two fields would allow for rational design of materials for applications requiring large-area, low-cost, printable devices that are ultra-flexible or stretchable, such as organic photovoltaic devices and wearable, conformable, or implantable sensors.« less
Ion thruster performance model
NASA Technical Reports Server (NTRS)
Brophy, J. R.
1984-01-01
A model of ion thruster performance is developed for high flux density, cusped magnetic field thruster designs. This model is formulated in terms of the average energy required to produce an ion in the discharge chamber plasma and the fraction of these ions that are extracted to form the beam. The direct loss of high energy (primary) electrons from the plasma to the anode is shown to have a major effect on thruster performance. The model provides simple algebraic equations enabling one to calculate the beam ion energy cost, the average discharge chamber plasma ion energy cost, the primary electron density, the primary-to-Maxwellian electron density ratio and the Maxwellian electron temperature. Experiments indicate that the model correctly predicts the variation in plasma ion energy cost for changes in propellant gas (Ar, Kr and Xe), grid transparency to neutral atoms, beam extraction area, discharge voltage, and discharge chamber wall temperature. The model and experiments indicate that thruster performance may be described in terms of only four thruster configuration dependent parameters and two operating parameters. The model also suggests that improved performance should be exhibited by thruster designs which extract a large fraction of the ions produced in the discharge chamber, which have good primary electron and neutral atom containment and which operate at high propellant flow rates.
Sheng, Duo; Lai, Hsiu-Fan; Chan, Sheng-Min; Hong, Min-Rong
2015-02-13
An all-digital on-chip delay sensor (OCDS) circuit with high delay-measurement resolution and low supply-voltage sensitivity for efficient detection and diagnosis in high-performance electronic system applications is presented. Based on the proposed delay measurement scheme, the quantization resolution of the proposed OCDS can be reduced to several picoseconds. Additionally, the proposed cascade-stage delay measurement circuit can enhance immunity to supply-voltage variations of the delay measurement resolution without extra self-biasing or calibration circuits. Simulation results show that the delay measurement resolution can be improved to 1.2 ps; the average delay resolution variation is 0.55% with supply-voltage variations of ±10%. Moreover, the proposed delay sensor can be implemented in an all-digital manner, making it very suitable for high-performance electronic system applications as well as system-level integration.
CALET On-orbit Calibration and Performance
NASA Astrophysics Data System (ADS)
Akaike, Yosui; Calet Collaboration
2017-01-01
The CALorimetric Electron Telescope (CALET) was installed on the International Space Station (ISS) in August 2015, and has been accumulating high-statistics data to perform high-precision measurements of cosmic ray electrons, nuclei and gamma-rays. CALET has an imaging and a fully active calorimeter, with a total thickness of 30 radiation lengths and 1.3 proton interaction lengths, that allow measurements well into the TeV energy region with excellent energy resolution, 2% for electrons above 100 GeV, and powerful particle identification. CALET's performance has been confirmed by Monte Carlo simulations and beam tests. In order to maximize the detector performance and keep the high resolution for long observation on the ISS, it is required to perform the precise calibration of each detector component. We have therefore evaluated the detector response and monitored it by using penetrating cosmic ray events such as protons and helium nuclei. In this paper, we will present the on-orbit calibration and detector performance of CALET on the ISS. This research was supported by JSPS postdoctral fellowships for research abroad.
Chochos, Christos L; Katsouras, Athanasios; Gasparini, Nicola; Koulogiannis, Chrysanthos; Ameri, Tayebeh; Brabec, Christoph J; Avgeropoulos, Apostolos
2017-01-01
Systematic optimization of the chemical structure of wide-bandgap (≈2.0 eV) "donor-acceptor" copolymers consisting of indacenodithiophene or indacenodithieno[3,2-b]thiophene as the electron-rich unit and thieno[3,4-c]pyrrole-4,6-dione as the electron-deficient moiety in terms of alkyl side chain engineering and distance of the electron-rich and electron-deficient monomers within the repeat unit of the polymer chain results in high-performance electron donor materials for organic photovoltaics. Specifically, preliminary results demonstrate extremely high open circuit voltages (V oc s) of ≈1.0 V, reasonable short circuit current density (J sc ) of around 11 mA cm -2 , and moderate fill factors resulting in efficiencies close to 6%. All the devices are fabricated in an inverted architecture with the photoactive layer processed by doctor blade equipment, showing the compatibility with roll-to-roll large-scale manufacturing processes. From the correlation of the chemical structure-optoelectronic properties-photovoltaic performance, a rational guide toward further optimization of the chemical structure in this family of copolymers, has been achieved. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Technical Reports Server (NTRS)
Neudeck, Philip G.
1998-01-01
Silicon carbide (SiC)-based semiconductor electronic devices and circuits are presently being developed for use in high-temperature, high-power, and/or high-radiation conditions under which conventional semiconductors cannot adequately perform. Silicon carbide's ability to function under such extreme conditions is expected to enable significant improvements to a far-ranging variety of applications and systems. These range from greatly improved high-voltage switching [1- 4] for energy savings in public electric power distribution and electric motor drives to more powerful microwave electronics for radar and communications [5-7] to sensors and controls for cleaner-burning more fuel-efficient jet aircraft and automobile engines. In the particular area of power devices, theoretical appraisals have indicated that SiC power MOSFET's and diode rectifiers would operate over higher voltage and temperature ranges, have superior switching characteristics, and yet have die sizes nearly 20 times smaller than correspondingly rated silicon-based devices [8]. However, these tremendous theoretical advantages have yet to be realized in experimental SiC devices, primarily due to the fact that SiC's relatively immature crystal growth and device fabrication technologies are not yet sufficiently developed to the degree required for reliable incorporation into most electronic systems [9]. This chapter briefly surveys the SiC semiconductor electronics technology. In particular, the differences (both good and bad) between SiC electronics technology and well-known silicon VLSI technology are highlighted. Projected performance benefits of SiC electronics are highlighted for several large-scale applications. Key crystal growth and device-fabrication issues that presently limit the performance and capability of high temperature and/or high power SiC electronics are identified.
NASA Technical Reports Server (NTRS)
Neudeck, Philip G.
2006-01-01
Silicon carbide based semiconductor electronic devices and circuits are presently being developed for use in high-temperature, high-power, and high-radiation conditions under which conventional semiconductors cannot adequately perform. Silicon carbide's ability to function under such extreme conditions is expected to enable significant improvements to a far-ranging variety of applications and systems. These range from greatly improved high-voltage switching for energy savings in public electric power distribution and electric motor drives to more powerful microwave electronics for radar and communications to sensors and controls for cleaner-burning more fuel-efficient jet aircraft and automobile engines. In the particular area of power devices, theoretical appraisals have indicated that SiC power MOSFET's and diode rectifiers would operate over higher voltage and temperature ranges, have superior switching characteristics, and yet have die sizes nearly 20 times smaller than correspondingly rated silicon-based devices [8]. However, these tremendous theoretical advantages have yet to be widely realized in commercially available SiC devices, primarily owing to the fact that SiC's relatively immature crystal growth and device fabrication technologies are not yet sufficiently developed to the degree required for reliable incorporation into most electronic systems. This chapter briefly surveys the SiC semiconductor electronics technology. In particular, the differences (both good and bad) between SiC electronics technology and the well-known silicon VLSI technology are highlighted. Projected performance benefits of SiC electronics are highlighted for several large-scale applications. Key crystal growth and device-fabrication issues that presently limit the performance and capability of high-temperature and high-power SiC electronics are identified.
Experimental evaluation of environmental scanning electron microscopes at high chamber pressure.
Fitzek, H; Schroettner, H; Wagner, J; Hofer, F; Rattenberger, J
2015-11-01
In environmental scanning electron microscopy (ESEM) high pressure applications have become increasingly important. Wet or biological samples can be investigated without time-consuming sample preparation and potential artefacts from this preparation can be neglected. Unfortunately, the signal-to-noise ratio strongly decreases with increasing chamber pressure. To evaluate the high pressure performance of ESEM and to compare different electron microscopes, information about spatial resolution and detector type is not enough. On the one hand, the scattering of the primary electron beam increases, which vanishes the contrast in images; and on the other hand, the secondary electrons (SE) signal amplification decreases. The stagnation gas thickness (effective distance the beam has to travel through the imaging gas) as well as the SE detection system depend on the microscope and for a complete and serious evaluation of an ESEM or low vacuum SEM it is necessary to specify these two parameters. A method is presented to determine the fraction of scattered and unscattered electrons and to calculate the stagnation gas thickness (θ). To evaluate the high pressure performance of the SE detection system, a method is presented that allows for an analysis of a single image and the calculation of the signal-to-noise ratio of this image. All investigations are performed on an FEI ESEM Quanta 600 (field emission gun) and an FEI ESEM Quanta 200 (thermionic gun). These methods and measurements should represent opportunities for evaluating the high pressure performance of an ESEM. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.
Electron-pinned defect-dipoles for high-performance colossal permittivity materials
NASA Astrophysics Data System (ADS)
Hu, Wanbiao; Liu, Yun; Withers, Ray L.; Frankcombe, Terry J.; Norén, Lasse; Snashall, Amanda; Kitchin, Melanie; Smith, Paul; Gong, Bill; Chen, Hua; Schiemer, Jason; Brink, Frank; Wong-Leung, Jennifer
2013-09-01
The immense potential of colossal permittivity (CP) materials for use in modern microelectronics as well as for high-energy-density storage applications has propelled much recent research and development. Despite the discovery of several new classes of CP materials, the development of such materials with the required high performance is still a highly challenging task. Here, we propose a new electron-pinned, defect-dipole route to ideal CP behaviour, where hopping electrons are localized by designated lattice defect states to generate giant defect-dipoles and result in high-performance CP materials. We present a concrete example, (Nb+In) co-doped TiO2 rutile, that exhibits a largely temperature- and frequency-independent colossal permittivity (> 104) as well as a low dielectric loss (mostly < 0.05) over a very broad temperature range from 80 to 450 K. A systematic defect analysis coupled with density functional theory modelling suggests that ‘triangular’ In23+VO••Ti3+ and ‘diamond’ shaped Nb25+Ti3+ATi (A = Ti3+/In3+/Ti4+) defect complexes are strongly correlated, giving rise to large defect-dipole clusters containing highly localized electrons that are together responsible for the excellent CP properties observed in co-doped TiO2. This combined experimental and theoretical work opens up a promising feasible route to the systematic development of new high-performance CP materials via defect engineering.
Electron-pinned defect-dipoles for high-performance colossal permittivity materials.
Hu, Wanbiao; Liu, Yun; Withers, Ray L; Frankcombe, Terry J; Norén, Lasse; Snashall, Amanda; Kitchin, Melanie; Smith, Paul; Gong, Bill; Chen, Hua; Schiemer, Jason; Brink, Frank; Wong-Leung, Jennifer
2013-09-01
The immense potential of colossal permittivity (CP) materials for use in modern microelectronics as well as for high-energy-density storage applications has propelled much recent research and development. Despite the discovery of several new classes of CP materials, the development of such materials with the required high performance is still a highly challenging task. Here, we propose a new electron-pinned, defect-dipole route to ideal CP behaviour, where hopping electrons are localized by designated lattice defect states to generate giant defect-dipoles and result in high-performance CP materials. We present a concrete example, (Nb+In) co-doped TiO₂ rutile, that exhibits a largely temperature- and frequency-independent colossal permittivity (> 10(4)) as well as a low dielectric loss (mostly < 0.05) over a very broad temperature range from 80 to 450 K. A systematic defect analysis coupled with density functional theory modelling suggests that 'triangular' In₂(3+)Vo(••)Ti(3+) and 'diamond' shaped Nb₂(5+)Ti(3+)A(Ti) (A = Ti(3+)/In(3+)/Ti(4+)) defect complexes are strongly correlated, giving rise to large defect-dipole clusters containing highly localized electrons that are together responsible for the excellent CP properties observed in co-doped TiO₂. This combined experimental and theoretical work opens up a promising feasible route to the systematic development of new high-performance CP materials via defect engineering.
NASA Technical Reports Server (NTRS)
Salyer, I. O.
1980-01-01
The electron irradiation conditions required to prepare thermally from stable high density polyethylene (HDPE) were defined. The conditions were defined by evaluating the heat of fusion and the melting temperature of several HDPE specimens. The performance tests conducted on the specimens, including the thermal cycling tests in the thermal energy storage unit are described. The electron beam irradiation tests performed on the specimens, in which the total radiation dose received by the pellets, the electron beam current, the accelerating potential, and the atmospheres were varied, are discussed.
NASA Technical Reports Server (NTRS)
Dawe, R. H.; Arnett, J. C.
1974-01-01
Electronic packaging and cabling activities performed in support of the Thermoelectric Outer Planets Spacecraft (TOPS) Advanced Systems Technology (AST) project are detailed. It describes new electronic compartment, electronic assembly, and module concepts, and a new high-density, planar interconnection technique called discrete multilayer (DML). Development and qualification of high density cabling techniques, using small gage wire and microminiature connectors, are also reported.
Optics of high-performance electron microscopes*
Rose, H H
2008-01-01
During recent years, the theory of charged particle optics together with advances in fabrication tolerances and experimental techniques has lead to very significant advances in high-performance electron microscopes. Here, we will describe which theoretical tools, inventions and designs have driven this development. We cover the basic theory of higher-order electron optics and of image formation in electron microscopes. This leads to a description of different methods to correct aberrations by multipole fields and to a discussion of the most advanced design that take advantage of these techniques. The theory of electron mirrors is developed and it is shown how this can be used to correct aberrations and to design energy filters. Finally, different types of energy filters are described. PMID:27877933
Electron Beam Cured Epoxy Resin Composites for High Temperature Applications
NASA Technical Reports Server (NTRS)
Janke, Christopher J.; Dorsey, George F.; Havens, Stephen J.; Lopata, Vincent J.; Meador, Michael A.
1997-01-01
Electron beam curing of Polymer Matrix Composites (PMC's) is a nonthermal, nonautoclave curing process that has been demonstrated to be a cost effective and advantageous alternative to conventional thermal curing. Advantages of electron beam curing include: reduced manufacturing costs; significantly reduced curing times; improvements in part quality and performance; reduced environmental and health concerns; and improvement in material handling. In 1994 a Cooperative Research and Development Agreement (CRADA), sponsored by the Department of Energy Defense Programs and 10 industrial partners, was established to advance the electron beam curing of PMC technology. Over the last several years a significant amount of effort within the CRADA has been devoted to the development and optimization of resin systems and PMCs that match the performance of thermal cured composites. This highly successful materials development effort has resulted in a board family of high performance, electron beam curable cationic epoxy resin systems possessing a wide range of excellent processing and property profiles. Hundreds of resin systems, both toughened and untoughened, offering unlimited formulation and processing flexibility have been developed and evaluated in the CRADA program.
Bulk sensitive hard x-ray photoemission electron microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patt, M., E-mail: m.patt@fz-juelich.de; Wiemann, C.; Weber, N.
Hard x-ray photoelectron spectroscopy (HAXPES) has now matured into a well-established technique as a bulk sensitive probe of the electronic structure due to the larger escape depth of the highly energetic electrons. In order to enable HAXPES studies with high lateral resolution, we have set up a dedicated energy-filtered hard x-ray photoemission electron microscope (HAXPEEM) working with electron kinetic energies up to 10 keV. It is based on the NanoESCA design and also preserves the performance of the instrument in the low and medium energy range. In this way, spectromicroscopy can be performed from threshold to hard x-ray photoemission. Themore » high potential of the HAXPEEM approach for the investigation of buried layers and structures has been shown already on a layered and structured SrTiO{sub 3} sample. Here, we present results of experiments with test structures to elaborate the imaging and spectroscopic performance of the instrument and show the capabilities of the method to image bulk properties. Additionally, we introduce a method to determine the effective attenuation length of photoelectrons in a direct photoemission experiment.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong, Q.; Liang, Y. X.; Ferry, D.
2014-07-07
We report on the results obtained from specially designed high electron mobility transistors at 4.2 K: the gate leakage current can be limited lower than 1 aA, and the equivalent input noise-voltage and noise-current at 1 Hz can reach 6.3 nV/Hz{sup 1∕2} and 20 aA/Hz{sup 1∕2}, respectively. These results open the way to realize high performance low-frequency readout electronics under very low-temperature conditions.
Zhu, Zonglong; Bai, Yang; Liu, Xiao; ...
2016-05-11
Here highly crystalline SnO 2 is demonstrated to serve as a stable and robust electron-transporting layer for high-performance perovskite solar cells. Benefiting from its high crystallinity, the relatively thick SnO 2 electron-transporting layer (≈120 nm) provides a respectable electron-transporting property to yield a promising power conversion efficiency (PCE)(18.8%) Over 90% of the initial PCE can be retained after 30 d storage in ambient with ≈70% relative humidity.
Yun, Hui-Jun; Lee, Yun-Ji; Yoo, Seung-Jin; Chung, Dae Sung; Kim, Yun-Hi; Kwon, Soon-Ki
2013-09-23
We describe herein the synthesis of novel donor-acceptor conjugated polymers with dithienobenzodithiophenes (DTBDT) as the electron donor and 2,1,3-benzothiadiazole as the electron acceptor for high-performance organic photovoltaics (OPVs). We studied the effects of strategically inserting thiophene into the DTBDT as a substituent on the skeletal structure on the opto-electronic performances of fabricated devices. From UV/Vis absorption, electrochemical, and field-effect transistor analyses, we found that the thiophene-containing DTBDT derivative can substantially increase the orbital overlap area between adjacent conjugated chains and thus dramatically enhance charge-carrier mobility up to 0.55 cm(2) V(-1) s(-1). The outstanding charge-transport characteristics of this polymer allowed the realization of high-performance organic solar cells with a power conversion efficiency (PCE) of 5.1 %. Detailed studies on the morphological factors that enable the maximum PCE of the polymer solar cells are discussed along with a hole/electron mobility analysis based on the space-charge-limited current model. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Self-shielded electron linear accelerators designed for radiation technologies
NASA Astrophysics Data System (ADS)
Belugin, V. M.; Rozanov, N. E.; Pirozhenko, V. M.
2009-09-01
This paper describes self-shielded high-intensity electron linear accelerators designed for radiation technologies. The specific property of the accelerators is that they do not apply an external magnetic field; acceleration and focusing of electron beams are performed by radio-frequency fields in the accelerating structures. The main characteristics of the accelerators are high current and beam power, but also reliable operation and a long service life. To obtain these characteristics, a number of problems have been solved, including a particular optimization of the accelerator components and the application of a variety of specific means. The paper describes features of the electron beam dynamics, accelerating structure, and radio-frequency power supply. Several compact self-shielded accelerators for radiation sterilization and x-ray cargo inspection have been created. The introduced methods made it possible to obtain a high intensity of the electron beam and good performance of the accelerators.
Phase space manipulation in high-brightness electron beams
NASA Astrophysics Data System (ADS)
Rihaoui, Marwan M.
Electron beams have a wide range of applications, including discovery science, medicine, and industry. Electron beams can also be used to power next-generation, high-gradient electron accelerators. The performances of some of these applications could be greatly enhanced by precisely tailoring the phase space distribution of the electron beam. The goal of this dissertation is to explore some of these phase space manipulations. We especially focus on transformations capable of tailoring the beam current distribution. Specifically, we investigate a beamline exchanging phase space coordinates between the horizontal and longitudinal degrees of freedom. The key components necessary for this beamline were constructed and tested. The preliminary beamline was used as a singleshot phase space diagnostics and to produce a train of picoseconds electron bunches. We also investigate the use of multiple electron beams to control the transverse focusing. Our numerical and analytical studies are supplemented with experiments performed at the Argonne Wakefield Accelerator.
Design and application of multimegawatt X -band deflectors for femtosecond electron beam diagnostics
Dolgashev, Valery A.; Bowden, Gordon; Ding, Yuantao; ...
2014-10-02
Performance of the x-ray free electron laser Linac Coherent Light Source (LCLS) and the Facility for Advanced Accelerator Experimental Tests (FACET) is determined by the properties of their extremely short electron bunches. Multi-GeV electron bunches in both LCLS and FACET are less than 100 fs long. Optimization of beam properties and understanding of free-electron laser operation require electron beam diagnostics with time resolution of about 10 fs. We designed, built and commissioned a set of high frequency X-band deflectors which can measure the beam longitudinal space charge distribution and slice energy spread to better than 10 fs resolution at fullmore » LCLS energy (14 GeV), and with 70 fs resolution at full FACET energy (20 GeV). Use of high frequency and high gradient in these devices allows them to reach unprecedented performance. We report on the physics motivation, design considerations, operational configuration, cold tests, and typical results of the X-band deflector systems currently in use at SLAC.« less
NASA Technical Reports Server (NTRS)
Britt, E. J.
1978-01-01
The Thermo-Electronic Laser Energy Converter (TELEC) is a high-power density plasma device designed to convert a 10.6-micron CO2 laser beam into electric power. Electromagnetic radiation is absorbed in plasma electrons, creating a high-electron temperature. Energetic electrons diffuse from the plasma and strike two electrodes having different areas. The larger electrode collects more electrons and there is a net transport of current. An electromagnetic field is generated in the external circuit. A computer program has been designed to analyze TELEC performance allowing parametric variation for optimization. Values are presented for TELEC performance as a function of cesium pressure and for current density and efficiency as a function of output voltage. Efficiency is shown to increase with pressure, reaching a maximum over 45%.
Mao, Ling-Feng; Ning, Huan-Sheng; Wang, Jin-Yan
2015-01-01
Influence of the energy relaxation of the channel electrons on the performance of AlGaN/GaN high-electron mobility transistors (HEMTs) has been investigated using self-consistent solution to the coupled Schrödinger equation and Poisson equation. The first quantized energy level in the inversion layer rises and the average channel electron density decreases when the channel electric field increases from 20 kV/cm to 120 kV/cm. This research also demonstrates that the energy relaxation of the channel electrons can lead to current collapse and suggests that the energy relaxation should be considered in modeling the performance of AlGaN/GaN HEMTs such as, the gate leakage current, threshold voltage, source-drain current, capacitance-voltage curve, etc. PMID:26039589
Mao, Ling-Feng; Ning, Huan-Sheng; Wang, Jin-Yan
2015-01-01
Influence of the energy relaxation of the channel electrons on the performance of AlGaN/GaN high-electron mobility transistors (HEMTs) has been investigated using self-consistent solution to the coupled Schrödinger equation and Poisson equation. The first quantized energy level in the inversion layer rises and the average channel electron density decreases when the channel electric field increases from 20 kV/cm to 120 kV/cm. This research also demonstrates that the energy relaxation of the channel electrons can lead to current collapse and suggests that the energy relaxation should be considered in modeling the performance of AlGaN/GaN HEMTs such as, the gate leakage current, threshold voltage, source-drain current, capacitance-voltage curve, etc.
High performance printed oxide field-effect transistors processed using photonic curing.
Garlapati, Suresh Kumar; Marques, Gabriel Cadilha; Gebauer, Julia Susanne; Dehm, Simone; Bruns, Michael; Winterer, Markus; Tahoori, Mehdi Baradaran; Aghassi-Hagmann, Jasmin; Hahn, Horst; Dasgupta, Subho
2018-06-08
Oxide semiconductors are highly promising candidates for the most awaited, next-generation electronics, namely, printed electronics. As a fabrication route for the solution-processed/printed oxide semiconductors, photonic curing is becoming increasingly popular, as compared to the conventional thermal curing method; the former offers numerous advantages over the latter, such as low process temperatures and short exposure time and thereby, high throughput compatibility. Here, using dissimilar photonic curing concepts (UV-visible light and UV-laser), we demonstrate facile fabrication of high performance In 2 O 3 field-effect transistors (FETs). Beside the processing related issues (temperature, time etc.), the other known limitation of oxide electronics is the lack of high performance p-type semiconductors, which can be bypassed using unipolar logics from high mobility n-type semiconductors alone. Interestingly, here we have found that our chosen distinct photonic curing methods can offer a large variation in threshold voltage, when they are fabricated from the same precursor ink. Consequently, both depletion and enhancement-mode devices have been achieved which can be used as the pull-up and pull-down transistors in unipolar inverters. The present device fabrication recipe demonstrates fast processing of low operation voltage, high performance FETs with large threshold voltage tunability.
Neuron-Inspired Fe3O4/Conductive Carbon Filament Network for High-Speed and Stable Lithium Storage.
Hao, Shu-Meng; Li, Qian-Jie; Qu, Jin; An, Fei; Zhang, Yu-Jiao; Yu, Zhong-Zhen
2018-05-17
Construction of a continuous conductance network with high electron-transfer rate is extremely important for high-performance energy storage. Owing to the highly efficient mass transport and information transmission, neurons are exactly a perfect model for electron transport, inspiring us to design a neuron-like reaction network for high-performance lithium-ion batteries (LIBs) with Fe 3 O 4 as an example. The reactive cores (Fe 3 O 4 ) are protected by carbon shells and linked by carbon filaments, constituting an integrated conductance network. Thus, once the reaction starts, the electrons released from every Fe 3 O 4 cores are capable of being transferred rapidly through the whole network directly to the external circuit, endowing the nanocomposite with tremendous rate performance and ultralong cycle life. After 1000 cycles at current densities as high as 1 and 2 A g -1 , charge capacities of the as-synthesized nanocomposite maintain 971 and 715 mA h g -1 , respectively, much higher than those of reported Fe 3 O 4 -based anode materials. The Fe 3 O 4 -based conductive network provides a new idea for future developments of high-rate-performance LIBs.
High performance printed oxide field-effect transistors processed using photonic curing
NASA Astrophysics Data System (ADS)
Garlapati, Suresh Kumar; Cadilha Marques, Gabriel; Gebauer, Julia Susanne; Dehm, Simone; Bruns, Michael; Winterer, Markus; Baradaran Tahoori, Mehdi; Aghassi-Hagmann, Jasmin; Hahn, Horst; Dasgupta, Subho
2018-06-01
Oxide semiconductors are highly promising candidates for the most awaited, next-generation electronics, namely, printed electronics. As a fabrication route for the solution-processed/printed oxide semiconductors, photonic curing is becoming increasingly popular, as compared to the conventional thermal curing method; the former offers numerous advantages over the latter, such as low process temperatures and short exposure time and thereby, high throughput compatibility. Here, using dissimilar photonic curing concepts (UV–visible light and UV-laser), we demonstrate facile fabrication of high performance In2O3 field-effect transistors (FETs). Beside the processing related issues (temperature, time etc.), the other known limitation of oxide electronics is the lack of high performance p-type semiconductors, which can be bypassed using unipolar logics from high mobility n-type semiconductors alone. Interestingly, here we have found that our chosen distinct photonic curing methods can offer a large variation in threshold voltage, when they are fabricated from the same precursor ink. Consequently, both depletion and enhancement-mode devices have been achieved which can be used as the pull-up and pull-down transistors in unipolar inverters. The present device fabrication recipe demonstrates fast processing of low operation voltage, high performance FETs with large threshold voltage tunability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rahman, O.; Ben-Zvi, I.; Degen, C.
Two electron beams from two activated bulk GaAs photocathodes were successfully combined during the recent beam test of the High Current High Polarization Electron gun for eRHIC. The beam test took place in Stangenes Industries in Palo Alto, CA, where the cathodes were placed in diagonally opposite locations inside the high voltage shroud. No significant cross talking between the cathodes was found for the pertinent vacuum and low average current operation, which is very promising towards combining multiple beams for higher average current. This paper describes the cathode preparation, transport and cathode performance in the gun for the combining test,more » including the QE and lifetimes of the photocathodes at various steps of the experiment.« less
Strongly correlated perovskite fuel cells
NASA Astrophysics Data System (ADS)
Zhou, You; Guan, Xiaofei; Zhou, Hua; Ramadoss, Koushik; Adam, Suhare; Liu, Huajun; Lee, Sungsik; Shi, Jian; Tsuchiya, Masaru; Fong, Dillon D.; Ramanathan, Shriram
2016-06-01
Fuel cells convert chemical energy directly into electrical energy with high efficiencies and environmental benefits, as compared with traditional heat engines. Yttria-stabilized zirconia is perhaps the material with the most potential as an electrolyte in solid oxide fuel cells (SOFCs), owing to its stability and near-unity ionic transference number. Although there exist materials with superior ionic conductivity, they are often limited by their ability to suppress electronic leakage when exposed to the reducing environment at the fuel interface. Such electronic leakage reduces fuel cell power output and the associated chemo-mechanical stresses can also lead to catastrophic fracture of electrolyte membranes. Here we depart from traditional electrolyte design that relies on cation substitution to sustain ionic conduction. Instead, we use a perovskite nickelate as an electrolyte with high initial ionic and electronic conductivity. Since many such oxides are also correlated electron systems, we can suppress the electronic conduction through a filling-controlled Mott transition induced by spontaneous hydrogen incorporation. Using such a nickelate as the electrolyte in free-standing membrane geometry, we demonstrate a low-temperature micro-fabricated SOFC with high performance. The ionic conductivity of the nickelate perovskite is comparable to the best-performing solid electrolytes in the same temperature range, with a very low activation energy. The results present a design strategy for high-performance materials exhibiting emergent properties arising from strong electron correlations.
Strongly correlated perovskite fuel cells
Zhou, You; Guan, Xiaofei; Zhou, Hua; ...
2016-05-16
Fuel cells convert chemical energy directly into electrical energy with high efficiencies and environmental benefits, as compared with traditional heat engines. Yttria-stabilized zirconia is perhaps the material with the most potential as an electrolyte in solid oxide fuel cells (SOFCs), owing to its stability and near-unity ionic transference number. Although there exist materials with superior ionic conductivity, they are often limited by their ability to suppress electronic leakage when exposed to the reducing environment at the fuel interface. Such electronic leakage reduces fuel cell power output and the associated chemo-mechanical stresses can also lead to catastrophic fracture of electrolyte membranes.more » Here we depart from traditional electrolyte design that relies on cation substitution to sustain ionic conduction. Instead, we use a perovskite nickelate as an electrolyte with high initial ionic and electronic conductivity. Since many such oxides are also correlated electron systems, we can suppress the electronic conduction through a filling-controlled Mott transition induced by spontaneous hydrogen incorporation. Using such a nickelate as the electrolyte in free-standing membrane geometry, we demonstrate a low-temperature micro-fabricated SOFC with high performance. The ionic conductivity of the nickelate perovskite is comparable to the best-performing solid electrolytes in the same temperature range, with a very low activation energy. The results present a design strategy for high-performance materials exhibiting emergent properties arising from strong electron correlations.« less
Strongly correlated perovskite fuel cells.
Zhou, You; Guan, Xiaofei; Zhou, Hua; Ramadoss, Koushik; Adam, Suhare; Liu, Huajun; Lee, Sungsik; Shi, Jian; Tsuchiya, Masaru; Fong, Dillon D; Ramanathan, Shriram
2016-06-09
Fuel cells convert chemical energy directly into electrical energy with high efficiencies and environmental benefits, as compared with traditional heat engines. Yttria-stabilized zirconia is perhaps the material with the most potential as an electrolyte in solid oxide fuel cells (SOFCs), owing to its stability and near-unity ionic transference number. Although there exist materials with superior ionic conductivity, they are often limited by their ability to suppress electronic leakage when exposed to the reducing environment at the fuel interface. Such electronic leakage reduces fuel cell power output and the associated chemo-mechanical stresses can also lead to catastrophic fracture of electrolyte membranes. Here we depart from traditional electrolyte design that relies on cation substitution to sustain ionic conduction. Instead, we use a perovskite nickelate as an electrolyte with high initial ionic and electronic conductivity. Since many such oxides are also correlated electron systems, we can suppress the electronic conduction through a filling-controlled Mott transition induced by spontaneous hydrogen incorporation. Using such a nickelate as the electrolyte in free-standing membrane geometry, we demonstrate a low-temperature micro-fabricated SOFC with high performance. The ionic conductivity of the nickelate perovskite is comparable to the best-performing solid electrolytes in the same temperature range, with a very low activation energy. The results present a design strategy for high-performance materials exhibiting emergent properties arising from strong electron correlations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ota, Masahiro; Ishiguro, Yuki; Nakajima, Yutaro
2016-02-01
This paper reports on a highly-sensitive retarding-type electron spectrometer for a continuous source of electrons, in which the electron collection efficiency is increased by utilizing the magnetic bottle effect. This study demonstrates an application to Penning ionization electron spectroscopy using collisional ionization with metastable He*(2{sup 3}S) atoms. Technical details and performances of the instrument are presented. This spectrometer can be used for studies of functional molecules and assemblies, and exterior electron densities are expected to be selectively observed by the Penning ionization.
He, Penghui; Jiang, Congbiao; Lan, Linfeng; Sun, Sheng; Li, Yizhi; Gao, Peixiong; Zhang, Peng; Dai, Xingqiang; Wang, Jian; Peng, Junbiao; Cao, Yong
2018-05-22
Light-emitting field-effect transistors (LEFETs) have attained great attention due to their special characteristics of both the switching capacity and the electroluminescence capacity. However, high-performance LEFETs with high mobility, high brightness, and high efficiency have not been realized due to the difficulty in developing high electron and hole mobility materials with suitable band structures. In this paper, quantum dot hybrid LEFETs (QD-HLEFETs) combining high-luminous-efficiency quantum dots (QDs) and a solution-processed scandium-incorporated indium oxide (Sc:In 2 O 3 ) semiconductor were demonstrated. The red QD-HLEFET showed high electrical and optical performance with an electron mobility of 0.8 cm 2 V -1 s -1 , a maximum brightness of 13 400 cd/m 2 , and a maximum external quantum efficiency of 8.7%. The high performance of the QD-HLEFET is attributed to the good energy band matching between Sc:In 2 O 3 and QDs and the balanced hole and electron injection (less exciton nonradiative recombination). In addition, incorporation of Sc into In 2 O 3 can suppress the oxygen vacancy and free carrier generation and brings about excellent current and optical modulation (the on/off current ratio is 10 5 and the on/off brightness ratio is 10 6 ).
Stretchable form of single crystal silicon for high performance electronics on rubber substrates
University of Illinois
2009-04-21
The present invention provides stretchable, and optionally printable, semiconductors and electronic circuits capable of providing good performance when stretched, compressed, flexed or otherwise deformed. Stretchable semiconductors and electronic circuits of the present invention preferred for some applications are flexible, in addition to being stretchable, and thus are capable of significant elongation, flexing, bending or other deformation along one or more axes. Further, stretchable semiconductors and electronic circuits of the present invention may be adapted to a wide range of device configurations to provide fully flexible electronic and optoelectronic devices.
Stretchable form of single crystal silicon for high performance electronics on rubber substrates
Rogers, John A [Champaign, IL; Khang, Dahl-Young [Seoul, KR; Sun, Yugang [Naperville, IL; Menard, Etienne [Durham, NC
2012-06-12
The present invention provides stretchable, and optionally printable, semiconductors and electronic circuits capable of providing good performance when stretched, compressed, flexed or otherwise deformed. Stretchable semiconductors and electronic circuits of the present invention preferred for some applications are flexible, in addition to being stretchable, and thus are capable of significant elongation, flexing, bending or other deformation along one or more axes. Further, stretchable semiconductors and electronic circuits of the present invention may be adapted to a wide range of device configurations to provide fully flexible electronic and optoelectronic devices.
Stretchable form of single crystal silicon for high performance electronics on rubber substrates
Rogers, John A.; Khang, Dahl-Young; Sun, Yugang; Menard, Etienne
2014-06-17
The present invention provides stretchable, and optionally printable, semiconductors and electronic circuits capable of providing good performance when stretched, compressed, flexed or otherwise deformed. Stretchable semiconductors and electronic circuits of the present invention preferred for some applications are flexible, in addition to being stretchable, and thus are capable of significant elongation, flexing, bending or other deformation along one or more axes. Further, stretchable semiconductors and electronic circuits of the present invention may be adapted to a wide range of device configurations to provide fully flexible electronic and optoelectronic devices.
Stretchable form of single crystal silicon for high performance electronics on rubber substrates
Rogers, John A.; Khang, Dahl-Young; Sun, Yugang; Menard, Etienne
2016-12-06
The present invention provides stretchable, and optionally printable, semiconductors and electronic circuits capable of providing good performance when stretched, compressed, flexed or otherwise deformed. Stretchable semiconductors and electronic circuits of the present invention preferred for some applications are flexible, in addition to being stretchable, and thus are capable of significant elongation, flexing, bending or other deformation along one or more axes. Further, stretchable semiconductors and electronic circuits of the present invention may be adapted to a wide range of device configurations to provide fully flexible electronic and optoelectronic devices.
Stretchable form of single crystal silicon for high performance electronics on rubber substrates
Rogers, John A.; Khang, Dahl -Young; Sun, Yugang; Menard, Etienne
2015-08-11
The present invention provides stretchable, and optionally printable, semiconductors and electronic circuits capable of providing good performance when stretched, compressed, flexed or otherwise deformed. Stretchable semiconductors and electronic circuits of the present invention preferred for some applications are flexible, in addition to being stretchable, and thus are capable of significant elongation, flexing, bending or other deformation along one or more axes. Further, stretchable semiconductors and electronic circuits of the present invention may be adapted to a wide range of device configurations to provide fully flexible electronic and optoelectronic devices.
NASA Technical Reports Server (NTRS)
Johnson, M.; Label, K.; McCabe, J.; Powell, W.; Bolotin, G.; Kolawa, E.; Ng, T.; Hyde, D.
2007-01-01
Implementation of challenging Exploration Systems Missions Directorate objectives and strategies can be constrained by onboard computing capabilities and power efficiencies. The Radiation Hardened Electronics for Space Environments (RHESE) High Performance Processors for Space Environments project will address this challenge by significantly advancing the sustained throughput and processing efficiency of high-per$ormance radiation-hardened processors, targeting delivery of products by the end of FY12.
Active control of bright electron beams with RF optics for femtosecond microscopy
Williams, J.; Zhou, F.; Sun, T.; ...
2017-08-01
A frontier challenge in implementing femtosecond electron microscopy is to gain precise optical control of intense beams to mitigate collective space charge effects for significantly improving the throughput. In this paper, we explore the flexible uses of an RF cavity as a longitudinal lens in a high-intensity beam column for condensing the electron beams both temporally and spectrally, relevant to the design of ultrafast electron microscopy. Through the introduction of a novel atomic grating approach for characterization of electron bunch phase space and control optics, we elucidate the principles for predicting and controlling the phase space dynamics to reach optimalmore » compressions at various electron densities and generating conditions. We provide strategies to identify high-brightness modes, achieving ~100 fs and ~1 eV resolutions with 10 6 electrons per bunch, and establish the scaling of performance for different bunch charges. These results benchmark the sensitivity and resolution from the fundamental beam brightness perspective and also validate the adaptive optics concept to enable delicate control of the density-dependent phase space structures to optimize the performance, including delivering ultrashort, monochromatic, high-dose, or coherent electron bunches.« less
Active control of bright electron beams with RF optics for femtosecond microscopy
Williams, J.; Zhou, F.; Sun, T.; Tao, Z.; Chang, K.; Makino, K.; Berz, M.; Duxbury, P. M.; Ruan, C.-Y.
2017-01-01
A frontier challenge in implementing femtosecond electron microscopy is to gain precise optical control of intense beams to mitigate collective space charge effects for significantly improving the throughput. Here, we explore the flexible uses of an RF cavity as a longitudinal lens in a high-intensity beam column for condensing the electron beams both temporally and spectrally, relevant to the design of ultrafast electron microscopy. Through the introduction of a novel atomic grating approach for characterization of electron bunch phase space and control optics, we elucidate the principles for predicting and controlling the phase space dynamics to reach optimal compressions at various electron densities and generating conditions. We provide strategies to identify high-brightness modes, achieving ∼100 fs and ∼1 eV resolutions with 106 electrons per bunch, and establish the scaling of performance for different bunch charges. These results benchmark the sensitivity and resolution from the fundamental beam brightness perspective and also validate the adaptive optics concept to enable delicate control of the density-dependent phase space structures to optimize the performance, including delivering ultrashort, monochromatic, high-dose, or coherent electron bunches. PMID:28868325
High-performance green flexible electronics based on biodegradable cellulose nanofibril paper
Yei Hwan Jung; Tzu-Hsuan Chang; Huilong Zhang; Chunhua Yao; Qifeng Zheng; Vina W. Yang; Hongyi Mi; Munho Kim; Sang June Cho; Dong-Wook Park; Hao Jiang; Juhwan Lee; Yijie Qiu; Weidong Zhou; Zhiyong Cai; Shaoqin Gong; Zhenqiang Ma
2015-01-01
Todayâs consumer electronics, such as cell phones, tablets and other portable electronic devices, are typically made of non-renewable, non-biodegradable, and sometimes potentially toxic (for example, gallium arsenide) materials. These consumer electronics are frequently upgraded or discarded, leading to serious environmental contamination. Thus, electronic systems...
Guo, Qiang; Xu, Yingxue; Xiao, Bo; Zhang, Bing; Zhou, Erjun; Wang, Fuzhi; Bai, Yiming; Hayat, Tasawar; Alsaedi, Ahmed; Tan, Zhan'ao
2017-03-29
For organic-inorganic perovskite solar cells (PerSCs), the electron transport layer (ETL) plays a crucial role in efficient electron extraction and transport for high performance PerSCs. Fullerene and its derivatives are commonly used as ETL for p-i-n structured PerSCs. However, these spherical small molecules are easy to aggregate with high annealing temperature and thus induce morphology stability problems. N-type conjugated polymers are promising candidates to overcome these problems due to the tunable energy levels, controllable aggregation behaviors, and good film formation abilities. Herein, a series of perylene diimide (PDI) based polymers (PX-PDIs), which contain different copolymeried units (X), including vinylene (V), thiophene (T), selenophene (Se), dibenzosilole (DBS), and cyclopentadithiophene (CPDT), are introduced as ETL for p-i-n structured PerSCs. The effect of energy alignment, electron mobility, and film morphology of these ETLs on the photovoltaic performance of the PerSCs are fully investigated. Among the PX-PDIs, PV-PDI demonstrates the deeper LUMO energy level, the highly delocalized LUMO electron density, and a better planar structure, making it the best electron transport material for PerSCs. The planar heterojunction PerSC with PV-PDI as ETL achieves a power conversion efficiency (PCE) of 10.14%, among the best values for non-fullerene based PerSCs.
NASA Technical Reports Server (NTRS)
Duncan, Robert V.; Simmons, Jerry; Kupferman, Stuart; McWhorter, Paul; Dunlap, David; Kovanis, V.
1995-01-01
A detailed review of Sandia's work in ultralow power dissipation electronics for space flight applications, including superconductive electronics, new advances in quantum well structures, and ultra-high purity 3-5 materials, and recent advances in micro-electro-optical-mechanical systems (MEMS) is presented. The superconductive electronics and micromechanical devices are well suited for application in micro-robotics, micro-rocket engines, and advanced sensors.
Readout electronics for CBM-TOF super module quality evaluation based on 10 Gbps ethernet
NASA Astrophysics Data System (ADS)
Jiang, D.; Cao, P.; Huang, X.; Zheng, J.; Wang, Q.; Li, B.; Li, J.; Liu, S.; An, Q.
2017-07-01
The Compressed Baryonic Matter-Time of Flight (CBM-TOF) wall uses high performance of Multi-gap Resistive Plate Chambers (MRPC) assembled in super modules to identify charged particles with high channel density and high measurement precision at high event rate. Electronics meet the challenge for reading data out from a super module at high speed of about 6 Gbps in real time. In this paper, the readout electronics for CBM-TOF super module quality evaluation is proposed based on 10 Gigabit Ethernet. The digitized TOF data from one super module will be concentrated at the front-end electronics residing on the side of the super module and transmitted to an extreme speed readout module (XSRM) housed in the backend crate through the PCI Express (PCIe) protocol via optic channels. Eventually, the XSRM transmits data to the data acquisition (DAQ) system through four 10 Gbps Ethernet ports in real time. This readout structure has advantages of high performance and expansibility. Furthermore, it is easy to operate. Test results on the prototype show that the overall data readout performance for each XSRM can reach up to 28.8 Gbps, which means XSRM can meet the requirement of reading data out from 4 super modules with 1280 channels in real time.
NASA Astrophysics Data System (ADS)
Svimonishvili, Tengiz; Zameroski, Nathan; Gilmore, Mark; Schamiloglu, Edl; Gaudet, John; Yan, Lincan
2004-11-01
Secondary Electron Emission (SEE) results from bombarding materials with electrons, atoms, or ions. The amount of secondary emission depends on factors such as bulk and surface properties of materials, energy of incident particles, and their angle of incidence. Total secondary electron emission yield, defined as the number of secondary electrons ejected per primary electron, is an important material parameter. Materials with high yield find use, for instance, in photomultiplier tubes, whereas materials with low yield, such as graphite, are used for SEE suppression in high-power microwave devices. The lower the SEE yield, the better the performance of high-power microwave devices (for example, gyrotrons). Employing a low-energy electron gun (energy range from 5 eV to 2000 eV), our work aims at characterizing and eventually identifying novel materials (with the lowest possible SEE yield) that will enhance operation and efficiency of high-power microwave devices.
High Energy Electron Detection with ATIC
NASA Technical Reports Server (NTRS)
Chang, J.; Schmidt, W. K. H.; Adams, James H., Jr.; Ahn, H.; Ampe, J.; Whitaker, Ann F. (Technical Monitor)
2001-01-01
The ATIC (Advanced Thin Ionization Calorimeter) balloon-borne ionization calorimeter is well suited to record and identify high energy cosmic ray electrons. The instrument was exposed to high-energy beams at CERN H2 bean-dine in September of 1999. We have simulated the performance of the instrument, and compare the simulations with actual high energy electron exposures at the CERN accelerator. Simulations and measurements do not compare exactly, in detail, but overall the simulations have predicted actual measured behavior quite well.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mascali, D.; Gammino, S.; Celona, L.
2012-02-15
Further improvements of electron cyclotron resonance ion sources (ECRIS) output currents and average charge state require a deep understanding of electron and ion dynamics in the plasma. This paper will discuss the most recent advances about modeling of non-classical evidences like the sensitivity of electron energy distribution function to the magnetic field detuning, the influence of plasma turbulences on electron heating and ion confinement, the coupling between electron and ion dynamics. All these issues have in common the non-homogeneous distribution of the plasma inside the source: the abrupt density drop at the resonance layer regulates the heating regimes (from collectivemore » to turbulent), the beam formation mechanism and emittance. Possible means to boost the performances of future ECRIS will be proposed. In particular, the use of Bernstein waves, in preliminary experiments performed at Laboratori Nazionali del Sud (LNS) on MDIS (microwave discharge ion sources)-type sources, has permitted to sustain largely overdense plasmas enhancing the warm electron temperature, which will make possible in principle the construction of sources for high intensity multicharged ions beams with simplified magnetic structures.« less
Advances in Flexible Hybrid Electronics Reliability
2017-03-01
Advances in Flexible Hybrid Electronics Reliability Douglas R. Hackler, Richard L. Chaney, Brian N. Meek, Darrell E. Leber, Seth D. Leija, Kelly J...www.americansemi.com Abstract: Flexible Hybrid Electronics combine the best characteristics of printed electronics and silicon ICs to create high performance...presented for flexible hybrid electronics systems. Keywords: FleX; flexible; flexible hybrid electronics ; FHE; Silicon-on-Polymer Introduction
Harada, Ken; Akashi, Tetsuya; Niitsu, Kodai; Shimada, Keiko; Ono, Yoshimasa A; Shindo, Daisuke; Shinada, Hiroyuki; Mori, Shigeo
2018-01-17
Advanced electron microscopy technologies have made it possible to perform precise double-slit interference experiments. We used a 1.2-MV field emission electron microscope providing coherent electron waves and a direct detection camera system enabling single-electron detections at a sub-second exposure time. We developed a method to perform the interference experiment by using an asymmetric double-slit fabricated by a focused ion beam instrument and by operating the microscope under a "pre-Fraunhofer" condition, different from the Fraunhofer condition of conventional double-slit experiments. Here, pre-Fraunhofer condition means that each single-slit observation was performed under the Fraunhofer condition, while the double-slit observations were performed under the Fresnel condition. The interference experiments with each single slit and with the asymmetric double slit were carried out under two different electron dose conditions: high-dose for calculation of electron probability distribution and low-dose for each single electron distribution. Finally, we exemplified the distribution of single electrons by color-coding according to the above three types of experiments as a composite image.
Edge Stabilized Ribbon (ESR); Stress, Dislocation Density and Electronic Performance
NASA Technical Reports Server (NTRS)
Sachs, E. M.
1984-01-01
The edge stabilized ribbon (ESR) silicon ribbon was grown in widths of 1, 2.2 and 4.0 inches at speeds ranging from .6 to 7 in/min, which result in ribbon thicknesses of 5 to 400 microns. One of the primary problems remaining in ESR growth is that of thermally induced mechanical stresses. This problem is manifested as ribbon with a high degree of residual stress or as ribbon with buckled ribbon. Thermal stresses result in a high dislocation density in the grown material, resulting in compromised electronic performance. Improvements in ribbon flatness were accomplished by modification of the ribbon cooling profile. Ribbon flatness and other experimental observations of ESR ribbon are discussed. Laser scanner measurements show a good correlation between diffusion length and dislocation density which indicates that the high dislocation densities are the primary cause of the poor current performance of ESR materials. Dislocation densities were reduced and improved electronic performance resulted. Laser scanner data on new and old material are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brachmann, A.; Clendenin, J.E.; Maruyama, T.
2006-02-27
The GaAsP/GaAs strained superlattice photocathode structure has proven to be a significant advance for polarized electron sources operating with high peak currents per microbunch and relatively low duty factor. This is the characteristic type of operation for SLAC and is also planned for the ILC. This superlattice structure was studied at SLAC [1], and an optimum variation was chosen for the final stage of E-158, a high-energy parity violating experiment at SLAC. Following E-158, the polarized source was maintained on standby with the cathode being re-cesiated about once a week while a thermionic gun, which is installed in parallel withmore » the polarized gun, supplied the linac electron beams. However, in the summer of 2005, while the thermionic gun was disabled, the polarized electron source was again used to provide electron beams for the linac. The performance of the photocathode 24 months after its only activation is described and factors making this possible are discussed.« less
High-Tc superconducting microbolometer for terahertz applications
NASA Astrophysics Data System (ADS)
Ulysse, C.; Gaugue, A.; Adam, A.; Kreisler, A. J.; Villégier, J.-C.; Thomassin, J.-L.
2002-05-01
Superconducting hot electron bolometer mixers are now a competitive alternative to Schottky diode mixers in the terahertz frequency range because of their ultra wideband (from millimeter waves to visible light), high conversion gain, and low intrinsic noise level. High Tc superconductor materials can be used to make hot electron bolometers and present some advantage in term of operating temperature and cooling. In this paper, we present first a model for the study of superconducting hot electron bolometers responsivity in direct detection mode, in order to establish a firm basis for the design of future THz mixers. Secondly, an original process to realize YBaCuO hot electron bolometer mixers will be described. Submicron YBaCuO superconducting structures are expitaxially sputter deposited on MgO substrates and patterned by using electron beam lithography in combination with optical lithography. Metal masks achieved by electron beam lithography are insuring a good bridge definition and protection during ion etching. Finally, detection experiments are being performed with a laser at 850 nm wavelength, in homodyne mode in order to prove the feasibility and potential performances of these devices.
Transparent amorphous oxide semiconductors for organic electronics: Application to inverted OLEDs
Hosono, Hideo; Toda, Yoshitake; Kamiya, Toshio; Watanabe, Satoru
2017-01-01
Efficient electron transfer between a cathode and an active organic layer is one key to realizing high-performance organic devices, which require electron injection/transport materials with very low work functions. We developed two wide-bandgap amorphous (a-) oxide semiconductors, a-calcium aluminate electride (a-C12A7:e) and a-zinc silicate (a-ZSO). A-ZSO exhibits a low work function of 3.5 eV and high electron mobility of 1 cm2/(V · s); furthermore, it also forms an ohmic contact with not only conventional cathode materials but also anode materials. A-C12A7:e has an exceptionally low work function of 3.0 eV and is used to enhance the electron injection property from a-ZSO to an emission layer. The inverted electron-only and organic light-emitting diode (OLED) devices fabricated with these two materials exhibit excellent performance compared with the normal type with LiF/Al. This approach provides a solution to the problem of fabricating oxide thin-film transistor-driven OLEDs with both large size and high stability. PMID:28028243
This report evaluates a high-voltage electron beam (E-beam) technology's ability to destroy volatile organic compounds (VOCs) and other contaminants present in liquid wastes. Specifically, this report discusses performance and economic data from a Superfund Innovative Technology...
n-Channel semiconductor materials design for organic complementary circuits.
Usta, Hakan; Facchetti, Antonio; Marks, Tobin J
2011-07-19
Organic semiconductors have unique properties compared to traditional inorganic materials such as amorphous or crystalline silicon. Some important advantages include their adaptability to low-temperature processing on flexible substrates, low cost, amenability to high-speed fabrication, and tunable electronic properties. These features are essential for a variety of next-generation electronic products, including low-power flexible displays, inexpensive radio frequency identification (RFID) tags, and printable sensors, among many other applications. Accordingly, the preparation of new materials based on π-conjugated organic molecules or polymers has been a central scientific and technological research focus over the past decade. Currently, p-channel (hole-transporting) materials are the leading class of organic semiconductors. In contrast, high-performance n-channel (electron-transporting) semiconductors are relatively rare, but they are of great significance for the development of plastic electronic devices such as organic field-effect transistors (OFETs). In this Account, we highlight the advances our team has made toward realizing moderately and highly electron-deficient n-channel oligomers and polymers based on oligothiophene, arylenediimide, and (bis)indenofluorene skeletons. We have synthesized and characterized a "library" of structurally related semiconductors, and we have investigated detailed structure-property relationships through optical, electrochemical, thermal, microstructural (both single-crystal and thin-film), and electrical measurements. Our results reveal highly informative correlations between structural parameters at various length scales and charge transport properties. We first discuss oligothiophenes functionalized with perfluoroalkyl and perfluoroarene substituents, which represent the initial examples of high-performance n-channel semiconductors developed in this project. The OFET characteristics of these compounds are presented with an emphasis on structure-property relationships. We then examine the synthesis and properties of carbonyl-functionalized oligomers, which constitute second-generation n-channel oligothiophenes, in both vacuum- and solution-processed FETs. These materials have high carrier mobilities and good air stability. In parallel, exceptionally electron-deficient cyano-functionalized arylenediimide derivatives are discussed as early examples of thermodynamically air-stable, high-performance n-channel semiconductors; they exhibit record electron mobilities of up to 0.64 cm(2)/V·s. Furthermore, we provide an overview of highly soluble ladder-type macromolecular semiconductors as OFET components, which combine ambient stability with solution processibility. A high electron mobility of 0.16 cm(2)/V·s is obtained under ambient conditions for solution-processed films. Finally, examples of polymeric n-channel semiconductors with electron mobilities as high as 0.85 cm(2)/V·s are discussed; these constitute an important advance toward fully printed polymeric electronic circuitry. Density functional theory (DFT) computations reveal important trends in molecular physicochemical and semiconducting properties, which, when combined with experimental data, shed new light on molecular charge transport characteristics. Our data provide the basis for a fundamental understanding of charge transport in high-performance n-channel organic semiconductors. Moreover, our results provide a road map for developing functional, complementary organic circuitry, which requires combining p- and n-channel transistors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NREL developed a modeling and experimental strategy to characterize thermal performance of materials. The technique provides critical data on thermal properties with relevance for electronics packaging applications. Thermal contact resistance and bulk thermal conductivity were characterized for new high-performance materials such as thermoplastics, boron-nitride nanosheets, copper nanowires, and atomically bonded layers. The technique is an important tool for developing designs and materials that enable power electronics packaging with small footprint, high power density, and low cost for numerous applications.
DC and small-signal physical models for the AlGaAs/GaAs high electron mobility transistor
NASA Technical Reports Server (NTRS)
Sarker, J. C.; Purviance, J. E.
1991-01-01
Analytical and numerical models are developed for the microwave small-signal performance, such as transconductance, gate-to-source capacitance, current gain cut-off frequency and the optimum cut-off frequency of the AlGaAs/GaAs High Electron Mobility Transistor (HEMT), in both normal and compressed transconductance regions. The validated I-V characteristics and the small-signal performances of four HeMT's are presented.
NASA Astrophysics Data System (ADS)
Tu, Xiaofeng; Zhou, Yingke; Song, Yijie
2017-04-01
The three-dimensional porous LiFePO4 modified with uniformly dispersed nitrogen-doped carbon nanotubes has been successfully prepared by a freeze-drying method. The morphology and structure of the porous composites are characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), and the electrochemical performances are evaluated using the constant current charge/discharge tests, cyclic voltammetry and electrochemical impedance spectroscopy. The nitrogen-doped carbon nanotubes are uniformly dispersed inside the porous LiFePO4 to construct a superior three-dimensional conductive network, which remarkably increases the electronic conductivity and accelerates the diffusion of lithium ion. The porous composite displays high specific capacity, good rate capability and excellent cycling stability, rendering it a promising positive electrode material for high-performance lithium-ion batteries.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dikansky, N.; Nagaitsev, S.; Parkhomchuk, V.
1997-09-01
The high energy electron cooling requires a very cold electron beam. Thus, the electron beam focusing system is very important for the performance of electron cooling. A system with and without longitudinal magnetic field is presented for discussion. Interaction of electron beam with the vacuum chamber as well as with the background ions and stored antiprotons can cause the coherent electron beam instabilities. Focusing system requirements needed to suppress these instabilities are presented.
Zhang, Dongdong; Song, Xiaozeng; Li, Haoyuan; Cai, Minghan; Bin, Zhengyang; Huang, Tianyu; Duan, Lian
2018-05-17
Fluorescent organic light-emitting diodes with thermally activated delayed fluorescent sensitizers (TSF-OLEDs) have aroused wide attention, the power efficiencies of which, however, are limited by the mutual exclusion of high electron-transport mobility and large triplet energy of electron-transporting materials (ETMs). Here, an asymmetric anthracene derivative with electronic properties manipulated by different side groups is developed as an ETM to promote TSF-OLED performances. Multiple intermolecular interactions are observed, leading to a kind of "cable-like packing" in the crystal and favoring the simultaneous realization of high electron-transporting mobility and good exciton-confinement ability, albeit the low triplet energy of the ETM. The optimized TSF-OLEDs exhibit a record-high maximum external quantum efficiency/power efficiency of 24.6%/76.0 lm W -1 , which remain 23.8%/69.0 lm W -1 at a high luminance of even 5000 cd m -2 with an extremely low operation voltage of 3.14 V. This work opens a new paradigm for designing ETMs and also paves the way toward practical application of TSF-OLEDs. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Guo, Qingxun; Yang, Dezhi; Chen, Jiangshan; Qiao, Xianfeng; Ahamad, Tansir; Alshehri, Saad M.; Ma, Dongge
2017-03-01
A high performance tandem organic light-emitting diode (OLED) is realized by employing a C70/C70:pentacene/pentacene organic heterojunction as the efficient charge generation layer (CGL). Not only more than two time enhancement of external quantum efficiency but also significant improvement in both power efficiency and lifetime are well achieved. The mechanism investigations find that the electron injection from the CGL to the adjacent electron transport layer (ETL) in tandem devices is injection rate-limited due to the high interface energy barrier between the CGL and the ETL. By the capacitance-frequency (C-F) and low temperature current density-voltage (J-V) characteristic analysis, we confirm that the electron transport is a space-charge-limited current process with exponential trap distribution. These traps are localized states below the lowest unoccupied molecular orbital edge inside the gap and would be filled with the upward shift of the Fermi level during the n-doping process. Furthermore, both the trap density (Ht) and the activation energy (Ea) could be carefully worked out through low temperature J-V measurements, which is very important for developing high performance tandem OLEDs.
Extension of the operational regime of the LHD towards a deuterium experiment
NASA Astrophysics Data System (ADS)
Takeiri, Y.; Morisaki, T.; Osakabe, M.; Yokoyama, M.; Sakakibara, S.; Takahashi, H.; Nakamura, Y.; Oishi, T.; Motojima, G.; Murakami, S.; Ito, K.; Ejiri, A.; Imagawa, S.; Inagaki, S.; Isobe, M.; Kubo, S.; Masamune, S.; Mito, T.; Murakami, I.; Nagaoka, K.; Nagasaki, K.; Nishimura, K.; Sakamoto, M.; Sakamoto, R.; Shimozuma, T.; Shinohara, K.; Sugama, H.; Watanabe, K. Y.; Ahn, J. W.; Akata, N.; Akiyama, T.; Ashikawa, N.; Baldzuhn, J.; Bando, T.; Bernard, E.; Castejón, F.; Chikaraishi, H.; Emoto, M.; Evans, T.; Ezumi, N.; Fujii, K.; Funaba, H.; Goto, M.; Goto, T.; Gradic, D.; Gunsu, Y.; Hamaguchi, S.; Hasegawa, H.; Hayashi, Y.; Hidalgo, C.; Higashiguchi, T.; Hirooka, Y.; Hishinuma, Y.; Horiuchi, R.; Ichiguchi, K.; Ida, K.; Ido, T.; Igami, H.; Ikeda, K.; Ishiguro, S.; Ishizaki, R.; Ishizawa, A.; Ito, A.; Ito, Y.; Iwamoto, A.; Kamio, S.; Kamiya, K.; Kaneko, O.; Kanno, R.; Kasahara, H.; Kato, D.; Kato, T.; Kawahata, K.; Kawamura, G.; Kisaki, M.; Kitajima, S.; Ko, W. H.; Kobayashi, M.; Kobayashi, S.; Kobayashi, T.; Koga, K.; Kohyama, A.; Kumazawa, R.; Lee, J. H.; López-Bruna, D.; Makino, R.; Masuzaki, S.; Matsumoto, Y.; Matsuura, H.; Mitarai, O.; Miura, H.; Miyazawa, J.; Mizuguchi, N.; Moon, C.; Morita, S.; Moritaka, T.; Mukai, K.; Muroga, T.; Muto, S.; Mutoh, T.; Nagasaka, T.; Nagayama, Y.; Nakajima, N.; Nakamura, Y.; Nakanishi, H.; Nakano, H.; Nakata, M.; Narushima, Y.; Nishijima, D.; Nishimura, A.; Nishimura, S.; Nishitani, T.; Nishiura, M.; Nobuta, Y.; Noto, H.; Nunami, M.; Obana, T.; Ogawa, K.; Ohdachi, S.; Ohno, M.; Ohno, N.; Ohtani, H.; Okamoto, M.; Oya, Y.; Ozaki, T.; Peterson, B. J.; Preynas, M.; Sagara, S.; Saito, K.; Sakaue, H.; Sanpei, A.; Satake, S.; Sato, M.; Saze, T.; Schmitz, O.; Seki, R.; Seki, T.; Sharov, I.; Shimizu, A.; Shiratani, M.; Shoji, M.; Skinner, C.; Soga, R.; Stange, T.; Suzuki, C.; Suzuki, Y.; Takada, S.; Takahata, K.; Takayama, A.; Takayama, S.; Takemura, Y.; Takeuchi, Y.; Tamura, H.; Tamura, N.; Tanaka, H.; Tanaka, K.; Tanaka, M.; Tanaka, T.; Tanaka, Y.; Toda, S.; Todo, Y.; Toi, K.; Toida, M.; Tokitani, M.; Tokuzawa, T.; Tsuchiya, H.; Tsujimura, T.; Tsumori, K.; Usami, S.; Velasco, J. L.; Wang, H.; Watanabe, T.-H.; Watanabe, T.; Yagi, J.; Yajima, M.; Yamada, H.; Yamada, I.; Yamagishi, O.; Yamaguchi, N.; Yamamoto, Y.; Yanagi, N.; Yasuhara, R.; Yatsuka, E.; Yoshida, N.; Yoshinuma, M.; Yoshimura, S.; Yoshimura, Y.
2017-10-01
As the finalization of a hydrogen experiment towards the deuterium phase, the exploration of the best performance of hydrogen plasma was intensively performed in the large helical device. High ion and electron temperatures, T i and T e, of more than 6 keV were simultaneously achieved by superimposing high-power electron cyclotron resonance heating onneutral beam injection (NBI) heated plasma. Although flattening of the ion temperature profile in the core region was observed during the discharges, one could avoid degradation by increasing the electron density. Another key parameter to present plasma performance is an averaged beta value ≤ft< β \\right> . The high ≤ft< β \\right> regime around 4% was extended to an order of magnitude lower than the earlier collisional regime. Impurity behaviour in hydrogen discharges with NBI heating was also classified with a wide range of edge plasma parameters. The existence of a no impurity accumulation regime, where the high performance plasma is maintained with high power heating >10 MW, was identified. Wide parameter scan experiments suggest that the toroidal rotation and the turbulence are the candidates for expelling impurities from the core region.
Advanced Graphene-Based Binder-Free Electrodes for High-Performance Energy Storage.
Ji, Junyi; Li, Yang; Peng, Wenchao; Zhang, Guoliang; Zhang, Fengbao; Fan, Xiaobin
2015-09-23
The increasing demand for energy has triggered tremendous research effort for the development of high-performance and durable energy-storage devices. Advanced graphene-based electrodes with high electrical conductivity and ion accessibility can exhibit superior electrochemical performance in energy-storage devices. Among them, binder-free configurations can enhance the electron conductivity of the electrode, which leads to a higher capacity by avoiding the addition of non-conductive and inactive binders. Graphene, a 2D material, can be fabricated into a porous and flexible structure with an interconnected conductive network. Such a conductive structure is favorable for both electron and ion transport to the entire electrode surface. In this review, the main processes used to prepare binder-free graphene-based hybrids with high porosity and well-designed electron conductive networks are summarized. Then, the applications of free-standing binder-free graphene-based electrodes in energy-storage devices are discussed. Future research aspects with regard to overcoming the technological bottlenecks are also proposed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Industrial Electronics. Performance Objectives. Basic Course.
ERIC Educational Resources Information Center
Tiffany, Earl
Several intermediate performance objectives and corresponding criterion measures are listed for each of 30 terminal objectives for a two-semester (2 hours daily) high school course in basic industrial electronics. The objectives cover instruction in basic electricity including AC-DC theory, magnetism, electrical safety, care and use of hand tools,…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kemp, Gregory Elijah
2013-01-01
Ultra-intense laser (> 1018 W/cm2) interactions with matter are capable of producing relativistic electrons which have a variety of applications in state-of-the-art scientific and medical research conducted at universities and national laboratories across the world. Control of various aspects of these hot-electron distributions is highly desired to optimize a particular outcome. Hot-electron generation in low-contrast interactions, where significant amounts of under-dense pre-plasma are present, can be plagued by highly non-linear relativistic laser-plasma instabilities and quasi-static magnetic field generation, often resulting in less than desirable and predictable electron source characteristics. High-contrast interactions offer more controlled interactions but often at the costmore » of overall lower coupling and increased sensitivity to initial target conditions. An experiment studying the differences in hot-electron generation between high and low-contrast pulse interactions with solid density targets was performed on the Titan laser platform at the Jupiter Laser Facility at Lawrence Livermore National Laboratory in Livermore, CA. To date, these hot-electrons generated in the laboratory are not directly observable at the source of the interaction. Instead, indirect studies are performed using state-of-the-art simulations, constrained by the various experimental measurements. These measurements, more-often-than-not, rely on secondary processes generated by the transport of these electrons through the solid density materials which can susceptible to a variety instabilities and target material/geometry effects. Although often neglected in these types of studies, the specularly reflected light can provide invaluable insight as it is directly influenced by the interaction. In this thesis, I address the use of (personally obtained) experimental specular reflectivity measurements to indirectly study hot-electron generation in the context of high-contrast, relativistic laser-plasma interactions.« less
Application of the high resolution return beam vidicon
NASA Technical Reports Server (NTRS)
Cantella, M. J.
1977-01-01
The Return Beam Vidicon (RBV) is a high-performance electronic image sensor and electrical storage component. It can accept continuous or discrete exposures. Information can be read out with a single scan or with many repetitive scans for either signal processing or display. Resolution capability is 10,000 TV lines/height, and at 100 lp/mm, performance matches or exceeds that of film, particularly with low-contrast imagery. Electronic zoom can be employed effectively for image magnification and data compression. The high performance and flexibility of the RBV permit wide application in systems for reconnaissance, scan conversion, information storage and retrieval, and automatic inspection and test. This paper summarizes the characteristics and performance parameters of the RBV and cites examples of feasible applications.
Design and performance of a high resolution, low latency stripline beam position monitor system
NASA Astrophysics Data System (ADS)
Apsimon, R. J.; Bett, D. R.; Blaskovic Kraljevic, N.; Burrows, P. N.; Christian, G. B.; Clarke, C. I.; Constance, B. D.; Dabiri Khah, H.; Davis, M. R.; Perry, C.; Resta López, J.; Swinson, C. J.
2015-03-01
A high-resolution, low-latency beam position monitor (BPM) system has been developed for use in particle accelerators and beam lines that operate with trains of particle bunches with bunch separations as low as several tens of nanoseconds, such as future linear electron-positron colliders and free-electron lasers. The system was tested with electron beams in the extraction line of the Accelerator Test Facility at the High Energy Accelerator Research Organization (KEK) in Japan. It consists of three stripline BPMs instrumented with analogue signal-processing electronics and a custom digitizer for logging the data. The design of the analogue processor units is presented in detail, along with measurements of the system performance. The processor latency is 15.6 ±0.1 ns . A single-pass beam position resolution of 291 ±10 nm has been achieved, using a beam with a bunch charge of approximately 1 nC.
Exploring Low Internal Reorganization Energies for Silicene Nanoclusters
NASA Astrophysics Data System (ADS)
Pablo-Pedro, Ricardo; Lopez-Rios, Hector; Mendoza-Cortes, Jose-L.; Kong, Jing; Fomine, Serguei; Van Voorhis, Troy; Dresselhaus, Mildred S.
2018-05-01
This paper is a contribution to the Physical Review Applied collection in memory of Mildred S. Dresselhaus. High-performance materials rely on small reorganization energies to facilitate both charge separation and charge transport. Here, we perform density-functional-theory calculations to predict small reorganization energies of rectangular silicene nanoclusters with hydrogen-passivated edges denoted by H-SiNC. We observe that across all geometries, H-SiNCs feature large electron affinities and highly stabilized anionic states, indicating their potential as n -type materials. Our findings suggest that fine-tuning the size of H-SiNCs along the "zigzag" and "armchair" directions may permit the design of novel n -type electronic materials and spintronics devices that incorporate both high electron affinities and very low internal reorganization energies.
Sun, Lei; Qin, Guoxuan; Seo, Jung-Hun; Celler, George K; Zhou, Weidong; Ma, Zhenqiang
2010-11-22
Multigigahertz flexible electronics are attractive and have broad applications. A gate-after-source/drain fabrication process using preselectively doped single-crystal silicon nanomembranes (SiNM) is an effective approach to realizing high device speed. However, further downscaling this approach has become difficult in lithography alignment. In this full paper, a local alignment scheme in combination with more accurate SiNM transfer measures for minimizing alignment errors is reported. By realizing 1 μm channel alignment for the SiNMs on a soft plastic substrate, thin-film transistors with a record speed of 12 GHz maximum oscillation frequency are demonstrated. These results indicate the great potential of properly processed SiNMs for high-performance flexible electronics.
NASA Astrophysics Data System (ADS)
Qu, Baihua; Chen, Yuejiao; Zhang, Ming; Hu, Lingling; Lei, Danni; Lu, Bingan; Li, Qiuhong; Wang, Yanguo; Chen, Libao; Wang, Taihong
2012-11-01
Electrochemical supercapacitors have drawn much attention because of their high power and reasonably high energy densities. However, their performances still do not reach the demand of energy storage. In this paper β-cobalt sulfide nanoparticles were homogeneously distributed on a highly conductive graphene (CS-G) nanocomposite, which was confirmed by transmission electron microscopy analysis, and exhibit excellent electrochemical performances including extremely high values of specific capacitance (~1535 F g-1) at a current density of 2 A g-1, high-power density (11.98 kW kg-1) at a discharge current density of 40 A g-1 and excellent cyclic stability. The excellent electrochemical performances could be attributed to the graphene nanosheets (GNSs) which could maintain the mechanical integrity. Also the CS-G nanocomposite electrodes have high electrical conductivity. These results indicate that high electronic conductivity of graphene nanocomposite materials is crucial to achieving high power and energy density for supercapacitors.
Qu, Baihua; Chen, Yuejiao; Zhang, Ming; Hu, Lingling; Lei, Danni; Lu, Bingan; Li, Qiuhong; Wang, Yanguo; Chen, Libao; Wang, Taihong
2012-12-21
Electrochemical supercapacitors have drawn much attention because of their high power and reasonably high energy densities. However, their performances still do not reach the demand of energy storage. In this paper β-cobalt sulfide nanoparticles were homogeneously distributed on a highly conductive graphene (CS-G) nanocomposite, which was confirmed by transmission electron microscopy analysis, and exhibit excellent electrochemical performances including extremely high values of specific capacitance (~1535 F g(-1)) at a current density of 2 A g(-1), high-power density (11.98 kW kg(-1)) at a discharge current density of 40 A g(-1) and excellent cyclic stability. The excellent electrochemical performances could be attributed to the graphene nanosheets (GNSs) which could maintain the mechanical integrity. Also the CS-G nanocomposite electrodes have high electrical conductivity. These results indicate that high electronic conductivity of graphene nanocomposite materials is crucial to achieving high power and energy density for supercapacitors.
Spray-combustion synthesis: Efficient solution route to high-performance oxide transistors
Yu, Xinge; Smith, Jeremy; Zhou, Nanjia; Zeng, Li; Guo, Peijun; Xia, Yu; Alvarez, Ana; Aghion, Stefano; Lin, Hui; Yu, Junsheng; Chang, Robert P. H.; Bedzyk, Michael J.; Ferragut, Rafael; Marks, Tobin J.; Facchetti, Antonio
2015-01-01
Metal-oxide (MO) semiconductors have emerged as enabling materials for next generation thin-film electronics owing to their high carrier mobilities, even in the amorphous state, large-area uniformity, low cost, and optical transparency, which are applicable to flat-panel displays, flexible circuitry, and photovoltaic cells. Impressive progress in solution-processed MO electronics has been achieved using methodologies such as sol gel, deep-UV irradiation, preformed nanostructures, and combustion synthesis. Nevertheless, because of incomplete lattice condensation and film densification, high-quality solution-processed MO films having technologically relevant thicknesses achievable in a single step have yet to be shown. Here, we report a low-temperature, thickness-controlled coating process to create high-performance, solution-processed MO electronics: spray-combustion synthesis (SCS). We also report for the first time, to our knowledge, indium-gallium-zinc-oxide (IGZO) transistors having densification, nanoporosity, electron mobility, trap densities, bias stability, and film transport approaching those of sputtered films and compatible with conventional fabrication (FAB) operations. PMID:25733848
Spray-combustion synthesis: efficient solution route to high-performance oxide transistors.
Yu, Xinge; Smith, Jeremy; Zhou, Nanjia; Zeng, Li; Guo, Peijun; Xia, Yu; Alvarez, Ana; Aghion, Stefano; Lin, Hui; Yu, Junsheng; Chang, Robert P H; Bedzyk, Michael J; Ferragut, Rafael; Marks, Tobin J; Facchetti, Antonio
2015-03-17
Metal-oxide (MO) semiconductors have emerged as enabling materials for next generation thin-film electronics owing to their high carrier mobilities, even in the amorphous state, large-area uniformity, low cost, and optical transparency, which are applicable to flat-panel displays, flexible circuitry, and photovoltaic cells. Impressive progress in solution-processed MO electronics has been achieved using methodologies such as sol gel, deep-UV irradiation, preformed nanostructures, and combustion synthesis. Nevertheless, because of incomplete lattice condensation and film densification, high-quality solution-processed MO films having technologically relevant thicknesses achievable in a single step have yet to be shown. Here, we report a low-temperature, thickness-controlled coating process to create high-performance, solution-processed MO electronics: spray-combustion synthesis (SCS). We also report for the first time, to our knowledge, indium-gallium-zinc-oxide (IGZO) transistors having densification, nanoporosity, electron mobility, trap densities, bias stability, and film transport approaching those of sputtered films and compatible with conventional fabrication (FAB) operations.
Low cost, high performance processing of single particle cryo-electron microscopy data in the cloud.
Cianfrocco, Michael A; Leschziner, Andres E
2015-05-08
The advent of a new generation of electron microscopes and direct electron detectors has realized the potential of single particle cryo-electron microscopy (cryo-EM) as a technique to generate high-resolution structures. Calculating these structures requires high performance computing clusters, a resource that may be limiting to many likely cryo-EM users. To address this limitation and facilitate the spread of cryo-EM, we developed a publicly available 'off-the-shelf' computing environment on Amazon's elastic cloud computing infrastructure. This environment provides users with single particle cryo-EM software packages and the ability to create computing clusters with 16-480+ CPUs. We tested our computing environment using a publicly available 80S yeast ribosome dataset and estimate that laboratories could determine high-resolution cryo-EM structures for $50 to $1500 per structure within a timeframe comparable to local clusters. Our analysis shows that Amazon's cloud computing environment may offer a viable computing environment for cryo-EM.
Qiu, M C; Yang, L W; Qi, X; Li, Jun; Zhong, J X
2010-12-01
Highly ordered NiO coated Si nanowire array films are fabricated as electrodes for a high performance lithium ion battery via depositing Ni on electroless-etched Si nanowires and subsequently annealing. The structures and morphologies of as-prepared films are characterized by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. When the potential window versus lithium was controlled, the coated NiO can be selected to be electrochemically active to store and release Li+ ions, while highly conductive crystalline Si cores function as nothing more than a stable mechanical support and an efficient electrical conducting pathway. The hybrid nanowire array films exhibit superior cyclic stability and reversible capacity compared to that of NiO nanostructured films. Owing to the ease of large-scale fabrication and superior electrochemical performance, these hybrid nanowire array films will be promising anode materials for high performance lithium-ion batteries.
Development of low-cost high-performance multispectral camera system at Banpil
NASA Astrophysics Data System (ADS)
Oduor, Patrick; Mizuno, Genki; Olah, Robert; Dutta, Achyut K.
2014-05-01
Banpil Photonics (Banpil) has developed a low-cost high-performance multispectral camera system for Visible to Short- Wave Infrared (VIS-SWIR) imaging for the most demanding high-sensitivity and high-speed military, commercial and industrial applications. The 640x512 pixel InGaAs uncooled camera system is designed to provide a compact, smallform factor to within a cubic inch, high sensitivity needing less than 100 electrons, high dynamic range exceeding 190 dB, high-frame rates greater than 1000 frames per second (FPS) at full resolution, and low power consumption below 1W. This is practically all the feature benefits highly desirable in military imaging applications to expand deployment to every warfighter, while also maintaining a low-cost structure demanded for scaling into commercial markets. This paper describes Banpil's development of the camera system including the features of the image sensor with an innovation integrating advanced digital electronics functionality, which has made the confluence of high-performance capabilities on the same imaging platform practical at low cost. It discusses the strategies employed including innovations of the key components (e.g. focal plane array (FPA) and Read-Out Integrated Circuitry (ROIC)) within our control while maintaining a fabless model, and strategic collaboration with partners to attain additional cost reductions on optics, electronics, and packaging. We highlight the challenges and potential opportunities for further cost reductions to achieve a goal of a sub-$1000 uncooled high-performance camera system. Finally, a brief overview of emerging military, commercial and industrial applications that will benefit from this high performance imaging system and their forecast cost structure is presented.
Beam dynamics performances and applications of a low-energy electron-beam magnetic bunch compressor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prokop, C. R.; Piot, P.; Carlsten, B. E.
2013-08-01
Many front-end applications of electron linear accelerators rely on the production of temporally compressed bunches. The shortening of electron bunches is often realized with magnetic bunch compressors located in high-energy sections of accelerators. Magnetic compression is subject to collective effects including space charge and self interaction via coherent synchrotron radiation. In this paper we explore the application of magnetic compression to low-energy (~40MeV), high-charge (nC) electron bunches with low normalized transverse emittances (<5@mm).
High-Performance, Radiation-Hardened Electronics for Space and Lunar Environments
NASA Technical Reports Server (NTRS)
Keys, Andrew S.; Adams, James H.; Cressler, John D.; Darty, Ronald C.; Johnson, Michael A.; Patrick, Marshall C.
2008-01-01
The Radiation Hardened Electronics for Space Environments (RHESE) project develops advanced technologies needed for high performance electronic devices that will be capable of operating within the demanding radiation and thermal extremes of the space, lunar, and Martian environment. The technologies developed under this project enhance and enable avionics within multiple mission elements of NASA's Vision for Space Exploration. including the Constellation program's Orion Crew Exploration Vehicle. the Lunar Lander project, Lunar Outpost elements, and Extra Vehicular Activity (EVA) elements. This paper provides an overview of the RHESE project and its multiple task tasks, their technical approaches, and their targeted benefits as applied to NASA missions.
NASA Astrophysics Data System (ADS)
Goedecker, Stefan; Boulet, Mireille; Deutsch, Thierry
2003-08-01
Three-dimensional Fast Fourier Transforms (FFTs) are the main computational task in plane wave electronic structure calculations. Obtaining a high performance on a large numbers of processors is non-trivial on the latest generation of parallel computers that consist of nodes made up of a shared memory multiprocessors. A non-dogmatic method for obtaining high performance for such 3-dim FFTs in a combined MPI/OpenMP programming paradigm will be presented. Exploiting the peculiarities of plane wave electronic structure calculations, speedups of up to 160 and speeds of up to 130 Gflops were obtained on 256 processors.
Photoemission of Energetic Hot Electrons Produced via Up-Conversion in Doped Quantum Dots.
Dong, Yitong; Parobek, David; Rossi, Daniel; Son, Dong Hee
2016-11-09
The benefits of the hot electrons from semiconductor nanostructures in photocatalysis or photovoltaics result from their higher energy compared to that of the band-edge electrons facilitating the electron-transfer process. The production of high-energy hot electrons usually requires short-wavelength UV or intense multiphoton visible excitation. Here, we show that highly energetic hot electrons capable of above-threshold ionization are produced via exciton-to-hot-carrier up-conversion in Mn-doped quantum dots under weak band gap excitation (∼10 W/cm 2 ) achievable with the concentrated solar radiation. The energy of hot electrons is as high as ∼0.4 eV above the vacuum level, much greater than those observed in other semiconductor or plasmonic metal nanostructures, which are capable of performing energetically and kinetically more-challenging electron transfer. Furthermore, the prospect of generating solvated electron is unique for the energetic hot electrons from up-conversion, which can open a new door for long-range electron transfer beyond short-range interfacial electron transfer.
High performance flexible electronics for biomedical devices.
Salvatore, Giovanni A; Munzenrieder, Niko; Zysset, Christoph; Kinkeldei, Thomas; Petti, Luisa; Troster, Gerhard
2014-01-01
Plastic electronics is soft, deformable and lightweight and it is suitable for the realization of devices which can form an intimate interface with the body, be implanted or integrated into textile for wearable and biomedical applications. Here, we present flexible electronics based on amorphous oxide semiconductors (a-IGZO) whose performance can achieve MHz frequency even when bent around hair. We developed an assembly technique to integrate complex electronic functionalities into textile while preserving the softness of the garment. All this and further developments can open up new opportunities in health monitoring, biotechnology and telemedicine.
High Performance Perovskite Hybrid Solar Cells with E-beam-Processed TiOx Electron Extraction Layer.
Meng, Tianyu; Liu, Chang; Wang, Kai; He, Tianda; Zhu, Yu; Al-Enizi, Abdullah; Elzatahry, Ahmed; Gong, Xiong
2016-01-27
Perovskite hybrid solar cells (pero-HSCs) have drawn great attention in the last 5 years. The efficiencies of pero-HSCs have been boosted from 3.8% to over 20%. However, one of the bottlenecks for commercialization of pero-HSCs is to make a high electrical conductive TiOx electron extraction layer (EEL). In this study, we report high performance pero-HSCs with TiOx EEL, where the TiOx EEL is fabricated by electron beam (e-beam) evaporation, which has been proved to be a well-developed manufacturing process. The resistance of the e-beam evaporated TiOx EEL is smaller than that of sol-gel processed TiOx EEL. Moreover, the dark current densities and interfacial charge carrier recombination of pero-HSCs incorporated with e-beam processed TiOx EEL is also smaller than that of pero-HSCs incorporated with sol-gel processed TiOx EEL. All these result in efficient pero-HSCs with high reproducibility. These results demonstrate that our method provides a simple and facile way to approach high performance pero-HSCs.
Performance of High-Speed PWM Control Chips at Cryogenic Temperatures
NASA Technical Reports Server (NTRS)
Elbuluk, Malik E.; Gerber, Scott; Hammoud, Ahmad; Patterson, Richard; Overton, Eric
2001-01-01
The operation of power electronic systems at cryogenic temperatures is anticipated in many NASA space missions such as planetary exploration and deep space probes. In addition to surviving the space hostile environment, electronics capable of low temperature operation would contribute to improving circuit performance, increasing system efficiency, and reducing development and launch costs. As part of the NASA Glenn Low Temperature Electronics Program, several commercial high-speed Pulse Width Modulation (PWM) chips have been characterized in terms of their performance as a function of temperature in the range of 25 to -196 C (liquid nitrogen). These chips ranged in their electrical characteristics, modes of control, packaging options, and applications. The experimental procedures along with the experimental data obtained on the investigated chips are presented and discussed.
Effects of electronic billboards on driver distraction.
Dukic, Tania; Ahlstrom, Christer; Patten, Christopher; Kettwich, Carmen; Kircher, Katja
2013-01-01
There is an increase in electronic advertising billboards along major roads, which may cause driver distraction due to the highly conspicuous design of the electronic billboards. Yet limited research on the impact of electronic billboards on driving performance and driver behavior is available. The Swedish Transport Administration recently approved the installation of 12 electronic billboards for a trial period along a 3-lane motorway with heavy traffic running through central Stockholm, Sweden. The aim of this study was to evaluate the effect of these electronic billboards on visual behavior and driving performance. A total of 41 drivers were recruited to drive an instrumented vehicle passing 4 of the electronic billboards during day and night conditions. A driver was considered visually distracted when looking at a billboard continuously for more than 2 s or if the driver looked away from the road for a high percentage of time. Dependent variables were eye-tracking measures and driving performance measures. The visual behavior data showed that drivers had a significantly longer dwell time, a greater number of fixations, and longer maximum fixation duration when driving past an electronic billboard compared to other signs on the same road stretches. No differences were found for the factors day/night, and no effect was found for the driving behavior data. Electronic billboards have an effect on gaze behavior by attracting more and longer glances than regular traffic signs. Whether the electronic billboards attract too much attention and constitute a traffic safety hazard cannot be answered conclusively based on the present data.
NASA Astrophysics Data System (ADS)
Lin, Yung-Hao; Lee, Ching-Ting
2017-08-01
High-quality indium gallium zinc aluminum oxide (IGZAO) thin films with various Al contents have been deposited using the vapor cooling condensation method. The electron mobility of the IGZAO films was improved by 89.4% on adding Al cation to IGZO film. The change in the electron concentration and mobility of the IGZAO films was 7.3% and 7.0%, respectively, when the temperature was changed from 300 K to 225 K. These experimental results confirm the high performance and stability of the IGZAO films. The performance stability mechanisms of IGZAO thin-film transistors (TFTs) were investigated in comparison with IGZO TFTs.
Electronic fitness function for screening semiconductors as thermoelectric materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xing, Guangzong; Sun, Jifeng; Li, Yuwei
Here, we introduce a simple but efficient electronic fitness function (EFF) that describes the electronic aspect of the thermoelectric performance. This EFF finds materials that overcome the inverse relationship between σ and S based on the complexity of the electronic structures regardless of specific origin (e.g., isosurface corrugation, valley degeneracy, heavy-light bands mixture, valley anisotropy or reduced dimensionality). This function is well suited for application in high throughput screening. We applied this function to 75 different thermoelectric and potential thermoelectric materials including full- and half-Heuslers, binary semiconductors, and Zintl phases. We find an efficient screening using this transport function. Themore » EFF identifies known high-performance p- and n-type Zintl phases and half-Heuslers. In addition, we find some previously unstudied phases with superior EFF.« less
Electronic fitness function for screening semiconductors as thermoelectric materials
Xing, Guangzong; Sun, Jifeng; Li, Yuwei; ...
2017-11-17
Here, we introduce a simple but efficient electronic fitness function (EFF) that describes the electronic aspect of the thermoelectric performance. This EFF finds materials that overcome the inverse relationship between σ and S based on the complexity of the electronic structures regardless of specific origin (e.g., isosurface corrugation, valley degeneracy, heavy-light bands mixture, valley anisotropy or reduced dimensionality). This function is well suited for application in high throughput screening. We applied this function to 75 different thermoelectric and potential thermoelectric materials including full- and half-Heuslers, binary semiconductors, and Zintl phases. We find an efficient screening using this transport function. Themore » EFF identifies known high-performance p- and n-type Zintl phases and half-Heuslers. In addition, we find some previously unstudied phases with superior EFF.« less
Effect of electron irradiation dose on the performance of avalanche photodiode electron detectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kawauchi, Taizo; Wilde, Markus; Fukutani, Katsuyuki
2009-01-01
Avalanche photodiodes (APDs) are efficient detectors for electrons with energies below 100 keV. The damaging effects of 8 keV electron beam irradiation on the dark current and the output signal of the APD detector were investigated in this study. The APD dark current increases after electron doses exceeding 1.4x10{sup 13} cm{sup -2}. Preirradiation by high doses of 8 keV electrons further causes a deformation of the pulse height distribution of the APD output in the subsequent detection of low-flux electrons. This effect is particularly prominent when the energy of the detected electrons is lower than that of the damaging electrons.more » By comparing the experimental data with results of a simulation based on an electron trapping model, we conclude that the degradation of the APD performance is attributable to an enhancement of secondary-electron trapping at irradiation induced defects.« less
Proceedings of the Conference on High-temperature Electronics
NASA Technical Reports Server (NTRS)
1981-01-01
The development of electronic devices for use in high temperature environments is addressed. The instrumentational needs of planetary exploration, fossil and nuclear power reactors, turbine engine monitoring, and well logging are defined. Emphasis is place on the fabrication and performance of materials and semiconductor devices, circuits and systems and packaging.
EPDM - Silicone blends - a high performance elastomeric composition for automotive applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitchell, J.M.
1987-01-01
Styling and design changes have dramatically altered performance requirements for elastomers. High performance engines with electronic fuel injection have increased temperatures under the hood. Therefore, high performance elastomers are required to meet today's service conditions. New technology has been developed to compatibilize EPDM and silicone into high performance elastomeric compositions. These blends have physical, electrical and mechanical properties, for 175/sup 0/C service. Formulations are discussed for applications which require heat and weather resistance.
Fabrication of [001]-oriented tungsten tips for high resolution scanning tunneling microscopy
Chaika, A. N.; Orlova, N. N.; Semenov, V. N.; Postnova, E. Yu.; Krasnikov, S. A.; Lazarev, M. G.; Chekmazov, S. V.; Aristov, V. Yu.; Glebovsky, V. G.; Bozhko, S. I.; Shvets, I. V.
2014-01-01
The structure of the [001]-oriented single crystalline tungsten probes sharpened in ultra-high vacuum using electron beam heating and ion sputtering has been studied using scanning and transmission electron microscopy. The electron microscopy data prove reproducible fabrication of the single-apex tips with nanoscale pyramids grained by the {011} planes at the apexes. These sharp, [001]-oriented tungsten tips have been successfully utilized in high resolution scanning tunneling microscopy imaging of HOPG(0001), SiC(001) and graphene/SiC(001) surfaces. The electron microscopy characterization performed before and after the high resolution STM experiments provides direct correlation between the tip structure and picoscale spatial resolution achieved in the experiments. PMID:24434734
High-Performance, Radiation-Hardened Electronics for Space Environments
NASA Technical Reports Server (NTRS)
Keys, Andrew S.; Watson, Michael D.; Frazier, Donald O.; Adams, James H.; Johnson, Michael A.; Kolawa, Elizabeth A.
2007-01-01
The Radiation Hardened Electronics for Space Environments (RHESE) project endeavors to advance the current state-of-the-art in high-performance, radiation-hardened electronics and processors, ensuring successful performance of space systems required to operate within extreme radiation and temperature environments. Because RHESE is a project within the Exploration Technology Development Program (ETDP), RHESE's primary customers will be the human and robotic missions being developed by NASA's Exploration Systems Mission Directorate (ESMD) in partial fulfillment of the Vision for Space Exploration. Benefits are also anticipated for NASA's science missions to planetary and deep-space destinations. As a technology development effort, RHESE provides a broad-scoped, full spectrum of approaches to environmentally harden space electronics, including new materials, advanced design processes, reconfigurable hardware techniques, and software modeling of the radiation environment. The RHESE sub-project tasks are: SelfReconfigurable Electronics for Extreme Environments, Radiation Effects Predictive Modeling, Radiation Hardened Memory, Single Event Effects (SEE) Immune Reconfigurable Field Programmable Gate Array (FPGA) (SIRF), Radiation Hardening by Software, Radiation Hardened High Performance Processors (HPP), Reconfigurable Computing, Low Temperature Tolerant MEMS by Design, and Silicon-Germanium (SiGe) Integrated Electronics for Extreme Environments. These nine sub-project tasks are managed by technical leads as located across five different NASA field centers, including Ames Research Center, Goddard Space Flight Center, the Jet Propulsion Laboratory, Langley Research Center, and Marshall Space Flight Center. The overall RHESE integrated project management responsibility resides with NASA's Marshall Space Flight Center (MSFC). Initial technology development emphasis within RHESE focuses on the hardening of Field Programmable Gate Arrays (FPGA)s and Field Programmable Analog Arrays (FPAA)s for use in reconfigurable architectures. As these component/chip level technologies mature, the RHESE project emphasis shifts to focus on efforts encompassing total processor hardening techniques and board-level electronic reconfiguration techniques featuring spare and interface modularity. This phased approach to distributing emphasis between technology developments provides hardened FPGA/FPAAs for early mission infusion, then migrates to hardened, board-level, high speed processors with associated memory elements and high density storage for the longer duration missions encountered for Lunar Outpost and Mars Exploration occurring later in the Constellation schedule.
Electronic-To-Optical-To-Electronic Packet-Data Conversion
NASA Technical Reports Server (NTRS)
Monacos, Steve
1996-01-01
Space-time multiplexer (STM) cell-based communication system designed to take advantage of both high throughput attainable in optical transmission links and flexibility and functionality of electronic processing, storage, and switching. Long packets segmented and transmitted optically by wavelength-division multiplexing. Performs optoelectronic and protocol conversion between electronic "store-and-forward" protocols and optical "hot-potato" protocols.
Tungsten doped titanium dioxide nanowires for high efficiency dye-sensitized solar cells.
Archana, P S; Gupta, Arunava; Yusoff, Mashitah M; Jose, Rajan
2014-04-28
Metal oxide semiconductors offering simultaneously high specific surface area and high electron mobility are actively sought for fabricating high performance nanoelectronic devices. The present study deals with synthesis of tungsten doped TiO2 (W:TiO2) nanowires (diameter ∼50 nm) by electrospinning and evaluation of their performance in dye-sensitized solar cells (DSCs). Similarity in the ionic radii between W(6+) and Ti(4+) and availability of two free electrons per dopant are the rationale for the present study. Materials were characterized by X-ray diffraction, scanning and transmission electron microscopy, X-ray fluorescence measurements, and absorption spectroscopy. Nanowires containing 2 at% W:TiO2 gave 90% higher short circuit current density (JSC) (∼15.39 mA cm(-2)) in DSCs with a nominal increase in the open circuit voltage compared with that of the undoped analogue (JSC ∼8.1 mA cm(-2)). The results are validated by multiple techniques employing absorption spectroscopy, electrochemical impedance spectroscopy and open circuit voltage decay. The above studies show that the observed increments resulted from increased dye-loading, electron density, and electron lifetime in tungsten doped samples.
Kang, Kyeong-Nam; Kim, Ik-Hee; Ramadoss, Ananthakumar; Kim, Sun-I; Yoon, Jong-Chul; Jang, Ji-Hyun
2018-01-03
An ultrathin nickel hydroxide layer electrodeposited on a carbon-coated three-dimensional porous copper structure (3D-C/Cu) is suggested as an additive and binder-free conductive electrode with short electron path distances, large electrochemical active sites, and improved structural stability, for high performance supercapacitors. The 3D-porous copper structure (3D-Cu) provides high electrical conductivity and facilitates electron transport between the Ni(OH) 2 active materials and the current collector of the Ni-plate. A carbon coating was applied to the 3D-Cu to prevent the oxidation of Cu, without degrading the electron transport behavior of the 3D-Cu. The 3D-Ni(OH) 2 /C/Cu exhibited a high specific capacitance of 1860 F g -1 at 1 A g -1 , and good cycling performance, with an 86.5% capacitance retention after 10 000 cycles. When tested in a two-electrode system, an asymmetric supercapacitor exhibited an energy density of 147.9 W h kg -1 and a power density of 37.0 kW kg -1 . These results open a new area of ultrahigh-performance supercapacitors, supported by 3D-Cu electrodes.
Li, Gao-Ren; Feng, Zhan-Ping; Ou, Yan-Nan; Wu, Dingcai; Fu, Ruowen; Tong, Ye-Xiang
2010-02-16
MnO(2) as one of the most promising candidates for electrochemical supercapacitors has attracted much attention because of its superior electrochemical performance, low cost, and environmentally benign nature. In this Letter, we explored a novel route to prepare mesoporous MnO(2)/carbon aerogel composites by electrochemical deposition assisted by gas bubbles. The products were characterized by energy-dispersive spectrometry (EDS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The MnO(2) deposits are found to have high purity and have a mesoporous structure that will optimize the electronic and ionic conductivity to minimize the total resistance of the system and thereby maximize the performance characteristics of this material for use in supercapacitor electrodes. The results of nitrogen adsorption-desorption experiments and electrochemical measurements showed that these obtained mesoporous MnO(2)/carbon aerogel composites had a large specific surface area (120 m(2)/g), uniform pore-size distribution (around 5 nm), high specific capacitance (515.5 F/g), and good stability over 1000 cycles, which give these composites potential application as high-performance supercapacitor electrode materials.
600 C Logic Gates Using Silicon Carbide JFET's
NASA Technical Reports Server (NTRS)
Neudeck, Philip G.; Beheim, Glenn M.; Salupo, Carl S.a
2000-01-01
Complex electronics and sensors are increasingly being relied on to enhance the capabilities and efficiency of modernjet aircraft. Some of these electronics and sensors monitor and control vital engine components and aerosurfaces that operate at high temperatures above 300 C. However, since today's silicon-based electronics technology cannot function at such high temperatures, these electronics must reside in environmentally controlled areas. This necessitates either the use of long wire runs between sheltered electronics and hot-area sensors and controls, or the fuel cooling of electronics and sensors located in high-temperature areas. Both of these low-temperature-electronics approaches suffer from serious drawbacks in terms of increased weight, decreased fuel efficiency, and reduction of aircraft reliability. A family of high-temperature electronics and sensors that could function in hot areas would enable substantial aircraft performance gains. Especially since, in the future, some turbine-engine electronics may need to function at temperatures as high as 600 C. This paper reports the fabrication and demonstration of the first semiconductor digital logic gates ever to function at 600 C. Key obstacles blocking the realization of useful 600 C turbine engine integrated sensor and control electronics are outlined.
Li, Lei; Raji, Abdul-Rahman O; Fei, Huilong; Yang, Yang; Samuel, Errol L G; Tour, James M
2013-07-24
A facile and cost-effective approach to the fabrication of a nanocomposite material of polyaniline (PANI) and graphene nanoribbons (GNRs) has been developed. The morphology of the composite was characterized by scanning electron microscopy, transmission electron microscopy, X-ray photoelectron microscopy, and X-ray diffraction analysis. The resulting composite has a high specific capacitance of 340 F/g and stable cycling performance with 90% capacitance retention over 4200 cycles. The high performance of the composite results from the synergistic combination of electrically conductive GNRs and highly capacitive PANI. The method developed here is practical for large-scale development of pseudocapacitor electrodes for energy storage.
High performance protection circuit for power electronics applications
NASA Astrophysics Data System (ADS)
Tudoran, Cristian D.; Dǎdârlat, Dorin N.; Toşa, Nicoleta; Mişan, Ioan
2015-12-01
In this paper we present a high performance protection circuit designed for the power electronics applications where the load currents can increase rapidly and exceed the maximum allowed values, like in the case of high frequency induction heating inverters or high frequency plasma generators. The protection circuit is based on a microcontroller and can be adapted for use on single-phase or three-phase power systems. Its versatility comes from the fact that the circuit can communicate with the protected system, having the role of a "sensor" or it can interrupt the power supply for protection, in this case functioning as an external, independent protection circuit.
Manufacturing Advantage: Why High-Performance Work Systems Pay Off.
ERIC Educational Resources Information Center
Appelbaum, Eileen; Bailey, Thomas; Berg, Peter; Kalleberg, Arne L.
A study examined the relationship between high-performance workplace practices and the performance of plants in the following manufacturing industries: steel, apparel, and medical electronic instruments and imaging. The multilevel research methodology combined the following data collection activities: (1) site visits; (2) collection of plant…
Plasma Shield for In-Air and Under-Water Beam Processes
NASA Astrophysics Data System (ADS)
Hershcovitch, Ady
2007-11-01
As the name suggests, the Plasma Shield is designed to chemically and thermally shield a target object by engulfing an area subjected to beam treatment with inert plasma. The shield consists of a vortex-stabilized arc that is employed to shield beams and workpiece area of interaction from atmospheric or liquid environment. A vortex-stabilized arc is established between a beam generating device (laser, ion or electron gun) and the target object. The arc, which is composed of a pure noble gas (chemically inert), engulfs the interaction region and shields it from any surrounding liquids like water or reactive gases. The vortex is composed of a sacrificial gas or liquid that swirls around and stabilizes the arc. In current art, many industrial processes like ion material modification by ion implantation, dry etching, and micro-fabrication, as well as, electron beam processing, like electron beam machining and electron beam melting is performed exclusively in vacuum, since electron guns, ion guns, their extractors and accelerators must be kept at a reasonably high vacuum, and since chemical interactions with atmospheric gases adversely affect numerous processes. Various processes involving electron ion and laser beams can, with the Plasma Shield be performed in practically any environment. For example, electron beam and laser welding can be performed under water, as well as, in situ repair of ship and nuclear reactor components. The plasma shield results in both thermal (since the plasma is hotter than the environment) and chemical shielding. The latter feature brings about in-vacuum process purity out of vacuum, and the thermal shielding aspect results in higher production rates. Recently plasma shielded electron beam welding experiments were performed resulting in the expected high quality in-air electron beam welding. Principle of operation and experimental results are to be discussed.
NASA Astrophysics Data System (ADS)
You, Yuxiu; Zheng, Maojun; Ma, Liguo; Yuan, Xiaoliang; Zhang, Bin; Li, Qiang; Wang, Faze; Song, Jingnan; Jiang, Dongkai; Liu, Pengjie; Ma, Li; Shen, Wenzhong
2017-03-01
High-performance supercapacitors are very desirable for many portable electronic devices, electric vehicles and high-power electronic devices. Herein, a facile and binder-free synthesis method, galvanic displacement of the precursor followed by heat treatment, is used to fabricate ultrathin Co3O4 nanosheet arrays on nickel foam substrate. When used as a supercapacitor electrode the prepared Co3O4 on nickel foam exhibits a maximum specific capacitance of 1095 F g-1 at a current density of 1 A g-1 and good cycling stability of 71% retention after 2000 cycling tests. This excellent electrochemical performance can be ascribed to the high specific surface area of each Co3O4 nanosheet that comprises numerous nanoparticles.
NASA Astrophysics Data System (ADS)
Scaduto, David A.; Lubinsky, Anthony R.; Rowlands, John A.; Kenmotsu, Hidenori; Nishimoto, Norihito; Nishino, Takeshi; Tanioka, Kenkichi; Zhao, Wei
2014-03-01
We have previously proposed SAPHIRE (scintillator avalanche photoconductor with high resolution emitter readout), a novel detector concept with potentially superior spatial resolution and low-dose performance compared with existing flat-panel imagers. The detector comprises a scintillator that is optically coupled to an amorphous selenium photoconductor operated with avalanche gain, known as high-gain avalanche rushing photoconductor (HARP). High resolution electron beam readout is achieved using a field emitter array (FEA). This combination of avalanche gain, allowing for very low-dose imaging, and electron emitter readout, providing high spatial resolution, offers potentially superior image quality compared with existing flat-panel imagers, with specific applications to fluoroscopy and breast imaging. Through the present collaboration, a prototype HARP sensor with integrated electrostatic focusing and nano- Spindt FEA readout technology has been fabricated. The integrated electron-optic focusing approach is more suitable for fabricating large-area detectors. We investigate the dependence of spatial resolution on sensor structure and operating conditions, and compare the performance of electrostatic focusing with previous technologies. Our results show a clear dependence of spatial resolution on electrostatic focusing potential, with performance approaching that of the previous design with external mesh-electrode. Further, temporal performance (lag) of the detector is evaluated and the results show that the integrated electrostatic focusing design exhibits comparable or better performance compared with the mesh-electrode design. This study represents the first technical evaluation and characterization of the SAPHIRE concept with integrated electrostatic focusing.
Laser direct writing of carbon/Au composite electrodes for high-performance micro-supercapacitors
NASA Astrophysics Data System (ADS)
Cai, Jinguang; Watanabe, Akira; Lv, Chao
2017-02-01
Micro-supercapacitors with small size, light weight, flexibility while maintaining high energy and power output are required for portable miniaturized electronics. The fabrication methods and materials should be cost-effective, scalable, and easily integrated to current electronic industry. Carbon materials have required properties for high-performance flexible supercapacitors, including high specific surface areas, electrochemical stability, and high electrical conductivity, as well as the high mechanical tolerance. Laser direct writing method is a non-contact, efficient, single-step fabrication technique without requirements of masks, post-processing, and complex clean room, which is a useful patterning technique, and can be easily integrated with current electronic product lines for commercial use. Previously we have reported micro-supercapacitors fabricated by laser direct writing on polyimide films in air or Ar, which showed highcapacitive performance. However, the conductivity of the carbon materials is still low for fast charge-discharge use. Here, we demonstrated the fabrication of flexible carbon/Au composite high-performance MSCs by first laser direct writing on commercial polyimide films followed by spin-coating Au nanoparticles ink and second in-situ laser direct writing using the low-cost semiconductor laser. As-prepared micro-supercapacitors show an improved conductivity and capacitance of 1.17 mF/cm2 at a high scanning rate of 10,000 mV/s, which is comparable to the reported capacitance of carbon-based micro-supercapacitors. In addition, the micro-supercapacitors have high bend tolerance and long-cycle stability.
Shiojiri, M; Saijo, H
2006-09-01
The first part of this paper is devoted to physics, to explain high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) imaging and to interpret why HAADF-STEM imaging is incoherent, instructing a strict definition of interference and coherence of electron waves. Next, we present our recent investigations of InGaN/GaN multiple quantum wells and AlGaN/GaN strained-layer superlattice claddings in GaN-based violet laser diodes, which have been performed by HAADF-STEM and high-resolution field-emission gun scanning electron microscopy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tikadar, Amitav, E-mail: amitav453@gmail.com; Hossain, Md. Mahamudul; Morshed, A. K. M. M.
Heat transfer from electronic chip is always challenging and very crucial for electronic industry. Electronic chips are assembled in various manners according to the design conditions and limitationsand thus the influence of chip assembly on the overall thermal performance needs to be understand for the efficient design of electronic cooling system. Due to shrinkage of the dimension of channel and continuous increment of thermal load, conventional heat extraction techniques sometimes become inadequate. Due to high surface area to volume ratio, mini-channel have the natural advantage to enhance convective heat transfer and thus to play a vital role in the advancedmore » heat transfer devices with limited surface area and high heat flux. In this paper, a water cooled mini-channel heat sink was considered for electronic chip cooling and five different chip arrangements were designed and studied, namely: the diagonal arrangement, parallel arrangement, stacked arrangement, longitudinal arrangement and sandwiched arrangement. Temperature distribution on the chip surfaces was presented and the thermal performance of the heat sink in terms of overall thermal resistance was also compared. It is found that the sandwiched arrangement of chip provides better thermal performance compared to conventional in line chip arrangement.« less
NASA Astrophysics Data System (ADS)
Amani, Matin; Burke, Robert A.; Proie, Robert M.; Dubey, Madan
2015-03-01
Two-dimensional materials, such as graphene and its analogues, have been investigated by numerous researchers for high performance flexible and conformal electronic systems, because they offer the ultimate level of thickness scaling, atomically smooth surfaces and high crystalline quality. Here, we use layer-by-layer transfer of large area molybdenum disulphide (MoS2) and graphene grown by chemical vapor deposition (CVD) to demonstrate electronics on flexible polyimide (PI) substrates. On the same PI substrate, we are able to simultaneously fabricate MoS2 based logic, non-volatile memory cells with graphene floating gates, photo-detectors and MoS2 transistors with tunable source and drain contacts. We are also able to demonstrate that these flexible heterostructure devices have very high electronic performance, comparable to four point measurements taken on SiO2 substrates, with on/off ratios >107 and field effect mobilities as high as 16.4 cm2 V-1 s-1. Additionally, the heterojunctions show high optoelectronic sensitivity and were operated as photodetectors with responsivities over 30 A W-1. Through local gating of the individual graphene/MoS2 contacts, we are able to tune the contact resistance over the range of 322-1210 Ω mm for each contact, by modulating the graphene work function. This leads to devices with tunable and multifunctional performance that can be implemented in a conformable platform.
Amani, Matin; Burke, Robert A; Proie, Robert M; Dubey, Madan
2015-03-20
Two-dimensional materials, such as graphene and its analogues, have been investigated by numerous researchers for high performance flexible and conformal electronic systems, because they offer the ultimate level of thickness scaling, atomically smooth surfaces and high crystalline quality. Here, we use layer-by-layer transfer of large area molybdenum disulphide (MoS2) and graphene grown by chemical vapor deposition (CVD) to demonstrate electronics on flexible polyimide (PI) substrates. On the same PI substrate, we are able to simultaneously fabricate MoS2 based logic, non-volatile memory cells with graphene floating gates, photo-detectors and MoS2 transistors with tunable source and drain contacts. We are also able to demonstrate that these flexible heterostructure devices have very high electronic performance, comparable to four point measurements taken on SiO2 substrates, with on/off ratios >10(7) and field effect mobilities as high as 16.4 cm(2) V(-1) s(-1). Additionally, the heterojunctions show high optoelectronic sensitivity and were operated as photodetectors with responsivities over 30 A W(-1). Through local gating of the individual graphene/MoS2 contacts, we are able to tune the contact resistance over the range of 322-1210 Ω mm for each contact, by modulating the graphene work function. This leads to devices with tunable and multifunctional performance that can be implemented in a conformable platform.
Neeley, W E; Wardlaw, S C; Yates, T; Hollingsworth, W G; Swinnen, M E
1976-02-01
We describe a high-performance colorimeter with an electronic bubble gate for use with miniaturized continuous-flow analyzers. The colorimeter has a flow-through cuvette with optically flat quartz windows that allows a bubbled stream to pass freely without any breakup or retention of bubbles. The fluid volume in the light path is only 1.8 mul. The electronic bubble gate selectively removes that portion of the photodector signal produced by the air bubbles passing through the flow cell and allows that portion of the signal attributable to the fluid segment to pass to the recorder. The colorimeter is easy to use, rugged, inexpensive, and requires minimal adjustments.
Development of the HIDEC inlet integration mode. [Highly Integrated Digital Electronic Control
NASA Technical Reports Server (NTRS)
Chisholm, J. D.; Nobbs, S. G.; Stewart, J. F.
1990-01-01
The Highly Integrated Digital Electronic Control (HIDEC) development program conducted at NASA-Ames/Dryden will use an F-15 test aircraft for flight demonstration. An account is presently given of the HIDEC Inlet Integration mode's design concept, control law, and test aircraft implementation, with a view to its performance benefits. The enhancement of performance is a function of the use of Digital Electronic Engine Control corrected engine airflow computations to improve the scheduling of inlet ramp positions in real time; excess thrust can thereby be increased by 13 percent at Mach 2.3 and 40,000 ft. Aircraft supportability is also improved through the obviation of inlet controllers.
2014-12-10
AFRL-OSR-VA-TR-2014-0359 Fundamental Materials Studies for Advanced High Power Microwave and Terahertz John Booske UNIVERSITY OF WISCONSIN SYSTEM...12-2014 Final Technical Performance Report October 1, 2011 - September 30, 2014 Fundamental Materials Studies for Advanced High Power Microwave and...emission-barrier scandate cathodes and identify related, alternative cathode materials systems for advanced vacuum electronic cathodes for high power THz
SEDHI: a new generation of detection electronics for earth observation satellites
NASA Astrophysics Data System (ADS)
Dantes, Didier; Neveu, Claude; Biffi, Jean-Marc; Devilliers, Christophe; Andre, Serge
2017-11-01
Future earth observation optical systems will be more and more demanding in terms of ground sampling distance, swath width, number of spectral bands, duty cycle. Existing architectures of focal planes and video processing electronics are hardly compatible with these new requirements: electronic functions are split in several units, and video processing is limited to frequencies around 5 MHz in order to fulfil the radiometric requirements expected for high performance image quality systems. This frequency limitation induces a high number of video chains operated in parallel to process the huge amount of pixels at focal plane output, and leads to unacceptable mass and power consumption budgets. Furthermore, splitting the detection electronics functions into several units (at least one for the focal plane and proximity electronics, and one for the video processing functions) does not optimise the production costs : specific development efforts must be performed on critical analogue electronics at each equipment level and operations of assembly, integration and tests are duplicated at equipment and subsystem levels. Alcatel Space Industries has proposed to CNES a new concept of highly integrated detection electronics (SEDHI), and is developing for CNES a breadboard which will allow to confirm its potentialities. This paper presents the trade-off study which have been performed before selection of this new concept and summarises the main advantages and drawbacks of each possible architecture. The electrical, mechanical and thermal aspects of the SEDHI concept are described, including the basic technologies : ASIC for phase shift of detector clocks, ASIC for video processing, hybrids, microchip module... The adaptability to a large amount of missions and optical instruments is also discussed.
Power control electronics for cryogenic instrumentation
NASA Technical Reports Server (NTRS)
Ray, Biswajit; Gerber, Scott S.; Patterson, Richard L.; Myers, Ira T.
1995-01-01
In order to achieve a high-efficiency high-density cryogenic instrumentation system, the power processing electronics should be placed in the cold environment along with the sensors and signal-processing electronics. The typical instrumentation system requires low voltage dc usually obtained from processing line frequency ac power. Switch-mode power conversion topologies such as forward, flyback, push-pull, and half-bridge are used for high-efficiency power processing using pulse-width modulation (PWM) or resonant control. This paper presents several PWM and multiresonant power control circuits, implemented using commercially available CMOS and BiCMOS integrated circuits, and their performance at liquid-nitrogen temperature (77 K) as compared to their room temperature (300 K) performance. The operation of integrated circuits at cryogenic temperatures results in an improved performance in terms of increased speed, reduced latch-up susceptibility, reduced leakage current, and reduced thermal noise. However, the switching noise increased at 77 K compared to 300 K. The power control circuits tested in the laboratory did successfully restart at 77 K.
NASA Astrophysics Data System (ADS)
Zhao, Yan; Tan, Rui; Yang, Jie; Wang, Kai; Gao, Rongtan; Liu, Dong; Liu, Yidong; Yang, Jinlong; Pan, Feng
2017-02-01
We report a novel 3D-hybrid cathode material with three-dimensional (3D) N-GO/CNT framework to load sulfur (77.6 wt %), and sulfonated polyaniline (SPANI) of coating layer. Used as a cathode material, it possesses a high capacity (1196 mAh g-1@0.3 A g-1@1.6 mg cm-2), excellent charging-discharging rate (680 mAh g-1@7.5 A g-1) and long-life performance (maintaining 71.1% capacity over 450 cycles), which is mainly attributed to the benefits of excellent electronic/Li-ionic dual-conductivity and confinement effect of the 3D-hybrid N-GO/CNT framework coated by self-doping conducting polymer SPANI. Thus, a 3D sulfur cathode modified with electronic/Li-ionic dual-conduction network can significantly enhance the electrochemical performance and stability, and this novel type of material is very promising for commercial applications that require high energy and power density, long life, and excellent abuse tolerance.
NASA Astrophysics Data System (ADS)
Hill, K. W.; Bitter, M.; Delgado-Aparicio, L.; Efthimion, P.; Pablant, N.; Lu, J.; Beiersdorfer, P.; Chen, H.; Magee, E.
2014-10-01
A high resolution 1D imaging x-ray spectrometer concept comprising a spherically bent crystal and a 2D pixelated detector is being optimized for diagnostics of small sources such as high energy density physics (HEDP) and synchrotron radiation or x-ray free electron laser experiments. This instrument is used on tokamak experiments for measurement of spatial profiles of Doppler ion temperature and plasma flow velocity, as well as electron temperature. Laboratory measurements demonstrate a resolving power, E/ ΔE of 10,000 and spatial resolution better than 10 μm. Good performance is obtained for Bragg angles ranging from 23 to 63 degrees. Initial tests of the instrument on HEDP plasmas are being performed with a goal of developing spatially resolved ion and electron temperature diagnostics. This work was performed under the auspices of the US DOE by PPPL under Contract DE-AC02-09CH11466 and by LLNL under Contract DE-AC52-07NA27344.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiong, Ying; Wang, Bing; Yi, Yong
2013-09-15
The effect of surface Mo coating on the high-current electron emission performances for polymer velvet cathode has been investigated in a diode with A-K gap of 11.5 cm by the combination of time-resolved electrical diagnostic and temporal pressure variation. Compared with uncoated polymer velvet cathode under the single-pulsed emission mode, the Mo-coated one shows lower outgassing levels (∼0.40 Pa L), slower cathode plasma expansion velocity (∼2.30 cm/μs), and higher emission stability as evidences by the change in cathode current, temporal pressure variation, and diode perveance. Moreover, after Mo coating, the emission consistency of the polymer velvet cathode between two adjacentmore » pulses is significantly improved in double-pulsed emission mode with ∼500 ns interval between two pulses, which further confirms the effectiveness of Mo coating for enhancement of electron emission performance of polymer velvet cathodes. These results should be of interest to the high-repetitive high-power microwave systems with cold cathodes.« less
Kim, David K; Lai, Yuming; Diroll, Benjamin T; Murray, Christopher B; Kagan, Cherie R
2012-01-01
Colloidal semiconductor nanocrystals are emerging as a new class of solution-processable materials for low-cost, flexible, thin-film electronics. Although these colloidal inks have been shown to form single, thin-film field-effect transistors with impressive characteristics, the use of multiple high-performance nanocrystal field-effect transistors in large-area integrated circuits has not been shown. This is needed to understand and demonstrate the applicability of these discrete nanocrystal field-effect transistors for advanced electronic technologies. Here we report solution-deposited nanocrystal integrated circuits, showing nanocrystal integrated circuit inverters, amplifiers and ring oscillators, constructed from high-performance, low-voltage, low-hysteresis CdSe nanocrystal field-effect transistors with electron mobilities of up to 22 cm(2) V(-1) s(-1), current modulation >10(6) and subthreshold swing of 0.28 V dec(-1). We fabricated the nanocrystal field-effect transistors and nanocrystal integrated circuits from colloidal inks on flexible plastic substrates and scaled the devices to operate at low voltages. We demonstrate that colloidal nanocrystal field-effect transistors can be used as building blocks to construct complex integrated circuits, promising a viable material for low-cost, flexible, large-area electronics.
Mega-electron-volt ultrafast electron diffraction at SLAC National Accelerator Laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weathersby, S. P.; Brown, G.; Chase, T. F.
Ultrafast electron probes are powerful tools, complementary to x-ray free-electron lasers, used to study structural dynamics in material, chemical, and biological sciences. High brightness, relativistic electron beams with femtosecond pulse duration can resolve details of the dynamic processes on atomic time and length scales. SLAC National Accelerator Laboratory recently launched the Ultrafast Electron Diffraction (UED) and microscopy Initiative aiming at developing the next generation ultrafast electron scattering instruments. As the first stage of the Initiative, a mega-electron-volt (MeV) UED system has been constructed and commissioned to serve ultrafast science experiments and instrumentation development. The system operates at 120-Hz repetition ratemore » with outstanding performance. In this paper, we report on the SLAC MeV UED system and its performance, including the reciprocal space resolution, temporal resolution, and machine stability.« less
Mega-electron-volt ultrafast electron diffraction at SLAC National Accelerator Laboratory.
Weathersby, S P; Brown, G; Centurion, M; Chase, T F; Coffee, R; Corbett, J; Eichner, J P; Frisch, J C; Fry, A R; Gühr, M; Hartmann, N; Hast, C; Hettel, R; Jobe, R K; Jongewaard, E N; Lewandowski, J R; Li, R K; Lindenberg, A M; Makasyuk, I; May, J E; McCormick, D; Nguyen, M N; Reid, A H; Shen, X; Sokolowski-Tinten, K; Vecchione, T; Vetter, S L; Wu, J; Yang, J; Dürr, H A; Wang, X J
2015-07-01
Ultrafast electron probes are powerful tools, complementary to x-ray free-electron lasers, used to study structural dynamics in material, chemical, and biological sciences. High brightness, relativistic electron beams with femtosecond pulse duration can resolve details of the dynamic processes on atomic time and length scales. SLAC National Accelerator Laboratory recently launched the Ultrafast Electron Diffraction (UED) and microscopy Initiative aiming at developing the next generation ultrafast electron scattering instruments. As the first stage of the Initiative, a mega-electron-volt (MeV) UED system has been constructed and commissioned to serve ultrafast science experiments and instrumentation development. The system operates at 120-Hz repetition rate with outstanding performance. In this paper, we report on the SLAC MeV UED system and its performance, including the reciprocal space resolution, temporal resolution, and machine stability.
Theoretical analysis of hot electron dynamics in nanorods
Kumarasinghe, Chathurangi S.; Premaratne, Malin; Agrawal, Govind P.
2015-01-01
Localised surface plasmons create a non-equilibrium high-energy electron gas in nanostructures that can be injected into other media in energy harvesting applications. Here, we derive the rate of this localised-surface-plasmon mediated generation of hot electrons in nanorods and the rate of injecting them into other media by considering quantum mechanical motion of the electron gas. Specifically, we use the single-electron wave function of a particle in a cylindrical potential well and the electric field enhancement factor of an elongated ellipsoid to derive the energy distribution of electrons after plasmon excitation. We compare the performance of nanorods with equivolume nanoparticles of other shapes such as nanospheres and nanopallets and report that nanorods exhibit significantly better performance over a broad spectrum. We present a comprehensive theoretical analysis of how different parameters contribute to efficiency of hot-electron harvesting in nanorods and reveal that increasing the aspect ratio can increase the hot-electron generation and injection, but the volume shows an inverse dependency when efficiency per unit volume is considered. Further, the electron thermalisation time shows much less influence on the injection rate. Our derivations and results provide the much needed theoretical insight for optimization of hot-electron harvesting process in highly adaptable metallic nanorods. PMID:26202823
NASA Tech Briefs, December 1993. Volume 17, No. 12
NASA Technical Reports Server (NTRS)
1993-01-01
Topics covered include: High-Performance Computing; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery/Automation; Manufacturing/Fabrication; Mathematics and Information Sciences; Life Sciences; Books and Reports.
NASA Astrophysics Data System (ADS)
Park, Gunn Tae
X-ray Free Electron Laser (XFEL) is a light source for coherent X-ray using the radiation from relativistic electrons and interaction between the two. In particular, XFEL oscillator(XFELO) uses optical cavity to repeatedly bring back the radiation to electron beam for the interaction. Its optimal performance, maximum single pass gain and minimum round trip loss, critically depends on cavity optics. In ideal case, the optimal performance would be achieved by the periodic radiation mode maximally overlapping with electron beam while the radiation mode is impinging on curved mirror that gives the radiation the focusing, below critical angle and angular divergence being kept small enough at each crystal for Bragg scattering, which is used for near-normal reflection. In reality, there exist various performance degrading factors in the cavity such as heat load on the crystal surface, misalignments of crystals and mirrors and mirror surface errors. In this thesis, we study via both analytic computation and numerical simulation the optimal design and performance of XFELO cavity in the presence of these factors. In optimal design, we implement asymmetric crystals into cavity to enhance the performance. In general, it has undesirable effect of pulse dilation. We present the configuration that avoids pulse length dilation. Then the effects of misalignments, focal length errors and mirror surface errors are to be evaluated and their tolerances are estimated. In particular, the simulation demonstrates that the effect of mirror surface errors on gain and round trip loss is well-within desired performance of XFELO.
Low cost, high performance processing of single particle cryo-electron microscopy data in the cloud
Cianfrocco, Michael A; Leschziner, Andres E
2015-01-01
The advent of a new generation of electron microscopes and direct electron detectors has realized the potential of single particle cryo-electron microscopy (cryo-EM) as a technique to generate high-resolution structures. Calculating these structures requires high performance computing clusters, a resource that may be limiting to many likely cryo-EM users. To address this limitation and facilitate the spread of cryo-EM, we developed a publicly available ‘off-the-shelf’ computing environment on Amazon's elastic cloud computing infrastructure. This environment provides users with single particle cryo-EM software packages and the ability to create computing clusters with 16–480+ CPUs. We tested our computing environment using a publicly available 80S yeast ribosome dataset and estimate that laboratories could determine high-resolution cryo-EM structures for $50 to $1500 per structure within a timeframe comparable to local clusters. Our analysis shows that Amazon's cloud computing environment may offer a viable computing environment for cryo-EM. DOI: http://dx.doi.org/10.7554/eLife.06664.001 PMID:25955969
Nuclear-polarization correction to the bound-electron g factor in heavy hydrogenlike ions.
Nefiodov, A V; Plunien, G; Soff, G
2002-08-19
The influence of nuclear polarization on the bound-electron g factor in heavy hydrogenlike ions is investigated. Numerical calculations are performed for the K- and L-shell electrons taking into account the dominant virtual nuclear excitations. This determines the ultimate limit for tests of QED utilizing measurements of the bound-electron g factor in highly charged ions.
Radiation-Hardened Electronics for the Space Environment
NASA Technical Reports Server (NTRS)
Keys, Andrew S.; Watson, Michael D.
2007-01-01
RHESE covers a broad range of technology areas and products. - Radiation Hardened Electronics - High Performance Processing - Reconfigurable Computing - Radiation Environmental Effects Modeling - Low Temperature Radiation Hardened Electronics. RHESE has aligned with currently defined customer needs. RHESE is leveraging/advancing SOA space electronics, not duplicating. - Awareness of radiation-related activities through out government and industry allow advancement rather than duplication of capabilities.
Enhanced confinement in electron cyclotron resonance ion source plasma.
Schachter, L; Stiebing, K E; Dobrescu, S
2010-02-01
Power loss by plasma-wall interactions may become a limitation for the performance of ECR and fusion plasma devices. Based on our research to optimize the performance of electron cyclotron resonance ion source (ECRIS) devices by the use of metal-dielectric (MD) structures, the development of the method presented here, allows to significantly improve the confinement of plasma electrons and hence to reduce losses. Dedicated measurements were performed at the Frankfurt 14 GHz ECRIS using argon and helium as working gas and high temperature resistive material for the MD structures. The analyzed charge state distributions and bremsstrahlung radiation spectra (corrected for background) also clearly verify the anticipated increase in the plasma-electron density and hence demonstrate the advantage by the MD-method.
NASA Astrophysics Data System (ADS)
Liu, Lilai; An, Maozhong; Yang, Peixia; Zhang, Jinqiu
2015-03-01
SnO2/graphene composite with superior cycle performance and high reversible capacity was prepared by a one-step microwave-hydrothermal method using a microwave reaction system. The SnO2/graphene composite was characterized by X-ray diffraction, thermogravimetric analysis, Fourier-transform infrared spectroscopy, Raman spectroscopy, scanning electron microscope, X-ray photoelectron spectroscopy, transmission electron microscopy and high resolution transmission electron microscopy. The size of SnO2 grains deposited on graphene sheets is less than 3.5 nm. The SnO2/graphene composite exhibits high capacity and excellent electrochemical performance in lithium-ion batteries. The first discharge and charge capacities at a current density of 100 mA g-1 are 2213 and 1402 mA h g-1 with coulomb efficiencies of 63.35%. The discharge specific capacities remains 1359, 1228, 1090 and 1005 mA h g-1 after 100 cycles at current densities of 100, 300, 500 and 700 mA g-1, respectively. Even at a high current density of 1000 mA g-1, the first discharge and charge capacities are 1502 and 876 mA h g-1, and the discharge specific capacities remains 1057 and 677 mA h g-1 after 420 and 1000 cycles, respectively. The SnO2/graphene composite demonstrates a stable cycle performance and high reversible capacity for lithium storage.
NASA Astrophysics Data System (ADS)
Ball, James M.; Bouwer, Ricardo K. M.; Kooistra, Floris B.; Frost, Jarvist M.; Qi, Yabing; Domingo, Ester Buchaca; Smith, Jeremy; de Leeuw, Dago M.; Hummelen, Jan C.; Nelson, Jenny; Kahn, Antoine; Stingelin, Natalie; Bradley, Donal D. C.; Anthopoulos, Thomas D.
2011-07-01
The family of soluble fullerene derivatives comprises a widely studied group of electron transporting molecules for use in organic electronic and optoelectronic devices. For electronic applications, electron transporting (n-channel) materials are required for implementation into organic complementary logic circuit architectures. To date, few soluble candidate materials have been studied that fulfill the stringent requirements of high carrier mobility and air stability. Here we present a study of three soluble fullerenes with varying electron affinity to assess the impact of electronic structure on device performance and air stability. Through theoretical and experimental analysis of the electronic structure, characterization of thin-film structure, and characterization of transistor device properties we find that the air stability of the present series of fullerenes not only depends on the absolute electron affinity of the semiconductor but also on the disorder within the thin-film.
High Performance Nuclear Magnetic Resonance Imaging Using Magnetic Resonance Force Microscopy
2013-12-12
Micron- Size Ferromagnet . Physical Review Letters, 92(3) 037205 (2004) [22] A. Z. Genack and A. G. Redeld. Theory of nuclear spin diusion in a...perform spatially resolved scanned probe studies of spin dynamics in nanoscale ensembles of few electron spins of varying size . Our research culminated...perform spatially resolved scanned probe studies of spin dynamics in nanoscale ensembles of few electron spins of varying size . Our research culminated
In Touch With Industry: ICAF Industry Studies, 1997
1997-01-01
Society of Civil Engineers, Washington, DC. . 1994. "Materials for Tomorrow’s Infrastructure: A Ten-Year Plan for Deploying High - Performance ...identified high - performance electronics as a key to modern warfare and conflict prevention. Clearly, the nation’s defense strategy relies heavily on...priced, high performance systems. As a consequence, hardware makers have undergone multiple restructures, consolidations, mergers, and global
Intrinsically stretchable and healable semiconducting polymer for organic transistors
Oh, Jin Young; Rondeau-Gagné, Simon; Chiu, Yu-Cheng; ...
2016-11-16
Developing a molecular design paradigm for conjugated polymers applicable to intrinsically stretchable semiconductors is crucial toward the next generation of wearable electronics. Current molecular design rules for high charge carrier mobility semiconducting polymers are unable to render the fabricated devices simultaneously stretchable and mechanically robust. Here in this paper, we present a new design concept to address the above challenge, while maintaining excellent electronic performance. This concept involves introducing chemical moieties to promote dynamic non-covalent crosslinking of the conjugated polymers. These non-covalent covalent crosslinking moieties are able to undergo an energy dissipation mechanism through breakage of bonds when strain ismore » applied, while retaining its high charge transport ability. As a result, our polymer is able to recover its high mobility performance (>1 cm 2/Vs) even after 100 cycles at 100% applied strain. Furthermore, we observed that the polymer can be efficiently repaired and/or healed with a simple heat and solvent treatment. These improved mechanical properties of our fabricated stretchable semiconductor enabled us to fabricate highly stretchable and high performance wearable organic transistors. This material design concept should illuminate and advance the pathways for future development of fully stretchable and healable skin-inspired wearable electronics.« less
Lee, Kang Hyuck; Shin, Hyeon-Jin; Lee, Jinyeong; Lee, In-yeal; Kim, Gil-Ho; Choi, Jae-Young; Kim, Sang-Woo
2012-02-08
Hexagonal boron nitride (h-BN) has received a great deal of attention as a substrate material for high-performance graphene electronics because it has an atomically smooth surface, lattice constant similar to that of graphene, large optical phonon modes, and a large electrical band gap. Herein, we report the large-scale synthesis of high-quality h-BN nanosheets in a chemical vapor deposition (CVD) process by controlling the surface morphologies of the copper (Cu) catalysts. It was found that morphology control of the Cu foil is much critical for the formation of the pure h-BN nanosheets as well as the improvement of their crystallinity. For the first time, we demonstrate the performance enhancement of CVD-based graphene devices with large-scale h-BN nanosheets. The mobility of the graphene device on the h-BN nanosheets was increased 3 times compared to that without the h-BN nanosheets. The on-off ratio of the drain current is 2 times higher than that of the graphene device without h-BN. This work suggests that high-quality h-BN nanosheets based on CVD are very promising for high-performance large-area graphene electronics. © 2012 American Chemical Society
Intrinsically stretchable and healable semiconducting polymer for organic transistors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oh, Jin Young; Rondeau-Gagné, Simon; Chiu, Yu-Cheng
Developing a molecular design paradigm for conjugated polymers applicable to intrinsically stretchable semiconductors is crucial toward the next generation of wearable electronics. Current molecular design rules for high charge carrier mobility semiconducting polymers are unable to render the fabricated devices simultaneously stretchable and mechanically robust. Here in this paper, we present a new design concept to address the above challenge, while maintaining excellent electronic performance. This concept involves introducing chemical moieties to promote dynamic non-covalent crosslinking of the conjugated polymers. These non-covalent covalent crosslinking moieties are able to undergo an energy dissipation mechanism through breakage of bonds when strain ismore » applied, while retaining its high charge transport ability. As a result, our polymer is able to recover its high mobility performance (>1 cm 2/Vs) even after 100 cycles at 100% applied strain. Furthermore, we observed that the polymer can be efficiently repaired and/or healed with a simple heat and solvent treatment. These improved mechanical properties of our fabricated stretchable semiconductor enabled us to fabricate highly stretchable and high performance wearable organic transistors. This material design concept should illuminate and advance the pathways for future development of fully stretchable and healable skin-inspired wearable electronics.« less
NASA Astrophysics Data System (ADS)
Xu, Liang; Molaei Imenabadi, Rouzbeh; Vandenberghe, William G.; Hsu, Julia W. P.
2018-03-01
The performance of hybrid organic-inorganic metal halide perovskite solar cells is investigated using one-dimensional drift-diffusion device simulations. We study the effects of interfacial defect density, doping concentration, and electronic level positions of the charge transport layer (CTL). Choosing CTLs with a favorable band alignment, rather than passivating CTL-perovskite interfacial defects, is shown to be beneficial for maintaining high power-conversion efficiency, due to reduced minority carrier density arising from a favorable local electric field profile. Insights from this study provide theoretical guidance on practical selection of CTL materials for achieving high-performance perovskite solar cells.
Power management and distribution technology
NASA Astrophysics Data System (ADS)
Dickman, John Ellis
Power management and distribution (PMAD) technology is discussed in the context of developing working systems for a piloted Mars nuclear electric propulsion (NEP) vehicle. The discussion is presented in vugraph form. The following topics are covered: applications and systems definitions; high performance components; the Civilian Space Technology Initiative (CSTI) high capacity power program; fiber optic sensors for power diagnostics; high temperature power electronics; 200 C baseplate electronics; high temperature component characterization; a high temperature coaxial transformer; and a silicon carbide mosfet.
Power management and distribution technology
NASA Technical Reports Server (NTRS)
Dickman, John Ellis
1993-01-01
Power management and distribution (PMAD) technology is discussed in the context of developing working systems for a piloted Mars nuclear electric propulsion (NEP) vehicle. The discussion is presented in vugraph form. The following topics are covered: applications and systems definitions; high performance components; the Civilian Space Technology Initiative (CSTI) high capacity power program; fiber optic sensors for power diagnostics; high temperature power electronics; 200 C baseplate electronics; high temperature component characterization; a high temperature coaxial transformer; and a silicon carbide mosfet.
Yang, Bin; Mahjouri-Samani, Masoud; Rouleau, Christopher M.; ...
2016-06-10
A promising way to advance perovskite solar cells is to improve the quality of the electron transport material e.g., titanium dioxide (TiO 2) in a direction that increases electron transport and extraction. Although dense TiO 2 films are easily grown in solution, efficient electron extraction suffers due to a lack of interfacial contact area with the perovskite. Conversely, mesoporous films do offer high surface-area-to-volume ratios, thereby promoting efficient electron extraction, but their morphology is relatively difficult to control via conventional solution synthesis methods. Here, a pulsed laser deposition method was used to assemble TiO 2 nanoparticles into TiO 2 hierarchicalmore » nanoarchitectures having the anatase crystal structure, and prototype solar cells employing these structures yielded power conversion efficiencies of ~ 14%. Our approach demonstrates a way to grow high aspect-ratio TiO 2 nanostructures for improved interfacial contact between TiO 2 and perovskite materials, leading to high electron-hole pair separation and electron extraction efficiencies for superior photovoltaic performance. In addition, compared to conventional solution-processed TiO 2 films that require 500 °C to obtain a good crystallinity, our relatively low temperature (300 °C) TiO 2 processing method may promote reduced energy-consumption during device fabrication as well as enable compatibility with various flexible polymer substrates.« less
Silicon Carbide Solar Cells Investigated
NASA Technical Reports Server (NTRS)
Bailey, Sheila G.; Raffaelle, Ryne P.
2001-01-01
The semiconductor silicon carbide (SiC) has long been known for its outstanding resistance to harsh environments (e.g., thermal stability, radiation resistance, and dielectric strength). However, the ability to produce device-quality material is severely limited by the inherent crystalline defects associated with this material and their associated electronic effects. Much progress has been made recently in the understanding and control of these defects and in the improved processing of this material. Because of this work, it may be possible to produce SiC-based solar cells for environments with high temperatures, light intensities, and radiation, such as those experienced by solar probes. Electronics and sensors based on SiC can operate in hostile environments where conventional silicon-based electronics (limited to 350 C) cannot function. Development of this material will enable large performance enhancements and size reductions for a wide variety of systems--such as high-frequency devices, high-power devices, microwave switching devices, and high-temperature electronics. These applications would supply more energy-efficient public electric power distribution and electric vehicles, more powerful microwave electronics for radar and communications, and better sensors and controls for cleaner-burning, more fuel-efficient jet aircraft and automobile engines. The 6H-SiC polytype is a promising wide-bandgap (Eg = 3.0 eV) semiconductor for photovoltaic applications in harsh solar environments that involve high-temperature and high-radiation conditions. The advantages of this material for this application lie in its extremely large breakdown field strength, high thermal conductivity, good electron saturation drift velocity, and stable electrical performance at temperatures as high as 600 C. This behavior makes it an attractive photovoltaic solar cell material for devices that can operate within three solar radii of the Sun.
NASA Astrophysics Data System (ADS)
Matulionis, Arvydas
2013-07-01
The problems in the realm of nitride heterostructure field-effect transistors (HFETs) are discussed in terms of a novel fluctuation-dissipation-based approach impelled by a recent demonstration of strong correlation of hot-electron fluctuations with frequency performance and degradation of the devices. The correlation has its genesis in the dissipation of the LO-mode heat accumulated by the non-equilibrium longitudinal optical phonons (hot phonons) confined in the channel that hosts the high-density hot-electron gas subjected to a high electric field. The LO-mode heat causes additional scattering of hot electrons and facilitates defect formation in a different manner than the conventional heat contained mainly in the acoustic phonon mode. We treat the heat dissipation problem in terms of the hot-phonon lifetime responsible for the conversion of the non-migrant hot phonons into migrant acoustic modes and other vibrations. The lifetime is measured over a wide range of electron density and supplied electric power. The optimal conditions for the dissipation of the LO-mode heat are associated with the plasmon-assisted disintegration of hot phonons. Signatures of plasmons are experimentally resolved in fluctuations, dissipation, hot-electron transport, transistor frequency performance, transistor phase noise and transistor reliability. In particular, a slower degradation and a faster operation of GaN-based HFETs take place inside the electron density window where the resonant plasmon-assisted ultrafast dissipation of the LO-mode heat comes into play. A novel heterostructure design for the possible improvement of HFET performance is proposed, implemented and tested.
Strong, light, multifunctional fibers of carbon nanotubes with ultrahigh conductivity.
Behabtu, Natnael; Young, Colin C; Tsentalovich, Dmitri E; Kleinerman, Olga; Wang, Xuan; Ma, Anson W K; Bengio, E Amram; ter Waarbeek, Ron F; de Jong, Jorrit J; Hoogerwerf, Ron E; Fairchild, Steven B; Ferguson, John B; Maruyama, Benji; Kono, Junichiro; Talmon, Yeshayahu; Cohen, Yachin; Otto, Marcin J; Pasquali, Matteo
2013-01-11
Broader applications of carbon nanotubes to real-world problems have largely gone unfulfilled because of difficult material synthesis and laborious processing. We report high-performance multifunctional carbon nanotube (CNT) fibers that combine the specific strength, stiffness, and thermal conductivity of carbon fibers with the specific electrical conductivity of metals. These fibers consist of bulk-grown CNTs and are produced by high-throughput wet spinning, the same process used to produce high-performance industrial fibers. These scalable CNT fibers are positioned for high-value applications, such as aerospace electronics and field emission, and can evolve into engineered materials with broad long-term impact, from consumer electronics to long-range power transmission.
High performance protection circuit for power electronics applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tudoran, Cristian D., E-mail: cristian.tudoran@itim-cj.ro; Dădârlat, Dorin N.; Toşa, Nicoleta
2015-12-23
In this paper we present a high performance protection circuit designed for the power electronics applications where the load currents can increase rapidly and exceed the maximum allowed values, like in the case of high frequency induction heating inverters or high frequency plasma generators. The protection circuit is based on a microcontroller and can be adapted for use on single-phase or three-phase power systems. Its versatility comes from the fact that the circuit can communicate with the protected system, having the role of a “sensor” or it can interrupt the power supply for protection, in this case functioning as anmore » external, independent protection circuit.« less
Ahn, Cheol Hyoun; Senthil, Karuppanan; Cho, Hyung Koun; Lee, Sang Yeol
2013-01-01
High-performance thin-film transistors (TFTs) are the fundamental building blocks in realizing the potential applications of the next-generation displays. Atomically controlled superlattice structures are expected to induce advanced electric and optical performance due to two-dimensional electron gas system, resulting in high-electron mobility transistors. Here, we have utilized a semiconductor/insulator superlattice channel structure comprising of ZnO/Al2O3 layers to realize high-performance TFTs. The TFT with ZnO (5 nm)/Al2O3 (3.6 nm) superlattice channel structure exhibited high field effect mobility of 27.8 cm2/Vs, and threshold voltage shift of only < 0.5 V under positive/negative gate bias stress test during 2 hours. These properties showed extremely improved TFT performance, compared to ZnO TFTs. The enhanced field effect mobility and stability obtained for the superlattice TFT devices were explained on the basis of layer-by-layer growth mode, improved crystalline nature of the channel layers, and passivation effect of Al2O3 layers. PMID:24061388
Wu, Zhihong; Sun, Chen; Dong, Sheng; Jiang, Xiao-Fang; Wu, Siping; Wu, Hongbin; Yip, Hin-Lap; Huang, Fei; Cao, Yong
2016-02-17
With the demonstration of small-area, single-junction polymer solar cells (PSCs) with power conversion efficiencies (PCEs) over the 10% performance milestone, the manufacturing of high-performance large-area PSC modules is becoming the most critical issue for commercial applications. However, materials and processes that are optimized for fabricating small-area devices may not be applicable for the production of high-performance large-area PSC modules. One of the challenges is to develop new conductive interfacial materials that can be easily processed with a wide range of thicknesses without significantly affecting the performance of the PSCs. Toward this goal, we report two novel naphthalene diimide-based, self-doped, n-type water/alcohol-soluble conjugated polymers (WSCPs) that can be processed with a broad thickness range of 5 to 100 nm as efficient electron transporting layers (ETLs) for high-performance PSCs. Space charge limited current and electron spin resonance spectroscopy studies confirm that the presence of amine or ammonium bromide groups on the side chains of the WSCP can n-dope PC71BM at the bulk heterojunction (BHJ)/ETL interface, which improves the electron extraction properties at the cathode. In addition, both amino functional groups can induce self-doping to the WSCPs, although by different doping mechanisms, which leads to highly conductive ETLs with reduced ohmic loss for electron transport and extraction. Ultimately, PSCs based on the self-doped WSCP ETLs exhibit significantly improved device performance, yielding PCEs as high as 9.7% and 10.11% for PTB7-Th/PC71BM and PffBT4T-2OD/PC71BM systems, respectively. More importantly, with PffBT4T-2OD/PC71BM BHJ as an active layer, a prominent PCE of over 8% was achieved even when a thick ETL of 100 nm was used. To the best of our knowledge, this is the highest efficiency demonstrated for PSCs with a thick interlayer and light-harvesting layer, which are important criteria for eventually making organic photovoltaic modules based on roll-to-roll coating processes.
Integration of a High Sensitivity MEMS Directional Sound Sensor With Readout Electronics
2012-12-01
Readout Electronics 5. FUNDING NUMBERS 6. AUTHOR(S) John D. Roth 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Naval Postgraduate School...Monterey, CA 93943–5000 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES) Space and Naval Warfare...1 1. The Anatomy of the Ormia Ochracea Hearing Organ
Transmission electron microscope CCD camera
Downing, Kenneth H.
1999-01-01
In order to improve the performance of a CCD camera on a high voltage electron microscope, an electron decelerator is inserted between the microscope column and the CCD. This arrangement optimizes the interaction of the electron beam with the scintillator of the CCD camera while retaining optimization of the microscope optics and of the interaction of the beam with the specimen. Changing the electron beam energy between the specimen and camera allows both to be optimized.
Testing of Front End Electronics for 10ps Time of Flight Detectors
NASA Astrophysics Data System (ADS)
Kimball, Matthew; EIC PID Consortium Collaboration
2016-09-01
To fully achieve the physics goals of the future Electron Ion Collider (EIC), continued development of the detectors involved is needed. One area of research involves improving the timing resolution of Time of Flight (ToF) detectors from 100ps to 10ps. When the timing resolution of these ToF detectors is improved, better particle identification can be achieved. In addition, as ToF detectors are being constructed with ever improving timing resolution, the need to improve the high speed performance of the fast electronics used in their front-end electronics (FEE) increases. A series of careful measurements has been performed to investigate the performance and efficiency of each element in the FEE chain. The focus of these tests lies on the amplitude transmission efficiency of the high speed signals as a function of frequency, also known as the bandwidth. The components tested include balanced to unbalanced (balun) boards, signal pre-amps, and waveform digitizers. These tests were performed on individual components and with all elements connected over a frequency range of 1MHz to 1GHz. The results of these tests will be presented. This research was supported by US DOE MENP Grant DE-FG02-03ER41243.
Enhancing electronic and optoelectronic performances of tungsten diselenide by plasma treatment.
Xie, Yuan; Wu, Enxiu; Hu, Ruixue; Qian, Shuangbei; Feng, Zhihong; Chen, Xuejiao; Zhang, Hao; Xu, Linyan; Hu, Xiaodong; Liu, Jing; Zhang, Daihua
2018-06-21
Transition metal dichalcogenides (TMDCs) have recently become spotlighted as nanomaterials for future electronic and optoelectronic devices. In this work, we develop an effective approach to enhance the electronic and optoelectronic performances of WSe2-based devices by N2O plasma treatment. The hole mobility and sheet density increase by 2 and 5 orders of magnitude, reaching 110 cm2 V-1 s-1 and 2.2 × 1012 cm-2, respectively, after the treatment. At the same time, the contact resistance (Rc) between WSe2 and its metal electrode drop by 5 orders of magnitude from 1.0 GΩ μm to 28.4 kΩ μm. The WSe2 photoconductor exhibits superior performance with high responsivity (1.5 × 105 A W-1), short response time (<2 ms), high detectivity (3.6 × 1013 Jones) and very large photoconductive gain (>106). We have also built a lateral p-n junction on a single piece of WSe2 flake by selective plasma exposure. The junction reaches an exceedingly high rectifying ratio of 106, an excellent photoresponsivity of 2.49 A W-1 and a fast response of 8 ms. The enhanced optoelectronic performance is attributed to band-engineering through the N2O plasma treatment, which can potentially serve as an effective and versatile approach for device engineering and optimization in a wide range of electronic and optoelectronic devices based on 2D materials.
NASA Astrophysics Data System (ADS)
Wang, Lingyan; Zhuo, Linhai; Cheng, Haiyang; Zhang, Chao; Zhao, Fengyu
2015-06-01
Generally, the fast ion/electron transport and structural stability dominate the superiority in lithium-storage applications. In this work, porous carbon nanotubes decorated with nanosized CoFe2O4 particles (p-CNTs@CFO) have been rationally designed and synthesized by the assistance of supercritical carbon dioxide (scCO2). When tested as anode materials for lithium-ion batteries, the p-CNTs@CFO composite exhibits outstanding electrochemical behavior with high lithium-storage capacity (1077 mAh g-1 after 100 cycles) and rate capability (694 mAh g-1 at 3 A g-1). These outstanding electrochemical performances are attributed to the synergistic effect of porous p-CNTs and nanosized CFO. Compared to pristine CNTs, the p-CNTs with substantial pores in the tubes possess largely increased specific surface area and rich oxygen-containing functional groups. The porous structure can not only accommodate the volume change during lithiation/delithiation processes, but also provide bicontinuous electron/ion pathways and large electrode/electrolyte interface, which facilitate the ion diffusion kinetics, improving the rate performance. Moreover, the CFO particles are bonded strongly to the p-CNTs through metal-oxygen bridges, which facilitate the electron fast capture from p-CNTs to CFO, and thus resulting in a high reversible capacity and excellent rate performance. Overall, the porous p-CNTs provide an efficient way for ion diffusion and continuous electron transport as anode materials.
Aircraft skin cooling system for thermal management of onboard high power electronic equipment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hashemi, A.; Dyson, E.
1996-12-31
Integration of high-power electronic devices into existing aircraft, while minimizing the impact of additional heat load on the environmental control system of the aircraft, requires innovative approaches. One such approach is to reject heat through the aircraft skin by use of internal skin ducts with enhanced surfaces. This approach requires a system level consideration of the effect of cooling ducts, inlets and outlets on the performance of the electronic equipment and effectiveness of the heat rejection system. This paper describes the development of a system-level model to evaluate the performance of electronic equipment in an aircraft cabin and heat rejectionmore » through the skin. In this model, the outer surface of the fuselage is treated as a heat exchanger. Hot air from an equipment exhaust plenum is drawn into a series of baffled ducts within the fuselage support structure, where the heat is rejected, and then recirculated into the cabin. The cooler air form the cabin is then drawn into the electronic equipment. The aircraft air conditioning unit is also modeled to provide chilled air directly into the cabin. In addition, this paper describes a series of tests which were performed to verify the model assumptions for heat dissipation from and air flow through the equipment. The tests were performed using the actual electronic equipment in a representative cabin configuration. Results indicate very good agreement between the analytical calculations for the design point and model predictions.« less
NASA Technical Reports Server (NTRS)
Timothy, J. G.; Bybee, R. L.
1977-01-01
Up to now, microchannel array plates (MCPs) have been constructed with microchannels having a straight geometry and hence have been prone to ion-feedback instabilities at high operating potentials and high ambient pressures. This paper describes the performances of MCPs with curved (J and C configuration) microchannels to inhibit ion feedback. Plates with curved microchannels have demonstrated performances comparable to those of conventional channel electron multipliers with saturated output pulse-height distributions and modal gain values in excess of 10 to the 6th electrons/pulse.
Oelerich, Jan Oliver; Duschek, Lennart; Belz, Jürgen; Beyer, Andreas; Baranovskii, Sergei D; Volz, Kerstin
2017-06-01
We present a new multislice code for the computer simulation of scanning transmission electron microscope (STEM) images based on the frozen lattice approximation. Unlike existing software packages, the code is optimized to perform well on highly parallelized computing clusters, combining distributed and shared memory architectures. This enables efficient calculation of large lateral scanning areas of the specimen within the frozen lattice approximation and fine-grained sweeps of parameter space. Copyright © 2017 Elsevier B.V. All rights reserved.
A threshold gas Cerenkov detector for the spin asymmetries of the nucleon experiment
Armstrong, Whitney R.; Choi, Seonho; Kaczanowicz, Ed; ...
2015-09-26
In this study, we report on the design, construction, commissioning, and performance of a threshold gas Cerenkov counter in an open configuration, which operates in a high luminosity environment and produces a high photo-electron yield. Part of a unique open geometry detector package known as the Big Electron Telescope Array, this Cerenkov counter served to identify scattered electrons and reject produced pions in an inclusive scattering experiment known as the Spin Asymmetries of the Nucleon Experiment E07-003 at the Thomas Jefferson National Accelerator Facility (TJNAF) also known as Jefferson Lab. The experiment consisted of a measurement of double spin asymmetriesmore » A || and A ⊥ of a polarized electron beam impinging on a polarized ammonia target. The Cerenkov counter's performance is characterised by a yield of about 20 photoelectrons per electron or positron track. Thanks to this large number of photoelectrons per track, the Cerenkov counter had enough resolution to identify electron-positron pairs from the conversion of photons resulting mainly from π 0 decays.« less
MXene: a potential candidate for yarn supercapacitors.
Zhang, Jizhen; Seyedin, Shayan; Gu, Zhoujie; Yang, Wenrong; Wang, Xungai; Razal, Joselito M
2017-12-07
The increasing developments in wearable electronics demand compatible power sources such as yarn supercapacitors (YSCs) that can effectively perform in a limited footprint. MXene nanosheets, which have been recently shown in the literature to possess ultra-high volumetric capacitance, were used in this study for the fabrication of YSCs in order to identify their potential merit and performance in YSCs. With the aid of a conductive binder (PEDOT-PSS), YSCs with high mass loading of MXene are demonstrated. These MXene-based YSCs exhibit excellent device performance and stability even under bending and twisting. This study demonstrates that MXene is a promising candidate for YSCs and its further development can lead to flexible power sources with sufficient performance for powering miniaturized and/or wearable electronics.
Architectures for Improved Organic Semiconductor Devices
NASA Astrophysics Data System (ADS)
Beck, Jonathan H.
Advancements in the microelectronics industry have brought increasing performance and decreasing prices to a wide range of users. Conventional silicon-based electronics have followed Moore's law to provide an ever-increasing integrated circuit transistor density, which drives processing power, solid-state memory density, and sensor technologies. As shrinking conventional integrated circuits became more challenging, researchers began exploring electronics with the potential to penetrate new applications with a low price of entry: "Electronics everywhere." The new generation of electronics is thin, light, flexible, and inexpensive. Organic electronics are part of the new generation of thin-film electronics, relying on the synthetic flexibility of carbon molecules to create organic semiconductors, absorbers, and emitters which perform useful tasks. Organic electronics can be fabricated with low energy input on a variety of novel substrates, including inexpensive plastic sheets. The potential ease of synthesis and fabrication of organic-based devices means that organic electronics can be made at very low cost. Successfully demonstrated organic semiconductor devices include photovoltaics, photodetectors, transistors, and light emitting diodes. Several challenges that face organic semiconductor devices are low performance relative to conventional devices, long-term device stability, and development of new organic-compatible processes and materials. While the absorption and emission performance of organic materials in photovoltaics and light emitting diodes is extraordinarily high for thin films, the charge conduction mobilities are generally low. Building highly efficient devices with low-mobility materials is one challenge. Many organic semiconductor films are unstable during fabrication, storage, and operation due to reactions with water, oxygen and hydroxide. A final challenge facing organic electronics is the need for new processes and materials for electrodes, semiconductors and substrates compatible with low-temperature, flexible, and oxygenated and aromatic solvent-free fabrication. Materials and processes must be capable of future high volume production in order to enable low costs. In this thesis we explore several techniques to improve organic semiconductor device performance and enable new fabrication processes. In Chapter 2, I describe the integration of sub-optical-wavelength nanostructured electrodes that improve fill factor and power conversion efficiency in organic photovoltaic devices. Photovoltaic fill factor performance is one of the primary challenges facing organic photovoltaics because most organic semiconductors have poor charge mobility. Our electrical and optical measurements and simulations indicate that nanostructured electrodes improve charge extraction in organic photovoltaics. In Chapter 3, I describe a general method for maximizing the efficiency of organic photovoltaic devices by simultaneously optimizing light absorption and charge carrier collection. We analyze the potential benefits of light trapping strategies for maximizing the overall power conversion efficiency of organic photovoltaic devices. This technique may be used to improve organic photovoltaic materials with low absorption, or short exciton diffusion and carrier-recombination lengths, opening up the device design space. In Chapter 4, I describe a process for high-quality graphene transfer onto chemically sensitive, weakly interacting organic semiconductor thin-films. Graphene is a promising flexible and highly transparent electrode for organic electronics; however, transferring graphene films onto organic semiconductor devices was previously impossible. We demonstrate a new transfer technique based on an elastomeric stamp coated with an fluorinated polymer release layer. We fabricate three classes of organic semiconductor devices: field effect transistors without high temperature annealing, transparent organic light-emitting diodes, and transparent small-molecule organic photovoltaic devices.
NASA Astrophysics Data System (ADS)
Lee, Chang Yeol; Kim, Woo Chul; Kim, Hun Jeong; Huh, Hyun Do; Park, Seungwoo; Choi, Sang Hyoun; Kim, Kum Bae; Min, Chul Kee; Kim, Seong Hoon; Shin, Dong Oh
2017-02-01
The purpose of this study is to perform a comparison and on analysis of measured dose factor values by using various commercially available high-energy electron beam detectors to measure dose profiles and energy property data. By analyzing the high-energy electron beam data from each detector, we determined the optimal detector for measuring electron beams in clinical applications. The dose linearity, dose-rate dependence, percentage depth dose, and dose profile of each detector were measured to evaluate the dosimetry characteristics of high-energy electron beams. The dose profile and the energy characteristics of high-energy electron beams were found to be different when measured by different detectors. Through comparison with other detectors based on the analyzed data, the microdiamond detector was found to have outstanding dose linearity, a low dose-rate dependency, and a small effective volume. Thus, this detector has outstanding spatial resolution and is the optimal detector for measuring electron beams. Radiation therapy results can be improved and related medical accidents can be prevented by using the procedure developed in this research in clinical practice for all beam detectors when measuring the electron beam dose.
NASA Astrophysics Data System (ADS)
Massironi, A.
2018-04-01
The upgrade of the Compact Muon Solenoid (CMS) crystal electromagnetic calorimeter (ECAL), which will operate at the High Luminosity Large Hadron Collider (HL-LHC), will achieve a timing resolution of around 30 ps for high energy photons and electrons. In this talk we will discuss the benefits of precision timing for the ECAL event reconstruction at HL-LHC. Simulation studies focused on the timing properties of PbWO4 crystals, as well as the impact of the photosensors and the readout electronics on the timing performance, will be presented. Test beam studies intended to measure the timing performance of the PbWO4 crystals with different photosensors and readout electronics will be shown.
Atomic Layer Deposition of Nickel on ZnO Nanowire Arrays for High-Performance Supercapacitors.
Ren, Qing-Hua; Zhang, Yan; Lu, Hong-Liang; Wang, Yong-Ping; Liu, Wen-Jun; Ji, Xin-Ming; Devi, Anjana; Jiang, An-Quan; Zhang, David Wei
2018-01-10
A novel hybrid core-shell structure of ZnO nanowires (NWs)/Ni as a pseudocapacitor electrode was successfully fabricated by atomic layer deposition of a nickel shell, and its capacitive performance was systemically investigated. Transmission electron microscopy and X-ray photoelectron spectroscopy results indicated that the NiO was formed at the interface between ZnO and Ni where the Ni was oxidized by ZnO during the ALD of the Ni layer. Electrochemical measurement results revealed that the Ti/ZnO NWs/Ni (1500 cycles) electrode with a 30 nm thick Ni-NiO shell layer had the best supercapacitor properties including ultrahigh specific capacitance (∼2440 F g -1 ), good rate capability (80.5%) under high current charge-discharge conditions, and a relatively better cycling stability (86.7% of the initial value remained after 750 cycles at 10 A g -1 ). These attractive capacitive behaviors are mainly attributed to the unique core-shell structure and the combined effect of ZnO NW arrays as short charge transfer pathways for ion diffusion and electron transfer as well as conductive Ni serving as channel for the fast electron transport to Ti substrate. This high-performance Ti/ZnO NWs/Ni hybrid structure is expected to be one of a promising electrodes for high-performance supercapacitor applications.
Wang, Ye; Zhang, Xingwang; Jiang, Qi; Liu, Heng; Wang, Denggui; Meng, Junhua; You, Jingbi; Yin, Zhigang
2018-02-21
Hybrid organic-inorganic perovskites have attracted intensive interest as active materials for high-performance photodetectors. However, studies on the electron transport layer (ETL) and its influence on the response time of photodetectors remain limited. Herein, we compare the performances of perovskite photodetectors with TiO 2 and SnO 2 ETLs, especially on the response time. Both photodetectors exhibit a high on/off current ratio of 10 5 , a large detectivity around 10 12 Jones, and a linear dynamic range over 80 dB. The SnO 2 -based perovskite photodiodes show ultrahigh response rates of 3 and 6 μs for the rise and decay times, respectively. However, photodetectors with TiO 2 ETLs have low responsivity and long response time at low driving voltage, which is attributed to the electron extraction barrier at the TiO 2 /perovskite interface and the charge traps in the TiO 2 layer. Furthermore, the dark current of SnO 2 -based perovskite photodiodes is effectively suppressed by inserting a poly(vinylpyrrolidone) interlayer, and then the on/off current ratio increases to 1.2 × 10 6 , corresponding to an improvement of 1 order of magnitude. Such low-cost, solution-processable perovskite photodetectors with high performance show promising potential for future optoelectronic applications.
NASA Astrophysics Data System (ADS)
Kumar, Nitesh; Shekhar, Chandra; Klotz, J.; Wosnitza, J.; Felser, Claudia
2017-10-01
LaBi is a three-dimensional rocksalt-type material with a surprisingly quasi-two-dimensional electronic structure. It exhibits excellent electronic properties such as the existence of nontrivial Dirac cones, extremely large magnetoresistance, and high charge-carrier mobility. The cigar-shaped electron valleys make the charge transport highly anisotropic when the magnetic field is varied from one crystallographic axis to another. We show that the electrons can be polarized effectively in these electron valleys under a rotating magnetic field. We achieved a polarization of 60% at 2 K despite the coexistence of three-dimensional hole pockets. The valley polarization in LaBi is compared to the sister compound LaSb where it is found to be smaller. The performance of LaBi is comparable to the highly efficient bismuth.
Feasibility Study for Electronic Fitness for Duty Medical Examination Reporting and Oversight.
DOT National Transportation Integrated Search
2016-11-01
This report examines the institutional and high-level technology aspects associated with potential mandated : electronic reporting of every commercial driver license (CDL) driver fitness-for-duty medical examination : performed by a medical examiner ...
NASA Technical Reports Server (NTRS)
Powers, Sheryll Goecke (Compiler)
1995-01-01
Flight research for the F-15 HIDEC (Highly Integrated Digital Electronic Control) program was completed at NASA Dryden Flight Research Center in the fall of 1993. The flight research conducted during the last two years of the HIDEC program included two principal experiments: (1) performance seeking control (PSC), an adaptive, real-time, on-board optimization of engine, inlet, and horizontal tail position on the F-15; and (2) propulsion controlled aircraft (PCA), an augmented flight control system developed for landings as well as up-and-away flight that used only engine thrust (flight controls locked) for flight control. In September 1994, the background details and results of the PSC and PCA experiments were presented in an electronic workshop, accessible through the Dryden World Wide Web (http://www.dfrc.nasa.gov/dryden.html) and as a compact disk.
A Normal Incidence X-ray Telescope (NIXT) sounding rocket payload
NASA Technical Reports Server (NTRS)
Golub, Leon
1989-01-01
Work on the High Resolution X-ray (HRX) Detector Program is described. In the laboratory and flight programs, multiple copies of a general purpose set of electronics which control the camera, signal processing and data acquisition, were constructed. A typical system consists of a phosphor convertor, image intensifier, a fiber optics coupler, a charge coupled device (CCD) readout, and a set of camera, signal processing and memory electronics. An initial rocket detector prototype camera was tested in flight and performed perfectly. An advanced prototype detector system was incorporated on another rocket flight, in which a high resolution heterojunction vidicon tube was used as the readout device for the H(alpha) telescope. The camera electronics for this tube were built in-house and included in the flight electronics. Performance of this detector system was 100 percent satisfactory. The laboratory X-ray system for operation on the ground is also described.
NASA Technical Reports Server (NTRS)
Bhasin, K. B.; Romanofsky, R. R.; Ponchak, G. E.; Liu, D. C.
1984-01-01
Etched metallic conductor lines on metal clad polymeric substrates are used for electronic component interconnections. Significant signal losses are observed for microstrip conductor lines used for interconnecting high frequency devices. At these frequencies, the electronic signal travels closer to the metal-polymer interface due to the skin effect. Copper-teflon interfaces were characterized by scanning electron microscopy (SEM) and Auger electron spectroscopy (AES) to determine the interfacial properties. Data relating roughness of the copper film to signal losses was compared to theory. Films used to enhance adhesion are found, to contribute to these losses.
High Energy Electron and Gamma - Ray Detection with ATIC
NASA Technical Reports Server (NTRS)
Chang, J.; Schmidt, W. K. H.; Whitaker, Ann F. (Technical Monitor)
2001-01-01
The Advanced Thin Ionization Calorimeter (ATIC) balloon borne ionization calorimeter is well suited to record and identify high energy cosmic ray electrons, and at very high energies gamma-ray photons as well. We have simulated the performance of the instrument, and compare the simulations with actual high energy electron exposures at the CERN accelerator. Simulations and measurements do not compare exactly, in detail, but overall the simulations have predicted actual measured behavior quite well. ATIC has had its first 16 day balloon flight at the turn of the year over Antarctica, and first results obtained using the analysis methods derived from simulations and calibrations will be reported.
Inductive voltage adder advanced hydrodynamic radiographic technology demonstration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mazarakis, M.G.; Poukey, J.W.; Maenchen
This paper presents the design, results, and analysis of a high-brightness electron beam technology demonstration experiment completed at Sandia National Laboratories, performed in collaboration with Los Alamos National Laboratory. The anticipated electron beam parameters were: 12 MeV, 35-40 kA, 0.5-mm rms radius, and 40-ns full width half maximum (FWHM) pulse duration. This beam, on an optimum thickness tantalum converter, should produce a very intense x-ray source of {approximately} 1.5-mm spot size and 1 kR dose @ 1 m. The accelerator utilized was SABRE, a pulsed inductive voltage adder, and the electron source was a magnetically immersed foilless electron diode. Formore » these experiments, SABRE was modified to high-impedance negative-polarity operation. A new 100-ohm magnetically insulated transmission line cathode electrode was designed and constructed; the cavities were rotated 180{degrees} poloidally to invert the central electrode polarity to negative; and only one of the two pulse forming lines per cavity was energized. A twenty- to thirty-Tesla solenoidal magnet insulated the diode and contained the beam at its extremely small size. These experiments were designed to demonstrate high electron currents in submillimeter radius beams resulting in a high-brightness high-intensity flash x-ray source for high-resolution thick-object hydrodynamic radiography. The SABRE facility high-impedance performance was less than what was hoped. The modifications resulted in a lower amplitude (9 MV), narrower-than-anticipated triangular voltage pulse, which limited the dose to {approximately} 20% of the expected value. In addition, halo and ion-hose instabilities increased the electron beam spot size to > 1.5 mm. Subsequent, more detailed calculations explain these reduced output parameters. An accelerator designed (versus retrofit) for this purpose would provide the desired voltage and pulse shape.« less
Mayoral, Alvaro; Magen, Cesar; Jose-Yacaman, Miguel
2011-01-01
Long multi-branched gold nanoparticles have been synthesized in a very high yield through a facile synthesis combining two different capping agents. The stability of these materials with the time has been tested and their characterization have been performed by diverse advanced electron microscopy techniques, paying special attention to aberration corrected transmission electron microscopy in order to unambiguously analyze the surface structure of the branches and provide insights for the formation of stellated gold nanoparticles. PMID:22125420
Non-cross talk multi-channel photomultiplier using guided electron multipliers
Gomez, J.; Majewski, S.; Weisenberger, A.G.
1995-09-26
An improved multi-channel electron multiplier is provided that exhibits zero cross-talk and high rate operation. Resistive material input and output masks are employed to control divergence of electrons. Electron multiplication takes place in closed channels. Several embodiments are provided for these channels including a continuous resistive emissive multiplier and a discrete resistive multiplier with discrete dynode chains interspaced with resistive layers-masks. Both basic embodiments provide high gain multiplication of electrons without accumulating surface charges while containing electrons to their proper channels to eliminate cross-talk. The invention can be for example applied to improve the performance of ion mass spectrometers, positron emission tomography devices, in DNA sequencing and other beta radiography applications and in many applications in particle physics. 28 figs.
Non cross talk multi-channel photomultiplier using guided electron multipliers
Gomez, Javier; Majewski, Stanislaw; Weisenberger, Andrew G.
1995-01-01
An improved multi-channel electron multiplier is provided that exhibits zero cross-talk and high rate operation. Resistive material input and output masks are employed to control divergence of electrons. Electron multiplication takes place in closed channels. Several embodiments are provided for these channels including a continuous resistive emissive multiplier and a discrete resistive multiplier with discrete dynode chains interspaced with resistive layers-masks. Both basic embodiments provide high gain multiplication of electrons without accumulating surface charges while containing electrons to their proper channels to eliminate cross-talk. The invention can be for example applied to improve the performance of ion mass spectrometers, positron emission tomography devices, in DNA sequencing and other beta radiography applications and in many applications in particle physics.
Curvilinear electronics formed using silicon membrane circuits and elastomeric transfer elements.
Ko, Heung Cho; Shin, Gunchul; Wang, Shuodao; Stoykovich, Mark P; Lee, Jeong Won; Kim, Dong-Hun; Ha, Jeong Sook; Huang, Yonggang; Hwang, Keh-Chih; Rogers, John A
2009-12-01
Materials and methods to achieve electronics intimately integrated on the surfaces of substrates with complex, curvilinear shapes are described. The approach exploits silicon membranes in circuit mesh structures that can be deformed in controlled ways using thin, elastomeric films. Experimental and theoretical studies of the micromechanics of such curvilinear electronics demonstrate the underlying concepts. Electrical measurements illustrate the high yields that can be obtained. The results represent significant experimental and theoretical advances over recently reported concepts for creating hemispherical photodetectors in electronic eye cameras and for using printable silicon nanoribbons/membranes in flexible electronics. The results might provide practical routes to the integration of high performance electronics with biological tissues and other systems of interest for new applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sannibale, F.; Filippetto, D.; Johnson, M.
The past decade was characterized by an increasing scientific demand for extending towards higher repetition rates (MHz class and beyond) the performance of already operating lower repetition rate accelerator-based instruments such as x-ray free electron lasers (FELs) and ultrafast electron diffraction (UED) and microscopy (UEM) instruments. Such a need stimulated a worldwide spread of a vibrant R & D activity targeting the development of high-brightness electron sources capable of operating at these challenging rates. Among the different technologies pursued, rf guns based on room-temperature structures resonating in the very high frequency (VHF) range (30-300 MHz) and operating in continuous wavemore » successfully demonstrated in the past few years the targeted brightness and reliability. Nonetheless, recently proposed upgrades for x-ray FELs and the always brightness-frontier applications such as UED and UEM are now requiring a further step forward in terms of beam brightness in electron sources. Here, we present a few possible upgrade paths that would allow one to extend, in a relatively simple and cost-effective way, the performance of the present VHF technology to the required new goals.« less
Sannibale, F.; Filippetto, D.; Johnson, M.; ...
2017-11-27
The past decade was characterized by an increasing scientific demand for extending towards higher repetition rates (MHz class and beyond) the performance of already operating lower repetition rate accelerator-based instruments such as x-ray free electron lasers (FELs) and ultrafast electron diffraction (UED) and microscopy (UEM) instruments. Such a need stimulated a worldwide spread of a vibrant R & D activity targeting the development of high-brightness electron sources capable of operating at these challenging rates. Among the different technologies pursued, rf guns based on room-temperature structures resonating in the very high frequency (VHF) range (30-300 MHz) and operating in continuous wavemore » successfully demonstrated in the past few years the targeted brightness and reliability. Nonetheless, recently proposed upgrades for x-ray FELs and the always brightness-frontier applications such as UED and UEM are now requiring a further step forward in terms of beam brightness in electron sources. Here, we present a few possible upgrade paths that would allow one to extend, in a relatively simple and cost-effective way, the performance of the present VHF technology to the required new goals.« less
Metal-Phenolic Carbon Nanocomposites for Robust and Flexible Energy-Storage Devices.
Oh, Jun Young; Jung, Yeonsu; Cho, Young Shik; Choi, Jaeyoo; Youk, Ji Ho; Fechler, Nina; Yang, Seung Jae; Park, Chong Rae
2017-04-22
Future electronics applications such as wearable electronics depend on the successful construction of energy-storage devices with superior flexibility and high electrochemical performance. However, these prerequisites are challenging to combine: External forces often cause performance degradation, whereas the trade-off between the required nanostructures for strength and electrochemical performance only results in diminished energy storage. Herein, a flexible supercapacitor based on tannic acid (TA) and carbon nanotubes (CNTs) with a unique nanostructure is presented. TA was self-assembled on the surface of the CNTs by metal-phenolic coordination bonds, which provides the hybrid film with both high strength and high pseudocapacitance. Besides 17-fold increased mechanical strength of the final composite, the hybrid film simultaneously exhibits excellent flexibility and volumetric capacitance. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Deen, David A.; Miller, Ross A.; Osinsky, Andrei V.; Downey, Brian P.; Storm, David F.; Meyer, David J.; Scott Katzer, D.; Nepal, Neeraj
2016-12-01
A dual-channel AlN/GaN/AlN/GaN high electron mobility transistor (HEMT) architecture is proposed, simulated, and demonstrated that suppresses gate lag due to surface-originated trapped charge. Dual two-dimensional electron gas (2DEG) channels are utilized such that the top 2DEG serves as an equipotential that screens potential fluctuations resulting from surface trapped charge. The bottom channel serves as the transistor's modulated channel. Two device modeling approaches have been performed as a means to guide the device design and to elucidate the relationship between the design and performance metrics. The modeling efforts include a self-consistent Poisson-Schrodinger solution for electrostatic simulation as well as hydrodynamic three-dimensional device modeling for three-dimensional electrostatics, steady-state, and transient simulations. Experimental results validated the HEMT design whereby homo-epitaxial growth on free-standing GaN substrates and fabrication of the same-wafer dual-channel and recessed-gate AlN/GaN HEMTs have been demonstrated. Notable pulsed-gate performance has been achieved by the fabricated HEMTs through a gate lag ratio of 0.86 with minimal drain current collapse while maintaining high levels of dc and rf performance.
Algorithm for fast event parameters estimation on GEM acquired data
NASA Astrophysics Data System (ADS)
Linczuk, Paweł; Krawczyk, Rafał D.; Poźniak, Krzysztof T.; Kasprowicz, Grzegorz; Wojeński, Andrzej; Chernyshova, Maryna; Czarski, Tomasz
2016-09-01
We present study of a software-hardware environment for developing fast computation with high throughput and low latency methods, which can be used as back-end in High Energy Physics (HEP) and other High Performance Computing (HPC) systems, based on high amount of input from electronic sensor based front-end. There is a parallelization possibilities discussion and testing on Intel HPC solutions with consideration of applications with Gas Electron Multiplier (GEM) measurement systems presented in this paper.
NASA Astrophysics Data System (ADS)
Chiang, C. Y.; Tam, S. W. Y.; Chang, T. F.; Syugu, W. J.; Kazama, Y.; Wang, S. Y.; Wang, B. J.; Asamura, K.; Higashio, N.; Kasahara, S.; Kasahara, Y.; Matsuoka, A.; Mitani, T.; Yokota, S.; Miyoshi, Y.; Shinohara, I.
2017-12-01
The Energization and Radiation in Geospace (ERG) satellite, launched in December 2016 and also known as "Arase" since then, began its regular observations of the inner magnetosphere in March 2017. On board the satellite are various instruments for the measurements of electrons and ions of various energy ranges, and electric and magnetic fields at various frequencies. The electron instruments include the Low-Energy Particle Experiments - Electron Analyzer (LEP-e), which performs measurements of electrons in the energy range between 20 eV and 19 keV, and three other experiments, Medium-Energy Particle Experiments - Electron Analyzer (MEP-e), High-Energy Electron Experiments (HEP) and Extremely High-Energy Electron Experiments (XEP), respectively covering the medium, high, and extremely high energy ranges up to 20 MeV. Ion measurements are performed by Low-Energy Particle Experiments - Ion Mass Analyzer (LEP-i) and Medium-Energy Particle Experiments - Ion Mass Analyzer (MEP-i) together for energies between 10 eV and 180 keV per unit charge, while the electric and magnetic fields are observed by Plasma Wave Experiment (PWE) and Magnetic Field Experiment (MGF).As LEP-e focuses on the lowest energy range among the electron sensors, it is expected to cover the largest electron population in the observations. Hence, significant variations in the LEP-e measurements are indicators of physical processes that affect a majority of electrons. Over several months, LEP-e has observed a number of events in which the measured electron counts exhibit prominent fluctuations at regular time scales. These events are examined also using measurements of the other aforementioned experiments, and it is found that similar prominent fluctuations are also observed by all of those instruments in quite a few events. In this presentation, we focus on such events and discuss the similarities and differences among them.
Mechanical flip-chip for ultra-high electron mobility devices
Bennaceur, Keyan; Schmidt, Benjamin A.; Gaucher, Samuel; ...
2015-09-22
In this study, electrostatic gates are of paramount importance for the physics of devices based on high-mobility two-dimensional electron gas (2DEG) since they allow depletion of electrons in selected areas. This field-effect gating enables the fabrication of a wide range of devices such as, for example, quantum point contacts (QPC), electron interferometers and quantum dots. To fabricate these gates, processing is usually performed on the 2DEG material, which is in many cases detrimental to its electron mobility. Here we propose an alternative process which does not require any processing of the 2DEG material other than for the ohmic contacts. Thismore » approach relies on processing a separate wafer that is then mechanically mounted on the 2DEG material in a flip-chip fashion. This technique proved successful to fabricate quantum point contacts on both GaAs/AlGaAs materials with both moderate and ultra-high electron mobility.« less
High-resolution scanning precession electron diffraction: Alignment and spatial resolution.
Barnard, Jonathan S; Johnstone, Duncan N; Midgley, Paul A
2017-03-01
Methods are presented for aligning the pivot point of a precessing electron probe in the scanning transmission electron microscope (STEM) and for assessing the spatial resolution in scanning precession electron diffraction (SPED) experiments. The alignment procedure is performed entirely in diffraction mode, minimising probe wander within the bright-field (BF) convergent beam electron diffraction (CBED) disk and is used to obtain high spatial resolution SPED maps. Through analysis of the power spectra of virtual bright-field images extracted from the SPED data, the precession-induced blur was measured as a function of precession angle. At low precession angles, SPED spatial resolution was limited by electronic noise in the scan coils; whereas at high precession angles SPED spatial resolution was limited by tilt-induced two-fold astigmatism caused by the positive spherical aberration of the probe-forming lens. Copyright © 2016 Elsevier B.V. All rights reserved.
Terahertz radiation source using a high-power industrial electron linear accelerator
NASA Astrophysics Data System (ADS)
Kalkal, Yashvir; Kumar, Vinit
2017-04-01
High-power (˜ 100 kW) industrial electron linear accelerators (linacs) are used for irradiations, e.g., for pasteurization of food products, disinfection of medical waste, etc. We propose that high-power electron beam from such an industrial linac can first pass through an undulator to generate useful terahertz (THz) radiation, and the spent electron beam coming out of the undulator can still be used for the intended industrial applications. This will enhance the utilization of a high-power industrial linac. We have performed calculation of spontaneous emission in the undulator to show that for typical parameters, continuous terahertz radiation having power of the order of μW can be produced, which may be useful for many scientific applications such as multispectral imaging of biological samples, chemical samples etc.
NASA Astrophysics Data System (ADS)
Wang, Ping; Lu, Yanggang; Wang, Xuefei; Yu, Huogen
2017-01-01
Highly efficient TiO2 photocatalysts co-modified by amorphous-Ti(IV) hole cocatalyst and Ni(OH)2 electron cocatalyst (referred to as Ni(OH)2-Ti(IV)/TiO2) were prepared by facile two-step process which was the initial formation of amorphous Ti(IV) on the TiO2 surface via hydrolysis method and the following formation of Ni(OH)2 via precipitation reaction. It was found that the Ni(OH)2-Ti(IV)/TiO2 showed obviously high hydrogen-production performance. When the amount of Ni(OH)2 and Ti(IV) was 1 wt% and 0.1 wt%, respectively, the hydrogen-production rate of the resultant Ni(OH)2-Ti(IV)/TiO2 reached 7280.04 μmol h-1 g-1, which was significantly higher than that of TiO2, Ti(IV)/TiO2 and Ni(OH)2/TiO2 by a factor of 215, 63 and 1.8, respectively. Moreover, it was found that Ni(OH)2-Ti(IV)/TiO2 photocatalyst preserved a steady and highly efficient H2-production performance during repeated tests and also exhibited a high transient photocurrent density. The enhanced hydrogen-production performance of Ni(OH)2-Ti(IV)/TiO2 can be attributed to the synergistic effect of Ti(IV) hole cocatalyst and Ni(OH)2 electron cocatalyst to simultaneously accelerate the interfacial transfer of photogenerated holes and electrons. The present surface modification of dual cocatalysts can be regarded as one of the ideal strategies for the preparation of highly efficient hydrogen-production materials in view of their abundance, low cost and facile method.
NASA Astrophysics Data System (ADS)
Wu, W. Z.; Kim, Y.; Li, J. Y.; Teytelman, D.; Busch, M.; Wang, P.; Swift, G.; Park, I. S.; Ko, I. S.; Wu, Y. K.
2011-03-01
Electron beam coupled-bunch instabilities can limit and degrade the performance of storage ring based light sources. A longitudinal feedback system has been developed for the Duke storage ring to suppress multi-bunch beam instabilities which prevent stable, high-current operation of the storage ring based free-electron lasers (FELs) and an FEL driven Compton gamma source, the high intensity gamma-ray source (HIGS) at Duke University. In this work, we report the development of a state-of-the-art second generation longitudinal feedback system which employs a field programmable gate array (FPGA) based processor, and a broadband, high shunt-impedance kicker cavity. With two inputs and two outputs, the kicker cavity was designed with a resonant frequency of 937 MHz, a bandwidth of 97 MHz, and a shunt impedance of 1530 Ω. We also developed an S-matrix based technique to fully characterize the performance of the kicker cavity in the cold test. This longitudinal feedback system has been commissioned and optimized to stabilize high-current electron beams with a wide range of electron beam energies (250 MeV to 1.15 GeV) and a number of electron beam bunch modes, including the single-bunch mode and all possible symmetric bunch modes. This feedback system has become a critical instrument to ensure stable, high-flux operation of HIGS to produce nearly monochromatic, highly polarized Compton gamma-ray beams.
High-power lithium ion batteries based on preorganized necklace type Li4Ti5O12/VACNT nano-composites
NASA Astrophysics Data System (ADS)
Pawlitzek, Fabian; Pampel, Jonas; Schmuck, Martin; Althues, Holger; Schumm, Benjamin; Kaskel, Stefan
2016-09-01
Li4Ti5O12 as anode material for high power Li+-ion batteries is very promising due to its unique electronic properties. However, the lack of electronic conductivity as well as the low Li+-ion diffusion coefficient are major drawbacks in achieving high power densities. In this work, therefore, we prepared a nano-composite consisting of vertically aligned carbon nanotube arrays decorated with in-situ grown necklace type Li4Ti5O12 nanoparticles. Owing to this structure the electrodes exhibit outstanding rate performances with specific capacities of 110 mAh g-1 up to 300C and cycling performance with high capacity retention of 97% after 500 cycles at 10C. Thus, the combination of short Li+-ion diffusion distances within Li4Ti5O12 particles, remarkable electronic conductivity by carbon nanotubes directly grown on the current collector as well as a high contact surface area due to an open pore geometry is essential in achieving high power Li4Ti5O12 anodes.
NASA Astrophysics Data System (ADS)
Zhao, Guanqi; Zhong, Jun; Wang, Jian; Sham, Tsun-Kong; Sun, Xuhui; Lee, Shuit-Tong
2015-05-01
The hybrids of carbon nanotubes (CNTs) and the supported Ni nanoparticles (NPs) have been studied by scanning transmission X-ray microscopy (STXM) and tested by the hydrolysis reaction of ammonia borane (AB, NH3BH3). Data clearly showed the existence of a strong interaction between Ni NPs and thin CNTs (C-O-Ni bonds), which favored the tunable (buffer) electronic structure of Ni NPs facilitating the catalytic process. The hydrolysis process of AB confirmed the hypothesis that the hybrids with a strong interfacial interaction would show superior catalytic performance, while the hybrids with a weak interfacial interaction show poor performance. Our results provide a wealth of detailed information regarding the electronic structure of the NP-CNT hybrids and provide guidance towards the rational design of high-performance catalysts for energy applications.The hybrids of carbon nanotubes (CNTs) and the supported Ni nanoparticles (NPs) have been studied by scanning transmission X-ray microscopy (STXM) and tested by the hydrolysis reaction of ammonia borane (AB, NH3BH3). Data clearly showed the existence of a strong interaction between Ni NPs and thin CNTs (C-O-Ni bonds), which favored the tunable (buffer) electronic structure of Ni NPs facilitating the catalytic process. The hydrolysis process of AB confirmed the hypothesis that the hybrids with a strong interfacial interaction would show superior catalytic performance, while the hybrids with a weak interfacial interaction show poor performance. Our results provide a wealth of detailed information regarding the electronic structure of the NP-CNT hybrids and provide guidance towards the rational design of high-performance catalysts for energy applications. Electronic supplementary information (ESI) available: Magnified TEM images, high resolution TEM images and the particle size distributions of the samples, the STXM results of a thick tube at different positions, XPS results, stability test. See DOI: 10.1039/c5nr01168j
An optical storage cavity-based, Compton-backscatter x-ray source using the MKV free electron laser
NASA Astrophysics Data System (ADS)
Hadmack, Michael R.
A compact, high-brightness x-ray source is presently under development at the University of Hawai`i Free Electron Laser Laboratory. This source utilizes Compton backscattering of an infrared laser from a relativistic electron beam to produce a narrow beam of monochromatic x-rays. The scattering efficiency is greatly increased by tightly focusing the two beams at an interaction point within a near-concentric optical storage cavity, designed with high finesse to coherently stack the incident laser pulses and greatly enhance the number of photons available for scattering with the electron beam. This dissertation describes the effort and progress to integrate and characterize the most important and challenging aspects of the design of this system. A low-power, near-concentric, visible-light storage cavity has been constructed as a tool for the exploration of the performance, alignment procedures, and diagnostics required for the operation of a high power infrared storage cavity. The use of off-axis reflective focussing elements is essential to the design of the optical storage cavity, but requires exquisite alignment to minimize astigmatism and other optical aberrations. Experiments using a stabilized HeNe laser have revealed important performance characteristics, and allowed the development of critical alignment and calibration procedures, which can be directly applied to the high power infrared storage cavity. Integration of the optical and electron beams is similarly challenging. A scanning-wire beam profiler has been constructed and tested, which allows for high resolution measurement of the size and position of the laser and electron beams at the interaction point. This apparatus has demonstrated that the electron and laser beams can be co-aligned with a precision of less than 10 microm, as required to maximize the x-ray production rate. Equally important is the stabilization of the phase of the GHz repetition rate electron pulses arriving at the interaction point and driving the FEL. A feed-forward amplitude and phase compensation system has been built and demonstrated to substantially improve the uniformity of the electron bunch phase, thus enhancing both the laser performance and the beam stability required for efficient x-ray production. Results of all of these efforts are presented, together with a summary of future work.
Properties of the electron cloud in a high-energy positron and electron storage ring
Harkay, K. C.; Rosenberg, R. A.
2003-03-20
Low-energy, background electrons are ubiquitous in high-energy particle accelerators. Under certain conditions, interactions between this electron cloud and the high-energy beam can give rise to numerous effects that can seriously degrade the accelerator performance. These effects range from vacuum degradation to collective beam instabilities and emittance blowup. Although electron-cloud effects were first observed two decades ago in a few proton storage rings, they have in recent years been widely observed and intensely studied in positron and proton rings. Electron-cloud diagnostics developed at the Advanced Photon Source enabled for the first time detailed, direct characterization of the electron-cloud properties in amore » positron and electron storage ring. From in situ measurements of the electron flux and energy distribution at the vacuum chamber wall, electron-cloud production mechanisms and details of the beam-cloud interaction can be inferred. A significant longitudinal variation of the electron cloud is also observed, due primarily to geometrical details of the vacuum chamber. Furthermore, such experimental data can be used to provide realistic limits on key input parameters in modeling efforts, leading ultimately to greater confidence in predicting electron-cloud effects in future accelerators.« less
Liu, Lilai; An, Maozhong; Yang, Peixia; Zhang, Jinqiu
2015-01-01
SnO2/graphene composite with superior cycle performance and high reversible capacity was prepared by a one-step microwave-hydrothermal method using a microwave reaction system. The SnO2/graphene composite was characterized by X-ray diffraction, thermogravimetric analysis, Fourier-transform infrared spectroscopy, Raman spectroscopy, scanning electron microscope, X-ray photoelectron spectroscopy, transmission electron microscopy and high resolution transmission electron microscopy. The size of SnO2 grains deposited on graphene sheets is less than 3.5 nm. The SnO2/graphene composite exhibits high capacity and excellent electrochemical performance in lithium-ion batteries. The first discharge and charge capacities at a current density of 100 mA g−1 are 2213 and 1402 mA h g−1 with coulomb efficiencies of 63.35%. The discharge specific capacities remains 1359, 1228, 1090 and 1005 mA h g−1 after 100 cycles at current densities of 100, 300, 500 and 700 mA g−1, respectively. Even at a high current density of 1000 mA g−1, the first discharge and charge capacities are 1502 and 876 mA h g−1, and the discharge specific capacities remains 1057 and 677 mA h g−1 after 420 and 1000 cycles, respectively. The SnO2/graphene composite demonstrates a stable cycle performance and high reversible capacity for lithium storage. PMID:25761938
Fiber-based wearable electronics: a review of materials, fabrication, devices, and applications.
Zeng, Wei; Shu, Lin; Li, Qiao; Chen, Song; Wang, Fei; Tao, Xiao-Ming
2014-08-20
Fiber-based structures are highly desirable for wearable electronics that are expected to be light-weight, long-lasting, flexible, and conformable. Many fibrous structures have been manufactured by well-established lost-effective textile processing technologies, normally at ambient conditions. The advancement of nanotechnology has made it feasible to build electronic devices directly on the surface or inside of single fibers, which have typical thickness of several to tens microns. However, imparting electronic functions to porous, highly deformable and three-dimensional fiber assemblies and maintaining them during wear represent great challenges from both views of fundamental understanding and practical implementation. This article attempts to critically review the current state-of-arts with respect to materials, fabrication techniques, and structural design of devices as well as applications of the fiber-based wearable electronic products. In addition, this review elaborates the performance requirements of the fiber-based wearable electronic products, especially regarding the correlation among materials, fiber/textile structures and electronic as well as mechanical functionalities of fiber-based electronic devices. Finally, discussions will be presented regarding to limitations of current materials, fabrication techniques, devices concerning manufacturability and performance as well as scientific understanding that must be improved prior to their wide adoption. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A high-throughput, multi-channel photon-counting detector with picosecond timing
NASA Astrophysics Data System (ADS)
Lapington, J. S.; Fraser, G. W.; Miller, G. M.; Ashton, T. J. R.; Jarron, P.; Despeisse, M.; Powolny, F.; Howorth, J.; Milnes, J.
2009-06-01
High-throughput photon counting with high time resolution is a niche application area where vacuum tubes can still outperform solid-state devices. Applications in the life sciences utilizing time-resolved spectroscopies, particularly in the growing field of proteomics, will benefit greatly from performance enhancements in event timing and detector throughput. The HiContent project is a collaboration between the University of Leicester Space Research Centre, the Microelectronics Group at CERN, Photek Ltd., and end-users at the Gray Cancer Institute and the University of Manchester. The goal is to develop a detector system specifically designed for optical proteomics, capable of high content (multi-parametric) analysis at high throughput. The HiContent detector system is being developed to exploit this niche market. It combines multi-channel, high time resolution photon counting in a single miniaturized detector system with integrated electronics. The combination of enabling technologies; small pore microchannel plate devices with very high time resolution, and high-speed multi-channel ASIC electronics developed for the LHC at CERN, provides the necessary building blocks for a high-throughput detector system with up to 1024 parallel counting channels and 20 ps time resolution. We describe the detector and electronic design, discuss the current status of the HiContent project and present the results from a 64-channel prototype system. In the absence of an operational detector, we present measurements of the electronics performance using a pulse generator to simulate detector events. Event timing results from the NINO high-speed front-end ASIC captured using a fast digital oscilloscope are compared with data taken with the proposed electronic configuration which uses the multi-channel HPTDC timing ASIC.
Enhanced surface transfer doping of diamond by V{sub 2}O{sub 5} with improved thermal stability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crawford, Kevin G., E-mail: k.crawford.2@research.gla.ac.uk; Moran, David A. J.; Cao, Liang
2016-01-25
Surface transfer doping of hydrogen-terminated diamond has been achieved utilising V{sub 2}O{sub 5} as a surface electron accepting material. Contact between the oxide and diamond surface promotes the transfer of electrons from the diamond into the V{sub 2}O{sub 5} as revealed by the synchrotron-based high resolution photoemission spectroscopy. Electrical characterization by Hall measurement performed before and after V{sub 2}O{sub 5} deposition shows an increase in hole carrier concentration in the diamond from 3.0 × 10{sup 12} to 1.8 × 10{sup 13 }cm{sup −2} at room temperature. High temperature Hall measurements performed up to 300 °C in atmosphere reveal greatly enhanced thermal stability of the hole channelmore » produced using V{sub 2}O{sub 5} in comparison with an air-induced surface conduction channel. Transfer doping of hydrogen-terminated diamond using high electron affinity oxides such as V{sub 2}O{sub 5} is a promising approach for achieving thermally stable, high performance diamond based devices in comparison with air-induced surface transfer doping.« less
NASA Astrophysics Data System (ADS)
Kemp, Gregory Elijah
Ultra-intense laser (> 1018 W/cm2) interactions with matter are capable of producing relativistic electrons which have a variety of applications in state-of-the-art scientific and medical research conducted at universities and national laboratories across the world. Control of various aspects of these hot-electron distributions is highly desired to optimize a particular outcome. Hot-electron generation in low-contrast interactions, where significant amounts of under-dense pre-plasma are present, can be plagued by highly non-linear relativistic laser-plasma instabilities and quasi-static magnetic field generation, often resulting in less than desirable and predictable electron source characteristics. High-contrast interactions offer more controlled interactions but often at the cost of overall lower coupling and increased sensitivity to initial target conditions. An experiment studying the differences in hot-electron generation between high and low-contrast pulse interactions with solid density targets was performed on the Titan laser platform at the Jupiter Laser Facility at Lawrence Livermore National Laboratory in Livermore, CA. To date, these hot-electrons generated in the laboratory are not directly observable at the source of the interaction. Instead, indirect studies are performed using state-of-the-art simulations, constrained by the various experimental measurements. These measurements, more-often-than-not, rely on secondary processes generated by the transport of these electrons through the solid density materials which can susceptible to a variety instabilities and target material/geometry effects. Although often neglected in these types of studies, the specularly reflected light can provide invaluable insight as it is directly influenced by the interaction. In this thesis, I address the use of (personally obtained) experimental specular reflectivity measurements to indirectly study hot-electron generation in the context of high-contrast, relativistic laser-plasma interactions. Spatial, temporal and spectral properties of the incident and specular pulses, both near and far away from the interaction region where experimental measurements are obtained, are used to benchmark simulations designed to infer dominant hot-electron acceleration mechanisms and their corresponding energy/angular distributions. To handle this highly coupled interaction, I employed particle-in-cell modeling using a wide variety of algorithms (verified to be numerically stable and consistent with analytic expressions) and physical models (validated by experimental results) to reasonably model the interaction's sweeping range of plasma densities, temporal and spatial scales, electromagnetic wave propagation and its interaction with solid density matter. Due to the fluctuations in the experimental conditions and limited computational resources, only a limited number of full-scale simulations were performed under typical experimental conditions to infer the relevant physical phenomena in the interactions. I show the usefulness of the often overlooked specular reflectivity measurements in constraining both high and low-contrast simulations, as well as limitations of their experimental interpretations. Using these experimental measurements to reasonably constrain the simulation results, I discuss the sensitivity of relativistic electron generation in ultra-intense laser plasma interactions to initial target conditions and the dynamic evolution of the interaction region.
Thrust and Performance Study of Micro Pulsed Plasma Thrusters
2010-03-01
Due to the high- voltage potential, numerous electrons are able to collect in a small area. As the collection of the electrons grows, the ...quasi- neutral plasma removes the need to have a second emitter of free electrons to neutralize the plasma like in the Hall thrusters. PPTs and µPPTs...surface of the cathode. The micro-protrusions
Thermally Stable Cellulose Nanocrystals toward High-Performance 2D and 3D Nanostructures.
Jia, Chao; Bian, Huiyang; Gao, Tingting; Jiang, Feng; Kierzewski, Iain Michael; Wang, Yilin; Yao, Yonggang; Chen, Liheng; Shao, Ziqiang; Zhu, J Y; Hu, Liangbing
2017-08-30
Cellulose nanomaterials have attracted much attention in a broad range of fields such as flexible electronics, tissue engineering, and 3D printing for their excellent mechanical strength and intriguing optical properties. Economic, sustainable, and eco-friendly production of cellulose nanomaterials with high thermal stability, however, remains a tremendous challenge. Here versatile cellulose nanocrystals (DM-OA-CNCs) are prepared through fully recyclable oxalic acid (OA) hydrolysis along with disk-milling (DM) pretreatment of bleached kraft eucalyptus pulp. Compared with the commonly used cellulose nanocrystals from sulfuric acid hydrolysis, DM-OA-CNCs show several advantages including large aspect ratio, carboxylated surface, and excellent thermal stability along with high yield. We also successfully demonstrate the fabrication of high-performance films and 3D-printed patterns using DM-OA-CNCs. The high-performance films with high transparency, ultralow haze, and excellent thermal stability have the great potential for applications in flexible electronic devices. The 3D-printed patterns with porous structures can be potentially applied in the field of tissue engineering as scaffolds.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Willems van Beveren, L. H., E-mail: laurensw@unimelb.edu.au; Bowers, H.; Ganesan, K.
2016-06-14
Boron implantation with in-situ dynamic annealing is used to produce highly conductive sub-surface layers in type IIa (100) diamond plates for the search of a superconducting phase transition. Here, we demonstrate that high-fluence MeV ion-implantation, at elevated temperatures avoids graphitization and can be used to achieve doping densities of 6 at. %. In order to quantify the diamond crystal damage associated with implantation Raman spectroscopy was performed, demonstrating high temperature annealing recovers the lattice. Additionally, low-temperature electronic transport measurements show evidence of charge carrier densities close to the metal-insulator-transition. After electronic characterization, secondary ion mass spectrometry was performed to mapmore » out the ion profile of the implanted plates. The analysis shows close agreement with the simulated ion-profile assuming scaling factors that take into account an average change in diamond density due to device fabrication. Finally, the data show that boron diffusion is negligible during the high temperature annealing process.« less
NASA Astrophysics Data System (ADS)
Hu, Yue-Houng; Rottmann, Joerg; Fueglistaller, Rony; Myronakis, Marios; Wang, Adam; Huber, Pascal; Shedlock, Daniel; Morf, Daniel; Baturin, Paul; Star-Lack, Josh; Berbeco, Ross
2018-02-01
While megavoltage cone-beam computed tomography (CBCT) using an electronic portal imaging device (EPID) provides many advantages over kilovoltage (kV) CBCT, clinical adoption is limited by its high doses. Multi-layer imager (MLI) EPIDs increase DQE(0) while maintaining high resolution. However, even well-designed, high-performance MLIs suffer from increased electronic noise from each readout, degrading low-dose image quality. To improve low-dose performance, shift-and-bin addition (ShiBA) imaging is proposed, leveraging the unique architecture of the MLI. ShiBA combines hardware readout-binning and super-resolution concepts, reducing electronic noise while maintaining native image sampling. The imaging performance of full-resolution (FR); standard, aligned binned (BIN); and ShiBA images in terms of noise power spectrum (NPS), electronic NPS, modulation transfer function (MTF), and the ideal observer signal-to-noise ratio (SNR)—the detectability index (d‧)—are compared. The FR 4-layer readout of the prototype MLI exhibits an electronic NPS magnitude 6-times higher than a state-of-the-art single layer (SLI) EPID. Although the MLI is built on the same readout platform as the SLI, with each layer exhibiting equivalent electronic noise, the multi-stage readout of the MLI results in electronic noise 50% higher than simple summation. Electronic noise is mitigated in both BIN and ShiBA imaging, reducing its total by ~12 times. ShiBA further reduces the NPS, effectively upsampling the image, resulting in a multiplication by a sinc2 function. Normalized NPS show that neither ShiBA nor BIN otherwise affects image noise. The LSF shows that ShiBA removes the pixilation artifact of BIN images and mitigates the effect of detector shift, but does not quantifiably improve the MTF. ShiBA provides a pre-sampled representation of the images, mitigating phase dependence. Hardware binning strategies lower the quantum noise floor, with 2 × 2 implementation reducing the dose at which DQE(0) degrades by 10% from 0.01 MU to 0.004 MU, representing 20% improvement in d‧.
Electrostatically tunable lateral MoTe2 p-n junction for use in high-performance optoelectronics.
Wang, Zhenxing; Wang, Feng; Yin, Lei; Huang, Yun; Xu, Kai; Wang, Fengmei; Zhan, Xueying; He, Jun
2016-07-21
Because of their ultimate thickness, layered structure and high flexibility, pn junctions based on layered two-dimensional semiconductors have been attracting increasing attention recently. In this study, for the first time, we fabricated lateral pn junctions (LPNJs) based on ultrathin MoTe2 by introducing two separated electrostatic back gates, and investigated their electronic and photovoltaic performance. Pn, np, nn, and pp junctions can be easily realized by modulating the conductive channel type using gate voltages with different polarities. Strong rectification effects were observed in the pn and np junctions and the rectification ratio reached ∼5 × 10(4). Importantly, we find a unique phenomenon that the parameters for MoTe2 LPNJs experience abrupt changes during the transition from p to n or n to p. Furthermore, a high performance photovoltaic device with a filling factor of above 51% and electrical conversion efficiency (η) of around 0.5% is achieved. Our findings are of importance to comprehensively understand the electronic and optoelectronic properties of MoTe2 and may further open up novel electronic and optoelectronic device applications.
Low Voltage Low Light Imager and Photodetector
NASA Technical Reports Server (NTRS)
Nikzad, Shouleh (Inventor); Martin, Chris (Inventor); Hoenk, Michael E. (Inventor)
2013-01-01
Highly efficient, low energy, low light level imagers and photodetectors are provided. In particular, a novel class of Della-Doped Electron Bombarded Array (DDEBA) photodetectors that will reduce the size, mass, power, complexity, and cost of conventional imaging systems while improving performance by using a thinned imager that is capable of detecting low-energy electrons, has high gain, and is of low noise.
An automatic chip structure optical inspection system for electronic components
NASA Astrophysics Data System (ADS)
Song, Zhichao; Xue, Bindang; Liang, Jiyuan; Wang, Ke; Chen, Junzhang; Liu, Yunhe
2018-01-01
An automatic chip structure inspection system based on machine vision is presented to ensure the reliability of electronic components. It consists of four major modules, including a metallographic microscope, a Gigabit Ethernet high-resolution camera, a control system and a high performance computer. An auto-focusing technique is presented to solve the problem that the chip surface is not on the same focusing surface under the high magnification of the microscope. A panoramic high-resolution image stitching algorithm is adopted to deal with the contradiction between resolution and field of view, caused by different sizes of electronic components. In addition, we establish a database to storage and callback appropriate parameters to ensure the consistency of chip images of electronic components with the same model. We use image change detection technology to realize the detection of chip images of electronic components. The system can achieve high-resolution imaging for chips of electronic components with various sizes, and clearly imaging for the surface of chip with different horizontal and standardized imaging for ones with the same model, and can recognize chip defects.
Single Photon Counting Large Format Imaging Sensors with High Spatial and Temporal Resolution
NASA Astrophysics Data System (ADS)
Siegmund, O. H. W.; Ertley, C.; Vallerga, J. V.; Cremer, T.; Craven, C. A.; Lyashenko, A.; Minot, M. J.
High time resolution astronomical and remote sensing applications have been addressed with microchannel plate based imaging, photon time tagging detector sealed tube schemes. These are being realized with the advent of cross strip readout techniques with high performance encoding electronics and atomic layer deposited (ALD) microchannel plate technologies. Sealed tube devices up to 20 cm square have now been successfully implemented with sub nanosecond timing and imaging. The objective is to provide sensors with large areas (25 cm2 to 400 cm2) with spatial resolutions of <20 μm FWHM and timing resolutions of <100 ps for dynamic imaging. New high efficiency photocathodes for the visible regime are discussed, which also allow response down below 150nm for UV sensing. Borosilicate MCPs are providing high performance, and when processed with ALD techniques are providing order of magnitude lifetime improvements and enhanced photocathode stability. New developments include UV/visible photocathodes, ALD MCPs, and high resolution cross strip anodes for 100 mm detectors. Tests with 50 mm format cross strip readouts suitable for Planacon devices show spatial resolutions better than 20 μm FWHM, with good image linearity while using low gain ( 106). Current cross strip encoding electronics can accommodate event rates of >5 MHz and event timing accuracy of 100 ps. High-performance ASIC versions of these electronics are in development with better event rate, power and mass suitable for spaceflight instruments.
NASA Technical Reports Server (NTRS)
Matus, Lawrence G.; Seng, Gary T.
1990-01-01
To meet the needs of the aerospace propulsion and space power communities, the high temperature electronics program at the Lewis Research Center is developing silicon carbide (SiC) as a high temperature semiconductor material. This program supports a major element of the Center's mission - to perform basic and developmental research aimed at improving aerospace propulsion systems. Research is focused on developing the crystal growth, characterization, and device fabrication technologies necessary to produce a family of SiC devices.
NASA Astrophysics Data System (ADS)
Gamzina, Diana
Diana Gamzina March 2016 Mechanical and Aerospace Engineering Multiscale Thermo-Mechanical Design and Analysis of High Frequency and High Power Vacuum Electron Devices Abstract A methodology for performing thermo-mechanical design and analysis of high frequency and high average power vacuum electron devices is presented. This methodology results in a "first-pass" engineering design directly ready for manufacturing. The methodology includes establishment of thermal and mechanical boundary conditions, evaluation of convective film heat transfer coefficients, identification of material options, evaluation of temperature and stress field distributions, assessment of microscale effects on the stress state of the material, and fatigue analysis. The feature size of vacuum electron devices operating in the high frequency regime of 100 GHz to 1 THz is comparable to the microstructure of the materials employed for their fabrication. As a result, the thermo-mechanical performance of a device is affected by the local material microstructure. Such multiscale effects on the stress state are considered in the range of scales from about 10 microns up to a few millimeters. The design and analysis methodology is demonstrated on three separate microwave devices: a 95 GHz 10 kW cw sheet beam klystron, a 263 GHz 50 W long pulse wide-bandwidth sheet beam travelling wave tube, and a 346 GHz 1 W cw backward wave oscillator.
NASA Astrophysics Data System (ADS)
Miyata, Masanobu; Ozaki, Taisuke; Takeuchi, Tsunehiro; Nishino, Shunsuke; Inukai, Manabu; Koyano, Mikio
2018-06-01
The electron transport properties of 809 sulfides have been investigated using density functional theory (DFT) calculations in the relaxation time approximation, and a material design rule established for high-performance sulfide thermoelectric (TE) materials. Benchmark electron transport calculations were performed for Cu12Sb4S13 and Cu26V2Ge6S32, revealing that the ratio of the scattering probability of electrons and phonons ( κ lat τ el -1 ) was constant at about 2 × 1014 W K-1 m-1 s-1. The calculated thermopower S dependence of the theoretical dimensionless figure of merit ZT DFT of the 809 sulfides showed a maximum at 140 μV K-1 to 170 μV K-1. Under the assumption of constant κ lat τ el -1 of 2 × 1014 W K-1 m-1 s-1 and constant group velocity v of electrons, a slope of the density of states of 8.6 states eV-2 to 10 states eV-2 is suitable for high- ZT sulfide TE materials. The Lorenz number L dependence of ZT DFT for the 809 sulfides showed a maximum at L of approximately 2.45 × 10-8 V2 K-2. This result demonstrates that the potential of high- ZT sulfide materials is highest when the electron thermal conductivity κ el of the symmetric band is equal to that of the asymmetric band.
1999-06-01
Tactical Radar Correlator EV Electric Vehicle EW Electronic Warfare F ^^m F Frequency FA False Alarm FAO Foreign Area Officer FBE Fleet Battle... Electric Vehicle High Frequency Horsepower High-Performance Computing High Performance Computing and Communications High Performance Knowledge...A/D Analog-to-Digital A/G Air-to-Ground AAN Army After Next AAV Advanced Air Vehicle ABCCC Airborne Battlefield Command, Control and
NASA Astrophysics Data System (ADS)
Sankaran, K. J.; Srinivasu, K.; Yeh, C. J.; Thomas, J. P.; Drijkoningen, S.; Pobedinskas, P.; Sundaravel, B.; Leou, K. C.; Leung, K. T.; Van Bael, M. K.; Schreck, M.; Lin, I. N.; Haenen, K.
2017-06-01
The field electron emission (FEE) properties of nitrogen-incorporated nanocrystalline diamond films were enhanced due to Li-ion implantation/annealing processes. Li-ion implantation mainly induced the formation of electron trap centers inside diamond grains, whereas post-annealing healed the defects and converted the a-C phase into nanographite, forming conduction channels for effective transport of electrons. This resulted in a high electrical conductivity of 11.0 S/cm and enhanced FEE performance with a low turn-on field of 10.6 V/μm, a high current density of 25.5 mA/cm2 (at 23.2 V/μm), and a high lifetime stability of 1,090 min for nitrogen incorporated nanocrystalline diamond films.
NASA Astrophysics Data System (ADS)
Li, W. Q.; Wang, G.; Zhang, X. N.; Geng, H. P.; Shen, J. L.; Wang, L. S.; Zhao, J.; Xu, L. F.; Zhang, L. J.; Wu, Y. Q.; Tai, R. Z.; Chen, G.
2015-09-01
Here we present an in-depth and comprehensive study of the effect of the geometry and morphology of nanoarray (NA) substrates on their surface-enhanced Raman scattering (SERS) performance. The high-quality SERS-active NA substrates of various unit shapes and pitches are assembled through electron beam lithography and fabricated by electron beam physical vapor deposition. Good agreement is found on comparing the Raman scattering results with the integrals of the fourth power of local electric fields from the three-dimensional numerical simulations. A novel type of hybrid NA substrate composed of disordered nanoparticles and a periodic NA is fabricated and characterized. The morphology of NAs has little influence on the SERS performance of hybrid NA substrates and they perform better than both their counterparts pure NA and disordered nanoparticle substrates.
Li, W Q; Wang, G; Zhang, X N; Geng, H P; Shen, J L; Wang, L S; Zhao, J; Xu, L F; Zhang, L J; Wu, Y Q; Tai, R Z; Chen, G
2015-10-07
Here we present an in-depth and comprehensive study of the effect of the geometry and morphology of nanoarray (NA) substrates on their surface-enhanced Raman scattering (SERS) performance. The high-quality SERS-active NA substrates of various unit shapes and pitches are assembled through electron beam lithography and fabricated by electron beam physical vapor deposition. Good agreement is found on comparing the Raman scattering results with the integrals of the fourth power of local electric fields from the three-dimensional numerical simulations. A novel type of hybrid NA substrate composed of disordered nanoparticles and a periodic NA is fabricated and characterized. The morphology of NAs has little influence on the SERS performance of hybrid NA substrates and they perform better than both their counterparts pure NA and disordered nanoparticle substrates.
A high voltage power supply for the AE-C and D low energy electron experiment
NASA Technical Reports Server (NTRS)
Gillis, J. A.
1974-01-01
A description is given of the electrical and mechanical design and operation of high voltage power supplies for space flight use. The supply was used to generate the spiraltron high voltage for low energy electron experiment on AE-C and D. Two versions of the supply were designed and built; one design is referred to as the low power version (AE-C) and the other as the high power version (AE-D). Performance is discussed under all operating conditions.
2018-02-01
Research Laboratory Sensors and Electron Devices Directorate (ATTN: RDRL-SER-M) 2800 Powder Mill Rd Adelphi, MD 20783-1138 8. PERFORMING...that may be set between 200 mV and 400 mV, developed for an application using gallium arsenide pseudomorphic high electron mobility transistor
Fabrication of High-T(sub c) Hot-Electron Bolometric Mixers for Terahertz Applications
NASA Technical Reports Server (NTRS)
Burns, M. J.; Kleinsasser, A. W.; Delin, K. A.; Vasquez, R. P.; Karasik, B. S.; McGrath, W. R.; Gaidis, M. C.
1996-01-01
Superocnducting hot-electron bolometers (HEB) represent a promising candidate for heterodyne mixing at frequencies exceeding 1 THz. Nb HEB mixers offer performance competitive with tunnel junctions without the frequency limit imposed by the superconducting energy gap.
Organic High Electron Mobility Transistors Realized by 2D Electron Gas.
Zhang, Panlong; Wang, Haibo; Yan, Donghang
2017-09-01
A key breakthrough in inorganic modern electronics is the energy-band engineering that plays important role to improve device performance or develop novel functional devices. A typical application is high electron mobility transistors (HEMTs), which utilizes 2D electron gas (2DEG) as transport channel and exhibits very high electron mobility over traditional field-effect transistors (FETs). Recently, organic electronics have made very rapid progress and the band transport model is demonstrated to be more suitable for explaining carrier behavior in high-mobility crystalline organic materials. Therefore, there emerges a chance for applying energy-band engineering in organic semiconductors to tailor their optoelectronic properties. Here, the idea of energy-band engineering is introduced and a novel device configuration is constructed, i.e., using quantum well structures as active layers in organic FETs, to realize organic 2DEG. Under the control of gate voltage, electron carriers are accumulated and confined at quantized energy levels, and show efficient 2D transport. The electron mobility is up to 10 cm 2 V -1 s -1 , and the operation mechanisms of organic HEMTs are also argued. Our results demonstrate the validity of tailoring optoelectronic properties of organic semiconductors by energy-band engineering, offering a promising way for the step forward of organic electronics. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Multi-scale gyrokinetic simulations of an Alcator C-Mod, ELM-y H-mode plasma
NASA Astrophysics Data System (ADS)
Howard, N. T.; Holland, C.; White, A. E.; Greenwald, M.; Rodriguez-Fernandez, P.; Candy, J.; Creely, A. J.
2018-01-01
High fidelity, multi-scale gyrokinetic simulations capable of capturing both ion ({k}θ {ρ }s∼ { O }(1.0)) and electron-scale ({k}θ {ρ }e∼ { O }(1.0)) turbulence were performed in the core of an Alcator C-Mod ELM-y H-mode discharge which exhibits reactor-relevant characteristics. These simulations, performed with all experimental inputs and realistic ion to electron mass ratio ({({m}i/{m}e)}1/2=60.0) provide insight into the physics fidelity that may be needed for accurate simulation of the core of fusion reactor discharges. Three multi-scale simulations and series of separate ion and electron-scale simulations performed using the GYRO code (Candy and Waltz 2003 J. Comput. Phys. 186 545) are presented. As with earlier multi-scale results in L-mode conditions (Howard et al 2016 Nucl. Fusion 56 014004), both ion and multi-scale simulations results are compared with experimentally inferred ion and electron heat fluxes, as well as the measured values of electron incremental thermal diffusivities—indicative of the experimental electron temperature profile stiffness. Consistent with the L-mode results, cross-scale coupling is found to play an important role in the simulation of these H-mode conditions. Extremely stiff ion-scale transport is observed in these high-performance conditions which is shown to likely play and important role in the reproduction of measurements of perturbative transport. These results provide important insight into the role of multi-scale plasma turbulence in the core of reactor-relevant plasmas and establish important constraints on the the fidelity of models needed for predictive simulations.
Evaluation of dual γ-ray imager with active collimator using various types of scintillators.
Lee, Wonho; Lee, Taewoong; Jeong, Manhee; Kim, Ho Kyung
2011-10-01
The performance of a specialized dual γ-ray imager using both mechanical and electronic collimation was evaluated by Monte Carlo simulation (MCNP5). The dual imager consisted of an active collimator and a planar detector that were made from scintillators. The active collimator served not only as a coded aperture for mechanical collimation but also as a first detector for electronic collimation. Therefore, a single system contained both mechanical and electronic collimation. Various types of scintillators were tested and compared with each other in terms of their angular resolution, efficiency, and background noise. In general, a BGO active collimator had the best mechanical collimation performance, and an LaCl₃(Ce) active collimator provided the best electronic collimation performance. However, for low radiation energies, the mechanical collimation images made from both scintillators showed the same quality, and, for high radiation energies, electronic collimation images made from both scintillators also show similar quality. Therefore, if mechanical collimation is used to detect low-energy radiation and electronic collimation is applied to reconstruct a high-energy source, either LaCl₃(Ce) or BGO would be appropriate for the active collimator of a dual γ-ray imager. These results broaden the choice of scintillators for the active collimator of the dual γ-ray imager, which makes it possible to consider other factors, such as machinability and cost, in making the imager. As a planar detector, BGO showed better performance than other scintillators since its radiation detection efficiency was highest of all. Copyright © 2011 Elsevier Ltd. All rights reserved.
Acousto-optic time- and space-integrating spotlight-mode SAR processor
NASA Astrophysics Data System (ADS)
Haney, Michael W.; Levy, James J.; Michael, Robert R., Jr.
1993-09-01
The technical approach and recent experimental results for the acousto-optic time- and space- integrating real-time SAR image formation processor program are reported. The concept overcomes the size and power consumption limitations of electronic approaches by using compact, rugged, and low-power analog optical signal processing techniques for the most computationally taxing portions of the SAR imaging problem. Flexibility and performance are maintained by the use of digital electronics for the critical low-complexity filter generation and output image processing functions. The results include a demonstration of the processor's ability to perform high-resolution spotlight-mode SAR imaging by simultaneously compensating for range migration and range/azimuth coupling in the analog optical domain, thereby avoiding a highly power-consuming digital interpolation or reformatting operation usually required in all-electronic approaches.
Diagnostic for a high-repetition rate electron photo-gun and first measurements
NASA Astrophysics Data System (ADS)
Filippetto, D.; Doolittle, L.; Huang, G.; Norum, E.; Portmann, G.; Qian, H.; Sannibale, F.
2015-05-01
The APEX electron source at LBNL combines the high-repetition-rate with the high beam brightness typical of photoguns, delivering low emittance electron pulses at MHz frequency. Proving the high beam quality of the beam is an essential step for the success of the experiment, opening the doors of the high average power to brightness-hungry applications as X-Ray FELs, MHz ultrafast electron diffraction etc.. As first step, a complete characterization of the beam parameters is foreseen at the Gun beam energy of 750 keV. Diagnostics for low and high current measurements have been installed and tested, and measurements of cathode lifetime and thermal emittance in a RF environment with mA current performed. The recent installation of a double slit system, a deflecting cavity and a high precision spectrometer, allow the exploration of the full 6D phase space. Here we discuss the present layout of the machine and future upgrades, showing the latest results at low and high repetition rate, together with the tools and techniques used.
Femtosecond MeV Electron Energy-Loss Spectroscopy
NASA Astrophysics Data System (ADS)
Li, R. K.; Wang, X. J.
2017-11-01
Pump-probe electron energy-loss spectroscopy (EELS) with femtosecond temporal resolution will be a transformative research tool for studying nonequilibrium chemistry and electronic dynamics of matter. In this paper, we propose a concept of femtosecond EELS utilizing mega-electron-volt electron beams from a radio-frequency (rf) photocathode source. The high acceleration gradient and high beam energy of the rf gun are critical to the generation of 10-fs electron beams, which enables an improvement of the temporal resolution by more than 1 order of magnitude beyond the state of the art. In our proposal, the "reference-beam technique" relaxes the energy stability requirement of the rf power source by roughly 2 orders of magnitude. The requirements for the electron-beam quality, photocathode, spectrometer, and detector are also discussed. Supported by particle-tracking simulations, we demonstrate the feasibility of achieving sub-electron-volt energy resolution and approximately 10-fs temporal resolution with existing or near-future hardware performance.
Analysis of magnetically immersed electron guns with non-adiabatic fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pikin, Alexander; Alessi, James G.; Beebe, Edward N.
Electron diode guns, which have strongly varying magnetic or electric fields in a cathode-anode gap, were investigated in order to generate laminar electron beams with high current density using magnetically immersed guns. By creating a strongly varying radial electric field in a cathode-anode gap of the electron gun, it was demonstrated that the optical properties of the gun can be significantly altered, which allows the generation of a laminar, high-current electron beam with relatively low magnetic field on the cathode. The relatively high magnetic compression of the electron beam achieved by this method is important for producing electron beams withmore » high current density. A similar result can be obtained by inducing a strong variation of the magnetic field in a cathode-anode gap. It was observed that creating a dip in the axial magnetic field in the cathode-anode gap of an adiabatic electron gun has an optical effect similar to guns with strong variation of radial electric field. By analyzing the electron trajectories angles and presenting the results in a gun performance map different geometries of magnetically immersed electron guns with non-adiabatic fields are compared with each other and with a more traditional adiabatic electron gun. Some advantages and limitations of guns with non-adiabatic fields are outlined. In conclusion, the tests results of non-adiabatic electron gun with modified magnetic field are presented.« less
Analysis of magnetically immersed electron guns with non-adiabatic fields
Pikin, Alexander; Alessi, James G.; Beebe, Edward N.; ...
2016-11-08
Electron diode guns, which have strongly varying magnetic or electric fields in a cathode-anode gap, were investigated in order to generate laminar electron beams with high current density using magnetically immersed guns. By creating a strongly varying radial electric field in a cathode-anode gap of the electron gun, it was demonstrated that the optical properties of the gun can be significantly altered, which allows the generation of a laminar, high-current electron beam with relatively low magnetic field on the cathode. The relatively high magnetic compression of the electron beam achieved by this method is important for producing electron beams withmore » high current density. A similar result can be obtained by inducing a strong variation of the magnetic field in a cathode-anode gap. It was observed that creating a dip in the axial magnetic field in the cathode-anode gap of an adiabatic electron gun has an optical effect similar to guns with strong variation of radial electric field. By analyzing the electron trajectories angles and presenting the results in a gun performance map different geometries of magnetically immersed electron guns with non-adiabatic fields are compared with each other and with a more traditional adiabatic electron gun. Some advantages and limitations of guns with non-adiabatic fields are outlined. In conclusion, the tests results of non-adiabatic electron gun with modified magnetic field are presented.« less
Analysis of magnetically immersed electron guns with non-adiabatic fields.
Pikin, Alexander; Alessi, James G; Beebe, Edward N; Raparia, Deepak; Ritter, John
2016-11-01
Electron diode guns, which have strongly varying magnetic or electric fields in a cathode-anode gap, were investigated in order to generate laminar electron beams with high current density using magnetically immersed guns. By creating a strongly varying radial electric field in a cathode-anode gap of the electron gun, it was demonstrated that the optical properties of the gun can be significantly altered, which allows the generation of a laminar, high-current electron beam with relatively low magnetic field on the cathode. The relatively high magnetic compression of the electron beam achieved by this method is important for producing electron beams with high current density. A similar result can be obtained by inducing a strong variation of the magnetic field in a cathode-anode gap. It was observed that creating a dip in the axial magnetic field in the cathode-anode gap of an adiabatic electron gun has an optical effect similar to guns with strong variation of radial electric field. By analyzing the electron trajectories angles and presenting the results in a gun performance map, different geometries of magnetically immersed electron guns with non-adiabatic fields are compared with each other and with a more traditional adiabatic electron gun. Some advantages and limitations of guns with non-adiabatic fields are outlined. The tests' results of a non-adiabatic electron gun with modified magnetic field are presented.
Chen, Jun-Yang; Lau, Yong-Chang; Coey, J. M. D.; Li, Mo; Wang, Jian-Ping
2017-01-01
The magnetic tunnel junction (MTJ) using MgO barrier is one of most important building blocks for spintronic devices and has been widely utilized as miniaturized magentic sensors. It could play an important role in wearable medical devices if they can be fabricated on flexible substrates. The required stringent fabrication processes to obtain high quality MgO-barrier MTJs, however, limit its integration with flexible electronics devices. In this work, we have developed a method to fabricate high-performance MgO-barrier MTJs directly onto ultrathin flexible silicon membrane with a thickness of 14 μm and then transfer-and-bond to plastic substrates. Remarkably, such flexible MTJs are fully functional, exhibiting a TMR ratio as high as 190% under bending radii as small as 5 mm. The devices‘ robustness is manifested by its retained excellent performance and unaltered TMR ratio after over 1000 bending cycles. The demonstrated flexible MgO-barrier MTJs opens the door to integrating high-performance spintronic devices in flexible and wearable electronics devices for a plethora of biomedical sensing applications. PMID:28150807
Chen, Jun-Yang; Lau, Yong-Chang; Coey, J M D; Li, Mo; Wang, Jian-Ping
2017-02-02
The magnetic tunnel junction (MTJ) using MgO barrier is one of most important building blocks for spintronic devices and has been widely utilized as miniaturized magentic sensors. It could play an important role in wearable medical devices if they can be fabricated on flexible substrates. The required stringent fabrication processes to obtain high quality MgO-barrier MTJs, however, limit its integration with flexible electronics devices. In this work, we have developed a method to fabricate high-performance MgO-barrier MTJs directly onto ultrathin flexible silicon membrane with a thickness of 14 μm and then transfer-and-bond to plastic substrates. Remarkably, such flexible MTJs are fully functional, exhibiting a TMR ratio as high as 190% under bending radii as small as 5 mm. The devices' robustness is manifested by its retained excellent performance and unaltered TMR ratio after over 1000 bending cycles. The demonstrated flexible MgO-barrier MTJs opens the door to integrating high-performance spintronic devices in flexible and wearable electronics devices for a plethora of biomedical sensing applications.
Rational design of metal-organic electronic devices: A computational perspective
NASA Astrophysics Data System (ADS)
Chilukuri, Bhaskar
Organic and organometallic electronic materials continue to attract considerable attention among researchers due to their cost effectiveness, high flexibility, low temperature processing conditions and the continuous emergence of new semiconducting materials with tailored electronic properties. In addition, organic semiconductors can be used in a variety of important technological devices such as solar cells, field-effect transistors (FETs), flash memory, radio frequency identification (RFID) tags, light emitting diodes (LEDs), etc. However, organic materials have thus far not achieved the reliability and carrier mobility obtainable with inorganic silicon-based devices. Hence, there is a need for finding alternative electronic materials other than organic semiconductors to overcome the problems of inferior stability and performance. In this dissertation, I research the development of new transition metal based electronic materials which due to the presence of metal-metal, metal-pi, and pi-pi interactions may give rise to superior electronic and chemical properties versus their organic counterparts. Specifically, I performed computational modeling studies on platinum based charge transfer complexes and d 10 cyclo-[M(mu-L)]3 trimers (M = Ag, Au and L = monoanionic bidentate bridging (C/N~C/N) ligand). The research done is aimed to guide experimental chemists to make rational choices of metals, ligands, substituents in synthesizing novel organometallic electronic materials. Furthermore, the calculations presented here propose novel ways to tune the geometric, electronic, spectroscopic, and conduction properties in semiconducting materials. In addition to novel material development, electronic device performance can be improved by making a judicious choice of device components. I have studied the interfaces of a p-type metal-organic semiconductor viz cyclo-[Au(mu-Pz)] 3 trimer with metal electrodes at atomic and surface levels. This work was aimed to guide the device engineers to choose the appropriate metal electrodes considering the chemical interactions at the interface. Additionally, the calculations performed on the interfaces provided valuable insight into binding energies, charge redistribution, change in the energy levels, dipole formation, etc., which are important parameters to consider while fabricating an electronic device. The research described in this dissertation highlights the application of unique computational modeling methods at different levels of theory to guide the experimental chemists and device engineers toward a rational design of transition metal based electronic devices with low cost and high performance.
Cao, Xuan; Chen, Haitian; Gu, Xiaofei; Liu, Bilu; Wang, Wenli; Cao, Yu; Wu, Fanqi; Zhou, Chongwu
2014-12-23
Semiconducting single-wall carbon nanotubes are very promising materials in printed electronics due to their excellent mechanical and electrical property, outstanding printability, and great potential for flexible electronics. Nonetheless, developing scalable and low-cost approaches for manufacturing fully printed high-performance single-wall carbon nanotube thin-film transistors remains a major challenge. Here we report that screen printing, which is a simple, scalable, and cost-effective technique, can be used to produce both rigid and flexible thin-film transistors using separated single-wall carbon nanotubes. Our fully printed top-gated nanotube thin-film transistors on rigid and flexible substrates exhibit decent performance, with mobility up to 7.67 cm2 V(-1) s(-1), on/off ratio of 10(4)∼10(5), minimal hysteresis, and low operation voltage (<10 V). In addition, outstanding mechanical flexibility of printed nanotube thin-film transistors (bent with radius of curvature down to 3 mm) and driving capability for organic light-emitting diode have been demonstrated. Given the high performance of the fully screen-printed single-wall carbon nanotube thin-film transistors, we believe screen printing stands as a low-cost, scalable, and reliable approach to manufacture high-performance nanotube thin-film transistors for application in display electronics. Moreover, this technique may be used to fabricate thin-film transistors based on other materials for large-area flexible macroelectronics, and low-cost display electronics.
Recent progress of high performance polymer OLED and OPV materials for organic printed electronics.
Sekine, Chizu; Tsubata, Yoshiaki; Yamada, Takeshi; Kitano, Makoto; Doi, Shuji
2014-06-01
The development of organic printed electronics has been expanding to a variety of applications and is expected to bring innovations to our future life. Along with this trend, high performance organic materials with cost-efficient fabrication processes and specific features such as thin, light weight, bendable, and low power consumption are required. A variety of organic materials have been investigated in the development of this field. The basic guidelines for material design and the recent progress of polymer-based organic light-emitting diodes (OLEDs) and organic photovoltaic cells (OPVs) are reported.
Recent progress of high performance polymer OLED and OPV materials for organic printed electronics
Sekine, Chizu; Tsubata, Yoshiaki; Yamada, Takeshi; Kitano, Makoto; Doi, Shuji
2014-01-01
The development of organic printed electronics has been expanding to a variety of applications and is expected to bring innovations to our future life. Along with this trend, high performance organic materials with cost-efficient fabrication processes and specific features such as thin, light weight, bendable, and low power consumption are required. A variety of organic materials have been investigated in the development of this field. The basic guidelines for material design and the recent progress of polymer-based organic light-emitting diodes (OLEDs) and organic photovoltaic cells (OPVs) are reported. PMID:27877671
NASA Astrophysics Data System (ADS)
Kim, Yun Ji; Kim, Seung Mo; Heo, Sunwoo; Lee, Hyeji; In Lee, Ho; Chang, Kyoung Eun; Lee, Byoung Hun
2018-02-01
High-pressure annealing in oxygen ambient at low temperatures (∼300 °C) was effective in improving the performance of graphene field-effect transistors. The field-effect mobility was improved by 45% and 83% for holes and electrons, respectively. The improvement in the quality of Al2O3 and the reduction in oxygen-related charge generation at the Al2O3-graphene interface, are suggested as the reasons for this improvement. This process can be useful for the commercial implementation of graphene-based electronic devices.
Recent progress of high performance polymer OLED and OPV materials for organic printed electronics
NASA Astrophysics Data System (ADS)
Sekine, Chizu; Tsubata, Yoshiaki; Yamada, Takeshi; Kitano, Makoto; Doi, Shuji
2014-06-01
The development of organic printed electronics has been expanding to a variety of applications and is expected to bring innovations to our future life. Along with this trend, high performance organic materials with cost-efficient fabrication processes and specific features such as thin, light weight, bendable, and low power consumption are required. A variety of organic materials have been investigated in the development of this field. The basic guidelines for material design and the recent progress of polymer-based organic light-emitting diodes (OLEDs) and organic photovoltaic cells (OPVs) are reported.
Conformal electronics for longitudinal bio-sensing in at-home assistive and rehabilitative devices.
Batchelor, John C; Yeates, Stephen G; Casson, Alexander J
2016-08-01
Wearable electronics are revolutionizing personalized and preventative healthcare by allowing the easy, unobtrusive, and long term monitoring of a range of body parameters. Conformal electronics which attach directly to the skin in a very robust and long term manner are envisioned as the next generation of highly portable miniaturized computing devices, beyond wearables. In this paper we overview the state-of-the-art in conformal electronics created using silver nanoparticle inkjet printed techniques for home assistive and rehabilitative devices. The barriers to wider adaption, particularly the challenges of high performance antenna design when placed close to the body, are discussed in detail.
Structure of electroexplosive TiC-Ni composite coatings on steel after electron-beam treatment
NASA Astrophysics Data System (ADS)
Romanov, D. A.; Goncharova, E. N.; Budovskikh, E. A.; Gromov, V. E.; Ivanov, Yu. F.; Teresov, A. D.; Kazimirov, S. A.
2016-11-01
The phase and elemental compositions of the surface layer in Hardox 450 steel after electroexplosive spraying of a TiC-Ni composite coating and subsequent irradiation by a submillisecond high-energy electron beam are studied by the methods of modern physical metallurgy. The electron-beam treatment conditions that result in the formation of dense surface layers having high luster and a submicrocrystalline structure based on titanium carbide and nickel are found. It is shown that electron-beam treatment of an electroexplosive coating performed under melting conditions leads to the formation of a homogeneous (in structure and concentration) surface layer.
Zhu, Ma-Guang; Si, Jia; Zhang, Zhiyong; Peng, Lian-Mao
2018-06-01
The main challenge for application of solution-derived carbon nanotubes (CNTs) in high performance field-effect transistor (FET) is how to align CNTs into an array with high density and full surface coverage. A directional shrinking transfer method is developed to realize high density aligned array based on randomly orientated CNT network film. Through transferring a solution-derived CNT network film onto a stretched retractable film followed by a shrinking process, alignment degree and density of CNT film increase with the shrinking multiple. The quadruply shrunk CNT films present well alignment, which is identified by the polarized Raman spectroscopy and electrical transport measurements. Based on the high quality and high density aligned CNT array, the fabricated FETs with channel length of 300 nm present ultrahigh performance including on-state current I on of 290 µA µm -1 (V ds = -1.5 V and V gs = -2 V) and peak transconductance g m of 150 µS µm -1 , which are, respectively, among the highest corresponding values in the reported CNT array FETs. High quality and high semiconducting purity CNT arrays with high density and full coverage obtained through this method promote the development of high performance CNT-based electronics. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Dai, Si-Min; Tian, Han-Rui; Zhang, Mei-Lin; Xing, Zhou; Wang, Lu-Yao; Wang, Xin; Wang, Tan; Deng, Lin-Long; Xie, Su-Yuan; Huang, Rong-Bin; Zheng, Lan-Sun
2017-01-01
Discovery of organic-inorganic hybrid perovskites ignites the dream of next-generation solar cells fabricated by low-cost solution processing. To date, fullerene derivative [6,6]-phenyl-C61- butyric acid methyl ester (PC61BM), is the most prevalently used electron transport layer for high efficiency p-i-n planar heterojunction perovskite solar cells. Compared with PC61BM, pristine fullerenes, such as C60 and C70, have shown superiority of higher electron mobility and much lower costs. Due to the poor solubility and strong tendency to crystallize for pristine fullerenes in solution process, it is still a challenge to deposit compact and continuous film of pristine fullerenes for p-i-n type perovskite solar cells by solution processing. Herein, solution processed pristine fullerenes (C60 and C70) were used as electron transport layers to replace PC61BM in perovskite solar cells with high performance and enhanced stability. Power conversion efficiency of 14.04% was obtained by using mixture of C60 and C70 as electron transport layer, which is comparable to that of PC61BM based device (13.74%). We demonstrated that the strong tendency of pristine fullerenes to crystallize during solvent removal can be largely mitigated by mixing different kinds of pristine fullerenes. These findings implicate pristine fullerenes as promising electron transport layers for high performance perovskite solar cells.
Rogers, John A.; Bao, Zhenan; Baldwin, Kirk; Dodabalapur, Ananth; Crone, Brian; Raju, V. R.; Kuck, Valerie; Katz, Howard; Amundson, Karl; Ewing, Jay; Drzaic, Paul
2001-01-01
Electronic systems that use rugged lightweight plastics potentially offer attractive characteristics (low-cost processing, mechanical flexibility, large area coverage, etc.) that are not easily achieved with established silicon technologies. This paper summarizes work that demonstrates many of these characteristics in a realistic system: organic active matrix backplane circuits (256 transistors) for large (≈5 × 5-inch) mechanically flexible sheets of electronic paper, an emerging type of display. The success of this effort relies on new or improved processing techniques and materials for plastic electronics, including methods for (i) rubber stamping (microcontact printing) high-resolution (≈1 μm) circuits with low levels of defects and good registration over large areas, (ii) achieving low leakage with thin dielectrics deposited onto surfaces with relief, (iii) constructing high-performance organic transistors with bottom contact geometries, (iv) encapsulating these transistors, (v) depositing, in a repeatable way, organic semiconductors with uniform electrical characteristics over large areas, and (vi) low-temperature (≈100°C) annealing to increase the on/off ratios of the transistors and to improve the uniformity of their characteristics. The sophistication and flexibility of the patterning procedures, high level of integration on plastic substrates, large area coverage, and good performance of the transistors are all important features of this work. We successfully integrate these circuits with microencapsulated electrophoretic “inks” to form sheets of electronic paper. PMID:11320233
A High Sensitivity IDC-Electronic Tongue Using Dielectric/Sensing Membranes with Solvatochromic Dyes
Khan, Md. Rajibur Rahaman; Khalilian, Alireza; Kang, Shin-Won
2016-01-01
In this paper, an electronic tongue/taste sensor array containing different interdigitated capacitor (IDC) sensing elements to detect different types of tastes, such as sweetness (glucose), saltiness (NaCl), sourness (HCl), bitterness (quinine-HCl), and umami (monosodium glutamate) is proposed. We present for the first time an IDC electronic tongue using sensing membranes containing solvatochromic dyes. The proposed highly sensitive (30.64 mV/decade sensitivity) IDC electronic tongue has fast response and recovery times of about 6 s and 5 s, respectively, with extremely stable responses, and is capable of linear sensing performance (R2 ≈ 0.985 correlation coefficient) over the wide dynamic range of 1 µM to 1 M. The designed IDC electronic tongue offers excellent reproducibility, with a relative standard deviation (RSD) of about 0.029. The proposed device was found to have better sensing performance than potentiometric-, cascoded compatible lateral bipolar transistor (C-CLBT)-, Electronic Tongue (SA402)-, and fiber-optic-based taste sensing systems in what concerns dynamic range width, response time, sensitivity, and linearity. Finally, we applied principal component analysis (PCA) to distinguish between various kinds of taste in mixed taste compounds. PMID:27171095
Khan, Md Rajibur Rahaman; Khalilian, Alireza; Kang, Shin-Won
2016-05-10
In this paper, an electronic tongue/taste sensor array containing different interdigitated capacitor (IDC) sensing elements to detect different types of tastes, such as sweetness (glucose), saltiness (NaCl), sourness (HCl), bitterness (quinine-HCl), and umami (monosodium glutamate) is proposed. We present for the first time an IDC electronic tongue using sensing membranes containing solvatochromic dyes. The proposed highly sensitive (30.64 mV/decade sensitivity) IDC electronic tongue has fast response and recovery times of about 6 s and 5 s, respectively, with extremely stable responses, and is capable of linear sensing performance (R² ≈ 0.985 correlation coefficient) over the wide dynamic range of 1 µM to 1 M. The designed IDC electronic tongue offers excellent reproducibility, with a relative standard deviation (RSD) of about 0.029. The proposed device was found to have better sensing performance than potentiometric-, cascoded compatible lateral bipolar transistor (C-CLBT)-, Electronic Tongue (SA402)-, and fiber-optic-based taste sensing systems in what concerns dynamic range width, response time, sensitivity, and linearity. Finally, we applied principal component analysis (PCA) to distinguish between various kinds of taste in mixed taste compounds.
Nature-Inspired Capillary-Driven Welding Process for Boosting Metal-Oxide Nanofiber Electronics.
Meng, You; Lou, Kaihua; Qi, Rui; Guo, Zidong; Shin, Byoungchul; Liu, Guoxia; Shan, Fukai
2018-06-20
Recently, semiconducting nanofiber networks (NFNs) have been considered as one of the most promising platforms for large-area and low-cost electronics applications. However, the high contact resistance among stacking nanofibers remained to be a major challenge, leading to poor device performance and parasitic energy consumption. In this report, a controllable welding technique for NFNs was successfully demonstrated via a bioinspired capillary-driven process. The interfiber connections were well-achieved via a cooperative concept, combining localized capillary condensation and curvature-induced surface diffusion. With the improvements of the interfiber connections, the welded NFNs exhibited enhanced mechanical property and high electrical performance. The field-effect transistors (FETs) based on the welded Hf-doped In 2 O 3 (InHfO) NFNs were demonstrated for the first time. Meanwhile, the mechanisms involved in the grain-boundary modulation for polycrystalline metal-oxide nanofibers were discussed. When the high-k ZrO x dielectric thin films were integrated into the FETs, the field-effect mobility and operating voltage were further improved to be 25 cm 2 V -1 s -1 and 3 V, respectively. This is one of the best device performances among the reported nanofibers-based FETs. These results demonstrated the potencies of the capillary-driven welding process and grain-boundary modulation mechanism for metal-oxide NFNs, which could be applicable for high-performance, large-scale, and low-power functional electronics.
NASA Astrophysics Data System (ADS)
Mercado-Uribe, H.; Brandan, M. E.
2004-07-01
We have measured the LiF:Mg,Ti (TLD-100) fluence response and supralinearity function to 20 keV electrons in the fluence interval between 5 × 10 9 and 4 × 10 12 cm -2. TLD-100 shows linear response up to 2 × 10 10 cm -2, followed by supralinearity and saturation after 10 12 cm -2. Peak 5 is slightly supralinear, f( n) max=1.1±0.1, while high temperature peaks reach up to f( n) max≈8. Peak 5 saturates at n≈1×10 11 cm -2, fluence smaller than any of the saturating fluences of the high temperature peaks. We have also measured the glow curve shape of TLD-100 irradiated with 40 keV electrons, beta particles from a 90Sr/ 90Y source and 1.3 and 6.0 MeV electrons from accelerators. Results are interesting and unexpected in that, for a given macroscopic dose, electrons show a smaller relative contribution of high-temperature peaks with respect to peak 5 than heavy ions or X- and γ-rays. The 20 and 40 keV electron irradiations were performed with a scanning electron microscope using radiochromic dye film to measure fluence. Since film calibrations were performed using 60Co γ-rays which expose the totality of the film volume, the use of this method with low energy electrons required to develop a formalism that takes into account the sensitive thickness of the film in relation to the range of the incident particles.
GaN-Based High Temperature and Radiation-Hard Electronics for Harsh Environments
NASA Technical Reports Server (NTRS)
Son, Kyung-ah; Liao, Anna; Lung, Gerald; Gallegos, Manuel; Hatakeh, Toshiro; Harris, Richard D.; Scheick, Leif Z.; Smythe, William D.
2010-01-01
We develop novel GaN-based high temperature and radiation-hard electronics to realize data acquisition electronics and transmitters suitable for operations in harsh planetary environments. In this paper, we discuss our research on metal-oxide-semiconductor (MOS) transistors that are targeted for 500 (sup o)C operation and >2 Mrad radiation hardness. For the target device performance, we develop Schottky-free AlGaN/GaN MOS transistors, where a gate electrode is processed in a MOS layout using an Al2O3 gate dielectric layer....
Haack, Sally; Fornoff, Anisa; Caligiuri, Frank; Dy-Boarman, Eliza; Bottenberg, Michelle; Mobley-Bukstein, Wendy; Bryant, Ginelle; Bryant, Andrew
2017-11-01
To evaluate an electronic counseling rubric to facilitate timely student feedback and explore differences in student performance, student anxiety, and self-perceived preparedness in a high stakes practical exam when using a paper rubric versus an electronic rubric. Two cohorts of students in the third professional year were evaluated using the same rubric criteria: cohort 1 (n = 97) used traditional paper rubrics and cohort 2 (n = 104) used electronic rubrics. Cohorts were surveyed to measure anxiety and perceived preparedness in patient counseling skills one week prior to a practical exam, and cohort responses were compared. Student practical exam performance was also compared between the two cohorts. Results showed no significant relationship between electronic rubric use and student anxiety (p = 0.07) or student exam performance [average score 53.42 points (SD 3.65) and 53.93 points (SD 3.78) in Cohort 1 and Cohort 2, respectively]. Perceived exam preparedness was higher among students using electronic rubrics, with timing of feedback being the mediating process in increasing preparedness (p < 0.01). Electronic rubrics resulted in more timely feedback on patient counseling skills, and students felt more prepared for their practical exam. This did not result in a significant difference in practical exam performance between the two cohorts. Additional methods to incorporate electronic rubrics into the course will be explored. Copyright © 2017 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richard, P.
The study of inelastic collision phenomena with highly charged projectile ions and the interpretation of spectral features resulting from these collisions remain as the major focal points in the atomic physics research at the J.R. Macdonald Laboratory, Kansas State University, Manhattan, Kansas. The title of the research project, ``Atomic Physics with Highly Charged Ions,`` speaks to these points. The experimental work in the past few years has divided into collisions at high velocity using the primary beams from the tandem and LINAC accelerators and collisions at low velocity using the CRYEBIS facility. Theoretical calculations have been performed to accurately describemore » inelastic scattering processes of the one-electron and many-electron type, and to accurately predict atomic transition energies and intensities for x rays and Auger electrons. Brief research summaries are given for the following: (1) electron production in ion-atom collisions; (2) role of electron-electron interactions in two-electron processes; (3) multi-electron processes; (4) collisions with excited, aligned, Rydberg targets; (5) ion-ion collisions; (6) ion-molecule collisions; (7) ion-atom collision theory; and (8) ion-surface interactions.« less
Electronics for a focal plane crystal spectrometer
NASA Technical Reports Server (NTRS)
Goeke, R. F.
1978-01-01
The HEAO-B program forced the usual constraints upon the spacecraft experiment electronics: high reliability, low power consumption, and tight packaging at reasonable cost. The programmable high voltage power supplies were unique in both application and simplicity of manufacture. The hybridized measurement chain is a modification of that used on the SAS-C program; the charge amplifier design in particular shows definite improvement in performance over previous work.
Low Temperature Photoluminescence (PL) from High Electron Mobility Transistors (HEMTs)
2015-03-01
Photoluminescence Form InxAl1-xN Films Deposited by Plasma-Assisted Molecular Beam Epitaxy ,” Submitted to Applied Physics Letters, July 2014. 8 LIST OF...TECHNICAL REPORT RDMR-WD-14-55 LOW TEMPERATURE PHOTOLUMINESCENCE (PL) FROM HIGH ELECTRON MOBILITY TRANSISTORS ( HEMTS ...Mobility Transistors ( HEMTs ) 5. FUNDING NUMBERS 6. AUTHOR(S) Adam T. Roberts and Henry O. Everitt 7. PERFORMING ORGANIZATION NAME(S
The Development of Si and SiGe Technologies for Microwave and Millimeter-Wave Integrated Circuits
NASA Technical Reports Server (NTRS)
Ponchak, George E.; Alterovitz, Samuel A.; Katehi, Linda P. B.; Bhattacharya, Pallab K.
1997-01-01
Historically, microwave technology was developed by military and space agencies from around the world to satisfy their unique radar, communication, and science applications. Throughout this development phase, the sole goal was to improve the performance of the microwave circuits and components comprising the systems. For example, power amplifiers with output powers of several watts over broad bandwidths, low noise amplifiers with noise figures as low as 3 dB at 94 GHz, stable oscillators with low noise characteristics and high output power, and electronically steerable antennas were required. In addition, the reliability of the systems had to be increased because of the high monetary and human cost if a failure occurred. To achieve these goals, industry, academia and the government agencies supporting them chose to develop technologies with the greatest possibility of surpassing the state of the art performance. Thus, Si, which was already widely used for digital circuits but had material characteristics that were perceived to limit its high frequency performance, was bypassed for a progression of devices starting with GaAs Metal Semiconductor Field Effect Transistors (MESFETs) and ending with InP Pseudomorphic High Electron Mobility Transistors (PHEMTs). For each new material or device structure, the electron mobility increased, and therefore, the high frequency characteristics of the device were improved. In addition, ultra small geometry lithographic processes were developed to reduce the gate length to 0.1 pm which further increases the cutoff frequency. The resulting devices had excellent performance through the millimeter-wave spectrum.
High-performance DIRC detector for the future Electron Ion Collider experiment
NASA Astrophysics Data System (ADS)
Kalicy, G.; Allison, L.; Cao, T.; Dzhygadlo, R.; Hartlove, T.; Horn, T.; Hyde, C.; Ilieva, Y.; Nadel-Turonski, P.; Park, K.; Peters, K.; Schwarz, C.; Schwiening, J.; Stevens, J.; Xi, W.; Zorn, C.
2018-04-01
Excellent particle identification (PID) is an essential requirement for a future Electron-Ion Collider (EIC) detector. Identification of the hadrons in the final state is critical to study how different quark flavors contribute to nucleon properties. A detector based on the Detection of Internally Reflected Cherenkov light (DIRC) principle, with a radial size of only a few cm, is a perfect solution for those requirements. The R&D process performed by the EIC PID consortium (eRD14) is focused on designing a high-performance DIRC that would extend the momentum coverage well beyond the state-of-the-art, allowing 3 standard deviations or more separation of π/K up to 6 GeV/c, e/π up to 1.8 GeV/c, and p/K up to 10 GeV/c. A key component to reach such a performance is a special 3-layer compound lens. This article describes the status of the High-Performance DIRC R&D for the EIC detector, with a focus on the detailed Monte Carlo simulation results and performance tests of the 3-layer lens.
Printed Carbon Nanotube Electronics and Sensor Systems.
Chen, Kevin; Gao, Wei; Emaminejad, Sam; Kiriya, Daisuke; Ota, Hiroki; Nyein, Hnin Yin Yin; Takei, Kuniharu; Javey, Ali
2016-06-01
Printing technologies offer large-area, high-throughput production capabilities for electronics and sensors on mechanically flexible substrates that can conformally cover different surfaces. These capabilities enable a wide range of new applications such as low-cost disposable electronics for health monitoring and wearables, extremely large format electronic displays, interactive wallpapers, and sensing arrays. Solution-processed carbon nanotubes have been shown to be a promising candidate for such printing processes, offering stable devices with high performance. Here, recent progress made in printed carbon nanotube electronics is discussed in terms of materials, processing, devices, and applications. Research challenges and opportunities moving forward from processing and system-level integration points of view are also discussed for enabling practical applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Plotting performance improvement progress through the development of a trauma dashboard.
Hochstuhl, Diane C; Elwell, Sean
2014-01-01
Performance improvement processes are the core of a pediatric trauma program. The ability to identify, resolve, and trend specific indicators related to patient care and to show effective loop closure can be especially challenging. Using the hospital's overall quality process as a template, the trauma program built its own electronic dashboard. Our maturing trauma PI program now guides the overall trauma care. All departments own at least one performance indicator and must provide action plans for improvement. Utilization of an electronic dashboard for trauma performance improvement has provided a highly visible scorecard, which highlights successes and tracks areas needing improvement.
On the Properties and Design of Organic Light-Emitting Devices
NASA Astrophysics Data System (ADS)
Erickson, Nicholas C.
Organic light-emitting devices (OLEDs) are attractive for use in next-generation display and lighting technologies. In display applications, OLEDs offer a wide emission color gamut, compatibility with flexible substrates, and high power efficiencies. In lighting applications, OLEDs offer attractive features such as broadband emission, high-performance, and potential compatibility with low-cost manufacturing methods. Despite recent demonstrations of near unity internal quantum efficiencies (photons out per electron in), OLED adoption lags conventional technologies, particularly in large-area displays and general lighting applications. This thesis seeks to understand the optical and electronic properties of OLED materials and device architectures which lead to not only high peak efficiency, but also reduced device complexity, high efficiency under high excitation, and optimal white-light emission. This is accomplished through the careful manipulation of organic thin film compositions fabricated via vacuum thermal evaporation, and the introduction of a novel device architecture, the graded-emissive layer (G-EML). This device architecture offers a unique platform to study the electronic properties of varying compositions of organic semiconductors and the resulting device performance. This thesis also introduces an experimental technique to measure the spatial overlap of electrons and holes within an OLED's emissive layer. This overlap is an important parameter which is affected by the choice of materials and device design, and greatly impacts the operation of the OLED at high excitation densities. Using the G-EML device architecture, OLEDs with improved efficiency characteristics are demonstrated, achieving simultaneously high brightness and high efficiency.
High- k Gate Dielectrics for Emerging Flexible and Stretchable Electronics.
Wang, Binghao; Huang, Wei; Chi, Lifeng; Al-Hashimi, Mohammed; Marks, Tobin J; Facchetti, Antonio
2018-05-22
Recent advances in flexible and stretchable electronics (FSE), a technology diverging from the conventional rigid silicon technology, have stimulated fundamental scientific and technological research efforts. FSE aims at enabling disruptive applications such as flexible displays, wearable sensors, printed RFID tags on packaging, electronics on skin/organs, and Internet-of-things as well as possibly reducing the cost of electronic device fabrication. Thus, the key materials components of electronics, the semiconductor, the dielectric, and the conductor as well as the passive (substrate, planarization, passivation, and encapsulation layers) must exhibit electrical performance and mechanical properties compatible with FSE components and products. In this review, we summarize and analyze recent advances in materials concepts as well as in thin-film fabrication techniques for high- k (or high-capacitance) gate dielectrics when integrated with FSE-compatible semiconductors such as organics, metal oxides, quantum dot arrays, carbon nanotubes, graphene, and other 2D semiconductors. Since thin-film transistors (TFTs) are the key enablers of FSE devices, we discuss TFT structures and operation mechanisms after a discussion on the needs and general requirements of gate dielectrics. Also, the advantages of high- k dielectrics over low- k ones in TFT applications were elaborated. Next, after presenting the design and properties of high- k polymers and inorganic, electrolyte, and hybrid dielectric families, we focus on the most important fabrication methodologies for their deposition as TFT gate dielectric thin films. Furthermore, we provide a detailed summary of recent progress in performance of FSE TFTs based on these high- k dielectrics, focusing primarily on emerging semiconductor types. Finally, we conclude with an outlook and challenges section.
A-π-D-π-A Electron-Donating Small Molecules for Solution-Processed Organic Solar Cells: A Review.
Wang, Zhen; Zhu, Lingyun; Shuai, Zhigang; Wei, Zhixiang
2017-11-01
Organic solar cells based on semiconducting polymers and small molecules have attracted considerable attention in the last two decades. Moreover, the power conversion efficiencies for solution-processed solar cells containing A-π-D-π-A-type small molecules and fullerenes have reached 11%. However, the method for designing high-performance, photovoltaic small molecules still remains unclear. In this review, recent studies on A-π-D-π-A electron-donating small molecules for organic solar cells are introduced. Moreover, the relationships between molecular properties and device performances are summarized, from which inspiration for the future design of high performance organic solar cells may be obtained. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Muir, B; Rogers, D; McEwen, M
2012-07-01
When current dosimetry protocols were written, electron beam data were limited and had uncertainties that were unacceptable for reference dosimetry. Protocols for high-energy reference dosimetry are currently being updated leading to considerable interest in accurate electron beam data. To this end, Monte Carlo simulations using the EGSnrc user-code egs_chamber are performed to extract relevant data for reference beam dosimetry. Calculations of the absorbed dose to water and the absorbed dose to the gas in realistic ion chamber models are performed as a function of depth in water for cobalt-60 and high-energy electron beams between 4 and 22 MeV. These calculations are used to extract several of the parameters required for electron beam dosimetry - the beam quality specifier, R 50 , beam quality conversion factors, k Q and k R50 , the electron quality conversion factor, k' R50 , the photon-electron conversion factor, k ecal , and ion chamber perturbation factors, P Q . The method used has the advantage that many important parameters can be extracted as a function of depth instead of determination at only the reference depth as has typically been done. Results obtained here are in good agreement with measured and other calculated results. The photon-electron conversion factors obtained for a Farmer-type NE2571 and plane-parallel PTW Roos, IBA NACP-02 and Exradin A11 chambers are 0.903, 0.896, 0.894 and 0.906, respectively. These typically differ by less than 0.7% from the contentious TG-51 values but have much smaller systematic uncertainties. These results are valuable for reference dosimetry of high-energy electron beams. © 2012 American Association of Physicists in Medicine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liang, Kun; Marcus, Kyle; Yang, Zhenzhong
In this work, a freestanding NiFe oxyfluoride (NiFeOF) holey film was prepared by electrochemical deposition and anodic treatments. With the combination of good electrical conductivity and holey structure, the NiFeOF holey film offers superior electrochemical performance, due to the following reasons: (i) The residual metal alloy framework can be used as the current collector to improve electrode conductivity. Moreover, the as-prepared freestanding NiFeOF holey film can be used as a supercapacitor electrode without reliance on binders and other additives. The residual metal alloy framework and binder-free electrode effectively reduces electrode resistance, thus improving electron transport. (ii) The highly interconnected holeymore » structure and hierarchical pore distribution provides a high specific surface area to improve electron transport, enhancing rapid ion transport and mitigating diffusion limitations throughout the holey film. (iii) The excellent mechanical characteristics facilitate flexibility and cyclability related performance. Additionally, the NiFeOF holey film presents exceptional electrochemical performance, showing that it is a promising alternative for small/micro-size electronic devices.« less
An Overview of Electron Acceptors in Microbial Fuel Cells
Ucar, Deniz; Zhang, Yifeng; Angelidaki, Irini
2017-01-01
Microbial fuel cells (MFC) have recently received increasing attention due to their promising potential in sustainable wastewater treatment and contaminant removal. In general, contaminants can be removed either as an electron donor via microbial catalyzed oxidization at the anode or removed at the cathode as electron acceptors through reduction. Some contaminants can also function as electron mediators at the anode or cathode. While previous studies have done a thorough assessment of electron donors, cathodic electron acceptors and mediators have not been as well described. Oxygen is widely used as an electron acceptor due to its high oxidation potential and ready availability. Recent studies, however, have begun to assess the use of different electron acceptors because of the (1) diversity of redox potential, (2) needs of alternative and more efficient cathode reaction, and (3) expanding of MFC based technologies in different areas. The aim of this review was to evaluate the performance and applicability of various electron acceptors and mediators used in MFCs. This review also evaluated the corresponding performance, advantages and disadvantages, and future potential applications of select electron acceptors (e.g., nitrate, iron, copper, perchlorate) and mediators. PMID:28469607
NASA Astrophysics Data System (ADS)
Radulescu, A.; Arend, N.; Drochner, M.; Ioffe, A.; Kemmerling, G.; Ossovyi, V.; Staringer, S.; Vehres, G.; McKinny, K.; Olechnowicz, B.; Yen, D.
2016-09-01
A new detection system based on an array of 3He tubes and innovative fast detection electronics was designed and produced by GE Reuter Stokes for the high-intensity small-angle neutron scattering diffractometer KWS-2, operated by the Jülich Centre for Neutron Science (JCNS) at the Heinz Meier-Leibnitz Zentrum (MLZ). The new detector consists of a panel array of 144 3He tubes and a new fast read-out electronics. The electronics is mounted in a closed case in the backside of the 3He tubes panel array and will operate at ambient atmosphere under cooling air stream. The new detection system is composed of eighteen 8-pack modules of 3He-tubes that work independently of one another (each unit has its own processor and electronics). Knowing beforehand the performance of one detector unit and of one single tube detector is prerequisite for tuning and maximizing the performance of the complete detection system. In this paper we present the results of the tests of the prototyped 8-pack of 3He-tubes and corresponding electronics, which have been carried out at the JCNS instruments KWS-2 (in high flux conditions) and TREFF.
Building a Terabyte Memory Bandwidth Compute Node with Four Consumer Electronics GPUs
NASA Astrophysics Data System (ADS)
Omlin, Samuel; Räss, Ludovic; Podladchikov, Yuri
2014-05-01
GPUs released for consumer electronics are generally built with the same chip architectures as the GPUs released for professional usage. With regards to scientific computing, there are no obvious important differences in functionality or performance between the two types of releases, yet the price can differ up to one order of magnitude. For example, the consumer electronics release of the most recent NVIDIA Kepler architecture (GK110), named GeForce GTX TITAN, performed equally well in conducted memory bandwidth tests as the professional release, named Tesla K20; the consumer electronics release costs about one third of the professional release. We explain how to design and assemble a well adjusted computer with four high-end consumer electronics GPUs (GeForce GTX TITAN) combining more than 1 terabyte/s memory bandwidth. We compare the system's performance and precision with the one of hardware released for professional usage. The system can be used as a powerful workstation for scientific computing or as a compute node in a home-built GPU cluster.
Jung, Su Min; Kang, Han Lim; Won, Jong Kook; Kim, JaeHyun; Hwang, ChaHwan; Ahn, KyungHan; Chung, In; Ju, Byeong-Kwon; Kim, Myung-Gil; Park, Sung Kyu
2018-01-31
The recent development of high-performance colloidal quantum dot (QD) thin-film transistors (TFTs) has been achieved with removal of surface ligand, defect passivation, and facile electronic doping. Here, we report on high-performance solution-processed CdSe QD-TFTs with an optimized surface functionalization and robust defect passivation via hydrazine-free metal chalcogenide (MCC) ligands. The underlying mechanism of the ligand effects on CdSe QDs has been studied with hydrazine-free ex situ reaction derived MCC ligands, such as Sn 2 S 6 4- , Sn 2 Se 6 4- , and In 2 Se 4 2- , to allow benign solution-process available. Furthermore, the defect passivation and remote n-type doping effects have been investigated by incorporating indium nanoparticles over the QD layer. Strong electronic coupling and solid defect passivation of QDs could be achieved by introducing electronically active MCC capping and thermal diffusion of the indium nanoparticles, respectively. It is also noteworthy that the diffused indium nanoparticles facilitate charge injection not only inter-QDs but also between source/drain electrodes and the QD semiconductors, significantly reducing contact resistance. With benign organic solvents, the Sn 2 S 6 4- , Sn 2 Se 6 4- , and In 2 Se 4 2- ligand based QD-TFTs exhibited field-effect mobilities exceeding 4.8, 12.0, and 44.2 cm 2 /(V s), respectively. The results reported here imply that the incorporation of MCC ligands and appropriate dopants provide a general route to high-performance, extremely stable solution-processed QD-based electronic devices with marginal toxicity, offering compatibility with standard complementary metal oxide semiconductor processing and large-scale on-chip device applications.
NASA Astrophysics Data System (ADS)
Mondal, Subhadip; Ghosh, Sabyasachi; Ganguly, Sayan; Das, Poushali; Ravindren, Revathy; Sit, Subhashis; Chakraborty, Goutam; Das, Narayan Ch
2017-10-01
Widespread usage and development of electrical/electronic devices can create severe problems for various other devices and in our everyday lives due to harmful exposure to electromagnetic (EM) radiation. Herein, we report on the electromagnetic interference (EMI)-shielding performance of highly flexible and conductive chlorinated polyethylene (CPE)/carbon nanofiber (CNF) nanocomposites fabricated by a probe-sonication-assisted simple solution-mixing process. The dispersion of CNF nanofillers inside the CPE matrix has been studied by electron micrographs. This dispersion is reflected in the formation of continuous conductive networks at a low percolation-threshold value of 2.87 wt% and promising EMI-shielding performance of 41.5 dB for 25 wt% CNF in the X-band frequency (8.2-12.4 GHz). Such an intriguing performance mainly depends on the unique filler-filler or filler-polymer networks in CPE nanocomposites. In addition, the composite material displays a superior EMI efficiency of 47.5 dB for 2.0 mm thickness at 8.2 GHz. However, we have been encouraged by the promotion of highly flexible and lightweight CPE/CNF nanocomposite as a superior EMI shield, which can protect electronic devices against harm caused by EM radiation and offers an adaptable solution in advanced EMI-shield applications.
Molecular Functionalization of Graphene Oxide for Next-Generation Wearable Electronics.
Zarrin, Hadis; Sy, Serubbabel; Fu, Jing; Jiang, Gaopeng; Kang, Keunwoo; Jun, Yun-Seok; Yu, Aiping; Fowler, Michael; Chen, Zhongwei
2016-09-28
Acquiring reliable and efficient wearable electronics requires the development of flexible electrolyte membranes (EMs) for energy storage systems with high performance and minimum dependency on the operating conditions. Herein, a freestanding graphene oxide (GO) EM is functionalized with 1-hexyl-3-methylimidazolium chloride (HMIM) molecules via both covalent and noncovalent bonds induced by esterification reactions and electrostatic πcation-π stacking, respectively. Compared to the commercial polymeric membrane, the thin HMIM/GO membrane demonstrates not only slightest performance sensitivity to the operating conditions but also a superior hydroxide conductivity of 0.064 ± 0.0021 S cm(-1) at 30% RH and room temperature, which was 3.8 times higher than that of the commercial membrane at the same conditions. To study the practical application of the HMIM/GO membranes in wearable electronics, a fully solid-state, thin, flexible zinc-air battery and supercapacitor are made exhibiting high battery performance and capacitance at low humidified and room temperature environment, respectively, favored by the bonded HMIM molecules on the surface of GO nanosheets. The results of this study disclose the strong potential of manipulating the chemical structure of GO to work as a lightweight membrane in wearable energy storage devices, possessing highly stable performance at different operating conditions, especially at low relative humidity and room temperature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li Dan; Zhao Wei
2008-07-15
An indirect flat panel imager (FPI) with programmable avalanche gain and field emitter array (FEA) readout is being investigated for low-dose and high resolution x-ray imaging. It is made by optically coupling a structured x-ray scintillator, e.g., thallium (Tl) doped cesium iodide (CsI), to an amorphous selenium (a-Se) avalanche photoconductor called high-gain avalanche rushing amorphous photoconductor (HARP). The charge image created by the scintillator/HARP (SHARP) combination is read out by the electron beams emitted from the FEA. The proposed detector is called scintillator avalanche photoconductor with high resolution emitter readout (SAPHIRE). The programmable avalanche gain of HARP can improve themore » low dose performance of indirect FPI while the FEA can be made with pixel sizes down to 50 {mu}m. Because of the avalanche gain, a high resolution type of CsI (Tl), which has not been widely used in indirect FPI due to its lower light output, can be used to improve the high spatial frequency performance. The purpose of the present article is to investigate the factors affecting the spatial resolution of SAPHIRE. Since the resolution performance of the SHARP combination has been well studied, the focus of the present work is on the inherent resolution of the FEA readout method. The lateral spread of the electron beam emitted from a 50 {mu}mx50 {mu}m pixel FEA was investigated with two different electron-optical designs: mesh-electrode-only and electrostatic focusing. Our results showed that electrostatic focusing can limit the lateral spread of electron beams to within the pixel size of down to 50 {mu}m. Since electrostatic focusing is essentially independent of signal intensity, it will provide excellent spatial uniformity.« less
Photocathode Optimization for a Dynamic Transmission Electron Microscope: Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ellis, P; Flom, Z; Heinselman, K
2011-08-04
The Dynamic Transmission Electron Microscope (DTEM) team at Harvey Mudd College has been sponsored by LLNL to design and build a test setup for optimizing the performance of the DTEM's electron source. Unlike a traditional TEM, the DTEM achieves much faster exposure times by using photoemission from a photocathode to produce electrons for imaging. The DTEM team's work is motivated by the need to improve the coherence and current density of the electron cloud produced by the electron gun in order to increase the image resolution and contrast achievable by DTEM. The photoemission test setup is nearly complete and themore » team will soon complete baseline tests of electron gun performance. The photoemission laser and high voltage power supply have been repaired; the optics path for relaying the laser to the photocathode has been finalized, assembled, and aligned; the internal setup of the vacuum chamber has been finalized and mostly implemented; and system control, synchronization, and data acquisition has been implemented in LabVIEW. Immediate future work includes determining a consistent alignment procedure to place the laser waist on the photocathode, and taking baseline performance measurements of the tantalum photocathode. Future research will examine the performance of the electron gun as a function of the photoemission laser profile, the photocathode material, and the geometry and voltages of the accelerating and focusing components in the electron gun. This report presents the team's progress and outlines the work that remains.« less
NASA Technical Reports Server (NTRS)
Hazelton, R. C.; Churchill, R. J.; Yadlowsky, E. J.
1979-01-01
Anomalous behavior of synchronous orbit satellites manifested by overall degradation of system performance and reduced operating life is associated with electrical discharges resulting from differential charging of the spacecraft surface by fluxes of high energy electrons. During a laboratory simulation silver-backed Teflon samples have been irradiated by electron beams having energies in the range 16-26 keV. Charged particles emitted from the resultant electrical discharges have been measured with a biased Faraday cup and retarding potential analyser. Measurements indicate the presence of two distinct fluxes of particles, the first being an early pulse (0-600ns) of high energy (about 7keV) electrons, while the second is a late pulse (1-5 microseconds) of low energy electrons (less than 1eV) and ions (70eV) leaving the discharge site as a quasi plasma. Calculations indicate an electrostatic field as the dominant accelerating mechanism for charged particles.
Investigating of the Field Emission Performance on Nano-Apex Carbon Fiber and Tungsten Tips
NASA Astrophysics Data System (ADS)
Mousa, Marwan S.; Alnawasreh, Shadi; Madanat, Mazen A.; Al-Rabadi, Anas N.
2015-10-01
Field electron emission measurements have been performed on carbon-based and tungsten microemitters. Several samples of both types of emitters with different apex radii have been obtained employing electrolytic etching techniques using sodium hydroxide (NaOH) solution with different molarities depending on the material used. A suitable, home-built, field electron microscope (FEM) with 10 mm tip to screen separation distance was used to electrically characterize the electron emitters. Measurements were carried out under ultra high vacuum (UHV) conditions with base pressure of 10-9 mbar. The current-voltage characteristics (I-V) presented as Fowler-Nordheim (FN) type plots, and field electron emission images have been recorded. In this work, initial comparison of the field electron emission performance of these micro and nanoemitters has been carried out, with the aim of obtaining a reliable, stable and long life powerful electron source. We compare the apex radii measured from the micrographs obtained from the SEM images to those extracted from the FN-type _I-V_plots for carbon fibers and tungsten tips.
A Test Apparatus for the MAJORANA DEMONSTRATOR Front-end Electronics
NASA Astrophysics Data System (ADS)
Singh, Harjit; Loach, James; Poon, Alan
2012-10-01
One of the most important experimental programs in neutrino physics is the search for neutrinoless double-beta decay. The MAJORANA collaboration is searching for this rare nuclear process in the Ge-76 isotope using HPGe detectors. Each detector is instrumented with high-performance electronics to read out and amplify the signals. The part of the electronics close to the detectors, consisting of a novel front-end circuit, cables and connectors, is made of radio-pure materials and is exceedingly delicate. In this work a dedicated test apparatus was created to benchmark the performance of the electronics before installation in the experiment. The apparatus was designed for cleanroom use, with fixtures to hold the components without contaminating them, and included the electronics necessary for power and readout. In addition to testing, the station will find longer term use in development of future versions of the electronics.
Moosavifard, Seyyed E; El-Kady, Maher F; Rahmanifar, Mohammad S; Kaner, Richard B; Mousavi, Mir F
2015-03-04
The increasing demand for energy has triggered tremendous research efforts for the development of lightweight and durable energy storage devices. Herein, we report a simple, yet effective, strategy for high-performance supercapacitors by building three-dimensional pseudocapacitive CuO frameworks with highly ordered and interconnected bimodal nanopores, nanosized walls (∼4 nm) and large specific surface area of 149 m(2) g(-1). This interesting electrode structure plays a key role in providing facilitated ion transport, short ion and electron diffusion pathways and more active sites for electrochemical reactions. This electrode demonstrates excellent electrochemical performance with a specific capacitance of 431 F g(-1) (1.51 F cm(-2)) at 3.5 mA cm(-2) and retains over 70% of this capacitance when operated at an ultrafast rate of 70 mA cm(-2). When this highly ordered CuO electrode is assembled in an asymmetric cell with an activated carbon electrode, the as-fabricated device demonstrates remarkable performance with an energy density of 19.7 W h kg(-1), power density of 7 kW kg(-1), and excellent cycle life. This work presents a new platform for high-performance asymmetric supercapacitors for the next generation of portable electronics and electric vehicles.
Yao, Xin; Liang, Junhui; Li, Yuelong; Luo, Jingshan; Shi, Biao; Wei, Changchun; Zhang, Dekun; Li, Baozhang; Ding, Yi; Zhao, Ying; Zhang, Xiaodan
2017-10-01
Intensive studies on low-temperature deposited electron transport materials have been performed to improve the efficiency of n-i-p type planar perovskite solar cells to extend their application on plastic and multijunction device architectures. Here, a TiO 2 film with enhanced conductivity and tailored band edge is prepared by magnetron sputtering at room temperature by hydrogen doping (HTO), which accelerates the electron extraction from perovskite photoabsorber and reduces charge transfer resistance, resulting in an improved short circuit current density and fill factor. The HTO film with upward shifted Fermi level guarantees a smaller loss on V OC and facilitates the growth of high-quality absorber with much larger grains and more uniform size, leading to devices with negligible hysteresis. In comparison with the pristine TiO 2 prepared without hydrogen doping, the HTO-based device exhibits a substantial performance enhancement leading to an efficiency of 19.30% and more stabilized photovoltaic performance maintaining 93% of its initial value after 300 min continuous illumination in the glove box. These properties permit the room-temperature magnetron sputtered HTO film as a promising electron transport material for flexible and tandem perovskite solar cell in the future.
Self-Consistent Monte Carlo Study of the Coulomb Interaction under Nano-Scale Device Structures
NASA Astrophysics Data System (ADS)
Sano, Nobuyuki
2011-03-01
It has been pointed that the Coulomb interaction between the electrons is expected to be of crucial importance to predict reliable device characteristics. In particular, the device performance is greatly degraded due to the plasmon excitation represented by dynamical potential fluctuations in high-doped source and drain regions by the channel electrons. We employ the self-consistent 3D Monte Carlo (MC) simulations, which could reproduce both the correct mobility under various electron concentrations and the collective plasma waves, to study the physical impact of dynamical potential fluctuations on device performance under the Double-gate MOSFETs. The average force experienced by an electron due to the Coulomb interaction inside the device is evaluated by performing the self-consistent MC simulations and the fixed-potential MC simulations without the Coulomb interaction. Also, the band-tailing associated with the local potential fluctuations in high-doped source region is quantitatively evaluated and it is found that the band-tailing becomes strongly dependent of position in real space even inside the uniform source region. This work was partially supported by Grants-in-Aid for Scientific Research B (No. 2160160) from the Ministry of Education, Culture, Sports, Science and Technology in Japan.
Improving the photovoltaic performance of perovskite solar cells with acetate
Zhao, Qian; Li, G. R.; Song, Jian; Zhao, Yulong; Qiang, Yinghuai; Gao, X. P.
2016-01-01
In an all-solid-state perovskite solar cell, methylammonium lead halide film is in charge of generating photo-excited electrons, thus its quality can directly influence the final photovoltaic performance of the solar cell. This paper accentuates a very simple chemical approach to improving the quality of a perovskite film with a suitable amount of acetic acid. With introduction of acetate ions, a homogeneous, continual and hole-free perovskite film comprised of high-crystallinity grains is obtained. UV-visible spectra, steady-state and time-resolved photoluminescence (PL) spectra reveal that the obtained perovskite film under the optimized conditions shows a higher light absorption, more efficient electron transport, and faster electron extraction to the adjoining electron transport layer. The features result in the optimized perovskite film can provide an improved short-circuit current. The corresponding solar cells with a planar configuration achieves an improved power conversion efficiency of 13.80%, and the highest power conversion efficiency in the photovoltaic measurements is up to 14.71%. The results not only provide a simple approach to optimizing perovskite films but also present a novel angle of view on fabricating high-performance perovskite solar cells. PMID:27934924
Improving the photovoltaic performance of perovskite solar cells with acetate.
Zhao, Qian; Li, G R; Song, Jian; Zhao, Yulong; Qiang, Yinghuai; Gao, X P
2016-12-09
In an all-solid-state perovskite solar cell, methylammonium lead halide film is in charge of generating photo-excited electrons, thus its quality can directly influence the final photovoltaic performance of the solar cell. This paper accentuates a very simple chemical approach to improving the quality of a perovskite film with a suitable amount of acetic acid. With introduction of acetate ions, a homogeneous, continual and hole-free perovskite film comprised of high-crystallinity grains is obtained. UV-visible spectra, steady-state and time-resolved photoluminescence (PL) spectra reveal that the obtained perovskite film under the optimized conditions shows a higher light absorption, more efficient electron transport, and faster electron extraction to the adjoining electron transport layer. The features result in the optimized perovskite film can provide an improved short-circuit current. The corresponding solar cells with a planar configuration achieves an improved power conversion efficiency of 13.80%, and the highest power conversion efficiency in the photovoltaic measurements is up to 14.71%. The results not only provide a simple approach to optimizing perovskite films but also present a novel angle of view on fabricating high-performance perovskite solar cells.
Performance of an electron gun for a high-brightness X-ray generator.
Sugimura, Takashi; Ohsawa, Satoshi; Ikeda, Mitsuo
2008-05-01
A prototype thermionic electron gun for a high-brightness X-ray generator has been developed. Its extraction voltage and design current are 60 kV and 100 mA (DC), respectively. The X-ray generator aims towards a maximum brilliance of 60 kW mm(-2). The beam sizes at the rotating anticathode must therefore be within 1.0 mm x 0.1 mm and a small beam emittance is required. The fabricated electron gun optimizes an aperture grid and a Whenelt electrode. The performance of the prototype electron gun measured using pulsed-beam tests is as follows: maximum beam current, 85.7 mA; beam focus size at the rotating anticathode, 0.79 mm x 0.13 mm. In DC beam tests, FWHM beam sizes were measured to be 0.65 mm x 0.08 mm at the rotating anticathode with a beam current of 45 mA. The beam current recently reached approximately 60 mA with some thermal problems.
MOSES: a modular sensor electronics system for space science and commercial applications
NASA Astrophysics Data System (ADS)
Michaelis, Harald; Behnke, Thomas; Tschentscher, Matthias; Mottola, Stefano; Neukum, Gerhard
1999-10-01
The camera group of the DLR--Institute of Space Sensor Technology and Planetary Exploration is developing imaging instruments for scientific and space applications. One example is the ROLIS imaging system of the ESA scientific space mission `Rosetta', which consists of a descent/downlooking and a close-up imager. Both are parts of the Rosetta-Lander payload and will operate in the extreme environment of a cometary nucleus. The Rosetta Lander Imaging System (ROLIS) will introduce a new concept for the sensor electronics, which is referred to as MOSES (Modula Sensor Electronics System). MOSES is a 3D miniaturized CCD- sensor-electronics which is based on single modules. Each of the modules has some flexibility and enables a simple adaptation to specific application requirements. MOSES is mainly designed for space applications where high performance and high reliability are required. This concept, however, can also be used in other science or commercial applications. This paper describes the concept of MOSES, its characteristics, performance and applications.
Giant onsite electronic entropy enhances the performance of ceria for water splitting
Naghavi, S. Shahab; Emery, Antoine A.; Hansen, Heine A.; ...
2017-08-18
Previous studies have shown that a large solid-state entropy of reduction increases the thermodynamic efficiency of metal oxides, such as ceria, for two-step thermochemical water splitting cycles. In this context, the configurational entropy arising from oxygen off-stoichiometry in the oxide, has been the focus of most previous work. Here we report a different source of entropy, the onsite electronic configurational entropy, arising from coupling between orbital and spin angular momenta in lanthanide f orbitals. We find that onsite electronic configurational entropy is sizable in all lanthanides, and reaches a maximum value of ≈4.7 k B per oxygen vacancy for Cemore » 4+/Ce 3+ reduction. This unique and large positive entropy source in ceria explains its excellent performance for high-temperature catalytic redox reactions such as water splitting. Our calculations also show that terbium dioxide has a high electronic entropy and thus could also be a potential candidate for solar thermochemical reactions.« less
RF Phase Stability and Electron Beam Characterization for the PLEIADES Thomson X-Ray Source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, W J; Hartemann, F V; Tremaine, A M
2002-10-16
We report on the performance of an S-band RF photocathode electron gun and accelerator for operation with the PLEIADES Thomson x-ray source at LLNL. To produce picosecond, high brightness x-ray pulses, picosecond timing, terahertz bandwidth diagnostics, and RF phase control are required. Planned optical, RF, x-ray and electron beam measurements to characterize the dependence of electron beam parameters and synchronization on RF phase stability are presented.
Sharma, Bhupendra Kumar; Stoesser, Anna; Mondal, Sandeep Kumar; Garlapati, Suresh K; Fawey, Mohammed H; Chakravadhanula, Venkata Sai Kiran; Kruk, Robert; Hahn, Horst; Dasgupta, Subho
2018-06-12
Oxide semiconductors typically show superior device performance compared to amorphous silicon or organic counterparts, especially, when they are physical vapor deposited. However, it is not easy to reproduce identical device characteristics when the oxide field-effect transistors (FETs) are solution-processed/ printed; the level of complexity further intensifies with the need to print the passive elements as well. Here, we developed a protocol for designing the most electronically compatible electrode/ channel interface based on the judicious material selection. Exploiting this newly developed fabrication schemes, we are now able to demonstrate high-performance all-printed FETs and logic circuits using amorphous indium-gallium-zinc oxide (a-IGZO) semiconductor, indium tin oxide (ITO) as electrodes and composite solid polymer electrolyte as the gate insulator. Interestingly, all-printed FETs demonstrate an optimal electrical performance in terms of threshold voltages and device mobility and may very well be compared with devices fabricated using sputtered ITO electrodes. This observation originates from the selection of electrode/ channel materials from the same transparent semiconductor oxide family, resulting in the formation of In-Sn-Zn-O (ITZO) based diffused a-IGZO/ ITO interface that controls doping density while ensuring high electrical performance. Compressive spectroscopic studies reveal that Sn doping mediated excellent band alignment of IGZO with ITO electrodes is responsible for the excellent device performance observed. All-printed n-MOS based logic circuits have also been demonstrated towards new-generation portable electronics.
Liang, Po-Wei; Chueh, Chu-Chen; Williams, Spencer T.; ...
2015-02-27
Roles of fullerene-based interlayers in enhancing the performance of organometal perovskite thin-film solar cells are elucidated. By studying various fullerenes, a clear correlation between the electron mobility of fullerenes and the resulting performance of derived devices is determined. The metallic characteristics of the bilayer perovskite/fullerene field-effect transistor indicates an effective charge redistribution occurring at the corresponding interface. Lastly, a conventional perovskite thin-film solar cell derived from the C 60 electron-transporting layer (ETL) affords a high power conversion efficiency of 15.4%.
An Overview of the Electron-Proton and High Energy Telescopes for Solar Orbiter
NASA Astrophysics Data System (ADS)
Boden, Sebastian; Kulkarni, Shrinivasrao R.; Tammen, Jan; Steinhagen, Jan; Martin, César; Wimmer-Schweingruber, Robert F.; Böttcher, Stephan I.; Seimetz, Lars; Ravanbakhsh, Ali; Elftmann, Robert; Rodriguez-Pacheco, Javier; Prieto Mateo, Manuel; Gomez Herrero, Rául
2014-05-01
The Energetic Particle Detector (EPD) suite for ESA's Solar Orbiter will provide key measurements to address particle acceleration at and near the Sun. The EPD suite consists of four sensors (STEP, SIS, EPT, and HET). The University of Kiel in Germany is responsible for the design, development, and building of STEP, EPT and HET. This poster will focus on the last two. The Electron Proton Telescope (EPT) is designed to cleanly separate and measure electrons in the energy range from 20 - 400 keV and protons from 20 - 7000 keV. To separate electrons and protons EPT relies on the magnet/foil-technique. EPT is intended to close the gap between the supra-thermal particles measured by STEP and the high energy range covered by HET. The High-Energy Telescope (HET) will measure electrons from 300 keV up to about 30 MeV, protons from 10 to 100 MeV, and heavy ions from ~20 to 200 MeV/nuc. To achieve this performance HET consists of a series of silicon detectors in a telescope configuration with a scintillator calorimeter to stop high energy protons and ions. It uses the dE/dx vs. total E technique . In this way HET covers an energy range which is of interest for studies of the space radiation environment and will perform measurements needed to understand the origin of high-energy particle events at the Sun. EPT and HET share a common Electronics Box, there are two EPT-HET sensors on Solar Orbiter to allow rudimentary pitch-angle coverage. Here we present the current development status of EPT-HET units and calibration results of demonstration models as well as plans for future activities.
Molecular interfaces for plasmonic hot electron photovoltaics
NASA Astrophysics Data System (ADS)
Pelayo García de Arquer, F.; Mihi, Agustín; Konstantatos, Gerasimos
2015-01-01
The use of self-assembled monolayers (SAMs) to improve and tailor the photovoltaic performance of plasmonic hot-electron Schottky solar cells is presented. SAMs allow the simultaneous control of open-circuit voltage, hot-electron injection and short-circuit current. To that end, a plurality of molecule structural parameters can be adjusted: SAM molecule's length can be adjusted to control plasmonic hot electron injection. Modifying SAMs dipole moment allows for a precise tuning of the open-circuit voltage. The functionalization of the SAM can also be selected to modify short-circuit current. This allows the simultaneous achievement of high open-circuit voltages (0.56 V) and fill-factors (0.58), IPCE above 5% at the plasmon resonance and maximum power-conversion efficiencies of 0.11%, record for this class of devices.The use of self-assembled monolayers (SAMs) to improve and tailor the photovoltaic performance of plasmonic hot-electron Schottky solar cells is presented. SAMs allow the simultaneous control of open-circuit voltage, hot-electron injection and short-circuit current. To that end, a plurality of molecule structural parameters can be adjusted: SAM molecule's length can be adjusted to control plasmonic hot electron injection. Modifying SAMs dipole moment allows for a precise tuning of the open-circuit voltage. The functionalization of the SAM can also be selected to modify short-circuit current. This allows the simultaneous achievement of high open-circuit voltages (0.56 V) and fill-factors (0.58), IPCE above 5% at the plasmon resonance and maximum power-conversion efficiencies of 0.11%, record for this class of devices. Electronic supplementary information (ESI) available: Contact-potential differentiometry measurements, FTIR characterization, performance statistics and gold devices. See DOI: 10.1039/c4nr06356b
NASA Astrophysics Data System (ADS)
Chen, Yaping; Liu, Borui; Liu, Qi; Wang, Jun; Li, Zhanshuang; Jing, Xiaoyan; Liu, Lianhe
2015-09-01
Flexible all-solid-state supercapacitors have offered promising applications as novel energy storage devices based on their merits, such as small size, low cost, light weight and high wearability for high-performance portable electronics. However, one major challenge to make flexible all-solid-state supercapacitors depends on the improvement of electrode materials with higher electrical conductivity properties and longer cycling stability. In this article, we put forward a simple strategy to in situ synthesize 1D CoMoO4 nanowires (NWs), using highly conductive CC and an electrically conductive PPy wrapping layer on CoMoO4 NW arrays for high performance electrode materials. The results show that the CoMoO4/PPy hybrid NW electrode exhibits a high areal specific capacitance of ca. 1.34 F cm-2 at a current density of 2 mA cm-2, which is remarkably better than the corresponding values for a pure CoMoO4 NW electrode of 0.7 F cm-2. An excellent cycling performance of nanocomposites of up to 95.2% (ca. 1.12 F cm-2) is achieved after 2000 cycles compared to pristine CoMoO4 NWs. In addition, we fabricate flexible all-solid-state ASC which can be cycled reversibly in the voltage range of 0-1.7 V, and exhibits a maximum energy density of 104.7 W h kg-1 (3.522 mW h cm-3), demonstrating great potential for practical applications in flexible energy storage electronics.Flexible all-solid-state supercapacitors have offered promising applications as novel energy storage devices based on their merits, such as small size, low cost, light weight and high wearability for high-performance portable electronics. However, one major challenge to make flexible all-solid-state supercapacitors depends on the improvement of electrode materials with higher electrical conductivity properties and longer cycling stability. In this article, we put forward a simple strategy to in situ synthesize 1D CoMoO4 nanowires (NWs), using highly conductive CC and an electrically conductive PPy wrapping layer on CoMoO4 NW arrays for high performance electrode materials. The results show that the CoMoO4/PPy hybrid NW electrode exhibits a high areal specific capacitance of ca. 1.34 F cm-2 at a current density of 2 mA cm-2, which is remarkably better than the corresponding values for a pure CoMoO4 NW electrode of 0.7 F cm-2. An excellent cycling performance of nanocomposites of up to 95.2% (ca. 1.12 F cm-2) is achieved after 2000 cycles compared to pristine CoMoO4 NWs. In addition, we fabricate flexible all-solid-state ASC which can be cycled reversibly in the voltage range of 0-1.7 V, and exhibits a maximum energy density of 104.7 W h kg-1 (3.522 mW h cm-3), demonstrating great potential for practical applications in flexible energy storage electronics. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr02961a
Yu, Guohui; Hu, Jingdong; Tan, Jianping; Gao, Yang; Lu, Yongfeng; Xuan, Fuzhen
2018-03-16
Pressure sensors with high performance (e.g., a broad pressure sensing range, high sensitivities, rapid response/relaxation speeds, temperature-stable sensing), as well as a cost-effective and highly efficient fabrication method are highly desired for electronic skins. In this research, a high-performance pressure sensor based on microstructured carbon nanotube/polydimethylsiloxane arrays was fabricated using an ultra-violet/ozone (UV/O 3 ) microengineering technique. The UV/O 3 microengineering technique is controllable, cost-effective, and highly efficient since it is conducted at room temperature in an ambient environment. The pressure sensor offers a broad pressure sensing range (7 Pa-50 kPa), a sensitivity of ∼ -0.101 ± 0.005 kPa -1 (<1 kPa), a fast response/relaxation speed of ∼10 ms, a small dependence on temperature variation, and a good cycling stability (>5000 cycles), which is attributed to the UV/O 3 engineered microstructures that amplify and transfer external applied forces and rapidly store/release the energy during the PDMS deformation. The sensors developed show the capability to detect external forces and monitor human health conditions, promising for the potential applications in electronic skin.
NASA Astrophysics Data System (ADS)
Yu, Guohui; Hu, Jingdong; Tan, Jianping; Gao, Yang; Lu, Yongfeng; Xuan, Fuzhen
2018-03-01
Pressure sensors with high performance (e.g., a broad pressure sensing range, high sensitivities, rapid response/relaxation speeds, temperature-stable sensing), as well as a cost-effective and highly efficient fabrication method are highly desired for electronic skins. In this research, a high-performance pressure sensor based on microstructured carbon nanotube/polydimethylsiloxane arrays was fabricated using an ultra-violet/ozone (UV/O3) microengineering technique. The UV/O3 microengineering technique is controllable, cost-effective, and highly efficient since it is conducted at room temperature in an ambient environment. The pressure sensor offers a broad pressure sensing range (7 Pa-50 kPa), a sensitivity of ˜ -0.101 ± 0.005 kPa-1 (<1 kPa), a fast response/relaxation speed of ˜10 ms, a small dependence on temperature variation, and a good cycling stability (>5000 cycles), which is attributed to the UV/O3 engineered microstructures that amplify and transfer external applied forces and rapidly store/release the energy during the PDMS deformation. The sensors developed show the capability to detect external forces and monitor human health conditions, promising for the potential applications in electronic skin.
High-performance, scalable optical network-on-chip architectures
NASA Astrophysics Data System (ADS)
Tan, Xianfang
The rapid advance of technology enables a large number of processing cores to be integrated into a single chip which is called a Chip Multiprocessor (CMP) or a Multiprocessor System-on-Chip (MPSoC) design. The on-chip interconnection network, which is the communication infrastructure for these processing cores, plays a central role in a many-core system. With the continuously increasing complexity of many-core systems, traditional metallic wired electronic networks-on-chip (NoC) became a bottleneck because of the unbearable latency in data transmission and extremely high energy consumption on chip. Optical networks-on-chip (ONoC) has been proposed as a promising alternative paradigm for electronic NoC with the benefits of optical signaling communication such as extremely high bandwidth, negligible latency, and low power consumption. This dissertation focus on the design of high-performance and scalable ONoC architectures and the contributions are highlighted as follow: 1. A micro-ring resonator (MRR)-based Generic Wavelength-routed Optical Router (GWOR) is proposed. A method for developing any sized GWOR is introduced. GWOR is a scalable non-blocking ONoC architecture with simple structure, low cost and high power efficiency compared to existing ONoC designs. 2. To expand the bandwidth and improve the fault tolerance of the GWOR, a redundant GWOR architecture is designed by cascading different type of GWORs into one network. 3. The redundant GWOR built with MRR-based comb switches is proposed. Comb switches can expand the bandwidth while keep the topology of GWOR unchanged by replacing the general MRRs with comb switches. 4. A butterfly fat tree (BFT)-based hybrid optoelectronic NoC (HONoC) architecture is developed in which GWORs are used for global communication and electronic routers are used for local communication. The proposed HONoC uses less numbers of electronic routers and links than its counterpart of electronic BFT-based NoC. It takes the advantages of GWOR in optical communication and BFT in non-uniform traffic communication and three-dimension (3D) implementation. 5. A cycle-accurate NoC simulator is developed to evaluate the performance of proposed HONoC architectures. It is a comprehensive platform that can simulate both electronic and optical NoCs. Different size HONoC architectures are evaluated in terms of throughput, latency and energy dissipation. Simulation results confirm that HONoC achieves good network performance with lower power consumption.
Influence of mechanical noise inside a scanning electron microscope.
de Faria, Marcelo Gaudenzi; Haddab, Yassine; Le Gorrec, Yann; Lutz, Philippe
2015-04-01
The scanning electron microscope is becoming a popular tool to perform tasks that require positioning, manipulation, characterization, and assembly of micro-components. However, some of these applications require a higher level of performance with respect to dynamics and precision of positioning. One limiting factor is the presence of unidentified noises and disturbances. This work aims to study the influence of mechanical disturbances generated by the environment and by the microscope, identifying how these can affect elements in the vacuum chamber. To achieve this objective, a dedicated setup, including a high-resolution vibrometer, was built inside the microscope. This work led to the identification and quantification of main disturbances and noise sources acting on a scanning electron microscope. Furthermore, the effects of external acoustic excitations were analysed. Potential applications of these results include noise compensation and real-time control for high accuracy tasks.
NASA Astrophysics Data System (ADS)
Du, Hongfei; Ding, Siye; Chen, Jiale; Wang, Yifeng; Lian, Hui; Xu, Guosheng; Zhai, Xuemei; Liu, Haiqing; Zang, Qing; Lyu, Bo; Duan, Yanmin; Qian, Jinping; Gong, Xianzu
2018-06-01
In recent EAST experiments, significant performance degradation accompanied by a decrease of internal inductance is observed in an electron heating dominant H-mode plasma after the electron cyclotron resonance heating termination. The lower hybrid wave (LHW) deposition and effective electron heat diffusivity are calculated to explain this phenomenon. Analysis shows that the changes of LHW heating deposition rather than the increase of transport are responsible for the significant decrease in energy confinement (). The reason why the confinement degradation occurred on a long time scale could be attributed to both good local energy confinement in the core and also the dependence of LHW deposition on the magnetic shear. The electron temperature profile shows weaker stiffness in near axis region where electron heating is dominant, compared to that in large radius region. Unstable electron modes from low to high k in the core plasma have been calculated in the linear GYRO simulations, which qualitatively agree with the experimental observation. This understanding of the plasma performance degradation mechanism will help to find ways of improving the global confinement in the radio-frequency dominant scenario in EAST.
A novel comparison of Møller and Compton electron-beam polarimeters
Magee, J. A.; Narayan, A.; Jones, D.; ...
2017-01-19
We have performed a novel comparison between electron-beam polarimeters based on Moller and Compton scattering. A sequence of electron-beam polarization measurements were performed at low beam currents (more » $<$ 5 $$\\mu$$A) during the $$Q_{\\rm weak}$$ experiment in Hall C at Jefferson Lab. These low current measurements were bracketed by the regular high current (180 $$\\mu$$A) operation of the Compton polarimeter. All measurements were found to be consistent within experimental uncertainties of 1% or less, demonstrating that electron polarization does not depend significantly on the beam current. This result lends confidence to the common practice of applying Moller measurements made at low beam currents to physics experiments performed at higher beam currents. Here, the agreement between two polarimetry techniques based on independent physical processes sets an important benchmark for future precision asymmetry measurements that require sub-1% precision in polarimetry.« less
Budden, B. S.; Stonehill, L. C.; Warniment, A.; ...
2015-06-10
In this study, a new class of elpasolite scintillators has garnered recent attention due to the ability to perform as simultaneous gamma spectrometers and thermal neutron detectors. Such a dual-mode capability is made possible by pulse-shape discrimination (PSD), whereby the emission waveform profiles of gamma and neutron events are fundamentally unique. To take full advantage of these materials, we have developed the Compact Advanced Readout Electronics for Elpasolites (CAREE). This handheld instrument employs a multi-channel PSD-capable ASIC, custom micro-processor board, front-end electronics, power supplies, and a 2 in. photomultiplier tube for readout of the scintillator. The unit is highly configurablemore » to allow for performance optimization amongst a wide sample of elpasolites which provide PSD in fundamentally different ways. We herein provide an introduction to elpasolites, then describe the motivation for the work, mechanical and electronic design, and preliminary performance results.« less
NASA Astrophysics Data System (ADS)
Budden, B. S.; Stonehill, L. C.; Warniment, A.; Michel, J.; Storms, S.; Dallmann, N.; Coupland, D. D. S.; Stein, P.; Weller, S.; Borges, L.; Proicou, M.; Duran, G.; Kamto, J.
2015-09-01
A new class of elpasolite scintillators has garnered recent attention due to the ability to perform as simultaneous gamma spectrometers and thermal neutron detectors. Such a dual-mode capability is made possible by pulse-shape discrimination (PSD), whereby the emission waveform profiles of gamma and neutron events are fundamentally unique. To take full advantage of these materials, we have developed the Compact Advanced Readout Electronics for Elpasolites (CAREE). This handheld instrument employs a multi-channel PSD-capable ASIC, custom micro-processor board, front-end electronics, power supplies, and a 2 in. photomultiplier tube for readout of the scintillator. The unit is highly configurable to allow for performance optimization amongst a wide sample of elpasolites which provide PSD in fundamentally different ways. We herein provide an introduction to elpasolites, then describe the motivation for the work, mechanical and electronic design, and preliminary performance results.
A novel comparison of Møller and Compton electron-beam polarimeters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Magee, J. A.; Narayan, A.; Jones, D.
We have performed a novel comparison between electron-beam polarimeters based on Moller and Compton scattering. A sequence of electron-beam polarization measurements were performed at low beam currents (more » $<$ 5 $$\\mu$$A) during the $$Q_{\\rm weak}$$ experiment in Hall C at Jefferson Lab. These low current measurements were bracketed by the regular high current (180 $$\\mu$$A) operation of the Compton polarimeter. All measurements were found to be consistent within experimental uncertainties of 1% or less, demonstrating that electron polarization does not depend significantly on the beam current. This result lends confidence to the common practice of applying Moller measurements made at low beam currents to physics experiments performed at higher beam currents. Here, the agreement between two polarimetry techniques based on independent physical processes sets an important benchmark for future precision asymmetry measurements that require sub-1% precision in polarimetry.« less
Zakaria, Golam Abu; Schütte, Wilhelm
2003-01-01
The determination of absorbed dose to water for high-energy photon and electron beams is performed in Germany according to the dosimetry protocol DIN 6800-2 (1997). At an international level, the main protocols used are the AAPM dosimetry protocol TG-51 (1999) and the IAEA Code of Practice TRS-398 (2000). The present paper systematically compares these three dosimetry protocols, and identifies similarities and differences. The investigations were performed using 4 and 10 MV photon beams, as well as 6, 8, 9, 10, 12 and 14 MeV electron beams. Two cylindrical and two plane-parallel type chambers were used for measurements. In general, the discrepancies among the three protocols were 1.0% for photon beams and 1.6% for electron beams. Comparative measurements in the context of measurement technical control (MTK) with TLD showed a deviation of less than 1.3% between the measurements obtained according to protocols DIN 6800-2 and MTK (exceptions: 4 MV photons with 2.9% and 6 MeV electrons with 2.4%). While only cylindrical chambers were used for photon beams, measurements of electron beams were performed using both cylindrical and plane-parallel chambers (the latter used after a cross-calibration to a cylindrical chamber, as required by the respective dosimetry protocols). Notably, unlike recommended in the corresponding protocols, we found out that cylindrical chambers can be used also for energies from 6 to 10 MeV.
A magnetic-bottle multi-electron-ion coincidence spectrometer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matsuda, Akitaka; Hishikawa, Akiyoshi; Department of Chemistry, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi 464-8602
2011-10-15
A novel multi-electron-ion coincidence spectrometer developed on the basis of a 1.5 m-long magnetic-bottle electron spectrometer is presented. Electrons are guided by an inhomogeneous magnetic field to a detector at the end of the flight tube, while a set of optics is used to extract counterpart ions to the same detector, by a pulsed inhomogeneous electric field. This setup allows ion detection with high mass resolution, without impairing the high collection efficiency for electrons. The performance of the coincidence spectrometer was tested with double ionization of carbon disulfide, CS{sub 2} {yields} CS{sub 2}{sup 2+} + e{sup -} + e{sup -},more » in ultrashort intense laser fields (2.8 x 10{sup 13} W/cm{sup 2}, 280 fs, 1030 nm) to clarify the electron correlation below the rescattering threshold.« less
Valdivia, Maria Pia; Stutman, Dan; Stoeckl, Christian; Mileham, Chad; Begishev, Ildar A; Bromage, Jake; Regan, Sean P
2018-01-10
Talbot-Lau x-ray interferometry uses incoherent x-ray sources to measure refraction index changes in matter. These measurements can provide accurate electron density mapping through phase retrieval. An adaptation of the interferometer has been developed in order to meet the specific requirements of high-energy density experiments. This adaptation is known as a moiré deflectometer, which allows for single-shot capabilities in the form of interferometric fringe patterns. The moiré x-ray deflectometry technique requires a set of object and reference images in order to provide electron density maps, which can be costly in the high-energy density environment. In particular, synthetic reference phase images obtained ex situ through a phase-scan procedure, can provide a feasible solution. To test this procedure, an object phase map was retrieved from a single-shot moiré image obtained from a plasma-produced x-ray source. A reference phase map was then obtained from phase-stepping measurements using a continuous x-ray tube source in a small laboratory setting. The two phase maps were used to retrieve an electron density map. A comparison of the moiré and phase-stepping phase-retrieval methods was performed to evaluate single-exposure plasma electron density mapping for high-energy density and other transient plasma experiments. It was found that a combination of phase-retrieval methods can deliver accurate refraction angle mapping. Once x-ray backlighter quality is optimized, the ex situ method is expected to deliver electron density mapping with improved resolution. The steps necessary for improved diagnostic performance are discussed.
Rolled-Up Optical and Electronic Components for On-Chip Integrative Applications
2013-10-10
attracted broad interest to create new three- dimensional electronics such as wrapable solar cells , pressure sensors and paper displays. The adaption to...cone-like microtube cavities Rolled-up electronics 1. Energy storage elements based on hybrid organic/inorganic nanomembranes 2.High performance...fabricated in this way to detect and analyze individual cells , biomolecules, and their bioactivities. 3.2 Three-dimensional confinement in asymmetric
Design, synthesis, and structure-property relationships of isoindigo-based conjugated polymers.
Lei, Ting; Wang, Jie-Yu; Pei, Jian
2014-04-15
Conjugated polymers have developed rapidly due to their promising applications in low-cost, lightweight, and flexible electronics. The development of the third-generation donor-acceptor (D-A) polymers greatly improved the device performance in organic solar cells (OSCs) and field-effect transistors (FETs). However, for further improvement of device performance, scientists need to develop new building blocks, in particular electron-deficient aromatics, and gain an in-depth understanding of the structure-property relationships. Recently, isoindigo has been used as a new acceptor of D-A conjugated polymers. An isomer of indigo, isoindigo is a less well-known dye and can be isolated as a by-product from certain biological processes. It has two lactam rings and exhibits strong electron-withdrawing character. This electron deficiency gives isoindigo-based polymers intriguing properties, such as broad absorption and high open circuit voltage in OSCs, as well as high mobility and good ambient stability in FETs. In this Account, we review our recent progress on the design, synthesis, and structure-property relationship study of isoindigo-based polymers for FETs. Starting with some discussion on carrier transport in polymer films, we provide some basic strategies towards high-performance polymer FETs. We discuss the stability issue of devices, the impediment of the alkyl side chains, and the choice of the donor part of conjugated polymers. We demonstrate that introducing the isoindigo core effectively lowers the HOMO levels of polymers and provides FETs with long-time stability. In addition, we have found that when we use inappropriate alkyl side chains or non-centrosymmetric donors, the device performance of isoindigo polymers suffers. To further improve device performance and ambient stability, we propose several design strategies, such as using farther branched alkyl chains, modulating polymer energy levels, and extending π-conjugated backbones. We have found that using farther branched alkyl chains can effectively decrease interchain π-π stacking distance and improve carrier mobility. When we introduce electron-deficient functional groups on the isoindigo core, the LUMO levels of the polymers markedly decrease, which significantly improves the electron mobility and device stability. In addition, we present a new polymer system called BDOPV, which is based on the concept of π-extended isoindigo. By application of some strategies successfully used in isoindigo-based polymers, BDOPV-based polymers exhibit high mobility and good stability both in n-type and in ambipolar FETs. We believe that a synergy of molecular engineering strategies towards the isoindigo core, donor units, and side chains may further improve the performance and broaden the application of isoindigo-based polymers.
NASA Astrophysics Data System (ADS)
Fisher, Mark; Sikes, John; Prather, Mark
2004-09-01
The dog's nose is an effective, highly-mobile sampling system, while the canine olfactory organs are an extremely sensitive detector. Having been trained to detect a wide variety of substances with exceptional results, canines are widely regarded as the 'gold standard' in chemical vapor detection. Historically, attempts to mimic the ability of dogs to detect vapors of explosives using electronic 'dogs noses' has proven difficult. However, recent advances in technology have resulted in development of detection (i.e., sampling and sensor) systems with performance that is rapidly approaching that of trained canines. The Nomadics Fido was the first sensor to demonstrate under field conditions the detection of landmines with performance approaching that of canines. More recently, comparative testing of Fido against canines has revealed that electronic vapor detection, when coupled with effective sampling methods, can produce results comparable to that of highly-trained canines. The results of these comparative tests will be presented, as will recent test results in which explosives hidden in cargo were detected using Fido with a high-volume sampling technique. Finally, the use of canines along with electronic sensors will be discussed as a means of improving the performance and expanding the capabilities of both methods.
Charge-sensitive front-end electronics with operational amplifiers for CdZnTe detectors
NASA Astrophysics Data System (ADS)
Födisch, P.; Berthel, M.; Lange, B.; Kirschke, T.; Enghardt, W.; Kaever, P.
2016-09-01
Cadmium zinc telluride (CdZnTe, CZT) radiation detectors are suitable for a variety of applications, due to their high spatial resolution and spectroscopic energy performance at room temperature. However, state-of-the-art detector systems require high-performance readout electronics. Though an application-specific integrated circuit (ASIC) is an adequate solution for the readout, requirements of high dynamic range and high throughput are not available in any commercial circuit. Consequently, the present study develops the analog front-end electronics with operational amplifiers for an 8×8 pixelated CZT detector. For this purpose, we modeled an electrical equivalent circuit of the CZT detector with the associated charge-sensitive amplifier (CSA). Based on a detailed network analysis, the circuit design is completed by numerical values for various features such as ballistic deficit, charge-to-voltage gain, rise time, and noise level. A verification of the performance is carried out by synthetic detector signals and a pixel detector. The experimental results with the pixel detector assembly and a 22Na radioactive source emphasize the depth dependence of the measured energy. After pulse processing with depth correction based on the fit of the weighting potential, the energy resolution is 2.2% (FWHM) for the 511 keV photopeak.
Miniature ion thruster ring-cusp discharge performance and behavior
NASA Astrophysics Data System (ADS)
Dankongkakul, Ben; Wirz, Richard E.
2017-12-01
Miniature ion thrusters are an attractive option for a wide range of space missions due to their low power levels and high specific impulse. Thrusters using ring-cusp plasma discharges promise the highest performance, but are still limited by the challenges of efficiently maintaining a plasma discharge at such small scales (typically 1-3 cm diameter). This effort significantly advances the understanding of miniature-scale plasma discharges by comparing the performance and xenon plasma confinement behavior for 3-ring, 4-ring, and 5-ring cusp by using the 3 cm Miniature Xenon Ion thruster as a modifiable platform. By measuring and comparing the plasma and electron energy distribution maps throughout the discharge, we find that miniature ring-cusp plasma behavior is dominated by the high magnetic fields from the cusps; this can lead to high loss rates of high-energy primary electrons to the anode walls. However, the primary electron confinement was shown to considerably improve by imposing an axial magnetic field or by using cathode terminating cusps, which led to increases in the discharge efficiency of up to 50%. Even though these design modifications still present some challenges, they show promise to bypassing what were previously seen as inherent limitations to ring-cusp discharge efficiency at miniature scales.
Electronics and triggering challenges for the CMS High Granularity Calorimeter
NASA Astrophysics Data System (ADS)
Lobanov, A.
2018-02-01
The High Granularity Calorimeter (HGCAL), presently being designed by the CMS collaboration to replace the CMS endcap calorimeters for the High Luminosity phase of LHC, will feature six million channels distributed over 52 longitudinal layers. The requirements for the front-end electronics are extremely challenging, including high dynamic range (0.2 fC-10 pC), low noise (~2000 e- to be able to calibrate on single minimum ionising particles throughout the detector lifetime) and low power consumption (~20 mW/channel), as well as the need to select and transmit trigger information with a high granularity. Exploiting the intrinsic precision-timing capabilities of silicon sensors also requires careful design of the front-end electronics as well as the whole system, particularly clock distribution. The harsh radiation environment and requirement to keep the whole detector as dense as possible will require novel solutions to the on-detector electronics layout. Processing the data from the HGCAL imposes equally large challenges on the off-detector electronics, both for the hardware and incorporated algorithms. We present an overview of the complete electronics architecture, as well as the performance of prototype components and algorithms.
NASA Astrophysics Data System (ADS)
Jin, Hong; Hu, Jingpeng; Wu, Shichao; Wang, Xiaolan; Zhang, Hui; Xu, Hui; Lian, Kun
2018-04-01
Three-dimensional interconnected porous graphitic carbon materials are synthesized via a combination of graphitization and activation process with rice straw as the carbon source. The physicochemical properties of the three-dimensional interconnected porous graphitic carbon materials are characterized by Nitrogen adsorption/desorption, Fourier-transform infrared spectroscopy, X-ray diffraction, Raman spectroscopy, Scanning electron microscopy and Transmission electron microscopy. The results demonstrate that the as-prepared carbon is a high surface area carbon material (a specific surface area of 3333 m2 g-1 with abundant mesoporous and microporous structures). And it exhibits superb performance in symmetric double layer capacitors with a high specific capacitance of 400 F g-1 at a current density of 0.1 A g-1, good rate performance with 312 F g-1 under a current density of 5 A g-1 and favorable cycle stability with 6.4% loss after 10000 cycles at a current density of 5 A g-1 in the aqueous electrolyte of 6M KOH. Thus, rice straw is a promising carbon source for fabricating inexpensive, sustainable and high performance supercapacitors' electrode materials.
Zhang, Yue; Lai, Jingyuan; Gong, Yudong; Hu, Yongming; Liu, Jin; Sun, Chunwen; Wang, Zhong Lin
2016-12-21
The electronic conductivity and structural stability are still challenges for vanadium pentoxide (V 2 O 5 ) as cathode materials in batteries. Here, we report a V 2 O 5 nanowire-reduced graphene oxide (rGO) composite paper for direct use as a cathode without any additives for high-temperature and high-safety solid polymer electrolyte [PEO-MIL-53(Al)-LiTFSI] lithium-vanadium batteries. The batteries can show a fast and stable lithium-ion-storage performance in a wide voltage window of 1.0-4.0 V versus Li + /Li at 80 °C, in which with an average capacity of 329.2 mAh g -1 at 17 mA g -1 and a stable cycling performance over 40 cycles are achieved. The excellent electrochemical performance is mainly ascribed to integration of the electronic conductivity of rGO and interconnected networks of the V 2 O 5 nanowires and solid electrolyte. This is a promising lithium battery for flexible and highly safe energy-storage devices.
High-precision buffer circuit for suppression of regenerative oscillation
NASA Technical Reports Server (NTRS)
Tripp, John S.; Hare, David A.; Tcheng, Ping
1995-01-01
Precision analog signal conditioning electronics have been developed for wind tunnel model attitude inertial sensors. This application requires low-noise, stable, microvolt-level DC performance and a high-precision buffered output. Capacitive loading of the operational amplifier output stages due to the wind tunnel analog signal distribution facilities caused regenerative oscillation and consequent rectification bias errors. Oscillation suppression techniques commonly used in audio applications were inadequate to maintain the performance requirements for the measurement of attitude for wind tunnel models. Feedback control theory is applied to develop a suppression technique based on a known compensation (snubber) circuit, which provides superior oscillation suppression with high output isolation and preserves the low-noise low-offset performance of the signal conditioning electronics. A practical design technique is developed to select the parameters for the compensation circuit to suppress regenerative oscillation occurring when typical shielded cable loads are driven.
Hierarchical TiO2/C micro-nano spheres as high-performance anode materials for sodium ion batteries
NASA Astrophysics Data System (ADS)
Ma, Xiao; Zhang, Zhihui; Tian, Jianliya; Xu, Beibei; Ping, Qiushi; Wang, Baofeng
The hierarchical TiO2/C microspheres were obtained via a facile method of in-situ hydrolysis and spray drying. Antase TiO2 nanoparticles were coherent to microspheres TiO2/C due to the pyrolysis of carbon source (PVP). Besides, the favorable electron transfer from carbon to TiO2 improves the electronic conductivity of TiO2 via the presence of Ti-C bond within TiO2/C composite. Charge-discharge tests show that TiO2/C microspheres delivered a good rate capability of 106.1mAhg‑1 at the high current density of 5Ag‑1 and an enhanced cyclic capacity. The superior electrochemical performance could be ascribed to the porous micro-nano structure, smaller crystal size and increased conductivity. The synthesis of TiO2/C microspheres is easy to scale up for satisfying high-performance sodium storage.
Modulation-doped β-(Al0.2Ga0.8)2O3/Ga2O3 field-effect transistor
NASA Astrophysics Data System (ADS)
Krishnamoorthy, Sriram; Xia, Zhanbo; Joishi, Chandan; Zhang, Yuewei; McGlone, Joe; Johnson, Jared; Brenner, Mark; Arehart, Aaron R.; Hwang, Jinwoo; Lodha, Saurabh; Rajan, Siddharth
2017-07-01
Modulation-doped heterostructures are a key enabler for realizing high mobility and better scaling properties for high performance transistors. We report the realization of a modulation-doped two-dimensional electron gas (2DEG) at the β-(Al0.2Ga0.8)2O3/Ga2O3 heterojunction by silicon delta doping. The formation of a 2DEG was confirmed using capacitance voltage measurements. A modulation-doped 2DEG channel was used to realize a modulation-doped field-effect transistor. The demonstration of modulation doping in the β-(Al0.2Ga0.8)2O3/Ga2O3 material system could enable heterojunction devices for high performance electronics.
Recent progress in high-mobility thin-film transistors based on multilayer 2D materials
NASA Astrophysics Data System (ADS)
Hong, Young Ki; Liu, Na; Yin, Demin; Hong, Seongin; Kim, Dong Hak; Kim, Sunkook; Choi, Woong; Yoon, Youngki
2017-04-01
Two-dimensional (2D) layered semiconductors are emerging as promising candidates for next-generation thin-film electronics because of their high mobility, relatively large bandgap, low-power switching, and the availability of large-area growth methods. Thin-film transistors (TFTs) based on multilayer transition metal dichalcogenides or black phosphorus offer unique opportunities for next-generation electronic and optoelectronic devices. Here, we review recent progress in high-mobility transistors based on multilayer 2D semiconductors. We describe the theoretical background on characterizing methods of TFT performance and material properties, followed by their applications in flexible, transparent, and optoelectronic devices. Finally, we highlight some of the methods used in metal-semiconductor contacts, hybrid structures, heterostructures, and chemical doping to improve device performance.
1991-09-01
2 2. Dosimetry ............................................. 4 C. OVERVIEW OF EXPERIMENT............................... 5 11. ELECTRON BEAM...From these measurements, the dose was calculated and then compared to a measured dose obtained from TLD dosimetry . Technical 5 problems with the...LINAC precluded TLD dosimetry from being accomplished during the first run and, therefore, was performed on the second run only. After irradiation, a NaI
Extreme temperature packaging: challenges and opportunities
NASA Astrophysics Data System (ADS)
Johnson, R. Wayne
2016-05-01
Consumer electronics account for the majority of electronics manufactured today. Given the temperature limits of humans, consumer electronics are typically rated for operation from -40°C to +85°C. Military applications extend the range to -65°C to +125°C while underhood automotive electronics may see +150°C. With the proliferation of the Internet of Things (IoT), the goal of instrumenting (sensing, computation, transmission) to improve safety and performance in high temperature environments such as geothermal wells, nuclear reactors, combustion chambers, industrial processes, etc. requires sensors, electronics and packaging compatible with these environments. Advances in wide bandgap semiconductors (SiC and GaN) allow the fabrication of high temperature compatible sensors and electronics. Integration and packaging of these devices is required for implementation into actual applications. The basic elements of packaging are die attach, electrical interconnection and the package or housing. Consumer electronics typically use conductive adhesives or low melting point solders for die attach, wire bonds or low melting solder for electrical interconnection and epoxy for the package. These materials melt or decompose in high temperature environments. This paper examines materials and processes for high temperature packaging including liquid transient phase and sintered nanoparticle die attach, high melting point wires for wire bonding and metal and ceramic packages. The limitations of currently available solutions will also be discussed.
Molecular gated-AlGaN/GaN high electron mobility transistor for pH detection.
Ding, Xiangzhen; Yang, Shuai; Miao, Bin; Gu, Le; Gu, Zhiqi; Zhang, Jian; Wu, Baojun; Wang, Hong; Wu, Dongmin; Li, Jiadong
2018-04-18
A molecular gated-AlGaN/GaN high electron mobility transistor has been developed for pH detection. The sensing surface of the sensor was modified with 3-aminopropyltriethoxysilane to provide amphoteric amine groups, which would play the role of receptors for pH detection. On modification with 3-aminopropyltriethoxysilane, the transistor exhibits good chemical stability in hydrochloric acid solution and is sensitive for pH detection. Thus, our molecular gated-AlGaN/GaN high electron mobility transistor acheived good electrical performances such as chemical stability (remained stable in hydrochloric acid solution), good sensitivity (37.17 μA/pH) and low hysteresis. The results indicate a promising future for high-quality sensors for pH detection.
NASA Astrophysics Data System (ADS)
Okada, S.; Sunaga, H.; Kaneko, H.; Takizawa, H.; Kawasuso, A.; Yotsumoto, K.; Tanaka, R.
1999-06-01
The Positron Factory has been planned at Japan Atomic Energy Research Institute (JAERI). The factory is expected to produce linac-based monoenergetic positron beams having world-highest intensities of more than 1010e+/sec, which will be applied for R&D of materials science, biotechnology and basic physics & chemistry. In this article, results of the design studies are demonstrated for the following essential components of the facilities: 1) Conceptual design of a high-power electron linac with 100 MeV in beam energy and 100 kW in averaged beam power, 2) Performance tests of the RF window in the high-power klystron and of the electron beam window, 3) Development of a self-driven rotating electron-to-positron converter and the performance tests, 4) Proposal of multi-channel beam generation system for monoenergetic positrons, with a series of moderator assemblies based on a newly developed Monte Carlo simulation and the demonstrative experiment, 5) Proposal of highly efficient moderator structures, 6) Conceptual design of a local shield to suppress the surrounding radiation and activation levels.
Detection of pulsed bremsstrahlung-induced prompt neutron capture gamma rays with a HPGe detector
NASA Astrophysics Data System (ADS)
Jones, James L.
1997-02-01
The Idaho National Engineering Laboratory (INEL) is developing a novel photoneutron-based nondestructive evaluation technique which uses a pulsed, high-energy electron accelerator and gamma-ray spectrometry. Highly penetrating pulses of bremsstrahlung photons are produced by each pulse of electrons. Interrogating neutrons are generated by the bremsstrahlung photons interacting within a photoneutron source material. The interactions of the neutrons within a target result in the emission of elemental characteristic gamma-rays. Spectrometry is performed by analyzing the photoneutron-induced, prompt gama-rays acquired between accelerator pulses with a unique, high- purity germanium gamma-ray detection system using a modified transistor reset preamplifier. The detection system, the experimental configuration, and the accelerator operation used to characterize the detection systems performance are described. Using a 6.5-MeV electron accelerator and a beryllium metal photoneutron source, gamma-ray spectra were successfully acquired for Al, Cu, polyethylene, NaCl, and depleted uranium targets as soon as 30 microsecond(s) after each bremsstrahlung flash.
Lepton identification at particle flow oriented detector for the future e+e- Higgs factories
NASA Astrophysics Data System (ADS)
Yu, Dan; Ruan, Manqi; Boudry, Vincent; Videau, Henri
2017-09-01
The lepton identification is essential for the physics programs at high-energy frontier, especially for the precise measurement of the Higgs boson. For this purpose, a toolkit for multivariate data analysis (TMVA) based lepton identification (LICH) has been developed for detectors using high granularity calorimeters. Using the conceptual detector geometry for the Circular Electron-Positron Collider (CEPC) and single charged particle samples with energy larger than 2 GeV, LICH identifies electrons/muons with efficiencies higher than 99.5% and controls the mis-identification rate of hadron to muons/electrons to better than 1/0.5%. Reducing the calorimeter granularity by 1-2 orders of magnitude, the lepton identification performance is stable for particles with E > 2 GeV. Applied to fully simulated eeH/μ μ H events, the lepton identification performance is consistent with the single particle case: the efficiency of identifying all the high energy leptons in an event, is 95.5-98.5%.
Fukuda, Kenjiro; Someya, Takao
2017-07-01
Printed electronics enable the fabrication of large-scale, low-cost electronic devices and systems, and thus offer significant possibilities in terms of developing new electronics/optics applications in various fields. Almost all electronic applications require information processing using logic circuits. Hence, realizing the high-speed operation of logic circuits is also important for printed devices. This report summarizes recent progress in the development of printed thin-film transistors (TFTs) and integrated circuits in terms of materials, printing technologies, and applications. The first part of this report gives an overview of the development of functional inks such as semiconductors, electrodes, and dielectrics. The second part discusses high-resolution printing technologies and strategies to enable high-resolution patterning. The main focus of this report is on obtaining printed electrodes with high-resolution patterning and the electrical performance of printed TFTs using such printed electrodes. In the final part, some applications of printed electronics are introduced to exemplify their potential. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Odorici, F; Malferrari, L; Montanari, A; Rizzoli, R; Mascali, D; Castro, G; Celona, L; Gammino, S; Neri, L
2016-02-01
Different electron guns based on cold- or hot-cathode technologies have been developed since 2009 at INFN for operating within ECR plasma chambers as sources of auxiliary electrons, with the aim of boosting the source performances by means of a higher plasma lifetime and density. Their application to microwave discharge ion sources, where plasma is not confined, has required an improvement of the gun design, in order to "screen" the cathode from the plasma particles. Experimental tests carried out on a plasma reactor show a boost of the plasma density, ranging from 10% to 90% when the electron guns are used, as explained by plasma diffusion models.
Wafer-scale solution-derived molecular gate dielectrics for low-voltage graphene electronics
NASA Astrophysics Data System (ADS)
Sangwan, Vinod K.; Jariwala, Deep; Everaerts, Ken; McMorrow, Julian J.; He, Jianting; Grayson, Matthew; Lauhon, Lincoln J.; Marks, Tobin J.; Hersam, Mark C.
2014-02-01
Graphene field-effect transistors are integrated with solution-processed multilayer hybrid organic-inorganic self-assembled nanodielectrics (SANDs). The resulting devices exhibit low-operating voltage (2 V), negligible hysteresis, current saturation with intrinsic gain >1.0 in vacuum (pressure < 2 × 10-5 Torr), and overall improved performance compared to control devices on conventional SiO2 gate dielectrics. Statistical analysis of the field-effect mobility and residual carrier concentration demonstrate high spatial uniformity of the dielectric interfacial properties and graphene transistor characteristics over full 3 in. wafers. This work thus establishes SANDs as an effective platform for large-area, high-performance graphene electronics.
Electronically tunable phase locked loop oscillator
NASA Astrophysics Data System (ADS)
Balasis, M.; Davis, M. R.; Jackson, C. R.
1982-02-01
This report describes the design and development of a low noise, high power, variable oscillator incorporating a high 'Q' electronically tunable resonator as the frequency determining element. The VCO provides improved EMC performance in phase locked synthesizers which are a part of communications equipments. The oscillator combines a low noise VMOS transistor with the selectivity and out-of-band attenuation of a coaxial resonator to provide superior EMC performance. Several oscillator designs were examined and the basis for the final configuration is presented. Oscillator noise is discussed and models for analysis are explained. A brass board model was constructed and tested and the technical results are presented.
NASA Astrophysics Data System (ADS)
Yan, Hailong; Lu, Yang; Zhu, Kejia; Peng, Tao; Liu, Xianming; Liu, Yunxin; Luo, Yongsong
2018-05-01
A series of CuCo2O4 nanostructures with different morphologies were prepared by a hydrothermal method in combination with thermal treatment. The morphology, structure and composition were investigated by scanning electron microscopy, transmission electron microscopy, X-ray diffraction and X-ray photoelectron spectroscopy. As the electrode materials for supercapacitors, CuCo2O4 nanoneedles delivered the highest specific capacitance compared with other CuCo2O4 nanostructures. Electrochemical performance measurements demonstrate that the carbon layer can improve the electrochemical stability of CuCo2O4 nanoneedles. The CuCo2O4@C electrode exhibits a high specific capacitance of 1432.4 F g-1 at a current density of 1 A g-1, with capacitance retention of 98.2% after 3000 circles. These characteristics of CuCo2O4@C composite are mainly due to the unique one dimensional needle-liked architecture and the conducting carbon, which provide a faster ion/electron transfer rate. These excellent performances of the CuCo2O4@C electrode confirmed the material as a positive electrode for hybrid supercapacitor application.
NASA Astrophysics Data System (ADS)
Wang, Feng; Yin, Lei; Wang, Zhenxing; Xu, Kai; Wang, Fengmei; Shifa, Tofik Ahmed; Huang, Yun; Wen, Yao; Jiang, Chao; He, Jun
2016-11-01
MoTe2 is an emerging two-dimensional layered material showing ambipolar/p-type conductivity, which makes it an important supplement to n-type two-dimensional layered material like MoS2. However, the properties based on its van der Waals heterostructures have been rarely studied. Here, taking advantage of the strong Fermi level tunability of monolayer graphene (G) and the feature of van der Waals interfaces that is free from Fermi level pinning effect, we fabricate G/MoTe2/G van der Waals heterostructures and systematically study the electronic and optoelectronic properties. We demonstrate the G/MoTe2/G FETs with low Schottky barriers for both holes (55.09 meV) and electrons (122.37 meV). Moreover, the G/MoTe2/G phototransistors show high photoresponse performances with on/off ratio, responsivity, and detectivity of ˜105, 87 A/W, and 1012 Jones, respectively. Finally, we find the response time of the phototransistors is effectively tunable and a mechanism therein is proposed to explain our observation. This work provides an alternative choice of contact for high-performance devices based on p-type and ambipolar two-dimensional layered materials.
A flexible UV nanosensor based on reduced graphene oxide decorated ZnO nanostructures
NASA Astrophysics Data System (ADS)
Wang, Zhenxing; Zhan, Xueying; Wang, Yajun; Muhammad, Safdar; Huang, Ying; He, Jun
2012-03-01
A low-cost, compatible with flexible electronics, high performance UV sensor has been achieved from a reduced graphene oxide (RGO) decorated hydrangea-like ZnO film on a PDMS substrate. The hydrangea-like ZnO UV sensor has the best UV sensing performance among devices made of three kinds of ZnO nanostructures synthesized by a hydrothermal method, and demonstrated a dramatic enhancement in on/off ratio and photoresponse current by introducing an appropriate weight ratio of RGO. The on/off ratio of the 0.05% RGO/ZnO sensor increases almost one order of magnitude compared to that of a pristine hydrangea-like ZnO UV sensor. While for the 5% RGO decorated ZnO sensor, the photoresponse current reaches as high as ~1 μA and exceeds 700 times that of a ZnO UV sensor. These results indicate that RGO is an appropriate material to enhance the performance of ZnO nanostructure UV sensors based on its unique features, especially the high optical transparency and excellent electronic conductivity. Our findings will make RGO/ZnO nanohybrids extraordinarily promising in optoelectronics, flexible electronics and sensor applications.
A flexible UV nanosensor based on reduced graphene oxide decorated ZnO nanostructures.
Wang, Zhenxing; Zhan, Xueying; Wang, Yajun; Muhammad, Safdar; Huang, Ying; He, Jun
2012-04-21
A low-cost, compatible with flexible electronics, high performance UV sensor has been achieved from a reduced graphene oxide (RGO) decorated hydrangea-like ZnO film on a PDMS substrate. The hydrangea-like ZnO UV sensor has the best UV sensing performance among devices made of three kinds of ZnO nanostructures synthesized by a hydrothermal method, and demonstrated a dramatic enhancement in on/off ratio and photoresponse current by introducing an appropriate weight ratio of RGO. The on/off ratio of the 0.05% RGO/ZnO sensor increases almost one order of magnitude compared to that of a pristine hydrangea-like ZnO UV sensor. While for the 5% RGO decorated ZnO sensor, the photoresponse current reaches as high as ∼1 μA and exceeds 700 times that of a ZnO UV sensor. These results indicate that RGO is an appropriate material to enhance the performance of ZnO nanostructure UV sensors based on its unique features, especially the high optical transparency and excellent electronic conductivity. Our findings will make RGO/ZnO nanohybrids extraordinarily promising in optoelectronics, flexible electronics and sensor applications.
Xu, Rongguo; Zhang, Kai; Liu, Xi; Jin, Yaocheng; Jiang, Xiao-Fang; Xu, Qing-Hua; Huang, Fei; Cao, Yong
2018-01-17
Solution-processable highly transparent and thickness-insensitive hybrid electron-transport layer (ETL) with enhanced electron-extraction and electron-transport properties for high-performance polymer solar cell was reported. With the incorporation of Cs 2 CO 3 into the poly[(9,9-bis(6'-((N,N-diethyl)-N-ethylammonium)-hexyl)-2,7-fluorene)-alt-1,4-diphenylsulfide]dibromide (PF6NPSBr) ETL, the power conversion efficiency (PCE) of resulted polymer solar cells (PSCs) was significantly enhanced due to the favorable interfacial contact, energy-level alignment, and thus facile electron transport in the PSC device. These organic-inorganic hybrid ETLs also exhibited high transparency and high electron mobility. All of these combined properties ensured us to design novel thickness-insensitive ETLs that avoid the parasitic absorption of ETL itself simultaneously. With the conventional device structure with poly{4,8-bis[5-(2-ethylhexyl)thiophen-2-yl]benzo[1,2-b:4,5-b']dithiophene-2,6-diyl-alt-3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophene-4,6-diyl} (PTB7-Th) as a donor and [6,6]-phenyl-C71-butyric acid methyl ester (PC 71 BM) as an acceptor, devices with hybrid ETLs exhibited PCE of 8.30-9.45% within a wide range of ETL thickness. A notable PCE of 10.78% was achieved with the thick active layer poly(2,5-thiophene-alt-5,5'-(5,10-bis(4-(2-octyldodecyl)thiophen-2-yl)naphtho[1,2-c:5,6-c']bis([1,2,5]thiadiazole)) (PTNT812):PC 71 BM. These findings indicated that doping alkali salt into the organic interfacial materials can be a promising strategy to design highly efficient and thickness-insensitive ETL, which may be suitable for large-area PSC modules device fabrication with roll-to-roll printing technique.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roesler, Stefan
2002-09-19
Energy spectra of high-energy neutrons and neutron time-of-flight spectra were calculated for the setup of experiment T-454 performed with a NE213 liquid scintillator at the Final Focus Test Beam (FFTB) facility at the Stanford Linear Accelerator Center. The neutrons were created by the interaction a 28.7 GeV electron beam in the aluminum beam dump of the FFTB which is housed inside a thick steel and concrete shielding. In order to determine the attenuation length of high-energy neutrons additional concrete shielding of various thicknesses was placed outside the existing shielding. The calculations were performed using the FLUKA interaction and transport code.more » The energy and time-of-flight were recorded for the location of the detector allowing a detailed comparison with the experimental data. A generally good description of the data is achieved adding confidence to the use of FLUKA for the design of shielding for high-energy electron accelerators.« less
NASA Astrophysics Data System (ADS)
Lee, Cheng-Wei; Schleife, André
Stability and safety issues have been challenging difficulties for materials and devices under radiation such as solar panels in outer space. On the other hand, radiation can be utilized to modify materials and increase their performance via focused-ion beam patterning at nano-scale. In order to grasp the underlying processes, further understanding of the radiation-material and radiation-defect interactions is required and inevitably involves the electron-ion dynamics that was traditionally hard to capture. By applying Ehrenfest dynamics based on time-dependent density functional theory, we have been able to perform real-time simulation of electron-ion dynamics in MgO and InP/GaP. By simulating a high-energy proton penetrating the material, the energy gain of electronic system can be interpreted as electronic stopping power and the result is compared to existing data. We also study electronic stopping in the vicinity of defects: for both oxygen vacancy in MgO and interface of InP/GaP superlattice, electronic stopping shows strong dependence on the velocity of the proton. To study the energy transfer from electronic system to lattice, simulations of about 100 femto-seconds are performed and we analyze the difference between Ehrenfest and Born-Oppenheimer molecular dynamics.
Evaluation of high temperature dielectric films for high voltage power electronic applications
NASA Technical Reports Server (NTRS)
Suthar, J. L.; Laghari, J. R.
1992-01-01
Three high temperature films, polyimide, Teflon perfluoroalkoxy and poly-P-xylene, were evaluated for possible use in high voltage power electronic applications, such as in high energy density capacitors, cables and microelectronic circuits. The dielectric properties, including permittivity and dielectric loss, were obtained in the frequency range of 50 Hz to 100 kHz at temperatures up to 200 C. The dielectric strengths at 60 Hz were determined as a function of temperature to 250 C. Confocal laser microscopy was performed to diagnose for voids and microimperfections within the film structure. The results obtained indicate that all films evaluated are capable of maintaining their high voltage properties, with minimal degradation, at temperatures up to 200 C. However, above 200 C, they lose some of their electrical properties. These films may therefore become viable candidates for high voltage power electronic applications at high temperatures.
Graphene-on-GaN Hot Electron Transistor
NASA Astrophysics Data System (ADS)
Zubair, Ahmad; Nourbakhsh, Amirhasan; Hong, Jin-Yong; Song, Yi; Qi, Meng; Jena, Debdeep; Kong, Jing; Dresselhaus, Mildred S.; Palacios, Tomas
Hot electron transistors (HETs) are promising devices for potential high-frequency operation that currently CMOS cannot provide. In an HET, carrier transport is due to the injection of hot electrons from an emitter to a collector which is modulated by a base electrode. Therefore, ultra-thin base electrodes are needed to facilitate ultra-short transit time and high performance for THz operation range. In this regard, graphene, the thinnest conductive membrane in nature, is considered the best candidate for the base material in HETs. The existing HETs with SiO2/Si as emitter stack suffer from low current gain and output current density. In this work, we use the two-dimensional electron gas (2-DEG) in a GaN-based heterostructure as emitter and monolayer graphene as the base electrode. The transport study of the proof-of-concept device shows high output current density (>50 A/cm2) , current gain (>3) and ballistic injection efficiency of 75%. These results indicate that performance parameters can be further improved by engineering the band offset of the graphene/collector stack and improved interface between graphene and GaN. Army Research Office (ARO) (Grant Nos. W911NF-14-2-0071, 6930265, and 6930861).
NASA Astrophysics Data System (ADS)
Zhang, Zhongwei; Xie, Yuee; Peng, Qing; Chen, Yuanping
2016-02-01
Modern society is hungry for electrical power. To improve the efficiency of energy harvesting from heat, extensive efforts seek high-performance thermoelectric materials that possess large differences between electronic and thermal conductance. Here we report a super high-performance material of consisting of MoS2/WS2 hybrid nanoribbons discovered from a theoretical investigation using nonequilibrium Green’s function methods combined with first-principles calculations and molecular dynamics simulations. The hybrid nanoribbons show higher efficiency of energy conversion than the MoS2 and WS2 nanoribbons due to the fact that the MoS2/WS2 interface reduces lattice thermal conductivity more than the electron transport. By tuning the number of the MoS2/WS2 interfaces, a figure of merit ZT as high as 5.5 is achieved at a temperature of 600 K. Our results imply that the MoS2/WS2 hybrid nanoribbons have promising applications in thermal energy harvesting.
Zhang, Zhongwei; Xie, Yuee; Peng, Qing; Chen, Yuanping
2016-01-01
Modern society is hungry for electrical power. To improve the efficiency of energy harvesting from heat, extensive efforts seek high-performance thermoelectric materials that possess large differences between electronic and thermal conductance. Here we report a super high-performance material of consisting of MoS2/WS2 hybrid nanoribbons discovered from a theoretical investigation using nonequilibrium Green’s function methods combined with first-principles calculations and molecular dynamics simulations. The hybrid nanoribbons show higher efficiency of energy conversion than the MoS2 and WS2 nanoribbons due to the fact that the MoS2/WS2 interface reduces lattice thermal conductivity more than the electron transport. By tuning the number of the MoS2/WS2 interfaces, a figure of merit ZT as high as 5.5 is achieved at a temperature of 600 K. Our results imply that the MoS2/WS2 hybrid nanoribbons have promising applications in thermal energy harvesting. PMID:26884123
Review of Two-phase Electronics Cooling for Army Vehicle Applications
2010-09-01
electronics occurred. Mudawar et al. (7) developed a spray cooler as part of the U.S. Department of Energy’s (DOE’s) Power Electronics and Electric...demonstrated by Mudawar (28) on the SEM-E BTPFL-C3 avionics Clamshell Module. By using direct two- phase jet-impingement and FC-72 dielectric fluid...cooling necessary for high heat flux electronic systems. One example is a study performed by Lee and Mudawar (13) with R134A and HFE1700 direct and
Li, Ludong; Gu, Leilei; Lou, Zheng; Fan, Zhiyong; Shen, Guozhen
2017-04-25
Here we report the fabrication of high-performance ultraviolet photodetectors based on a heterojunction device structure in which ZnO quantum dots were used to decorate Zn 2 SnO 4 nanowires. Systematic investigations have shown their ultrahigh light-to-dark current ratio (up to 6.8 × 10 4 ), specific detectivity (up to 9.0 × 10 17 Jones), photoconductive gain (up to 1.1 × 10 7 ), fast response, and excellent stability. Compared with a pristine Zn 2 SnO 4 nanowire, a quantum dot decorated nanowire demonstrated about 10 times higher photocurrent and responsivity. Device physics modeling showed that their high performance originates from the rational energy band engineering, which allows efficient separation of electron-hole pairs at the interfaces between ZnO quantum dots and a Zn 2 SnO 4 nanowire. As a result of band engineering, holes migrate to ZnO quantum dots, which increases electron concentration and lifetime in the nanowire conduction channel, leading to significantly improved photoresponse. The enhancement mechanism found in this work can also be used to guide the design of high-performance photodetectors based on other nanomaterials. Furthermore, flexible ultraviolet photodetectors were fabricated and integrated into a 10 × 10 device array, which constitutes a high-performance flexible ultraviolet image sensor. These intriguing results suggest that the band alignment engineering on nanowires can be rationally achieved using compound semiconductor quantum dots. This can lead to largely improved device performance. Particularly for ZnO quantum dot decorated Zn 2 SnO 4 nanowires, these decorated nanowires may find broad applications in future flexible and wearable electronics.
Solution-processed assembly of ultrathin transparent conductive cellulose nanopaper embedding AgNWs
NASA Astrophysics Data System (ADS)
Song, Yuanyuan; Jiang, Yaoquan; Shi, Liyi; Cao, Shaomei; Feng, Xin; Miao, Miao; Fang, Jianhui
2015-08-01
Natural biomass based cellulose nanopaper is becoming a promising transparent substrate to supersede traditional petroleum based polymer films in realizing future flexible paper-electronics. Here, ultrathin, highly transparent, outstanding conductive hybrid nanopaper with excellent mechanical flexibility was synthesized by the assembly of nanofibrillated cellulose (NFC) and silver nanowires (AgNWs) using a pressured extrusion paper-making technique. The hybrid nanopaper with a thickness of 4.5 μm has a good combination of transparent conductive performance and mechanical stability using bamboo/hemp NFC and AgNWs cross-linked by hydroxypropylmethyl cellulose (HPMC). The heterogeneous fibrous structure of BNFC/HNFC/AgNWs endows a uniform distribution and an enhanced forward light scattering, resulting in high electrical conductivity and optical transmittance. The hybrid nanopaper with an optimal weight ratio of BNFC/HNFC to AgNWs shows outstanding synergistic properties with a transmittance of 86.41% at 550 nm and a sheet resistance of 1.90 ohm sq-1, equal to the electronic conductivity, which is about 500 S cm-1. The BNFC/HNFC/AgNW hybrid nanopaper maintains a stable electrical conductivity after the peeling test and bending at 135° for 1000 cycles, indicating remarkably strong adhesion and mechanical flexibility. Of importance here is that the high-performance and low-cost hybrid nanopaper shows promising potential for electronics application in solar cells, flexible displays and other high-technology products.Natural biomass based cellulose nanopaper is becoming a promising transparent substrate to supersede traditional petroleum based polymer films in realizing future flexible paper-electronics. Here, ultrathin, highly transparent, outstanding conductive hybrid nanopaper with excellent mechanical flexibility was synthesized by the assembly of nanofibrillated cellulose (NFC) and silver nanowires (AgNWs) using a pressured extrusion paper-making technique. The hybrid nanopaper with a thickness of 4.5 μm has a good combination of transparent conductive performance and mechanical stability using bamboo/hemp NFC and AgNWs cross-linked by hydroxypropylmethyl cellulose (HPMC). The heterogeneous fibrous structure of BNFC/HNFC/AgNWs endows a uniform distribution and an enhanced forward light scattering, resulting in high electrical conductivity and optical transmittance. The hybrid nanopaper with an optimal weight ratio of BNFC/HNFC to AgNWs shows outstanding synergistic properties with a transmittance of 86.41% at 550 nm and a sheet resistance of 1.90 ohm sq-1, equal to the electronic conductivity, which is about 500 S cm-1. The BNFC/HNFC/AgNW hybrid nanopaper maintains a stable electrical conductivity after the peeling test and bending at 135° for 1000 cycles, indicating remarkably strong adhesion and mechanical flexibility. Of importance here is that the high-performance and low-cost hybrid nanopaper shows promising potential for electronics application in solar cells, flexible displays and other high-technology products. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr03218k
High-Energy Electron Shell in ECR Ion Source:
NASA Astrophysics Data System (ADS)
Niimura, M. G.; Goto, A.; Yano, Y.
1997-05-01
As an injector of cyclotrons and RFQ linacs, ECR ion source (ECRIS) is expected to deliver highly charged ions (HCI) at high beam-current (HBC). Injections of light gases and supplementary electrons have been employed for enhancement of HCI and HBC, respectively. Further amelioration of the performance may be feasible by investigating the hot-electron ring inside an ECRIS. Its existence has been granted because of the MeV of Te observable via X-ray diagnostics. However, its location, acceleration mechanism, and effects on the performance are not well known.We found them by deriving the radially negative potential distribution for an ECRIS from measured endloss-current data. It was evidenced from a hole-burning on the parabolic potential profile (by uniformly distributed warm-electron space charges of 9.5x10^5cm-3) and from a local minimum of the electrostatically-trapped ion distribution. A high-energy electron shell (HEES) was located right on the ECR-radius of 6 cm with shell-halfwidth of 1 cm. Such a thin shell around core plasma can only be generated by the Sadeev-Shapiro or v_phxBz acceleration mechanism that can raise Te up to a relativistic value. Here, v_ph is the phase velocity of ES Bernstein waves propagating backwards against incident microwave and Bz the axial mirror magnetic field. The HEES carries diamagnetic current which reduces the core magnetic pressure, thereby stabilizing the ECR surface against driftwave instabilities similarly to gas-mixing.
Lubberink, Mark; Lundqvist, Hans; Tolmachev, Vladimir
2002-02-21
We propose the use of the Auger electron and positron-emitting generator 134Ce/134La (half-lives 3.16 d and 6.45 min) for radionuclide therapy. It combines emission of high-energy beta particles with Auger electrons. The high-energy beta particles have similar energies as those emitted by 90Y. Many cancer patients receiving radionuclide therapy have both bulk tumours, which are best treated with high-energy beta particles, and single spread cells or micrometastasis, which are preferably treated with low-energy electrons such as Auger and conversion electrons. Furthermore, the positron-emitting 134La can be used to study kinetics and dosimetry using PET. Production and PET performance were investigated and theoretical dosimetry calculations were made. PET resolution, recovery and quantitative accuracy were slightly degraded for 134La compared to 18F. 134Ce/134La absorbed doses to single cells were higher than absorbed doses from 90Y and 111In. Absorbed doses to spheres representing bulk tumours were almost as high as for 90Y, and a factor 10 higher than for 111In. Whole-body absorbed doses, based on kinetics of the somatostatin analogue octreotide, were higher for 134Ce/134La than for 90Y because of the 134La annihilation photons. This initial study of the therapeutic possibilities of 134Ce/134La is encouraging and justifies further investigations.
3rd-generation MW/LWIR sensor engine for advanced tactical systems
NASA Astrophysics Data System (ADS)
King, Donald F.; Graham, Jason S.; Kennedy, Adam M.; Mullins, Richard N.; McQuitty, Jeffrey C.; Radford, William A.; Kostrzewa, Thomas J.; Patten, Elizabeth A.; McEwan, Thomas F.; Vodicka, James G.; Wootan, John J.
2008-04-01
Raytheon has developed a 3rd-Generation FLIR Sensor Engine (3GFSE) for advanced U.S. Army systems. The sensor engine is based around a compact, productized detector-dewar assembly incorporating a 640 x 480 staring dual-band (MW/LWIR) focal plane array (FPA) and a dual-aperture coldshield mechanism. The capability to switch the coldshield aperture and operate at either of two widely-varying f/#s will enable future multi-mode tactical systems to more fully exploit the many operational advantages offered by dual-band FPAs. RVS has previously demonstrated high-performance dual-band MW/LWIR FPAs in 640 x 480 and 1280 x 720 formats with 20 μm pitch. The 3GFSE includes compact electronics that operate the dual-band FPA and variable-aperture mechanism, and perform 14-bit analog-to-digital conversion of the FPA output video. Digital signal processing electronics perform "fixed" two-point non-uniformity correction (NUC) of the video from both bands and optional dynamic scene-based NUC; advanced enhancement processing of the output video is also supported. The dewar-electronics assembly measures approximately 4.75 x 2.25 x 1.75 inches. A compact, high-performance linear cooler and cooler electronics module provide the necessary FPA cooling over a military environmental temperature range. 3GFSE units are currently being assembled and integrated at RVS, with the first units planned for delivery to the US Army.
Two-temperature model in molecular dynamics simulations of cascades in Ni-based alloys
Zarkadoula, Eva; Samolyuk, German; Weber, William J.
2017-01-03
In high-energy irradiation events, energy from the fast moving ion is transferred to the system via nuclear and electronic energy loss mechanisms. The nuclear energy loss results in the creation of point defects and clusters, while the energy transferred to the electrons results in the creation of high electronic temperatures, which can affect the damage evolution. In this paper, we perform molecular dynamics simulations of 30 keV and 50 keV Ni ion cascades in nickel-based alloys without and with the electronic effects taken into account. We compare the results of classical molecular dynamics (MD) simulations, where the electronic effects aremore » ignored, with results from simulations that include the electronic stopping only, as well as simulations where both the electronic stopping and the electron-phonon coupling are incorporated, as described by the two temperature model (2T-MD). Finally, our results indicate that the 2T-MD leads to a smaller amount of damage, more isolated defects and smaller defect clusters.« less
Kim, Jong H.; Chueh, Chu-Chen; Williams, Spencer T.; ...
2015-09-24
Here in this work, we describe a room-temperature, solution-processable organic electron extraction layer (EEL) for high-performance planar heterojunction perovskite solar cells (PHJ PVSCs). This EEL is composed of a bilayered fulleropyrrolidinium iodide (FPI)-polyethyleneimine (PEIE) and PC 61BM, which yields a promising power conversion efficiency (PCE) of 15.7% with insignificant hysteresis. We reveal that PC 61BM can serve as a surface modifier of FPI-PEIE to simultaneously facilitate the crystallization of perovskite and the charge extraction at FPI-PEIE/CH 3NH 3PbI 3 interface. Furthermore, the FPI-PEIE can also tune the work function of ITO and dope PC 61BM to promote the efficient electronmore » transport between ITO and PC 61BM. Based on the advantages of room-temperature processability and decent electrical property of FPI-PEIE/PC 61BM EEL, a high-performance flexible PVSC with a PCE ~10% is eventually demonstrated. Lastly, this study shows the potential of low-temperature processed organic EEL to replace transition metal oxide-based interlayers for highly printing compatible PVSCs with high-performance.« less
NASA Astrophysics Data System (ADS)
Choi, Jaewon; Yang, MinHo; Kim, Sung-Kon
2017-11-01
Bio-inspired and environmentally friendly chemical functionalization is a successful way to a new class of hybrid electrode materials for applications in energy storage. Quinone (Q)-hydroquinone (QH2) couples, a prototypical example of organic redox systems, provide fast and reversible proton-coupled electron-transfer reactions which lead to increased capacity. To achieve high capacitance and rate performance, constructing three-dimensional (3D) continuous porous structure is highly desirable. Here we report the hybrid electrodes (GA-C) consisting of 3D graphene aerogel (GA) functionalized with organic redox-active material, catechol derivative, for application to high-performance supercapacitors. The catechol derivative is adsorbed on the surface of GA through non-covalent interactions and promotes fast and reversible Q/QH2 faradaic reactions, providing large specific capacitance of 188 F g-1 at a current of 1 A g-1 and a specific energy of ∼25 Wh kg-1 at a specific power of ∼18,000 W kg-1. 3D continuous porous structure of GA electrode facilitates ion and electron transports, resulting in high rate performance (∼140 F g-1 at a current of 10 A g-1).
Mukamel, Shaul; Healion, Daniel; Zhang, Yu; Biggs, Jason D.
2013-01-01
New free-electron laser and high-harmonic generation X-ray light sources are capable of supplying pulses short and intense enough to perform resonant nonlinear time-resolved experiments in molecules. Valence-electron motions can be triggered impulsively by core excitations and monitored with high temporal and spatial resolution. We discuss possible experiments that employ attosecond X-ray pulses to probe the quantum coherence and correlations of valence electrons and holes, rather than the charge density alone, building on the analogy with existing studies of vibrational motions using femtosecond techniques in the visible regime. PMID:23245522
CMOS technology: a critical enabler for free-form electronics-based killer applications
NASA Astrophysics Data System (ADS)
Hussain, Muhammad M.; Hussain, Aftab M.; Hanna, Amir
2016-05-01
Complementary metal oxide semiconductor (CMOS) technology offers batch manufacturability by ultra-large-scaleintegration (ULSI) of high performance electronics with a performance/cost advantage and profound reliability. However, as of today their focus has been on rigid and bulky thin film based materials. Their applications have been limited to computation, communication, display and vehicular electronics. With the upcoming surge of Internet of Everything, we have critical opportunity to expand the world of electronics by bridging between CMOS technology and free form electronics which can be used as wearable, implantable and embedded form. The asymmetry of shape and softness of surface (skins) in natural living objects including human, other species, plants make them incompatible with the presently available uniformly shaped and rigidly structured today's CMOS electronics. But if we can break this barrier then we can use the physically free form electronics for applications like plant monitoring for expansion of agricultural productivity and quality, we can find monitoring and treatment focused consumer healthcare electronics - and many more creative applications. In our view, the fundamental challenge is to engage the mass users to materialize their creative ideas. Present form of electronics are too complex to understand, to work with and to use. By deploying game changing additive manufacturing, low-cost raw materials, transfer printing along with CMOS technology, we can potentially stick high quality CMOS electronics on any existing objects and embed such electronics into any future objects that will be made. The end goal is to make them smart to augment the quality of our life. We use a particular example on implantable electronics (brain machine interface) and its integration strategy enabled by CMOS device design and technology run path.
Carbon Based Transistors and Nanoelectronic Devices
NASA Astrophysics Data System (ADS)
Rouhi, Nima
Carbon based materials (carbon nanotube and graphene) has been extensively researched during the past decade as one of the promising materials to be used in high performance device technology. In long term it is thought that they may replace digital and/or analog electronic devices, due to their size, near-ballistic transport, and high stability. However, a more realistic point of insertion into market may be the printed nanoelectronic circuits and sensors. These applications include printed circuits for flexible electronics and displays, large-scale bendable electrical contacts, bio-membranes and bio sensors, RFID tags, etc. In order to obtain high performance thin film transistors (as the basic building block of electronic circuits) one should be able to manufacture dense arrays of all semiconducting nanotubes. Besides, graphene synthesize and transfer technology is in its infancy and there is plenty of room to improve the current techniques. To realize the performance of nanotube and graphene films in such systems, we need to economically fabricate large-scale devices based on these materials. Following that the performance control over such devices should also be considered for future design variations for broad range of applications. Here we have first investigated carbon nanotube ink as the base material for our devices. The primary ink used consisted of both metallic and semiconducting nanotubes which resulted in networks suitable for moderate-resistivity electrical connections (such as interconnects) and rfmatching circuits. Next, purified all-semiconducting nanotube ink was used to fabricate waferscale, high performance (high mobility, and high on/off ratio) thin film transistors for printed electronic applications. The parameters affecting device performance were studied in detail to establish a roadmap for the future of purified nanotube ink printed thin film transistors. The trade of between mobility and on/off ratio of such devices was studied and the effect of nanotube network density was explained in detail. On the other hand, graphene transfer technology was explored here as well. Annealing techniques were utilized to deposit clean graphene on arbitrary substrates. Raman spectroscopy and Raman data analysis was used to confirm the clean process. Furthermore, suspended graphene membrane was fabricated using single and multi-layer graphene films. This can make a major impact on graphene based transistors and bio-nano sensors technology.
Renewing functionalized graphene as electrodes for high-performance supercapacitors.
Fang, Yan; Luo, Bin; Jia, Yuying; Li, Xianglong; Wang, Bin; Song, Qi; Kang, Feiyu; Zhi, Linjie
2012-12-11
An acid-assisted ultrarapid thermal strategy is developed for constructing specifically functionalized graphene. The electrochemical performance of functionalized graphene can be boosted via elaborate coupling between the pseudocapacitance and the electronic double layer capacitance through rationally tailoring the structure of graphene sheets. This presents an opportunity for developing further high-performance graphene-based electrodes to bridge the performance gap between traditional capacitors and batteries. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Xia, Minggang; Liang, Chunping; Hu, Ruixue; Cheng, Zhaofang; Liu, Shiru; Zhang, Shengli
2018-05-01
It is imperative and highly desirable to buffer the stress in flexible electronic devices. In this study, we designed and fabricated lamellate poly(dimethylsiloxane) (PDMS) samples with gradient elastic moduli, motivated by the protection of the pomelo pulp by its skin, followed by the measurements of their elastic moduli. We demonstrated that the electrical and fatigue performances of a Ag-nanowire thin film device on the PDMS substrate with a gradient elastic modulus are significantly better than those of a device on a substrate with a monolayer PDMS. This study provides a robust scheme to effectively protect flexible electronic devices.
Electronic cameras for low-light microscopy.
Rasnik, Ivan; French, Todd; Jacobson, Ken; Berland, Keith
2013-01-01
This chapter introduces to electronic cameras, discusses the various parameters considered for evaluating their performance, and describes some of the key features of different camera formats. The chapter also presents the basic understanding of functioning of the electronic cameras and how these properties can be exploited to optimize image quality under low-light conditions. Although there are many types of cameras available for microscopy, the most reliable type is the charge-coupled device (CCD) camera, which remains preferred for high-performance systems. If time resolution and frame rate are of no concern, slow-scan CCDs certainly offer the best available performance, both in terms of the signal-to-noise ratio and their spatial resolution. Slow-scan cameras are thus the first choice for experiments using fixed specimens such as measurements using immune fluorescence and fluorescence in situ hybridization. However, if video rate imaging is required, one need not evaluate slow-scan CCD cameras. A very basic video CCD may suffice if samples are heavily labeled or are not perturbed by high intensity illumination. When video rate imaging is required for very dim specimens, the electron multiplying CCD camera is probably the most appropriate at this technological stage. Intensified CCDs provide a unique tool for applications in which high-speed gating is required. The variable integration time video cameras are very attractive options if one needs to acquire images at video rate acquisition, as well as with longer integration times for less bright samples. This flexibility can facilitate many diverse applications with highly varied light levels. Copyright © 2007 Elsevier Inc. All rights reserved.
Liu, Dequan; Yang, Zhibo; Wang, Peng; Li, Fei; Wang, Desheng; He, Deyan
2013-03-07
Three-dimensional (3D) nanoporous architectures can provide efficient and rapid pathways for Li-ion and electron transport as well as short solid-state diffusion lengths in lithium ion batteries (LIBs). In this work, 3D nanoporous copper-supported cuprous oxide was successfully fabricated by low-cost selective etching of an electron-beam melted Cu(50)Al(50) alloy and subsequent in situ thermal oxidation. The architecture was used as an anode in lithium ion batteries. In the first cycle, the sample delivered an extremely high lithium storage capacity of about 2.35 mA h cm(-2). A high reversible capacity of 1.45 mA h cm(-2) was achieved after 120 cycles. This work develops a promising approach to building reliable 3D nanostructured electrodes for high-performance lithium ion batteries.
Wang, Jie; Ding, Bing; Xu, Yunling; Shen, Laifa; Dou, Hui; Zhang, Xiaogang
2015-10-14
Graphene is considered a promising electrochemical capacitors electrode material due to its high surface area and high electrical conductivity. However, restacking interactions between graphene nanosheets significantly decrease the ion-accessible surface area and impede electronic and ionic transfer. This would, in turn, severely hinder the realization of high energy density. Herein, we report a strategy for preparation of few-layer graphene material with abundant crumples and high-level nitrogen doping. The two-dimensional graphene nanosheets (CNG) feature high ion-available surface area, excellent electronic and ion transfer properties, and high packing density, permitting the CNG electrode to exhibit excellent electrochemical performance. In ionic liquid electrolyte, the CNG electrode exhibits gravimetric and volumetric capacitances of 128 F g(-1) and 98 F cm(-3), respectively, achieving gravimetric and volumetric energy densities of 56 Wh kg(-1) and 43 Wh L(-1). The preparation strategy described here provides a new approach for developing a graphene-based supercapacitor with high gravimetric and volumetric energy densities.
Electronic manufacturing and packaging in Japan
NASA Technical Reports Server (NTRS)
Kelly, Michael J.; Boulton, William R. (Editor); Kukowski, John A.; Meieran, Eugene S.; Pecht, Michael; Peeples, John W.; Tummala, Rao R.
1995-01-01
This report summarizes the status of electronic manufacturing and packaging technology in Japan in comparison to that in the United States, and its impact on competition in electronic manufacturing in general. In addition to electronic manufacturing technologies, the report covers technology and manufacturing infrastructure, electronics manufacturing and assembly, quality assurance and reliability in the Japanese electronics industry, and successful product realization strategies. The panel found that Japan leads the United States in almost every electronics packaging technology. Japan clearly has achieved a strategic advantage in electronics production and process technologies. Panel members believe that Japanese competitors could be leading U.S. firms by as much as a decade in some electronics process technologies. Japan has established this marked competitive advantage in electronics as a consequence of developing low-cost, high-volume consumer products. Japan's infrastructure, and the remarkable cohesiveness of vision and purpose in government and industry, are key factors in the success of Japan's electronics industry. Although Japan will continue to dominate consumer electronics in the foreseeable future, opportunities exist for the United States and other industrial countries to capture an increasingly large part of the market. The JTEC panel has identified no insurmountable barriers that would prevent the United States from regaining a significant share of the consumer electronics market; in fact, there is ample evidence that the United States needs to aggressively pursue high-volume, low-cost electronic assembly, because it is a critical path leading to high-performance electronic systems.
Molecular helices as electron acceptors in high-performance bulk heterojunction solar cells
Yu M. Zhong; Nam, Chang -Yong; Trinh, M. Tuan; ...
2015-09-18
Despite numerous organic semiconducting materials synthesized for organic photovoltaics in the past decade, fullerenes are widely used as electron acceptors in highly efficient bulk-heterojunction solar cells. None of the non-fullerene bulk heterojunction solar cells have achieved efficiencies as high as fullerene-based solar cells. Design principles for fullerene-free acceptors remain unclear in the field. Here we report examples of helical molecular semiconductors as electron acceptors that are on par with fullerene derivatives in efficient solar cells. We achieved an 8.3% power conversion efficiency in a solar cell, which is a record high for non-fullerene bulk heterojunctions. Femtosecond transient absorption spectroscopy revealedmore » both electron and hole transfer processes at the donor–acceptor interfaces. Atomic force microscopy reveals a mesh-like network of acceptors with pores that are tens of nanometres in diameter for efficient exciton separation and charge transport. As a result, this study describes a new motif for designing highly efficient acceptors for organic solar cells.« less
Molecular helices as electron acceptors in high-performance bulk heterojunction solar cells.
Zhong, Yu; Trinh, M Tuan; Chen, Rongsheng; Purdum, Geoffrey E; Khlyabich, Petr P; Sezen, Melda; Oh, Seokjoon; Zhu, Haiming; Fowler, Brandon; Zhang, Boyuan; Wang, Wei; Nam, Chang-Yong; Sfeir, Matthew Y; Black, Charles T; Steigerwald, Michael L; Loo, Yueh-Lin; Ng, Fay; Zhu, X-Y; Nuckolls, Colin
2015-09-18
Despite numerous organic semiconducting materials synthesized for organic photovoltaics in the past decade, fullerenes are widely used as electron acceptors in highly efficient bulk-heterojunction solar cells. None of the non-fullerene bulk heterojunction solar cells have achieved efficiencies as high as fullerene-based solar cells. Design principles for fullerene-free acceptors remain unclear in the field. Here we report examples of helical molecular semiconductors as electron acceptors that are on par with fullerene derivatives in efficient solar cells. We achieved an 8.3% power conversion efficiency in a solar cell, which is a record high for non-fullerene bulk heterojunctions. Femtosecond transient absorption spectroscopy revealed both electron and hole transfer processes at the donor-acceptor interfaces. Atomic force microscopy reveals a mesh-like network of acceptors with pores that are tens of nanometres in diameter for efficient exciton separation and charge transport. This study describes a new motif for designing highly efficient acceptors for organic solar cells.
Three-Dimensional Electrodes for High-Performance Bioelectrochemical Systems
Yu, Yang-Yang; Zhai, Dan-Dan; Si, Rong-Wei; Sun, Jian-Zhong; Liu, Xiang; Yong, Yang-Chun
2017-01-01
Bioelectrochemical systems (BES) are groups of bioelectrochemical technologies and platforms that could facilitate versatile environmental and biological applications. The performance of BES is mainly determined by the key process of electron transfer at the bacteria and electrode interface, which is known as extracellular electron transfer (EET). Thus, developing novel electrodes to encourage bacteria attachment and enhance EET efficiency is of great significance. Recently, three-dimensional (3D) electrodes, which provide large specific area for bacteria attachment and macroporous structures for substrate diffusion, have emerged as a promising electrode for high-performance BES. Herein, a comprehensive review of versatile methodology developed for 3D electrode fabrication is presented. This review article is organized based on the categorization of 3D electrode fabrication strategy and BES performance comparison. In particular, the advantages and shortcomings of these 3D electrodes are presented and their future development is discussed. PMID:28054970
Simulation of plasma loading of high-pressure RF cavities
NASA Astrophysics Data System (ADS)
Yu, K.; Samulyak, R.; Yonehara, K.; Freemire, B.
2018-01-01
Muon beam-induced plasma loading of radio-frequency (RF) cavities filled with high pressure hydrogen gas with 1% dry air dopant has been studied via numerical simulations. The electromagnetic code SPACE, that resolves relevant atomic physics processes, including ionization by the muon beam, electron attachment to dopant molecules, and electron-ion and ion-ion recombination, has been used. Simulations studies have been performed in the range of parameters typical for practical muon cooling channels.
NASA Astrophysics Data System (ADS)
Chung, Yongjin; Ahn, Yeonjoo; Christwardana, Marcelinus; Kim, Hansung; Kwon, Yongchai
2016-04-01
New enzymatic catalysts prepared using physical entrapment and chemical bonding were used as anodic catalysts to enhance the performance of enzymatic biofuel cells (EBCs). For estimating the physical entrapment effect, the best glucose oxidase (GOx) concentration immobilized on polyethyleneimine (PEI) and carbon nanotube (CNT) (GOx/PEI/CNT) was determined, while for inspecting the chemical bonding effect, terephthalaldehyde (TPA) and glutaraldehyde (GA) crosslinkers were employed. According to the enzyme activity and XPS measurements, when the GOx concentration is 4 mg mL-1, they are most effectively immobilized (via the physical entrapment effect) and TPA-crosslinked GOx/PEI/CNT(TPA/[GOx/PEI/CNT]) forms π conjugated bonds via chemical bonding, inducing the promotion of electron transfer by delocalization of electrons. Due to the optimized GOx concentration and π conjugated bonds, TPA/[GOx/PEI/CNT], including 4 mg mL-1 GOx displays a high electron transfer rate, followed by excellent catalytic activity and EBC performance.New enzymatic catalysts prepared using physical entrapment and chemical bonding were used as anodic catalysts to enhance the performance of enzymatic biofuel cells (EBCs). For estimating the physical entrapment effect, the best glucose oxidase (GOx) concentration immobilized on polyethyleneimine (PEI) and carbon nanotube (CNT) (GOx/PEI/CNT) was determined, while for inspecting the chemical bonding effect, terephthalaldehyde (TPA) and glutaraldehyde (GA) crosslinkers were employed. According to the enzyme activity and XPS measurements, when the GOx concentration is 4 mg mL-1, they are most effectively immobilized (via the physical entrapment effect) and TPA-crosslinked GOx/PEI/CNT(TPA/[GOx/PEI/CNT]) forms π conjugated bonds via chemical bonding, inducing the promotion of electron transfer by delocalization of electrons. Due to the optimized GOx concentration and π conjugated bonds, TPA/[GOx/PEI/CNT], including 4 mg mL-1 GOx displays a high electron transfer rate, followed by excellent catalytic activity and EBC performance. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr00902f
Park, Sung-Eun; Kim, Sehwan; Kim, Kangmin; Joe, Hang-Eun; Jung, Buyoung; Kim, Eunkyoung; Kim, Woochul; Min, Byung-Kwon; Hwang, Jungho
2012-12-21
Organic photovoltaic cells with an ordered heterojunction (OHJ) active layer are expected to show increased performance. In the study described here, OHJ cells were fabricated using a combination of nanoimprinting and electrohydrodynamic (EHD) spray deposition methods. After an electron donor material was nanoimprinted with a PDMS stamp (valley width: 230 nm, period: 590 nm) duplicated from a Si nanomold, an electron acceptor material was deposited onto the nanoimprinted donor layer using an EHD spray deposition method. The donor-acceptor interface layer was observed by obtaining cross-sectional images with a focused ion beam (FIB) microscope. The photocurrent generation performance of the OHJ cells was evaluated with the current density-voltage curve under air mass (AM) 1.5 conditions. It was found that the surface morphology of the electron acceptor layer affected the current and voltage outputs of the photovoltaic cells. When an electron acceptor layer with a smooth thin (250 nm above the valley of the electron donor layer) surface morphology was obtained, power conversion efficiency was as high as 0.55%. The electrohydrodynamic spray deposition method used to produce OHJ photovoltaic cells provides a means for the adoption of large area, high throughput processes.
Giant onsite electronic entropy enhances the performance of ceria for water splitting.
Naghavi, S Shahab; Emery, Antoine A; Hansen, Heine A; Zhou, Fei; Ozolins, Vidvuds; Wolverton, Chris
2017-08-18
Previous studies have shown that a large solid-state entropy of reduction increases the thermodynamic efficiency of metal oxides, such as ceria, for two-step thermochemical water splitting cycles. In this context, the configurational entropy arising from oxygen off-stoichiometry in the oxide, has been the focus of most previous work. Here we report a different source of entropy, the onsite electronic configurational entropy, arising from coupling between orbital and spin angular momenta in lanthanide f orbitals. We find that onsite electronic configurational entropy is sizable in all lanthanides, and reaches a maximum value of ≈4.7 k B per oxygen vacancy for Ce 4+ /Ce 3+ reduction. This unique and large positive entropy source in ceria explains its excellent performance for high-temperature catalytic redox reactions such as water splitting. Our calculations also show that terbium dioxide has a high electronic entropy and thus could also be a potential candidate for solar thermochemical reactions.Solid-state entropy of reduction increases the thermodynamic efficiency of ceria for two-step thermochemical water splitting. Here, the authors report a large and different source of entropy, the onsite electronic configurational entropy arising from coupling between orbital and spin angular momenta in f orbitals.
Secor, Ethan B; Smith, Jeremy; Marks, Tobin J; Hersam, Mark C
2016-07-13
Recent developments in solution-processed amorphous oxide semiconductors have established indium-gallium-zinc-oxide (IGZO) as a promising candidate for printed electronics. A key challenge for this vision is the integration of IGZO thin-film transistor (TFT) channels with compatible source/drain electrodes using low-temperature, solution-phase patterning methods. Here we demonstrate the suitability of inkjet-printed graphene electrodes for this purpose. In contrast to common inkjet-printed silver-based conductive inks, graphene provides a chemically stable electrode-channel interface. Furthermore, by embedding the graphene electrode between two consecutive IGZO printing passes, high-performance IGZO TFTs are achieved with an electron mobility of ∼6 cm(2)/V·s and current on/off ratio of ∼10(5). The resulting printed devices exhibit robust stability to aging in ambient as well as excellent resilience to thermal stress, thereby offering a promising platform for future printed electronics applications.
Asymmetric 3d Electronic Structure for Enhanced Oxygen Evolution Catalysis.
Liu, Yang; Yin, Shibin; Shen, Pei Kang
2018-06-27
The oxygen evolution reaction (OER) is an essential process for renewable energy, and designing a bifunctional oxygen electrocatalyst with high catalytic performance plays a significant role. In this work, FeS, Ni 3 S 2 , Fe 5 Ni 4 S 8 , and N, O, S-doped meshy carbon base were successfully synthesized. The sample containing Fe 5 Ni 4 S 8 exhibited excellent OER performance. The density functional theory calculations indicate that the partial density of states for 3d electrons (3d-PDOS) of Fe and Ni atoms are changed from monometallic sulfide to bimetallic sulfide at the sulfur vacancy. The asymmetric 3d electronic structure optimizes the 3d-PDOS of Fe and Ni atoms, and leads to an enhanced OER activity. This work provides a new strategy to prepare a low-cost electrocatalyst for oxygen evolution with high-efficiency.
The effect of safety factor profile on transport in steady-state, high-performance scenarios
Holcomb, C. T.; Ferron, J. R.; Luce, T. C.; ...
2012-03-09
In this study, an analysis of the dependence of transport on the safety factor profile in high-performance, steady-state scenario discharges is presented. This is based on experimental scans of q 95 and q min taken with fixed β N, toroidal field, double-null plasma shape, divertor pumping, and electron cyclotron current drive input. The temperature and thermal diffusivity profiles were found to vary considerably with the q-profile, and these variations were significantly different for electrons and ions. With fixed q 95, both temperature profiles increase and broaden as q min is increased and the magnetic shear becomes low or negative inmore » the inner half radius, but these temperature profile changes are stronger for the electrons. Power balance calculations show the peak in the ion thermal diffusivity (χ i) at ρ – 0.6 – 0.8 increases with q 95 or q min.« less
Wu, J.S.; Kim, A. M.; Bleher, R.; Myers, B.D.; Marvin, R. G.; Inada, H.; Nakamura, K.; Zhang, X.F.; Roth, E.; Li, S.Y.; Woodruff, T. K.; O'Halloran, T. V.; Dravid, Vinayak P.
2013-01-01
A dedicated analytical scanning transmission electron microscope (STEM) with dual energy dispersive spectroscopy (EDS) detectors has been designed for complementary high performance imaging as well as high sensitivity elemental analysis and mapping of biological structures. The performance of this new design, based on a Hitachi HD-2300A model, was evaluated using a variety of biological specimens. With three imaging detectors, both the surface and internal structure of cells can be examined simultaneously. The whole-cell elemental mapping, especially of heavier metal species that have low cross-section for electron energy loss spectroscopy (EELS), can be faithfully obtained. Optimization of STEM imaging conditions is applied to thick sections as well as thin sections of biological cells under low-dose conditions at room- and cryogenic temperatures. Such multimodal capabilities applied to soft/biological structures usher a new era for analytical studies in biological systems. PMID:23500508
Orms, Natalie; Rehn, Dirk R; Dreuw, Andreas; Krylov, Anna I
2018-02-13
Density-based wave function analysis enables unambiguous comparisons of the electronic structure computed by different methods and removes ambiguity of orbital choices. We use this tool to investigate the performance of different spin-flip methods for several prototypical diradicals and triradicals. In contrast to previous calibration studies that focused on energy gaps between high- and low spin-states, we focus on the properties of the underlying wave functions, such as the number of effectively unpaired electrons. Comparison of different density functional and wave function theory results provides insight into the performance of the different methods when applied to strongly correlated systems such as polyradicals. We show that canonical molecular orbitals for species like large copper-containing diradicals fail to correctly represent the underlying electronic structure due to highly non-Koopmans character, while density-based analysis of the same wave function delivers a clear picture of the bonding pattern.
An open-source laser electronics suite
NASA Astrophysics Data System (ADS)
Pisenti, Neal C.; Reschovsky, Benjamin J.; Barker, Daniel S.; Restelli, Alessandro; Campbell, Gretchen K.
2016-05-01
We present an integrated set of open-source electronics for controlling external-cavity diode lasers and other instruments in the laboratory. The complete package includes a low-noise circuit for driving high-voltage piezoelectric actuators, an ultra-stable current controller based on the design of, and a high-performance, multi-channel temperature controller capable of driving thermo-electric coolers or resistive heaters. Each circuit (with the exception of the temperature controller) is designed to fit in a Eurocard rack equipped with a low-noise linear power supply capable of driving up to 5 A at +/- 15 V. A custom backplane allows signals to be shared between modules, and a digital communication bus makes the entire rack addressable by external control software over TCP/IP. The modular architecture makes it easy for additional circuits to be designed and integrated with existing electronics, providing a low-cost, customizable alternative to commercial systems without sacrificing performance.
Influence of mechanical noise inside a scanning electron microscope
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gaudenzi de Faria, Marcelo; Haddab, Yassine, E-mail: yassine.haddab@femto-st.fr; Le Gorrec, Yann
The scanning electron microscope is becoming a popular tool to perform tasks that require positioning, manipulation, characterization, and assembly of micro-components. However, some of these applications require a higher level of performance with respect to dynamics and precision of positioning. One limiting factor is the presence of unidentified noises and disturbances. This work aims to study the influence of mechanical disturbances generated by the environment and by the microscope, identifying how these can affect elements in the vacuum chamber. To achieve this objective, a dedicated setup, including a high-resolution vibrometer, was built inside the microscope. This work led to themore » identification and quantification of main disturbances and noise sources acting on a scanning electron microscope. Furthermore, the effects of external acoustic excitations were analysed. Potential applications of these results include noise compensation and real-time control for high accuracy tasks.« less
Many-body Effect, Carrier Mobility, and Device Performance of Hexagonal Arsenene and Antimonene
NASA Astrophysics Data System (ADS)
Wang, Yangyang; Ye, Meng; Quhe, Ruge; Huang, Pu; Lu, Jing
Monolayer (ML) arsenene and antimonene, as new members of group V-enes, have attracted great interest. Experimentally, multilayer arsenene/antimonene nanoribbons have been fabricated on an InAs/InSb substrate. ML and multilayer antimonene have been isolated by mechanical exfoliation and liquid-phase exfoliation. More importantly, they are highly stable under ambient condition. Together with their wide band gaps predicted by the HSE theory, arsenene and antimonene are very attractive for nanoscale optoelectronic and electronic devices. We investigate the many-body effect and device performance of ML hexagonal arsenene and antimonene using ab initio GW, GW plus Bethe-Salpeter equation and nonequilibrium Green's function approach. The quasi-particle and optical band gaps are calculated in ML arsenene and antimonene for the first time. Low (21/66 cm2/V .s for electron/hole) and moderate carrier mobilities (150/510 cm2/V .s for electron/hole) are obtained, for arsenene and antimonene, respectively. Quantum transport simulation reveals that the performance limits of sub-10 nm ML arsenene and antimonene FETs can satisfy both low power and high performance requirements of the ITRS target in the next decade. National Natural Science Foundation of China (No. 11274016/11474012/11674005/11274233).
Visualization of Hierarchical Nanodomains in Polymer/Fullerene Bulk Heterojunction Solar Cells
Wen, Jianguo; Miller, Dean J.; Chen, Wei; ...
2014-06-20
Here, traditional electron microscopy techniques such as bright-field imaging provide poor contrast for organic films and identification of structures in amorphous material can be problematic, particularly in high-performance organic solar cells. By combining energy-filtered corrected transmission electron microscopy, together with electron energy loss and X-ray energy-dispersive hyperspectral imaging, we have imaged PTB7/ PC 61BM blended polymer optical photovoltaic films, and were able to identify domains ranging in size from several hundred nanometers to several nanometers in extent. This work verifies that microstructural domains exist in bulk heterojunctions in PTB7/PC 61BM polymeric solar cells at multiple length scales and expands ourmore » understanding of optimal device performance providing insight for the design of even higher performance cells.« less
Low lattice thermal conductivity and good thermoelectric performance of cinnabar
NASA Astrophysics Data System (ADS)
Zhao, Yinchang; Dai, Zhenhong; Lian, Chao; Zeng, Shuming; Li, Geng; Ni, Jun; Meng, Sheng
2017-11-01
Based on the combination of first-principles calculations, Boltzmann transport equation, and electron-phonon interaction (EPI), we investigate the thermal and electronic transport properties of crystalline cinnabar (α -HgS ). The calculated lattice thermal conductivity κL is remarkably low, e.g., 0.60 Wm-1K-1 at 300 K , which is about 30 % of the value for the typical thermoelectric material PbTe. Via taking fully into account the k dependence of the electron relaxation time computed from the EPI matrix, the accurate numerical results of thermopower S , electrical conductivity σ , and electronic thermal conductivity κE are obtained. The calculated power factor S2σ is relatively high while the value of κE is negligible, which, together with the fairly low κL, leads to a good thermoelectric performance in the n -type doped α -HgS , with the figure of merit z T even exceeding 1.4. Our analyses reveal that (i) the large weighted phase space and the quite low phonon group velocity result in the low κL, (ii) the presence of flat band around the Fermi level combined with the large band gap causes the high S , and (iii) the small electron linewidths of the conduction band lead to a large relaxation time and thus a relatively high σ . These results support that α -HgS is a potential candidate for thermoelectric applications.
Ultra-slim flexible glass for roll-to-roll electronic device fabrication
NASA Astrophysics Data System (ADS)
Garner, Sean; Glaesemann, Scott; Li, Xinghua
2014-08-01
As displays and electronics evolve to become lighter, thinner, and more flexible, the choice of substrate continues to be critical to their overall optimization. The substrate directly affects improvements in the designs, materials, fabrication processes, and performance of advanced electronics. With their inherent benefits such as surface quality, optical transmission, hermeticity, and thermal and dimensional stability, glass substrates enable high-quality and long-life devices. As substrate thicknesses are reduced below 200 μm, ultra-slim flexible glass continues to provide these inherent benefits to high-performance flexible electronics such as displays, touch sensors, photovoltaics, and lighting. In addition, the reduction in glass thickness also allows for new device designs and high-throughput, continuous manufacturing enabled by R2R processes. This paper provides an overview of ultra-slim flexible glass substrates and how they enable flexible electronic device optimization. Specific focus is put on flexible glass' mechanical reliability. For this, a combination of substrate design and process optimizations has been demonstrated that enables R2R device fabrication on flexible glass. Demonstrations of R2R flexible glass processes such as vacuum deposition, photolithography, laser patterning, screen printing, slot die coating, and lamination have been made. Compatibility with these key process steps has resulted in the first demonstration of a fully functional flexible glass device fabricated completely using R2R processes.
NASA Astrophysics Data System (ADS)
Kim, Kyunghun; Cho, Jinhwi; Jhon, Heesauk; Jeon, Jongwook; Kang, Myounggon; Eon Park, Chan; Lee, Jihoon; An, Tae Kyu
2017-05-01
Organic field-effect transistors (OFETs) have been developed over the past few decades due to their potential applications in future electronics such as wearable and foldable electronics. As the electrical performance of OFETs has improved, patterning organic semiconducting crystals has become a key issue for their commercialization. However, conventional soft lithographic techniques have required the use of expensive processes to fabricate high-resolution master molds. In this study, we demonstrated a cost-effective method to prepare nanopatterned master molds for the fabrication of high-performance nanowire OFETs. We repurposed commercially available compact discs (CDs) as master molds because they already have linear nanopatterns on their surface. Flexible nanopatterned templates were replicated from the CDs using UV-imprint lithography. Subsequently, 6,13-bis-(triisopropylsilylethynyl) pentacene nanowires (NWs) were grown from the templates using a capillary force-assisted lithographic technique. The NW-based OFETs showed a high average field-effect mobility of 2.04 cm2 V-1 s-1. This result was attributed to the high crystallinity of the NWs and to their crystal orientation favorable for charge transport.
Design and performance of vacuum system for high heat flux test facility
NASA Astrophysics Data System (ADS)
Swamy Kidambi, Rajamannar; Mokaria, Prakash; Khirwadkar, Samir; Belsare, Sunil; Khan, M. S.; Patel, Tushar; Krishnan, Deepu S.
2017-04-01
High heat flux test facility (HHFTF) at IPR is used for testing thermal performance of plasma facing materials or components. It consists of various subsystems like vacuum system, high power electron beam system, diagnostic and calibration system, data acquisition and control system and high pressure high temperature water circulation system. Vacuum system consists of large D-shaped chamber, target handling system, pumping systems and support structure. The net volume of vacuum chamber is 5 m3 was maintained at the base pressure of the order of 10-6 mbar for operation of electron gun with minimum beam diameter which is achieved with turbo-molecular pump (TMP) and cryo pump. A variable conductance gate valve is used for maintaining required vacuum in the chamber. Initial pumping of the chamber was carried out by using suitable rotary and root pumps. PXI and PLC based faster real time data acquisition and control system is implemented for performing the various operations like remote operation, online vacuum data measurements, display and status indication of all vacuum equipments. This paper describes in detail the design and implementation of various vacuum system for HHFTF.
NASA Astrophysics Data System (ADS)
Sun, Zhipeng; Firdoz, Shaik; Ying-Xuan Yap, Esther; Li, Lan; Lu, Xianmao
2013-05-01
We report a hierarchical Ni@MnO2 structure consisting of MnO2 nanowires supported on hollow Ni dendrites for high-performance supercapacitors. The Ni@MnO2 structure, which was prepared via a facile electrodeposition method, is highly porous and appears like a forest of pine trees grown vertically on a substrate. At a MnO2 mass loading of 0.35 mg cm-2, the Ni@MnO2 electrode demonstrated a specific capacitance of 1125 F g-1 that is close to the theoretical value. In addition, a remarkable high-rate performance (766 F g-1 at a discharge current density of 100 A g-1) was achieved. Electrochemical tests in a two-electrode configuration for the Ni@MnO2 structure with a high MnO2 loading of 3.6 mg cm-2 showed a low equivalent series resistance (ESR) of 1 Ω and a high specific power of 72 kW kg-1. This superior performance can be attributed to the highly porous and hierarchical structure of Ni@MnO2 that favors rapid diffusion of an electrolyte, highly conductive pathway for electron transport, and efficient material utilization.We report a hierarchical Ni@MnO2 structure consisting of MnO2 nanowires supported on hollow Ni dendrites for high-performance supercapacitors. The Ni@MnO2 structure, which was prepared via a facile electrodeposition method, is highly porous and appears like a forest of pine trees grown vertically on a substrate. At a MnO2 mass loading of 0.35 mg cm-2, the Ni@MnO2 electrode demonstrated a specific capacitance of 1125 F g-1 that is close to the theoretical value. In addition, a remarkable high-rate performance (766 F g-1 at a discharge current density of 100 A g-1) was achieved. Electrochemical tests in a two-electrode configuration for the Ni@MnO2 structure with a high MnO2 loading of 3.6 mg cm-2 showed a low equivalent series resistance (ESR) of 1 Ω and a high specific power of 72 kW kg-1. This superior performance can be attributed to the highly porous and hierarchical structure of Ni@MnO2 that favors rapid diffusion of an electrolyte, highly conductive pathway for electron transport, and efficient material utilization. Electronic supplementary information (ESI) available: More TEM and SEM images, digital photo, XPS, and XRD of the samples. See DOI: 10.1039/c3nr00209h
High-energy electron experiments (HEP) aboard the ERG (Arase) satellite
NASA Astrophysics Data System (ADS)
Mitani, Takefumi; Takashima, Takeshi; Kasahara, Satoshi; Miyake, Wataru; Hirahara, Masafumi
2018-05-01
This paper reports the design, calibration, and operation of high-energy electron experiments (HEP) aboard the exploration of energization and radiation in geospace (ERG) satellite. HEP detects 70 keV-2 MeV electrons and generates a three-dimensional velocity distribution for these electrons in every period of the satellite's rotation. Electrons are detected by two instruments, namely HEP-L and HEP-H, which differ in their geometric factor (G-factor) and range of energies they detect. HEP-L detects 70 keV-1 MeV electrons and its G-factor is 9.3 × 10-4 cm2 sr at maximum, while HEP-H observes 0.7-2 MeV electrons and its G-factor is 9.3 × 10-3 cm2 sr at maximum. The instruments utilize silicon strip detectors and application-specific integrated circuits to readout the incident charge signal from each strip. Before the launch, we calibrated the detectors by measuring the energy spectra of all strips using γ-ray sources. To evaluate the overall performance of the HEP instruments, we measured the energy spectra and angular responses with electron beams. After HEP was first put into operation, on February 2, 2017, it was demonstrated that the instruments performed normally. HEP began its exploratory observations with regard to energization and radiation in geospace in late March 2017. The initial results of the in-orbit observations are introduced briefly in this paper.[Figure not available: see fulltext.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Shuo; Maillet, Yoann; Wang, Fei
2010-01-01
High-frequency common-mode (CM) electromagnetic-interference (EMI) noise is difficult to suppress in electronics systems. EMI filters are used to suppress CM noise, but their performance is greatly affected by the parasitic effects of the grounding paths. In this paper, the parasitic effects of the grounding paths on an EMI filter's performance are investigated in a motor-drive system. The effects of the mutual inductance between two grounding paths are explored. Guidelines for the grounding of CM EMI filters are derived. Simulations and experiments are finally carried out to verify the theoretical analysis.
NASA Astrophysics Data System (ADS)
Joglekar, Prasad; Shastry, Karthik; Satyal, Suman; Weiss, Alexander
2011-10-01
Time of Flight Positron Annihilation Induced Auger Electron Spectroscopy (T-O-F PAES) is a highly surface selective analytical technique in which elemental identification is accomplished through a measurement of the flight time distributions of Auger electrons resulting from the annihilation of core electron by positrons. SIMION charged particle optics simulation software was used to model the trajectories both the incident positrons and outgoing electrons in our existing T-O-F PAES system as well as in a new system currently under construction in our laboratory. The implication of these simulation regarding the instrument design and performance are discussed.
Kubo, S; Nishiura, M; Tanaka, K; Shimozuma, T; Yoshimura, Y; Igami, H; Takahash, H; Mutoh, T; Tamura, N; Tatematsu, Y; Saito, T; Notake, T; Korsholm, S B; Meo, F; Nielsen, S K; Salewski, M; Stejner, M
2010-10-01
Collective Thomson scattering (CTS) system has been constructed at LHD making use of the high power electron cyclotron resonance heating (ECRH) system in Large Helical Device (LHD). The necessary features for CTS, high power probing beams and receiving beams, both with well defined Gaussian profile and with the fine controllability, are endowed in the ECRH system. The 32 channel radiometer with sharp notch filter at the front end is attached to the ECRH system transmission line as a CTS receiver. The validation of the CTS signal is performed by scanning the scattering volume. A new method to separate the CTS signal from background electron cyclotron emission is developed and applied to derive the bulk and high energy ion components for several combinations of neutral beam heated plasmas.
Xing, Q.
2016-07-11
Significant technological advances in scanning electron microscopy (SEM) have been achieved over the past years. Different SEMs can have significant differences in functionality and performance. This work presents the perspectives on selecting an SEM for research on bulk inorganic materials. Understanding materials demands quantitative composition and orientation information, and informative and interpretable images that reveal subtle differences in chemistry, orientation/structure, topography, and electronic structure. The capability to yield informative and interpretable images with high signal-to-noise ratios and spatial resolutions is an overall result of the SEM system as a whole, from the electron optical column to the detection system. Themore » electron optical column determines probe performance. The roles of the detection system are to capture, filter or discriminate, and convert signal electrons to imaging information. The capability to control practical operating parameters including electron probe size and current, acceleration voltage or landing voltage, working distance, detector selection, and signal filtration is inherently determined by the SEM itself. As a platform for various accessories, e.g. an energydispersive spectrometer and an electron backscatter diffraction detector, the properties of the electron optical column, specimen chamber, and stage greatly affect the performance of accessories. Ease-of-use and ease-of-maintenance are of practical importance. It is practically important to select appropriate test specimens, design suitable imaging conditions, and analyze the specimen chamber geometry and dimensions to assess the overall functionality and performance of an SEM. Finally, for an SEM that is controlled/operated with a computer, the stable software and user-friendly interface significantly affect the usability of the SEM.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xing, Q.
Significant technological advances in scanning electron microscopy (SEM) have been achieved over the past years. Different SEMs can have significant differences in functionality and performance. This work presents the perspectives on selecting an SEM for research on bulk inorganic materials. Understanding materials demands quantitative composition and orientation information, and informative and interpretable images that reveal subtle differences in chemistry, orientation/structure, topography, and electronic structure. The capability to yield informative and interpretable images with high signal-to-noise ratios and spatial resolutions is an overall result of the SEM system as a whole, from the electron optical column to the detection system. Themore » electron optical column determines probe performance. The roles of the detection system are to capture, filter or discriminate, and convert signal electrons to imaging information. The capability to control practical operating parameters including electron probe size and current, acceleration voltage or landing voltage, working distance, detector selection, and signal filtration is inherently determined by the SEM itself. As a platform for various accessories, e.g. an energydispersive spectrometer and an electron backscatter diffraction detector, the properties of the electron optical column, specimen chamber, and stage greatly affect the performance of accessories. Ease-of-use and ease-of-maintenance are of practical importance. It is practically important to select appropriate test specimens, design suitable imaging conditions, and analyze the specimen chamber geometry and dimensions to assess the overall functionality and performance of an SEM. Finally, for an SEM that is controlled/operated with a computer, the stable software and user-friendly interface significantly affect the usability of the SEM.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hwang, Sooyeon; Jo, Eunmi; Chung, Kyung Yoon
Ni-rich lithium transition metal oxides have received significant attention due to their high capacities and rate capabilities determined via theoretical calculations. Although the structural properties of these materials are strongly correlated with the electrochemical performance, their structural stability during the high-rate electrochemical reactions has not been fully evaluated yet. In this work, transmission electron microscopy is used to investigate the crystallographic and electronic structural modifications of Ni-based cathode materials at a high charge/discharge rate of 10 C. It is found that the high-rate electrochemical reactions induce structural inhomogeneity near the surface of Ni-rich cathode materials, which limits Li transport andmore » reduces their capacities. Furthermore, this study establishes a correlation between the high-rate electrochemical performance of the Ni-based materials and their structural evolution, which can provide profound insights for designing novel cathode materials having both high energy and power densities.« less
Hwang, Sooyeon; Jo, Eunmi; Chung, Kyung Yoon; ...
2017-11-08
Ni-rich lithium transition metal oxides have received significant attention due to their high capacities and rate capabilities determined via theoretical calculations. Although the structural properties of these materials are strongly correlated with the electrochemical performance, their structural stability during the high-rate electrochemical reactions has not been fully evaluated yet. In this work, transmission electron microscopy is used to investigate the crystallographic and electronic structural modifications of Ni-based cathode materials at a high charge/discharge rate of 10 C. It is found that the high-rate electrochemical reactions induce structural inhomogeneity near the surface of Ni-rich cathode materials, which limits Li transport andmore » reduces their capacities. Furthermore, this study establishes a correlation between the high-rate electrochemical performance of the Ni-based materials and their structural evolution, which can provide profound insights for designing novel cathode materials having both high energy and power densities.« less
NASA Technical Reports Server (NTRS)
Ray, R. J.; Myers, L. P.
1986-01-01
The highly integrated digital electronic control (HIDEC) program will demonstrate and evaluate the improvements in performance and mission effectiveness that result from integrated engine-airframe control systems. Performance improvements will result from an adaptive engine stall margin mode, a highly integrated mode that uses the airplane flight conditions and the resulting inlet distortion to continuously compute engine stall margin. When there is excessive stall margin, the engine is uptrimmed for more thrust by increasing engine pressure ratio (EPR). The EPR uptrim logic has been evaluated and implemente into computer simulations. Thrust improvements over 10 percent are predicted for subsonic flight conditions. The EPR uptrim was successfully demonstrated during engine ground tests. Test results verify model predictions at the conditions tested.
Integrated electronics for time-resolved array of single-photon avalanche diodes
NASA Astrophysics Data System (ADS)
Acconcia, G.; Crotti, M.; Rech, I.; Ghioni, M.
2013-12-01
The Time Correlated Single Photon Counting (TCSPC) technique has reached a prominent position among analytical methods employed in a great variety of fields, from medicine and biology (fluorescence spectroscopy) to telemetry (laser ranging) and communication (quantum cryptography). Nevertheless the development of TCSPC acquisition systems featuring both a high number of parallel channels and very high performance is still an open challenge: to satisfy the tight requirements set by the applications, a fully parallel acquisition system requires not only high efficiency single photon detectors but also a read-out electronics specifically designed to obtain the highest performance in conjunction with these sensors. To this aim three main blocks have been designed: a gigahertz bandwidth front-end stage to directly read the custom technology SPAD array avalanche current, a reconfigurable logic to route the detectors output signals to the acquisition chain and an array of time measurement circuits capable of recording the photon arrival times with picoseconds time resolution and a very high linearity. An innovative architecture based on these three circuits will feature a very high number of detectors to perform a truly parallel spatial or spectral analysis and a smaller number of high performance time-to-amplitude converter offering very high performance and a very high conversion frequency while limiting the area occupation and power dissipation. The routing logic will make the dynamic connection between the two arrays possible in order to guarantee that no information gets lost.
Nanoplasma Formation by High Intensity Hard X-rays
Tachibana, T.; Jurek, Z.; Fukuzawa, H.; Motomura, K.; Nagaya, K.; Wada, S.; Johnsson, P.; Siano, M.; Mondal, S.; Ito, Y.; Kimura, M.; Sakai, T.; Matsunami, K.; Hayashita, H.; Kajikawa, J.; Liu, X.-J.; Robert, E.; Miron, C.; Feifel, R.; Marangos, J. P.; Tono, K.; Inubushi, Y.; Yabashi, M.; Son, S.-K.; Ziaja, B.; Yao, M.; Santra, R.; Ueda, K.
2015-01-01
Using electron spectroscopy, we have investigated nanoplasma formation from noble gas clusters exposed to high-intensity hard-x-ray pulses at ~5 keV. Our experiment was carried out at the SPring-8 Angstrom Compact free electron LAser (SACLA) facility in Japan. Dedicated theoretical simulations were performed with the molecular dynamics tool XMDYN. We found that in this unprecedented wavelength regime nanoplasma formation is a highly indirect process. In the argon clusters investigated, nanoplasma is mainly formed through secondary electron cascading initiated by slow Auger electrons. Energy is distributed within the sample entirely through Auger processes and secondary electron cascading following photoabsorption, as in the hard x-ray regime there is no direct energy transfer from the field to the plasma. This plasma formation mechanism is specific to the hard-x-ray regime and may, thus, also be important for XFEL-based molecular imaging studies. In xenon clusters, photo- and Auger electrons contribute more significantly to the nanoplasma formation. Good agreement between experiment and simulations validates our modelling approach. This has wide-ranging implications for our ability to quantitatively predict the behavior of complex molecular systems irradiated by high-intensity hard x-rays. PMID:26077863
Bernheim, M
2006-03-01
This study aims to evaluate the spatial resolution achievable with photoelectrons in order to perform localised UPS or XPS analyses on various heterogeneous samples. This investigation is intentionally restricted to direct image acquisition by immersion objective lenses, involving electrons ejected with initial energies of several tenths of an electron-volt. In order to characterise the contribution of all optical elements, analytical investigations were associated to numerical simulations based on SIMION 7 software. The acquisition of high-quality images implies a simultaneous reduction in spherical and chromatic aberrations by a narrow aperture stop placed at the output pupil of the objective. With such limitations in useful emission angles, it is shown that monochromatic electron beams build images with a resolution of about 1 nm, especially for the acceleration bias mode where the focussing electrode is biased at a positive high voltage. Even energy dispersed electron beams, limited by a 4 eV band pass spectrometer, can produce images convenient for highly localised ESCA analyses (resolution 3 nm), where the objective lens is associated with an aperture stop of 30 microm in diameter without using acceleration voltages above 5000 V.
Lai, Ying-Chih; Hsu, Fang-Chi; Chen, Jian-Yu; He, Jr-Hau; Chang, Ting-Chang; Hsieh, Ya-Ping; Lin, Tai-Yuan; Yang, Ying-Jay; Chen, Yang-Fang
2013-05-21
A newly designed transferable and flexible label-like organic memory based on a graphene electrode behaves like a sticker, and can be readily placed on desired substrates or devices for diversified purposes. The memory label reveals excellent performance despite its physical presentation. This may greatly extend the memory applications in various advanced electronics and provide a simple scheme to integrate with other electronics. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Characteristics of ring-cusp discharge chambers
NASA Technical Reports Server (NTRS)
Matossian, J. N.; Beattie, J. R.
1991-01-01
Measurements have been obtained for the operating characteristics of a 30 cm diameter ring-cusp ion thruster (RCIT), quantitatively comparing its performance parameters to those of a divergent-field J-series cluster of the same size. The high level of performance established for the RCIT is due to its maintenance of both a higher primary-electron population and Maxwellian-electron temperature, as the beam-ion production cost is reduced to its baseline value. Ion losses to the discharge-chamber walls can be reduced by an applied electrostatic field.
Massively parallel first-principles simulation of electron dynamics in materials
Draeger, Erik W.; Andrade, Xavier; Gunnels, John A.; ...
2017-08-01
Here we present a highly scalable, parallel implementation of first-principles electron dynamics coupled with molecular dynamics (MD). By using optimized kernels, network topology aware communication, and by fully distributing all terms in the time-dependent Kohn–Sham equation, we demonstrate unprecedented time to solution for disordered aluminum systems of 2000 atoms (22,000 electrons) and 5400 atoms (59,400 electrons), with wall clock time as low as 7.5 s per MD time step. Despite a significant amount of non-local communication required in every iteration, we achieved excellent strong scaling and sustained performance on the Sequoia Blue Gene/Q supercomputer at LLNL. We obtained up tomore » 59% of the theoretical sustained peak performance on 16,384 nodes and performance of 8.75 Petaflop/s (43% of theoretical peak) on the full 98,304 node machine (1,572,864 cores). Lastly, scalable explicit electron dynamics allows for the study of phenomena beyond the reach of standard first-principles MD, in particular, materials subject to strong or rapid perturbations, such as pulsed electromagnetic radiation, particle irradiation, or strong electric currents.« less
Meng, Tian; Kou, Zongkui; Amiinu, Ibrahim Saana; Hong, Xufeng; Li, Qingwei; Tang, Yongfu; Zhao, Yufeng; Liu, Shaojun; Mai, Liqiang; Mu, Shichun
2018-04-17
Tuning the electron structure is of vital importance for designing high active electrode materials. Here, for boosting the capacitive performance of tungsten oxide, an atomic scale engineering approach to optimize the electronic structure of tungsten oxide by Ni doping is reported. Density functional theory calculations disclose that through Ni doping, the density of state at Fermi level for tungsten oxide can be enhanced, thus promoting its electron transfer. When used as electrode of supercapacitors, the obtained Ni-doped tungsten oxide with 4.21 at% Ni exhibits an ultrahigh mass-specific capacitance of 557 F g -1 at the current density of 1 A g -1 and preferable durability in a long-term cycle test. To the best of knowledge, this is the highest supercapacitor performance reported so far in tungsten oxide and its composites. The present strategy demonstrates the validity of the electronic structure control in tungsten oxide via introducing Ni atoms for pseudocapacitors, which can be extended to other related fields as well. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Massively parallel first-principles simulation of electron dynamics in materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Draeger, Erik W.; Andrade, Xavier; Gunnels, John A.
Here we present a highly scalable, parallel implementation of first-principles electron dynamics coupled with molecular dynamics (MD). By using optimized kernels, network topology aware communication, and by fully distributing all terms in the time-dependent Kohn–Sham equation, we demonstrate unprecedented time to solution for disordered aluminum systems of 2000 atoms (22,000 electrons) and 5400 atoms (59,400 electrons), with wall clock time as low as 7.5 s per MD time step. Despite a significant amount of non-local communication required in every iteration, we achieved excellent strong scaling and sustained performance on the Sequoia Blue Gene/Q supercomputer at LLNL. We obtained up tomore » 59% of the theoretical sustained peak performance on 16,384 nodes and performance of 8.75 Petaflop/s (43% of theoretical peak) on the full 98,304 node machine (1,572,864 cores). Lastly, scalable explicit electron dynamics allows for the study of phenomena beyond the reach of standard first-principles MD, in particular, materials subject to strong or rapid perturbations, such as pulsed electromagnetic radiation, particle irradiation, or strong electric currents.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Odorici, F., E-mail: fabrizio.odorici@bo.infn.it; Malferrari, L.; Montanari, A.
Different electron guns based on cold- or hot-cathode technologies have been developed since 2009 at INFN for operating within ECR plasma chambers as sources of auxiliary electrons, with the aim of boosting the source performances by means of a higher plasma lifetime and density. Their application to microwave discharge ion sources, where plasma is not confined, has required an improvement of the gun design, in order to “screen” the cathode from the plasma particles. Experimental tests carried out on a plasma reactor show a boost of the plasma density, ranging from 10% to 90% when the electron guns are used,more » as explained by plasma diffusion models.« less
Jochmann, A; Irman, A; Bussmann, M; Couperus, J P; Cowan, T E; Debus, A D; Kuntzsch, M; Ledingham, K W D; Lehnert, U; Sauerbrey, R; Schlenvoigt, H P; Seipt, D; Stöhlker, Th; Thorn, D B; Trotsenko, S; Wagner, A; Schramm, U
2013-09-13
Thomson backscattering of intense laser pulses from relativistic electrons not only allows for the generation of bright x-ray pulses but also for the investigation of the complex particle dynamics at the interaction point. For this purpose a complete spectral characterization of a Thomson source powered by a compact linear electron accelerator is performed with unprecedented angular and energy resolution. A rigorous statistical analysis comparing experimental data to 3D simulations enables, e.g., the extraction of the angular distribution of electrons with 1.5% accuracy and, in total, provides predictive capability for the future high brightness hard x-ray source PHOENIX (photon electron collider for narrow bandwidth intense x rays) and potential gamma-ray sources.
NASA Astrophysics Data System (ADS)
Wells, R. P.; Ghiorso, W.; Staples, J.; Huang, T. M.; Sannibale, F.; Kramasz, T. D.
2016-02-01
A high repetition rate, MHz-class, high-brightness electron source is a key element in future high-repetition-rate x-ray free electron laser-based light sources. The VHF-gun, a novel low frequency radio-frequency gun, is the Lawrence Berkeley National Laboratory (LBNL) response to that need. The gun design is based on a normal conducting, single cell cavity resonating at 186 MHz in the VHF band and capable of continuous wave operation while still delivering the high accelerating fields at the cathode required for the high brightness performance. The VHF-gun was fabricated and successfully commissioned in the framework of the Advanced Photo-injector EXperiment, an injector built at LBNL to demonstrate the capability of the gun to deliver the required beam quality. The basis for the selection of the VHF-gun technology, novel design features, and fabrication techniques are described.
Wells, R P; Ghiorso, W; Staples, J; Huang, T M; Sannibale, F; Kramasz, T D
2016-02-01
A high repetition rate, MHz-class, high-brightness electron source is a key element in future high-repetition-rate x-ray free electron laser-based light sources. The VHF-gun, a novel low frequency radio-frequency gun, is the Lawrence Berkeley National Laboratory (LBNL) response to that need. The gun design is based on a normal conducting, single cell cavity resonating at 186 MHz in the VHF band and capable of continuous wave operation while still delivering the high accelerating fields at the cathode required for the high brightness performance. The VHF-gun was fabricated and successfully commissioned in the framework of the Advanced Photo-injector EXperiment, an injector built at LBNL to demonstrate the capability of the gun to deliver the required beam quality. The basis for the selection of the VHF-gun technology, novel design features, and fabrication techniques are described.
Quantification of the Conditioning Phase in Cooled Pixelated TlBr Detectors
NASA Astrophysics Data System (ADS)
Koehler, Will; He, Zhong; O'Neal, Sean; Yang, Hao; Kim, Hadong; Cirignano, Leonard; Shah, Kanai
2015-08-01
Thallium-bromide (TlBr) is currently under investigation as an alternative room-temperature semiconductor gamma-ray spectrometer due to its favorable material properties (large bandgap, high atomic numbers, and high density). Previous work has shown that 5 mm thick pixelated TlBr detectors can achieve sub-1% FWHM energy resolution at 662 keV for single-pixel events. These results are limited to - 20° C operation where detector performance is stable. During the first one to five days of applied bias at - 20° C, many TlBr detectors undergo a conditioning phase, where the energy resolution improves and the depth-dependent electron drift velocity stabilizes. In this work, the spectroscopic performance, drift velocity, and freed electron concentrations of multiple 5 mm thick pixelated TlBr detectors are monitored throughout the conditioning phase. Additionally, conditioning is performed twice on the same detector at different times to show that improvement mechanisms relax when the detector is stored without bias. We conclude that the improved spectroscopy results from internal electric field stabilization and uniformity caused by fewer trapped electrons.
Watson, T F; Weber, B; House, M G; Büch, H; Simmons, M Y
2015-10-16
We demonstrate high-fidelity electron spin read-out of a precision placed single donor in silicon via spin selective tunneling to either the D(+) or D(-) charge state of the donor. By performing read-out at the stable two electron D(0)↔D(-) charge transition we can increase the tunnel rates to a nearby single electron transistor charge sensor by nearly 2 orders of magnitude, allowing faster qubit read-out (1 ms) with minimum loss in read-out fidelity (98.4%) compared to read-out at the D(+)↔D(0) transition (99.6%). Furthermore, we show that read-out via the D(-) charge state can be used to rapidly initialize the electron spin qubit in its ground state with a fidelity of F(I)=99.8%.
Yan, Hong; Zhong, Mengjuan; Lv, Ze; Wan, Pengbo
2017-11-01
A stretchable, transparent, and body-attachable chemical sensor is assembled from the stretchable nanocomposite network film for ultrasensitive chemical vapor sensing. The stretchable nanocomposite network film is fabricated by in situ preparation of polyaniline/MoS 2 (PANI/MoS 2 ) nanocomposite in MoS 2 suspension and simultaneously nanocomposite deposition onto prestrain elastomeric polydimethylsiloxane substrate. The assembled stretchable electronic sensor demonstrates ultrasensitive sensing performance as low as 50 ppb, robust sensing stability, and reliable stretchability for high-performance chemical vapor sensing. The ultrasensitive sensing performance of the stretchable electronic sensors could be ascribed to the synergistic sensing advantages of MoS 2 and PANI, higher specific surface area, the reliable sensing channels of interconnected network, and the effectively exposed sensing materials. It is expected to hold great promise for assembling various flexible stretchable chemical vapor sensors with ultrasensitive sensing performance, superior sensing stability, reliable stretchability, and robust portability to be potentially integrated into wearable electronics for real-time monitoring of environment safety and human healthcare. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zhang, Zhen; Yan, Lixin; Du, Yingchao; ...
2017-05-01
We propose a method based on the slice energy spread modulation to generate strong subpicosecond density bunching in high-intensity relativistic electron beams. A laser pulse with periodic intensity envelope is used to modulate the slice energy spread of the electron beam, which can then be converted into density modulation after a dispersive section. It is found that the double-horn slice energy distribution of the electron beam induced by the laser modulation is very effective to increase the density bunching. Since the modulation is performed on a relativistic electron beam, the process does not suffer from strong space charge force ormore » coupling between phase spaces, so that it is straightforward to preserve the beam quality for terahertz (THz) radiation and other applications. We show in both theory and simulations that the tunable radiation from the beam can cover the frequency range of 1 - 10 THz with high power and narrow-band spectra.« less
High power beta electron device - Beyond betavoltaics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ayers, William M.; Gentile, Charles A.
Developing watt level power sources with beta emitting radioisotopes has been limited by the inability to utilize high energy (> 100 KeV) beta emitters at high radioisotope loadings without damaging the energy conversion materials. A new type of beta electron power source is described that removes those restrictions. This approach contains the radioisotope in a beta transparent titanium tube and confines beta electrons emitted through the tube wall to spiral trajectories around the tube with an axial magnetic field. The confined beta electrons dissipate energy though multiple interactions with surrounding excimer precursor gas atoms to efficiently generate photons. Photovoltaic cellsmore » convert the photons to electrical power. Since the beta electrons dissipate energy in the excimer precursor gas, the device can be loaded with more than 10 13 Bq of radioisotope to generate 100 milliwatt to watt levels of electrical power without damaging the device materials or degrading its performance. Furthermore, the power source can use a variety of beta radioisotopes and scales by stacking the devices.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Yue; Reeves, Geoffrey D.; Cunningham, Gregory S.
Our study demonstrates the feasibility and reliability of using observations from low Earth orbit (LEO) to forecast and nowcast relativistic electrons in the outer radiation belt. Furthermore, we first report a high cross-energy, cross-pitch-angle coherence discovered between the trapped MeV electrons and precipitating approximately hundreds (~100s) of keV electrons—observed by satellites with very different altitudes—with correlation coefficients as high as ≳ 0.85. We then tested the feasibility of applying linear prediction filters to LEO data to predict the arrival of new MeV electrons during geomagnetic storms, as well as their evolving distributions afterward, based on the coherence. Reliability of thesemore » predictive filters is quantified by the performance efficiency with values as high as 0.74 when driven merely by LEO observations (or up to 0.94 with the inclusion of in situ MeV electron measurements). Finally, a hypothesis based upon the wave-particle resonance theory is proposed to explain the coherence, and a first-principle electron tracing model yields supporting evidence.« less
High power beta electron device - Beyond betavoltaics
Ayers, William M.; Gentile, Charles A.
2017-11-10
Developing watt level power sources with beta emitting radioisotopes has been limited by the inability to utilize high energy (> 100 KeV) beta emitters at high radioisotope loadings without damaging the energy conversion materials. A new type of beta electron power source is described that removes those restrictions. This approach contains the radioisotope in a beta transparent titanium tube and confines beta electrons emitted through the tube wall to spiral trajectories around the tube with an axial magnetic field. The confined beta electrons dissipate energy though multiple interactions with surrounding excimer precursor gas atoms to efficiently generate photons. Photovoltaic cellsmore » convert the photons to electrical power. Since the beta electrons dissipate energy in the excimer precursor gas, the device can be loaded with more than 10 13 Bq of radioisotope to generate 100 milliwatt to watt levels of electrical power without damaging the device materials or degrading its performance. Furthermore, the power source can use a variety of beta radioisotopes and scales by stacking the devices.« less
High power beta electron device - Beyond betavoltaics.
Ayers, William M; Gentile, Charles A
2018-01-01
Developing watt level power sources with beta emitting radioisotopes has been limited by the inability to utilize high energy (> 100KeV) beta emitters at high radioisotope loadings without damaging the energy conversion materials. A new type of beta electron power source is described that removes those restrictions. The approach contains the radioisotope in a beta transparent titanium tube and confines beta electrons emitted through the tube wall to spiral trajectories around the tube with an axial magnetic field. The confined beta electrons dissipate energy though multiple interactions with surrounding excimer precursor gas atoms to efficiently generate photons. Photovoltaic cells convert the photons to electrical power. Since the beta electrons dissipate energy in the excimer precursor gas, the device can be loaded with more than 10 13 Bq of radioisotope to generate 100 milliwatt to watt levels of electrical power without damaging the device materials or degrading its performance. The power source can use a variety of beta radioisotopes and scales by stacking the devices. Copyright © 2017. Published by Elsevier Ltd.
Local electronic effects and irradiation resistance in high-entropy alloys
Egami, Takeshi; Stocks, George Malcolm; Nicholson, Don; ...
2015-08-14
High-entropy alloys are multicomponent solid solutions in which various elements with different chemistries and sizes occupy the same crystallographic lattice sites. Thus, none of the atoms perfectly fit the lattice site, giving rise to considerable local lattice distortions and atomic-level stresses. These characteristics can be beneficial for performance under both radiation and in a high-temperature environment, making them attractive candidates as nuclear materials. We discuss electronic origin of the atomic-level stresses based upon first-principles calculations using a density functional theory approach.
Massively Parallel Real-Time TDDFT Simulations of Electronic Stopping Processes
NASA Astrophysics Data System (ADS)
Yost, Dillon; Lee, Cheng-Wei; Draeger, Erik; Correa, Alfredo; Schleife, Andre; Kanai, Yosuke
Electronic stopping describes transfer of kinetic energy from fast-moving charged particles to electrons, producing massive electronic excitations in condensed matter. Understanding this phenomenon for ion irradiation has implications in modern technologies, ranging from nuclear reactors, to semiconductor devices for aerospace missions, to proton-based cancer therapy. Recent advances in high-performance computing allow us to achieve an accurate parameter-free description of these phenomena through numerical simulations. Here we discuss results from our recently-developed large-scale real-time TDDFT implementation for electronic stopping processes in important example materials such as metals, semiconductors, liquid water, and DNA. We will illustrate important insight into the physics underlying electronic stopping and we discuss current limitations of our approach both regarding physical and numerical approximations. This work is supported by the DOE through the INCITE awards and by the NSF. Part of this work was performed under the auspices of U.S. DOE by LLNL under Contract DE-AC52-07NA27344.
Deleterious effects of nonthermal electrons in shock ignition concept.
Nicolaï, Ph; Feugeas, J-L; Touati, M; Ribeyre, X; Gus'kov, S; Tikhonchuk, V
2014-03-01
Shock ignition concept is a promising approach to inertial confinement fusion that may allow obtaining high fusion energy gains with the existing laser technology. However, the spike driving laser intensities in the range of 1-10 PW/cm2 produces the energetic electrons that may have a significant effect on the target performance. The hybrid numerical simulations including a radiation hydrodynamic code coupled to a rapid Fokker-Planck module are used to asses the role of hot electrons in the shock generation and the target preheat in the time scale of 100 ps and spatial scale of 100 μm. It is shown that depending on the electron energy distribution and the target density profile the hot electrons can either increase the shock amplitude or preheat the imploding shell. In particular, the exponential electron energy spectrum corresponding to the temperature of 30 keV in the present HiPER target design preheats the deuterium-tritium shell and jeopardizes its compression. Ways of improving the target performance are suggested.
Xu, Long; Zhao, Zhiyuan; Xiao, Mingchao; Yang, Jie; Xiao, Jian; Yi, Zhengran; Wang, Shuai; Liu, Yunqi
2017-11-22
The exploration of novel electron-deficient building blocks is a key task for developing high-performance polymer semiconductors in organic thin-film transistors. In view of the situation of the lack of strong electron-deficient building blocks, we designed two novel π-extended isoindigo-based electron-deficient building blocks, IVI and F 4 IVI. Owing to the strong electron-deficient nature and the extended π-conjugated system of the two acceptor units, their copolymers, PIVI2T and PF 4 IVI2T, containing 2,2'-bithiophene donor units, are endowed with deep-lying highest occupied molecular orbital (HOMO)/lowest unoccupied molecular orbital (LUMO) energy levels and strong intermolecular interactions. In comparison to PIVI2T, the fluorinated PF 4 IVI2T exhibits stronger intra- and intermolecular interactions, lower HOMO/LUMO energy levels up to -5.74/-4.17 eV, and more ordered molecular packing with a smaller π-π stacking distance of up to 3.53 Å, resulting in an excellent ambipolar transporting behavior and a promising application in logic circuits for PF 4 IVI2T in ambient with hole and electron mobilities of up to 1.03 and 1.82 cm 2 V -1 s -1 , respectively. The results reveal that F 4 IVI is a promising and strong electron-deficient building unit to construct high-performance semiconducting polymers, which provides an insight into the structure-property relationships for the exploration and molecular engineering of excellent electron-deficient building blocks in the field of organic electronics.
Inorganic nanostructured materials for high performance electrochemical supercapacitors
NASA Astrophysics Data System (ADS)
Liu, Sheng; Sun, Shouheng; You, Xiao-Zeng
2014-01-01
Electrochemical supercapacitors (ES) are a well-known energy storage system that has high power density, long life-cycle and fast charge-discharge kinetics. Nanostructured materials are a new generation of electrode materials with large surface area and short transport/diffusion path for ions and electrons to achieve high specific capacitance in ES. This mini review highlights recent developments of inorganic nanostructure materials, including carbon nanomaterials, metal oxide nanoparticles, and metal oxide nanowires/nanotubes, for high performance ES applications.
Inorganic nanostructured materials for high performance electrochemical supercapacitors.
Liu, Sheng; Sun, Shouheng; You, Xiao-Zeng
2014-02-21
Electrochemical supercapacitors (ES) are a well-known energy storage system that has high power density, long life-cycle and fast charge-discharge kinetics. Nanostructured materials are a new generation of electrode materials with large surface area and short transport/diffusion path for ions and electrons to achieve high specific capacitance in ES. This mini review highlights recent developments of inorganic nanostructure materials, including carbon nanomaterials, metal oxide nanoparticles, and metal oxide nanowires/nanotubes, for high performance ES applications.
Femtosecond MeV Electron Energy-Loss Spectroscopy
Li, R. K.; Wang, X. J.
2017-11-09
Pump-probe electron energy-loss spectroscopy (EELS) with femtosecond temporal resolution will be a transformative research tool for studying nonequilibrium chemistry and electronic dynamics of matter. Here in this article, we propose a concept of femtosecond EELS utilizing mega-electron-volt electron beams from a radio-frequency (rf) photocathode source. The high acceleration gradient and high beam energy of the rf gun are critical to the generation of 10-fs electron beams, which enables an improvement of the temporal resolution by more than 1 order of magnitude beyond the state of the art. In our proposal, the “referencebeam technique” relaxes the energy stability requirement of themore » rf power source by roughly 2 orders of magnitude. The requirements for the electron-beam quality, photocathode, spectrometer, and detector are also discussed. Supported by particle-tracking simulations, we demonstrate the feasibility of achieving subelectron- volt energy resolution and approximately 10-fs temporal resolution with existing or near-future hardware performance.« less
Femtosecond MeV Electron Energy-Loss Spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, R. K.; Wang, X. J.
Pump-probe electron energy-loss spectroscopy (EELS) with femtosecond temporal resolution will be a transformative research tool for studying nonequilibrium chemistry and electronic dynamics of matter. Here in this article, we propose a concept of femtosecond EELS utilizing mega-electron-volt electron beams from a radio-frequency (rf) photocathode source. The high acceleration gradient and high beam energy of the rf gun are critical to the generation of 10-fs electron beams, which enables an improvement of the temporal resolution by more than 1 order of magnitude beyond the state of the art. In our proposal, the “referencebeam technique” relaxes the energy stability requirement of themore » rf power source by roughly 2 orders of magnitude. The requirements for the electron-beam quality, photocathode, spectrometer, and detector are also discussed. Supported by particle-tracking simulations, we demonstrate the feasibility of achieving subelectron- volt energy resolution and approximately 10-fs temporal resolution with existing or near-future hardware performance.« less
Forecasting and remote sensing outer belt relativistic electrons from low Earth orbit
Chen, Yue; Reeves, Geoffrey D.; Cunningham, Gregory S.; ...
2016-02-15
Our study demonstrates the feasibility and reliability of using observations from low Earth orbit (LEO) to forecast and nowcast relativistic electrons in the outer radiation belt. Furthermore, we first report a high cross-energy, cross-pitch-angle coherence discovered between the trapped MeV electrons and precipitating approximately hundreds (~100s) of keV electrons—observed by satellites with very different altitudes—with correlation coefficients as high as ≳ 0.85. We then tested the feasibility of applying linear prediction filters to LEO data to predict the arrival of new MeV electrons during geomagnetic storms, as well as their evolving distributions afterward, based on the coherence. Reliability of thesemore » predictive filters is quantified by the performance efficiency with values as high as 0.74 when driven merely by LEO observations (or up to 0.94 with the inclusion of in situ MeV electron measurements). Finally, a hypothesis based upon the wave-particle resonance theory is proposed to explain the coherence, and a first-principle electron tracing model yields supporting evidence.« less
2012-01-01
Yuhua Xue , Yunxiang Gao , Dingshan Yu , Michael Durstock , and Liming Dai * Hole and Electron Extraction Layers Based on Graphene Oxide...H. Wu , L. Chen , S. Su , Y. Cao , Adv. Mater. 2011 , 23 , 4636 . [ 29 ] T.-Y. Chu , S.-W. Tsang , J. Zhou , P. G. Verly , J
From Carbon-Based Nanotubes to Nanocages for Advanced Energy Conversion and Storage.
Wu, Qiang; Yang, Lijun; Wang, Xizhang; Hu, Zheng
2017-02-21
Carbon-based nanomaterials have been the focus of research interests in the past 30 years due to their abundant microstructures and morphologies, excellent properties, and wide potential applications, as landmarked by 0D fullerene, 1D nanotubes, and 2D graphene. With the availability of high specific surface area (SSA), well-balanced pore distribution, high conductivity, and tunable wettability, carbon-based nanomaterials are highly expected as advanced materials for energy conversion and storage to meet the increasing demands for clean and renewable energies. In this context, attention is usually attracted by the star material of graphene in recent years. In this Account, we overview our studies on carbon-based nanotubes to nanocages for energy conversion and storage, including their synthesis, performances, and related mechanisms. The two carbon nanostructures have the common features of interior cavity, high conductivity, and easy doping but much different SSAs and pore distributions, leading to different performances. We demonstrated a six-membered-ring-based growth mechanism of carbon nanotubes (CNTs) with benzene precursor based on the structural similarity of the benzene ring to the building unit of CNTs. By this mechanism, nitrogen-doped CNTs (NCNTs) with homogeneous N distribution and predominant pyridinic N were obtained with pyridine precursor, providing a new kind of support for convenient surface functionalization via N-participation. Accordingly, various transition-metal nanoparticles were directly immobilized onto NCNTs without premodification. The so-constructed catalysts featured high dispersion, narrow size distribution and tunable composition, which presented superior catalytic performances for energy conversions, for example, the oxygen reduction reaction (ORR) and methanol oxidation in fuel cells. With the advent of the new field of carbon-based metal-free electrocatalysts, we first extended ORR catalysts from the electron-rich N-doped to the electron-deficient B-doped sp 2 carbon. The combined experimental and theoretical study indicated the ORR activity originated from the activation of carbon π electrons by breaking the integrity of π conjugation, despite the electron-rich or electron-deficient nature of the dopants. With this understanding, metal-free electrocatalysts were further extended to the dopant-free defective carbon nanomaterials. Moreover, we developed novel 3D hierarchical carbon-based nanocages by the in situ MgO template method, which featured coexisting micro-meso-macropores and much larger SSA than the nanotubes. The unique 3D architecture avoids the restacking generally faced by 2D graphene due to the intrinsic π-π interaction. Consequently, the hierarchical nanocages presented superior performances not only as new catalyst supports and metal-free electrocatalysts but also as electrode materials for energy storage. State-of-the-art supercapacitive performances were achieved with high energy density and power density, as well as excellent rate capability and cycling stability. The large interior space of the nanocages enabled the encapsulation of high-loading sulfur to alleviate polysulfide dissolution while greatly enhancing the electron conduction and Li-ion diffusion, leading to top level performance of lithium-sulfur battery. These results not only provide unique carbon-based nanomaterials but also lead to in-depth understanding of growth mechanisms, material design, and structure-performance relationships, which is significant to promote their energy applications and also to enrich the exciting field of carbon-based nanomaterials.
Electron/Ion Transport Enhancer in High Capacity Li-Ion Battery Anodes
Kwon, Yo Han; Minnici, Krysten; Huie, Matthew M.; ...
2016-08-30
In this paper, magnetite (Fe 3O 4) was used as a model high capacity metal oxide active material to demonstrate advantages derived from consideration of both electron and ion transport in the design of composite battery electrodes. The conjugated polymer, poly[3-(potassium-4-butanoate) thiophene] (PPBT), was introduced as a binder component, while polyethylene glycol (PEG) was coated onto the surface of Fe 3O 4 nanoparticles. The introduction of PEG reduced aggregate size, enabled effective dispersion of the active materials and facilitated ionic conduction. As a binder for the composite electrode, PPBT underwent electrochemical doping which enabled the formation of effective electrical bridgesmore » between the carbon and Fe 3O 4 components, allowing for more efficient electron transport. Additionally, the PPBT carboxylic moieties effect a porous structure, and stable electrode performance. Finally, the methodical consideration of both enhanced electron and ion transport by introducing a carboxylated PPBT binder and PEG surface treatment leads to effectively reduced electrode resistance, which improved cycle life performance and rate capabilities.« less
Quartz Crystal Microbalance Electronic Interfacing Systems: A Review.
Alassi, Abdulrahman; Benammar, Mohieddine; Brett, Dan
2017-12-05
Quartz Crystal Microbalance (QCM) sensors are actively being implemented in various fields due to their compatibility with different operating conditions in gaseous/liquid mediums for a wide range of measurements. This trend has been matched by the parallel advancement in tailored electronic interfacing systems for QCM sensors. That is, selecting the appropriate electronic circuit is vital for accurate sensor measurements. Many techniques were developed over time to cover the expanding measurement requirements (e.g., accommodating highly-damping environments). This paper presents a comprehensive review of the various existing QCM electronic interfacing systems. Namely, impedance-based analysis, oscillators (conventional and lock-in based techniques), exponential decay methods and the emerging phase-mass based characterization. The aforementioned methods are discussed in detail and qualitatively compared in terms of their performance for various applications. In addition, some theoretical improvements and recommendations are introduced for adequate systems implementation. Finally, specific design considerations of high-temperature microbalance systems (e.g., GaPO₄ crystals (GCM) and Langasite crystals (LCM)) are introduced, while assessing their overall system performance, stability and quality compared to conventional low-temperature applications.
Performance of an electron gun for a high-brightness X-ray generator
Sugimura, Takashi; Ohsawa, Satoshi; Ikeda, Mitsuo
2008-01-01
A prototype thermionic electron gun for a high-brightness X-ray generator has been developed. Its extraction voltage and design current are 60 kV and 100 mA (DC), respectively. The X-ray generator aims towards a maximum brilliance of 60 kW mm−2. The beam sizes at the rotating anticathode must therefore be within 1.0 mm × 0.1 mm and a small beam emittance is required. The fabricated electron gun optimizes an aperture grid and a Whenelt electrode. The performance of the prototype electron gun measured using pulsed-beam tests is as follows: maximum beam current, 85.7 mA; beam focus size at the rotating anticathode, 0.79 mm × 0.13 mm. In DC beam tests, FWHM beam sizes were measured to be 0.65 mm × 0.08 mm at the rotating anticathode with a beam current of 45 mA. The beam current recently reached ∼60 mA with some thermal problems. PMID:18421153
Quartz Crystal Microbalance Electronic Interfacing Systems: A Review
Benammar, Mohieddine; Brett, Dan
2017-01-01
Quartz Crystal Microbalance (QCM) sensors are actively being implemented in various fields due to their compatibility with different operating conditions in gaseous/liquid mediums for a wide range of measurements. This trend has been matched by the parallel advancement in tailored electronic interfacing systems for QCM sensors. That is, selecting the appropriate electronic circuit is vital for accurate sensor measurements. Many techniques were developed over time to cover the expanding measurement requirements (e.g., accommodating highly-damping environments). This paper presents a comprehensive review of the various existing QCM electronic interfacing systems. Namely, impedance-based analysis, oscillators (conventional and lock-in based techniques), exponential decay methods and the emerging phase-mass based characterization. The aforementioned methods are discussed in detail and qualitatively compared in terms of their performance for various applications. In addition, some theoretical improvements and recommendations are introduced for adequate systems implementation. Finally, specific design considerations of high-temperature microbalance systems (e.g., GaPO4 crystals (GCM) and Langasite crystals (LCM)) are introduced, while assessing their overall system performance, stability and quality compared to conventional low-temperature applications. PMID:29206212
Study of the Emission Characteristics of Single-Walled CNT and Carbon Nano-Fiber Pyrograf III
NASA Astrophysics Data System (ADS)
Mousa, Marwan S.; Al-Akhras, M.-Ali H.; Daradkeh, Samer
2018-02-01
Field emission microscopy measurements from Single-Walled Carbon Nanotubes (SWCNTs) and Carbon Nano-Fibers Pyrograf III PR-1 (CNF) were performed. Details of the materials employed in the experiments are as follows: (a) Carbon Nano-Fibers Pyrograf III PR-1 (CNF), having an average fiber diameter that is ranging between (100-200) nm with a length of (30-100) μm. (b) Single walled Carbon Nanotubes were produced by high-pressure CO over Fe particle (HiPCO: High-Pressure Carbon Monoxide process), having an average diameter ranging between (1-4) nm with a length of (1-3) μm. The experiments were performed under vacuum pressure value of (10-7 mbar). The research work reported here includes the field electron emission current-voltage (I-V) characteristics and presented as Fowler-Nordheim (FN) plots and the spatial emission current distributions (electron emission images) obtained and analyzed in terms of electron source features. For both the SWCNT and the CNF a single spot pattern for the electron spatial; distributions were observed.
Buckled Thin-Film Transistors and Circuits on Soft Elastomers for Stretchable Electronics.
Cantarella, Giuseppe; Vogt, Christian; Hopf, Raoul; Münzenrieder, Niko; Andrianakis, Panagiotis; Petti, Luisa; Daus, Alwin; Knobelspies, Stefan; Büthe, Lars; Tröster, Gerhard; Salvatore, Giovanni A
2017-08-30
Although recent progress in the field of flexible electronics has allowed the realization of biocompatible and conformable electronics, systematic approaches which combine high bendability (<3 mm bending radius), high stretchability (>3-4%), and low complexity in the fabrication process are still missing. Here, we show a technique to induce randomly oriented and customized wrinkles on the surface of a biocompatible elastomeric substrate, where Thin-Film Transistors (TFTs) and circuits (inverter and logic NAND gates) based on amorphous-IGZO are fabricated. By tuning the wavelength and the amplitude of the wrinkles, the devices are fully operational while bent to 13 μm bending radii as well as while stretched up to 5%, keeping unchanged electrical properties. Moreover, a flexible rectifier is also realized, showing no degradation in the performances while flat or wrapped on an artificial human wrist. As proof of concept, transparent TFTs are also fabricated, presenting comparable electrical performances to the nontransparent ones. The extension of the buckling approach from our TFTs to circuits demonstrates the scalability of the process, prospecting applications in wireless stretchable electronics to be worn or implanted.
NASA Technical Reports Server (NTRS)
Myers, L. P.; Burcham, F. W., Jr.
1984-01-01
The highly integrated digital electronic control (HIDEC) program will integrate the propulsion and flight control systems on an F-15 airplane at NASA Ames Research Center's Dryden Flight Research Facility. Ames-Dryden has conducted several propulsion control programs that have contributed to the HIDEC program. The digital electronic engine control (DEEC) flight evaluation investigated the performance and operability of the F100 engine equipped with a full-authority digital electronic control system. Investigations of nozzle instability, fault detection and accommodation, and augmentor transient capability provided important information for the HIDEC program. The F100 engine model derivative (EMD) was also flown in the F-15 airplane, and airplane performance was significantly improved. A throttle response problem was found and solved with a software fix to the control logic. For the HIDEC program, the F100 EMD engines equipped with DEEC controls will be integrated with the digital flight control system. The control modes to be implemented are an integrated flightpath management mode and an integrated adaptive engine control system mode. The engine control experience that will be used in the HIDEC program is discussed.
Focal-plane detector system for the KATRIN experiment
NASA Astrophysics Data System (ADS)
Amsbaugh, J. F.; Barrett, J.; Beglarian, A.; Bergmann, T.; Bichsel, H.; Bodine, L. I.; Bonn, J.; Boyd, N. M.; Burritt, T. H.; Chaoui, Z.; Chilingaryan, S.; Corona, T. J.; Doe, P. J.; Dunmore, J. A.; Enomoto, S.; Formaggio, J. A.; Fränkle, F. M.; Furse, D.; Gemmeke, H.; Glück, F.; Harms, F.; Harper, G. C.; Hartmann, J.; Howe, M. A.; Kaboth, A.; Kelsey, J.; Knauer, M.; Kopmann, A.; Leber, M. L.; Martin, E. L.; Middleman, K. J.; Myers, A. W.; Oblath, N. S.; Parno, D. S.; Peterson, D. A.; Petzold, L.; Phillips, D. G.; Renschler, P.; Robertson, R. G. H.; Schwarz, J.; Steidl, M.; Tcherniakhovski, D.; Thümmler, T.; Van Wechel, T. D.; VanDevender, B. A.; Vöcking, S.; Wall, B. L.; Wierman, K. L.; Wilkerson, J. F.; Wüstling, S.
2015-04-01
The focal-plane detector system for the KArlsruhe TRItium Neutrino (KATRIN) experiment consists of a multi-pixel silicon p-i-n-diode array, custom readout electronics, two superconducting solenoid magnets, an ultra high-vacuum system, a high-vacuum system, calibration and monitoring devices, a scintillating veto, and a custom data-acquisition system. It is designed to detect the low-energy electrons selected by the KATRIN main spectrometer. We describe the system and summarize its performance after its final installation.
Electron Attachment to C2 Fluorocarbon Radicals at High Temperature (Postprint)
2016-01-28
Vehicles Directorate 3550 Aberdeen Avenue SE Kirtland AFB, NM 87117-5776 8. PERFORMING ORGANIZATION REPORT NUMBER AFRL -RV-PS-TP-2015-0014 9...cy AFRL /RVIL Kirtland AFB, NM 87117-5776 2 cys Official Record Copy AFRL /RVBXT/Dr. Raymond Bemish 1 cy Approved for public release; distribution... AFRL -RV-PS- TP-2015-0014 AFRL -RV-PS- TP-2015-0014 ELECTRON ATTACHMENT TO C2 FLUOROCARBON RADICALS AT HIGH TEMPERATURE (POSTPRINT) Nicholas S
Simulation of plasma loading of high-pressure RF cavities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, K.; Samulyak, R.; Yonehara, K.
2018-01-11
Muon beam-induced plasma loading of radio-frequency (RF) cavities filled with high pressure hydrogen gas with 1% dry air dopant has been studied via numerical simulations. The electromagnetic code SPACE, that resolves relevant atomic physics processes, including ionization by the muon beam, electron attachment to dopant molecules, and electron-ion and ion-ion recombination, has been used. Simulations studies have also been performed in the range of parameters typical for practical muon cooling channels.
Murthy, Arun; Manthiram, Arumugam
2011-06-28
Highly water-dispersible polymer acid-doped polyanilines have been synthesized and evaluated as an alternative for expensive Nafion ionomers in the anode of direct methanol fuel cells (DMFC). These polymers as ionomers lead to higher performance in single cell DMFC compared to Nafion ionomers due to mixed ionic-electronic conduction, water dispersibility, and co-catalytic activity. This journal is © The Royal Society of Chemistry 2011
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baumgarten, C.; Barchetti, A.; Einenkel, H.
2011-05-15
A compact electron cyclotron resonance proton source has been developed and installed recently at thePaul Scherrer Institute's high intensity proton accelerator. Operation at the ion source test stand and the accelerator demonstrates a high reliability and stability of the new source. When operated at a 10 - 12 mA net proton current the lifetime of the source exceeds 2000 h. The essential development steps towards the observed performance are described.
Facile synthesis of α-Fe{sub 2}O{sub 3} nanoparticles for high-performance CO gas sensor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cuong, Nguyen Duc, E-mail: nguyenduccuong@hueuni.edu.vn; Faculty of Hospitality and Tourism, Hue University, 22 Lam Hoang, Vy Da Ward, Hue City; Khieu, Dinh Quang
2015-08-15
Highlights: • We have demonstrated a facile method to prepare Fe{sub 2}O{sub 3} nanoparticles. • The gas sensing properties of α-Fe{sub 2}O{sub 3} have been invested. • The results show potential application of α-Fe{sub 2}O{sub 3} NPs for CO sensors in environmental monitoring. - Abstract: Iron oxide nanoparticles (NPs) were prepared via a simple hydrothermal method for high performance CO gas sensor. The synthesized α-Fe{sub 2}O{sub 3} NPs were characterized by X-ray diffraction, nitrogen adsorption/desorption isotherm, scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), and selected area electron diffraction (SAED). The SEM, TEM results revealedmore » that obtained α-Fe{sub 2}O{sub 3} particles had a peanut-like geometry with hemispherical ends. The response of the α-Fe{sub 2}O{sub 3} NPs based sensor to carbon monoxide (CO) and various concentrations of other gases were measured at different temperatures. It found that the sensor based on the peanut-like α-Fe{sub 2}O{sub 3} NPs exhibited high response, fast response–recovery, and good selectivity to CO at 300 °C. The experimental results clearly demonstrated the potential application of α-Fe{sub 2}O{sub 3} NPs as a good sensing material in the fabrication of CO sensor.« less
Joining Carbon-Carbon Composites and High-Temperature Materials with High Energy Electron Beams
NASA Technical Reports Server (NTRS)
Goodman, Daniel; Singler, Robert
1998-01-01
1. Program goals addressed during this period. Experimental work was directed at formation of a low-stress bond between carbon- carbon and aluminum, with the objective of minimizing the heating of the aluminum substrate, thereby minimizing stresses resulting from the coefficient of thermal expansion (CTE) difference between the aluminum and carbon-carbon. A second objective was to form a bond between carbon-carbon and aluminum with good thermal conductivity for electronic thermal management (SEM-E) application. 2. Substrates and joining materials selected during this period. Carbon-Carbon Composite (CCC) to Aluminum. CCC (Cu coated) to Aluminum. Soldering compounds based on Sn/Pb and Sn/Ag/Cu/Bi compositions. 3. Soldering experiments performed. Conventional techniques. High Energy Electron Beam (HEEB) process.
Monolayer graphene-insulator-semiconductor emitter for large-area electron lithography
NASA Astrophysics Data System (ADS)
Kirley, Matthew P.; Aloui, Tanouir; Glass, Jeffrey T.
2017-06-01
The rapid adoption of nanotechnology in fields as varied as semiconductors, energy, and medicine requires the continual improvement of nanopatterning tools. Lithography is central to this evolving nanotechnology landscape, but current production systems are subject to high costs, low throughput, or low resolution. Herein, we present a solution to these problems with the use of monolayer graphene in a graphene-insulator-semiconductor (GIS) electron emitter device for large-area electron lithography. Our GIS device displayed high emission efficiency (up to 13%) and transferred large patterns (500 × 500 μm) with high fidelity (<50% spread). The performance of our device demonstrates a feasible path to dramatic improvements in lithographic patterning systems, enabling continued progress in existing industries and opening opportunities in nanomanufacturing.
NASA Astrophysics Data System (ADS)
Cordier, Y.; Azize, M.; Baron, N.; Chenot, S.; Tottereau, O.; Massies, J.
2007-11-01
In this work, we show that, by carefully designing the subsurface Fe doping profile in SI-GaN templates grown by MOVPE and by optimizing the MBE regrowth conditions, a highly resistive GaN buffer can be achieved on these epi-ready GaN-on-sapphire templates without any addition of acceptors during the regrowth. As a result, high-quality high electron mobility transistors can be fabricated. Furthermore, we report on the excellent properties of two-dimensional electron gas and device performances with electron mobility greater than 2000 cm 2/V s at room temperature and off-state buffer leakage currents as low as 5 μA/mm at 100 V.
Reproducible Growth of High-Quality Cubic-SiC Layers
NASA Technical Reports Server (NTRS)
Neudeck, Philip G.; Powell, J. Anthony
2004-01-01
Semiconductor electronic devices and circuits based on silicon carbide (SiC) are being developed for use in high-temperature, high-power, and/or high-radiation conditions under which devices made from conventional semiconductors cannot adequately perform. The ability of SiC-based devices to function under such extreme conditions is expected to enable significant improvements in a variety of applications and systems. These include greatly improved high-voltage switching for saving energy in public electric power distribution and electric motor drives; more powerful microwave electronic circuits for radar and communications; and sensors and controls for cleaner-burning, more fuel-efficient jet aircraft and automobile engines.
Jeong, Inyoung; Park, Yun Hee; Bae, Seunghwan; Park, Minwoo; Jeong, Hansol; Lee, Phillip; Ko, Min Jae
2017-10-25
The electron transport layer (ETL) is a key component of perovskite solar cells (PSCs) and must provide efficient electron extraction and collection while minimizing the charge recombination at interfaces in order to ensure high performance. Conventional bilayered TiO 2 ETLs fabricated by depositing compact TiO 2 (c-TiO 2 ) and mesoporous TiO 2 (mp-TiO 2 ) in sequence exhibit resistive losses due to the contact resistance at the c-TiO 2 /mp-TiO 2 interface and the series resistance arising from the intrinsically low conductivity of TiO 2 . Herein, to minimize such resistive losses, we developed a novel ETL consisting of an ultrathin c-TiO 2 layer hybridized with mp-TiO 2 , which is fabricated by performing one-step spin-coating of a mp-TiO 2 solution containing a small amount of titanium diisopropoxide bis(acetylacetonate) (TAA). By using electron microscopies and elemental mapping analysis, we establish that the optimal concentration of TAA produces an ultrathin blocking layer with a thickness of ∼3 nm and ensures that the mp-TiO 2 layer has a suitable porosity for efficient perovskite infiltration. We compare PSCs based on mesoscopic ETLs with and without compact layers to determine the role of the hole-blocking layer in their performances. The hybrid ETLs exhibit enhanced electron extraction and reduced charge recombination, resulting in better photovoltaic performances and reduced hysteresis of PSCs compared to those with conventional bilayered ETLs.
High-yield positron systems for linear colliders
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clendenin, J.E.
1989-04-01
Linear colliders, such as the SLC, are among those accelerators for which a high-yield positron source operating at the repetition rate of the accelerator is desired. The SLC, having electron energies up to 50 GeV, presents the possibility of generating positron bunches with useful charge even exceeding that of the initial electron bunch. The exact positron yield to be obtained depends on the particular capture, transport and damping system employed. Using 31 GeV electrons impinging on a W-type converter phase-space at the target to the acceptance of the capture rf section, the SLC source is capable of producing, for everymore » electron, up to two positrons within the acceptance of the positron damping ring. The design of this source and the performance of the positron system as built are described. Also, future prospects and limitations for high-yield positron systems are discussed. 11 refs., 5 figs., 3 tabs.« less
A radiation belt monitor for the High Energy Transient Experiment Satellite
NASA Technical Reports Server (NTRS)
Lo, D. H.; Wenzel, K. W.; Petrasso, R. D.; Prigozhin, G. Y.; Doty, J.; Ricker, G.
1993-01-01
A Radiation Belt Monitor (RBM) sensitive to protons and electrons with energy approximately greater than 0.5 MeV has been designed for the High Energy Transient Experiment (HETE) satellite in order to: first, control the on-off configuration of the experiments (i.e. those susceptible to proton damage); and second, to indicate the presence of proton and/or electron events that could masquerade as legitimate high energy photon events. One of the two RBM channels has an enhanced sensitivity to electrons. Each channel of the RBM, based on a PIN silicon diode, requires a typical power of 6 milliwatts. Tests have been performed with protons with energies from approximately 0.1 to 2.5 MeV (generated by a Cockcroft-Walton linear accelerator via the d(d,p)t reaction), and with electrons with energies up to 1 MeV (from a 1.0 microcurie Bi-207 source).
Electronic effects in high-energy radiation damage in tungsten
Zarkadoula, Eva; Duffy, Dorothy M.; Nordlund, Kai; ...
2015-03-13
Even though the effects of the electronic excitations during high-energy radiation damage processes are not currently understood, it is shown that their role in the interaction of radiation with matter is important. We perform molecular dynamics simulations of high-energy collision cascades in bcc-tungsten using the coupled two-temperature molecular dynamics (2T-MD) model that incorporates both the effects of electronic stopping and electron–phonon interaction. We compare the combination of these effects on the induced damage with only the effect of electronic stopping, and conclude in several novel insights. In the 2T-MD model, the electron–phonon coupling results in less damage production in themore » molten region and in faster relaxation of the damage at short times. We show these two effects lead to a significantly smaller amount of the final damage at longer times.« less
Lee, Eunha; Benayad, Anass; Shin, Taeho; Lee, HyungIk; Ko, Dong-Su; Kim, Tae Sang; Son, Kyoung Seok; Ryu, Myungkwan; Jeon, Sanghun; Park, Gyeong-Su
2014-01-01
Interest in oxide semiconductors stems from benefits, primarily their ease of process, relatively high mobility (0.3–10 cm2/vs), and wide-bandgap. However, for practical future electronic devices, the channel mobility should be further increased over 50 cm2/vs and wide-bandgap is not suitable for photo/image sensor applications. The incorporation of nitrogen into ZnO semiconductor can be tailored to increase channel mobility, enhance the optical absorption for whole visible light and form uniform micro-structure, satisfying the desirable attributes essential for high performance transistor and visible light photo-sensors on large area platform. Here, we present electronic, optical and microstructural properties of ZnON, a composite of Zn3N2 and ZnO. Well-optimized ZnON material presents high mobility exceeding 100 cm2V−1s−1, the band-gap of 1.3 eV and nanocrystalline structure with multiphase. We found that mobility, microstructure, electronic structure, band-gap and trap properties of ZnON are varied with nitrogen concentration in ZnO. Accordingly, the performance of ZnON-based device can be adjustable to meet the requisite of both switch device and image-sensor potentials. These results demonstrate how device and material attributes of ZnON can be optimized for new device strategies in display technology and we expect the ZnON will be applicable to a wide range of imaging/display devices. PMID:24824778
Small field electron beam dosimetry using MOSFET detector.
Amin, Md Nurul; Heaton, Robert; Norrlinger, Bern; Islam, Mohammad K
2010-10-04
The dosimetry of very small electron fields can be challenging due to relative shifts in percent depth-dose curves, including the location of dmax, and lack of lateral electronic equilibrium in an ion chamber when placed in the beam. Conventionally a small parallel plate chamber or film is utilized to perform small field electron beam dosimetry. Since modern radiotherapy departments are becoming filmless in favor of electronic imaging, an alternate and readily available clinical dosimeter needs to be explored. We have studied the performance of MOSFET as a relative dosimeter in small field electron beams. The reproducibility, linearity and sensitivity of a high-sensitivity microMOSFET were investigated for clinical electron beams. In addition, the percent depth doses, output factors and profiles have been measured in a water tank with MOSFET and compared with those measured by an ion chamber for a range of field sizes from 1 cm diameter to 10 cm × 10 cm for 6, 12, 16 and 20 MeV beams. Similar comparative measurements were also per-formed with MOSFET and films in solid water phantom. The MOSFET sensitivity was found to be practically constant over the range of field sizes investigated. The dose response was found to be linear and reproducible (within ± 1% for 100 cGy). An excellent agreement was observed among the central axis depth dose curves measured using MOSFET, film and ion chamber. The output factors measured with MOSFET for small fields agreed to within 3% with those measured by film dosimetry. Overall results indicate that MOSFET can be utilized to perform dosimetry for small field electron beam.
NASA Astrophysics Data System (ADS)
Sciambi, A.; Pelliccione, M.; Bank, S. R.; Gossard, A. C.; Goldhaber-Gordon, D.
2010-09-01
We propose a probe technique capable of performing local low-temperature spectroscopy on a two-dimensional electron system (2DES) in a semiconductor heterostructure. Motivated by predicted spatially-structured electron phases, the probe uses a charged metal tip to induce electrons to tunnel locally, directly below the tip, from a "probe" 2DES to a "subject" 2DES of interest. We test this concept with large-area (nonscanning) tunneling measurements, and predict a high spatial resolution and spectroscopic capability, with minimal influence on the physics in the subject 2DES.
Electron-Beam Mapping of Vibrational Modes with Nanometer Spatial Resolution.
Dwyer, C; Aoki, T; Rez, P; Chang, S L Y; Lovejoy, T C; Krivanek, O L
2016-12-16
We demonstrate that a focused beam of high-energy electrons can be used to map the vibrational modes of a material with a spatial resolution of the order of one nanometer. Our demonstration is performed on boron nitride, a polar dielectric which gives rise to both localized and delocalized electron-vibrational scattering, either of which can be selected in our off-axial experimental geometry. Our experimental results are well supported by our calculations, and should reconcile current controversy regarding the spatial resolution achievable in vibrational mapping with focused electron beams.
Propagation of electron beams in space
NASA Technical Reports Server (NTRS)
Ashour-Abdalla, M.; Okuda, H.
1988-01-01
Particle simulations were performed in order to study the effects of beam plasma interaction and the propagation of an electron beam in a plasma with a magnetic field. It is found that the beam plasma instability results in the formation of a high energy tail in the electron velocity distribution which enhances the mean free path of the beam electrons. Moreover, the simulations show that when the beam density is much smaller than the ambient plasma density, currents much larger than the thermal return current can be injected into a plasma.
NASA Technical Reports Server (NTRS)
Katz, I.; Jongeward, G. A.; Parks, D. E.; Reasoner, D. L.; Purvis, C. K.
1986-01-01
During electron beam accelerator operation on Spacelab I, substantial fluxes of electrons were observed with energies greater than the initial beam energy. Numerical calculations are performed for the emission of an unneutralized, one-dimensional electron beam. These calculations show clearly that space charge oscillations, which are associated with the charge buildup on the emitter, strongly modify the beam and cause the returning beam particles to have a distribution of kinetic energies ranging from half to over twice the initial energy.
Clark, Susan M; Fu, Kai-Mei C; Ladd, Thaddeus D; Yamamoto, Yoshihisa
2007-07-27
We describe a fast quantum computer based on optically controlled electron spins in charged quantum dots that are coupled to microcavities. This scheme uses broadband optical pulses to rotate electron spins and provide the clock signal to the system. Nonlocal two-qubit gates are performed by phase shifts induced by electron spins on laser pulses propagating along a shared waveguide. Numerical simulations of this scheme demonstrate high-fidelity single-qubit and two-qubit gates with operation times comparable to the inverse Zeeman frequency.
Yan, Yibo; Li, Kaixin; Chen, Xiaoping; Yang, Yanhui; Lee, Jong-Min
2017-12-01
Expedition of electron transfer efficiency and optimization of surface reactant adsorption products desorption processes are two main challenges for developing non-noble catalysts in the oxygen reduction reaction (ORR) and CO 2 reduction reaction (CRR). A heterojunction prototype on Co 3 S 4 @Co 3 O 4 core-shell octahedron structure is established via hydrothermal lattice anion exchange protocol to implement the electroreduction of oxygen and carbon dioxide with high performance. The synergistic bifunctional catalyst consists of p-type Co 3 O 4 core and n-type Co 3 S 4 shell, which afford high surface electron density along with high capacitance without sacrificing mechanical robustness. A four electron ORR process, identical to the Pt catalyzed ORR, is validated using the core-shell octahedron catalyst. The synergistic interaction between cobalt sulfide and cobalt oxide bicatalyst reduces the activation energy to convert CO 2 into adsorbed intermediates and hereby enables CRR to run at a low overpotential, with formate as the highly selective main product at a high faraday efficiency of 85.3%. The remarkable performance can be ascribed to the synergistic coupling effect of the structured co-catalysts; heterojunction structure expedites the electron transfer efficiency and optimizes surface reactant adsorption product desorption processes, which also provide theoretical and pragmatic guideline for catalyst development and mechanism explorations. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goldstein, J.; Nguyen, D.C.; Sheffield, R.L.
1996-10-01
We present the results of theoretical and simulation studies of the design and performance of a new F type of FEL oscillator. This device, known by the acronym RAFEL for Regenerative Amplifier Free-Electron Laser, will be constructed in the space presently occupied by the AFEL (Advanced FEL) at Los Alamos, and will be driven by an upgraded (to higher average power) version of the present AFEL linac. In order to achieve a long-time-averaged optical output power of {approximately} 1 kW using an electron beam with an average power of {approximately} 20 kW, a rather high extraction efficiency {eta} {approximately} 5%more » is required. We have designed a 2-m-long undulator to attain this goal: the first meter is untapered and provides high gain while the second meter is linearly-tapered in magnetic field amplitude to provide high extraction efficiency in the standard K-M-R manner. Two-plane focusing and linear polarization of the undulator are assumed. Electron-beam properties from PARMEIA simulations of the AFEL accelerator were used in the design. A large saturated gain, {approximately} 500, requires a very small optical feedback to keep the device operating at steady-state. However, the large gain leads to distorted optical modes which require two- and three-dimensional simulations to adequately treat diffraction effects. This FEL will be driven by 17 MeV electrons and will operate in the 16 {mu}m spectral region.« less
Wide-bandwidth high-resolution search for extraterrestrial intelligence
NASA Technical Reports Server (NTRS)
Horowitz, Paul
1993-01-01
Research accomplished during the third 6-month period is summarized. Research covered the following: dual-horn antenna performance; high electron mobility transistors (HEMT) low-noise amplifiers; downconverters; fast Fourier transform (FFT) array; and backend 'feature recognizer' array.
High-voltage plasma interactions calculations using NASCAP/LEO
NASA Technical Reports Server (NTRS)
Mandell, M. J.; Katz, I.
1990-01-01
This paper reviews four previous simulations (two laboratory and two space-flight) of interactions of a high-voltage spacecraft with a plasma under low-earth orbit conditions, performed using a three-dimensional computer code NASCAP/LEO. Results show that NASCAP/LEO can perform meaningful simulations of high-voltage plasma interactions taking into account three-dimensional effects of geometry, spacecraft motion, and magnetic field. Two new calculations are presented: (1) for current collection by 1-mm pinholes in wires (showing that a pinhole in a wire can collect far more current than a similar pinhole in a flat plate); and (2) current collection by Charge-2 mother vehicle launched in December 1985. It is shown that the Charge-2 calculations predicted successfully ion collection at negative bias, the floating potential of a probe outside or inside the sheath under negative bias conditions, and magnetically limited electron collection under electron beam operation at high altitude.
Effect of dose and size on defect engineering in carbon cluster implanted silicon wafers
NASA Astrophysics Data System (ADS)
Okuyama, Ryosuke; Masada, Ayumi; Shigematsu, Satoshi; Kadono, Takeshi; Hirose, Ryo; Koga, Yoshihiro; Okuda, Hidehiko; Kurita, Kazunari
2018-01-01
Carbon-cluster-ion-implanted defects were investigated by high-resolution cross-sectional transmission electron microscopy toward achieving high-performance CMOS image sensors. We revealed that implantation damage formation in the silicon wafer bulk significantly differs between carbon-cluster and monomer ions after implantation. After epitaxial growth, small and large defects were observed in the implanted region of carbon clusters. The electron diffraction pattern of both small and large defects exhibits that from bulk crystalline silicon in the implanted region. On the one hand, we assumed that the silicon carbide structure was not formed in the implanted region, and small defects formed because of the complex of carbon and interstitial silicon. On the other hand, large defects were hypothesized to originate from the recrystallization of the amorphous layer formed by high-dose carbon-cluster implantation. These defects are considered to contribute to the powerful gettering capability required for high-performance CMOS image sensors.
NASA Astrophysics Data System (ADS)
Zhang, Kai; Kong, Cen; Zhou, Jianjun; Kong, Yuechan; Chen, Tangsheng
2017-02-01
The paper reports high-performance enhancement-mode MOS high-electron mobility transistors (MOS-HEMTs) based on a quaternary InAlGaN barrier. Self-aligned gate technology is used for gate recessing, dielectric deposition, and gate electrode formation. An improved digital recessing process is developed, and an Al2O3 gate dielectric grown with O2 plasma is used. Compared to results with AlGaN barrier, the fabricated E-mode MOS-HEMT with InAlGaN barrier delivers a record output current density of 1.7 A/mm with a threshold voltage (V TH) of 1.5 V, and a small on-resistance (R on) of 2.0 Ω·mm. Excellent V TH hysteresis and greatly improved gate leakage characteristics are also demonstrated.
ERIC Educational Resources Information Center
Frederickson, Edward W.; And Others
The development and evaluation of prototype hands-on equipment, job sample performance tests for a high skilled technical Military Occupational Specialty (MOS) are described. An electronic maintenance MOS (26C20) was used as the research vehicle. The results led to the conclusion that valid and reliable performance tests could be constructed, but…
NASA Astrophysics Data System (ADS)
Ogawa, K.; Nishitani, T.; Isobe, M.; Murata, I.; Hatano, Y.; Matsuyama, S.; Nakanishi, H.; Mukai, K.; Sato, M.; Yokota, M.; Kobuchi, T.; Nishimura, T.; Osakabe, M.
2017-08-01
High-temperature and high-density plasmas are achieved by means of real-time control, fast diagnostic, and high-power heating systems. Those systems are precisely controlled via highly integrated electronic components, but can be seriously affected by radiation damage. Therefore, the effects of irradiation on currently used electronic components should be investigated for the control and measurement of Large Helical Device (LHD) deuterium plasmas. For the precise estimation of the radiation field in the LHD torus hall, the MCNP6 code is used with the cross-section library ENDF B-VI. The geometry is modeled on the computer-aided design. The dose on silicon, which is a major ingredient of electronic components, over nine years of LHD deuterium operation shows that the gamma-ray contribution is dominant. Neutron irradiation tests were performed in the OKTAVIAN at Osaka University and the Fast Neutron Laboratory at Tohoku University. Gamma-ray irradiation tests were performed at the Nagoya University Cobalt-60 irradiation facility. We found that there are ethernet connection failures of programmable logic controller (PLC) modules due to neutron irradiation with a neutron flux of 3 × 106 cm-2 s-1. This neutron flux is equivalent to that expected at basement level in the LHD torus hall without a neutron shield. Most modules of the PLC are broken around a gamma-ray dose of 100 Gy. This is comparable with the dose in the LHD torus hall over nine years. If we consider the dose only, these components may survive more than nine years. For the safety of the LHD operation, the electronic components in the torus hall have been rearranged.
Swisher, Sarah L; Volkman, Steven K; Subramanian, Vivek
2015-05-20
Semiconducting metal oxides (ZnO, SnO2, In2O3, and combinations thereof) are a uniquely interesting family of materials because of their high carrier mobilities in the amorphous and generally disordered states, and solution-processed routes to these materials are of particular interest to the printed electronics community. Colloidal nanocrystal routes to these materials are particularly interesting, because nanocrystals may be formulated with tunable surface properties into stable inks, and printed to form devices in an additive manner. We report our investigation of an In2O3 nanocrystal synthesis for high-performance solution-deposited semiconductor layers for thin-film transistors (TFTs). We studied the effects of various synthesis parameters on the nanocrystals themselves, and how those changes ultimately impacted the performance of TFTs. Using a sintered film of solution-deposited In2O3 nanocrystals as the TFT channel material, we fabricated devices that exhibit field effect mobility of 10 cm(2)/(V s) and an on/off current ratio greater than 1 × 10(6). These results outperform previous air-stable nanocrystal TFTs, and demonstrate the suitability of colloidal nanocrystal inks for high-performance printed electronics.
Bringing Superconductor Digital Technology to the Market Place
NASA Astrophysics Data System (ADS)
Nisenoff, Martin
The unique properties of superconductivity can be exploited to provide the ultimate in electronic technology for systems such as ultra-precise analogue-to-digital and digital-to-analogue converters, precise DC and AC voltage standards, ultra high speed logic circuits and systems (both digital and hybrid analogue-digital systems), and very high throughput network routers and supercomputers which would have superior electrical performance at lower overall electrical power consumption compared to systems with comparable performance which are fabricated using conventional room temperature technologies. This potential for high performance electronics with reduced power consumption would have a positive impact on slowing the increase in the demand for electrical utility power by the information technology community on the overall electrical power grid. However, before this technology can be successfully brought to the commercial market place, there must be an aggressive investment of resources and funding to develop the required infrastructure needed to yield these high performance superconductor systems, which will be reliable and available at low cost. The author proposes that it will require a concerted effort by the superconductor and cryogenic communities to bring this technology to the commercial market place or make it available for widespread use in scientific instrumentation.
Tunneling electron induced chemisorption of copper phthalocyanine molecules on the Cu(111) surface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stock, T.; Nogami, J.
2014-02-17
The adsorption of up to one monolayer (ML) of copper phthalocyanine (CuPc) molecules on a room temperature Cu(111) surface has been studied using scanning tunneling microscopy (STM). Below 1 ML the molecules are in a fluid state and are highly mobile on the surface. At 1 ML coverage the molecules coalesce into a highly ordered 2D crystal phase. At sub-ML coverages, chemisorption of individual CuPc molecules can be induced through exposure to tunneling electrons at a tunneling bias voltage exceeding a threshold value. This tunneling electron induced effect has been exploited to perform molecular STM lithography.
Miniature Wide-Angle Lens for Small-Pixel Electronic Camera
NASA Technical Reports Server (NTRS)
Mouroulils, Pantazis; Blazejewski, Edward
2009-01-01
A proposed wideangle lens is shown that would be especially well suited for an electronic camera in which the focal plane is occupied by an image sensor that has small pixels. The design of the lens is intended to satisfy requirements for compactness, high image quality, and reasonably low cost, while addressing issues peculiar to the operation of small-pixel image sensors. Hence, this design is expected to enable the development of a new generation of compact, high-performance electronic cameras. The lens example shown has a 60 degree field of view and a relative aperture (f-number) of 3.2. The main issues affecting the design are also shown.
Efficient Planar Perovskite Solar Cells Using Passivated Tin Oxide as an Electron Transport Layer.
Lee, Yonghui; Lee, Seunghwan; Seo, Gabseok; Paek, Sanghyun; Cho, Kyung Taek; Huckaba, Aron J; Calizzi, Marco; Choi, Dong-Won; Park, Jin-Seong; Lee, Dongwook; Lee, Hyo Joong; Asiri, Abdullah M; Nazeeruddin, Mohammad Khaja
2018-06-01
Planar perovskite solar cells using low-temperature atomic layer deposition (ALD) of the SnO 2 electron transporting layer (ETL), with excellent electron extraction and hole-blocking ability, offer significant advantages compared with high-temperature deposition methods. The optical, chemical, and electrical properties of the ALD SnO 2 layer and its influence on the device performance are investigated. It is found that surface passivation of SnO 2 is essential to reduce charge recombination at the perovskite and ETL interface and show that the fabricated planar perovskite solar cells exhibit high reproducibility, stability, and power conversion efficiency of 20%.
36-segmented high magnetic field hexapole magnets for electron cyclotron resonance ion source.
Sun, L T; Zhao, H W; Zhang, Z M; Wang, H; Ma, B H; Zhang, X Z; Li, X X; Feng, Y C; Li, J Y; Guo, X H; Shang, Y; Zhao, H Y
2007-05-01
Two high magnetic field hexapoles for electron cyclotron resonance ion source (ECRIS) have successfully fabricated to provide sufficient radial magnetic confinement to the ECR plasma. The highest magnetic field at the inner pole tip of one of the magnets exceeds 1.5 T, with the inner diameter (i.d.)=74 mm. The other hexapole magnet provides more than 1.35 T magnetic field at the inner pole tip, and the i.d. is 84 mm. In this article, we discuss the necessity to have a good radial magnetic field confinement and the importance of a Halbach hexapole to a high performance ECRIS. The way to design a high magnetic field Halbach structure hexapole and one possible solution to the self-demagnetization problem are both discussed. Based on the above discussions, two high magnetic field hexapoles have been fabricated to be utilized on two high performance ECRISs in Lanzhou. The preliminary results obtained from the two ECR ion sources are given.
Wang, Qiufan; Ma, Yun; Wu, Yunlong; Zhang, Daohong; Miao, Menghe
2017-04-10
Flexible threadlike supercapacitors with improved performance are needed for many wearable electronics applications. Here, we report a high performance flexible asymmetric all-solid-state threadlike supercapacitor with a NiCo 2 Se 4 positive electrode and a NiCo 2 O 4 @PPy (PPy: polypyrrole) negative electrode. The as-prepared electrodes display outstanding volume specific capacitance (14.2 F cm -3 ) and excellent cycling performance (94 % retention after 5000 cycles at 0.6 mA) owing to their nanosheet and nanosphere structures. The asymmetric all-solid-state threadlike supercapacitor expanded the stability voltage window from 0-1.0 V to 0-1.7 V and exhibits high volume energy density (5.18 mWh cm -3 ) and superior flexibility under different bending conditions. This study provides a scalable method for fabricating high performance flexible supercapacitors from easily available materials for use in wearable and portable electronics. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Re-Visiting the Electronic Energy Map of the Copper Dimer by Double-Resonant Four-Wave Mixing
NASA Astrophysics Data System (ADS)
Visser, Bradley; Bornhauser, Peter; Beck, Martin; Knopp, Gregor; Marquardt, Roberto; Gourlaouen, Christophe; van Bokhoven, Jeroen A.; Radi, Peter
2017-06-01
The copper dimer is one of the most studied transition metal (TM) diatomics due to its alkali-metal like electronic shell structure, strongly bound ground state and chemical reactivity. The high electronic promotion energy in the copper atom yields numerous low-lying electronic states compared to TM dimers with d)-hole electronic configurations. Thus, through extensive study the excited electronic structure of Cu_2 is relatively well known, however in practice few excited states have been investigated with rotational resolution or even assigned term symbols or dissociation limits. The spectroscopic methods that have been used to investigate the copper dimer until now have not possessed sufficient spectral selectivity, which has complicated the analysis of the often overlapping transitions. Resonant four-wave mixing is a non-linear absorption based spectroscopic method. In favorable cases, the two-color version (TC-RFWM) enables purely optical mass selective spectral measurements in a mixed molecular beam. Additionally, by labelling individual rotational levels in the common intermediate state the spectra are dramatically simplified. In this work, we report on the rotationally resolved characterization of low-lying electronic states of dicopper. Several term symbols have been assigned unambiguously. De-perturbation studies performed shed light on the complex electronic structure of the molecule. Furthermore, a new low-lying electronic state of Cu_2 is discovered and has important implications for the high-level theoretical structure calculations performed in parallel. In fact, the ab initio methods applied yield relative energies among the electronic levels that are almost quantitative and allow assignment of the newly observed state that is governed by spin-orbit interacting levels.
Pennacchio, Francesco; Vanacore, Giovanni M; Mancini, Giulia F; Oppermann, Malte; Jayaraman, Rajeswari; Musumeci, Pietro; Baum, Peter; Carbone, Fabrizio
2017-07-01
Ultrafast electron diffraction is a powerful technique to investigate out-of-equilibrium atomic dynamics in solids with high temporal resolution. When diffraction is performed in reflection geometry, the main limitation is the mismatch in group velocity between the overlapping pump light and the electron probe pulses, which affects the overall temporal resolution of the experiment. A solution already available in the literature involved pulse front tilt of the pump beam at the sample, providing a sub-picosecond time resolution. However, in the reported optical scheme, the tilted pulse is characterized by a temporal chirp of about 1 ps at 1 mm away from the centre of the beam, which limits the investigation of surface dynamics in large crystals. In this paper, we propose an optimal tilting scheme designed for a radio-frequency-compressed ultrafast electron diffraction setup working in reflection geometry with 30 keV electron pulses containing up to 10 5 electrons/pulse. To characterize our scheme, we performed optical cross-correlation measurements, obtaining an average temporal width of the tilted pulse lower than 250 fs. The calibration of the electron-laser temporal overlap was obtained by monitoring the spatial profile of the electron beam when interacting with the plasma optically induced at the apex of a copper needle (plasma lensing effect). Finally, we report the first time-resolved results obtained on graphite, where the electron-phonon coupling dynamics is observed, showing an overall temporal resolution in the sub-500 fs regime. The successful implementation of this configuration opens the way to directly probe structural dynamics of low-dimensional systems in the sub-picosecond regime, with pulsed electrons.
Pennacchio, Francesco; Vanacore, Giovanni M.; Mancini, Giulia F.; Oppermann, Malte; Jayaraman, Rajeswari; Musumeci, Pietro; Baum, Peter; Carbone, Fabrizio
2017-01-01
Ultrafast electron diffraction is a powerful technique to investigate out-of-equilibrium atomic dynamics in solids with high temporal resolution. When diffraction is performed in reflection geometry, the main limitation is the mismatch in group velocity between the overlapping pump light and the electron probe pulses, which affects the overall temporal resolution of the experiment. A solution already available in the literature involved pulse front tilt of the pump beam at the sample, providing a sub-picosecond time resolution. However, in the reported optical scheme, the tilted pulse is characterized by a temporal chirp of about 1 ps at 1 mm away from the centre of the beam, which limits the investigation of surface dynamics in large crystals. In this paper, we propose an optimal tilting scheme designed for a radio-frequency-compressed ultrafast electron diffraction setup working in reflection geometry with 30 keV electron pulses containing up to 105 electrons/pulse. To characterize our scheme, we performed optical cross-correlation measurements, obtaining an average temporal width of the tilted pulse lower than 250 fs. The calibration of the electron-laser temporal overlap was obtained by monitoring the spatial profile of the electron beam when interacting with the plasma optically induced at the apex of a copper needle (plasma lensing effect). Finally, we report the first time-resolved results obtained on graphite, where the electron-phonon coupling dynamics is observed, showing an overall temporal resolution in the sub-500 fs regime. The successful implementation of this configuration opens the way to directly probe structural dynamics of low-dimensional systems in the sub-picosecond regime, with pulsed electrons. PMID:28713841
Highly Flexible Hybrid CMOS Inverter Based on Si Nanomembrane and Molybdenum Disulfide.
Das, Tanmoy; Chen, Xiang; Jang, Houk; Oh, Il-Kwon; Kim, Hyungjun; Ahn, Jong-Hyun
2016-11-01
2D semiconductor materials are being considered for next generation electronic device application such as thin-film transistors and complementary metal-oxide-semiconductor (CMOS) circuit due to their unique structural and superior electronics properties. Various approaches have already been taken to fabricate 2D complementary logics circuits. However, those CMOS devices mostly demonstrated based on exfoliated 2D materials show the performance of a single device. In this work, the design and fabrication of a complementary inverter is experimentally reported, based on a chemical vapor deposition MoS 2 n-type transistor and a Si nanomembrane p-type transistor on the same substrate. The advantages offered by such CMOS configuration allow to fabricate large area wafer scale integration of high performance Si technology with transition-metal dichalcogenide materials. The fabricated hetero-CMOS inverters which are composed of two isolated transistors exhibit a novel high performance air-stable voltage transfer characteristic with different supply voltages, with a maximum voltage gain of ≈16, and sub-nano watt power consumption. Moreover, the logic gates have been integrated on a plastic substrate and displayed reliable electrical properties paving a realistic path for the fabrication of flexible/transparent CMOS circuits in 2D electronics. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Electron spectroscopy for chemical analysis: Sample analysis
NASA Technical Reports Server (NTRS)
Carter, W. B.
1989-01-01
Exposure conditions in atomic oxygen (ESCA) was performed on an SSL-100/206 Small Spot Spectrometer. All data were taken with the use of a low voltage electron flood gun and a charge neutralization screen to minimize charging effects on the data. The X-ray spot size and electron flood gun voltage used are recorded on the individual spectra as are the instrumental resolutions. Two types of spectra were obtained for each specimen: (1) general surveys, and (2) high resolution spectra. The two types of data reduction performed are: (1) semiquantitative compositional analysis, and (2) peak fitting. The materials analyzed are: (1) kapton 4, 5, and 6, (2) HDPE 19, 20, and 21, and (3) PVDF 4, 5, and 6.
Vertically grown nanowire crystals of dibenzotetrathienocoronene (DBTTC) on large-area graphene
Kim, B.; Chiu, C. -Y.; Kang, S. J.; ...
2016-06-01
Here we demonstrate controlled growth of vertical organic crystal nanowires on single layer graphene. Using Scanning Electron Microscopy (SEM), high-resolution transition electron microscopy (TEM), and Grazing Incidence X-ray Diffraction (GIXD), we probe the microstructure and morphology of dibenzotetrathienocoronene (DBTTC) nanowires epitaxially grown on graphene. The investigation is performed at both the ensemble and single nanowire level, and as function of growth parameters, providing insight of and control over the formation mechanism. Finally, the size, density and height of the nanowires can be tuned via growth conditions, opening new avenues for tailoring three-dimensional (3-D) nanostructured architectures for organic electronics with improvedmore » functional performance.« less
Su, Fenghua; Lv, Xiaoming; Miao, Menghe
2015-02-18
Yarn supercapacitors are promising power sources for flexible electronic applications that require conventional fabric-like durability and wearer comfort. Carbon nanotube (CNT) yarn is an attractive choice for constructing yarn supercapacitors used in wearable textiles because of its high strength and flexibility. However, low capacitance and energy density limits the use of pure CNT yarn in wearable high-energy density devices. Here, transitional metal oxide pseudocapacitive materials NiO and Co3 O4 are deposited on as-spun CNT yarn surface using a simple electrodeposition process. The Co3 O4 deposited on the CNT yarn surface forms a uniform hybridized CNT@Co3 O4 layer. The two-ply supercapacitors formed from the CNT@Co3 O4 composite yarns display excellent electrochemical properties with very high capacitance of 52.6 mF cm(-2) and energy density of 1.10 μWh cm(-2) . The high performance two-ply CNT@Co3 O4 yarn supercapacitors are mechanically and electrochemically robust to meet the high performance requirements of power sources for wearable electronics. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Preparation of layered graphene and tungsten oxide hybrids for enhanced performance supercapacitors.
Xing, Ling-Li; Huang, Ke-Jing; Fang, Lin-Xia
2016-11-01
Tungsten oxide (WO 3 ), which was originally poor in capacitive performance, is made into an excellent electrode material for supercapacitors by dispersing it on graphene (Gr). The obtained Gr-WO 3 hybrids are characterized by X-ray diffraction, Raman spectroscopy, high-resolution transmission electron microscopy and scanning electron microscopy techniques, and evaluated as electrode materials for high-performance supercapacitors by cyclic voltammetry, galvanostatic charge-discharge curves and electrochemical impedance spectroscopy. A great improvement in specific capacitance is achieved with the present hybrids, from 255 F g -1 for WO 3 nanoparticles to 580 F g -1 for Gr-WO 3 hybrids (scanned at 1 A g -1 in 2 M KOH over a potential window of 0 to 0.45 V). The Gr-WO 3 hybrid exhibits an excellent high rate capability and good cycling stability with more than 92% capacitance retention over 1000 cycles at a current density of 5 A g -1 . The enhancement in supercapacitor performance of Gr-WO 3 is not only attributed to its unique nanostructure with large specific surface area, but also its excellent electro-conductivity, which facilitates efficient charge transport and promotes electrolyte diffusion. As a whole, this work indicates that Gr-WO 3 hybrids are a promising electrode material for high-performance supercapacitors.
High current polarized electron source
NASA Astrophysics Data System (ADS)
Suleiman, R.; Adderley, P.; Grames, J.; Hansknecht, J.; Poelker, M.; Stutzman, M.
2018-05-01
Jefferson Lab operates two DC high voltage GaAs photoguns with compact inverted insulators. One photogun provides the polarized electron beam at the Continuous Electron Beam Accelerator Facility (CEBAF) up to 200 µA. The other gun is used for high average current photocathode lifetime studies at a dedicated test facility up to 4 mA of polarized beam and 10 mA of un-polarized beam. GaAs-based photoguns used at accelerators with extensive user programs must exhibit long photocathode operating lifetime. Achieving this goal represents a significant challenge for proposed facilities that must operate in excess of tens of mA of polarized average current. This contribution describes techniques to maintain good vacuum while delivering high beam currents, and techniques that minimize damage due to ion bombardment, the dominant mechanism that reduces photocathode yield. Advantages of higher DC voltage include reduced space-charge emittance growth and the potential for better photocathode lifetime. Highlights of R&D to improve the performance of polarized electron sources and prolong the lifetime of strained-superlattice GaAs are presented.
Evaluation of LiF:Mg,Ti (TLD-100) for Intraoperative Electron Radiation Therapy Quality Assurance
Liuzzi, Raffaele; Savino, Federica; D’Avino, Vittoria; Pugliese, Mariagabriella; Cella, Laura
2015-01-01
Background Purpose of the present work was to investigate thermoluminescent dosimeters (TLDs) response to intraoperative electron radiation therapy (IOERT) beams. In an IOERT treatment, a large single radiation dose is delivered with a high dose-per-pulse electron beam (2–12 cGy/pulse) during surgery. To verify and to record the delivered dose, in vivo dosimetry is a mandatory procedure for quality assurance. The TLDs feature many advantages such as a small detector size and close tissue equivalence that make them attractive for IOERT as in vivo dosimeters. Methods LiF:Mg,Ti dosimeters (TLD-100) were irradiated with different IOERT electron beam energies (5, 7 and 9 MeV) and with a 6 MV conventional photon beam. For each energy, the TLDs were irradiated in the dose range of 0–10 Gy in step of 2Gy. Regression analysis was performed to establish the response variation of thermoluminescent signals with dose and energy. Results The TLD-100 dose-response curves were obtained. In the dose range of 0–10 Gy, the calibration curve was confirmed to be linear for the conventional photon beam. In the same dose region, the quadratic model performs better than the linear model when high dose-per-pulse electron beams were used (F test; p<0.05). Conclusions This study demonstrates that the TLD dose response, for doses ≤10Gy, has a parabolic behavior in high dose-per-pulse electron beams. TLD-100 can be useful detectors for IOERT patient dosimetry if a proper calibration is provided. PMID:26427065
Evaluation of LiF:Mg,Ti (TLD-100) for Intraoperative Electron Radiation Therapy Quality Assurance.
Liuzzi, Raffaele; Savino, Federica; D'Avino, Vittoria; Pugliese, Mariagabriella; Cella, Laura
2015-01-01
Purpose of the present work was to investigate thermoluminescent dosimeters (TLDs) response to intraoperative electron radiation therapy (IOERT) beams. In an IOERT treatment, a large single radiation dose is delivered with a high dose-per-pulse electron beam (2-12 cGy/pulse) during surgery. To verify and to record the delivered dose, in vivo dosimetry is a mandatory procedure for quality assurance. The TLDs feature many advantages such as a small detector size and close tissue equivalence that make them attractive for IOERT as in vivo dosimeters. LiF:Mg,Ti dosimeters (TLD-100) were irradiated with different IOERT electron beam energies (5, 7 and 9 MeV) and with a 6 MV conventional photon beam. For each energy, the TLDs were irradiated in the dose range of 0-10 Gy in step of 2 Gy. Regression analysis was performed to establish the response variation of thermoluminescent signals with dose and energy. The TLD-100 dose-response curves were obtained. In the dose range of 0-10 Gy, the calibration curve was confirmed to be linear for the conventional photon beam. In the same dose region, the quadratic model performs better than the linear model when high dose-per-pulse electron beams were used (F test; p<0.05). This study demonstrates that the TLD dose response, for doses ≤10 Gy, has a parabolic behavior in high dose-per-pulse electron beams. TLD-100 can be useful detectors for IOERT patient dosimetry if a proper calibration is provided.
NASA Astrophysics Data System (ADS)
Kim, Holak; Choe, Wonho; Lim, Youbong; Lee, Seunghun; Park, Sanghoo
2017-03-01
Magnetic field configuration is critical in Hall thrusters for achieving high performance, particularly in thrust, specific impulse, efficiency, etc. Ion beam features are also significantly influenced by magnetic field configurations. In two typical magnetic field configurations (i.e., co-current and counter-current configurations) of a cylindrical Hall thruster, ion beam characteristics are compared in relation to multiply charged ions. Our study shows that the co-current configuration brings about high ion current (or low electron current), high ionization rate, and small plume angle that lead to high thruster performance.
Type testing of the Siemens Plessey electronic personal dosemeter.
Hirning, C R; Yuen, P S
1995-07-01
This paper presents the results of a laboratory assessment of the performance of a new type of personal dosimeter, the Electronic Personal Dosemeter made by Siemens Plessey Controls Limited. Twenty pre-production dosimeters and a reader were purchased by Ontario Hydro for the assessment. Tests were performed on radiological performance, including reproducibility, accuracy, linearity, detection threshold, energy response, angular response, neutron response, and response time. There were also tests on the effects of a variety of environmental factors, such as temperature, humidity, pulsed magnetic and electric fields, low- and high-frequency electromagnetic fields, light exposure, drop impact, vibration, and splashing. Other characteristics that were tested were alarm volume, clip force, and battery life. The test results were compared with the relevant requirements of three standards: an Ontario Hydro standard for personal alarming dosimeters, an International Electrotechnical Commission draft standard for direct reading personal dose monitors, and an International Electrotechnical Commission standard for thermoluminescence dosimetry systems for personal monitoring. In general, the performance of the Electronic Personal Dosemeter was found to be quite acceptable: it met most of the relevant requirements of the three standards. However, the following deficiencies were found: slow response time; sensitivity to high-frequency electromagnetic fields; poor resistance to dropping; and an alarm that was not loud enough. In addition, the response of the electronic personal dosimeter to low-energy beta rays may be too low for some applications. Problems were experienced with the reliability of operation of the pre-production dosimeters used in these tests.
NASA Astrophysics Data System (ADS)
Yang, Liu; Yang, Zhongcun; Wan, Jianing; Liu, Hao
2016-10-01
For the safety of electronic equipment, a double-layer barrier of cylindrical plasma array was designed, and its protective performance to high-power microwave (HPM) were analyzed and the protective performance experiment was conducted. Combining the density distribution characteristic of the discharge plasma, the shielding effectiveness of the double-layer plasma on 6GHz HPM pulse was studied. The experiment results indicate that the protective effectiveness of two layers plasma array is better than that of one layer. Two layers plasma array can make the peak electric field of transmission waveform less than interference threshold of electronic equipment to achieve better protection effectiveness. Transmission attenuation of one layer and two layers plasma array to HPM can reach -6.6066dB and -24.9357dB. The results also show that for the existence of multiple reflection, even the plasma electron density is not high enough, it can realize a strong attenuation. The experiment results in this paper are of great significance in protecting against HPM and electromagnetic pulse.
Hao, Jinhui; Yang, Wenshu; Zhang, Zhe; Lu, Baoping; Ke, Xi; Zhang, Bailin; Tang, Jilin
2014-07-15
A facile simple hydrothermal method combined with a post-solution reaction is developed to grow interconnected three dimensional (3D) hierarchical Co-Al layered double hydroxides (LDHs) on reduced graphene oxide (rGO). The obtained 3D hierarchical rGO-LDHs are characterized by field emission scanning electron microscopy, X-ray diffraction, and X-ray photo-electron spectroscopy. As LDHs nanosheets directly grow on the surface of rGO via chemical covalent bonding, the rGO could provide facile electron transport paths in the electrode for the fast Faradaic reaction. Moreover, benefiting from the rational 3D hierarchical structural, the rGO-LDHs demonstrate excellent electrochemical properties with a combination of high charge storage capacitance, fast rate capability and stable cycling performance. Remarkably, the 3D hierarchical rGO-LDHs exhibit specific capacitance values of 599 F g(-1) at a constant current density of 4 A g(-1). The rGO-LDHs also show high charge-discharge reversibility with an efficiency of 92.4% after 5000 cycles. Copyright © 2014 Elsevier Inc. All rights reserved.
Field Emission Properties of Carbon Nanotube Fibers and Sheets for a High Current Electron Source
NASA Astrophysics Data System (ADS)
Christy, Larry
Field emission (FE) properties of carbon nanotube (CNT) fibers from Rice University and the University of Cambridge have been studied for use within a high current electron source for a directed energy weapon. Upon reviewing the performance of these two prevalent CNT fibers, cathodes were designed with CNT fibers from the University of Cincinnati Nanoworld Laboratory. Cathodes composed of a single CNT fiber, an array of three CNT fibers, and a nonwoven CNT sheet were investigated for FE properties; the goal was to design a cathode with emission current in excess of 10 mA. Once the design phase was complete, the cathode samples were fabricated, characterized, and then analyzed to determine FE properties. Electrical conductivity of the CNT fibers was characterized with a 4-probe technique. FE characteristics were measured in an ultra-high vacuum chamber at Wright-Patterson Air Force Base. The arrayed CNT fiber and the enhanced nonwoven CNT sheet emitter design demonstrated the most promising FE properties. Future work will include further analysis and cathode design using this nonwoven CNT sheet material to increase peak current performance during electron emission.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Budden, B. S.; Stonehill, L. C.; Warniment, A.
In this study, a new class of elpasolite scintillators has garnered recent attention due to the ability to perform as simultaneous gamma spectrometers and thermal neutron detectors. Such a dual-mode capability is made possible by pulse-shape discrimination (PSD), whereby the emission waveform profiles of gamma and neutron events are fundamentally unique. To take full advantage of these materials, we have developed the Compact Advanced Readout Electronics for Elpasolites (CAREE). This handheld instrument employs a multi-channel PSD-capable ASIC, custom micro-processor board, front-end electronics, power supplies, and a 2 in. photomultiplier tube for readout of the scintillator. The unit is highly configurablemore » to allow for performance optimization amongst a wide sample of elpasolites which provide PSD in fundamentally different ways. We herein provide an introduction to elpasolites, then describe the motivation for the work, mechanical and electronic design, and preliminary performance results.« less
NASA Technical Reports Server (NTRS)
Mueller, Carl; Alterovitz, Samuel; Croke, Edward; Ponchak, George
2004-01-01
System-on-a-chip (SOC) processes are under intense development for high-speed, high frequency transceiver circuitry. As frequencies, data rates, and circuit complexity increases, the need for substrates that enable high-speed analog operation, low-power digital circuitry, and excellent isolation between devices becomes increasingly critical. SiGe/Si modulation doped field effect transistors (MODFETs) with high carrier mobilities are currently under development to meet the active RF device needs. However, as the substrate normally used is Si, the low-to-modest substrate resistivity causes large losses in the passive elements required for a complete high frequency circuit. These losses are projected to become increasingly troublesome as device frequencies progress to the Ku-band (12 - 18 GHz) and beyond. Sapphire is an excellent substrate for high frequency SOC designs because it supports excellent both active and passive RF device performance, as well as low-power digital operations. We are developing high electron mobility SiGe/Si transistor structures on r-plane sapphire, using either in-situ grown n-MODFET structures or ion-implanted high electron mobility transistor (HEMT) structures. Advantages of the MODFET structures include high electron mobilities at all temperatures (relative to ion-implanted HEMT structures), with mobility continuously improving to cryogenic temperatures. We have measured electron mobilities over 1,200 and 13,000 sq cm/V-sec at room temperature and 0.25 K, respectively in MODFET structures. The electron carrier densities were 1.6 and 1.33 x 10(exp 12)/sq cm at room and liquid helium temperature, respectively, denoting excellent carrier confinement. Using this technique, we have observed electron mobilities as high as 900 sq cm/V-sec at room temperature at a carrier density of 1.3 x 10(exp 12)/sq cm. The temperature dependence of mobility for both the MODFET and HEMT structures provides insights into the mechanisms that allow for enhanced electron mobility as well as the processes that limit mobility, and will be presented.
Integrated controls pay-off. [for flight/propulsion aircraft systems
NASA Technical Reports Server (NTRS)
Putnam, Terrill W.; Christiansen, Richard S.
1989-01-01
It is shown that the integration of the propulsion and flight control systems for high performance aircraft can help reduce pilot workload while simultaneously increasing overall aircraft performance. Results of the Highly Integrated Digital Electronic Control (HiDEC) flight research program are presented to demonstrate the emerging payoffs of controls integration. Ways in which the performance of fighter aircraft can be improved through the use of propulsion for primary aircraft control are discussed. Research being conducted by NASA with the F-18 High Angle-of Attack Research Vehicle is described.
Silicon Carbide High-Temperature Power Rectifiers Fabricated and Characterized
NASA Technical Reports Server (NTRS)
1996-01-01
The High Temperature Integrated Electronics and Sensors (HTIES) team at the NASA Lewis Research Center is developing silicon carbide (SiC) for use in harsh conditions where silicon, the semiconductor used in nearly all of today's electronics, cannot function. Silicon carbide's demonstrated ability to function under extreme high-temperature, high power, and/or high-radiation conditions will enable significant improvements to a far ranging variety of applications and systems. These improvements range from improved high-voltage switching for energy savings in public electric power distribution and electric vehicles, to more powerful microwave electronics for radar and cellular communications, to sensors and controls for cleaner-burning, more fuel-efficient jet aircraft and automobile engines. In the case of jet engines, uncooled operation of 300 to 600 C SiC power actuator electronics mounted in key high-temperature areas would greatly enhance system performance and reliability. Because silicon cannot function at these elevated temperatures, the semiconductor device circuit components must be made of SiC. Lewis' HTIES group recently fabricated and characterized high-temperature SiC rectifier diodes whose record-breaking characteristics represent significant progress toward the realization of advanced high-temperature actuator control circuits. The first figure illustrates the 600 C probe-testing of a Lewis SiC pn-junction rectifier diode sitting on top of a glowing red-hot heating element. The second figure shows the current-versus voltage rectifying characteristics recorded at 600 C. At this high temperature, the diodes were able to "turn-on" to conduct 4 A of current when forward biased, and yet block the flow of current ($quot;turn-off") when reverse biases as high as 150 V were applied. This device represents a new record for semiconductor device operation, in that no previous semiconductor electronic device has ever simultaneously demonstrated 600 C functionality, and 4-A turn-on and 150-V rectification. The high operating current was achieved despite severe device size limitations imposed by present-day SiC wafer defect densities. Further substantial increases in device performance can be expected when SiC wafer defect densities decrease as SiC wafer production technology matures.
NASA Astrophysics Data System (ADS)
Tsiokos, Dimitris M.; Dabos, George; Ketzaki, Dimitra; Weeber, Jean-Claude; Markey, Laurent; Dereux, Alain; Giesecke, Anna Lena; Porschatis, Caroline; Chmielak, Bartos; Wahlbrink, Thorsten; Rochracher, Karl; Pleros, Nikos
2017-05-01
Silicon photonics meet most fabrication requirements of standard CMOS process lines encompassing the photonics-electronics consolidation vision. Despite this remarkable progress, further miniaturization of PICs for common integration with electronics and for increasing PIC functional density is bounded by the inherent diffraction limit of light imposed by optical waveguides. Instead, Surface Plasmon Polariton (SPP) waveguides can guide light at sub-wavelength scales at the metal surface providing unique light-matter interaction properties, exploiting at the same time their metallic nature to naturally integrate with electronics in high-performance ASPICs. In this article, we demonstrate the main goals of the recently introduced H2020 project PlasmoFab towards addressing the ever increasing needs for low energy, small size and high performance mass manufactured PICs by developing a revolutionary yet CMOS-compatible fabrication platform for seamless co-integration of plasmonics with photonic and supporting electronic. We demonstrate recent advances on the hosting SiN photonic hosting platform reporting on low-loss passive SiN waveguide and Grating Coupler circuits for both the TM and TE polarization states. We also present experimental results of plasmonic gold thin-film and hybrid slot waveguide configurations that can allow for high-sensitivity sensing, providing also the ongoing activities towards replacing gold with Cu, Al or TiN metal in order to yield the same functionality over a CMOS metallic structure. Finally, the first experimental results on the co-integrated SiN+plasmonic platform are demonstrated, concluding to an initial theoretical performance analysis of the CMOS plasmo-photonic biosensor that has the potential to allow for sensitivities beyond 150000nm/RIU.
Reduced graphene oxide aerogel with high-rate supercapacitive performance in aqueous electrolytes
NASA Astrophysics Data System (ADS)
Si, Weijiang; Wu, Xiaozhong; Zhou, Jin; Guo, Feifei; Zhuo, Shuping; Cui, Hongyou; Xing, Wei
2013-05-01
Reduced graphene oxide aerogel (RGOA) is synthesized successfully through a simultaneous self-assembly and reduction process using hypophosphorous acid and I2 as reductant. Nitrogen sorption analysis shows that the Brunauer-Emmett-Teller surface area of RGOA could reach as high as 830 m2 g-1, which is the largest value ever reported for graphene-based aerogels obtained through the simultaneous self-assembly and reduction strategy. The as-prepared RGOA is characterized by a variety of means such as scanning electron microscopy, transmission electron microscopy, X-ray diffraction, Raman spectroscopy, and X-ray photoelectron spectroscopy. Electrochemical tests show that RGOA exhibits a high-rate supercapacitive performance in aqueous electrolytes. The specific capacitance of RGOA is calculated to be 211.8 and 278.6 F g-1 in KOH and H2SO4 electrolytes, respectively. The perfect supercapacitive performance of RGOA is ascribed to its three-dimensional structure and the existence of oxygen-containing groups.
Reduced graphene oxide aerogel with high-rate supercapacitive performance in aqueous electrolytes.
Si, Weijiang; Wu, Xiaozhong; Zhou, Jin; Guo, Feifei; Zhuo, Shuping; Cui, Hongyou; Xing, Wei
2013-05-21
Reduced graphene oxide aerogel (RGOA) is synthesized successfully through a simultaneous self-assembly and reduction process using hypophosphorous acid and I2 as reductant. Nitrogen sorption analysis shows that the Brunauer-Emmett-Teller surface area of RGOA could reach as high as 830 m2 g-1, which is the largest value ever reported for graphene-based aerogels obtained through the simultaneous self-assembly and reduction strategy. The as-prepared RGOA is characterized by a variety of means such as scanning electron microscopy, transmission electron microscopy, X-ray diffraction, Raman spectroscopy, and X-ray photoelectron spectroscopy. Electrochemical tests show that RGOA exhibits a high-rate supercapacitive performance in aqueous electrolytes. The specific capacitance of RGOA is calculated to be 211.8 and 278.6 F g-1 in KOH and H2SO4 electrolytes, respectively. The perfect supercapacitive performance of RGOA is ascribed to its three-dimensional structure and the existence of oxygen-containing groups.
NASA Astrophysics Data System (ADS)
de la Broïse, Xavier; Lugiez, Francis; Bounab, Ayoub; Le Coguie, Alain
2015-07-01
High Electron Mobility Transistors (HEMTs), optimized by CNRS/LPN laboratory for ultra-low noise at very low temperature, have demonstrated their capacity to be used in place of Si JFETs when working temperatures below 100 K are required. We associated them with specific SiGe ASICs that we developed, to implement a complete readout channel able to read highly segmented high impedance detectors within a framework of very low thermal dissipation. Our electronics is dimensioned to read 4096 detection channels, of typically 1 MΩ impedance, and performs 32:1 multiplexing and amplifying, dissipating only 6 mW at 2.5 K and 100 mW at 15 K thanks to high impedance commuting of input stage, with a typical noise of 1 nV/√Hz at 1 kHz.
Yan, Pengtao; Zhang, Xuesha; Hou, Meiling; Liu, Yanyan; Liu, Ting; Liu, Kang; Zhang, Ruijun
2018-06-22
In order to develop energy storage devices with high power performance, electrodes should hold well-defined pathways for efficient ionic and electronic transport. Herein, we demonstrate a highly conductive graphene nanosheet/nanometer-sized carbide-derived carbon framework (hcGNS/nCDC). In this architecture, nCDC possesses short transport paths for electrolyte ions, thus ensuring the rapid ions transportation. The excellent electrical conductivity of hcGNS can reduce the electrode internal resistance for the supercapacitor and thus endows the hcGNS/nCDC composite electrodes with excellent electronic transportation performance. Electrochemical measurements show that the cyclic voltammogram of hcGNS/nCDC can maintain a rectangular-like shape with the increase of the scan rate from 5 mV s -1 to 20 V s -1 , and the specific capacitance retention is up to 51% even at a high scan rate of 20 V s -1 , suggesting ultrahigh power performance, which, to the best of our knowledge, is among the best power performances reported so far for the carbon materials. Furthermore, the hcGNS/nCDC composite also shows an excellent cycling stability (no drop in its capacitance occurs even after 10000 cycles). This work demonstrates the advantage in the ultrahigh power performance for the framework having both short transport pathways for electrolyte ions and high electrical conductivity.
NASA Astrophysics Data System (ADS)
Yan, Pengtao; Zhang, Xuesha; Hou, Meiling; Liu, Yanyan; Liu, Ting; Liu, Kang; Zhang, Ruijun
2018-06-01
In order to develop energy storage devices with high power performance, electrodes should hold well-defined pathways for efficient ionic and electronic transport. Herein, we demonstrate a highly conductive graphene nanosheet/nanometer-sized carbide-derived carbon framework (hcGNS/nCDC). In this architecture, nCDC possesses short transport paths for electrolyte ions, thus ensuring the rapid ions transportation. The excellent electrical conductivity of hcGNS can reduce the electrode internal resistance for the supercapacitor and thus endows the hcGNS/nCDC composite electrodes with excellent electronic transportation performance. Electrochemical measurements show that the cyclic voltammogram of hcGNS/nCDC can maintain a rectangular-like shape with the increase of the scan rate from 5 mV s‑1 to 20 V s‑1, and the specific capacitance retention is up to 51% even at a high scan rate of 20 V s‑1, suggesting ultrahigh power performance, which, to the best of our knowledge, is among the best power performances reported so far for the carbon materials. Furthermore, the hcGNS/nCDC composite also shows an excellent cycling stability (no drop in its capacitance occurs even after 10000 cycles). This work demonstrates the advantage in the ultrahigh power performance for the framework having both short transport pathways for electrolyte ions and high electrical conductivity.
NASA Astrophysics Data System (ADS)
Zhao, H. W.; Sun, L. T.; Guo, J. W.; Lu, W.; Xie, D. Z.; Hitz, D.; Zhang, X. Z.; Yang, Y.
2017-09-01
The superconducting electron cyclotron resonance ion source with advanced design in Lanzhou (SECRAL) is a superconducting-magnet-based electron cyclotron resonance ion source (ECRIS) for the production of intense highly charged heavy ion beams. It is one of the best performing ECRISs worldwide and the first superconducting ECRIS built with an innovative magnet to generate a high strength minimum-B field for operation with heating microwaves up to 24-28 GHz. Since its commissioning in 2005, SECRAL has so far produced a good number of continuous wave intensity records of highly charged ion beams, in which recently the beam intensities of 40Ar+ and 129Xe26+ have, for the first time, exceeded 1 emA produced by an ion source. Routine operations commenced in 2007 with the Heavy Ion accelerator Research Facility in Lanzhou (HIRFL), China. Up to June 2017, SECRAL has been providing more than 28,000 hours of highly charged heavy ion beams to the accelerator demonstrating its great capability and reliability. The great achievement of SECRAL is accumulation of numerous technical advancements, such as an innovative magnetic system and an efficient double-frequency (24 +18 GHz ) heating with improved plasma stability. This article reviews the development of SECRAL and production of intense highly charged ion beams by SECRAL focusing on its unique magnet design, source commissioning, performance studies and enhancements, beam quality and long-term operation. SECRAL development and its performance studies representatively reflect the achievements and status of the present ECR ion source, as well as the ECRIS impacts on HIRFL.
Inkjet printing of single-crystal films.
Minemawari, Hiromi; Yamada, Toshikazu; Matsui, Hiroyuki; Tsutsumi, Jun'ya; Haas, Simon; Chiba, Ryosuke; Kumai, Reiji; Hasegawa, Tatsuo
2011-07-13
The use of single crystals has been fundamental to the development of semiconductor microelectronics and solid-state science. Whether based on inorganic or organic materials, the devices that show the highest performance rely on single-crystal interfaces, with their nearly perfect translational symmetry and exceptionally high chemical purity. Attention has recently been focused on developing simple ways of producing electronic devices by means of printing technologies. 'Printed electronics' is being explored for the manufacture of large-area and flexible electronic devices by the patterned application of functional inks containing soluble or dispersed semiconducting materials. However, because of the strong self-organizing tendency of the deposited materials, the production of semiconducting thin films of high crystallinity (indispensable for realizing high carrier mobility) may be incompatible with conventional printing processes. Here we develop a method that combines the technique of antisolvent crystallization with inkjet printing to produce organic semiconducting thin films of high crystallinity. Specifically, we show that mixing fine droplets of an antisolvent and a solution of an active semiconducting component within a confined area on an amorphous substrate can trigger the controlled formation of exceptionally uniform single-crystal or polycrystalline thin films that grow at the liquid-air interfaces. Using this approach, we have printed single crystals of the organic semiconductor 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C(8)-BTBT) (ref. 15), yielding thin-film transistors with average carrier mobilities as high as 16.4 cm(2) V(-1) s(-1). This printing technique constitutes a major step towards the use of high-performance single-crystal semiconductor devices for large-area and flexible electronics applications.
NASA Astrophysics Data System (ADS)
Fang, Ranran; Wei, Hua; Li, Zhihua; Zhang, Duanming
2012-01-01
The electron temperature dependences of the electron-phonon coupling factor and electron heat capacity based on the electron density of states are investigated for precious metal Au under femtosecond laser irradiation. The thermal excitation of d band electrons is found to result in large deviations from the commonly used approximations of linear temperature dependence of the electron heat capacity, and the constant electron-phonon coupling factor. Results of the simulations performed with the two-temperature model demonstrate that the electron-phonon relaxation time becomes short for high fluence laser for Au. The satisfactory agreement between our numerical results and experimental data of threshold fluence indicates that the electron temperature dependence of the thermophysical parameters accounting for the thermal excitation of d band electrons should not be neglected under the condition that electron temperature is higher than 10 4 K.
Balancing Hole and Electron Conduction in Ambipolar Split-Gate Thin-Film Transistors.
Yoo, Hocheon; Ghittorelli, Matteo; Lee, Dong-Kyu; Smits, Edsger C P; Gelinck, Gerwin H; Ahn, Hyungju; Lee, Han-Koo; Torricelli, Fabrizio; Kim, Jae-Joon
2017-07-10
Complementary organic electronics is a key enabling technology for the development of new applications including smart ubiquitous sensors, wearable electronics, and healthcare devices. High-performance, high-functionality and reliable complementary circuits require n- and p-type thin-film transistors with balanced characteristics. Recent advancements in ambipolar organic transistors in terms of semiconductor and device engineering demonstrate the great potential of this route but, unfortunately, the actual development of ambipolar organic complementary electronics is currently hampered by the uneven electron (n-type) and hole (p-type) conduction in ambipolar organic transistors. Here we show ambipolar organic thin-film transistors with balanced n-type and p-type operation. By manipulating air exposure and vacuum annealing conditions, we show that well-balanced electron and hole transport properties can be easily obtained. The method is used to control hole and electron conductions in split-gate transistors based on a solution-processed donor-acceptor semiconducting polymer. Complementary logic inverters with balanced charging and discharging characteristics are demonstrated. These findings may open up new opportunities for the rational design of complementary electronics based on ambipolar organic transistors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hernandez-Garcia, C.; Bullard, D.; Hannon, F.
The design and fabrication of electrodes for direct current (dc) high voltage photoemission electron guns can significantly influence their performance, most notably in terms of maximum achievable bias voltage. Proper electrostatic design of the triple-point junction shield electrode minimizes the risk of electrical breakdown (arcing) along the insulator-cable plug interface, while the electrode shape is designed to maintain <10 MV/m at the desired operating voltage aiming at little or no field emission once conditioned. Typical electrode surface preparation involves diamond-paste polishing by skilled personnel, requiring several weeks of effort per electrode. In this work, we describe a centrifugal barrel-polishing techniquemore » commonly used for polishing the interior surface of superconducting radio frequency cavities but implemented here for the first time to polish electrodes for dc high voltage photoguns. The technique reduced polishing time from weeks to hours while providing surface roughness comparable to that obtained with diamond-paste polishing and with unprecedented consistency between different electrode samples. We present electrode design considerations and high voltage conditioning results to 360 kV (~11 MV/m), comparing barrel-polished electrode performance to that of diamond-paste polished electrodes. Here, tests were performed using a dc high voltage photogun with an inverted-geometry ceramic insulator design.« less
Hernandez-Garcia, C.; Bullard, D.; Hannon, F.; ...
2017-09-11
The design and fabrication of electrodes for direct current (dc) high voltage photoemission electron guns can significantly influence their performance, most notably in terms of maximum achievable bias voltage. Proper electrostatic design of the triple-point junction shield electrode minimizes the risk of electrical breakdown (arcing) along the insulator-cable plug interface, while the electrode shape is designed to maintain <10 MV/m at the desired operating voltage aiming at little or no field emission once conditioned. Typical electrode surface preparation involves diamond-paste polishing by skilled personnel, requiring several weeks of effort per electrode. In this work, we describe a centrifugal barrel-polishing techniquemore » commonly used for polishing the interior surface of superconducting radio frequency cavities but implemented here for the first time to polish electrodes for dc high voltage photoguns. The technique reduced polishing time from weeks to hours while providing surface roughness comparable to that obtained with diamond-paste polishing and with unprecedented consistency between different electrode samples. We present electrode design considerations and high voltage conditioning results to 360 kV (~11 MV/m), comparing barrel-polished electrode performance to that of diamond-paste polished electrodes. Here, tests were performed using a dc high voltage photogun with an inverted-geometry ceramic insulator design.« less
NASA Astrophysics Data System (ADS)
Hernandez-Garcia, C.; Bullard, D.; Hannon, F.; Wang, Y.; Poelker, M.
2017-09-01
The design and fabrication of electrodes for direct current (dc) high voltage photoemission electron guns can significantly influence their performance, most notably in terms of maximum achievable bias voltage. Proper electrostatic design of the triple-point junction shield electrode minimizes the risk of electrical breakdown (arcing) along the insulator-cable plug interface, while the electrode shape is designed to maintain <10 MV/m at the desired operating voltage aiming at little or no field emission once conditioned. Typical electrode surface preparation involves diamond-paste polishing by skilled personnel, requiring several weeks of effort per electrode. In this work, we describe a centrifugal barrel-polishing technique commonly used for polishing the interior surface of superconducting radio frequency cavities but implemented here for the first time to polish electrodes for dc high voltage photoguns. The technique reduced polishing time from weeks to hours while providing surface roughness comparable to that obtained with diamond-paste polishing and with unprecedented consistency between different electrode samples. We present electrode design considerations and high voltage conditioning results to 360 kV (˜11 MV/m), comparing barrel-polished electrode performance to that of diamond-paste polished electrodes. Tests were performed using a dc high voltage photogun with an inverted-geometry ceramic insulator design.
NASA Astrophysics Data System (ADS)
He, Lixin; Li, Yang; Wang, Zhe; Zhang, Qingbin; Lan, Pengfei; Lu, Peixiang
2014-05-01
We have performed the quantum trajectory analysis for high-order-harmonic generation (HHG) with different driving laser wavelengths. By defining the ratio of HHG yields of the Nth and first rescattering events (YN/Y1), we quantitatively evaluate the HHG contributions from multiple rescatterings. The results show that the HHG yield ratio increases gradually with the increase of the laser wavelength, which demonstrates that high-order rescatterings provide ascendent contributions to HHG at longer wavelength. By calculating the classical electron trajectories, we find significant differences exist in the electron behaviors between the first and high-order rescatterings. Further investigations have demonstrated that the increasing HHG yield ratio is mainly attributed to the relatively smaller contributions from the short path of the first electron rescattering at longer laser wavelength.
High power ferrite microwave switch
NASA Technical Reports Server (NTRS)
Bardash, I.; Roschak, N. K.
1975-01-01
A high power ferrite microwave switch was developed along with associated electronic driver circuits for operation in a spaceborne high power microwave transmitter in geostationary orbit. Three units were built and tested in a space environment to demonstrate conformance to the required performance characteristics. Each unit consisted of an input magic-tee hybrid, two non-reciprocal latching ferrite phase shifters, an out short-slot 3 db quadrature coupler, a dual driver electronic circuit, and input logic interface circuitry. The basic mode of operation of the high power ferrite microwave switch is identical to that of a four-port, differential phase shift, switchable circulator. By appropriately designing the phase shifters and electronic driver circuits to operate in the flux-transfer magnetization mode, power and temperature insensitive operation was achieved. A list of the realized characteristics of the developed units is given.
Aerosol jet printed silver nanowire transparent electrode for flexible electronic application
NASA Astrophysics Data System (ADS)
Tu, Li; Yuan, Sijian; Zhang, Huotian; Wang, Pengfei; Cui, Xiaolei; Wang, Jiao; Zhan, Yi-Qiang; Zheng, Li-Rong
2018-05-01
Aerosol jet printing technology enables fine feature deposition of electronic materials onto low-temperature, non-planar substrates without masks. In this work, silver nanowires (AgNWs) are proposed to be printed into transparent flexible electrodes using a Maskless Mesoscale Material Deposition Aerosol Jet® printing system on a glass substrate. The influence of the most significant process parameters, including printing cycles, printing speed, and nozzle size, on the performance of AgNW electrodes was systematically studied. The morphologies of printed patterns were characterized by scanning electron microscopy, and the transmittance was evaluated using an ultraviolet-visible spectrophotometer. Under optimum conditions, high transparent AgNW electrodes with a sheet resistance of 57.68 Ω/sq and a linewidth of 50.9 μm were obtained, which is an important step towards a higher performance goal for flexible electronic applications.