NASA Astrophysics Data System (ADS)
Siracusano, S.; Baglio, V.; Grigoriev, S. A.; Merlo, L.; Fateev, V. N.; Aricò, A. S.
2017-10-01
Nanosized Ir-black (3 nm) and Ir-oxide (5 nm) oxygen evolution electrocatalysts showing high performance in polymer electrolyte membrane (PEM) water electrolysis based on Aquivion® short-side chain ionomer membrane are investigated to understand the role of the Ir oxidation state on the electrocatalytic activity and stability. Despite the smaller mean crystallite size, the Ir-black electrocatalyst shows significantly lower initial performance than the Ir-oxide. During operation at high current density, the Ir-black shows a decrease of cell potential with time whereas the Ir-oxide catalyst shows increasing cell potential resulting in a degradation rate of about 10 μV/h, approaching 1000 h. The unusual behaviour of the Ir-black results from the oxidation of metallic Ir to IrOx. The Ir-oxide catalyst shows instead a hydrated structure on the surface and a negative shift of about 0.5 eV for the Ir 4f binding energy after 1000 h electrolysis operation. This corresponds to the formation of a sub-stoichiometric Ir-oxide on the surface. These results indicate that a hydrated IrO2 with high oxidation state on the surface is favourable in decreasing the oxygen evolution overpotential. Modifications of the Ir chemical oxidation state during operation can affect significantly the catalytic activity and durability of the electrolysis system.
Room temperature infrared imaging sensors based on highly purified semiconducting carbon nanotubes.
Liu, Yang; Wei, Nan; Zhao, Qingliang; Zhang, Dehui; Wang, Sheng; Peng, Lian-Mao
2015-04-21
High performance infrared (IR) imaging systems usually require expensive cooling systems, which are highly undesirable. Here we report the fabrication and performance characteristics of room temperature carbon nanotube (CNT) IR imaging sensors. The CNT IR imaging sensor is based on aligned semiconducting CNT films with 99% purity, and each pixel or device of the imaging sensor consists of aligned strips of CNT asymmetrically contacted by Sc and Pd. We found that the performance of the device is dependent on the CNT channel length. While short channel devices provide a large photocurrent and a rapid response of about 110 μs, long channel length devices exhibit a low dark current and a high signal-to-noise ratio which are critical for obtaining high detectivity. In total, 36 CNT IR imagers are constructed on a single chip, each consists of 3 × 3 pixel arrays. The demonstrated advantages of constructing a high performance IR system using purified semiconducting CNT aligned films include, among other things, fast response, excellent stability and uniformity, ideal linear photocurrent response, high imaging polarization sensitivity and low power consumption.
Relationships between field performance tests in high-level soccer players.
Ingebrigtsen, Jørgen; Brochmann, Marit; Castagna, Carlo; Bradley, Paul S; Ade, Jack; Krustrup, Peter; Holtermann, Andreas
2014-04-01
To reduce athlete testing time, the aim of this study was to investigate the relationship between the Yo-Yo intermittent recovery test levels 1 (IR1) and 2 (IR2) performances, maximal sprinting speed (10, 20, and 35 m), repeated sprint ability (RSA; 7 × 35 m), and submaximal heart rates (HRs) after 2 and 4 minutes of the Yo-Yo IR tests by testing 57 high-level soccer players. All players played regularly in one of 3 highest levels of Norwegian soccer and were tested during 3 sessions on 3 consecutive days. Large correlations were observed between Yo-Yo IR1 and IR2 test performances (r = 0.753, p ≤ 0.05). Small and moderate correlations were found between 20- and 35-m sprinting speed and Yo-Yo IR1 performance (r = -0.289 and -0.321, respectively, p ≤ 0.05), whereas 35-m sprinting speed correlated moderately to Yo-Yo IR2 performance (r = -0.371, p ≤ 0.05). Repeated sprint ability at 10, 20, and 35 m all showed moderate to large correlations to Yo-Yo IR1 performance (r = -0.337 to -0.573, p ≤ 0.05). Repeated sprint ability at 20 m (r = -0.348, p ≤ 0.05) and 35 m (r = -0.552, p ≤ 0.01) correlated moderately and largely to Yo-Yo IR2 performance. In addition, moderate and large correlations were found between submaximal Yo-Yo IR1 HRs after 2 (r = -0.483, p ≤ 0.01) and 4 minutes (r = -0.655, p ≤ 0.01) and Yo-Yo IR1 performance, and 2 minutes Yo-Yo IR2 HR and Yo-Yo IR2 performance (r = -0.530, p ≤ 0.01). Intraclass correlation measures of submaximal HR after 2 and 4 minutes of Yo-Yo IR1 test and after 2 minutes of the Yo-Yo IR2 were 0.92 (coefficient of variation [CV] = 4.1%, n = 33), 0.93 (CV = 3.8%, n = 33), and 0.72 (CV = 2.9%, n = 10). Adjusted ordinary least square (OLS) regressions revealed associations (p ≤ 0.05) between sprint speed at 20 and 35 m and Yo-Yo IR1 test performance, but only between 35 m and IR2 test performance (p ≤ 0.05). Further, OLS showed that RSA at 35 m was related to both levels of the Yo-Yo IR test (p ≤ 0.01), and that submaximal HRs after 2 and 4 minutes were independently associated with Yo-Yo IR1 and IR2 performances (p ≤ 0.01). In conclusion, Yo-Yo IR1 and 2 test performances, as well as sprint and RSA performances, correlated very largely, and it may therefore be considered using only one of the Yo-Yo tests and a RSA test, in a general soccer-specific field test protocol. The submaximal HR measures during Yo-Yo tests are reproducible and may be used for frequent, time-efficient, and nonexhaustive testing of intermittent exercise capacity of high-level soccer players.
Isotonic Regression Based-Method in Quantitative High-Throughput Screenings for Genotoxicity
Fujii, Yosuke; Narita, Takeo; Tice, Raymond Richard; Takeda, Shunich
2015-01-01
Quantitative high-throughput screenings (qHTSs) for genotoxicity are conducted as part of comprehensive toxicology screening projects. The most widely used method is to compare the dose-response data of a wild-type and DNA repair gene knockout mutants, using model-fitting to the Hill equation (HE). However, this method performs poorly when the observed viability does not fit the equation well, as frequently happens in qHTS. More capable methods must be developed for qHTS where large data variations are unavoidable. In this study, we applied an isotonic regression (IR) method and compared its performance with HE under multiple data conditions. When dose-response data were suitable to draw HE curves with upper and lower asymptotes and experimental random errors were small, HE was better than IR, but when random errors were big, there was no difference between HE and IR. However, when the drawn curves did not have two asymptotes, IR showed better performance (p < 0.05, exact paired Wilcoxon test) with higher specificity (65% in HE vs. 96% in IR). In summary, IR performed similarly to HE when dose-response data were optimal, whereas IR clearly performed better in suboptimal conditions. These findings indicate that IR would be useful in qHTS for comparing dose-response data. PMID:26673567
Miao, Yanqin; Tao, Peng; Wang, Kexiang; Li, Hongxin; Zhao, Bo; Gao, Long; Wang, Hua; Xu, Bingshe; Zhao, Qiang
2017-11-01
Two highly efficient red neutral iridium(III) complexes, Ir1 and Ir2, were rationally designed and synthesized by selecting two pyridylimidazole derivatives as the ancillary ligands. Both Ir1 and Ir2 show nearly the same photoluminescence emission with the maximum peak at 595 nm (shoulder band at about 638 nm) and achieve high solution quantum yields of up to 0.47 for Ir1 and 0.57 for Ir2. Employing Ir1 and Ir2 as emitters, the fabricated red organic light-emitting diodes (OLEDs) show outstanding performance with the maximum external quantum efficiency (EQE), current efficiency (CE), and power efficiency (PE) of 20.98%, 33.04 cd/A, and 33.08 lm/W for the Ir1-based device and 22.15%, 36.89 cd/A, and 35.85 lm/W for the Ir2-based device, respectively. Furthermore, using Ir2 as red emitter, a trichromatic hybrid white OLED, showing good warm white emission with low correlated color temperature of <2200 K under the voltage of 4-6 V, was fabricated successfully. The white device also realizes excellent device efficiencies with the maximum EQE, CE, and PE reaching 22.74%, 44.77 cd/A, and 46.89 lm/W, respectively. Such high electroluminescence performance for red and white OLEDs indicates that Ir1 and Ir2 as efficient red phosphors have great potential for future OLED displays and lightings applications.
NASA Astrophysics Data System (ADS)
Hoegg, Edward D.; Barinaga, Charles J.; Hager, George J.; Hart, Garret L.; Koppenaal, David W.; Marcus, R. Kenneth
2016-08-01
In order to meet a growing need for fieldable mass spectrometer systems for precise elemental and isotopic analyses, the liquid sampling-atmospheric pressure glow discharge (LS-APGD) has a number of very promising characteristics. One key set of attributes that await validation deals with the performance characteristics relative to isotope ratio precision and accuracy. Owing to its availability and prior experience with this research team, the initial evaluation of isotope ratio (IR) performance was performed on a Thermo Scientific Exactive Orbitrap instrument. While the mass accuracy and resolution performance for Orbitrap analyzers are well-documented, no detailed evaluations of the IR performance have been published. Efforts described here involve two variables: the inherent IR precision and accuracy delivered by the LS-APGD microplasma and the inherent IR measurement qualities of Orbitrap analyzers. Important to the IR performance, the various operating parameters of the Orbitrap sampling interface, high-energy collisional dissociation (HCD) stage, and ion injection/data acquisition have been evaluated. The IR performance for a range of other elements, including natural, depleted, and enriched uranium isotopes was determined. In all cases, the precision and accuracy are degraded when measuring low abundance (<0.1% isotope fractions). In the best case, IR precision on the order of 0.1% RSD can be achieved, with values of 1%-3% RSD observed for low-abundance species. The results suggest that the LS-APGD is a promising candidate for field deployable MS analysis and that the high resolving powers of the Orbitrap may be complemented with a here-to-fore unknown capacity to deliver high-precision IRs.
Fast Infrared Chemical Imaging with a Quantum Cascade Laser
2015-01-01
Infrared (IR) spectroscopic imaging systems are a powerful tool for visualizing molecular microstructure of a sample without the need for dyes or stains. Table-top Fourier transform infrared (FT-IR) imaging spectrometers, the current established technology, can record broadband spectral data efficiently but requires scanning the entire spectrum with a low throughput source. The advent of high-intensity, broadly tunable quantum cascade lasers (QCL) has now accelerated IR imaging but results in a fundamentally different type of instrument and approach, namely, discrete frequency IR (DF-IR) spectral imaging. While the higher intensity of the source provides a higher signal per channel, the absence of spectral multiplexing also provides new opportunities and challenges. Here, we couple a rapidly tunable QCL with a high performance microscope equipped with a cooled focal plane array (FPA) detector. Our optical system is conceptualized to provide optimal performance based on recent theory and design rules for high-definition (HD) IR imaging. Multiple QCL units are multiplexed together to provide spectral coverage across the fingerprint region (776.9 to 1904.4 cm–1) in our DF-IR microscope capable of broad spectral coverage, wide-field detection, and diffraction-limited spectral imaging. We demonstrate that the spectral and spatial fidelity of this system is at least as good as the best FT-IR imaging systems. Our configuration provides a speedup for equivalent spectral signal-to-noise ratio (SNR) compared to the best spectral quality from a high-performance linear array system that has 10-fold larger pixels. Compared to the fastest available HD FT-IR imaging system, we demonstrate scanning of large tissue microarrays (TMA) in 3-orders of magnitude smaller time per essential spectral frequency. These advances offer new opportunities for high throughput IR chemical imaging, especially for the measurement of cells and tissues. PMID:25474546
Fast infrared chemical imaging with a quantum cascade laser.
Yeh, Kevin; Kenkel, Seth; Liu, Jui-Nung; Bhargava, Rohit
2015-01-06
Infrared (IR) spectroscopic imaging systems are a powerful tool for visualizing molecular microstructure of a sample without the need for dyes or stains. Table-top Fourier transform infrared (FT-IR) imaging spectrometers, the current established technology, can record broadband spectral data efficiently but requires scanning the entire spectrum with a low throughput source. The advent of high-intensity, broadly tunable quantum cascade lasers (QCL) has now accelerated IR imaging but results in a fundamentally different type of instrument and approach, namely, discrete frequency IR (DF-IR) spectral imaging. While the higher intensity of the source provides a higher signal per channel, the absence of spectral multiplexing also provides new opportunities and challenges. Here, we couple a rapidly tunable QCL with a high performance microscope equipped with a cooled focal plane array (FPA) detector. Our optical system is conceptualized to provide optimal performance based on recent theory and design rules for high-definition (HD) IR imaging. Multiple QCL units are multiplexed together to provide spectral coverage across the fingerprint region (776.9 to 1904.4 cm(-1)) in our DF-IR microscope capable of broad spectral coverage, wide-field detection, and diffraction-limited spectral imaging. We demonstrate that the spectral and spatial fidelity of this system is at least as good as the best FT-IR imaging systems. Our configuration provides a speedup for equivalent spectral signal-to-noise ratio (SNR) compared to the best spectral quality from a high-performance linear array system that has 10-fold larger pixels. Compared to the fastest available HD FT-IR imaging system, we demonstrate scanning of large tissue microarrays (TMA) in 3-orders of magnitude smaller time per essential spectral frequency. These advances offer new opportunities for high throughput IR chemical imaging, especially for the measurement of cells and tissues.
Ingebrigtsen, Jørgen; Bendiksen, Mads; Randers, Morten Bredsgaard; Castagna, Carlo; Krustrup, Peter; Holtermann, Andreas
2012-01-01
We examined performance, heart rate response and construct validity of the Yo-Yo IR2 test by testing 111 elite and 92 sub-elite soccer players from Norway and Denmark. VO₂max, Yo-Yo IR1 and repeated sprint tests (RSA) (n = 51) and match-analyses (n = 39) were also performed. Yo-Yo IR2 and Yo-Yo IR1 performance was 41 and 25% better (P < 0.01) for elite than sub-elite players, respectively, and heart rate after 2 and 4 min of the Yo-Yo IR2 test was 20 and 15 bpm (9 and 6% HRmax), respectively, lower (P < 0.01) for elite players. RSA performance and VO₂max was not different between competitive levels (P > 0.05). For top-teams, Yo-Yo IR2 performance (28%) and sprinting distance (25%) during match were greater (P < 0.05) than for bottom-teams. For elite and sub-elite players, Yo-Yo IR2 performance was correlated (P < 0.05) with Yo-Yo IR1 performance (r = 0.74 and 0.76) and mean RSA time (r = -0.74 and -0.34). We conclude that the Yo-Yo IR2 test has a high discriminant and concurrent validity, as it discriminates between players of different within- and between-league competitive levels and is correlated to other frequently used intermittent elite soccer tests.
High operating temperature IR-modules with reduced pitch for SWaP sensitive applications
NASA Astrophysics Data System (ADS)
Breiter, R.; Wendler, J.; Lutz, H.; Rutzinger, S.; Ihle, T.; Ziegler, J.; Rühlich, I.
2011-06-01
Low size, weight and power (SWaP) are the most critical requirements for portable thermal imagers like weapon sights or handheld observations devices. On the other hand due to current asymmetrical conflicts there are high requirements for the e/o performance of these devices providing the ability to distinguish between combatants and non-combatants in adequate ranges. Despite of all the success with uncooled technology, such requirements usually still require cooled detectors. AIM has developed a family of thermal weapon sights called HuntIR and RangIR based on high performance cooled IR-modules which are used e.g. in the infantryman of the future program of the German army (IdZ). The specific capability of these devices is a high ID range >1500m for tank targets being suitable in use as thermal sights for .50 cal rifles like the G82, targeting units for the 40mm AGL or for night observation. While such ranges sound far beyond the operational needs in urban operations, the a.m. specific needs of asymmetric warfare require sometimes even more range performance. High operating temperature (HOT) is introduced in the AIM MCT 640x512/15μm MWIR or LWIR modules for further reduction of cooler power consumption, shorter cooldown times and higher MTTF. As a key component to keep performance while further reducing SWaP AIM is developing a new cooled MCT IR-module with reduced pitch of 12 μm operating at a temperature >120 K. The module will provide full TV format with 640x480 elements sensitive in the MWIR spectral band. The paper will show recent results of AIM IR-modules with high operating temperature and the impact of design regarding the IR-module itself and thermal sights making use of it.
NASA Astrophysics Data System (ADS)
Flint, J. P.; Martinez, B.; Betz, T. E. M.; Mackenzie, J.; Kumar, F. J.; Burgess, L.
2017-02-01
Cadmium Zinc Telluride (Cd1-xZnxTe or CZT) is a compound semiconductor substrate material that has been used for infrared detector (IR) applications for many years. CZT is a perfect substrate for the epitaxial growth of Mercury Cadmium Telluride (Hg1-xCdxTe or MCT) epitaxial layers and remains the material of choice for many high performance IR detectors and focal plane arrays that are used to detect across wide IR spectral bands. Critical to the fabrication of high performance MCT IR detectors is a high quality starting CZT substrate, this being a key determinant of epitaxial layer crystallinity, defectivity and ultimately device electro-optical performance. In this work we report on a new source of substrates suitable for IR detector applications, grown using the Travelling Heater Method (THM). This proven method of crystal growth has been used to manufacture high quality IR specification CZT substrates where industry requirements for IR transmission, dislocations, tellurium precipitates and copper impurity levels have been met. Results will be presented for the chemo-mechanical (CMP) polishing of CZT substrates using production tool sets that are identical to those that are used to produce epitaxy-ready surface finishes on related IR compound semiconductor materials such as GaSb and InSb. We will also discuss the requirements to scale CZT substrate manufacture and how with a new III-V like approach to both CZT crystal growth and substrate polishing, we can move towards a more standardized product and one that can ultimately deliver a standard round CZT substrate, as is the case for competing IR materials such as GaSb, InSb and InP.
High-Performance Thermoelectric Semiconductors
NASA Technical Reports Server (NTRS)
Fleurial, Jean-Pierre; Caillat, Thierry; Borshchevsky, Alexander
1994-01-01
Figures of merit almost double current state-of-art thermoelectric materials. IrSb3 is semiconductor found to exhibit exceptional thermoelectric properties. CoSb3 and RhSb3 have same skutterudite crystallographic structure as IrSb3, and exhibit exceptional transport properties expected to contribute to high thermoelectric performance. These three compounds form solid solutions. Combination of properties offers potential for development of new high-performance thermoelectric materials for more efficient thermoelectric power generators, coolers, and detectors.
Physical Demands in Competitive Ultimate Frisbee.
Krustrup, Peter; Mohr, Magni
2015-12-01
The objective was to study game demands in competitive ultimate Frisbee by performing match analysis during a game. Thirteen moderately trained (Yo-Yo intermittent recovery test levels 1 and 2 [Yo-Yo IR1 and IR2] performance: 1790 ± 382 m and 657 ± 225 m, respectively) competitive male ultimate Frisbee athletes played a game in which activity profile using Global Positioning System (GPS) technology and heart rate (HR) were recorded. Game HRmean and HRpeak were 82 ± 2% and 99 ± 1% of maximum heart rate, respectively. Total game distance was 4.70 ± 0.47 km, of which 0.63 ± 0.14 km was high-intensity running and 0.21 ± 0.11 km was sprinting. In the second half, 10% less (p ≤ 0.05) ground was covered with high-intensity running compared with the first half (0.28 ± 0.08 km vs. 0.31 ± 0.07 km). Less (43-47%; p ≤ 0.05) high-intensity running was performed in the third 9-minute period of each half compared with the first two 9-minute periods of the same half. Players performed 17.4 ± 5.7 sprints during the match. Yo-Yo IR2 performance correlated to the amount of high-intensity running in the last 9 minutes of both halves (r = 0.69, p ≤ 0.05), whereas Yo-Yo IR1 performance correlated with total sprint distance (r = 0.74, p ≤ 0.05). Ultimate Frisbee is an intense intermittent team sport with high cardiovascular loading and clear indications of fatigue toward the end of each half. Yo-Yo IR test performances correlate with physical match performance.
NASA Astrophysics Data System (ADS)
Sweeney, Mike; Redd, Lafe; Vettese, Tom; Myatt, Ray; Uchida, David; Sellers, Del
2015-09-01
High performance stabilized EO/IR surveillance and targeting systems are in demand for a wide variety of military, law enforcement, and commercial assets for land, sea, air, and space. Operating ranges, wavelengths, and angular resolution capabilities define the requirements for EO/IR optics and sensors, and line of sight stabilization. Many materials and design configurations are available for EO/IR pointing gimbals depending on trade-offs of size, weight, power (SWaP), performance, and cost. Space and high performance military aircraft applications are often driven toward expensive but exceptionally performing beryllium and aluminum beryllium components. Commercial applications often rely on aluminum and composite materials. Gimbal design considerations include achieving minimized mass and inertia simultaneous with demanding structural, thermal, optical, and scene stabilization requirements when operating in dynamic operational environments. Manufacturing considerations include precision lapping and honing of ball bearing interfaces, brazing, welding, and casting of complex aluminum and beryllium alloy structures, and molding of composite structures. Several notional and previously developed EO/IR gimbal platforms are profiled that exemplify applicable design and manufacturing technologies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoegg, Edward D.; Barinaga, Charles J.; Hager, George J.
ABSTRACT In order to meet a growing need for fieldable mass spectrometer systems for precise elemental and isotopic analyses, the liquid sampling-atmospheric pressure glow discharge (LS-APGD) has a number of very promising characteristics. One key set of attributes that await validation deals with the performance characteristics relative to isotope ratio precision and accuracy. Due to its availability and prior experience with this research team, the initial evaluation of isotope ratio (IR) performance was performed on a Thermo Scientific Exactive Orbitrap instrument. While the mass accuracy and resolution performance for orbitrap analyzers are very well documented, no detailed evaluations of themore » IR performance have been published. Efforts described here involve two variables: the inherent IR precision and accuracy delivered by the LSAPGD microplasma and the inherent IR measurement qualities of orbitrap analyzers. Important to the IR performance, the various operating parameters of the orbitrap sampling interface, HCD dissociation stage, and ion injection/data acquisition have been evaluated. The IR performance for a range of other elements, including natural, depleted, and enriched uranium isotopes was determined. In all cases the precision and accuracy are degraded when measuring low abundance (<0.1% isotope fractions). In the best case, IR precision on the order of 0.1 %RSD can be achieved, with values of 1-3 %RSD observed for low-abundance species. The results suggest that the LSAPGD is a very good candidate for field deployable MS analysis and that the high resolving powers of the orbitrap may be complemented with a here-to-fore unknown capacity to deliver high-precision isotope ratios.« less
Relative Match Intensities at High Altitude in Highly-Trained Young Soccer Players (ISA3600).
Buchheit, Martin; Hammond, Kristal; Bourdon, Pitre C; Simpson, Ben M; Garvican-Lewis, Laura A; Schmidt, Walter F; Gore, Christopher J; Aughey, Robert J
2015-03-01
To compare relative match intensities of sea-level versus high-altitude native soccer players during a 2-week camp at 3600 m, data from 7 sea-level (Australian U17 National team, AUS) and 6 high-altitude (a Bolivian U18 team, BOL) native soccer players were analysed. Two matches were played at sea-level and three at 3600 m on Days 1, 6 and 13. The Yo-Yo Intermittent recovery test (vYo-YoIR1) was performed at sea-level, and on Days 3 and 10. Match activity profiles were measured via 10-Hz GPS. Distance covered >14.4 km.h(-1) (D>14.4 km·h(-1)) and >80% of vYo-YoIR1 (D>80%vYo-YoIR1) were examined. Upon arrival at altitude, there was a greater decrement in vYo-YoIR1 (Cohen's d +1.0, 90%CL ± 0.8) and D>14.4 km·h(-1) (+0.5 ± 0.8) in AUS. D>14.4 km.h(-1) was similarly reduced relative to vYo-YoIR1 in both groups, so that D>80%vYo-YoIR1 remained similarly unchanged (-0.1 ± 0.8). Throughout the altitude sojourn, vYo-YoIR1 and D>14.4 km·h(-1) increased in parallel in AUS, so that D>80%vYo-YoIR1 remained stable in AUS (+6.0%/match, 90%CL ± 6.7); conversely D>80%vYo-YoIR1 decreased largely in BOL (-12.2%/match ± 6.2). In sea-level natives competing at high-altitude, changes in match running performance likely follow those in high-intensity running performance. Bolivian data confirm that increases in 'fitness' do not necessarily translate into greater match running performance, but rather in reduced relative exercise intensity. Key pointsWhen playing at high-altitude, players may alter their activities during matches in relation to their transient maximal physical capacities, possibly to maintain a 'tolerable' relative exercise intensity.While there is no doubt that running performance per se in not the main determinant of match outcomes (Carling, 2013), fitness levels influence relative match intensity (Buchheit et al., 2012, Mendez-Villanueva et al., 2013), which in-turn may impact on decision making and skill performance (Rampinini et al., 2008).In the context of high-altitude competitions, it is therefore recommended to arrive early enough (i.e., ~2 weeks) to allow (at least partial) acclimatisation, and in turn, allow sea-level native players to regulate their running activities in relation to both actual game demands and relative match intensity.
Zheng, Bei; Li, Wentao; Li, Hongyan; Liu, Lin; Lei, Pei; Ge, Xiaopeng; Yu, Zhiyong; Zhou, Yiqi
2016-01-01
The components for connecting high-performance liquid chromatography (HPLC) with Fourier-transform infrared spectroscopy (FTIR) were investigated to determine estrogen in the water environment, including heating for atomization, solvent removal, sample deposition, drive control, spectrum collection, chip swap, cleaning and drying. Results showed that when the atomization temperature was increased to 388 K, the interference of mobile phase components (methanol, H2O, acetonitrile, and NaH2PO4) were completely removed in the IR measurement of estrogen, with 0.999 of similarity between IR spectra obtained after separation and corresponding to the standard IR spectra. In experiments with varying HPLC injection volumes, high similarity for IR spectra was obtained at 20 ul injection volume at 0.01 mg/L BPA while a useful IR spectrum for 10 ng/L BPA was obtained at 80 ul injection volume. In addition, estrogen concentrations in the natural water samples were calculated semi-quantitatively from the peak intensities of IR spectrum in the mid-infrared region. PMID:27577974
NASA Astrophysics Data System (ADS)
Zheng, Bei; Li, Wentao; Li, Hongyan; Liu, Lin; Lei, Pei; Ge, Xiaopeng; Yu, Zhiyong; Zhou, Yiqi
2016-08-01
The components for connecting high-performance liquid chromatography (HPLC) with Fourier-transform infrared spectroscopy (FTIR) were investigated to determine estrogen in the water environment, including heating for atomization, solvent removal, sample deposition, drive control, spectrum collection, chip swap, cleaning and drying. Results showed that when the atomization temperature was increased to 388 K, the interference of mobile phase components (methanol, H2O, acetonitrile, and NaH2PO4) were completely removed in the IR measurement of estrogen, with 0.999 of similarity between IR spectra obtained after separation and corresponding to the standard IR spectra. In experiments with varying HPLC injection volumes, high similarity for IR spectra was obtained at 20 ul injection volume at 0.01 mg/L BPA while a useful IR spectrum for 10 ng/L BPA was obtained at 80 ul injection volume. In addition, estrogen concentrations in the natural water samples were calculated semi-quantitatively from the peak intensities of IR spectrum in the mid-infrared region.
The Influence of Rotations on Match Running Performance in Female Australian Football Midfielders.
Black, Georgia M; Gabbett, Tim J; Johnston, Richard D; Naughton, Geraldine; Cole, Michael H; Dawson, Brian
2018-04-01
With female Australian football (AF) gaining popularity, understanding match demands is becoming increasingly important. The aim of this study was to compare running performances of rotated and whole-quarter state-level female AF players during match quarters. Twenty-two state-level female AF midfielders wore Global Positioning System units during 14 games to evaluate activity profiles. The Yo-Yo Intermittent Recovery Test Level 1 (Yo-Yo IR1) was used as a measure of high-intensity running ability. Data were categorized into whole quarter, rotation bout 1, and rotation bout 2 before being further divided into quartiles. Players were separated into high- or low-Yo-Yo IR1 groups using a median split based on their Yo-Yo IR1 performance. Short (4-6 min), moderate (6-12 min), and long (12-18 min) on-field bout activity profiles were compared with whole-quarter players. High Yo-Yo IR1 performance allowed players to cover greater relative distances (ES = 0.57-0.88) and high-speed distances (ES = 0.57-0.86) during rotations. No differences were reported between Yo-Yo IR1 groups when players were required to play whole quarters (ES ≤ 0.26, likelihood ≤64%). Players who were on field for short to moderate durations exhibited greater activity profiles than whole-quarter players. Superior high-speed running ability results in a greater activity profile than for players who possess lower high-speed running ability. The findings also highlight the importance of short to moderate (4-12 min) rotation periods and may be used to increase high-intensity running performance within quarters in female AF players.
Iridium-Based Nanowires as Highly Active, Oxygen Evolution Reaction Electrocatalysts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alia, Shaun M.; Shulda, Sarah; Ngo, Chilan
Iridium-nickel (Ir-Ni) and iridium-cobalt (Ir-Co) nanowires have been synthesized by galvanic displacement and studied for their potential to increase the performance and durability of electrolysis systems. Performances of Ir-Ni and Ir-Co nanowires for the oxygen evolution reaction (OER) have been measured in rotating disk electrode half-cells and single-cell electrolyzers and compared with commercial baselines and literature references. The nanowire catalysts showed improved mass activity, by more than an order of magnitude compared with commercial Ir nanoparticles in half-cell tests. The nanowire catalysts also showed greatly improved durability, when acid-leached to remove excess Ni and Co. Both Ni and Co templatesmore » were found to have similarly positive impacts, although specific differences between the two systems are revealed. In single-cell electrolysis testing, nanowires exceeded the performance of Ir nanoparticles by 4-5 times, suggesting that significant reductions in catalyst loading are possible without compromising performance.« less
Iridium-Based Nanowires as Highly Active, Oxygen Evolution Reaction Electrocatalysts
Alia, Shaun M.; Shulda, Sarah; Ngo, Chilan; ...
2018-01-22
Iridium-nickel (Ir-Ni) and iridium-cobalt (Ir-Co) nanowires have been synthesized by galvanic displacement and studied for their potential to increase the performance and durability of electrolysis systems. Performances of Ir-Ni and Ir-Co nanowires for the oxygen evolution reaction (OER) have been measured in rotating disk electrode half-cells and single-cell electrolyzers and compared with commercial baselines and literature references. The nanowire catalysts showed improved mass activity, by more than an order of magnitude compared with commercial Ir nanoparticles in half-cell tests. The nanowire catalysts also showed greatly improved durability, when acid-leached to remove excess Ni and Co. Both Ni and Co templatesmore » were found to have similarly positive impacts, although specific differences between the two systems are revealed. In single-cell electrolysis testing, nanowires exceeded the performance of Ir nanoparticles by 4-5 times, suggesting that significant reductions in catalyst loading are possible without compromising performance.« less
de Freitas, Victor H; Pereira, Lucas A; de Souza, Eberton A; Leicht, Anthony S; Bertollo, Maurizio; Nakamura, Fábio Y
2015-07-01
This study examined the sensitivity of maximal (Yo-Yo Intermittent Recovery [IR] 1 and 2) and submaximal (5'-5') tests to identify training adaptations in futsal players along with the suitability of heart-rate (HR) and HR-variability (HRV) measures to identify these adaptations. Eleven male professional futsal players were assessed before (pretraining) and after (posttraining) a 5-wk period. Assessments included 5'-5' and Yo-Yo IR1 and IR2 performances and HR and HRV at rest and during the IR and 5'-5' tests. Magnitude-based-inference analyses examined the differences between pre- and posttraining, while relationships between changes in variables were determined via correlation. Posttraining, Yo-Yo IR1 performance likely increased while Yo-Yo IR2 performance almost certainly increased. Submaximal HR during the Yo-Yo IR1 and Yo-Yo IR2 almost certainly and likely, respectively, decreased with training. HR during the 5'-5' was very likely decreased, while HRV at rest and during the 5'-5' was likely increased after training. Changes in both Yo-Yo IR performances were negatively correlated with changes in HR during the Yo-Yo IR1 test and positively correlated with the change in HRV during the 5'-5'. The current study has identified the Yo-Yo IR2 as more responsive for monitoring training-induced changes of futsal players than the Yo-Yo IR1. Changes in submaximal HR during the Yo-Yo IR and HRV during the 5'-5' were highly sensitive to changes in maximal performance and are recommended for monitoring training. The 5'-5' was recommended as a time-efficient method to assess training adaptations for futsal players.
Strategic options towards an affordable high-performance infrared camera
NASA Astrophysics Data System (ADS)
Oduor, Patrick; Mizuno, Genki; Dutta, Achyut K.; Lewis, Jay; Dhar, Nibir K.
2016-05-01
The promise of infrared (IR) imaging attaining low-cost akin to CMOS sensors success has been hampered by the inability to achieve cost advantages that are necessary for crossover from military and industrial applications into the consumer and mass-scale commercial realm despite well documented advantages. Banpil Photonics is developing affordable IR cameras by adopting new strategies to speed-up the decline of the IR camera cost curve. We present a new short-wave IR (SWIR) camera; 640x512 pixel InGaAs uncooled system that is high sensitivity low noise (<50e-), high dynamic range (100 dB), high-frame rates (> 500 frames per second (FPS)) at full resolution, and low power consumption (< 1 W) in a compact system. This camera paves the way towards mass market adoption by not only demonstrating high-performance IR imaging capability value add demanded by military and industrial application, but also illuminates a path towards justifiable price points essential for consumer facing application industries such as automotive, medical, and security imaging adoption. Among the strategic options presented include new sensor manufacturing technologies that scale favorably towards automation, multi-focal plane array compatible readout electronics, and dense or ultra-small pixel pitch devices.
Miniature high-performance infrared spectrometer for space applications
NASA Astrophysics Data System (ADS)
Kruzelecky, Roman V.; Haddad, Emile; Wong, Brian; Lafrance, Denis; Jamroz, Wes; Ghosh, Asoke K.; Zheng, Wanping; Phong, Linh
2004-06-01
Infrared spectroscopy probes the characteristic vibrational and rotational modes of chemical bonds in molecules to provide information about both the chemical composition and the bonding configuration of a sample. The significant advantage of the Infrared spectral technique is that it can be used with minimal consumables to simultaneously detect a large variety of chemical and biochemical species with high chemical specificity. To date, relatively large Fourier Transform (FT-IR) spectrometers employing variations of the Michelson interferometer have been successfully employed in space for various IR spectroscopy applications. However, FT-IR systems are mechanically complex, bulky (> 15 kg), and require considerable processing. This paper discusses the use of advanced integrated optics and smart optical coding techniques to significantly extend the performance of miniature IR spectrometers by several orders of magnitude in sensitivity. This can provide the next-generation of compact, high-performance IR spectrometers with monolithically integrated optical systems for robust optical alignment. The entire module can weigh under 3 kg to minimize the mass penalty for space applications. Miniaturized IR spectrometers are versatile and very convenient for small and micro satellite based missions. They can be dedicated to the monitoring of the CO2 in an Earth Observation mission, to Mars exobiology exploration, as well as to vital life support in manned space system; such as the cabin air quality and the quality of the recycled water supply.
Miniature high-performance infrared spectrometer for space applications
NASA Astrophysics Data System (ADS)
Kruzelecky, Roman V.; Haddad, Emile; Wong, Brian; Lafrance, Denis; Jamroz, Wes; Ghosh, Asoke K.; Zheng, Wanping; Phong, Linh
2017-11-01
Infrared spectroscopy probes the characteristic vibrational and rotational modes of chemical bonds in molecules to provide information about both the chemical composition and the bonding configuration of a sample. The significant advantage of the Infrared spectral technique is that it can be used with minimal consumables to simultaneously detect a large variety of chemical and biochemical species with high chemical specificity. To date, relatively large Fourier Transform (FT-IR) spectrometers employing variations of the Michelson interferometer have been successfully employed in space for various IR spectroscopy applications. However, FT-IR systems are mechanically complex, bulky (> 15 kg), and require considerable processing. This paper discusses the use of advanced integrated optics and smart optical coding techniques to significantly extend the performance of miniature IR spectrometers by several orders of magnitude in sensitivity. This can provide the next generation of compact, high-performance IR spectrometers with monolithically integrated optical systems for robust optical alignment. The entire module can weigh under 3 kg to minimize the mass penalty for space applications. Miniaturized IR spectrometers are versatile and very convenient for small and micro satellite based missions. They can be dedicated to the monitoring of the CO2 in an Earth Observation mission, to Mars exobiology exploration, as well as to vital life support in manned space system; such as the cabin air quality and the quality of the recycled water supply.
Jun, Young Jin; Park, Sung Hyeon; Woo, Seong Ihl
2014-12-08
Combinatorial high-throughput optical screening method was developed to find the optimum composition of highly active Pd-based catalysts at the cathode of the hybrid Li-air battery. Pd alone, which is one-third the cost of Pt, has difficulty in replacing Pt; therefore, the integration of other metals was investigated to improve its performance toward oxygen reduction reaction (ORR). Among the binary Pd-based catalysts, the composition of Pd-Ir derived catalysts had higher performance toward ORR compared to other Pd-based binary combinations. The composition at 88:12 at. % (Pd: Ir) showed the highest activity toward ORR at the cathode of the hybrid Li-air battery. The prepared Pd(88)Ir(12)/C catalyst showed a current density of -2.58 mA cm(-2) at 0.8 V (vs RHE), which was around 30% higher compared to that of Pd/C (-1.97 mA cm(-2)). When the prepared Pd(88)Ir(12)/C catalyst was applied to the hybrid Li-air battery, the polarization of the cell was reduced and the energy efficiency of the cell was about 30% higher than that of the cell with Pd/C.
A dual-waveband dynamic IR scene projector based on DMD
NASA Astrophysics Data System (ADS)
Hu, Yu; Zheng, Ya-wei; Gao, Jiao-bo; Sun, Ke-feng; Li, Jun-na; Zhang, Lei; Zhang, Fang
2016-10-01
Infrared scene simulation system can simulate multifold objects and backgrounds to perform dynamic test and evaluate EO detecting system in the hardware in-the-loop test. The basic structure of a dual-waveband dynamic IR scene projector was introduced in the paper. The system's core device is an IR Digital Micro-mirror Device (DMD) and the radiant source is a mini-type high temperature IR plane black-body. An IR collimation optical system which transmission range includes 3-5μm and 8-12μm is designed as the projection optical system. Scene simulation software was developed with Visual C++ and Vega soft tools and a software flow chart was presented. The parameters and testing results of the system were given, and this system was applied with satisfying performance in an IR imaging simulation testing.
An infrared high resolution silicon immersion grating spectrometer for airborne and space missions
NASA Astrophysics Data System (ADS)
Ge, Jian; Zhao, Bo; Powell, Scott; Jiang, Peng; Uzakbaiuly, Berik; Tanner, David
2014-08-01
Broad-band infrared (IR) spectroscopy, especially at high spectral resolution, is a largely unexplored area for the far IR (FIR) and submm wavelength region due to the lack of proper grating technology to produce high resolution within the very constrained volume and weight required for space mission instruments. High resolution FIR spectroscopy is an essential tool to resolve many atomic and molecular lines to measure physical and chemical conditions and processes in the environments where galaxy, star and planets form. A silicon immersion grating (SIG), due to its over three times high dispersion over a traditional reflective grating, offers a compact and low cost design of new generation IR high resolution spectrographs for space missions. A prototype SIG high resolution spectrograph, called Florida IR Silicon immersion grating spectromeTer (FIRST), has been developed at UF and was commissioned at a 2 meter robotic telescope at Fairborn Observatory in Arizona. The SIG with 54.74 degree blaze angle, 16.1 l/mm groove density, and 50x86 mm2 grating area has produced R=50,000 in FIRST. The 1.4-1.8 um wavelength region is completely covered in a single exposure with a 2kx2k H2RG IR array. The on-sky performance meets the science requirements for ground-based high resolution spectroscopy. Further studies show that this kind of SIG spectrometer with an airborne 2m class telescope such as SOFIA can offer highly sensitive spectroscopy with R~20,000-30,000 at 20 to 55 microns. Details about the on-sky measurement performance of the FIRST prototype SIG spectrometer and its predicted performance with the SOFIA 2.4m telescope are introduced.
DDT-based indoor residual spraying suboptimal for visceral leishmaniasis elimination in India
Coleman, Michael; Foster, Geraldine M.; Deb, Rinki; Pratap Singh, Rudra; Ismail, Hanafy M.; Shivam, Pushkar; Ghosh, Ayan Kumar; Dunkley, Sophie; Kumar, Vijay; Coleman, Marlize; Hemingway, Janet; Paine, Mark J. I.; Das, Pradeep
2015-01-01
Indoor residual spraying (IRS) is used to control visceral leishmaniasis (VL) in India, but it is poorly quality assured. Quality assurance was performed in eight VL endemic districts in Bihar State, India, in 2014. Residual dichlorodiphenyltrichloroethane (DDT) was sampled from walls using Bostik tape discs, and DDT concentrations [grams of active ingredient per square meter (g ai/m2)] were determined using HPLC. Pre-IRS surveys were performed in three districts, and post-IRS surveys were performed in eight districts. A 20% threshold above and below the target spray of 1.0 g ai/m2 was defined as “in range.” The entomological assessments were made in four districts in IRS and non-IRS villages. Vector densities were measured: pre-IRS and 1 and 3 mo post-IRS. Insecticide susceptibility to 4% DDT and 0.05% deltamethrin WHO-impregnated papers was determined with wild-caught sand flies. The majority (329 of 360, 91.3%) of pre-IRS samples had residual DDT concentrations of <0.1 g ai/m2. The mean residual concentration of DDT post-IRS was 0.37 g ai/m2; 84.9% of walls were undersprayed, 7.4% were sprayed in range, and 7.6% were oversprayed. The abundance of sand flies in IRS and non-IRS villages was significantly different at 1 mo post-IRS only. Sand flies were highly resistant to DDT but susceptible to deltamethrin. The Stockholm Convention, ratified by India in 2006, calls for the complete phasing out of DDT as soon as practical, with limited use in the interim where no viable IRS alternatives exist. Given the poor quality of the DDT-based IRS, ready availability of pyrethroids, and susceptibility profile of Indian sand flies, the continued use of DDT in this IRS program is questionable. PMID:26124110
DDT-based indoor residual spraying suboptimal for visceral leishmaniasis elimination in India.
Coleman, Michael; Foster, Geraldine M; Deb, Rinki; Pratap Singh, Rudra; Ismail, Hanafy M; Shivam, Pushkar; Ghosh, Ayan Kumar; Dunkley, Sophie; Kumar, Vijay; Coleman, Marlize; Hemingway, Janet; Paine, Mark J I; Das, Pradeep
2015-07-14
Indoor residual spraying (IRS) is used to control visceral leishmaniasis (VL) in India, but it is poorly quality assured. Quality assurance was performed in eight VL endemic districts in Bihar State, India, in 2014. Residual dichlorodiphenyltrichloroethane (DDT) was sampled from walls using Bostik tape discs, and DDT concentrations [grams of active ingredient per square meter (g ai/m(2))] were determined using HPLC. Pre-IRS surveys were performed in three districts, and post-IRS surveys were performed in eight districts. A 20% threshold above and below the target spray of 1.0 g ai/m(2) was defined as "in range." The entomological assessments were made in four districts in IRS and non-IRS villages. Vector densities were measured: pre-IRS and 1 and 3 mo post-IRS. Insecticide susceptibility to 4% DDT and 0.05% deltamethrin WHO-impregnated papers was determined with wild-caught sand flies. The majority (329 of 360, 91.3%) of pre-IRS samples had residual DDT concentrations of <0.1 g ai/m(2). The mean residual concentration of DDT post-IRS was 0.37 g ai/m(2); 84.9% of walls were undersprayed, 7.4% were sprayed in range, and 7.6% were oversprayed. The abundance of sand flies in IRS and non-IRS villages was significantly different at 1 mo post-IRS only. Sand flies were highly resistant to DDT but susceptible to deltamethrin. The Stockholm Convention, ratified by India in 2006, calls for the complete phasing out of DDT as soon as practical, with limited use in the interim where no viable IRS alternatives exist. Given the poor quality of the DDT-based IRS, ready availability of pyrethroids, and susceptibility profile of Indian sand flies, the continued use of DDT in this IRS program is questionable.
A highly active and stable IrO x/SrIrO 3 catalyst for the oxygen evolution reaction
Seitz, Linsey C.; Dickens, Colin F.; Nishio, Kazunori; ...
2016-09-02
Oxygen electrochemistry plays a key role in renewable energy technologies such as fuel cells and electrolyzers, but the slow kinetics of the oxygen evolution reaction (OER) limit the performance and commercialization of such devices. Here we report an iridium oxide/strontium iridium oxide (IrO x/SrIrO 3) catalyst formed during electrochemical testing by strontium leaching from surface layers of thin films of SrIrO 3. This catalyst has demonstrated specific activity at 10 milliamps per square centimeter of oxide catalyst (OER current normalized to catalyst surface area), with only 270 to 290 millivolts of overpotential for 30 hours of continuous testing in acidicmore » electrolyte. Here, density functional theory calculations suggest the formation of highly active surface layers during strontium leaching with IrO 3 or anatase IrO 2 motifs. The IrO x/SrIrO 3 catalyst outperforms known IrO x and ruthenium oxide (RuO x) systems, the only other OER catalysts that have reasonable activity in acidic electrolyte.« less
A highly active and stable IrOx/SrIrO3 catalyst for the oxygen evolution reaction.
Seitz, Linsey C; Dickens, Colin F; Nishio, Kazunori; Hikita, Yasuyuki; Montoya, Joseph; Doyle, Andrew; Kirk, Charlotte; Vojvodic, Aleksandra; Hwang, Harold Y; Norskov, Jens K; Jaramillo, Thomas F
2016-09-02
Oxygen electrochemistry plays a key role in renewable energy technologies such as fuel cells and electrolyzers, but the slow kinetics of the oxygen evolution reaction (OER) limit the performance and commercialization of such devices. Here we report an iridium oxide/strontium iridium oxide (IrO x /SrIrO 3 ) catalyst formed during electrochemical testing by strontium leaching from surface layers of thin films of SrIrO 3 This catalyst has demonstrated specific activity at 10 milliamps per square centimeter of oxide catalyst (OER current normalized to catalyst surface area), with only 270 to 290 millivolts of overpotential for 30 hours of continuous testing in acidic electrolyte. Density functional theory calculations suggest the formation of highly active surface layers during strontium leaching with IrO 3 or anatase IrO 2 motifs. The IrO x /SrIrO 3 catalyst outperforms known IrO x and ruthenium oxide (RuO x ) systems, the only other OER catalysts that have reasonable activity in acidic electrolyte. Copyright © 2016, American Association for the Advancement of Science.
Ghadge, Shrinath Dattatray; Patel, Prasad Prakash; Datta, Moni Kanchan; ...
2017-03-20
Identification and development of high performance with reduced overpotential (i.e. reduced operating electricity cost) oxygen evolution reaction (OER) electrocatalysts for proton exchange membrane (PEM) based water electrolysis with ultra-low noble metal content (i.e. reduced materials cost) is of significant interest for economic hydrogen production, thus increasing the commercialization potential of PEM water electrolysis. Accordingly, a novel electrocatalyst should exhibit low overpotential, excellent electrochemical activity and durability superior to state of the art noble metal based electro-catalysts (e.g. Pt, IrO 2, RuO 2). Here in this paper, for the very first time to the best of our knowledge, exploiting first-principles theoreticalmore » calculations of the total energies and electronic structures, we have identified a reduced noble metal content fluorine doped solid solution of MnO 2 and IrO 2, denoted as (Mn 1-xIr x)O 2:F (x = 0.2, 0.3, 0.4), OER electrocatalyst system exhibiting lower overpotential and higher current density than the state of the art IrO 2 and other previously reported systems for PEM water electrolysis. The doped solid solution displays an excellent electrochemical performance with a lowest reported onset potential to date of ~1.35 V (vs. RHE), ~80 mV lower than that of IrO 2 (~1.43 V vs. RHE) and ~15 fold (x = 0.3 and 0.4) higher electrochemical activity compared to pure IrO 2. In addition, the system displays excellent long term electrochemical durability, similar to that of IrO 2 in harsh acidic OER operating conditions. Our study therefore demonstrates remarkable, ~60–80% reduction in noble metal content along with lower overpotential and excellent electrochemical performance clearly demonstrating the potential of the (Mn 1-xIr x)O 2:F system as an OER electro-catalyst for PEM water electrolysis.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghadge, Shrinath Dattatray; Patel, Prasad Prakash; Datta, Moni Kanchan
Identification and development of high performance with reduced overpotential (i.e. reduced operating electricity cost) oxygen evolution reaction (OER) electrocatalysts for proton exchange membrane (PEM) based water electrolysis with ultra-low noble metal content (i.e. reduced materials cost) is of significant interest for economic hydrogen production, thus increasing the commercialization potential of PEM water electrolysis. Accordingly, a novel electrocatalyst should exhibit low overpotential, excellent electrochemical activity and durability superior to state of the art noble metal based electro-catalysts (e.g. Pt, IrO 2, RuO 2). Here in this paper, for the very first time to the best of our knowledge, exploiting first-principles theoreticalmore » calculations of the total energies and electronic structures, we have identified a reduced noble metal content fluorine doped solid solution of MnO 2 and IrO 2, denoted as (Mn 1-xIr x)O 2:F (x = 0.2, 0.3, 0.4), OER electrocatalyst system exhibiting lower overpotential and higher current density than the state of the art IrO 2 and other previously reported systems for PEM water electrolysis. The doped solid solution displays an excellent electrochemical performance with a lowest reported onset potential to date of ~1.35 V (vs. RHE), ~80 mV lower than that of IrO 2 (~1.43 V vs. RHE) and ~15 fold (x = 0.3 and 0.4) higher electrochemical activity compared to pure IrO 2. In addition, the system displays excellent long term electrochemical durability, similar to that of IrO 2 in harsh acidic OER operating conditions. Our study therefore demonstrates remarkable, ~60–80% reduction in noble metal content along with lower overpotential and excellent electrochemical performance clearly demonstrating the potential of the (Mn 1-xIr x)O 2:F system as an OER electro-catalyst for PEM water electrolysis.« less
High performance digital read out integrated circuit (DROIC) for infrared imaging
NASA Astrophysics Data System (ADS)
Mizuno, Genki; Olah, Robert; Oduor, Patrick; Dutta, Achyut K.; Dhar, Nibir K.
2016-05-01
Banpil Photonics has developed a high-performance Digital Read-Out Integrated Circuit (DROIC) for image sensors and camera systems targeting various military, industrial and commercial Infrared (IR) imaging applications. The on-chip digitization of the pixel output eliminates the necessity for an external analog-to-digital converter (ADC), which not only cuts costs, but also enables miniaturization of packaging to achieve SWaP-C camera systems. In addition, the DROIC offers new opportunities for greater on-chip processing intelligence that are not possible in conventional analog ROICs prevalent today. Conventional ROICs, which typically can enhance only one high performance attribute such as frame rate, power consumption or noise level, fail when simultaneously targeting the most aggressive performance requirements demanded in imaging applications today. Additionally, scaling analog readout circuits to meet such requirements leads to expensive, high-power consumption with large and complex systems that are untenable in the trend towards SWaP-C. We present the implementation of a VGA format (640x512 pixels 15μm pitch) capacitivetransimpedance amplifier (CTIA) DROIC architecture that incorporates a 12-bit ADC at the pixel level. The CTIA pixel input circuitry has two gain modes with programmable full-well capacity values of 100K e- and 500K e-. The DROIC has been developed with a system-on-chip architecture in mind, where all the timing and biasing are generated internally without requiring any critical external inputs. The chip is configurable with many parameters programmable through a serial programmable interface (SPI). It features a global shutter, low power, and high frame rates programmable from 30 up 500 frames per second in full VGA format supported through 24 LVDS outputs. This DROIC, suitable for hybridization with focal plane arrays (FPA) is ideal for high-performance uncooled camera applications ranging from near IR (NIR) and shortwave IR (SWIR) to mid-wave IR (MWIR) and long-wave IR (LWIR) spectral bands.
Iridium-Coated Rhenium Radiation-Cooled Rockets
NASA Technical Reports Server (NTRS)
Reed, Brian D.; Biaglow, James A.; Schneider, Steven J.
1997-01-01
Radiation-cooled rockets are used for a range of low-thrust propulsion functions, including apogee insertion, attitude control, and repositioning of satellites, reaction control of launch vehicles, and primary propulsion for planetary space- craft. The key to high performance and long lifetimes for radiation-cooled rockets is the chamber temperature capability. The material system that is currently used for radiation-cooled rockets, a niobium alloy (C103) with a fused silica coating, has a maximum operating temperature of 1370 C. Temperature limitations of C103 rockets force the use of fuel film cooling, which degrades rocket performance and, in some cases, imposes a plume contamination issue from unburned fuel. A material system composed of a rhenium (Re) substrate and an iridium (Ir) coating has demonstrated operation at high temperatures (2200 C) and for long lifetimes (hours). The added thermal margin afforded by iridium-coated rhenium (Ir/Re) allows reduction or elimination of fuel film cooling. This, in turn, leads to higher performance and cleaner spacecraft environments. There are ongoing government- and industry-sponsored efforts to develop flight Ir/ Re engines, with the primary focus on 440-N, apogee insertion engines. Complementing these Ir/Re engine development efforts is a program to address specific concerns and fundamental characterization of the Ir/Re material system, including (1) development of Ir/Re rocket fabrication methods, (2) establishment of critical Re mechanical properly data, (3) development of reliable joining methods, and (4) characterization of Ir/Re life-limiting mechanisms.
1998-01-01
Ferrography on High Performance Aircraft Engine Lubricating Oils Allison M. Toms, Sharon 0. Hem, Tim Yarborough Joint Oil Analysis Program Technical...turbine engines by spectroscopy (AES and FT-IR) and direct reading and analytical ferrography . A statistical analysis of the data collected is...presented. Key Words: Analytical ferrography ; atomic emission spectroscopy; condition monitoring; direct reading ferrography ; Fourier transform infrared
MTF measurement of IR optics in different temperature ranges
NASA Astrophysics Data System (ADS)
Bai, Alexander; Duncker, Hannes; Dumitrescu, Eugen
2017-10-01
Infrared (IR) optical systems are at the core of many military, civilian and manufacturing applications and perform mission critical functions. To reliably fulfill the demanding requirements imposed on today's high performance IR optics, highly accurate, reproducible and fast lens testing is of crucial importance. Testing the optical performance within different temperature ranges becomes key in many military applications. Due to highly complex IR-Applications in the fields of aerospace, military and automotive industries, MTF Measurement under realistic environmental conditions become more and more relevant. A Modulation Transfer Function (MTF) test bench with an integrated thermal chamber allows measuring several sample sizes in a temperature range from -40 °C to +120°C. To reach reliable measurement results under these difficult conditions, a specially developed temperature stable design including an insulating vacuum are used. The main function of this instrument is the measurement of the MTF both on- and off-axis at up to +/-70° field angle, as well as measurement of effective focal length, flange focal length and distortion. The vertical configuration of the system guarantees a small overall footprint. By integrating a high-resolution IR camera with focal plane array (FPA) in the detection unit, time consuming measurement procedures such as scanning slit with liquid nitrogen cooled detectors can be avoided. The specified absolute accuracy of +/- 3% MTF is validated using internationally traceable reference optics. Together with a complete and intuitive software solution, this makes the instrument a turn-key device for today's state-of- the-art optical testing.
Purkhús, Elisabeth; Krustrup, Peter; Mohr, Magni
2016-11-01
Purkhús, E, Krustrup, P, and Mohr, M. High-intensity training improves exercise performance in elite women volleyball players during a competitive season. J Strength Cond Res 30(11): 3066-3072, 2016-Elite women volleyball players (n = 25; mean ± SD: age, 19 ± 5 years; height, 171 ± 7 cm; weight, 63 ± 10 kg) volunteered to participate in the study. They were randomized into a high-intensity training (HIT; n = 13) group and a control (CON; n = 12) group. In addition to the normal team training and games, HIT performed 6-10 × 30-seconds all-out running intervals separated by 3-minute recovery periods 3 times per week during a 4-week in-season period whereas CON only completed the team training sessions and games. Preintervention and postintervention, all players completed the arrowhead agility test (AAT), a repeated sprint test (RST; 5 × 30 meters separated by 25 seconds of recovery), and the Yo-Yo Intermittent Recovery level 2 test (Yo-Yo IR2) followed by a-10 minute rest period and the Yo-Yo IR1 test. Mean running distance during HIT in week 1 was 152 ± 4 m and increased (p ≤ 0.05) by 4.6% (159 ± 3 m) in week 4. The AAT performance improved (p ≤ 0.05) by 2.3% (18.87 ± 0.97-18.44 ± 1.06 seconds) and RST by 4.3% postintervention in the HIT group only. Baseline RST fatigue index was 7.0 ± 2.9 and 6.2 ± 5.0% in HIT and CON, respectively, but was lowered (p ≤ 0.05) to 2.7 ± 3.0% posttraining in HIT and remained unaltered in CON (5.5 ± 5.0%). In HIT, Yo-Yo IR2 and Yo-Yo IR1 performance improved by 12.6 and 18.3% postintervention, respectively, with greater (p ≤ 0.05) Yo-yo IR1 change scores than in CON. In conclusion, additional high-intensity in-season training performed as interval running improved agility, repeated sprint ability, and high-intensity intermittent exercise performance in elite women volleyball players.
Liu, Jui-Nung; Schulmerich, Matthew V.; Bhargava, Rohit; Cunningham, Brian T.
2014-01-01
Fourier transform infrared (FT-IR) imaging spectrometers are almost universally used to record microspectroscopic imaging data in the mid-infrared (mid-IR) spectral region. While the commercial standard, interferometry necessitates collection of large spectral regions, requires a large data handling overhead for microscopic imaging and is slow. Here we demonstrate an approach for mid-IR spectroscopic imaging at selected discrete wavelengths using narrowband resonant filtering of a broadband thermal source, enabled by high-performance guided-mode Fano resonances in one-layer, large-area mid-IR photonic crystals on a glass substrate. The microresonant devices enable discrete frequency IR (DF-IR), in which a limited number of wavelengths that are of interest are recorded using a mechanically robust instrument. This considerably simplifies instrumentation as well as overhead of data acquisition, storage and analysis for large format imaging with array detectors. To demonstrate the approach, we perform DF-IR spectral imaging of a polymer USAF resolution target and human tissue in the C−H stretching region (2600−3300 cm−1). DF-IR spectroscopy and imaging can be generalized to other IR spectral regions and can serve as an analytical tool for environmental and biomedical applications. PMID:25089433
Pixelated coatings and advanced IR coatings
NASA Astrophysics Data System (ADS)
Pradal, Fabien; Portier, Benjamin; Oussalah, Meihdi; Leplan, Hervé
2017-09-01
Reosc developed pixelated infrared coatings on detector. Reosc manufactured thick pixelated multilayer stacks on IR-focal plane arrays for bi-spectral imaging systems, demonstrating high filter performance, low crosstalk, and no deterioration of the device sensitivities. More recently, a 5-pixel filter matrix was designed and fabricated. Recent developments in pixelated coatings, shows that high performance infrared filters can be coated directly on detector for multispectral imaging. Next generation space instrument can benefit from this technology to reduce their weight and consumptions.
Schuur, M; Henneman, P; van Swieten, J C; Zillikens, M C; de Koning, I; Janssens, A C J W; Witteman, J C M; Aulchenko, Y S; Frants, R R; Oostra, B A; van Dijk, K Willems; van Duijn, C M
2010-08-01
While type 2 diabetes is well-known to be associated with poorer cognitive performance, few studies have reported on the association of metabolic syndrome (MetS) and contributing factors, such as insulin-resistance (HOMA-IR), low adiponectin-, and high C-reactive protein (CRP)-levels. We studied whether these factors are related to cognitive function and which of the MetS components are independently associated. The study was embedded in an ongoing family-based cohort study in a Dutch population. All participants underwent physical examinations, biomedical measurements, and neuropsychological testing. Linear regression models were used to determine the association between MetS, HOMA-IR, adiponectin levels, CRP, and cognitive test scores. Cross-sectional analyses were performed in 1,898 subjects (mean age 48 years, 43% men). People with MetS had significantly higher HOMA-IR scores, lower adiponectin levels, and higher CRP levels. MetS and high HOMA-IR were associated with poorer executive function in women (P = 0.03 and P = 0.009). MetS and HOMA-IR are associated with poorer executive function in women.
NASA Technical Reports Server (NTRS)
Stulen, R. H.; Boehme, D. R.; Clift, W. M.; McCarty, K. F.
1990-01-01
Materials used for radiation-cooled rocket thrusters must be capable of surviving under extreme conditions of high-temperatures and oxidizing environments. While combustion efficiency is optimized at high temperatures, many refractory metals are unsuitable for thruster applications due to rapid material loss from the formation of volatile oxides. This process occurs during thruster operation by reaction of the combustion products with the material surface. Aerojet Technical Systems has developed a thruster cone chamber constructed of Re coated with Ir on the inside surface where exposure to the rocket exhaust occurs. Re maintains its structural integrity at high temperature and the Ir coating is applied as an oxidation barrier. Ir also forms volatile oxide species (IrO2 and IrO3) but at a considerably slower rate than Re. In order to understand the performance limits of Ir-coated Re thrusters, we are investigating the interdiffusion and oxidation kinetics of Ir/Re. The formation of iridium and rhenium oxides has been monitored in situ by Raman spectroscopy during high temperature exposure to oxygen. For pure Ir, the growth of oxide films as thin as approximately 200 A could be easily detected and the formation of IrO2 was observed at temperatures as low as 600 C. Ir/Re diffusion test specimens were prepared by magnetron sputtering of Ir on Re substrates. Concentration profiles were determined by sputter Auger depth profiles of the heat treated specimens. Significant interdiffusion was observed at temperatures as low as 1000 C. Measurements of the activation energy suggest that below 1350 C, the dominant diffusion path is along defects, most likely grain boundaries, rather than bulk diffusion through the grains. The phases that form during interdiffusion have been examined by x ray diffraction. Analysis of heated test specimens indicates that the Ir-Re reaction produces a solid solution phase of Ir dissolved in the HCP structure of Re.
IR-drop analysis for validating power grids and standard cell architectures in sub-10nm node designs
NASA Astrophysics Data System (ADS)
Ban, Yongchan; Wang, Chenchen; Zeng, Jia; Kye, Jongwook
2017-03-01
Since chip performance and power are highly dependent on the operating voltage, the robust power distribution network (PDN) is of utmost importance in designs to provide with the reliable voltage without voltage (IR)-drop. However, rapid increase of parasitic resistance and capacitance (RC) in interconnects makes IR-drop much worse with technology scaling. This paper shows various IR-drop analyses in sub 10nm designs. The major objectives are to validate standard cell architectures, where different sizes of power/ground and metal tracks are validated, and to validate PDN architecture, where types of power hook-up approaches are evaluated with IR-drop calculation. To estimate IR-drops in 10nm and below technologies, we first prepare physically routed designs given standard cell libraries, where we use open RISC RTL, synthesize the CPU, and apply placement & routing with process-design kits (PDK). Then, static and dynamic IR-drop flows are set up with commercial tools. Using the IR-drop flow, we compare standard cell architectures, and analysis impacts on performance, power, and area (PPA) with the previous technology-node designs. With this IR-drop flow, we can optimize the best PDN structure against IR-drops as well as types of standard cell library.
The Yo-Yo IR2 test: physiological response, reliability, and application to elite soccer.
Krustrup, Peter; Mohr, Magni; Nybo, Lars; Jensen, Jack Majgaard; Nielsen, Jens Jung; Bangsbo, Jens
2006-09-01
To examine the physiological response, reliability, and validity of the Yo-Yo intermittent recovery level 2 test (Yo-Yo IR2). Thirteen normally trained male subjects carried out four Yo-Yo IR2 tests, an incremental treadmill test (ITT), and various sprint tests. Muscle biopsies and blood samples were obtained, and heart rate was measured before, during, and after the Yo-Yo IR2 test. Additionally, 119 Scandinavian elite soccer players carried out the Yo-Yo IR2 test on two to four occasions. Yo-Yo IR2 performance was 591 +/- 43 (320-920) m or 4.3 (2.6-7.9) min. Test-retest coefficient of variation in distance covered was 9.6% (N = 29). Heart rate (HR) at exhaustion was 191 +/- 3 bpm, or 98 +/- 1% HRmax. Muscle lactate was 41.7 +/- 5.4 and 68.5 +/- 7.6 mmol x kg(-1) d.w. at 85 and 100% of exhaustion time, respectively, with corresponding muscle CP values of 40.4 +/- 5.2 and 29.4 +/- 4.7 mmol x kg(-1) d.w. Peak blood lactate was 13.6 +/- 0.5 mM. Yo-Yo IR2 performance was correlated to ITT performance (r = 0.74, P < 0.05) and VO2max (r = 0.56, P < 0.05) but not to 30- and 50-m sprint performance. Yo-Yo IR2 performance was better (P < 0.05) for international elite soccer players than for moderate elite players (1059 +/- 35 vs 771 +/- 26 m) and better (P < 0.05) for central defenders (N = 21), fullbacks (N = 20), and midfielders (N = 48) than for goalkeepers (N = 6) and attackers (N = 24). Fifteen elite soccer players improved (P < 0.05) Yo-Yo IR2 performance by 42 +/- 8% during 8 wk of preseasonal training. This study demonstrates that the Yo-Yo IR2 test is reproducible and can be used to evaluate an athlete's ability to perform intense intermittent exercise with a high rate of aerobic and anaerobic energy turnover. Specifically, the Yo-Yo IR2 test was shown to be a sensitive tool to differentiate between intermittent exercise performance of soccer players in different seasonal periods and at different competitive levels and playing positions.
A Satellite Infrared Technique for Diurnal Rainfall Variability Studies
NASA Technical Reports Server (NTRS)
Anagnostou, Emmanouil
1998-01-01
Reliable information on the distribution of precipitation at high temporal resolution (
The infrared luminosity function of AKARI 90 μm galaxies in the local Universe
NASA Astrophysics Data System (ADS)
Kilerci Eser, Ece; Goto, Tomotsugu
2018-03-01
Local infrared (IR) luminosity functions (LFs) are necessary benchmarks for high-redshift IR galaxy evolution studies. Any accurate IR LF evolution studies require accordingly accurate local IR LFs. We present IR galaxy LFs at redshifts of z ≤ 0.3 from AKARI space telescope, which performed an all-sky survey in six IR bands (9, 18, 65, 90, 140, and 160 μm) with 10 times better sensitivity than its precursor Infrared Astronomical Satellite. Availability of 160 μm filter is critically important in accurately measuring total IR luminosity of galaxies, covering across the peak of the dust emission. By combining data from Wide-field Infrared Survey Explorer (WISE), Sloan Digital Sky Survey (SDSS) Data Release 13 (DR 13), six-degree Field Galaxy Survey and the 2MASS Redshift Survey, we created a sample of 15 638 local IR galaxies with spectroscopic redshifts, factor of 7 larger compared to previously studied AKARI-SDSS sample. After carefully correcting for volume effects in both IR and optical, the obtained IR LFs agree well with previous studies, but comes with much smaller errors. Measured local IR luminosity density is ΩIR = 1.19 ± 0.05 × 108L⊙ Mpc-3. The contributions from luminous IR galaxies and ultraluminous IR galaxies to ΩIR are very small, 9.3 per cent and 0.9 per cent, respectively. There exists no future all-sky survey in far-IR wavelengths in the foreseeable future. The IR LFs obtained in this work will therefore remain an important benchmark for high-redshift studies for decades.
Cho, Wan-Cheol; Poo, Kyung-Min; Mohamed, Hend Omar; Kim, Tae-Nam; Kim, Yul-Seong; Hwang, Moon Hyun; Jung, Do-Won; Chae, Kyu-Jung
2018-05-11
Volatile organic compounds (VOCs) are highly toxic contaminants commonly dissolved in industrial wastewater. Therefore, treatment of VOC-containing wastewater requires a robust and rapid reaction because liquid VOCs can become volatile secondary pollutants. In this study, electro-oxidation with catalytic composite dimensionally stable anodes (DSAs)-a promising process for degrading organic pollutants-was applied to remove various VOCs (chloroform, benzene, toluene, and trichloroethylene). Excellent treatment efficiency of VOCs was demonstrated. To evaluate the VOC removal rate of each DSA, a titanium plate, a frequently used substratum, was coated with four different highly electrocatalytic composite materials (platinum group metals), Ir, IrPt, IrRu, and IrPd. Ir was used as a base catalyst to maintain the electrochemical stability of the anode. Current density and electrolyte concentration were evaluated over various ranges (20-45 mA/cm 2 and 0.01-0.15 mol/L as NaCl, respectively) to determine the optimum operating condition. Results indicated that chloroform was the most refractory VOC tested due to its robust chemical bond strength. Moreover, the optimum current density and electrolyte concentration were 25 mA/cm 2 and 0.05 M, respectively, representing the most cost-effective condition. Four DSAs were examined (Ir/Ti, IrPt/Ti, IrRu/Ti, and IrPd/Ti). The IrPd/Ti anode was the most suitable for treatment of VOCs presenting the highest chloroform removal performance of 78.8%, energy consumption of 0.38 kWh per unit mass (g) of oxidized chloroform, and the least volatilized fraction of 4.4%. IrPd/Ti was the most suitable anode material for VOC treatment because of its unique structure, high wettability, and high surface area. Copyright © 2018 Elsevier Ltd. All rights reserved.
Stevens, Tom Gerardus Antonia; De Ruiter, Cornelis Johannes; Beek, Peter Jan; Savelsbergh, Geert Jozef Peter
2016-01-01
In order to determine whether small-sided game (SSG) locomotor performance can serve as a fitness indicator, we (1) compared 6-a-side (6v6) SSG-intensity of players varying in fitness and skill, (2) examined the relationship of the 6v6-SSG and Yo-Yo IR2 and (3) assessed the reliability of the 6v6-SSG. Thirty-three professional senior, 30 professional youth, 62 amateur and 16 professional woman football players performed 4 × 7 min 6v6-SSGs recorded by a Local Position Measurement system. A substantial subgroup (N = 113) also performed the Yo-Yo IR2. Forty-seven amateur players performed two or three 6v6-SSGs. No differences in 6v6-SSG time-motion variables were found between professional senior and professional youth players. Amateurs showed lower values than professional seniors on almost all time-motion variables (ES = 0.59-1.19). Women displayed lower high-intensity time-motion variables than all other subgroups. Total distance run during 6v6-SSG was only moderately related to Yo-Yo IR2 distance (r = 0.45), but estimated metabolic power, high speed (>14.4 km · h(-1)), high acceleration (>2 m · s(-2)), high power (>20 W · kg(-1)) and very high (35 W · kg(-1)) power showed higher correlations (r = 0.59-0.70) with Yo-Yo IR2 distance. Intraclass correlation coefficient values were higher for total distance (0.84) than other time-motion variables (0.74‒0.78). Although total distance and metabolic power during 6v6-SSG showed good reproducibility (coefficient of variation (CV) < 5%), CV was higher (8-14%) for all high-intensity time-motion variables. It was therefore concluded that standardised SSG locomotor performance cannot serve used as a valid and reliable fitness indicator for individual players.
NASA Astrophysics Data System (ADS)
Huai, Yiming; Gan, Huadong; Wang, Zihui; Xu, Pengfa; Hao, Xiaojie; Yen, Bing K.; Malmhall, Roger; Pakala, Nirav; Wang, Cory; Zhang, Jing; Zhou, Yuchen; Jung, Dongha; Satoh, Kimihiro; Wang, Rongjun; Xue, Lin; Pakala, Mahendra
2018-02-01
High volume spin transfer torque magnetoresistance random access memory (STT-MRAM) for standalone and embedded applications requires a thin perpendicular magnetic tunnel junction (pMTJ) stack (˜10 nm) with a tunnel magnetoresistance (TMR) ratio over 200% after high temperature back-end-of-line (BEOL) processing up to 400 °C. A thin reference layer with low magnetic moment and strong perpendicular magnetic anisotropy (PMA) is key to reduce the total thickness of the full pMTJ stack. We demonstrated strong interfacial PMA and a perpendicular Ruderman-Kittel-Kasuya-Yosida exchange interaction in the Co/Ir system. Owing to the additional high PMA at the Ir/Co interface in combination with a conventional CoFeB/MgO interface in the Ir/Co/Mo/CoFeB/MgO reference layer, the full film pMTJ showed a TMR ratio over 210% after annealing at 400 °C for 150 min. The high TMR ratio can be attributed to the thin stack design by combining a thin reference layer with the efficient compensation by a thin pinned layer. The annealing stability may be explained by the absence of solid solution in the Co-Ir system and the low oxygen affinity of Mo in the reference layer and the free layer. High device performance with a TMR ratio over 210% was also confirmed after subjecting the patterned devices to BEOL processing temperatures of up to 400 °C. This proposed pMTJ design is suitable for both standalone and embedded STT-MRAM applications.
High efficiency IR supercontinuum generation and applications: a recent review
NASA Astrophysics Data System (ADS)
Yin, Shizhuo; Ruffin, Paul; Brantley, Christina; Edwards, Eugene; Cheng, Jiping; Luo, Claire
2012-10-01
In this paper, we have reviewed our recent works on IR supercontinuum generation (SCG) and its applications. First, we provide a brief review on the physical mechanism of the supercontinuum generation and our previous works in this field. Second, a thinner IR crystal fiber is fabricated. The supercontinuum generation in this thinner fiber is also demonstrated, which shows the enhanced performance. The suggestion for the future effort is also included.
Nishii, Takashi; Genkawa, Takuma; Watari, Masahiro; Ozaki, Yukihiro
2012-01-01
A new selection procedure of an informative near-infrared (NIR) region for regression model building is proposed that uses an online NIR/mid-infrared (mid-IR) dual-region spectrometer in conjunction with two-dimensional (2D) NIR/mid-IR heterospectral correlation spectroscopy. In this procedure, both NIR and mid-IR spectra of a liquid sample are acquired sequentially during a reaction process using the NIR/mid-IR dual-region spectrometer; the 2D NIR/mid-IR heterospectral correlation spectrum is subsequently calculated from the obtained spectral data set. From the calculated 2D spectrum, a NIR region is selected that includes bands of high positive correlation intensity with mid-IR bands assigned to the analyte, and used for the construction of a regression model. To evaluate the performance of this procedure, a partial least-squares (PLS) regression model of the ethanol concentration in a fermentation process was constructed. During fermentation, NIR/mid-IR spectra in the 10000 - 1200 cm(-1) region were acquired every 3 min, and a 2D NIR/mid-IR heterospectral correlation spectrum was calculated to investigate the correlation intensity between the NIR and mid-IR bands. NIR regions that include bands at 4343, 4416, 5778, 5904, and 5955 cm(-1), which result from the combinations and overtones of the C-H group of ethanol, were selected for use in the PLS regression models, by taking the correlation intensity of a mid-IR band at 2985 cm(-1) arising from the CH(3) asymmetric stretching vibration mode of ethanol as a reference. The predicted results indicate that the ethanol concentrations calculated from the PLS regression models fit well to those obtained by high-performance liquid chromatography. Thus, it can be concluded that the selection procedure using the NIR/mid-IR dual-region spectrometer combined with 2D NIR/mid-IR heterospectral correlation spectroscopy is a powerful method for the construction of a reliable regression model.
Improved high operating temperature MCT MWIR modules
NASA Astrophysics Data System (ADS)
Lutz, H.; Breiter, R.; Figgemeier, H.; Schallenberg, T.; Schirmacher, W.; Wollrab, R.
2014-06-01
High operating temperature (HOT) IR-detectors are a key factor to size, weight and power (SWaP) reduced IR-systems. Such systems are essential to provide infantrymen with low-weight handheld systems with increased battery lifetimes or most compact clip-on weapon sights in combination with high electro-optical performance offered by cooled IR-technology. AIM's MCT standard n-on-p technology with vacancy doping has been optimized over many years resulting in MWIR-detectors with excellent electro-optical performance up to operating temperatures of ~120K. In the last years the effort has been intensified to improve this standard technology by introducing extrinsic doping with Gold as an acceptor. As a consequence the dark current could considerably be suppressed and allows for operation at ~140K with good e/o performance. More detailed investigations showed that limitation for HOT > 140K is explained by consequences from rising dark current rather than from defective pixel level. Recently, several crucial parameters were identified showing great promise for further optimization of HOT-performance. Among those, p-type concentration could successfully be reduced from the mid 1016 / cm3 to the lower 1015/ cm3 range. Since AIM is one of the leading manufacturers of split linear cryocoolers, an increase in operating temperature will directly lead to IR-modules with improved SWaP characteristics by making use of the miniature members of its SX cooler family with single piston and balancer technology. The paper will present recent progress in the development of HOT MWIR-detector arrays at AIM and show electro-optical performance data in comparison to focal plane arrays produced in the standard technology.
Infrared light detection using a whispering-gallery-mode optical microcavity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Jiangang, E-mail: jzhu@seas.wustl.edu, E-mail: ozdemir@seas.wustl.edu, E-mail: yang@seas.wustl.edu; Ozdemir, Sahin Kaya, E-mail: jzhu@seas.wustl.edu, E-mail: ozdemir@seas.wustl.edu, E-mail: yang@seas.wustl.edu; Yang, Lan, E-mail: jzhu@seas.wustl.edu, E-mail: ozdemir@seas.wustl.edu, E-mail: yang@seas.wustl.edu
2014-04-28
We demonstrate a thermal infrared (IR) detector based on an ultra-high-quality-factor (Q) whispering-gallery-mode (WGM) microtoroidal silica resonator and investigate its performance to detect IR radiation at 10 μm wavelength. The bandwidth and the sensitivity of the detector are dependent on the power of a probe laser and the detuning between the probe laser and the resonance frequency of the resonator. The microtoroid IR sensor achieved a noise-equivalent-power (NEP) of 7.46 nW, corresponding to an IR intensity of 0.095 mW/cm{sup 2}.
LASER APPLICATIONS AND OTHER TOPICS IN QUANTUM ELECTRONICS: Matrix laser IR-visible image converter
NASA Astrophysics Data System (ADS)
Lipatov, N. I.; Biryukov, A. S.
2006-04-01
A new type of a focal matrix IR-visible image converter is proposed. The pixel IR detectors of the matrix are tunable microcavities of VCSEL (vertical-cavity surface emitting laser) semiconductor microstructures. The image conversion is performed due to the displacements of highly reflecting cavity mirrors caused by thermoelastic stresses in their microsuspensions appearing upon absorption of IR radiation. Analysis of the possibilities of the converter shows that its sensitivity is 10-3-10-2 K and the time response is 10-4-10-3 s. These characteristics determine the practical application of the converter.
Gamma-ray Irradiation Effects on InAs/GaSb-based nBn IR Detector
2011-01-01
very low noise performance. When properly passivated, conventional mercury cadmium telluride ( MCT )?based infrared detectors have been shown to...Gamma-ray Irradiation Effects on InAs/GaSb-based nBn IR Detector Vincent M. Cowan*1, Christian P. Morath1, Seth M. Swift1, Stephen Myers2...2Center for High Technology Materials, University of New Mexico, Albuquerque, NM 87106, USA ABSTRACT IR detectors operated in a space environment are
Borri, Simone; Siciliani de Cumis, Mario; Insero, Giacomo; Bartalini, Saverio; Cancio Pastor, Pablo; Mazzotti, Davide; Galli, Iacopo; Giusfredi, Giovanni; Santambrogio, Gabriele; Savchenkov, Anatoliy; Eliyahu, Danny; Ilchenko, Vladimir; Akikusa, Naota; Matsko, Andrey; Maleki, Lute; De Natale, Paolo
2016-02-17
The need for highly performing and stable methods for mid-IR molecular sensing and metrology pushes towards the development of more and more compact and robust systems. Among the innovative solutions aimed at answering the need for stable mid-IR references are crystalline microresonators, which have recently shown excellent capabilities for frequency stabilization and linewidth narrowing of quantum cascade lasers with compact setups. In this work, we report on the first system for mid-IR high-resolution spectroscopy based on a quantum cascade laser locked to a CaF₂ microresonator. Electronic locking narrows the laser linewidth by one order of magnitude and guarantees good stability over long timescales, allowing, at the same time, an easy way for finely tuning the laser frequency over the molecular absorption line. Improvements in terms of resolution and frequency stability of the source are demonstrated by direct sub-Doppler recording of a molecular line.
Borri, Simone; Siciliani de Cumis, Mario; Insero, Giacomo; Bartalini, Saverio; Cancio Pastor, Pablo; Mazzotti, Davide; Galli, Iacopo; Giusfredi, Giovanni; Santambrogio, Gabriele; Savchenkov, Anatoliy; Eliyahu, Danny; Ilchenko, Vladimir; Akikusa, Naota; Matsko, Andrey; Maleki, Lute; De Natale, Paolo
2016-01-01
The need for highly performing and stable methods for mid-IR molecular sensing and metrology pushes towards the development of more and more compact and robust systems. Among the innovative solutions aimed at answering the need for stable mid-IR references are crystalline microresonators, which have recently shown excellent capabilities for frequency stabilization and linewidth narrowing of quantum cascade lasers with compact setups. In this work, we report on the first system for mid-IR high-resolution spectroscopy based on a quantum cascade laser locked to a CaF2 microresonator. Electronic locking narrows the laser linewidth by one order of magnitude and guarantees good stability over long timescales, allowing, at the same time, an easy way for finely tuning the laser frequency over the molecular absorption line. Improvements in terms of resolution and frequency stability of the source are demonstrated by direct sub-Doppler recording of a molecular line. PMID:26901199
Liu, Sibao; Dutta, Saikat; Zheng, Weiqing; Gould, Nicholas S; Cheng, Ziwei; Xu, Bingjun; Saha, Basudeb; Vlachos, Dionisios G
2017-08-24
Renewable jet-fuel-range alkanes are synthesized by hydrodeoxygenation of lignocellulose-derived high-carbon furylmethanes over ReO x -modified Ir/SiO 2 catalysts under mild reaction conditions. Ir-ReO x /SiO 2 with a Re/Ir molar ratio of 2:1 exhibits the best performance, achieving a combined alkanes yield of 82-99 % from C 12 -C 15 furylmethanes. The catalyst can be regenerated in three consecutive cycles with only about 12 % loss in the combined alkanes yield. Mechanistically, the furan moieties of furylmethanes undergo simultaneous ring saturation and ring opening to form a mixture of complex oxygenates consisting of saturated furan rings, mono-keto groups, and mono-hydroxy groups. Then, these oxygenates undergo a cascade of hydrogenolysis reactions to alkanes. The high activity of Ir-ReO x /SiO 2 arises from a synergy between Ir and ReO x , whereby the acidic sites of partially reduced ReO x activate the C-O bonds of the saturated furans and alcoholic groups while the Ir sites are responsible for hydrogenation with H 2 . © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
The effects of short term detraining and retraining on physical fitness in elite soccer players
2018-01-01
Purpose The aim of this study was to examine the effects of aerobic high-intensity training with reduced volume and training cessation on body composition and physical fitness after the end of season and the time required to recapture physical fitness with intensified retraining following two weeks of detraining in elite soccer players. Method Twenty male semi-professional soccer players participated in this study. The soccer players were assigned to either a group that completed high-intensity aerobic training (HAT, n = 10) or to a detraining and retraining group (DHAT, n = 10) for a 5-week period immediately after the end of the season. The first 2 weeks of the period, members of the HAT group performed high-intensity aerobic exercise (80–90% of HRmax, 12 min × 3, three times per week), whereas members of the DHAT group abstained from any physical activity. During the subsequent 3 weeks, members of both the HAT and DHAT groups completed high-intensity aerobic exercise. Exercise performance testing and body composition analysis were performed before; after 2 weeks of detraining; and at 1, 2 and 3 weeks of retraining. Results Intensified high-intensity training for 5 weeks maintained the performance in the Yo-Yo Intermittent Recovery level 2 test (Yo-Yo IR2) and repeated sprints at any time point (P > 0.05). However 2 weeks of detraining resulted in significant decreases in the performance on the Yo-Yo IR2 (P < 0.01) and repeated sprints test (P < 0.05). Performance on the Yo-Yo IR2 enhanced after 2 weeks of retraining and was maintained up to 3 weeks after retraining, with no significant differences between conditions (P > 0.05). In addition, repeated sprint performance markedly decreased after the detraining period (P < 0.05) and was continuously lower compared to the baseline at 2 weeks after retraining (P < 0.05). Furthermore, this value reached baseline level at the end of the experimental period (P > 0.05). There were no significant differences between conditions in body composition, performance of agility, or sprint ability throughout the 5-week experimental period (P > 0.05). Conclusions The present data suggest that short-term detraining after the competitive season can markedly decrease performances in the Yo-Yo IR2 test and repeated sprints. To return to a previous level of ability on the Yo-Yo IR2 and/or sprint test with retraining through high-intensity aerobic training after a period of detraining, a similar or longer period of retraining is required. However, the high-intensity training with reduced amount of training after competitive season can prevent reductions in physical fitness. PMID:29746505
Grb-IR: A SH2-Domain-Containing Protein that Binds to the Insulin Receptor and Inhibits Its Function
NASA Astrophysics Data System (ADS)
Liu, Feng; Roth, Richard A.
1995-10-01
To identify potential signaling molecules involved in mediating insulin-induced biological responses, a yeast two-hybrid screen was performed with the cytoplasmic domain of the human insulin receptor (IR) as bait to trap high-affinity interacting proteins encoded by human liver or HeLa cDNA libraries. A SH2-domain-containing protein was identified that binds with high affinity in vitro to the autophosphorylated IR. The mRNA for this protein was found by Northern blot analyses to be highest in skeletal muscle and was also detected in fat by PCR. To study the role of this protein in insulin signaling, a full-length cDNA encoding this protein (called Grb-IR) was isolated and stably expressed in Chinese hamster ovary cells overexpressing the human IR. Insulin treatment of these cells resulted in the in situ formation of a complex of the IR and the 60-kDa Grb-IR. Although almost 75% of the Grb-IR protein was bound to the IR, it was only weakly tyrosine-phosphorylated. The formation of this complex appeared to inhibit the insulin-induced increase in tyrosine phosphorylation of two endogenous substrates, a 60-kDa GTPase-activating-protein-associated protein and, to a lesser extent, IR substrate 1. The subsequent association of this latter protein with phosphatidylinositol 3-kinase also appeared to be inhibited. These findings raise the possibility that Grb-IR is a SH2-domain-containing protein that directly complexes with the IR and serves to inhibit signaling or redirect the IR signaling pathway.
Peng, Tsui-Chin; Jan, Woan-Ching; Tsai, Pei-Shan; Huang, Chun-Jen
2011-05-15
Lower limb ischemia-reperfusion (I/R) imposes oxidative stress, elicits inflammatory response, and subsequently induces acute lung injury. Ischemic preconditioning (IP), a process of transient I/R, mitigates the acute lung injury induced by I/R. We sought to elucidate whether the protective effects of IP involve heme oxygenase-1 (HO-1). Adult male rats were randomized to receive I/R, I/R plus IP, I/R plus IP plus the HO-1 inhibitor tin protoporphyrin (SnPP) (n = 12 in each group). Control groups were run simultaneously. I/R was induced by applying rubber band tourniquet high around each thigh for 3 h followed by reperfusion for 3 h. To achieve IP, three cycles of bilateral lower limb I/R (i.e., ischemia for 10 min followed by reperfusion for 10 min) were performed. IP was performed immediately before I/R. After sacrifice, degree of lung injury was determined. Histologic findings, together with assays of leukocyte infiltration (polymorphonuclear leukocytes/alveoli ratio and myeloperoxidase activity) and lung water content (wet/dry weight ratio), confirmed that I/R induced acute lung injury. I/R also caused significant inflammatory response (increases in chemokine, cytokine, and prostaglandin E(2) concentrations), imposed significant oxidative stress (increases in nitric oxide and malondialdehyde concentrations), and up-regulated HO-1 expression in lung tissues. IP significantly enhanced HO-1 up-regulation and, in turn, mitigated oxidative stress, inflammatory response, and acute lung injury induced by I/R. In addition, the protective effects of IP were counteracted by SnPP. The protective effects of IP on mitigating acute lung injury induced by lower limb I/R are mediated by HO-1. Copyright © 2011 Elsevier Inc. All rights reserved.
Wang, Shan-Ning; Peng, Yong; Lu, Zi-Yun; Dhiloo, Khalid Hussain; Zheng, Yao; Shan, Shuang; Li, Rui-Jun; Zhang, Yong-Jun; Guo, Yu-Yuan
2016-07-01
Ionotropic receptors (IRs) mainly detect the acids and amines having great importance in many insect species, representing an ancient olfactory receptor family in insects. In the present work, we performed RNAseq of Microplitis mediator antennae and identified seventeen IRs. Full-length MmedIRs were cloned and sequenced. Phylogenetic analysis of the Hymenoptera IRs revealed that ten MmedIR genes encoded "antennal IRs" and seven encoded "divergent IRs". Among the IR25a orthologous groups, two genes, MmedIR25a.1 and MmedIR25a.2, were found in M. mediator. Gene structure analysis of MmedIR25a revealed a tandem duplication of IR25a in M. mediator. The tissue distribution and development specific expression of the MmedIR genes suggested that these genes showed a broad expression profile. Quantitative gene expression analysis showed that most of the genes are highly enriched in adult antennae, indicating the candidate chemosensory function of this family in parasitic wasps. Using immunocytochemistry, we confirmed that one co-receptor, MmedIR8a, was expressed in the olfactory sensory neurons. Our data will supply fundamental information for functional analysis of the IRs in parasitoid wasp chemoreception. Copyright © 2016 Elsevier Ltd. All rights reserved.
Effects of insulin resistance on white matter microstructure in middle-aged and older adults
Coutu, Jean-Philippe; Rosas, H. Diana; Salat, David H.
2014-01-01
Objective: To investigate the potential relationship between insulin resistance (IR) and white matter (WM) microstructure using diffusion tensor imaging in cognitively healthy middle-aged and older adults. Methods: Diffusion tensor imaging was acquired from 127 individuals (age range 41–86 years). IR was evaluated by the homeostasis model assessment of IR (HOMA-IR). Participants were divided into 2 groups based on HOMA-IR values: “high HOMA-IR” (≥2.5, n = 27) and “low HOMA-IR” (<2.5, n = 100). Cross-sectional voxel-based comparisons were performed using Tract-Based Spatial Statistics and anatomically defined regions of interest analysis. Results: The high HOMA-IR group demonstrated decreased axial diffusivity broadly throughout the cerebral WM in areas such as the corpus callosum, corona radiata, cerebral peduncle, posterior thalamic radiation, and right superior longitudinal fasciculus, and WM underlying the frontal, parietal, and temporal lobes, as well as decreased fractional anisotropy in the body and genu of corpus callosum and parts of the superior and anterior corona radiata, compared with the low HOMA-IR group, independent of age, WM signal abnormality volume, and antihypertensive medication status. These regions additionally demonstrated linear associations between diffusion measures and HOMA-IR across all subjects, with higher HOMA-IR values being correlated with lower axial diffusivity. Conclusions: In generally healthy adults, greater IR is associated with alterations in WM tissue integrity. These cross-sectional findings suggest that IR contributes to WM microstructural alterations in middle-aged and older adults. PMID:24771537
Driving gas shells with radiation pressure on dust in radiation-hydrodynamic simulations
NASA Astrophysics Data System (ADS)
Costa, Tiago; Rosdahl, Joakim; Sijacki, Debora; Haehnelt, Martin G.
2018-01-01
We present radiation-hydrodynamic simulations of radiatively-driven gas shells launched by bright active galactic nuclei (AGN) in isolated dark matter haloes. Our goals are (1) to investigate the ability of AGN radiation pressure on dust to launch galactic outflows and (2) to constrain the efficiency of infrared (IR) multiscattering in boosting outflow acceleration. Our simulations are performed with the radiation-hydrodynamic code RAMSES-RT and include both single- and multiscattered radiation pressure from an AGN, radiative cooling and self-gravity. Since outflowing shells always eventually become transparent to the incident radiation field, outflows that sweep up all intervening gas are likely to remain gravitationally bound to their halo even at high AGN luminosities. The expansion of outflowing shells is well described by simple analytic models as long as the shells are mildly optically thick to IR radiation. In this case, an enhancement in the acceleration of shells through IR multiscattering occurs as predicted, i.e. a force \\dot{P} ≈ τ_IR L/c is exerted on the gas. For high optical depths τIR ≳ 50, however, momentum transfer between outflowing optically thick gas and IR radiation is rapidly suppressed, even if the radiation is efficiently confined. At high τIR, the characteristic flow time becomes shorter than the required trapping time of IR radiation such that the momentum flux \\dot{P} ≪ τ_IR L/c. We argue that while unlikely to unbind massive galactic gaseous haloes, AGN radiation pressure on dust could play an important role in regulating star formation and black hole accretion in the nuclei of massive compact galaxies at high redshift.
Iguchi, Masayuki; Zhong, Heng; Himeda, Yuichiro; Kawanami, Hajime
2017-12-14
The hydroxyl groups of a 2,2'-bipyridine (bpy) ligand near the metal center activated the catalytic performance of the Ir complex for the dehydrogenation of formic acid at high pressure. The position of the hydroxyl groups on the ligand affected the catalytic durability for the high-pressure H 2 generation through the decomposition of formic acid. The Ir complex with a bipyridine ligand functionalized with para-hydroxyl groups shows a good durability with a constant catalytic activity during the reaction even under high-pressure conditions, whereas deactivation was observed for an Ir complex with a bipyridine ligand with ortho-hydroxyl groups (2). In the presence of high-pressure H 2 , complex 2 decomposed into the ligand and an Ir trihydride complex through the isomerization of the bpy ligand. This work provides the development of a durable catalyst for the high-pressure H 2 production from formic acid. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Rabiee, Atefeh; Krüger, Marcus; Ardenkjær-Larsen, Jacob; Kahn, C Ronald; Emanuelli, Brice
2018-07-01
Insulin/IGF-1 action is driven by a complex and highly integrated signalling network. Loss-of-function studies indicate that the major insulin/IGF-1 receptor substrate (IRS) proteins, IRS-1 and IRS-2, mediate different biological functions in vitro and in vivo, suggesting specific signalling properties despite their high degree of homology. To identify mechanisms contributing to the differential signalling properties of IRS-1 and IRS-2 in the mediation of insulin/IGF-1 action, we performed comprehensive mass spectrometry (MS)-based phosphoproteomic profiling of brown preadipocytes from wild type, IRS-1 -/- and IRS-2 -/- mice in the basal and IGF-1-stimulated states. We applied stable isotope labeling by amino acids in cell culture (SILAC) for the accurate quantitation of changes in protein phosphorylation. We found ~10% of the 6262 unique phosphorylation sites detected to be regulated by IGF-1. These regulated sites included previously reported substrates of the insulin/IGF-1 signalling pathway, as well as novel substrates including Nuclear Factor I X and Semaphorin-4B. In silico prediction suggests the protein kinase B (PKB), protein kinase C (PKC), and cyclin-dependent kinase (CDK) as the main mediators of these phosphorylation events. Importantly, we found preferential phosphorylation patterns depending on the presence of either IRS-1 or IRS-2, which was associated with specific sets of kinases involved in signal transduction downstream of these substrates such as PDHK1, MAPK3, and PKD1 for IRS-1, and PIN1 and PKC beta for IRS-2. Overall, by generating a comprehensive phosphoproteomic profile from brown preadipocyte cells in response to IGF-1 stimulation, we reveal both common and distinct insulin/IGF-1 signalling events mediated by specific IRS proteins. Copyright © 2018 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Corsi, C.
2015-03-01
Infrared (IR) science and technology has been mainly dedicated to surveillance and security: since the 70's specialized techniques have been emerging in thermal imaging for medical and cultural heritage diagnostics, building and aeronautics structures control, energy savings and remote sensing. Most of these applications were developed thanks to IR FPAs sensors with high numbers of pixels and, actually, working at room temperatures. Besides these technological achievements in sensors/ receivers, advanced developments of IR laser sources up to far IR bands have been achieved in the form QCL (quantum cascade laser), allowing wide band TLC and high sensitivity systems for security. recently new sensors and sources with improved performances are emerging in the very far IR region up to submillimeter wavelengths, the so called terahertz (THz) region. A survey of the historical growth and a forecast of the future developments in Devices and Systems for the new frontier of IR will be discussed, in particular for the key questions: "From where and when is IR coming?", "Where is it now?" and "Where will it go and when?". These questions will be treated for key systems (Military/Civil), key devices (Sensors/ Sources), and new strategic technologies (Nanotech/TeraHertz).
High-performance mushroom plasmonic metamaterial absorbers for infrared polarimetric imaging
NASA Astrophysics Data System (ADS)
Ogawa, Shinpei; Fujisawa, Daisuke; Hata, Hisatoshi; Uetsuki, Mitsuharu; Kuboyama, Takafumi; Kimata, Masafumi
2017-02-01
Infrared (IR) polarimetric imaging is a promising approach to enhance object recognition with conventional IR imaging for applications such as artificial object recognition from the natural environment and facial recognition. However, typical infrared polarimetric imaging requires the attachment of polarizers to an IR camera or sensor, which leads to high cost and lower performance caused by their own IR radiation. We have developed asymmetric mushroom plasmonic metamaterial absorbers (A-MPMAs) to address this challenge. The A-MPMAs have an all-Al construction that consists of micropatches and a reflector layer connected with hollow rectangular posts. The asymmetric-shaped micropatches lead to strong polarization-selective IR absorption due to localized surface plasmon resonance at the micropatches. The operating wavelength region can be controlled mainly by the micropatch and the hollow rectangular post size. AMPMAs are complicated three-dimensional structures, the fabrication of which is challenging. Hollow rectangular post structures are introduced to enable simple fabrication using conventional surface micromachining techniques, such as sacrificial layer etching, with no degradation of the optical properties. The A-MPMAs have a smaller thermal mass than metal-insulator-metal based metamaterials and no influence of the strong non-linear dispersion relation of the insulator materials constant, which produces a gap in the wavelength region and additional absorption insensitive to polarization. A-MPMAs are therefore promising candidates for uncooled IR polarimetric image sensors in terms of both their optical properties and ease of fabrication. The results presented here are expected to contribute to the development of highperformance polarimetric uncooled IR image sensors that do not require polarizers.
Development of nanostructured antireflection coatings for infrared technologies and applications
NASA Astrophysics Data System (ADS)
Pethuraja, Gopal G.; Zeller, John W.; Welser, Roger E.; Efstathiadis, Harry; Haldar, Pradeep; Wijewarnasuriya, Priyalal S.; Dhar, Nibir K.; Sood, Ashok K.
2017-09-01
Infrared (IR) sensing technologies and systems operating from the near-infrared (NIR) to long-wave infrared (LWIR) spectra are being developed for a variety of defense and commercial systems applications. Reflection losses affecting a significant portion of the incident signal limits the performance of IR sensing systems. One of the critical technologies that will overcome this limitation and enhance the performance of IR sensing systems is the development of advanced antireflection (AR) coatings. Magnolia is actively involved in the development and advancement of ultrahigh performance AR coatings for a wide variety of defense and commercial applications. Ultrahigh performance nanostructured AR coatings have been demonstrated for UV to LWIR spectral bands using various substrates. The AR coatings enhance the optical transmission through optical components and devices by significantly minimizing reflection losses, a substantial improvement over conventional thin-film AR coating technologies. Nanostructured AR coatings are fabricated using a tunable self-assembly process on substrates that are transparent for a given spectrum of interest ranging from UV to LWIR. The nanostructured multilayer structures have been designed, developed and optimized for various optoelectronic applications. The optical properties of the AR-coated optical components and sensor substrates have been measured and fine-tuned to achieve a predicted high level of performance of the coatings. In this paper, we review our latest work on high quality nanostructure-based AR coatings, including recent efforts towards the development of nanostructured AR coatings on IR-transparent substrates.
Sabne, Amit J.; Sakdhnagool, Putt; Lee, Seyong; ...
2015-07-13
Accelerator-based heterogeneous computing is gaining momentum in the high-performance computing arena. However, the increased complexity of heterogeneous architectures demands more generic, high-level programming models. OpenACC is one such attempt to tackle this problem. Although the abstraction provided by OpenACC offers productivity, it raises questions concerning both functional and performance portability. In this article, the authors propose HeteroIR, a high-level, architecture-independent intermediate representation, to map high-level programming models, such as OpenACC, to heterogeneous architectures. They present a compiler approach that translates OpenACC programs into HeteroIR and accelerator kernels to obtain OpenACC functional portability. They then evaluate the performance portability obtained bymore » OpenACC with their approach on 12 OpenACC programs on Nvidia CUDA, AMD GCN, and Intel Xeon Phi architectures. They study the effects of various compiler optimizations and OpenACC program settings on these architectures to provide insights into the achieved performance portability.« less
Modelling of nanoscale multi-gate transistors affected by atomistic interface roughness
NASA Astrophysics Data System (ADS)
Nagy, Daniel; Aldegunde, Manuel; Elmessary, Muhammad A.; García-Loureiro, Antonio J.; Seoane, Natalia; Kalna, Karol
2018-04-01
Interface roughness scattering (IRS) is one of the major scattering mechanisms limiting the performance of non-planar multi-gate transistors, like Fin field-effect transistors (FETs). Here, two physical models (Ando’s and multi-sub-band) of electron scattering with the interface roughness induced potential are investigated using an in-house built 3D finite element ensemble Monte Carlo simulation toolbox including parameter-free 2D Schrödinger equation quantum correction that handles all relevant scattering mechanisms within highly non-equilibrium carrier transport. Moreover, we predict the effect of IRS on performance of FinFETs with realistic channel cross-section shapes with respect to the IRS correlation length (Λ) and RMS height (Δ_RMS ). The simulations of the n-type SOI FinFETs with the multi-sub-band IRS model shows its very strong effect on electron transport in the device channel compared to the Ando’s model. We have also found that the FinFETs are strongly affected by the IRS in the ON-region. The limiting effect of the IRS significantly increases as the Fin width is reduced. The FinFETs with <1 1 0> channel orientation are affected more by the IRS than those with the <1 0 0> crystal orientation. Finally, Λ and Δ_RMS are shown to affect the device performance similarly. A change in values by 30% (Λ) or 20% (Δ_RMS ) results in an increase (decrease) of up to 13% in the drive current.
Modelling of nanoscale multi-gate transistors affected by atomistic interface roughness.
Nagy, Daniel; Aldegunde, Manuel; Elmessary, Muhammad A; García-Loureiro, Antonio J; Seoane, Natalia; Kalna, Karol
2018-04-11
Interface roughness scattering (IRS) is one of the major scattering mechanisms limiting the performance of non-planar multi-gate transistors, like Fin field-effect transistors (FETs). Here, two physical models (Ando's and multi-sub-band) of electron scattering with the interface roughness induced potential are investigated using an in-house built 3D finite element ensemble Monte Carlo simulation toolbox including parameter-free 2D Schrödinger equation quantum correction that handles all relevant scattering mechanisms within highly non-equilibrium carrier transport. Moreover, we predict the effect of IRS on performance of FinFETs with realistic channel cross-section shapes with respect to the IRS correlation length (Λ) and RMS height ([Formula: see text]). The simulations of the n-type SOI FinFETs with the multi-sub-band IRS model shows its very strong effect on electron transport in the device channel compared to the Ando's model. We have also found that the FinFETs are strongly affected by the IRS in the ON-region. The limiting effect of the IRS significantly increases as the Fin width is reduced. The FinFETs with [Formula: see text] channel orientation are affected more by the IRS than those with the [Formula: see text] crystal orientation. Finally, Λ and [Formula: see text] are shown to affect the device performance similarly. A change in values by 30% (Λ) or [Formula: see text] ([Formula: see text]) results in an increase (decrease) of up to [Formula: see text] in the drive current.
IR Imaging Study on Heater Performamnce of Outside Rearview Mirrors for Automobiles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Hsin; England, Todd W
Adhesive bonded electrical heaters have been used in outside rearview mirrors of automobiles in order to act as defrosters. Entrapment of air pockets between the heater and the mirror can affects the performance and structural integrity of the mirror assembly. Since painting over the mirror is not an option in the production environment, the biggest challenge for IR imaging is to minimize surface reflection. Looking through a smooth, highly reflective first-surface mirror and a 2 mm thick glass without picking up other heat sources in the room, such as people, electronics equipment and the camera itself, requires careful planning andmore » effective shielding. In this paper, we present our method of avoiding mirror reflection and IR images of the heated mirror in operation. Production heaters and heaters with artificial defect were studied. The IR imaging method has shown to be an effective tool for heater quality control and performance studies.« less
Third-generation intelligent IR focal plane arrays
NASA Astrophysics Data System (ADS)
Caulfield, H. John; Jack, Michael D.; Pettijohn, Kevin L.; Schlesselmann, John D.; Norworth, Joe
1998-03-01
SBRC is at the forefront of industry in developing IR focal plane arrays including multi-spectral technology and '3rd generation' functions that mimic the human eye. 3rd generation devices conduct advanced processing on or near the FPA that serve to reduce bandwidth while performing needed functions such as automatic target recognition, uniformity correction and dynamic range enhancement. These devices represent a solution for processing the exorbitantly high bandwidth coming off large area FPAs without sacrificing systems sensitivity. SBRC's two-color approach leverages the company's HgCdTe technology to provide simultaneous multiband coverage, from short through long wave IR, with near theoretical performance. IR systems that are sensitive to different spectral bands achieve enhanced capabilities for target identification and advanced discrimination. This paper will provide a summary of the issues, the technology and the benefits of SBRC's third generation smart and two-color FPAs.
Aspects of detection and tracking of ground targets from an airborne EO/IR sensor
NASA Astrophysics Data System (ADS)
Balaji, Bhashyam; Sithiravel, Rajiv; Daya, Zahir; Kirubarajan, Thiagalingam
2015-05-01
An airborne EO/IR (electro-optical/infrared) camera system comprises of a suite of sensors, such as a narrow and wide field of view (FOV) EO and mid-wave IR sensors. EO/IR camera systems are regularly employed on military and search and rescue aircrafts. The EO/IR system can be used to detect and identify objects rapidly in daylight and at night, often with superior performance in challenging conditions such as fog. There exist several algorithms for detecting potential targets in the bearing elevation grid. The nonlinear filtering problem is one of estimation of the kinematic parameters from bearing and elevation measurements from a moving platform. In this paper, we developed a complete model for the state of a target as detected by an airborne EO/IR system and simulated a typical scenario with single target with 1 or 2 airborne sensors. We have demonstrated the ability to track the target with `high precision' and noted the improvement from using two sensors on a single platform or on separate platforms. The performance of the Extended Kalman filter (EKF) is investigated on simulated data. Image/video data collected from an IR sensor on an airborne platform are processed using an image tracking by detection algorithm.
Bioinspired Infrared Sensing Materials and Systems.
Shen, Qingchen; Luo, Zhen; Ma, Shuai; Tao, Peng; Song, Chengyi; Wu, Jianbo; Shang, Wen; Deng, Tao
2018-05-11
Bioinspired engineering offers a promising alternative approach in accelerating the development of many man-made systems. Next-generation infrared (IR) sensing systems can also benefit from such nature-inspired approach. The inherent compact and uncooled operation of biological IR sensing systems provides ample inspiration for the engineering of portable and high-performance artificial IR sensing systems. This review overviews the current understanding of the biological IR sensing systems, most of which are thermal-based IR sensors that rely on either bolometer-like or photomechanic sensing mechanism. The existing efforts inspired by the biological IR sensing systems and possible future bioinspired approaches in the development of new IR sensing systems are also discussed in the review. Besides these biological IR sensing systems, other biological systems that do not have IR sensing capabilities but can help advance the development of engineered IR sensing systems are also discussed, and the related engineering efforts are overviewed as well. Further efforts in understanding the biological IR sensing systems, the learning from the integration of multifunction in biological systems, and the reduction of barriers to maximize the multidiscipline collaborations are needed to move this research field forward. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
USDA-ARS?s Scientific Manuscript database
Techniques including ultraviolet-visible spectra (UV), high performance size-exclusion chromatography (HPSEC), fourier-transform infrared spectroscopy (FT-IR) and pre-column derivatization high-performance liquid chromatography (PCD-HPLC) were used in the fingerprinting analysis of Lycium barbarum p...
Larsen, Malte Nejst; Nielsen, Claus Malta; Ørntoft, Christina; Randers, Morten Bredsgaard; Helge, Eva Wulff; Madsen, Mads; Manniche, Vibeke; Hansen, Lone; Hansen, Peter Riis; Bangsbo, Jens; Krustrup, Peter
2017-01-01
We investigated the exercise intensity and fitness effects of frequent school-based low-volume high-intensity training for 10 months in 8-10-year-old children. 239 Danish 3rd-grade school children from four schools were cluster-randomised into a control group (CON, n = 116) or two training groups performing either 5 × 12 min/wk small-sided football plus other ball games (SSG, n = 62) or interval running (IR, n = 61). Whole-body DXA scans, flamingo balance, standing long-jump, 20 m sprint, and Yo-Yo IR1 children's tests (YYIR1C) were performed before and after the intervention. Mean running velocity was higher ( p < 0.05) in SSG than in IR (0.88 ± 0.14 versus 0.63 ± 0.20 m/s), while more time ( p < 0.05) was spent in the highest player load zone (>2; 5.6 ± 3.4 versus 3.7 ± 3.4%) and highest HR zone (>90% HR max ; 12.4 ± 8.9 versus 8.4 ± 8.0%) in IR compared to SSG. After 10 months, no significant between-group differences were observed for YYIR1C performance and HR after 2 min of YYIR1C (HR submax ), but median-split analyses showed that HR submax was reduced ( p < 0.05) in both training groups compared to CON for those with the lowest aerobic fitness (SSG versus CON: 3.2% HR max [95% CI: 0.8-5.5]; IR versus CON: 2.6% HR max [95% CI: 1.1-5.2]). After 10 months, IR had improved ( p < 0.05) 20 m sprint performance (IR versus CON: 154 ms [95% CI: 61-241]). No between-group differences ( p > 0.05) were observed for whole-body or leg aBMD, lean mass, postural balance, or jump length. In conclusion, frequent low-volume ball games and interval running can be conducted over a full school year with high intensity rate but has limited positive fitness effects in 8-10-year-old children.
Nielsen, Claus Malta; Ørntoft, Christina; Randers, Morten Bredsgaard; Helge, Eva Wulff; Madsen, Mads; Manniche, Vibeke; Hansen, Lone; Bangsbo, Jens
2017-01-01
We investigated the exercise intensity and fitness effects of frequent school-based low-volume high-intensity training for 10 months in 8–10-year-old children. 239 Danish 3rd-grade school children from four schools were cluster-randomised into a control group (CON, n = 116) or two training groups performing either 5 × 12 min/wk small-sided football plus other ball games (SSG, n = 62) or interval running (IR, n = 61). Whole-body DXA scans, flamingo balance, standing long-jump, 20 m sprint, and Yo-Yo IR1 children's tests (YYIR1C) were performed before and after the intervention. Mean running velocity was higher (p < 0.05) in SSG than in IR (0.88 ± 0.14 versus 0.63 ± 0.20 m/s), while more time (p < 0.05) was spent in the highest player load zone (>2; 5.6 ± 3.4 versus 3.7 ± 3.4%) and highest HR zone (>90% HRmax; 12.4 ± 8.9 versus 8.4 ± 8.0%) in IR compared to SSG. After 10 months, no significant between-group differences were observed for YYIR1C performance and HR after 2 min of YYIR1C (HRsubmax), but median-split analyses showed that HRsubmax was reduced (p < 0.05) in both training groups compared to CON for those with the lowest aerobic fitness (SSG versus CON: 3.2% HRmax [95% CI: 0.8–5.5]; IR versus CON: 2.6% HRmax [95% CI: 1.1–5.2]). After 10 months, IR had improved (p < 0.05) 20 m sprint performance (IR versus CON: 154 ms [95% CI: 61–241]). No between-group differences (p > 0.05) were observed for whole-body or leg aBMD, lean mass, postural balance, or jump length. In conclusion, frequent low-volume ball games and interval running can be conducted over a full school year with high intensity rate but has limited positive fitness effects in 8–10-year-old children. PMID:28303248
Lanzarotta, Adam; Lorenz, Lisa; Voelker, Sarah; Falconer, Travis M; Batson, JaCinta S
2018-05-01
This manuscript is a continuation of a recent study that described the use of fully integrated gas chromatography with direct deposition Fourier transform infrared detection and mass spectrometric detection (GC-FT-IR-MS) to identify and confirm the presence of sibutramine and AB-FUBINACA. The purpose of the current study was to employ the GC-FT-IR portion of the same instrument to quantify these compounds, thereby demonstrating the ability to identify, confirm, and quantify drug substances using a single GC-FT-IR-MS unit. The performance of the instrument was evaluated by comparing quantitative analytical figures of merit to those measured using an established, widely employed method for quantifying drug substances, high performance liquid chromatography with ultraviolet detection (HPLC-UV). The results demonstrated that GC-FT-IR was outperformed by HPLC-UV with regard to sensitivity, precision, and linear dynamic range (LDR). However, sibutramine and AB-FUBINACA concentrations measured using GC-FT-IR were not significantly different at the 95% confidence interval compared to those measured using HPLC-UV, which demonstrates promise for using GC-FT-IR as a semi-quantitative tool at the very least. The most significant advantage of GC-FT-IR compared to HPLC-UV is selectivity; a higher level of confidence regarding the identity of the analyte being quantified is achieved using GC-FT-IR. Additional advantages of using a single GC-FT-IR-MS instrument for identification, confirmation, and quantification are efficiency, increased sample throughput, decreased consumption of laboratory resources (solvents, chemicals, consumables, etc.), and thus cost.
Micro and Nano Electromechanical Systems for Near-Zero Power Infrared Detection
NASA Astrophysics Data System (ADS)
Qian, Zhenyun
Light is one of the most important tools for human beings to probe and sense the physical world. Infrared (IR) radiation located in longer wavelengths than those of visible light carries rich information of an environment as it reveals the temperature distribution and chemical composition of objects. In addition, it has been utilized for communication and distance measurement owing to the atmospheric window and insensitiveness of human eyes to the IR radiation. As a result, IR detectors nowadays can be found in a wide variety of applications, including thermal imaging, automotive night vision, standoff chemical detection, remote control and laser ranging, just to mention a few. On the other hand, due to the recent fast development of the Internet of Things (IoT), there is a growing demand for miniaturized and power efficient unattended sensors that can be widely distributed in large volumes to form a wireless sensor networks capable of monitoring the environment with high accuracy and long lifetime. In this context, micro and nano electromechanical systems (MEMS/NEMS) may provide a huge impact, since they can be used for the implementation of miniaturized, low power, high-performance sensors and wireless communication devices fully compatible with standard integrated circuitry. This dissertation presents the design and the experimental verification of high performance uncooled IR detectors based on Aluminum Nitride (AlN) nano electromechanical resonators, and a first-of-its-kind near-zero power IR digitizer based on plasmonically-enhanced micromechanical photoswitches. The unique advantages of the piezoelectric AlN thin film in terms of scaling in thickness and transduction efficiency are exploited by the first experimental demonstration of ultra-fast (thermal time constant, tau ˜ 80 mus) and high resolution (noise equivalent power, NEP ˜ 656 pW/Hz1/2) AlN NEMS resonant IR detectors with reduced pixel size comparable to the state-of-the-art microbolometers. Furthermore, the spectral selectivity of the proposed IR detector technology is investigated and demonstrated by the seamless integration of ultra-thin plasmonic absorbers. The first prototypes show strong absorption (> 92%) in mid-wavelength infrared range with a narrow bandwidth (full width at half maximum, FWHM < 17%), resulting in the demonstration of high resolution (NEP ˜ 130 pW/Hz1/2) narrowband infrared detectors suitable for IR spectroscopy and multispectral imaging system. The second part of the dissertation is focused on the discussion and development of a new class of IR wake-up sensors that can remain dormant, with near-zero power consumption, until awoken by an external signal of interest. The proposed near-zero power IR digitizer combines sensing, signal processing and comparator functionalities into a single passive microelectromechanical system capable of producing a digitized output bit in the presence of the unique infrared spectral signature associated to an event of interest. The prototypes reported in this dissertation are capable of producing a digitized output bit (i.e. a large and sharp OFF-to-ON state transition with ON/OFF conductance ratio > 1012 and subthreshold slope > 9 dec/nW) when exposed to IR radiation in a specific narrow spectral band (˜ 900 nm bandwidth in the mid-IR) with intensity above a power threshold of only ˜ 500 nW, which is not achievable with any existing photoswitch technologies. The two IR sensing elements presented here set a stepping stone towards the development of highly sensitive and persistent IR sensor nodes that required for the future event-driven wireless sensor networks.
Gross, Elad; Shu, Xing-Zhong; Alayoglu, Selim; Bechtel, Hans A; Martin, Michael C; Toste, F Dean; Somorjai, Gabor A
2014-03-05
Analysis of catalytic organic transformations in flow reactors and detection of short-lived intermediates are essential for optimization of these complex reactions. In this study, spectral mapping of a multistep catalytic reaction in a flow microreactor was performed with a spatial resolution of 15 μm, employing micrometer-sized synchrotron-based IR and X-ray beams. Two nanometer sized Au nanoclusters were supported on mesoporous SiO2, packed in a flow microreactor, and activated toward the cascade reaction of pyran formation. High catalytic conversion and tunable products selectivity were achieved under continuous flow conditions. In situ synchrotron-sourced IR microspectroscopy detected the evolution of the reactant, vinyl ether, into the primary product, allenic aldehyde, which then catalytically transformed into acetal, the secondary product. By tuning the residence time of the reactants in a flow microreactor a detailed analysis of the reaction kinetics was performed. An in situ micrometer X-ray absorption spectroscopy scan along the flow reactor correlated locally enhanced catalytic conversion, as detected by IR microspectroscopy, to areas with high concentration of Au(III), the catalytically active species. These results demonstrate the fundamental understanding of the mechanism of catalytic reactions which can be achieved by the detailed mapping of organic transformations in flow reactors.
Shen, Yangbin; Zhan, Yulu; Li, Shuping; Ning, Fandi; Du, Ying; Huang, Yunjie; He, Ting; Zhou, Xiaochun
2018-03-09
As an excellent hydrogen-storage medium, methanol has many advantages, such as high hydrogen content (12.6 wt %), low cost, and availability from biomass or photocatalysis. However, conventional methanol-water reforming usually proceeds at high temperatures. In this research, we successfully designed a new effective strategy to generate hydrogen from methanol at near-room temperature. The strategy involved two main processes: CH 3 OH→HCOOH→H 2 and NADH→HCOOH→H 2 . The first process (CH 3 OH→HCOOH→H 2 ) was performed by an alcohol dehydrogenase (ADH), an aldehyde dehydrogenase (ALDH), and an Ir catalyst. The second procedure (NADH→HCOOH→H 2 ) was performed by formate dehydrogenase (FDH) and the Ir catalyst. The Ir catalyst used was a previously reported polymer complex catalyst [Cp*IrCl 2 (ppy); Cp*=pentamethylcyclopentadienyl, ppy=polypyrrole] with high catalytic activity for the decomposition of formic acid at room temperature and is compatible with enzymes, coenzymes, and poisoning chemicals. Our results revealed that the optimum hydrogen generation rate could reach up to 17.8 μmol h -1 g cat -1 under weak basic conditions at 30 °C. This will have high impact on hydrogen storage, production, and applications and should also provide new inspiration for hydrogen generation from methanol. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Advanced ROICs design for cooled IR detectors
NASA Astrophysics Data System (ADS)
Zécri, Michel; Maillart, Patrick; Sanson, Eric; Decaens, Gilbert; Lefoul, Xavier; Baud, Laurent
2008-04-01
The CMOS silicon focal plan array technologies hybridized with infrared detectors materials allow to cover a wide range of applications in the field of space, airborne and grounded-based imaging. Regarding other industries which are also using embedded systems, the requirements of such sensor assembly can be seen as very similar; high reliability, low weight, low power, radiation hardness for space applications and cost reduction. Comparing to CCDs technology, excepted the fact that CMOS fabrication uses standard commercial semiconductor foundry, the interest of this technology used in cooled IR sensors is its capability to operate in a wide range of temperature from 300K to cryogenic with a high density of integration and keeping at the same time good performances in term of frequency, noise and power consumption. The CMOS technology roadmap predict aggressive scaling down of device size, transistor threshold voltage, oxide and metal thicknesses to meet the growing demands for higher levels of integration and performance. At the same time infrared detectors manufacturing process is developing IR materials with a tunable cut-off wavelength capable to cover bandwidths from visible to 20μm. The requirements of third generation IR detectors are driving to scaling down the pixel pitch, to develop IR materials with high uniformity on larger formats, to develop Avalanche Photo Diodes (APD) and dual band technologies. These needs in IR detectors technologies developments associated to CMOS technology, used as a readout element, are offering new capabilities and new opportunities for cooled infrared FPAs. The exponential increase of new functionalities on chip, like the active 2D and 3D imaging, the on chip analog to digital conversion, the signal processing on chip, the bicolor, the dual band and DTI (Double Time Integration) mode ...is aiming to enlarge the field of application for cooled IR FPAs challenging by the way the design activity.
Usaf Space Sensing Cryogenic Considerations
NASA Astrophysics Data System (ADS)
Roush, F.
2010-04-01
Infrared (IR) space sensing missions of the future depend upon low mass components and highly capable imaging technologies. Limitations in visible imaging due to the earth's shadow drive the use of IR surveillance methods for a wide variety of applications for Intelligence, Surveillance, and Reconnaissance (ISR), Ballistic Missile Defense (BMD) applications, and almost certainly in Space Situational Awareness (SSA) and Operationally Responsive Space (ORS) missions. Utilization of IR sensors greatly expands and improves mission capabilities including target and target behavioral discrimination. Background IR emissions and electronic noise that is inherently present in Focal Plane Arrays (FPAs) and surveillance optics bench designs prevents their use unless they are cooled to cryogenic temperatures. This paper describes the role of cryogenic coolers as an enabling technology for generic ISR and BMD missions and provides ISR and BMD mission and requirement planners with a brief glimpse of this critical technology implementation potential. The interaction between cryogenic refrigeration component performance and the IR sensor optics and FPA can be seen as not only mission enabling but also as mission performance enhancing when the refrigeration system is considered as part of an overall optimization problem.
MCT IR detection modules with 15 µm pitch for high-reliability applications
NASA Astrophysics Data System (ADS)
Breiter, R.; Ihle, T.; Wendler, J.; Lutz, H.; Rutzinger, S.; Schallenberg, T.; Hofmann, K.; Ziegler, J.
2010-04-01
Additional to the development of 3rd Gen IR modules like dual-band and dual-color devices AIM is focused on IR FPAs with reduced pitch. These FPAs allow manufacturing of compact low cost IR modules with minimum power consumption for state-of-the-art high performance IR systems. AIM has realized full TV format MCT 640x512 mid-wave and long-wave IR detection modules with a 15 μm pitch to meet the requirements of critical military applications like thermal weapon sights or thermal imagers in UAV applications. In typical configurations like a F/4.6 cold shield for the 640x512 MWIR module an NETD < 25 mK @ 5 ms integration time is achieved, while the LWIR modules achieve an NETD < 38 mK @ F/2 and 180 μs integration time. For the LWIR modules FPAs with a cut-off of 9 and 10 μm have been realized. The modules are available either with different integral rotary cooler configurations for portable applications which require minimum cooling power or a new split linear cooler providing long lifetime with a MTTF > 20,000 h as required e.g. for warning sensors in 24/7 operation. The modules are available with an optional image processing electronics providing non-uniformity correction and further image processing for a complete IR imaging solution. A double field of view FLIR for an upgrade of the German Army UAV LUNA has been developed by AIM using the MCT 640x512 MWIR 15μm pitch engine. The latest results and performance of those modules and their applications are presented.
Rahimi, Mostafa; Shekarforoush, Shahnaz; Asgari, Ali Reza; Khoshbaten, Ali; Rajabi, Hamid; Bazgir, Behzad; Mohammadi, Mohammad Taghi; Sobhani, Vahid; Shakibaee, Abolfazl
2015-01-01
The aims of the present study were to determine whether short term high intensity interval training (HIIT) could protect the heart against ischemia reperfusion (IR) injury; and if so, to evaluate how long the exercise-associated protection can be lasted. Sixty-three rats were randomly assigned into sedentary (n = 15), sham (n = 7), and exercise groups (n = 41). Rats in the exercise groups performed 5 consecutive days of HIIT on treadmill: 5 min warm up with 50 % VO2max, 6×2 min with 95-105 % VO2max (about 40 to 45 m/min), 5×2 min recovery with 65-75 % VO2max (about 28 to 32 m/min), and 3 min cool down with 50 % VO2max, all at 0 % grade. Animals exposed to an in vivo cardiac IR surgery, performed at days 1, 7, and 14 following the final exercise session. Ischemia-induced arrhythmias, myocardial infarct size (IS), plasma lactate dehydrogenase (LDH) and creatine kinase (CK) activities were measured in all animals. Compared to sedentary rats, exercised animals sustained less IR injury as evidenced by a lower size of infarction and lower levels of LDH and CK at day one and day 7 post exercise. In comparison of sedentary group, IS significantly decreased in EX-IR1 and EX-IR7 groups (50 and 35 %, respectively), but not in EX-IR14 group (19 %). The exercise-induced cardioprotection disappeared 14 days following exercise cessation. There were no significant changes in ischemia-induced arrhythmia between exercised and sedentary rats. The results clearly demonstrate that HIIT protects the heart against myocardial IR injury. This protective effect can be sustained for at least one week following the cessation of the training. PMID:26417361
Amichay, Keren; Kidron, Debora; Attias-Geva, Zohar; Schayek, Hagit; Sarfstein, Rive; Fishman, Ami; Werner, Haim; Bruchim, Ilan
2012-06-01
The insulin-like growth factor I receptor (IGF-IR) and BRCA1 affect cell growth and apoptosis. Little information is available about BRCA1 activity on the IGF signaling pathway. This study evaluated the effect of BRCA1 on IGF-IR expression. BRCA1 and IGF-IR immunohistochemistry on archival tissues (35 uterine serous carcinomas [USCs] and 17 metastases) were performed. USPC1 and USPC2 cell lines were transiently cotransfected with an IGF-IR promoter construct driving a luciferase reporter gene and a BRCA1 expression plasmid. Endogenous IGF-IR levels were evaluated by Western immunoblotting. We found high BRCA1 and IGF-IR protein expression in primary and metastatic USC tumors. All samples were immunostained for BRCA1-71% strongly stained; and 33/35 (94%) were stained positive for IGF-IR-2 (6%) strongly stained. No difference in BRCA1 and IGF-IR staining intensity was noted between BRCA1/2 mutation carriers and noncarriers. Metastatic tumors stained more intensely for BRCA1 than did the primary tumor site (P = 0.041) and with borderline significance for IGF-IR (P = 0.069). BRCA1 and IGF-IR staining did not correlate to survival. BRCA1 expression led to 35% and 54% reduction in IGF-IR promoter activity in the USPC1 and USCP2 cell lines, respectively. Western immunoblotting showed a decline in phosphorylated IGF-IR and phosphorylated AKT in both transiently and stably transfected cells. BRCA1 and IGF-IR are highly expressed in USC tumors. BRCA1 suppresses IGF-IR gene expression and activity. These findings suggest a possible biological link between the BRCA1 and the IGF-I signaling pathways in USC. The clinical implications of this association need to be explored.
Su, Ke; Moeller, Lothar; Barat, Robert B; Federici, John F
2012-02-01
We describe a lab setup for analyzing impairments of terahertz (THz) and infrared (IR) free space links caused by local refraction index changes in the signal's propagation paths that could be induced by turbulence, particles, humidity, etc. A THz signal comprising a 2.5 Gb/s data load modulated on a carrier at 625 GHz, is launched through a weather emulating chamber, detected, and its performance analyzed. An IR beam at 1.5 um wavelength carrying the same data load is superposed with the THz beam, propagating through the same weather conditions and also performance analyzed. We modulate the IR channel with a usual non-return-to-zero (NRZ) format but use duobinary coding for driving our THz source, which enables signaling at high data rate and higher output power. As both beams pass through the same channel perturbations and as their degradations are recorded simultaneously we can simultaneously compare the weather impact on both. We investigate scintillation and fog attenuation effects for the THz and IR signals by measuring bit error rates (BER), signal power, and phase front distortions. © 2012 Optical Society of America
Sham, Jonathan G; Simianu, Vlad V; Wright, Andrew S; Stewart, Skye D; Alloosh, Mouhamad; Sturek, Michael; Cummings, David E; Flum, David R
2014-01-01
Roux-en-Y gastric bypass (RYGB) is the most common bariatric operation; however, the mechanism underlying the profound weight-independent effects on glucose homeostasis remains unclear. Large animal models of naturally occurring insulin resistance (IR), which have been lacking, would provide opportunities to elucidate such mechanisms. Ossabaw miniature swine naturally exhibit many features that may be useful in evaluating the anti diabetic effects of bariatric surgery. Glucose homeostasis was studied in 53 Ossabaw swine. Thirty-two received an obesogenic diet and were randomized to RYGB, gastrojejunostomy (GJ), gastrojejunostomy with duodenal exclusion (GJD), or Sham operations. Intravenous glucose tolerance tests and standardized meal tolerance tests were performed prior to, 1, 2, and 8 weeks after surgery and at a single time-point for regular diet control pigs. High-calorie-fed Ossabaws weighed more and had greater IR than regular diet controls, though only 70% developed IR. All operations caused weight-loss-independent improvement in IR, though only in pigs with high baseline IR. Only RYGB induced weight loss and decreased IR in the majority of pigs, as well as increasing AUCinsulin/AUCglucose. Similar to humans, Ossabaw swine exhibit both obesity-dependent and obesity-independent IR. RYGB promoted weight loss, IR improvement, and increased AUCinsulin/AUCglucose, compared to the smaller changes following GJ and GJD, suggesting a combination of upper and lower gut mechanisms in improving glucose homeostasis.
Low cost, patterning of human hNT brain cells on parylene-C with UV & IR laser machining.
Raos, Brad J; Unsworth, C P; Costa, J L; Rohde, C A; Doyle, C S; Delivopoulos, E; Murray, A F; Dickinson, M E; Simpson, M C; Graham, E S; Bunting, A S
2013-01-01
This paper describes the use of 800nm femtosecond infrared (IR) and 248nm nanosecond ultraviolet (UV) laser radiation in performing ablative micromachining of parylene-C on SiO2 substrates for the patterning of human hNT astrocytes. Results are presented that support the validity of using IR laser ablative micromachining for patterning human hNT astrocytes cells while UV laser radiation produces photo-oxidation of the parylene-C and destroys cell patterning. The findings demonstrate how IR laser ablative micromachining of parylene-C on SiO2 substrates can offer a low cost, accessible alternative for rapid prototyping, high yield cell patterning.
Kumar, Varun; Singh, Tiratha Raj; Hada, Alkesh; Jolly, Monica; Ganapathi, Andy; Sachdev, Archana
2015-10-01
Phosphorus is an essential nutrient required for soybean growth but is bound in phytic acid which causes negative effects on both the environment as well as the animal nutrition. Lowering of phytic acid levels is associated with reduced agronomic characteristics, and relatively little information is available on the response of soybean plants to phosphorus (P) starvation. In this study, we evaluated the effects of different P starvation concentrations on the phytic acid content, growth, and yield of seven mutant genotypes along with the unirradiated control, JS-335, in a hydroponics growth system. The low phytic acid containing mutant genotypes, IR-JS-101, IR-DS-118, and IR-V-101, showed a relatively high growth rate in low P concentration containing nutrient solution (2 μM), whereas the high P concentration (50 μM) favored the growth of IR-DS-111 and IR-DS-115 mutant genotypes containing moderate phytate levels. The mutant genotypes with high phytic acid content, IR-DS-122, IR-DS-114, and JS-335, responded well under P starvation and did not have any significant effect on the growth and yield of plants. Moreover, the reduction of P concentration in nutrient solution from 50 to 2 μM also reduced the phytic acid content in the seeds of all the soybean genotypes under study. The desirable agronomic performance of low phytic acid containing mutant genotype IR-DS-118 reported in this study suggested it to be a P-efficient genotype which could be considered for agricultural practices under P limiting soils.
Han, Lei; Shi, Lu; Yang, Yiling; Song, Dalei
2014-01-01
Geostationary meteorological satellite infrared (IR) channel data contain important spectral information for meteorological research and applications, but their spatial resolution is relatively low. The objective of this study is to obtain higher-resolution IR images. One common method of increasing resolution fuses the IR data with high-resolution visible (VIS) channel data. However, most existing image fusion methods focus only on visual performance, and often fail to take into account the thermal physical properties of the IR images. As a result, spectral distortion occurs frequently. To tackle this problem, we propose a thermal physical properties-based correction method for fusing geostationary meteorological satellite IR and VIS images. In our two-step process, the high-resolution structural features of the VIS image are first extracted and incorporated into the IR image using regular multi-resolution fusion approach, such as the multiwavelet analysis. This step significantly increases the visual details in the IR image, but fake thermal information may be included. Next, the Stefan-Boltzmann Law is applied to correct the distortion, to retain or recover the thermal infrared nature of the fused image. The results of both the qualitative and quantitative evaluation demonstrate that the proposed physical correction method both improves the spatial resolution and preserves the infrared thermal properties. PMID:24919017
Han, Lei; Shi, Lu; Yang, Yiling; Song, Dalei
2014-06-10
Geostationary meteorological satellite infrared (IR) channel data contain important spectral information for meteorological research and applications, but their spatial resolution is relatively low. The objective of this study is to obtain higher-resolution IR images. One common method of increasing resolution fuses the IR data with high-resolution visible (VIS) channel data. However, most existing image fusion methods focus only on visual performance, and often fail to take into account the thermal physical properties of the IR images. As a result, spectral distortion occurs frequently. To tackle this problem, we propose a thermal physical properties-based correction method for fusing geostationary meteorological satellite IR and VIS images. In our two-step process, the high-resolution structural features of the VIS image are first extracted and incorporated into the IR image using regular multi-resolution fusion approach, such as the multiwavelet analysis. This step significantly increases the visual details in the IR image, but fake thermal information may be included. Next, the Stefan-Boltzmann Law is applied to correct the distortion, to retain or recover the thermal infrared nature of the fused image. The results of both the qualitative and quantitative evaluation demonstrate that the proposed physical correction method both improves the spatial resolution and preserves the infrared thermal properties.
Multiple-frame IR photo-recorder KIT-3M
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roos, E; Wilkins, P; Nebeker, N
2006-05-15
This paper reports the experimental results of a high-speed multi-frame infrared camera which has been developed in Sarov at VNIIEF. Earlier [1] we discussed the possibility of creation of the multi-frame infrared radiation photo-recorder with framing frequency about 1 MHz. The basis of the photo-recorder is a semiconductor ionization camera [2, 3], which converts IR radiation of spectral range 1-10 micrometers into a visible image. Several sequential thermal images are registered by using the IR converter in conjunction with a multi-frame electron-optical camera. In the present report we discuss the performance characteristics of a prototype commercial 9-frame high-speed IR photo-recorder.more » The image converter records infrared images of thermal fields corresponding to temperatures ranging from 300 C to 2000 C with an exposure time of 1-20 {micro}s at a frame frequency up to 500 KHz. The IR-photo-recorder camera is useful for recording the time evolution of thermal fields in fast processes such as gas dynamics, ballistics, pulsed welding, thermal processing, automotive industry, aircraft construction, in pulsed-power electric experiments, and for the measurement of spatial mode characteristics of IR-laser radiation.« less
NASA Astrophysics Data System (ADS)
Kim, Jin Wook; You, Seung Il; Kim, Nam Ho; Yoon, Ju-An; Cheah, Kok Wai; Zhu, Fu Rong; Kim, Woo Young
2014-11-01
In this study, we report our effort to realize high performance single emissive layer three color white phosphorescent organic light emitting diodes (PHOLEDs) through sequential Dexter energy transfer of blue, green and red dopants. The PHOLEDs had a structure of; ITO(1500 Å)/NPB(700 Å)/mCP:Firpic-x%:Ir(ppy)3-0.5%:Ir(piq)3-y%(300 Å)/TPBi(300 Å)/Liq(20 Å)/Al(1200 Å). The dopant concentrations of FIrpic, Ir(ppy)3 and Ir(piq)3 were adjusted and optimized to facilitate the preferred energy transfer processes attaining both the best luminous efficiency and CIE color coordinates. The presence of a deep trapping center for charge carriers in the emissive layer was confirmed by the observed red shift in electroluminescent spectra. White PHOLEDs, with phosphorescent dopant concentrations of FIrpic-8.0%:Ir(ppy)3-0.5%:Ir(piq)3-0.5% in the mCP host of the single emissive layer, had a maximum luminescence of 37,810 cd/m2 at 11 V and a luminous efficiency of 48.10 cd/A at 5 V with CIE color coordinates of (0.35, 0.41).
High-performance MCT and QWIP IR detectors at Sofradir
NASA Astrophysics Data System (ADS)
Reibel, Yann; Rubaldo, Laurent; Manissadjian, Alain; Billon-Lanfrey, David; Rothman, Johan; de Borniol, Eric; Destéfanis, Gérard; Costard, E.
2012-11-01
Cooled IR technologies are challenged for answering new system needs like compactness and reduction of cryo-power which is key feature for the SWaP (Size, Weight and Power) requirements. This paper describes the status of MCT IR technology in France at Leti and Sofradir. A focus will be made on hot detector technology for SWAP applications. Sofradir has improved its HgCdTe technology to open the way for High Operating Temperature systems that release the Stirling cooler engine power consumption. Solutions for high performance detectors such as dual bands, much smaller pixel pitch or megapixels will also be discussed. In the meantime, the development of avalanche photodiodes or TV format with digital interface is key to bringing customers cutting-edge functionalities. Since 1997, Sofradir has been working with Thales and Research Technologies (TRT) to develop and produce Quantum Well Infrared Photodetectors (QWIP) as a complementary offer with MCT, to provide large LW staring arrays. A dualband MW-LW QWIP detector (25μm pitch 384×288 IDDCA) is currently under development. We will present in this paper its latest results.
Mooney, Mitchell G; Cormack, Stuart; Oʼbrien, Brendan J; Morgan, William M; McGuigan, Mike
2013-01-01
This study aimed to quantify the influence of neuromuscular fatigue (NMF) via flight time to contraction time ratio (FT:CT) obtained from a countermovement jump (CMJ) on the relationships between yo-yo intermittent recovery (level 2) test (yo-yo IR2), match exercise intensity (high-intensity running [HIR] m·min(-1) and Load·min(-1)) and Australian football (AF) performance. Thirty-seven data sets were collected from 17 different players across 22 elite AF matches. Each data set comprised an athlete's yo-yo IR2 score before the start of the season, match exercise intensity via global positioning system and on-field performance rated by coaches' votes and number of ball disposals. Each data set was categorized as normal (>92% baseline FT:CT, n = 20) or fatigued (<92% baseline FT:CT, n = 17) from a single CMJ performed 96 hours after the previous match. Moderation-mediation analysis was completed with yo-yo IR2 (independent variable), match exercise intensity (mediator), and AF performance (dependent variable) with NMF status as the conditional variable. Isolated interactions between variables were analyzed by Pearson's correlation and effect size statistics. The Yo-yo IR2 score showed an indirect influence on the number of ball disposals via HIR m·min(-1) regardless of NMF status (normal FT:CT indirect effect = 0.019, p < 0.1, reduced FT:CT indirect effect = 0.022, p < 0.1). However, the yo-yo IR2 score only influenced coaches' votes via Load·min(-1) in the nonfatigued state (normal: FT:CT indirect effect = 0.007, p <0.1, reduced: FT:CT indirect effect = -0.001, p > 0.1). In isolation, NMF status also reduces relationships between yo-yo IR2 and load·min(-1), yo-yo IR2 and coaches votes, Load·min(-1) and coaches' votes (Δr > 0.1). Routinely testing yo-yo IR2 capacity, NMF via FT:CT and monitoring Load·min(-1) in conjunction with HIR m·min(-1) as exercise intensity measures in elite AF is recommended.
Inness, Matthew W H; Billaut, François; Aughey, Robert J
2017-02-01
To determine the efficacy of live-high train-low on team-sport athlete physical capacity and the time-course for adaptation. Pre-post parallel-groups. Fifteen Australian footballers were matched for Yo-Yo Intermittent recovery test level 2 (Yo-YoIR2) performance and assigned to LHTL (n=7) or control (Con; n=8). LHTL spent 19 nights (3×5 nights, 1×4 nights, each block separated by 2 nights at sea level) at 3000-m simulated altitude (F I O 2 : 0.142). Yo-Yo IR2 was performed pre and post 5, 15, and 19 nights. A 2- and 1-km time-trial (TT) was performed pre and post intervention. Haemoglobin mass (Hb mass ) was measured in LHTL after 5, 10, 15, and 19 nights. A contemporary statistical approach using effect size, confidence limits, and magnitude-based inferences was used to measure changes between groups. Compared to pre, Hb mass was possibly higher after 15 (3.8%, effect size (ES) 0.19, 90% confidence limits 0.05-0.33) and very likely higher after 19 nights (6.7%, 0.35, 0.10; 0.52). For Yo-Yo IR2, LHTL group change was not meaningfully different to Con after 5 nights, possibly greater after 15 (10.2%, 0.37, -0.29; 1.04), and likely greater after 19 nights (13.5%, 0.49, -0.16; 1.14). Both groups improved 2-km TT, with LHTL improvement possibly higher than CON (1.9%, 0.22, -0.18; 0.62). Only LHTL improved 1-km TT, with LHTL improvement likely greater than CON (4.6%, 0.56, -0.08; 1.04). Fifteen nights of LHTL was possibly effective, while 19 nights was effective at increasing Hb mass , Yo-Yo IR2 and repeated TT performance more than sea-level training. Copyright © 2016 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
Advanced small rocket chambers: Option 1, 14 lbf Ir-Re rocket
NASA Technical Reports Server (NTRS)
Jassowski, Donald M.; Gage, Mark L.
1992-01-01
A high performance Ir-Re 14 lbf (62 N) chamber and nozzle which can be a direct replacement for a production engine was designed, built, hot fired and vibration acceptance tested. It passed all acceptance tests satisfactorily and demonstrated a 20 sec increase in specific impulse (Is) over the conventional 14 lbf silicide coated Cb chamber. The high performance engine uses the production valve and injector without modification. Incorporation of a secondary mixing device or Boundary Layer Trip within the combustion chamber results in elimination of the fuel film coolant, improvement in flow uniformity, the 20 sec performance increase, and reduction of a potential source of spacecraft contamination. Measured Is was 305 sec at 75:1 area ratio, with monomenthylhydrazine and nitrogen tetroxide propellants. Qualification tests remain to be done.
Nyakayiru, Jean; Jonvik, Kristin L; Trommelen, Jorn; Pinckaers, Philippe J M; Senden, Joan M; van Loon, Luc J C; Verdijk, Lex B
2017-03-22
It has been shown that nitrate supplementation can enhance endurance exercise performance. Recent work suggests that nitrate ingestion can also increase intermittent type exercise performance in recreational athletes. We hypothesized that six days of nitrate supplementation can improve high-intensity intermittent type exercise performance in trained soccer players. Thirty-two male soccer players (age: 23 ± 1 years, height: 181 ± 1 m, weight: 77 ± 1 kg, playing experience: 15.2 ± 0.5 years, playing in the first team of a 2nd or 3rd Dutch amateur league club) participated in this randomized, double-blind cross-over study. All subjects participated in two test days in which high-intensity intermittent running performance was assessed using the Yo-Yo IR1 test. Subjects ingested nitrate-rich (140 mL; ~800 mg nitrate/day; BR) or a nitrate-depleted beetroot juice (PLA) for six subsequent days, with at least eight days of wash-out between trials. The distance covered during the Yo-Yo IR1 was the primary outcome measure, while heart rate (HR) was measured continuously throughout the test, and a single blood and saliva sample were collected just prior to the test. Six days of BR ingestion increased plasma and salivary nitrate and nitrite concentrations in comparison to PLA ( p < 0.001), and enhanced Yo-Yo IR1 test performance by 3.4 ± 1.3% (from 1574 ± 47 to 1623 ± 48 m; p = 0.027). Mean HR was lower in the BR (172 ± 2) vs. PLA trial (175 ± 2; p = 0.014). Six days of BR ingestion effectively improves high-intensity intermittent type exercise performance in trained soccer players.
Nyakayiru, Jean; Jonvik, Kristin L.; Trommelen, Jorn; Pinckaers, Philippe J. M.; Senden, Joan M.; van Loon, Luc J. C.; Verdijk, Lex B.
2017-01-01
It has been shown that nitrate supplementation can enhance endurance exercise performance. Recent work suggests that nitrate ingestion can also increase intermittent type exercise performance in recreational athletes. We hypothesized that six days of nitrate supplementation can improve high-intensity intermittent type exercise performance in trained soccer players. Thirty-two male soccer players (age: 23 ± 1 years, height: 181 ± 1 m, weight: 77 ± 1 kg, playing experience: 15.2 ± 0.5 years, playing in the first team of a 2nd or 3rd Dutch amateur league club) participated in this randomized, double-blind cross-over study. All subjects participated in two test days in which high-intensity intermittent running performance was assessed using the Yo-Yo IR1 test. Subjects ingested nitrate-rich (140 mL; ~800 mg nitrate/day; BR) or a nitrate-depleted beetroot juice (PLA) for six subsequent days, with at least eight days of wash-out between trials. The distance covered during the Yo-Yo IR1 was the primary outcome measure, while heart rate (HR) was measured continuously throughout the test, and a single blood and saliva sample were collected just prior to the test. Six days of BR ingestion increased plasma and salivary nitrate and nitrite concentrations in comparison to PLA (p < 0.001), and enhanced Yo-Yo IR1 test performance by 3.4 ± 1.3% (from 1574 ± 47 to 1623 ± 48 m; p = 0.027). Mean HR was lower in the BR (172 ± 2) vs. PLA trial (175 ± 2; p = 0.014). Six days of BR ingestion effectively improves high-intensity intermittent type exercise performance in trained soccer players. PMID:28327503
Nanostructure based EO/IR sensor development for homeland security applications
NASA Astrophysics Data System (ADS)
Sood, Ashok K.; Welser, Roger E.; Sood, Adam W.; Puri, Yash R.; Manzur, Tariq; Dhar, Nibir K.; Polla, Dennis L.; Wang, Zhong L.; Wijewarnasuriya, Priyalal S.; Anwar, A. F. M.
2011-06-01
Next Generation EO/IR focal plane arrays using nanostructure materials are being developed for a variety of Defense and Homeland Security Sensor Applications. Several different nanomaterials are being evaluated for these applications. These include ZnO nanowires, GaN Nanowires and II-VI nanowires, which have demonstrated large signal to noise ratio as a wide band gap nanostructure material in the UV band. Similarly, the work is under way using Carbon Nanotubes (CNT) for a high speed detector and focal plane array as two-dimensional array as bolometer for IR bands of interest, which can be implemented for the sensors for homeland security applications. In this paper, we will discuss the sensor design and model predicting performance of an EO/IR focal plane array and Sensor that can cover the UV to IR bands of interest. The model can provide a robust means for comparing performance of the EO/IR FPA's and Sensors that can operate in the UV, Visible-NIR (0.4- 1.8μ), SWIR (2.0-2.5μ), MWIR (3-5μ), and LWIR bands (8-14μ). This model can be used as a tool for predicting performance of nanostructure arrays under development. We will also discuss our results on growth and characterization of ZnO nanowires and CNT's for the next generation sensor applications. We also present several approaches for integrated energy harvesting using nanostructure based solar cells and Nanogenerators that can be used to supplement the energy required for nanostructure based sensors.
Álvarez, Cristian; Ramírez-Campillo, Rodrigo; Ramírez-Vélez, Robinson; Izquierdo, Mikel
2017-01-01
Background: Exercise training improves performance and biochemical parameters on average, but wide interindividual variability exists, with individuals classified as responders (R) or non-responders (NRs), especially between populations with higher or lower levels of insulin resistance. This study assessed the effects of high-intensity interval training (HIIT) and the prevalence of NRs in adult women with higher and lower levels of insulin resistance. Methods: Forty adult women were assigned to a HIIT program, and after training were analyzed in two groups; a group with higher insulin resistance (H-IR, 40 ± 6 years; BMI: 29.5 ± 3.7 kg/m 2 ; n = 20) and a group with lower insulin resistance (L-IR, 35 ± 9 years; 27.8 ± 2.8 kg/m 2 ; n = 20). Anthropometric, cardiovascular, metabolic, and performance variables were measured at baseline and after 10 weeks of training. Results: There were significant training-induced changes [delta percent (Δ%)] in fasting glucose, fasting insulin, and homeostasis model assessment of insulin resistance (HOMA-IR) scores in the H-IR group (-8.8, -26.5, -32.1%, p < 0.0001), whereas no significant changes were observed in the L-IR. Both groups showed significant pre-post changes in other anthropometric variables [waist circumference (-5.2, p < 0.010, and -3.8%, p = 0.046) and tricipital (-13.3, p < 0.010, and -13.6%, p < 0.0001), supra-iliac (-19.4, p < 0.0001, and -13.6%, p < 0.0001), and abdominal (-18.2, p < 0.0001, and -15.6%, p < 0.010) skinfold measurements]. Systolic blood pressure decreased significantly only in the L-IR group (-3.2%, p < 0.010). Both groups showed significant increases in 1RM LE (+12.9, p < 0.010, and +14.7%, p = 0.045). There were significant differences in the prevalence of NRs between the H-IR and L-IR groups for fasting glucose (25 vs. 95%, p < 0.0001) and fasting insulin ( p = 0.025) but not for HOMA-IR (25 vs. 45%, p = 0.185). Conclusion: Independent of the "magnitude" of the cardiometabolic disease (i.e., higher vs. lower insulin resistance), no differences were observed in the NRs prevalence with regard to improved HOMA-IR or to anthropometric, cardiovascular, and muscle performance co-variables after 10 weeks of HIIT in sedentary adult women. This research demonstrates the protective effect of HIIT against cardiometabolic disease progression in a sedentary population.
Álvarez, Cristian; Ramírez-Campillo, Rodrigo; Ramírez-Vélez, Robinson; Izquierdo, Mikel
2017-01-01
Background: Exercise training improves performance and biochemical parameters on average, but wide interindividual variability exists, with individuals classified as responders (R) or non-responders (NRs), especially between populations with higher or lower levels of insulin resistance. This study assessed the effects of high-intensity interval training (HIIT) and the prevalence of NRs in adult women with higher and lower levels of insulin resistance. Methods: Forty adult women were assigned to a HIIT program, and after training were analyzed in two groups; a group with higher insulin resistance (H-IR, 40 ± 6 years; BMI: 29.5 ± 3.7 kg/m2; n = 20) and a group with lower insulin resistance (L-IR, 35 ± 9 years; 27.8 ± 2.8 kg/m2; n = 20). Anthropometric, cardiovascular, metabolic, and performance variables were measured at baseline and after 10 weeks of training. Results: There were significant training-induced changes [delta percent (Δ%)] in fasting glucose, fasting insulin, and homeostasis model assessment of insulin resistance (HOMA-IR) scores in the H-IR group (−8.8, −26.5, −32.1%, p < 0.0001), whereas no significant changes were observed in the L-IR. Both groups showed significant pre-post changes in other anthropometric variables [waist circumference (−5.2, p < 0.010, and −3.8%, p = 0.046) and tricipital (−13.3, p < 0.010, and −13.6%, p < 0.0001), supra-iliac (−19.4, p < 0.0001, and −13.6%, p < 0.0001), and abdominal (−18.2, p < 0.0001, and −15.6%, p < 0.010) skinfold measurements]. Systolic blood pressure decreased significantly only in the L-IR group (−3.2%, p < 0.010). Both groups showed significant increases in 1RMLE (+12.9, p < 0.010, and +14.7%, p = 0.045). There were significant differences in the prevalence of NRs between the H-IR and L-IR groups for fasting glucose (25 vs. 95%, p < 0.0001) and fasting insulin (p = 0.025) but not for HOMA-IR (25 vs. 45%, p = 0.185). Conclusion: Independent of the “magnitude” of the cardiometabolic disease (i.e., higher vs. lower insulin resistance), no differences were observed in the NRs prevalence with regard to improved HOMA-IR or to anthropometric, cardiovascular, and muscle performance co-variables after 10 weeks of HIIT in sedentary adult women. This research demonstrates the protective effect of HIIT against cardiometabolic disease progression in a sedentary population. PMID:28729841
The ARES High-level Intermediate Representation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moss, Nicholas David
The LLVM intermediate representation (IR) lacks semantic constructs for depicting common high-performance operations such as parallel and concurrent execution, communication and synchronization. Currently, representing such semantics in LLVM requires either extending the intermediate form (a signi cant undertaking) or the use of ad hoc indirect means such as encoding them as intrinsics and/or the use of metadata constructs. In this paper we discuss a work in progress to explore the design and implementation of a new compilation stage and associated high-level intermediate form that is placed between the abstract syntax tree and when it is lowered to LLVM's IR. Thismore » highlevel representation is a superset of LLVM IR and supports the direct representation of these common parallel computing constructs along with the infrastructure for supporting analysis and transformation passes on this representation.« less
Characterization of laser beam transmission through a High Density Polyethylene (HDPE) plate
NASA Astrophysics Data System (ADS)
Genna, S.; Leone, C.; Tagliaferri, V.
2017-02-01
Infrared (IR) light propagation in semicrystalline polymers involves mechanisms such as reflection, transmission, absorption and internal scattering. These different rates determine either the interaction mechanism, either the temperatures reached in the IR heating processes. Consequently, the knowledge of these rates is fundamental in the development of IR heating processes in order to avoid the polymer's damage and to increase the process energy efficiency. Aim of this work is to assess a simple procedure to determine the rates of absorbed, reflected, transmitted and scattered energy in the case of an unfilled High Density Polyethylene (HDPE) plate. Experimental tests were performed by exposing a HDPE plate, 3 mm in thickness, to a diode laser source, working at the fundamental wavelength of 975 nm. The transmitted power was measured by power meter, the reflected one by applying the Beer-Lambert law to sample of different thickness. IR thermal images were adopted to measure the absorbed ratio. The scattered ratio was measured by energetic balance, as difference between the incoming power and the other ratios. Finally, IR thermal images were adopted to measure the scattered ratio and to validate the procedure.
NASA Astrophysics Data System (ADS)
Zhao, Z.; Diemant, T.; Häring, T.; Rauscher, H.; Behm, R. J.
2005-12-01
We describe the design and performance of a high-pressure reaction cell for simultaneous kinetic and in situ infrared reflection (IR) spectroscopic measurements on model catalysts at elevated pressures, between 10-3 and 103mbars, which can be operated both as batch reactor and as flow reactor with defined gas flow. The cell is attached to an ultrahigh-vacuum (UHV) system, which is used for sample preparation and also contains facilities for sample characterization. Specific for this design is the combination of a small cell volume, which allows kinetic measurements with high sensitivity under batch or continuous flow conditions, the complete isolation of the cell from the UHV part during UHV measurements, continuous temperature control during both UHV and high-pressure operation, and rapid transfer between UHV and high-pressure stage. Gas dosing is performed by a designed gas-handling system, which allows operation as flow reactor with calibrated gas flows at adjustable pressures. To study the kinetics of reactions on the model catalysts, a quadrupole mass spectrometer is connected to the high-pressure cell. IR measurements are possible in situ by polarization-modulation infrared reflection-absorption spectroscopy, which also allows measurements at elevated pressures. The performance of the setup is demonstrated by test measurements on the kinetics for CO oxidation and the CO adsorption on a Au /TiO2/Ru(0001) model catalyst film at 1-50 mbar total pressure.
High dose rate brachytherapy source measurement intercomparison.
Poder, Joel; Smith, Ryan L; Shelton, Nikki; Whitaker, May; Butler, Duncan; Haworth, Annette
2017-06-01
This work presents a comparison of air kerma rate (AKR) measurements performed by multiple radiotherapy centres for a single HDR 192 Ir source. Two separate groups (consisting of 15 centres) performed AKR measurements at one of two host centres in Australia. Each group travelled to one of the host centres and measured the AKR of a single 192 Ir source using their own equipment and local protocols. Results were compared to the 192 Ir source calibration certificate provided by the manufacturer by means of a ratio of measured to certified AKR. The comparisons showed remarkably consistent results with the maximum deviation in measurement from the decay-corrected source certificate value being 1.1%. The maximum percentage difference between any two measurements was less than 2%. The comparisons demonstrated the consistency of well-chambers used for 192 Ir AKR measurements in Australia, despite the lack of a local calibration service, and served as a valuable focal point for the exchange of ideas and dosimetry methods.
Robust Ground Target Detection by SAR and IR Sensor Fusion Using Adaboost-Based Feature Selection
Kim, Sungho; Song, Woo-Jin; Kim, So-Hyun
2016-01-01
Long-range ground targets are difficult to detect in a noisy cluttered environment using either synthetic aperture radar (SAR) images or infrared (IR) images. SAR-based detectors can provide a high detection rate with a high false alarm rate to background scatter noise. IR-based approaches can detect hot targets but are affected strongly by the weather conditions. This paper proposes a novel target detection method by decision-level SAR and IR fusion using an Adaboost-based machine learning scheme to achieve a high detection rate and low false alarm rate. The proposed method consists of individual detection, registration, and fusion architecture. This paper presents a single framework of a SAR and IR target detection method using modified Boolean map visual theory (modBMVT) and feature-selection based fusion. Previous methods applied different algorithms to detect SAR and IR targets because of the different physical image characteristics. One method that is optimized for IR target detection produces unsuccessful results in SAR target detection. This study examined the image characteristics and proposed a unified SAR and IR target detection method by inserting a median local average filter (MLAF, pre-filter) and an asymmetric morphological closing filter (AMCF, post-filter) into the BMVT. The original BMVT was optimized to detect small infrared targets. The proposed modBMVT can remove the thermal and scatter noise by the MLAF and detect extended targets by attaching the AMCF after the BMVT. Heterogeneous SAR and IR images were registered automatically using the proposed RANdom SAmple Region Consensus (RANSARC)-based homography optimization after a brute-force correspondence search using the detected target centers and regions. The final targets were detected by feature-selection based sensor fusion using Adaboost. The proposed method showed good SAR and IR target detection performance through feature selection-based decision fusion on a synthetic database generated by OKTAL-SE. PMID:27447635
Robust Ground Target Detection by SAR and IR Sensor Fusion Using Adaboost-Based Feature Selection.
Kim, Sungho; Song, Woo-Jin; Kim, So-Hyun
2016-07-19
Long-range ground targets are difficult to detect in a noisy cluttered environment using either synthetic aperture radar (SAR) images or infrared (IR) images. SAR-based detectors can provide a high detection rate with a high false alarm rate to background scatter noise. IR-based approaches can detect hot targets but are affected strongly by the weather conditions. This paper proposes a novel target detection method by decision-level SAR and IR fusion using an Adaboost-based machine learning scheme to achieve a high detection rate and low false alarm rate. The proposed method consists of individual detection, registration, and fusion architecture. This paper presents a single framework of a SAR and IR target detection method using modified Boolean map visual theory (modBMVT) and feature-selection based fusion. Previous methods applied different algorithms to detect SAR and IR targets because of the different physical image characteristics. One method that is optimized for IR target detection produces unsuccessful results in SAR target detection. This study examined the image characteristics and proposed a unified SAR and IR target detection method by inserting a median local average filter (MLAF, pre-filter) and an asymmetric morphological closing filter (AMCF, post-filter) into the BMVT. The original BMVT was optimized to detect small infrared targets. The proposed modBMVT can remove the thermal and scatter noise by the MLAF and detect extended targets by attaching the AMCF after the BMVT. Heterogeneous SAR and IR images were registered automatically using the proposed RANdom SAmple Region Consensus (RANSARC)-based homography optimization after a brute-force correspondence search using the detected target centers and regions. The final targets were detected by feature-selection based sensor fusion using Adaboost. The proposed method showed good SAR and IR target detection performance through feature selection-based decision fusion on a synthetic database generated by OKTAL-SE.
Podder, Susmita; Choudhury, Joyanta; Roy, Sujit
2007-04-13
A highly efficient secondary benzylation procedure has been demonstrated using a high-valent heterobimetallic complex [Ir2(COD)2(SnCl3)2(Cl)2(mu-Cl)2] 1 as the catalyst in 1,2-dichloroethane to afford the corresponding benzylated products in moderate to excellent yields. The reaction was performed not only with carbon nucleophiles (arenes and heteroarenes) but also with oxygen (alcohol), nitrogen (amide and sulfonamide), and sulfur (thiol) nucleophiles. Mechanistic investigation showed the intermediacy of the ether in this reaction. An electrophilic mechanism is proposed from Hammett correlation.
Li, Yun; Zhang, Jin-Yu; Wang, Yuan-Zhong
2018-01-01
Three data fusion strategies (low-llevel, mid-llevel, and high-llevel) combined with a multivariate classification algorithm (random forest, RF) were applied to authenticate the geographical origins of Panax notoginseng collected from five regions of Yunnan province in China. In low-level fusion, the original data from two spectra (Fourier transform mid-IR spectrum and near-IR spectrum) were directly concatenated into a new matrix, which then was applied for the classification. Mid-level fusion was the strategy that inputted variables extracted from the spectral data into an RF classification model. The extracted variables were processed by iterate variable selection of the RF model and principal component analysis. The use of high-level fusion combined the decision making of each spectroscopic technique and resulted in an ensemble decision. The results showed that the mid-level and high-level data fusion take advantage of the information synergy from two spectroscopic techniques and had better classification performance than that of independent decision making. High-level data fusion is the most effective strategy since the classification results are better than those of the other fusion strategies: accuracy rates ranged between 93% and 96% for the low-level data fusion, between 95% and 98% for the mid-level data fusion, and between 98% and 100% for the high-level data fusion. In conclusion, the high-level data fusion strategy for Fourier transform mid-IR and near-IR spectra can be used as a reliable tool for correct geographical identification of P. notoginseng. Graphical abstract The analytical steps of Fourier transform mid-IR and near-IR spectral data fusion for the geographical traceability of Panax notoginseng.
Raouf, Saned; Mpimbaza, Arthur; Kigozi, Ruth; Sserwanga, Asadu; Rubahika, Denis; Katamba, Henry; Lindsay, Steve W; Kapella, Bryan K; Belay, Kassahun A; Kamya, Moses R; Staedke, Sarah G; Dorsey, Grant
2017-08-01
Indoor residual spraying (IRS) and long-lasting insecticidal nets (LLINs) are the primary tools for malaria prevention in Africa. It is not known whether reductions in malaria can be sustained after IRS is discontinued. Our aim in this study was to assess changes in malaria morbidity in an area of Uganda with historically high transmission where IRS was discontinued after a 4-year period followed by universal LLIN distribution. Individual-level malaria surveillance data were collected from 1 outpatient department and 1 inpatient setting in Apac District, Uganda, from July 2009 through November 2015. Rounds of IRS were delivered approximately every 6 months from February 2010 through May 2014 followed by universal LLIN distribution in June 2014. Temporal changes in the malaria test positivity rate (TPR) were estimated during and after IRS using interrupted time series analyses, controlling for age, rainfall, and autocorrelation. Data include 65 421 outpatient visits and 13 955 pediatric inpatient admissions for which a diagnostic test for malaria was performed. In outpatients aged <5 years, baseline TPR was 60%-80% followed by a rapid and then sustained decrease to 15%-30%. During the 4-18 months following discontinuation of IRS, absolute TPR values increased by an average of 3.29% per month (95% confidence interval, 2.01%-4.57%), returning to baseline levels. Similar trends were seen in outpatients aged ≥5 years and pediatric admissions. Discontinuation of IRS in an area with historically high transmission intensity was associated with a rapid increase in malaria morbidity to pre-IRS levels. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harpool, K; De La Fuente Herman, T; Ahmad, S
Purpose: To evaluate the performance of a two-dimensional (2D) array-diode- detector for geometric and dosimetric quality assurance (QA) tests of high-dose-rate (HDR) brachytherapy with an Ir-192-source. Methods: A phantom setup was designed that encapsulated a two-dimensional (2D) array-diode-detector (MapCheck2) and a catheter for the HDR brachytherapy Ir-192 source. This setup was used to perform both geometric and dosimetric quality assurance for the HDR-Ir192 source. The geometric tests included: (a) measurement of the position of the source and (b) spacing between different dwell positions. The dosimteric tests include: (a) linearity of output with time, (b) end effect and (c) relative dosemore » verification. The 2D-dose distribution measured with MapCheck2 was used to perform the previous tests. The results of MapCheck2 were compared with the corresponding quality assurance testes performed with Gafchromic-film and well-ionization-chamber. Results: The position of the source and the spacing between different dwell-positions were reproducible within 1 mm accuracy by measuring the position of maximal dose using MapCheck2 in contrast to the film which showed a blurred image of the dwell positions due to limited film sensitivity to irradiation. The linearity of the dose with dwell times measured from MapCheck2 was superior to the linearity measured with ionization chamber due to higher signal-to-noise ratio of the diode readings. MapCheck2 provided more accurate measurement of the end effect with uncertainty < 1.5% in comparison with the ionization chamber uncertainty of 3%. Although MapCheck2 did not provide absolute calibration dosimeter for the activity of the source, it provided accurate tool for relative dose verification in HDR-brachytherapy. Conclusion: The 2D-array-diode-detector provides a practical, compact and accurate tool to perform quality assurance for HDR-brachytherapy with an Ir-192 source. The diodes in MapCheck2 have high radiation sensitivity and linearity that is superior to Gafchromic-films and ionization chamber used for geometric and dosimetric QA in HDR-brachytherapy, respectively.« less
Association of glycosylated hemoglobin (HbA1c) levels with Iinsulin resistance in obese children.
Onal, Zehra Esra; Atasayan, Vildan; Gürbüz, Tamay; Hepkaya, Evrim; Nuhoğlu, Cağatay
2014-09-01
We investigated the relationship between insulin resistance reflected by homeostasis model assessment (HOMA-IR) index and serum HbA1c levels of obese children. This study included 70 obese and 60 normal weight healthy children between the ages of 3 and 15. Anthropometric measures and biochemical tests (fasting glucose, fasting insulin, HbA1c) were performed on all subjects. Plasma glucose levels were measured by the glucose oxidase method. Plasma insulin concentrations were measured by radioimmunoassay (RIA). HOMA-IR index was used to estimate insulin resistance. A cut-off HOMA-IR level of ≥2.5 was accepted. The HbA1c analysis was performed using high-pressure liquid chromatography. The statistical analysis was performed using SPSS 5. Student's unpaired t-test and the Mann-Whitney U test were used to determine statistical significance. Gender distribution did not reveal significant difference among the obese (F: 48.6%, M: 51.4%) and the non-obese (F: 46.7%, M: 53.3%) groups. The mean age value was significantly higher in the obese group (10.09 ± 3.09) (p > 0.005) than the non-obese group (8.31 ± 3.14) (p < 0.05). The mean value of body mass index (BMI) was 25.55 ± 4.3 in the obese group and 16.63 ± 2.3 in the non-obese group. The mean HOMA-IR values of obese group (2.84 ± 1.77) was significantly higher than the non-obese group (1.50 ± 0.95) (p < 0.005). Insulin resistance was significantly higher in the obese group. Subjects with HOMA-IR ≥2.5 levels in the obese group had significantly higher HbA1c values than those with HOMA-IR <2.5 levels. High HbA1c levels in obese children can be used as a screening tool to detect insulin sensitivity and resistance at an early stage.
Miyake, Eiji; Yatsunami, Mitsunobu; Kurabayashi, Jun; Teruya, Koji; Sekine, Yasuhiro; Endo, Tatsuaki; Nishida, Ryuichiro; Takano, Nao; Sato, Seiko; Jae Kyung, Han
2016-03-01
Injury prevention programs have recently been created for various sports. However, a longitudinal study on badminton injuries, as assessed by a team's dedicated medical staff, at the gymnasium has not been performed. We aimed to perform the first such study to measure the injury incidence, severity and type as the first step in creating a badminton injury prevention program. A prospective, longitudinal survey was conducted between April 2012 and March 2013 with 133 national tournament-level badminton players from junior high school to university in Japan with the teams' physical therapists at the gymnasium. Injury incidence was measured as the injury rate (IR) for every 1,000 hour (1000 hour) and IR for every 1,000 athlete exposures (1000 AE). Severity was classified in 5 levels by the number of days the athlete was absent from practice or matches. Injury types were categorized as trauma or overuse. Practice (IR) (1,000 hour) was significantly higher in female players than in male players; the rates increased with increasing age. IR (1,000 AE) was significantly higher in matches than in practice in both sexes of all ages, except for female junior high school students and injuries were most frequent for high school students in matches. The majority of the injuries were slight (83.8%); overuse injuries occurred approximately 3 times more than trauma. This is the first study in which medical staff assessed injuries in badminton, providing value through benchmark data. Injury prevention programs are particularly necessary for female university students in practice and high school students in matches.
CORSAIR-Calibrated Observations of Radiance Spectra from the Atmosphere in the Far- Infrared
NASA Astrophysics Data System (ADS)
Mlynczak, M. G.; Johnson, D.; Abedin, N.; Liu, X.; Kratz, D.; Jordan, D.; Wang, J.; Bingham, G.; Latvakoski, H.; Bowman, K.; Kaplan, S.
2008-12-01
The CORSAIR project is a new NASA Instrument Incubator Project (IIP) whose primary goal is to develop and demonstrate the necessary technologies to achieve SI-traceable, on-orbit measurements of Earth's spectral radiance in the far-infrared (far-IR). The far-IR plays a vital role in the energy balance of the Earth yet its spectrum has not been comprehensively observed from space for the purposes of climate sensing. The specific technologies being developed under CORSAIR include: passively cooled, antenna-coupled terahertz detectors for the far-IR (by Raytheon Vision Systems); accurately calibrated, SI-traceable blackbody sources for the far-IR (by Space Dynamics Laboratory); and high-performance broad bandpass beamsplitters (by ITT). These technologies complement those already developed under past Langley IIP projects (FIRST; INFLAME) in the areas of Fourier Transform Spectrometers and dedicated far-IR beamsplitters. The antenna-coupled far-IR detectors will be validated in the FIRST instrument at Langley. The SI-traceable far-IR blackbodies will be developed in conjunction with the National Institute of Standards and Technology (NIST). An overview of the CORSAIR technologies will be presented as well as their larger role in the Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission. Upon successful completion of CORSAIR these IIP efforts will provide the necessary technologies to achieve the first comprehensive, accurate, high-resolution measurements from a satellite of the far-IR spectrum of the Earth and its atmosphere, enabling major advances in our understanding of Earth's climate.
Effects of intermittent-endurance fitness on match performance in young male soccer players.
Castagna, Carlo; Impellizzeri, Franco; Cecchini, Emilio; Rampinini, Ermanno; Alvarez, José Carlos Barbero
2009-10-01
The purpose of this study was to examine the effect of specific endurance (Yo-Yo Intermittent recovery test level 1, Yo-Yo IR1) on match performance in male youth soccer. Twenty-one young, male soccer players (age 14.1 +/- 0.2 years) were involved in the study. Players were observed during international championship games of corresponding age categories and completed the Yo-Yo IR1 on a separate occasion. Physical (distance coverage) and physiological match demands were assessed using Global Positioning System technology and heart rate (HR) short-range telemetry, respectively. During the match (two 30-minutes halves), players covered 6,204 +/- 731 m, of which 985 +/- 362 m (16%) were performed at high intensities (speed >13 kmxh, HIA). A significant decrement (3.8%, p = 0.003) in match coverage was evident during the second half. No significant (p = 0.07) difference between halves was observed for HIA (p = 0.56) and sprint (speed >18 kmxh, SPR) distances. During the first and second halves, players attained the 86 +/- 5.5 and 85 +/- 6.0% of HRmax (p = 0.17), respectively. Peak HR during the first and second halves were 100 +/- 4 and 99.4 +/- 4.7% of HRmax, respectively. Yo-Yo IR1 performance (842 +/- 352 m) was significantly related to match HIA (r = 0.77, p < 0.001) and total distance (r = 0.65, p = 0.002). This study's results showed that specific endurance, as determined by Yo-Yo IR1 performance, positively affects physical match performance in male young soccer players. Consequently, the Yo-Yo IR1 test may be regarded as a valid test to assess game readiness and guide training prescription in male youth soccer players.
Ma, Qiu-Lan; Yang, Fusheng; Rosario, Emily R.; Ubeda, Oliver J.; Beech, Walter; Gant, Dana J.; Chen, Ping Ping; Hudspeth, Beverly; Chen, Cory; Zhao, Yongle; Vinters, Harry V.; Frautschy, Sally A.
2009-01-01
Both insulin resistance (type II diabetes) and β-amyloid (Aβ) oligomers are implicated in Alzheimer's disease (AD). Here, we investigate the role of Aβ oligomer-induced c-Jun N-terminal kinase (JNK) activation leading to phosphorylation and degradation of the adaptor protein insulin receptor substrate-1 (IRS-1). IRS-1 couples insulin and other trophic factor receptors to downstream kinases and neuroprotective signaling. Increased phospho-IRS-1 is found in AD brain and insulin-resistant tissues from diabetics. Here, we report Aβ oligomers significantly increased active JNK and phosphorylation of IRS-1 (Ser616) and tau (Ser422) in cultured hippocampal neurons, whereas JNK inhibition blocked these responses. The omega-3 fatty acid docosahexaenoic acid (DHA) similarly inhibited JNK and the phosphorylation of IRS-1 and tau in cultured hippocampal neurons. Feeding 3xTg-AD transgenic mice a diet high in saturated and omega-6 fat increased active JNK and phosphorylated IRS-1 and tau. Treatment of the 3xTg-AD mice on high-fat diet with fish oil or curcumin or a combination of both for 4 months reduced phosphorylated JNK, IRS-1, and tau and prevented the degradation of total IRS-1. This was accompanied by improvement in Y-maze performance. Mice fed with fish oil and curcumin for 1 month had more significant effects on Y-maze, and the combination showed more significant inhibition of JNK, IRS-1, and tau phosphorylation. These data indicate JNK mediates Aβ oligomer inactivation of IRS-1 and phospho-tau pathology and that dietary treatment with fish oil/DHA, curcumin, or a combination of both has the potential to improve insulin/trophic signaling and cognitive deficits in AD. PMID:19605645
The mid-IR silicon photonics sensor platform (Conference Presentation)
NASA Astrophysics Data System (ADS)
Kimerling, Lionel; Hu, Juejun; Agarwal, Anuradha M.
2017-02-01
Advances in integrated silicon photonics are enabling highly connected sensor networks that offer sensitivity, selectivity and pattern recognition. Cost, performance and the evolution path of the so-called `Internet of Things' will gate the proliferation of these networks. The wavelength spectral range of 3-8um, commonly known as the mid-IR, is critical to specificity for sensors that identify materials by detection of local vibrational modes, reflectivity and thermal emission. For ubiquitous sensing applications in this regime, the sensors must move from premium to commodity level manufacturing volumes and cost. Scaling performance/cost is critically dependent on establishing a minimum set of platform attributes for point, wearable, and physical sensing. Optical sensors are ideal for non-invasive applications. Optical sensor device physics involves evanescent or intra-cavity structures for applied to concentration, interrogation and photo-catalysis functions. The ultimate utility of a platform is dependent on sample delivery/presentation modalities; system reset, recalibration and maintenance capabilities; and sensitivity and selectivity performance. The attributes and performance of a unified Glass-on-Silicon platform has shown good prospects for heterogeneous integration on materials and devices using a low cost process flow. Integrated, single mode, silicon photonic platforms offer significant performance and cost advantages, but they require discovery and qualification of new materials and process integration schemes for the mid-IR. Waveguide integrated light sources based on rare earth dopants and Ge-pumped frequency combs have promise. Optical resonators and waveguide spirals can enhance sensitivity. PbTe materials are among the best choices for a standard, waveguide integrated photodetector. Chalcogenide glasses are capable of transmitting mid-IR signals with high transparency. Integrated sensor case studies of i) high sensitivity analyte detection in solution; ii) gas sensing in air and iii) on-chip spectrometry provide good insight into the tradeoffs being made en route to ubiquitous sensor deployment in an Internet of Things.
Testing of electroformed deposited iridium/powder metallurgy rhenium rockets
NASA Technical Reports Server (NTRS)
Reed, Brian D.; Dickerson, Robert
1996-01-01
High-temperature, oxidation-resistant chamber materials offer the thermal margin for high performance and extended lifetimes for radiation-cooled rockets. Rhenium (Re) coated with iridium (Ir) allow hours of operation at 2200 C on Earth-storable propellants. One process for manufacturing Ir/Re rocket chambers is the fabrication of Re substrates by powder metallurgy (PM) and the application of Ir coatings by using electroformed deposition (ED). ED Ir coatings, however, have been found to be porous and poorly adherent. The integrity of ED Ir coatings could be improved by densification after the electroforming process. This report summarizes the testing of two 22-N, ED Ir/PM Re rocket chambers that were subjected to post-deposition treatments in an effort to densify the Ir coating. One chamber was vacuum annealed, while the other chamber was subjected to hot isostatic pressure (HIP). The chambers were tested on gaseous oxygen/gaseous hydrogen propellants, at mixture ratios that simulated the oxidizing environments of Earth-storable propellants. ne annealed ED Ir/PM Re chamber was tested for a total of 24 firings and 4.58 hr at a mixture ratio of 4.2. After only 9 firings, the annealed ED Ir coating began to blister and spall upstream of the throat. The blistering and spalling were similar to what had been experienced with unannealed, as-deposited ED Ir coatings. The HIP ED Ir/PM Re chamber was tested for a total of 91 firings and 11.45 hr at mixture ratios of 3.2 and 4.2. The HIP ED Ir coating remained adherent to the Re substrate throughout testing; there were no visible signs of coating degradation. Metallography revealed, however, thinning of the HIP Ir coating and occasional pores in the Re layer upstream of the throat. Pinholes in the Ir coating may have provided a path for oxidation of the Re substrate at these locations. The HIP ED Ir coating proved to be more effective than vacuum annealed and as-deposited ED Ir. Further densification is still required to match the integrity of chemically vapor deposited Ir coatings. Despite this, the successful long duration testing of the HIP ED Ir chamber, in an oxidizing environment comparable to Earth-storable propellants, demonstrated the viability of this Ir/Re rocket fabrication process.
Han, Lei; Wulie, Buzha; Yang, Yiling; Wang, Hongqing
2015-01-05
This study investigated a novel method of fusing visible (VIS) and infrared (IR) images with the major objective of obtaining higher-resolution IR images. Most existing image fusion methods focus only on visual performance and many fail to consider the thermal physical properties of the IR images, leading to spectral distortion in the fused image. In this study, we use the IR thermal physical property to correct the VIS image directly. Specifically, the Stefan-Boltzmann Law is used as a strong constraint to modulate the VIS image, such that the fused result shows a similar level of regional thermal energy as the original IR image, while preserving the high-resolution structural features from the VIS image. This method is an improvement over our previous study, which required VIS-IR multi-wavelet fusion before the same correction method was applied. The results of experiments show that applying this correction to the VIS image directly without multi-resolution analysis (MRA) processing achieves similar results, but is considerably more computationally efficient, thereby providing a new perspective on VIS and IR image fusion.
Han, Lei; Wulie, Buzha; Yang, Yiling; Wang, Hongqing
2015-01-01
This study investigated a novel method of fusing visible (VIS) and infrared (IR) images with the major objective of obtaining higher-resolution IR images. Most existing image fusion methods focus only on visual performance and many fail to consider the thermal physical properties of the IR images, leading to spectral distortion in the fused image. In this study, we use the IR thermal physical property to correct the VIS image directly. Specifically, the Stefan-Boltzmann Law is used as a strong constraint to modulate the VIS image, such that the fused result shows a similar level of regional thermal energy as the original IR image, while preserving the high-resolution structural features from the VIS image. This method is an improvement over our previous study, which required VIS-IR multi-wavelet fusion before the same correction method was applied. The results of experiments show that applying this correction to the VIS image directly without multi-resolution analysis (MRA) processing achieves similar results, but is considerably more computationally efficient, thereby providing a new perspective on VIS and IR image fusion. PMID:25569749
IR window design for hypersonic missile seekers: thermal shock and cooling systems
NASA Astrophysics Data System (ADS)
Hingst, Uwe; Koerber, Stefan
2001-10-01
Infra-red (IR) seekers on missiles at high Mach-numbers in the lower tier air defence often suffer from degradation in performance due to aerothermodynamic effects. The kind and rate of degradation depends on the geometric design (shape) and location of the IR-window. Optimal design may reduce those effects but still misses to totally withstand the imposed thermal stresses (thermal shock). Proper thermal protection systems and/or window cooling systems will be needed. The first part of this paper deals particularly with passive IR- window design features to reduce the thermal stresses. A series of wind-tunnel testings focused on the thermal shock behavior of different IR-window shapes under critical flight conditions. The variation of typical design parameters demonstrates the available features to reduce thermal shock by passive ways. The second part presents active thermal stress reduction devices, e.g. an active cooling system. Among others the most efficient reduction of thermal heating is based on three components: A partial coverage of the IR-dome to protect most parts against heating effects, a rotating system bearing the IR-dome and a liquid spray-cooling system in the gap between the cover and the IR-dome. The hemispherical or pyramidal dome can be located either midways in the missile nose section or sideways on the structure. The liquid spray cooling system combines both, a heat exchange by fluid evaporation and a heat transfer by fluid and gas cross flow (convection), causing a low fluid consumption. Such a cooling system along with their driving parameters and the resulting analytical performance will be presented.
High-Temperature Oxidation Behavior of Iridium-Rhenium Alloys
NASA Technical Reports Server (NTRS)
Reed, Brian D.
1995-01-01
The life-limiting mechanism for radiation-cooled rockets made from iridium-coated rhenium (Ir/Re) is the diffusion of Re into the Ir layer and the subsequent oxidation of the resulting Ir-Re alloy from the inner surface. In a previous study, a life model for Ir/Re rockets was developed. It incorporated Ir-Re diffusion and oxidation data to predict chamber lifetimes as a function of temperature and oxygen partial pressure. Oxidation testing at 1540 deg C suggested that a 20-wt percent Re concentration at the inner wall surface should be established as the failure criterion. The present study was performed to better define Ir-oxidation behavior as a function of Re concentration and to supplement the data base for the life model. Samples ranging from pure Ir to Ir-40 wt percent Re (Ir-40Re) were tested at 1500 deg C, in two different oxygen environments. There were indications that the oxidation rate of the Ir-Re alloy increased significantly when it went from a single-phase solid solution to a two-phase mixture, as was suggested in previous work. However, because of testing anomalies in this study, there were not enough dependable oxidation data to definitively raise the Ir/Re rocket failure criterion from 20-wt percent Re to a Re concentration corresponding to entry into the two-phase region.
Ekelöf, Måns; Manni, Jeffrey; Nazari, Milad; Bokhart, Mark; Muddiman, David C
2018-03-01
Laser systems are widely used in mass spectrometry as sample probes and ionization sources. Mid-infrared lasers are particularly suitable for analysis of high water content samples such as animal and plant tissues, using water as a resonantly excited sacrificial matrix. Commercially available mid-IR lasers have historically been bulky and expensive due to cooling requirements. This work presents a novel air-cooled miniature mid-IR laser with adjustable burst-mode output and details an evaluation of its performance for mass spectrometry imaging. The miniature laser was found capable of generating sufficient energy for complete ablation of animal tissue in the context of an IR-MALDESI experiment with exogenously added ice matrix, yielding several hundred confident metabolite identifications. Graphical abstract The use of a novel miniature 2.94 μm burst-mode laser in IR-MALDESI allows for rapid and sensitive mass spectrometry imaging of a whole mouse.
High performance, low dissipation quantum cascade lasers across the mid-IR range.
Bismuto, Alfredo; Blaser, Stéphane; Terazzi, Romain; Gresch, Tobias; Muller, Antoine
2015-03-09
In this work, we present the development of low consumption quantum cascade lasers across the mid-IR range. In particular, short cavity single-mode lasers with optimised facet reflectivities have been fabricated from 4.5 to 9.2 μm. Threshold dissipated powers as low as 0.5 W were obtained in continuous wave operation at room temperature. In addition, the beneficial impact of reducing chip length on laser mounting yield is discussed. High power single-mode lasers from the same processed wafers are also presented.
Dietary nitrate supplementation improves sprint and high-intensity intermittent running performance.
Thompson, Christopher; Vanhatalo, Anni; Jell, Harry; Fulford, Jonathan; Carter, James; Nyman, Lara; Bailey, Stephen J; Jones, Andrew M
2016-12-30
The influence of dietary nitrate (NO 3 - ) supplementation on indices of maximal sprint and intermittent exercise performance is unclear. To investigate the effects of NO 3 - supplementation on sprint running performance, and cognitive function and exercise performance during the sport-specific Yo-Yo Intermittent Recovery level 1 test (IR1). In a double-blind, randomized, crossover study, 36 male team-sport players received NO 3 - -rich (BR; 70 mL·day -1 ; 6.4 mmol of NO 3 - ), and NO 3 - -depleted (PL; 70 mL·day -1 ; 0.04 mmol NO 3 - ) beetroot juice for 5 days. On day 5 of supplementation, subjects completed a series of maximal 20-m sprints followed by the Yo-Yo IR1. Cognitive tasks were completed prior to, during and immediately following the Yo-Yo IR1. BR improved sprint split times relative to PL at 20 m (1.2%; BR 3.98 ± 0.18 vs. PL 4.03 ± 0.19 s; P < 0.05), 10 m (1.6%; BR 2.53 ± 0.12 vs. PL 2.57 ± 0.19 s; P < 0.05) and 5 m (2.3%; BR 1.73 ± 0.09 vs. PL 1.77 ± 0.09 s; P < 0.05). The distance covered in the Yo-Yo IR1 test improved by 3.9% (BR 1422 ± 502 vs. PL 1369 ± 505 m; P < 0.05). The reaction time to the cognitive tasks was shorter in BR (615 ± 98 ms) than PL (645 ± 120 ms; P < 0.05) at rest but not during the Yo-Yo IR1. There was no difference in response accuracy. Dietary NO 3 - supplementation enhances maximal sprint and high-intensity intermittent running performance in competitive team sport players. Our findings suggest that NO 3 - supplementation has the potential to improve performance in single-sprint or multiple-sprint (team) sports. Copyright © 2016 Elsevier Inc. All rights reserved.
Large infrared survey telescope for Antarctica at Dome C
NASA Astrophysics Data System (ADS)
Ferrari-Toniolo, Marco; Epchtein, Nicolas; Corcione, Leonardo; Marenzi, Anna R.
2002-12-01
The first results obtained from the Site Campaigns performed in the last years in different locations of the Antarctic Continent and the acquired experience obtained from the first astronomical IR measures with SPIREX, have in fact opened the way to a present time challenge, about the installation of a large IR Telescope in the best possible site on earth, that will be competitive with the present frontier of ground based and space telescopes in the Infrared range. A project in this context has been submitted to the Italian Plan for Antarctic Research (PNRA), in collaboration with French and Australian colleagues that began to be funded this year. The project entitled "A preliminary study for a Large Infrared Telescope at Dome C", will lay the bases for the realization of a non-conventional instrument for the mid-IR domain, suited for the very particular and severe Antarctic situation. In this first paper a general overview is done about the future development plan for the GTA (Grande Telescopio Antartico), paying attention to the following themes: Large aperture and low emissivity and high reliability of Antarctic IR telescopes High resolution and very high sensitivity objectives for a mid-ir Survey Telescope. Non-conventional observing modes for quasi drift-scan measurements.
High-pressure insulator-to-metal transition in Sr3Ir2O7 studied by x-ray absorption spectroscopy
NASA Astrophysics Data System (ADS)
Donnerer, C.; Sala, M. Moretti; Pascarelli, S.; Rosa, A. D.; Andreev, S. N.; Mazurenko, V. V.; Irifune, T.; Hunter, E. C.; Perry, R. S.; McMorrow, D. F.
2018-01-01
High-pressure x-ray absorption spectroscopy was performed at the Ir L3 and L2 absorption edges of Sr3Ir2O7 . The branching ratio of white-line intensities continuously decreases with pressure, reflecting a reduction in the angular part of the expectation value of the spin-orbit coupling operator, 〈L .S 〉 . Up to the high-pressure structural transition at 53 GPa, this behavior can be explained within a single-ion model, where pressure increases the strength of the cubic crystal field, which suppresses the spin-orbit induced hybridization of Jeff=3 /2 and eg levels. We observe a further reduction of the branching ratio above the structural transition, which cannot be explained within a single-ion model of spin-orbit coupling and cubic crystal fields. This change in 〈L .S 〉 in the high-pressure, metallic phase of Sr3Ir2O7 could arise from noncubic crystal fields or a bandwidth-driven hybridization of Jeff=1 /2 ,3 /2 states and suggests that the electronic ground state significantly deviates from the Jeff=1 /2 limit.
Liang, Wenbin; Zhuo, Ying; Xiong, Chengyi; Zheng, Yingning; Chai, Yaqin; Yuan, Ruo
2017-08-15
A sensitive electrochemiluminescent (ECL) sandwich immunosensor was proposed herein based on the tris (2-phenylpyridine) iridium [Ir(ppy) 3 ] doped silica nanoparticles (SiO 2 @Ir) with improved ECL emission as signal probes and glucose oxidase (GOD)-based in situ enzymatic reaction to generate H 2 O 2 for efficiently quenching the ECL emission of SiO 2 @Ir. Typically, the SiO 2 @Ir not only increased the loading amount of Ir(ppy) 3 as ECL indicators with high ECL emission, but also improved their water-solubility, which efficiently enhanced the ECL emission. Furthermore, by the efficient quench effect of H 2 O 2 from in situ glucose oxidase (GOD)-based enzymatic reaction on the ECL emission of SiO 2 @Ir, a signal-off ECL immunsensor could be established for sensitive assay. With N-terminal of the prohormone brain natriuretic peptide (BNPT) as a model, the proposed ECL assay performed high sensitivity and low detection limit. Importantly, the proposed sensitive ECL strategy was not only suitable for the detection of BNPT for acute myocardial infarction, but also revealed a new avenue for early diagnosis of various diseases via proteins, nucleotide sequence, microRNA and cells. Copyright © 2017 Elsevier B.V. All rights reserved.
Nakamura, Daisuke; Suzuki, Tomohiro; Yasumatsu, Mikinobu; Akimoto, Takayuki
2012-12-01
Several investigators have reported the effects of reduced training and interrupted training on athletic performance, but few reports are available for soccer players. The purpose of this study was to examine, using the Yo-Yo intermittent recovery level 2 (YoYoIR2) test and sprint performance, the effects on soccer players of a reduced training program consisting of either moderate running training, plyometric training. After the completion of a competitive season, 29 male soccer players were divided into 3 groups: the running group (n = 13), the plyometric group (n = 11), and the control group (n = 5). Both training groups completed either running or plyometric training sessions 2 d·wk(-1) for 3 weeks, whereas the control group was not allowed to perform any training. The subjects performed YoYoIR2 and 20-m sprint tests before (pre) and after (post) the experimental period. Neither training group showed any significant training effects on the YoYoIR2 performance or 20-m sprint times compared with the control group. This study suggests that neither endurance running nor plyometric training 2 d·wk(-1) for 3 weeks has a significant effect on high-intensity performance compared with a nontraining regimen. However, our results do not support complete inactivity. These results may have important implications for the management of training cessation for a few weeks.
NASA Astrophysics Data System (ADS)
Chu, Wei-Han; Yuan, Ming-Chen; Lee, Jeng-Hung; Lin, Yi-Chun
2017-11-01
Ir-192 sources are widely used in brachytherapy and the number of treatments is around seven thousand for the use of the high dose rate (HDR) Ir-192 brachytherapy source per year in Taiwan. Due to its physical half-life of 73.8 days, the source should be replaced four times per year to maintain the HDR treatment mode (DDEP, 2005; Coursey et al., 1992). When doing this work, it must perform the source dose trace to assure the dose accuracy. To establish the primary measurement standard of reference air kerma rate(RAKR) for the HDR Ir-192 brachytherapy sources in Taiwan, the Institute of Nuclear Energy Research (INER) fabricated a dual spherical graphite-walled cavity ionization chambers system to directly measure the RAKR of the Ir-192 brachytherapy source. In this system, the ion-charge was accumulated by the two ionization chambers and after correction for the ion recombination, temperature, atmosphere pressure, room scattering, graphite-wall attenuation, air attenuation, source decay, stem effect, and so on. The RAKR of the Ir-192 source was obtained in the ambient conditions of 22 °C and one atmosphere. The measurement uncertainty of the system was around 0.92% in 96% confidence level (k=2.0). To verify the accuracy of the result, the source calibration comparison has been made at the National Radiation Standard Laboratory (NRSL) of INER and Physikalisch-Technische Bundesanstalt (PTB, Germany) in 2015. The ratio of the measurement results between INER and PTB, INER/PTB, was 0.998±0.027 (k=2) which showed good consistency and the performance of the system was verified.
Ko, Kyung Ae; Wang, Yin; Kotla, Sivareddy; Fujii, Yuka; Vu, Hang Thi; Venkatesulu, Bhanu P; Thomas, Tamlyn N; Medina, Jan L; Gi, Young Jin; Hada, Megumi; Grande-Allen, Jane; Patel, Zarana S; Milgrom, Sarah A; Krishnan, Sunil; Fujiwara, Keigi; Abe, Jun-Ichi
2018-01-01
The high incidence of cardiovascular events in cancer survivors has long been noted, but the mechanistic insights of cardiovascular toxicity of cancer treatments, especially for vessel diseases, remain unclear. It is well known that atherosclerotic plaque formation begins in the area exposed to disturbed blood flow, but the relationship between cancer therapy and disturbed flow in regulating plaque formation has not been well studied. Therefore, we had two goals for this study; (1) Generate an affordable, reliable, and reproducible mouse model to recapitulate the cancer therapy-induced cardiovascular events in cancer survivors, and (2) Establish a mouse model to investigate the interplay between disturbed flow and various cancer therapies in the process of atherosclerotic plaque formation. We examined the effects of two cancer drugs and ionizing radiation (IR) on disturbed blood flow-induced plaque formation using a mouse carotid artery partial ligation (PCL) model of atherosclerosis. We found that doxorubicin and cisplatin, which are commonly used anti-cancer drugs, had no effect on plaque formation in partially ligated carotid arteries. Similarly, PCL-induced plaque formation was not affected in mice that received IR (2 Gy) and PCL surgery performed one week later. In contrast, when PCL surgery was performed 26 days after IR treatment, not only the atherosclerotic plaque formation but also the necrotic core formation was significantly enhanced. Lastly, we found a significant increase in p90RSK phosphorylation in the plaques from the IR-treated group compared to those from the non-IR treated group. Our results demonstrate that IR not only increases atherosclerotic events but also vulnerable plaque formation. These increases were a somewhat delayed effect of IR as they were observed in mice with PCL surgery performed 26 days, but not 10 days, after IR exposure. A proper animal model must be developed to study how to minimize the cardiovascular toxicity due to cancer treatment.
Ultra-thin high-efficiency mid-infrared transmissive Huygens meta-optics.
Zhang, Li; Ding, Jun; Zheng, Hanyu; An, Sensong; Lin, Hongtao; Zheng, Bowen; Du, Qingyang; Yin, Gufan; Michon, Jerome; Zhang, Yifei; Fang, Zhuoran; Shalaginov, Mikhail Y; Deng, Longjiang; Gu, Tian; Zhang, Hualiang; Hu, Juejun
2018-04-16
The mid-infrared (mid-IR) is a strategically important band for numerous applications ranging from night vision to biochemical sensing. Here we theoretically analyzed and experimentally realized a Huygens metasurface platform capable of fulfilling a diverse cross-section of optical functions in the mid-IR. The meta-optical elements were constructed using high-index chalcogenide films deposited on fluoride substrates: the choices of wide-band transparent materials allow the design to be scaled across a broad infrared spectrum. Capitalizing on a two-component Huygens' meta-atom design, the meta-optical devices feature an ultra-thin profile (λ 0 /8 in thickness) and measured optical efficiencies up to 75% in transmissive mode for linearly polarized light, representing major improvements over state-of-the-art. We have also demonstrated mid-IR transmissive meta-lenses with diffraction-limited focusing and imaging performance. The projected size, weight and power advantages, coupled with the manufacturing scalability leveraging standard microfabrication technologies, make the Huygens meta-optical devices promising for next-generation mid-IR system applications.
In-Situ Cure Monitoring of the Immidization Reaction of PMR-15
NASA Technical Reports Server (NTRS)
Cossins, Sheryl; Kellar, Jon J.; Winter, Robb M.
1997-01-01
Glass fiber reinforced polymer composites are becoming widely used in industry. With this increase in production, an in-situ method of quality control for the curing of the polymer is desirable. This would allow for the production of high-quality parts having more uniform properties.' Recently, in-situ fiber optic monitoring of polymer curing has primarily focused on epoxy resins and has been performed by Raman or fluorescence methods. In addition, some infrared (IR) investigations have been performed using transmission or ATR cells. An alternate IR approach involves using optical fibers as a sensor by utilizing evanescent wave spectroscopy.
Infrared imaging of WENSS radio sources
NASA Astrophysics Data System (ADS)
Villani, D.; di Serego Alighieri, S.
1999-03-01
We have performed deep imaging in the IR J- and K- bands for three sub-samples of radio sources extracted from the Westerbork Northern Sky Survey, a large low-frequency radio survey containing Ultra Steep Spectrum (USS), Gigahertz Peaked Spectrum (GPS) and Flat Spectrum (FS) sources. We present the results of these IR observations, carried out with the ARcetri Near Infrared CAmera (ARNICA) at the Nordic Optical Telescope (NOT), providing photometric and morphologic information on high redshift radio galaxies and quasars. We find that the radio galaxies contained in our sample do not show the pronounced radio/IR alignment claimed for 3CR sources. IR photometric measurements of the gravitational lens system 1600+434 are also presented. % This paper is based on data obtained at the Nordic Optical Telescope on La Palma (Canary Islands).
Discrete frequency infrared microspectroscopy and imaging with a tunable quantum cascade laser
Kole, Matthew R.; Reddy, Rohith K.; Schulmerich, Matthew V.; Gelber, Matthew K.; Bhargava, Rohit
2012-01-01
Fourier-transform infrared imaging (FT-IR) is a well-established modality but requires the acquisition of a spectrum over a large bandwidth, even in cases where only a few spectral features may be of interest. Discrete frequency infrared (DF-IR) methods are now emerging in which a small number of measurements may provide all the analytical information needed. The DF-IR approach is enabled by the development of new sources integrating frequency selection, in particular of tunable, narrow-bandwidth sources with enough power at each wavelength to successfully make absorption measurements. Here, we describe a DF-IR imaging microscope that uses an external cavity quantum cascade laser (QCL) as a source. We present two configurations, one with an uncooled bolometer as a detector and another with a liquid nitrogen cooled Mercury Cadmium Telluride (MCT) detector and compare their performance to a commercial FT-IR imaging instrument. We examine the consequences of the coherent properties of the beam with respect to imaging and compare these observations to simulations. Additionally, we demonstrate that the use of a tunable laser source represents a distinct advantage over broadband sources when using a small aperture (narrower than the wavelength of light) to perform high-quality point mapping. The two advances highlight the potential application areas for these emerging sources in IR microscopy and imaging. PMID:23113653
Size, weight, and power reduction of mercury cadmium telluride infrared detection modules
NASA Astrophysics Data System (ADS)
Breiter, Rainer; Ihle, Tobias; Wendler, Joachim C.; Lutz, Holger; Rutzinger, Stefan; Schallenberg, Timo; Hofmann, Karl C.; Ziegler, Johann
2011-06-01
Application requirements driving present IR technology development activities are improved capability to detect and identify a threat as well as the need to reduce size weight and power consumption (SWaP) of thermal sights. In addition to the development of 3rd Gen IR modules providing dual-band or dual-color capability, AIM is focused on IR FPAs with reduced pitch and high operating temperature for SWaP reduction. State-of-the-art MCT technology allows AIM the production of mid-wave infrared (MWIR) detectors operating at temperatures exceeding 120 K without any need to sacrifice the 5-μm cut-off wavelength. These FPAs allow manufacturing of low cost IR modules with minimum size, weight, and power for state-of-the-art high performance IR systems. AIM has realized full TV format MCT 640×512 mid-wave and long-wave IR detection modules with a 15-μm pitch to meet the requirements of critical military applications like thermal weapon sights or thermal imagers in unmanned aerial vehicles applications. In typical configurations like an F/4.6 cold shield for the 640×512 MWIR module an noise equivalent temperature difference (NETD) <25 mK @ 5 ms integration time is achieved, while the long-wavelength infrared (LWIR) modules achieve an NETD <38 mK @ F/2 and 180 μs integration time. For the LWIR modules, FPAs with a cut-off up to 10 μm have been realized. The modules are available either with different integral rotary cooler configurations for portable applications that require minimum cooling power or a new split linear cooler providing long lifetime with a mean time to failure (MTTF) > 20000, e.g., for warning sensors in 24/7 operation. The modules are available with optional image processing electronics providing nonuniformity correction and further image processing for a complete IR imaging solution. The latest results and performance of those modules and their applications are presented.
Large Format Si:As IBC Array Performance for NGST and Future IR Space Telescope Applications
NASA Technical Reports Server (NTRS)
Ennico, Kimberly; Johnson, Roy; Love, Peter; Lum, Nancy; McKelvey, Mark; McCreight, Craig; McMurray, Robert, Jr.; DeVincenzi, D. (Technical Monitor)
2002-01-01
A mid-IR (5-30micrometer) instrument aboard a cryogenic space telescope can have an enormous impact in resolving key questions in astronomy and cosmology. A space platform's greatly reduced thermal backgrounds (compared to airborne or ground-based platforms), allow for more sensitive observations of dusty young galaxies at high redshifts, star formation of solar-type stars in the local universe, and formation and evolution of planetary disks and systems. The previous generation's largest, in sensitive IR detectors at these wavelengths are 256x256 pixel Si:As Impurity Band Conduction (IBC) devices built by Raytheon Infrared Operations (RIO) for the Space Infrared Telescope Facility/Infrared Array Camera (SIRTF)/(IRAC) instrument. RIO has successfully enhanced these devices, increasing the pixel count by a factor of 16 while matching or exceeding SIRTF/IRAC device performance. NASA-ARC in collaboration with RIO has tested the first high performance large format (1024x 1024) Si:As IBC arrays for low background applications, such as for the middle instrument on Next Generation Space Telescope (NGST) and future IR Explorer missions. These hybrid devices consist of radiation hard SIRTF/IRAC-type Si:As IBC material mated to a readout multiplexer that has been specially processed for operation at low cryogenic temperatures (below 10K), yielding high device sensitivity over a wavelength range of 5-28 micrometers. We present laboratory testing results from these benchmark, devices. Continued development in this technology is essential for conducting large-area surveys of the local and early universe through observation and for complementing future missions such as NGST, Terrestrial Planet Finder (TPF), and Focal Plane Instruments and Requirement Science Team (FIRST).
Infrared sensor and window system issues
NASA Astrophysics Data System (ADS)
Hargraves, Charles H., Jr.; Martin, James M.
1992-12-01
EO/IR windows are a significant challenge for the weapon system sensor designer who must design for high EO performance, low radar cross section (RCS), supersonic flight, durability, producibility and affordable initial and life cycle costs. This is particularly true in the 8 to 12 micron IR band at which window materials and coating choices are limited by system design requirements. The requirements also drive the optimization of numerous mechanical, optical, materials, and electrical parameters. This paper addresses the EO/IR window as a system design challenge. The interrelationship of the optical, mechanical, and system design processes are examined. This paper presents a summary of the test results, trade studies and analyses that were performed for multi-segment, flight-worthy optical windows with superior optical performance at subsonic and supersonic aircraft velocities and reduced radar cross section. The impact of the window assembly on EO system modulation transfer function (MTF) and sensitivity will be discussed. The use of conductive coatings for shielding/signature control will be discussed.
High performance thermal imaging for the 21st century
NASA Astrophysics Data System (ADS)
Clarke, David J.; Knowles, Peter
2003-01-01
In recent years IR detector technology has developed from early short linear arrays. Such devices require high performance signal processing electronics to meet today's thermal imaging requirements for military and para-military applications. This paper describes BAE SYSTEMS Avionics Group's Sensor Integrated Modular Architecture thermal imager which has been developed alongside the group's Eagle 640×512 arrays to provide high performance imaging capability. The electronics architecture also supprots High Definition TV format 2D arrays for future growth capability.
Calleja, Ana I; García-Bermejo, Pablo; Cortijo, Elisa; Bustamante, Rosa; Rojo Martínez, Esther; González Sarmiento, Enrique; Fernández-Herranz, Rosa; Arenillas, Juan F
2011-11-01
Insulin resistance (IR) may not only increase stroke risk, but could also contribute to aggravate stroke prognosis. Mainly through a derangement in endogenous fibrinolysis, IR could affect the response to intravenous thrombolysis, currently the only therapy proved to be efficacious for acute ischemic stroke. We hypothesized that high IR is associated with more persistent arterial occlusions and poorer long-term outcome after stroke thrombolysis. We performed a prospective, observational, longitudinal study in consecutive acute ischemic stroke patients presenting with middle cerebral artery (MCA) occlusion who received intravenous thrombolysis. Patients with acute hyperglycemia (≥155 mg/dL) receiving insulin were excluded. IR was determined during admission by the homeostatic model assessment index (HOMA-IR). Poor long-term outcome, as defined by a day 90 modified Rankin scale score ≥ 3, was considered the primary outcome variable. Transcranial Duplex-assessed resistance to MCA recanalization and symptomatic hemorrhagic transformation were considered secondary end points. A total of 109 thrombolysed MCA ischemic stroke patients were included (43.1% women, mean age 71 years). The HOMA-IR was higher in the group of patients with poor outcome (P = 0.02). The probability of good outcome decreased gradually with increasing HOMA-IR tertiles (80.6%, 1st tertile; 71.4%, 2nd tertile; and 55.3%, upper tertile). A HOMA-IR in the upper tertile was independently associated with poor outcome when compared with the lower tertile (odds ratio [OR] 8.54 [95% CI 1.67-43.55]; P = 0.01) and was associated with more persistent MCA occlusions (OR 8.2 [1.23-54.44]; P = 0.029). High IR may be associated with more persistent arterial occlusions and worse long-term outcome after acute ischemic stroke thrombolysis.
Calleja, Ana I.; García-Bermejo, Pablo; Cortijo, Elisa; Bustamante, Rosa; Rojo Martínez, Esther; González Sarmiento, Enrique; Fernández-Herranz, Rosa; Arenillas, Juan F.
2011-01-01
OBJECTIVE Insulin resistance (IR) may not only increase stroke risk, but could also contribute to aggravate stroke prognosis. Mainly through a derangement in endogenous fibrinolysis, IR could affect the response to intravenous thrombolysis, currently the only therapy proved to be efficacious for acute ischemic stroke. We hypothesized that high IR is associated with more persistent arterial occlusions and poorer long-term outcome after stroke thrombolysis. RESEARCH DESIGN AND METHODS We performed a prospective, observational, longitudinal study in consecutive acute ischemic stroke patients presenting with middle cerebral artery (MCA) occlusion who received intravenous thrombolysis. Patients with acute hyperglycemia (≥155 mg/dL) receiving insulin were excluded. IR was determined during admission by the homeostatic model assessment index (HOMA-IR). Poor long-term outcome, as defined by a day 90 modified Rankin scale score ≥3, was considered the primary outcome variable. Transcranial Duplex-assessed resistance to MCA recanalization and symptomatic hemorrhagic transformation were considered secondary end points. RESULTS A total of 109 thrombolysed MCA ischemic stroke patients were included (43.1% women, mean age 71 years). The HOMA-IR was higher in the group of patients with poor outcome (P = 0.02). The probability of good outcome decreased gradually with increasing HOMA-IR tertiles (80.6%, 1st tertile; 71.4%, 2nd tertile; and 55.3%, upper tertile). A HOMA-IR in the upper tertile was independently associated with poor outcome when compared with the lower tertile (odds ratio [OR] 8.54 [95% CI 1.67–43.55]; P = 0.01) and was associated with more persistent MCA occlusions (OR 8.2 [1.23–54.44]; P = 0.029). CONCLUSIONS High IR may be associated with more persistent arterial occlusions and worse long-term outcome after acute ischemic stroke thrombolysis. PMID:21911778
Increased prevalence of metabolic syndrome in non-obese asian Indian-an urban-rural comparison.
Mahadik, S R; Deo, S S; Mehtalia, S D
2007-06-01
In the present study we evaluated the association of insulin resistance (IR) with different components of Metabolic Syndrome (MS) in an Asian Indian population, and performed a comparative study between urban and rural populations of India. A Total of 267 urban men and women aged 25-70 years participated in this study. RESULTS were compared with rural data from a previously published study. Fasting serum insulin, uric acid, and lipid profile were measured along with fasting and 2 hour plasma glucose. Association of MS and IR was studied by using univariate regression analysis. Prevalence of MS was significantly higher in the urban population compared to that of the rural population (35.2% vs 20.6%, chi(2) = 23.2, p < 0.001). Calculated insulin resistence (HOMA-IR) was common in MS group of both populations. Percentage prevalence of IR was high and almost the same in both population (42%). Percentage prevalence of abdominal obesity and hypertriglyceridemia was significantly higher in the urban population compared to the rural population. Linear regression analysis of IR significantly correlated with different components of MS of both the population. The significant finding of the present study was that the rural population exhibited a high prevalence of MS and IR, though nonobese. IR correlated with components of MS not only in the urban but also in the rural population. To reduce the incidence of Type 2 Diabetes (T2DM) and cardiovascular disease (CVD) in our populations, early identification of populations at risk based on prevalence of MS and IR will become of prime importance.
Qu, Chunmei; Zhou, Xiaoxin; Yang, Gangyi; Li, Ling; Liu, Hua; Liang, Zerong
2016-03-01
The euglycemic-hyperinsulinemic clamp (EHC) is not available in most clinical settings and is costly, time consuming and invasive, and requires trained staff. Therefore, an accessible and inexpensive test to identify insulin resistance (IR) is needed. The aim of this study is to assess whether zinc-α2-glycoprotein (ZAG) index [Ln ZAG/homeostasis model assessment of IR (HOMA-IR)] is a better surrogate index for estimating IR or metabolic syndrome (MetS) compared with other surrogate indices. We performed a population-based cross-sectional study. Two hundred healthy subjects, 102 polycystic ovary syndrome (PCOS) patients, 97 newly diagnosed type 2 diabetes mellitus (nT2DM) and 84 impaired glucose tolerance (IGT) subjects were enrolled. The EHC was performed to identify IR. Circulating ZAG and adiponectin levels were determined by ELISA. The ZAG index was significantly lower in participants with IR including IGT, nT2DM and PCOS than in those without IR. In addition, subjects with MetS had lower ZAG indices and higher the product of fasting triglycerides and glucose (TyG) indices than those without MetS. The ZAG index showed a significantly stronger association with M values than the other surrogate indices, whereas the TyG index showed a stronger association with MetS. The optimal cutoff value of the ZAG index for detection of IR was 2.97 with a sensitivity of 88% and a specificity of 91%, whereas the optimal cutoff value of TyG index for detection of MetS was 4.90 with a sensitivity of 82% and a specificity of 86%. The ZAG index is a better marker than the other surrogate indices for identifying IR, whereas the TyG index has high sensitivity and specificity for identifying MetS. Copyright © 2016 Elsevier Ltd. All rights reserved.
Wu, Rongqian; Dong, Weifeng; Ji, Youxin; Zhou, Mian; Marini, Corrado P.; Ravikumar, Thanjavur S.; Wang, Ping
2008-01-01
Background Gut ischemia/reperfusion (I/R) injury is a serious condition in intensive care patients. Activation of immune cells adjacent to the huge endothelial cell surface area of the intestinal microvasculature produces initially local and then systemic inflammatory responses. Stimulation of the vagus nerve can rapidly attenuate systemic inflammatory responses through inhibiting the activation of macrophages and endothelial cells. Ghrelin, a novel orexigenic hormone, is produced predominately in the gastrointestinal system. Ghrelin receptors are expressed at a high density in the dorsal vagal complex of the brain stem. In this study, we investigated the regulation of the cholinergic anti-inflammatory pathway by the novel gastrointestinal hormone, ghrelin, after gut I/R. Methods and Findings Gut ischemia was induced by placing a microvascular clip across the superior mesenteric artery for 90 min in male adult rats. Our results showed that ghrelin levels were significantly reduced after gut I/R and that ghrelin administration inhibited pro-inflammatory cytokine release, reduced neutrophil infiltration, ameliorated intestinal barrier dysfunction, attenuated organ injury, and improved survival after gut I/R. Administration of a specific ghrelin receptor antagonist worsened gut I/R-induced organ injury and mortality. To determine whether ghrelin's beneficial effects after gut I/R require the intact vagus nerve, vagotomy was performed in sham and gut I/R animals immediately prior to the induction of gut ischemia. Our result showed that vagotomy completely eliminated ghrelin's beneficial effect after gut I/R. To further confirm that ghrelin's beneficial effects after gut I/R are mediated through the central nervous system, intracerebroventricular administration of ghrelin was performed at the beginning of reperfusion after 90-min gut ischemia. Our result showed that intracerebroventricular injection of ghrelin also protected the rats from gut I/R injury. Conclusions These findings suggest that ghrelin attenuates excessive inflammation and reduces organ injury after gut I/R through activation of the cholinergic anti-inflammatory pathway. PMID:18431503
Ngufor, Corine; Critchley, Jessica; Fagbohoun, Josias; N’Guessan, Raphael; Todjinou, Damien; Rowland, Mark
2016-01-01
Background Indoor spraying of walls and ceilings with residual insecticide remains a primary method of malaria control. Insecticide resistance in malaria vectors is a growing problem. Novel insecticides for indoor residual spraying (IRS) which can improve the control of pyrethroid resistant malaria vectors are urgently needed. Insecticide mixtures have the potential to improve efficacy or even to manage resistance in some situations but this possibility remains underexplored experimentally. Chlorfenapyr is a novel pyrrole insecticide which has shown potential to improve the control of mosquitoes which are resistant to current WHO-approved insecticides. Method The efficacy of IRS with chlorfenapyr applied alone or as a mixture with alpha-cypermeththrin (a pyrethroid) was evaluated in experimental huts in Cove, Southern Benin against wild free flying pyrethroid resistant Anopheles gambiae sl. Comparison was made with IRS with alpha-cypermethrin alone. Fortnightly 30-minute in situ cone bioassays were performed to assess the residual efficacy of the insecticides on the treated hut walls. Results Survival rates of wild An gambiae from the Cove hut site in WHO resistance bioassays performed during the trial were >90% with permethrin and deltamethrin treated papers. Mortality of free-flying mosquitoes entering the experimental huts was 4% in the control hut. Mortality with alpha-cypermethrin IRS did not differ from the control (5%, P>0.656). The highest mortality was achieved with chlorfenapyr alone (63%). The alpha-cypermethrin + chlorfenapyr mixture killed fewer mosquitoes than chlorfenapyr alone (43% vs. 63%, P<0.001). While the cone bioassays showed a more rapid decline in residual mortality with chlorfenapyr IRS to <30% after only 2 weeks, fortnightly mortality rates of wild free-flying An gambiae entering the chlorfenapyr IRS huts were consistently high (50–70%) and prolonged, lasting over 4 months. Conclusion IRS with chlorfenapyr shows potential to significantly improve the control of malaria transmission in pyrethroid resistant areas compared to pyrethroid IRS or the mixture. Thirty minute in situ cone bioassays are not predictive of the performance of chlorfenapyr IRS under field conditions. PMID:27588945
NASA Astrophysics Data System (ADS)
Ghadge, Shrinath Dattatray; Patel, Prasad P.; Datta, Moni K.; Velikokhatnyi, Oleg I.; Shanthi, Pavithra M.; Kumta, Prashant N.
2018-07-01
One dimensional (1D) vertically aligned nanotubes (VANTs) of (Sn0.8Ir0.2)O2:10F are synthesized for the first time by a sacrificial template assisted approach. The aim is to enhance the electrocatalytic activity of F doped (Sn,Ir)O2 solid solution electrocatalyst for oxygen evolution reaction (OER) in proton exchange membrane (PEM) based water electrolysis by generating (Sn0.8Ir0.2)O2:10F nanotubes (NTs). The 1D vertical channels and the high electrochemically active surface area (ECSA ∼38.46 m2g-1) provide for facile electron transport. This results in low surface charge transfer resistance (4.2 Ω cm2), low Tafel slope (58.8 mV dec-1) and excellent electrochemical OER performance with ∼2.3 and ∼2.6 fold higher electrocatalytic activity than 2D thin films of (Sn0.8Ir0.2)O2:10F and benchmark IrO2 electrocatalysts, respectively. Furthermore, (Sn0.8Ir0.2)O2:10F NTs exhibit excellent mass activity (21.67 A g-1), specific activity (0.0056 mAcm-2) and TOF (0.016 s-1), which is ∼2-2.6 fold higher than thin film electrocatalysts at an overpotential of 270 mV, with a total mass loading of 0.3 mg cm-2. In addition, (Sn0.8Ir0.2)O2:10F NTs demonstrate remarkable electrochemical durability - comparable to thin films of (Sn0.8Ir0.2)O2:10F and pure IrO2, operated under identical testing conditions in PEM water electrolysis. These results therefore indicate promise of (Sn0.8Ir0.2)O2:10F NTs as OER electrocatalysts for efficient and sustainable hydrogen production.
Adaptive optics high-resolution IR spectroscopy with silicon grisms and immersion gratings
NASA Astrophysics Data System (ADS)
Ge, Jian; McDavitt, Daniel L.; Chakraborty, Abhijit; Bernecker, John L.; Miller, Shane
2003-02-01
The breakthrough of silicon immersion grating technology at Penn State has the ability to revolutionize high-resolution infrared spectroscopy when it is coupled with adaptive optics at large ground-based telescopes. Fabrication of high quality silicon grism and immersion gratings up to 2 inches in dimension, less than 1% integrated scattered light, and diffraction-limited performance becomes a routine process thanks to newly developed techniques. Silicon immersion gratings with etched dimensions of ~ 4 inches are being developed at Penn State. These immersion gratings will be able to provide a diffraction-limited spectral resolution of R = 300,000 at 2.2 micron, or 130,000 at 4.6 micron. Prototype silicon grisms have been successfully used in initial scientific observations at the Lick 3m telescope with adaptive optics. Complete K band spectra of a total of 6 T Tauri and Ae/Be stars and their close companions at a spectral resolution of R ~ 3000 were obtained. This resolving power was achieved by using a silicon echelle grism with a 5 mm pupil diameter in an IR camera. These results represent the first scientific observations conducted by the high-resolution silicon grisms, and demonstrate the extremely high dispersing power of silicon-based gratings. New discoveries from this high spatial and spectral resolution IR spectroscopy will be reported. The future of silicon-based grating applications in ground-based AO IR instruments is promising. Silicon immersion gratings will make very high-resolution spectroscopy (R > 100,000) feasible with compact instruments for implementation on large telescopes. Silicon grisms will offer an efficient way to implement low-cost medium to high resolution IR spectroscopy (R ~ 1000-50000) through the conversion of existing cameras into spectrometers by locating a grism in the instrument's pupil location.
Miyake, Eiji; Yatsunami, Mitsunobu; Kurabayashi, Jun; Teruya, Koji; Sekine, Yasuhiro; Endo, Tatsuaki; Nishida, Ryuichiro; Takano, Nao; Sato, Seiko; Jae Kyung, Han
2016-01-01
Background: Injury prevention programs have recently been created for various sports. However, a longitudinal study on badminton injuries, as assessed by a team’s dedicated medical staff, at the gymnasium has not been performed. Objectives: We aimed to perform the first such study to measure the injury incidence, severity and type as the first step in creating a badminton injury prevention program. Patients and Methods: A prospective, longitudinal survey was conducted between April 2012 and March 2013 with 133 national tournament-level badminton players from junior high school to university in Japan with the teams’ physical therapists at the gymnasium. Injury incidence was measured as the injury rate (IR) for every 1,000 hour (1000 hour) and IR for every 1,000 athlete exposures (1000 AE). Severity was classified in 5 levels by the number of days the athlete was absent from practice or matches. Injury types were categorized as trauma or overuse. Results: Practice (IR) (1,000 hour) was significantly higher in female players than in male players; the rates increased with increasing age. IR (1,000 AE) was significantly higher in matches than in practice in both sexes of all ages, except for female junior high school students and injuries were most frequent for high school students in matches. The majority of the injuries were slight (83.8%); overuse injuries occurred approximately 3 times more than trauma. Conclusions: This is the first study in which medical staff assessed injuries in badminton, providing value through benchmark data. Injury prevention programs are particularly necessary for female university students in practice and high school students in matches. PMID:27217933
Thermoelectric bolometers based on silicon membranes
NASA Astrophysics Data System (ADS)
Varpula, Aapo; Timofeev, Andrey V.; Shchepetov, Andrey; Grigoras, Kestutis; Ahopelto, Jouni; Prunnila, Mika
2017-05-01
State-of-the-art high performance IR sensing and imaging systems utilize highly expensive photodetector technology, which requires exotic and toxic materials and cooling. Cost-effective alternatives, uncooled bolometer detectors, are widely used in commercial long-wave IR (LWIR) systems. Compared to the cooled detectors they are much slower and have approximately an order of magnitude lower detectivity in the LWIR. We present uncooled bolometer technology which is foreseen to be capable of narrowing the gap between the cooled and uncooled technologies. The proposed technology is based on ultra-thin silicon membranes, the thermal conductivity and electrical properties of which can be controlled by membrane thickness and doping, respectively. The thermal signal is transduced into electric voltage using thermocouple consisting of highly-doped n and p type Si beams. Reducing the thickness of the Si membrane improves the performance (i.e. sensitivity and speed) as thermal conductivity and thermal mass of Si membrane decreases with decreasing thickness. Based on experimental data we estimate the performance of these uncooled thermoelectric bolometers.
Optical metrology for testing an all-composite 2-meter diameter mirror
NASA Technical Reports Server (NTRS)
Catanzaro, B.; Thomas, James A.; Small, D.; Johnston, R.; Barber, D.; Connell, S.; Whitmore, S.; Cohen, E.
2001-01-01
The Herschel Space Observatory (formerly known as FIRST) consists of a 3.5 m space telescope designed for use in the long IR and sub-milimeter wavebands. To demonstrate the viability of a carbon fiber composite telescope for this application, Composite Optics Incorporated (COI) manufactured a fast (f/1), large (2 m), lightweight (10.1 kg/m squared) demonstration mirror. A key challenge in demonstrating the performance of this novel mirror was to characterize the surface accuracy at cryogenic (70 K) temperatures. A wide variety of optical metrology techniques were investigated and a brief survey of empirical test results and limitations of the various techniques will be presented in this paper. Two complementary infrared (IR)techniques operating at a wavelength of 10.6 microns were chosen for further development: (1) IR Twyman-Green Phase Shifting Interferometry (IR PSI) and (2) IR Shack-Hartmann (IR SH) Wavefront Sensing. Innovative design modifications made to an existing IR PSI to achieve high-resolution, scannable, infrared measurements of the composite mirror are described. The modified interferometer was capable of measuring surface gradients larger than 350 microradians. The design and results of measurements made with a custom-built IR SH Wavefrong Sensor operating at 10.6 microns are also presented. A compact experimental setup permitting simultaneous operation of both the IR PSI and IR SH tools is shown. The advantages and the limitations of the two key IR metrology tools are discussed.
The design and application of a multi-band IR imager
NASA Astrophysics Data System (ADS)
Li, Lijuan
2018-02-01
Multi-band IR imaging system has many applications in security, national defense, petroleum and gas industry, etc. So the relevant technologies are getting more and more attention in rent years. As we know, when used in missile warning and missile seeker systems, multi-band IR imaging technology has the advantage of high target recognition capability and low false alarm rate if suitable spectral bands are selected. Compared with traditional single band IR imager, multi-band IR imager can make use of spectral features in addition to space and time domain features to discriminate target from background clutters and decoys. So, one of the key work is to select the right spectral bands in which the feature difference between target and false target is evident and is well utilized. Multi-band IR imager is a useful instrument to collect multi-band IR images of target, backgrounds and decoys for spectral band selection study at low cost and with adjustable parameters and property compared with commercial imaging spectrometer. In this paper, a multi-band IR imaging system is developed which is suitable to collect 4 spectral band images of various scenes at every turn and can be expanded to other short-wave and mid-wave IR spectral bands combination by changing filter groups. The multi-band IR imaging system consists of a broad band optical system, a cryogenic InSb large array detector, a spinning filter wheel and electronic processing system. The multi-band IR imaging system's performance is tested in real data collection experiments.
Xie, Zhilin; Terracciano, Anthony C.; Cullen, David A.; ...
2015-05-13
The formation of IrB 2, IrB 1.35, IrB 1.1 and IrB monoboride phases in the Ir–B ceramic nanopowder was confirmed during mechanochemical reaction between metallic Ir and elemental B powders. The Ir–B phases were analysed after 90 h of high energy ball milling and after annealing of the powder for 72 h at 1050°C in vacuo. The iridium monoboride (IrB) orthorhombic phase was synthesised experimentally for the first time and identified by powder X-ray diffraction. Additionally, the ReB 2 type IrB 2 hexagonal phase was also produced for the first time and identified by high resolution transmission electron microscope. Irmore » segregation along disordered domains of the boron lattice was found to occur during high temperature annealing. Furthermore, these nanodomains may have useful catalytic properties.« less
Advanced Small Rocket Chambers. Option 3: 110 1Bf Ir-Re Rocket, Volume 1
NASA Technical Reports Server (NTRS)
Jassowski, Donald M.; Schoenman, Leonard
1995-01-01
This report describes the AJ10-221, a high performance Iridium-coated Rhenium (Ir-Re) 110 lbf (490N) welded rocket chamber with 286:1 area ratio nozzle. This engine was designed, built, and hot fired for over 6 hours on this program. It demonstrated an I(s) of 321.8 sec, which is 10 sec higher than conventional 110 lbf silicide coated Cb chambers now in use. The approach used in this portion of the program was to demonstrate the performance improvement that can be made by the elimination of fuel film cooling and the use of a high temperature (4000F) (2200C) iridium-coated rhenium (Ir-Re) rocket chamber. Detailed thermal, performance, mechanical, and dynamic design analyses of the full engine were conducted by Aerojet. Two Ir-Re chambers were built to the Aerojet design by Ultramet, using the chemical vapor deposition (CVD) process. Incorporation of a secondary mixing device or Boundary Layer Trip (BLT) within the combustion chamber (Aerojet Patents 4882904 and 4936091) results in improvement in flow uniformity, and a significant life and performance increase. The 110 lbf engine design was verified in bolt-up hardware tests at sea level and altitude. The effects of injector design on performance were studied. Two duplicate injectors were fabricated matching the preferred design and were demonstrated to be interchangeable in operation. One of these units was fabricated matching the preferred design and was demonstrated to be interchangeable in operation. One of these units was welded into a flight type thruster which was tested for an accumulated duration of 22,590 sec in 93 firings, one of which was a continuous burn of two hours. A design deficiency in the C-103 nozzle near the Re-Cb transition joint was discovered, studied and corrected design has been prepared. Workhardening studies have been conducted to investigate methods for increasing the low yield strength of the Re in the annealed conditions. An advanced 490N high performance engine has been demonstrated which, when proven to be capable of withstanding launch vibration, is ready for flight qualification.
Advanced small rocket chambers. Option 3: 110 1bf Ir-Re rocket, volume 2
NASA Technical Reports Server (NTRS)
Jassowski, Donald M.; Schoenman, Leonard
1995-01-01
This is the second part of a two-part report that describes the AJ10-221, a high performance iridium-coated rhenium (Ir-Re) 110 lbf (490N) welded rocket chamber with 286:1 area ratio nozzle. This engine was designed, built, and hot fired for over 6 hours on this program. It demonstrated an I(s) of 321.8 sec, which is 10 sec higher than conventional 110 lbf silicide coated Cb chambers now in use. The approach used in this portion of the program was to demonstrate the performance improvement that can be made by the elimination of fuel film cooling and the use of a high temperature (4000 F) (2200 C) iridium-coated rhenium (Ir-Re) rocket chamber. Detailed thermal, performance, mechanical, and dynamic design analyses of the full engine were conducted by Aerojet. Two Ir-Re chambers were built to the Aerojet design by Ultramet, using the chemical vapor deposition (CVD) process. Incorporation of a secondary mixing device or Boundary Layer Trip (BLT) within the combustion chamber (Aerojet Patents 4882904 and 4936091) results in improvement in flow uniformity, and a significant life and performance increase. The 110 lbf engine design was verified in bolt-up hardware tests at sea level and altitude. The effects of injector design on performance were studied. Two duplicate injectors were fabricated matching the preferred design and were demonstrated to be interchangeable in operation. One of these units were welded into a flight type thruster which was tested for an accumulated duration of 22,590 sec in 93 firings, one of which was a continuous burn of two hours. A design deficiency in the C-103 nozzle near the Re-Cb transition joint was discovered, studied and corrected design has been prepared. Workhardening studies have been conducted to investigate methods for increasing the low yield strength of the Re in the annealed conditions. An advanced 490N high performance engine has been demonstrated which, when proven to be capable of withstanding launch vibration, is ready for flight qualification.
2010-01-01
service) High assurance software Distributed network-based battle management High performance computing supporting uniform and nonuniform memory...VNIR, MWIR, and LWIR high-resolution systems Wideband SAR systems RF and laser data links High-speed, high-power photodetector characteriza- tion...Antimonide (InSb) imaging system Long-wave infrared ( LWIR ) quantum well IR photodetector (QWIP) imaging system Research and Development Services
NASA Astrophysics Data System (ADS)
Manikandan, M.; Rajeswarapalanichamy, R.; Iyakutti, K.
2018-03-01
First-principles calculations based on density functional theory was performed to analyse the structural stability of transition metal carbides TMC (TM = Ru, Rh, Pd, Os, Ir, Pt). It is observed that zinc-blende phase is the most stable one for these carbides. Pressure-induced structural phase transition from zinc blende to NiAs phase is predicted at the pressures of 248.5 GPa, 127 GPa and 142 GPa for OsC, IrC and PtC, respectively. The electronic structure reveals that RuC exhibits a semiconducting behaviour with an energy gap of 0.7056 eV. The high bulk modulus values of these carbides indicate that these metal carbides are super hard materials. The high B/G value predicts that the carbides are ductile in their most stable phase.
Improved IR detectors to swap heavy systems for SWaP
NASA Astrophysics Data System (ADS)
Manissadjian, Alain; Rubaldo, Laurent; Rebeil, Yann; Kerlain, Alexandre; Brellier, Delphine; Mollard, Laurent
2012-06-01
Cooled IR technologies are challenged for answering new system needs like the compactness and the reduction of cryopower which is a key feature for the SWaP (Size, Weight and Power) requirements. Over the last years, SOFRADIR has improved its HgCdTe technology, with effect on dark current reduction, opening the way for High Operating Temperature (HOT) systems that can get rid of the 80K temperature constraint, and therefore releases the Stirling cooler engine power consumption. Performances of the 640×512 15μm pitch LW detector working above 100K will be presented. A compact 640×512 15μm pitch MW detector presenting high EO performance above 130K with cut-off wavelength above 5.0μm has been developed. Its different performances with respect to the market requirements for SWaP will be discussed. High performance compact systems will make no compromise on detector resolution. The pixel pitch reduction is the answer for resolution enhancement with size reduction. We will therefore also discuss the ongoing developments and market needs for SWaP systems.
Bentur, J S; Cohen, M B; Gould, F
2000-12-01
We quantified variation in performance under greenhouse conditions among seven populations of Scirpophaga incertulas (Walker) from Luzon Island, Philippines, on three rice varieties: 'IR58' transformed with the cry1Ab gene from Bacillus thuringiensis Berliner, and nontransgenic IR58 and IR62. On IR62, S. incertutas performance did not differ among provinces for any of the 10 parameters measured, but there was a significant effect of town within province for one parameter, 20-d-old larval weight. Larval survival after 48 h on cy1Ab-transformed IR58 did not differ significantly among provinces, but did differ significantly among towns within a province. There was no geographic variation in larval survival after 48 h on control plants of IR58. Surviving insects from the cry1Ab-transformed IR58 were transferred to IR62 to complete development. There was no geographic variation in the percentage of insects completing development to adult emergence and the time required by the transferred female insects to complete development. However, there was variation among provinces in male developmental time. The absence of geographic variation on nontransgenic IR58 and the very limited variation on IR62 indicated that there was little variation in general vigor among the S. incertulas populations and thus that the variation in performance oil cry1Ab-transformed IR58 was probably attributable to differences in susceptibility to Cry1Ab.
Liquid chromatography/Fourier transform IR spectrometry interface flow cell
Johnson, Charles C.; Taylor, Larry T.
1986-01-01
A zero dead volume (ZDV) microbore high performance liquid chromatography (.mu.HPLC)/Fourier transform infrared (FTIR) interface flow cell includes an IR transparent crystal having a small diameter bore therein through which a sample liquid is passed. The interface flow cell further includes a metal holder in combination with a pair of inner, compressible seals for directly coupling the thus configured spectrometric flow cell to the outlet of a .mu.HPLC column end fitting to minimize the transfer volume of the effluents exiting the .mu.HPLC column which exhibit excellent flow characteristics due to the essentially unencumbered, open-flow design. The IR beam passes transverse to the sample flow through the circular bore within the IR transparent crystal, which is preferably comprised of potassium bromide (KBr) or calcium fluoride (CaF.sub.2), so as to minimize interference patterns and vignetting encountered in conventional parallel-plate IR cells. The long IR beam pathlength and lensing effect of the circular cross-section of the sample volume in combination with the refractive index differences between the solvent and the transparent crystal serve to focus the IR beam in enhancing sample detection sensitivity by an order of magnitude.
Mousavi, Ghafour
2015-08-01
To evaluate the effect of Black cumin (Nigella sativa Linn.) pre-treatment on renal ischemia/reperfusion (I/R) induced injury in the rats. A total of 40 male Wistar rats were randomly allocated into five equal groups including Sham, I/R model and three I/R+ Black cumin (0.5, 1 and 2%)-treated groups. I/R groups' kidneys were subjected to 60 min of global ischemia at 37°C followed by 24 h of reperfusion. At the end of reperfusion period, the rats were euthanized. Superoxide dismutase, catalase and glutathione peroxidase activities as well as reduced glutathione and renal malondialdehyde contents were determined in renal tissues. Kidney function tests and histopathological examination were also performed. High serum creatinine, blood urea nitrogen and uric acid as well as malondialhehyde (MDA) levels, and low antioxidant enzyme activities were observed in I/R rats compared to the sham rats. Pre-treatment with Black cumin for three weeks prior to IR operation improved renal function and reduced I/R induced renal inflammation and oxidative injury. These biochemical observations were supported by histopathological test of kidney sections. Black cumin significantly prevented renal ischemia/reperfusion induced functional and histological injuries.
Liquid chromatography/Fourier transform IR spectrometry interface flow cell
Johnson, C.C.; Taylor, L.T.
1985-01-04
A zero dead volume (ZDV) microbore high performance liquid chromatography (..mu.. HPLC)/Fourier transform infrared (FTIR) interface flow cell includes an IR transparent crystal having a small diameter bore therein through which a sample liquid is passed. The interface flow cell further includes a metal holder in combination with a pair of inner, compressible seals for directly coupling the thus configured spectrometric flow cell to the outlet of a ..mu.. HPLC column end fitting to minimize the transfer volume of the effluents exiting the ..mu.. HPLC column which exhibit excellent flow characteristics due to the essentially unencumbered, open-flow design. The IR beam passes transverse to the sample flow through the circular bore within the IR transparent crystal, which is preferably comprised of potassium bromide (KBr) or calcium fluoride (CaF/sub 2/), so as to minimize interference patterns and vignetting encountered in conventional parallel-plate IR cells. The long IR beam pathlength and lensing effect of the circular cross-section of the sample volume in combination with the refractive index differences between the solvent and the transparent crystal serve to focus the IR beam in enhancing sample detection sensitivity by an order of magnitude.
NASA Astrophysics Data System (ADS)
Adineh-Vand, A.; Torabi, M.; Roshani, G. H.; Taghipour, M.; Feghhi, S. A. H.; Rezaei, M.; Sadati, S. M.
2013-09-01
This paper presents a soft computing based artificial intelligent technique, adaptive neuro-fuzzy inference system (ANFIS) to predict the neutron production rate (NPR) of IR-IECF device in wide discharge current and voltage ranges. A hybrid learning algorithm consists of back-propagation and least-squares estimation is used for training the ANFIS model. The performance of the proposed ANFIS model is tested using the experimental data using four performance measures: correlation coefficient, mean absolute error, mean relative error percentage (MRE%) and root mean square error. The obtained results show that the proposed ANFIS model has achieved good agreement with the experimental results. In comparison to the experimental data the proposed ANFIS model has MRE% <1.53 and 2.85 % for training and testing data respectively. Therefore, this model can be used as an efficient tool to predict the NPR in the IR-IECF device.
Sanjay, Pandanaboyana; Kellner, Maximiliane; Tait, Iain Stephen
2012-12-01
This study evaluates the role of interventional radiology (IR) in the management of postoperative complications after pancreatoduodenectomy (PD). A total of 120 consecutive patients were reviewed to identify IR procedures performed for early complications after PD. Findings showed that 24 patients (20.0%) required urgent radiological or surgical re-intervention for early complications, including 11 instances of post-pancreatectomy haemorrhage (PPH), six intra-abdominal abscesses, two bile leaks, one pancreatic fistula and one bowel ischaemia. Three of 24 complications were managed by surgery and 21 were managed by IR. Two of 11 PPHs involved intraluminal haemorrhage (ILH) and nine involved intra-abdominal haemorrhage (IAH). One ILH was managed conservatively and one required surgical intervention. In eight of nine patients with IAH, the bleeding site was identified on computed tomography angiography, and endovascular stenting or coil embolization were performed. No patient required a re-look laparotomy following IR for haemorrhage or intra-abdominal abscess. Overall, three of 120 patients required an urgent re-look laparotomy for early complications. Rates of major morbidity after PD remain high. However, many significant complications (PPH, pancreatic fistula, intra-abdominal abscess) can be managed by IR, reducing the need for reoperation. Re-look surgery is still required in a small percentage (2.5%) of patients. © 2012 International Hepato-Pancreato-Biliary Association.
Sanjay, Pandanaboyana; Kellner, Maximiliane; Tait, Iain Stephen
2012-01-01
Objectives This study evaluates the role of interventional radiology (IR) in the management of postoperative complications after pancreatoduodenectomy (PD). Methods A total of 120 consecutive patients were reviewed to identify IR procedures performed for early complications after PD. Results Findings showed that 24 patients (20.0%) required urgent radiological or surgical re-intervention for early complications, including 11 instances of post-pancreatectomy haemorrhage (PPH), six intra-abdominal abscesses, two bile leaks, one pancreatic fistula and one bowel ischaemia. Three of 24 complications were managed by surgery and 21 were managed by IR. Two of 11 PPHs involved intraluminal haemorrhage (ILH) and nine involved intra-abdominal haemorrhage (IAH). One ILH was managed conservatively and one required surgical intervention. In eight of nine patients with IAH, the bleeding site was identified on computed tomography angiography, and endovascular stenting or coil embolization were performed. No patient required a re-look laparotomy following IR for haemorrhage or intra-abdominal abscess. Overall, three of 120 patients required an urgent re-look laparotomy for early complications. Conclusions Rates of major morbidity after PD remain high. However, many significant complications (PPH, pancreatic fistula, intra-abdominal abscess) can be managed by IR, reducing the need for reoperation. Re-look surgery is still required in a small percentage (2.5%) of patients. PMID:23134182
Predicting detection performance with model observers: Fourier domain or spatial domain?
Chen, Baiyu; Yu, Lifeng; Leng, Shuai; Kofler, James; Favazza, Christopher; Vrieze, Thomas; McCollough, Cynthia
2016-02-27
The use of Fourier domain model observer is challenged by iterative reconstruction (IR), because IR algorithms are nonlinear and IR images have noise texture different from that of FBP. A modified Fourier domain model observer, which incorporates nonlinear noise and resolution properties, has been proposed for IR and needs to be validated with human detection performance. On the other hand, the spatial domain model observer is theoretically applicable to IR, but more computationally intensive than the Fourier domain method. The purpose of this study is to compare the modified Fourier domain model observer to the spatial domain model observer with both FBP and IR images, using human detection performance as the gold standard. A phantom with inserts of various low contrast levels and sizes was repeatedly scanned 100 times on a third-generation, dual-source CT scanner at 5 dose levels and reconstructed using FBP and IR algorithms. The human detection performance of the inserts was measured via a 2-alternative-forced-choice (2AFC) test. In addition, two model observer performances were calculated, including a Fourier domain non-prewhitening model observer and a spatial domain channelized Hotelling observer. The performance of these two mode observers was compared in terms of how well they correlated with human observer performance. Our results demonstrated that the spatial domain model observer correlated well with human observers across various dose levels, object contrast levels, and object sizes. The Fourier domain observer correlated well with human observers using FBP images, but overestimated the detection performance using IR images.
Predicting detection performance with model observers: Fourier domain or spatial domain?
Chen, Baiyu; Yu, Lifeng; Leng, Shuai; Kofler, James; Favazza, Christopher; Vrieze, Thomas; McCollough, Cynthia
2016-01-01
The use of Fourier domain model observer is challenged by iterative reconstruction (IR), because IR algorithms are nonlinear and IR images have noise texture different from that of FBP. A modified Fourier domain model observer, which incorporates nonlinear noise and resolution properties, has been proposed for IR and needs to be validated with human detection performance. On the other hand, the spatial domain model observer is theoretically applicable to IR, but more computationally intensive than the Fourier domain method. The purpose of this study is to compare the modified Fourier domain model observer to the spatial domain model observer with both FBP and IR images, using human detection performance as the gold standard. A phantom with inserts of various low contrast levels and sizes was repeatedly scanned 100 times on a third-generation, dual-source CT scanner at 5 dose levels and reconstructed using FBP and IR algorithms. The human detection performance of the inserts was measured via a 2-alternative-forced-choice (2AFC) test. In addition, two model observer performances were calculated, including a Fourier domain non-prewhitening model observer and a spatial domain channelized Hotelling observer. The performance of these two mode observers was compared in terms of how well they correlated with human observer performance. Our results demonstrated that the spatial domain model observer correlated well with human observers across various dose levels, object contrast levels, and object sizes. The Fourier domain observer correlated well with human observers using FBP images, but overestimated the detection performance using IR images. PMID:27239086
Yoo, Je-Min; Negi, Sandeep; Tathireddy, Prashant; Solzbacher, Florian; Song, Jong-In; Rieth, Loren W.
2013-01-01
Implantable microelectrodes provide a measure to electrically stimulate neurons in the brain and spinal cord and record their electrophysiological activity. A material with a high charge capacity such as activated or sputter-deposited iridium oxide film (AIROF or SIROF) is used as an interface. The Utah electrode array (UEA) uses SIROF for its interface material with neural tissue and oxygen plasma etching (OPE) with an aluminium foil mask to expose the active area, where the interface between the electrode and neural tissue is formed. However, deinsulation of Parylene-C using OPE has limitations, including the lack of uniformity in the exposed area and reproducibility. While the deinsulation of Parylene-C using an excimer laser is proven to be an alternative for overcoming the limitations, the iridium oxide (IrOx) suffers from fracture when high laser fluence (>1000 mJ/cm2) is used. Iridium (Ir), which has a much higher fracture resistance than IrOx, can be deposited before excimer laser deinsulation and then the exposed Ir film area can be activated by electrochemical treatment to acquire the AIROF. Characterisation of the laser-ablated Ir film and AIROF by surface analysis (X-ray photoelectron spectroscopy, scanning electron microscope, and atomic force microscope) and electrochemical analysis (electrochemical impedance spectroscopy, and cyclic voltammetry) shows that the damage on the Ir film induced by laser irradiation is significantly less than that on SIROF, and the AIROF has a high charge storage capacity. The results show the potential of the laser deinsulation technique for use in high performance AIROF-coated UEA fabrication. PMID:23458659
FT-IR spectroscopy characterization of schwannoma: a case study
NASA Astrophysics Data System (ADS)
Ferreira, Isabelle; Neto, Lazaro P. M.; das Chagas, Maurilio José; Carvalho, Luís. Felipe C. S.; dos Santos, Laurita; Ribas, Marcelo; Loddi, Vinicius; Martin, Airton A.
2016-03-01
Schwannoma are rare benign neural neoplasia. The clinical diagnosis could be improved if novel optical techniques are performed. Among these techniques, FT-IR is one of the currently techniques which has been applied for samples discrimination using biochemical information with minimum sample preparation. In this work, we report a case of a schwannoma in the cervical region. A histological examination described a benign process. An immunohistochemically examination demonstrated positivity to anti-S100 protein antibody, indicating a diagnosis of schwannoma. The aim of this analysis was to characterize FT-IR spectrum of the neoplastic and normal tissue in the fingerprint (1000-1800 cm-1) and high wavenumber region (2800-3600 cm-1). The IR spectra were collect from tumor tissue and normal nerve samples by a FT-IR spectrophotometer (Spotlight Perkin Elmer 400, USA) with 64 scans, and resolution of 4 cm-1. A total of twenty spectra were recorded (10 from schwannoma and 10 from nerve). Multivariate Analysis was used to classify the data. Through average and standard deviation analysis we observed that the main spectral change occurs at ≍1600 cm-1 (amide I) and ≍1400 cm-1 (amide III) in the fingerprint region, and in CH2/CH3 protein-lipids and OH-water vibrations for the high wavenumber region. In conclusion, FT-IR could be used as a technique for schwannoma analysis helping to establish specific diagnostic.
Near infrared harvesting dye-sensitized solar cells enabled by rare-earth upconversion materials.
Li, Deyang; Ågren, Hans; Chen, Guanying
2018-02-01
Dye-sensitized solar cells (DSSCs) have been deemed as promising alternatives to silicon solar cells for the conversion of clean sunlight energy into electricity. A major limitation to their conversion efficiency is their inability to utilize light in the infrared (IR) spectral range, which constitutes almost half the energy of the sun's radiation. This fact has elicited motivations and endeavors to extend the response wavelength of DSSCs to the IR range. Photon upconversion through rare-earth ions constitutes one of the most promising approaches toward the goal of converting near-IR (NIR) or IR light into visible or ultraviolet light, where DSSCs typically have high sensitivity. In the present review, we summarize recent progress based on the utilization of various upconversion materials and device structures to improve the performance of dye-sensitized solar cells.
Illumination analysis of LAPAN's IR micro bolometer
NASA Astrophysics Data System (ADS)
Bustanul, A.; Irwan, P.; Andi M., T.
2016-10-01
We have since 2 years ago been doing a research in term of an IR Micrometer Bolometer which aims to fulfill our office, LAPAN, desire to put it as one of payloads into LAPAN's next micro satellite project, either at LAPAN A4 or at LAPAN A5. Due to the lack of experience on the subject, everything had been initiated by spectral radiance analysis adjusted by catastrophes sources in Indonesia, mainly wild fire (forest fire) and active volcano. Based on the result of the appropriate spectral radiance wavelength, 3.8 - 4 μm, and field of view (FOV), we, then, went through the further analysis, optical analysis. Focusing in illumination matter, the process was done by using Zemax software. Optical pass Interference and Stray light were two things that become our concern throughout the work. They could also be an evaluation of the performance optimization of illumination analysis of our optical design. The results, graphs, show that our design performance is close diffraction limited and the image blur of the geometrical produced by Lapan's IR Micro Bolometer lenses is in the pixel area range. Therefore, our optical design performance is relatively good and will produce image with high quality. In this paper, the Illumination analysis and process of LAPAN's Infra Red (IR) Micro Bolometer is presented.
Application of Diffuse Reflectance FT-IR Spectroscopy for the Surface Study of Kevlar Fibers
NASA Astrophysics Data System (ADS)
Chatzi, E. G.; Ishida, H.; Koenig, J. L.
1985-12-01
The surfaces of Kevlar-49 aramid fibers, being used in high-performance composite materials, have been characterized by diffuse reflectance Fourier transform infrared (FT-IR) spectroscopy. Enhancement of the surface selectivity of the technique has been achieved using KBr overlayers. The water absorbed by both the skin and the core of the fibers has been characterized by using this technique and the accessibility of the fiber functional groups has been evaluated.
NASA Astrophysics Data System (ADS)
Yao, Sen; Li, Tao; Li, JieQing; Liu, HongGao; Wang, YuanZhong
2018-06-01
Boletus griseus and Boletus edulis are two well-known wild-grown edible mushrooms which have high nutrition, delicious flavor and high economic value distributing in Yunnan Province. In this study, a rapid method using Fourier transform infrared (FT-IR) and ultraviolet (UV) spectroscopies coupled with data fusion was established for the discrimination of Boletus mushrooms from seven different geographical origins with pattern recognition method. Initially, the spectra of 332 mushroom samples obtained from the two spectroscopic techniques were analyzed individually and then the classification performance based on data fusion strategy was investigated. Meanwhile, the latent variables (LVs) of FT-IR and UV spectra were extracted by partial least square discriminant analysis (PLS-DA) and two datasets were concatenated into a new matrix for data fusion. Then, the fusion matrix was further analyzed by support vector machine (SVM). Compared with single spectroscopic technique, data fusion strategy can improve the classification performance effectively. In particular, the accuracy of correct classification of SVM model in training and test sets were 99.10% and 100.00%, respectively. The results demonstrated that data fusion of FT-IR and UV spectra can provide higher synergic effect for the discrimination of different geographical origins of Boletus mushrooms, which may be benefit for further authentication and quality assessment of edible mushrooms.
Yao, Sen; Li, Tao; Li, JieQing; Liu, HongGao; Wang, YuanZhong
2018-06-05
Boletus griseus and Boletus edulis are two well-known wild-grown edible mushrooms which have high nutrition, delicious flavor and high economic value distributing in Yunnan Province. In this study, a rapid method using Fourier transform infrared (FT-IR) and ultraviolet (UV) spectroscopies coupled with data fusion was established for the discrimination of Boletus mushrooms from seven different geographical origins with pattern recognition method. Initially, the spectra of 332 mushroom samples obtained from the two spectroscopic techniques were analyzed individually and then the classification performance based on data fusion strategy was investigated. Meanwhile, the latent variables (LVs) of FT-IR and UV spectra were extracted by partial least square discriminant analysis (PLS-DA) and two datasets were concatenated into a new matrix for data fusion. Then, the fusion matrix was further analyzed by support vector machine (SVM). Compared with single spectroscopic technique, data fusion strategy can improve the classification performance effectively. In particular, the accuracy of correct classification of SVM model in training and test sets were 99.10% and 100.00%, respectively. The results demonstrated that data fusion of FT-IR and UV spectra can provide higher synergic effect for the discrimination of different geographical origins of Boletus mushrooms, which may be benefit for further authentication and quality assessment of edible mushrooms. Copyright © 2018 Elsevier B.V. All rights reserved.
Study on laser and infrared attenuation performance of carbon nanotubes
NASA Astrophysics Data System (ADS)
Liu, Xiang-cui; Liu, Qing-hai; Dai, Meng-yan; Cheng, Xiang; Fang, Guo-feng; Zhang, Tong; Liu, Haifeng
2014-11-01
In recent years, the weapon systems of laser and infrared (IR) imaging guidance have been widely used in modern warfare because of their high precision and strong anti-interference. However, military smoke, a rapid and effective passive jamming method, can effectively counteract the attack of precision-guided weapons by their scattering and absorbing effects. The traditional smoke has good visible light (0.4-0.76μm) obscurant performance, but hardly any effects to other electromagnetic wave bands while the weapon systems of laser and IR imaging guidance usually work in broad band, including the near-infrared (1-3μm), middle-infrared (3-5μm), far-infrared (8-14μm), and so on. Accordingly, exploiting new effective obscurant materials has attracted tremendous interest worldwide nowadays. As is known, the nano-structured materials have lots of unique properties comparing with the traditional materials suggesting that they might be the perfect alternatives to solve the problems above. Carbon nanotubes (CNTs) are well-ordered, all-carbon hollow graphitic nano-structured materials with a high aspect ratio, lengths from several hundred nanometers to several millimeters. CNTs possess many unique intrinsic physical-chemical properties and are investigated in many areas reported by the previous studies. However, no application research about CNTs in smoke technology field is reported yet. In this paper, the attenuation performances of CNTs smoke to laser and IR were assessed in 20m3 smoke chamber. The testing wavebands employed in experiments are 1.06μm and 10.6μm laser, 3-5μm and 8-14μm IR radiation. The main parameters were obtained included the attenuation rate, transmission rate, mass extinction coefficient, etc. The experimental results suggest that CNTs smoke exhibits excellent attenuation ability to the broadband IR radiation. Their mass extinction coefficients are all above 1m2·g-1. Nevertheless, the mass extinction coefficients vary with the sampling time and smoke particles concentrations, even in the same testing waveband. With the time going the mass extinction coefficients will increase gradually. Based on the above results, theoretical calculations are also carried out for further exploitations. In general, CNTs smoke behaves excellent attenuation ability toward laser and IR under the experimental conditions. Therefore, they have great potentials to develop new smoke obscurant materials which could effectively interfere with broadband IR radiation including 1.06μm, 10.6μm, 3-5μm and 8-12μm IR waveband.
The Scope Of Fourier Transform Infrared (FTIR)
NASA Astrophysics Data System (ADS)
Hirschfeld, T.
1981-10-01
Three auarters of a century after its inception, a generation after its advantages were recognized, and a decade after its first commercialization, FT-IR dominates the growth of the IR market, and reigns alone over its high performance end. What lies ahead for FT-IR now? On one hand, the boundary between it and the classical scanning spectrometers is becoming fuzzy, as gratings attempt to use as much of FT-IR's computer technology as they can handle, and smaller FT systems invade the medium cost instrument range. On the other hand, technology advances in IR detectors, non-Fourier interference devices, and the often announced tunable laser are at long last getting set to make serious inroads in the field (although not necessarily in the manner most of us expected). However, the dominance of FT-IR as the leading edge of IR spectroscopy seems assured for a good many years. The evolution of FT-IR will be dominated by demands not yet fully satisfied such as rapid sample turnover, better quantitation, automated interpretation, higher GC-IR sensitivity, improved LC-IR, and, above all else, reliability and ease of use. These developments will be based on multiple small advances in hardware, large advances in the way systems are put together, and the traditional yearly revolutionary advances of the computer industry. The big question in the field will, however, still be whether our ambition and our skill can continue to keep up with the advances of our tools. It will be fun.
Shaban, N; Kenno, K A; Milne, K J
2014-04-01
High intensity interval training (HIIT) induces similar metabolic adaptations to traditional steady state aerobic exercise training. Until recently, most HIIT studies have examined maximum efforts in healthy populations. The current study aimed to examine the effects of a 2 week modified HIIT program on the homeostatic model of insulin resistance (HOMA-IR) in individuals with type 2 diabetes (T2D). It was hypothesized that HIIT would improve HOMA-IR. Nine individuals with T2D (age=40.2±9.7 y; BMI=33.9±5.3; fasting plasma glucose [FPG]=8.7±2.9 mmol/L; HbA1C=7.3±1.2%; [mean±SD]) performed 6 individualized training sessions of HIIT (4x30 seconds at 100% of estimated maximum workload followed by 4 minutes of active rest) over 2 weeks. HOMA-IR was calculated from FPG and serum insulin and compared against a prior 2 week baseline period. Blood glucose was reduced immediately after each HIIT session (P<0.05). Anthropometrics, FPG, serum insulin, and HOMA-IR were unchanged after training. However, 6 of the 9 individuals exhibited reduced HOMA-IR values after the training period and there was a significant negative correlation between HOMA-IR value prior to training and change in HOMA-IR after HIIT. These observations tend to support the positive health benefits of HITT for individuals with T2D reported in recently published data using a modified HIIT protocol. However, they suggest that the magnitude of the disease should be assessed when examining the effects of exercise interventions in individuals with T2D.
NASA Astrophysics Data System (ADS)
Gruppioni, C.; Berta, S.; Spinoglio, L.; Pereira-Santaella, M.; Pozzi, F.; Andreani, P.; Bonato, M.; De Zotti, G.; Malkan, M.; Negrello, M.; Vallini, L.; Vignali, C.
2016-06-01
We present new estimates of AGN accretion and star formation (SF) luminosity in galaxies obtained for the local 12 μm sample of Seyfert galaxies (12MGS), by performing a detailed broad-band spectral energy distribution (SED) decomposition including the emission of stars, dust heated by SF and a possible AGN dusty torus. Thanks to the availability of data from the X-rays to the sub-millimetre, we constrain and test the contribution of the stellar, AGN and SF components to the SEDs. The availability of Spitzer-InfraRed Spectrograph (IRS) low-resolution mid-infrared (mid-IR) spectra is crucial to constrain the dusty torus component at its peak wavelengths. The results of SED fitting are also tested against the available information in other bands: the reconstructed AGN bolometric luminosity is compared to those derived from X-rays and from the high excitation IR lines tracing AGN activity like [Ne V] and [O IV]. The IR luminosity due to SF and the intrinsic AGN bolometric luminosity are shown to be strongly related to the IR line luminosity. Variations of these relations with different AGN fractions are investigated, showing that the relation dispersions are mainly due to different AGN relative contribution within the galaxy. Extrapolating these local relations between line and SF or AGN luminosities to higher redshifts, by means of recent Herschel galaxy evolution results, we then obtain mid- and far-IR line luminosity functions useful to estimate how many star-forming galaxies and AGN we expect to detect in the different lines at different redshifts and luminosities with future IR facilities (e.g. JWST, SPICA).
Web information retrieval for health professionals.
Ting, S L; See-To, Eric W K; Tse, Y K
2013-06-01
This paper presents a Web Information Retrieval System (WebIRS), which is designed to assist the healthcare professionals to obtain up-to-date medical knowledge and information via the World Wide Web (WWW). The system leverages the document classification and text summarization techniques to deliver the highly correlated medical information to the physicians. The system architecture of the proposed WebIRS is first discussed, and then a case study on an application of the proposed system in a Hong Kong medical organization is presented to illustrate the adoption process and a questionnaire is administrated to collect feedback on the operation and performance of WebIRS in comparison with conventional information retrieval in the WWW. A prototype system has been constructed and implemented on a trial basis in a medical organization. It has proven to be of benefit to healthcare professionals through its automatic functions in classification and summarizing the medical information that the physicians needed and interested. The results of the case study show that with the use of the proposed WebIRS, significant reduction of searching time and effort, with retrieval of highly relevant materials can be attained.
Wu, Zheng-Guang; Jing, Yi-Ming; Lu, Guang-Zhao; Zhou, Jie; Zheng, You-Xuan; Zhou, Liang; Wang, Yi; Pan, Yi
2016-01-01
Due to the high quantum efficiency and wide scope of emission colors, iridium (Ir) (III) complexes have been widely applied as guest materials for OLEDs (organic light-emitting diodes). Contrary to well-developed Ir(III)-based red and green phosphorescent complexes, the efficient blue emitters are rare reported. Like the development of the LED, the absence of efficient and stable blue materials hinders the widely practical application of the OLEDs. Inspired by this, we designed two novel ancillary ligands of phenyl(pyridin-2-yl)phosphinate (ppp) and dipyridinylphosphinate (dpp) for efficient blue phosphorescent iridium complexes (dfppy)2Ir(ppp) and (dfppy)2Ir(dpp) (dfppy = 2-(2,4-difluorophenyl)pyridine) with good electron transport property. The devices using the new iridium phosphors display excellent electroluminescence (EL) performances with a peak current efficiency of 58.78 cd/A, a maximum external quantum efficiency of 28.3%, a peak power efficiency of 52.74 lm/W and negligible efficiency roll-off ratios. The results demonstrated that iridium complexes with pyridinylphosphinate ligands are potential blue phosphorescent materials for OLEDs. PMID:27929124
2015-01-01
The purpose of this study was to: a) identify changes in jump height and perceived well-being as indirect markers of fatigue, b) determine the internal and external workloads performed by players, and c) examine the influence of Yo-Yo IR2 on changes in jump height, perceived well-being and internal and external workloads during a tag football tournament. Microtechnology devices combined with heart rate (HR) chest straps provided external and internal measures of match work-rate and workload for twelve male tag football players during the 2014 Australian National Championships. Jump height and perceived well-being were assessed prior to and during the tournament as indirect measures of fatigue. Changes in work-rate, workload and fatigue measures between high- and low-fitness groups were examined based on players’ Yo-Yo IR2 score using a median split technique. The low- and high-fitness groups reported similar mean HR, PlayerloadTM/min, and distance/min for matches, however the low-fitness group reported higher perceived match-intensities (ES = 0.90–1.35) for several matches. Further, the high-fitness group reported higher measures of tournament workload, including distance (ES = 0.71), PlayerloadTM (ES = 0.85) and Edwards’ training impulse (TRIMP) (ES = 1.23) than the low-fitness group. High- and low-fitness groups both showed large decreases (ES = 1.46–1.49) in perceived well-being during the tournament, although jump height did not decrease below pre-tournament values. Increased Yo-Yo IR2 appears to offer a protective effect against player fatigue despite increased workloads during a tag football tournament. It is vital that training programs adequately prepare tag football players for tournament competition to maximise performance and minimise player fatigue. PMID:26465599
NASA Astrophysics Data System (ADS)
Jin, Sung-Ho
2009-08-01
Highly efficient light-emitting materials based on phenylquinoline-carbazole derivative has been synthesized for organic-light emitting diodes (OLEDs). The materials form high quality amorphous thin films by thermal evaporation and the energy levels can be easily adjusted by the introduction of different electron donating and electron withdrawing groups on carbazoylphenylquinoline. Non-doped deep-blue OLEDs using Et-CVz-PhQ as the emitter show bright emission (CIE coordinates, x=0.156, y=0.093) with an external quantum efficiency of 2.45 %. Furthermore, the material works as an excellent host material for BCzVBi to get high-performance OLEDs with excellent deep-blue CIE coordinates (x=0.155, y=0.157), high power efficiency (5.98 lm/W), and high external quantum efficiency (5.22 %). Cyclometalated Ir(III) μ-chloride bridged dimers were synthesized by iridium trichloride hydrate with an excess of our developed deep-blue emitter, Et-CVz-PhQ. The Ir(III) complexes were prepared by the dimers with the corresponding ancillary ligands. The chloride bridged diiridium complexes can be easily converted to mononuclear Ir(III) complexes by replacing the two bridging chlorides with bidentate monoanionic ancillary ligands. Among the various types of ancillary ligands, we firstly used picolinic acid N-oxide, including picolinic acid and acetylacetone as an ancillary ligands for Ir(III) complexes. The PhOLEDs also shows reasonably high brightness and good luminance efficiency of 20,000 cd/m2 and 12 cd/A, respectively.
Molins-Delgado, Daniel; García-Sillero, Daniel; Díaz-Cruz, M Silvia; Barceló, Damià
2018-04-06
Insect repellents (IRs) are a group of organic chemicals whose function is to prevent the ability of insects of landing in a surface. These compounds have been found in the environment and may pose a risk to non-target organisms. In this study, an on-line solid phase extraction - high performance liquid chromatography-tandem mass spectrometry multiresidue method was developed using an atmospheric photoionization source (SPE-HPLC-(APPI)-MS/MS). The use of the APPI as an alternative ionization technique to electrospray (ESI) and atmospheric pressure chemical ionization (APCI) allowed expanding the range of analytical techniques suitable for the analysis of IRs, so far relied in gas chromatography. High sensitivity and precision was reached with method limits of quantification between 0.2 and 4.6 ng l -1 and interday and intraday precision equal or below 15%. The validated method was applied to the study of surface water samples from three European river basins with different flow regime (Adige River in Italy, Sava River in the Balkans, and Evrotas River in Greece). The results showed that two IRs (DEET and Bayrepel) were ubiquitous in the Sava and Evrotas basins, reaching concentrations as high as 105 μg l -1 of Bayrepel in the Sava River, and 5 μg l -1 of DEET in the Evrotas River. Densely populated areas and effluent waste waters are pointed out as the responsible for this pollution. In the alpine river Adige, only three samples showed low levels of IRs (6.01-37.8 ng l -1 ). The concentrations measured were used to perform an environmental risk assessment based on the hazard quotients (HQs) estimation approach by using the chronic and acute eco-toxicity data available. The results revealed that despite the high frequency and eventually high concentrations of these IRs determined in the three basins, only few sites were at risk, with 1 < HQs < 3.3. Copyright © 2018 The Author(s). Published by Elsevier B.V. All rights reserved.
Infrared and visible laser spectroscopy for highly-charged Ni-like ions
NASA Astrophysics Data System (ADS)
Ralchenko, Yuri
2017-10-01
Application of visible or infrared (IR) lasers for spectroscopy of highly-charged ions (HCI) has not been particularly extensive so far due to a mismatch in typical energies. We show here that the energy difference between the two lowest levels within the first excited configuration 3d9 4 s in Ni-like ions of heavy elements from ZN = 60 to ZN = 92 is within the range of visible or near-IR lasers. The wavelengths of these transitions are calculated within the relativistic model potential formalism and compared with other theoretical and limited experimental data. Detailed collisional-radiative simulations of non-Maxwellian and thermal plasmas are performed showing that photopumping between these levels using relatively moderate lasers is sufficient to provide a two-order of magnitude increase of the pumped level population. This accordingly results in a similar rise of the X-ray line intensity thereby allowing control of X-ray emission with visible/IR lasers.
Dobbin, Nick; Highton, Jamie; Moss, Samantha L; Hunwicks, Richard; Twist, Craig
2018-06-01
Dobbin, N, Highton, J, Moss, SL, Hunwicks, R, and Twist, C. Concurrent validity of a rugby-specific Yo-Yo intermittent recovery test (level 1) for assessing match-related running performance. J Strength Cond Res XX(X): 000-000, 2018-This study investigated the concurrent validity of a rugby-specific high-intensity intermittent running test against the internal, external, and perceptual responses to simulated match play. Thirty-six rugby league players (age 18.5 ± 1.8 years; stature 181.4 ± 7.6 cm; body mass 83.5 ± 9.8 kg) completed the prone Yo-Yo Intermittent Recovery Test (Yo-Yo IR1), of which 16 also completed the Yo-Yo IR1, and 2 × ∼20 minute bouts of a simulated match play (rugby league match simulation protocol for interchange players [RLMSP-i]). Most likely reductions in relative total, low-speed and high-speed distance, mean speed, and time above 20 W·kg (high metabolic power [HMP]) were observed between bouts of the RLMSP-i. Likewise, rating of perceived exertion (RPE) and percentage of peak heart rate (%HRpeak) were very likely and likely higher during the second bout. Pearson's correlations revealed a large relationship for the change in relative distance (r = 0.57-0.61) between bouts with both Yo-Yo IR1 tests. The prone Yo-Yo IR1 was more strongly related to the RLMSP-i for change in repeated sprint speed (r = 0.78 cf. 0.56), mean speed (r = 0.64 cf. 0.36), HMP (r = 0.48 cf. 0.25), fatigue index (r = 0.71 cf. 0.63), %HRpeak (r = -0.56 cf. -0.35), RPEbout1 (r = -0.44 cf. -0.14), and RPEbout2 (r = -0.68 cf. -0.41) than the Yo-Yo IR1, but not for blood lactate concentration (r = -0.20 to -0.28 cf. -0.35 to -0.49). The relationships between prone Yo-Yo IR1 distance and measures of load during the RLMSP-i suggest that it possesses concurrent validity and is more strongly associated with measures of training or match load than the Yo-Yo IR1 using rugby league players.
Sahin, S; Eroglu, M; Selcuk, S; Turkgeldi, L; Kozali, S; Davutoglu, S; Muhcu, M
2014-10-01
To investigate the correlation between insulin resistance (IR) and serum 25-OH-Vit D concentrations and hormonal parameters in lean women with polycystic ovary syndrome (PCOS). 50 lean women with PCOS and 40 body mass index (BMI) matched controls were compared in terms of fasting insulin and glucose, homeostatic model assessment insulin resistance (HOMA-IR), 25-OH-Vit D, high sensitivity C-reactive protein (hs-CRP), luteinizing hormone (LH), follicle-stimulating hormone (FSH), total testosterone, dehydroepiandrosterone sulfate (DHEA-S), total cholesterol, high density lipoprotein (HDL), low density lipoprotein (LDL), triglycerides and Ferriman-Gallway (FG) scores. Correlation analyses were performed between HOMA-IR and metabolic and endocrine parameters. 30% of patients with PCOS demonstrated IR. Levels of 25-OH-Vit D, hsCRP, cholesterol, HDL, LDL, triglyceride and fasting glucose did not differ between the study and control groups. Fasting insulin, HOMA-IR, LH, total testosterone, and DHEA-S levels were higher in PCOS group. HOMA-IR was found to correlate with hs-CRP and total testosterone but not with 25-OH-Vit D levels in lean patients with PCOS. An association between 25-OH-Vit D levels and IR is not evident in lean women with PCOS. hs-CRP levels do not indicate to an increased risk of cardiovascular disease in this population of patients. Because a strong association between hyperinsulinemia and hyperandrogenism exists in lean women with PCOS, it is advisable for this population of patients to be screened for metabolic disturbances, especially in whom chronic anovulation and hyperandrogenism are observed together.
Ogawa, Shinpei; Kimata, Masafumi
2017-01-01
Wavelength- or polarization-selective thermal infrared (IR) detectors are promising for various novel applications such as fire detection, gas analysis, multi-color imaging, multi-channel detectors, recognition of artificial objects in a natural environment, and facial recognition. However, these functions require additional filters or polarizers, which leads to high cost and technical difficulties related to integration of many different pixels in an array format. Plasmonic metamaterial absorbers (PMAs) can impart wavelength or polarization selectivity to conventional thermal IR detectors simply by controlling the surface geometry of the absorbers to produce surface plasmon resonances at designed wavelengths or polarizations. This enables integration of many different pixels in an array format without any filters or polarizers. We review our recent advances in wavelength- and polarization-selective thermal IR sensors using PMAs for multi-color or polarimetric imaging. The absorption mechanism defined by the surface structures is discussed for three types of PMAs—periodic crystals, metal-insulator-metal and mushroom-type PMAs—to demonstrate appropriate applications. Our wavelength- or polarization-selective uncooled IR sensors using various PMAs and multi-color image sensors are then described. Finally, high-performance mushroom-type PMAs are investigated. These advanced functional thermal IR detectors with wavelength or polarization selectivity will provide great benefits for a wide range of applications. PMID:28772855
Ogawa, Shinpei; Kimata, Masafumi
2017-05-04
Wavelength- or polarization-selective thermal infrared (IR) detectors are promising for various novel applications such as fire detection, gas analysis, multi-color imaging, multi-channel detectors, recognition of artificial objects in a natural environment, and facial recognition. However, these functions require additional filters or polarizers, which leads to high cost and technical difficulties related to integration of many different pixels in an array format. Plasmonic metamaterial absorbers (PMAs) can impart wavelength or polarization selectivity to conventional thermal IR detectors simply by controlling the surface geometry of the absorbers to produce surface plasmon resonances at designed wavelengths or polarizations. This enables integration of many different pixels in an array format without any filters or polarizers. We review our recent advances in wavelength- and polarization-selective thermal IR sensors using PMAs for multi-color or polarimetric imaging. The absorption mechanism defined by the surface structures is discussed for three types of PMAs-periodic crystals, metal-insulator-metal and mushroom-type PMAs-to demonstrate appropriate applications. Our wavelength- or polarization-selective uncooled IR sensors using various PMAs and multi-color image sensors are then described. Finally, high-performance mushroom-type PMAs are investigated. These advanced functional thermal IR detectors with wavelength or polarization selectivity will provide great benefits for a wide range of applications.
Ahmed, Asmaa Ibrahim; El-Zawahry, Khaled Mohamed
2016-01-01
Testicular torsion, a surgical emergency, could affect the endocrine and exocrine testicular functions. This study demonstrates histopathological and physiological effects of testicular ischemia/perfusion (I/R) injury and the possible protective effects of Ginkgo biloba treatment. Fifty adult male Wistar rats, 180–200 gm, were randomly divided into sham-operated, Gingko biloba supplemented, ischemia only, I/R, and Gingko biloba treated I/R groups. Overnight fasted rats were anaesthetized by Pentobarbital; I/R was performed by left testis 720° rotation in I/R and treated I/R groups. Orchiectomy was performed for histopathological studies and detection of mitochondrial NAD+. Determination of free testosterone, FSH, TNF-α, and IL1-β in plasma was performed. Plasma-free testosterone was significantly decreased, while plasma FSH, TNF-α, IL-1β, and testicular mitochondrial NAD+ were significantly increased in I/R group compared to control group. These parameters were reversed in Gingko biloba treated I/R group compared to I/R group. I/R caused marked testicular damage and increased APAF-1 in the apoptotic cells which were reversed by Ginkgo biloba treatment. It could be concluded that I/R caused subfertility induced by apoptosis and oxidative stress manifested by the elevated testicular mitochondrial NAD+, which is considered a new possible mechanism. Also, testicular injury could be reduced by Gingko biloba administration alone. PMID:28101298
Ahmed, Asmaa Ibrahim; Lasheen, Noha N; El-Zawahry, Khaled Mohamed
2016-01-01
Testicular torsion, a surgical emergency, could affect the endocrine and exocrine testicular functions. This study demonstrates histopathological and physiological effects of testicular ischemia/perfusion (I/R) injury and the possible protective effects of Ginkgo biloba treatment. Fifty adult male Wistar rats, 180-200 gm, were randomly divided into sham-operated, Gingko biloba supplemented, ischemia only, I/R, and Gingko biloba treated I/R groups. Overnight fasted rats were anaesthetized by Pentobarbital; I/R was performed by left testis 720° rotation in I/R and treated I/R groups. Orchiectomy was performed for histopathological studies and detection of mitochondrial NAD + . Determination of free testosterone, FSH, TNF- α , and IL1- β in plasma was performed. Plasma-free testosterone was significantly decreased, while plasma FSH, TNF- α , IL-1 β , and testicular mitochondrial NAD + were significantly increased in I/R group compared to control group. These parameters were reversed in Gingko biloba treated I/R group compared to I/R group. I/R caused marked testicular damage and increased APAF-1 in the apoptotic cells which were reversed by Ginkgo biloba treatment. It could be concluded that I/R caused subfertility induced by apoptosis and oxidative stress manifested by the elevated testicular mitochondrial NAD + , which is considered a new possible mechanism. Also, testicular injury could be reduced by Gingko biloba administration alone.
System Level RBDO for Military Ground Vehicles using High Performance Computing
2008-01-01
platform. Only the analyses that required more than 24 processors were conducted on the Onyx 350 due to the limited number of processors on the...optimization constraints varied. The queues set the number of processors and number of finite element code licenses available to the analyses. sgi ONYX ...3900: unix 24 MIPS R16000 PROCESSORS 4 IR2 GRAPHICS PIPES 4 IR3 GRAPHICS PIPES 24 GBYTES MEMORY 36 GBYTES LOCAL DISK SPACE sgi ONYX 350: unix 32 MIPS
Generation and application of ultrashort coherent mid-infrared electromagnetic radiation
NASA Astrophysics Data System (ADS)
Wandel, Scott
Particle accelerators are useful instruments that help address critical issues for the future development of nuclear energy. Current state-of-the-art accelerators based on conventional radio-frequency (rf) cavities are too large and expensive for widespread commercial use, and alternative designs must be considered for supplying relativistic beams to small-scale applications, including medical imaging, secu- rity screening, and scientific research in a university-scale laboratory. Laser-driven acceleration using micro-fabricated dielectric photonic structures is an attractive approach because such photonic microstructures can support accelerating fields that are 10 to 100 times higher than that of rf cavity-based accelerators. Dielectric laser accelerators (DLAs) use commercial lasers as a driving source, which are smaller and less expensive than the klystrons used to drive current rf-based accelerators. Despite the apparent need for compact and economical laser sources for laser-driven acceleration, the availability of suitable high-peak-power lasers that cover a broad spectral range is currently limited. To address the needs of several innovative acceleration mechanisms like DLA, it is proposed to develop a coherent source of mid-infrared (IR) electromagnetic radiation that can be implemented as a driving source of laser accelerators. The use of ultrashort mid-IR high peak power laser systems in various laser-driven acceleration schemes has shown the potential to greatly reduce the optical pump intensities needed to realize high acceleration gradients. The optical intensity needed to achieve a given ponderomotive potential is 25 times less when using a 5-mum mid-IR laser as compared to using a 1-mum near-IR solid-state laser. In addition, dielectric structure breakdown caused by multiphoton ionization can be avoided by using longer-wavelength driving lasers. Current mid-IR laser sources do not produce sufficiently short pulse durations, broad spectral bandwidths, or high energies as required by certain accelerator applications. The use of a high-peak-power mid-IR laser system in DLA could enable tabletop accelerators on the MeV to GeV scale for security scanners, medical therapy devices, and compact x-ray light sources. This dissertation reports on the design and construction of a simple and robust, short-pulse parametric source operating at a center wavelength of 5 mum. The design and construction of a high-energy, short-pulse 2-mum parametric source is also presented, which serves as a surrogate pumping source for the 5-mum source. An elegant method for mid-IR pulse characterization is demonstrated, which makes use of ubiquitous silicon photodetectors, traditionally reserved for the characterization of near-IR radiation. In addition, a dual-chirped parametric amplification technique is extended into the mid-IR spectral region, producing a bandwidth-tunable mid-IR source in a simple design without sacrificing conversion efficiency. The design and development of a compact single-shot mid-IR prism spectrometer is also reported, and its implementation in a number of condensed matter studies at the Linac Coherent Light Source (LCLS) at the Stanford Linear Accelerator Center is discussed. Rapid tuning and optimization of a high-energy parametric laser system using the mid-IR spectrometer is demonstrated, which significantly enhances the capabilities of performing optical measurements on superconducting materials using the LCLS instrument. All of the laser sources and optical technologies presented in this dissertation were developed using relatively simple designs to provide compact and cost-e ective systems to address some of the challenges facing accelerator and IR spectroscopy technologies. (Abstract shortened by ProQuest.).
Ionized Gas Outflows in Infrared-bright Dust-obscured Galaxies Selected with WISE and SDSS
NASA Astrophysics Data System (ADS)
Toba, Yoshiki; Bae, Hyun-Jin; Nagao, Tohru; Woo, Jong-Hak; Wang, Wei-Hao; Wagner, Alexander Y.; Sun, Ai-Lei; Chang, Yu-Yen
2017-12-01
We present the ionized gas properties of infrared (IR)-bright dust-obscured galaxies (DOGs) that show an extreme optical/IR color, {(i-[22])}{AB}> 7.0, selected with the Sloan Digital Sky Survey (SDSS) and Wide-field Infrared Survey Explorer (WISE). For 36 IR-bright DOGs that show [O III]λ5007 emission in the SDSS spectra, we performed a detailed spectral analysis to investigate their ionized gas properties. In particular, we measured the velocity offset (the velocity with respect to the systemic velocity measured from the stellar absorption lines) and the velocity dispersion of the [O III] line. We found that the derived velocity offset and dispersion of most IR-bright DOGs are larger than those of Seyfert 2 galaxies (Sy2s) at z< 0.3, meaning that the IR-bright DOGs show relatively strong outflows compared to Sy2s. This can be explained by the difference in IR luminosity contributed from active galactic nuclei, {L}{IR} (AGN), because we found that (i) {L}{IR} (AGN) correlates with the velocity offset and dispersion of [O III] and (ii) our IR-bright DOG sample has larger {L}{IR} (AGN) than Sy2s. Nevertheless, the fact that about 75% IR-bright DOGs have a large (>300 km s-1) velocity dispersion, which is a larger fraction compared to other AGN populations, suggests that IR-bright DOGs are good laboratories to investigate AGN feedback. The velocity offset and dispersion of [O III] and [Ne III]λ3869 are larger than those of [O II]λ3727, which indicates that the highly ionized gas tends to show stronger outflows.
Electronic signatures of dimerization in IrTe2
NASA Astrophysics Data System (ADS)
Dai, Jixia; Wu, Weida; Oh, Yoon Seok; Cheong, S.-W.; Yang, J. J.
2014-03-01
Recently, the mysterious phase transition around Tc ~ 260 K in IrTe2 has been intensively studied. A structural supermodulation with q =1/5 was identified below Tc. A variety of microscopic mechanisms have been proposed to account for this transition, including charge-density wave due to Fermi surface nesting, Te p-orbital driven structure instability, anionic depolymerization, ionic dimerization, and so on. However, there has not been an unified picture on the nature of this transition. To address this issue, we have performed low-temperature scanning tunneling microscopy and spectroscopy (STM/STS) experiments on IrTe2 and IrTe2-xSex. Our STM data clearly shows a strong bias dependence in both topography and local density of states (STS) maps. High resolution spectroscopic data further confirms the stripe-like electronic states modulation, which provides insight to the ionic dimerization revealed by X-ray diffraction.
An embedded system for face classification in infrared video using sparse representation
NASA Astrophysics Data System (ADS)
Saavedra M., Antonio; Pezoa, Jorge E.; Zarkesh-Ha, Payman; Figueroa, Miguel
2017-09-01
We propose a platform for robust face recognition in Infrared (IR) images using Compressive Sensing (CS). In line with CS theory, the classification problem is solved using a sparse representation framework, where test images are modeled by means of a linear combination of the training set. Because the training set constitutes an over-complete dictionary, we identify new images by finding their sparsest representation based on the training set, using standard l1-minimization algorithms. Unlike conventional face-recognition algorithms, we feature extraction is performed using random projections with a precomputed binary matrix, as proposed in the CS literature. This random sampling reduces the effects of noise and occlusions such as facial hair, eyeglasses, and disguises, which are notoriously challenging in IR images. Thus, the performance of our framework is robust to these noise and occlusion factors, achieving an average accuracy of approximately 90% when the UCHThermalFace database is used for training and testing purposes. We implemented our framework on a high-performance embedded digital system, where the computation of the sparse representation of IR images was performed by a dedicated hardware using a deeply pipelined architecture on an Field-Programmable Gate Array (FPGA).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mei, Donghai; Glezakou, Vassiliki Alexandra; Lebarbier, Vanessa MC
2014-07-01
In this work we present a combined experimental and theoretical investigation of stable MgAl2O4 spinel-supported Rh and Ir catalysts for the steam methane reforming (SMR) reaction. Firstly, catalytic performance for a series of noble metal catalysts supported on MgAl2O4 spinel was evaluated for SMR at 600-850°C. Turnover rate at 850°C follows the order: Pd > Pt > Ir > Rh > Ru > Ni. However, Rh and Ir were found to have the best combination of activity and stability for methane steam reforming in the presence of simulated biomass-derived syngas. It was found that highly dispersed ~2 nm Rh andmore » ~1 nm Ir clusters were formed on the MgAl2O4 spinel support. Scanning Transition Electron Microscopy (STEM) images show that excellent dispersion was maintained even under challenging high temperature conditions (e.g. at 850°C in the presence of steam) while Ir and Rh catalysts supported on Al2O3 were observed to sinter at increased rates under the same conditions. These observations were further confirmed by ab initio molecular dynamics (AIMD) simulations which find that ~1 nm Rh and Ir particles (50-atom cluster) bind strongly to the MgAl2O4 surfaces via a redox process leading to a strong metal-support interaction, thus helping anchor the metal clusters and reduce the tendency to sinter. Density functional theory (DFT) calculations suggest that these supported smaller Rh and Ir particles have a lower work function than larger more bulk-like ones, which enables them to activate both water and methane more effectively than larger particles, yet have a minimal influence on the relative stability of coke precursors. In addition, theoretical mechanistic studies were used to probe the relationship between structure and reactivity. Consistent with the experimental observations, our theoretical modeling results also suggest that the small spinel-supported Ir particle catalyst is more active than the counterpart of Rh catalyst for SMR. This work was financially supported by the United States Department of Energy (DOE)’s Bioenergy Technologies Office (BETO) and performed at the Pacific Northwest National Laboratory (PNNL). PNNL is a multi-program national laboratory operated for DOE by Battelle Memorial Institute. Computing time was granted by a user proposal at the Molecular Science Computing Facility in the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) located at PNNL. Part of the computational time was provided by the National Energy Research Scientific Computing Center (NERSC).« less
Saison, J; Ferry, T; Demaret, J; Maucort Boulch, D; Venet, F; Perpoint, T; Ader, F; Icard, V; Chidiac, C; Monneret, G
2014-01-01
The mechanisms sustaining the absence of complete immune recovery in HIV-infected patients upon long-term effective highly active anti-retroviral therapy (HAART) remain elusive. Immune activation, regulatory T cells (Tregs) or very low-level viraemia (VLLV) have been alternatively suspected, but rarely investigated simultaneously. We performed a cross-sectional study in HIV-infected aviraemic subjects (mean duration of HAART: 12 years) to concomitantly assess parameters associated independently with inadequate immunological response. Patients were classified as complete immunological responders (cIR, n = 48) and inadequate immunological responders (iIR, n = 39), depending on the CD4+ T cell count (> or < 500/mm3). Clinical and virological data (including very low-level viraemia) were collected. In parallel, immunophenotyping of CD4+ lymphocytes, including Treg subsets, and CD8+ T cells was performed. Percentages of activated CD4+ T cells, Tregs, effector Tregs and terminal effector Tregs were found to be significantly elevated in iIR. Neither the percentage of activated CD8+ T cells nor VLLV were found to be associated with iIR. In the multivariate analysis, nadir of CD4+ T cell count and percentage of Tregs were the only two parameters associated independently with iIR [odds ratio (OR) = 2·339, P = 0·001, and OR = 0·803, P = 0·041]. We present here the largest study investigating simultaneously the immune response to long-term HAART, activation of CD4+ and CD8+ T cells, Treg percentages and very low-level viraemia. Causative interactions between Tregs and CD4+ T cells should now be explored prospectively in a large patients cohort. PMID:24460818
Naval Research Laboratory Fact Book 2012
2012-11-01
Distributed network-based battle management High performance computing supporting uniform and nonuniform memory access with single and multithreaded...hyperspectral systems VNIR, MWIR, and LWIR high-resolution systems Wideband SAR systems RF and laser data links High-speed, high-power...hyperspectral imaging system Long-wave infrared ( LWIR ) quantum well IR photodetector (QWIP) imaging system Research and Development Services Divi- sion
Makary, Mina S; Kapke, Jordan; Yildiz, Vedat; Pan, Xueliang; Dowell, Joshua D
2018-02-01
To compare the outcomes and costs of inferior vena cava (IVC) filter placement and retrieval in the interventional radiology (IR) and surgical departments at a tertiary-care center. Retrospective review was performed of 142 sequential outpatient IVC filter placements and 244 retrievals performed in the IR suite and operating room (OR) from 2013 to 2016. Patient demographic data, procedural characteristics, outcomes, and direct costs were compared between cohorts. Technical success rates of 100% were achieved for both IR and OR filter placements, and 98% of filters were successfully retrieved by IR means, compared with 83% in the OR (P < .01). Fluoroscopy time was similar for IR and OR filter insertions, but IR retrievals required half the fluoroscopy time, with an average of 9 minutes vs 18 minutes in the OR (P = .02). There was no significant difference between cohorts in the incidences of complications for filter retrievals, but more postprocedural complications were observed for OR placements (8%) vs IR placements (1%; P = .05). The most severe complication occurred during an OR filter retrieval, resulting in entanglement of the snare device and conversion to an emergent open filter removal by vascular surgery. Direct costs were approximately 20% higher for OR vs IR IVC filter placements ($2,246 vs $2,671; P = .01). Filter placements are equally successfully performed in IR and OR settings, but OR patients experienced significantly higher postprocedural complication rates and incurred higher costs. In contrast, higher technical success rates and shorter fluoroscopy times were observed for IR filter retrievals compared with those performed in the OR. Copyright © 2017 SIR. Published by Elsevier Inc. All rights reserved.
Wang, Chen-Hao; Hsu, Hsin-Cheng; Wang, Kai-Ching
2014-08-01
Carbon-supported Pt, Pd, Pd-Pt core-shell (Pt(shell)-Pd(core)/C) and Ir-decorated Pd-Pt core-shell (Ir-decorated Pt(shell)-Pd(core)/C) catalysts were synthesized, and their physical properties, electrochemical behaviors, oxygen reduction reaction (ORR) characteristics and proton exchange membrane fuel cell (PEMFC) performances were investigated herein. From the XRD patterns and TEM images, Ir-decorated Pt(shell)-Pd(core)/C has been confirmed that Pt was deposited on the Pd nanoparticle which had the core-shell structure. Ir-decorated Pt(shell)-Pd(core)/C has more positive OH reduction peak than Pt/C, which is beneficial to weaken the binding energy of Pt-OH during the ORR. Thus, Ir-decorated Pt(shell)-Pd(core)/C has higher ORR activity than Pt/C. The maximum power density of H2-O2 PEMFC using Ir-decorated Pt(shell)-Pd(core)/C is 792.2 mW cm(-2) at 70°C, which is 24% higher than that using Pt/C. The single-cell accelerated degradation test of PEMFC using Ir-decorated Pt(shell)-Pd(core)/C shows good durability by the potential cycling of 40,000 cycles. This study concludes that Ir-decorated Pt(shell)-Pd(core)/C has the low Pt content, but it can facilitate the low-cost and high-efficient PEMFC. Copyright © 2013 Elsevier Inc. All rights reserved.
Sandler, A D; Maher, J W; Weinstock, J V; Schmidt, C D; Schlegel, J F; Jew, J Y; Williams, T H
1993-10-01
The specific functions of the numerous substance P (SP) nerve fibers present within the gastrointestinal tract are not clearly defined. This study examines both functional aspects and distribution of immunoreactive SP (IR-SP) in the canine gastroesophageal junctional (GEJ) region. Lower esophageal sphincter pressure (LESP), mean arterial pressure (MAP), pulse rate (PR), and respiratory rate (RR) were monitored before and after topical application of 2 ml capsaicin (8-methyl-N-vanillyl-6-nonenamide) to the distal esophageal mucosa of anesthetized dogs. Animals then underwent a capsaicin desensitization protocol over a 12-day period. The responses of monitored variables were compared on Day 1 and Day 12 of repetitive capsaicin application. Immunohistochemistry and radioimmunoassay (RIA) were performed on GEJ segments to study the distribution and content of IR-SP in both control (untreated) and capsaicin-treated dogs. The IR-SP was extracted from tissue for RIA and analysis by reverse-phase high-performance liquid chromatography (HPLC). On Day 1, a 2-ml capsaicin application stimulated increases in LESP (44.3 +/- 7.8 cm H2O; P < 0.05), MAP (48 +/- 8.7 mm Hg; P < 0.05), PR (52.6 +/- 20.5 beats/min; P < 0.05), and RR (26.3 +/- 15.6 breaths/min; P > 0.2). No response was observed on Day 12 of treatment. This was accompanied by a 43.3% decrease of IR-SP content in the mucosa of the distal esophagus of desensitized animals. Capsaicin applied at greater concentrations on Day 12 stimulated a return of responses (P < 0.05). Ganglia, cell bodies, nerve fascicles, and neurites stained positively for IR-SP. IR-SP content was markedly higher in esophageal mucosa than in gastric mucosa (P < 0.05). The authenticity of the IR-SP molecule was confirmed by elution time on HPLC. In conclusion, repetitive capsaicin application induced a state of homologous desensitization which was accompanied by a partial depletion of mucosal SP. The GEJ region contains a high SP content with a broad neural distribution. These findings are consistent with the hypothesis that SP may act as a neurotransmitter for chemonociceptive stimuli in the canine distal esophagus.
Song, Do Kyeong; Lee, Hyejin; Sung, Yeon Ah; Oh, Jee Young
2016-11-01
The triglycerides to high-density lipoprotein cholesterol (TG/HDL-C) ratio could be related to insulin resistance (IR). We previously reported that Korean women with polycystic ovary syndrome (PCOS) had a high prevalence of impaired glucose tolerance (IGT). We aimed to determine the cutoff value of the TG/HDL-C ratio for predicting IR and to examine whether the TG/HDL-C ratio is useful for identifying individuals at risk of IGT in young Korean women with PCOS. We recruited 450 women with PCOS (24±5 yrs) and performed a 75-g oral glucose tolerance test (OGTT). IR was assessed by a homeostasis model assessment index over that of the 95th percentile of regular-cycling women who served as the controls (n=450, 24±4 yrs). The cutoff value of the TG/HDL-C ratio for predicting IR was 2.5 in women with PCOS. Among the women with PCOS who had normal fasting glucose (NFG), the prevalence of IGT was significantly higher in the women with PCOS who had a high TG/HDL-C ratio compared with those with a low TG/HDL-C ratio (15.6% vs. 5.6%, p<0.05). The cutoff value of the TG/HDL-C ratio for predicting IR was 2.5 in young Korean women with PCOS, and women with NFG and a high TG/HDL-C ratio had a higher prevalence of IGT. Therefore, Korean women with PCOS with a TG/HDL-C ratio >2.5 are recommended to be administered an OGTT to detect IGT even if they have NFG.
Song, Do Kyeong; Lee, Hyejin; Sung, Yeon-Ah
2016-01-01
Purpose The triglycerides to high-density lipoprotein cholesterol (TG/HDL-C) ratio could be related to insulin resistance (IR). We previously reported that Korean women with polycystic ovary syndrome (PCOS) had a high prevalence of impaired glucose tolerance (IGT). We aimed to determine the cutoff value of the TG/HDL-C ratio for predicting IR and to examine whether the TG/HDL-C ratio is useful for identifying individuals at risk of IGT in young Korean women with PCOS. Materials and Methods We recruited 450 women with PCOS (24±5 yrs) and performed a 75-g oral glucose tolerance test (OGTT). IR was assessed by a homeostasis model assessment index over that of the 95th percentile of regular-cycling women who served as the controls (n=450, 24±4 yrs). Results The cutoff value of the TG/HDL-C ratio for predicting IR was 2.5 in women with PCOS. Among the women with PCOS who had normal fasting glucose (NFG), the prevalence of IGT was significantly higher in the women with PCOS who had a high TG/HDL-C ratio compared with those with a low TG/HDL-C ratio (15.6% vs. 5.6%, p<0.05). Conclusion The cutoff value of the TG/HDL-C ratio for predicting IR was 2.5 in young Korean women with PCOS, and women with NFG and a high TG/HDL-C ratio had a higher prevalence of IGT. Therefore, Korean women with PCOS with a TG/HDL-C ratio >2.5 are recommended to be administered an OGTT to detect IGT even if they have NFG. PMID:27593868
Martins, Fernanda Maria; de Paula Souza, Aletéia; Nunes, Paulo Ricardo Prado; Michelin, Márcia Antoniazi; Murta, Eddie Fernando Candido; Resende, Elisabete Aparecida Mantovani Rodrigues; de Oliveira, Erick Prado; Orsatti, Fábio Lera
2018-07-01
This study compared the effects of 12 weeks of high-intensity interval body weight training (HIBWT) with combined training (COMT; aerobic and resistance exercises on body composition, a 6-minute walk test (6MWT; physical performance), insulin resistance (IR) and inflammatory markers in postmenopausal women (PW) at high risk of type 2 diabetes mellitus (TDM2). In this randomized controlled clinical study, 16 PW at high risk of TDM2 were randomly allocated into two groups: HIBWT (n = 8) and COMT (n = 8). The HIBWT group performed a training protocol (length time ~28 min) consisting of ten sets of 60 s of high intensity exercise interspersed by a recovery period of 60 s of low intensity exercise. The COMT group performed a training protocol (length time ~60 min) consisting of a 30 min walk of moderate intensity following by five resistance exercises. All training sessions were performed in the university gym facility three days a week (no consecutive days) for 12 weeks. All outcomes (body composition, muscle function, and IR and inflammatory markers) were assessed at the baseline and at the end of the study. Both groups increased (P < 0.05) muscle mass index (MMI), 6MWT, and interleukin 1 receptor antagonist and decreased fasting glucose, glycated hemoglobin , Insulin, HOMA-IR, and monocyte chemoattractant protein-1 (trend, P = 0.056). HIBWT effects were indistinguishable (P > 0.05) from the effects of COMT. There was a significant (P < 0.05) interaction of time by the group in muscle strength, indicating that only the COMT increased the muscle strength. This study suggests that changes in HOMA, IL-1ra, 6MWT, and MMI with HITBW are similar when compared to COMT in PW at high risk of TDM2. The patients were part of a 12-week training study (ClinicalTrials.gov Identifier: NCT03200639). Copyright © 2018 Elsevier Inc. All rights reserved.
Sharma, Sushma; Lustig, Robert H; Fleming, Sharon E
2011-05-01
Metabolic syndrome (MetS) is increasing among young people. We compared the use of homeostasis model assessment of insulin resistance (HOMA-IR) with the use of fasting blood glucose to identify MetS in African American children. We performed a cross-sectional analysis of data from a sample of 105 children (45 boys, 60 girls) aged 9 to 13 years with body mass indexes at or above the 85th percentile for age and sex. Waist circumference, blood pressure, and fasting levels of blood glucose, insulin, triglycerides, and high-density lipoprotein cholesterol were measured. We found that HOMA-IR is a stronger indicator of MetS in children than blood glucose. Using HOMA-IR as 1 of the 5 components, we found a 38% prevalence of MetS in this sample of African American children and the proportion of false negatives decreased from 94% with blood glucose alone to 13% with HOMA-IR. The prevalence of MetS was higher in obese than overweight children and higher among girls than boys. Using HOMA-IR was preferred to fasting blood glucose because insulin resistance was more significantly interrelated with the other 4 MetS components.
High-Definition Infrared Spectroscopic Imaging
Reddy, Rohith K.; Walsh, Michael J.; Schulmerich, Matthew V.; Carney, P. Scott; Bhargava, Rohit
2013-01-01
The quality of images from an infrared (IR) microscope has traditionally been limited by considerations of throughput and signal-to-noise ratio (SNR). An understanding of the achievable quality as a function of instrument parameters, from first principals is needed for improved instrument design. Here, we first present a model for light propagation through an IR spectroscopic imaging system based on scalar wave theory. The model analytically describes the propagation of light along the entire beam path from the source to the detector. The effect of various optical elements and the sample in the microscope is understood in terms of the accessible spatial frequencies by using a Fourier optics approach and simulations are conducted to gain insights into spectroscopic image formation. The optimal pixel size at the sample plane is calculated and shown much smaller than that in current mid-IR microscopy systems. A commercial imaging system is modified, and experimental data are presented to demonstrate the validity of the developed model. Building on this validated theoretical foundation, an optimal sampling configuration is set up. Acquired data were of high spatial quality but, as expected, of poorer SNR. Signal processing approaches were implemented to improve the spectral SNR. The resulting data demonstrated the ability to perform high-definition IR imaging in the laboratory by using minimally-modified commercial instruments. PMID:23317676
High-definition infrared spectroscopic imaging.
Reddy, Rohith K; Walsh, Michael J; Schulmerich, Matthew V; Carney, P Scott; Bhargava, Rohit
2013-01-01
The quality of images from an infrared (IR) microscope has traditionally been limited by considerations of throughput and signal-to-noise ratio (SNR). An understanding of the achievable quality as a function of instrument parameters, from first principals is needed for improved instrument design. Here, we first present a model for light propagation through an IR spectroscopic imaging system based on scalar wave theory. The model analytically describes the propagation of light along the entire beam path from the source to the detector. The effect of various optical elements and the sample in the microscope is understood in terms of the accessible spatial frequencies by using a Fourier optics approach and simulations are conducted to gain insights into spectroscopic image formation. The optimal pixel size at the sample plane is calculated and shown much smaller than that in current mid-IR microscopy systems. A commercial imaging system is modified, and experimental data are presented to demonstrate the validity of the developed model. Building on this validated theoretical foundation, an optimal sampling configuration is set up. Acquired data were of high spatial quality but, as expected, of poorer SNR. Signal processing approaches were implemented to improve the spectral SNR. The resulting data demonstrated the ability to perform high-definition IR imaging in the laboratory by using minimally-modified commercial instruments.
Sherzai, Ayesha Z; Shaheen, Magda; Yu, Jeffrey J; Talbot, Konrad; Sherzai, Dean
2018-05-15
To examine the relationship between homeostatic model of insulin resistance (HOMA-IR) and cognitive test performance among population≥60years in a national database. Higher insulin resistance is associated with lower cognitive test performance score in the population≥60years. We analyzed data from the National Health and Nutrition Examination Survey (NHANES) 1999-2000 and 2001-2002. Cognitive test performance was measured by the Digit Symbol Substitution (DSS) exercise score. The main independent variable was the homeostasis model assessment of insulin resistance (HOMA-IR). We used bivariate analysis and generalized linear model adjusting for age, gender, race, education, body mass index, and systolic and diastolic blood pressures; total cholesterol, low density lipoprotein (LDL), high density lipoprotein (HDL) and triglyceride levels; and physical activity, diabetes mellitus, stroke, and congestive heart failure. STATA 14 was used to analyze the data taking into consideration the design, strata and weight. Of the 1028 participants, 44% were male and 85% were white. The mean age was 70.0±0.28 (SE) years. Their average HOMA-IR was 3.6±0.14 and they had a mean of 49.2±0.8 correct DSS score in the cognitive test. Adjusting for the confounding variables, HOMA-IR was associated with decline in DSS score (B=-0.30, 95% confidence interval=-0.54 and -0.05, p=0.01). The model explained 44% of the variability of the DSS score (R 2 =0.44). Significant predictors of decline in DSS score were age, gender, race, and education (p=0.01). Insulin resistance as measured by HOMA-IR was independently associated with lower cognitive test performance score among elderly participants aged ≥60years. Longitudinal studies are needed to test the mechanism and the causal relationship. Copyright © 2017. Published by Elsevier B.V.
Buchheit, Martin; Simpson, Ben M; Garvican-Lewis, Laura A; Hammond, Kristal; Kley, Marlen; Schmidt, Walter F; Aughey, Robert J; Soria, Rudy; Sargent, Charli; Roach, Gregory D; Claros, Jesus C Jimenez; Wachsmuth, Nadine; Gore, Christopher J; Bourdon, Pitre C
2013-01-01
Objectives To examine the time course of wellness, fatigue and performance during an altitude training camp (La Paz, 3600 m) in two groups of either sea-level (Australian) or altitude (Bolivian) native young soccer players. Methods Wellness and fatigue were assessed using questionnaires and resting heart rate (HR) and HR variability. Physical performance was assessed using HR responses to a submaximal run, a Yo-Yo Intermittent recovery test level 1 (Yo-YoIR1) and a 20 m sprint. Most measures were performed daily, with the exception of Yo-YoIR1 and 20 m sprints, which were performed near sea level and on days 3 and 10 at altitude. Results Compared with near sea level, Australians had moderate-to-large impairments in wellness and Yo-YoIR1 relative to the Bolivians on arrival at altitude. The acclimatisation of most measures to altitude was substantially slower in Australians than Bolivians, with only Bolivians reaching near sea-level baseline high-intensity running by the end of the camp. Both teams had moderately impaired 20 m sprinting at the end of the camp. Exercise HR had large associations (r>0.5–0.7) with changes in Yo-YoIR1 in both groups. Conclusions Despite partial physiological and perceptual acclimatisation, 2 weeks is insufficient for restoration of physical performance in young sea-level native soccer players. Because of the possible decrement in 20 m sprint time, a greater emphasis on speed training may be required during and after altitude training. The specific time course of restoration for each variable suggests that they measure different aspects of acclimatisation to 3600 m; they should therefore be used in combination to assess adaptation to altitude. PMID:24282195
Thermal performance of the CrIS passive cryocooler
NASA Astrophysics Data System (ADS)
Ghaffarian, B.; Kohrman, R.; Magner, A.
2006-02-01
The configuration, performance, and test validation of a passive radiant cooler for the National Polar-orbiting Operational Environmental Satellite System (NPOESS) Crosstrack Infrared Sounder (CrIS) Instrument are presented. The cooler is required to provide cryogenic operation of IR focal planes. The 11 kg device, based on prior ITT Industries Space Systems Division coolers, requires virtually no power. It uses multiple thermally isolated cooling stages, each with an independent cryoradiator, operating at successively colder temperatures. The coldest stage, with a controlled set point at 81 K, cools a longwave IR (LWIR) focal plane. An intermediate stage, with a 98 K control point, cools detectors operating in MWIR and SWIR spectral regions. The warmest stage includes a fixed, integral earth shield that limits the thermal load from the earth in the NPOESS Operational Low-earth Orbiting (LEO) orbit. A study of the thermal balance and loads analysis used to evaluate the predicted cooler performance is discussed. High performance margins have been retained throughout the cooler development, fabrication and test phases of the program. The achievable in-orbit temperatures for this cooler are anticipated to be 73 K for the LWIR cooling stage and 91 K for the midwave IR (MWIR)/shortwave IR (SWIR) stage. Test results from two iterations of thermal vacuum verification testing are presented. Lessons learned from the first test, which failed to produce the predicted performance are included. The thermal model of the cooler and test configuration was used to identify deficiencies in the test targets resulting in unexpected heat loads. Corrective action was implemented to remove the heat leaks and a second test verified both the cooler performance and the correlation of the detailed thermal model.
Status Report on the CEBAF IR and UV FELs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leemann, Christoph; Bisognano, Joseph; Douglas, David
1993-07-01
The CEBAF five pass recirculating, superconducting linac, being developed as a high power electron source for nuclear physics, is also an ideal FEL driver.The 45 MeV front end linac is presently operational with a CW (low peak current) nuclear physics gun and has met all CEBAF performance specifications including low emittance and energy spread (< 1 * 10^-4). Progress will be reported in commissioning.This experience leads to predictions of excellent FEL performance.Initial designs reported last year have been advanced.Using the output of a high charge DC photoemission gun under development with a 6 cm period wiggler produces kilowatt output powersmore » in the 3.6 to 17 micrometer range in the fundamental.Third harmonic operation extends IR performance down to 1.2 micrometer.Beam at energies up to 400 MeV from the first full CEBAF linac will interact in a similar but longer wiggler to yield kilowatt UV light production at wavelengths as short as 0.15 micrometers.Full power FEL« less
InAs/GaInSb strained layer superlattice as an infrared detector material: an overview
NASA Astrophysics Data System (ADS)
Johnson, Jeffrey L.
2000-04-01
The investigation of the InAs/Ga1-xInxSb strained layer superlattice (SLS) has been largely motivated by the promise of overcoming limitations of current mature high-performance IR detectors, such as those using HgCdTe and extrinsic silicon. It also offers fundamentally superior performance over other newly emerging III-V bandgap- engineered materials such as QWIPs. The inherent properties of the InAs/GaInSb SLS have identified it as an attractive alternative for niche VLWIR applications requiring high performance under low backgrounds at operating temperatures > 40K. If this material system proves to meet the stringent demands of VLWIR applications, it will most certainly play a significant role as an alternative materials for photovoltaic focal pane arrays operating in the LWIR and MWIR regimes as well. This paper is an overview of SLS technology development, and focuses on critical development needs as seen from the perspective of the IR detector industry.
Correction of aeroheating-induced intensity nonuniformity in infrared images
NASA Astrophysics Data System (ADS)
Liu, Li; Yan, Luxin; Zhao, Hui; Dai, Xiaobing; Zhang, Tianxu
2016-05-01
Aeroheating-induced intensity nonuniformity effects severely influence the effective performance of an infrared (IR) imaging system in high-speed flight. In this paper, we propose a new approach to the correction of intensity nonuniformity in IR images. The basic assumption is that the low-frequency intensity bias is additive and smoothly varying so that it can be modeled as a bivariate polynomial and estimated by using an isotropic total variation (TV) model. A half quadratic penalty method is applied to the isotropic form of TV discretization. And an alternating minimization algorithm is adopted for solving the optimization model. The experimental results of simulated and real aerothermal images show that the proposed correction method can effectively improve IR image quality.
Fusion of radar and satellite target measurements
NASA Astrophysics Data System (ADS)
Moy, Gabriel; Blaty, Donald; Farber, Morton; Nealy, Carlton
2011-06-01
A potentially high payoff for the ballistic missile defense system (BMDS) is the ability to fuse the information gathered by various sensor systems. In particular, it may be valuable in the future to fuse measurements made using ground based radars with passive measurements obtained from satellite-based EO/IR sensors. This task can be challenging in a multitarget environment in view of the widely differing resolution between active ground-based radar and an observation made by a sensor at long range from a satellite platform. Additionally, each sensor system could have a residual pointing bias which has not been calibrated out. The problem is further compounded by the possibility that an EO/IR sensor may not see exactly the same set of targets as a microwave radar. In order to better understand the problems involved in performing the fusion of metric information from EO/IR satellite measurements with active microwave radar measurements, we have undertaken a study of this data fusion issue and of the associated data processing techniques. To carry out this analysis, we have made use of high fidelity simulations to model the radar observations from a missile target and the observations of the same simulated target, as gathered by a constellation of satellites. In the paper, we discuss the improvements seen in our tests when fusing the state vectors, along with the improvements in sensor bias estimation. The limitations in performance due to the differing phenomenology between IR and microwave radar are discussed as well.
Schneider, Erik S.; Schmitz, Anke; Schmitz, Helmut
2015-01-01
Jewel beetles of the genus Melanophila possess a pair of metathoracic infrared (IR) organs. These organs are used for forest fire detection because Melanophila larvae can only develop in fire killed trees. Several reports in the literature and a modeling of a historic oil tank fire suggest that beetles may be able to detect large fires by means of their IR organs from distances of more than 100 km. In contrast, the highest sensitivity of the IR organs, so far determined by behavioral and physiological experiments, allows a detection of large fires from distances up to 12 km only. Sensitivity thresholds, however, have always been determined in non-flying beetles. Therefore, the complete micromechanical environment of the IR organs in flying beetles has not been taken into consideration. Because the so-called photomechanic sensilla housed in the IR organs respond bimodally to mechanical as well as to IR stimuli, it is proposed that flying beetles make use of muscular energy coupled out of the flight motor to considerably increase the sensitivity of their IR sensilla during intermittent search flight sequences. In a search flight the beetle performs signal scanning with wing beat frequency while the inputs of the IR organs on both body sides are compared. By this procedure the detection of weak IR signals could be possible even if the signals are hidden in the thermal noise. If this proposed mechanism really exists in Melanophila beetles, their IR organs could even compete with cooled IR quantum detectors. The theoretical concept of an active amplification mechanism in a photon receptor innervated by highly sensitive mechanoreceptors is presented in this article. PMID:26733883
Schneider, Erik S; Schmitz, Anke; Schmitz, Helmut
2015-01-01
Jewel beetles of the genus Melanophila possess a pair of metathoracic infrared (IR) organs. These organs are used for forest fire detection because Melanophila larvae can only develop in fire killed trees. Several reports in the literature and a modeling of a historic oil tank fire suggest that beetles may be able to detect large fires by means of their IR organs from distances of more than 100 km. In contrast, the highest sensitivity of the IR organs, so far determined by behavioral and physiological experiments, allows a detection of large fires from distances up to 12 km only. Sensitivity thresholds, however, have always been determined in non-flying beetles. Therefore, the complete micromechanical environment of the IR organs in flying beetles has not been taken into consideration. Because the so-called photomechanic sensilla housed in the IR organs respond bimodally to mechanical as well as to IR stimuli, it is proposed that flying beetles make use of muscular energy coupled out of the flight motor to considerably increase the sensitivity of their IR sensilla during intermittent search flight sequences. In a search flight the beetle performs signal scanning with wing beat frequency while the inputs of the IR organs on both body sides are compared. By this procedure the detection of weak IR signals could be possible even if the signals are hidden in the thermal noise. If this proposed mechanism really exists in Melanophila beetles, their IR organs could even compete with cooled IR quantum detectors. The theoretical concept of an active amplification mechanism in a photon receptor innervated by highly sensitive mechanoreceptors is presented in this article.
The Importance of Curriculum-Based Training and Assessment in Interventional Radiology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belli, Anna-Maria, E-mail: anna.belli@stgeorges.nhs.uk; Reekers, Jim A., E-mail: j.a.reekers@amc.uva.nl; Lee, Michael, E-mail: mlee@rcsi.ie
Physician performance and outcomes are being scrutinised by health care providers to improve patient safety and cost efficiency. Patients are best served by physicians who have undergone appropriate specialist training and assessment and perform large numbers of cases to maintain their skills. The Cardiovascular and Interventional Radiological Society of Europe has put into place a curriculum for training in interventional radiology (IR) and a syllabus with an examination, the European Board of Interventional Radiology, providing evidence of attainment of an appropriate and satisfactory skill set for the safe practice of IR. This curriculum is appropriate for IR where there ismore » a high volume of image-guided procedures in vascular and nonvascular organ systems with cross-use of minimally invasive techniques in patients with a variety of disease processes. Other specialties may require different, longer, and more focused training if their experience is “diluted” by the need to master a different skill set.« less
Yo-Yo IR1 vs. incremental continuous running test for prediction of 3000-m performance.
Schmitz, Boris; Klose, Andreas; Schelleckes, Katrin; Jekat, Charlotte M; Krüger, Michael; Brand, Stefan-Martin
2017-11-01
This study aimed to compare physiological responses during the Yo-Yo intermittent recovery level 1 (Yo-Yo IR1) Test and an incremental continuous running field Test (ICRT) and to analyze their predictive value on 3000-m running performance. Forty moderately trained individuals (18 females) performed the ICRT and Yo-Yo IR1 Test to exhaustion. The ICRT was performed as graded running test with an increase of 2.0 km·h-1 after each 3 min interval for lactate diagnostic. In both tests, blood lactate levels were determined after the test and at 2 and 5 min of recovery. Heart rate (HR) was recorded to monitor differences in HR slopes and HR recovery. Comparison revealed a correlation between ICRT and Yo-Yo IR1 Test performance (R2=0.83, P<0.001), while significant differences in HRmax existed (Yo-Yo IR1, 189±10 bpm; ICRT, 195±16 bpm; P<0.005; ES=0.5). Maximum lactate levels were also different between test (Yo-Yo IR1, 10.1±2.1 mmol∙L-1; ICRT, 11.7±2.4 mmol∙L-1; P<0.01; ES=0.7). Significant inverse correlations were found between the Yo-Yo IR1 Test performance and 3000 m running time (R2=0.77, P<0.0001) as well as the ICRT and 3000 m time (R2=0.90, P<0.0001). Our data suggest that ICRT and Yo-Yo IR1 test are useful field test methods for the prediction of competitive running performances such as 3000-m runs but maximum HR and blood lactate values differ significantly. The ICRT may have higher predictive power for middle- to long- distance running performance such as 3000-m runs offering a reliable test for coaches in the recruitment of athletes or supervision of training concepts.
Harput, Gulcan; Guney, Hande; Toprak, Ugur; Kaya, Tunca; Colakoglu, Fatma Filiz; Baltaci, Gul
2016-01-01
Context: Sport-specific adaptations at the glenohumeral joint could occur in adolescent athletes because they start participating in high-performance sports in early childhood. Objective: To investigate shoulder-rotator strength, internal-rotation (IR) and external-rotation (ER) range of motion (ROM), and acromiohumeral distance (AHD) in asymptomatic adolescent volleyball attackers to determine if they have risk factors for injury. Design: Cross-sectional study. Setting: University laboratory. Participants: Thirty-nine adolescent high school-aged volleyball attackers (22 boys, 17 girls; age = 16.0 ± 1.4 years, height = 179.2 ± 9.0 cm, mass = 67.1 ± 10.9 kg, body mass index = 20.7 ± 2.6 kg/m2). Main Outcome Measure(s): Shoulder IR and ER ROM, total-rotation ROM, glenohumeral IR deficit, AHD, and concentric and eccentric strength of the shoulder internal and external rotators were tested bilaterally. Results: External-rotation ROM was greater (t38 = 4.92, P < .001), but IR ROM (t38 = −8.61, P < .001) and total ROM (t38 = −3.55, P = .01) were less in the dominant shoulder, and 15 athletes had a glenohumeral IR deficit (IR ROM loss > 18°). We observed greater concentric internal-rotator (t38 = 2.89, P = .006) and eccentric external-rotator (t38 = 2.65, P = .01) strength in the dominant than in the nondominant shoulder. The AHD was less in the dominant shoulder (t38 = −3.60, P < .001). Conclusions: Adolescent volleyball attackers demonstrated decreased IR ROM, total ROM, and AHD and increased ER ROM in their dominant shoulder. Therefore, routine screening of adolescent athletes and designing training programs for hazardous adaptive changes could be important in preventing shoulder injuries. PMID:27813683
Harput, Gulcan; Guney, Hande; Toprak, Ugur; Kaya, Tunca; Colakoglu, Fatma Filiz; Baltaci, Gul
2016-09-01
Sport-specific adaptations at the glenohumeral joint could occur in adolescent athletes because they start participating in high-performance sports in early childhood. To investigate shoulder-rotator strength, internal-rotation (IR) and external-rotation (ER) range of motion (ROM), and acromiohumeral distance (AHD) in asymptomatic adolescent volleyball attackers to determine if they have risk factors for injury. Cross-sectional study. University laboratory. Thirty-nine adolescent high school-aged volleyball attackers (22 boys, 17 girls; age = 16.0 ± 1.4 years, height = 179.2 ± 9.0 cm, mass = 67.1 ± 10.9 kg, body mass index = 20.7 ± 2.6 kg/m 2 ). Shoulder IR and ER ROM, total-rotation ROM, glenohumeral IR deficit, AHD, and concentric and eccentric strength of the shoulder internal and external rotators were tested bilaterally. External-rotation ROM was greater (t 38 = 4.92, P < .001), but IR ROM (t 38 = -8.61, P < .001) and total ROM (t 38 = -3.55, P = .01) were less in the dominant shoulder, and 15 athletes had a glenohumeral IR deficit (IR ROM loss > 18°). We observed greater concentric internal-rotator (t 38 = 2.89, P = .006) and eccentric external-rotator (t 38 = 2.65, P = .01) strength in the dominant than in the nondominant shoulder. The AHD was less in the dominant shoulder (t 38 = -3.60, P < .001). Adolescent volleyball attackers demonstrated decreased IR ROM, total ROM, and AHD and increased ER ROM in their dominant shoulder. Therefore, routine screening of adolescent athletes and designing training programs for hazardous adaptive changes could be important in preventing shoulder injuries.
OGTT results in obese adolescents with normal HOMA-IR values.
Sahin, Nursel Muratoglu; Kinik, Sibel Tulgar; Tekindal, Mustafa Agah
2013-01-01
To investigate insulin resistance (IR) with OGTT in obese adolescents who have normal fasting insulin and homeostasis model assessment for insulin resistance (HOMA-IR). A total of 97 obese adolescents who had values of HOMA-IR <3.16 and insulin levels <18 μU/mL (125 pmol/L) were included in the study. Oral glucose tolerance test (OGTT) was performed on all cases. Subjects were divided into two groups: subjects with and without IR using an insulin peak of ≥150 μU/mL (1041.8 pmol/L) and/or ≥75 μU/mL (520.9 pmol/L) 120 min after glucose charge and the sum of insulin levels >2083.5 pmol/L (300 μU/mL) in OGTT. IR risk factors were defined as family history of diabetes mellitus, acanthosis nigricans (AN), and hepatic steatosis. IR was detected in 61 (62.9%) patients. The IR group had significantly more frequent AN (p=0.0001). As the number of risk factors increased, the frequency of IR also increased (p=0.01). We advise to perform OGTT in obese adolescents with normal HOMA-IR, if they have risk factors for IR.
2007-10-31
designator and hyperspectral imaging 6. AUfHOR(S) Yee-LoyLam 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION DenseLight...DenseLight Semiconductors CONTENTS 1. Introduction 3 1.1 Overview of Project 3 1.2 Organization of Project 4 1.3 Target...Performance 4 2. SLED Chip Design and Fabrication Development 5 2.1 Organization of Design Stages 5 2.2 SLED Chip Design 6 2.3
Álvarez, C; Ramírez-Campillo, R; Ramírez-Vélez, R; Martínez, C; Castro-Sepúlveda, M; Alonso-Martínez, A; Izquierdo, M
2018-01-01
Little evidence exists on which variables of body composition or muscular strength mediates more glucose control improvements taking into account inter-individual metabolic variability to different modes of exercise training. We examined 'mediators' to the effects of 6-weeks of resistance training (RT) or high-intensity interval training (HIT) on glucose control parameters in physically inactive schoolchildren with insulin resistance (IR). Second, we also determined both training-induce changes and the prevalence of responders (R) and non-responders (NR) to decrease the IR level. Fifty-six physically inactive children diagnosed with IR followed a RT or supervised HIT program for 6 weeks. Participants were classified based on ΔHOMA-IR into glycemic control R (decrease in homeostasis model assessment-IR (HOMA-IR) <3.0 after intervention) and NRs (no changes or values HOMA-IR⩾3.0 after intervention). The primary outcome was HOMA-IR associated with their mediators; second, the training-induced changes to glucose control parameters; and third the report of R and NR to improve body composition, cardiovascular, metabolic and performance variables. Mediation analysis revealed that improvements (decreases) in abdominal fat by the waist circumference can explain more the effects (decreases) of HOMA-IR in physically inactive schoolchildren under RT or HIT regimes. The same analysis showed that increased one-maximum repetition leg-extension was correlated with the change in HOMA-IR (β=-0.058; P=0.049). Furthermore, a change in the waist circumference fully mediated the dose-response relationship between changes in the leg-extension strength and HOMA-IR (β'=-0.004; P=0.178). RT or HIT were associated with significant improvements in body composition, muscular strength, blood pressure and cardiometabolic parameters irrespective of improvement in glycemic control response. Both glucose control RT-R and HIT-R (respectively), had significant improvements in mean HOMA-IR, mean muscular strength leg-extension and mean measures of adiposity. The improvements in the lower body strength and the decreases in waist circumference can explain more the effects of the improvements in glucose control of IR schoolchildren in R group after 6 weeks of RT or HIT, showing both regimes similar effects on body composition or muscular strength independent of interindividual metabolic response variability.
Matzel, Philipp; Krautschick, Lukas; Höhne, Matthias
2017-10-18
Imine reductases (IREDs) have emerged as promising enzymes for the asymmetric synthesis of secondary and tertiary amines starting from carbonyl substrates. Screening the substrate specificity of the reductive amination reaction is usually performed by time-consuming GC analytics. We found two highly active IREDs in our enzyme collection, IR-20 from Streptomyces tsukubaensis and IR-Sip from Streptomyces ipomoeae, that allowed a comprehensive substrate screening with a photometric NADPH assay. We screened 39 carbonyl substrates combined with 17 amines as nucleophiles. Activity data from 663 combinations provided a clear picture about substrate specificity and capabilities in the reductive amination of these enzymes. Besides aliphatic aldehydes, the IREDs accepted various cyclic (C 4 -C 8 ) and acyclic ketones, preferentially with methylamine. IR-Sip also accepted a range of primary and secondary amines as nucleophiles. In biocatalytic reactions, IR-Sip converted (R)-3-methylcyclohexanone with dimethylamine or pyrrolidine with high diastereoselectivity (>94-96 % de). The nucleophile acceptor spectrum depended on the carbonyl substrate employed. The conversion of well-accepted substrates could also be detected if crude lysates were employed as the enzyme source. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Liu, Sibao; Simonetti, Trent; Zheng, Weiqing; Saha, Basudeb
2018-05-09
High yields of diesel-range alkanes are prepared by hydrodeoxygenation of vegetable oils and waste cooking oils over ReO x -modified Ir/SiO 2 catalysts under mild reaction conditions. The catalyst containing a Re/Ir molar ratio of 3 exhibits the best performance, achieving 79-85 wt % yield of diesel-range alkanes at 453 K and 2 MPa H 2 . The yield is nearly quantitative for the theoretical possible long-chain alkanes on the basis of weight of the converted oils. The catalyst retains comparable activity upon regeneration through calcination. Control experiments using probe molecules as model substrates suggest that C=C bonds of unsaturated triglycerides and free fatty acids are first hydrogenated to their corresponding saturated intermediates, which are then converted to aldehyde intermediates through hydrogenolysis of acyl C-O bonds and subsequently hydrogenated to fatty alcohols. Finally, long-chain alkanes without any carbon loss are formed by direct hydrogenolysis of the fatty alcohols. Small amounts of alkanes with one carbon fewer are also formed by decarbonylation of the aldehyde intermediates. A synergy between Ir and partially reduced ReO x sites is discussed to elucidate the high activity of Ir-ReO x /SiO 2. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Schwaighofer, Andreas; Montemurro, Milagros; Freitag, Stephan; Kristament, Christian; Culzoni, María J; Lendl, Bernhard
2018-05-24
In this work, we present a setup for mid-IR measurements of the protein amide I and amide II bands in aqueous solution. Employing a latest generation external cavity-quantum cascade laser (EC-QCL) at room temperature in pulsed operation mode allowed implementing a high optical path length of 31 μm that ensures robust sample handling. By application of a data processing routine, which removes occasionally deviating EC-QCL scans, the noise level could be lowered by a factor of 4. The thereby accomplished signal-to-noise ratio is better by a factor of approximately 2 compared to research-grade Fourier transform infrared (FT-IR) spectrometers at equal acquisition times. Employing this setup, characteristic spectral features of three representative proteins with different secondary structures could be measured at concentrations as low as 1 mg mL -1 . Mathematical evaluation of the spectral overlap confirms excellent agreement of the quantum cascade laser infrared spectroscropy (QCL-IR) transmission measurements with protein spectra acquired by FT-IR spectroscopy. The presented setup combines performance surpassing FT-IR spectroscopy with large applicable optical paths and coverage of the relevant spectral range for protein analysis. This holds high potential for future EC-QCL-based protein studies, including the investigation of dynamic secondary structure changes and chemometrics-based protein quantification in complex matrices.
van der Werf, N R; Willemink, M J; Willems, T P; Greuter, M J W; Leiner, T
2017-12-28
The objective of this study was to evaluate the influence of iterative reconstruction on coronary calcium scores (CCS) at different heart rates for four state-of-the-art CT systems. Within an anthropomorphic chest phantom, artificial coronary arteries were translated in a water-filled compartment. The arteries contained three different calcifications with low (38 mg), medium (80 mg) and high (157 mg) mass. Linear velocities were applied, corresponding to heart rates of 0, < 60, 60-75 and > 75 bpm. Data were acquired on four state-of-the-art CT systems (CT1-CT4) with routinely used CCS protocols. Filtered back projection (FBP) and three increasing levels of iterative reconstruction (L1-L3) were used for reconstruction. CCS were quantified as Agatston score and mass score. An iterative reconstruction susceptibility (IRS) index was used to assess susceptibility of Agatston score (IRS AS ) and mass score (IRS MS ) to iterative reconstruction. IRS values were compared between CT systems and between calcification masses. For each heart rate, differences in CCS of iterative reconstructed images were evaluated with CCS of FBP images as reference, and indicated as small (< 5%), medium (5-10%) or large (> 10%). Statistical analysis was performed with repeated measures ANOVA tests. While subtle differences were found for Agatston scores of low mass calcification, medium and high mass calcifications showed increased CCS up to 77% with increasing heart rates. IRS AS of CT1-T4 were 17, 41, 130 and 22% higher than IRS MS . Not only were IRS significantly different between all CT systems, but also between calcification masses. Up to a fourfold increase in IRS was found for the low mass calcification in comparison with the high mass calcification. With increasing iterative reconstruction strength, maximum decreases of 21 and 13% for Agatston and mass score were found. In total, 21 large differences between Agatston scores from FBP and iterative reconstruction were found, while only five large differences were found between FBP and iterative reconstruction mass scores. Iterative reconstruction results in reduced CCS. The effect of iterative reconstruction on CCS is more prominent with low-density calcifications, high heart rates and increasing iterative reconstruction strength.
Crystal growth, fabrication and evaluation of cadmium manganese telluride gamma ray detectors
NASA Astrophysics Data System (ADS)
Burger, Arnold; Chattopadhyay, Kaushik; Chen, Henry; Olivier Ndap, Jean; Ma, Xiaoyan; Trivedi, Sudhir; Kutcher, Susan W.; Chen, Rujin; Rosemeier, Robert D.
1999-03-01
Cadmium manganese telluride (Cd 1- xMn xTe) is a diluted magnetic semiconductor material which forms the basis for many important devices such as IR detectors, solar cells, magnetic field sensors, optical isolators, and visible and near IR lasers. High resistivity (>10 10 Ω cm) and high μ τ (>10 -6 cm 2/V) material, which are the two prerequisites in the fabrication of radiation detectors, has recently been demonstrated at Brimrose Corp. This paper presents the crystal growth of intentionally vanadium doped crystals, the surface preparation and contacting procedure, as well as the best detector performance obtained so far. Dark current characteristics, and low temperature photoluminescence results are also presented and discussed.
Quantifying the clear-sky bias of satellite-derived infrared LST
NASA Astrophysics Data System (ADS)
Ermida, S. L.; Trigo, I. F.; DaCamara, C.
2017-12-01
Land surface temperature (LST) is one of the most relevant parameters when addressing the physical processes that take place at the surface of the Earth. Satellite data are particularly appropriate for measuring LST over the globe with high temporal resolution. Remote-sensed LST estimation from space-borne sensors has been systematically performed over the Globe for nearly 3 decades and geostationary LST climate data records are now available. The retrieval of LST from satellite observations generally relies on measurements in the thermal infrared (IR) window. Although there is a large number of IR sensors on-board geostationary satellites and polar orbiters suitable for LST retrievals with different temporal and spatial resolutions, the use of IR observations limits LST estimates to clear sky conditions. As a consequence, climate studies based on IR LST are likely to be affected by the restriction of LST data to cloudless conditions. However, such "clear sky bias" has never been quantified and, therefore, the actual impact of relying only on clear sky data is still to be determined. On the other hand, an "all-weather" global LST database may be set up based on passive microwave (MW) measurements which are much less affected by clouds. An 8-year record of all-weather MW LST is here used to quantify the clear-sky bias of IR LST at global scale based on MW observations performed by the Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E) onboard NASA's Aqua satellite. Selection of clear-sky and cloudy pixels is based on information derived from measurements performed by the Moderate Resolution Imaging Spectroradiometer (MODIS) on-board the same satellite.
Performance of the Satellite Test Assistant Robot in JPL's Space Simulation Facility
NASA Technical Reports Server (NTRS)
Mcaffee, Douglas; Long, Mark; Johnson, Ken; Siebes, Georg
1995-01-01
An innovative new telerobotic inspection system called STAR (the Satellite Test Assistant Robot) has been developed to assist engineers as they test new spacecraft designs in simulated space environments. STAR operates inside the ultra-cold, high-vacuum, test chambers and provides engineers seated at a remote Operator Control Station (OCS) with high resolution video and infrared (IR) images of the flight articles under test. STAR was successfully proof tested in JPL's 25-ft (7.6-m) Space Simulation Chamber where temperatures ranged from +85 C to -190 C and vacuum levels reached 5.1 x 10(exp -6) torr. STAR's IR Camera was used to thermally map the entire interior of the chamber for the first time. STAR also made several unexpected and important discoveries about the thermal processes occurring within the chamber. Using a calibrated test fixture arrayed with ten sample spacecraft materials, the IR camera was shown to produce highly accurate surface temperature data. This paper outlines STAR's design and reports on significant results from the thermal vacuum chamber test.
Development of silicon grisms and immersion gratings for high-resolution infrared spectroscopy
NASA Astrophysics Data System (ADS)
Ge, Jian; McDavitt, Daniel L.; Bernecker, John L.; Miller, Shane; Ciarlo, Dino R.; Kuzmenko, Paul J.
2002-01-01
We report new results on silicon grism and immersion grating development using photolithography and anisotropic chemical etching techniques, which include process recipe finding, prototype grism fabrication, lab performance evaluation and initial scientific observations. The very high refractive index of silicon (n=3.4) enables much higher dispersion power for silicon-based gratings than conventional gratings, e.g. a silicon immersion grating can offer a factor of 3.4 times the dispersion of a conventional immersion grating. Good transmission in the infrared (IR) allows silicon-based gratings to operate in the broad IR wavelength regions (~1- 10 micrometers and far-IR), which make them attractive for both ground and space-based spectroscopic observations. Coarser gratings can be fabricated with these new techniques rather than conventional techniques, allowing observations at very high dispersion orders for larger simultaneous wavelength coverage. We have found new etching techniques for fabricating high quality silicon grisms with low wavefront distortion, low scattered light and high efficiency. Particularly, a new etching process using tetramethyl ammonium hydroxide (TMAH) is significantly simplifying the fabrication process on large, thick silicon substrates, while providing comparable grating quality to our traditional potassium hydroxide (KOH) process. This technique is being used for fabricating inch size silicon grisms for several IR instruments and is planned to be used for fabricating ~ 4 inch size silicon immersion gratings later. We have obtained complete K band spectra of a total of 6 T Tauri and Ae/Be stars and their close companions at a spectral resolution of R ~ 5000 using a silicon echelle grism with a 5 mm pupil diameter at the Lick 3m telescope. These results represent the first scientific observations conducted by the high-resolution silicon grisms, and demonstrate the extremely high dispersing power of silicon- based gratings. The future of silicon-based grating applications in ground and space-based IR instruments is promising. Silicon immersion gratings will make very high-resolution spectroscopy (R>100,000) feasible with compact instruments for implementation on large telescopes. Silicon grisms will offer an efficient way to implement low-cost medium to high resolution IR spectroscopy (R~ 1000-50000) through the conversion of existing cameras into spectrometers by locating a grism in the instrument's pupil location.
Han, Chang Wan; Majumdar, Paulami; Marinero, Ernesto E; Aguilar-Tapia, Antonio; Zanella, Rodolfo; Greeley, Jeffrey; Ortalan, Volkan
2015-12-09
It has been a long-lived research topic in the field of heterogeneous catalysts to find a way of stabilizing supported gold catalyst against sintering. Herein, we report highly stable AuIr bimetallic nanoparticles on TiO2 synthesized by sequential deposition-precipitation. To reveal the physical origin of the high stability of AuIr/TiO2, we used aberration-corrected scanning transmission electron microscopy (STEM), STEM-tomography, and density functional theory (DFT) calculations. Three-dimensional structures of AuIr/TiO2 obtained by STEM-tomography indicate that AuIr nanoparticles on TiO2 have intrinsically lower free energy and less driving force for sintering than Au nanoparticles. DFT calculations on segregation behavior of AuIr slabs on TiO2 showed that the presence of Ir near the TiO2 surface increases the adhesion energy of the bimetallic slabs to the TiO2 and the attractive interactions between Ir and TiO2 lead to higher stability of AuIr nanoparticles as compared to Au nanoparticles.
Li, Xue; Pang, Xiuyu; Zhang, Qiao; Qu, Qiannuo; Hou, Zhigang; Liu, Zhipeng; Lv, Lin; Na, Guanqiong; Zhang, Wei; Sun, Changhao; Li, Ying
2016-02-01
This prospective cohort study was conducted to assess the duration of daytime napping and its effect combined with night sleep deprivation on the risk of developing high HOMA-IR (homeostasis model assessment of insulin resistance) index and disadvantageous changes in glycosylated hemoglobin (HbA1c) levels.A total of 5845 diabetes-free subjects (2736 women and 3109 men), 30 to 65 years of age, were targeted for this cohort study since 2008. Multiple adjusted Cox regression models were performed to evaluate the single and joint effects of daytime napping on the risk of an elevated HbA1c level and high HOMA-IR index.After an average of 4.5 years of follow-up, >30 minutes of daytime napping was significantly associated with an increased risk of an elevated HbA1c level (>6.5%) in men and women (all P trend < 0.05). Hazard ratios (HRs) for an HbA1c level between 5.7% and 6.4% were also significant in the entire cohort and women, but nonsignificant in men. HRs (95% confidence interval, CIs) for the high HOMA-IR index in the entire cohort, men, and women were 1.33 (1.10-1.62), 1.46 (1.08-1.98), and 1.47 (1.12-1.91), respectively. The combination of sleep deprivation with no naps or >30 minutes napping and the combination of no sleep deprivation with >30 minutes daytime napping were all associated with an HbA1c level >6.5% (HR = 2.08, 95% CI = 1.24-3.51; HR = 4.00, 95% CI = 2.03-7.90; and HR = 2.05, 95% CI = 1.29-3.27, respectively). No sleep deprivation combined with >30 minutes daytime napping correlated with a high risk of an HbA1c level between 5.7% and 6.4% and high HOMA-IR index (HR = 2.12, 95% CI = 1.48-3.02; and HR = 1.35, 95% CI = 1.10-1.65, respectively).Daytime napping >30 minutes was associated with a high risk of an elevated HbA1c level and high HOMA-IR index. No sleep deprivation combined with napping >30 minutes carries a risk of abnormal glucose metabolism. Sleep deprivation combined with brief daytime napping <30 minutes was not associated with a risk for an elevated HbA1c level and high HOMA-IR index.
Li, Xue; Pang, Xiuyu; Zhang, Qiao; Qu, Qiannuo; Hou, Zhigang; Liu, Zhipeng; Lv, Lin; Na, Guanqiong; Zhang, Wei; Sun, Changhao; Li, Ying
2016-01-01
Abstract This prospective cohort study was conducted to assess the duration of daytime napping and its effect combined with night sleep deprivation on the risk of developing high HOMA-IR (homeostasis model assessment of insulin resistance) index and disadvantageous changes in glycosylated hemoglobin (HbA1c) levels. A total of 5845 diabetes-free subjects (2736 women and 3109 men), 30 to 65 years of age, were targeted for this cohort study since 2008. Multiple adjusted Cox regression models were performed to evaluate the single and joint effects of daytime napping on the risk of an elevated HbA1c level and high HOMA-IR index. After an average of 4.5 years of follow-up, >30 minutes of daytime napping was significantly associated with an increased risk of an elevated HbA1c level (>6.5%) in men and women (all P trend < 0.05). Hazard ratios (HRs) for an HbA1c level between 5.7% and 6.4% were also significant in the entire cohort and women, but nonsignificant in men. HRs (95% confidence interval, CIs) for the high HOMA-IR index in the entire cohort, men, and women were 1.33 (1.10–1.62), 1.46 (1.08–1.98), and 1.47 (1.12–1.91), respectively. The combination of sleep deprivation with no naps or >30 minutes napping and the combination of no sleep deprivation with >30 minutes daytime napping were all associated with an HbA1c level >6.5% (HR = 2.08, 95% CI = 1.24–3.51; HR = 4.00, 95% CI = 2.03–7.90; and HR = 2.05, 95% CI = 1.29–3.27, respectively). No sleep deprivation combined with >30 minutes daytime napping correlated with a high risk of an HbA1c level between 5.7% and 6.4% and high HOMA-IR index (HR = 2.12, 95% CI = 1.48–3.02; and HR = 1.35, 95% CI = 1.10–1.65, respectively). Daytime napping >30 minutes was associated with a high risk of an elevated HbA1c level and high HOMA-IR index. No sleep deprivation combined with napping >30 minutes carries a risk of abnormal glucose metabolism. Sleep deprivation combined with brief daytime napping <30 minutes was not associated with a risk for an elevated HbA1c level and high HOMA-IR index. PMID:26844520
Lu, Xiao-Ming; Hamrahi, Victoria F.; Tompkins, Ronald G.; Fischman, Alan J.
2014-01-01
Alterations in the phosphorylation and/or degradation of insulin receptor substrate 1 (IRS-1) produced by burn injury may be responsible, at least in part, for burn-induced insulin resistance. In particular, following burn injury, reductions in glucose uptake by skeletal muscle may be secondary to altered abundance and/or phosphorylation of IRS-1. In this report, we performed in vitro studies with 293 cells transfected with IRS-1. These studies demonstrated that there is a dramatic change in the phosphorylation pattern of Tyr, Ser, and Thr residues in IRS-1 as a function of insulin levels. Specifically, Ser and Thr residues in the C-terminal region were phosphorylated only at high insulin levels. SILAC (stable isotope labeling with amino acids in cell culture) followed by sequencing of C-terminal IRS-1 fragments by tandem mass spectrometry demonstrated that there is significant protein cleavage at these sites. These findings suggest that one of the biological roles of the C-terminal region of IRS-1 may be negative modulation of the finely coordinated insulin signaling system. Clearly, this could represent an important factor in insulin resistance and identification of inhibitors of the kinases that are responsible for the phosphorylation could foster new lines of research for the development of drugs for treating insulin resistance. PMID:19724894
NASA Astrophysics Data System (ADS)
Kupferberg, Lenn C.
1996-03-01
Fourier transform IR [FT-IR] spectrometers have virtually replaced scanned grating IR spectrometers in the commercial market. While FTIR spectrometers have been a boon for the chemist, they present problems for the measurement of transmittance of thick, high-index, high-dispersion, IR windows. Reflection and refraction of light by the windows introduce measurement errors. The principles of the FT-IR spectrometer will be briefly reviewed. The origins of the measurement errors will be discussed. Simple modifications to the operation of commercially available instruments will be presented. These include using strategically placed apertures and the use of collimated vs. focused beams at the sample position. They are essential for removing the effects of reflected light entering the interferometer and limiting the divergence angle of light in the interferometer. The latter minimizes refractive effects and insures consistent underfilling of the detector. Data will be shown from FT-IR spectrometers made by four manufactures and compared to measurements from a dispersive spectrometer.
Cinnamon extract prevents the insulin resistance induced by a high-fructose diet.
Qin, B; Nagasaki, M; Ren, M; Bajotto, G; Oshida, Y; Sato, Y
2004-02-01
The aim of this study was to determine whether cinnamon extract (CE) would improve the glucose utilization in normal male Wistar rats fed a high-fructose diet (HFD) for three weeks with or without CE added to the drinking water (300 mg/kg/day). In vivo glucose utilization was measured by the euglycemic clamp technique. Further analyses on the possible changes in insulin signaling occurring in skeletal muscle were performed afterwards by Western blotting. At 3 mU/kg/min insulin infusions, the decreased glucose infusion rate (GIR) in HFD-fed rats (60 % of controls, p < 0.01) was improved by CE administration to the same level of controls (normal chow diet) and the improving effect of CE on the GIR of HFD-fed rats was blocked by approximately 50 % by N-monometyl-L-arginine. The same tendency was found during the 30 mU/kg/min insulin infusions. There were no differences in skeletal muscle insulin receptor (IR)-beta, IR substrate (IRS)-1, or phosphatidylinositol (PI) 3-kinase protein content in any groups. However, the muscular insulin-stimulated IR-beta and IRS-1 tyrosine phosphorylation levels and IRS-1 associated with PI 3-kinase in HFD-fed rats were only 70 +/- 9 %, 76 +/- 5 %, and 72 +/- 6 % of controls (p < 0.05), respectively, and these decreases were significantly improved by CE treatment. These results suggest that early CE administration to HFD-fed rats would prevent the development of insulin resistance at least in part by enhancing insulin signaling and possibly via the NO pathway in skeletal muscle.
Marriott, Matthaus; Krustrup, Peter; Mohr, Magni
2015-01-01
Caffeine and sodium bicarbonate ingestion have been suggested to improve high-intensity intermittent exercise, but it is unclear if these ergogenic substances affect performance under provoked metabolic acidification. To study the effects of caffeine and sodium bicarbonate on intense intermittent exercise performance and metabolic markers under exercise-induced acidification, intense arm-cranking exercise was performed prior to intense intermittent running after intake of placebo, caffeine and sodium bicarbonate. Male team-sports athletes (n = 12) ingested sodium bicarbonate (NaHCO3; 0.4 g.kg(-1) b.w.), caffeine (CAF; 6 mg.kg(-1) b.w.) or placebo (PLA) on three different occasions. Thereafter, participants engaged in intense arm exercise prior to the Yo-Yo intermittent recovery test level-2 (Yo-Yo IR2). Heart rate, blood lactate and glucose as well as rating of perceived exertion (RPE) were determined during the protocol. CAF and NaHCO3 elicited a 14 and 23% improvement (P < 0.05), respectively, in Yo-Yo IR2 performance, post arm exercise compared to PLA. The NaHCO3 trial displayed higher [blood lactate] (P < 0.05) compared to CAF and PLA (10.5 ± 1.9 vs. 8.8 ± 1.7 and 7.7 ± 2.0 mmol.L(-1), respectively) after the Yo-Yo IR2. At exhaustion CAF demonstrated higher (P < 0.05) [blood glucose] compared to PLA and NaHCO3 (5.5 ± 0.7 vs. 4.2 ± 0.9 vs. 4.1 ± 0.9 mmol.L(-1), respectively). RPE was lower (P < 0.05) during the Yo-Yo IR2 test in the NaHCO3 trial in comparison to CAF and PLA, while no difference in heart rate was observed between trials. Caffeine and sodium bicarbonate administration improved Yo-Yo IR2 performance and lowered perceived exertion after intense arm cranking exercise, with greater overall effects of sodium bicarbonate intake.
2018-04-01
The International Forum is held once a year by the ESR and its international radiological partner societies with the aim to address and discuss selected topics of global relevance in radiology. In 2017, the issue of the position of interventional radiology (IR) within radiology was analysed. IR is expanding because of the increased patient demand for minimally invasive therapies performed under imaging guidance, and its success in improving patient outcomes, reducing in-hospital stays, reducing morbidity and mortality of treatment in many organs and organ-systems. Despite the many successes of IR, public awareness about it is quite low. IR requires specific training and, in most countries, the majority of interventional radiologists do not dedicate their time completely to IR but perform diagnostic radiology investigations as well. Turf battles in IR are common in many countries. To preserve and keep IR within radiology, it is necessary to focus more on direct and longitudinal patient care. Having beds dedicated to IR within radiology departments is very important to increase clinical involvement of interventional radiologists. IR procedures fit perfectly within "value-based healthcare", but the metrics have to be developed. • IR should stay a prominent subspecialty within radiology. • Dedicated IR training pathways are mandatory. • Measures to increase recruitment of young doctors to IR and to increase public awareness of IR are needed. • Beds dedicated to IR within radiology departments are important in order to increase clinical involvement of interventional radiologists.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ping, Yuan; Nielsen, Robert J.; Goddard, William A.
How to efficiently oxidize H 2O to O 2 (oxygen evolution reaction, OER) in photoelectrochemical cells (PEC) is a great challenge due to its complex charge transfer process, high overpotential, and corrosion. So far no OER mechanism has been fully explained atomistically with both thermodynamic and kinetics. IrO 2 is the only known OER catalyst with both high catalytic activity and stability in acidic conditions. This is important because PEC experiments often operate at extreme pH conditions. In this work, we performed first-principles calculations integrated with implicit solvation at constant potentials to examine the detailed atomistic reaction mechanism of OERmore » at the IrO 2 (110) surface. We determined the surface phase diagram, explored the possible reaction pathways including kinetic barriers, and computed reaction rates based on the microkinetic models. Furthermore, this allowed us to resolve several long-standing puzzles about the atomistic OER mechanism.« less
Ping, Yuan; Nielsen, Robert J.; Goddard, William A.
2016-12-09
How to efficiently oxidize H 2O to O 2 (oxygen evolution reaction, OER) in photoelectrochemical cells (PEC) is a great challenge due to its complex charge transfer process, high overpotential, and corrosion. So far no OER mechanism has been fully explained atomistically with both thermodynamic and kinetics. IrO 2 is the only known OER catalyst with both high catalytic activity and stability in acidic conditions. This is important because PEC experiments often operate at extreme pH conditions. In this work, we performed first-principles calculations integrated with implicit solvation at constant potentials to examine the detailed atomistic reaction mechanism of OERmore » at the IrO 2 (110) surface. We determined the surface phase diagram, explored the possible reaction pathways including kinetic barriers, and computed reaction rates based on the microkinetic models. Furthermore, this allowed us to resolve several long-standing puzzles about the atomistic OER mechanism.« less
NASA Astrophysics Data System (ADS)
Shao, Yanhua; Mei, Yanying; Chu, Hongyu; Chang, Zhiyuan; He, Yuxuan; Zhan, Huayi
2018-04-01
Pedestrian detection (PD) is an important application domain in computer vision and pattern recognition. Unmanned Aerial Vehicles (UAVs) have become a major field of research in recent years. In this paper, an algorithm for a robust pedestrian detection method based on the combination of the infrared HOG (IR-HOG) feature and SVM is proposed for highly complex outdoor scenarios on the basis of airborne IR image sequences from UAV. The basic flow of our application operation is as follows. Firstly, the thermal infrared imager (TAU2-336), which was installed on our Outdoor Autonomous Searching (OAS) UAV, is used for taking pictures of the designated outdoor area. Secondly, image sequences collecting and processing were accomplished by using high-performance embedded system with Samsung ODROID-XU4 and Ubuntu as the core and operating system respectively, and IR-HOG features were extracted. Finally, the SVM is used to train the pedestrian classifier. Experiment show that, our method shows promising results under complex conditions including strong noise corruption, partial occlusion etc.
High-z X-ray Obscured Quasars in Galaxies with Extreme Mid-IR/Optical Colors
NASA Astrophysics Data System (ADS)
Piconcelli, E.; Lanzuisi, G.; Fiore, F.; Feruglio, C.; Vignali, C.; Salvato, M.; Grappioni, C.
2009-05-01
Extreme Optical/Mid-IR color cuts have been used to uncover a population of dust-enshrouded, mid-IR luminous galaxies at high redshifts. Several lines of evidence point towards the presence of an heavily absorbed, possibly Compton-thick quasar at the heart of these systems. Nonetheless, the X-ray spectral properties of these intriguing sources still remain largely unexplored. Here we present an X-ray spectroscopic study of a large sample of 44 extreme dust-obscured galaxies (EDOGs) with F24 μm/FR>2000 and F24 μm>1.3 mJy selected from a 6 deg2 region in the SWIRE fields. The application of our selection criteria to a wide area survey has been capable of unveiling a population of X-ray luminous, absorbed z>1 quasars which is mostly missed in the traditional optical/X-ray surveys performed so far. Advances in the understanding of the X-ray properties of these recently-discovered sources by Simbol-X observations will be also discussed.
Hou, Dianwei; Nissimagoudar, Arun S; Bian, Qiang; Wu, Kui; Pan, Shilie; Li, Wu; Yang, Zhihua
2018-06-15
Infrared nonlinear optical (IR NLO) crystals are the major materials to widen the output range of solid-state lasers to mid- or far-infrared regions. The IR NLO crystals used in the middle IR region are still inadequate for high-power laser applications because of deleterious thermal effects (lensing and expansion), low laser-induced damage threshold, and two-photon absorption. Herein, the unbiased global minimum search method was used for the first time to search for IR NLO optical materials and ultimately found a new IR NLO material NaGaS 2 . It meets the stringent demands for IR NLO materials pumped by high-power laser with the highest thermal conductivity among common IR NLO materials able to avoid two-photon absorption, a classic nonlinear coefficient, and wide infrared transparency.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Datta, Moni Kanchan; Kadakia, Karan; Velikokhatnyi, Oleg I
2013-01-01
Identification and development of non-noble metal based electro-catalysts or electro-catalysts comprising compositions with significantly reduced amounts of expensive noble metal contents (e.g. IrO{sub 2}, Pt) with comparable electrochemical performance to the standard noble metal/metal oxide for proton exchange membrane (PEM) based water electrolysis would signify a major breakthrough in hydrogen generation via water electrolysis. Development of such systems would lead to two primary outcomes: first, a reduction in the overall capital costs of PEM based water electrolyzers, and second, attainment of the targeted hydrogen production costs (<$3.00/gge delivered by 2015) comparable to conventional liquid fuels. In line with these goals,more » by exploiting a two-pronged theoretical first principles and experimental approach herein, we demonstrate for the very first time a solid solution of SnO{sub 2}:10 wt% F containing only 20 at.% IrO{sub 2} [e.g. (Sn{sub 0.80}Ir{sub 0.20})O{sub 2}:10F] displaying remarkably similar electrochemical activity and comparable or even much improved electrochemical durability compared to pure IrO{sub 2}, the accepted gold standard in oxygen evolution electro-catalysts for PEM based water electrolysis. We present the results of these studies.« less
Lee, Hong-Shik; Kim, Haeng-In; Lee, Sang-Shin
2012-06-10
A compact laser transmitter, which takes advantage of an optical subassembly module, was proposed and demonstrated, providing precisely aligned collinear IR and visible beams. The collimated IR beam acts as a long-range projectile for simulated combat, carrying an optical pulsed signal, whereas the visible beam plays the role of tracking the IR beam. The proposed laser transmitter utilizes IR (λ(1)=905 nm) and visible (λ(2)=660 nm) light sources, a fiber-optic collimator, and a beam combiner, which includes a wavelength division multiplexing (WDM) filter in conjunction with optical fiber. The device was built via the laser welding technique and then evaluated by investigating the characteristics of the generated light beams. The IR collimated beam produced had a Gaussian profile and a divergence angle of ~1.3 mrad, and the visible monitoring beam was appropriately collimated to be readily discernible in the vicinity of the transmitter. The two beams were highly aligned within an angle of 0.004 deg as anticipated. Finally, we performed a practical outdoor field test to assess the IR beam with the help of a receiver. An effective trajectory was observed ranging up to 660 m with an overall detectable beam width of ~60 cm.
NASA Astrophysics Data System (ADS)
Berg, Linda Sue
A systematic study of the superconducting and normal state properties of some ternary rare earth transition metal silicides and germanides of the Sc(,5)Co(,4)Si(,10) -type is reported in this work. Low temperature heat capacity measurements indicate the presence of a complicated phonon density of states in these structurally complex compounds. A better description of the phonon spectrum of the high T(,c) materials, Sc(,5)Rh(,4)Si(,10), Sc(,5)Ir(,4)Si(,10), and Y(,5)Os(,4)Ge(,10), given by a model proposed by Junod et al.('1), is presented and discussed. The large values of (DELTA)C/(gamma)(,n)T(,c) and the electron-phonon coupling constant for these high T(,c) compounds indicate that they are strong-coupled superconductors. Relative to other ternary superconductors, many of these materials have large Debye temperatures. The BSC theory does not seem to afford an adequate description of the supercon- ducting state in these compounds. DC electrical resistivity measurements on these compounds show resistivity behaviors deviating from those exhibited by simple metals. The (rho)(T) data for Y(,5)Ir(,4)Si(,10), Lu(,5)Rh(,4)Si(,10), Lu(,5)Ir(,4)Si(,10), and Y(,5)Os(,4)Ge(,10), indicate the presence of anomalies. Static molar magnetic susceptibility measurements performed on these compounds indicate (1) a small effective magnetic moment of 0.26(mu)(,B) on the Co atom and (2) anomalous behaviors in the Lu(,5)Rh(,4)Si(,10), Lu(,5)Ir(,4)Si(,10), Y(,5)Ir(,4)Si(,10), Lu(,5)Ir(,4)Ge(,10), and Y(,5)Rh(,4)Ge(,10) data. It is suggested that the same mechanism, namely, the forma- tion of a charge- or spin-density wave, is causing the anomalous behaviors in both the resistivity and susceptibility data. Lastly, upper critical magnetic field measurements were performed on Sc(,5)Co(,4)Si(,10), Sc(,5)Rh(,4)Si(,10), Sc(,5)Ir(,4)Si(,10), Lu(,5)Rh(,4)Si(,10), Lu(,5)Ir(,4)Si(,10), and Y(,5)Os(,4)Ge(,10). Relative to the other five samples, Y(,5)Os(,4)Ge(,10) exhibits very high values for (-dH(,c2)/dT)(,Tc) = 10.2 kOe/ K and H(,c2)(0) = 60.4 kOe. Comparing the value of (-dH(,c2)/dT)(,Tc) gained from the fit of the data to the WHH theory to the calculated (-dH(,c2)/dT)(,Tc) yields various degrees of agreement for these com- pounds. Indications are also that (1) there seems to be little or no. Pauli limiting and (2) the spin-orbit effect appears to be negligible in these compounds. *DOE Report IS-T-1215. This work was performed under contract No. W-7405-Eng-82 with the U. S. Department of Energy. ('1)A. Junod, D. Bichsel, and J. Muller, Helv. Phys. Acta 52, 580 (1979).
Surface Modified TiO2 Obscurants for Increased Safety and Performance
2012-11-01
based obscurant devices in performance. 15. SUBJECT TERMS Obscurant, visible, IR , smoke, TiO2, aerosol, particle, surface modification...hexamethyldimethoxysilane IR Infrared wavelength LabRAM Lab scale Resonant Acoustic Mixer from Resodyn Corporation LPM Liters Per Minute M106 Currently fielded (Army...trinitrophloroglucinol UV-Vis Ultraviolet-visible wavelengths KEYWORDS Obscurant, visible, IR , smoke, TiO2, aerosol, particle, surface modification
Poole, Dana S; Plenge, Esben; Poot, Dirk H J; Lakke, Egbert A J F; Niessen, Wiro J; Meijering, Erik; van der Weerd, Louise
2014-07-01
The visualization of activity in mouse brain using inversion recovery spin echo (IR-SE) manganese-enhanced MRI (MEMRI) provides unique contrast, but suffers from poor resolution in the slice-encoding direction. Super-resolution reconstruction (SRR) is a resolution-enhancing post-processing technique in which multiple low-resolution slice stacks are combined into a single volume of high isotropic resolution using computational methods. In this study, we investigated, first, whether SRR can improve the three-dimensional resolution of IR-SE MEMRI in the slice selection direction, whilst maintaining or improving the contrast-to-noise ratio of the two-dimensional slice stacks. Second, the contrast-to-noise ratio of SRR IR-SE MEMRI was compared with a conventional three-dimensional gradient echo (GE) acquisition. Quantitative experiments were performed on a phantom containing compartments of various manganese concentrations. The results showed that, with comparable scan times, the signal-to-noise ratio of three-dimensional GE acquisition is higher than that of SRR IR-SE MEMRI. However, the contrast-to-noise ratio between different compartments can be superior with SRR IR-SE MEMRI, depending on the chosen inversion time. In vivo experiments were performed in mice receiving manganese using an implanted osmotic pump. The results showed that SRR works well as a resolution-enhancing technique in IR-SE MEMRI experiments. In addition, the SRR image also shows a number of brain structures that are more clearly discernible from the surrounding tissues than in three-dimensional GE acquisition, including a number of nuclei with specific higher brain functions, such as memory, stress, anxiety and reward behavior. Copyright © 2014 John Wiley & Sons, Ltd.
Molecular orientation in aligned electrospun polyimide nanofibers by polarized FT-IR spectroscopy.
Yang, Haoqi; Jiang, Shaohua; Fang, Hong; Hu, Xiaowu; Duan, Gaigai; Hou, Haoqing
2018-07-05
Quantitative explanation on the improved mechanical properties of aligned electrospun polyimide (PI) nanofibers as the increased imidization temperatures is highly required. In this work, polarized FT-IR spectroscopy is applied to solve this problem. Based on the polarized FT-IR spectroscopy and the molecular model in the fibers, the length of the repeat unit of PI molecule, the angle between the fiber axis and the symmetric stretching direction of carbonyl group on the imide ring, and the angle between the PI molecular axis and fiber axis are all investigated. The Mark-Howink equation is used to calculate the number-average molar mass of PI molecules. The orientation states of PI molecules in the electrospun nanofibers are studied from the number-average molar mass of PI molecules and the average fiber diameter. Quantitative analysis of the orientation factor of PI molecules in the electrospun nanofibers is performed by polarized FT-IR spectroscopy. Copyright © 2018 Elsevier B.V. All rights reserved.
Otake, Toshie; Fukumoto, Jin; Abe, Masao; Takemura, Shigeki; Mihn, Pham Ngoc; Mizoue, Tetsuya; Kiyohara, Chikako
2014-09-01
Insulin resistance (IR) is regarded as one of the earliest features of many metabolic diseases, and major efforts are aimed at improving insulin function to confront this issue. The aim of this study was to investigate the relationship of body mass index (BMI), cigarette smoking, alcohol intake, physical activity, green tea and coffee consumption to IR. We performed a cross-sectional study of 1542 male self defense officials. IR was defined as the highest quartile of the fasting plasma insulin (≥ 50 pmol/L) or the homeostasis model assessment-estimated IR (HOMA-IR ≥ 1.81). An unconditional logistic model was used to estimate the odds ratio (OR) and 95% confidence interval (CI) for the association between IR and influential factors. Stratified analysis by obesity status (BMI < 25 kg/m(2), non-obese; ≥ 25 kg/m(2), obese) was performed. IR was significantly positively related to BMI and glucose tolerance, negatively related to alcohol use. Independent of obesity status, significant trends were observed between IR and alcohol use. Drinking 30 mL or more of ethanol per day reduced IR by less than 40%. Strong physical activity was associated with decreased risk of IR based on fasting plasma insulin only in the obese. Coffee consumption was inversely associated with the risk of IR based on HOMA-IR in the non-obese group. Higher coffee consumption may be protective against IR among only the non-obese. Further studies are warranted to examine the effect modification of the obesity status on the coffee-IR association.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marquardt, Steffen, E-mail: marquardt.steffen@mh-hannover.de; Rodt, Thomas, E-mail: rodt.thomas@mh-hannover.de; Rosenthal, Herbert, E-mail: rosenthal.herbert@mh-hannover.de
PurposeTo assess the impact of anatomical, procedural, and operator skill factors on the success and duration of fluoroscopy-guided transjugular intrahepatic portoystemic shunt following standard operating procedure (SOP).Material and MethodsDuring a 32-month period, 102 patients underwent transjugular intrahepatic portosystemic shunt creation (TIPS) by two interventional radiologists (IR) following our institutional SOP based on fluoroscopy guidance. Both demographic and procedural data were assessed. The duration of the intervention (D{sub Int}) and of the portal vein puncture (D{sub Punct}) was analyzed depending on the skill level of the IR as well as the anatomic or procedural factors.ResultsIn 99 of the 102 patients, successfulmore » TIPS without peri-procedural complications was performed. The mean D{sub Int} (IR1: 77 min; IR2: 51 min, P < 0.005) and the mean D{sub Punct} (IR1: 19 min; IR2: 13 min, P < 0.005) were significantly higher in TIPS performed by IR1 (with 2 years of clinical experience performing TIPS, n = 38) than by IR2 (>10 years of clinical experience performing TIPS, n = 61), (P < 0.005 both, Mann–Whitney U test). D{sub Int} showed a higher correlation with D{sub Punct} for IR2 (R{sup 2} = 0.63) than for IR1 (R{sup 2} = 0.13). There was no significant difference in the D{sub Punct} for both IRs with regard to the success of the wedged portography (P = 0.90), diameter of the portal vein (P = 0.60), central right portal vein length (P = 0.49), or liver function (MELD-Score before the TIPS procedure; P = 0.14).ConclusionTIPS following SOP is safe, fast, and reliable. The only significant factor for shorter D{sub Punct} and D{sub Int} was the clinical experience of the IR. Anatomic variability, successful portography, or liver function did not alter the duration or technical success of TIPS.« less
NASA Astrophysics Data System (ADS)
Perkins, William C.; Lagoda, Gwen A.; Burnett, Arthur L.; Fried, Nathaniel M.
2014-03-01
Optical nerve stimulation (ONS) has been commonly performed in the laboratory using high-power, pulsed, infrared (IR) lasers including Holmium:YAG, diode, and Thulium fiber lasers. However, the relatively high cost of these lasers in comparison with conventional electrical nerve stimulation (ENS) equipment may represent a significant barrier to widespread adoption of ONS. Optical stimulation of the prostate cavernous nerves (CN's) has recently been reported using lower cost, continuous-wave (CW), all-fiber-based diode lasers. This preliminary study describes further miniaturization and cost reduction of the ONS system in the form of a compact, lightweight, cordless, and inexpensive IR laser. A 140-mW, 1560-nm diode laser was integrated with a green aiming beam and delivery optics into a compact ONS system. Surface and subsurface ONS was performed in a total of 5 rats, in vivo, with measurement of an intracavernous pressure (ICP) response during CW laser irradiation for 30 s with a spot diameter of 0.7 mm. Short-term, CW ONS of the prostate CN's is feasible using a compact, inexpensive, batterypowered IR laser diode system. This ONS system may represent an alternative to ENS for laboratory studies, and with further development, a handheld option for ONS in the clinic to identify and preserve the CN's during prostate cancer surgery.
NASA Astrophysics Data System (ADS)
Kholodnov, Viacheslav; Drugova, Albina; Nikitin, Mikhail; Chekanova, Galina
2012-10-01
Technology of infrared (IR) avalanche photodiodes (APDs) gradually moves from simple single element APD to 2D focal plane arrays (FPA). Spectral covering of APDs is expanded continuously from classic 1.3 μm to longer wavelengths due to using of narrow-gap semiconductor materials like Hg1-xCdxTe. APDs are of great interest to developers and manufacturers of different optical communication, measuring and 3D reconstruction thermal imaging systems. Major IR detector materials for manufacturing of high-performance APDs became heteroepitaxial structures InxGa1-xAsyP1-y and Hg1-xCdxTe. Progress in IR APD technology was achieved through serious improvement in material growing techniques enabling forming of multilayer heterostuctures with separate absorption and multiplication regions (SAM). Today SAM-APD design can be implemented both on InxGa1-xAsyP1-y and Hg1-xCdxTe multilayer heteroepitaxial structures. To create the best performance optimal design avalanche heterophotodiode (AHPD) it is necessary to carry out a detailed theoretical analysis of basic features of generation, avalanche breakdown and multiplication of charge carriers in proper heterostructure. Optimization of AHPD properties requires comprehensive estimation of AHPD's pixel performance depending on pixel's multi-layer structure design, layers doping, distribution of electric field in the structure and operating temperature. Objective of the present article is to compare some features of 1.55 μm SAM-AHPDs based on InxGa1-xAsyP1-y and Hg1-xCdxTe.
Free Space Optical Communication Utilizing Mid-Infrared Interband Cascade Laser
NASA Technical Reports Server (NTRS)
Soibel, A.; Wright, M.; Farr, W.; Keo, S.; Hill, C.; Yang, R. Q.; Liu, H. C.
2010-01-01
A Free Space Optical (FSO) link utilizing mid-IR Interband Cascade lasers has been demonstrated in the 3-5 micron atmospheric transmission window with data rates up to 70 Mb/s and bit-error-rate (BER) less than 10 (exp -8). The performance of the mid-IR FSO link has been compared with the performance of a near-IR link under various fog conditions using an indoor communication testbed. These experiments demonstrated the lower attenuation and scintillation advantages of a mid-IR FSO link through fog than a 1550 nm FSO link.
Wei, Yanlong; Wang, Gao; Gao, Yubin; Liu, Zhengguang; Xu, Lin; Tian, Miao; Yuan, Dongfang; Ren, Haiping; Zhou, Hanchang; Yang, Lu; Shi, Xueshun; Xiao, Zhaoqian
2018-04-03
Iridium-rhodium is generally applied as a thermocouple material, with max operating temperature about 2150 °C. In this study, a ultrasonic temperature measurement system was designed by using Iridium-rhodium (60%Ir-40%Rh) alloy as an acoustic waveguide sensor material, and the system was preliminarily tested in a high-temperature oxidation environment. The result of ultrasonic temperature measurement shows that this system can indeed work stably in high-temperature oxidation environments. The relationship between temperature and delay time of ultrasonic thermometry up to 2200 °C was illustrated. Iridium-rhodium materials were also investigated in order to fully elucidate the proposed waveguide sensor's performance in a high-temperature oxidation environment. This system lays a foundation for further application of high-temperature measurement. Copyright © 2018. Published by Elsevier B.V.
Ngufor, Corine; N'Guessan, Raphael; Fagbohoun, Josias; Subramaniam, Krishanthi; Odjo, Abibatou; Fongnikin, Augustin; Akogbeto, Martin; Weetman, David; Rowland, Mark
2015-11-18
Novel indoor residual spraying (IRS) and long-lasting insecticidal net (LLIN) products aimed at improving the control of pyrethroid-resistant malaria vectors have to be evaluated in Phase II semi-field experimental studies against highly pyrethroid-resistant mosquitoes. To better understand their performance it is necessary to fully characterize the species composition, resistance status and resistance mechanisms of the vector populations in the experimental hut sites. Bioassays were performed to assess phenotypic insecticide resistance in the malaria vector population at a newly constructed experimental hut site in Cové, a rice growing area in southern Benin, being used for WHOPES Phase II evaluation of newly developed LLIN and IRS products. The efficacy of standard WHOPES-approved pyrethroid LLIN and IRS products was also assessed in the experimental huts. Diagnostic genotyping techniques and microarray studies were performed to investigate the genetic basis of pyrethroid resistance in the Cové Anopheles gambiae population. The vector population at the Cové experimental hut site consisted of a mixture of Anopheles coluzzii and An. gambiae s.s. with the latter occurring at lower frequencies (23 %) and only in samples collected in the dry season. There was a high prevalence of resistance to pyrethroids and DDT (>90 % bioassay survival) with pyrethroid resistance intensity reaching 200-fold compared to the laboratory susceptible An. gambiae Kisumu strain. Standard WHOPES-approved pyrethroid IRS and LLIN products were ineffective in the experimental huts against this vector population (8-29 % mortality). The L1014F allele frequency was 89 %. CYP6P3, a cytochrome P450 validated as an efficient metabolizer of pyrethroids, was over-expressed. Characterizing pyrethroid resistance at Phase II field sites is crucial to the accurate interpretation of the performance of novel vector control products. The strong levels of pyrethroid resistance at the Cové experimental hut station make it a suitable site for Phase II experimental hut evaluations of novel vector control products, which aim for improved efficacy against pyrethroid-resistant malaria vectors to WHOPES standards. The resistance genes identified can be used as markers for further studies investigating the resistance management potential of novel mixture LLIN and IRS products tested at the site.
Bailey, Amelia Purser; Pastore, Lisa M.
2011-01-01
Abstract Objective To analyze insulin resistance (IR) and determine the need for a 2-hour oral glucose tolerance test (OGTT) for the identification of IR and impaired glucose tolerance (IGT) in lean nondiabetic women with polycystic ovary syndrome (PCOS). Methods This was a cross-sectional analysis of treatment-naive women with PCOS who enrolled in a university-based clinical trial. Nondiabetic women with PCOS based on the Eunice Kennedy Shriven National Institute of Child Health and Human Development (NICHD) definition, aged 18–43 years and weighing ≤113 kg, were evaluated. Glucose and insulin levels were assessed at times 0, 30, 60, 90, and 120 minutes after a 75-g glucose load. Lean was defined as body mass index (BMI) <25 kg/m2. Multiple linear regression was performed. Results A cohort of 78 women was studied. The prevalence of IR was 0% among lean women vs. 21% among nonlean subjects based on fasting insulin I0 and 40%–68% based on two different homeostatic model assessment (HOMA) cutoff points (p < 0.005). All women with IR had a BMI ≥ 28. Controlling for age and race, BMI explained over 57% of the variation in insulin fasting (Io), glucose fasting/Io (Go/Io), the qualitative insulin sensitivity check index (QUICKI), and HOMA and was a highly significant predictor of these outcomes (p < 0.0001). Only 1 of 31 (3%) of the lean PCOS women had IGT based on a 2-hour OGTT, and no lean subjects had IGT based on their fasting blood glucose. Conclusions Diabetes mellitus, IGT, and IR are far less common in young lean women with PCOS compared with obese women with PCOS. These data imply that it is unnecessary to routinely perform either IR testing or 2-hour OGTT in lean women with PCOS; however, greater subject accumulation is needed to determine if OGTT is necessary in lean women with PCOS. BMI is highly predictive of both insulin and glucose levels in women with PCOS. PMID:21194310
Stovall, Dale William; Bailey, Amelia Purser; Pastore, Lisa M
2011-01-01
To analyze insulin resistance (IR) and determine the need for a 2-hour oral glucose tolerance test (OGTT) for the identification of IR and impaired glucose tolerance (IGT) in lean nondiabetic women with polycystic ovary syndrome (PCOS). This was a cross-sectional analysis of treatment-naive women with PCOS who enrolled in a university-based clinical trial. Nondiabetic women with PCOS based on the Eunice Kennedy Shriven National Institute of Child Health and Human Development (NICHD) definition, aged 18-43 years and weighing ≤113 kg, were evaluated. Glucose and insulin levels were assessed at times 0, 30, 60, 90, and 120 minutes after a 75-g glucose load. Lean was defined as body mass index (BMI) <25 kg/m(2). Multiple linear regression was performed. A cohort of 78 women was studied. The prevalence of IR was 0% among lean women vs. 21% among nonlean subjects based on fasting insulin I(0) and 40%-68% based on two different homeostatic model assessment (HOMA) cutoff points (p < 0.005). All women with IR had a BMI ≥ 28. Controlling for age and race, BMI explained over 57% of the variation in insulin fasting (I(o)), glucose fasting/Io (G(o)/I(o)), the qualitative insulin sensitivity check index (QUICKI), and HOMA and was a highly significant predictor of these outcomes (p < 0.0001). Only 1 of 31 (3%) of the lean PCOS women had IGT based on a 2-hour OGTT, and no lean subjects had IGT based on their fasting blood glucose. Diabetes mellitus, IGT, and IR are far less common in young lean women with PCOS compared with obese women with PCOS. These data imply that it is unnecessary to routinely perform either IR testing or 2-hour OGTT in lean women with PCOS; however, greater subject accumulation is needed to determine if OGTT is necessary in lean women with PCOS. BMI is highly predictive of both insulin and glucose levels in women with PCOS.
Filho, Alexandre F De Moraes; Gewehr, Pedro M; Maia, Joaquim M; Jakubiak, Douglas R
2018-06-15
This paper presents a gaseous oxygen detection system based on time-resolved phosphorimetry (time-domain), which is used to investigate O2 optical transducers. The primary sensing elements were formed by incorporating iridium(III) and palladium(II) meso -tetrakis(pentafluorophenyl)porphyrin complexes (IrTFPP-CO-Cl and PdTFPP) in polystyrene (PS) solid matrices. Probe excitation was obtained using a violet light-emitting diode (LED) (low power), and the resulting phosphorescence was detected by a high-sensitivity compact photomultiplier tube. The detection system performance and the preparation of the transducers are presented along with their optical properties, phosphorescence lifetimes, calibration curves and photostability. The developed lifetime measuring system showed a good signal-to-noise ratio, and reliable results were obtained from the optodes, even when exposed to moderate levels of O2. The new IrTFPP-CO-Cl membranes exhibited room temperature phosphorescence and moderate sensitivity: <τ0>/<τ21%> ratio of ≈6. A typically high degree of dynamic phosphorescence quenching was observed for the traditional indicator PdTFPP: <τ0>/<τ21%> ratio of ≈36. Pulsed-source time-resolved phosphorimetry combined with a high-sensitivity photodetector can offer potential advantages such as: (i) major dynamic range, (ii) extended temporal resolution (Δτ/Δ[O2]) and (iii) high operational stability. IrTFPP-CO-Cl immobilized in polystyrene is a promising alternative for O2 detection, offering adequate photostability and potentially mid-range sensitivity over Pt(II) and Pd(II) metalloporphyrins.
1993-08-01
Development of Ultra-Low Noise , High Performance III-V Quantum Well Infrared Photodetectors ( QWIPs ) for Focal Plane Array Staring Image Sensor Systems...using a 2-D square mesh grating coupler to achieve maximum responsivity for an InGaAs SBTM QWIP , and (iv) performed noise characterization on four...different types of Ir-V QWIPs and identified their noise sources. Detailed results and accomplishments are discussed in this report. 1 SJ •aTEtcRMrtlS
NASA Astrophysics Data System (ADS)
Mao, Yifei; Zhang, Jijun; Lin, Liwen; Lai, Jianming; Min, Jiahua; Liang, Xiaoyan; Huang, Jian; Tang, Ke; Wang, Linjun
2018-04-01
Different wavelength IR light (770-1150 nm) was used to evaluate the effect of IR light on the carrier transport performance of CdZnTe detector. The effective mobility-lifetime product (μτ*) of CdZnTe achieved 10-2 cm2 V-1 when the IR wavelength was in the range of 820-920 nm, but decreased to 1 × 10-4 cm2 V-1 when the wavelength was longer than 920 nm. The mechanism about how IR light affecting the carrier transport property of CdZnTe detector was analyzed with Shockley-Read-Hall model. The defect of doubly ionized Cd vacancy ([VCd]2-) was found to be the main factor that assist IR light affecting the μτ of CdZnTe detector. The photoconductive experiment under 770-1150 nm IR illumination was carried out, and three kinds of photocurrent curve were detected and analyzed by solving the Hecht equation. The experiments demonstrated the effect of [VCd]2- defect on the carrier transport property of CdZnTe detector under IR illumination.
NASA Astrophysics Data System (ADS)
Alonso-Ramos, Carlos; Han, Zhaohong; Le Roux, Xavier; Lin, Hongtao; Singh, Vivek; Lin, Pao Tai; Tan, Dawn; Cassan, Eric; Marris-Morini, Delphine; Vivien, Laurent; Wada, Kazumi; Hu, Juejun; Agarwal, Anuradha; Kimerling, Lionel C.
2016-05-01
The mid-Infrared wavelength range (2-20 µm), so-called fingerprint region, contains the very sharp vibrational and rotational resonances of many chemical and biological substances. Thereby, on-chip absorption-spectrometry-based sensors operating in the mid-Infrared (mid-IR) have the potential to perform high-precision, label-free, real-time detection of multiple target molecules within a single sensor, which makes them an ideal technology for the implementation of lab-on-a-chip devices. Benefiting from the great development realized in the telecom field, silicon photonics is poised to deliver ultra-compact efficient and cost-effective devices fabricated at mass scale. In addition, Si is transparent up to 8 µm wavelength, making it an ideal material for the implementation of high-performance mid-IR photonic circuits. The silicon-on-insulator (SOI) technology, typically used in telecom applications, relies on silicon dioxide as bottom insulator. Unfortunately, silicon dioxide absorbs light beyond 3.6 µm, limiting the usability range of the SOI platform for the mid-IR. Silicon-on-sapphire (SOS) has been proposed as an alternative solution that extends the operability region up to 6 µm (sapphire absorption), while providing a high-index contrast. In this context, surface grating couplers have been proved as an efficient means of injecting and extracting light from mid-IR SOS circuits that obviate the need of cleaving sapphire. However, grating couplers typically have a reduced bandwidth, compared with facet coupling solutions such as inverse or sub-wavelength tapers. This feature limits their feasibility for absorption spectroscopy applications that may require monitoring wide wavelength ranges. Interestingly, sub-wavelength engineering can be used to substantially improve grating coupler bandwidth, as demonstrated in devices operating at telecom wavelengths. Here, we report on the development of fiber-to-chip interconnects to ZrF4 optical fibers and integrated SOS circuits with 500 nm thick Si, operating around 3.8 µm wavelength. Results on facet coupling and sub-wavelength engineered grating coupler solutions in the mid-IR regime will be compared.
Xie, Lifang; Chen, Ting; Chan, Hang Cheong; Shu, Yijin; Gao, Qingsheng
2018-03-16
As promising supports, reducible metal oxides afford strong metal-support interactions to achieve efficient catalysis, which relies on their band states and surface stoichiometry. In this study, in situ and controlled hydrogen doping (H doping) by means of H 2 spillover was employed to engineer the metal-support interactions in hydrogenated MoO x -supported Ir (Ir/H-MoO x ) catalysts and thus promote furfural hydrogenation to furfuryl alcohol. By easily varying the reduction temperature, the resulting H doping in a controlled manner tailors low-valence Mo species (Mo 5+ and Mo 4+ ) on H-MoO x supports, thereby promoting charge redistribution on Ir and H-MoO x interfaces. This further leads to clear differences in H 2 chemisorption on Ir, which illustrates its potential for catalytic hydrogenation. As expected, the optimal Ir/H-MoO x with controlled H doping afforded high activity (turnover frequency: 4.62 min -1 ) and selectivity (>99 %) in furfural hydrogenation under mild conditions (T=30 °C, PH2 =2 MPa), which means it performs among the best of current catalysts. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
MIRIS observation of near-infrared diffuse Galactic light
NASA Astrophysics Data System (ADS)
Onishi, Yosuke; Sano, Kei; Matsuura, Shuji; Jeong, Woong-Seob; Pyo, Jeonghyun; Kim, Il-Jong; Seo, Hyun Jong; Han, Wonyong; Lee, DaeHee; Moon, Bongkon; Park, Wonkee; Park, Younsik; Kim, MinGyu; Matsumoto, Toshio; Matsuhara, Hideo; Nakagawa, Takao; Tsumura, Kohji; Shirahata, Mai; Arai, Toshiaki; Ienaka, Nobuyuki
2018-06-01
We report near-infrared (IR) observations of high Galactic latitude clouds to investigate diffuse Galactic light (DGL), which is starlight scattered by interstellar dust grains. The observations were performed at 1.1 and 1.6 μm with a wide-field camera instrument, the Multi-purpose Infra-Red Imaging System (MIRIS) onboard the Korean satellite STSAT-3. The DGL brightness is measured by correlating the near-IR images with a far-IR 100 μm map of interstellar dust thermal emission. The wide-field observation of DGL provides the most accurate DGL measurement achieved to-date. We also find a linear correlation between optical and near-IR DGL in the MBM32 field. To study interstellar dust properties in MBM32, we adopt recent dust models with and without μm-sized very large grains and predict the DGL spectra, taking into account the reddening effect of the interstellar radiation field. The result shows that the observed color of the near-IR DGL is closer to the model spectra without very large grains. This may imply that dust growth in the observed MBM32 field is not active owing to the low density of its interstellar medium.
High-performance IR detector modules
NASA Astrophysics Data System (ADS)
Wendler, Joachim; Cabanski, Wolfgang; Rühlich, Ingo; Ziegler, Johann
2004-02-01
The 3rd generation of infrared (IR) detection modules is expected to provide higher video resolution, advanced functions like multi band or multi color capability, higher frame rates, and better thermal resolution. AIM has developed staring and linear high performance focal plane arrays (FPA) integrated into detector/dewar cooler assemblies (IDCA). Linear FPA"s support high resolution formats such as 1920 x 1152 (HDTV), 1280 x 960, or 1536 x 1152. Standard format for staring FPA"s is 640 x 512. In this configuration, QEIP devices sensitive in the 8 10 µm band as well as MCT devices sensitive in the 3.4 5.0 µm band are available. A 256 x 256 high speed detection module allows a full frame rate >800 Hz. Especially usability of long wavelength devices in high performance FLIR systems does not only depend on the classical electrooptical performance parameters such as NEDT, detectivity, and response homogeneity, but are mainly characterized by the stability of the correction coefficients used for image correction. The FPA"s are available in suited integrated detector/dewar cooler assemblies. The linear cooling engines are designed for maximum stability of the focal plane temperature, low operating temperatures down to 60K, high MTTF lifetimes of 6000h and above even under high ambient temperature conditions. The IDCA"s are equipped with AIM standard or custom specific command and control electronics (CCE) providing a well defined interface to the system electronics. Video output signals are provided as 14 bit digital data rates up to 80 MHz for the high speed devices.
Hwang, Bosun; Han, Jonghee; Choi, Jong Min; Park, Kwang Suk
2008-11-01
The purpose of this study was to develop an unobtrusive energy expenditure (EE) measurement system using an infrared (IR) sensor-based activity monitoring system to measure indoor activities and to estimate individual quantitative EE. IR-sensor activation counts were measured with a Bluetooth-based monitoring system and the standard EE was calculated using an established regression equation. Ten male subjects participated in the experiment and three different EE measurement systems (gas analyzer, accelerometer, IR sensor) were used simultaneously in order to determine the regression equation and evaluate the performance. As a standard measurement, oxygen consumption was simultaneously measured by a portable metabolic system (Metamax 3X, Cortex, Germany). A single room experiment was performed to develop a regression model of the standard EE measurement from the proposed IR sensor-based measurement system. In addition, correlation and regression analyses were done to compare the performance of the IR system with that of the Actigraph system. We determined that our proposed IR-based EE measurement system shows a similar correlation to the Actigraph system with the standard measurement system.
Patti, M E; Sun, X J; Bruening, J C; Araki, E; Lipes, M A; White, M F; Kahn, C R
1995-10-20
Insulin receptor substrate-1 (IRS-1) is the major cytoplasmic substrate of the insulin and insulin-like growth factor (IGF)-1 receptors. Transgenic mice lacking IRS-1 are resistant to insulin and IGF-1, but exhibit significant residual insulin action which corresponds to the presence of an alternative high molecular weight substrate in liver and muscle. Recently, Sun et al. (Sun, X.-J., Wang, L.-M., Zhang, Y., Yenush, L. P., Myers, M. G., Jr., Glasheen, E., Lane, W.S., Pierce, J. H., and White, M. F. (1995) Nature 377, 173-177) purified and cloned 4PS, the major substrate of the IL-4 receptor-associated tyrosine kinase in myeloid cells, which has significant structural similarity to IRS-1. To determine if 4PS is the alternative substrate of the insulin receptor in IRS-1-deficient mice, we performed immunoprecipitation, immunoblotting, and phosphatidylinositol (PI) 3-kinase assays using specific antibodies to 4PS. Following insulin stimulation, 4PS is rapidly phosphorylated in liver and muscle, binds to the p85 subunit of PI 3-kinase, and activates the enzyme. Insulin stimulation also results in the association of 4PS with Grb 2 in both liver and muscle. In IRS-1-deficient mice, both the phosphorylation of 4PS and associated PI 3-kinase activity are enhanced, without an increase in protein expression. Immunodepletion of 4PS from liver and muscle homogenates removes most of the phosphotyrosine-associated PI 3-kinase activity in IRS-1-deficient mice. Thus, 4PS is the primary alternative substrate, i.e. IRS-2, which plays a major role in physiologic insulin signal transduction via both PI 3-kinase activation and Grb 2/Sos association. In IRS-1-deficient mice, 4PS/IRS-2 provides signal transduction to these two major pathways of insulin signaling.
Hurd, Wendy J.; Kaplan, Kevin M.; ElAttrache, Neal S.; Jobe, Frank W.; Morrey, Bernard F.; Kaufman, Kenton R.
2011-01-01
Context: A database describing the range of normal rotator cuff strength values in uninjured high school pitchers has not been established. Chronologic factors that contribute to adaptations in strength also have not been established. Objectives: To establish a normative profile of rotator cuff strength in uninjured high school baseball pitchers and to determine whether bilateral differences in rotator cuff strength are normal findings in this age group. Design: Cohort study. Setting: Baseball playing field. Patients or Other Participants: A total of 165 uninjured male high school baseball pitchers (age = 16 ± 1 years, height = 1.8 ± 0.1 m, mass = 76.8 ± 10.1 kg, pitching experience = 7 ± 2 years). Main Outcome Measure(s): Isometric rotator cuff strength was measured bilaterally with a handheld dynamometer. We calculated side-to-side differences in strength (external rotation [ER], internal rotation [IR], and the ratio of ER:IR at 90° of abduction), differences in strength by age, and the influence of chronologic factors (participant age, years of pitching experience) on limb strength. Results: Side-to-side differences in strength were found for ER, IR, and ER:IR ratio at 90° of abduction. Age at the time of testing was a significant but weak predictor of both ER strength (R2 = 0.032, P = .02) and the ER:IR ratio (R2 = 0.051, P = .004) at 90° of abduction. Conclusions: We established a normative profile of rotator cuff strength for the uninjured high school baseball pitcher that might be used to assist clinicians and researchers in the interpretation of muscle strength performance in this population. These data further suggested that dominant-limb adaptations in rotator cuff strength are a normal finding in this age group and did not demonstrate that these adaptations were a consequence of the age at the time of testing or the number of years of pitching experience. PMID:21669099
Saison, J; Ferry, T; Demaret, J; Maucort Boulch, D; Venet, F; Perpoint, T; Ader, F; Icard, V; Chidiac, C; Monneret, G
2014-06-01
The mechanisms sustaining the absence of complete immune recovery in HIV-infected patients upon long-term effective highly active anti-retroviral therapy (HAART) remain elusive. Immune activation, regulatory T cells (T(regs)) or very low-level viraemia (VLLV) have been alternatively suspected, but rarely investigated simultaneously. We performed a cross-sectional study in HIV-infected aviraemic subjects (mean duration of HAART: 12 years) to concomitantly assess parameters associated independently with inadequate immunological response. Patients were classified as complete immunological responders (cIR, n = 48) and inadequate immunological responders (iIR, n = 39), depending on the CD4(+) T cell count (> or < 500/mm(3)). Clinical and virological data (including very low-level viraemia) were collected. In parallel, immunophenotyping of CD4(+) lymphocytes, including T(reg) subsets, and CD8(+) T cells was performed. Percentages of activated CD4(+) T cells, T(regs), effector T(regs) and terminal effector T(regs) were found to be significantly elevated in iIR. Neither the percentage of activated CD8(+) T cells nor VLLV were found to be associated with iIR. In the multivariate analysis, nadir of CD4(+) T cell count and percentage of T(regs) were the only two parameters associated independently with iIR [odds ratio (OR) = 2·339, P = 0·001, and OR = 0·803, P = 0·041]. We present here the largest study investigating simultaneously the immune response to long-term HAART, activation of CD4(+) and CD8(+) T cells, T(reg) percentages and very low-level viraemia. Causative interactions between T(regs) and CD4(+) T cells should now be explored prospectively in a large patients cohort. © 2014 British Society for Immunology.
2008-01-01
Distributed network-based battle management High performance computing supporting uniform and nonuniform memory access with single and multithreaded...pallet Airborne EO/IR and radar sensors VNIR through SWIR hyperspectral systems VNIR, MWIR, and LWIR high-resolution sys- tems Wideband SAR systems...meteorological sensors Hyperspectral sensor systems (PHILLS) Mid-wave infrared (MWIR) Indium Antimonide (InSb) imaging system Long-wave infrared ( LWIR
IR/IGF1R signaling as potential target for treatment of high-grade osteosarcoma
2013-01-01
Background High-grade osteosarcoma is an aggressive tumor most often developing in the long bones of adolescents, with a second peak in the 5th decade of life. Better knowledge on cellular signaling in this tumor may identify new possibilities for targeted treatment. Methods We performed gene set analysis on previously published genome-wide gene expression data of osteosarcoma cell lines (n=19) and pretreatment biopsies (n=84). We characterized overexpression of the insulin-like growth factor receptor (IGF1R) signaling pathways in human osteosarcoma as compared with osteoblasts and with the hypothesized progenitor cells of osteosarcoma – mesenchymal stem cells. This pathway plays a key role in the growth and development of bone. Since most profound differences in mRNA expression were found at and upstream of the receptor of this pathway, we set out to inhibit IR/IGF1R using OSI-906, a dual inhibitor for IR/IGF1R, on four osteosarcoma cell lines. Inhibitory effects of this drug were measured by Western blotting and cell proliferation assays. Results OSI-906 had a strong inhibitory effect on proliferation of 3 of 4 osteosarcoma cell lines, with IC50s below 100 nM at 72 hrs of treatment. Phosphorylation of IRS-1, a direct downstream target of IGF1R signaling, was inhibited in the responsive osteosarcoma cell lines. Conclusions This study provides an in vitro rationale for using IR/IGF1R inhibitors in preclinical studies of osteosarcoma. PMID:23688189
Dynamics of molecules in extreme rotational states
Yuan, Liwei; Teitelbaum, Samuel W.; Robinson, Allison; Mullin, Amy S.
2011-01-01
We have constructed an optical centrifuge with a pulse energy that is more than 2 orders of magnitude larger than previously reported instruments. This high pulse energy enables us to create large enough number densities of molecules in extreme rotational states to perform high-resolution state-resolved transient IR absorption measurements. Here we report the first studies of energy transfer dynamics involving molecules in extreme rotational states. In these studies, the optical centrifuge drives CO2 molecules into states with J ∼ 220 and we use transient IR probing to monitor the subsequent rotational, translational, and vibrational energy flow dynamics. The results reported here provide the first molecular insights into the relaxation of molecules with rotational energy that is comparable to that of a chemical bond.
High-throughput infrared spectrometer for standoff chemical detection
NASA Astrophysics Data System (ADS)
Chadha, Suneet; Stevenson, Chuck; Curtiss, Lawrence E.
1999-01-01
Advanced autonomous detection of chemical warfare agents and other organic materials has long been a major military concern. While significant advances have recently been accomplished in remote spectral sensing using rugged FTIRs with point detectors, efforts towards spatial chemical discrimination have been lacking. Foster-Miller, Inc. has developed a radically different mid-IR and long wave IR spectrometer for standoff detection of chemical warfare agents and other molecular species.This no moving parts device will eliminate the cost, complexity, reliability and bandwidth/resolution problems associated with either Fabry Perot or Michelson Interferometer based approaches currently under consideration. Given the small size and performance insensitivity to on-board vibration, high EMI, thermal variations, the proposed optic would easily adapt cryocooling and field deployable requirements for low radiance detection.
HIgh-speed flickering and jet formation in GRS 1915+105
NASA Astrophysics Data System (ADS)
Lasso Cabrera, Nestor M.
In this dissertation we study the different phenomena of accretion and relativistic jet formation observed in the microquasar GRS 1915+105. Our final goal is to understand the processes producing the relativistic outflows, as well as their relation with the inflow mechanisms. Initially, we analyze X-ray emission (RXTE PCA and HEXTE) from GRS 1915+105 during and after an X-ray/radio plateau epoch. The high signal-to-noise levels in our observations allow the first published measurement of quasi-periodic oscillations (QPO) RMS values using RXTE/HEXTE data. We find that the spectral energy distribution of the QPO strongly indicates an origin in the hard non-thermal emission component, suggesting a second spectral component to the hard non-thermal X-ray emission. Given the association of the QPOs with the observed jet activity in GRS 1915+105, we suggest that this additional non-thermal X-ray spectral component may be directly linked to the relativistic jet formation process. We also analyze simultaneous X-ray (RXTE/PCA) and near-IR (Palomar 200-inch) observations from the microquasar GRS 1915+105 during two similar low/hard state epochs and two different high X-ray variability epochs -- X-ray classes alpha and beta. The X-ray to IR cross-correlation function (CCF) shows that both low/hard state observations as well as the class beta observations present little or null interaction between the X-ray and IR fluxes, while the class alpha observations present a strong correlation between the X-ray (inner accretion disk) and the IR (compact jet) light curves. We also use the X-ray to IR CCF to study the relative evolution of the two signals and find no significant evolutionary track in any of the epochs. Simulated IR light curves confirm the results of the CCF, showing a flickering IR emission during the class beta high X-ray variability period that strengthens ˜10 s after every X-ray subflare. The existence of a flickering IR emission with frequencies in the range 0.1 to 0.3 Hz that is strongly correlated with the X-ray emission allow us to place the origin of the IR emission in a synchrotron emitting relativistic jet with the IR launch site located at ˜0.02 AU from the accretion disk. These results will be especially relevant for constraining the current models of relativistic jet production in GRS 1915+105 and other microquasars. The second part of this work is dedicated to overcoming the limitation in the acquisition of high time resolution infrared data of microquasars. We introduce the Canarias InfraRed Camera Experiment (CIRCE), a new IR instrument for the 10-meter Gran Telescopio Canarias (GTC). Among other properties, CIRCE is specifically designed for the observation of relativistic jet events in microquasars, and along with the capabilities of the GTC, will enable us to observe any microquasar in the J, H, and K IR bands, with a time resolution of ˜12 Hz and a signal-to-noise level never achieved before. We plan to use CIRCE in the future to confirm the final results of the jet production study of this dissertation. We present the electronics design of CIRCE, including the housekeeping electronics, the Logic Control Unit (LCU), and the readout electronics. We also present the result of the analysis of the image quality tests performed on the CIRCE optical system.
Identifying Wrist Fracture Patients with High Accuracy by Automatic Categorization of X-ray Reports
de Bruijn, Berry; Cranney, Ann; O’Donnell, Siobhan; Martin, Joel D.; Forster, Alan J.
2006-01-01
The authors performed this study to determine the accuracy of several text classification methods to categorize wrist x-ray reports. We randomly sampled 751 textual wrist x-ray reports. Two expert reviewers rated the presence (n = 301) or absence (n = 450) of an acute fracture of wrist. We developed two information retrieval (IR) text classification methods and a machine learning method using a support vector machine (TC-1). In cross-validation on the derivation set (n = 493), TC-1 outperformed the two IR based methods and six benchmark classifiers, including Naive Bayes and a Neural Network. In the validation set (n = 258), TC-1 demonstrated consistent performance with 93.8% accuracy; 95.5% sensitivity; 92.9% specificity; and 87.5% positive predictive value. TC-1 was easy to implement and superior in performance to the other classification methods. PMID:16929046
Performance of s-192 (hg,cd)te arrays.
Aldrich, N C; Beck, J D
1972-10-01
Very high performance (Hg,Cd)Te photoconductive detectors have been fabricated for use on the S-192 experiment, which is a multispectral scanner being built by Honeywell for the NASA Manned Space Center's Skylab. The S-192 will scan the earth from Skylab and record data in twelve near ir spectral bands and one long wavelength band. The near ir bands range from 0.4 micro to 2.35 micro. At 87 K with a 90 degrees FOV, we have consistently produced arrays with specific detectivities at 2.35 micro close to or greater than 8 x 10(11) cm Hz((1/2))/W and with detective time constants less than 1 microsec. These detectors demonstrate good uniformity in performance across an array. State-of-the-art fabrication techniques have been used to make detectors with good definition that are 5-10 micro thick with 25-micro spacing between elements.
Ultrafast structural molecular dynamics investigated with 2D infrared spectroscopy methods.
Kraack, Jan Philip
2017-10-25
Ultrafast, multi-dimensional infrared (IR) spectroscopy has been advanced in recent years to a versatile analytical tool with a broad range of applications to elucidate molecular structure on ultrafast timescales, and it can be used for samples in a many different environments. Following a short and general introduction on the benefits of 2D IR spectroscopy, the first part of this chapter contains a brief discussion on basic descriptions and conceptual considerations of 2D IR spectroscopy. Outstanding classical applications of 2D IR are used afterwards to highlight the strengths and basic applicability of the method. This includes the identification of vibrational coupling in molecules, characterization of spectral diffusion dynamics, chemical exchange of chemical bond formation and breaking, as well as dynamics of intra- and intermolecular energy transfer for molecules in bulk solution and thin films. In the second part, several important, recently developed variants and new applications of 2D IR spectroscopy are introduced. These methods focus on (i) applications to molecules under two- and three-dimensional confinement, (ii) the combination of 2D IR with electrochemistry, (iii) ultrafast 2D IR in conjunction with diffraction-limited microscopy, (iv) several variants of non-equilibrium 2D IR spectroscopy such as transient 2D IR and 3D IR, and (v) extensions of the pump and probe spectral regions for multi-dimensional vibrational spectroscopy towards mixed vibrational-electronic spectroscopies. In light of these examples, the important open scientific and conceptual questions with regard to intra- and intermolecular dynamics are highlighted. Such questions can be tackled with the existing arsenal of experimental variants of 2D IR spectroscopy to promote the understanding of fundamentally new aspects in chemistry, biology and materials science. The final part of the chapter introduces several concepts of currently performed technical developments, which aim at exploiting 2D IR spectroscopy as an analytical tool. Such developments embrace the combination of 2D IR spectroscopy and plasmonic spectroscopy for ultrasensitive analytics, merging 2D IR spectroscopy with ultra-high-resolution microscopy (nanoscopy), future variants of transient 2D IR methods, or 2D IR in conjunction with microfluidics. It is expected that these techniques will allow for groundbreaking research in many new areas of natural sciences.
[Docimologic analysis of 4th-year preclinical exam questions].
Gnagne-Agnero, Koffi N; Zinsou, E M; Assoumou, N M; Adiko, E F
2003-12-01
Operative Dentistry and Endodontics' Department of the School of Dentistry of Abidjan experienced pre-clinical exam in fourth year of dentistry with MCQ following guided courses which aim was to lead student to be correctly in charge of the patients when they start their first clinical performance. The objective off his this work is to show how one's can analyse exams questions efficiently. In this work the authors present et discuss the results of the evaluation of this preclinical exam performed through calculation of index of success (Ir) which gives us information on the difficulty of a question for all the students who answered, the discriminative index (Id) which allow to determine when a question is selective enough to distinguish weak to strong students in a group. The mean to evaluate is well chosen because the questions asked has a Ir between 46% et 80% (satisfying Ir) and the average Id is between 0.30 and 0.53 (Id discriminates well among 0.30 et 1). This methodology allows an evaluation of a high number of students by stocked questions.
NASA Astrophysics Data System (ADS)
Levin, Eli; Katz, Amiram; Bar Haim, Zvi; Nachman, Ilan; Riabzev, Sergey; Gover, Dan; Segal, Victor; Filis, Avishai
2017-05-01
The modern needs of the electro-optical market for small low-power and light-weight IR systems are impelling research and development of High Operating Temperature (HOT) IR detectors, requiring development of dedicated "HOT" cryocoolers. The development of cryocoolers with emphasis on the "SWAP3" configuration means small size, low weight, improved performance, low power consumption and low price, in order to optimize IDDCA for future hand held thermal sights. This paper will present the development and the progress made with the new "HOT" cryocooler, including customer data after the evaluation process, performances achieved using a common cold finger, test results update on a large series of production coolers, life and qualification test update and acoustic noise reduction. All the above mentioned information relates to the FPA temperature range of 130 - 200K for various cryocooler models based on rotary and linear design concepts. The paper will also review the progress with the latest development activities implemented in the cryocoolers and the electronic control modules in order to improve reliability and minimize regulated power consumption.
SU-F-T-13: Transit Dose Comparisons for Co-60 and Ir-192 HDR Sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gimenez-Alventosa, V; Ballester, F; Vijande, J
Purpose: The purpose of this study is to compare the transit dose due to the movement of high dose rate (HDR) Ir-192 and Co-60 sources along the transfer tube. This is performed by evaluating air-kerma differences in the vicinity of the transfer tube when both sources are moved with the same velocity from a HDR brachytherapy afterloader into a patient. Methods: Monte Carlo simulations have been performed using PENELOPE2014. mHDR-v2 and Flexisource sources have been considered. Collisional kerma has been scored. The sources were simulated within a plastic catheter located in an infinite air phantom. The movement of the seedmore » was included by displacing their positions along the connecting catheter from z=−75 cm to z=+75 cm and combining them. Backscatter from the afterloader and the patient was not considered. Since modern afterloaders like Flexitron (Elekta) or Saginova (Bebig) are able to use equally Ir-192 and Co-60 sources it was assumed that both sources are displaced with equal speed. Typical content activity values were provided by the manufacturer (460 GBq for Ir-192 and 75 GBq for Co-60). Results: 2D distributions were obtained with type-A uncertainties (k=2) less than 0.01%. From those, the air kerma ratio Co-60/Ir-192 was evaluated weighted by their corresponding activities. It was found that it varies slowly with distance (less than 10% variation) but strongly in time due to the shorter half-life of the Ir-192 (73.83 days). The maximum ratio is located close to the catheter with a value of 0.57 when both sources are installed by the manufacturer, while increasing up to 1.25 at the end of the recommended working life (90 days) of the Ir-192 source. Conclusion: Air-kerma ratios are almost constant (0.51–0.57) in the vicinity of the source. Nevertheless, air-kerma ratios increase rapidly whenever the Ir-192 is approaching the end of its life.« less
High throughput operando studies using Fourier transform infrared imaging and Raman spectroscopy.
Li, Guosheng; Hu, Dehong; Xia, Guanguang; White, J M; Zhang, Conrad
2008-07-01
A prototype high throughput operando (HTO) reactor designed and built for catalyst screening and characterization combines Fourier transform infrared (FT-IR) imaging and Raman spectroscopy in operando conditions. Using a focal plane array detector (HgCdTe focal plane array, 128x128 pixels, and 1610 Hz frame rate) for the FT-IR imaging system, the catalyst activity and selectivity of all parallel reaction channels can be simultaneously followed. Each image data set possesses 16 384 IR spectra with a spectral range of 800-4000 cm(-1) and with an 8 cm(-1) resolution. Depending on the signal-to-noise ratio, 2-20 s are needed to generate a full image of all reaction channels for a data set. Results on reactant conversion and product selectivity are obtained from FT-IR spectral analysis. Six novel Raman probes, one for each reaction channel, were specially designed and house built at Pacific Northwest National Laboratory, to simultaneously collect Raman spectra of the catalysts and possible reaction intermediates on the catalyst surface under operando conditions. As a model system, methanol partial oxidation reaction on silica-supported molybdenum oxide (MoO3SiO2) catalysts has been studied under different reaction conditions to demonstrate the performance of the HTO reactor.
NASA Astrophysics Data System (ADS)
Gornostyrev, Yu. N.; Katsnelson, M. I.; Mryasov, Oleg N.; Freeman, A. J.; Trefilov, M. V.
1998-03-01
Theoretical analysis of the fracture behaviour of fcc Au, Ir and Al have been performed within various brittle/ductile criteria (BDC) with ab-initio, embedded atom (EAM), and pseudopotential parameterizations. We systematically examined several important aspects of the fracture behaviour: (i) dislocation structure, (ii) energetics of the cleavage decohesion and (iii) character of the interatomic interactions. Unit dislocation structures were analyzed within a two dimensional generalization of the Peierls-Nabarro model with restoring forces determined from ab-initio total energy calculations and found to be split with well defined highly mobile partials for all considered metals. We find from ab-initio and pseudopotential that in contrast with most of fcc metals, cleavage decohesion curve for Al appreciably differs from UBER relation. Finally, using ab-initio, EAM and pseudopotential parameterizations, we demonstrate that (i) Au (as a typical example of a ductile metal) is well described within existing BDC's, (ii) anomalous cleavage-like crack propagation of Ir is driven predominantly by it's high elastic modulus and (iii) Al is not described within BDC due to it's long-range interatomic interactions (and hence requires adjustments of the brittle/ductile criteria).
Uncooled infrared imaging using bimaterial microcantilever arrays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grbovic, Dragoslav; Lavrik, Nickolay V; Rajic, Slobodan
2006-01-01
We report on the fabrication and characterization of microcantilever based uncooled focal plane array (FPA) for infrared imaging. By combining a streamlined design of microcantilever thermal transducers with a highly efficient optical readout, we minimized the fabrication complexity while achieving a competitive level of imaging performance. The microcantilever FPAs were fabricated using a straightforward fabrication process that involved only three photolithographic steps (i.e. three masks). A designed and constructed prototype of an IR imager employed a simple optical readout based on a noncoherent low-power light source. The main figures of merit of the IR imager were found to be comparablemore » to those of uncooled MEMS infrared detectors with substantially higher degree of fabrication complexity. In particular, the NETD and the response time of the implemented MEMS IR detector were measured to be as low as 0.5K and 6 ms, respectively. The potential of the implemented designs can also be concluded from the fact that the constructed prototype enabled IR imaging of close to room temperature objects without the use of any advanced data processing. The most unique and practically valuable feature of the implemented FPAs, however, is their scalability to high resolution formats, such as 2000x2000, without progressively growing device complexity and cost.« less
Myers, Matthew R; Giridhar, Dushyanth
2011-06-01
In the characterization of high-intensity focused ultrasound (HIFU) systems, it is desirable to know the intensity field within a tissue phantom. Infrared (IR) thermography is a potentially useful method for inferring this intensity field from the heating pattern within the phantom. However, IR measurements require an air layer between the phantom and the camera, making inferences about the thermal field in the absence of the air complicated. For example, convection currents can arise in the air layer and distort the measurements relative to the phantom-only situation. Quantitative predictions of intensity fields based upon IR temperature data are also complicated by axial and radial diffusion of heat. In this paper, mathematical expressions are derived for use with IR temperature data acquired at times long enough that noise is a relatively small fraction of the temperature trace, but small enough that convection currents have not yet developed. The relations were applied to simulated IR data sets derived from computed pressure and temperature fields. The simulation was performed in a finite-element geometry involving a HIFU transducer sonicating upward in a phantom toward an air interface, with an IR camera mounted atop an air layer, looking down at the heated interface. It was found that, when compared to the intensity field determined directly from acoustic propagation simulations, intensity profiles could be obtained from the simulated IR temperature data with an accuracy of better than 10%, at pre-focal, focal, and post-focal locations. © 2011 Acoustical Society of America
The initial design of LAPAN's IR micro bolometer using mission analysis process
NASA Astrophysics Data System (ADS)
Bustanul, A.; Irwan, P.; M. T., Andi; Firman, B.
2016-11-01
As new player in Infra Red (IR) sector, uncooled, small, and lightweight IR Micro Bolometer has been chosen as one of payloads for LAPAN's next micro satellite project. Driven the desire to create our own IR Micro Bolometer, mission analysis design procedure has been applied. After tracing all possible missions, the Planck's and Wien's Law for black body, Temperature Responsivity (TR), and sub-pixel response had been utilized in order to determine the appropriate spectral radiance. The 3.8 - 4 μm wavelength were available to detect wild fire (forest fire) and active volcanoes, two major problems faced by Indonesia. In order to strengthen and broaden the result, iteration process had been used throughout the process. The analysis, then, were continued by calculating Ground pixel size, IFOV pixel, swath width, and focus length. Meanwhile, regarding of resolution, at least it is 400 m. The further procedure covered the integrated of optical design, wherein we combined among optical design software, Zemax, with mechanical analysis software (structure and thermal analysis), such as Nastran and Thermal Desktop / Sinda Fluint. The integration process was intended to produce high performance optical system of our IR Micro Bolometer that can be used under extreme environment. The results of all those analysis, either in graphs or in measurement, show that the initial design of LAPAN'S IR Micro Bolometer meets the determined requirement. However, it needs the further evaluation (iteration). This paper describes the initial design of LAPAN's IR Micro Bolometer using mission analysis process
Castro, Marcelo Peduzzi de; Fonseca, Pedro; Morais, Sara Tribuzi; Borgonovo-Santos, Márcio; Coelho, Eduardo Filipe Cruz; Ribeiro, Daniel Cury; Vilas-Boas, João Paulo
2017-12-04
The aim of the present study was to determine which approach to calculating shoulder ratios is the most sensitive for determining shoulder torque imbalance in handball players. Twenty-six participants (handball athletes, n = 13; healthy controls, n = 13) performed isokinetic concentric and eccentric shoulder internal rotation (IR) and external rotation (ER) assessment at 60, 180 and 300°/s. We used eight approaches to calculating shoulder ratios: four concentric (i.e. concentric ER torque divided by concentric IR torque), and four functional (i.e. eccentric ER torque divided by concentric IR torque) at the velocities of 60, 180 and 300°/s for both IR and ER, and combining 60°/s of ER and 300°/s of IR. A three factorial ANOVA (factors: shoulder ratios, upper limb sides, and groups) along with Tukey's post-hoc analysis, and effect sizes were calculated. The findings suggested the functional shoulder ratio combining 60°/s of ER and 300°/s of IR is the most sensitive to detect differences between upper limbs for handball players, and between players and controls for the dominant side. The functional shoulder ratio combining 60°/s of ER with 300°/s of IR seems to present advantages over the other approaches for identifying upper limb asymmetries and differences in shoulder torque balance related to throwing.
Comparison between infrared and Raman spectroscopic analysis of maturing rabbit cortical bone.
Turunen, Mikael J; Saarakkala, Simo; Rieppo, Lassi; Helminen, Heikki J; Jurvelin, Jukka S; Isaksson, Hanna
2011-06-01
The molecular composition of the organic and inorganic matrices of bone undergoes alterations during maturation. The aim of this study was to compare Fourier transform infrared (FT-IR) and near-infrared (NIR) Raman microspectroscopy techniques for characterization of the composition of growing and developing bone from young to skeletally mature rabbits. Moreover, the specificity and differences of the techniques for determining bone composition were clarified. The humeri of female New Zealand White rabbits, with age range from young to skeletally mature animals (four age groups, n = 7 per group), were studied. Spectral peak areas, intensities, and ratios related to organic and inorganic matrices of bone were analyzed and compared between the age groups and between FT-IR and Raman microspectroscopic techniques. Specifically, the degree of mineralization, type-B carbonate substitution, crystallinity of hydroxyapatite (HA), mineral content, and collagen maturity were examined. Significant changes during maturation were observed in various compositional parameters with one or both techniques. Overall, the compositional parameters calculated from the Raman spectra correlated with analogous parameters calculated from the IR spectra. Collagen cross-linking (XLR), as determined through peak fitting and directly from the IR spectra, were highly correlated. The mineral/matrix ratio in the Raman spectra was evaluated with multiple different peaks representing the organic matrix. The results showed high correlation with each other. After comparison with the bone mineral density (BMD) values from micro-computed tomography (micro-CT) imaging measurements and crystal size from XRD measurements, it is suggested that Raman microspectroscopy is more sensitive than FT-IR microspectroscopy for the inorganic matrix of the bone. In the literature, similar spectroscopic parameters obtained with FT-IR and NIR Raman microspectroscopic techniques are often compared. According to the present results, however, caution is required when performing this kind of comparison.
Readability of Online Patient Education Materials Related to IR.
McEnteggart, Gregory E; Naeem, Muhammad; Skierkowski, Dorothy; Baird, Grayson L; Ahn, Sun H; Soares, Gregory
2015-08-01
To assess the readability of online patient education materials (OPEM) related to common diseases treated by and procedures performed by interventional radiology (IR). The following websites were chosen based on their average Google search return for each IR OPEM content area examined in this study: Society of Interventional Radiology (SIR), Cardiovascular and Interventional Radiological Society of Europe (CIRSE), National Library of Medicine, RadiologyInfo, Mayo Clinic, WebMD, and Wikipedia. IR OPEM content area was assessed for the following: peripheral arterial disease, central venous catheter, varicocele, uterine artery embolization, vertebroplasty, transjugular intrahepatic portosystemic shunt, and deep vein thrombosis. The following algorithms were used to estimate and compare readability levels: Flesch-Kincaid Grade Formula, Flesch Reading Ease Score, Gunning Frequency of Gobbledygook, Simple Measure of Gobbledygook, and Coleman-Liau Index. Data were analyzed using general mixed modeling. On average, online sources that required beyond high school grade-level readability were Wikipedia (15.0), SIR (14.2), and RadiologyInfo (12.4); sources that required high school grade-level readability were CIRSE (11.3), Mayo Clinic (11.0), WebMD (10.6), and National Library of Medicine (9.0). On average, OPEM on uterine artery embolization, vertebroplasty, varicocele, and peripheral arterial disease required the highest level of readability (12.5, 12.3, 12.3, and 12.2, respectively). The IR OPEM assessed in this study were written above the recommended sixth-grade reading level and the health literacy level of the average American adult. Many patients in the general public may not have the ability to read and understand health information in IR OPEM. Copyright © 2015 SIR. Published by Elsevier Inc. All rights reserved.
Real-time synchronized multiple-sensor IR/EO scene generation utilizing the SGI Onyx2
NASA Astrophysics Data System (ADS)
Makar, Robert J.; O'Toole, Brian E.
1998-07-01
An approach to utilize the symmetric multiprocessing environment of the Silicon Graphics Inc.R (SGI) Onyx2TM has been developed to support the generation of IR/EO scenes in real-time. This development, supported by the Naval Air Warfare Center Aircraft Division (NAWC/AD), focuses on high frame rate hardware-in-the-loop testing of multiple sensor avionics systems. In the past, real-time IR/EO scene generators have been developed as custom architectures that were often expensive and difficult to maintain. Previous COTS scene generation systems, designed and optimized for visual simulation, could not be adapted for accurate IR/EO sensor stimulation. The new Onyx2 connection mesh architecture made it possible to develop a more economical system while maintaining the fidelity needed to stimulate actual sensors. An SGI based Real-time IR/EO Scene Simulator (RISS) system was developed to utilize the Onyx2's fast multiprocessing hardware to perform real-time IR/EO scene radiance calculations. During real-time scene simulation, the multiprocessors are used to update polygon vertex locations and compute radiometrically accurate floating point radiance values. The output of this process can be utilized to drive a variety of scene rendering engines. Recent advancements in COTS graphics systems, such as the Silicon Graphics InfiniteRealityR make a total COTS solution possible for some classes of sensors. This paper will discuss the critical technologies that apply to infrared scene generation and hardware-in-the-loop testing using SGI compatible hardware. Specifically, the application of RISS high-fidelity real-time radiance algorithms on the SGI Onyx2's multiprocessing hardware will be discussed. Also, issues relating to external real-time control of multiple synchronized scene generation channels will be addressed.
Pérez-Matos, Maria Camila; Morales-Álvarez, Martha Catalina; Toloza, Freddy Jean Karlo; Ricardo-Silgado, Maria Laura; Mantilla-Rivas, Jose Oscar; Pinzón-Cortes, Jairo Arturo; Perez-Mayorga, Maritza; Jiménez, Elizabeth; Guevara, Edwin
2017-01-01
Background Plasma concentrations of some lysophospholipids correlate with metabolic alterations in humans, but their potential as biomarkers of insulin resistance (IR) is insufficiently known. We aimed to explore the association between plasma linoleoylglycerophosphocholine (LGPC) and objective measures of IR in adults with different metabolic profiles. Methods We studied 62 men and women, ages 30 to 69 years, (29% normal weight, 59% overweight, 12% obese). Participants underwent a 5-point oral glucose tolerance test (5p-OGTT) from which we calculated multiple indices of IR and insulin secretion. Fifteen participants additionally underwent a hyperinsulinemic-euglycemic clamp for estimation of insulin-stimulated glucose disposal. Plasma LGPC was determined using high performance liquid chromatography/time-of-flight mass spectrometry. Plasma LGPC was compared across quartiles defined by the IR indices. Results Mean LGPC was 15.4±7.6 ng/mL in women and 14.1±7.3 ng/mL in men. LGPC did not correlate with body mass in-dex, percent body fat, waist circumference, blood pressure, glycosylated hemoglobin, log-triglycerides, or high density lipoprotein cholesterol. Plasma LGPC concentrations was not systematically associated with any of the studied 5p-OGTT-derived IR indices. However, LGPC exhibited a significant negative correlation with glucose disposal in the clamp (Spearman r=−0.56, P=0.029). Despite not being diabetic, participants with higher plasma LGPC exhibited significantly higher post-challenge plasma glucose excursions in the 5p-OGTT (P trend=0.021 for the increase in glucose area under the curve across quartiles of plasma LGPC). Conclusion In our sample of Latino adults without known diabetes, LGPC showed potential as a biomarker of IR and impaired glucose metabolism. PMID:29199411
Emergence of Imipenem-Resistant Gram-Negative Bacilli in Intestinal Flora of Intensive Care Patients
Angebault, Cécile; Barbier, François; Hamelet, Emilie; Defrance, Gilles; Ruppé, Etienne; Bronchard, Régis; Lepeule, Raphaël; Lucet, Jean-Christophe; El Mniai, Assiya; Wolff, Michel; Montravers, Philippe; Plésiat, Patrick; Andremont, Antoine
2013-01-01
Intestinal flora contains a reservoir of Gram-negative bacilli (GNB) resistant to cephalosporins, which are potentially pathogenic for intensive care unit (ICU) patients; this has led to increasing use of carbapenems. The emergence of carbapenem resistance is a major concern for ICUs. Therefore, in this study, we aimed to assess the intestinal carriage of imipenem-resistant GNB (IR-GNB) in intensive care patients. For 6 months, 523 consecutive ICU patients were screened for rectal IR-GNB colonization upon admission and weekly thereafter. The phenotypes and genotypes of all isolates were determined, and a case control study was performed to identify risk factors for colonization. The IR-GNB colonization rate increased regularly from 5.6% after 1 week to 58.6% after 6 weeks in the ICU. In all, 56 IR-GNB strains were collected from 50 patients: 36 Pseudomonas aeruginosa strains, 12 Stenotrophomonas maltophilia strains, 6 Enterobacteriaceae strains, and 2 Acinetobacter baumannii strains. In P. aeruginosa, imipenem resistance was due to chromosomally encoded resistance (32 strains) or carbapenemase production (4 strains). In the Enterobacteriaceae strains, resistance was due to AmpC cephalosporinase and/or extended-spectrum β-lactamase production with porin loss. Genomic comparison showed that the strains were highly diverse, with 8 exceptions (4 VIM-2 carbapenemase-producing P. aeruginosa strains, 2 Klebsiella pneumoniae strains, and 2 S. maltophilia strains). The main risk factor for IR-GNB colonization was prior imipenem exposure. The odds ratio for colonization was already as high as 5.9 (95% confidence interval [95% CI], 1.5 to 25.7) after 1 to 3 days of exposure and increased to 7.8 (95% CI, 2.4 to 29.8) thereafter. In conclusion, even brief exposure to imipenem is a major risk factor for IR-GNB carriage. PMID:23318796
Lee, Yun-Yeong; Kim, Tae Gwan; Cho, Kyung-Suk
2016-06-01
A novel dissimilatory iron-reducing bacteria, Klebsiella sp. IR21, was isolated from the anode biofilm of an MFC reactor. Klebsiella sp. IR21 reduced 27.8 % of ferric iron to ferrous iron demonstrating that Klebsiella sp. IR21 has electron transfer ability. Additionally, Klebsiella sp. IR21 generated electricity forming a biofilm on the anode surface. When a pure culture of Klebsiella sp. IR21 was supplied into a single chamber, air-cathode MFC fed with a mixture of glucose and acetate (500 mg L(-1) COD), 40-60 mV of voltage (17-26 mA m(-2) of current density) was produced. Klebsiella sp. IR21 was also utilized as a biocatalyst to improve the electrical performance of a conventional MFC reactor. A single chamber, air-cathode MFC was fed with reject wastewater (10,000 mg L(-1) COD) from a H2 fermentation reactor. The average voltage, current density, and power density were 142.9 ± 25.74 mV, 60.5 ± 11.61 mA m(-2), and 8.9 ± 3.65 mW m(-2), respectively, in the MFC without inoculation of Klebsiella sp. IR21. However, these electrical performances of the MFC were significantly increased to 204.7 ± 40.24 mV, 87.5 ± 17.20 mA m(-2), and 18.6 ± 7.23 mW m(-2), respectively, with inoculation of Klebsiella sp. IR21. The results indicate that Klebsiella sp. IR21 can be utilized as a biocatalyst for enhancement of electrical performance in MFC systems.
Review of infrared technology in The Netherlands
NASA Astrophysics Data System (ADS)
de Jong, Arie N.
1993-11-01
The use of infrared sensors in the Netherlands is substantial. Users can be found in a variety of disciplines, military as well as civil. This need for IR sensors implied a long history on IR technology and development. The result was a large technological-capability allowing the realization of IR hardware: specialized measuring equipment, engineering development models, prototype and production sensors for different applications. These applications range from small size, local radiometry up to large space-borne imaging. Large scale production of IR sensors has been realized for army vehicles. IR sensors have been introduced now in all of the armed forces. Facilities have been built to test the performance of these sensors. Models have been developed to predict the performance of a new sensor. A great effort has been spent on atmospheric research, leading to knowledge upon atmospheric- and background limitations of IR sensors.
Bringing NMR and IR Spectroscopy to High Schools
ERIC Educational Resources Information Center
Bonjour, Jessica L.; Hass, Alisa L.; Pollock, David W.; Huebner, Aaron; Frost, John A.
2017-01-01
Development of benchtop, portable Fourier transform nuclear magnetic resonance (NMR) and infrared (IR) spectrometers has opened up opportunities for creating university-high school partnerships that provide high school students with hands-on experience with NMR and IR instruments. With recent changes to the international baccalaureate chemistry…
Hot carrier response in gapped bilayer graphene
NASA Astrophysics Data System (ADS)
Aivazian, Grant; Ross, Jason; Watanabe, K.; Taniguchi, T.; Kitamura, K.; Cobden, David; Xu, Xiaodong
2013-03-01
Recently bilayer graphene has been shown to develop a bandgap upon breaking of inversion symmetry by a perpendicular electric field that is in situtunable between zero and several hundred meV (corresponding to wavelengths in the mid-IR). Such unique tunability offers bilayer graphene a niche in mid-IR optoelectronic devices where a lack of high performance photodetectors exists. In this work we have performed spatially and temporally resolved photocurrent measurements in a dual-gated bilayer graphene FET under continuous-wave and pulsed laser excitation. We find that photocurrent generation in native bilayer graphene is dominated by hot carriers, as is the case in monolayer graphene, but it behaves very differently from monolayer graphene once a bandgap has been opened. Work supported by the NSF Early Career Grant and DARPA N66001-11-1-4124.
Valcour, Victor G; Sacktor, Ned C; Paul, Robert H; Watters, Michael R; Selnes, Ola A; Shiramizu, Bruce T; Williams, Andrew E; Shikuma, Cecilia M
2006-12-01
To determine if insulin resistance (IR) is associated with lower cognitive performance among HIV-1-infected adults and to determine if advanced age magnifies risk. Cross-sectional analysis within the Hawaii Aging With HIV Cohort. We calculated the homeostasis model assessment of insulin resistance (HOMA-IR) among 145 cohort participants. Values were compared to concurrent neuropsychological test performance and cognitive diagnoses. Hypertension, body mass index (BMI), and non-Caucasian self-identity were directly related to insulin resistance (IR); however, age, CD4 lymphocyte count, and rates of treatment with HAART were not. In logistic regression analyses and stratifying cognition status on a 3-tiered scale (normal, minor cognitive motor disorder (MCMD), and HIV-associated dementia (HAD)), we identified an increased risk of meeting a higher diagnostic category as HOMA-IR increased (OR, 1.12; 95% CI: 1.003 to 1.242 per unit of HOMA-IR, P = 0.044). In linear regression models and among nondiabetic participants, an increasing degree of IR was associated with lower performance on neuropsychological summary scores. IR is associated with cognitive dysfunction in this contemporary HIV-1 cohort enriched with older individuals. Metabolic dysfunction may contribute to the multifactorial pathogenesis of cognitive impairment in the era of HAART.
Ischemia-reperfusion injury in the isolated rat lung. Role of flow and endogenous leukocytes.
Seibert, A F; Haynes, J; Taylor, A
1993-02-01
Microvascular lung injury caused by ischemia-reperfusion (IR) may occur via leukocyte-dependent and leukocyte-independent pathways. Leukocyte-endothelial adhesion may be a rate-limiting step in IR lung injury. Leukocyte adhesion to microvascular endothelium occurs when the attractant forces between leukocyte and endothelium are greater than the kinetic energy of the leukocyte and the vascular wall shear rate. We hypothesized (1) that isolated, buffer-perfused rat lungs are not free of endogenous leukocytes, (2) that endogenous leukocytes contribute to IR-induced microvascular injury as measured by the capillary filtration coefficient (Kfc), and (3) that a reduction of perfusate flow rate would potentiate leukocyte-dependent IR injury. Sixty lungs were divided into four groups: (1) low-flow controls, (2) high-flow controls, (3) low-flow IR, and (4) high-flow IR. Microvascular injury was linearly related to baseline perfusate leukocyte concentrations at both low (r = 0.78) and high (r = 0.82) flow rates. Kfc in the high-flow IR group (0.58 +/- 0.03 ml/min/cm H2O/100 g) was less (p < 0.05) than Kfc in the low-flow IR group (0.82 +/- 0.07), and in both groups Kfc values were significantly greater than low-flow (0.34 +/- 0.03) and high-flow (0.31 +/- 0.01) control Kfc values after 75 min. Retention of leukocytes in the lung, evaluated by a tissue myeloperoxidase assay, was greatest in the low-flow IR group. We conclude (1) that isolated, buffer-perfused rat lungs contain significant quantities of leukocytes and that these leukocytes contribute to IR lung injury, and (2) that IR-induced microvascular injury is potentiated by low flow.
Ahler, T; Bendiksen, M; Krustrup, P; Wedderkopp, N
2012-03-01
This study analysed the reliability and validity of two intermittent running tests (the Yo-Yo IR1 test and the Andersen test) as tools for estimating VO(2max) in children under the age of 10. Two groups, aged 6-7 years (grade 0, n = 18) and 8-9 years (grade 2, n = 16), carried out two repetitions of a modified Yo-Yo IR1 test (2 × 16 m) and the Andersen test, as well as an incremental treadmill test, to directly determine the VO(2max). No significant differences were observed in test-retest performance of the Yo-Yo IR1 test [693 ± 418 (±SD) and 670 ± 328 m, r (2) = 0.79, CV = 19%, p > 0.05, n = 32) and the Andersen test (988 ± 77 and 989 ± 87 m, r (2) = 0.86, CV = 3%, p > 0.05, n = 31). The Yo-Yo IR1 (r (2) = 0.47, n = 31, p < 0.002) and Andersen test performance (r (2) = 0.53, n = 32, p < 0.001) correlated with the VO(2max). Yo-Yo IR1 performance correlated with Andersen test performance (r (2) = 0.74, n = 32, p < 0.0001). In conclusion, the Yo-Yo IR1 and the Andersen tests are reproducible and can be used as an indicator of aerobic fitness for 6- to 9-year-old children.
Boullosa, Daniel A; Tonello, Lais; Ramos, Isabela; Silva, Alessandro de Oliveira; Simoes, Herbert G; Nakamura, Fabio Y
2013-09-01
To evaluate the relationship between aerobic and intermittent capacities in a team of professional futsal players. FIFTEEN FUTSAL PLAYERS FROM BRAZILIAN FIRST DIVISION (AGE: 25.9±5.1 yrs; height: 1.77±0.04 m, body mass: 74.37±6.02 kg) performed in random order a ramp test and the Yo-Yo intermittent recovery test level 1 (Yo-Yo IR1) at the start of the season for determination of maximum oxygen consumption (VO2max), peak running speed (Speak), and intermittent running ability. Mean VO2max was of 57.25±6.35 ml·kg(-1)min(-1) with a Speak of 17.69±1.88 km·h(-1). Yo-Yo IR1 performance was of 1,226±282 m. There was no correlation between VO2max and Yo-Yo performance while Speak and Yo-Yo IR1 performance were correlated (r=0.641; P=0.007). From the current results, it may be suggested that both continuous and intermittent physical evaluations are necessary for obtaining a complete fitness profile of futsal players. The low Yo-Yo IR1 performance of Brazilian futsal players when compared to other elite team sport athletes warrants further investigation.
Boullosa, Daniel A.; Tonello, Lais; Ramos, Isabela; Silva, Alessandro de Oliveira; Simoes, Herbert G.; Nakamura, Fabio Y.
2013-01-01
Purpose To evaluate the relationship between aerobic and intermittent capacities in a team of professional futsal players. Methods Fifteen futsal players from Brazilian first division (age: 25.9±5.1 yrs; height: 1.77±0.04 m, body mass: 74.37±6.02 kg) performed in random order a ramp test and the Yo-Yo intermittent recovery test level 1 (Yo-Yo IR1) at the start of the season for determination of maximum oxygen consumption (VO2max), peak running speed (Speak), and intermittent running ability. Results Mean VO2max was of 57.25±6.35 ml·kg-1min-1 with a Speak of 17.69±1.88 km·h-1. Yo-Yo IR1 performance was of 1,226±282 m. There was no correlation between VO2max and Yo-Yo performance while Speak and Yo-Yo IR1 performance were correlated (r=0.641; P=0.007). Conclusion From the current results, it may be suggested that both continuous and intermittent physical evaluations are necessary for obtaining a complete fitness profile of futsal players. The low Yo-Yo IR1 performance of Brazilian futsal players when compared to other elite team sport athletes warrants further investigation. PMID:24427483
Mitsubishi thermal imager using the 512 x 512 PtSi focal plane arrays
NASA Astrophysics Data System (ADS)
Fujino, Shotaro; Miyoshi, Tetsuo; Yokoh, Masataka; Kitahara, Teruyoshi
1990-01-01
MITSUBISHI THERMAL IMAGER model IR-5120A is high resolution and high sensitivity infrared television imaging system. It was exhibited in SPIE'S 1988 Technical Symposium on OPTICS, ELECTRO-OPTICS, and SENSORS, held at April 1988 Orlando, and acquired interest of many attendants of the symposium for it's high performance. The detector is a Platinium Silicide Charge Sweep Device (CSD) array containing more than 260,000 individual pixels manufactured by Mitsubishi Electric Co. The IR-5120A consists of a Camera Head. containing the CSD, a stirling cycle cooler and support electronics, and a Camera Control Unit containing the pixel fixed pattern noise corrector, video controllor, cooler driver and support power supplies. The stirling cycle cooler built into the Camera Head is used for keeping CSD temperature of approx. 80K with the features such as light weight, long life of more than 2000 hours and low acoustical noise. This paper describes an improved Thermal Imager, with more light weight, compact size and higher performance, and it's design philosophy, characteristics and field image.
Very Accurate Imaging of the Close Environment of Bright Objects in Visible and Near-Infrared
NASA Astrophysics Data System (ADS)
Mouillet, David; Beuzit, Jean-Luc; Chauvin, Gael; Lagrange, Anne-Marie
The development of adaptive optics (AO) in near IR has demonstrated in the latest decade both its astronomical impact and its increasing importance with the development of larger telescopes. We emphasize that still better imaging capabilities would extend the wavelength range from near-IR to visible and would also enable to perform very high dynamic observations from the ground. Such a gain in performance is interesting for a large number of astrophysical topics: environment of young stellar objects, evolved stars, binary or multiple systems, planetary disks and low mass companions down to brown dwarves or hot planets. The specification of an instrument fulfilling such requirements could be focussed on high image quality on a narrow field around bright objects, so as to limit the cost and development timescale. Additionally, this facility could also be used (with the same specifications) to feed other future instruments (such as interferometers or high resolution spectrometers working in visible) and would be an important step in the general scheme of larger adaptive optics systems development.
Advances in handheld FT-IR instrumentation
NASA Astrophysics Data System (ADS)
Arnó, Josep; Cardillo, Len; Judge, Kevin; Frayer, Maxim; Frunzi, Michael; Hetherington, Paul; Levy, Dustin; Oberndorfer, Kyle; Perec, Walter; Sauer, Terry; Stein, John; Zuidema, Eric
2012-06-01
FT-IR spectroscopy is the technology of choice to identify solid and liquid phase unknown samples. The challenges of ConOps (Concepts of Operation) in emergency response and military field applications require a significant redesign of the stationary FT-IR bench-top instruments typically used in laboratories. Specifically, field portable units require high levels of resistance against mechanical shock and chemical attack, ease of use in restrictive gear, quick and easy interpretation of results, and reduced size. In the last 20 years, FT-IR instruments have been re-engineered to fit in small suitcases for field portable use and recently further miniaturized for handheld operation. This article introduces the advances resulting from a project designed to overcome the challenges associated with miniaturizing FT-IR instruments. The project team developed a disturbance-corrected permanently aligned cube corner interferometer for improved robustness and optimized opto-mechanical design to maximize optical throughput and signal-to-noise ratios. Thermal management and heat flow were thoroughly modeled and studied to isolate sensitive components from heat sources and provide the widest temperature operation range. Similarly, extensive research on mechanical designs and compensation techniques to protect against shock and vibration will be discussed. A user interface was carefully created for military and emergency response applications to provide actionable information in a visual, intuitive format. Similar to the HazMatID family of products, state-of-the-art algorithms were used to quickly identify the chemical composition of complex samples based on the spectral information. This article includes an overview of the design considerations, tests results, and performance validation of the mechanical ruggedness, spectral, and thermal performance.
The Insulin Receptor: A New Target for Cancer Therapy
Malaguarnera, Roberta; Belfiore, Antonino
2011-01-01
A large body of evidences have shown that both the IGF-I receptor (IGF-IR) and the insulin receptor (IR) play a role in cancer development and progression. In particular, IR overactivation by IGF-II is common in cancer cells, especially in dedifferentiated/stem-like cells. In spite of these findings, until very recently, only IGF-IR but not IR has been considered a target in cancer therapy. Although several preclinical studies have showed a good anti-cancer activity of selective anti-IGF-IR drugs, the results of the clinical first trials have been disappointing. In fact, only a small subset of malignant tumors has shown an objective response to these therapies. Development of resistance to anti-IGF-IR drugs may include upregulation of IR isoform A (IR-A) in cancer cells and its overactivation by increased secretion of autocrine IGF-II. These findings have led to the concept that co-targeting IR together with IGF-IR may increase therapy efficacy and prevent adaptive resistance to selective anti-IGF-IR drugs. IR blockade should be especially considered in tumors with high IR-A:IGF-IR ratio and high levels of autocrine IGF-II. Conversely, insulin sensitizers, which ameliorate insulin resistance associated with metabolic disorders and cancer treatments, may have important implications for cancer prevention and management. Only few drugs co-targeting the IR and IGF-IR are currently available. Ideally, future IR targeting strategies should be able to selectively inhibit the tumor promoting effects of IR without impairing its metabolic effects. PMID:22654833
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fan, Lisha; Jacobs, Christopher B.; Rouleau, Christopher M.
In this paper, we demonstrate the reproducible epitaxial growth of 100 nm thick Ir(001) films on a heteroepitaxial stack consisting of 5 nm Ir and 100 nm yttria-stabilized zirconia (YSZ) grown on Si(001) substrates. It is shown that a 5 nm thick Ir layer grown by pulsed laser deposition in the same chamber as the YSZ film without breaking the vacuum is the key to stabilizing Ir(001) epitaxial growth. Growth of the Ir seed layer with pure (001) orientation occurs only in a narrow growth temperature window from 550 to 750 °C, and the fraction of Ir(111) increases at substratemore » temperatures outside of this window. The Ir seed layer prevents exposure of the YSZ film to air during sample transfer and enables highly reproducible Ir(001) heteroepitaxy on YSZ buffered Si(001). In contrast, if Ir is grown directly on a bare YSZ layer that was exposed to ambient conditions, the films are prone to change orientation to (111). These results reveal that preserving the chemical and structural purity of the YSZ surface is imperative for achieving Ir(001) epitaxy. The narrow range of the mosaic spread values from eight experiments demonstrates the high yield and high reproducibility of Ir(001) heteroepitaxy by this approach. Lastly, the improved Ir(001) epitaxial growth method is of great significance for integrating a variety of technologically important materials such as diamond, graphene, and functional oxides on a Si platform.« less
Fan, Lisha; Jacobs, Christopher B.; Rouleau, Christopher M.; ...
2016-11-18
In this paper, we demonstrate the reproducible epitaxial growth of 100 nm thick Ir(001) films on a heteroepitaxial stack consisting of 5 nm Ir and 100 nm yttria-stabilized zirconia (YSZ) grown on Si(001) substrates. It is shown that a 5 nm thick Ir layer grown by pulsed laser deposition in the same chamber as the YSZ film without breaking the vacuum is the key to stabilizing Ir(001) epitaxial growth. Growth of the Ir seed layer with pure (001) orientation occurs only in a narrow growth temperature window from 550 to 750 °C, and the fraction of Ir(111) increases at substratemore » temperatures outside of this window. The Ir seed layer prevents exposure of the YSZ film to air during sample transfer and enables highly reproducible Ir(001) heteroepitaxy on YSZ buffered Si(001). In contrast, if Ir is grown directly on a bare YSZ layer that was exposed to ambient conditions, the films are prone to change orientation to (111). These results reveal that preserving the chemical and structural purity of the YSZ surface is imperative for achieving Ir(001) epitaxy. The narrow range of the mosaic spread values from eight experiments demonstrates the high yield and high reproducibility of Ir(001) heteroepitaxy by this approach. Lastly, the improved Ir(001) epitaxial growth method is of great significance for integrating a variety of technologically important materials such as diamond, graphene, and functional oxides on a Si platform.« less
Chen, Yong-song; Zhu, Xu-xin; Zhao, Xiao-yun; Xing, Han-ying; Li, Yu-guang
2008-02-05
Under an insulin resistance (IR) state, overproduction of reactive oxygen species (ROS) may be playing a major role in the pathogenesis of endothelial dysfunction, hypertension and atherosclerosis. Recently, increasing attention has been drawn to the beneficial effects of heme oxygenase-1 (HO-1) in the cardiovascular system. This study aimed to investigate the effects of HO-1 on vascular function of thoracic aorta in IR rats and demonstrate the probable mechanisms of HO-1 against endothelial dysfunction in IR states. Sprague-Dawley (SD) rats fed with high-fat diet for 6 weeks and the IR models were validated with hyperinsulinemic-euglycemic clamp test. Then the IR rat models (n = 44) were further randomized into 3 subgroups, namely, the IR control group (n = 26, in which 12 were sacrificed immediately and evaluated for all study measures), a hemin treated IR group (n = 10) and a zinc protoporphyrin-IX (ZnPP-IX) treated IR group (n = 8) that were fed with a high-fat diet. Rats with standardized chow diet were used as the normal control group (n = 12). The rats in IR control group, hemin treated IR group and ZnPP-IX treated IR group were subsequently treated every other day with an intraperitoneal injection of normal saline, hemin (inducer of HO-1, 30 micromol/kg) or ZnPP-IX (inhibitor of HO-1, 10 micromol/kg) for 4 weeks. Rats in the normal control group remained on a standardized chow diet and were treated with intraperitoneal injections of normal saline every other day for 4 weeks. Systolic arterial blood pressure (SABP) was measured by tail-cuffed microphotoelectric plethysmography. The blood carbon monoxide (CO) was measured by blood gas analysis. The levels of nitric oxide (NO), inducible nitric oxide synthase (iNOS), endothelial nitric oxide synthase (eNOS), blood glucose (BG), insulin, total cholesterol (TC) and triglyceride (TG) in serum, and the levels of total antioxidant capacity (TAOC), malondialdehyde (MDA) and superoxide dismutase (SOD) in the aorta were measured. The expression of HO-1 mRNA and HO-1 protein in aortal tissue were detected by semi-quantitative RT-PCR and Western blot. The vasoreactive tensometry was performed with thoracic aortic rings (TARs). Compared with the normal control group, the levels of SABP, BG, insulin, TC, TG, NO, iNOS and MDA were higher, while the levels of CO, TAOC, SOD and eNOS were lower in IR control rats. After treatment of IR rats for 4 weeks a more intensive expression of HO-1 mRNA and HO-1 protein were observed in hemin treated IR group compared with the normal control group. And compared with 4-week IR control rats, the levels of CO, TAOC, SOD and eNOS were increased, while the levels of SABP and iNOS activity were lower in the hemin treated IR group. Administration of hemin in IR rats appeared to improve the disordered vasorelaxation of TARs to acetylcholine (ACh). Alternatively, the reverse results of SABP, CO, TAOC, SOD, iNOS and vasorelaxation responses to ACh were observed in IR rats with administration of ZnPP-IX. The endothelial dysfunction in the aorta is present in the IR state. The protective effects of HO-1 against aortic endothelial dysfunction may be due to its antioxidation and regulative effect of vasoactive substances. It is proposed that hemin, inducer of HO-1, could be a potential therapeutic option for vascular dysfunction in IR states.
Elastic, magnetic and electronic properties of iridium phosphide Ir 2P
Wang, Pei; Wang, Yonggang; Wang, Liping; ...
2016-02-24
Cubic (space group: Fm3¯m) iridium phosphide, Ir 2P, has been synthesized at high pressure and high temperature. Angle-dispersive synchrotron X-ray diffraction measurements on Ir 2P powder using a diamond-anvil cell at room temperature and high pressures (up to 40.6 GPa) yielded a bulk modulus of B 0 = 306(6) GPa and its pressure derivative B 0'= 6.4(5). Such a high bulk modulus attributed to the short and strongly covalent Ir-P bonds as revealed by first – principles calculations and three-dimensionally distributed [IrP 4] tetrahedron network. Indentation testing on a well–sintered polycrystalline sample yielded the hardness of 11.8(4) GPa. Relatively lowmore » shear modulus of ~64 GPa from theoretical calculations suggests a complicated overall bonding in Ir 2P with metallic, ionic, and covalent characteristics. Additionally, a spin glass behavior is indicated by magnetic susceptibility measurements.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ertem, Mehmed Zahid; Suna, Yuki; Himeda, Yuichiro
Pentamethylcyclopentadienyl iridium (Cp*Ir) complexes with bidentate ligands consisting of a pyridine ring and an electron-rich diazole ring were prepared. Their catalytic activity towards CO 2 hydrogenation in 2.0 M KHCO 3 aqueous solutions (pH 8.5) at 50 °C, under 1.0 MPa CO 2/H 2 (1:1) have been reported as an alternative to photo- and electrochemical CO 2 reduction. Bidentate ligands incorporating an electron-rich diazole ring improved the catalytic performance of the Ir complexes compared to the bipyridine ligand. Complexes 2, 4 and 6, possessing both a hydroxy group and an uncoordinated NH group, which are proton-responsive and capable of generatingmore » pendent-bases in basic media, recorded high initial TOF values of 1300 h -1, 1550 h -1 and 2000 h -1, respectively. Here, spectroscopic and computational investigations revealed that the reversible deprotonation changes the electronic properties of the complexes and causes interactions between pendent base and substrate and/or solvent water molecules, resulting in the high catalytic performance in basic media.« less
Synthesis and electrophosphorescence of iridium complexes containing benzothiazole-based ligands.
Liu, Di; Ren, Huicai; Deng, Lijun; Zhang, Ting
2013-06-12
Four heteroleptic bis-cyclometalated iridium(III) complexes containing 2-aryl-benzothiazole ligands, in which the aryl is dibenzofuran-2-yl [Ir(O-bt)2(acac)], dibenzothiophene-2-yl [Ir(S-bt)2(acac)], dibenzothiophene-S,S-dioxide-2-yl [Ir(SO2-bt)2(acac)] and 4-(diphenylphosphoryl)phenyl [Ir(PO-bt)2(acac)], have been synthesized and characterized for use in organic light-emitting diodes (OLEDs). These complexes emit bright yellow (551 nm) to orange-red (598 nm) phosphorescence at room temperature, the peak wavelengths of which can be finely tuned depending upon the electronic properties of the aryl group in the 2-position of benzothiazole. The strong electron-withdrawing aryls such as dibenzothiophene-S,S-dioxide2-yl and 4-(diphenylphosphoryl)phenyl caused bathochromatic shift of the iridium complex phosphorescence. These iridium complexes were used as doped emitters to fabricate yellow to orange-red OLEDs and good performance was obtained. In particular, a maximum luminance efficiency of 58.4 cd A(-1) (corresponding to 30.6 lm W(-1) and 19%) with CIE coordinates of (0.45, 0.52) was achieved for Ir(O-bt)2(acac)-based yellow device. Furthermore, the yellow emitting Ir(S-bt)2(acac) was used to fabricate two-element white OLED that exhibited a high efficiency of 32.4 cd A(-1) with CIE coordinates of (0.28, 0.44).
Hell, Michaela M; Bittner, Daniel; Schuhbaeck, Annika; Muschiol, Gerd; Brand, Michael; Lell, Michael; Uder, Michael; Achenbach, Stephan; Marwan, Mohamed
2014-01-01
Low tube voltage reduces radiation exposure in coronary CT angiography (CTA). Using 70 kVp tube potential has so far not been possible because CT systems were unable to provide sufficiently high tube current with low voltage. We evaluated feasibility, image quality (IQ), and radiation dose of coronary CTA using a third-generation dual-source CT system capable of producing 450 mAs tube current at 70 kVp tube voltage. Coronary CTA was performed in 26 consecutive patients with suspected coronary artery disease, selected for body weight <100 kg and heart rate <60 beats/min. High-pitch spiral acquisition was used. Filtered back projection (FBP) and iterative reconstruction (IR) algorithms were applied. IQ was assessed using a 4-point rating scale (1 = excellent, 4 = nondiagnostic) and objective parameters. Mean age was 62 ± 9 years (46% males; mean body mass index, 27.7 ± 3.8 kg/m(2); mean heart rate, 54 ± 5 beats/min). Mean dose-length product was 20.6 ± 1.9 mGy × cm; mean estimated effective radiation dose was 0.3 ± 0.03 mSv. Diagnostic IQ was found in 365 of 367 (FBP) and 366 of 367 (IR) segments (P nonsignificant). IQ was rated "excellent" in 53% (FBP) and 86% (IR) segments (P = .001) and "nondiagnostic" in 2 (FBP) and 1 segment (IR) (P nonsignificant). Mean IQ score was lesser in FBP vs IR (1.5 ± 0.4 vs 1.1 ± 0.2; P < .001). Image noise was lower in IR vs FBP (60 ± 10 HU vs 74 ± 8 HU; P < .001). In patients <100 kg and with a regular heart rate <60 beats/min, third-generation dual-source CT using high-pitch spiral acquisition and 70 kVp tube voltage is feasible and provides both robust IQ and very low radiation exposure. Copyright © 2014 Society of Cardiovascular Computed Tomography. Published by Elsevier Inc. All rights reserved.
Comparison of performance of high-power mid-IR QCL modules in actively and passively cooled mode
NASA Astrophysics Data System (ADS)
Münzhuber, F.; Denzel, H.; Tholl, H. D.
2017-10-01
We report on the effects of active and passive cooling on the performance of high power mid-IR QCL modules (λ ≈ 3.9 μm) in quasi-cw mode. In active cooling mode, a thermo-electrical cooler attached with its hot side to a heat sink of constant temperature, a local thermometer in close proximity to the QCL chip (epi-down mounted) as well as a control unit has been used for temperature control of the QCL submount. In contrast, the passive cooling was performed by attaching the QCL module solely to the heat sink. Electro-optical light-current- (L-I-) curves are measured in a quasi-cw mode, from which efficiencies can be deduced. Waiving of the active cooling elements results in a drop of the maximum intensity of less than 5 %, compared to the case wherein the temperature of the submount is stabilized to the temperature of the heat sink. The application of a model of electro-optical performance to the data shows good agreement and captures the relevant observations. We further determine the heat resistance of the module and demonstrate that the system performance is not limited by the packaging of the module, but rather by the heat dissipation on the QCL chip itself.
NASA Astrophysics Data System (ADS)
Javidnia, Katayoun; Parish, Maryam; Karimi, Sadegh; Hemmateenejad, Bahram
2013-03-01
By using FT-IR spectroscopy, many researchers from different disciplines enrich the experimental complexity of their research for obtaining more precise information. Moreover chemometrics techniques have boosted the use of IR instruments. In the present study we aimed to emphasize on the power of FT-IR spectroscopy for discrimination between different oil samples (especially fat from vegetable oils). Also our data were used to compare the performance of different classification methods. FT-IR transmittance spectra of oil samples (Corn, Colona, Sunflower, Soya, Olive, and Butter) were measured in the wave-number interval of 450-4000 cm-1. Classification analysis was performed utilizing PLS-DA, interval PLS-DA, extended canonical variate analysis (ECVA) and interval ECVA methods. The effect of data preprocessing by extended multiplicative signal correction was investigated. Whilst all employed method could distinguish butter from vegetable oils, iECVA resulted in the best performances for calibration and external test set with 100% sensitivity and specificity.
Wang, Hongjuan; Wang, Xiaohui; Zheng, Jiadao; Peng, Feng; Yu, Hao
2015-05-01
Pt-SnO2/IrO2/CNTs anode catalyst for direct methanol fuel cell was designed and prepared with IrO2/CNTs as support for the subsequent immobilization of Pt and SnO2 at the same time. The structure of the catalysts and their catalytic performance in methanol electrooxidation were investigated and the roles of IrO2 and SnO2 in methanol electrooxidation were discussed as well. Results show that Pt-SnO2/IrO2/CNTs catalyst exhibits the best activity and durability for methanol electrooxidation when compared with Pt/CNTs, Pt/IrO2/CNTs and Pt-SnO2/CNTs. According to the results of electrochemical tests and physicochemical characterizations, the enhancements of Pt-SnO2/IrO2/CNTs were attributed to the special properties of IrO2 and SnO2, in which IrO2 mainly increases the methanol oxidation activity and SnO2 mainly improves the CO oxidation ability and durability. Therefore, Pt-SnO2/IrO2/CNTs exhibits excellent performance for methanol oxidation with higher electrocatalytic activity (I(f) of 1054 A g(Pt(-1)) and powerful anti-poisoning ability (the onset potential for CO oxidation of 0.3 V) and outstanding durability (the sustained time t in CP of 617 s), revealing a suitable anode catalyst for DMFCs.
Synthesis of lithium nickel cobalt manganese oxide cathode materials by infrared induction heating
NASA Astrophysics Data System (ADS)
Hsieh, Chien-Te; Chen, Yu-Fu; Pai, Chun-Ting; Mo, Chung-Yu
2014-12-01
This study adopts an in-situ infrared (IR) sintering incorporated with carbonization technique to synthesize carbon-coated LiNi1/3Co1/3Mn1/3O2 (LNCM) cathode materials for Li-ion batteries. Compared with electric resistance heating, the in-situ IR sintering is capable of rapidly producing highly-crystalline LNCM powders at 900 °C within a short period, i.e., 3 h in this case. Glucose additive is employed to serve a carbon precursor, which is carbonized and coated over the surface of LNCM crystals during the IR sintering process. The electrochemical performance of LNCM cathodes is well examined by charge-discharge cycling at 0.1-5C. An appropriate carbon coating is capable of raising discharge capacity (i.e., 181.5 mAh g-1 at 0.1C), rate capability (i.e., 75.0 mAh g-1 at 5C), and cycling stability (i.e., capacity retention: 94.2% at 1C after 50 cycles) of LNCM cathodes. This enhanced performance can be ascribed to the carbon coating onto the external surface of LNCM powders, creating an outer circuit of charge-transfer pathway and preventing cathode corrosion from direct contact to the electrolyte. Accordingly, the in-situ IR sintering technique offers a potential feasibility for synthesizing cathode materials commercially in large scale.
Rain/No-Rain Identification from Bispectral Satellite Information using Deep Neural Networks
NASA Astrophysics Data System (ADS)
Tao, Y.
2016-12-01
Satellite-based precipitation estimation products have the advantage of high resolution and global coverage. However, they still suffer from insufficient accuracy. To accurately estimate precipitation from satellite data, there are two most important aspects: sufficient precipitation information in the satellite information and proper methodologies to extract such information effectively. This study applies the state-of-the-art machine learning methodologies to bispectral satellite information for Rain/No-Rain detection. Specifically, we use deep neural networks to extract features from infrared and water vapor channels and connect it to precipitation identification. To evaluate the effectiveness of the methodology, we first applies it to the infrared data only (Model DL-IR only), the most commonly used inputs for satellite-based precipitation estimation. Then we incorporates water vapor data (Model DL-IR + WV) to further improve the prediction performance. Radar stage IV dataset is used as ground measurement for parameter calibration. The operational product, Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks Cloud Classification System (PERSIANN-CCS), is used as a reference to compare the performance of both models in both winter and summer seasons.The experiments show significant improvement for both models in precipitation identification. The overall performance gains in the Critical Success Index (CSI) are 21.60% and 43.66% over the verification periods for Model DL-IR only and Model DL-IR+WV model compared to PERSIANN-CCS, respectively. Moreover, specific case studies show that the water vapor channel information and the deep neural networks effectively help recover a large number of missing precipitation pixels under warm clouds while reducing false alarms under cold clouds.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Safigholi, H; Mashouf, S; Soliman, A
Purpose: To evaluate the improvement in plan quality when various combinations of 192Ir, 60Co, and 169Yb sources are used in combination with a novel direction modulated brachytherapy (DMBT) tandem applicator for high dose rate brachytherapy of cervical cancer. Methods: The proposed DMBT tandem applicator is designed for image-guided adaptive brachytherapy (IGABT), especially MRI, of cervical cancer. It has 6 peripheral holes of 1.3-mm width, grooved along a 5.4-mm diameter nonmagnetic tungsten alloy rod of density 18.0 g/cc, capable of generating directional dose profiles - leading to enhanced dose sculpting capacity through inverse planning. Monte Carlo simulations of the three HDRmore » sources individually inside the DMBT applicator were performed and imported into an in-house developed inverse optimization code. We then performed inverse planning with 14 cervical cancer patients enrolled in EMBRACE study. In all patients, 3D MRI-based planning was performed while utilizing 1) tandem-ring and needles attached-to-ring (7 patients) and 2) tandem-ring and needles both attached-to-ring and free-hand-loaded (7 patients), in accordance with the GEC-ESTRO recommendations. All plans were normalized to receive the same HRCTV D90 and DVH parameters were evaluated. Results: The DMBT tandem was used in all cases. Overall, the combined use of two sources (192Ir-60Co and 192Ir-169Yb, but not 60Co-169Yb) generally produced better quality plans than with the 192Ir source alone in terms of sparing OARs. For example, up to 3.5, 4.4, and 3.9% individual reductions in D2cc were observed for the bladder, rectum, and sigmoid, respectively, between 192Ir-60Co and 192Ir-only plans for patient cases in #1. While up to 5.5, 2.0, and 5.7% individual reductions were observed for patient cases in #2. Conclusion: We have demonstrated that, in addition to “directional modulation” of DMBT, use of multiple sources with sufficient differences in energy can be utilized to achieve additional improvement in plan quality for IGABT of cervical cancer.« less
Statistical iterative reconstruction to improve image quality for digital breast tomosynthesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Shiyu, E-mail: shiyu.xu@gmail.com; Chen, Ying, E-mail: adachen@siu.edu; Lu, Jianping
2015-09-15
Purpose: Digital breast tomosynthesis (DBT) is a novel modality with the potential to improve early detection of breast cancer by providing three-dimensional (3D) imaging with a low radiation dose. 3D image reconstruction presents some challenges: cone-beam and flat-panel geometry, and highly incomplete sampling. A promising means to overcome these challenges is statistical iterative reconstruction (IR), since it provides the flexibility of accurate physics modeling and a general description of system geometry. The authors’ goal was to develop techniques for applying statistical IR to tomosynthesis imaging data. Methods: These techniques include the following: a physics model with a local voxel-pair basedmore » prior with flexible parameters to fine-tune image quality; a precomputed parameter λ in the prior, to remove data dependence and to achieve a uniform resolution property; an effective ray-driven technique to compute the forward and backprojection; and an oversampled, ray-driven method to perform high resolution reconstruction with a practical region-of-interest technique. To assess the performance of these techniques, the authors acquired phantom data on the stationary DBT prototype system. To solve the estimation problem, the authors proposed an optimization-transfer based algorithm framework that potentially allows fewer iterations to achieve an acceptably converged reconstruction. Results: IR improved the detectability of low-contrast and small microcalcifications, reduced cross-plane artifacts, improved spatial resolution, and lowered noise in reconstructed images. Conclusions: Although the computational load remains a significant challenge for practical development, the superior image quality provided by statistical IR, combined with advancing computational techniques, may bring benefits to screening, diagnostics, and intraoperative imaging in clinical applications.« less
Influence of oxygen uptake kinetics on physical performance in youth soccer.
Doncaster, Greg; Marwood, Simon; Iga, John; Unnithan, Viswanath
2016-09-01
To examine the relationship between oxygen uptake kinetics (VO2 kinetics) and physical measures associated with soccer match play, within a group of highly trained youth soccer players. Seventeen highly trained youth soccer players (age: 13.3 ± 0.4 year, self-assessed Tanner stage: 3 ± 1) volunteered for the study. Players initially completed an incremental treadmill protocol to exhaustion, to establish gaseous exchange threshold (GET) and VO2max (59.1 ± 5.4 mL kg(-1) min(-1)). On subsequent visits, players completed a step transition protocol from rest-moderate-intensity exercise, followed by an immediate transition, and from moderate- to severe-intensity exercise (moderate: 95 % GET, severe: 60 %∆), during which VO2 kinetics were determined. Physical soccer-based performance was assessed using a maximal Yo-Yo intermittent recovery test level 1 (Yo-Yo IR1) and via GPS-derived measures of physical soccer performance during soccer match play, three 2 × 20 min, 11 v 11 matches, to gain measures of physical performance during soccer match play. Partial correlations revealed significant inverse relationships between the unloaded-to-moderate transition time constant (tau) and: Yo-Yo IR1 performance (r = -0.58, P = 0.02) and GPS variables [total distance (TD): r = -0.64, P = 0.007, high-speed running (HSR): r = -0.64, P = 0.008 and high-speed running efforts (HSReff): r = -0.66, P = 0.005]. Measures of VO2 kinetics are related to physical measures associated with soccer match play and could potentially be used to distinguish between those of superior physical performance, within a group of highly trained youth soccer players.
Application of hot-melt extrusion technology in immediate-release abuse-deterrent formulations.
Wening, Klaus; Schwier, Sebastian; Stahlberg, Hans-J; Galia, Eric
Hot-melt extrusion (HME) technology has been used for manufacturing extended-release abuse-deterrent formulations (ADFs) of opioid-type analgesics with improved tamper-resistant properties. Our objective was to describe application of this technology to immediate-release (IR) ADFs. For development of a sample IR ADF (hydrocodone 10 mg/acetaminophen 325 mg) based on HME, feasibility studies were performed using different excipients. The formulation selected for further development was evaluated via in vitro test battery. Moreover, in vivo performance of IR ADF technologies was investigated in an open-label, randomized, cross-over, phase 1, relative oral bioavailability study with another opioid (model compound). Single-center bioavailability trial. Twenty-four healthy white male subjects. ADF IR formulation of an opioid and marketed IR formulation. For feasibility and in vitro studies, dissolution profiles, syringeability, particle size distribution after physical manipulation, and extractability were evaluated. For the phase 1 study, pharmacokinetic parameters were evaluated and compared for ADF IR and a marketed IR formulation. After manipulation, the majority of particles from the ADF IR formulation were >500µm and, thus, not considered suitable for intranasal abuse, while the majority of particles for the reference marketed IR formulation were <500µm. The ADF IR formulation was resistant to syringing and preparation for potential intravenous injection. In healthy subjects, pharmacokinetics of an ADF and marketed IR formulation of an opioid were nearly identical. Application of HME to IR formulations led to development of products with improved mechanical resistance to manipulation for intranasal or intravenous preparation, but similar bioavailability.
Controlling T c of Iridium films using interfacial proximity effects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hennings-Yeomans, R; Chang, CL; Ding, J
High precision calorimetry using superconducting transition edge sensors requires the use of superconducting films with a suitable T c, depending on the application. To advance high-precision macrocalorimetry, we require low-T c films that are easy to fabricate. A simple and effective way to suppress T c of superconducting Iridium through the proximity effect is demonstrated by using Ir/Pt bilayers as well as Au/Ir/Au trilayers. While Ir/Au films fabricated by applying heat to the substrate during Ir deposition have been used in the past for superconducting sensors, we present results of T c suppression on Iridium by deposition at room temperature in Au/Ir/Au trilayers and Ir/Pt bilayers in the range ofmore » $$\\sim$$20-100~mK. Measurements of the relative impedance between the Ir/Pt bilayers and Au/Ir/Au trilayers fabricated show factor of $$\\sim$$10 higher values in the Ir/Pt case. These new films could play a key role in the development of scalable superconducting transition edge sensors that require low-T c films to minimize heat capacity and maximize energy resolution, while keeping high-yield fabrication methods.« less
Innovative on-chip packaging applied to uncooled IRFPA
NASA Astrophysics Data System (ADS)
Dumont, Geoffroy; Arnaud, Agnès; Imperinetti, Pierre; Mottin, Eric; Simoens, François; Vialle, Claire; Rabaud, Wilfried; Grand, Gilles; Baclet, Nathalie
2008-03-01
The Laboratoire Infrarouge (LIR) of the Laboratoire d'Electronique et de Technologie de l'Information (LETI) has been involved in the development of microbolometers for over fifteen years. Two generations of technology have been transferred to ULIS and LETI is still working to improve performances of low cost detectors. Simultaneously, packaging still represents a significant part of detectors price. Reducing production costs would contribute to keep on extending applications of uncooled IRFPA to high volume markets like automotive. Therefore LETI develops an onchip packaging technology dedicated to microbolometers. The efficiency of a micropackaging technology for microbolometers relies on two major technical specifications. First, it must include an optical window with a high transmittance for the IR band, so as to maximize the detector absorption. Secondly, in order to preserve the thermal insulation of the detector, the micropackaging must be hermetically closed to maintain a vacuum level lower than 10 -3mbar. This paper presents an original microcap structure that enables the use of IR window materials as sealing layers to maintain the expected vacuum level. The modelling and integration of an IR window suitable for this structure is also presented. This zero level packaging technology is performed in a standard collective way, in continuation of bolometers' technology. The CEA-LETI, MINATEC presents status of these developments concerning this innovating technology including optical simulations results and SEM views of technical realizations.
Huang, Kun; Liu, Ju; Zhang, Hui; Wang, Jiliang; Li, Huili
2016-01-01
Ischaemia/reperfusion (I/R) injury will cause additional death of cardiomyocytes in ischaemic heart disease. Recent studies revealed that renalase was involved in the I/R injury. So, the myocardial tissue-specific knockdown mouse models were needed for the investigations of renalase. To establish the mouse models, intramyocardial injection of siRNAs targeting renalase was performed in mice. The wild distribution and high transfection efficiency of the siRNAs were approved. And the renalase expression was efficiently suppressed in myocardial tissue. Compared with the high cost, time consumption, and genetic compensation risk of the Cre/loxP technology, RNA interference (RNAi) technology is much cheaper and less time-consuming. Among the RNAi technologies, injection of siRNAs is safer than virus. And considering the properties of the I/R injury mouse models, the efficiency and durability of injection with siRNAs are acceptable for the studies. Altogether, intramyocardial injection of siRNAs targeting renalase is an economical, safe, and efficient method to establish myocardial tissue-specific renalase knockdown mouse models.
2 kV slanted tri-gate GaN-on-Si Schottky barrier diodes with ultra-low leakage current
NASA Astrophysics Data System (ADS)
Ma, Jun; Matioli, Elison
2018-01-01
This letter reports lateral GaN-on-Si power Schottky barrier diodes (SBDs) with unprecedented voltage-blocking performance by integrating 3-dimensionally a hybrid of tri-anode and slanted tri-gate architectures in their anode. The hybrid tri-anode pins the voltage drop at the Schottky junction (VSCH), despite a large applied reverse bias, fixing the reverse leakage current (IR) of the SBD. Such architecture led to an ultra-low IR of 51 ± 5.9 nA/mm at -1000 V, in addition to a small turn-on voltage (VON) of 0.61 ± 0.03 V. The slanted tri-gate effectively distributes the electric field in OFF state, leading to a remarkably high breakdown voltage (VBR) of -2000 V at 1 μA/mm, constituting a significant breakthrough from existing technologies. The approach pursued in this work reduces the IR and increases the VBR without sacrificing the VON, which provides a technology for high-voltage SBDs, and unveils the unique advantage of tri-gates for advanced power applications.
Wang, Ying Yi; Wang, Kai; Xu, Zuo Yu; Song, Yan; Wang, Chu Nan; Zhang, Chong Qing; Sun, Xi Lin; Shen, Bao Zhong
2017-01-01
Considering the general application of dedicated small-animal positron emission tomography/computed tomography is limited, an acceptable alternative in many situations might be clinical PET/CT. To estimate the feasibility of using clinical PET/CT with [F-18]-fluoro-2-deoxy-D-glucose for high-resolution dynamic imaging and quantitative analysis of cancer xenografts in nude mice. Dynamic clinical PET/CT scans were performed on xenografts for 60 min after injection with [F-18]-fluoro-2-deoxy-D-glucose. Scans were reconstructed with or without SharpIR method in two phases. And mice were sacrificed to extracting major organs and tumors, using ex vivo γ-counting as a reference. Strikingly, we observed that the image quality and the correlation between the all quantitive data from clinical PET/CT and the ex vivo counting was better with the SharpIR reconstructions than without. Our data demonstrate that clinical PET/CT scanner with SharpIR reconstruction is a valuable tool for imaging small animals in preclinical cancer research, offering dynamic imaging parameters, good image quality and accurate data quatification. PMID:28881772
Wang, Ying Yi; Wang, Kai; Xu, Zuo Yu; Song, Yan; Wang, Chu Nan; Zhang, Chong Qing; Sun, Xi Lin; Shen, Bao Zhong
2017-08-08
Considering the general application of dedicated small-animal positron emission tomography/computed tomography is limited, an acceptable alternative in many situations might be clinical PET/CT. To estimate the feasibility of using clinical PET/CT with [F-18]-fluoro-2-deoxy-D-glucose for high-resolution dynamic imaging and quantitative analysis of cancer xenografts in nude mice. Dynamic clinical PET/CT scans were performed on xenografts for 60 min after injection with [F-18]-fluoro-2-deoxy-D-glucose. Scans were reconstructed with or without SharpIR method in two phases. And mice were sacrificed to extracting major organs and tumors, using ex vivo γ-counting as a reference. Strikingly, we observed that the image quality and the correlation between the all quantitive data from clinical PET/CT and the ex vivo counting was better with the SharpIR reconstructions than without. Our data demonstrate that clinical PET/CT scanner with SharpIR reconstruction is a valuable tool for imaging small animals in preclinical cancer research, offering dynamic imaging parameters, good image quality and accurate data quatification.
Space-Borne Infrared Astronomy
NASA Technical Reports Server (NTRS)
Lange, Andrew E.
1997-01-01
The objective of this grant is to develop the Far IR Photometer (FIRP), one of four focal plane instruments on the IR Telescope in Space (IRTS). The IRTS was successfully launched in March 18, 1995 aboard the Japanese SFU platform. It surveyed the IR sky for approximately 40 days, and was eventually retrieved by NASA's STS. The FIRP succeeded in surveying approximately 5% of the sky in four bands centered at 150, 250, 400 and 700 microns. Several new technologies were developed using the funds from this grant, including: (1) a high performance gas-gap heat-switch, (2) a He-3 sorption refrigerator that is, to date, the only refrigerator to achieve sub-Kelvin temperatures in orbit, (3) high-sensitivity bolometric detectors with NEP less than 10-16 W(Hz(exp l/2)exp 1/2) when operated from a 300 mK heat sink, (4) readout electronics capable of providing DC stability for the bolometric detectors. Excess noise of unknown origin significantly reduced the sensitivity of the FIRP on orbit. Nevertheless, scientifically significant observations of the spectrum and temperature of the interstellar dust were made, and have been reported.
New quantum cascade laser sources for sensing applications (Conference Presentation)
NASA Astrophysics Data System (ADS)
Troccoli, Mariano
2017-05-01
In this presentation we will review our most recent results on development of Quantum Cascade Lasers (QCLs) for analytical and industrial applications. QCLs have demonstrated the capability to cover the entire range of Mid-IR, Far-IR, and THz wavelengths by skillful tuning of the material design and composition and by use of intrinsic material properties via a set of techniques collectively called "bandgap engineering". The use of MOCVD, pioneered on industrial scale by AdTech Optics, has enabled the deployment of QCL devices into a diverse range of environments and applications. QCLs can be tailored to the specific application requirements due to their unprecedented flexibility in design and thanks to the leveraging of well-known III-V fabrication technologies inherited from the NIR domain. Nevertheless, several applications and new frontiers in R and D need the constant support of new developments in device features, capabilities, and performances. We have developed a wide range of devices, from high power, high efficiency multi-mode sources, to narrow-band, single mode devices with low-power consumption, and from non-linear, multi-wavelength generating devices to broadband sources and multi-emitter arrays. All our devices are grown and processed using MOCVD technology and allow us to attain competitive performances across the whole mid-IR spectral range. This talk will present an overview of our current achievements. References 1. M. Troccoli, "High power emission and single mode operation of quantum cascade lasers for industrial applications", J. Sel. Topics in Quantum Electron., 21 (6), 1-7 (2015). Invited Review. 2. Seungyong Jung, Aiting Jiang, Yifan Jiang, Karun Vijayraghavan, Xiaojun Wang, Mariano Troccoli, and Mikhail A. Belkin, "Broadly Tunable Monolithic Terahertz Quantum Cascade Laser Sources", Nature Comm. 5, 4267 (2014).. 3. Mariano Troccoli, Arkadiy Lyakh, Jenyu Fan, Xiaojun Wang, Richard Maulini, Alexei G Tsekoun, Rowel Go, C Kumar N Patel, "Long-Wave IR Quantum Cascade Lasers for emission in the λ = 8-12μm spectral region", Opt. Mat. Expr., 3 (9), 1546-1560 (2013).
Xu, Hui; Yu, Dong-Hui; Liu, Le-Le; Yan, Peng-Fei; Jia, Li-Wei; Li, Guang-Ming; Yue, Zheng-Yu
2010-01-14
Three electrophosphorescent small molecular Ir(3+) complexes, Ir(HexPhBI)(3) 1 (HexPhBI = 1-Hexyl-2-phenyl-1H-benzo[d]imidazole), Ir(CzPhBI)(3) 2 (CzPhBI = 9-(6-(2-phenyl-1H-benzo[d]imidazol-1-yl)hexyl)-9H-carbazole), and Ir(Cz(2)PhBI)(3) 3 (Cz(2)PhBI = 9-(6-(4-(1-(6-(9H-carbazol-9-yl)hexyl)-1H-benzo[d]imidazol-2-yl)phenoxy)hexyl)-9H-carbazole), were synthesized in which 3 was designed with the structure of multiposition encapsulation. Compared to the hexyl-substituted 1, 2 and 3 end-capped with the conjugated carbazole moieties have improved thermal stability. X-ray diffraction analysis proved the amorphous state of 2 and 3. High-photoluminescent efficiencies of 3 are achieved as 72% in solution and 61% in solid. It indicates that the peripheral carbazoles not only facilitate the separation of triplet-emission cores and reduce the intermolecular aggregation but also supply a routine for the intermolecular energy transfer. Electrochemical analysis showed the more oxidation states of 3, which might be anticipated to make it superior to 1 and 2 in hole injection and transporting. The important role of the peripheral carbazole moieties in carrier injection/transporting and the optical properties of the complexes were further investigated by Gaussian simulation. A dramatic electroluminescent (EL) performance, including external quantum efficiency of nearly 6%, low turn-on voltage of 2.5 V, and high brightness over 6000 cd m(-2), from the host-free spin-coated device of 3 was achieved. The superiority of multiencapsulation in EL was proved by comparing the EL performance of 2 and 3. By making comparison between the host-free and phosphor-doping devices, it indicated that the combined modification of the aliphatic chains and functional groups in multipositions is a feasible approach to realize the high-efficiency small molecular phosphorescent materials.
Vildagliptin reduces cardiac ischemic-reperfusion injury in obese orchiectomized rats.
Pongkan, Wanpitak; Pintana, Hiranya; Jaiwongkam, Thidarat; Kredphoo, Sasiwan; Sivasinprasasn, Sivaporn; Chattipakorn, Siriporn C; Chattipakorn, Nipon
2016-10-01
Obesity and testosterone deprivation are associated with coronary artery disease. Testosterone and vildagliptin (dipeptidyl peptidase-4 inhibitors) exert cardioprotection during ischemic-reperfusion (I/R) injury. However, the effect of these drugs on I/R heart in a testosterone-deprived, obese, insulin-resistant model is unclear. This study investigated the effects of testosterone and vildagliptin on cardiac function, arrhythmias and the infarct size in I/R heart of testosterone-deprived rats with obese insulin resistance. Orchiectomized (O) or sham operated (S) male Wistar rats were divided into 2 groups to receive normal diet (ND) or high-fat diet (HFD) for 12 weeks. Orchiectomized rats in each diet were divided to receive testosterone (2 mg/kg), vildagliptin (3 mg/kg) or the vehicle daily for 4 weeks. Then, I/R was performed by a 30-min left anterior descending coronary artery ligation, followed by a 120-min reperfusion. LV function, arrhythmia scores, infarct size and cardiac mitochondrial function were determined. HFD groups developed insulin resistance at week 12. At week 16, cardiac function was impaired in NDO, HFO and HFS rats, but was restored in all testosterone- and vildagliptin-treated rats. During I/R injury, arrhythmia scores, infarct size and cardiac mitochondrial dysfunction were prominently increased in NDO, HFO and HFS rats, compared with those in NDS rats. Treatment with either testosterone or vildagliptin similarly attenuated these impairments during I/R injury. These finding suggest that both testosterone replacement and vildagliptin share similar efficacy for cardioprotection during I/R injury by decreasing the infarct size and attenuating cardiac mitochondrial dysfunction caused by I/R injury in testosterone-deprived rats with obese insulin resistance. © 2016 Society for Endocrinology.
Autonomous long-range open area fire detection and reporting
NASA Astrophysics Data System (ADS)
Engelhaupt, Darell E.; Reardon, Patrick J.; Blackwell, Lisa; Warden, Lance; Ramsey, Brian D.
2005-03-01
Approximately 5 billion dollars in US revenue was lost in 2003 due to open area fires. In addition many lives are lost annually. Early detection of open area fires is typically performed by manned observatories, random reporting and aerial surveillance. Optical IR flame detectors have been developed previously. They typically have experienced high false alarms and low flame detection sensitivity due to interference from solar and other causes. Recently a combination of IR detectors has been used in a two or three color mode to reduce false alarms from solar, or background sources. A combination of ultra-violet C (UVC) and near infra-red (NIR) detectors has also been developed recently for flame discrimination. Relatively solar-blind basic detectors are now available but typically detect at only a few tens of meters at ~ 1 square meter fuel flame. We quantify the range and solar issues for IR and visible detectors and qualitatively define UV sensor requirements in terms of the mode of operation, collection area issues and flame signal output by combustion photochemistry. We describe innovative flame signal collection optics for multiple wavelengths using UV and IR as low false alarm detection of open area fires at long range (8-10 km/m2) in daylight (or darkness). A circular array detector and UV-IR reflective and refractive devices including cylindrical or toroidal lens elements for the IR are described. The dispersion in a refractive cylindrical IR lens characterizes the fire and allows a stationary line or circle generator to locate the direction and different flame IR "colors" from a wide FOV. The line generator will produce spots along the line corresponding to the fire which can be discriminated with a linear detector. We demonstrate prototype autonomous sensors with RF digital reporting from various sites.
Wanderley, Miriam da Silva; Pereira, Lara Cristina Ribeiro; Santos, Carla Borges; Cunha, Vinícius Santos da; Neves, Mariam Viviane Jovino
2018-04-01
To analyze the association between the indirect methods of evaluating insulin resistance (IR) and blood pressure, anthropometric and biochemical parameters in a population of polycystic ovary syndrome (PCOS) patients. Cross-sectional study performed at the Hospital Universitário de Brasília (HUB, in the Portuguese acronym) involving PCOS patients diagnosed from January 2011 to January 2013. Four indirect methods, namely, fasting blood insulin level, fasting glucose/insulin ratio (G/I), homeostatic model-assessment-insulin resistance (HOMA-IR), and the quantitative insulin sensitivity check index (QUICKI), were used to obtain the IR diagnosis. The data were analyzed using the test of proportions, the Chi-square test, and Fisher exact test, when indicated. Out of the 83 patients assessed, aged 28.79 ± 5.85, IR was found in 51.81-66.2% of them using the G/I ratio and the QUICKI, respectively. The test of proportions did not show a significant difference between the methods analyzed. The proportion of IR diagnoses was statistically higher in obese women than in women with normal body mass index (BMI). We observed a statistically significant association between all the methods for diagnosing IR and BMI, waist circumference (WC) and lipid accumulation product (LAP). With regards to arterial hypertension (AH), we observed a significant association according to three methods, with the exception of the ratio G/I. Insulin resistance prevalence varied according to the diagnostic method employed, with no statistical difference between them. The proportion of IR diagnoses was statistically higher in obese women than in women with normal BMI. We observed a significant association between IR and WC, BMI, LAP, as well as dyslipidemia and AH in a high proportion of patients. Thieme Revinter Publicações Ltda Rio de Janeiro, Brazil.
NeuroSeek dual-color image processing infrared focal plane array
NASA Astrophysics Data System (ADS)
McCarley, Paul L.; Massie, Mark A.; Baxter, Christopher R.; Huynh, Buu L.
1998-09-01
Several technologies have been developed in recent years to advance the state of the art of IR sensor systems including dual color affordable focal planes, on-focal plane array biologically inspired image and signal processing techniques and spectral sensing techniques. Pacific Advanced Technology (PAT) and the Air Force Research Lab Munitions Directorate have developed a system which incorporates the best of these capabilities into a single device. The 'NeuroSeek' device integrates these technologies into an IR focal plane array (FPA) which combines multicolor Midwave IR/Longwave IR radiometric response with on-focal plane 'smart' neuromorphic analog image processing. The readout and processing integrated circuit very large scale integration chip which was developed under this effort will be hybridized to a dual color detector array to produce the NeuroSeek FPA, which will have the capability to fuse multiple pixel-based sensor inputs directly on the focal plane. Great advantages are afforded by application of massively parallel processing algorithms to image data in the analog domain; the high speed and low power consumption of this device mimic operations performed in the human retina.
An assessment of surface emissivity variation effects on plasma uniformity analysis using IR cameras
NASA Astrophysics Data System (ADS)
Greenhalgh, Abigail; Showers, Melissa; Biewer, Theodore
2017-10-01
The Prototype-Material Plasma Exposure eXperiment (Proto-MPEX) is a linear plasma device operating at Oak Ridge National Laboratory (ORNL). Its purpose is to test plasma source and heating concepts for the planned Material Plasma Exposure eXperiment (MPEX), which has the mission to test the plasma-material interactions under fusion reactor conditions. In this device material targets will be exposed to high heat fluxes (>10 MW/m2). To characterize the heat fluxes to the target a IR thermography system is used taking up to 432 frames per second videos. The data is analyzed to determine the surface temperature on the target in specific regions of interest. The IR analysis has indicated a low level of plasma uniformity; the plasma often deposits more heat to the edge of the plate than the center. An essential parameter for IR temperature calculation is the surface emissivity of the plate (stainless steel). A study has been performed to characterize the variation in the surface emissivity of the plate as its temperature changes and its surface finish is modified by plasma exposure.
Glenohumeral internal rotation deficit in throwing athletes: current perspectives
Rose, Michael B; Noonan, Thomas
2018-01-01
Glenohumeral internal rotation deficit (GIRD) is an adaptive process in which the throwing shoulder experiences a loss of internal rotation (IR). GIRD has most commonly been defined by a loss of >20° of IR compared to the contralateral shoulder. Total rotational motion of the shoulder is the sum of internal and external rotation and may be more important than the absolute value of IR loss. Pathologic GIRD has been defined as a loss of IR combined with a loss of total rotational motion. The leading pathologic process in GIRD is posterior capsular and rotator-cuff tightness, due to the repetitive cocking that occurs with the overhead throwing motion. GIRD has been associated with numerous pathologic conditions, including posterior superior labral tears, partial articular-sided rotator-cuff tears, and superior labral anterior-to-posterior tears. The mainstay of treatment for patients with GIRD is posterior capsular stretching and strengthening to improve scapular mechanics. In patients who fail nonoperative therapy, shoulder arthroscopy can be performed. Arthroscopic surgery in the high-level throwing athlete should be to restore them to their functional baseline with the minimum amount of intervention possible. PMID:29593438
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumta, Prashant
2014-10-03
Identification and development of non-noble metal based electro-catalysts or electro-catalysts with significant reduction of expensive noble metal contents (E.g. IrO2, Pt) with comparable electrochemical performance as the standard noble metal/metal oxide for proton exchange membrane (PEM) based water electrolysis would constitute a major breakthrough in the generation of hydrogen by water electrolysis. Accomplishing such a system would not only result reduction of the overall capital costs of PEM based water electrolyzers, but also help attain the targeted hydrogen production cost [< $ 3.0 / gallon gasoline equivalent (gge)] comparable to conventional liquid fuels. In line with these goals, it wasmore » demonstrated that fluorine doped IrO2 thin films and nanostructured high surface area powders display remarkably higher electrochemical activity, and comparable durability as pure IrO2 electro-catalyst for the oxygen evolution reaction (OER) in PEM based water electrolysis. Furthermore, corrosion resistant SnO2 and NbO2 support has been doped with F and coupled with IrO2 or RuO2 for use as an OER electro-catalyst. A solid solution of SnO2:F or NbO2:F with only 20 - 30 mol.% IrO2 or RuO2 yielding a rutile structure in the form of thin films and bulk nanoparticles displays similar electrochemical activity and stability as pure IrO2/RuO2. This would lead to more than 70 mol.% reduction in the noble metal oxide content. Novel nanostructured ternary (Ir,Sn,Nb)O2 thin films of different compositions FUNDAMENTAL STUDY OF NANOSTRUCTURED ELECTRO-CATALYSTS WITH REDUCED NOBLE METAL CONTENT FOR PEM BASED WATER ELECTROLYSIS 4 have also been studied. It has been shown that (Ir0.40Sn0.30Nb0.30)O2 shows similar electrochemical activity and enhanced chemical robustness as compared to pure IrO2. F doping of the ternary (Ir,Sn,Nb)O2 catalyst helps in further decreasing the noble metal oxide content of the catalyst. As a result, these reduced noble metal oxide catalyst systems would potentially be preferred as OER electro-catalysts for PEM electrolysis. The excellent performance of the catalysts coupled with its robustness would make them great candidates for contributing to significant reduction in the overall capital costs of PEM based water electrolyzers. This s.thesis provides a detailed fundamental study of the synthesis, materials, characterization, theoretical studies and detailed electrochemical response and potential mechanisms of these novel electro-catalysts for OER processes.« less
[Phosphorescent effect of Ir (ppy)3 on the luminescent characteristic of Rubrene].
Xu, Hong-Hua; Xu, Zheng; Zhang, Fu-Jun; Zhao, Su-Ling; Yuan, Guang-Cai; Chen, Yue-Ning
2008-07-01
Many organic matters including heavy metal ions can validly utilize the singlet and triplet for luminescence owiog to the spin-orbit coupling. As a result, the internal quantum efficiency can easily achieve a value higher than traditional organic light emitting diodes in theory. There is a strong luminescence of PVK in PVK : PBD : Rubrene system. PL spectra excited by 345 nm of PVK : PBD : Rubrene thin film has a 410 nm PVK luminescent peak and a 560 nm Rubrene peak. EL still has a PVK luminescent peak, which should be kept from happening. Excitons can not adequately transferred from the matrix solution to Rubrene. The doping with Ir(ppy)3 improves the PVK : PBD : Rubrene system performance. PL spectra excited by 345 nm of PVK : PBD : Ir(ppy)3 : Rubrene with low concentration of Rubrene has a 510 nm Ir(ppy)3 peak and a new 548 nm one. However, the Ir(ppy)3 peak is smaller and the Rubrene one is bigger in EL spectra. Notably a strong and single luminescence of Rubrene is obtained in EL and PL spectra excited by 345 nm of PVK : PBD : Ir(ppy)3 : Rubrene with high concentration of Rubrene. Meanwhile, the Ir(ppy)3 luminescent peak disappears. The mechanism originates from the phosphorescent effect of Ir (ppy)3. The singlet excitons can basically be transferred from PVK : PBD or Ir(ppy)3 to Rubrene. But most excitons from Ir (ppy)3 can directly tunnel to the fluorescent material and come into being singlet states that can return to ground states and cause luminescence. Rubrene can accept proportional excitons with low concentration. While the concentration of Rubrene is higher, excitons can be entirely accepted by Rubrene. The effect also restricts the luminescent intensity of Ir(ppy)3 and boosts up that of Rubrene. Furthermore, the energy transfer in PVK : PBD : Ir(ppy)3 : Rubrene system is primary the Forester energy transfer. Excitation spectra of Rubrene and emission spectra of Ir(ppy)3 have a large overlap revealing that there is a strong energy transfer and further confirmed the phosphorescent effect of Ir(ppy)3. The doping system with phosphorescence material and small molecules can enhance the brightness and internal quantum efficiency.
Feedback in Information Retrieval.
ERIC Educational Resources Information Center
Spink, Amanda; Losee, Robert M.
1996-01-01
As Information Retrieval (IR) has evolved, it has become a highly interactive process, rooted in cognitive and situational contexts. Consequently the traditional cybernetic-based IR model does not suffice for interactive IR or the human approach to IR. Reviews different views of feedback in IR and their relationship to cybernetic and social…
NASA Astrophysics Data System (ADS)
Goss, Tristan M.
2016-05-01
With 640x512 pixel format IR detector arrays having been on the market for the past decade, Standard Definition (SD) thermal imaging sensors have been developed and deployed across the world. Now with 1280x1024 pixel format IR detector arrays becoming readily available designers of thermal imager systems face new challenges as pixel sizes reduce and the demand and applications for High Definition (HD) thermal imaging sensors increases. In many instances the upgrading of existing under-sampled SD thermal imaging sensors into more optimally sampled or oversampled HD thermal imaging sensors provides a more cost effective and reduced time to market option than to design and develop a completely new sensor. This paper presents the analysis and rationale behind the selection of the best suited HD pixel format MWIR detector for the upgrade of an existing SD thermal imaging sensor to a higher performing HD thermal imaging sensor. Several commercially available and "soon to be" commercially available HD small pixel IR detector options are included as part of the analysis and are considered for this upgrade. The impact the proposed detectors have on the sensor's overall sensitivity, noise and resolution is analyzed, and the improved range performance is predicted. Furthermore with reduced dark currents due to the smaller pixel sizes, the candidate HD MWIR detectors are operated at higher temperatures when compared to their SD predecessors. Therefore, as an additional constraint and as a design goal, the feasibility of achieving upgraded performance without any increase in the size, weight and power consumption of the thermal imager is discussed herein.
Infrared scan of concrete admixtures and structural steel paints.
DOT National Transportation Integrated Search
2011-06-01
This study evaluates correlation coefficients for concrete admixtures and structural steel paints by : performing IR scans using ASTM C494-05a specifications. The intent of this study is to perform a : sufficient number of IR scans from different bat...
Ultrafast laser control of autoionizing resonances observed in attosecond transient absorption
NASA Astrophysics Data System (ADS)
Liao, Chen-Ting; Harkema, Nathan; Sandhu, Arvinder
2017-04-01
Attosecond and femtosecond extreme ultraviolet (XUV) pulses can be used to probe electron dynamics in high-lying excited states that autoionize on a femtosecond timescale, thus providing information on the process of Auger decay and its interference with the continua. Here we utilize XUV pulses in connection with infrared (IR) pulses to perform attosecond transient absorption spectroscopy of the impulsive response of argon autoionizing Rydberg states in the vicinity of the 3s-1 4 p resonance. We show that by tuning the time delay and field polarization of IR pulse, it is possible to control the dipolar coupling between neighboring states and hence the spectral line shape of the resonance, such as the transition between Breit-Wigner to Beutler-Fano profiles. NSF Grant No. PHY-1505556.
Johns, Benjamin; Yihdego, Yemane Yeebiyo; Kolyada, Lena; Dengela, Dereje; Chibsa, Sheleme; Dissanayake, Gunawardena; George, Kristen; Taffese, Hiwot Solomon; Lucas, Bradford
2016-01-01
ABSTRACT Background: Indoor residual spraying (IRS) for malaria prevention has traditionally been implemented in Ethiopia by the district health office with technical and operational inputs from regional, zonal, and central health offices. The United States President's Malaria Initiative (PMI) in collaboration with the Government of Ethiopia tested the effectiveness and efficiency of integrating IRS into the government-funded community-based rural health services program. Methods: Between 2012 and 2014, PMI conducted a mixed-methods study in 11 districts of Oromia region to compare district-based IRS (DB IRS) and community-based IRS (CB IRS) models. In the DB IRS model, each district included 2 centrally located operational sites where spray teams camped during the IRS campaign and from which they traveled to the villages to conduct spraying. In the CB IRS model, spray team members were hired from the communities in which they operated, thus eliminating the need for transport and camping facilities. The study team evaluated spray coverage, the quality of spraying, compliance with environmental and safety standards, and cost and performance efficiency. Results: The average number of eligible structures found and sprayed in the CB IRS districts increased by 19.6% and 20.3%, respectively, between 2012 (before CB IRS) and 2013 (during CB IRS). Between 2013 and 2014, the numbers increased by about 14%. In contrast, in the DB IRS districts the number of eligible structures found increased by only 8.1% between 2012 and 2013 and by 0.4% between 2013 and 2014. The quality of CB IRS operations was good and comparable to that in the DB IRS model, according to wall bioassay tests. Some compliance issues in the first year of CB IRS implementation were corrected in the second year, bringing compliance up to the level of the DB IRS model. The CB IRS model had, on average, higher amortized costs per district than the DB IRS model but lower unit costs per structure sprayed and per person protected because the community-based model found and sprayed more structures. Conclusion: Established community-based service delivery systems can be adapted to include a seasonal IRS campaign alongside the community-based health workers' routine activities to improve performance efficiency. Further modifications of the community-based IRS model may reduce the total cost of the intervention and increase its financial sustainability. PMID:27965266
Viswanath, Vinod; Leo, Vincent Vineeth; Prabha, S Sabna; Prabhakumari, C; Potty, V P; Jisha, M S
2016-01-01
The chemical nature of the polyphenols of cashew kernel testa has been determined. Testa contains tannins, which present large molecular complexity and has an ancient use as tanning agents. The use of tannins extracted from cashew testa, considered in many places as a waste, grants an extra value to the cashew. In this work we have analysed through high performance liquid chromatography, infrared spectroscopy (FT-IR) and thermo gravimetric analysis the average molecular weight, main functional groups and thermal properties of tannins extracted from Anacardium occidentale L. The results of these analyses are compared with the commercial grade tannic acid. The FT-IR spectra showed bands characteristic of C = C, C-C and OH bonds. This important bioactive compound present in the cashew nut kernel testa was suggested as an interesting economical source of antioxidants for use in the food and nutraceutical industry.
Rain volume estimation over areas using satellite and radar data
NASA Technical Reports Server (NTRS)
Doneaud, A. A.; Vonderhaar, T. H.
1985-01-01
An investigation of the feasibility of rain volume estimation using satellite data following a technique recently developed with radar data called the Arera Time Integral was undertaken. Case studies were selected on the basis of existing radar and satellite data sets which match in space and time. Four multicell clusters were analyzed. Routines for navigation remapping amd smoothing of satellite images were performed. Visible counts were normalized for solar zenith angle. A radar sector of interest was defined to delineate specific radar echo clusters for each radar time throughout the radar echo cluster lifetime. A satellite sector of interest was defined by applying small adjustments to the radar sector using a manual processing technique. The radar echo area, the IR maximum counts and the IR counts matching radar echo areas were found to evolve similarly, except for the decaying phase of the cluster where the cirrus debris keeps the IR counts high.
NASA Astrophysics Data System (ADS)
Van Luong, Nguyen; Danilov, P. A.; Ionin, A. A.; Khmel'nitskii, P. A.; Kudryashov, S. I.; Mel'nik, N. N.; Saraeva, I. N.; Смirnov, H. A.; Rudenko, A. A.; Zayarny, D. A.
2017-09-01
We perform a single-shot IR nanosecond laser processing of commercial silicon wafers in ambient air and under a 2 mm thick carbon disulfide liquid layer. We characterize the surface spots modified in the liquid ambient and the spots ablated under the same conditions in air in terms of its surface topography, chemical composition, band-structure modification, and crystalline structure by means of SEM and EDX microscopy, as well as of FT-IR and Raman spectroscopy. These studies indicate that single-step microstructuring and deep (up to 2-3% on the surface) hyperdoping of the crystalline silicon in its submicron surface layer, preserving via pulsed laser annealing its crystallinity and providing high (103 - 104 cm-1) spectrally at near- and mid-IR absorption coefficients, can be obtained in this novel approach, which is very promising for thin - film silicon photovoltaic devices
Infrared dim target detection based on visual attention
NASA Astrophysics Data System (ADS)
Wang, Xin; Lv, Guofang; Xu, Lizhong
2012-11-01
Accurate and fast detection of infrared (IR) dim target has very important meaning for infrared precise guidance, early warning, video surveillance, etc. Based on human visual attention mechanisms, an automatic detection algorithm for infrared dim target is presented. After analyzing the characteristics of infrared dim target images, the method firstly designs Difference of Gaussians (DoG) filters to compute the saliency map. Then the salient regions where the potential targets exist in are extracted by searching through the saliency map with a control mechanism of winner-take-all (WTA) competition and inhibition-of-return (IOR). At last, these regions are identified by the characteristics of the dim IR targets, so the true targets are detected, and the spurious objects are rejected. The experiments are performed for some real-life IR images, and the results prove that the proposed method has satisfying detection effectiveness and robustness. Meanwhile, it has high detection efficiency and can be used for real-time detection.
NASA Astrophysics Data System (ADS)
Le Goff, Alain; Cathala, Thierry; Latger, Jean
2015-10-01
To provide technical assessments of EO/IR flares and self-protection systems for aircraft, DGA Information superiority resorts to synthetic image generation to model the operational battlefield of an aircraft, as viewed by EO/IR threats. For this purpose, it completed the SE-Workbench suite from OKTAL-SE with functionalities to predict a realistic aircraft IR signature and is yet integrating the real-time EO/IR rendering engine of SE-Workbench called SE-FAST-IR. This engine is a set of physics-based software and libraries that allows preparing and visualizing a 3D scene for the EO/IR domain. It takes advantage of recent advances in GPU computing techniques. The recent past evolutions that have been performed concern mainly the realistic and physical rendering of reflections, the rendering of both radiative and thermal shadows, the use of procedural techniques for the managing and the rendering of very large terrains, the implementation of Image- Based Rendering for dynamic interpolation of plume static signatures and lastly for aircraft the dynamic interpolation of thermal states. The next step is the representation of the spectral, directional, spatial and temporal signature of flares by Lacroix Defense using OKTAL-SE technology. This representation is prepared from experimental data acquired during windblast tests and high speed track tests. It is based on particle system mechanisms to model the different components of a flare. The validation of a flare model will comprise a simulation of real trials and a comparison of simulation outputs to experimental results concerning the flare signature and above all the behavior of the stimulated threat.
Effect of sodium aescinate treatment on PCOS rat model with insulin resistance.
Chen, L; Hu, L M; Wang, Y F; Yang, H Y; Huang, X Y; Zhou, W; Sun, H X
2017-01-01
Recent studies indicated that insulin resistance may contribute to the pathogenesis of polycystic ovary syndrome (PCOS); however, the specific mechanism is still unclear. To investigate the effect of sodium aescinate (SA) on PCOS-IR rat models. Sixty rats were randomly divided into the five groups: un-treated rats (n = 12), PCOS-IR group (n = 12), PCOS-IR group plus 50 mg/kg SA (n = 12), PCOS-IR group plus 10 mg/kg SA (n = 12), PCOS-IR group plus 150 mg/kg metformin (n = 12). On day 21, rats were sacrificed, and H(and)E staining was performed for histopathologic examination of the ovaries; moreover, the serum level of follicle-stimulating hormone (FSH), testosterone, and luteotropic hormone (LH) were measured, and the expression as well as phosphorylation of PI3K, Akt and Gsk-3β were examined using western blot assay. High dosage of SA treatment improved the morphological features of the ovaries in PCOS rats, and also induced significant decrease in serum expression of testosterone and LH/FSH ratio and significant decrease in the expression of p-PI3K, p-Akt and p-Gsk-3β. Our results demonstrated that SA treatment could alleviate the symptom of PCOS in rat model through regulating the PI3K/Akt/GSK3-β pathway (Fig. 4, Ref. 22).
IR gas cloud imaging in oil and gas applications: immunity to false stimuli
NASA Astrophysics Data System (ADS)
Naranjo, Edward; Baliga, Shakar; Park, John; Bernascolle, Philippe
2011-05-01
Fixed gas detection equipment for the petroleum industries is no ordinary equipment. It is designed for continued unattended surveillance in harsh environments. The equipment must be reliable and require limited field maintenance. An additional requirement is a high resistance to false alarms and interferences, which can potentially reduce the detector's efficacy and the level of protection provided. In recent years, several manufactures of IR imaging devices have launched commercial models that are applicable to a wide range of chemical species and suitable for industrial use. These cameras are rugged and sufficiently sensitive to detect low concentrations of combustible and toxic gases. Nonetheless, as users become acquainted with these imaging systems, questions of resilience to solar and flame radiation and other IR sources, interferences by fog or steam, have begun to emerge. These questions, in fact, reflect similar concerns as those raised with open path IR gas detectors when they first appeared in the market over 20 years ago. This paper examines an IR gas imager's performance when exposed to several false alarm sources. Gas detection sensitivity in the presence of false stimuli and response and recovery times under an uncontrolled outdoor environment were measured. The results show the specific model tested is reasonably immune to false alarms, while response times were unaffected by the presence of these sources.
Enhanced modeling and simulation of EO/IR sensor systems
NASA Astrophysics Data System (ADS)
Hixson, Jonathan G.; Miller, Brian; May, Christopher
2015-05-01
The testing and evaluation process developed by the Night Vision and Electronic Sensors Directorate (NVESD) Modeling and Simulation Division (MSD) provides end to end systems evaluation, testing, and training of EO/IR sensors. By combining NV-LabCap, the Night Vision Integrated Performance Model (NV-IPM), One Semi-Automated Forces (OneSAF) input sensor file generation, and the Night Vision Image Generator (NVIG) capabilities, NVESD provides confidence to the M&S community that EO/IR sensor developmental and operational testing and evaluation are accurately represented throughout the lifecycle of an EO/IR system. This new process allows for both theoretical and actual sensor testing. A sensor can be theoretically designed in NV-IPM, modeled in NV-IPM, and then seamlessly input into the wargames for operational analysis. After theoretical design, prototype sensors can be measured by using NV-LabCap, then modeled in NV-IPM and input into wargames for further evaluation. The measurement process to high fidelity modeling and simulation can then be repeated again and again throughout the entire life cycle of an EO/IR sensor as needed, to include LRIP, full rate production, and even after Depot Level Maintenance. This is a prototypical example of how an engineering level model and higher level simulations can share models to mutual benefit.
Iridium clusters in KLTL zeolite: Structure and catalytic selectivity for n-hexane aromatization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Triantafillou, N.D.; Miller, J.T.; Gates, B.C.
Catalysts consisting of Ir clusters in zeolite KLTL were prepared by reduction of [Ir(NH{sub 3}){sub 5}Cl]Cl{sub 2} in the zeolite with H{sub 2} at temperatures 300 or 500{degrees}C. The catalysts were tested for reactions of n-hexane and H{sub 2} at 400, 440 and 480{degrees}C and were characterized by temperature-programmed reduction, hydrogen chemisorption, transmission electron microscopy, infrared spectroscopy of adsorbed CO, and extended X-ray absorption fine structure spectroscopy. The clusters consist of 4 to 6 Ir atoms on average and are sufficiently small to reside within the pores of the zeolite. The infrared spectra characteristic of terminal CO suggest that themore » support environment is slightly basic and that the Ir clusters are electron rich relative to the bulk metal. Notwithstanding the small cluster size, the support basicity, and the confining geometry of the LTL zeolite pore structure, the catalytic performance is similar to those of other Ir catalysts, with a poor selectivity for aromatization and a high selectivity for hydrogenolysis. These results are consistent with the inference that the principal requirements for selective naphtha aromatization catalysts are both a nonacidic support and a metal with a low hydrogenolsis activity, i.e., Pt. 47 refs., 6 figs., 3 tabs.« less
Rapid detection of talcum powder in tea using FT-IR spectroscopy coupled with chemometrics
Li, Xiaoli; Zhang, Yuying; He, Yong
2016-01-01
This paper investigated the feasibility of Fourier transform infrared transmission (FT-IR) spectroscopy to detect talcum powder illegally added in tea based on chemometric methods. Firstly, 210 samples of tea powder with 13 dose levels of talcum powder were prepared for FT-IR spectra acquirement. In order to highlight the slight variations in FT-IR spectra, smoothing, normalize and standard normal variate (SNV) were employed to preprocess the raw spectra. Among them, SNV preprocessing had the best performance with high correlation of prediction (RP = 0.948) and low root mean square error of prediction (RMSEP = 0.108) of partial least squares (PLS) model. Then 18 characteristic wavenumbers were selected based on a hybrid of backward interval partial least squares (biPLS) regression, competitive adaptive reweighted sampling (CARS) algorithm and successive projections algorithm (SPA). These characteristic wavenumbers only accounted for 0.64% of the full wavenumbers. Following that, 18 characteristic wavenumbers were used to build linear and nonlinear determination models by PLS regression and extreme learning machine (ELM), respectively. The optimal model with RP = 0.963 and RMSEP = 0.137 was achieved by ELM algorithm. These results demonstrated that FT-IR spectroscopy with chemometrics could be used successfully to detect talcum powder in tea. PMID:27468701
Grid of Supergiant B[e] Models from HDUST Radiative Transfer
NASA Astrophysics Data System (ADS)
Domiciano de Souza, A.; Carciofi, A. C.
2012-12-01
By using the Monte Carlo radiative transfer code HDUST (developed by A. C. Carciofi and J..E. Bjorkman) we have built a grid of models for stars presenting the B[e] phenomenon and a bimodal outflowing envelope. The models are particularly adapted to the study of B[e] supergiants and FS CMa type stars. The adopted physical parameters of the calculated models make the grid well adapted to interpret high angular and high spectral observations, in particular spectro-interferometric data from ESO-VLTI instruments AMBER (near-IR at low and medium spectral resolution) and MIDI (mid-IR at low spectral resolution). The grid models include, for example, a central B star with different effective temperatures, a gas (hydrogen) and silicate dust circumstellar envelope with a bimodal mass loss presenting dust in the denser equatorial regions. The HDUST grid models were pre-calculated using the high performance parallel computing facility Mésocentre SIGAMM, located at OCA, France.
DOE Office of Scientific and Technical Information (OSTI.GOV)
García-Melchor, Max; Vilella, Laia; López, Núria
2016-04-29
An attractive strategy to improve the performance of water oxidation catalysts would be to anchor a homogeneous molecular catalyst on a heterogeneous solid surface to create a hybrid catalyst. The idea of this combined system is to take advantage of the individual properties of each of the two catalyst components. We use Density Functional Theory to determine the stability and activity of a model hybrid water oxidation catalyst consisting of a dimeric Ir complex attached on the IrO 2(110) surface through two oxygen atoms. We find that homogeneous catalysts can be bound to its matrix oxide without losing significant activity.more » Hence, designing hybrid systems that benefit from both the high tunability of activity of homogeneous catalysts and the stability of heterogeneous systems seems feasible.« less
Activity and Durability of Iridium Nanoparticles in the Oxygen Evolution Reaction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alia, Shaun M.; Rasimick, Brian; Ngo, Chilan
Unsupported iridium (Ir) nanoparticles, that serve as standard oxygen evolution reaction (OER) catalysts in acidic electrolyzers, were investigated for electrochemical performance and durability in rotating disk electrode (RDE) half-cells. Fixed potential holds and potential cycling were applied to probe the durability of Ir nanoparticles, and performance losses were found to be driven by particle growth (coarsening) at moderate potential (1.4 to 1.6 V) and Ir dissolution at higher potential (>/=1.8 V). Several different commercially available samples were evaluated and standardized conditions for performance comparison are reported. In conclusion, the electrocatalyst RDE results have also been compared to results obtained formore » performance and durability in electrolysis cells.« less
Activity and Durability of Iridium Nanoparticles in the Oxygen Evolution Reaction
Alia, Shaun M.; Rasimick, Brian; Ngo, Chilan; ...
2016-07-15
Unsupported iridium (Ir) nanoparticles, that serve as standard oxygen evolution reaction (OER) catalysts in acidic electrolyzers, were investigated for electrochemical performance and durability in rotating disk electrode (RDE) half-cells. Fixed potential holds and potential cycling were applied to probe the durability of Ir nanoparticles, and performance losses were found to be driven by particle growth (coarsening) at moderate potential (1.4 to 1.6 V) and Ir dissolution at higher potential (>/=1.8 V). Several different commercially available samples were evaluated and standardized conditions for performance comparison are reported. In conclusion, the electrocatalyst RDE results have also been compared to results obtained formore » performance and durability in electrolysis cells.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manna, Kuntal; Zhang, Teng; Greene, Francis X.
2015-02-16
We report here the synthesis of a series of robust and porous bipyridyl- and phenanthryl-based metal–organic frameworks (MOFs) of UiO topology (BPV-MOF, mBPV-MOF, and mPT-MOF) and their postsynthetic metalation to afford highly active single-site solid catalysts. While BPV-MOF was constructed from only bipyridyl-functionalized dicarboxylate linker, both mBPV- and mPT-MOF were built with a mixture of bipyridyl- or phenanthryl-functionalized and unfunctionalized dicarboxylate linkers. The postsynthetic metalation of these MOFs with [Ir(COD)(OMe)] 2 provided Ir-functionalized MOFs (BPV-MOF-Ir, mBPV-MOF-Ir, and mPT-MOF-Ir), which are highly active catalysts for tandem hydrosilylation of aryl ketones and aldehydes followed by dehydrogenative ortho-silylation of benzylicsilyl ethers as wellmore » as C–H borylation of arenes using B₂pin₂. Both mBPV-MOF-Ir and mPT-MOF-Ir catalysts displayed superior activities compared to BPV-MOF-Ir due to the presence of larger open channels in the mixed-linker MOFs. Impressively, mBPV-MOF-Ir exhibited high TONs of up to 17000 for C–H borylation reactions and was recycled more than 15 times. The mPT-MOF-Ir system is also active in catalyzing tandem dehydrosilylation/dehydrogenative cyclization of N-methylbenzyl amines to azasilolanes in the absence of a hydrogen acceptor. Importantly, MOF-Ir catalysts are significantly more active (up to 95 times) and stable than their homogeneous counterparts for all three reactions, strongly supporting the beneficial effects of active site isolation within MOFs. This work illustrates the ability to increase MOF open channel sizes by using the mixed linker approach and shows the enormous potential of developing highly active and robust single-site solid catalysts based on MOFs containing nitrogen-donor ligands for important organic transformations.« less
History highlights and future trends of infrared sensors
NASA Astrophysics Data System (ADS)
Corsi, Carlo
2010-10-01
Infrared (IR) technologies (materials, devices and systems) represent an area of excellence in science and technology and, even if they have been generally confined to a selected scientific community, they have achieved technological and scientific highlights constituting 'innovation drivers' for neighbouring disciplines, especially in the sensors field. The development of IR sensors, initially linked to astronomical observations, since World War II and for many years has been fostered essentially by defence applications, particularly thermo-vision and, later on, smart vision and detection, for surveillance and warning. Only in the last few decades, the impact of silicon technology has changed the development of IR detectors dramatically, with the advent of integrated signal read-outs and the opening of civilian markets (EO communications, biomedical, environmental, transport and energy applications). The history of infrared sensors contains examples of real breakthroughs, particularly true in the case of focal plane arrays that first appeared in the late 1970s, when the superiority of bi-dimensional arrays for most applications pushed the development of technologies providing the highest number of pixels. An impressive impulse was given to the development of FPA arrays by integration with charge coupled devices (CCD), with strong competition from different technologies (high-efficiency photon sensors, Schottky diodes, multi-quantum wells and, later on, room temperature microbolometers/cantilevers). This breakthrough allowed the development of high performance IR systems of small size, light weight and low cost - and therefore suitable for civil applications - thanks to the elimination of the mechanical scanning system and the progressive reduction of cooling requirements (up to the advent of microbolometers, capable of working at room temperature). In particular, the elimination of cryogenic cooling allowed the development and commercialisation of IR Smart Sensors; strategic components for important areas like transport, environment, territory control and security. Infrared history is showing oscillations and variations in raw materials, technology processes and in device design and characteristics. Various technologies oscillating between the two main detection techniques (photon and bolometer effects) have been developed and evaluated as the best ones, depending on the system use as well as expectable performances. Analysis of the 'waving change' in the history of IR sensor technologies is given with the fundamental theory of the various approaches. Highlights of the main historical IR developments and their impact and use in civil and military applications is shown and correlated with the leading technology of silicon microelectronics: scientific and economic comparisons are given and emerging technologies and forecasting of future developments are outlined.
Cassani, Roberta Soares Lara; Forti, Adriana Costa e; Pareja, José Carlos; Tambascia, Marcos Antonio; Geloneze, Bruno
2016-01-01
Background The major adverse consequences of obesity are associated with the development of insulin resistance (IR) and adiposopathy. The Homeostasis Model Assessment-Adiponectin (HOMA-AD) was proposed as a modified version of the HOMA1-IR, which incorporates adiponectin in the denominator of the index. Objectives To evaluate the performance of the HOMA-AD index compared with the HOMA1-IR index as a surrogate marker of IR in women, and to establish the cutoff value of the HOMA-AD. Subjects/Methods The Brazilian Metabolic Syndrome Study (BRAMS) is a cross-sectional multicenter survey. The data from 1,061 subjects met the desired criteria: 18–65 years old, BMI: 18.5–49.9 Kg/m² and without diabetes. The IR was assessed by the indexes HOMA1-IR and HOMA-AD (total sample) and by the hyperglycemic clamp (n = 49). Metabolic syndrome was defined using the IDF criteria. Results For the IR assessed by the clamp, the HOMA-AD demonstrated a stronger coefficient of correlation (r = -0.64) compared with the HOMA1-IR (r = -0.56); p < 0.0001. In the ROC analysis, compared with the HOMA1-IR, the HOMA-AD showed higher values of the AUC for the identification of IR based on the clamp test (AUC: 0.844 vs. AUC: 0.804) and on the metabolic syndrome (AUC: 0.703 vs. AUC: 0.689), respectively; p < 0.001 for all. However, the pairwise comparison did not show evidence of superiority for the HOMA-AD in comparison with the HOMA1-IR in the diagnosis of IR and metabolic syndrome (p > 0.05). The optimal cutoff identified for the HOMA-AD for the diagnosis of IR was 0.95. Conclusions The HOMA-AD index was demonstrated to be a useful surrogate marker for detecting IR among adult women and presented a similar performance compared with the HOMA1-IR index. These results may assist physicians and researchers in determining which method to use to evaluate IR in light of the available facilities. PMID:27490249
Vilela, Brunna Sullara; Vasques, Ana Carolina Junqueira; Cassani, Roberta Soares Lara; Forti, Adriana Costa E; Pareja, José Carlos; Tambascia, Marcos Antonio; Geloneze, Bruno
2016-01-01
The major adverse consequences of obesity are associated with the development of insulin resistance (IR) and adiposopathy. The Homeostasis Model Assessment-Adiponectin (HOMA-AD) was proposed as a modified version of the HOMA1-IR, which incorporates adiponectin in the denominator of the index. To evaluate the performance of the HOMA-AD index compared with the HOMA1-IR index as a surrogate marker of IR in women, and to establish the cutoff value of the HOMA-AD. The Brazilian Metabolic Syndrome Study (BRAMS) is a cross-sectional multicenter survey. The data from 1,061 subjects met the desired criteria: 18-65 years old, BMI: 18.5-49.9 Kg/m² and without diabetes. The IR was assessed by the indexes HOMA1-IR and HOMA-AD (total sample) and by the hyperglycemic clamp (n = 49). Metabolic syndrome was defined using the IDF criteria. For the IR assessed by the clamp, the HOMA-AD demonstrated a stronger coefficient of correlation (r = -0.64) compared with the HOMA1-IR (r = -0.56); p < 0.0001. In the ROC analysis, compared with the HOMA1-IR, the HOMA-AD showed higher values of the AUC for the identification of IR based on the clamp test (AUC: 0.844 vs. AUC: 0.804) and on the metabolic syndrome (AUC: 0.703 vs. AUC: 0.689), respectively; p < 0.001 for all. However, the pairwise comparison did not show evidence of superiority for the HOMA-AD in comparison with the HOMA1-IR in the diagnosis of IR and metabolic syndrome (p > 0.05). The optimal cutoff identified for the HOMA-AD for the diagnosis of IR was 0.95. The HOMA-AD index was demonstrated to be a useful surrogate marker for detecting IR among adult women and presented a similar performance compared with the HOMA1-IR index. These results may assist physicians and researchers in determining which method to use to evaluate IR in light of the available facilities.
d'Othée, Bertrand Janne; Haskal, Ziv J
2013-10-01
Existing diagnostic radiology peer-review systems do not address the specificities of interventional radiology (IR) practice. The purpose of this study was to assess the feasibility of a specifically developed interventional peer review method, IR Peer. Retrospective review of a prospectively encoded pilot database aimed at demonstrating the feasibility of IR Peer in a multiphysician practice was performed. This scoring system used morning peer review of selected IR cases from the previous day in the form of a five-item questionnaire and an ordinal answer scale that grades reviewers' agreement with imaging findings, procedural/technical management, early outcomes, and follow-up plan. Patient lists from IR Peer and morbidity and mortality (M&M) conferences were compared to evaluate the amount of overlap and capability of IR Peer to help detect adverse events (AEs). A total of 417 consecutive reviews of IR attending physician cases by peers were performed in 163 consecutive patients over 18 months, and 94% of cases were reviewed by two or three IR attending physicians. Each question was answered 99%-100% of the time. Answers showed disagreement in 10% of cases (2% by a single reviewer, 8% by several), most related to procedural technique. Overall AE incidence was 1.8%. IR Peer contributed 10.7% of cases to the M&M list. IR Peer is feasible, relevant, and easy to implement in a multiphysician IR practice. When used along with other quality-assurance processes, it might help in the detection of AEs for M&M; the latter will require further confirmatory research. © SIR, 2013.
SPARTAN Near-IR Camera SPARTAN Cookbook Ohio State Infrared Imager/Spectrograph (OSIRIS) - NO LONGER Instrumentation at SOAR»SPARTAN Near-IR Camera SPARTAN Near-IR Camera System Overview The Spartan Infrared Camera is a high spatial resolution near-IR imager. Spartan has a focal plane conisisting of four "
Tungsten and iridium multilayered structure by DGP as ablation-resistance coatings for graphite
NASA Astrophysics Data System (ADS)
Wu, Wangping; Chen, Zhaofeng; Cheng, Han; Wang, Liangbing; Zhang, Ying
2011-06-01
Oxidation protection of carbon material under ultra-high temperature is a serious problem. In this paper, a newly designed multilayer coating of W/Ir was produced onto the graphite substrate by double glow plasma. As comparison, the Ir single-layer coating on the graphite was also prepared. The ablation property and thermal stability of the coatings were studied at 2000 °C in an oxyacetylene torch flame. Ablation tests showed that the coated graphite substrates were protected more effectively by W/Ir multilayer coating than Ir single-layer coating. Ir single-layer coating after ablation kept the integrality, although there was a poor adhesion of the Ir coating to the graphite substrate because of the thermal expansion mismatch and the non-wetting of the carbon by Ir coating. The mass loss rate of the W/Ir-coated specimen after ablation was about 1.62%. The interface of W/Ir multilayer coating and the graphite substrate exhibited good adherence no evidence of delamination after ablation. W/Ir multilayer coating could be useful for protecting graphite in high-temperature application for a short time.
Nagai, Takashi; Sell, Timothy C; Abt, John P; Lephart, Scott M
2012-11-01
To develop and assess the reliability and precision of knee internal/external rotation (IR/ER) threshold to detect passive motion (TTDPM) and determine if gender differences exist. Test-retest for the reliability/precision and cross-sectional for gender comparisons. University neuromuscular and human performance research laboratory. Ten subjects for the reliability and precision aim. Twenty subjects (10 males and 10 females) for gender comparisons. All TTDPM tests were performed using a multi-mode dynamometer. Subjects performed TTDPM at two knee positions (near IR or ER end-range). Intraclass correlation coefficient (ICC (3,k)) and standard error of measurement (SEM) were used to evaluate the reliability and precision. Independent t-tests were used to compare genders. TTDPM toward IR and ER at two knee positions. Intrasession and intersession reliability and precision were good (ICC=0.68-0.86; SEM=0.22°-0.37°). Females had significantly diminished TTDPM toward IR at IR-test position (males: 0.77°±0.14°, females: 1.18°±0.46°, p=0.021) and TTDPM toward IR at the ER-test position (males: 0.87°±0.13°, females: 1.36°±0.58°, p=0.026). No other significant gender differences were found (p>0.05). The current IR/ER TTDPM methods are reliable and accurate for the test-retest or cross-section research design. Gender differences were found toward IR where the ACL acts as the secondary restraint. Copyright © 2011 Elsevier Ltd. All rights reserved.
Hermassi, Souhail; Ingebrigtsen, Jørgen; Schwesig, René; Fieseler, Georg; Delank, Karl-Stefan; Chamari, Karim; Shephard, Roy J; Chelly, Mohamed-Souhaiel
2018-01-01
This study examined the effects of a 7-week in-season aerobic and high-intensity interval-training program on performance tests linked to successful handball play (e.g., repeated sprint and jumping ability). Thirty participants (age 17.0±1.2 years, body mass 81.1±3.4 kg, height 1.82±0.07 m) performed a Yo-Yo Intermittent Recovery Test level 1 (Yo-Yo IR1), a squat (SJ) and a Countermovement Jump Test (CMJ), as well as a repeated Sprint Ability Test (RSA). From this, maximal aerobic speed (MAS, reached at the end of the Yo-Yo IR1), jumping ability, best time in a single sprint trial (RSAbest), total time (RSATT) and the performance decrement (RSAdec) during all sprints were calculated. Later, subjects were randomly assigned to a control group (CG; N.=15) performing their normal training schedule (5 weekly sessions of ~90 minutes of handball training) or an experimental group (EG; N.=15). The EG performed two 30 min sessions per week of high-intensity aerobic exercises at 100-130% of MAS in addition to their normal training schedule. A significant improvement in MAS (d=4.1), RSAbest (d=1.9), RSATT (d=1.5) and RSAdec (d=2.3) after the training period was demonstrated. Also, significant interaction effects (time x group) were found for all parameters as the EG significantly improved performances in all tests after training. The greatest interaction effects were observed in MAS (η2=0.811) and CMJ (η2=0.759). No relevant changes in test performances were found in the CG (mean d=-0.02). These results indicate that individually speed-controlled aerobic and interval training is effective for improving specific handball performance.
Prevalence and Associated Factors of Insulin Resistance in Adults from Maracaibo City, Venezuela
Palmar, Jim; Cabrera, Mayela
2016-01-01
Background and Aim. Insulin resistance (IR) is a prominent pathophysiologic component in a myriad of metabolic disorders, including obesity, prediabetes, and type 2 diabetes mellitus, which are common in our locality. The objective of this study was to determine the prevalence of IR and factors associated with this condition in an adult population from Maracaibo city, Venezuela. Methodology. A cross-sectional, descriptive study with multistaged randomized sampling was carried out in 2026 adults. IR was defined as HOMA2-IR ≥ 2. A multiple logistic regression model was constructed in order to evaluate factors associated with IR. Results. The prevalence of IR was 46.5% (n = 943), with 46.7% (n = 450) in the general population, 46.4% (n = 493) in females, and 47.90% (n = 970) in males (p = 0.895). IR prevalence tended to increase with age and was significantly greater in subjects aged ≥30 years (χ 2 = 16.726; p = 2.33 × 10−4). Employment, alcohol consumption, obesity, high triacylglycerides, low HDL-C, and dysglycemia were associated with greater odds of IR, whereas a high level of physical activity appeared to be weak protective factor against IR. Conclusions. The prevalence of IR is elevated in our locality. The main determinants of this condition appear to be the presence of obesity, high triacylglycerides, low HDL-C, dysglycemia, and alcohol intake. PMID:27579182
Nguyen, Peter L.; Davidson, Bennett; Akkina, Sanjeev; Guzman, Grace; Setty, Suman; Kajdacsy-Balla, Andre; Walsh, Michael J.
2015-01-01
High-definition Fourier Transform Infrared (FT-IR) spectroscopic imaging is an emerging approach to obtain detailed images that have associated biochemical information. FT-IR imaging of tissue is based on the principle that different regions of the mid-infrared are absorbed by different chemical bonds (e.g., C=O, C-H, N-H) within cells or tissue that can then be related to the presence and composition of biomolecules (e.g., lipids, DNA, glycogen, protein, collagen). In an FT-IR image, every pixel within the image comprises an entire Infrared (IR) spectrum that can give information on the biochemical status of the cells that can then be exploited for cell-type or disease-type classification. In this paper, we show: how to obtain IR images from human tissues using an FT-IR system, how to modify existing instrumentation to allow for high-definition imaging capabilities, and how to visualize FT-IR images. We then present some applications of FT-IR for pathology using the liver and kidney as examples. FT-IR imaging holds exciting applications in providing a novel route to obtain biochemical information from cells and tissue in an entirely label-free non-perturbing route towards giving new insight into biomolecular changes as part of disease processes. Additionally, this biochemical information can potentially allow for objective and automated analysis of certain aspects of disease diagnosis. PMID:25650759
NASA Astrophysics Data System (ADS)
Chatterjee, P.; Roca i Cabarrocas, P.
2018-01-01
Amorphous silicon (a-Si:H) / micro-crystalline silicon (μc-Si:H), "micromorph" tandem solar cells have been investigated using a detailed electrical - optical model. Although such a tandem has good light absorption over the entire visible spectrum, the a-Si:H top cell suffers from strong light-induced degradation (LID). To improve matters, we have replaced a-Si:H by hydrogenated polymorphous silicon (pm-Si:H), a nano-structured silicon thin film with lower LID than a-Si:H. But the latter's low current carrying capacity necessitates a thicker top cell for current-matching, again leading to LID problems. The solution is to introduce a suitable intermediate reflector (IR) at the junction between the sub-cells, to concentrate light of the shorter visible wavelengths into the top cell. Here we assess the suitability of N-type micro-crystalline silicon oxide (μc-SiOx:H) as an IR. The sensitivity of the solar cell performance to the complex refractive index, thickness and texture of such a reflector is studied. We conclude that N-μc-SiOx:H does concentrate light into the top sub-cell, thus reducing its required thickness for current-matching. However the IR also reflects light right out of the device; so that the initial efficiency suffers. The advantage of such an IR is ultimately seen in the stabilized state since the LID of a thin top cell is low. We also find that for high stabilized efficiencies, the IR should be flat (having no texture of its own). Our study indicates that we may expect to reach 15% stable tandem micromorph efficiency.
NASA Astrophysics Data System (ADS)
Wang, Chao; Zhao, Li; Liang, Zihui; Dong, Binghai; Wan, Li; Wang, Shimin
2017-12-01
Highly transparent, energy-saving, and superhydrophobic nanostructured SiO2/VO2 composite films have been fabricated using a sol-gel method. These composite films are composed of an underlying infrared (IR)-regulating VO2 layer and a top protective layer that consists of SiO2 nanoparticles. Experimental results showed that the composite structure could enhance the IR light regulation performance, solar modulation capability, and hydrophobicity of the pristine VO2 layer. The transmittance of the composite films in visible region (Tlum) was higher than 60%, which was sufficient to meet the requirements of glass lighting. Compared with pristine VO2 films and tungsten-doped VO2 film, the near IR control capability of the composite films was enhanced by 13.9% and 22.1%, respectively, whereas their solar modulation capability was enhanced by 10.9% and 22.9%, respectively. The water contact angles of the SiO2/VO2 composite films were over 150°, indicating superhydrophobicity. The transparent superhydrophobic surface exhibited a high stability toward illumination as all the films retained their initial superhydrophobicity even after exposure to 365 nm light with an intensity of 160 mW.cm-2 for 10 h. In addition, the films possessed anti-oxidation and anti-acid properties. These characteristics are highly advantageous for intelligent windows or solar cell applications, given that they can provide surfaces with anti-fogging, rainproofing, and self-cleaning effects. Our technique offers a simple and low-cost solution to the development of stable and visible light transparent superhydrophobic surfaces for industrial applications.
NASA Astrophysics Data System (ADS)
Wu, Yan-Wen; Sun, Su-Qin; Zhao, Jing; Li, Yi; Zhou, Qun
2008-07-01
The extract of Chinese propolis (ECP) has recently been adulterated with that of poplar buds (EPB), because most of ECP is derived from the poplar plant, and ECP and EPB have almost identical chemical compositions. It is very difficult to differentiate them by using the chromatographic methods such as high performance liquid chromatography (HPLC) and gas chromatography (GC). Therefore, how to effectively discriminate these two mixtures is a problem to be solved urgently. In this paper, a rapid method for discriminating ECP and EPB was established by the Fourier transform infrared (FT-IR) spectra combined with the two-dimensional infrared correlation (2D IR) analysis. Forty-three ECP and five EPB samples collected from different areas of China were analyzed by the FT-IR spectroscopy. All the ECP and EPB samples tested show similar IR spectral profiles. The significant differences between ECP and EPB appear in the region of 3000-2800 cm -1 of the spectra. Based on such differences, the two species were successfully classified with the soft independent modeling of class analogy (SIMCA) pattern recognition technique. Furthermore, these differences were well validated by a series of temperature-dependent dynamic FT-IR spectra and the corresponding 2D IR plots. The results indicate that the differences in these two natural products are caused by the amounts of long-chain alkyl compounds (including long-chain alkanes, long-chain alkyl esters and long chain alkyl alcohols) in them, rather than the flavonoid compounds, generally recognized as the bioactive substances of propolis. There are much more long-chain alkyl compounds in ECP than those in EPB, and the carbon atoms of the compounds in ECP remain in an order Z-shaped array, but those in EPB are disorder. It suggests that FT-IR and 2D IR spectroscopy can provide a valuable method for the rapid differentiation of similar natural products, ECP and EPB. The IR spectra could directly reflect the integrated chemical compositions of complicated mixtures, and it may be available for use in further chromatographic analysis.
Zeng, Wei-Min; Chen, Shu-Hua; Xie, Ping; Liu, Mei-Lian; Song, Hui-Ping
2003-08-01
Insulin receptor substrate-2(IRS-2) belongs to a family of cytoplasmic adaptor proteins, which link insulin, insulin-like growth factor-1(IGF-1), and cytokine receptor tyrosine kinases to signaling pathways regulating metabolism, growth, differentiation, reproduction, and homestasis. Deficiency of IRS-2 in mice causes type 2 diabetes mellitus (T2DM), suggesting that abnormal structure and dysfunction of the IRS-2 gene may contribute to the pathogenesis of T2DM. Variations in the open reading frame (ORF) and promoter region of IRS-2 gene in patients with T2DM have been reported over the past few years. These genetic variations are from ethnically different patients, confounding any analysis of the contribution of IRS-2 gene variations to the development of T2DM. The 3'-untranslated region(3'-UTR) of IRS-2 gene variation may be contribute to the T2DM. So far, the relationship between 3'-UTR of IRS-2 gene variations and T2DM have not been investigated. Based on the 3'-UTR of eukaryotic gene plays an important role in the eukaryotic gene regulation, we investigated abnormalities of IRS-2 gene 3'-UTR and their relation with T2DM in the Chinese population. Genomic DNA was extracted from leukocyte of 128 patients with T2DM and 125 control subjects in Hunan, China. A segment of IRS-2 gene 3'-UTR was scanned by polymerase chain reaction (PCR)-denaturing high-performance liquid chromatography (DHPLC). All PCR products with abnormal DHPLC pattern were submitted to DNA sequence analysis. A T-->C mutation at 4064 bp of IRS-2 gene 3'-UTR was found in 18 patients with T2DM, while it was only found in 5 control subjects. The incidence of the mutation in patients with T2DM were much higher than that in contol subjects (14.1% vs 4.0%, x2 = 7.748, P = 0.005). These results indicate that the T4064-->C in IRS-2 gene 3'-UTR may be related to Chinese patients with T2DM.
NASA Astrophysics Data System (ADS)
Liu, Yan; Yu, Li; Jia, Xiaowen; Zhao, Jianzhou; Weng, Hongming; Peng, Yingying; Chen, Chaoyu; Xie, Zhuojin; Mou, Daixiang; He, Junfeng; Liu, Xu; Feng, Ya; Yi, Hemian; Zhao, Lin; Liu, Guodong; He, Shaolong; Dong, Xiaoli; Zhang, Jun; Xu, Zuyan; Chen, Chuangtian; Cao, Gang; Dai, Xi; Fang, Zhong; Zhou, X. J.
2015-08-01
The low energy electronic structure of Sr2IrO4 has been well studied and understood in terms of an effective Jeff = 1/2 Mott insulator model. However, little work has been done in studying its high energy electronic behaviors. Here we report a new observation of the anomalous high energy electronic structure in Sr2IrO4. By taking high-resolution angle-resolved photoemission measurements on Sr2IrO4 over a wide energy range, we have revealed for the first time that the high energy electronic structures show unusual nearly-vertical bands that extend over a large energy range. Such anomalous high energy behaviors resemble the high energy waterfall features observed in the cuprate superconductors. While strong electron correlation plays an important role in producing high energy waterfall features in the cuprate superconductors, the revelation of the high energy anomalies in Sr2IrO4, which exhibits strong spin-orbit coupling and a moderate electron correlation, points to an unknown and novel route in generating exotic electronic excitations.
Liu, Yan; Yu, Li; Jia, Xiaowen; Zhao, Jianzhou; Weng, Hongming; Peng, Yingying; Chen, Chaoyu; Xie, Zhuojin; Mou, Daixiang; He, Junfeng; Liu, Xu; Feng, Ya; Yi, Hemian; Zhao, Lin; Liu, Guodong; He, Shaolong; Dong, Xiaoli; Zhang, Jun; Xu, Zuyan; Chen, Chuangtian; Cao, Gang; Dai, Xi; Fang, Zhong; Zhou, X J
2015-08-12
The low energy electronic structure of Sr2IrO4 has been well studied and understood in terms of an effective Jeff = 1/2 Mott insulator model. However, little work has been done in studying its high energy electronic behaviors. Here we report a new observation of the anomalous high energy electronic structure in Sr2IrO4. By taking high-resolution angle-resolved photoemission measurements on Sr2IrO4 over a wide energy range, we have revealed for the first time that the high energy electronic structures show unusual nearly-vertical bands that extend over a large energy range. Such anomalous high energy behaviors resemble the high energy waterfall features observed in the cuprate superconductors. While strong electron correlation plays an important role in producing high energy waterfall features in the cuprate superconductors, the revelation of the high energy anomalies in Sr2IrO4, which exhibits strong spin-orbit coupling and a moderate electron correlation, points to an unknown and novel route in generating exotic electronic excitations.
Method of preparing high specific activity platinum-195m
Mirzadeh, Saed; Du, Miting; Beets, Arnold L.; Knapp, Jr., Furn F.
2004-06-15
A method of preparing high-specific-activity .sup.195m Pt includes the steps of: exposing .sup.193 Ir to a flux of neutrons sufficient to convert a portion of the .sup.193 Ir to .sup.195m Pt to form an irradiated material; dissolving the irradiated material to form an intermediate solution comprising Ir and Pt; and separating the Pt from the Ir by cation exchange chromatography to produce .sup.195m Pt.
Data fusion of Landsat TM and IRS images in forest classification
Guangxing Wang; Markus Holopainen; Eero Lukkarinen
2000-01-01
Data fusion of Landsat TM images and Indian Remote Sensing satellite panchromatic image (IRS-1C PAN) was studied and compared to the use of TM or IRS image only. The aim was to combine the high spatial resolution of IRS-1C PAN to the high spectral resolution of Landsat TM images using a data fusion algorithm. The ground truth of the study was based on a sample of 1,020...
Latest improvements on long wave p on n HgCdTe technology at Sofradir
NASA Astrophysics Data System (ADS)
Rubaldo, Laurent; Taalat, Rachid; Berthoz, Jocelyn; Maillard, Magalie; Péré-Laperne, Nicolas; Brunner, Alexandre; Guinedor, Pierre; Dargent, L.; Manissadjian, A.; Reibel, Y.; Kerlain, A.
2017-02-01
SOFRADIR is the worldwide leader on the cooled IR detector market for high-performance space, military and security applications thanks to a well mastered Mercury Cadmium Telluride (MCT) technology, and recently thanks to the acquisition of III-V technology: InSb, InGaAs, and QWIP quantum detectors. As a result, strong and continuous development efforts are deployed to deliver cutting edge products with improved performances in terms of spatial and thermal resolution, dark current, quantum efficiency, low excess noise and high operability. The actual trend in quantum IR detector development is the design of very small pixel, with the higher achievable operating temperature whatever the spectral band. Moreover maintaining the detector operability and image quality at higher temperature moreover for long wavelength is a major issue. This paper presents the recent developments achieved at Sofradir to meet this challenge for LW band MCT extrinsic p on n technology with a cut-off wavelength of 9.3μm at 90K. State of the art performances will be presented in terms of dark current, operability and NETD temperature dependency, quantum efficiency, MTF, and RFPN (Residual Fixed Pattern Noise) stability up to 100K.
Thomson, Eric E.; Zea, Ivan; França, Wendy
2017-01-01
Abstract Adult rats equipped with a sensory prosthesis, which transduced infrared (IR) signals into electrical signals delivered to somatosensory cortex (S1), took approximately 4 d to learn a four-choice IR discrimination task. Here, we show that when such IR signals are projected to the primary visual cortex (V1), rats that are pretrained in a visual-discrimination task typically learn the same IR discrimination task on their first day of training. However, without prior training on a visual discrimination task, the learning rates for S1- and V1-implanted animals converged, suggesting there is no intrinsic difference in learning rate between the two areas. We also discovered that animals were able to integrate IR information into the ongoing visual processing stream in V1, performing a visual-IR integration task in which they had to combine IR and visual information. Furthermore, when the IR prosthesis was implanted in S1, rats showed no impairment in their ability to use their whiskers to perform a tactile discrimination task. Instead, in some rats, this ability was actually enhanced. Cumulatively, these findings suggest that cortical sensory neuroprostheses can rapidly augment the representational scope of primary sensory areas, integrating novel sources of information into ongoing processing while incurring minimal loss of native function. PMID:29279860
Yildizhan, Begum; Anik Ilhan, Gokce; Pekin, Tanju
2016-10-01
This study was performed to assess insulin resistance (IR) in lean women with polycystic ovary syndrome (PCOS). Retrospective analysis of 100 consecutive lean (body mass index <25 kg/m 2 ) PCOS subjects was performed. Subjects were divided into two groups according to homeostasis model assessment IR index (HOMA-IR), as IR + and IR-. A HOMA-IR value >2.5 was used to indicate IR. A total of 100 lean PCOS subjects were enrolled in the study, of which 47% were insulin resistant. Comparison of group means showed significantly higher values for waist-to-hip ratio (WHR), diastolic blood pressure and Ferriman-Gallwey score (FGS) in IR + group. HOMA-IR values were found to be positively correlated with WHR (r = 0.500, p < 0.01), systolic blood pressure (r = 0.265, p < 0.01), diastolic blood pressure (r = 0.273, p < 0.01), estradiol levels (r = 0.218, p < 0.05), FGS (r = 0.456, p < 0.01) and total testosterone levels (r = 0.291, p < 0.01). When evaluating PCOS subjects, the insulin resistant group should be separated as unique and IR should also be evaluated in lean women with PCOS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Du W.; Su D.; Wang Q.
2011-08-03
Ethanol is a promising fuel for low-temperature direct fuel cell reactions due to its low toxicity, ease of storage and transportation, high-energy density, and availability from biomass. However, the implementation of ethanol fuel cell technology has been hindered by the lack of low-cost, highly active anode catalysts. In this paper, we have studied Iridium (Ir)-based binary catalysts as low-cost alternative electrocatalysts replacing platinum (Pt)-based catalysts for the direct ethanol fuel cell (DEFC) reaction. We report the synthesis of carbon supported Ir{sub 71}Sn{sub 29} catalysts with an average diameter of 2.7 {+-} 0.6 nm through a 'surfactant-free' wet chemistry approach. Themore » complementary characterization techniques, including aberration-corrected scanning transmission electron microscopy equipped with electron energy loss spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and X-ray absorption spectroscopy, are used to identify the 'real' heterogeneous structure of Ir{sub 71}Sn{sub 29}/C particles as Ir/Ir-Sn/SnO{sub 2}, which consists of an Ir-rich core and an Ir-Sn alloy shell with SnO{sub 2} present on the surface. The Ir{sub 71}Sn{sub 29}/C heterogeneous catalyst exhibited high electrochemical activity toward the ethanol oxidation reaction compared to the commercial Pt/C (ETEK), PtRu/C (Johnson Matthey) as well as PtSn/C catalysts. Electrochemical measurements and density functional theory calculations demonstrate that the superior electro-activity is directly related to the high degree of Ir-Sn alloy formation as well as the existence of nonalloyed SnO{sub 2} on surface. Our cross-disciplinary work, from novel 'surfactant-free' synthesis of Ir-Sn catalysts, theoretical simulations, and catalytic measurements to the characterizations of 'real' heterogeneous nanostructures, will not only highlight the intriguing structure-property correlations in nanosized catalysts but also have a transformative impact on the commercialization of DEFC technology by replacing Pt with low-cost, highly active Ir-based catalysts.« less
Study of performance degradation in Titanium microbolometer IR detectors due to elevated heating
NASA Astrophysics Data System (ADS)
Saxena, Raghvendra Sahai; Bhan, R. K.; Rana, Pratap Singh; Vishwakarma, A. K.; Aggarwal, Anita; Khurana, Kumkum; Gupta, Sudha
2011-07-01
Heating of thermal detectors is a major reliability concern because they are always subjected to heat whenever in operation and while absorbing excessive heat they may get degraded or damaged. In case of microbolometer Infrared (IR) detectors, heating can occur due to the absorbed radiations and also due to the bias current. In metal film microbolometers, wherein high bias current is supplied for improving responsivity, the bias heating is an issue. To study the effects of excessive heating of a Titanium microbolometer, we fabricated a linear array of such microbolometers and performed a destructive experiment of passing high bias current pulses through it and report here that even though the power supplied in pulse mode cannot damage the element physically, it may be sufficient for significant performance degradations. With this experiment we extracted that the maximum power that our Titanium microbolometer element can sustain without performance degradation is 2.25 mW. We have also reported a specific signature of temperature coefficient of resistance (TCR) that, up to the reported safe limit, remains almost constant and when that limit is crossed, reduces rapidly to a much lower value. If we keep increasing the power further it increases slightly and attains a kind of saturation.
High-Pressure Oxygen Generation for Outpost EVA
NASA Technical Reports Server (NTRS)
Jeng, Frank; Conger, Bruce; Anderson, Molly
2008-01-01
Low Lunar Orbit (LLO) poses unique thermal challenges for the orbiting space craft, particularly regarding the performance of the radiators. The emitted infrared (IR) heat flux from the lunar surface varies drastically from the light side to the dark side of the moon. Due to the extremely high incident IR flux, especially at low beta angles, a radiator is oftentimes unable to reject the vehicle heat load throughout the entire lunar orbit. One solution to this problem is to implement Phase Change Material (PCM) Heat Exchangers. PCM Heat Exchangers act as a "thermal capacitor, storing thermal energy when the radiator is unable to reject the required heat load. The stored energy is then removed from the PCM heat exchanger when the environment is more benign. Because they do not use an expendable resource, such as the feed water used by sublimators and evaporators, PCM Heat Exchangers are ideal for long duration Low Lunar Orbit missions. The Advanced Thermal Control project at JSC is completing a PCM heat exchanger life test to determine whether further technology development is warranted. The life test is being conducted on four nPentadecane, carbon filament heat exchangers. Fluid loop performance, repeatability, and measurement of performance degradation over 2500 meltfreeze cycles will be performed and reported in the current document.
In search of the elusive IrB{sub 2}: Can mechanochemistry help?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, Zhilin; Blair, Richard G.; Department of Physics, University of Central Florida, Orlando, FL 32816
The previously unknown hexagonal ReB{sub 2}-type IrB{sub 2} diboride and orthorhombic IrB monoboride phases were produced by mechanochemical syntheses. High energy ball milling of elemental Ir and B powder for 30 h, followed by annealing of the powder at 1050 °C for 48 h, resulted in the formation of the desired phases. Both traditional laboratory and high resolution synchrotron X-ray diffraction (XRD) analyses were used for phase identification of the synthesized powder. In addition to XRD, scanning electron microscopy and transmission electron microscopy were employed to further characterize the microstructure of the phases produced. - Graphical abstract: ReB{sub 2}-type IrB{submore » 2} and a new IrB have been successfully synthesized for the first time using mechanochemical method. Crystal structures of IrB{sub 2} and IrB were studied by synchrotron X-ray diffraction. Microstructures of the new phases were characterized by SEM and TEM. - Highlights: • ReB{sub 2}-type IrB{sub 2} and a new IrB have been synthesized by mechanochemical method. • Crystal structures of IrB{sub 2} and IrB were studied by synchrotron XRD. • Microstructures of the new phases were characterized by SEM and TEM.« less
Krishna, Sanjeev; Planche, Tim; Agbenyega, Tsiri; Woodrow, Charles; Agranoff, Dan; Bedu-Addo, George; Owusu-Ofori, Alex K.; Appiah, John Adabie; Ramanathan, Surash; Mansor, Sharif M.; Navaratnam, Visweswaran
2001-01-01
We report the first detailed pharmacokinetic assessment of intrarectal (i.r.) artesunate (ARS) in African children. Artesunate was given intravenously (i.v.; 2.4 mg/kg of body weight) and i.r. (10 or 20 mg/kg formulated as 50- or 200-mg suppositories [Rectocaps]) in a crossover study design to 34 Ghanaian children with moderate falciparum malaria. The median relative bioavailability of dihydroartemisinin (DHA), the active antimalarial metabolite of ARS, was higher in the low-dose i.r. group (10 mg/kg) than in the high-dose i.r. group (20 mg/kg) (58 versus 23%; P = 0.018). There was wide interpatient variation in the area under the concentration-time curve after i.r. ARS administration (up to 9-fold in the high-dose group and 20-fold in the low-dose group). i.r. administered ARS was more rapidly absorbed in the low-dose group than the high-dose group (median [range] absorption half-lives, 0.7 h [0.3 to 1.24 h] versus 1.1 h [0.6 to 2.7 h] [P = 0.023]. i.r. administered ARS was eliminated with a median (range) half-life of 0.8 h (0.4 to 2.7 h) (low-dose group and 0.9 h (0.1 to 2.5 h) (high-dose group) (P = 1). The fractional clearances of DHA were 3.9, 2.6, and 1.5 liters/kg/h for the 20-mg/kg, 10-mg/kg and i.v. groups, respectively (P = 0.001 and P = 0.06 for the high-and low-dose i.r. groups compared with the i.v. groups, respectively). The median volumes of distribution for DHA were 1.5 liters kg (20 mg/kg, i.r. group), 1.8 liters/kg (10 mg/kg, i.r. group), and 0.6 liters/kg (i.v. group) (P < 0.05 for both i.r. groups compared with the i.v. group). Parasite clearance kinetics were comparable in all treatment groups. i.r. administered ARS may be a useful alternative to parenterally administered ARS in the management of moderate childhood malaria and should be studied further. PMID:11158748
Ståhl, Sara; Fung, Eva; Adams, Christopher; Lengqvist, Johan; Mörk, Birgitta; Stenerlöw, Bo; Lewensohn, Rolf; Lehtiö, Janne; Zubarev, Roman; Viktorsson, Kristina
2009-01-01
During the past decade, we have witnessed an explosive increase in generation of large proteomics data sets, not least in cancer research. There is a growing need to extract and correctly interpret information from such data sets to generate biologically relevant hypotheses. A pathway search engine (PSE) has recently been developed as a novel tool intended to meet these requirements. Ionizing radiation (IR) is an anticancer treatment modality that triggers multiple signal transduction networks. In this work, we show that high linear energy transfer (LET) IR induces apoptosis in a non-small cell lung cancer cell line, U-1810, whereas low LET IR does not. PSE was applied to study changes in pathway status between high and low LET IR to find pathway candidates of importance for high LET-induced apoptosis. Such pathways are potential clinical targets, and they were further validated in vitro. We used an unsupervised shotgun proteomics approach where high resolution mass spectrometry coupled to nanoflow liquid chromatography determined the identity and relative abundance of expressed proteins. Based on the proteomics data, PSE suggested the JNK pathway (p = 6·10−6) as a key event in response to high LET IR. In addition, the Fas pathway was found to be activated (p = 3·10−5) and the p38 pathway was found to be deactivated (p = 0.001) compared with untreated cells. Antibody-based analyses confirmed that high LET IR caused an increase in phosphorylation of JNK. Moreover pharmacological inhibition of JNK blocked high LET-induced apoptotic signaling. In contrast, neither an activation of p38 nor a role for p38 in high LET IR-induced apoptotic signaling was found. We conclude that, in contrast to conventional low LET IR, high LET IR can trigger activation of the JNK pathway, which in turn is critical for induction of apoptosis in these cells. Thus PSE predictions were largely confirmed, and PSE was proven to be a useful hypothesis-generating tool. PMID:19168796
Ståhl, Sara; Fung, Eva; Adams, Christopher; Lengqvist, Johan; Mörk, Birgitta; Stenerlöw, Bo; Lewensohn, Rolf; Lehtiö, Janne; Zubarev, Roman; Viktorsson, Kristina
2009-05-01
During the past decade, we have witnessed an explosive increase in generation of large proteomics data sets, not least in cancer research. There is a growing need to extract and correctly interpret information from such data sets to generate biologically relevant hypotheses. A pathway search engine (PSE) has recently been developed as a novel tool intended to meet these requirements. Ionizing radiation (IR) is an anticancer treatment modality that triggers multiple signal transduction networks. In this work, we show that high linear energy transfer (LET) IR induces apoptosis in a non-small cell lung cancer cell line, U-1810, whereas low LET IR does not. PSE was applied to study changes in pathway status between high and low LET IR to find pathway candidates of importance for high LET-induced apoptosis. Such pathways are potential clinical targets, and they were further validated in vitro. We used an unsupervised shotgun proteomics approach where high resolution mass spectrometry coupled to nanoflow liquid chromatography determined the identity and relative abundance of expressed proteins. Based on the proteomics data, PSE suggested the JNK pathway (p = 6.10(-6)) as a key event in response to high LET IR. In addition, the Fas pathway was found to be activated (p = 3.10(-5)) and the p38 pathway was found to be deactivated (p = 0.001) compared with untreated cells. Antibody-based analyses confirmed that high LET IR caused an increase in phosphorylation of JNK. Moreover pharmacological inhibition of JNK blocked high LET-induced apoptotic signaling. In contrast, neither an activation of p38 nor a role for p38 in high LET IR-induced apoptotic signaling was found. We conclude that, in contrast to conventional low LET IR, high LET IR can trigger activation of the JNK pathway, which in turn is critical for induction of apoptosis in these cells. Thus PSE predictions were largely confirmed, and PSE was proven to be a useful hypothesis-generating tool.
Javidnia, Katayoun; Parish, Maryam; Karimi, Sadegh; Hemmateenejad, Bahram
2013-03-01
By using FT-IR spectroscopy, many researchers from different disciplines enrich the experimental complexity of their research for obtaining more precise information. Moreover chemometrics techniques have boosted the use of IR instruments. In the present study we aimed to emphasize on the power of FT-IR spectroscopy for discrimination between different oil samples (especially fat from vegetable oils). Also our data were used to compare the performance of different classification methods. FT-IR transmittance spectra of oil samples (Corn, Colona, Sunflower, Soya, Olive, and Butter) were measured in the wave-number interval of 450-4000 cm(-1). Classification analysis was performed utilizing PLS-DA, interval PLS-DA, extended canonical variate analysis (ECVA) and interval ECVA methods. The effect of data preprocessing by extended multiplicative signal correction was investigated. Whilst all employed method could distinguish butter from vegetable oils, iECVA resulted in the best performances for calibration and external test set with 100% sensitivity and specificity. Copyright © 2012 Elsevier B.V. All rights reserved.
PEPSI, the High-Resolution Optical-IR Spectrograph for the LBT
NASA Astrophysics Data System (ADS)
Andersen, Michael; Strassmeier, Klaus; Hoffman, Axel; Woche, Manfred; Spano, Paolo
PEPSI is a high resolution fibre feed optical-IR polarimetric echelle spectrograph for the Large Binocular Telescope (LBT). PEPSI utilizes the two 8.4m LBT apertures to simultaneously record four polarization states at a resolution of 120.000. The extension of the coverage towards the IR is mainly motivated by the larger Zeeman splitting of IR lines, which would allow to study weaker/fainter magnetic structures on stars. The two optical arms, which also have an integral light mode with R up to 300.000, are under construction, while the IR arm is being designed.
Kim, Byeong Hak; Kim, Min Young; Chae, You Seong
2017-01-01
Unmanned aerial vehicles (UAVs) are equipped with optical systems including an infrared (IR) camera such as electro-optical IR (EO/IR), target acquisition and designation sights (TADS), or forward looking IR (FLIR). However, images obtained from IR cameras are subject to noise such as dead pixels, lines, and fixed pattern noise. Nonuniformity correction (NUC) is a widely employed method to reduce noise in IR images, but it has limitations in removing noise that occurs during operation. Methods have been proposed to overcome the limitations of the NUC method, such as two-point correction (TPC) and scene-based NUC (SBNUC). However, these methods still suffer from unfixed pattern noise. In this paper, a background registration-based adaptive noise filtering (BRANF) method is proposed to overcome the limitations of conventional methods. The proposed BRANF method utilizes background registration processing and robust principle component analysis (RPCA). In addition, image quality verification methods are proposed that can measure the noise filtering performance quantitatively without ground truth images. Experiments were performed for performance verification with middle wave infrared (MWIR) and long wave infrared (LWIR) images obtained from practical military optical systems. As a result, it is found that the image quality improvement rate of BRANF is 30% higher than that of conventional NUC. PMID:29280970
Kim, Byeong Hak; Kim, Min Young; Chae, You Seong
2017-12-27
Unmanned aerial vehicles (UAVs) are equipped with optical systems including an infrared (IR) camera such as electro-optical IR (EO/IR), target acquisition and designation sights (TADS), or forward looking IR (FLIR). However, images obtained from IR cameras are subject to noise such as dead pixels, lines, and fixed pattern noise. Nonuniformity correction (NUC) is a widely employed method to reduce noise in IR images, but it has limitations in removing noise that occurs during operation. Methods have been proposed to overcome the limitations of the NUC method, such as two-point correction (TPC) and scene-based NUC (SBNUC). However, these methods still suffer from unfixed pattern noise. In this paper, a background registration-based adaptive noise filtering (BRANF) method is proposed to overcome the limitations of conventional methods. The proposed BRANF method utilizes background registration processing and robust principle component analysis (RPCA). In addition, image quality verification methods are proposed that can measure the noise filtering performance quantitatively without ground truth images. Experiments were performed for performance verification with middle wave infrared (MWIR) and long wave infrared (LWIR) images obtained from practical military optical systems. As a result, it is found that the image quality improvement rate of BRANF is 30% higher than that of conventional NUC.
Reconfigurable Pointing Control for High Resolution Space Spectroscopy
NASA Technical Reports Server (NTRS)
Bayard, David S.; Kia, Tooraj; vanCleve, Jeffrey
1997-01-01
In this paper, a pointing control performance criteria is established to support high resolution space spectroscopy. Results indicate that these pointing requirements are very stringent, and would typically be difficult to meet using standard 3-axis spacecraft control. To resolve this difficulty, it is shown that performance can be significantly improved using a reconfigurable control architecture that switches among a small bank of detuned Kalman filters. The effectiveness of the control reconfiguration approach is demonstrated by example on the Space Infra, Red Telescope Facility (SIRTF) pointing system, in support of the Infrared Spectrograph (IRS) payload.
Recent cryocooler progress in Japan
NASA Technical Reports Server (NTRS)
Matsubara, Y.
1985-01-01
The progress of cryocoolers and related devices in Japan is reviewed. The Japanese National Railways has developed the light weight 4 K on-board refrigerators since 1977 as part of the MAGLEV train program. Superconducting and cryogenic fundamental technology was examined which included high performance cryocooler, magnetic refrigerator and superfluid refrigeration. Space cryogenics such as the cooling systems of IR-detectors was studied. Cryocooler for special applications such as cryopump, NMR-CT and JJ devices was investigated. Compact heat exchangers, high performance regenerators and reliable compressors are investigated as a critical component technology.
Yunn, Na-Oh; Koh, Ara; Han, Seungmin; Lim, Jong Hun; Park, Sehoon; Lee, Jiyoun; Kim, Eui; Jang, Sung Key; Berggren, Per-Olof; Ryu, Sung Ho
2015-01-01
Due to their high affinity and specificity, aptamers have been widely used as effective inhibitors in clinical applications. However, the ability to activate protein function through aptamer-protein interaction has not been well-elucidated. To investigate their potential as target-specific agonists, we used SELEX to generate aptamers to the insulin receptor (IR) and identified an agonistic aptamer named IR-A48 that specifically binds to IR, but not to IGF-1 receptor. Despite its capacity to stimulate IR autophosphorylation, similar to insulin, we found that IR-A48 not only binds to an allosteric site distinct from the insulin binding site, but also preferentially induces Y1150 phosphorylation in the IR kinase domain. Moreover, Y1150-biased phosphorylation induced by IR-A48 selectively activates specific signaling pathways downstream of IR. In contrast to insulin-mediated activation of IR, IR-A48 binding has little effect on the MAPK pathway and proliferation of cancer cells. Instead, AKT S473 phosphorylation is highly stimulated by IR-A48, resulting in increased glucose uptake both in vitro and in vivo. Here, we present IR-A48 as a biased agonist able to selectively induce the metabolic activity of IR through allosteric binding. Furthermore, our study also suggests that aptamers can be a promising tool for developing artificial biased agonists to targeted receptors. PMID:26245346
Infrared suppressor effect on T63 turboshaft engine performance
NASA Technical Reports Server (NTRS)
Bailey, E. E.; Civinskas, K. C.; Walker, C. L.
1978-01-01
Tests were conducted to determine if there are performance penalties associated with the installation of infrared (IR) suppressors on the T63-A-700 turboshaft engine. The testing was done in a sea-level, static test cell. The same engine (A-E402808 B) was run with the standard OH-58 aircraft exhaust stacks and with the ejector-type IR suppressors in order to make a valid comparison. Repeatability of the test results for the two configurations was verified by rerunning the conditions over a period of days. Test results showed no measurable difference in performance between the standard exhaust stacks and the IR suppressors.
Influence of iridium doping in MgB2 superconducting wires
NASA Astrophysics Data System (ADS)
Grivel, J.-C.
2018-04-01
MgB2 wires with iridium doping were manufactured using the in-situ technique in a composite Cu-Nb sheath. Reaction was performed at 700 °C, 800 °C or 900 °C for 1 h in argon atmosphere. A maximum of about 1.5 at.% Ir replaces Mg in MgB2. The superconducting transition temperature is slightly lowered by Ir doping. The formation of IrMg3 and IrMg4 secondary phase particles is evidenced, especially for a nominal stoichiometry with 2.0 at.% Ir doping. The critical current density and accommodation field of the wires are strongly dependent on the Ir content and are generally weakened in the presence of Ir, although the effect is less pronounced at lower temperatures.
Characterization Tests of WFC3 Filters
NASA Technical Reports Server (NTRS)
Baggett, S.; Boucarut, R.; Telfer, R.; Quijano, J. Kim; Quijada, M.; Arsenovic, P.; Brown, T.; Dailey, M.; Figer, D.; Hilbert, B.
2006-01-01
The WFC3 instrument to be installed on HST during the next servicing mission consists of a UVIS and an IR channel. Each channel is allocated its own complement of filters: 48 elements for the UVIS (42 filters, 5 quads, and 1 UV grism) and 17 slots for the IR (15 filters and 2 grisms). While a majority of the UVIS filters exhibit excellent performance consistent with or exceeding expectations, a subset show significant filter ghosts. Procurement of improved replacement filters is in progress and a summary of the characterization tests being performed on the new filters is presented. In the IR channel, while no filter ghosting was detected in any of the filters during thermal vacuum testing, the grisms were found to be installed incorrectly; they have been removed and will be reinstalled. In addition, due to the significantly improved response blueward of 800nm expected in the new substrate-removed IR detector (see Invited talk by R.A.Kimble, this volume), two IR filters originally constructed on a fused silica substrate are being remade using an IR transmitting color glass to block any visible light transmission. Tests of the new IR filters and preparations for the grism reinstallation are summarized
Passive IR polarization sensors: a new technology for mine detection
NASA Astrophysics Data System (ADS)
Barbour, Blair A.; Jones, Michael W.; Barnes, Howard B.; Lewis, Charles P.
1998-09-01
The problem of mine and minefield detection continues to provide a significant challenge to sensor systems. Although the various sensor technologies (infrared, ground penetrating radar, etc.) may excel in certain situations there does not exist a single sensor technology that can adequately detect mines in all conditions such as time of day, weather, buried or surface laid, etc. A truly robust mine detection system will likely require the fusion of data from multiple sensor technologies. The performance of these systems, however, will ultimately depend on the performance of the individual sensors. Infrared (IR) polarimetry is a new and innovative sensor technology that adds substantial capabilities to the detection of mines. IR polarimetry improves on basic IR imaging by providing improved spatial resolution of the target, an inherent ability to suppress clutter, and the capability for zero (Delta) T imaging. Nichols Research Corporation (Nichols) is currently evaluating the effectiveness of IR polarization for mine detection. This study is partially funded by the U.S. Army Night Vision & Electronic Sensors Directorate (NVESD). The goal of the study is to demonstrate, through phenomenology studies and limited field trials, that IR polarizaton outperforms conventional IR imaging in the mine detection arena.
Nomura, Yukihiro; Higaki, Toru; Fujita, Masayo; Miki, Soichiro; Awaya, Yoshikazu; Nakanishi, Toshio; Yoshikawa, Takeharu; Hayashi, Naoto; Awai, Kazuo
2017-02-01
This study aimed to evaluate the effects of iterative reconstruction (IR) algorithms on computer-assisted detection (CAD) software for lung nodules in ultra-low-dose computed tomography (ULD-CT) for lung cancer screening. We selected 85 subjects who underwent both a low-dose CT (LD-CT) scan and an additional ULD-CT scan in our lung cancer screening program for high-risk populations. The LD-CT scans were reconstructed with filtered back projection (FBP; LD-FBP). The ULD-CT scans were reconstructed with FBP (ULD-FBP), adaptive iterative dose reduction 3D (AIDR 3D; ULD-AIDR 3D), and forward projected model-based IR solution (FIRST; ULD-FIRST). CAD software for lung nodules was applied to each image dataset, and the performance of the CAD software was compared among the different IR algorithms. The mean volume CT dose indexes were 3.02 mGy (LD-CT) and 0.30 mGy (ULD-CT). For overall nodules, the sensitivities of CAD software at 3.0 false positives per case were 78.7% (LD-FBP), 9.3% (ULD-FBP), 69.4% (ULD-AIDR 3D), and 77.8% (ULD-FIRST). Statistical analysis showed that the sensitivities of ULD-AIDR 3D and ULD-FIRST were significantly higher than that of ULD-FBP (P < .001). The performance of CAD software in ULD-CT was improved by using IR algorithms. In particular, the performance of CAD in ULD-FIRST was almost equivalent to that in LD-FBP. Copyright © 2017 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.
Application of FT-IR Classification Method in Silica-Plant Extracts Composites Quality Testing
NASA Astrophysics Data System (ADS)
Bicu, A.; Drumea, V.; Mihaiescu, D. E.; Purcareanu, B.; Florea, M. A.; Trică, B.; Vasilievici, G.; Draga, S.; Buse, E.; Olariu, L.
2018-06-01
Our present work is concerned with the validation and quality testing efforts of mesoporous silica - plant extracts composites, in order to sustain the standardization process of plant-based pharmaceutical products. The synthesis of the silica support were performed by using a TEOS based synthetic route and CTAB as a template, at room temperature and normal pressure. The silica support was analyzed by advanced characterization methods (SEM, TEM, BET, DLS and FT-IR), and loaded with Calendula officinalis and Salvia officinalis standardized extracts. Further desorption studies were performed in order to prove the sustained release properties of the final materials. Intermediate and final product identification was performed by a FT-IR classification method, using the MID-range of the IR spectra, and statistical representative samples from repetitive synthetic stages. The obtained results recommend this analytical method as a fast and cost effective alternative to the classic identification methods.
Poudel, Sashi; Weir, Lori; Dowling, Dawn; Medich, David C
2016-08-01
A statistical pilot study was retrospectively performed to analyze potential changes in occupational radiation exposures to Interventional Radiology (IR) staff at Lawrence General Hospital after implementation of the i2 Active Radiation Dosimetry System (Unfors RaySafe Inc, 6045 Cochran Road Cleveland, OH 44139-3302). In this study, the monthly OSL dosimetry records obtained during the eight-month period prior to i2 implementation were normalized to the number of procedures performed during each month and statistically compared to the normalized dosimetry records obtained for the 8-mo period after i2 implementation. The resulting statistics included calculation of the mean and standard deviation of the dose equivalences per procedure and included appropriate hypothesis tests to assess for statistically valid differences between the pre and post i2 study periods. Hypothesis testing was performed on three groups of staff present during an IR procedure: The first group included all members of the IR staff, the second group consisted of the IR radiologists, and the third group consisted of the IR technician staff. After implementing the i2 active dosimetry system, participating members of the Lawrence General IR staff had a reduction in the average dose equivalence per procedure of 43.1% ± 16.7% (p = 0.04). Similarly, Lawrence General IR radiologists had a 65.8% ± 33.6% (p=0.01) reduction while the technologists had a 45.0% ± 14.4% (p=0.03) reduction.
Polakof, Sergio; Rémond, Didier; David, Jérémie; Dardevet, Dominique; Savary-Auzeloux, Isabelle
2018-06-01
High-fat high-sucrose diet (HFHS) overfeeding is one of the main factors responsible for the increased prevalence of metabolic disorders. Elevated levels of branched-chain amino acids (BCAAs) have been associated with metabolic dysfunctions, including insulin resistance (IR). The aim of this study was to elucidate whether elevated BCAA levels are the cause or the consequence of IR and to determine the mechanisms and tissues involved in such a phenotype. We performed a 2-mo follow-up on minipigs overfed an HFHS diet and focused on kinetics fasting and postprandial (PP) BCAA levels and BCAA catabolism in key tissues. The study of the fasting BCAA elevation reveals that BCAA accumulation in the plasma compartment is well correlated with IR markers and body weight. Furthermore, the PP excursion of BCAA levels after the last HFHS meal was exacerbated when compared with that of the first meal, suggesting a reduced amino acid oxidation potential. Although only minor changes in BCAA metabolism were observed in liver, muscle, and the visceral adipose tissue, the oxidative deamination potential of the subcutaneous adipose tissue was blunted after 60 d of HFHS feeding. To our knowledge, the present results demonstrated for the first time in a swine model of obesity and IR, the existence of a phenotype related to high-circulating BCAA levels and metabolic dysregulation. The oxidative BCAA capacity reduction specifically in the subcutaneous adipose tissue emerges, at least in the present swine model, as the more plausible metabolic explanation for the elevated blood BCAA phenotype. Copyright © 2017 Elsevier Inc. All rights reserved.
Koch, Cosima; Posch, Andreas E; Herwig, Christoph; Lendl, Bernhard
2016-12-01
The performance of a fiber optic and an optical conduit in-line attenuated total reflection mid-infrared (IR) probe during in situ monitoring of Penicillium chrysogenum fermentation were compared. The fiber optic probe was connected to a sealed, portable, Fourier transform infrared (FT-IR) process spectrometer via a plug-and-play interface. The optical conduit, on the other hand, was connected to a FT-IR process spectrometer via a knuckled probe with mirrors that had to be adjusted prior to each fermentation, which were purged with dry air. Penicillin V (PenV) and its precursor phenoxyacetic acid (POX) concentrations were determined by online high-performance liquid chromatography and the obtained concentrations were used as reference to build partial least squares regression models. Cross-validated root-mean-square errors of prediction were found to be 0.2 g L -1 (POX) and 0.19 g L -1 (PenV) for the fiber optic setup and 0.17 g L -1 (both POX and PenV) for the conduit setup. Higher noise-levels and spectrum-to-spectrum variations of the fiber optic setup lead to higher noise of estimated (i.e., unknown) POX and PenV concentrations than was found for the conduit setup. It seems that trade-off has to be made between ease of handling (fiber optic setup) and measurement accuracy (optical conduit setup) when choosing one of these systems for bioprocess monitoring. © The Author(s) 2016.
Serum levels of uncoupling proteins in patients with differential insulin resistance
Pan, Heng-Chih; Lee, Chin-Chan; Chou, Kuei-Mei; Lu, Shang-Chieh; Sun, Chiao-Yin
2017-01-01
Abstract The uncoupling protein (UCP) belongs to a family of energy-dissipating proteins in mitochondria. Increasing evidences have indicated that UCPs have immense impact on glucose homeostasis and are key proteins in metabolic syndrome. For applying the findings to clinical practice, we designed a study to explore the association between serum UCPs 1–3 and insulin resistance. This investigation prospectively recorded demographical parameter and collected blood samples of 1071 participants from 4 districts in Northeastern Taiwan during the period from August 2013 to July 2014. Propensity score matching by age and sex in patients with top and bottom third homeostasis model assessment of insulin resistance (HOMA-IR) levels was performed, and 326 subjects were enrolled for further studies. The mean age of the patients was 59.4 years and the majority of them (65.5%) were females. The prevalence of metabolic syndrome was 35.5%. Our results demonstrated that serum UCPs 1–3 were significantly associated with differences in HOMA-IR levels. Multiple logistic regression analysis indicated that low UCP 1 and features of metabolic syndrome, namely hypertension, diabetes, body mass index, and high-density lipoprotein, were independent determinants for high HOMA-IR levels. We thus determined that low serum UCP 1 is a predictor for high resistance to insulin. PMID:28984759
Zhao, Jiang; Lian, Meng; Yu, Yue; Yan, Xiaogang; Xu, Xianbin; Yang, Xiaolong; Zhou, Guijiang; Wu, Zhaoxin
2015-01-01
A series of novel red phosphorescent polymers is successfully developed through Suzuki cross-coupling among ambipolar units, functionalized Ir(III) phosphorescent blocks, and fluorene-based silane moieties. The photophysical and electrochemical investigations indicate not only highly efficient energy-transfer from the organic segments to the phosphorescent units in the polymer backbone but also the ambipolar character of the copolymers. Benefiting from all these merits, the phosphorescent polymers can furnish organic light-emitting diodes (OLEDs) with exceptional high electroluminescent (EL) efficiencies with a current efficiency (η L ) of 8.31 cd A(-1) , external quantum efficiency (η ext ) of 16.07%, and power efficiency (η P ) of 2.95 lm W(-1) , representing the state-of-the-art electroluminescent performances ever achieved by red phosphorescent polymers. This work here might represent a new pathway to design and synthesize highly efficient phosphorescent polymers. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Thermal Properties of Whispering Gallery Mode Resonators
2014-12-22
in a vacuum chamber, to lower the noise floor and increase the SNR. To study the frequency response of the IR detector , we varied the modulation...performance at a fixed IR modulation (chopping) frequency. Finally, we estimated the noise equivalent power (NEP) of our IR detector . Note that the...the thennal relaxation time of the resonator to estimate the response time of the resonator based infrared (IR) detector . We found that, depending on
Lucas, P Avilés; Aubineau-Lanièce, I; Lourenço, V; Vermesse, D; Cutarella, D
2014-01-01
The absorbed dose to water is the fundamental reference quantity for brachytherapy treatment planning systems and thermoluminescence dosimeters (TLDs) have been recognized as the most validated detectors for measurement of such a dosimetric descriptor. The detector response in a wide energy spectrum as that of an (192)Ir brachytherapy source as well as the specific measurement medium which surrounds the TLD need to be accounted for when estimating the absorbed dose. This paper develops a methodology based on highly sensitive LiF:Mg,Cu,P TLDs to directly estimate the absorbed dose to water in liquid water around a high dose rate (192)Ir brachytherapy source. Different experimental designs in liquid water and air were constructed to study the response of LiF:Mg,Cu,P TLDs when irradiated in several standard photon beams of the LNE-LNHB (French national metrology laboratory for ionizing radiation). Measurement strategies and Monte Carlo techniques were developed to calibrate the LiF:Mg,Cu,P detectors in the energy interval characteristic of that found when TLDs are immersed in water around an (192)Ir source. Finally, an experimental system was designed to irradiate TLDs at different angles between 1 and 11 cm away from an (192)Ir source in liquid water. Monte Carlo simulations were performed to correct measured results to provide estimates of the absorbed dose to water in water around the (192)Ir source. The dose response dependence of LiF:Mg,Cu,P TLDs with the linear energy transfer of secondary electrons followed the same variations as those of published results. The calibration strategy which used TLDs in air exposed to a standard N-250 ISO x-ray beam and TLDs in water irradiated with a standard (137)Cs beam provided an estimated mean uncertainty of 2.8% (k = 1) in the TLD calibration coefficient for irradiations by the (192)Ir source in water. The 3D TLD measurements performed in liquid water were obtained with a maximum uncertainty of 11% (k = 1) found at 1 cm from the source. Radial dose values in water were compared against published results of the American Association of Physicists in Medicine and the European Society for Radiotherapy and Oncology and no significant differences (maximum value of 3.1%) were found within uncertainties except for one position at 9 cm (5.8%). At this location the background contribution relative to the TLD signal is relatively small and an unexpected experimental fluctuation in the background estimate may have caused such a large discrepancy. This paper shows that reliable measurements with TLDs in complex energy spectra require a study of the detector dose response with the radiation quality and specific calibration methodologies which model accurately the experimental conditions where the detectors will be used. The authors have developed and studied a method with highly sensitive TLDs and contributed to its validation by comparison with results from the literature. This methodology can be used to provide direct estimates of the absorbed dose rate in water for irradiations with HDR (192)Ir brachytherapy sources.
Third-generation imaging sensor system concepts
NASA Astrophysics Data System (ADS)
Reago, Donald A.; Horn, Stuart B.; Campbell, James, Jr.; Vollmerhausen, Richard H.
1999-07-01
Second generation forward looking infrared sensors, based on either parallel scanning, long wave (8 - 12 um) time delay and integration HgCdTe detectors or mid wave (3 - 5 um), medium format staring (640 X 480 pixels) InSb detectors, are being fielded. The science and technology community is now turning its attention toward the definition of a future third generation of FLIR sensors, based on emerging research and development efforts. Modeled third generation sensor performance demonstrates a significant improvement in performance over second generation, resulting in enhanced lethality and survivability on the future battlefield. In this paper we present the current thinking on what third generation sensors systems will be and the resulting requirements for third generation focal plane array detectors. Three classes of sensors have been identified. The high performance sensor will contain a megapixel or larger array with at least two colors. Higher operating temperatures will also be the goal here so that power and weight can be reduced. A high performance uncooled sensor is also envisioned that will perform somewhere between first and second generation cooled detectors, but at significantly lower cost, weight, and power. The final third generation sensor is a very low cost micro sensor. This sensor can open up a whole new IR market because of its small size, weight, and cost. Future unattended throwaway sensors, micro UAVs, and helmet mounted IR cameras will be the result of this new class.
Kusume, Y
1999-11-01
In this study, intrarenal inorganic fluoride concentrations (IR-F) in rabbits were measured after sevoflurane or methoxyflurane anesthesia (SA or MA) to investigate the mechanism of methoxy-flurane nephrotoxicity and to confirm the safety of SA in fluoride nephrotoxicity. At the end of SA of MA, IR-F was 1.5 to 5 times greater in the cortex to papilla region than serum fluoride concentrations (S-F). When S-F were nearly equal, IR-F after MA was not greater than IR-F after SA. IR-F after SA declined rapidly. In contrast, IR-F after MA was maintained at high levels for a protracted period due to the greater solubility of methoxyflurane in fatty tissue. The present study suggests that the most important factor in methoxyflurane nephrotoxicity is the high IR-F of long duration established by urine formation, and that sevoflurane, although it is not associated with fluoride nephrotoxicity under normal conditions, may not be safe when it is used for an extremely long period and at high concentrations.
Ren, Bao-Yi; Guo, Run-Da; Zhong, Dao-Kun; Ou, Chang-Jin; Xiong, Gang; Zhao, Xiang-Hua; Sun, Ya-Guang; Jurow, Matthew; Kang, Jun; Zhao, Yi; Li, Sheng-Biao; You, Li-Xin; Wang, Lin-Wang; Liu, Yi; Huang, Wei
2017-07-17
To suppress concentration quenching and to improve charge-carrier injection/transport in the emission layer (EML) of phosphorescent organic light-emitting diodes (PhOLEDs), a facial homoleptic iridium(III) complex emitter with amorphous characteristics was designed and prepared in one step from a multifunctional spiro ligand containing spiro[fluorene-9,9'-xanthene] (SFX) unit. Single-crystal X-ray analysis of the resulting fac-Ir(SFXpy) 3 complex revealed an enlarged Ir···Ir distance and negligible intermolecular π-π interactions between the spiro ligands. The emitter exhibits yellow emission and almost equal energy levels compared to the commercial phosphor iridium(III) bis(4-phenylthieno[3,2-c]pyridinato-N,C 2 ')acetylacetonate (PO-01). Dry-processed devices using a common host, 4,4'-bis(N-carbazolyl)-1,1'-biphenyl, and the fac-Ir(SFXpy) 3 emitter at a doping concentration of 15 wt % exhibited a peak performance of 46.2 cd A -1 , 36.3 lm W -1 , and 12.1% for the current efficiency (CE), power efficiency (PE), and external quantum efficiency (EQE), respectively. Compared to control devices using PO-01 as the dopant, the fac-Ir(SFXpy) 3 -based devices remained superior in the doping range between 8 and 15 wt %. The current densities went up with increasing doping concentration at the same driving voltage, while the roll-offs remain relatively low even at high doping levels. The superior performance of the new emitter-based devices was ascribed to key roles of the spiro ligand for suppressing aggregation and assisting charge-carrier injection/transport. Benefiting from the amorphous stability of the emitter, the wet-processed device also exhibited respectful CE, PE, and EQE of 32.2 cd A -1 , 22.1 lm W -1 , and 11.3%, respectively, while the EQE roll-off was as low as 1.7% at the luminance of 1000 cd m -2 . The three-dimensional geometry and binary-conjugation features render SFX the ideal multifunctional module for suppressing concentration quenching, facilitating charge-carrier injection/transport, and improving the amorphous stability of iridium(III)-based phosphorescent emitters.
NASA Astrophysics Data System (ADS)
Hoffmann, Alex; Huebner, Marko; Macleod, Neil; Weidmann, Damien
2016-04-01
Over the course of the last decade, the Laser Spectroscopy Group at RAL Space has considerably furthered the passive remote sensing technique of thermal IR Laser Heterodyne Radiometry (LHR), and applied it successfully to the ground-based sounding of atmospheric profiles of a variety of trace gases, including methane. LHR is underpinned by coherent detection technology and ideally shot noise-limited, which can significantly enhance the signal-to-noise ratio of acquired atmospheric spectra over conventional direct detection spectrometers when high spectral (>500,000 resolving power) and high spatial resolutions are needed. These benefits allow probing optimized narrow spectral windows (1 cm-1) with full absorption lineshape information, useful for trace gas vertical profiling. Furthermore, LHR has a high potential for miniaturization into a rugged, unprecedentedly compact package, through hollow waveguide optical integration, facilitating its deployment in ground-based observation networks, as well as on a variety of airborne and spaceborne platforms, whilst retaining its high specifications. This makes LHR well-suited to the remote sounding of key greenhouse gases, in particular carbon dioxide, as observations with high precision and accuracy are crucial to discriminate trends and small variations over a substantial background concentration, and in order to contribute to flux estimations in top-down carbon cycle inversion approaches and anthropogenic emission monitoring. Here, we present a new optical bench-based LHR prototype that has been specifically built to demonstrate CO2 sounding in the thermal IR. The instrument has been coupled to a new permanently installed solar tracker to take a long-term measurement series in solar occultation mode, and to assess the performance of the instrument. We discuss its theoretical performance modelled using an Observation System Simulator, and showcase first results from a 6 months' archive, with observations undergoing gradual refinement as the retrieval method is improved.
Rhenium Mechanical Properties and Joining Technology
NASA Technical Reports Server (NTRS)
Reed, Brian D.; Biaglow, James A.
1996-01-01
Iridium-coated rhenium (Ir/Re) provides thermal margin for high performance and long life radiation cooled rockets. Two issues that have arisen in the development of flight Ir/Re engines are the sparsity of rhenium (Re) mechanical property data (particularly at high temperatures) required for engineering design, and the inability to directly electron beam weld Re chambers to C103 nozzle skirts. To address these issues, a Re mechanical property database is being established and techniques for creating Re/C103 transition joints are being investigated. This paper discusses the tensile testing results of powder metallurgy Re samples at temperatures from 1370 to 2090 C. Also discussed is the evaluation of Re/C103 transition pieces joined by both, explosive and diffusion bonding. Finally, the evaluation of full size Re transition pieces, joined by inertia welding, as well as explosive and diffusion bonding, is detailed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Pei; Wang, Yonggang; Wang, Liping
Cubic (space group: Fm3¯m) iridium phosphide, Ir 2P, has been synthesized at high pressure and high temperature. Angle-dispersive synchrotron X-ray diffraction measurements on Ir 2P powder using a diamond-anvil cell at room temperature and high pressures (up to 40.6 GPa) yielded a bulk modulus of B 0 = 306(6) GPa and its pressure derivative B 0'= 6.4(5). Such a high bulk modulus attributed to the short and strongly covalent Ir-P bonds as revealed by first – principles calculations and three-dimensionally distributed [IrP 4] tetrahedron network. Indentation testing on a well–sintered polycrystalline sample yielded the hardness of 11.8(4) GPa. Relatively lowmore » shear modulus of ~64 GPa from theoretical calculations suggests a complicated overall bonding in Ir 2P with metallic, ionic, and covalent characteristics. Additionally, a spin glass behavior is indicated by magnetic susceptibility measurements.« less
Fabricating Ir/C Nanofiber Networks as Free-Standing Air Cathodes for Rechargeable Li-CO2 Batteries.
Wang, Chengyi; Zhang, Qinming; Zhang, Xin; Wang, Xin-Gai; Xie, Zhaojun; Zhou, Zhen
2018-06-07
Li-CO 2 batteries are promising energy storage systems by utilizing CO 2 at the same time, though there are still some critical barriers before its practical applications such as high charging overpotential and poor cycling stability. In this work, iridium/carbon nanofibers (Ir/CNFs) are prepared via electrospinning and subsequent heat treatment, and are used as cathode catalysts for rechargeable Li-CO 2 batteries. Benefitting from the unique porous network structure and the high activity of ultrasmall Ir nanoparticles, Ir/CNFs exhibit excellent CO 2 reduction and evolution activities. The Li-CO 2 batteries present extremely large discharge capacity, high coulombic efficiency, and long cycling life. Moreover, free-standing Ir/CNF films are used directly as air cathodes to assemble Li-CO 2 batteries, which show high energy density and ultralong operation time, demonstrating great potential for practical applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Thibault, Bernard; Andrade, Jason G; Dubuc, Marc; Talajic, Mario; Guerra, Peter G; Dyrda, Katia; Macle, Laurent; Rivard, Léna; Roy, Denis; Mondésert, Blandine; Khairy, Paul
2015-01-01
Cardiac resynchronization therapy (CRT) implant procedures are often complex and prolonged, resulting in significant ionizing radiation (IR) exposure to the patient and operator. We report our early experience working with a novel sensor-based electromagnetic tracking system (MediGuide™, MDG, St. Jude Medical Inc., St. Paul, MN, USA), in terms of procedural IR exposure reduction. Information regarding patient demographics, procedural details, procedural duration, and IR exposure were prospectively collected on 130 consecutive CRT procedures performed between January 2013 and January 2014. Sixty procedures were performed with MDG guidance, and 70 were performed without MDG guidance. Despite a nonsignificant trend toward shorter procedure duration with the use of MDG (120 minutes vs 138 minutes with non-MDG, P = 0.088), a 66% reduction in total IR exposure (median 769 μGray · m(2) vs 2,608 μGray · m(2), P < 0.001) was found. This reduction was primarily driven by a >90% reduction in IR dose required to cannulate the coronary sinus (median 80 μGray · m(2) vs 922 μGray · m(2), P < 0.001), and to a lesser extent from a reduction in IR dose required for LV lead placement (median 330 μGray·m(2) vs 737 μGray · m(2), P = 0.059). In addition, a significant learning curve effect was observed with a significantly shorter procedural duration for the last 15 cases compared to the first 15 cases (median 98 minutes vs 175 minutes, P < 0.001). The nonfluoroscopic MDG positioning system is associated with a dramatic reduction in exposure to IR during CRT implant procedures, with a 90% decrease in the IR dose required to cannulate the coronary sinus. A steep learning curve was quantified. ©2014 Wiley Periodicals, Inc.
Heat trap - An optimized far infrared field optics system. [for astronomical sources
NASA Technical Reports Server (NTRS)
Harper, D. A.; Hildebrand, R. H.; Winston, R.; Stiening, R.
1976-01-01
The article deals with the design and performance of a heat trap IR system designed to maximize the concentration and efficient reception of far IR and submillimeter wavelength radiation. The test object is assumed to be extended and/or viewed at wavelengths much longer than the detector, and the entrance aperture is limited to the size of the telescope Airy diffraction disk. The design of lenses, cavity, bolometers, light collectors, and mirrors for the system is discussed. Advantages and feasibility of arrays of heat traps are considered. Beam patterns, flux concentration, and performance variation with wavelength are dealt with. The heat trap is recommended for sensing all types of far IR sources and particularly for extended far IR sources.-
Selective laser ablation of carious lesions using simultaneous scanned near-IR diode and CO2 lasers
NASA Astrophysics Data System (ADS)
Chan, Kenneth H.; Fried, Daniel
2017-02-01
Previous studies have established that carious lesions can be imaged with high contrast using near-IR wavelengths coincident with high water absorption, namely 1450-nm, without the interference of stains. It has been demonstrated that computer-controlled laser scanning systems utilizing IR lasers operating at high pulse repetition rates can be used for serial imaging and selective removal of caries lesions. In this study, a point-to-point scanning system was developed integrating a 1450-nm diode laser with the CO2 ablation laser. This approach is advantageous since it does not require an expensive near-IR camera. In this pilot study, we demonstrate the feasibility of a combined NIR and IR laser system for the selective removal of carious lesions.
Selective Laser Ablation of Carious Lesions using Simultaneous Scanned Near-IR Diode and CO2 Lasers.
Chan, Kenneth H; Fried, Daniel
2017-01-28
Previous studies have established that carious lesions can be imaged with high contrast using near-IR wavelengths coincident with high water absorption, namely 1450-nm, without the interference of stains. It has been demonstrated that computer-controlled laser scanning systems utilizing IR lasers operating at high pulse repetition rates can be used for serial imaging and selective removal of caries lesions. In this study, a point-to-point scanning system was developed integrating a 1450-nm diode laser with the CO 2 ablation laser. This approach is advantageous since it does not require an expensive near-IR camera. In this pilot study, we demonstrate the feasibility of a combined NIR and IR laser system for the selective removal of carious lesions.
Miousse, Isabelle R; Kutanzi, Kristy R; Koturbash, Igor
2017-05-01
Ionizing radiation (IR) is a ubiquitous environmental stressor with genotoxic and epigenotoxic capabilities. Terrestrial IR, predominantly a low-linear energy transfer (LET) radiation, is being widely utilized in medicine, as well as in multiple industrial applications. Additionally, an interest in understanding the effects of high-LET irradiation is emerging due to the potential of exposure during space missions and the growing utilization of high-LET radiation in medicine. In this review, we summarize the current knowledge of the effects of IR on DNA methylation, a key epigenetic mechanism regulating the expression of genetic information. We discuss global, repetitive elements and gene-specific DNA methylation in light of exposure to high and low doses of high- or low-LET IR, fractionated IR exposure, and bystander effects. Finally, we describe the mechanisms of IR-induced alterations to DNA methylation and discuss ways in which that understanding can be applied clinically, including utilization of DNA methylation as a predictor of response to radiotherapy and in the manipulation of DNA methylation patterns for tumor radiosensitization.
Huang, Wei-Qiang; Wen, Jian-Lin; Lin, Ri-Qi; Wei, Peng; Huang, Feng
2018-09-01
We investigated the role of mammalian target of rapamycin/nuclear factor-kappa B (mTOR/NF-κB) signaling pathway in high thoracic epidural anesthesia (HTEA) against myocardial ischemia-reperfusion (I/R) injury in rats. The rat model of myocardial I/R injury was established. Ninety rats were divided into the normal, sham, I/R, eHTEA, the PDTC, and HTEA + PDTC groups. ELISA was applied to detect cardiac function indexes. HE staining was conducted to observe histopathological changes of myocardial tissues, and TTC staining was performed to detect the myocardial infarction size. TUNEL staining was adopted to detect the cell apoptosis rate. The mRNA and protein levels of mTOR, NF-κB, Fasl, Bcl-2 and Bax, and LC3-I, LC3-II, BNIP3, and Atg5 were detected by RT-qPCR and Western blotting, respectively. The findings indicated that compared with the normal and sham groups, the I/R, PDTC, and HTEA groups showed the larger myocardial infarction size and increased cell apoptosis rate, while the results in the HTEA + PDTC group were opposite. Compared with the normal and sham groups, the I/R group showed reduced mRNA and protein levels of Bcl-2, LC3, BNIP3, and Atg5, and elevated mRNA and protein levels of mTOR, p50, p65, Bax, and Fasl, while the HTEA + PDTC group revealed the opposite results, and the PDTC and HTEA group revealed the increased mRNA and protein levels of Bcl-2, LC3, BNIP3, Atg5, mTOR, p50, p65, Bax, and Fasl. These results prove that the inhibition of mTOR/NF-κB signaling pathway potentiates HTEA against myocardial IR injury by autophagy and apoptosis in rats. © 2017 Wiley Periodicals, Inc.
[Protective effect of octreotide on liver warm ischemia reperfusion injury].
Li, Jie-qun; Qi, Hai-zhi; He, Zhi-jun; Hu, Wei; Si, Zhong-zhou; Li, Yi-ning
2006-10-01
To explore the protective effect of octreotide on liver warm ischemia-reperfusion injury and its possible mechanism. Pringle's maneuver liver ischemia-reperfusion models were established. Forty eight male Sprague Daweley rats were randomly divided into a sham operation group (S group, n=16), an ischemia-reperfusion group (I/R group, n=16) and an octreotide preconditioning group (OPC group, n=16). ALT and AST in the serum were measured at 30 min after the ischemia and 120 min after the reperfusion. The histomorphological changes and ultrastructure of hepatocellular were observed by optic and transmission electronic microscope. Hepatic adenine nucleotide levels and energy changes (EC) were determined by high performance liquid chromatography (HPLC). (1) At 30 min after the ischemia and 120 min after the reperfusion, the levels of ALT and AST in the serum of OPC group was lower than those in I/R group, whereas the levels of ATP and EC in the hepatic tissue were higher than those in the I/R group (P<0.01 or P<0.05). Compared with the I/R group, the injury of hepatocellular histomorphology and ultrastructure in the OPC group was abated. (2) At 30, 60, and 120 min after the reperfusion, the levels of ATP and EC in the OPC groups were higher than those in the I/R group. During the ischemia, the levels of ATP and EC in the OPC group dropped more slowly than those in the I/R group, but ATP and EC in the OPC groups rose more quickly than those in the I/R group during the reperfusion. Octreotide precondition can improve the hepatocellular energy reserve, and protect the liver from warm ischemia-reperfusion injury. The protective of octreotide on warm ischemia-reperfusion injury may be related to its influence on endocrine secretion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lutjeboer, Jacob, E-mail: j.lutjeboer@lumc.nl; Burgmans, Mark Christiaan, E-mail: m.c.burgmans@lumc.nl, E-mail: mburgmans@hotmail.com; Chung, Kaman, E-mail: kaman.chung10@gmail.com
PurposeInterventional radiology (IR) procedures are associated with high rates of preparation and planning errors. In many centers, pre-procedural consultation and screening of patients is performed by referring physicians. Interventional radiologists have better knowledge about procedure details and risks, but often only get acquainted with the patient in the procedure room. We hypothesized that patient safety (PS) and patient satisfaction (PSAT) in elective IR procedures would improve by implementation of a pre-procedural visit to an outpatient IR clinic.Material and MethodsIRB approval was obtained and informed consent was waived. PS and PSAT were measured in patients undergoing elective IR procedures before (controlmore » group; n = 110) and after (experimental group; n = 110) implementation of an outpatient IR clinic. PS was measured as the number of process deviations. PSAT was assessed using a questionnaire measuring Likert scores of three dimensions: interpersonal care aspects, information/communication, and patient participation. Differences in PS and PSAT between the two groups were compared using an independent t test.ResultsThe average number of process deviations per patient was 0.39 in the control group compared to 0.06 in the experimental group (p < 0.001). In 9.1 % patients in the control group, no legal informed consent was obtained compared to 0 % in the experimental group. The mean overall Likert score was significantly higher in the experimental group compared to the control group: 2.68 (SD 0.314) versus 2.48 (SD 0.381) (p < 0.001).ConclusionPS and PSAT improve significantly if patients receive consultation and screening in an IR outpatient clinic prior to elective IR procedures.« less
Hossain, Israt Ara; Rahman Shah, Md Mijanur; Rahman, Mohammad Khalilur; Ali, Liaquat
2016-01-01
Nonalcoholic fatty liver disease (NAFLD) is a major cause of liver-related morbidity and is frequently associated with insulin resistance (HOMA-IR) syndrome. Recently serum gamma glutamyl transferase (GGT) has been considered as surrogate marker of NAFLD leading to oxidative stress and hepatocellular damage. In the present study we examined the association of serum GGT and HOMA-IR with NAFLD in Bangladeshi adult subjects. Under a cross-sectional analytical design a total of 110 subjects were recruited who came for their routine health check up in the BIHS Hospital, Darussalam, Dhaka, Bangladesh. After whole abdomen ultrasonography, 62 were diagnosed as non-NAFLD and 48 were NAFLD subjects. Serum glucose was measured by glucose-oxidase method, lipid profile and liver enzymes by enzymatic colorimetric method, glycosylated hemoglobin (HbA1c) was measured by high performance liquid chromatography (HPLC), serum insulin were measured by enzyme-linked immunosorbent assay. HOMA-IR was calculated by homeostasis model assessment (HOMA). NAFLD subjects had significantly higher levels of GGT and HOMA-IR as compared to their non-NAFLD counterparts. Multiple linear regression analysis showed a significant positive association of HOMA-IR with GGT after adjusting the effects of waist circumference (WC) and HbA1c. In binary logistic regression analysis, HOMA-IR and GGT were found to be significant determinants of NAFLD after adjusting the effects of WC and HbA1c. These results suggest that elevated levels of GGT and insulin resistance are more likely to develop NAFLD and thus support a role of these determinants in the pathogenesis of NAFLD in Bangladeshi adult subjects. Copyright © 2015 Diabetes India. Published by Elsevier Ltd. All rights reserved.
den Harder, Annemarie M; Willemink, Martin J; van Hamersvelt, Robbert W; Vonken, Evertjan P A; Schilham, Arnold M R; Lammers, Jan-Willem J; Luijk, Bart; Budde, Ricardo P J; Leiner, Tim; de Jong, Pim A
2016-01-01
The aim of the study was to determine the effects of dose reduction and iterative reconstruction (IR) on pulmonary nodule volumetry. In this prospective study, 25 patients scheduled for follow-up of pulmonary nodules were included. Computed tomography acquisitions were acquired at 4 dose levels with a median of 2.1, 1.2, 0.8, and 0.6 mSv. Data were reconstructed with filtered back projection (FBP), hybrid IR, and model-based IR. Volumetry was performed using semiautomatic software. At the highest dose level, more than 91% (34/37) of the nodules could be segmented, and at the lowest dose level, this was more than 83%. Thirty-three nodules were included for further analysis. Filtered back projection and hybrid IR did not lead to significant differences, whereas model-based IR resulted in lower volume measurements with a maximum difference of -11% compared with FBP at routine dose. Pulmonary nodule volumetry can be accurately performed at a submillisievert dose with both FBP and hybrid IR.
High performance equipped mirrors for MTG FCI-TA and IRS-FTO
NASA Astrophysics Data System (ADS)
Kazakov, T.; San Juan, J. L.; Serrano, J.; Moreno, J.; González, D.; Rodríguez, G.; López, D.; Vázquez, E.; Aivar, J.; Motos, A.; Rahmouni, Christophe; Imperiali, Stephan; Fappani, Denis
2017-09-01
The Meteosat Third Generation (MTG) Programme is being realised through the well established and successful Cooperation between EUMETSAT and ESA. It will ensure the future continuity of MSG with the capabilities to enhance nowcasting, global and regional numerical weather prediction, climate and atmospheric chemistry monitoring data from Geostationary Orbit.
Large Second-Harmonic Response of C60 Thin Films
1992-04-01
temperature; the largest value occurred at a nominal temperature of 140’C where X"’ is ten times larger than the room temperature value. 14. SU8 )ECT TERMS 1S...optical chromatography.’ The purity was examined by Raman. IR materials based upon conjugated-carbon- polymers charac- absorption, high-performance liquid
Active two-phase cooling of an IR window for a hypersonic interceptor
NASA Astrophysics Data System (ADS)
Burzlaff, B. H.; Chivian, Jay S.; Cotten, W. D.; Hemphill, R. B.; Huhlein, Michael A.
1993-06-01
A novel actively cooled window for an IR sensor on a hypersonic interceptor is envisioned which achieves an IR window with high transmittance, low emittance, and low image distortion under high aerodynamic heat flux. The cooling concept employs two-phase convective boiling of liquid ammonia. Coolant is confined to narrow, parallel channels within the window to minimize obscuration of the aperture. The high latent heat of vaporization of ammonia minimizes coolant mass-flow requirements. Low boiling temperatures at projected operating pressures promote high thermal conductivity and low emissivity in the window. The concept was tested with thermal measurements on sub-mm width coolant channels in Si. High values for heat transfer coefficient and critical heat flux were obtained. Thermal gradients within the window can be controlled by the coolant channel configuration. Design options are investigated by predicting the effect of aerodynamic heat flux on the image produced by an IR sensor with a cooled window. Ammonia-cooled IR windows will function in the anticipated aerothermal environment.
Navier-Stokes turbine heat transfer predictions using two-equation turbulence closures
NASA Technical Reports Server (NTRS)
Ameri, Ali A.; Arnone, Andrea
1992-01-01
Navier-Stokes calculations were carried out in order to predict the heat-transfer rates on turbine blades. The calculations were performed using TRAF2D which is a k-epsilon, explicit, finite volume mass-averaged Navier-Stokes solver. Turbulence was modeled using Coakley's q-omega and Chien's k-epsilon two-equation models and the Baldwin-Lomax algebraic model. The model equations along with the flow equations were solved explicitly on a nonperiodic C grid. Implicit residual smoothing (IRS) or a combination of multigrid technique and IRS was applied to enhance convergence rates. Calculations were performed to predict the Stanton number distributions on the first stage vane and blade row as well as the second stage vane row of the SSME high-pressure fuel turbine. The comparison serves to highlight the weaknesses of the turbulence models for use in turbomachinery heat-transfer calculations.
Modulation transfer function cascade model for a sampled IR imaging system.
de Luca, L; Cardone, G
1991-05-01
The performance of the infrared scanning radiometer (IRSR) is strongly stressed in convective heat transfer applications where high spatial frequencies in the signal that describes the thermal image are present. The need to characterize more deeply the system spatial resolution has led to the formulation of a cascade model for the evaluation of the actual modulation transfer function of a sampled IR imaging system. The model can yield both the aliasing band and the averaged modulation response for a general sampling subsystem. For a line scan imaging system, which is the case of a typical IRSR, a rule of thumb that states whether the combined sampling-imaging system is either imaging-dependent or sampling-dependent is proposed. The model is tested by comparing it with other noncascade models as well as by ad hoc measurements performed on a commercial digitized IRSR.
Ertem, Mehmed Zahid; Suna, Yuki; Himeda, Yuichiro; ...
2017-10-06
Pentamethylcyclopentadienyl iridium (Cp*Ir) complexes with bidentate ligands consisting of a pyridine ring and an electron-rich diazole ring were prepared. Their catalytic activity towards CO 2 hydrogenation in 2.0 M KHCO 3 aqueous solutions (pH 8.5) at 50 °C, under 1.0 MPa CO 2/H 2 (1:1) have been reported as an alternative to photo- and electrochemical CO 2 reduction. Bidentate ligands incorporating an electron-rich diazole ring improved the catalytic performance of the Ir complexes compared to the bipyridine ligand. Complexes 2, 4 and 6, possessing both a hydroxy group and an uncoordinated NH group, which are proton-responsive and capable of generatingmore » pendent-bases in basic media, recorded high initial TOF values of 1300 h -1, 1550 h -1 and 2000 h -1, respectively. Here, spectroscopic and computational investigations revealed that the reversible deprotonation changes the electronic properties of the complexes and causes interactions between pendent base and substrate and/or solvent water molecules, resulting in the high catalytic performance in basic media.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stoynev, S.; et al.
The development ofmore » $$Nb_3Sn$$ quadrupole magnets for the High-Luminosity LHC upgrade is a joint venture between the US LHC Accelerator Research Program (LARP)* and CERN with the goal of fabricating large aperture quadrupoles for the LHC in-teraction regions (IR). The inner triplet (low-β) NbTi quadrupoles in the IR will be replaced by the stronger Nb3Sn magnets boosting the LHC program of having 10-fold increase in integrated luminos-ity after the foreseen upgrades. Previously LARP conducted suc-cessful tests of short and long models with up to 120 mm aperture. The first short 150 mm aperture quadrupole model MQXFS1 was assembled with coils fabricated by both CERN and LARP. The magnet demonstrated strong performance at the Fermilab’s verti-cal magnet test facility reaching the LHC operating limits. This paper reports the latest results from MQXFS1 tests with changed pre-stress levels. The overall magnet performance, including quench training and memory, ramp rate and temperature depend-ence, is also summarized.« less
Suna, Yuki; Himeda, Yuichiro; Fujita, Etsuko; Muckerman, James T; Ertem, Mehmed Z
2017-11-23
Pentamethylcyclopentadienyl iridium (Cp*Ir) complexes with bidentate ligands consisting of a pyridine ring and an electron-rich diazole ring were prepared. Their catalytic activity toward CO 2 hydrogenation in 2.0 m KHCO 3 aqueous solutions (pH 8.5) at 50 °C, under 1.0 MPa CO 2 /H 2 (1:1) have been reported as an alternative to photo- and electrochemical CO 2 reduction. Bidentate ligands incorporating an electron-rich diazole ring improved the catalytic performance of the Ir complexes compared to the bipyridine ligand. Complexes 2, 4, and 6, possessing both a hydroxy group and an uncoordinated NH group, which are proton-responsive and capable of generating pendent bases in basic media, recorded high initial turnover frequency values of 1300, 1550, and 2000 h -1 , respectively. Spectroscopic and computational investigations revealed that the reversible deprotonation changes the electronic properties of the complexes and causes interactions between pendent base and substrate and/or solvent water molecules, resulting in high catalytic performance in basic media. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ouerghi, Nejmeddine; Fradj, Mohamed Kacem Ben; Bezrati, Ikram; Feki, Moncef; Kaabachi, Naziha; Bouassida, Anissa
2017-01-01
Objectives Omentin-1 is a recently discovered adipokine, mainly produced by visceral adipose tissue, which is thought to improve insulin sensitivity. The study aimed to assess the association of plasma omentin-1 with cardiometabolic traits and physical performance and to test its response to high-intensity interval training (HIIT) in obese and normal-weight subjects. Methods Nine overweight/obese (OG) and 9 normal-weight (NWG) young men performed an 8-week HIIT program. Body composition, physical performance, homeostasis model assessment index for insulin resistance (HOMA-IR) as well as plasma omentin-1and lipid levels were assessed before and after the HIIT program. Results Baseline plasma omentin-1 was lower in OG than NWG men (359 ± 138 vs. 470 ± 114 ng/ml; p = 0.052). Plasma omentin-1 was related to body fat (r = −0.57; p = 0.03) and LDL-cholesterol (r = −0.49; p = 0.04). There was a trend towards significant association of omentin-1 with BMI (r = −0.47; p = 0.06) and VO2max (r = 0.41; p = 0.09). However, no association was observed with HOMA-IR. Following the HIIT program, omentin-1 concentrations have significantly (p < 0.01) increased in OG (359 ± 138 to 455 ± 126 ng/ml) and NWG men (470 ± 114 to 572 ± 115 ng/ml). In parallel, the cardiometabolic profile has improved with a significant decrease of HOMA-IR in OG. Conclusions HIIT resulted in a plasma omentin-1 increase and an improvement with regard to cardiometabolic traits in the OG men, which may contribute to modulate insulin sensitivity. PMID:28787708
Infrared negative luminescent devices and higher operating temperature detectors
NASA Astrophysics Data System (ADS)
Nash, G. R.; Gordon, N. T.; Hall, D. J.; Ashby, M. K.; Little, J. C.; Masterton, G.; Hails, J. E.; Giess, J.; Haworth, L.; Emeny, M. T.; Ashley, T.
2004-01-01
Infrared LEDs and negative luminescent devices, where less light is emitted than in equilibrium, have been attracting an increasing amount of interest recently. They have a variety of applications, including as a ‘source’ of IR radiation for gas sensing; radiation shielding for, and non-uniformity correction of, high sensitivity staring infrared detectors; and dynamic infrared scene projection. Similarly, infrared (IR) detectors are used in arrays for thermal imaging and, discretely, in applications such as gas sensing. Multi-layer heterostructure epitaxy enables the growth of both types of device using designs in which the electronic processes can be precisely controlled and techniques such as carrier exclusion and extraction can be implemented. This enables detectors to be made which offer good performance at higher than normal operating temperatures, and efficient negative luminescent devices to be made which simulate a range of effective temperatures whilst operating uncooled. In both cases, however, additional performance benefits can be achieved by integrating optical concentrators around the diodes to reduce the volume of semiconductor material, and so minimise the thermally activated generation-recombination processes which compete with radiative mechanisms. The integrated concentrators are in the form of Winston cones, which can be formed using an iterative dry etch process involving methane/hydrogen and oxygen. We present results on negative luminescence in the mid- and long-IR wavebands, from devices made from indium antimonide and mercury cadmium telluride, where the aim is sizes greater than 1 cm×1 cm. We also discuss progress on, and the potential for, operating temperature and/or sensitivity improvement of detectors, where very high-performance imaging is anticipated from systems which require no mechanical cooling.
Infrared Negative Luminescent Devices and Higher Operating Temperature Detectors
NASA Astrophysics Data System (ADS)
Ashley, Tim
2003-03-01
Infrared LEDs and negative luminescent devices, where less light is emitted than in equilibrium, have been attracting an increasing amount of interest recently. They have a variety of applications, including as a source' of IR radiation for gas sensing; radiation shielding for and non-uniformity correction of high sensitivity starring infrared detectors; and dynamic infrared scene projection. Similarly, IR detectors are used in arrays for thermal imaging and, discretely, in applications such as gas sensing. Multi-layer heterostructure epitaxy enables the growth of both types of device using designs in which the electronic processes can be precisely controlled and techniques such as carrier exclusion and extraction can be implemented. This enables detectors to be made which offer good performance at higher than normal operating temperatures, and efficient negative luminescent devices to be made which simulate a range of effective temperatures whilst operating uncooled. In both cases, however, additional performance benefits can be achieved by integrating optical concentrators around the diodes to reduce the volume of semiconductor material, and so minimise the thermally activated generation-recombination processes which compete with radiative mechanisms. The integrated concentrators are in the form of Winston cones, which can be formed using an iterative dry etch process involving methane/hydrogen and oxygen. We will present results on negative luminescence in the mid and long IR wavebands, from devices made from indium antimonide and mercury cadmium telluride, where the aim is sizes greater than 1cm x 1cm. We will also discuss progress on, and the potential for, operating temperature and/or sensitivity improvement of detectors, where very high performance imaging is anticipated from systems which require no mechanical cooling.
Ouerghi, Nejmeddine; Ben Fradj, Mohamed Kacem; Bezrati, Ikram; Feki, Moncef; Kaabachi, Naziha; Bouassida, Anissa
2017-01-01
Omentin-1 is a recently discovered adipokine, mainly produced by visceral adipose tissue, which is thought to improve insulin sensitivity. The study aimed to assess the association of plasma omentin-1 with cardiometabolic traits and physical performance and to test its response to high-intensity interval training (HIIT) in obese and normal-weight subjects. Nine overweight/obese (OG) and 9 normal-weight (NWG) young men performed an 8-week HIIT program. Body composition, physical performance, homeostasis model assessment index for insulin resistance (HOMA-IR) as well as plasma omentin-1and lipid levels were assessed before and after the HIIT program. Baseline plasma omentin-1 was lower in OG than NWG men (359 ± 138 vs. 470 ± 114 ng/ml; p = 0.052). Plasma omentin-1 was related to body fat (r = -0.57; p = 0.03) and LDL-cholesterol (r = -0.49; p = 0.04). There was a trend towards significant association of omentin-1 with BMI (r = -0.47; p = 0.06) and VO2max (r = 0.41; p = 0.09). However, no association was observed with HOMA-IR. Following the HIIT program, omentin-1 concentrations have significantly (p < 0.01) increased in OG (359 ± 138 to 455 ± 126 ng/ml) and NWG men (470 ± 114 to 572 ± 115 ng/ml). In parallel, the cardiometabolic profile has improved with a significant decrease of HOMA-IR in OG. HIIT resulted in a plasma omentin-1 increase and an improvement with regard to cardiometabolic traits in the OG men, which may contribute to modulate insulin sensitivity. © 2017 The Author(s) Published by S. Karger GmbH, Freiburg.
Luukkonen, Panu K; Zhou, You; Sädevirta, Sanja; Leivonen, Marja; Arola, Johanna; Orešič, Matej; Hyötyläinen, Tuulia; Yki-Järvinen, Hannele
2016-05-01
Recent data in mice have identified de novo ceramide synthesis as the key mediator of hepatic insulin resistance (IR) that in humans characterizes increases in liver fat due to IR ('Metabolic NAFLD' but not that due to the I148M gene variant in PNPLA3 ('PNPLA3 NAFLD'). We determined which bioactive lipids co-segregate with IR in the human liver. Liver lipidome was profiled in liver biopsies from 125 subjects that were divided into equally sized groups based on median HOMA-IR ('High and Low HOMA-IR', n=62 and n=63) or PNPLA3 genotype (PNPLA3(148MM/MI), n=61 vs. PNPLA3(148II), n=64). The subjects were also divided into 4 groups who had either IR, the I148M gene variant, both of the risk factors or neither. Steatosis and NASH prevalence were similarly increased in 'High HOMA-IR' and PNPLA3(148MM/MI) groups compared to their respective control groups. The 'High HOMA-IR' but not the PNPLA3(148MM/MI) group had features of IR. The liver in 'High HOMA-IR' vs. 'Low HOMA-IR' was markedly enriched in saturated and monounsaturated triacylglycerols and free fatty acids, dihydroceramides (markers of de novo ceramide synthesis) and ceramides. Markers of other ceramide synthetic pathways were unchanged. In PNPLA3(148MM/MI)vs. PNPLA3(148II), the increase in liver fat was due to polyunsaturated triacylglycerols while other lipids were unchanged. Similar changes were observed when data were analyzed using the 4 subgroups. Similar increases in liver fat and NASH are associated with a metabolically harmful saturated, ceramide-enriched liver lipidome in 'Metabolic NAFLD' but not in 'PNPLA3 NAFLD'. This difference may explain why metabolic but not PNPLA3 NAFLD increases the risk of type 2 diabetes and cardiovascular disease. Copyright © 2016 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.
Asai, Akihiro; Chou, Pauline M; Bu, Heng-Fu; Wang, Xiao; Rao, M Sambasiva; Jiang, Anthony; DiDonato, Christine J; Tan, Xiao-Di
2014-03-01
Liver steatosis in nonalcoholic fatty liver disease is affected by genetics and diet. It is associated with insulin resistance (IR) in hepatic and peripheral tissues. Here, we aimed to characterize the severity of diet-induced steatosis, obesity, and IR in two phylogenetically distant mouse strains, C57BL/6J and DBA/2J. To this end, mice (male, 8 wk old) were fed a high-fat and high-carbohydrate (HFHC) or control diet for 16 wk followed by the application of a combination of classic physiological, biochemical, and pathological studies to determine obesity and hepatic steatosis. Peripheral IR was characterized by measuring blood glucose level, serum insulin level, homeostasis model assessment of IR, glucose intolerance, insulin intolerance, and AKT phosphorylation in adipose tissues, whereas the level of hepatic IR was determined by measuring insulin-triggered hepatic AKT phosphorylation. We discovered that both C57BL/6J and DBA/2J mice developed obesity to a similar degree without the feature of liver inflammation after being fed an HFHC diet for 16 wk. C57BL/6J mice in the HFHC diet group exhibited severe pan-lobular steatosis, a marked increase in hepatic triglyceride levels, and profound peripheral IR. In contrast, DBA/2J mice in the HFHC diet group developed only a mild degree of pericentrilobular hepatic steatosis that was associated with moderate changes in peripheral IR. Interestingly, both C57BL/6J and DBA/2J developed severe hepatic IR after HFHC diet treatment. Collectively, these data suggest that the severity of diet-induced hepatic steatosis is correlated to the level of peripheral IR, not with the severity of obesity and hepatic IR. Peripheral rather than hepatic IR is a dominant factor of pathophysiology in nonalcoholic fatty liver disease.
Calibration and Evaluation of Ultrasound Thermography using Infrared Imaging
Hsiao, Yi-Sing; Deng, Cheri X.
2015-01-01
Real-time monitoring of the spatiotemporal evolution of tissue temperature is important to ensure safe and effective treatment in thermal therapies including hyperthermia and thermal ablation. Ultrasound thermography has been proposed as a non-invasive technique for temperature measurement, and accurate calibration of the temperature-dependent ultrasound signal changes against temperature is required. Here we report a method that uses infrared (IR) thermography for calibration and validation of ultrasound thermography. Using phantoms and cardiac tissue specimens subjected to high-intensity focused ultrasound (HIFU) heating, we simultaneously acquired ultrasound and IR imaging data from the same surface plane of a sample. The commonly used echo time shift-based method was chosen to compute ultrasound thermometry. We first correlated the ultrasound echo time shifts with IR-measured temperatures for material-dependent calibration and found that the calibration coefficient was positive for fat-mimicking phantom (1.49 ± 0.27) but negative for tissue-mimicking phantom (− 0.59 ± 0.08) and cardiac tissue (− 0.69 ± 0.18 °C-mm/ns). We then obtained the estimation error of the ultrasound thermometry by comparing against the IR measured temperature and revealed that the error increased with decreased size of the heated region. Consistent with previous findings, the echo time shifts were no longer linearly dependent on temperature beyond 45 – 50 °C in cardiac tissues. Unlike previous studies where thermocouples or water-bath techniques were used to evaluate the performance of ultrasound thermography, our results show that high resolution IR thermography provides a useful tool that can be applied to evaluate and understand the limitations of ultrasound thermography methods. PMID:26547634
Silva, Maria Inês Barreto; Lemos, Carla Cavalheiro da Silva; Torres, Márcia Regina Simas Gonçalves; Bregman, Rachel
2014-03-01
Chronic kidney disease (CKD) is associated with metabolic disorders, including insulin resistance (IR), mainly when associated with obesity and characterized by high abdominal adiposity (AbAd). Anthropometric measures are recommended for assessing AbAd in clinical settings, but their accuracies need to be evaluated. The aim of this study was to evaluate the precision of different anthropometric measures of AbAd in patients with CKD. We also sought to determine the AbAd association with high homeostasis model assessment index of insulin resistance (HOMA-IR) values and the cutoff point for AbAd index to predict high HOMA-IR values. A subset of clinically stable nondialyzed patients with CKD followed at a multidisciplinary outpatient clinic was enrolled in this cross-sectional study. The accuracy of the following anthropometric indices: waist circumference, waist-to-hip ratio, conicity index and waist-to-height ratio (WheiR) to assess AbAd, was evaluated using trunk fat, by dual x-ray absorptiometry (DXA), as a reference method. HOMA-IR was estimated to stratify patients in high and low HOMA-IR groups. The total area under the receiver-operating characteristic curves (AUC-ROC; sensitivity/specificity) was calculated: AbAd with high HOMA-IR values (95% confidence interval [CI]). We studied 134 patients (55% males; 54% overweight/obese, body mass index ≥ 25 kg/m(2), age 64.9 ± 12.5 y, estimated glomerular filtration rate 29.0 ± 12.7 mL/min). Among studied AbAd indices, WheiR was the only one to show correlation with DXA trunk fat after adjusting for confounders (P < 0.0001). Thus, WheiR was used to evaluate the association between AbAd with HOMA-IR values (r = 0.47; P < 0.0001). The cutoff point for WheiR as a predictor for high HOMA-IR values was 0.55 (AUC-ROC = 0.69 ± 0.05; 95% CI, 0.60-0.77; sensitivity/specificity, 68.9/61.9). WheiR is recommended as an effective and precise anthropometric index to assess AbAd and to predict high HOMA-IR values in nondialyzed patients with CKD. Copyright © 2014 Elsevier Inc. All rights reserved.
Exploiting the IR: Solar and stellar spectroscopy in the IR
NASA Technical Reports Server (NTRS)
Deming, Drake
1987-01-01
Recent instrumental advances have provided the capability to perform high resolution spectroscopy, in the thermal infrared region of the solar spectrum, with high sensitivity. The 8 to 12 micron region was extensively observed using Fourier transform (FTS) and laser heterodyne techniques. The continuous opacity of the solar atmosphere, due to H(-), increases with wavelength in the infrared region longward of 1.6 microns. Consequently thermal infrared observations probe the upper photosphere, and give an insight into the dynamics and structure of this region. The most notable spectral features in the 10 micron window include pure rotation lines of OH, and emission lines due to high-n states in MgI and AlI. The high-n lines due to MgI and AlI are important to solar and stellar physics because of their very large Zeeman sensitivity. The recent development of a cryogenic grating postdispenser for the FTS has allowed low-noise solar observations of these lines in 90 seconds. Limited mapping of the lines in a sunspot penumbra was performed, and gives information of the structure of the penumbral magnetic field. Although the MgI lines were detected in red giant spectra, instrumental sensitivity is not yet sufficient to see them in stars where significant magnetic fields are expected.
NASA Astrophysics Data System (ADS)
Armstrong, J. T.; Crispin, K. L.
2012-12-01
Traditionally, quantitative electron microbeam analyses of insulating specimens are performed after coating the materials with thin conducting layers of carbon. For x-ray lines greater than 1 keV in energy and beam voltages in excess of 10 keV, the results are insensitive to the exact thickness of the carbon coat. High resolution imaging, low voltage analysis, and analysis of specimens containing low levels of carbon require the use of substitute conductive coats. Typical substitutes for carbon coats (e.g., Au, Au-Pd, Cr, Al) require either using similarly coated standards or substantial corrections to be applied. Even when using modern multi-layer correction algorithms or Monte Carlo calculations, significant errors can result (e.g., Armstrong 2009, Armstrong and Crispin, 2012). We propose the use of ultra-thin layers of Ir as a substitute for C in the analysis of insulating geological specimens. Ir has been found to be an excellent coating material for high resolution imaging (e.g., Echlin, 2009). Sputtered layers as thin as 0.5 nm are found to be conductive, and layers of just a few nm provide good protection against beam damage with sub-nm grain size (Sebring et al., 1999). We have analyzed a series of geological materials with Ir coats between 1 - 8 nm and found similar levels of effects on emitted x-ray intensities as produced with typical carbon coat thicknesses (10-25 nm). E.g., for Ir thicknesses less than 5 nm, the reduction of intensity for x-ray lines between 1 and 7 keV are between 1-3% for a beam energy of 15 keV. The reduction in intensity for higher-energy lines such as Fe-K is actually less than produced by typical C-coats. We will present the results of these experiments and propose simple algorithmic equations which fit these data.
Liu, Yan; Yu, Li; Jia, Xiaowen; Zhao, Jianzhou; Weng, Hongming; Peng, Yingying; Chen, Chaoyu; Xie, Zhuojin; Mou, Daixiang; He, Junfeng; Liu, Xu; Feng, Ya; Yi, Hemian; Zhao, Lin; Liu, Guodong; He, Shaolong; Dong, Xiaoli; Zhang, Jun; Xu, Zuyan; Chen, Chuangtian; Cao, Gang; Dai, Xi; Fang, Zhong; Zhou, X. J.
2015-01-01
The low energy electronic structure of Sr2IrO4 has been well studied and understood in terms of an effective Jeff = 1/2 Mott insulator model. However, little work has been done in studying its high energy electronic behaviors. Here we report a new observation of the anomalous high energy electronic structure in Sr2IrO4. By taking high-resolution angle-resolved photoemission measurements on Sr2IrO4 over a wide energy range, we have revealed for the first time that the high energy electronic structures show unusual nearly-vertical bands that extend over a large energy range. Such anomalous high energy behaviors resemble the high energy waterfall features observed in the cuprate superconductors. While strong electron correlation plays an important role in producing high energy waterfall features in the cuprate superconductors, the revelation of the high energy anomalies in Sr2IrO4, which exhibits strong spin-orbit coupling and a moderate electron correlation, points to an unknown and novel route in generating exotic electronic excitations. PMID:26267653
1987-11-01
developed that can be used by circuit engineers to extract the maximum performance from the devices on various board technologies including multilayer ceramic...Design guidelines have been developed that can be used by circuit engineers to extract the maxi- mum performance from the devices on various board...25 Attenuation and Dispersion Effects ......................................... 27 Skin Effect
HST WFC3/IR Calibration Updates
NASA Astrophysics Data System (ADS)
Durbin, Meredith; Brammer, Gabriel; Long, Knox S.; Pirzkal, Norbert; Ryan, Russell E.; McCullough, Peter R.; Baggett, Sylvia M.; Gosmeyer, Catherine; Bourque, Matthew; HST WFC3 Team
2016-01-01
We report on several improvements to the characterization, monitoring, and calibration of the HST WFC3/IR detector. The detector performance has remained overall stable since its installation during HST Servicing Mission 4 in 2009. We present an updated persistence model that takes into account effects of exposure time and spatial variations in persistence across the detector, new grism wavelength solutions and master sky images, and a new SPARS sample sequence. We also discuss the stability of the IR gain, the time evolution and photometric properties of IR "snowballs," and the effect of IR "blobs" on point-source photometry.
Pushing the limits of spatial resolution with the Kuiper Airborne observatory
NASA Technical Reports Server (NTRS)
Lester, Daniel
1994-01-01
The study of astronomical objects at high spatial resolution in the far-IR is one of the most serious limitations to our work at these wavelengths, which carry information about the luminosity of dusty and obscured sources. At IR wavelengths shorter than 30 microns, ground based telescopes with large apertures at superb sites achieve diffraction-limited performance close to the seeing limit in the optical. At millimeter wavelengths, ground based interferometers achieve resolution that is close to this. The inaccessibility of the far-IR from the ground makes it difficult, however, to achieve complementary resolution in the far-IR. The 1983 IRAS survey, while extraordinarily sensitive, provides us with a sky map at a spatial resolution that is limited by detector size on a spatial scale that is far larger than that available in other wavelengths on the ground. The survey resolution is of order 4 min in the 100 micron bandpass, and 2 min at 60 microns (IRAS Explanatory Supplement, 1988). Information on a scale of 1' is available on some sources from the CPC. Deconvolution and image resolution using this database is one of the subjects of this workshop.
Space-based infrared scanning sensor LOS determination and calibration using star observation
NASA Astrophysics Data System (ADS)
Chen, Jun; Xu, Zhan; An, Wei; Deng, Xin-Pu; Yang, Jun-Gang
2015-10-01
This paper provides a novel methodology for removing sensor bias from a space based infrared (IR) system (SBIRS) through the use of stars detected in the background field of the sensor. Space based IR system uses the LOS (line of sight) of target for target location. LOS determination and calibration is the key precondition of accurate location and tracking of targets in Space based IR system and the LOS calibration of scanning sensor is one of the difficulties. The subsequent changes of sensor bias are not been taking into account in the conventional LOS determination and calibration process. Based on the analysis of the imaging process of scanning sensor, a theoretical model based on the estimation of bias angles using star observation is proposed. By establishing the process model of the bias angles and the observation model of stars, using an extended Kalman filter (EKF) to estimate the bias angles, and then calibrating the sensor LOS. Time domain simulations results indicate that the proposed method has a high precision and smooth performance for sensor LOS determination and calibration. The timeliness and precision of target tracking process in the space based infrared (IR) tracking system could be met with the proposed algorithm.
Eastern U.S. Infrared, Enhancement 4 - NOAA GOES Geostationary Satellite
Enhancement 4 Eastern U.S. Infrared Enhancements IR Enhancement 1 Eastern U.S. Infrared Enhancement 1 IR Enhancement 2 Eastern U.S. Infrared Enhancement 2 IR Enhancement 3 Eastern U.S. Infrared Enhancement 3 IR large amount of water vapor. » Enhancement types In an infrared (IR) image cold clouds are high clouds
NASA Astrophysics Data System (ADS)
Paluszkiewicz, Czesława; Czechowska, Joanna; Ślósarczyk, Anna; Paszkiewicz, Zofia
2013-02-01
The aim of this study was to determine a setting reaction pathway in a novel, surgically handy implant material, based on calcium sulfate hemihydrate (CSH) and titanium doped hydroxyapatite (TiHA). The previous studies confirmed superior biological properties of TiHA in comparison to the undoped hydroxyapatite (HA) what makes it highly attractive for future medical applications. In this study the three types of titanium modified HA powders: untreated, calcined at 800 °C, sintered at 1250 °C and CSH were used to produce bone cements. The Fourier Transform-InfraRed (FT-IR) spectroscopy and Raman spectroscopy were applied to evaluate processes taking place during the setting of the studied materials. Our results undoubtedly confirmed that the reaction pathways and the phase compositions differed significantly for set cements and were dependent on the initial heat treatment of TiHA powder. Final materials were multiphase composites consisting of calcium sulfate dihydrate, bassanite, tricalcium phosphate, hydroxyapatite and calcium titanate (perovskite). The FT-IR and Scanning Electron Microscopy (SEM) measurements performed after the incubation of the cement samples in the simulated body fluid (SBF), indicate on high bioactive potential of the obtained bone cements.
Abuelo, A; Hernández, J; Benedito, J L; Castillo, C
2016-04-01
Post-parturient insulin resistance (IR) is a common feature in all mammalian animals. However, in dairy cows, it can be exacerbated because of high milk yield, leading to excessive negative energy balance, which is related with increased disease incidence, reduced milk production and worsened reproductive performance. IR has been extensively investigated in humans suffering from diabetes mellitus. In these subjects, it is known that oxidative stress (OS) plays a causative role in the onset of IR. Although OS occurs in transitional dairy cattle, there are yet no studies that investigated the association between IR and OS in dairy cattle. Therefore, the aim of this study was to investigate whether there is a relationship between OS and IR in dairy cattle. Serum samples were taken repeatedly from 22 dairy cows from 2 months prior to the expected calving date to 2 months after calving and were analysed for markers of metabolic and redox balance. Surrogate indices of insulin sensitivity were also calculated. Generalised linear mixed models revealed an effect of the oxidative status on peripheral insulin concentration and on indices of insulin sensitivity. Hence, field trials should investigate the effectiveness of antioxidant therapy on insulin sensitivity in peripheral tissues during the transition period of dairy cattle. Journal of Animal Physiology and Animal Nutrition © 2015 Blackwell Verlag GmbH.
NASA Astrophysics Data System (ADS)
Forsberg, Fredrik; Roxhed, Niclas; Fischer, Andreas C.; Samel, Björn; Ericsson, Per; Hoivik, Nils; Lapadatu, Adriana; Bring, Martin; Kittilsland, Gjermund; Stemme, Göran; Niklaus, Frank
2013-09-01
Imaging in the long wavelength infrared (LWIR) range from 8 to 14 μm is an extremely useful tool for non-contact measurement and imaging of temperature in many industrial, automotive and security applications. However, the cost of the infrared (IR) imaging components has to be significantly reduced to make IR imaging a viable technology for many cost-sensitive applications. This paper demonstrates new and improved fabrication and packaging technologies for next-generation IR imaging detectors based on uncooled IR bolometer focal plane arrays. The proposed technologies include very large scale heterogeneous integration for combining high-performance, SiGe quantum-well bolometers with electronic integrated read-out circuits and CMOS compatible wafer-level vacuum packing. The fabrication and characterization of bolometers with a pitch of 25 μm × 25 μm that are arranged on read-out-wafers in arrays with 320 × 240 pixels are presented. The bolometers contain a multi-layer quantum well SiGe thermistor with a temperature coefficient of resistance of -3.0%/K. The proposed CMOS compatible wafer-level vacuum packaging technology uses Cu-Sn solid-liquid interdiffusion (SLID) bonding. The presented technologies are suitable for implementation in cost-efficient fabless business models with the potential to bring about the cost reduction needed to enable low-cost IR imaging products for industrial, security and automotive applications.
Skutterudite Compounds For Power Semiconductor Devices
NASA Technical Reports Server (NTRS)
Fleurial, Jean-Pierre; Caillat, Thierry; Borshchevsky, Alexander; Vandersande, Jan
1996-01-01
New semiconducting materials with p-type carrier mobility values much higher than state-of-art semiconductors discovered. Nine compounds, antimonides CoSb(sub3), RhSb(sub3), IrSb(sub3), arsenides CoAs(sub3), RhAs(sub3), IrAs(sub3), and phosphides CoP(sub3), RhP(sub3) and IrP(sub3), exhibit same skutterudite crystallographic structure and form solid solutions of general composition Co(1-x-y)RH(x)Ir(y)P(1-w-z)As(w)Sb(z). Materials exhibit high hole mobilities, high doping levels, and high electronic figures of merit. Some compositions show great potential for application to thermoelectric devices.
Yang, Ke R; Matula, Adam J; Kwon, Gihan; Hong, Jiyun; Sheehan, Stafford W; Thomsen, Julianne M; Brudvig, Gary W; Crabtree, Robert H; Tiede, David M; Chen, Lin X; Batista, Victor S
2016-05-04
The solution structures of highly active Ir water-oxidation catalysts are elucidated by combining density functional theory, high-energy X-ray scattering (HEXS), and extended X-ray absorption fine structure (EXAFS) spectroscopy. We find that the catalysts are Ir dimers with mono-μ-O cores and terminal anionic ligands, generated in situ through partial oxidation of a common catalyst precursor. The proposed structures are supported by (1)H and (17)O NMR, EPR, resonance Raman and UV-vis spectra, electrophoresis, etc. Our findings are particularly valuable to understand the mechanism of water oxidation by highly reactive Ir catalysts. Importantly, our DFT-EXAFS-HEXS methodology provides a new in situ technique for characterization of active species in catalytic systems.
Identification of ground targets from airborne platforms
NASA Astrophysics Data System (ADS)
Doe, Josh; Boettcher, Evelyn; Miller, Brian
2009-05-01
The US Army RDECOM CERDEC Night Vision and Electronic Sensors Directorate (NVESD) sensor performance models predict the ability of soldiers to perform a specified military discrimination task using an EO/IR sensor system. Increasingly EO/IR systems are being used on manned and un-manned aircraft for surveillance and target acquisition tasks. In response to this emerging requirement, the NVESD Modeling and Simulation division has been tasked to compare target identification performance between ground-to-ground and air-to-ground platforms for both IR and visible spectra for a set of wheeled utility vehicles. To measure performance, several forced choice experiments were designed and administered and the results analyzed. This paper describes these experiments and reports the results as well as the NVTherm model calibration factors derived for the infrared imagery.
2009-01-01
Background Recent studies have revealed the associations between insulin resistance (IR) and geriatric conditions such as frailty and cognitive impairment. However, little is known about the relation of IR to physical impairment and limitation in the aging process, eg. slow gait speed and poor muscle strength. The aim of this study is to determine the effect of IR in performance-based physical function, specifically gait speed and leg strength, among nondiabetic older adults. Methods Cross-sectional data were from the population-based National Health and Nutrition Examination Survey (1999-2002). A total of 1168 nondiabetic adults (≥ 50 years) with nonmissing values in fasting measures of insulin and glucose, habitual gait speed (HGS), and leg strength were analyzed. IR was assessed by homeostasis model assessment (HOMA-IR), whereas HGS and peak leg strength by the 20-foot timed walk test and an isokinetic dynamometer, respectively. We used multiple linear regression to examine the association between IR and performance-based physical function. Results IR was inversely associated with gait speed among the men. After adjusting demographics, body mass index, alcohol consumption, smoking status, chronic co-morbidities, and markers of nutrition and cardiovascular risk, each increment of 1 standard deviation in the HOMA-IR level was associated with a 0.04 m/sec decrease (p = 0.003) in the HGS in men. We did not find such association among the women. The IR-HGS association was not changed after further adjustment of leg strength. Last, HOMA-IR was not demonstrated in association with peak leg strength. Conclusion IR is inversely associated with HGS among older men without diabetes. The results suggest that IR, an important indicator of gait function among men, could be further investigated as an intervenable target to prevent walking limitation. PMID:19922671
Ginn, Karen A; Reed, Darren; Jones, Chelsea; Downes, Anthony; Cathers, Ian; Halaki, Mark
2017-06-01
Although the belly press and lift off tests are recommended to assess subscapularis function, shoulder internal rotation (IR) exercises performed in other shoulder positions are more commonly used to restore subscapularis function. It is not known if shoulder IR exercises specifically activate subscapularis to the same degree as the lift off and belly press tests, and thus have the potential to effect subscapularis strength gains. Therefore, the aim was to compare subscapularis activation levels with those of other shoulder internal rotator muscles during the belly press and lift off tests and shoulder IR exercise positions. Original research. Twenty asymptomatic volunteers performed maximal isometric contractions during the belly press and lift off tests and shoulder IR performed at 90° and 0° abduction in an upright position and supported at 90° abduction in supine. Muscle activation levels were recorded using a combination of indwelling and surface electrodes. Data were normalized to maximum voluntary contractions and averaged. Moderate average subscapularis activation levels were recorded during all shoulder IR tasks examined with no significant difference between tasks (p=0.18). The belly press test was the only IR task in which subscapularis activation levels were significantly higher than all other shoulder internal rotator muscles (p<0.05). Shoulder IR exercises activate subscapularis to similar moderate levels as the belly press and lift off tests and therefore, have similar potential to strengthen subscapularis. However, the belly press test, with significantly higher subscapularis activation than other shoulder internal rotators, more specifically targets subscapularis. Copyright © 2016. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Pathiraja, G. C.; Wijesingha, M. S.; Nanayakkara, N.
2017-05-01
Chlorpyrifos, a widely used organophosphate pesticide which can be found in surface water bodies, is harmful for human body. Thus, treating water contaminated with chlorpyrifos is important. In our previous studies, novel Ti/IrO2-SnO2 anode was successfully developed for electrochemical degradation of chlorpyrifos in chloride free water. In this study, optimization of previously developed Ti/IrO2-SnO2 anode for mineralization of chlorpyrifos was successfully performed through response surface methodology. During the optimization study, two-level factorial design was used to determine the optimal coating solutions concentration for developing the Ti/IrO2-SnO2 anode. Cyclic voltammetry and open circuit potential were performed to investigate the electrochemically active surface area and stability of these anodes. The response surface and contour plots show that 0.3 M of [Ir] and 7.5 mM of [Sn] coated electrode has both highest anodic charge and stability. Scanning Electron Microscopic (SEM) images show the evidence of having both compact and porous regions in the surface of the thin film, resulting larger surface area. Within 6 h, the best result for mineralization (55.56%) of chlorpyrifos was obtained with 0.3 M of [Ir] and 7.5 mM of [Sn] coated anode using Total organic Carbon (TOC) analyzer. Therefore, the optimum coating concentration was found as 0.3 M of [Ir] and 7.5 mM of [Sn]. It would require an energy consumption of 6 kWhm-3.
Risk Factors Associated with Incident Syphilis in a Cohort of High-Risk Men in Peru.
Park, Hayoung; Konda, Kelika A; Roberts, Chelsea P; Maguiña, Jorge L; Leon, Segundo R; Clark, Jesse L; Coates, Thomas J; Caceres, Carlos F; Klausner, Jeffrey D
2016-01-01
Syphilis is concentrated among high-risk groups, but the epidemiology of syphilis reinfection is poorly understood. We characterized factors associated with syphilis incidence, including reinfection, in a high-risk cohort in Peru. Participants in the NIMH CPOL trial were assessed at baseline and 2 annual visits with HIV/STI testing and behavioral surveys. Participants diagnosed with syphilis also attended 4- and 9-month visits. All participants underwent syphilis testing with RPR screening and TPPA confirmation. Antibiotic treatment was provided according to CDC guidelines. Reinfection was defined as a 4-fold titer increase or recurrence of seroreactivity after successful treatment with subsequent negative RPR titers. The longitudinal analysis used a Possion generalized estimating equations model with backward selection of variables in the final model (criteria P <0.02). Of 2,709 participants, 191 (7.05%) were RPR-reactive (median 1:8, range 1:1-1:1024) with TPPA confirmation. There were 119 total cases of incident syphilis, which included both reinfection and first-time incident cases. In the bivariate analysis, the oldest 2 quartiles of age (incidence ratio (IR) 3.84; P <0.001 and IR 8.15; P <0.001) and being MSM/TW (IR 6.48; P <0.001) were associated with higher risk of incident syphilis infection. Of the sexual risk behaviors, older age of sexual debut (IR 12.53; P <0.001), not being in a stable partnership (IR 1.56, P = 0.035), higher number of sex partners (IR 3.01; P <0.001), unprotected sex in the past 3 months (IR 0.56; P = 0.003), HIV infection at baseline (IR 3.98; P <0.001) and incident HIV infection during the study period (IR 6.26; P = 0.003) were all associated with incident syphilis. In the multivariable analysis, older age group (adjusted incidence ratio (aIR) 6.18; P <0.001), men reporting having sex with a man (aIR 4.63; P <0.001), and incident HIV infection (aIR 4.48; P = 0.008) were significantly associated. We report a high rate of syphilis reinfection among high-risk men who have evidence of previous syphilis infection. Our findings highlight the close relationship between HIV incidence with both incident syphilis and syphilis reinfection. Further studies on syphilis reinfection are needed to understand patterns of syphilis reinfection and new strategies beyond periodic testing of high-risk individuals based on HIV status are needed.
NASA Astrophysics Data System (ADS)
van Acken, David; Becker, Harry; Walker, Richard J.; McDonough, William F.; Wombacher, Frank; Ash, Richard D.; Piccoli, Phil M.
2010-01-01
Pyroxenitic layers are a minor constituent of ultramafic mantle massifs, but are considered important for basalt generation and mantle refertilization. Mafic spinel websterite and garnet-spinel clinopyroxenite layers within Jurassic ocean floor peridotites from the Totalp ultramafic massif (eastern Swiss Alps) were analyzed for their highly siderophile element (HSE) and Os isotope composition. Aluminum-poor pyroxenites (websterites) display chondritic to suprachondritic initial γOs (160 Ma) of -2 to +27. Osmium, Ir and Ru abundances are depleted in websterites relative to the associated peridotites and to mantle lherzolites worldwide, but relative abundances (Os/Ir, Ru/Ir) are similar. Conversely, Pt/Ir, Pd/Ir and Re/Ir are elevated. Aluminum-rich pyroxenites (clinopyroxenites) are characterized by highly radiogenic 187Os/ 188Os with initial γOs (160 Ma) between +20 and +1700. Their HSE composition is similar to that of basalts, as they are more depleted in Os, Ir and Ru compared to Totalp websterites, along with even higher Pt/Ir, Pd/Ir and Re/Ir. The data are most consistent with multiple episodes of reaction of mafic pyroxenite precursor melts with surrounding peridotites, with the highest degree of interaction recorded in the websterites, which typically occur in direct contact to peridotites. Clinopyroxenites, in contrast, represent melt-dominated systems, which retained the precursor melt characteristics to a large extent. The melts may have been derived from a sublithospheric mantle source with high Pd/Ir, Pt/Ir and Re/Os, coupled with highly radiogenic 187Os/ 188Os compositions. Modeling indicates that partial melting of subducted, old oceanic crust in the asthenosphere could be a possible source for such melts. Pentlandite and godlevskite are identified in both types of pyroxenites as the predominant sulfide minerals and HSE carriers. Heterogeneous HSE abundances within these sulfide grains likely reflect subsolidus processes. In contrast, large grain-to-grain variations, and correlated variations of HSE ratios, indicate chemical disequilibrium under high-temperature conditions. This likely reflects multiple events of melt-rock interaction and sulfide precipitation. Notably, sulfides from the same thick section for the pyroxenites may display both residual-peridotite and melt-like HSE signatures. Because Totalp pyroxenites are enriched in Pt and Re, and depleted in Os, they will develop excess radiogenic 187Os and 186Os, compared to ambient mantle. These enrichments, however, do not possess the requisite Pt-Re-Os composition to account for the coupled suprachondritic 186Os- 187Os signatures observed in some Hawaiian picrites, Gorgona komatiites, or the Siberian plume.
Risk Factors Associated with Incident Syphilis in a Cohort of High-Risk Men in Peru
Konda, Kelika A.; Roberts, Chelsea P.; Maguiña, Jorge L.; Leon, Segundo R.; Clark, Jesse L.; Coates, Thomas J.; Caceres, Carlos F.; Klausner, Jeffrey D.
2016-01-01
Background Syphilis is concentrated among high-risk groups, but the epidemiology of syphilis reinfection is poorly understood. We characterized factors associated with syphilis incidence, including reinfection, in a high-risk cohort in Peru. Methods Participants in the NIMH CPOL trial were assessed at baseline and 2 annual visits with HIV/STI testing and behavioral surveys. Participants diagnosed with syphilis also attended 4- and 9-month visits. All participants underwent syphilis testing with RPR screening and TPPA confirmation. Antibiotic treatment was provided according to CDC guidelines. Reinfection was defined as a 4-fold titer increase or recurrence of seroreactivity after successful treatment with subsequent negative RPR titers. The longitudinal analysis used a Possion generalized estimating equations model with backward selection of variables in the final model (criteria P <0.02). Results Of 2,709 participants, 191 (7.05%) were RPR-reactive (median 1:8, range 1:1–1:1024) with TPPA confirmation. There were 119 total cases of incident syphilis, which included both reinfection and first-time incident cases. In the bivariate analysis, the oldest 2 quartiles of age (incidence ratio (IR) 3.84; P <0.001 and IR 8.15; P <0.001) and being MSM/TW (IR 6.48; P <0.001) were associated with higher risk of incident syphilis infection. Of the sexual risk behaviors, older age of sexual debut (IR 12.53; P <0.001), not being in a stable partnership (IR 1.56, P = 0.035), higher number of sex partners (IR 3.01; P <0.001), unprotected sex in the past 3 months (IR 0.56; P = 0.003), HIV infection at baseline (IR 3.98; P <0.001) and incident HIV infection during the study period (IR 6.26; P = 0.003) were all associated with incident syphilis. In the multivariable analysis, older age group (adjusted incidence ratio (aIR) 6.18; P <0.001), men reporting having sex with a man (aIR 4.63; P <0.001), and incident HIV infection (aIR 4.48; P = 0.008) were significantly associated. Conclusions We report a high rate of syphilis reinfection among high-risk men who have evidence of previous syphilis infection. Our findings highlight the close relationship between HIV incidence with both incident syphilis and syphilis reinfection. Further studies on syphilis reinfection are needed to understand patterns of syphilis reinfection and new strategies beyond periodic testing of high-risk individuals based on HIV status are needed. PMID:27602569
Burns, Jennifer B.; Riley, Christopher B.; Shaw, R. Anthony; McClure, J. Trenton
2017-01-01
The objective of this study was to develop and compare the performance of laboratory grade and portable attenuated total reflectance infrared (ATR-IR) spectroscopic approaches in combination with partial least squares regression (PLSR) for the rapid quantification of alpaca serum IgG concentration, and the identification of low IgG (<1000 mg/dL), which is consistent with the diagnosis of failure of transfer of passive immunity (FTPI) in neonates. Serum samples (n = 175) collected from privately owned, healthy alpacas were tested by the reference method of radial immunodiffusion (RID) assay, and laboratory grade and portable ATR-IR spectrometers. Various pre-processing strategies were applied to the ATR-IR spectra that were linked to corresponding RID-IgG concentrations, and then randomly split into two sets: calibration (training) and test sets. PLSR was applied to the calibration set and calibration models were developed, and the test set was used to assess the accuracy of the analytical method. For the test set, the Pearson correlation coefficients between the IgG measured by RID and predicted by both laboratory grade and portable ATR-IR spectrometers was 0.91. The average differences between reference serum IgG concentrations and the two IR-based methods were 120.5 mg/dL and 71 mg/dL for the laboratory and portable ATR-IR-based assays, respectively. Adopting an IgG concentration <1000 mg/dL as the cut-point for FTPI cases, the sensitivity, specificity, and accuracy for identifying serum samples below this cut point by laboratory ATR-IR assay were 86, 100 and 98%, respectively (within the entire data set). Corresponding values for the portable ATR-IR assay were 95, 99 and 99%, respectively. These results suggest that the two different ATR-IR assays performed similarly for rapid qualitative evaluation of alpaca serum IgG and for diagnosis of IgG <1000 mg/dL, the portable ATR-IR spectrometer performed slightly better, and provides more flexibility for potential application in the field. PMID:28651006
Elsohaby, Ibrahim; Burns, Jennifer B; Riley, Christopher B; Shaw, R Anthony; McClure, J Trenton
2017-01-01
The objective of this study was to develop and compare the performance of laboratory grade and portable attenuated total reflectance infrared (ATR-IR) spectroscopic approaches in combination with partial least squares regression (PLSR) for the rapid quantification of alpaca serum IgG concentration, and the identification of low IgG (<1000 mg/dL), which is consistent with the diagnosis of failure of transfer of passive immunity (FTPI) in neonates. Serum samples (n = 175) collected from privately owned, healthy alpacas were tested by the reference method of radial immunodiffusion (RID) assay, and laboratory grade and portable ATR-IR spectrometers. Various pre-processing strategies were applied to the ATR-IR spectra that were linked to corresponding RID-IgG concentrations, and then randomly split into two sets: calibration (training) and test sets. PLSR was applied to the calibration set and calibration models were developed, and the test set was used to assess the accuracy of the analytical method. For the test set, the Pearson correlation coefficients between the IgG measured by RID and predicted by both laboratory grade and portable ATR-IR spectrometers was 0.91. The average differences between reference serum IgG concentrations and the two IR-based methods were 120.5 mg/dL and 71 mg/dL for the laboratory and portable ATR-IR-based assays, respectively. Adopting an IgG concentration <1000 mg/dL as the cut-point for FTPI cases, the sensitivity, specificity, and accuracy for identifying serum samples below this cut point by laboratory ATR-IR assay were 86, 100 and 98%, respectively (within the entire data set). Corresponding values for the portable ATR-IR assay were 95, 99 and 99%, respectively. These results suggest that the two different ATR-IR assays performed similarly for rapid qualitative evaluation of alpaca serum IgG and for diagnosis of IgG <1000 mg/dL, the portable ATR-IR spectrometer performed slightly better, and provides more flexibility for potential application in the field.
Jovanovič, Primož; Hodnik, Nejc; Ruiz-Zepeda, Francisco; Arčon, Iztok; Jozinović, Barbara; Zorko, Milena; Bele, Marjan; Šala, Martin; Šelih, Vid Simon; Hočevar, Samo; Gaberšček, Miran
2017-09-13
Iridium-based particles, regarded as the most promising proton exchange membrane electrolyzer electrocatalysts, were investigated by transmission electron microscopy and by coupling of an electrochemical flow cell (EFC) with online inductively coupled plasma mass spectrometry. Additionally, studies using a thin-film rotating disc electrode, identical location transmission and scanning electron microscopy, as well as X-ray absorption spectroscopy have been performed. Extremely sensitive online time-and potential-resolved electrochemical dissolution profiles revealed that Ir particles dissolve well below oxygen evolution reaction (OER) potentials, presumably induced by Ir surface oxidation and reduction processes, also referred to as transient dissolution. Overall, thermally prepared rutile-type IrO 2 particles are substantially more stable and less active in comparison to as-prepared metallic and electrochemically pretreated (E-Ir) analogues. Interestingly, under OER-relevant conditions, E-Ir particles exhibit superior stability and activity owing to the altered corrosion mechanism, where the formation of unstable Ir(>IV) species is hindered. Due to the enhanced and lasting OER performance, electrochemically pre-oxidized E-Ir particles may be considered as the electrocatalyst of choice for an improved low-temperature electrochemical hydrogen production device, namely a proton exchange membrane electrolyzer.
Wang, Chao; Zhao, Li; Liang, Zihui; Dong, Binghai; Wan, Li; Wang, Shimin
2017-01-01
Highly transparent, energy-saving, and superhydrophobic nanostructured SiO 2 /VO 2 composite films have been fabricated using a sol-gel method. These composite films are composed of an underlying infrared (IR)-regulating VO 2 layer and a top protective layer that consists of SiO 2 nanoparticles. Experimental results showed that the composite structure could enhance the IR light regulation performance, solar modulation capability, and hydrophobicity of the pristine VO 2 layer. The transmittance of the composite films in visible region ( T lum ) was higher than 60%, which was sufficient to meet the requirements of glass lighting. Compared with pristine VO 2 films and tungsten-doped VO 2 film, the near IR control capability of the composite films was enhanced by 13.9% and 22.1%, respectively, whereas their solar modulation capability was enhanced by 10.9% and 22.9%, respectively. The water contact angles of the SiO 2 /VO 2 composite films were over 150°, indicating superhydrophobicity. The transparent superhydrophobic surface exhibited a high stability toward illumination as all the films retained their initial superhydrophobicity even after exposure to 365 nm light with an intensity of 160 mW . cm -2 for 10 h. In addition, the films possessed anti-oxidation and anti-acid properties. These characteristics are highly advantageous for intelligent windows or solar cell applications, given that they can provide surfaces with anti-fogging, rainproofing, and self-cleaning effects. Our technique offers a simple and low-cost solution to the development of stable and visible light transparent superhydrophobic surfaces for industrial applications.
Wang, Chao; Zhao, Li; Liang, Zihui; Dong, Binghai; Wan, Li; Wang, Shimin
2017-01-01
Abstract Highly transparent, energy-saving, and superhydrophobic nanostructured SiO2/VO2 composite films have been fabricated using a sol–gel method. These composite films are composed of an underlying infrared (IR)-regulating VO2 layer and a top protective layer that consists of SiO2 nanoparticles. Experimental results showed that the composite structure could enhance the IR light regulation performance, solar modulation capability, and hydrophobicity of the pristine VO2 layer. The transmittance of the composite films in visible region (T lum) was higher than 60%, which was sufficient to meet the requirements of glass lighting. Compared with pristine VO2 films and tungsten-doped VO2 film, the near IR control capability of the composite films was enhanced by 13.9% and 22.1%, respectively, whereas their solar modulation capability was enhanced by 10.9% and 22.9%, respectively. The water contact angles of the SiO2/VO2 composite films were over 150°, indicating superhydrophobicity. The transparent superhydrophobic surface exhibited a high stability toward illumination as all the films retained their initial superhydrophobicity even after exposure to 365 nm light with an intensity of 160 mW.cm−2 for 10 h. In addition, the films possessed anti-oxidation and anti-acid properties. These characteristics are highly advantageous for intelligent windows or solar cell applications, given that they can provide surfaces with anti-fogging, rainproofing, and self-cleaning effects. Our technique offers a simple and low-cost solution to the development of stable and visible light transparent superhydrophobic surfaces for industrial applications. PMID:28970866
Investigating a population of infrared-bright gamma-ray burst host galaxies
NASA Astrophysics Data System (ADS)
Chrimes, Ashley A.; Stanway, Elizabeth R.; Levan, Andrew J.; Davies, Luke J. M.; Angus, Charlotte R.; Greis, Stephanie M. L.
2018-07-01
We identify and explore the properties of an infrared-bright gamma-ray burst (GRB) host population. Candidate hosts are selected by coincidence with sources in WISE, with matching to random coordinates and a false alarm probability analysis showing that the contamination fraction is ˜0.5. This methodology has already identified the host galaxy of GRB 080517. We combine survey photometry from Pan-STARRS, SDSS, APASS, 2MASS, GALEX, and WISE with our own WHT/ACAM and VLT/X-shooter observations to classify the candidates and identify interlopers. Galaxy SED fitting is performed using MAGPHYS, in addition to stellar template fitting, yielding 13 possible IR-bright hosts. A further seven candidates are identified from the previously published work. We report a candidate host for GRB 061002, previously unidentified as such. The remainder of the galaxies have already been noted as potential hosts. Comparing the IR-bright population properties including redshift z, stellar mass M⋆, star formation rate SFR, and V-band attenuation AV to GRB host catalogues in the literature, we find that the infrared-bright population is biased towards low z, high M⋆, and high AV. This naturally arises from their initial selection - local and dusty galaxies are more likely to have the required IR flux to be detected in WISE. We conclude that while IR-bright GRB hosts are not a physically distinct class, they are useful for constraining existing GRB host populations, particularly for long GRBs.
Investigating a population of infrared-bright gamma-ray burst host galaxies
NASA Astrophysics Data System (ADS)
Chrimes, Ashley A.; Stanway, Elizabeth R.; Levan, Andrew J.; Davies, Luke J. M.; Angus, Charlotte R.; Greis, Stephanie M. L.
2018-04-01
We identify and explore the properties of an infrared-bright gamma-ray burst (GRB) host population. Candidate hosts are selected by coincidence with sources in WISE, with matching to random coordinates and a false alarm probability analysis showing that the contamination fraction is ˜ 0.5. This methodology has already identified the host galaxy of GRB 080517. We combine survey photometry from Pan-STARRS, SDSS, APASS, 2MASS, GALEX and WISE with our own WHT/ACAM and VLT/X-shooter observations to classify the candidates and identify interlopers. Galaxy SED fitting is performed using MAGPHYS, in addition to stellar template fitting, yielding 13 possible IR-bright hosts. A further 7 candidates are identified from previously published work. We report a candidate host for GRB 061002, previously unidentified as such. The remainder of the galaxies have already been noted as potential hosts. Comparing the IR-bright population properties including redshift z, stellar mass M⋆, star formation rate SFR and V-band attenuation AV to GRB host catalogues in the literature, we find that the infrared-bright population is biased toward low z, high M⋆ and high AV. This naturally arises from their initial selection - local and dusty galaxies are more likely to have the required IR flux to be detected in WISE. We conclude that while IR-bright GRB hosts are not a physically distinct class, they are useful for constraining existing GRB host populations, particularly for long GRBs.
Toward endobronchial Ir-192 high-dose-rate brachytherapy therapeutic optimization
NASA Astrophysics Data System (ADS)
Gay, H. A.; Allison, R. R.; Downie, G. H.; Mota, H. C.; Austerlitz, C.; Jenkins, T.; Sibata, C. H.
2007-06-01
A number of patients with lung cancer receive either palliative or curative high-dose-rate (HDR) endobronchial brachytherapy. Up to a third of patients treated with endobronchial HDR die from hemoptysis. Rather than accept hemoptysis as an expected potential consequence of HDR, we have calculated the radial dose distribution for an Ir-192 HDR source, rigorously examined the dose and prescription points recommended by the American Brachytherapy Society (ABS), and performed a radiobiological-based analysis. The radial dose rate of a commercially available Ir-192 source was calculated with a Monte Carlo simulation. Based on the linear quadratic model, the estimated palliative, curative and blood vessel rupture radii from the center of an Ir-192 source were obtained for the ABS recommendations and a series of customized HDR prescriptions. The estimated radius at risk for blood vessel perforation for the ABS recommendations ranges from 7 to 9 mm. An optimized prescription may in some situations reduce this radius to 4 mm. The estimated blood perforation radius is generally smaller than the palliative radius. Optimized and individualized endobronchial HDR prescriptions are currently feasible based on our current understanding of tumor and normal tissue radiobiology. Individualized prescriptions could minimize complications such as fatal hemoptysis without sacrificing efficacy. Fiducial stents, HDR catheter centering or spacers and the use of CT imaging to better assess the relationship between the catheter and blood vessels promise to be useful strategies for increasing the therapeutic index of this treatment modality. Prospective trials employing treatment optimization algorithms are needed.
Du, Tingting; Yuan, Gang; Zhang, Muxun; Zhou, Xinrong; Sun, Xingxing; Yu, Xuefeng
2014-10-20
To directly compare traditional lipid ratios (total cholesterol [TC]/high density lipoprotein cholesterol [HDL-C], non-HDL-C/HDL-C, low density lipoprotein cholesterol [LDL-C]/HDL-C, and triglycerides [TG]/HDL-C), apolipoprotein B (apoB)/apolipoprotein A-I (apoA-I) ratio, visceral adiposity index (VAI), lipid accumulation product (LAP), and the product of TG and fasting glucose (TyG) for strength and independence as risk factors for insulin resistance (IR). We conducted a cross-sectional analysis of 7629 Chinese adults using data from the China Health and Nutrition Survey 2009. For all lipid ratios (traditional lipid ratios and apoB/apoA-I), among both sexes, TG/HDL-C explained the most additional percentage of variation in HOMA-IR (2.9% in men, and 2.3% in women); for all variables of interest, the variability in HOMA-IR explained by VAI and TG/HDL-C were comparable; TyG had the most significant association with HOMA-IR, which explained 9.1% for men and 7.8% for women of the variability in HOMA-IR. Logistic regression analysis showed the similar patterns. Receiver operating characteristic (ROC) curve analysis showed that, among both sexes, TG/HDL-C was a better discriminator of IR than apoB/apoA-I; the area under the ROC curve (AUC) for VAI (0.695 in men and 0.682 in women) was greater than that for TG/HDL-C (AUC 0.665 in men and 0.664 in women); TyG presented the greatest value of AUC (0.709 in men and 0.711 in women). The apoB/apoA-I performs no better than any of the traditional lipid ratios in correlating with IR. The TG/HDL-C, VAI and TyG are better markers for early identification of IR individuals.
NASA Astrophysics Data System (ADS)
Wang, C.; Hong, Y.
2017-12-01
Infrared (IR) information from Geostationary satellites can be used to retrieve precipitation at pretty high spatiotemporal resolutions. Traditional artificial intelligence (AI) methodologies, such as artificial neural networks (ANN), have been designed to build the relationship between near-surface precipitation and manually derived IR features in products including PERSIANN and PERSIANN-CCS. This study builds an automatic precipitation detection model based on IR data using Convolutional Neural Network (CNN) which is implemented by the newly developed deep learning framework, Caffe. The model judges whether there is rain or no rain at pixel level. Compared with traditional ANN methods, CNN can extract features inside the raw data automatically and thoroughly. In this study, IR data from GOES satellites and precipitation estimates from the next generation QPE (Q2) over the central United States are used as inputs and labels, respectively. The whole datasets during the study period (June to August in 2012) are randomly partitioned to three sub datasets (train, validation and test) to establish the model at the spatial resolution of 0.08°×0.08° and the temporal resolution of 1 hour. The experiments show great improvements of CNN in rain identification compared to the widely used IR-based precipitation product, i.e., PERSIANN-CCS. The overall gain in performance is about 30% for critical success index (CSI), 32% for probability of detection (POD) and 12% for false alarm ratio (FAR). Compared to other recent IR-based precipitation retrieval methods (e.g., PERSIANN-DL developed by University of California Irvine), our model is simpler with less parameters, but achieves equally or even better results. CNN has been applied in computer vision domain successfully, and our results prove the method is suitable for IR precipitation detection. Future studies can expand the application of CNN from precipitation occurrence decision to precipitation amount retrieval.
Breeding drought tolerant rice for shallow rainfed ecosystem of eastern India.
Swain, Padmini; Raman, Anitha; Singh, S P; Kumar, Arvind
2017-08-01
In shallow rainfed rice agro-ecosystems, drought stress can occur at any growth stage and can cause a significant yield reduction. During recent years, some rice varieties possessing tolerance of reproductive-stage drought stress have recently been developed. Tolerance of vegetative-stage drought stress is also required to improve rice productivity in drought-prone regions. In this study, we evaluated a set of rice breeding lines for their response to a range of different types of vegetative-stage drought stress in order to propose standardized phenotyping protocols for conducting vegetative-stage drought stress screening trials and also to identify genotypes combining tolerance of vegetative- and reproductive-stage drought stress. A soil water potential threshold of -20 kPa during the vegetative stage was identified as the target for effective selection under vegetative stage with grain yield reduction of about 50% compared to irrigated control trials. Genotypes identified as showing high yield under reproductive-stage drought stress were not necessarily the genotypes showing best performance under vegetative-stage drought stress. Genotypes IR72667-16-1-B-B-3, IR78908-126-B-2-B, and IR79970-B-47-1 showed tolerance of both vegetative-stage and reproductive-stage drought stress. For most, the genotypes that were best under vegetative stage drought or even vegetative stage + reproductive stage drought were different from the genotypes that were best under reproductive stage drought. Based on the cultivar superiority measure, IR69515-6-KKN-4-UBN-4-2-1-1-1 and IR78908-126-B-1-B were the stable genotypes (indicated by low P i ) under both irrigated control and severe vegetative stress conditions, genotypes IR83614-203-B and IR78908-80-B-3-B were stable under irrigated control conditions and moderate stress, whereas IR72667-16-1-B-B-3 was stable under both moderate and severe vegetative-stage stress conditions.
NASA Technical Reports Server (NTRS)
Wright, R. M.; Hwang, K. C.
1973-01-01
The sorbent behavior of solid amine resin IR-45 with regard to potential use in regenerative CO2-removal systems for manned spacecraft is considered. Measurements of equilibrium sorption capacity of IR-45 for water and for CO2 are reported, and the dynamic mass transfer behavior of IR-45 beds is studied under conditions representative of those expected in a manned spacecraft. A digital computer program was written for the transient performance prediction of CO2 removal systems comprised of solid amine beds. Also evaluated are systems employing inorganic molecular-sieve sorbents. Tests show that there is definitely an effect of water loading on the absorption rate.
Veiga, L. S. I.; Etter, M.; Glazyrin, K.; ...
2017-10-10
Here, we explore the response of Ir 5d orbitals to pressure in β-Li 2IrO 3, a hyperhoneycomb iridate in proximity to a Kitaev quantum spin-liquid (QSL) ground state. X-ray absorption spectroscopy reveals a reconstruction of the electronic ground state below 2 GPa, the same pressure range where x-ray magnetic circular dichroism shows an apparent collapse of magnetic order. The electronic reconstruction, which manifests a reduction in the effective spin-orbit interaction in 5d orbitals, pushes β-Li 2IrO 3 further away from the pure J eff = 1/2 limit. Although lattice symmetry is preserved across the electronic transition, x-ray diffraction shows amore » highly anisotropic compression of the hyperhoneycomb lattice which affects the balance of bond-directional Ir-Ir exchange interactions driven by spin-orbit coupling at Ir sites. An enhancement of symmetric anisotropic exchange over Kitaev and Heisenberg exchange interactions seen in theoretical calculations that use precisely this anisotropic Ir-Ir bond compression provides one possible route to the realization of a QSL state in this hyperhoneycomb iridate at high pressures.« less
NASA Astrophysics Data System (ADS)
Veiga, L. S. I.; Etter, M.; Glazyrin, K.; Sun, F.; Escanhoela, C. A.; Fabbris, G.; Mardegan, J. R. L.; Malavi, P. S.; Deng, Y.; Stavropoulos, P. P.; Kee, H.-Y.; Yang, W. G.; van Veenendaal, M.; Schilling, J. S.; Takayama, T.; Takagi, H.; Haskel, D.
2017-10-01
We explore the response of Ir 5 d orbitals to pressure in β -Li2IrO3 , a hyperhoneycomb iridate in proximity to a Kitaev quantum spin-liquid (QSL) ground state. X-ray absorption spectroscopy reveals a reconstruction of the electronic ground state below 2 GPa, the same pressure range where x-ray magnetic circular dichroism shows an apparent collapse of magnetic order. The electronic reconstruction, which manifests a reduction in the effective spin-orbit interaction in 5 d orbitals, pushes β -Li2IrO3 further away from the pure Jeff=1 /2 limit. Although lattice symmetry is preserved across the electronic transition, x-ray diffraction shows a highly anisotropic compression of the hyperhoneycomb lattice which affects the balance of bond-directional Ir-Ir exchange interactions driven by spin-orbit coupling at Ir sites. An enhancement of symmetric anisotropic exchange over Kitaev and Heisenberg exchange interactions seen in theoretical calculations that use precisely this anisotropic Ir-Ir bond compression provides one possible route to the realization of a QSL state in this hyperhoneycomb iridate at high pressures.
Multi-Sensor Fusion of Infrared and Electro-Optic Signals for High Resolution Night Images
Huang, Xiaopeng; Netravali, Ravi; Man, Hong; Lawrence, Victor
2012-01-01
Electro-optic (EO) image sensors exhibit the properties of high resolution and low noise level at daytime, but they do not work in dark environments. Infrared (IR) image sensors exhibit poor resolution and cannot separate objects with similar temperature. Therefore, we propose a novel framework of IR image enhancement based on the information (e.g., edge) from EO images, which improves the resolution of IR images and helps us distinguish objects at night. Our framework superimposing/blending the edges of the EO image onto the corresponding transformed IR image improves their resolution. In this framework, we adopt the theoretical point spread function (PSF) proposed by Hardie et al. for the IR image, which has the modulation transfer function (MTF) of a uniform detector array and the incoherent optical transfer function (OTF) of diffraction-limited optics. In addition, we design an inverse filter for the proposed PSF and use it for the IR image transformation. The framework requires four main steps: (1) inverse filter-based IR image transformation; (2) EO image edge detection; (3) registration; and (4) blending/superimposing of the obtained image pair. Simulation results show both blended and superimposed IR images, and demonstrate that blended IR images have better quality over the superimposed images. Additionally, based on the same steps, simulation result shows a blended IR image of better quality when only the original IR image is available. PMID:23112602
Multi-sensor fusion of infrared and electro-optic signals for high resolution night images.
Huang, Xiaopeng; Netravali, Ravi; Man, Hong; Lawrence, Victor
2012-01-01
Electro-optic (EO) image sensors exhibit the properties of high resolution and low noise level at daytime, but they do not work in dark environments. Infrared (IR) image sensors exhibit poor resolution and cannot separate objects with similar temperature. Therefore, we propose a novel framework of IR image enhancement based on the information (e.g., edge) from EO images, which improves the resolution of IR images and helps us distinguish objects at night. Our framework superimposing/blending the edges of the EO image onto the corresponding transformed IR image improves their resolution. In this framework, we adopt the theoretical point spread function (PSF) proposed by Hardie et al. for the IR image, which has the modulation transfer function (MTF) of a uniform detector array and the incoherent optical transfer function (OTF) of diffraction-limited optics. In addition, we design an inverse filter for the proposed PSF and use it for the IR image transformation. The framework requires four main steps: (1) inverse filter-based IR image transformation; (2) EO image edge detection; (3) registration; and (4) blending/superimposing of the obtained image pair. Simulation results show both blended and superimposed IR images, and demonstrate that blended IR images have better quality over the superimposed images. Additionally, based on the same steps, simulation result shows a blended IR image of better quality when only the original IR image is available.
Gambetta, Alessio; Cassinerio, Marco; Coluccelli, Nicola; Fasci, Eugenio; Castrillo, Antonio; Gianfrani, Livio; Gatti, Davide; Marangoni, Marco; Laporta, Paolo; Galzerano, Gianluca
2015-02-01
We developed a high-precision spectroscopic system at 8.6 μm based on direct heterodyne detection and phase-locking of a room-temperature quantum-cascade-laser against an harmonic, 250-MHz mid-IR frequency comb obtained by difference-frequency generation. The ∼30 dB signal-to-noise ratio of the detected beat-note together with the achieved closed-loop locking bandwidth of ∼500 kHz allows for a residual integrated phase noise of 0.78 rad (1 Hz-5 MHz), for an ultimate resolution of ∼21 kHz, limited by the measured linewidth of the mid-IR comb. The system was used to perform absolute measurement of line-center frequencies for the rotational components of the ν2 vibrational band of N2O, with a relative precision of 3×10(-10).
NASA Astrophysics Data System (ADS)
Weise, Sebastian; Steinbach, Bastian; Biermann, Steffen
2016-03-01
The series JSIR350 sources are MEMS based infrared emitters. These IR sources are characterized by a high radiation output. Thus, they are excellent for NDIR gas analysis and are ideally suited for using with our pyro-electric or thermopile detectors. The MEMS chips used in Micro-Hybrid's infrared emitters consist of nano-amorphous carbon (NAC). The MEMS chips are produced in the USA. All Micro-Hybrid Emitter are designed and specified to operate up to 850°C. The improvements we have made in the source's packaging enable us to provide IR sources with the best performance on the market. This new technology enables us to seal the housings of infrared radiation sources with soldered infrared filters or windows and thus cause the parts to be impenetrable to gases. Micro-Hybrid provide various ways of adapting our MEMS based infrared emitter JSIR350 to customer specifications, like specific burn-in parameters/characteristic, different industrial standard housings, producible with customized cap, reflector or pin-out.
NASA Astrophysics Data System (ADS)
Sawicki, J. A.; Marcinkowska, K.; Wagner, F. E.
2010-08-01
Mössbauer spectroscopy of 73.0 keV gamma-ray transition in 193Ir and supplementary analytical techniques were used to study the microstructure and chemical form of polymer-supported hydrophobic bimetallic Pt-Ir catalysts for detection and removal of CO from humid air at ambient conditions. The catalysts, typically with a composition of 9 wt.% Pt and 1 wt.% Ir, were prepared by incipient wetness impregnation of polystyrene-divinylbenzene (SDB) granules with ethanol solutions of hexachloroplatinic and hexachloroiridic acids. This procedure, followed by reduction in H 2 or CO at only 200 °C or 250 °C, resulted in formation of highly-dispersed Pt-Ir particles usually smaller than 20 nm and having high catalytic activity and selectivity. Mössbauer spectra of 73.0 keV gamma-ray transition in 193Ir were taken after consecutive steps of preparation and exposure of catalysts to better understand and further improve the fabrication processes. In the as-impregnated state, iridium was found mostly as Ir(III) in [IrCl 6] 3- ions, with only a small fraction of Ir(IV) in [IrCl 6] 2- ions. The iridium in bimetallic clusters formed by reduction in hydrogen showed a strong tendency towards oxidation on exposure to air at room temperature, while Pt remained mostly metallic. In the most active and stable catalysts, the Ir and Pt in metallic regions of the clusters did not tend to segregate, unlike in Pt-Ir/silica-supported catalysts studied by us earlier. Further, this study shows that the IrO 2-like regions in the clusters exhibit stronger deviations from local symmetry and stoichiometry of crystalline IrO 2 than observed previously in Pt-Ir/silica catalysts. Our study also indicates that in the examined Pt-IrO 2 nanoparticles iridium largely provides the dissociative O 2 adsorption sites, while the CO adsorption occurs primarily at metallic Pt sites.
Limitations of insulin resistance assessment in polycystic ovary syndrome
Lewandowski, Krzysztof C; Płusajska, Justyna; Horzelski, Wojciech; Bieniek, Ewa; Lewiński, Andrzej
2018-01-01
Background Though insulin resistance (IR) is common in polycystic ovary syndrome (PCOS), there is no agreement as to what surrogate method of assessment of IR is most reliable. Subjects and methods In 478 women with PCOS, we compared methods based on fasting insulin and either fasting glucose (HOMA-IR and QUICKI) or triglycerides (McAuley Index) with IR indices derived from glucose and insulin during OGTT (Belfiore, Matsuda and Stumvoll indices). Results There was a strong correlation between IR indices derived from fasting values HOMA-IR/QUICKI, r = −0.999, HOMA-IR/McAuley index, r = −0.849 and between all OGTT-derived IR indices (e.g. r = −0.876, for IRI/Matsuda, r = −0.808, for IRI/Stumvoll, and r = 0.947, for Matsuda/Stumvoll index, P < 0.001 for all), contrasting with a significant (P < 0.001), but highly variable correlation between IR indices derived from fasting vs OGTT-derived variables, ranging from r = −0.881 (HOMA-IR/Matsuda), through r = 0.58, or r = −0.58 (IRI/HOMA-IR, IRI/QUICKI, respectively) to r = 0.41 (QUICKI/Stumvoll), and r = 0.386 for QUICKI/Matsuda indices. Detailed comparison between HOMA-IR and IRI revealed that concordance between HOMA and IRI was poor for HOMA-IR/IRI values above 75th and 90th percentile. For instance, only 53% (70/132) women with HOMA-IR >75th percentile had IRI value also above 75th percentile. There was a significant, but weak correlation of all IR indices with testosterone concentrations. Conclusions Significant number of women with PCOS can be classified as being either insulin sensitive or insulin resistant depending on the method applied, as correlation between various IR indices is highly variable. Clinical application of surrogate indices for assessment of IR in PCOS must be therefore viewed with an extreme caution. PMID:29436386
NASA Astrophysics Data System (ADS)
Yaqub, Asim; Isa, Mohamed Hasnain; Ajab, Huma; Kutty, S. R. M.; Ezechi, Ezerie H.; Farooq, Robina
2018-04-01
In this study IrO2 (Iridium oxide) was coated onto a titanium plate anode from a dilute (50 mg/10 ml) IrCl3×H2O salt solution. Coating was done at high temperature (550∘C) using thermal decomposition. Surface morphology and characteristics of coated surface of Ti/IrO2 anode were examined by FESEM and XRD. The coated anode was applied for electrochemical removal of organic pollutants from synthetic water samples in 100 mL compartment of batch electrochemical cell. About 50% COD removal was obtained at anode prepared with low Ir content solution while 72% COD removal was obtained with anode prepared at high Ir content. Maximum COD removal was obtained at 10 mA/cm2 current density.
Spencer, Brian; Rank, Logan; Metcalf, Jeff; Desplats, Paula
2018-03-06
Insulin and its receptor are widely expressed in a variety of tissues throughout the body including liver, adipose tissue, liver and brain. The insulin receptor is expressed as two functionally distinct isoforms, differentiated by a single 12 amino acid exon. The two receptor isoforms, designated IR/A and IR/B, are expressed in a highly tissue and cell specific manner and relative proportions of the different isoforms vary during development, aging and disease states. The high degree of similarity between the two isoforms has prevented detailed studies as differentiation of the two isoforms by traditional immunological methods cannot be achieved. We describe here a new in situ RT-PCR/ FISH assay that allows for the visualization of IR/A and IR/B in tissue along with tissue specific markers. We used this new method to show for the first time that IR/A and IR/B are both expressed in neurons in the adult human brain. Thus, we present a method that enables the investigation of IR/A and IR/B insulin receptor isoform expression in situ in various tissues.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Veiga, L. S. I.; Etter, M.; Glazyrin, K.
Here, we explore the response of Ir 5d orbitals to pressure in β-Li 2IrO 3, a hyperhoneycomb iridate in proximity to a Kitaev quantum spin-liquid (QSL) ground state. X-ray absorption spectroscopy reveals a reconstruction of the electronic ground state below 2 GPa, the same pressure range where x-ray magnetic circular dichroism shows an apparent collapse of magnetic order. The electronic reconstruction, which manifests a reduction in the effective spin-orbit interaction in 5d orbitals, pushes β-Li 2IrO 3 further away from the pure J eff = 1/2 limit. Although lattice symmetry is preserved across the electronic transition, x-ray diffraction shows amore » highly anisotropic compression of the hyperhoneycomb lattice which affects the balance of bond-directional Ir-Ir exchange interactions driven by spin-orbit coupling at Ir sites. An enhancement of symmetric anisotropic exchange over Kitaev and Heisenberg exchange interactions seen in theoretical calculations that use precisely this anisotropic Ir-Ir bond compression provides one possible route to the realization of a QSL state in this hyperhoneycomb iridate at high pressures.« less
1992-02-01
Development of Ultra-Low Noise , High Sensitivity Planar Metal Grating Coupled AlGaAs/GaAs Multiquantum Well IR Detectors for Focal Plane Array Staring IR...dark current at 77 K was 10 times lower than the conventional QWIP reported in the literature. anid the BTM QWIP showed a largely enhanced intersubband...bias voltage in the BTM and SBTM1 QWIPs . The results reveal thiat therinionic emission is dominant current conduction mechianismn at higher temp
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hameka, H.F.; Jensen, J.O.
1993-05-01
This report presents the computed optimized geometry and vibrational IR and Raman frequencies of the V-agent VX. The computations are performed with the Gaussian 90 Program Package using 6-31G* basis sets. We assign the vibrational frequencies and correct each frequency by multiplying it with a previously derived 6-31G* correction factor. The result is a computer-generated prediction of the IR and Raman spectra of VX. This study was intended as a blind test of the utility of IR spectral prediction. Therefore, we intentionally did not look at experimental data on the IR and Raman spectra of VX.... IR Spectra, VX, Ramanmore » spectra, Computer predictions.« less
Majid, Hafsa; Masood, Qamar; Khan, Aysha Habib
2017-03-01
To assess the utility of HOMA-IR in assessing insulin resistance in patients with polycystic ovary syndrome (PCOS) and compare it with fasting insulin for assessing insulin resistance (IR). Observational study. Section of Clinical Chemistry, Department of Pathology and Laboratory Medicine, The Aga Khan University Hospital, Karachi, from January 2009 to September 2012. Medical chart review of all women diagnosed with PCOS was performed. Of the 400 PCOS women reviewed, 91 met the inclusion criteria. Insulin resistance was assessed by calculating HOMA-IR using the formula (fasting glucose x fasting insulin)/405, taking normal value <2 in adults and hyperinsulinemia based on fasting insulin levels ≥12 µIU/ml. A total of 91 premenopausal women diagnosed with PCOS were included. Mean age was 30 ±5.5 years. Mean HOMA-IR of women was 3.1 ±1.7, respectively with IR in 69% (n=63) women, while hyperinsulinemia was present in 60% (n=55) women (fasting Insulin 18.5 ±5.8 µIU/ml). Hyperandrogenism was present in 53.8% (n=49), whereas 38.5% (n=35) women had primary infertility or subfertility, while 65.9% (n=60) had menstrual irregularities; and higher frequencies were observed in women with IR. Eight subjects with IR and endocrine abnormalities were missed by fasting insulin. Insulin resistance is common in PCOS and it is likely a pathogenic factor for development of PCOS. HOMAIR model performed better than hyperinsulinemia alone for diagnosing IR.
Trade-off studies of a hyperspectral infrared sounder on a geostationary satellite.
Wang, Fang; Li, Jun; Schmit, Timothy J; Ackerman, Steven A
2007-01-10
Trade-off studies on spectral coverage, signal-to-noise ratio (SNR), and spectral resolution for a hyperspectral infrared (IR) sounder on a geostationary satellite are summarized. The data density method is applied for the vertical resolution analysis, and the rms error between true and retrieved profiles is used to represent the retrieval accuracy. The effects of spectral coverage, SNR, and spectral resolution on vertical resolution and retrieval accuracy are investigated. The advantages of IR and microwave sounder synergy are also demonstrated. When focusing on instrument performance and data processing, the results from this study show that the preferred spectral coverage combines long-wave infrared (LWIR) with the shorter middle-wave IR (SMidW). Using the appropriate spectral coverage, a hyperspectral IR sounder with appropriate SNR can achieve the required science performance (1 km vertical resolution, 1 K temperature, and 10% relative humidity retrieval accuracy). The synergy of microwave and IR sounders can improve the vertical resolution and retrieval accuracy compared to either instrument alone.
Chronic hepatitis C infection is associated with insulin resistance and lipid profiles.
Dai, Chia-Yen; Yeh, Ming-Lun; Huang, Chung-Feng; Hou, Chen-Hsiu; Hsieh, Ming-Yen; Huang, Jee-Fu; Lin, I-Ling; Lin, Zu-Yau; Chen, Shinn-Chern; Wang, Liang-Yen; Chuang, Wan-Long; Yu, Ming-Lung; Tung, Hung-Da
2015-05-01
Chronic hepatitis C virus (HCV) infection has been suggested to be associated with non-insulin-dependent diabetes mellitus and lipid profiles. This study aimed to investigate the possible relationships of insulin resistance (IR) and lipid profiles with chronic hepatitis C (CHC) patients in Taiwan. We enrolled 160 hospital-based CHC patients with liver biopsy and the 480 controlled individuals without CHC and chronic hepatitis B from communities without known history of non-insulin-dependent diabetes mellitus. Fasting plasma glucose, total cholesterol, high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), triglycerides (TGs), alanine aminotransferase, and serum insulin levels, and homeostasis model assessment (HOMA-IR) were tested. When comparing factors between CHC patients, and sex- and age-matched controls who had no HCV infection, patients with HCV infection had a significantly higher alanine aminotransferase level, fasting plasma glucose level, insulin level, and HOMA-IR (P < 0.001, P = 0.023, P = 0.017, and P = 0.011, respectively), and significantly lower TG level (P = 0.023), total cholesterol, and HDL-C and LDL-C levels (all P < 0.001) than 480 controls. In multivariate logistic regression analyses, a low total cholesterol, a low TGs, and a high HOMA-IR are independent factors significantly associated with chronic HCV infection. In the 160 CHC patients (41 patients with high HOMA-IR [> 2.5]), a high body mass index, TGs, and HCV RNA level are independent factors significantly associated with high HOMA-IR in multivariate logistic analyses. Chronic HCV infection was associated with metabolic characteristics including IR and lipid profile. IR was also associated with virological characteristics. © 2013 Journal of Gastroenterology and Hepatology Foundation and Wiley Publishing Asia Pty Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Y. L., E-mail: yilu.chang@mail.utoronto.ca; Gong, S., E-mail: sgong@chem.utoronto.ca; White, R.
We have demonstrated high-efficiency greenish-blue phosphorescent organic light-emitting diodes (PHOLEDs) based on a dimesitylboryl-functionalized C^N chelate Pt(II) phosphor, Pt(m-Bptrz)(t-Bu-pytrz-Me). Using a high triplet energy platform and optimized double emissive zone device architecture results in greenish-blue PHOLEDs that exhibit an external quantum efficiency of 24.0% and a power efficiency of 55.8 lm/W. This record high performance is comparable with that of the state-of-the-art Ir-based sky-blue organic light-emitting diodes.
Sequential electrochemical treatment of dairy wastewater using aluminum and DSA-type anodes.
Borbón, Brenda; Oropeza-Guzman, Mercedes Teresita; Brillas, Enric; Sirés, Ignasi
2014-01-01
Dairy wastewater is characterized by a high content of hardly biodegradable dissolved, colloidal, and suspended organic matter. This work firstly investigates the performance of two individual electrochemical treatments, namely electrocoagulation (EC) and electro-oxidation (EO), in order to finally assess the mineralization ability of a sequential EC/EO process. EC with an Al anode was employed as a primary pretreatment for the conditioning of 800 mL of wastewater. A complete reduction of turbidity, as well as 90 and 81% of chemical oxygen demand (COD) and total organic carbon (TOC) removal, respectively, were achieved after 120 min of EC at 9.09 mA cm(-2). For EO, two kinds of dimensionally stable anodes (DSA) electrodes (Ti/IrO₂-Ta₂O₅ and Ti/IrO₂-SnO₂-Sb₂O₅) were prepared by the Pechini method, obtaining homogeneous coatings with uniform composition and high roughness. The (·)OH formed at the DSA surface from H₂O oxidation were not detected by electron spin resonance. However, their indirect determination by means of H₂O₂ measurements revealed that Ti/IrO₂-SnO₂-Sb₂O₅ is able to produce partially physisorbed radicals. Since the characterization of the wastewater revealed the presence of indole derivatives, preliminary bulk electrolyses were done in ultrapure water containing 1 mM indole in sulfate and/or chloride media. The performance of EO with the Ti/IrO₂-Ta₂O₅ anode was evaluated from the TOC removal and the UV/Vis absorbance decay. The mineralization was very poor in 0.05 M Na₂SO₄, whereas it increased considerably at a greater Cl(-) content, meaning that the oxidation mediated by electrogenerated species such as Cl₂, HClO, and/or ClO(-) competes and even predominates over the (·)OH-mediated oxidation. The EO treatment of EC-pretreated dairy wastewater allowed obtaining a global 98 % TOC removal, decreasing from 1,062 to <30 mg L(-1).
Uncooled Micro-Cantilever Infrared Imager Optimization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Panagiotis, Datskos G.
2008-02-05
We report on the development, fabrication and characterization of microcantilever based uncooled focal plane array (FPA) for infrared imaging. By combining a streamlined design of microcantilever thermal transducers with a highly efficient optical readout, we minimized the fabrication complexity while achieving a competitive level of imaging performance. The microcantilever FPAs were fabricated using a straightforward fabrication process that involved only three photolithographic steps (i.e. three masks). A designed and constructed prototype of an IR imager employed a simple optical readout based on a noncoherent low-power light source. The main figures of merit of the IR imager were found to bemore » comparable to those of uncooled MEMS infrared detectors with substantially higher degree of fabrication complexity. In particular, the NETD and the response time of the implemented MEMS IR detector were measured to be as low as 0.5K and 6 ms, respectively. The potential of the implemented designs can also be concluded from the fact that the constructed prototype enabled IR imaging of close to room temperature objects without the use of any advanced data processing. The most unique and practically valuable feature of the implemented FPAs, however, is their scalability to high resolution formats, such as 2000 x 2000, without progressively growing device complexity and cost. The overall technical objective of the proposed work was to develop uncooled infrared arrays based on micromechanical sensors. Currently used miniature sensors use a number of different readout techniques to accomplish the sensing. The use of optical readout techniques sensing require the deposition of thin coatings on the surface of micromechanical thermal detectors. Oak Ridge National Laboratory (ORNL) is uniquely qualified to perform the required research and development (R&D) services that will assist our ongoing activities. Over the past decade ORNL has developed a number of unique methods and techniques that led to improved sensors using a number of different approaches.« less
Automated optical testing of LWIR objective lenses using focal plane array sensors
NASA Astrophysics Data System (ADS)
Winters, Daniel; Erichsen, Patrik; Domagalski, Christian; Peter, Frank; Heinisch, Josef; Dumitrescu, Eugen
2012-10-01
The image quality of today's state-of-the-art IR objective lenses is constantly improving while at the same time the market for thermography and vision grows strongly. Because of increasing demands on the quality of IR optics and increasing production volumes, the standards for image quality testing increase and tests need to be performed in shorter time. Most high-precision MTF testing equipment for the IR spectral bands in use today relies on the scanning slit method that scans a 1D detector over a pattern in the image generated by the lens under test, followed by image analysis to extract performance parameters. The disadvantages of this approach are that it is relatively slow, it requires highly trained operators for aligning the sample and the number of parameters that can be extracted is limited. In this paper we present lessons learned from the R and D process on using focal plane array (FPA) sensors for testing of long-wave IR (LWIR, 8-12 m) optics. Factors that need to be taken into account when switching from scanning slit to FPAs are e.g.: the thermal background from the environment, the low scene contrast in the LWIR, the need for advanced image processing algorithms to pre-process camera images for analysis and camera artifacts. Finally, we discuss 2 measurement systems for LWIR lens characterization that we recently developed with different target applications: 1) A fully automated system suitable for production testing and metrology that uses uncooled microbolometer cameras to automatically measure MTF (on-axis and at several o-axis positions) and parameters like EFL, FFL, autofocus curves, image plane tilt, etc. for LWIR objectives with an EFL between 1 and 12mm. The measurement cycle time for one sample is typically between 6 and 8s. 2) A high-precision research-grade system using again an uncooled LWIR camera as detector, that is very simple to align and operate. A wide range of lens parameters (MTF, EFL, astigmatism, distortion, etc.) can be easily and accurately measured with this system.
Reduction Reaction Activity on Pt-Monolayer-Shell PdIr/Ni-core Catalysts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Liang; Vukmirovic, Miomir B.; Adzic, Radoslav R.
Platinum monolayer oxygen reduction reaction catalysts present promising way of reducing the Pt content without scarifying its fuel cell performance. We present a facile way of preparing Pt monolayer shell PdIr-based core catalysts, which showed much higher activity for oxygen reduction reaction than that of TKK 46.6% Pt/C catalyst. Among tested samples, PtMLPd2Ir/Ni/C performs the best with Pt and Platinum Group Metal mass activity around 9 and 0.25 times higher of that of TKK 46.6% Pt/C. In addition, accelerated aging test indicates its excellent durability.
Reduction Reaction Activity on Pt-Monolayer-Shell PdIr/Ni-core Catalysts
Song, Liang; Vukmirovic, Miomir B.; Adzic, Radoslav R.
2018-05-14
Platinum monolayer oxygen reduction reaction catalysts present promising way of reducing the Pt content without scarifying its fuel cell performance. We present a facile way of preparing Pt monolayer shell PdIr-based core catalysts, which showed much higher activity for oxygen reduction reaction than that of TKK 46.6% Pt/C catalyst. Among tested samples, PtMLPd2Ir/Ni/C performs the best with Pt and Platinum Group Metal mass activity around 9 and 0.25 times higher of that of TKK 46.6% Pt/C. In addition, accelerated aging test indicates its excellent durability.
da Rocha, Alisson L; Pereira, Bruno C; Pauli, José R; de Souza, Claudio T; Teixeira, Giovana R; Lira, Fábio S; Cintra, Dennys E; Ropelle, Eduardo R; Júnior, Carlos R B; da Silva, Adelino S R
2016-05-01
The aim of this study was to verify the effects of running overtraining protocols performed in downhill, uphill, and without inclination on the proteins related to hypertrophy signaling pathway in extensor digitorum longus (EDL) and soleus of C57BL/6 mice. We also performed histological and stereological analyses. Rodents were divided into control (CT; sedentary mice), overtrained by downhill running (OTR/down), overtrained by uphill running (OTR/up), and overtrained by running without inclination (OTR). The incremental load, exhaustive, and grip force tests were used as performance evaluation parameters. 36 h after the grip force test, EDL and soleus were removed and immediately used for immunoblotting analysis or stored at -80°C for histological and stereological analyses. For EDL, OTR/down decreased the protein kinase B (Akt) and tuberous sclerosis protein 2 (TSC2) phosphorylation (p), and increased myostatin, receptor-activated Smads (pSMAD2-3), and insulin receptor substrate-1 (pIRS-1; Ser307/636). OTR/down also presented low and high relative proportions of cytoplasm and connective tissue, respectively. OTR/up increased the mammalian target of rapamycin (pmTOR), 70-kDa ribosomal protein S6 kinase 1 (pS6K1) and pSMAD2-3, and decreased pTSC2. OTR decreased pTSC2 and increased pIRS-1 (Ser636). For soleus, OTR/down increased S6 ribosomal protein (pS6RP) and pSMAD2-3, and decreased pIRS-1 (Ser639). OTR/up decreased pS6K1, pS6RP and pIRS-1 (Ser639), and increased pTSC2 (Ser939), and pSMAD2-3. OTR increased pS6RP, 4E-binding protein-1 (p4E-BP1), pTSC2 (Ser939), and pSMAD2-3, and decreased pIRS-1 (Ser639). In summary, OTR/down inhibited the skeletal muscle hypertrophy with concomitant signs of atrophy in EDL. The effects of OTR/up and OTR depended on the analyzed skeletal muscle type. © 2015 Wiley Periodicals, Inc.
Rain Erosion Resistant AR Coating for ZnS Windows
1980-05-10
number) FLUR Windows, Rain Erosion Coatings; High Performance Aircrait in’- Coa t f ng De 1)os I t L on Tv c I n I (Iu es ; Me t ro Io gy ; TLest, i11g...developed for jinaging el"(rtrlo opt ical sensor systems intended for use on high performance a irer; Ia It s, ’ as F-4, F-15, F-16, A-10 J-18 and F-ill...for Forward Looking Infrared (FLIk) thermal imaging sensors such as those in- corporated in the PAVE TACK pod and the IR Maverick Missile. ’This
Fabrication of flexible Ir and Ir-Rh wires and application for thermocouple
NASA Astrophysics Data System (ADS)
Murakami, Rikito; Kamada, Kei; Shoji, Yasuhiro; Yokota, Yuui; Yoshino, Masao; Kurosawa, Shunsuke; Ohashi, Yuji; Yamaji, Akihiro; Yoshikawa, Akira
2018-04-01
The fabrication and thermal electromotive force characteristics of Ir/Ir-Rh thermocouples capable of repeated bending deformation are described. Ir and Ir-Rh wires with a diameter of 0.5 mm were fabricated using the alloy-micro-pulling-down method. Scanning electron microscopy and electron backscattering diffraction of the radial cross section of the grown wires were performed to investigate the microstructure and orientation of the crystal grains. At the start of growth, the microstructure was polycrystalline with diameters of several hundred micrometers, while at the 8-m growth point it was found to be monocrystalline. The observed single crystals of pure Ir and Ir-Rh alloy were oriented in the 〈1 1 3〉 and 〈1 1 2〉 directions, respectively, whereas the polycrystalline Ir-Rh samples showed preferential growth in the 〈1 0 0〉 direction. The thermal electromotive force of the fabricated Ir/Ir-Rh thermocouple was measured by the comparison technique and the fixed-point technique, and the thermoelectric power was estimated to be 5.9 μV/°C in the range from 600°C to 1100°C.