Sample records for high performance mo

  1. Improving the tribological and corrosive properties of MoS2-based coatings by dual-doping and multilayer construction

    NASA Astrophysics Data System (ADS)

    Shang, Kedong; Zheng, Shaoxian; Ren, Siming; Pu, Jibin; He, Dongqing; Liu, Shuan

    2018-04-01

    The pure MoS2 coating always performs high friction coefficient and short service life when used in high humidity or after long-time storage in humid atmospheric environment. In this study, the MoS2/Pb-Ti composite and MoS2/Pb-Ti multilayer coatings are deposited to improve the corrosion resistance in 3.5 wt% NaCl solution and tribological performance in high humidity condition. The electrochemical impedance spectra and salt spray test shown that the MoS2/Pb-Ti composite and multilayer coatings can inhibit the permeation of oxygen and other corrosive elements, thus resulting a high corrosion resistance. Furthermore, compared with pure MoS2 coating, the tribological performance of the MoS2/Pb-Ti composite and multilayer coatings is also improved significantly owing to the high mechanical properties and compact structure. Moreover, the heterogenous interfaces in MoS2/Pb-Ti multilayer coating play an important role to improve the corrosion resistance and tribological performance of coatings. Overall, the dual-doping and multilayer construction are promising approaches to design the MoS2 coatings as the environmentally adaptive lubricants.

  2. Humate-assisted Synthesis of MoS2/C Nanocomposites via Co-Precipitation/Calcination Route for High Performance Lithium Ion Batteries

    NASA Astrophysics Data System (ADS)

    Geng, Qin; Tong, Xin; Wenya, Gideon Evans; Yang, Chao; Wang, Jide; Maloletnev, A. S.; Wang, Zhiming M.; Su, Xintai

    2018-04-01

    A facile, cost-effective, non-toxic, and surfactant-free route has been developed to synthesize MoS2/carbon (MoS2/C) nanocomposites. Potassium humate consists of a wide variety of oxygen-containing functional groups, which is considered as promising candidates for functionalization of graphene. Using potassium humate as carbon source, two-dimensional MoS2/C nanosheets with irregular shape were synthesized via a stabilized co-precipitation/calcination process. Electrochemical performance of the samples as an anode of lithium ion battery was measured, demonstrating that the MoS2/C nanocomposite calcinated at 700 °C (MoS2/C-700) electrode showed outstanding performance with a high discharge capacity of 554.9 mAh g- 1 at a current density of 100 mA g- 1 and the Coulomb efficiency of the sample maintained a high level of approximately 100% after the first 3 cycles. Simultaneously, the MoS2/C-700 electrode exhibited good cycling stability and rate performance. The success in synthesizing MoS2/C nanocomposites via co-precipitation/calcination route may pave a new way to realize promising anode materials for high-performance lithium ion batteries.

  3. Improving the Stability of High-Performance Multilayer MoS2 Field-Effect Transistors.

    PubMed

    Liu, Na; Baek, Jongyeol; Kim, Seung Min; Hong, Seongin; Hong, Young Ki; Kim, Yang Soo; Kim, Hyun-Suk; Kim, Sunkook; Park, Jozeph

    2017-12-13

    In this study, we propose a method for improving the stability of multilayer MoS 2 field-effect transistors (FETs) by O 2 plasma treatment and Al 2 O 3 passivation while sustaining the high performance of bulk MoS 2 FET. The MoS 2 FETs were exposed to O 2 plasma for 30 s before Al 2 O 3 encapsulation to achieve a relatively small hysteresis and high electrical performance. A MoO x layer formed during the plasma treatment was found between MoS 2 and the top passivation layer. The MoO x interlayer prevents the generation of excess electron carriers in the channel, owing to Al 2 O 3 passivation, thereby minimizing the shift in the threshold voltage (V th ) and increase of the off-current leakage. However, prolonged exposure of the MoS 2 surface to O 2 plasma (90 and 120 s) was found to introduce excess oxygen into the MoO x interlayer, leading to more pronounced hysteresis and a high off-current. The stable MoS 2 FETs were also subjected to gate-bias stress tests under different conditions. The MoS 2 transistors exhibited negligible decline in performance under positive bias stress, positive bias illumination stress, and negative bias stress, but large negative shifts in V th were observed under negative bias illumination stress, which is attributed to the presence of sulfur vacancies. This simple approach can be applied to other transition metal dichalcogenide materials to understand their FET properties and reliability, and the resulting high-performance hysteresis-free MoS 2 transistors are expected to open up new opportunities for the development of sophisticated electronic applications.

  4. MoO2-ordered mesoporous carbon hybrids as anode materials with highly improved rate capability and reversible capacity for lithium-ion battery.

    PubMed

    Chen, Ailian; Li, Caixia; Tang, Rui; Yin, Longwei; Qi, Yongxin

    2013-08-28

    A novel hybrid of MoO2-ordered mesoporous carbon (MoO2-OMC) was prepared through a two-step solvothermal chemical reaction route. The electrochemical performances of the mesoporous MoO2-OMC hybrids were examined using galvanostatical charge-discharge, cyclic voltammetry, and electrochemical impedance spectroscopy (EIS) techniques. The MoO2-OMC hybrid exhibits significantly improved electrochemical performance of high reversible capacity, high-rate capability, and excellent cycling performance as an anode electrode material for Li ion batteries. It is revealed that the MoO2-OMC hybrid could deliver the first discharge capacity of 1641.8 mA h g(-1) with an initial Coulombic efficiency of 63.6%, and a reversible capacity as high as 1049.1 mA h g(-1) even after 50 cycles at a current density of 100 mA g(-1), much higher than the theoretical capacity of MoO2 (838 mA h g(-1)) and OMC materials. The MoO2-OMC hybrid demonstrates an excellent high rate capability with capacity of ∼600 mA h g(-1) even at a charge current density of 1600 mA g(-1) after 50 cycles, which is approximately 11.1 times higher than that of the OMC (54 mA h g(-1)) materials. The improved rate capability and reversible capacity of the MoO2-OMC hybrid are attributed to a synergistic reaction between the MoO2 nanoparticles and mesoporous OMC matrices. It is noted that the electrochemical performance of the MoO2-OMC hybrid is evidently much better than the previous MoO2-based hybrids.

  5. Enhanced performance of lithium-sulfur batteries with an ultrathin and lightweight MoS2/carbon nanotube interlayer

    NASA Astrophysics Data System (ADS)

    Yan, Lingjia; Luo, Nannan; Kong, Weibang; Luo, Shu; Wu, Hengcai; Jiang, Kaili; Li, Qunqing; Fan, Shoushan; Duan, Wenhui; Wang, Jiaping

    2018-06-01

    Ultrathin and lightweight MoS2/carbon nanotube (CNT) interlayers are developed to effectively trap polysulfides in high-performance lithium-sulfur (Li-S) batteries. The MoS2/CNT interlayer is constructed by loading MoS2 nanosheets onto a cross-stacked CNT film. The CNT film with excellent conductivity and superior mechanical properties provides the Li-S batteries with a uniform conductive network, a supporting skeleton for the MoS2 nanosheets, as well as a physical barrier for the polysulfides. Moreover, chemical interactions and bonding between the MoS2 nanosheets and the polysulfides are evident. The electrode with the MoS2/CNT interlayer delivers an attractive specific capacity of 784 mA h g-1 at a high capacity rate of 10 C. In addition, the electrode demonstrates a high initial capacity of 1237 mA h g-1 and a capacity fade as low as -0.061% per cycle over 500 charge/discharge cycles at 0.2 C. The problem of self-discharge can also be suppressed with the introduction of the MoS2/CNT interlayer. The simple fabrication procedure, which is suitable for commercialization, and the outstanding electrochemical performance of the cells with the MoS2/CNT interlayer demonstrate a great potential for the development of high-performance Li-S batteries.

  6. Radiochemical purity of Mo and Tc solution obtained after irradiation and dissolution of Mo-100-enriched and ultra-high-purity natural Mo disks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tkac, Peter; Gromov, Roman; Chemerisov, Sergey D.

    2016-09-01

    Four irradiations of ultra-high-purity natural Mo targets and one irradiation using 97.4% Mo-100-enriched material were performed. The purpose of these irradiations was to determine whether the presence of Sn stabilizer in the H 2O 2 used for the dissolution of sintered Mo disks can affect the radiochemical purity of the final K 2MoO 4 in 5M KOH solution. Results from radiochemical purity tests performed using thin-layer paper chromatography show that even 2– 3× excess of Sn-stabilized H 2O 2 typically used for dissolution of sintered Mo disks did not affect the radiochemical purity of the final product.

  7. A theoretical prediction of super high-performance thermoelectric materials based on MoS2/WS2 hybrid nanoribbons

    NASA Astrophysics Data System (ADS)

    Zhang, Zhongwei; Xie, Yuee; Peng, Qing; Chen, Yuanping

    2016-02-01

    Modern society is hungry for electrical power. To improve the efficiency of energy harvesting from heat, extensive efforts seek high-performance thermoelectric materials that possess large differences between electronic and thermal conductance. Here we report a super high-performance material of consisting of MoS2/WS2 hybrid nanoribbons discovered from a theoretical investigation using nonequilibrium Green’s function methods combined with first-principles calculations and molecular dynamics simulations. The hybrid nanoribbons show higher efficiency of energy conversion than the MoS2 and WS2 nanoribbons due to the fact that the MoS2/WS2 interface reduces lattice thermal conductivity more than the electron transport. By tuning the number of the MoS2/WS2 interfaces, a figure of merit ZT as high as 5.5 is achieved at a temperature of 600 K. Our results imply that the MoS2/WS2 hybrid nanoribbons have promising applications in thermal energy harvesting.

  8. A theoretical prediction of super high-performance thermoelectric materials based on MoS2/WS2 hybrid nanoribbons

    PubMed Central

    Zhang, Zhongwei; Xie, Yuee; Peng, Qing; Chen, Yuanping

    2016-01-01

    Modern society is hungry for electrical power. To improve the efficiency of energy harvesting from heat, extensive efforts seek high-performance thermoelectric materials that possess large differences between electronic and thermal conductance. Here we report a super high-performance material of consisting of MoS2/WS2 hybrid nanoribbons discovered from a theoretical investigation using nonequilibrium Green’s function methods combined with first-principles calculations and molecular dynamics simulations. The hybrid nanoribbons show higher efficiency of energy conversion than the MoS2 and WS2 nanoribbons due to the fact that the MoS2/WS2 interface reduces lattice thermal conductivity more than the electron transport. By tuning the number of the MoS2/WS2 interfaces, a figure of merit ZT as high as 5.5 is achieved at a temperature of 600 K. Our results imply that the MoS2/WS2 hybrid nanoribbons have promising applications in thermal energy harvesting. PMID:26884123

  9. Dopamine-Induced Formation of Ultrasmall Few-Layer MoS2 Homogeneously Embedded in N-Doped Carbon Framework for Enhanced Lithium-Ion Storage.

    PubMed

    Miao, Zhao-Hua; Wang, Pan-Pan; Xiao, Yu-Chen; Fang, Hai-Tao; Zhen, Liang; Xu, Cheng-Yan

    2016-12-14

    Molybdenum disulfide with a layered structure and high theoretical capacity is attracting extensive attention for high-performance lithium-ion batteries. In this study, a simple and scalable method by freeze-drying of (NH 4 ) 2 MoS 4 and dopamine mixed solutions along with subsequent calcination is developed to realize the self-assembly of hierarchical MoS 2 /carbon composite nanosheets via the effect of dopamine-induced morphology transformation, in which ultrasmall few-layer MoS 2 nanosheets were homogeneously embedded into a N-doped carbon framework (denoted as MoS 2 @N-CF). The embedded ultrasmall MoS 2 nanosheets (∼5 nm in length) in the composites consist of less than five layers with an expanded interlayer spacing of the (002) plane. When tested as anode materials for rechargeable Li-ion batteries, the obtained MoS 2 @N-CF nanosheets exhibit outstanding electrochemical performance in terms of high specific capacity (839.2 mAh g -1 at 1 A g -1 ), high initial Coulombic efficiency (85.2%), and superior rate performance (702.1 mAh g -1 at 4 A g -1 ). Such intriguing electrochemical performance was attributed to the synergistic effect of uniform dispersion of few-layer MoS 2 into the carbon framework, expanded interlayer spacing, and enhanced electronic conductivity in the unique hierarchical architecture. This work provides a simple and effective strategy for the uniform integration of MoS 2 with carbonaceous materials to significantly boost their electrochemical performance.

  10. Surface tiny grain-dependent enhanced rate performance of MoO3 nanobelts with pseudocapacitance contribution for lithium-ion battery anode

    NASA Astrophysics Data System (ADS)

    Cao, Liyun; He, Juju; Li, Jiayin; Yan, Jingwen; Huang, Jianfeng; Qi, Ying; Feng, Liangliang

    2018-07-01

    In order to improve the rate performance of MoO3, a novel MoO3 nanobelt with tiny grains on surface (named as d-MoO3) is fabricated via one-step facile hydrothermal method with citric acid adding, in which citric acid (CA) serves as a weak reductant as well as surface modification agent. When tested as an anode in LIBs, d-MoO3 displays an improved discharge capacity of 787 mAh·g-1 at 0.1 A g-1 over 100 cycles with capacity retention of ∼91% while MoO3 decays to 50 mAh·g-1 in the 100th cycle. Notably, d-MoO3 delivers enhanced rate capability (536 and 370 mAh·g-1 at high rates of 5 and 10 A g-1 respectively). We consider these excellent electrochemical properties of d-MoO3 electrode are associated with the tiny grains on MoO3 surface, which effectively maintains the electrode's structural integrity. Even though d-MoO3 nanobelt suffers from a degree of in-situ pulverization after several cycles, these pulverized active particles can still maintain stable electrochemical contact and are highly exposed to electrolyte, realizing ultrahigh e-/Li+ diffusion kinetics. In addition, part extrinsic pseudocapacitance contribution to the Li+ storage also explains the high-rate performance. Combining all these merits, d-MoO3 is potentially a high-energy, high-power and well-stable anode material for Li ion batteries (LIBs).

  11. High performance solid-state electric double layer capacitor from redox mediated gel polymer electrolyte and renewable tamarind fruit shell derived porous carbon.

    PubMed

    Senthilkumar, S T; Selvan, R Kalai; Melo, J S; Sanjeeviraja, C

    2013-11-13

    The activated carbon was derived from tamarind fruit shell and utilized as electrodes in a solid state electrochemical double layer capacitor (SSEDLC). The fabricated SSEDLC with PVA (polyvinyl alcohol)/H2SO4 gel electrolyte delivered high specific capacitance and energy density of 412 F g(-1) and 9.166 W h kg(-1), respectively, at 1.56 A g(-1). Subsequently, Na2MoO4 (sodium molybdate) added PVA/H2SO4 gel electrolyte was also prepared and applied for SSEDLC, to improve the performance. Surprisingly, 57.2% of specific capacitance (648 F g(-1)) and of energy density (14.4 Wh kg(-1)) was increased while introducing Na2MoO4 as the redox mediator in PVA/H2SO4 gel electrolyte. This improved performance is owed to the redox reaction between Mo(VI)/Mo(V) and Mo(VI)/Mo(IV) redox couples in Na2MoO4/PVA/H2SO4 gel electrolyte. Similarly, the fabricated device shows the excellent capacitance retention of 93% for over 3000 cycles. The present work suggests that the Na2MoO4 added PVA/H2SO4 gel is a potential electrolyte to improve the performance instead of pristine PVA/H2SO4 gel electrolyte. Based on the overall performance, it is strongly believed that the combination of tamarind fruit shell derived activated carbon and Na2MoO4/PVA/H2SO4 gel electrolyte is more attractive in the near future for high performance SSEDLCs.

  12. Improved electrochemical performances of binder-free CoMoO4 nanoplate arrays@Ni foam electrode using redox additive electrolyte

    NASA Astrophysics Data System (ADS)

    Veerasubramani, Ganesh Kumar; Krishnamoorthy, Karthikeyan; Kim, Sang Jae

    2016-02-01

    Herein, we are successfully prepared cobalt molybdate (CoMoO4) grown on nickel foam as a binder free electrode by hydrothermal approach for supercapacitors and improved their electrochemical performances using potassium ferricyanide (K3Fe(CN)6) as redox additive. The formation of CoMoO4 on Ni foam with high crystallinity is confirmed using XRD, Raman, and XPS measurements. The nanoplate arrays (NPAs) of CoMoO4 are uniformly grown on Ni foam which is confirmed by FE-SEM analysis. The prepared binder-free CoMoO4 NPAs achieved maximum areal capacity of 227 μAh cm-2 with KOH electrolyte at 2.5 mA cm-2. This achieved areal capacity is further improved about three times using the addition of K3Fe(CN)6 as redox additive. The increased electrochemical performances of CoMoO4 NPAs on Ni foam electrode via redox additive are discussed in detail and the mechanism has been explored. Moreover, the assembled CoMoO4 NPAs on Ni foam//activated carbon asymmetric supercapacitor device with an extended operating voltage window of 1.5 V exhibits an excellent performances such as high energy density and cyclic stability. The overall performances of binder-free CoMoO4 NPAs on Ni foam with redox additives suggesting their potential use as positive electrode material for high performance supercapacitors.

  13. Porous MoO2 nanowires as stable and high-rate negative electrodes for electrochemical capacitors.

    PubMed

    Zheng, Dezhou; Feng, Haobin; Zhang, Xiyue; He, Xinjun; Yu, Minghao; Lu, Xihong; Tong, Yexiang

    2017-04-04

    Free-standing porous MoO 2 nanowires with extraordinary capacitive performance are developed as high-performance electrodes for electrochemical capacitors. The as-obtained MoO 2 electrode exhibits a remarkable capacitance of 424.4 mF cm -2 with excellent electrochemical durability (no capacitance decay after 10 000 cycles at various scan rates).

  14. Facile construction of 3D graphene/MoS2 composites as advanced electrode materials for supercapacitors

    NASA Astrophysics Data System (ADS)

    Sun, Tianhua; Li, Zhangpeng; Liu, Xiaohong; Ma, Limin; Wang, Jinqing; Yang, Shengrong

    2016-11-01

    Flower-like molybdenum disulfide (MoS2) microstructures are synthesized based on three-dimensional graphene (3DG) skeleton via a simple and facile one-step hydrothermal method, aiming at constructing series of novel composite electrode materials of 3DG/MoS2 with high electrochemical performances for supercapacitors. The electrochemical properties of the samples are evaluated by cyclic voltammetry and galvanostatic charge/discharge tests. Specifically, the optimal 3DG/MoS2 composite exhibits remarkable performances with a high specific capacitance of 410 F g-1 at a current density of 1 A g-1 and an excellent cycling stability with ca. 80.3% capacitance retention after 10,000 continuous charge-discharge cycles at a high current density of 2 A g-1, making it adaptive for high-performance supercapacitors. The enhanced electrochemical performances can be ascribed to the combination of 3DG and flower-like MoS2, which provides excellent charge transfer network and electrolyte diffusion channels while effectively prevents the collapse, aggregation and morphology change of active materials during charge-discharge process. The results demonstrate that 3DG/MoS2 composite is one of the attractive electrode materials for supercapacitors.

  15. High performance broadband photodetector based on MoS2/porous silicon heterojunction

    NASA Astrophysics Data System (ADS)

    Dhyani, Veerendra; Dwivedi, Priyanka; Dhanekar, Saakshi; Das, Samaresh

    2017-11-01

    A high speed efficient broadband photodetector based on a vertical n-MoS2/p-porous silicon heterostructure has been demonstrated. Large area MoS2 on electrochemical etched porous silicon was grown by sulphurization of a sputtered MoO3 thin film. A maximum responsivity of 9 A/W (550-850 nm) with a very high detectivity of ˜1014 Jones is observed. Transient measurements show a fast response time of ˜9 μs and is competent to work at high frequencies (˜50 kHz). The enhanced photodetection performance of the heterojunction made on porous silicon over that made on planar silicon is explained in terms of higher interfacial barrier height, superior light trapping property, and larger junction area in the MoS2/porous silicon junction.

  16. Construction of Nitrogen-Doped Carbon-Coated MoSe2 Microspheres with Enhanced Performance for Lithium Storage.

    PubMed

    Tang, Wangjia; Xie, Dong; Shen, Tong; Wang, Xiuli; Wang, Donghuang; Zhang, Xuqing; Xia, Xinhui; Wu, Jianbo; Tu, Jiangping

    2017-09-18

    Exploring advanced anode materials with highly reversible capacity have gained great interests for large-scale lithium storage. A facile two-step method is developed to synthesize nitrogen-doped carbon coated MoSe 2 microspheres via hydrothermal plus thermal polymerization. The MoSe 2 microspheres composed of interconnected nanoflakes are homogeneously coated by a thin nitrogen-doped carbon (N-C) layer. As an anode for lithium ion batteries, the MoSe 2 /N-C composite shows better reversibility, smaller polarization, and higher electrochemical reactivity as compared to the unmodified MoSe 2 microspheres. The MoSe 2 /N-C electrode delivers a high specific capacity of 698 mAh g -1 after 100 cycles at a current density of 100 mA g -1 and good high rate performance (471 mAh g -1 at a high current density of 2000 mA g -1 ). The improved electrochemical performance is attributed to the conductive N-C coating and hierarchical microsphere structure with fast ion/electron transfer characteristics. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Synthesis of Large-area Crystalline MoTe2 Atomic layer from Chemical Vapor Deposition

    NASA Astrophysics Data System (ADS)

    Zhou, Lin; Zubair, Ahmad; Xu, Kai; Kong, Jing; Dresselhaus, Mildred

    The controlled synthesis of highly crystalline large-area molybdenum ditelluride MoTe2 atomic layers is crucial for the practical applications of this emerging material. Here we develop a novel approach for the growth of large-area, uniform and highly crystalline few-layer MoTe2 film via chemical vapour deposition (CVD). Large-area atomically thin MoTe2 film has been successfully synthesized by tellurization of a MoO3 film. The as-grown MoTe2 film is uniform, stoichiometric, and highly crystalline. As a result of the high crystallinity, the electronic properties of MoTe2 film are comparable with that of mechanically exfoliated MoTe2 flakes. Moreover, we found that two different phases of MoTe2 (2H and 1T') can be grown depending on the choice of Mo precursor. Since the MoTe2 film is highly homogenous, and the size of the film is only limited by the substrate and CVD system size, our growth method paves the way for large-scale application of MoTe2 in high performance nanoelectronics and optoelectronics.

  18. Facile synthesis of uniform MoO2/Mo2CTx heteromicrospheres as high-performance anode materials for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Min, Jie; Wang, Kangyan; Liu, Jun; Yao, Yang; Wang, Wenjun; Yang, Linyu; Zhang, Ruizhi; Lei, Ming

    2017-09-01

    Uniform nano/micro-spherical MoO2/Mo2CTx (T = O) heterostructures have been synthesized through a heterocatalytic reaction with subsequent facile calcinations. Given the high activity of HxMoO3/C precursors, this strategy opens a low-temperature route to realize the fabrication of nanocrystalline MoO2/Mo2CTx heterostructures, leading to achieve rapidly activated conversion reaction and extrinsic pseudocapacitive behaviour. Rather than carbon, highly conductive Mo2CTx decreases the charge transfer resistance in MoO2 and maintains its structural stability upon lithiation/delithiation, ensuring the heterostructures with excellent cyclability (e.g., up to 833 mA h g-1 at 100 mA g-1 for 160 cycles with 95% capacity retention) and high rate capability (e.g., 665 mA h g-1 at 1 A g-1). Additionally, owing to the carbon-free characteristic, the secondary nano/microstructure feature and the suppressed surface oxidation trait, MoO2/Mo2CTx heterostructures, therefore, can deliver an improved initial Coulombic efficiency (e.g., up to 78% at 100 mA g-1). The present oxycarbide transformation and hybridization strategies are facile but effective, and they are very promising to be applied to converting other oxides-carbon composites into oxides/carbides heterostructures towards achieving higher electrochemical performance.

  19. Mo-doped SnO2 mesoporous hollow structured spheres as anode materials for high-performance lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Wang, Xuekun; Li, Zhaoqiang; Zhang, Zhiwei; Li, Qun; Guo, Enyan; Wang, Chengxiang; Yin, Longwei

    2015-02-01

    We designed a facile infiltration route to synthesize mesoporous hollow structured Mo doped SnO2 using silica spheres as templates. It is observed that Mo is uniformly incorporated into SnO2 lattice in the form of Mo6+. The as-prepared mesoporous Mo-doped SnO2 LIBs anodes exhibit a significantly improved electrochemical performance with good cycling stability, high specific capacity and high rate capability. The mesoporous hollow Mo-doped SnO2 sample with 14 at% Mo doping content displays a specific capacity of 801 mA h g-1 after 60 cycles at a current density of 100 mA g-1, about 1.66 times higher than that of the pure SnO2 hollow sample. In addition, even if the current density is as high as 1600 mA g-1 after 60 cycles, it could still retain a stable specific capacity of 530 mA h g-1, exhibiting an extraordinary rate capability. The greatly improved electrochemical performance of the Mo-doped mesoporous hollow SnO2 sample could be attributed to the following factors. The large surface area and hollow structure can significantly enhance structural integrity by acting as mechanical buffer, effectively alleviating the volume changes generated during the lithiation/delithiation process. The incorporation of Mo into the lattice of SnO2 improves charge transfer kinetics and results in a faster Li+ diffusion rate during the charge-discharge process.

  20. Enhancing Photoresponsivity of Self-Aligned MoS2 Field-Effect Transistors by Piezo-Phototronic Effect from GaN Nanowires.

    PubMed

    Liu, Xingqiang; Yang, Xiaonian; Gao, Guoyun; Yang, Zhenyu; Liu, Haitao; Li, Qiang; Lou, Zheng; Shen, Guozhen; Liao, Lei; Pan, Caofeng; Lin Wang, Zhong

    2016-08-23

    We report high-performance self-aligned MoS2 field-effect transistors (FETs) with enhanced photoresponsivity by the piezo-phototronic effect. The FETs are fabricated based on monolayer MoS2 with a piezoelectric GaN nanowire (NW) as the local gate, and a self-aligned process is employed to define the source/drain electrodes. The fabrication method allows the preservation of the intrinsic property of MoS2 and suppresses the scattering center density in the MoS2/GaN interface, which results in high electrical and photoelectric performances. MoS2 FETs with channel lengths of ∼200 nm have been fabricated with a small subthreshold slope of 64 mV/dec. The photoresponsivity is 443.3 A·W(-1), with a fast response and recovery time of ∼5 ms under 550 nm light illumination. When strain is introduced into the GaN NW, the photoresponsivity is further enhanced to 734.5 A·W(-1) and maintains consistent response and recovery time, which is comparable with that of the mechanical exfoliation of MoS2 transistors. The approach presented here opens an avenue to high-performance top-gated piezo-enhanced MoS2 photodetectors.

  1. Ni nanoparticles@Ni-Mo nitride nanorod arrays: a novel 3D-network hierarchical structure for high areal capacitance hybrid supercapacitors.

    PubMed

    Ruan, Yunjun; Lv, Lin; Li, Zhishan; Wang, Chundong; Jiang, Jianjun

    2017-11-23

    Because of the advanced nature of their high power density, fast charge/discharge time, excellent cycling stability, and safety, supercapacitors have attracted intensive attention for large-scale applications. Nevertheless, one of the obstacles for their further development is their low energy density caused by sluggish redox reaction kinetics, low electroactive electrode materials, and/or high internal resistance. Here, we develop a facile and simple nitridation process to successfully synthesize hierarchical Ni nanoparticle decorated Ni 0.2 Mo 0.8 N nanorod arrays on a nickel foam (Ni-Mo-N NRA/NF) from its NiMoO 4 precursor, which delivers a high areal capacity of 2446 mC cm -2 at a current density of 2 mA cm -2 and shows outstanding cycling stability. The superior performance of the Ni-Mo-N NRA/NF can be ascribed to the metallic conductive nature of the Ni-Mo nitride, the fast surface redox reactions for the electrolyte ions and electrode materials, and the low contacted resistance between the active materials and the current collectors. Furthermore, a hybrid supercapacitor (HSC) is assembled using the Ni-Mo-N NRA/NF as the positive electrode and reduced graphene oxide (RGO) as the negative electrode. The optimized HSC exhibits excellent electrochemical performance with a high energy density of 40.9 W h kg -1 at a power density of 773 W kg -1 and a retention of 80.1% specific capacitance after 6000 cycles. These results indicate that the Ni-Mo-N NRA/NF have a promising potential for use in high-performance supercapacitors.

  2. Ultrasmall Fe2O3 nanoparticles/MoS2 nanosheets composite as high-performance anode material for lithium ion batteries.

    PubMed

    Qu, Bin; Sun, Yue; Liu, Lianlian; Li, Chunyan; Yu, Changjian; Zhang, Xitian; Chen, Yujin

    2017-02-20

    Coupling ultrasmall Fe 2 O 3 particles (~4.0 nm) with the MoS 2 nanosheets is achieved by a facile method for high-performance anode material for Li-ion battery. MoS 2 nanosheets in the composite can serve as scaffolds, efficiently buffering the large volume change of Fe 2 O 3 during charge/discharge process, whereas the ultrasmall Fe 2 O 3 nanoparticles mainly provide the specific capacity. Due to bigger surface area and larger pore volume as well as strong coupling between Fe 2 O 3 particles and MoS 2 nanosheets, the composite exhibits superior electrochemical properties to MoS 2 , Fe 2 O 3 and the physical mixture Fe 2 O 3 +MoS 2 . Typically, after 140 cycles the reversible capacity of the composite does not decay, but increases from 829 mA h g -1 to 864 mA h g -1 at a high current density of 2 A g -1 . Thus, the present facile strategy could open a way for development of cost-efficient anode material with high-performance for large-scale energy conversion and storage systems.

  3. Coaxial CoMoO4 nanowire arrays with chemically integrated conductive coating for high-performance flexible all-solid-state asymmetric supercapacitors

    NASA Astrophysics Data System (ADS)

    Chen, Yaping; Liu, Borui; Liu, Qi; Wang, Jun; Li, Zhanshuang; Jing, Xiaoyan; Liu, Lianhe

    2015-09-01

    Flexible all-solid-state supercapacitors have offered promising applications as novel energy storage devices based on their merits, such as small size, low cost, light weight and high wearability for high-performance portable electronics. However, one major challenge to make flexible all-solid-state supercapacitors depends on the improvement of electrode materials with higher electrical conductivity properties and longer cycling stability. In this article, we put forward a simple strategy to in situ synthesize 1D CoMoO4 nanowires (NWs), using highly conductive CC and an electrically conductive PPy wrapping layer on CoMoO4 NW arrays for high performance electrode materials. The results show that the CoMoO4/PPy hybrid NW electrode exhibits a high areal specific capacitance of ca. 1.34 F cm-2 at a current density of 2 mA cm-2, which is remarkably better than the corresponding values for a pure CoMoO4 NW electrode of 0.7 F cm-2. An excellent cycling performance of nanocomposites of up to 95.2% (ca. 1.12 F cm-2) is achieved after 2000 cycles compared to pristine CoMoO4 NWs. In addition, we fabricate flexible all-solid-state ASC which can be cycled reversibly in the voltage range of 0-1.7 V, and exhibits a maximum energy density of 104.7 W h kg-1 (3.522 mW h cm-3), demonstrating great potential for practical applications in flexible energy storage electronics.Flexible all-solid-state supercapacitors have offered promising applications as novel energy storage devices based on their merits, such as small size, low cost, light weight and high wearability for high-performance portable electronics. However, one major challenge to make flexible all-solid-state supercapacitors depends on the improvement of electrode materials with higher electrical conductivity properties and longer cycling stability. In this article, we put forward a simple strategy to in situ synthesize 1D CoMoO4 nanowires (NWs), using highly conductive CC and an electrically conductive PPy wrapping layer on CoMoO4 NW arrays for high performance electrode materials. The results show that the CoMoO4/PPy hybrid NW electrode exhibits a high areal specific capacitance of ca. 1.34 F cm-2 at a current density of 2 mA cm-2, which is remarkably better than the corresponding values for a pure CoMoO4 NW electrode of 0.7 F cm-2. An excellent cycling performance of nanocomposites of up to 95.2% (ca. 1.12 F cm-2) is achieved after 2000 cycles compared to pristine CoMoO4 NWs. In addition, we fabricate flexible all-solid-state ASC which can be cycled reversibly in the voltage range of 0-1.7 V, and exhibits a maximum energy density of 104.7 W h kg-1 (3.522 mW h cm-3), demonstrating great potential for practical applications in flexible energy storage electronics. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr02961a

  4. Engineering MoSx/Ti/InP Hybrid Photocathode for Improved Solar Hydrogen Production

    NASA Astrophysics Data System (ADS)

    Li, Qiang; Zheng, Maojun; Zhong, Miao; Ma, Liguo; Wang, Faze; Ma, Li; Shen, Wenzhong

    2016-07-01

    Due to its direct band gap of ~1.35 eV, appropriate energy band-edge positions, and low surface-recombination velocity, p-type InP has attracted considerable attention as a promising photocathode material for solar hydrogen generation. However, challenges remain with p-type InP for achieving high and stable photoelectrochemical (PEC) performances. Here, we demonstrate that surface modifications of InP photocathodes with Ti thin layers and amorphous MoSx nanoparticles can remarkably improve their PEC performances. A high photocurrent density with an improved PEC onset potential is obtained. Electrochemical impedance analyses reveal that the largely improved PEC performance of MoSx/Ti/InP is attributed to the reduced charge-transfer resistance and the increased band bending at the MoSx/Ti/InP/electrolyte interface. In addition, the MoSx/Ti/InP photocathodes function stably for PEC water reduction under continuous light illumination over 2 h. Our study demonstrates an effective approach to develop high-PEC-performance InP photocathodes towards stable solar hydrogen production.

  5. Engineering MoSx/Ti/InP Hybrid Photocathode for Improved Solar Hydrogen Production

    PubMed Central

    Li, Qiang; Zheng, Maojun; Zhong, Miao; Ma, Liguo; Wang, Faze; Ma, Li; Shen, Wenzhong

    2016-01-01

    Due to its direct band gap of ~1.35 eV, appropriate energy band-edge positions, and low surface-recombination velocity, p-type InP has attracted considerable attention as a promising photocathode material for solar hydrogen generation. However, challenges remain with p-type InP for achieving high and stable photoelectrochemical (PEC) performances. Here, we demonstrate that surface modifications of InP photocathodes with Ti thin layers and amorphous MoSx nanoparticles can remarkably improve their PEC performances. A high photocurrent density with an improved PEC onset potential is obtained. Electrochemical impedance analyses reveal that the largely improved PEC performance of MoSx/Ti/InP is attributed to the reduced charge-transfer resistance and the increased band bending at the MoSx/Ti/InP/electrolyte interface. In addition, the MoSx/Ti/InP photocathodes function stably for PEC water reduction under continuous light illumination over 2 h. Our study demonstrates an effective approach to develop high-PEC-performance InP photocathodes towards stable solar hydrogen production. PMID:27431993

  6. Engineering MoSx/Ti/InP Hybrid Photocathode for Improved Solar Hydrogen Production.

    PubMed

    Li, Qiang; Zheng, Maojun; Zhong, Miao; Ma, Liguo; Wang, Faze; Ma, Li; Shen, Wenzhong

    2016-07-19

    Due to its direct band gap of ~1.35 eV, appropriate energy band-edge positions, and low surface-recombination velocity, p-type InP has attracted considerable attention as a promising photocathode material for solar hydrogen generation. However, challenges remain with p-type InP for achieving high and stable photoelectrochemical (PEC) performances. Here, we demonstrate that surface modifications of InP photocathodes with Ti thin layers and amorphous MoSx nanoparticles can remarkably improve their PEC performances. A high photocurrent density with an improved PEC onset potential is obtained. Electrochemical impedance analyses reveal that the largely improved PEC performance of MoSx/Ti/InP is attributed to the reduced charge-transfer resistance and the increased band bending at the MoSx/Ti/InP/electrolyte interface. In addition, the MoSx/Ti/InP photocathodes function stably for PEC water reduction under continuous light illumination over 2 h. Our study demonstrates an effective approach to develop high-PEC-performance InP photocathodes towards stable solar hydrogen production.

  7. Oxygen-incorporated MoS2 microspheres with tunable interiors as novel electrode materials for supercapacitors

    NASA Astrophysics Data System (ADS)

    Sun, Tianhua; Li, Zhangpeng; Liu, Xiaohong; Ma, Limin; Wang, Jinqing; Yang, Shengrong

    2017-06-01

    In this work, a simple and facile one-step hydrothermal method is developed to synthesize oxygen-incorporated molybdenum disulphide (O-MoS2) microspheres with tunable interiors (solid, yolk-shell and hollow microstructures) by using carbon disulfide (CS2) as soft template and sulfur source simultaneously. The synthesized O-MoS2 microspheres with enlarged interlayer spacing of ca. 9.8 Å show remarkable electrochemical performances as novel electrode materials for supercapacitors (SCs). Specifically, O-MoS2 hollow microsphere exhibits optimal electrochemical performances with a high specific capacitance of 744.2 F g-1 at a current density of 1 A g-1 and a good cycling stability with ca. 77.8% capacitance retention after 10 K continuous charge-discharge cycles at a high current density of 5 A g-1, thus making it a promising electrode material for high-performance SCs. The excellent electrochemical performances are mainly attributed to the enlarged interlayer spacing and the reduced band gap owing to the oxygen incorporation in MoS2 and the hollow microstructure.

  8. Coupling Mo2C@C core-shell nanocrystals on 3D graphene hybrid aerogel for high-performance lithium ion battery

    NASA Astrophysics Data System (ADS)

    Xin, Hailin; Hai, Yang; Li, Dongzhi; Qiu, Zhaozheng; Lin, Yemao; Yang, Bo; Fan, Haosen; Zhu, Caizhen

    2018-05-01

    Hybrid aerogel by dispersing Mo2C@C core-shell nanocrystals into three-dimensional (3D) graphene (Mo2C@C-GA) has been successfully prepared through two-step methods. Firstly, carbon-coated MoO2 nanocrystals uniformly anchor on 3D graphene aerogel (MoO2@C-GA) via hydrothermal reaction. Then the MoO2@C-GA precursor is transformed into Mo2C@C-GA after the following carbonization process. Furthermore, the freeze-drying step plays an important role in the resulting pore size distribution of the porous networks. Moreover, graphene aerogels exhibit extremely low densities and superior electrical properties. When evaluated as anode material for lithium ion battery, Mo2C@C-GA delivers excellent rate capability and stable cycle performance when compared with C-GA and Mo2C nanoparticles. Mo2C@C-GA exhibits the initial discharge capacity of 1461.4 mA h g-1 at the current density of 0.1 A g-1, and retains a reversible capacity of 1089.8 mA h g-1 after 100 cycles at a current density of 0.1 A g-1. Even at high current density of 5 A g-1, a discharge capacity of 623.5 mA h g-1 can be still achieved. The excellent performance of Mo2C@C-GA could be attributed to the synergistic effect of Mo2C@C nanocrystals and the 3D graphene conductive network.

  9. Highly sensitive visible to infrared MoTe2 photodetectors enhanced by the photogating effect

    NASA Astrophysics Data System (ADS)

    Huang, Hai; Wang, Jianlu; Hu, Weida; Liao, Lei; Wang, Peng; Wang, Xudong; Gong, Fan; Chen, Yan; Wu, Guangjian; Luo, Wenjin; Shen, Hong; Lin, Tie; Sun, Jinglan; Meng, Xiangjian; Chen, Xiaoshuang; Chu, Junhao

    2016-11-01

    Two-dimensional materials are promising candidates for electronic and optoelectronic applications. MoTe2 has an appropriate bandgap for both visible and infrared light photodetection. Here we fabricate a high-performance photodetector based on few-layer MoTe2. Raman spectral properties have been studied for different thicknesses of MoTe2. The photodetector based on few-layer MoTe2 exhibits broad spectral range photodetection (0.6-1.55 μm) and a stable and fast photoresponse. The detectivity is calculated to be 3.1 × 109 cm Hz1/2 W-1 for 637 nm light and 1.3 × 109 cm Hz1/2 W-1 for 1060 nm light at a backgate voltage of 10 V. The mechanisms of photocurrent generation have been analyzed in detail, and it is considered that a photogating effect plays an important role in photodetection. The appreciable performance and detection over a broad spectral range make it a promising material for high-performance photodetectors.

  10. Boosting Two-Dimensional MoS2/CsPbBr3 Photodetectors via Enhanced Light Absorbance and Interfacial Carrier Separation.

    PubMed

    Song, Xiufeng; Liu, Xuhai; Yu, Dejian; Huo, Chengxue; Ji, Jianping; Li, Xiaoming; Zhang, Shengli; Zou, Yousheng; Zhu, Gangyi; Wang, Yongjin; Wu, Mingzai; Xie, An; Zeng, Haibo

    2018-01-24

    Transition metal dichalcogenides (TMDs) are promising candidates for flexible optoelectronic devices because of their special structures and excellent properties, but the low optical absorption of the ultrathin layers greatly limits the generation of photocarriers and restricts the performance. Here, we integrate all-inorganic perovskite CsPbBr 3 nanosheets with MoS 2 atomic layers and take the advantage of the large absorption coefficient and high quantum efficiency of the perovskites, to achieve excellent performance of the TMD-based photodetectors. Significantly, the interfacial charge transfer from the CsPbBr 3 to the MoS 2 layer has been evidenced by the observed photoluminescence quenching and shortened decay time of the hybrid MoS 2 /CsPbBr 3 . Resultantly, such a hybrid MoS 2 /CsPbBr 3 photodetector exhibits a high photoresponsivity of 4.4 A/W, an external quantum efficiency of 302%, and a detectivity of 2.5 × 10 10 Jones because of the high efficient photoexcited carrier separation at the interface of MoS 2 and CsPbBr 3 . The photoresponsivity of this hybrid device presents an improvement of 3 orders of magnitude compared with that of a MoS 2 device without CsPbBr 3 . The response time of the device is also shortened from 65.2 to 0.72 ms after coupling with MoS 2 layers. The combination of the all-inorganic perovskite layer with high photon absorption and the carrier transport TMD layer may pave the way for novel high-performance optoelectronic devices.

  11. Laser surface melting of 10 wt% Mo alloyed hardfacing Stellite 12 plasma transferred arc deposits: Structural evolution and high temperature wear performance

    NASA Astrophysics Data System (ADS)

    Dilawary, Shaikh Asad Ali; Motallebzadeh, Amir; Afzal, Muhammad; Atar, Erdem; Cimenoglu, Huseyin

    2018-05-01

    Laser surface melting (LSM) process has been applied on the plasma transferred arc (PTA) deposited Stellite 12 and 10 wt% Mo alloyed Stellite 12 in this study. Following the LSM process, structural and mechanical property comparison of the LSM'ed surfaces has been made. Hardness of the LSM'ed surfaces was measured as 549 HV and 623 HV for the Stellite 12 and Stellite 12 + 10 wt% Mo deposits, respectively. Despite their different hardness and structural features, the LSM'ed surfaces exhibited similar tribological performance at room temperature (RT), where fatigue wear mechanism operates. However, the wear at 500 °C promotes tribo-oxide layer formation whose composition depended on the alloying with Mo. Thus, addition of 10 wt% Mo into Stellite 12 PTA deposit has remarkably enhanced the high temperature wear performance of the LSM'ed surface as a result of participation of complex oxide (CoMoO4) in tribo-oxide layer.

  12. Ultrathin molybdenum diselenide nanosheets anchored on multi-walled carbon nanotubes as anode composites for high performance sodium-ion batteries

    NASA Astrophysics Data System (ADS)

    Zhang, Zhian; Yang, Xing; Fu, Yun; Du, Ke

    2015-11-01

    Ultrathin molybdenum diselenide nanosheets are decorated on the surface of multi-walled carbon nanotubes (MWCNT) via a one-step hydrothermal method. Uniform MoSe2 nanosheets are firmly anchored on MWCNT according to the characterizations of scanning electron microscope (SEM), transmission electron microscope (TEM). When evaluated as anodes for sodium storage, the MoSe2@MWCNT composites deliver a reversible specific capacity of 459 mAh g-1 at a current of 200 mA g-1 over 90 cycles, and a specific capacity of 385 mAh g-1 even at a current rate of 2000 mAh g-1, which is better than the MoSe2 nanosheets. The enhanced electrochemical performance of the MoSe2@MWCNT composites can be ascribed to the synergic effects of MoSe2 nanosheets and MWCNT. The high capacity and good rate performance reveal that the MoSe2@MWCNT composites are very promising for applications in sodium-ion batteries.

  13. Modification of polymer velvet cathode via metallic Mo coating for enhancement of high-current electron emission performances

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiong, Ying; Wang, Bing; Yi, Yong

    2013-09-15

    The effect of surface Mo coating on the high-current electron emission performances for polymer velvet cathode has been investigated in a diode with A-K gap of 11.5 cm by the combination of time-resolved electrical diagnostic and temporal pressure variation. Compared with uncoated polymer velvet cathode under the single-pulsed emission mode, the Mo-coated one shows lower outgassing levels (∼0.40 Pa L), slower cathode plasma expansion velocity (∼2.30 cm/μs), and higher emission stability as evidences by the change in cathode current, temporal pressure variation, and diode perveance. Moreover, after Mo coating, the emission consistency of the polymer velvet cathode between two adjacentmore » pulses is significantly improved in double-pulsed emission mode with ∼500 ns interval between two pulses, which further confirms the effectiveness of Mo coating for enhancement of electron emission performance of polymer velvet cathodes. These results should be of interest to the high-repetitive high-power microwave systems with cold cathodes.« less

  14. Dual role of monolayer MoS{sub 2} in enhanced photocatalytic performance of hybrid MoS{sub 2}/SnO{sub 2} nanocomposite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, Shuang-Shuang; Huang, Wei-Qing, E-mail: wqhuang@hnu.edu.cn, E-mail: gfhuang@hnu.edu.cn; Yang, Yin-Cai

    2016-05-28

    The enhanced photocatalytic performance of various MoS{sub 2}-based nanomaterials has recently been observed, but the role of monolayer MoS{sub 2} is still not well elucidated at the electronic level. Herein, focusing on a model system, hybrid MoS{sub 2}/SnO{sub 2} nanocomposite, we first present a theoretical elucidation of the dual role of monolayer MoS{sub 2} as a sensitizer and a co-catalyst by performing density functional theory calculations. It is demonstrated that a type-II, staggered, band alignment of ∼0.49 eV exists between monolayer MoS{sub 2} and SnO{sub 2} with the latter possessing the higher electron affinity, or work function, leading to the robustmore » separation of photoexcited charge carriers between the two constituents. Under irradiation, the electrons are excited from Mo 4d orbitals to SnO{sub 2}, thus enhancing the reduction activity of latter, indicating that the monolayer MoS{sub 2} is an effective sensitizer. Moreover, the Mo atoms, which are catalytically inert in isolated monolayer MoS{sub 2}, turn into catalytic active sites, making the monolayer MoS{sub 2} to be a highly active co-catalyst in the composite. The dual role of monolayer MoS{sub 2} is expected to arise in other MoS{sub 2}-semiconductor nanocomposites. The calculated absorption spectra can be rationalized by available experimental results. These findings provide theoretical evidence supporting the experimental reports and pave the way for developing highly efficient MoS{sub 2}-based photocatalysts.« less

  15. Rational Design of Single Molybdenum Atoms Anchored on N-Doped Carbon for Effective Hydrogen Evolution Reaction.

    PubMed

    Chen, Wenxing; Pei, Jiajing; He, Chun-Ting; Wan, Jiawei; Ren, Hanlin; Zhu, Youqi; Wang, Yu; Dong, Juncai; Tian, Shubo; Cheong, Weng-Chon; Lu, Siqi; Zheng, Lirong; Zheng, Xusheng; Yan, Wensheng; Zhuang, Zhongbin; Chen, Chen; Peng, Qing; Wang, Dingsheng; Li, Yadong

    2017-12-11

    The highly efficient electrochemical hydrogen evolution reaction (HER) provides a promising pathway to resolve energy and environment problems. An electrocatalyst was designed with single Mo atoms (Mo-SAs) supported on N-doped carbon having outstanding HER performance. The structure of the catalyst was probed by aberration-corrected scanning transmission electron microscopy (AC-STEM) and X-ray absorption fine structure (XAFS) spectroscopy, indicating the formation of Mo-SAs anchored with one nitrogen atom and two carbon atoms (Mo 1 N 1 C 2 ). Importantly, the Mo 1 N 1 C 2 catalyst displayed much more excellent activity compared with Mo 2 C and MoN, and better stability than commercial Pt/C. Density functional theory (DFT) calculation revealed that the unique structure of Mo 1 N 1 C 2 moiety played a crucial effect to improve the HER performance. This work opens up new opportunities for the preparation and application of highly active and stable Mo-based HER catalysts. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Fabrication and Enhanced Photoelectrochemical Performance of MoS₂/S-Doped g-C₃N₄ Heterojunction Film.

    PubMed

    Ye, Lijuan; Wang, Dan; Chen, Shijian

    2016-03-02

    We report on a novel MoS2/S-doped g-C3N4 heterojunction film with high visible-light photoelectrochemical (PEC) performance. The heterojunction films are prepared by CVD growth of S-doped g-C3N4 film on indium-tin oxide (ITO) glass substrates, with subsequent deposition of a low bandgap, 1.69 eV, visible-light response MoS2 layer by hydrothermal synthesis. Adding thiourea into melamine as the coprecursor not only facilitates the growth of g-C3N4 films but also introduces S dopants into the films, which significantly improves the PEC performance. The fabricated MoS2/S-doped g-C3N4 heterojunction film offers an enhanced anodic photocurrent of as high as ∼1.2 × 10(-4) A/cm(2) at an applied potential of +0.5 V vs Ag/AgCl under the visible light irradiation. The enhanced PEC performance of MoS2/S-doped g-C3N4 film is believed due to the improved light absorption and the efficient charge separation of the photogenerated charge at the MoS2/S-doped g-C3N4 interface. The convenient preparation of carbon nitride based heterojunction films in this work can be widely used to design new heterojunction photoelectrodes or photocatalysts with high performance for H2 evolution.

  17. High performance MoS2 TFT using graphene contact first process

    NASA Astrophysics Data System (ADS)

    Chang Chien, Chih-Shiang; Chang, Hsun-Ming; Lee, Wei-Ta; Tang, Ming-Ru; Wu, Chao-Hsin; Lee, Si-Chen

    2017-08-01

    An ohmic contact of graphene/MoS2 heterostructure is determined by using ultraviolet photoelectron spectroscopy (UPS). Since graphene shows a great potential to replace metal contact, a direct comparison of Cr/Au contact and graphene contact on the MoS2 thin film transistor (TFT) is made. Different from metal contacts, the work function of graphene can be modulated. As a result, the subthreshold swing can be improved. And when Vg

  18. One-step fabrication of large-area ultrathin MoS2 nanofilms with high catalytic activity for photovoltaic devices.

    PubMed

    Liang, Jia; Li, Jia; Zhu, Hongfei; Han, Yuxiang; Wang, Yanrong; Wang, Caixing; Jin, Zhong; Zhang, Gengmin; Liu, Jie

    2016-09-21

    Here we report a facile one-step solution-phase process to directly grow ultrathin MoS2 nanofilms on a transparent conductive glass as a novel high-performance counter electrode for dye-sensitized solar cells. After an appropriate reaction time, the entire surface of the conductive glass substrate was uniformly covered by ultrathin MoS2 nanofilms with a thickness of only several stacked layers. Electrochemical impedance spectroscopy and cyclic voltammetry reveal that the MoS2 nanofilms possess excellent catalytic activity towards tri-iodide reduction. When used in dye-sensitized solar cells, the MoS2 nanofilms show an impressive energy conversion efficiency of 8.3%, which is higher than that of a Pt-based electrode and very promising to be a desirable alternative counter electrode. Considering their ultrathin thickness, superior catalytic activity, simple preparation process and low cost, the as-prepared MoS2 nanofilms with high photovoltaic performance are expected to be widely employed in dye-sensitized solar cells.

  19. Synthesis and characterization of three-dimensional MoS2@carbon fibers hierarchical architecture with high capacity and high mass loading for Li-ion batteries.

    PubMed

    Shan, Xinyuan; Zhang, Shen; Zhang, Na; Chen, Yujin; Gao, Hong; Zhang, Xitian

    2018-01-15

    Three-dimensional (3D) MoS 2 @carbon fibers (CFs) hierarchical architectures are successfully synthesized via a simple hydrothermal method and subsequent annealing. MoS 2 nanoflakes are grown on the twine carbon fibers of the carbonized waste cotton cloth. The twine CFs can provide a short diffusion path for ions in electrolyte, enhance the specific surface area, and improve the conductivity of the 3D MoS 2 @CFs hierarchical architectures with high mass loading of 4.4mgcm -2 . The 3D MoS 2 @CFs hierarchical architectures as the electrode material can achieve a high reversible areal capacity (5.2mAhcm -2 at 2.5mAcm -2 ) and exhibit an excellent rate performance. In addition, CFs are prepared by simply carbonizing the waste cotton and then used as carbon source, which is low-cost and eco-friendly. We also found that the Mo nanoparticles produced during the charge/discharge process exist in the hierarchical architectures during cycling and can improve the conductivity of the entire system as well as the cycling stability. Therefore, MoS 2 @CFs nanocomposites as electrode materials manifest a significant application potential for high-performance Li-ion batteries. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Strong electrically tunable MoTe2/graphene van der Waals heterostructures for high-performance electronic and optoelectronic devices

    NASA Astrophysics Data System (ADS)

    Wang, Feng; Yin, Lei; Wang, Zhenxing; Xu, Kai; Wang, Fengmei; Shifa, Tofik Ahmed; Huang, Yun; Wen, Yao; Jiang, Chao; He, Jun

    2016-11-01

    MoTe2 is an emerging two-dimensional layered material showing ambipolar/p-type conductivity, which makes it an important supplement to n-type two-dimensional layered material like MoS2. However, the properties based on its van der Waals heterostructures have been rarely studied. Here, taking advantage of the strong Fermi level tunability of monolayer graphene (G) and the feature of van der Waals interfaces that is free from Fermi level pinning effect, we fabricate G/MoTe2/G van der Waals heterostructures and systematically study the electronic and optoelectronic properties. We demonstrate the G/MoTe2/G FETs with low Schottky barriers for both holes (55.09 meV) and electrons (122.37 meV). Moreover, the G/MoTe2/G phototransistors show high photoresponse performances with on/off ratio, responsivity, and detectivity of ˜105, 87 A/W, and 1012 Jones, respectively. Finally, we find the response time of the phototransistors is effectively tunable and a mechanism therein is proposed to explain our observation. This work provides an alternative choice of contact for high-performance devices based on p-type and ambipolar two-dimensional layered materials.

  1. Coaxial CoMoO4 nanowire arrays with chemically integrated conductive coating for high-performance flexible all-solid-state asymmetric supercapacitors.

    PubMed

    Chen, Yaping; Liu, Borui; Liu, Qi; Wang, Jun; Li, Zhanshuang; Jing, Xiaoyan; Liu, Lianhe

    2015-10-07

    Flexible all-solid-state supercapacitors have offered promising applications as novel energy storage devices based on their merits, such as small size, low cost, light weight and high wearability for high-performance portable electronics. However, one major challenge to make flexible all-solid-state supercapacitors depends on the improvement of electrode materials with higher electrical conductivity properties and longer cycling stability. In this article, we put forward a simple strategy to in situ synthesize 1D CoMoO4 nanowires (NWs), using highly conductive CC and an electrically conductive PPy wrapping layer on CoMoO4 NW arrays for high performance electrode materials. The results show that the CoMoO4/PPy hybrid NW electrode exhibits a high areal specific capacitance of ca. 1.34 F cm(-2) at a current density of 2 mA cm(-2), which is remarkably better than the corresponding values for a pure CoMoO4 NW electrode of 0.7 F cm(-2). An excellent cycling performance of nanocomposites of up to 95.2% (ca. 1.12 F cm(-2)) is achieved after 2000 cycles compared to pristine CoMoO4 NWs. In addition, we fabricate flexible all-solid-state ASC which can be cycled reversibly in the voltage range of 0-1.7 V, and exhibits a maximum energy density of 104.7 W h kg(-1) (3.522 mW h cm(-3)), demonstrating great potential for practical applications in flexible energy storage electronics.

  2. Thermal oxidation synthesis hollow MoO{sub 3} microspheres and their applications in lithium storage and gas-sensing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Xinyu; School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang 111003; Cao, Minhua, E-mail: caomh@bit.edu.cn

    2013-06-01

    Graphical abstract: MoO{sub 3} hollow microspheres were synthesized via a facile and template-free solvothermal route and subsequent heat treatment in air. The MoO{sub 3} hollow microspheres exhibit an improved lithium storage and gas-sensing performance. Highlights: ► Hollow MoO{sub 3} microspheres were synthesized by thermal oxidation of hollow MoO{sub 2}. ► The MoO{sub 3} hollow microspheres have a relatively high specific surface area. ► The MoO{sub 3} hollow microspheres exhibit improved lithium storage performance. ► The MoO{sub 3} hollow microspheres show good responses to ammonia gas. - Abstract: In this paper, MoO{sub 3} hollow microspheres were synthesized via a facile andmore » template-free solvothermal route and subsequent heat treatment in air. The MoO{sub 3} hollow microspheres have a relatively high specific surface area, and with such a feature, the as-synthesized MoO{sub 3} hollow microspheres have potential applications in Li-ion battery and gas-sensor. When tested as a Li-storage anode material, the MoO{sub 3} hollow microspheres show a higher discharge capacity of 1377.1 mA h g{sup −1} in the first discharge and a high reversible capacity of 780 mA h g{sup −1} after 100 cycles at a rate of 1 C. Furthermore, as a gas sensing material, the MoO{sub 3} hollow microspheres exhibit an improved sensitivity and short response/recovery time to trace levels of ammonia gas.« less

  3. Photoactivated Mixed In-Plane and Edge-Enriched p-Type MoS2 Flake-Based NO2 Sensor Working at Room Temperature.

    PubMed

    Agrawal, Abhay V; Kumar, Rahul; Venkatesan, Swaminathan; Zakhidov, Alex; Yang, Guang; Bao, Jiming; Kumar, Mahesh; Kumar, Mukesh

    2018-05-25

    Toxic gases are produced during the burning of fossil fuels. Room temperature (RT) fast detection of toxic gases is still challenging. Recently, MoS 2 transition metal dichalcogenides have sparked great attention in the research community due to their performance in gas sensing applications. However, MoS 2 based gas sensors still suffer from long response and recovery times, especially at RT. Considering this challenge, here, we report photoactivated highly reversible and fast detection of NO 2 sensors at room temperature (RT) by using mixed in-plane and edge-enriched p-MoS 2 flakes (mixed MoS 2 ). The sensor showed fast response with good sensitivity of ∼10.36% for 10 ppm of NO 2 at RT without complete recovery. However, complete recovery was obtained with better sensor performance under UV light illumination at RT. The UV assisted NO 2 sensing showed improved performance in terms of fast response and recovery kinetics with enhanced sensitivity to 10 ppm NO 2 concentration. The sensor performance is also investigated under thermal energy, and a better sensor performance with reduced sensitivity and high selectivity toward NO 2 was observed. A detailed gas sensing mechanism based on the density functional theory (DFT) calculations for favorable NO 2 adsorption sites on in-plane and edge-enriched MoS 2 flakes is proposed. This study revealed the role of favorable adsorption sites in MoS 2 flakes for the enhanced interaction of target gases and developed a highly sensitive, reversible, and fast gas sensor for next-generation toxic gases at room temperature.

  4. Hierarchical MoO3/SnS2 core-shell nanowires with enhanced electrochemical performance for lithium-ion batteries.

    PubMed

    Hu, Chenli; Shu, Haibo; Shen, Zihong; Zhao, Tianfeng; Liang, Pei; Chen, Xiaoshuang

    2018-06-27

    Two-dimensional (2D) tin disulfide (SnS2) is a promising anode material for lithium-ion batteries (LIBs) because of its high theoretical capacity. The main challenges associated with the SnS2 electrodes are the poor cycling stability and low rate capability due to structural degradation in the discharge/charge process. Here, a facile two-step synthesis method is developed to fabricate hierarchical MoO3/SnS2 core-shell nanowires, where ultrathin SnS2 nanosheets are vertically anchored on MoO3 nanobelts to induce a heterointerface. Benefiting from the unique structural and compositional characteristics, the hierarchical MoO3/SnS2 core-shell nanowires exhibit excellent electrochemical performance and deliver a high reversible capacity of 504 mA h g-1 after 100 stable cycles at a current density of 100 mA g-1, which is far superior to the MoO3 and SnS2 electrodes. An analysis of lithiation dynamics based on ab initio molecular dynamics simulations demonstrates that the formation of a hierarchical MoO3/SnS2 core-shell heterostructure can effectively suppress the rapid dissociation of shell-layer SnS2 nanosheets via the interfacial coupling effect and the central MoO3 backbone can trap and support the polysulfide in the discharge/charge process. The results are responsible for the high storage capacity and rate capability of MoO3/SnS2 electrode materials. This work provides a novel design strategy for constructing high-performance electrodes for LIBs.

  5. Top-Down and Bottom-Up Approaches in Engineering 1 T Phase Molybdenum Disulfide (MoS2 ): Towards Highly Catalytically Active Materials.

    PubMed

    Chua, Chun Kiang; Loo, Adeline Huiling; Pumera, Martin

    2016-09-26

    The metallic 1 T phase of MoS2 has been widely identified to be responsible for the improved performances of MoS2 in applications including hydrogen evolution reactions and electrochemical supercapacitors. To this aim, various synthetic methods have been reported to obtain 1 T phase-rich MoS2 . Here, the aim is to evaluate the efficiencies of the bottom-up (hydrothermal reaction) and top-down (chemical exfoliation) approaches in producing 1 T phase MoS2 . It is established in this study that the 1 T phase MoS2 produced through the bottom-up approach contains a high proportion of 1 T phase and demonstrates excellent electrochemical and electrical properties. Its performance in the hydrogen evolution reaction and electrochemical supercapacitors also surpassed that of 1 T phase MoS2 produced through a top-down approach. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Enhanced kinetics of polysulfide redox reactions on Mo2C/CNT in lithium-sulfur batteries.

    PubMed

    Razaq, Rameez; Sun, Dan; Xin, Ying; Li, Qian; Huang, Taizhong; Zheng, Lei; Zhang, Zhaoliang; Huang, Yunhui

    2018-07-20

    Among different energy storage devices, the lithium-sulfur (Li-S) battery is the subject of recent attention. However, the capacity decay caused by polysulfide shuttle leading to sluggish kinetics of polysulfide redox reactions is the main hindrance for its practical application in Li-S batteries. Herein, molybdenum carbide nanoparticles anchored on carbon nanotubes (Mo 2 C/CNT) are reported to serve as an efficient cathode material to enhance the electrochemical kinetics of polysulfide conversion in Li-S batteries. Mo 2 C/CNT shows strong adsorption and activation of polar polysulfides and therefore accelerates the redox kinetics of polysulfides, reduces the energy barrier, effectively mitigates the polarization and polysulfide shuttle, thus improving the electrochemical performance. The S-Mo 2 C/CNT composite with 70 wt% sulfur loading exhibits high specific discharge capacity (1206 mA h g -1 at 0.5 C), excellent high-rate performance, long cycle life (900 cycles), and outstanding Coulombic efficiency (∼100%) at a high rate (2 C) corresponding to a capacity decay of only 0.05%. Remarkably, the S-Mo 2 C/CNT cathode with high areal sulfur loading of 2.5 mg cm -2 exhibits high-rate capacities and stable cycling performance over 100 cycles, offering the potential for use in high energy Li-S batteries.

  7. Enhanced kinetics of polysulfide redox reactions on Mo2C/CNT in lithium–sulfur batteries

    NASA Astrophysics Data System (ADS)

    Razaq, Rameez; Sun, Dan; Xin, Ying; Li, Qian; Huang, Taizhong; Zheng, Lei; Zhang, Zhaoliang; Huang, Yunhui

    2018-07-01

    Among different energy storage devices, the lithium–sulfur (Li–S) battery is the subject of recent attention. However, the capacity decay caused by polysulfide shuttle leading to sluggish kinetics of polysulfide redox reactions is the main hindrance for its practical application in Li–S batteries. Herein, molybdenum carbide nanoparticles anchored on carbon nanotubes (Mo2C/CNT) are reported to serve as an efficient cathode material to enhance the electrochemical kinetics of polysulfide conversion in Li–S batteries. Mo2C/CNT shows strong adsorption and activation of polar polysulfides and therefore accelerates the redox kinetics of polysulfides, reduces the energy barrier, effectively mitigates the polarization and polysulfide shuttle, thus improving the electrochemical performance. The S-Mo2C/CNT composite with 70 wt% sulfur loading exhibits high specific discharge capacity (1206 mA h g‑1 at 0.5 C), excellent high-rate performance, long cycle life (900 cycles), and outstanding Coulombic efficiency (∼100%) at a high rate (2 C) corresponding to a capacity decay of only 0.05%. Remarkably, the S-Mo2C/CNT cathode with high areal sulfur loading of 2.5 mg cm‑2 exhibits high-rate capacities and stable cycling performance over 100 cycles, offering the potential for use in high energy Li–S batteries.

  8. High-energy asymmetric supercapacitors based on free-standing hierarchical Co-Mo-S nanosheets with enhanced cycling stability.

    PubMed

    Balamurugan, Jayaraman; Li, Chao; Peera, Shaik Gouse; Kim, Nam Hoon; Lee, Joong Hee

    2017-09-21

    Layered transition metal sulfides (TMS) are emerging as advanced materials for energy storage and conversion applications. In this work, we report a facile and cost-effective anion exchange technique to fabricate a layered, multifaceted, free standing, ultra-thin ternary cobalt molybdenum sulfide nanosheet (Co-Mo-S NS) architecture grown on a 3D porous Ni foam substrate. The unique Co-Mo layered double hydroxides are first synthesized as precursors and consequently transformed into ultra-thin Co-Mo-S NS. When employed as an electrode for supercapacitors, the Co-Mo-S NS delivered an ultra-high specific capacitance of 2343 F g -1 at a current density of 1 mA cm -2 with tremendous rate capability and extraordinary cycling performance (96.6% capacitance retention after 20 000 cycles). Furthermore, assembled Co-Mo-S/nitrogen doped graphene nanosheets (NGNS) in an asymmetric supercapacitor (ASC) device delivered an excellent energy density of 89.6 Wh kg -1 , an amazing power density of 20.07 kW kg -1 , and superior cycling performance (86.8% capacitance retention after 50 000 cycles). Such exceptional electrochemical performance of Co-Mo-S NS is ascribed to the good electrical contact with the 3D Ni foam, ultra-high contact area with the electrolyte, and enhanced architectural softening during the charging/discharging process. It is expected that the fabricated, unique, ultra-thin Co-Mo-S NS have great potential for future energy storage devices.

  9. Assembly of flexible CoMoO4@NiMoO4·xH2O and Fe2O3 electrodes for solid-state asymmetric supercapacitors

    PubMed Central

    Wang, Jing; Zhang, Leipeng; Liu, Xusong; Zhang, Xiang; Tian, Yanlong; Liu, Xiaoxu; Zhao, Jiupeng; Li, Yao

    2017-01-01

    In this work, CoMoO4@NiMoO4·xH2O core-shell heterostructure electrode is directly grown on carbon fabric (CF) via a feasible hydrothermal procedure with CoMoO4 nanowires (NWs) as the core and NiMoO4 nanosheets (NSs) as the shell. This core-shell heterostructure could provide fast ion and electron transfer, a large number of active sites, and good strain accommodation. As a result, the CoMoO4@NiMoO4·xH2O electrode yields high-capacitance performance with a high specific capacitance of 1582 F g−1, good cycling stability with the capacitance retention of 97.1% after 3000 cycles and good rate capability. The electrode also shows excellent mechanical flexibility. Also, a flexible Fe2O3 nanorods/CF electrode with enhanced electrochemical performance was prepared. A solid-state asymmetric supercapacitor device is successfully fabricated by using flexible CoMoO4@NiMoO4·xH2O as the positive electrode and Fe2O3 as the negative electrode. The asymmetric supercapacitor with a maximum voltage of 1.6 V demonstrates high specific energy (41.8 Wh kg−1 at 700 W kg−1), high power density (12000 W kg−1 at 26.7 Wh kg−1), and excellent cycle ability with the capacitance retention of 89.3% after 5000 cycles (at the current density of 3A g−1). PMID:28106170

  10. Construction of Hierarchical CNT/rGO-Supported MnMoO4 Nanosheets on Ni Foam for High-Performance Aqueous Hybrid Supercapacitors.

    PubMed

    Mu, Xuemei; Du, Jingwei; Zhang, Yaxiong; Liang, Zhilin; Wang, Huan; Huang, Baoyu; Zhou, Jinyuan; Pan, Xiaojun; Zhang, Zhenxing; Xie, Erqing

    2017-10-18

    Rationally designed conductive hierarchical nanostructures are highly desirable for supporting pseudocapacitive materials to achieve high-performance electrodes for supercapacitors. Herein, manganese molybdate nanosheets were hydrothermally grown with graphene oxide (GO) on three-dimensional nickel foam-supported carbon nanotube structures. Under the optimal graphene oxide concentration, the obtained carbon nanotubes/reduced graphene oxide/MnMoO 4 composites (CNT/rGO/MnMoO 4 ) as binder-free supercapacitor cathodes perform with a high specific capacitance of 2374.9 F g -1 at the scan rate of 2 mV s -1 and good long-term stability (97.1% of the initial specific capacitance can be maintained after 3000 charge/discharge cycles). The asymmetric device with CNT/rGO/MnMoO 4 as the cathode electrode and the carbon nanotubes/activated carbon on nickel foam (CNT-AC) as the anode electrode can deliver an energy density of 59.4 Wh kg -1 at the power density of 1367.9 W kg -1 . These superior performances can be attributed to the synergistic effects from each component of the composite electrodes: highly pseudocapacitive MnMoO 4 nanosheets and three-dimensional conductive Ni foam/CNTs/rGO networks. These results suggest that the fabricated asymmetric supercapacitor can be a promising candidate for energy storage devices.

  11. Improvement in top-gate MoS2 transistor performance due to high quality backside Al2O3 layer

    NASA Astrophysics Data System (ADS)

    Bolshakov, Pavel; Zhao, Peng; Azcatl, Angelica; Hurley, Paul K.; Wallace, Robert M.; Young, Chadwin D.

    2017-07-01

    A high quality Al2O3 layer is developed to achieve high performance in top-gate MoS2 transistors. Compared with top-gate MoS2 field effect transistors on a SiO2 layer, the intrinsic mobility and subthreshold slope were greatly improved in high-k backside layer devices. A forming gas anneal is found to enhance device performance due to a reduction in the charge trap density of the backside dielectric. The major improvements in device performance are ascribed to the forming gas anneal and the high-k dielectric screening effect of the backside Al2O3 layer. Top-gate devices built upon these stacks exhibit a near-ideal subthreshold slope of ˜69 mV/dec and a high Y-Function extracted intrinsic carrier mobility (μo) of 145 cm2/V.s, indicating a positive influence on top-gate device performance even without any backside bias.

  12. Performance Investigation of Multilayer MoS2 Thin-Film Transistors Fabricated via Mask-free Optically Induced Electrodeposition.

    PubMed

    Li, Meng; Liu, Na; Li, Pan; Shi, Jialin; Li, Guangyong; Xi, Ning; Wang, Yuechao; Liu, Lianqing

    2017-03-08

    Transition metal dichalcogenides, particularly MoS 2 , have recently received enormous interest in explorations of the physics and technology of nanodevice applications because of their excellent optical and electronic properties. Although monolayer MoS 2 has been extensively investigated for various possible applications, its difficulty of fabrication renders it less appealing than multilayer MoS 2 . Moreover, multilayer MoS 2 , with its inherent high electronic/photonic state densities, has higher output driving capabilities and can better satisfy the ever-increasing demand for versatile devices. Here, we present multilayer MoS 2 back-gate thin-film transistors (TFTs) that can achieve a relatively low subthreshold swing of 0.75 V/decade and a high mobility of 41 cm 2 ·V -1 ·s -1 , which exceeds the typical mobility value of state-of-the-art amorphous silicon-based TFTs by a factor of 80. Ag and Au electrode-based MoS 2 TFTs were fabricated by a convenient and rapid process. Then we performed a detailed analysis of the impacts of metal contacts and MoS 2 film thickness on electronic performance. Our findings show that smoother metal contacts exhibit better electronic characteristics and that MoS 2 film thickness should be controlled within a reasonable range of 30-40 nm to obtain the best mobility values, thereby providing valuable insights regarding performance enhancement for MoS 2 TFTs. Additionally, to overcome the limitations of the conventional fabrication method, we employed a novel approach known as optically induced electrodeposition (OIE), which allows the flexible and precise patterning of metal films and enables rapid and mask-free device fabrication, for TFT fabrication.

  13. HYDROTHERMAL SYNTHESIS OF α-MoO3 NANORODS FOR NO2 DETECTION

    NASA Astrophysics Data System (ADS)

    Bai, Shouli; Chen, Song; Tian, Yuan; Luo, Ruixian; Li, Dianqing; Chen, Aifan

    2012-12-01

    Thermodynamically stable molybdenum trioxide nanorods have been successfully synthesized by a simple hydrothermal process. The product exhibits high-quality, single-crystalline layered orthorhombic structure (α-MoO3), and aspect ratio over 20 by characterizations of X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HR-TEM) and Fourier transform infrared (FT-IR). The growth mechanism of α-MoO3 nanorods can be understood by electroneutral and dehydration reaction, which is highly dependent on solution acidity and hydrothermal temperature. The sensing tests show that the sensor based on MoO3 nanorods exhibits high sensitivity to NO2 and is not interferred by CO and CH4, which makes this kind sensor a competitive candidate for NO2 detection. The intrinsic sensing performance of MoO3 maybe arise from its nonstoichiometry of MoO3 owing to the presence of Mo5+ and oxygen vacancy in MoO3 lattice, which has been confirmed by X-ray photoelectron spectroscopy (XPS) analysis. The sensing mechanism of MoO3 for NO2 is also discussed.

  14. Improved integration of ultra-thin high-k dielectrics in few-layer MoS2 FET by remote forming gas plasma pretreatment

    NASA Astrophysics Data System (ADS)

    Wang, Xiao; Zhang, Tian-Bao; Yang, Wen; Zhu, Hao; Chen, Lin; Sun, Qing-Qing; Zhang, David Wei

    2017-01-01

    The effective and high-quality integration of high-k dielectrics on two-dimensional (2D) crystals is essential to the device structure engineering and performance improvement of field-effect transistor (FET) based on the 2D semiconductors. We report a 2D MoS2 transistor with ultra-thin Al2O3 top-gate dielectric (6.1 nm) and extremely low leakage current. Remote forming gas plasma pretreatment was carried out prior to the atomic layer deposition, providing nucleation sites with the physically adsorbed ions on the MoS2 surface. The top gate MoS2 FET exhibited excellent electrical performance, including high on/off current ratio over 109, subthreshold swing of 85 mV/decade and field-effect mobility of 45.03 cm2/V s. Top gate leakage current less than 0.08 pA/μm2 at 4 MV/cm has been obtained, which is the smallest compared with the reported top-gated MoS2 transistors. Such an optimized integration of high-k dielectric in 2D semiconductor FET with enhanced performance is very attractive, and it paves the way towards the realization of more advanced 2D nanoelectronic devices and integrated circuits.

  15. Mo-doped Na3V2(PO4)3@C composites for high stable sodium ion battery cathode

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoxiao; Wang, Wanwan; Zhu, Baichuan; Qian, Fangfang; Fang, Zhen

    2018-03-01

    NASICON-type Na3V2(PO4)3 (NVP) with superior electrochemical performance has attracted enormous attention with the development of sodium ion batteries. The structural aggregation as well as poor conductivity of NVP hinder its application in high rate perforamance cathode with long stablity. In this paper, Na3V2- x Mo x (PO4)3@C was successfully prepared through two steps method, including sol-gel and solid state thermal reduction. The optimal doping amount of Mo was defined by experiment. When x was 0.15, the Na3V1.85Mo0.15(PO4)3@C sample has the best cycle performance and rate performance. The discharge capacity of Na3V1.85Mo0.15(PO4)3@C could reach 117.26 mA·h·g-1 at 0.1 C. The discharge capacity retention was found to be 94.5% after 600 cycles at 5 C.

  16. Solution processible MoOx-incorporated graphene anode for efficient polymer light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Lee, Dongchan; Kim, Donghyuk; Lee, Yonghee; Jeon, Duk Young

    2017-06-01

    Graphene has attracted great attention owing to its superb properties as an anode of organic or polymer light-emitting diodes (OLEDs or PLEDs). However, there are still barriers for graphene to replace existing indium tin oxide (ITO) due to relatively high sheet resistance and work function mismatch. In this study, PLEDs using molybdenum oxide (MoOx) nanoparticle-doped graphene are demonstrated on a plastic substrate to have a low sheet resistance and high work function. Also, this work shows how the doping amount influences the electronic properties of the graphene anode and the PLED performance. A facile and scalable spin coating process was used for doping graphene with MoOx. After doping, the sheet resistance and the optical transmittance of five-layer graphene were ˜180 Ω sq-1 and ˜88%, respectively. Moreover, the surface roughness of MoOx-doped graphene becomes smoother than that of pristine graphene. Furthermore, a nonlinear relationship was observed between the MoOx doping level and device performance. Therefore, a modified stacking structure of graphene electrode is presented to further enhance device performance. The maximum external quantum efficiency (EQE) and power efficiency of the PLED using the MoOx-doped graphene anode were 4.7% and 13.3 lm W-1, respectively. The MoOx-doped graphene anode showed enhanced device performance (261% for maximum EQE, 255% for maximum power efficiency) compared with the pristine graphene.

  17. Effects of thermal treatment on the co-rolled U-Mo fuel foils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dennis D. Keiser, Jr.; Tammy L. Trowbridge; Cynthia R. Breckenridge

    2014-11-01

    A monolithic fuel type is being developed to convert US high performance research and test reactors such as Advanced Test Reactor (ATR) at Idaho National Laboratory from highly enriched uranium (HEU) to low-enriched uranium (LEU). The interaction between the cladding and the U-Mo fuel meat during fuel fabrication and irradiation is known to have negative impacts on fuel performance, such as mechanical integrity and dimensional stability. In order to eliminate/minimize the direct interaction between cladding and fuel meat, a thin zirconium diffusion barrier was introduced between the cladding and U-Mo fuel meat through a co-rolling process. A complex interface betweenmore » the zirconium and U-Mo was developed during the co-rolling process. A predictable interface between zirconium and U-Mo is critical to achieve good fuel performance since the interfaces can be the weakest link in the monolithic fuel system. A post co-rolling annealing treatment is expected to create a well-controlled interface between zirconium and U-Mo. A systematic study utilizing post co-rolling annealing treatment has been carried out. Based on microscopy results, the impacts of the annealing treatment on the interface between zirconium and U-Mo will be presented and an optima annealing treatment schedule will be suggested. The effects of the annealing treatment on the fuel performance will also be discussed.« less

  18. First-Principles Study of MoO3/Graphene Composite as Cathode Material for High-Performance Lithium-Ion Batteries

    NASA Astrophysics Data System (ADS)

    Cui, Yanhua; Zhao, Yu; Chen, Hong; Wei, Kaiyuan; Ni, Shuang; Cui, Yixiu; Shi, Siqi

    2018-03-01

    Using first-principles calculations, we have systematically investigated the adsorption and diffusion behavior of Li in MoO3 bulk, on MoO3 (010) surface and in MoO3/graphene composite. Our results indicate that, in case of MoO3 bulk, Li diffusion barriers in the interlayer and intralayer spaces are 0.55 eV and 0.58 eV respectively, which are too high to warrant fast Lithium-ion charge/discharge processes. While on MoO3 (010) surface, Li exhibits a diffusion barrier as low as 0.07 eV which guarantees an extremely fast Li diffusion rate during charge/discharge cycling. However, in MoO3/graphene monolayer, Li diffusion barrier is at the same level as that on MoO3 (010) surface, which also ensures a very rapid Li charge/discharge rate. The rapid Li charge/discharge rate in this system originates from the removal of the upper dangling O1 atoms which hinder the Li diffusion on the lower MoO3 layer. Besides this, due to the interaction between Li and graphene, the Li average binding energy increases to 0.14 eV compared to its value on MoO3 (010) surface which contributes to a higher voltage. Additionally, the increased ratio of surface area provides more space for Li storage and the capacity of MoO3/graphene composite increases up to 279.2 mAhg-1. The last but not the least, due to the high conductivity of graphene, the conductivity of MoO3/graphene composite enhances greatly which is beneficial for electrode materials. In the light of present results, MoO3/graphene composite exhibits higher voltage, good conductivity, large Li capacity and very rapid Li charge/discharge rate, which prove it as a promising cathode material for high-performance lithium-ion batteries (LIBs).

  19. Graphite Carbon-Supported Mo2C Nanocomposites by a Single-Step Solid State Reaction for Electrochemical Oxygen Reduction.

    PubMed

    Huang, K; Bi, K; Liang, C; Lin, S; Wang, W J; Yang, T Z; Liu, J; Zhang, R; Fan, D Y; Wang, Y G; Lei, M

    2015-01-01

    Novel graphite-molybdenum carbide nanocomposites (G-Mo2C) are synthesized by a typical solid state reaction with melamine and MoO3 as precursors under inert atmosphere. The characterization results indicate that G-Mo2C composites are composed of high crystallization and purity of Mo2C and few layers of graphite carbon. Mo2C nanoparticles with sizes ranging from 5 to 50 nm are uniformly supported by surrounding graphite layers. It is believed that Mo atom resulting from the reduction of MoO3 is beneficial to the immobilization of graphite carbon. Moreover, the electrocatalytic performances of G-Mo2C for ORR in alkaline medium are investigated by cyclic voltammetry (CV), rotating disk electrode (RDE) and chronoamperometry test with 3M methanol. The results show that G-Mo2C has a considerable catalytic activity and superior methanol tolerance performance for the oxygen reduction reaction (ORR) benefiting from the chemical interaction between the carbide nanoparticles and graphite carbon.

  20. NO2 sensing at room temperature using vertically aligned MoS2 flakes network

    NASA Astrophysics Data System (ADS)

    Kumar, Rahul; Goel, Neeraj; Kumar, Mahesh

    2018-04-01

    To exploit the role of alignment of MoS2 flake in chemical sensing, here, we have synthesized the horizontally and vertically aligned MoS2 flake network using conventional chemical vapor deposition technique. The morphology and number of layers were confirmed by SEM and Raman spectroscopy, respectively. The sensing performance of horizontally aligned and vertically aligned flake network was investigated to NO2 at room temperature. Vertically aligned MoS2 based sensor showed higher sensitivity 51.54 % and 63.2 % compared to horizontally aligned MoS2 sensor' sensitivity of 35.32 % and 45.2 % to 50 ppm and 100 ppm NO2, respectively. This high sensitivity attributed to the high aspect ratio and high adsorption energy on the edge site of vertically aligned MoS2.

  1. Reduced graphene oxide-wrapped MoO3 composites prepared by using metal-organic frameworks as precursor for all-solid-state flexible supercapacitors.

    PubMed

    Cao, Xiehong; Zheng, Bing; Shi, Wenhui; Yang, Jian; Fan, Zhanxi; Luo, Zhimin; Rui, Xianhong; Chen, Bo; Yan, Qingyu; Zhang, Hua

    2015-08-26

    Reduced graphene oxide-wrapped MoO3M (rGO/MoO3 ) is prepared by a novel and simple method that is developed by using a metal-organic framework as the precursor. After a two-step annealing process, the obtained rGO/MoO3 composite is used for a high-performance supercapacitor electrode. Moreover, an all-solid-state flexible supercapacitor is fabricated based on the rGO/MoO3 composite, which shows stable performance under different bending states. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Peifu; Shi, Penghui, E-mail: shipenghui@shiep.edu.cn; Hong, Yuanchen

    Graphical abstract: The photocatalytic performance of Ag{sub 3}PO{sub 4} was highly improved by the in situ deposition of Ag{sub 3}PO{sub 4} particles on graphene-like MoS{sub 2} nanosheets. - Highlights: • A novel composite photocatalyst was synthesized by depositing Ag{sub 3}PO{sub 4} on the graphene-like MoS{sub 2} nanosheets. • Ag{sub 3}PO{sub 4}/MoS{sub 2} photocatalyst exhibited a high photocatalytic activity for RhB degradation. • Graphene-like MoS{sub 2} nanosheets. • MoS{sub 2} nanosheets play an important role in photocatalytic activity by serving as an effective acceptor of the photogenerated carriers. - Abstract: A facile method for the in situ deposition of Ag{sub 3}PO{submore » 4} on graphene-like MoS{sub 2} nanosheets was developed to improve the photocatalytic performance of Ag{sub 3}PO{sub 4} catalysts. The heterostructure of Ag{sub 3}PO{sub 4}/MoS{sub 2} composites was characterized by using X-ray diffraction spectra (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). The prepared Ag{sub 3}PO{sub 4}/MoS{sub 2} photocatalyst exhibited a much higher photocatalytic activity than that of Ag{sub 3}PO{sub 4} for the degradation of Rhodamine B (RhB) under visible light irradiation (>400 nm). The improved photocatalytic activity of Ag{sub 3}PO{sub 4}/MoS{sub 2} is attributed to the efficient separation of photogenerated electron–hole pairs in the composite. This result provides a new perspective on the design of high-performance photocatalysts which is promising for energy applications.« less

  3. High-Performance Photovoltaic Detector Based on MoTe2 /MoS2 Van der Waals Heterostructure.

    PubMed

    Chen, Yan; Wang, Xudong; Wu, Guangjian; Wang, Zhen; Fang, Hehai; Lin, Tie; Sun, Shuo; Shen, Hong; Hu, Weida; Wang, Jianlu; Sun, Jinglan; Meng, Xiangjian; Chu, Junhao

    2018-03-01

    Van der Waals heterostructures based on 2D layered materials have received wide attention for their multiple applications in optoelectronic devices, such as solar cells, light-emitting devices, and photodiodes. In this work, high-performance photovoltaic photodetectors based on MoTe 2 /MoS 2 vertical heterojunctions are demonstrated by exfoliating-restacking approach. The fundamental electric properties and band structures of the junction are revealed and analyzed. It is shown that this kind of photodetectors can operate under zero bias with high on/off ratio (>10 5 ) and ultralow dark current (≈3 pA). Moreover, a fast response time of 60 µs and high photoresponsivity of 46 mA W -1 are also attained at room temperature. The junctions based on 2D materials are expected to constitute the ultimate functional elements of nanoscale electronic and optoelectronic applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Recycle of enriched Mo targets for economic production of 99Mo/ 99mTc medical isotope without use of enriched uranium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tkac, Peter; Vandegrift, George F.

    2015-08-09

    A new recycle process for recovery of enriched 98Mo or 100Mo used for production of 99Mo/ 99mTc medical isotope was developed. In this process, Mo is precipitated from spent NorthStar Mo/Tc generator solution containing ~200 g/L Mo as K 2MoO 4 in 5 M KOH using acetic acid and then washed with nitric acid. High purification factors from potassium were achieved, and typical Mo recovery yields were ~95 %. In conclusion, the recycle process was performed with up to 260 g of Mo per batch and can be easily implemented for processing of up to 400 g of Mo.

  5. High Surface Area MoS 2/Graphene Hybrid Aerogel for Ultrasensitive NO 2 Detection

    DOE PAGES

    Long, Hu; Harley-Trochimczyk, Anna; Pham, Thang; ...

    2016-05-23

    A MoS 2/graphene hybrid aerogel synthesized with two-dimensional MoS 2 sheets coating a high surface area graphene aerogel scaffold is characterized and used for ultrasensitive NO 2 detection. The combination of graphene and MoS 2 leads to improved sensing properties with the graphene scaffold providing high specific surface area and high electrical and thermal conductivity and the single to few-layer MoS2 sheets providing high sensitivity and selectivity to NO 2. The hybrid aerogel is integrated onto a low-power microheater platform to probe the gas sensing performance. At room temperature, the sensor exhibits an ultralow detection limit of 50 ppb NOmore » 2. By heating the material to 200 °C, the response and recovery times to reach 90% of the final signal decrease to <1 min, while retaining the low detection limit. The MoS 2/graphene hybrid also shows good selectivity for NO 2 against H 2 and CO, especially when compared to bare graphene aerogel. The unique structure of the hybrid aerogel is responsible for the ultrasensitive, selective, and fast NO 2 sensing. The improved sensing performance of this hybrid aerogel also suggests the possibility of other 2D material combinations for further sensing applications.« less

  6. Design and numerical analysis of highly sensitive Au-MoS2-graphene based hybrid surface plasmon resonance biosensor

    NASA Astrophysics Data System (ADS)

    Rahman, M. Saifur; Anower, Md. Shamim; Hasan, Md. Rabiul; Hossain, Md. Biplob; Haque, Md. Ismail

    2017-08-01

    We demonstrate a highly sensitive Au-MoS2-Graphene based hybrid surface plasmon resonance (SPR) biosensor for the detection of DNA hybridization. The performance parameters of the proposed sensor are investigated in terms of sensitivity, detection accuracy and quality factor at operating wavelength of 633 nm. We observed in the numerical study that sensitivity can be greatly increased by adding MoS2 layer in the middle of a Graphene-on-Au layer. It is shown that by using single layer of MoS2 in between gold and graphene layer, the proposed biosensor exhibits simultaneously high sensitivity of 87.8 deg/RIU, high detection accuracy of 1.28 and quality factor of 17.56 with gold layer thickness of 50 nm. This increased performance is due to the absorption ability and optical characteristics of graphene biomolecules and high fluorescence quenching ability of MoS2. On the basis of changing in SPR angle and minimum reflectance, the proposed sensor can sense nucleotides bonding happened between double-stranded DNA (dsDNA) helix structures. Therefore, this sensor can successfully detect the hybridization of target DNAs to the probe DNAs pre-immobilized on the Au-MoS2-Graphene hybrid with capability of distinguishing single-base mismatch.

  7. One-pot mass preparation of MoS2/C aerogels for high-performance supercapacitors and lithium-ion batteries.

    PubMed

    Zhang, Yan; He, Ting; Liu, Guanglei; Zu, Lianhai; Yang, Jinhu

    2017-07-20

    In this paper, we report the successful design and synthesis of a hierarchically porous MoS 2 /C composite aerogel by simple one-pot mass preparation. The synthesis involves the in situ formation of MoS 2 nanosheets on agarose molecular chains, the gelation of MoS 2 -deposited agarose monomers to generate a composite hydrogel, and in situ transformation of the composite hydrogel into a MoS 2 /C composite aerogel through carbonization. This composite aerogel can be used as a high-performance electrode material for supercapacitors and lithium-ion batteries. When tested as a supercapacitor electrode, it achieves a high specific capacitance of 712.6 F g -1 at 1 A g -1 and 97.3% capacity retention after 13 000 cycles at 6 A g -1 . In addition, as a lithium-ion battery electrode, it exhibits a superior rate capability (653.2 mA h g -1 at 0.1 A g -1 and 334.5 mA h g -1 at 5.0 A g -1 ) and an ultrahigh capacity retention of nearly 100% after 1000 cycles at 1 A g -1 . These performances may be ascribed to the unique structure of the MoS 2 /C composite aerogel, such as hierarchical pores, (002) plane-expanded MoS 2 and interconnected carbon networks embedded uniformly with MoS 2 nanosheets. This work may provide a general and simple approach for mass preparation of composite aerogel materials and pave the way for promising materials applied in both supercapacitors and lithium-ion batteries.

  8. Rational coating of Li7P3S11 solid electrolyte on MoS2 electrode for all-solid-state lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Xu, R. C.; Wang, X. L.; Zhang, S. Z.; Xia, Y.; Xia, X. H.; Wu, J. B.; Tu, J. P.

    2018-01-01

    Large interfacial resistance between electrode and electrolyte limits the development of high-performance all-solid-state batteries. Herein we report a uniform coating of Li7P3S11 solid electrolyte on MoS2 to form a MoS2/Li7P3S11 composite electrode for all-solid-state lithium ion batteries. The as-synthesized Li7P3S11 processes a high ionic of 2.0 mS cm-1 at room temperature. Due to homogeneous union and reduced interfacial resistance, the assembled all-solid-state batteries with the MoS2/Li7P3S11 composite electrode exhibit higher reversible capacity of 547.1 mAh g-1 at 0.1 C and better cycling stability than the counterpart based on untreated MoS2. Our study provides a new reference for design/fabrication of advanced electrode materials for high-performance all-solid-state batteries.

  9. Biocompatible PEGylated MoS2 nanosheets: controllable bottom-up synthesis and highly efficient photothermal regression of tumor.

    PubMed

    Wang, Shige; Li, Kai; Chen, Yu; Chen, Hangrong; Ma, Ming; Feng, Jingwei; Zhao, Qinghua; Shi, Jianlin

    2015-01-01

    Two-dimensional transition metal dichalcogenides, particularly MoS2 nanosheets, have been deemed as a novel category of NIR photothermal transducing agent. Herein, an efficient and versatile one-pot solvothermal synthesis based on "bottom-up" strategy has been, for the first time, proposed for the controlled synthesis of PEGylated MoS2 nanosheets by using a novel "integrated" precursor containing both Mo and S elements. This facile but unique PEG-mediated solvothermal procedure endowed MoS2 nanosheets with controlled size, increased crystallinity and excellent colloidal stability. The photothermal performance of nanosheets was optimized via modulating the particulate size and surface PEGylation. PEGylated MoS2 nanosheets with desired photothermal conversion performance and excellent colloidal and photothermal stability were further utilized for highly efficient photothermal therapy of cancer in a tumor-bearing mouse xenograft. Without showing observable in vitro and in vivo hemolysis, coagulation and toxicity, the optimized MoS2-PEG nanosheets showed promising in vitro and in vivo anti-cancer efficacy. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Status of LUMINEU program to search for neutrinoless double beta decay of 100Mo with cryogenic ZnMoO4 scintillating bolometers

    NASA Astrophysics Data System (ADS)

    Danevich, F. A.; Bergé, L.; Boiko, R. S.; Chapellier, M.; Chernyak, D. M.; Coron, N.; Devoyon, L.; Drillien, A.-A.; Dumoulin, L.; Enss, C.; Fleischmann, A.; Gastaldo, L.; Giuliani, A.; Gray, D.; Gros, M.; Hervé, S.; Humbert, V.; Ivanov, I. M.; Juillard, A.; Kobychev, V. V.; Koskas, F.; Loidl, M.; Magnier, P.; Makarov, E. P.; Mancuso, M.; de Marcillac, P.; Marnieros, S.; Marrache-Kikuchi, C.; Navick, X.-F.; Nones, C.; Olivieri, E.; Paul, B.; Penichot, Y.; Pessina, G.; Plantevin, O.; Poda, D. V.; Redon, T.; Rodrigues, M.; Shlegel, V. N.; Strazzer, O.; Tenconi, M.; Torres, L.; Tretyak, V. I.; Vasiliev, Ya. V.; Velazquez, M.; Viraphong, O.

    2015-10-01

    The LUMTNEU program aims at performing a pilot experiment on 0ν2β decay of 100Mo using radiopure ZnMoO4 crystals enriched in 100Mo operated as cryogenic scintillating bolometers. Large volume ZnMoO4 crystal scintillators (˜ 0.3 kg) were developed and tested showing high performance in terms of radiopurity, energy resolution and α/β particle discrimination capability. Zinc molybdate crystal scintillators enriched in 100Mo were grown for the first time by the low-thermal-gradient Czochralski technique with a high crystal yield and an acceptable level of enriched molybdenum irrecoverable losses. A background level of ˜ 0.5 counts/(yr keV ton) in the region of interest can be reached in a large detector array thanks to the excellent detectors radiopurity and particle discrimination capability, suppression of randomly coinciding events by pulse-shape analysis, and anticoincidence cut. These results pave the way to future sensitive searches based on the LUMTNEU technology, capable of approachingand exploring the inverted hierarchy region of the neutrino mass pattern.

  11. Enhanced sunlight-driven photocatalytic performance of Bi-doped CdMoO4 benefited from efficient separation of photogenerated charge pairs

    NASA Astrophysics Data System (ADS)

    Huang, Jiao; Liu, Huanhuan; Zhong, Junbo; Yang, Qi; Chen, Jiufu; Li, Jianzhang; Ma, Dongmei; duan, Ran

    2018-06-01

    In this paper, to further boost the photocatalytic performance of CdMoO4, Bi3+ was successfully doped into CdMoO4 by a facile microwave hydrothermal method. The Bi-doped CdMoO4 photocatalysts prepared were characterized by Brunauer-Emmett-Teller (BET) method, X-ray diffraction (XRD), UV-Vis diffuse reflectance spectroscopy (DRS), scanning electron microscopy (SEM), energy dispersive spectrometer (EDS), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), electron spin-resonance (ESR) and surface photovoltage spectroscopy (SPS). The results exhibit that doping Bi3+ into CdMoO4 remarkably boosts the separation rate of photoinduced charge pairs and the specific surface area, decrease the crystal size, narrows the band gap of the CdMoO4 and induces the binding energy shift of Cd, all these advantageous factors result in the promoted photocatalytic performance of CdMoO4. Using rhodamine B (RhB) as model toxic pollutant, the photocatalytic activities of the photocatalysts were evaluated under a 500 W Xe lamp irradiation. When the molar ratio of Bi/Cd is 0.2%, Bi-CdMoO4 prepared displays the best photocatalytic performance, the photocatalytic performance of the 0.2% sample is more than twice of that of the reference CdMoO4.

  12. Facile synthesis of Sb2S3/MoS2 heterostructure as anode material for sodium-ion batteries.

    PubMed

    Zhang, Zhendong; Zhao, Jiachang; Xu, Meilan; Wang, Hongxia; Gong, Yanmei; Xu, Jingli

    2018-05-18

    A novel Sb2S3/MoS2 heterostructure in which Sb2S3 nanorods are coated with MoS2 nanosheets to form core-shell structure has been fabricated via a facile two-step hydrothermal process. The Sb2S3/MoS2 heterostructure utilized as anode of sodium-ion batteries (SIBs) shows higher capacity, superior rate capability and better cycling performance compared with individual Sb2S3 nanorods and MoS2 nanosheets. Specifically, the Sb2S3/MoS2 electrode shows an initial reversible capacity of 701 mAh g-1 at the current density of 100 mA g-1, which is remained 80.1% of the initial perforance after 100 cycles at the same current density. This outstanding electrochemical performance indicates Sb2S3/MoS2 heterostructure is a very promising anode material for high-performance SIBs. © 2018 IOP Publishing Ltd.

  13. Development of ^{100}Mo-containing scintillating bolometers for a high-sensitivity neutrinoless double-beta decay search

    NASA Astrophysics Data System (ADS)

    Armengaud, E.; Augier, C.; Barabash, A. S.; Beeman, J. W.; Bekker, T. B.; Bellini, F.; Benoît, A.; Bergé, L.; Bergmann, T.; Billard, J.; Boiko, R. S.; Broniatowski, A.; Brudanin, V.; Camus, P.; Capelli, S.; Cardani, L.; Casali, N.; Cazes, A.; Chapellier, M.; Charlieux, F.; Chernyak, D. M.; de Combarieu, M.; Coron, N.; Danevich, F. A.; Dafinei, I.; Jesus, M. De; Devoyon, L.; Domizio, S. Di; Dumoulin, L.; Eitel, K.; Enss, C.; Ferroni, F.; Fleischmann, A.; Foerster, N.; Gascon, J.; Gastaldo, L.; Gironi, L.; Giuliani, A.; Grigorieva, V. D.; Gros, M.; Hehn, L.; Hervé, S.; Humbert, V.; Ivannikova, N. V.; Ivanov, I. M.; Jin, Y.; Juillard, A.; Kleifges, M.; Kobychev, V. V.; Konovalov, S. I.; Koskas, F.; Kozlov, V.; Kraus, H.; Kudryavtsev, V. A.; Laubenstein, M.; Sueur, H. Le; Loidl, M.; Magnier, P.; Makarov, E. P.; Mancuso, M.; de Marcillac, P.; Marnieros, S.; Marrache-Kikuchi, C.; Nagorny, S.; Navick, X.-F.; Nikolaichuk, M. O.; Nones, C.; Novati, V.; Olivieri, E.; Pagnanini, L.; Pari, P.; Pattavina, L.; Pavan, M.; Paul, B.; Penichot, Y.; Pessina, G.; Piperno, G.; Pirro, S.; Plantevin, O.; Poda, D. V.; Queguiner, E.; Redon, T.; Rodrigues, M.; Rozov, S.; Rusconi, C.; Sanglard, V.; Schäffner, K.; Scorza, S.; Shlegel, V. N.; Siebenborn, B.; Strazzer, O.; Tcherniakhovski, D.; Tomei, C.; Tretyak, V. I.; Umatov, V. I.; Vagneron, L.; Vasiliev, Ya. V.; Velázquez, M.; Vignati, M.; Weber, M.; Yakushev, E.; Zolotarova, A. S.

    2017-11-01

    This paper reports on the development of a technology involving ^{100}Mo-enriched scintillating bolometers, compatible with the goals of CUPID, a proposed next-generation bolometric experiment to search for neutrinoless double-beta decay. Large mass (˜ 1 kg), high optical quality, radiopure ^{100}Mo-containing zinc and lithium molybdate crystals have been produced and used to develop high performance single detector modules based on 0.2-0.4 kg scintillating bolometers. In particular, the energy resolution of the lithium molybdate detectors near the Q-value of the double-beta transition of ^{100}Mo (3034 keV) is 4-6 keV FWHM. The rejection of the α -induced dominant background above 2.6 MeV is better than 8σ . Less than 10 μ Bq/kg activity of ^{232}Th (^{228}Th) and ^{226}Ra in the crystals is ensured by boule recrystallization. The potential of ^{100}Mo-enriched scintillating bolometers to perform high sensitivity double-beta decay searches has been demonstrated with only 10 kg× d exposure: the two neutrino double-beta decay half-life of ^{100}Mo has been measured with the up-to-date highest accuracy as T_{1/2} = [6.90 ± 0.15(stat.) ± 0.37(syst.)] × 10^{18} years. Both crystallization and detector technologies favor lithium molybdate, which has been selected for the ongoing construction of the CUPID-0/Mo demonstrator, containing several kg of ^{100}Mo.

  14. MoS2 @HKUST-1 Flower-Like Nanohybrids for Efficient Hydrogen Evolution Reactions.

    PubMed

    Wang, Chengli; Su, Yingchun; Zhao, Xiaole; Tong, Shanshan; Han, Xiaojun

    2018-01-24

    A novel MoS 2 -based flower-like nanohybrid for hydrogen evolution was fabricated through coating the Cu-containing metal-organic framework (HKUST-1) onto MoS 2 nanosheets. It is the first time that MoS 2 @HKUST-1 nanohybrids have been reported for the enhanced electrochemical performance of HER. The morphologies and components of the MoS 2 @HKUST-1 flower-like nanohybrids were characterized by scanning electron microscopy, X-ray diffraction analysis and Fourier transform infrared spectroscopy. Compared with pure MoS 2 , the MoS 2 @HKUST-1 hybrids exhibit enhanced performance on hydrogen evolution reaction with an onset potential of -99 mV, a smaller Tafel slope of 69 mV dec -1 , and a Faradaic efficiency of nearly 100 %. The MoS 2 @HKUST-1 flower-like nanohybrids exhibit excellent stability in acidic media. This design opens new possibilities to effectively synthesize non-noble metal catalysts with high performance for the hydrogen evolution reaction (HER). © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Low-power logic computing realized in a single electric-double-layer MoS2 transistor gated with polymer electrolyte

    NASA Astrophysics Data System (ADS)

    Guo, Junjie; Xie, Dingdong; Yang, Bingchu; Jiang, Jie

    2018-06-01

    Due to its mechanical flexibility, large bandgap and carrier mobility, atomically thin molybdenum disulphide (MoS2) has attracted widespread attention. However, it still lacks a facile route to fabricate a low-power high-performance logic gates/circuits before it gets the real application. Herein, we reported a facile and environment-friendly method to establish the low-power logic function in a single MoS2 field-effect transistor (FET) configuration gated with a polymer electrolyte. Such low-power and high-performance MoS2 FET can be implemented by using water-soluble polyvinyl alcohol (PVA) polymer as proton-conducting electric-double-layer (EDL) dielectric layer. It exhibited an ultra-low voltage (1.5 V) and a good performance with a high current on/off ratio (Ion/off) of 1 × 105, a large electron mobility (μ) of 47.5 cm2/V s, and a small subthreshold swing (S) of 0.26 V/dec, respectively. The inverter can be realized by using such a single MoS2 EDL FET with a gain of ∼4 at the operation voltage of only ∼1 V. Most importantly, the neuronal AND logic computing can be also demonstrated by using such a double-lateral-gate single MoS2 EDL transistor. These results show an effective step for future applications of 2D MoS2 FETs for integrated electronic engineering and low-energy environment-friendly green electronics.

  16. The capacity fading mechanism and improvement of cycling stability in MoS2-based anode materials for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Shu, Haibo; Li, Feng; Hu, Chenli; Liang, Pei; Cao, Dan; Chen, Xiaoshuang

    2016-01-01

    Two-dimensional (2D) layered MoS2 nanosheets possess great potential as anode materials for lithium ion batteries (LIBs), but they still suffer from poor cycling performance. Improving the cycling stability of electrode materials depends on a deep understanding of their dynamic structural evolution and reaction kinetics in the lithiation process. Herein, thermodynamic phase diagrams and the lithiation dynamics of MoS2-based nanostructures with the intercalation of lithium ions are studied by using first-principles calculations and ab initio molecular dynamics simulations. Our results demonstrate that the continuous intercalation of Li ions induces structural destruction of 2H phase MoS2 nanosheets in the discharge process that follows a layer-by-layer dissociation mechanism. Meanwhile, the intercalation of Li ions leads to a structural transition of MoS2 nanosheets from the 2H to the 1T phase due to the ultralow transition barriers (~0.1 eV). We find that the phase transition can slow down the dissociation of MoS2 nanosheets during lithiation. The result can be applied to explain extensive experimental observation of the fast capacity fading of MoS2-based anode materials between the first and the subsequent discharges. To suppress the dissociation of MoS2 nanosheets in the lithiation process, we propose a strategy by constructing a sandwich-like graphene/MoS2/graphene structure that indicates high chemical stability, superior conductivity, and high Li-ion mobility in the charge/discharge process, implying the possibility to induce an improvement in the anode cycling performance. This work opens a new route to rational design layered transition-metal disulfide (TMD) anode materials for LIBs with superior cycling stability and electrochemical performance.Two-dimensional (2D) layered MoS2 nanosheets possess great potential as anode materials for lithium ion batteries (LIBs), but they still suffer from poor cycling performance. Improving the cycling stability of electrode materials depends on a deep understanding of their dynamic structural evolution and reaction kinetics in the lithiation process. Herein, thermodynamic phase diagrams and the lithiation dynamics of MoS2-based nanostructures with the intercalation of lithium ions are studied by using first-principles calculations and ab initio molecular dynamics simulations. Our results demonstrate that the continuous intercalation of Li ions induces structural destruction of 2H phase MoS2 nanosheets in the discharge process that follows a layer-by-layer dissociation mechanism. Meanwhile, the intercalation of Li ions leads to a structural transition of MoS2 nanosheets from the 2H to the 1T phase due to the ultralow transition barriers (~0.1 eV). We find that the phase transition can slow down the dissociation of MoS2 nanosheets during lithiation. The result can be applied to explain extensive experimental observation of the fast capacity fading of MoS2-based anode materials between the first and the subsequent discharges. To suppress the dissociation of MoS2 nanosheets in the lithiation process, we propose a strategy by constructing a sandwich-like graphene/MoS2/graphene structure that indicates high chemical stability, superior conductivity, and high Li-ion mobility in the charge/discharge process, implying the possibility to induce an improvement in the anode cycling performance. This work opens a new route to rational design layered transition-metal disulfide (TMD) anode materials for LIBs with superior cycling stability and electrochemical performance. Electronic supplementary information (ESI) available: Models and energetics of Li adsorption/intercalation onto MoS2 sheets, details of the phase diagram calculations, schematic illustration for the structural evolution of lithiated MoS2 nanosheets, AIMD trajectories for lithiated silicene/MoS2/silicene composites, and movies for recording the AIMD simulation results. See DOI: 10.1039/c5nr07909h

  17. Lightweight Reduced Graphene Oxide@MoS2 Interlayer as Polysulfide Barrier for High-Performance Lithium-Sulfur Batteries.

    PubMed

    Tan, Lei; Li, Xinhai; Wang, Zhixing; Guo, Huajun; Wang, Jiexi

    2018-01-31

    The further development of lithium-sulfur (Li-S) batteries is limited by the fact that the soluble polysulfide leads to the shuttle effect, thereby reducing the cycle stability and cycle life of the batteries. To address this issue, here a thin and lightweight (8 μm and 0.24 mg cm -2 ) reduced graphene oxide@MoS 2 (rGO@MoS 2 ) interlayer between the cathode and the commercial separator is developed as a polysulfide barrier. The rGO plays the roles of both a polysulfide physical barrier and an additional current collector, while MoS 2 has a high chemical adsorption for polysulfides. The experiments demonstrate that the Li-S cell constructed with an rGO@MoS 2 -coated separator shows a high reversible capacity of 1122 mAh g -1 at 0.2 C, a low capacity fading rate of 0.116% for 500 cycles at 1 C, and an outstanding rate performance (615 mAh g -1 at 2 C). Such an interlayer is expected to be ideal for lithium-sulfur battery applications because of its excellent electrochemical performance and simple synthesis process.

  18. Hydrothermal growth of two dimensional hierarchical MoS2 nanospheres on one dimensional CdS nanorods for high performance and stable visible photocatalytic H2 evolution

    NASA Astrophysics Data System (ADS)

    Chava, Rama Krishna; Do, Jeong Yeon; Kang, Misook

    2018-03-01

    The visible photocatalytic H2 production from water splitting considered as a clean and renewable energy source could solve the problem of greenhouse gas emission from fossil fuels. Despite tremendous efforts, the development of cost effective, highly efficient and more stable visible photocatalysts for splitting of water remains a great challenge. Here, we report the heteronanostructures consisting of hierarchical MoS2 nanospheres grown on 1D CdS nanorods referred to as CdS-MoS2 HNSs as a high performance visible photocatalyst for H2 evolution. The as-synthesized CdS-MoS2 HNSs exhibited ∼11 fold increment of H2 evolution rate when compared to pure CdS nanorods. This remarkable enhanced hydrogen evolution performance can be assigned to the positive synergetic effect from heteronanostructures formed between the CdS and MoS2 components which assist as an electron sink and source for abundant active edge sites and in turn increases the charge separation. This study presents a low-cost visible photocatalyst for solar energy conversion to achieve efficient H2.

  19. Three-Dimensional Tubular MoS2/PANI Hybrid Electrode for High Rate Performance Supercapacitor.

    PubMed

    Ren, Lijun; Zhang, Gaini; Yan, Zhe; Kang, Liping; Xu, Hua; Shi, Feng; Lei, Zhibin; Liu, Zong-Huai

    2015-12-30

    By using three-dimensional (3D) tubular molybdenum disulfide (MoS2) as both an active material in electrochemical reaction and a framework to provide more paths for insertion and extraction of ions, PANI nanowire arrays with a diameter of 10-20 nm can be controllably grown on both the external and internal surface of 3D tubular MoS2 by in situ oxidative polymerization of aniline monomers and 3D tubular MoS2/PANI hybrid materials with different amounts of PANI are prepared. A controllable growth of PANI nanowire arrays on the tubular MoS2 surface provides an opportunity to optimize the capacitive performance of the obtained electrodes. When the loading amount of PANI is 60%, the obtained MoS2/PANI-60 hybrid electrode not only shows a high specific capacitance of 552 F/g at a current density of 0.5 A/g, but also gives excellent rate capability of 82% from 0.5 to 30 A/g. The remarkable rate performance can be mainly attributed to the architecture with synergistic effect between 3D tubular MoS2 and PANI nanowire arrays. Moreover, the MoS2/PANI-60 based symmetric supercapacitor also exhibits the excellent rate performance and good cycling stability. The specific capacitance based on the total mass of the two electrodes is 124 F/g at a current density of 1 A/g and 79% of its initial capacitance is remained after 6000 cycles. The 3D tubular structure provides a good and favorable method for improving the capacitance retention of PANI electrode.

  20. Enhancement of photodetection characteristics of MoS2 field effect transistors using surface treatment with copper phthalocyanine.

    PubMed

    Pak, Jinsu; Jang, Jingon; Cho, Kyungjune; Kim, Tae-Young; Kim, Jae-Keun; Song, Younggul; Hong, Woong-Ki; Min, Misook; Lee, Hyoyoung; Lee, Takhee

    2015-11-28

    Recently, two-dimensional materials such as molybdenum disulfide (MoS2) have been extensively studied as channel materials for field effect transistors (FETs) because MoS2 has outstanding electrical properties such as a low subthreshold swing value, a high on/off ratio, and good carrier mobility. In this study, we characterized the electrical and photo-responsive properties of MoS2 FET when stacking a p-type organic copper phthalocyanine (CuPc) layer on the MoS2 surface. We observed that the threshold voltage of MoS2 FET could be controlled by stacking the CuPc layers due to a charge transfer phenomenon at the interface. Particularly, we demonstrated that CuPc/MoS2 hybrid devices exhibited high performance as a photodetector compared with the pristine MoS2 FETs, caused by more electron-hole pairs separation at the p-n interface. Furthermore, we found the optimized CuPc thickness (∼2 nm) on the MoS2 surface for the best performance as a photodetector with a photoresponsivity of ∼1.98 A W(-1), a detectivity of ∼6.11 × 10(10) Jones, and an external quantum efficiency of ∼12.57%. Our study suggests that the MoS2 vertical hybrid structure with organic material can be promising as efficient photodetecting devices and optoelectronic circuits.

  1. Hydrothermal synthesis and photocatalytic performance of hierarchical Bi{sub 2}MoO{sub 6} microspheres using BiOI microspheres as self-sacrificing templates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Ming; Zhang, Wei-De, E-mail: zhangwd@scut.edu.cn

    2015-07-15

    Bi{sub 2}MoO{sub 6} hierarchical microspheres were successfully prepared through phase transformation from BiOI microspheres with the assistance of sodium citrate under hydrothermal condition. The possible formation mechanism for the conversion of BiOI to Bi{sub 2}MoO{sub 6} is discussed here. After being annealed at 300 °C for 2 h, the obtained Bi{sub 2}MoO{sub 6} microspheres exhibited remarkably enhanced photocatalytic activity towards the degradation of rhodamine B and phenol. The superior catalytic performance can be attributed to its larger surface area and higher crystallinity. In addition, Bi{sub 2}MoO{sub 6} microspheres are stable during the degradation reaction and can be used repeatedly. -more » Graphical abstract: Bi{sub 2}MoO{sub 6} hierarchical microspheres were successfully prepared through a facile partial anion exchange strategy using BiOI microspheres as self-sacrificing templates. The Bi{sub 2}MoO{sub 6} microspheres show high visible light photocatalytic activity. - Highlights: • Bi{sub 2}MoO{sub 6} microspheres were prepared via self-sacrificing template anion exchange. • Sodium citrate-assisted anion exchange for preparation of Bi{sub 2}MoO{sub 6} photocatalyst. • Bi{sub 2}MoO{sub 6} catalysts show high visible light photocatalytic activity.« less

  2. Flexible integrated circuits and multifunctional electronics based on single atomic layers of MoS2 and graphene

    NASA Astrophysics Data System (ADS)

    Amani, Matin; Burke, Robert A.; Proie, Robert M.; Dubey, Madan

    2015-03-01

    Two-dimensional materials, such as graphene and its analogues, have been investigated by numerous researchers for high performance flexible and conformal electronic systems, because they offer the ultimate level of thickness scaling, atomically smooth surfaces and high crystalline quality. Here, we use layer-by-layer transfer of large area molybdenum disulphide (MoS2) and graphene grown by chemical vapor deposition (CVD) to demonstrate electronics on flexible polyimide (PI) substrates. On the same PI substrate, we are able to simultaneously fabricate MoS2 based logic, non-volatile memory cells with graphene floating gates, photo-detectors and MoS2 transistors with tunable source and drain contacts. We are also able to demonstrate that these flexible heterostructure devices have very high electronic performance, comparable to four point measurements taken on SiO2 substrates, with on/off ratios >107 and field effect mobilities as high as 16.4 cm2 V-1 s-1. Additionally, the heterojunctions show high optoelectronic sensitivity and were operated as photodetectors with responsivities over 30 A W-1. Through local gating of the individual graphene/MoS2 contacts, we are able to tune the contact resistance over the range of 322-1210 Ω mm for each contact, by modulating the graphene work function. This leads to devices with tunable and multifunctional performance that can be implemented in a conformable platform.

  3. Flexible integrated circuits and multifunctional electronics based on single atomic layers of MoS2 and graphene.

    PubMed

    Amani, Matin; Burke, Robert A; Proie, Robert M; Dubey, Madan

    2015-03-20

    Two-dimensional materials, such as graphene and its analogues, have been investigated by numerous researchers for high performance flexible and conformal electronic systems, because they offer the ultimate level of thickness scaling, atomically smooth surfaces and high crystalline quality. Here, we use layer-by-layer transfer of large area molybdenum disulphide (MoS2) and graphene grown by chemical vapor deposition (CVD) to demonstrate electronics on flexible polyimide (PI) substrates. On the same PI substrate, we are able to simultaneously fabricate MoS2 based logic, non-volatile memory cells with graphene floating gates, photo-detectors and MoS2 transistors with tunable source and drain contacts. We are also able to demonstrate that these flexible heterostructure devices have very high electronic performance, comparable to four point measurements taken on SiO2 substrates, with on/off ratios >10(7) and field effect mobilities as high as 16.4 cm(2) V(-1) s(-1). Additionally, the heterojunctions show high optoelectronic sensitivity and were operated as photodetectors with responsivities over 30 A W(-1). Through local gating of the individual graphene/MoS2 contacts, we are able to tune the contact resistance over the range of 322-1210 Ω mm for each contact, by modulating the graphene work function. This leads to devices with tunable and multifunctional performance that can be implemented in a conformable platform.

  4. Amorphous/crystalline hybrid MoO2 nanosheets for high-energy lithium-ion capacitors.

    PubMed

    Zhao, Xu; Wang, Hong-En; Cao, Jian; Cai, Wei; Sui, Jiehe

    2017-09-26

    A carbon-free MoO 2 nanosheet with amorphous/crystalline hybrid domain was synthesized, and demonstrated to be an efficient host material for lithium-ion capacitors. Discrepant crystallinity in MoO 2 shows unique boundaries, which can improve Li-ion diffusion through the electrode. Improved rate capacities and cycling stability open the door to design of high-performance lithium ion capacitor bridging batteries and supercapacitors.

  5. Self-assembly of hierarchical MoSx/CNT nanocomposites (2

    PubMed Central

    Shi, Yumeng; Wang, Ye; Wong, Jen It; Tan, Alex Yuan Sheng; Hsu, Chang-Lung; Li, Lain-Jong; Lu, Yi-Chun; Yang, Hui Ying

    2013-01-01

    Two dimension (2D) layered molybdenum disulfide (MoS2) has emerged as a promising candidate for the anode material in lithium ion batteries (LIBs). Herein, 2D MoSx (2 ≤ x ≤ 3) nanosheet-coated 1D multiwall carbon nanotubes (MWNTs) nanocomposites with hierarchical architecture were synthesized via a high-throughput solvent thermal method under low temperature at 200°C. The unique hierarchical nanostructures with MWNTs backbone and nanosheets of MoSx have significantly promoted the electrode performance in LIBs. Every single MoSx nanosheet interconnect to MWNTs centers with maximized exposed electrochemical active sites, which significantly enhance ion diffusion efficiency and accommodate volume expansion during the electrochemical reaction. A remarkably high specific capacity (i.e., > 1000 mAh/g) was achieved at the current density of 50 mA g−1, which is much higher than theoretical numbers for either MWNTs or MoS2 along (~372 and ~670 mAh/g, respectively). We anticipate 2D nanosheets/1D MWNTs nanocomposites will be promising materials in new generation practical LIBs. PMID:23835645

  6. Hierarchical core-shell NiCo2O4@NiMoO4 nanowires grown on carbon cloth as integrated electrode for high-performance supercapacitors

    PubMed Central

    Huang, Liang; Zhang, Wei; Xiang, Jinwei; Xu, Henghui; Li, Guolong; Huang, Yunhui

    2016-01-01

    Hierarchical core-shell NiCo2O4@NiMoO4 nanowires were grown on carbon cloth (CC@NiCo2O4@NiMoO4) by a two-step hydrothermal route to fabricate a flexible binder-free electrode. The prepared CC@NiCo2O4@NiMoO4 integrated electrode was directly used as an electrode for faradaic supercapacitor. It shows a high areal capacitance of 2.917 F cm−2 at 2 mA cm−2 and excellent cycling stability with 90.6% retention over 2000 cycles at a high current density of 20 mA cm−2. The superior specific capacitance, rate and cycling performance can be ascribed to the fast transferring path for electrons and ions, synergic effect and the stability of the hierarchical core-shell structure. PMID:27515274

  7. Asymmetric supercapacitors with high energy density based on helical hierarchical porous Na x MnO2 and MoO2.

    PubMed

    Lu, Xue-Feng; Huang, Zhi-Xiang; Tong, Ye-Xiang; Li, Gao-Ren

    2016-01-01

    Helical hierarchical porous Na x MnO 2 /CC and MoO 2 /CC, which are assembled from nanosheets and nanoparticles, respectively, are fabricated using a simple electrodeposition method. These unique helical porous structures enable electrodes to have a high capacitance and an outstanding cycling performance. Based on the helical Na x MnO 2 /CC as the positive electrodes and helical MoO 2 /CC as the negative electrodes, high performance Na x MnO 2 /CC//MoO 2 /CC asymmetric supercapacitors (ASCs) are successfully assembled, and they achieve a maximum volume C sp of 2.04 F cm -3 and a maximum energy density of 0.92 mW h cm -3 for the whole device and an excellent cycling stability with 97.22% C sp retention after 6000 cycles.

  8. Hierarchical core-shell NiCo2O4@NiMoO4 nanowires grown on carbon cloth as integrated electrode for high-performance supercapacitors.

    PubMed

    Huang, Liang; Zhang, Wei; Xiang, Jinwei; Xu, Henghui; Li, Guolong; Huang, Yunhui

    2016-08-12

    Hierarchical core-shell NiCo2O4@NiMoO4 nanowires were grown on carbon cloth (CC@NiCo2O4@NiMoO4) by a two-step hydrothermal route to fabricate a flexible binder-free electrode. The prepared CC@NiCo2O4@NiMoO4 integrated electrode was directly used as an electrode for faradaic supercapacitor. It shows a high areal capacitance of 2.917 F cm(-2) at 2 mA cm(-2) and excellent cycling stability with 90.6% retention over 2000 cycles at a high current density of 20 mA cm(-2). The superior specific capacitance, rate and cycling performance can be ascribed to the fast transferring path for electrons and ions, synergic effect and the stability of the hierarchical core-shell structure.

  9. Hierarchical core-shell NiCo2O4@NiMoO4 nanowires grown on carbon cloth as integrated electrode for high-performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Huang, Liang; Zhang, Wei; Xiang, Jinwei; Xu, Henghui; Li, Guolong; Huang, Yunhui

    2016-08-01

    Hierarchical core-shell NiCo2O4@NiMoO4 nanowires were grown on carbon cloth (CC@NiCo2O4@NiMoO4) by a two-step hydrothermal route to fabricate a flexible binder-free electrode. The prepared CC@NiCo2O4@NiMoO4 integrated electrode was directly used as an electrode for faradaic supercapacitor. It shows a high areal capacitance of 2.917 F cm-2 at 2 mA cm-2 and excellent cycling stability with 90.6% retention over 2000 cycles at a high current density of 20 mA cm-2. The superior specific capacitance, rate and cycling performance can be ascribed to the fast transferring path for electrons and ions, synergic effect and the stability of the hierarchical core-shell structure.

  10. Synthesis of homogeneous CaMoO4 microspheres with nanopits for high-capacity anode material in Li-ion battery

    NASA Astrophysics Data System (ADS)

    You, Jiangfeng; Xin, Ling; Yu, Xiao; Zhou, Xiang; Liu, Yong

    2018-03-01

    Homogeneous CaMoO4 microspheres with interesting nanopit morphology were prepared by a simple one-step hydrothermal method. These microspheres had a very promising alternative structure for application in Li-ion batteries (LIBs), because they combined the advantages of both the primary nanosized and secondary microsized structures. The nanopits distributed on CaMoO4 material can accommodate volume change, increase their contacting surface and wetting property with electrolyte, and improve wetting contact between CaMoO4 material and electrolyte, leading to enhanced cycling stability and electrochemical performance. Meanwhile, the robust microsphere structure can both prevent aggregation and provide high tap density. When used as an anode in LIBs, the electrodes delivered a high discharge capacity of 434 mAh/g after 50 charge-discharge cycles at a current density of 200 mA/g, showing good cycling performance.

  11. Characterization of MoS2-Graphene Composites for High-Performance Coin Cell Supercapacitors.

    PubMed

    Bissett, Mark A; Kinloch, Ian A; Dryfe, Robert A W

    2015-08-12

    Two-dimensional materials, such as graphene and molybdenum disulfide (MoS2), can greatly increase the performance of electrochemical energy storage devices because of the combination of high surface area and electrical conductivity. Here, we have investigated the performance of solution exfoliated MoS2 thin flexible membranes as supercapacitor electrodes in a symmetrical coin cell arrangement using an aqueous electrolyte (Na2SO4). By adding highly conductive graphene to form nanocomposite membranes, it was possible to increase the specific capacitance by reducing the resistivity of the electrode and altering the morphology of the membrane. With continued charge/discharge cycles the performance of the membranes was found to increase significantly (up to 800%), because of partial re-exfoliation of the layered material with continued ion intercalation, as well as increasing the specific capacitance through intercalation pseudocapacitance. These results demonstrate a simple and scalable application of layered 2D materials toward electrochemical energy storage.

  12. Three-Dimensional NiCo2O4@MnMoO4 Core-Shell Nanoarrays for High-Performance Asymmetric Supercapacitors.

    PubMed

    Yuan, Yuliang; Wang, Weicheng; Yang, Jie; Tang, Haichao; Ye, Zhizhen; Zeng, Yujia; Lu, Jianguo

    2017-10-10

    Design of new materials with sophisticated nanostructure has been proven to be an efficient strategy to improve their properties in many applications. Herein, we demonstrate the successful combination of high electron conductive materials of NiCo 2 O 4 with high capacitance materials of MnMoO 4 by forming a core-shell nanostructure. The NiCo 2 O 4 @MnMoO 4 core-shell nanoarrays (CSNAs) electrode possesses high capacitance of 1169 F g -1 (4.24 F cm -2 ) at a current density of 2.5 mA cm -2 , obviously larger than the pristine NiCo 2 O 4 electrode. The asymmetric supercapacitors (ASCs), assembled with NiCo 2 O 4 @MnMoO 4 CSNAs as binder-free cathode and active carbon (AC) as anode, exhibit high energy density of 15 Wh kg -1 and high power density of 6734 W kg -1 . Cycle performance of NiCo 2 O 4 @MnMoO 4 CSNAs//AC ASCs, conducted at current density of 20 mA cm -2 , remain 96.45% of the initial capacitance after 10,000 cycles, demonstrating its excellent long-term cycle stability. Kinetically decoupled analysis reveals that the capacitive capacitance is dominant in the total capacitance of NiCo 2 O 4 @MnMoO 4 CSNAs electrode, which may be the reason for ultra long cycle stability of ASCs. Our assembled button ASC can easily light up a red LED for 30 min and a green LED for 10 min after being charged for 30 s. The remarkable electrochemical performance of NiCo 2 O 4 @MnMoO 4 CSNAs//AC ASCs is attributed to its enhanced surface area, abundant electroactive sites, facile electrolyte infiltration into the 3D NiCo 2 O 4 @MnMnO 4 nanoarrays and fast electron and ion transport path.

  13. n-MoS2/p-Si Solar Cells with Al2O3 Passivation for Enhanced Photogeneration.

    PubMed

    Rehman, Atteq Ur; Khan, Muhammad Farooq; Shehzad, Muhammad Arslan; Hussain, Sajjad; Bhopal, Muhammad Fahad; Lee, Sang Hee; Eom, Jonghwa; Seo, Yongho; Jung, Jongwan; Lee, Soo Hong

    2016-11-02

    Molybdenum disulfide (MoS 2 ) has recently emerged as a promising candidate for fabricating ultrathin-film photovoltaic devices. These devices exhibit excellent photovoltaic performance, superior flexibility, and low production cost. Layered MoS 2 deposited on p-Si establishes a built-in electric field at MoS 2 /Si interface that helps in photogenerated carrier separation for photovoltaic operation. We propose an Al 2 O 3 -based passivation at the MoS 2 surface to improve the photovoltaic performance of bulklike MoS 2 /Si solar cells. Interestingly, it was observed that Al 2 O 3 passivation enhances the built-in field by reduction of interface trap density at surface. Our device exhibits an improved power conversion efficiency (PCE) of 5.6%, which to our knowledge is the highest efficiency among all bulklike MoS 2 -based photovoltaic cells. The demonstrated results hold the promise for integration of bulklike MoS 2 films with Si-based electronics to develop highly efficient photovoltaic cells.

  14. Effect of Dielectric Interface on the Performance of MoS2 Transistors.

    PubMed

    Li, Xuefei; Xiong, Xiong; Li, Tiaoyang; Li, Sichao; Zhang, Zhenfeng; Wu, Yanqing

    2017-12-27

    Because of their wide bandgap and ultrathin body properties, two-dimensional materials are currently being pursued for next-generation electronic and optoelectronic applications. Although there have been increasing numbers of studies on improving the performance of MoS 2 field-effect transistors (FETs) using various methods, the dielectric interface, which plays a decisive role in determining the mobility, interface traps, and thermal transport of MoS 2 FETs, has not been well explored and understood. In this article, we present a comprehensive experimental study on the effect of high-k dielectrics on the performance of few-layer MoS 2 FETs from 300 to 4.3 K. Results show that Al 2 O 3 /HfO 2 could boost the mobility and drain current. Meanwhile, MoS 2 transistors with Al 2 O 3 /HfO 2 demonstrate a 2× reduction in oxide trap density compared to that of the devices with the conventional SiO 2 substrate. Also, we observe a negative differential resistance effect on the device with 1 μm-channel length when using conventional SiO 2 as the gate dielectric due to self-heating, and this is effectively eliminated by using the Al 2 O 3 /HfO 2 gate dielectric. This dielectric engineering provides a highly viable route to realizing high-performance transition metal dichalcogenide-based FETs.

  15. Spray-combustion synthesis: Efficient solution route to high-performance oxide transistors

    PubMed Central

    Yu, Xinge; Smith, Jeremy; Zhou, Nanjia; Zeng, Li; Guo, Peijun; Xia, Yu; Alvarez, Ana; Aghion, Stefano; Lin, Hui; Yu, Junsheng; Chang, Robert P. H.; Bedzyk, Michael J.; Ferragut, Rafael; Marks, Tobin J.; Facchetti, Antonio

    2015-01-01

    Metal-oxide (MO) semiconductors have emerged as enabling materials for next generation thin-film electronics owing to their high carrier mobilities, even in the amorphous state, large-area uniformity, low cost, and optical transparency, which are applicable to flat-panel displays, flexible circuitry, and photovoltaic cells. Impressive progress in solution-processed MO electronics has been achieved using methodologies such as sol gel, deep-UV irradiation, preformed nanostructures, and combustion synthesis. Nevertheless, because of incomplete lattice condensation and film densification, high-quality solution-processed MO films having technologically relevant thicknesses achievable in a single step have yet to be shown. Here, we report a low-temperature, thickness-controlled coating process to create high-performance, solution-processed MO electronics: spray-combustion synthesis (SCS). We also report for the first time, to our knowledge, indium-gallium-zinc-oxide (IGZO) transistors having densification, nanoporosity, electron mobility, trap densities, bias stability, and film transport approaching those of sputtered films and compatible with conventional fabrication (FAB) operations. PMID:25733848

  16. Spray-combustion synthesis: efficient solution route to high-performance oxide transistors.

    PubMed

    Yu, Xinge; Smith, Jeremy; Zhou, Nanjia; Zeng, Li; Guo, Peijun; Xia, Yu; Alvarez, Ana; Aghion, Stefano; Lin, Hui; Yu, Junsheng; Chang, Robert P H; Bedzyk, Michael J; Ferragut, Rafael; Marks, Tobin J; Facchetti, Antonio

    2015-03-17

    Metal-oxide (MO) semiconductors have emerged as enabling materials for next generation thin-film electronics owing to their high carrier mobilities, even in the amorphous state, large-area uniformity, low cost, and optical transparency, which are applicable to flat-panel displays, flexible circuitry, and photovoltaic cells. Impressive progress in solution-processed MO electronics has been achieved using methodologies such as sol gel, deep-UV irradiation, preformed nanostructures, and combustion synthesis. Nevertheless, because of incomplete lattice condensation and film densification, high-quality solution-processed MO films having technologically relevant thicknesses achievable in a single step have yet to be shown. Here, we report a low-temperature, thickness-controlled coating process to create high-performance, solution-processed MO electronics: spray-combustion synthesis (SCS). We also report for the first time, to our knowledge, indium-gallium-zinc-oxide (IGZO) transistors having densification, nanoporosity, electron mobility, trap densities, bias stability, and film transport approaching those of sputtered films and compatible with conventional fabrication (FAB) operations.

  17. Carbon-Stabilized Interlayer-Expanded Few-Layer MoSe2 Nanosheets for Sodium Ion Batteries with Enhanced Rate Capability and Cycling Performance.

    PubMed

    Tang, Yongchao; Zhao, Zongbin; Wang, Yuwei; Dong, Yanfeng; Liu, Yang; Wang, Xuzhen; Qiu, Jieshan

    2016-11-30

    Sodium ion batteries (SIBs) have been considered as a promising alternative to lithium ion batteries, owing to the abundant reserve and low-cost accessibility of the sodium source. To date, the pursuit of high-performance anode materials remains a great challenge for the SIBs. In this work, carbon-stabilized interlayer-expanded few-layer MoSe 2 nanosheets (MoSe 2 @C) have been fabricated by an oleic acid (OA) functionalized synthesis-polydopamine (PDA) stabilization-carbonization strategy, and their structural, morphological, and electrochemical properties have been carefully characterized and compared with the carbon-free MoSe 2 . When evaluated as anode for sodium ion half batteries, the MoSe 2 @C exhibits a remarkably enhanced rate capability of 367 mA h g -1 at 5 A g -1 , a high reversible discharge capacity of 445 mA h g -1 at 1 A g -1 , and a long-term cycling stability over 100 cycles. To further explore the potential applications, the MoSe 2 @C is assembled into sodium ion full batteries with Na 3 V 2 (PO 4 ) 3 (NVP) as cathode materials, showing an impressively high reversible capacity of 421 mA h g -1 at 0.2 A g -1 after 100 cycles. Such results are primarily attributed to the unique carbon-stabilized interlayer-expanded few-layer MoSe 2 nanosheets structure, which facilitates the permeation of electrolyte into the inner of MoSe 2 nanosheets, promoting charge transfer efficiency among MoSe 2 nanosheets, and accommodating the volume change from discharge-charge cycling.

  18. Prospects of zero Schottky barrier height in a graphene-inserted MoS2-metal interface

    NASA Astrophysics Data System (ADS)

    Chanana, Anuja; Mahapatra, Santanu

    2016-01-01

    A low Schottky barrier height (SBH) at source/drain contact is essential for achieving high drive current in atomic layer MoS2-channel-based field effect transistors. Approaches such as choosing metals with appropriate work functions and chemical doping are employed previously to improve the carrier injection from the contact electrodes to the channel and to mitigate the SBH between the MoS2 and metal. Recent experiments demonstrate significant SBH reduction when graphene layer is inserted between metal slab (Ti and Ni) and MoS2. However, the physical or chemical origin of this phenomenon is not yet clearly understood. In this work, density functional theory simulations are performed, employing pseudopotentials with very high basis sets to get insights of the charge transfer between metal and monolayer MoS2 through the inserted graphene layer. Our atomistic simulations on 16 different interfaces involving five different metals (Ti, Ag, Ru, Au, and Pt) reveal that (i) such a decrease in SBH is not consistent among various metals, rather an increase in SBH is observed in case of Au and Pt; (ii) unlike MoS2-metal interface, the projected dispersion of MoS2 remains preserved in any MoS2-graphene-metal system with shift in the bands on the energy axis. (iii) A proper choice of metal (e.g., Ru) may exhibit ohmic nature in a graphene-inserted MoS2-metal contact. These understandings would provide a direction in developing high-performance transistors involving heteroatomic layers as contact electrodes.

  19. Preparation of yolk-shell MoS2 nanospheres covered with carbon shell for excellent lithium-ion battery anodes

    NASA Astrophysics Data System (ADS)

    Guo, Bangjun; Feng, Yu; Chen, Xiaofan; Li, Bo; Yu, Ke

    2018-03-01

    Molybdenum disulfide is regarded as one of the most promising electrode materials for high performance lithium-ion batteries. Designing firm basal structure is a key point to fully utilize the high capacity of layered MoS2 nanomaterials. Here, yolk-shell structured MoS2 nanospheres is firstly designed and fabricated to meet this needs. This unique yolk-shell nanospheres are transformed from solid nanospheres by a simply weak alkaline etching method. Then, the yolk-shell MoS2/C is synthesized by a facile process to protect the outside MoS2 shell and promote the conductivity. Taking advantages of high capacity and well-defined cavity space, allowing the core MoS2 to expand freely without breaking the outer shells, yolk-shell MoS2/C nanospheres delivers long cycle life (94% of capacity retained after 200 cycles) and high rate behaviour (830 mA h g-1 at 5 A g-1). This design of yolk-shell structure may set up a new strategy for preparing next generation anode materials for LIBs.

  20. MoS2/Ni3S4 composite nanosheets on interconnected carbon shells as an excellent supercapacitor electrode architecture for long term cycling at high current densities

    NASA Astrophysics Data System (ADS)

    Qin, Shengchun; Yao, Tinghui; Guo, Xin; Chen, Qiang; Liu, Dequan; Liu, Qiming; Li, Yali; Li, Junshuai; He, Deyan

    2018-05-01

    In this paper, we report an electrode architecture of molybdenum disulfide (MoS2)/nickel sulfide (Ni3S4) composite nanosheets anchored on interconnected carbon (C) shells (C@MoS2/Ni3S4). Electrochemical measurements indicate that the C@MoS2/Ni3S4 structure possesses excellent supercapacitive properties especially for long term cycling at high current densities. A specific capacitance as high as ∼640.7 F g-1 can still be delivered even after 10,000 cycles at a high current density of 20 A g-1. From comparison of microstructures and electrochemical properties of the related materials/structures, the improved performance of C@MoS2/Ni3S4 can be attributed to the relatively dispersedly distributed nanosheet-shaped MoS2/Ni3S4 that provides efficient contact with electrolyte and effectively buffers the volume change during charge/discharge processes, enhanced cycling stability by MoS2, and reduced equivalent series resistance by the interconnected C shells.

  1. Graphite oxide and molybdenum disulfide composite for hydrogen evolution reaction

    NASA Astrophysics Data System (ADS)

    Niyitanga, Theophile; Jeong, Hae Kyung

    2017-10-01

    Graphite oxide and molybdenum disulfide (GO-MoS2) composite is prepared through a wet process by using hydrolysis of ammonium tetrathiomolybdate, and it exhibits excellent catalytic activity of the hydrogen evolution reaction (HER) with a low overpotential of -0.47 V, which is almost two and three times lower than those of precursor MoS2 and GO. The high performance of HER of the composite attributes to the reduced GO supporting MoS2, providing a conducting network for fast electron transport from MoS2 to electrodes. The composite also shows high stability after 500 cycles, demonstrating a synergistic effect of MoS2 and GO for efficient HER.

  2. Effects of Mo-doping on microstructure and near-infrared shielding performance of hydrothermally prepared tungsten bronzes

    NASA Astrophysics Data System (ADS)

    Wang, Qingjuan; Li, Can; Xu, Wenai; Zhao, Xiaolin; Zhu, Jingxin; Jiang, Haiwei; Kang, Litao; Zhao, Zhe

    2017-03-01

    Both Mo and W belong to VIB-sub-group, and possess similar ionic radii, electronegativity and oxide lattice configuration. Herein, Mo-doped (0-80 at.%) tungsten bronzes, MxWO3, were hydrothermally prepared to systematically explore the influence of Mo-doping on their micro-structure and optical performance. The products adopted a hexagonal structure within 6 at.% Mo-doping, and transformed into a monoclinic phase with higher Mo-doping content. Further tests suggested that 1.5 at.% Mo-doping is beneficial for the formation of pure hexagonal phase and uniform nano-rod morphology. Optical measures showed that all samples exhibited high and comparable visible transmittance (70-80%), but a very different near infrared (NIR) shielding ability. The sample doped with 1.5 at.% Mo demonstrated the best NIR shielding ability with a transmittance minimum of 20% at 1300 nm. Further increase of Mo-doping dosage remarkably deteriorated NIR shielding ability by depressing the absorption of localized surface plasmon resonance (LSPR). However, the optical absorption from small-polaron was less influenced by the introduction of Mo. As a result, Mo-doping caused an evident blue shift of the infrared absorption peaks from 1350 to 750 nm.

  3. Interstitial Mo-Assisted Photovoltaic Effect in Multilayer MoSe2 Phototransistors.

    PubMed

    Kim, Sunkook; Maassen, Jesse; Lee, Jiyoul; Kim, Seung Min; Han, Gyuchull; Kwon, Junyeon; Hong, Seongin; Park, Jozeph; Liu, Na; Park, Yun Chang; Omkaram, Inturu; Rhyee, Jong-Soo; Hong, Young Ki; Yoon, Youngki

    2018-03-01

    Thin-film transistors (TFTs) based on multilayer molybdenum diselenide (MoSe 2 ) synthesized by modified atmospheric pressure chemical vapor deposition (APCVD) exhibit outstanding photoresponsivity (103.1 A W -1 ), while it is generally believed that optical response of multilayer transition metal dichalcogenides (TMDs) is significantly limited due to their indirect bandgap and inefficient photoexcitation process. Here, the fundamental origin of such a high photoresponsivity in the synthesized multilayer MoSe 2 TFTs is sought. A unique structural characteristic of the APCVD-grown MoSe 2 is observed, in which interstitial Mo atoms exist between basal planes, unlike usual 2H phase TMDs. Density functional theory calculations and photoinduced transfer characteristics reveal that such interstitial Mo atoms form photoreactive electronic states in the bandgap. Models indicate that huge photoamplification is attributed to trapped holes in subgap states, resulting in a significant photovoltaic effect. In this study, the fundamental origin of high responsivity with synthetic MoSe 2 phototransistors is identified, suggesting a novel route to high-performance, multifunctional 2D material devices for future wearable sensor applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Controlling the electronic and geometric structures of 2D insertions to realize high performance metal/insertion-MoS2 sandwich interfaces.

    PubMed

    Su, Jie; Feng, Liping; Zeng, Wei; Liu, Zhengtang

    2017-06-08

    Metal/insertion-MoS 2 sandwich interfaces are designed to reduce the Schottky barriers at metal-MoS 2 interfaces. The effects of geometric and electronic structures of two-dimensional (2D) insertion materials on the contact properties of metal/insertion-MoS 2 interfaces are comparatively studied by first-principles calculations. Regardless of the geometric and electronic structures of 2D insertion materials, Fermi level pinning effects and charge scattering at the metal/insertion-MoS 2 interface are weakened due to weak interactions between the insertion and MoS 2 layers, no gap states and negligible structural deformations for MoS 2 layers. The Schottky barriers at metal/insertion-MoS 2 interfaces are induced by three interface dipoles and four potential steps that are determined by the charge transfers and structural deformations of 2D insertion materials. The lower the electron affinities of 2D insertion materials, the more are the electrons lost from the Sc surface, resulting in lower n-type Schottky barriers at Sc/insertion-MoS 2 interfaces. The larger the ionization potentials and the thinner the thicknesses of 2D insertion materials, the fewer are the electrons that accumulate at the Pt surface, leading to lower p-type Schottky barriers at Pt/insertion-MoS 2 interfaces. All Sc/insertion-MoS 2 interfaces exhibited ohmic characters. The Pt/BN-MoS 2 interface exhibits the lowest p-type Schottky barrier of 0.52 eV due to the largest ionization potential (∼6.88 eV) and the thinnest thickness (single atomic layer thickness) of BN. These results in this work are beneficial to understand and design high performance metal/insertion-MoS 2 interfaces through 2D insertion materials.

  5. High-Performance Few-layer Mo-doped ReSe2 Nanosheet Photodetectors

    PubMed Central

    Yang, Shengxue; Tongay, Sefaattin; Yue, Qu; Li, Yongtao; Li, Bo; Lu, Fangyuan

    2014-01-01

    Transition metal dichalcogenides (TMDCs) have recently been the focus of extensive research activity owing to their fascinating physical properties. As a new member of TMDCs, Mo doped ReSe2 (Mo:ReSe2) is an octahedral structure semiconductor being optically biaxial and highly anisotropic, different from most of hexagonal layered TMDCs with optically uniaxial and relatively high crystal symmetry. We investigated the effects of physisorption of gas molecule on the few-layer Mo:ReSe2 nanosheet based photodetectors. We compared the photoresponse of the as-exfoliated device with annealed device both in air or ammonia (NH3) environment. After annealing at sub-decomposition temperatures, the Mo:ReSe2 photodetectors show a better photoresponsivity (~55.5 A/W) and higher EQE (10893%) in NH3 than in air. By theoretical investigation, we conclude that the physisorption of NH3 molecule on Mo:ReSe2 monolayer can cause the charge transfer between NH3 molecule and Mo:ReSe2 monolayer, increasing the n-type carrier density of Mo:ReSe2 monolayer. The prompt photoswitching, high photoresponsivity and different sensitivity to surrounding environment from the few-layer anisotropic Mo:ReSe2 can be used to design multifunctional optoelectronic and sensing devices. PMID:24962077

  6. Nano-molybdenum carbide/carbon nanotubes composite as bifunctional anode catalyst for high-performance Escherichia coli-based microbial fuel cell.

    PubMed

    Wang, Yaqiong; Li, Bin; Cui, Dan; Xiang, Xingde; Li, Weishan

    2014-01-15

    A novel electrode, carbon felt-supported nano-molybdenum carbide (Mo2C)/carbon nanotubes (CNTs) composite, was developed as platinum-free anode of high performance microbial fuel cell (MFC). The Mo2C/CNTs composite was synthesized by using the microwave-assisted method with Mo(CO)6 as a single source precursor and characterized by using X-ray diffraction and transmission electron microscopy. The activity of the composite as anode electrocatalyst of MFC based on Escherichia coli (E. coli) was investigated with cyclic voltammetry, chronoamperometry, and cell discharge test. It is found that the carbon felt electrode with 16.7 wt% Mo Mo2C/CNTs composite exhibits a comparable electrocatalytic activity to that with 20 wt% platinum as anode electrocatalyst. The superior performance of the developed platinum-free electrode can be ascribed to the bifunctional electrocatalysis of Mo2C/CNTs for the conversion of organic substrates into electricity through bacteria. The composite facilitates the formation of biofilm, which is necessary for the electron transfer via c-type cytochrome and nanowires. On the other hand, the composite exhibits the electrocatalytic activity towards the oxidation of hydrogen, which is the common metabolite of E. coli. © 2013 Elsevier B.V. All rights reserved.

  7. MnCo2 O4 /MoO2 Nanosheets Grown on Ni foam as Carbon- and Binder-Free Cathode for Lithium-Oxygen Batteries.

    PubMed

    Cao, Xuecheng; Sun, Zhihui; Zheng, Xiangjun; Jin, Chao; Tian, Jinhua; Li, Xiaowei; Yang, Ruizhi

    2018-02-09

    Carbon is usually used as cathode material for Li-O 2 batteries. However, the discharge product, such as Li 2 O 2 and LiO 2 , could react with carbon to form an insulating lithium carbonate layer, resulting in cathode passivation and capacity fading. To solve this problem, the development of non-carbon cathodes is highly desirable. Herein, we successfully synthesized MnCo 2 O 4 (MCO) nanoparticles anchored on porous MoO 2 nanosheets that are grown on Ni foam (current collector) (MCO/MoO 2 @Ni), acting as a carbon- and binder-free cathode for Li-O 2 batteries, in an attempt to improve the electrical conductivity, electrocatalytic activity, and durability. This MCO/MoO 2 @Ni electrode delivers excellent cyclability (more than 400 cycles) and rate performance (voltage gap of 0.75 V at 5000 mA g -1 ). Notably, the battery with this electrode exhibits a high energy efficiency (higher than 85 %). The advanced electrochemical performance of MCO/MoO 2 @Ni can be attributed to its high electrical conductivity, excellent stability, and outstanding electrocatalytic activity. This work offers a new strategy to fabricate high-performance Li-O 2 batteries with non-carbon cathode materials. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Carbon nanotubes-bridged molybdenum trioxide nanosheets as high performance anode for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Sun, Haiyan; Hanlon, Damien; Dinh, Duc Anh; Boland, John B.; Esau Del Rio Castillo, Antonio; Di Giovanni, Carlo; Ansaldo, Alberto; Pellegrini, Vittorio; Coleman, Jonathan N.; Bonaccorso, Francesco

    2018-01-01

    The search for novel nanomaterials driving the development of high-performance electrodes in lithium ion batteries (LIBs) is at the cutting edge of research in the field of energy storage. Here, we report on the synthesis of single wall carbon nanotube (SWNT)-bridged molybdenum trioxide (MoO3) nanosheets as anode material for LIBs. We exploit liquid phase exfoliation of layered MoO3 crystallites to produce multilayer MoO3 nanosheets dispersed in isopropanol, which are then mixed with solution processed SWNTs in the same solvent. The addition of SWNTs to the MoO3 nanosheets provides the conductive framework for electron transport, as well as a bridge structure, which buffers the volume expansion upon lithiation/de-lithiation. We demonstrate that the hybrid SWNT-bridged MoO3 structure is beneficial for both the mechanical stability and the electrochemical characteristics of the anodes leading to a specific capacity of 865 mAh g-1 at 100 mA g-1 after 100 cycles, with a columbic efficiency approaching 100% and a capacity fading of 0.02% per cycle. The low-cost, non-toxic, binder-free hybrid MoO3/SWNT here developed represents a step forward for the applicability of exfoliated MoO3 in LIB anodes, delivering high energy and power densities as well as long lifetime.

  9. Electrostatically tunable lateral MoTe2 p-n junction for use in high-performance optoelectronics.

    PubMed

    Wang, Zhenxing; Wang, Feng; Yin, Lei; Huang, Yun; Xu, Kai; Wang, Fengmei; Zhan, Xueying; He, Jun

    2016-07-21

    Because of their ultimate thickness, layered structure and high flexibility, pn junctions based on layered two-dimensional semiconductors have been attracting increasing attention recently. In this study, for the first time, we fabricated lateral pn junctions (LPNJs) based on ultrathin MoTe2 by introducing two separated electrostatic back gates, and investigated their electronic and photovoltaic performance. Pn, np, nn, and pp junctions can be easily realized by modulating the conductive channel type using gate voltages with different polarities. Strong rectification effects were observed in the pn and np junctions and the rectification ratio reached ∼5 × 10(4). Importantly, we find a unique phenomenon that the parameters for MoTe2 LPNJs experience abrupt changes during the transition from p to n or n to p. Furthermore, a high performance photovoltaic device with a filling factor of above 51% and electrical conversion efficiency (η) of around 0.5% is achieved. Our findings are of importance to comprehensively understand the electronic and optoelectronic properties of MoTe2 and may further open up novel electronic and optoelectronic device applications.

  10. Construction of MoS2/Si nanowire array heterojunction for ultrahigh-sensitivity gas sensor

    NASA Astrophysics Data System (ADS)

    Wu, Di; Lou, Zhenhua; Wang, Yuange; Xu, Tingting; Shi, Zhifeng; Xu, Junmin; Tian, Yongtao; Li, Xinjian

    2017-10-01

    Few-layer MoS2 thin films were synthesized by a two-step thermal decomposition process. In addition, MoS2/Si nanowire array (SiNWA) heterojunctions exhibiting excellent gas sensing properties were constructed and investigated. Further analysis reveals that such MoS2/SiNWA heterojunction devices are highly sensitive to nitric oxide (NO) gas under reverse voltages at room temperature (RT). The gas sensor demonstrated a minimum detection limit of 10 ppb, which represents the lowest value obtained for MoS2-based sensors, as well as an ultrahigh response of 3518% (50 ppm NO, ˜50% RH), with good repeatability and selectivity of the MoS2/SiNWA heterojunction. The sensing mechanisms were also discussed. The performance of the MoS2/SiNWA heterojunction gas sensors is superior to previous results, revealing that they have great potential in applications relating to highly sensitive gas sensors.

  11. Construction of MoS2/Si nanowire array heterojunction for ultrahigh-sensitivity gas sensor.

    PubMed

    Wu, Di; Lou, Zhenhua; Wang, Yuange; Xu, Tingting; Shi, Zhifeng; Xu, Junmin; Tian, Yongtao; Li, Xinjian

    2017-10-27

    Few-layer MoS 2 thin films were synthesized by a two-step thermal decomposition process. In addition, MoS 2 /Si nanowire array (SiNWA) heterojunctions exhibiting excellent gas sensing properties were constructed and investigated. Further analysis reveals that such MoS 2 /SiNWA heterojunction devices are highly sensitive to nitric oxide (NO) gas under reverse voltages at room temperature (RT). The gas sensor demonstrated a minimum detection limit of 10 ppb, which represents the lowest value obtained for MoS 2 -based sensors, as well as an ultrahigh response of 3518% (50 ppm NO, ∼50% RH), with good repeatability and selectivity of the MoS 2 /SiNWA heterojunction. The sensing mechanisms were also discussed. The performance of the MoS 2 /SiNWA heterojunction gas sensors is superior to previous results, revealing that they have great potential in applications relating to highly sensitive gas sensors.

  12. Highly Enhanced Gas Adsorption Properties in Vertically Aligned MoS2 Layers.

    PubMed

    Cho, Soo-Yeon; Kim, Seon Joon; Lee, Youhan; Kim, Jong-Seon; Jung, Woo-Bin; Yoo, Hae-Wook; Kim, Jihan; Jung, Hee-Tae

    2015-09-22

    In this work, we demonstrate that gas adsorption is significantly higher in edge sites of vertically aligned MoS2 compared to that of the conventional basal plane exposed MoS2 films. To compare the effect of the alignment of MoS2 on the gas adsorption properties, we synthesized three distinct MoS2 films with different alignment directions ((1) horizontally aligned MoS2 (basal plane exposed), (2) mixture of horizontally aligned MoS2 and vertically aligned layers (basal and edge exposed), and (3) vertically aligned MoS2 (edge exposed)) by using rapid sulfurization method of CVD process. Vertically aligned MoS2 film shows about 5-fold enhanced sensitivity to NO2 gas molecules compared to horizontally aligned MoS2 film. Vertically aligned MoS2 has superior resistance variation compared to horizontally aligned MoS2 even with same surface area exposed to identical concentration of gas molecules. We found that electrical response to target gas molecules correlates directly with the density of the exposed edge sites of MoS2 due to high adsorption of gas molecules onto edge sites of vertically aligned MoS2. Density functional theory (DFT) calculations corroborate the experimental results as stronger NO2 binding energies are computed for multiple configurations near the edge sites of MoS2, which verifies that electrical response to target gas molecules (NO2) correlates directly with the density of the exposed edge sites of MoS2 due to high adsorption of gas molecules onto edge sites of vertically aligned MoS2. We believe that this observation extends to other 2D TMD materials as well as MoS2 and can be applied to significantly enhance the gas sensor performance in these materials.

  13. Strongly Coupled Molybdenum Carbide on Carbon Sheets as a Bifunctional Electrocatalyst for Overall Water Splitting.

    PubMed

    Wang, Hao; Cao, Yingjie; Sun, Cheng; Zou, Guifu; Huang, Jianwen; Kuai, Xiaoxiao; Zhao, Jianqing; Gao, Lijun

    2017-09-22

    High-performance and affordable electrocatalysts from earth-abundant elements are desirably pursued for water splitting involving hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). Here, a bifunctional electrocatalyst of highly crystalline Mo 2 C nanoparticles supported on carbon sheets (Mo 2 C/CS) was designed toward overall water splitting. Owing to the highly active catalytic nature of Mo 2 C nanoparticles, the high surface area of carbon sheets and efficient charge transfer in the strongly coupled composite, the designed catalysts show excellent bifunctional behavior with an onset potential of -60 mV for HER and an overpotential of 320 mV to achieve a current density of 10 mA cm -2 for OER in 1 m KOH while maintaining robust stability. Moreover, the electrolysis cell using the catalyst only requires a low cell voltage of 1.73 V to achieve a current density of 10 mA cm -2 and maintains the activity for more than 100 h when employing the Mo 2 C/CS catalyst as both anode and cathode electrodes. Such high performance makes Mo 2 C/CS a promising electrocatalyst for practical hydrogen production from water splitting. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Weight ratio effects on morphology and electrocapacitive performance for the MoS2/polypyrrole electrodes

    NASA Astrophysics Data System (ADS)

    Tu, Chao-Chi; Peng, Pei-Wen; Lin, Lu-Yin

    2018-06-01

    MoS2 is one of the promising electroactive materials for charge-storage devices. The charges cannot only be stored in the intersheet of MoS2 and the intrasheet of individual atomic layers, but also can be accumulated by conducting the Faradaic reactions on the Mo center. To further enhance the electrocapacitive performance of MoS2, incorporating conducting polymers is one of the feasible ways to improve the connection between MoS2 nanosheets. At the same time, the growth of conducting polymers can also be controlled via incorporating MoS2 nanosheets in the synthesis to enhance the conductivity and increase the specific surface area of the conducting polymers. In this work, layered structures of MoS2 nanosheets are successfully synthesized via a simple hydrothermal method, and pyrrole monomers are oxidative polymerized in the MoS2 solution to prepare the nanocomposites with different ratios of MoS2 and polypyrrole (Ppy). The optimized MoS2/Ppy electrode shows a specific capacitance (CF) of 182.28 F/g, which is higher than those of the MoS2 (40.58 F/g) and Ppy (116.95 F/g) electrodes measured at the same scan rate of 10 mV/s. The excellent high-rate capacity and good cycling stability with 20% decay on the CF value comparing to the initial value after the 1000 times repeated charge/discharge process are also achieved for the optimized MoS2/Ppy electrode. The better performance for the MoS2/Ppy electrode is resulting from the larger surface area for charge accumulation and the enhanced interconnection networks for charge transportation. The results suggest that combining two materials with complementary properties as the electrocapacitive material is one of the attractive ways to realize efficient charge-storage devices with efficient electrochemical performances and good cycling lifes.

  15. Highly Enhanced H2 Sensing Performance of Few-Layer MoS2/SiO2/Si Heterojunctions by Surface Decoration of Pd Nanoparticles.

    PubMed

    Hao, Lanzhong; Liu, Yunjie; Du, Yongjun; Chen, Zhaoyang; Han, Zhide; Xu, Zhijie; Zhu, Jun

    2017-10-17

    A novel few-layer MoS 2 /SiO 2 /Si heterojunction is fabricated via DC magnetron sputtering technique, and Pd nanoparticles are further synthesized on the device surface. The results demonstrate that the fabricated sensor exhibits highly enhanced responses to H 2 at room temperature due to the decoration of Pd nanoparticles. For example, the Pd-decorated MoS 2 /SiO 2 /Si heterojunction shows an excellent response of 9.2 × 10 3 % to H 2 , which is much higher than the values for the Pd/SiO 2 /Si and MoS 2 /SiO 2 /Si heterojunctions. In addition, the H 2 sensing properties of the fabricated heterojunction are dependent largely on the thickness of the Pd-nanoparticle layer and there is an optimized Pd thickness for the device to achieve the best sensing characteristics. Based on the microstructure characterization and electrical measurements, the sensing mechanisms of the Pd-decorated MoS 2 /SiO 2 /Si heterojunction are proposed. These results indicate that the Pd decoration of few-layer MoS 2 /SiO 2 /Si heterojunctions presents an effective strategy for the scalable fabrication of high-performance H 2 sensors.

  16. Improved DQE by means of X-ray spectra and scintillator optimization for FFDM

    NASA Astrophysics Data System (ADS)

    Job, Isaias D.; Taie-Nobraie, Nima; Colbeth, Richard E.; Mollov, Ivan; Gray, Keith D.; Webb, Chris; Pavkovich, John M.; Zoghi, Fred; Tognina, Carlo A.; Roos, Pieter G.

    2012-03-01

    The focus of this work was to improve the DQE performance of a full-field digital mammography (FFDM) system by means of selecting an optimal X-ray tube anode-filter combination in conjunction with an optimal scintillator configuration. The flat panel detector in this work is a Varian PaxScan 3024M. The detector technology is comprised of a 2816 row × 3584 column amorphous silicon (a-Si) photodiode array with a pixel pitch of 83μm. The scintillator is cesium iodide and is deposited directly onto the photodiode array and available with configurable optical and x-ray properties. Two X-ray beam spectra were generated with the anode/filter combinations, Molybdenum/Molybdenum (Mo/Mo) and Tungsten/Aluminum (W/Al), to evaluate the imaging performance of two types of scintillators, high resolution (HR) type and high light output (HL) type. The results for the HR scintillator with W/Al anode-filter (HRW/ Al) yielded a DQE(0) of 67%, while HR-Mo/Mo was lower with a DQE(0) of 50%. In addition, the DQE(0) of the HR-W/Al configuration was comparable to the DQE(0) of the HL-Mo/Mo configuration. The significance of this result is the HR type scintillator yields about twice the light output with the W/Al spectrum, at about half the dose, as compared to the Mo/Mo spectrum. The light output or sensitivity was measured in analog-to-digital convertor units (ADU) per dose. The sensitivities (ADU/uGy) were 8.6, 16.8 and 25.4 for HR-Mo/Mo, HR-W/Al, HL-Mo/Mo, respectively. The Nyquist frequency for the 83 μm pixel is 6 lp/mm. The MTF at 5 lp/mm for HR-Mo/Mo and HR-W/Al were equivalent at 37%, while the HL-Mo/Mo MTF was 24%. According to the DQE metric, the more favorable anodefilter combination was W/Al with the HR scintillator. Future testing will evaluate the HL-W/Al configuration, as well as other x-ray filters materials and other scintillator optimizations. While higher DQE values were achieved, the more general conclusion is that the imaging performance can be tuned as required by the application by modifying optical and x-ray properties of the scintillator to match the spectral output of the chosen anode-filter combination.

  17. Defining and validating a short form Montreal Cognitive Assessment (s-MoCA) for use in neurodegenerative disease

    PubMed Central

    Roalf, David R; Moore, Tyler M; Wolk, David A; Arnold, Steven E; Mechanic-Hamilton, Dawn; Rick, Jacqueline; Kabadi, Sushila; Ruparel, Kosha; Chen-Plotkin, Alice S; Chahine, Lama M; Dahodwala, Nabila A; Duda, John E; Weintraub, Daniel A; Moberg, Paul J

    2016-01-01

    Introduction Screening for cognitive deficits is essential in neurodegenerative disease. Screening tests, such as the Montreal Cognitive Assessment (MoCA), are easily administered, correlate with neuropsychological performance and demonstrate diagnostic utility. Yet, administration time is too long for many clinical settings. Methods Item response theory and computerised adaptive testing simulation were employed to establish an abbreviated MoCA in 1850 well-characterised community-dwelling individuals with and without neurodegenerative disease. Results 8 MoCA items with high item discrimination and appropriate difficulty were identified for use in a short form (s-MoCA). The s-MoCA was highly correlated with the original MoCA, showed robust diagnostic classification and cross-validation procedures substantiated these items. Discussion Early detection of cognitive impairment is an important clinical and public health concern, but administration of screening measures is limited by time constraints in demanding clinical settings. Here, we provide as-MoCA that is valid across neurological disorders and can be administered in approximately 5 min. PMID:27071646

  18. High phase-purity 1T'-MoS2- and 1T'-MoSe2-layered crystals

    NASA Astrophysics Data System (ADS)

    Yu, Yifu; Nam, Gwang-Hyeon; He, Qiyuan; Wu, Xue-Jun; Zhang, Kang; Yang, Zhenzhong; Chen, Junze; Ma, Qinglang; Zhao, Meiting; Liu, Zhengqing; Ran, Fei-Rong; Wang, Xingzhi; Li, Hai; Huang, Xiao; Li, Bing; Xiong, Qihua; Zhang, Qing; Liu, Zheng; Gu, Lin; Du, Yonghua; Huang, Wei; Zhang, Hua

    2018-06-01

    Phase control plays an important role in the precise synthesis of inorganic materials, as the phase structure has a profound influence on properties such as conductivity and chemical stability. Phase-controlled preparation has been challenging for the metallic-phase group-VI transition metal dichalcogenides (the transition metals are Mo and W, and the chalcogens are S, Se and Te), which show better performance in electrocatalysis than their semiconducting counterparts. Here, we report the large-scale preparation of micrometre-sized metallic-phase 1T'-MoX2 (X = S, Se)-layered bulk crystals in high purity. We reveal that 1T'-MoS2 crystals feature a distorted octahedral coordination structure and are convertible to 2H-MoS2 following thermal annealing or laser irradiation. Electrochemical measurements show that the basal plane of 1T'-MoS2 is much more active than that of 2H-MoS2 for the electrocatalytic hydrogen evolution reaction in an acidic medium.

  19. Fast solid-phase synthesis of large-area few-layer 1T'-MoTe2 films

    NASA Astrophysics Data System (ADS)

    Xie, Sheng; Chen, Lin; Zhang, Tian-Bao; Nie, Xin-Ran; Zhu, Hao; Ding, Shi-Jin; Sun, Qing-Qing; Zhang, David Wei

    2017-06-01

    In this study, we report on a novel approach to produce ∼12 nm thick few-layer monoclinic 1T'-MoTe2 films. The deposition method comprised sputtering of Mo, molecular beam epitaxy of Te, and rapid thermal processing to effect tellurization of the Mo into 1T'-MoTe2. The heating rate and annealing time are the critical factors. 30 °C s-1 heating rate and 2 min annealing at 470 °C were adopted in this work. X-ray photoelectron spectroscopy confirmed the formation of stoichiometric 1T'-MoTe2 films, while X-ray diffraction confirmed the monoclinic polymorph. Raman spectroscopy confirmed spatial uniformity over the sample size of 1 cm × 1.5 cm. Our fast synthesis approach to realize high-quality 1T'-MoTe2 paves the way towards the large-scale application of 1T'-MoTe2 in high-performance nanoelectronics and optoelectronics.

  20. Metallic MoN layer and its application as anode for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Zhang, Qiaoxuan; Ma, Jiachen; Lei, Ming; Quhe, Ruge

    2018-04-01

    Recently, two-dimensional (2D) metallic MoN was manufactured successfully in experiment. Its intrinsic properties remain to be explored theoretically, in depth. The intrinsic properties of a MoN monolayer are investigated by first-principles calculations. The distinct geometric properties of the outermost Mo and N surfaces are discovered. We predict an extremely high work function of 6.3 eV of the N surface, which indicates the great value of the 2D MoN for application in the semiconductor industry. We further explore the potential of 2D MoN as anode material for lithium-ion batteries. It is found that the adsorption energy of a single Li atom on an MoN surface can be as low as -4.04 eV. The small diffusion barriers (0.41 eV) and high theoretical maximum capacity (406 mAh · g-1 with the inclusion of multilayer adsorption) all imply an outstanding lithium-ion battery performance by 2D MoN.

  1. Self-Powered, High-Speed and Visible-Near Infrared Response of MoO(3-x)/n-Si Heterojunction Photodetector with Enhanced Performance by Interfacial Engineering.

    PubMed

    Zhao, Chuanxi; Liang, Zhimin; Su, Mingze; Liu, Pengyi; Mai, Wenjie; Xie, Weiguang

    2015-11-25

    Photodetectors with a wide spectrum response are important components for sensing, imaging, and other optoelectronic applications. A molybdenum oxide (MoO(3-x))/Si heterojunction has been applied as solar cells with great success, but its potential in photodetectors has not been explored yet. Herein, a self-powered, high-speed heterojunction photodetector fabricated by coating an n-type Si hierarchical structure with an ultrathin hole-selective layer of molybdenum oxide (MoO(3-x)) is first investigated. Excellent and stable photoresponse performance is obtained by using a methyl group passivated interface. The heterojunction photodetector demonstrated high sensitivity to a wide spectrum from 300 to 1100 nm. The self-powered photodetector shows a high detectivity of (∼6.29 × 10(12) cmHz(1/2) W(-1)) and fast response time (1.0 μs). The excellent photodetecting performance is attributed to the enhanced interfacial barrier height and three-dimensional geometry of Si nanostructures, which is beneficial for efficient photocarrier collection and transportation. Finally, our devices show excellent long-term stability in air for 6 months with negligible performance degradation. The thermal evaporation method for large-scale fabrication of MoO(3-x)/n-Si photodetectors makes it suitable for self-powered, multispectral, and high-speed response photodetecting applications.

  2. Synthesis and characterization of electrospun molybdenum dioxide-carbon nanofibers as sulfur matrix additives for rechargeable lithium-sulfur battery applications.

    PubMed

    Zhuang, Ruiyuan; Yao, Shanshan; Jing, Maoxiang; Shen, Xiangqian; Xiang, Jun; Li, Tianbao; Xiao, Kesong; Qin, Shibiao

    2018-01-01

    One-dimensional molybdenum dioxide-carbon nanofibers (MoO 2 -CNFs) were prepared using an electrospinning technique followed by calcination, using sol-gel precursors and polyacrylonitrile (PAN) as a processing aid. The resulting samples were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, Brunauer-Emmet-Teller (BET) surface area measurements, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). MoO 2 -CNFs with an average diameter of 425-575 nm obtained after heat treatment were used as a matrix to prepare sulfur/MoO 2 -CNF cathodes for lithium-sulfur (Li-S) batteries. The polysulfide adsorption and electrochemical performance tests demonstrated that MoO 2 -CNFs did not only act as polysulfide reservoirs to alleviate the shuttle effect, but also improve the electrochemical reaction kinetics during the charge-discharge processes. The effect of MoO 2 -CNF heat treatment on the cycle performance of sulfur/MoO 2 -CNFs electrodes was examined, and the data showed that MoO 2 -CNFs calcined at 850 °C delivered optimal performance with an initial capacity of 1095 mAh g -1 and 860 mAh g -1 after 50 cycles. The results demonstrated that sulfur/MoO 2 -CNF composites display a remarkably high lithium-ion diffusion coefficient, low interfacial resistance and much better electrochemical performance than pristine sulfur cathodes.

  3. Macroporous Inverse Opal-like MoxC with Incorporated Mo Vacancies for Significantly Enhanced Hydrogen Evolution.

    PubMed

    Li, Feng; Zhao, Xianglong; Mahmood, Javeed; Okyay, Mahmut Sait; Jung, Sun-Min; Ahmad, Ishfaq; Kim, Seok-Jin; Han, Gao-Feng; Park, Noejung; Baek, Jong-Beom

    2017-07-25

    The hydrogen evolution reaction (HER) is one of the most important pathways for producing pure and clean hydrogen. Although platinum (Pt) is the most efficient HER electrocatalyst, its practical application is significantly hindered by high-cost and scarcity. In this work, an Mo x C with incorporated Mo vacancies and macroporous inverse opal-like (IOL) structure (Mo x C-IOL) was synthesized and studied as a low-cost efficient HER electrocatalyst. The macroporous IOL structure was controllably fabricated using a facile-hard template strategy. As a result of the combined benefits of the Mo vacancies and structural advantages, including appropriate hydrogen binding energy, large exposed surface, robust IOL structure and fast mass/charge transport, the synthesized Mo x C-IOL exhibited significantly enhanced HER electrocatalytic performance with good stability, with performance comparable or superior to Pt wire in both acidic and alkaline solutions.

  4. One step hydrothermal synthesis of 3D CoS2@MoS2-NG for high performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Meng, Qi; Chen, Yizhi; Zhu, Wenkun; Zhang, Ling; Yang, Xiaoyong; Duan, Tao

    2018-07-01

    A three-dimensional (3D) MoS2 coated CoS2-nitrogen doped graphene (NG) (CoS2@MoS2-NG) hybrid has been synthesized by a one step hydrothermal method as supercapacitor (SC) electrode material for the first time. Such a composite consists of NG embedded with stacked CoS2@MoS2 sheets. With a 3D skeleton, it prevents the agglomeration of CoS2@MoS2 nanoparticles, resulting in sound conductivity, rich porous structures and a large surface area. The results indicate that CoS2@MoS2-NG has higher specific capacitance (198 F g‑1 at 1 A g‑1), better rate performance (with about 56.57% from 1 to 16 A g‑1) and an improved cycle stability (with about 96.97% after 1000 cycles). It is an ideal candidate for SC electrode materials.

  5. One step hydrothermal synthesis of 3D CoS2@MoS2-NG for high performance supercapacitors.

    PubMed

    Meng, Qi; Chen, Yizhi; Zhu, Wenkun; Zhang, Ling; Yang, Xiaoyong; Duan, Tao

    2018-07-20

    A three-dimensional (3D) MoS 2 coated CoS 2 -nitrogen doped graphene (NG) (CoS 2 @MoS 2 -NG) hybrid has been synthesized by a one step hydrothermal method as supercapacitor (SC) electrode material for the first time. Such a composite consists of NG embedded with stacked CoS 2 @MoS 2 sheets. With a 3D skeleton, it prevents the agglomeration of CoS 2 @MoS 2 nanoparticles, resulting in sound conductivity, rich porous structures and a large surface area. The results indicate that CoS 2 @MoS 2 -NG has higher specific capacitance (198 F g -1 at 1 A g -1 ), better rate performance (with about 56.57% from 1 to 16 A g -1 ) and an improved cycle stability (with about 96.97% after 1000 cycles). It is an ideal candidate for SC electrode materials.

  6. Synthesis, characterization and photocatalytic performance of chemically exfoliated MoS2

    NASA Astrophysics Data System (ADS)

    Prabhakar Vattikuti, S. V.; Shim, Jaesool

    2018-03-01

    Two-dimensional (2D) layered structure transition metal dichalcogenides (TMDs) has gained huge attention and importance for photocatalytic energy conversion because of their unique properties. Molybdenum disulfide (MoS2) nanosheets were synthesized via one-pot method and exfoliated in (dimethylformamide) DMF solution. Subsequent exfoliated MoS2 nanosheets (e-MoS2) were used as photocatalysts for degradation of Rhodamine B (RhB) pollutant under solar light irradiation. The e-MoS2 nanosheets exhibited excellent photocatalytic activity than that of pristine MoS2, owing to high specific surface area with enormous active sites and light absorption capacity. In addition, e-MoS2 demonstrated remarkable photocatalytic stability.

  7. Constructing Two-, Zero-, and One-Dimensional Integrated Nanostructures: an Effective Strategy for High Microwave Absorption Performance.

    PubMed

    Sun, Yuan; Xu, Jianle; Qiao, Wen; Xu, Xiaobing; Zhang, Weili; Zhang, Kaiyu; Zhang, Xing; Chen, Xing; Zhong, Wei; Du, Youwei

    2016-11-23

    A novel "201" nanostructure composite consisting of two-dimensional MoS 2 nanosheets, zero-dimensional Ni nanoparticles and one-dimensional carbon nanotubes (CNTs) was prepared successfully by a two-step method: Ni nanopaticles were deposited onto the surface of few-layer MoS 2 nanosheets by a wet chemical method, followed by chemical vapor deposition growth of CNTs through the catalysis of Ni nanoparticles. The as-prepared 201-MoS 2 -Ni-CNTs composites exhibit remarkably enhanced microwave absorption performance compared to Ni-MoS 2 or Ni-CNTs. The minimum reflection loss (RL) value of 201-MoS 2 -Ni-CNTs/wax composites with filler loading ratio of 30 wt % reached -50.08 dB at the thickness of 2.4 mm. The maximum effective microwave absorption bandwidth (RL< -10 dB) of 6.04 GHz was obtained at the thickness of 2.1 mm. The excellent absorption ability originates from appropriate impedance matching ratio, strong dielectric loss and large surface area, which are attributed to the "201" nanostructure. In addition, this method could be extended to other low-dimensional materials, proving to be an efficient and promising strategy for high microwave absorption performance.

  8. Analysis of irradiated U-7wt%Mo dispersion fuel microstructures using automated image processing

    DOE PAGES

    Collette, R.; King, J.; Buesch, C.; ...

    2016-04-01

    The High Performance Research Reactor Fuel Development (HPPRFD) program is responsible for developing low enriched uranium (LEU) fuel substitutes for high performance reactors fueled with highly enriched uranium (HEU) that have not yet been converted to LEU. The uranium-molybdenum (U-Mo) fuel system was selected for this effort. In this study, fission gas pore segmentation was performed on U-7wt%Mo dispersion fuel samples at three separate fission densities using an automated image processing interface developed in MATLAB. Pore size distributions were attained that showed both expected and unexpected fission gas behavior. In general, it proved challenging to identify any dominant trends whenmore » comparing fission bubble data across samples from different fuel plates due to varying compositions and fabrication techniques. Here, the results exhibited fair agreement with the fission density vs. porosity correlation developed by the Russian reactor conversion program.« less

  9. Analysis of irradiated U-7wt%Mo dispersion fuel microstructures using automated image processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collette, R.; King, J.; Buesch, C.

    The High Performance Research Reactor Fuel Development (HPPRFD) program is responsible for developing low enriched uranium (LEU) fuel substitutes for high performance reactors fueled with highly enriched uranium (HEU) that have not yet been converted to LEU. The uranium-molybdenum (U-Mo) fuel system was selected for this effort. In this study, fission gas pore segmentation was performed on U-7wt%Mo dispersion fuel samples at three separate fission densities using an automated image processing interface developed in MATLAB. Pore size distributions were attained that showed both expected and unexpected fission gas behavior. In general, it proved challenging to identify any dominant trends whenmore » comparing fission bubble data across samples from different fuel plates due to varying compositions and fabrication techniques. Here, the results exhibited fair agreement with the fission density vs. porosity correlation developed by the Russian reactor conversion program.« less

  10. Preparation and tribological properties of MoS2/graphene oxide composites

    NASA Astrophysics Data System (ADS)

    Song, Haojie; Wang, Biao; Zhou, Qiang; Xiao, Jiaxuan; Jia, Xiaohua

    2017-10-01

    A hydrothermal route is developed for the synthesis of MoS2/graphene oxide (GO) composites based on the hydrothermal reduction of Na2MoO4 and GO sheets with L-cysteine. The MoS2/GO composites in improving friction and wear of the sunshine oil on sliding steel surfaces under low or high applied load were demonstrated. In tests with sliding steel surfaces, the sunshine oil that contains small amounts of MoS2/GO composites exhibited the lowest specific friction coefficient and wear rate under all of the sliding conditions. Scanning electron microscopy and energy dispersive spectrometer performed to analyze the wear scar surfaces after friction confirmed that the outstanding lubrication performance of MoS2/GO composites could be attributed to their good dispersion stability and extremely thin laminated structure, which allow the MoS2/GO composites to easily enter the contact area, thereby preventing the rough surfaces from coming into direct contact.

  11. Synthesis of MoS2/rGO nanosheets hybrid materials for enhanced visible light assisted photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Pal, Shreyasi; Dutta, Shibsankar; De, Sukanta

    2018-04-01

    A facile hydrothermal method has been adopted to synthesize pure MoS2 nanosheets and MoS2/rGO nanosheets hybrid. The samples were characterized using field emission scanning electron microscopy (FESEM), transmission electron microscopy (HRTEM), X-ray diffraction spectroscopy (XRD), Brunauer-Emmett-Teller (BET). The photocatalytic performance and reusability of MoS2 nanosheets and MoS2/rGO hybrids was evaluated by discoloring of RhB under visible light irradiation. Results indicated that MoS2/rGO photocatalysts with large surface area of 69.5 m2 g-1 could completely degrade 50 mL of 8 mg L-1 RhB aqueous solution in 90 min with excellent recycling and structural stability as compared with pure MoS2 nanosheets (53%). Such enhanced performance could be explained due to the high surface area, enhanced light absorption and the increased dye adsorptivity and reduced electron-hole pair recombination with the presence of rGO.

  12. Prospects of zero Schottky barrier height in a graphene-inserted MoS{sub 2}-metal interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chanana, Anuja; Mahapatra, Santanu

    2016-01-07

    A low Schottky barrier height (SBH) at source/drain contact is essential for achieving high drive current in atomic layer MoS{sub 2}-channel-based field effect transistors. Approaches such as choosing metals with appropriate work functions and chemical doping are employed previously to improve the carrier injection from the contact electrodes to the channel and to mitigate the SBH between the MoS{sub 2} and metal. Recent experiments demonstrate significant SBH reduction when graphene layer is inserted between metal slab (Ti and Ni) and MoS{sub 2}. However, the physical or chemical origin of this phenomenon is not yet clearly understood. In this work, densitymore » functional theory simulations are performed, employing pseudopotentials with very high basis sets to get insights of the charge transfer between metal and monolayer MoS{sub 2} through the inserted graphene layer. Our atomistic simulations on 16 different interfaces involving five different metals (Ti, Ag, Ru, Au, and Pt) reveal that (i) such a decrease in SBH is not consistent among various metals, rather an increase in SBH is observed in case of Au and Pt; (ii) unlike MoS{sub 2}-metal interface, the projected dispersion of MoS{sub 2} remains preserved in any MoS{sub 2}-graphene-metal system with shift in the bands on the energy axis. (iii) A proper choice of metal (e.g., Ru) may exhibit ohmic nature in a graphene-inserted MoS{sub 2}-metal contact. These understandings would provide a direction in developing high-performance transistors involving heteroatomic layers as contact electrodes.« less

  13. Frictional and morphological properties of Au-MoS2 films sputtered from a compact target

    NASA Technical Reports Server (NTRS)

    Spalvins, T.

    1984-01-01

    AuMoS2 films 0.02 to 1.2 microns thick were sputtered from target compacted from 5 wt % Au + 95 wt % MoS2, to investigate the frictional and morphological film growth characteristics. The gold dispersion effects in MoS2 films are of interest to increase the densitification and strengthening of the film structure. Three microstructural growth stages were identified on the nano-micro-macrostructural level. During sliding both sputtered Au-MoS2 and MoS2 films have a tendency to break within the columner region. The remaining or effective film, about 0.2 microns thick, performs the lubrication. The Au-MoS2 films displayed a lower friction coefficient with a high degree of frictional stability and less wear debris generation as compared to pure MoS2 films. The more favorable frictional characteristics of the Au-MoS2 films are attributed to the effective film thickness and the high density packed columner zone which has a reduced effect on the fragmentation of the tapered crystallites during fracture.

  14. Highly active Au/δ-MoC and Au/β-Mo 2C catalysts for the low-temperature water gas shift reaction: effects of the carbide metal/carbon ratio on the catalyst performance

    DOE PAGES

    Posada-Pérez, Sergio; Gutiérrez, Ramón A.; Zuo, Zhijun; ...

    2017-05-08

    In this paper, the water gas shift (WGS) reaction catalyzed by orthorhombic β-Mo 2C and cubic δ-MoC surfaces with and without Au clusters supported thereon has been studied by means of a combination of sophisticated experiments and state-of-the-art computational modeling. Experiments evidence the importance of the metal/carbon ratio on the performance of these systems, where Au/δ-MoC is presented as a suitable catalyst for WGS at low temperatures owing to its high activity, selectivity (only CO 2 and H 2 are detected), and stability (oxycarbides are not observed). Periodic density functional theory-based calculations show that the supported Au clusters and themore » Au/δ-MoC interface do not take part directly in water dissociation but their presence is crucial to switch the reaction mechanism, drastically decreasing the effect of the reverse WGS reaction and favoring the WGS products desorption, thus leading to an increase in CO 2 and H 2 production. Finally, the present results clearly display the importance of the Mo/C ratio and the synergy with the admetal clusters in tuning the activity and selectivity of the carbide substrate.« less

  15. Highly active Au/δ-MoC and Au/β-Mo 2C catalysts for the low-temperature water gas shift reaction: effects of the carbide metal/carbon ratio on the catalyst performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Posada-Pérez, Sergio; Gutiérrez, Ramón A.; Zuo, Zhijun

    In this paper, the water gas shift (WGS) reaction catalyzed by orthorhombic β-Mo 2C and cubic δ-MoC surfaces with and without Au clusters supported thereon has been studied by means of a combination of sophisticated experiments and state-of-the-art computational modeling. Experiments evidence the importance of the metal/carbon ratio on the performance of these systems, where Au/δ-MoC is presented as a suitable catalyst for WGS at low temperatures owing to its high activity, selectivity (only CO 2 and H 2 are detected), and stability (oxycarbides are not observed). Periodic density functional theory-based calculations show that the supported Au clusters and themore » Au/δ-MoC interface do not take part directly in water dissociation but their presence is crucial to switch the reaction mechanism, drastically decreasing the effect of the reverse WGS reaction and favoring the WGS products desorption, thus leading to an increase in CO 2 and H 2 production. Finally, the present results clearly display the importance of the Mo/C ratio and the synergy with the admetal clusters in tuning the activity and selectivity of the carbide substrate.« less

  16. Graphene/MoS2 hybrid technology for large-scale two-dimensional electronics.

    PubMed

    Yu, Lili; Lee, Yi-Hsien; Ling, Xi; Santos, Elton J G; Shin, Yong Cheol; Lin, Yuxuan; Dubey, Madan; Kaxiras, Efthimios; Kong, Jing; Wang, Han; Palacios, Tomás

    2014-06-11

    Two-dimensional (2D) materials have generated great interest in the past few years as a new toolbox for electronics. This family of materials includes, among others, metallic graphene, semiconducting transition metal dichalcogenides (such as MoS2), and insulating boron nitride. These materials and their heterostructures offer excellent mechanical flexibility, optical transparency, and favorable transport properties for realizing electronic, sensing, and optical systems on arbitrary surfaces. In this paper, we demonstrate a novel technology for constructing large-scale electronic systems based on graphene/molybdenum disulfide (MoS2) heterostructures grown by chemical vapor deposition. We have fabricated high-performance devices and circuits based on this heterostructure, where MoS2 is used as the transistor channel and graphene as contact electrodes and circuit interconnects. We provide a systematic comparison of the graphene/MoS2 heterojunction contact to more traditional MoS2-metal junctions, as well as a theoretical investigation, using density functional theory, of the origin of the Schottky barrier height. The tunability of the graphene work function with electrostatic doping significantly improves the ohmic contact to MoS2. These high-performance large-scale devices and circuits based on this 2D heterostructure pave the way for practical flexible transparent electronics.

  17. Amorphous MoS 3 Infiltrated with Carbon Nanotubes as an Advanced Anode Material of Sodium-Ion Batteries with Large Gravimetric, Areal, and Volumetric Capacities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ye, Hualin; Wang, Lu; Deng, Shuo

    The search for earth-abundant and high-performance electrode materials for sodium-ion batteries represents an important challenge to current battery research. 2D transition metal dichalcogenides, particularly MoS2, have attracted increasing attention recently, but few of them so far have been able to meet expectations. In this study, it is demonstrated that another phase of molybdenum sulfide—amorphous chain-like MoS3—can be a better choice as the anode material of sodium-ion batteries. Highly compact MoS3 particles infiltrated with carbon nanotubes are prepared via the facile acid precipitation method in ethylene glycol. Compared to crystalline MoS2, the resultant amorphous MoS3 not only exhibits impressive gravimetric performance—featuringmore » excellent specific capacity (≈615 mA h g-1), rate capability (235 mA h g-1 at 20 A g-1), and cycling stability but also shows exceptional volumetric capacity of ≈1000 mA h cm-3 and an areal capacity of >6.0 mA h cm-2 at very high areal loadings of active materials (up to 12 mg cm-2). The experimental results are supported by density functional theory simulations showing that the 1D chains of MoS3 can facilitate the adsorption and diffusion of Na+ ions. At last, it is demonstrated that the MoS3 anode can be paired with an Na3V2(PO4)3 cathode to afford full cells with great capacity and cycling performance.« less

  18. Porous Hybrid Composites of Few-Layer MoS2 Nanosheets Embedded in a Carbon Matrix with an Excellent Supercapacitor Electrode Performance.

    PubMed

    Ji, Hongmei; Liu, Chao; Wang, Ting; Chen, Jing; Mao, Zhengning; Zhao, Jin; Hou, Wenhua; Yang, Gang

    2015-12-22

    Porous hierarchical architectures of few-layer MoS2 nanosheets dispersed in carbon matrix are prepared by a microwave-hydrothermal method followed by annealing treatment via using glucose as C source and structure-directing agent and (NH4 )2 MoS4 as both Mo and S sources. It is found that the morphology and size of the secondary building units (SBUs), the size and layer number of MoS2 nanosheets as well as the distribution of MoS2 nanosheets in carbon matrix, can be effectively controlled by simply adjusting the molar ratio of (NH4 )2 MoS4 to glucose, leading to the materials with a low charge-transfer resistance, many electrochemical active sites and a robust structure for an outstanding energy storage performance including a high specific capacitance (589 F g(-1) at 0.5 A g(-1) ), a good rate capability (364 F g(-1) at 20 A g(-1) ), and an excellent cycling stability (retention 104% after 2000 cycles) for application in supercapacitors. The exceptional rate capability endows the electrode with a high energy density of 72.7 Wh kg(-1) and a high power density of 12.0 kW kg(-1) simultaneously. This work presents a facile and scalable approach for synthesizing novel heterostructures of MoS2 -based electrode materials with an enhanced rate capability and cyclability for potential application in supercapacitor. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Asymmetric supercapacitors with high energy density based on helical hierarchical porous NaxMnO2 and MoO2 † †Electronic supplementary information (ESI) available. See DOI: 10.1039/c5sc03326h Click here for additional data file.

    PubMed Central

    Lu, Xue-Feng; Huang, Zhi-Xiang; Tong, Ye-Xiang

    2016-01-01

    Helical hierarchical porous NaxMnO2/CC and MoO2/CC, which are assembled from nanosheets and nanoparticles, respectively, are fabricated using a simple electrodeposition method. These unique helical porous structures enable electrodes to have a high capacitance and an outstanding cycling performance. Based on the helical NaxMnO2/CC as the positive electrodes and helical MoO2/CC as the negative electrodes, high performance NaxMnO2/CC//MoO2/CC asymmetric supercapacitors (ASCs) are successfully assembled, and they achieve a maximum volume C sp of 2.04 F cm–3 and a maximum energy density of 0.92 mW h cm–3 for the whole device and an excellent cycling stability with 97.22% C sp retention after 6000 cycles. PMID:28791103

  20. High-performance a MoS2 nanosheet-based nonvolatile memory transistor with a ferroelectric polymer and graphene source-drain electrode

    NASA Astrophysics Data System (ADS)

    Lee, Young Tack; Hwang, Do Kyung; Im, Seongil

    2015-11-01

    Two-dimensional (2D) van der Waals (vdWs) materials are a class of new materials due to their unique physical properties. Of the many 2D vdWs materials, molybdenum disulfide (MoS2) is a representative n-type transition-metal dichalcogenide (TMD) semiconductor. Here, we report on a high-performance MoS2 nanosheet-based nonvolatile memory transistor with a poly(vinylidenefluoride-trifluoroethylene) (P(VDF-TrFE)) ferroelectric top gate insulator. In order to enhance the ohmic contact property, we use graphene flakes as source/drain electrodes prepared by using the direct imprinting method with an elastomer stamp. The MoS2 ferroelectric field-effect transistor (FeFET) shows the highest linear electron mobility value of 175 cm2/Vs with a high on/off current ratio of more than 107, and a very clear memory window of more than 15 V. The program and erase dynamics and the static retention properties are also well demonstrated.

  1. Highly sensitive MoTe2 chemical sensor with fast recovery rate through gate biasing

    NASA Astrophysics Data System (ADS)

    Feng, Zhihong; Xie, Yuan; Chen, Jiancui; Yu, Yuanyuan; Zheng, Shijun; Zhang, Rui; Li, Quanning; Chen, Xuejiao; Sun, Chongling; Zhang, Hao; Pang, Wei; Liu, Jing; Zhang, Daihua

    2017-06-01

    The unique properties of two dimensional (2D) materials make them promising candidates for chemical and biological sensing applications. However, most 2D nanomaterial sensors suffer very long recovery time due to slow molecular desorption at room temperature. Here, we report a highly sensitive molybdenum ditelluride (MoTe2) gas sensor for NO2 and NH3 detection with greatly enhanced recovery rate. The effects of gate bias on sensing performance have been systematically studied. It is found that the recovery kinetics can be effectively adjusted by biasing the sensor to different gate voltages. Under the optimum biasing potential, the MoTe2 sensor can achieve more than 90% recovery after each sensing cycle well within 10 min at room temperature. The results demonstrate the potential of MoTe2 as a promising candidate for high-performance chemical sensors. The idea of exploiting gate bias to adjust molecular desorption kinetics can be readily applied to much wider sensing platforms based on 2D nanomaterials.

  2. Irradiation performance of U-Mo monolithic fuel

    DOE PAGES

    Meyer, M. K.; Gan, J.; Jue, J. F.; ...

    2014-04-01

    High-performance research reactors require fuel that operates at high specific power to high fission density, but at relatively low temperatures. Research reactor fuels are designed for efficient heat rejection, and are composed of assemblies of thin-plates clad in aluminum alloy. The development of low-enriched fuels to replace high-enriched fuels for these reactors requires a substantially increased uranium density in the fuel to offset the decrease in enrichment. Very few fuel phases have been identified that have the required combination of very-high uranium density and stable fuel behavior at high burnup. U-Mo alloys represent the best known tradeoff in these properties.more » Testing of aluminum matrix U-Mo aluminum matrix dispersion fuel revealed a pattern of breakaway swelling behavior at intermediate burnup, related to the formation of a molybdenum stabilized high aluminum intermetallic phase that forms during irradiation. In the case of monolithic fuel, this issue was addressed by eliminating, as much as possible, the interfacial area between U-Mo and aluminum. Based on scoping irradiation test data, a fuel plate system composed of solid U-10Mo fuel meat, a zirconium diffusion barrier, and Al6061 cladding was selected for development. Developmental testing of this fuel system indicates that it meets core criteria for fuel qualification, including stable and predictable swelling behavior, mechanical integrity to high burnup, and geometric stability. In addition, the fuel exhibits robust behavior during power-cooling mismatch events under irradiation at high power.« less

  3. Improved dehydrogenation performance of LiBH4 by 3D hierarchical flower-like MoS2 spheres additives

    NASA Astrophysics Data System (ADS)

    Zhao, Yan; Liu, Yongchang; Liu, Huiqiao; Kang, Hongyan; Cao, Kangzhe; Wang, Qinghong; Zhang, Chunling; Wang, Yijing; Yuan, Huatang; Jiao, Lifang

    2015-12-01

    In this work, 3D hierarchical flower-like MoS2 spheres are successfully fabricated via a hydrothermal method followed by a heat treatment. The obtained product is composed of few-layered MoS2 nanosheets with enlarged interlayer distance (ca. 0.66 nm) of the (002) plane. Meanwhile, the hydrogen storage properties of the as-prepared MoS2 ball milled with LiBH4 are systematically investigated. The results of temperature programmed desorption (TPD) and isothermal measurement suggest that the LiBH4-MoS2 (as-prepared) mixture exhibits favorable dehydrogenation properties in both lowering the hydrogen release temperature and improving kinetics of hydrogen release rate. LiBH4-MoS2 (as-prepared) sample (the preparation mass ratio is 1:1) starts to release hydrogen at 171 °C, and roughly 5.6 wt% hydrogen is released within 1 h when isothermally heated to 320 °C, which presents superior dehydrogenation performance compared to that of the bulk LiBH4. The excellent dehydrogenation performance of the LiBH4-MoS2 (as-prepared) mixture may be attributed to the high active site density and enlarged interlayer distance of the MoS2 nanosheets, 3D architectures and hierarchical structures.

  4. An Investigation on the Tribological Performances of the SiO2/MoS2 Hybrid Nanofluids for Magnesium Alloy-Steel Contacts.

    PubMed

    Xie, Hongmei; Jiang, Bin; Liu, Bo; Wang, Qinghang; Xu, Junyao; Pan, Fusheng

    2016-12-01

    Hybrid nano-materials offer potential scope for an increasing numerous novel applications when engineered to deliver availably functional properties. In the present study, the SiO2/MoS2 hybrid nanoparticles with different mass ratios were employed as lubricant additives in the base oil, and their tribological properties were evaluated using a reciprocating ball-on-plate tribometer for magnesium alloy-steel contacts. The results demonstrate that the SiO2/MoS2 hybrid nanoparticles exhibit superior lubrication performances than individual nano-SiO2 or nano-MoS2 even in high load and diverse velocity cases. The optimal SiO2/MoS2 mixing ratio and the concentration of SiO2/MoS2 hybrid nanoparticles in the base oil are 0.25:0.75 and 1.00-1.25 wt%, respectively. The excellent lubrication properties of the SiO2/MoS2 hybrid nanoparticles are attributed to the physical synergistic lubricating actions of nano-SiO2 and nano-MoS2 during the rubbing process.

  5. An Investigation on the Tribological Performances of the SiO2/MoS2 Hybrid Nanofluids for Magnesium Alloy-Steel Contacts

    NASA Astrophysics Data System (ADS)

    Xie, Hongmei; Jiang, Bin; Liu, Bo; Wang, Qinghang; Xu, Junyao; Pan, Fusheng

    2016-07-01

    Hybrid nano-materials offer potential scope for an increasing numerous novel applications when engineered to deliver availably functional properties. In the present study, the SiO2/MoS2 hybrid nanoparticles with different mass ratios were employed as lubricant additives in the base oil, and their tribological properties were evaluated using a reciprocating ball-on-plate tribometer for magnesium alloy-steel contacts. The results demonstrate that the SiO2/MoS2 hybrid nanoparticles exhibit superior lubrication performances than individual nano-SiO2 or nano-MoS2 even in high load and diverse velocity cases. The optimal SiO2/MoS2 mixing ratio and the concentration of SiO2/MoS2 hybrid nanoparticles in the base oil are 0.25:0.75 and 1.00-1.25 wt%, respectively. The excellent lubrication properties of the SiO2/MoS2 hybrid nanoparticles are attributed to the physical synergistic lubricating actions of nano-SiO2 and nano-MoS2 during the rubbing process.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murgia, Fabrizio; Antitomaso, Philippe; Stievano, Lorenzo

    The ternary Chevrel phase Cu{sub 2}Mo{sub 6}S{sub 8} was successfully synthetized using a simple and cost-effective solid-state microwave-assisted reaction. While solid-state routes require days of high-temperature treatment under inert atmosphere, highly pure and crystalline Cu{sub 2}Mo{sub 6}S{sub 8} could be obtained in only 400 s from this precursor, the Chevrel binary phase Mo{sub 6}S{sub 8} was then obtained by copper removal through acidic leaching, and was evaluated as a positive electrode material for Mg-battery. The electrochemical performance in half-cell configuration shows reversible capacity exceeding 80 mAh/g, which is comparable to previous works carried out with materials synthesized by conventional high-temperaturemore » solid-state routes. - Graphical abstract: Ultrafast micro-wave synthesis of Chevrel phase Cu{sub 2}Mo{sub 6}S{sub 8} towards Mo{sub 6}S{sub 8} as positive electrode of Mg-battery. - Highlights: • Chevrel phase Cu{sub 2}Mo{sub 6}S{sub 8} is synthesized by fast microwave-assisted solid-state reaction. • Highly-pure and well-crystalline Cu{sub 2}Mo{sub 6}S{sub 8} is obtained. • Mo{sub 6}S{sub 8} obtained from leaching is tested as a positive electrode for Mg batteries.« less

  7. High-performance flexible inverted organic light-emitting diodes by exploiting MoS2 nanopillar arrays as electron-injecting and light-coupling layers.

    PubMed

    Guo, Kunping; Si, Changfeng; Han, Ceng; Pan, Saihu; Chen, Guo; Zheng, Yanqiong; Zhu, Wenqing; Zhang, Jianhua; Sun, Chang; Wei, Bin

    2017-10-05

    Inverted organic light-emitting diodes (IOLEDs) on plastic substrates have great potential application in flexible active-matrix displays. High energy consumption, instability and poor electron injection are key issues limiting the commercialization of flexible IOLEDs. Here, we have systematically investigated the electrooptical properties of molybdenum disulfide (MoS 2 ) and applied it in developing highly efficient and stable blue fluorescent IOLEDs. We have demonstrated that MoS 2 -based IOLEDs can significantly improve electron-injecting capacity. For the MoS 2 -based device on plastic substrates, we have achieved a very high external quantum efficiency of 7.3% at the luminance of 9141 cd m -2 , which is the highest among the flexible blue fluorescent IOLEDs reported. Also, an approximately 1.8-fold improvement in power efficiency was obtained compared to glass-based IOLEDs. We attributed the enhanced performance of flexible IOLEDs to MoS 2 nanopillar arrays due to their light extraction effect. The van der Waals force played an important role in the formation of MoS 2 nanopillar arrays by thermal evaporation. Notably, MoS 2 -based flexible IOLEDs exhibit an intriguing efficiency roll-up, that is, the current efficiency increases slightly from 14.0 to 14.6 cd A -1 with the luminance increasing from 100 to 5000 cd m -2 . In addition, we observed that the initial brightness of 500 cd m -2 can be maintained at 97% after bending for 500 cycles, demonstrating the excellent mechanical stability of flexible IOLEDs. Furthermore, we have successfully fabricated a transparent, flexible IOLED with low efficiency roll-off at high current density.

  8. Photoresponse properties of large area MoS2 metal–semiconductor–metal photodetectors

    NASA Astrophysics Data System (ADS)

    Ko, Tsung-Shine; Huang, Yu-Jen; Lin, Der-Yuh; Lin, Chia-Feng; Hong, Bo-Syun; Chen, Hone-Zern

    2018-04-01

    In this study, a large-area molybdenum disulfide (MoS2) thin film was obtained by low pressure thermal sulfurization. Raman scattering spectrum shows that the peaks at 374 and 403 cm‑1 are from the MoS2 thin film. XRD result reveals peaks at 33 and 58.5° indicating MoS2(100) and (110) crystal planes. By using gold (Au), silver (Ag), and aluminum (Al) as contact materials on the MoS2 thin film, photoresponsivity results indicate that Ag is a suitable material for obtaining a high responsivity for a high-performance photodetector (PD). Photocurrent mapping measurements also reveal that Ag contacts have the best carrier transport characteristic with carrier diffusion length of 101 µm among these contacts. Furthermore, we investigated metal–semiconductor–metal MoS2 thin film PDs with interdigitated fingers of 300, 400, 500, and 600 µm contact widths, which showed that the large contact widths could produce a high photoresponse for PD application owing to low resistance.

  9. A Flexible Platform Containing Graphene Mesoporous Structure and Carbon Nanotube for Hydrogen Evolution

    PubMed Central

    Zhang, Rujing; Li, Xiao; Zhang, Li; Lin, Shuyuan

    2016-01-01

    It is of great significance to design a platform with large surface area and high electrical conductivity for poorly conductive catalyst for hydrogen evolution reaction (HER), such as molybdenum sulfide (MoSx), a promising and cost‐effective nonprecious material. Here, the design and preparation of a free‐standing and tunable graphene mesoporous structure/single‐walled carbon nanotube (GMS/SWCNT) hybrid membrane is reported. Amorphous MoSx is electrodeposited on this platform through a wet chemical process under mild temperature. For MoSx@GMS/SWCNT hybrid electrode with a low catalyst loading of 32 μg cm−2, the onset potential is near 113 mV versus reversible hydrogen electrode (RHE) and a high current density of ≈71 mA cm−2 is achieved at 250 mV versus RHE. The excellent HER performance can be attributed to the large surface area for MoSx deposition, as well as the efficient electron transport and abundant active sites on the amorphous MoSx surface. This novel catalyst is found to outperform most previously reported MoSx‐based HER catalysts. Moreover, the flexibility of the electrode facilitates its stable catalytic performance even in extremely distorted states. PMID:27980998

  10. Tunable passively Q-switched erbium-doped fiber laser with Chitosan/MoS2 saturable absorber

    NASA Astrophysics Data System (ADS)

    Ahmad, H.; Aidit, S. N.; Ooi, S. I.; Tiu, Z. C.

    2018-07-01

    Chitosan, an organic polymer derived from the outer skeletons of crustacean and in the cell wall of fungi is explored as polymer host to develop thin film saturable absorber (SA). As a polymer, Chitosan shows high thermal stability as well as significant transmission characteristics. The highly transparent polymer serves as a good host for SA materials, and a composite Chitosan/MoS2 thin film is demonstrated to successfully generate stable Q-switched lasing output at operating wavelength of 1561.5 nm. At maximum pump power of 280.5 mW, the generated pulse exhibits maximum pulse repetition rate and pulse energy of 79.4 kHz and 43.69 nJ respectively as well as minimum pulse width of 1.02 μs. The overall efficiency of the laser cavity with the Chitosan/MoS2 thin film SA is approximately 0.93%. These results reflect the outstanding performance of Chitosan/MoS2 SA as compared to other MoS2 SA prepared using mechanical exfoliation and optical deposition technique. Moreover, the Chitosan polymer is shown to be a highly potential host in the SA fabrication process due to its promising performance which is comparable to PVA.

  11. Enhanced photovoltaic performances of graphene/Si solar cells by insertion of a MoS₂ thin film.

    PubMed

    Tsuboi, Yuka; Wang, Feijiu; Kozawa, Daichi; Funahashi, Kazuma; Mouri, Shinichiro; Miyauchi, Yuhei; Takenobu, Taishi; Matsuda, Kazunari

    2015-09-14

    Transition-metal dichalcogenides exhibit great potential as active materials in optoelectronic devices because of their characteristic band structure. Here, we demonstrated that the photovoltaic performances of graphene/Si Schottky junction solar cells were significantly improved by inserting a chemical vapor deposition (CVD)-grown, large MoS2 thin-film layer. This layer functions as an effective electron-blocking/hole-transporting layer. We also demonstrated that the photovoltaic properties are enhanced with the increasing number of graphene layers and the decreasing thickness of the MoS2 layer. A high photovoltaic conversion efficiency of 11.1% was achieved with the optimized trilayer-graphene/MoS2/n-Si solar cell.

  12. Large-area and highly crystalline MoSe2 for optical modulator

    NASA Astrophysics Data System (ADS)

    Yin, Jinde; Chen, Hao; Lu, Wei; Liu, Mengli; Li, Irene Ling; Zhang, Min; Zhang, Wenfei; Wang, Jinzhang; Xu, Zihan; Yan, Peiguang; Liu, Wenjun; Ruan, Shuangchen

    2017-12-01

    Transition metal dichalcogenides (TMDs) have been successfully used as broadband optical modulator materials for pulsed fiber laser systems. However, the nonlinear optical absorptions of exfoliated TMDs are strongly limited by their nanoflakes morphology with uncontrollable lateral size and thickness. In this work, we provide an effective method to fully explore the nonlinear optical properties of MoSe2. Large-area and high quality lattice MoSe2 grown by chemical vapor deposition method was adopted as an optical modulator for the first time. The large-area MoSe2 shows excellent nonlinear optical absorption with a large modulation depth of 21.7% and small saturable intensity of 9.4 MW cm-2. After incorporating the MoSe2 optical modulator into fiber laser cavity as a saturable absorber, a highly stable Q-switching operation with single pulse energy of 224 nJ is achieved. The large-area MoSe2 possessing superior nonlinear optical properties compared to exfoliated nanoflakes affords possibility for the larger-area two-dimensional materials family as high performance optical devices.

  13. Mechanochemical Synthesis of Li2MnO3 Shell/LiMO2 (M = Ni, Co, Mn) Core-Structured Nanocomposites for Lithium-Ion Batteries

    PubMed Central

    Noh, Jae-Kyo; Kim, Soo; Kim, Haesik; Choi, Wonchang; Chang, Wonyoung; Byun, Dongjin; Cho, Byung-Won; Chung, Kyung Yoon

    2014-01-01

    Core/shell-like nanostructured xLi2MnO3·(1−x)LiMO2 (M = Ni, Co, Mn) composite cathode materials are successfully synthesized through a simple solid-state reaction using a mechanochemical ball-milling process. The LiMO2 core is designed to have a high-content of Ni, which increases the specific capacity. The detrimental surface effects arising from the high Ni-content are countered by the Li2MnO3 shell, which stabilizes the nanoparticles. The electrochemical performances and thermal stabilities of the synthesized nanocomposites are compared with those of bare LiMO2. In particular, the results of time-resolved X-ray diffraction (TR-XRD) analyses of xLi2MnO3·(1−x)LiMO2 nanocomposites as well as their differential scanning calorimetry (DSC) profiles demonstrate that the Li2MnO3 shell is effective in stabilizing the LiMO2 core at high temperatures, making the nanocomposites highly suitable from a safety viewpoint. PMID:24784478

  14. Ultrathin MoS2-coated Ag@Si nanosphere arrays as an efficient and stable photocathode for solar-driven hydrogen production

    NASA Astrophysics Data System (ADS)

    Zhou, Qingwei; Su, Shaoqiang; Hu, Die; Lin, Lin; Yan, Zhibo; Gao, Xingsen; Zhang, Zhang; Liu, Jun-Ming

    2018-03-01

    Solar-driven photoelectrochemical (PEC) water splitting has attracted a great deal of attention recently. Silicon (Si) is an ideal light absorber for solar energy conversion. However, the poor stability and inefficient surface catalysis of Si photocathodes for the hydrogen evolution reaction (HER) have remained key challenges. Alternatively, MoS2 has been reported to exhibit excellent catalysis performance if sufficient active sites for the HER are available. Here, ultrathin MoS2 nanoflakes are directly synthesized to coat arrays of Ag-core Si-shell nanospheres (Ag@Si NSs) by using chemical vapor deposition. Due to the high surface area ratio and large curvature of these NSs, the as-grown MoS2 nanoflakes can accommodate more active sites. In addition, the high-quality coating of MoS2 nanoflakes on the Ag@Si NSs protects the photocathode from damage during the PEC reaction. An photocurrent density of 33.3 mA cm-2 at a voltage of -0.4 V is obtained versus the reversible hydrogen electrode. The as-prepared nanostructure as a hydrogen photocathode is evidenced to have high stability over 12 h PEC performance. This work opens up opportunities for composite photocathodes with high activity and stability using cheap and stable co-catalysts.

  15. Ultrathin MoS2-coated Ag@Si nanosphere arrays as an efficient and stable photocathode for solar-driven hydrogen production.

    PubMed

    Zhou, Qingwei; Su, Shaoqiang; Hu, Die; Lin, Lin; Yan, Zhibo; Gao, Xingsen; Zhang, Zhang; Liu, Jun-Ming

    2018-01-30

    Solar-driven photoelectrochemical (PEC) water splitting has attracted a great deal of attention recently. Silicon (Si) is an ideal light absorber for solar energy conversion. However, the poor stability and inefficient surface catalysis of Si photocathodes for the hydrogen evolution reaction (HER) have remained key challenges. Alternatively, MoS 2 has been reported to exhibit excellent catalysis performance if sufficient active sites for the HER are available. Here, ultrathin MoS 2 nanoflakes are directly synthesized to coat arrays of Ag-core Si-shell nanospheres (Ag@Si NSs) by using chemical vapor deposition. Due to the high surface area ratio and large curvature of these NSs, the as-grown MoS 2 nanoflakes can accommodate more active sites. In addition, the high-quality coating of MoS 2 nanoflakes on the Ag@Si NSs protects the photocathode from damage during the PEC reaction. An photocurrent density of 33.3 mA cm -2 at a voltage of -0.4 V is obtained versus the reversible hydrogen electrode. The as-prepared nanostructure as a hydrogen photocathode is evidenced to have high stability over 12 h PEC performance. This work opens up opportunities for composite photocathodes with high activity and stability using cheap and stable co-catalysts.

  16. The effects of temperature and exercise training on swimming performance in juvenile qingbo (Spinibarbus sinensis).

    PubMed

    Pang, Xu; Yuan, Xing-Zhong; Cao, Zhen-Dong; Fu, Shi-Jian

    2013-01-01

    To investigate the effects of temperature and exercise training on swimming performance in juvenile qingbo (Spinibarbus sinensis), we measured the following: (1) the resting oxygen consumption rate (MO(2rest)), critical swimming speed (U(crit)) and active oxygen consumption rate (MO(2active)) of fish at acclimation temperatures of 10, 15, 20, 25 and 30 °C and (2) the MO(2rest), U(crit) and MO(2active) of both exercise-trained (exhaustive chasing training for 14 days) and control fish at both low and high acclimation temperatures (15 and 25 °C). The relationship between U(crit) and temperature (T) approximately followed a bell-shaped curve as temperature increased: U(crit) = 8.21/{1 + [(T - 27.2)/17.0]²} (R² = 0.915, P < 0.001, N = 40). The optimal temperature for maximal U(crit) (8.21 BL s(-1)) in juvenile qingbo was 27.2 °C. Both the MO(2active) and the metabolic scope (MS, MO(2active) - MO(2rest)) of qingbo increased with temperature from 10 to 25 °C (P < 0.05), but there were no significant differences between fish acclimated to 25 and 30 °C. The relationships between MO(2active) or MS and temperature were described as MO(2active) = 1,214.29 /{1 + [(T - 28.8)/10.6]²} (R² = 0.911, P < 0.001, N = 40) and MS = 972.67/{1 + [(T - 28.0)/9.34]²} (R² = 0.878, P < 0.001, N = 40). The optimal temperatures for MO(2active) and MS in juvenile qingbo were 28.8 and 28.0 °C, respectively. Exercise training resulted in significant increases in both U(crit) and MO(2active) at a low temperature (P < 0.05), but training exhibited no significant effect on either U(crit) or MO(2active) at a high temperature. These results suggest that exercise training had different effects on swimming performance at different temperatures. These differences may be related to changes in aerobic metabolic capability, arterial oxygen delivery, available dissolved oxygen, imbalances in ion fluxes and stimuli to remodel tissues with changes in temperature.

  17. Confined Molybdenum Phosphide in P-Doped Porous Carbon as Efficient Electrocatalysts for Hydrogen Evolution.

    PubMed

    Li, Ji-Sen; Zhang, Shuai; Sha, Jing-Quan; Wang, Hao; Liu, Ming-Zhu; Kong, Ling-Xin; Liu, Guo-Dong

    2018-05-09

    Highly efficient electrocatalysts for hydrogen evolution reactions (HER) are crucial for electrochemical water splitting, where high-cost and low-abundance Pt-based materials are the benchmark catalysts for HER. Herein, we report the fabrication of MoP nanoparticles confined in P-doped porous carbon (MoP@PC) via a metal-organic framework-assisted route for the first time. Remarkably, due to the synergistic effects of MoP nanocrystals, P dopant, and porous carbon, the resulting MoP@PC composite exhibits superior HER catalytic activity with an onset overpotential of 97 mV, a Tafel slope of 59.3 mV dec -1 , and good long-term durability, which compares to those of most reported MoP-based HER catalysts. Most importantly, the work opens a new route in the development of high-performance nonprecious HER electrocatalysts derived from MOFs.

  18. Direct Growth of High Mobility and Low-Noise Lateral MoS2 -Graphene Heterostructure Electronics.

    PubMed

    Behranginia, Amirhossein; Yasaei, Poya; Majee, Arnab K; Sangwan, Vinod K; Long, Fei; Foss, Cameron J; Foroozan, Tara; Fuladi, Shadi; Hantehzadeh, Mohammad Reza; Shahbazian-Yassar, Reza; Hersam, Mark C; Aksamija, Zlatan; Salehi-Khojin, Amin

    2017-08-01

    Reliable fabrication of lateral interfaces between conducting and semiconducting 2D materials is considered a major technological advancement for the next generation of highly packed all-2D electronic circuitry. This study employs seed-free consecutive chemical vapor deposition processes to synthesize high-quality lateral MoS 2 -graphene heterostructures and comprehensively investigated their electronic properties through a combination of various experimental techniques and theoretical modeling. These results show that the MoS 2 -graphene devices exhibit an order of magnitude higher mobility and lower noise metrics compared to conventional MoS 2 -metal devices as a result of energy band rearrangement and smaller Schottky barrier height at the contacts. These findings suggest that MoS 2 -graphene in-plane heterostructures are promising materials for the scale-up of all-2D circuitry with superlative electrical performance. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Construction of reduced graphene oxide supported molybdenum carbides composite electrode as high-performance anode materials for lithium ion batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Minghua; Zhang, Jiawei; Chen, Qingguo, E-mail: qgchen@263.net

    Highlights: • Reduced graphene oxide supported molybdenum carbides are prepared by two-step strategy. • A unique sheet-on-sheet integrated nanostructure is favorable for fast ion/electron transfer. • The integrated electrode shows excellent Li ion storage performance. - Abstract: Metal carbides are emerging as promising anodes for advanced lithium ion batteries (LIBs). Herein we report reduced graphene oxide (RGO) supported molybdenum carbides (Mo{sub 2}C) integrated electrode by the combination of solution and carbothermal methods. In the designed integrated electrode, Mo{sub 2}C nanoparticles are uniformly dispersed among graphene nanosheets, forming a unique sheet-on-sheet integrated nanostructure. As anode of LIBs, the as-prepared Mo{sub 2}C-RGOmore » integrated electrode exhibits noticeable electrochemical performances with a high reversible capacity of 850 mAh g{sup −1} at 100 mA g{sup −1}, and 456 mAh g{sup −1} at 1000 mA g{sup −1}, respectively. Moreover, the Mo{sub 2}C-RGO integrated electrode shows excellent cycling life with a capacity of ∼98.6 % at 1000 mA g{sup −1} after 400 cycles. Our research may pave the way for construction of high-performance metal carbides anodes of LIBs.« less

  20. Facile fabrication of CNTs@C@MoSe2@Se hybrids with amorphous structure for high performance anode in lithium-ion batteries.

    PubMed

    Jin, Rencheng; Cui, Yuming; Wang, Qingyao; Li, Guihua

    2017-12-15

    Amorphous MoSe 2 and Se anchored on amorphous carbon coated multiwalled carbon nanotubes (CNTs@C@MoSe 2 @Se) have been synthesized by a facile solvothermal strategy. The one dimensional CNTs@C@MoSe 2 @Se can effectively buffer the volume variation, prohibit the aggregation and facilitate electron and ion transport throughout the electrode. Furthermore, the combination of MoSe 2 and Se also provides buffer spaces for the volumetric change during cycling. Thus, the obtained CNTs@C@MoSe 2 @Se hybrids display the enhanced cycle stability and excellent high rate capacity. The reversible capacity of 1010mAhg -1 can be achieved after 100 cycles at the current density of 0.1Ag -1 . Even after 500 cycles, a reversible capacity of 508mAhg -1 is still retained at 5Ag -1 . Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Direct Electrochemistry of Bilirubin Oxidase from Magnaporthe orizae on Covalently-Functionalized MWCNT for the Design of High-Performance Oxygen-Reducing Biocathodes.

    PubMed

    Gentil, Solène; Carrière, Marie; Cosnier, Serge; Gounel, Sébastien; Mano, Nicolas; Le Goff, Alan

    2018-06-12

    Herein, the direct electrochemistry of bilirubin oxidase from Magnaporthe orizae (MoBOD) was studied on CNTs functionalized by electrografting several types of diazonium salts. The functionalization induces favorable or unfavorable orientation of MoBOD, the latter being compared to the well-known BOD from Myrothecium verrucaria (MvBOD). On the same nanostructured electrodes, MoBOD can surpass MvBOD in terms of both current densities and minimal overpotentials. Added to the fact that MoBOD is also highly active at the gas-diffusion electrode (GDE), these findings make MoBOD one of the MCOs with the highest catalytic activity towards the oxygen reduction reaction (ORR). © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. CMOS-compatible batch processing of monolayer MoS2 MOSFETs

    NASA Astrophysics Data System (ADS)

    Xiong, Kuanchen; Kim, Hyun; Marstell, Roderick J.; Göritz, Alexander; Wipf, Christian; Li, Lei; Park, Ji-Hoon; Luo, Xi; Wietstruck, Matthias; Madjar, Asher; Strandwitz, Nicholas C.; Kaynak, Mehmet; Lee, Young Hee; Hwang, James C. M.

    2018-04-01

    Thousands of high-performance 2D metal-oxide-semiconductor field effect transistors (MOSFETs) were fabricated on wafer-scale chemical vapor deposited MoS2 with fully-CMOS-compatible processes such as photolithography and aluminum metallurgy. The yield was greater than 50% in terms of effective gate control with less-than-10 V threshold voltage, even for MOSFETs having deep-submicron gate length. The large number of fabricated MOSFETs allowed statistics to be gathered and the main yield limiter to be attributed to the weak adhesion between the transferred MoS2 and the substrate. With cut-off frequencies approaching the gigahertz range, the performances of the MOSFETs were comparable to that of state-of-the-art MoS2 MOSFETs, whether the MoS2 was grown by a thin-film process or exfoliated from a bulk crystal.

  3. Ultra-thin MoS2 coated Ag@Si nanosphere arrays as efficient and stable photocathode for solar-driven hydrogen production.

    PubMed

    Zhou, Qingwei; Su, Shaoqiang; Hu, Die; Lin, Lin; Yan, Zhibo; Gao, Xingsen; Zhang, Zhang; Liu, Junming

    2018-01-02

    Solar-driven photoelectrochemical (PEC) water splitting has recently attracted much attention. Silicon (Si) is an ideal light absorber for solar energy conversion. However, the poor stability and inefficient surface catalysis of Si photocathode for hydrogen evolution reaction (HER) have been remained as the key challenges. Alternatively, MoS2 has been reported to exhibit the excellent catalysis performance if sufficient active sites for the HER are available. Here, ultra-thin MoS2 nanoflakes are directly synthesized to coat on the arrays of Ag-core Si-shell nanospheres (Ag@Si NSs) using the chemical vapor deposition (CVD). Due to the high surface area ratio and large curvature of these NSs, the as-grown MoS2 nanoflakes can accommodate more active sites. Meanwhile, the high-quality coating of MoS2 nanoflakes on the Ag@Si NSs protects the photocathode from damage during the PEC reaction. A high efficiency with a photocurrent of 33.3 mA cm-2 at a voltage of -0.4 V vs. the reversible hydrogen electrode is obtained. The as-prepared nanostructure as hydrogen photocathode is evidenced to have high stability over 12 hour PEC performance. This work opens opportunities for composite photocathode with high activity and stability using cheap and stable co-catalysts. © 2017 IOP Publishing Ltd.

  4. Integrated 3D porous C-MoS2/nitrogen-doped graphene electrode for high capacity and prolonged stability lithium storage

    NASA Astrophysics Data System (ADS)

    Xie, D.; Tang, W. J.; Xia, X. H.; Wang, D. H.; Zhou, D.; Shi, F.; Wang, X. L.; Gu, C. D.; Tu, J. P.

    2015-11-01

    Scrupulous design and fabrication of advanced anode materials are of great importance for developing high-performance lithium ion batteries. Herein, we report a facile strategy for construction of free-standing and free-binder 3D porous carbon coated MoS2/nitrogen-doped graphene (C-MoS2/N-G) integrated electrode via a hydrothermal-induced self-assembly process. The preformed carbon coated MoS2 is strongly anchored on the porous nitrogen-doped graphene aerogel architecture. As an anode for lithium ion batteries, the C-MoS2/N-G electrode delivers a high first discharge capacity of 1600 mAh g-1 and maintains 900 mAh g-1 after 500 cycles at a current density of 200 mA g-1. Impressively, superior high-rate capability is achieved for the C-MoS2/N-G with a reversible capacity of 500 mAh g-1 at a high current density of 4000 mA g-1. Furthermore, the lithium storage mechanism of the obtained integrated electrode is investigated by ex-situ X-ray photoelectron spectroscopy and transmission electron microscopy in detail.

  5. Effect of fortification with multiple micronutrients and n-3 fatty acids on growth and cognitive performance in Indian schoolchildren: the CHAMPION (Children's Health and Mental Performance Influenced by Optimal Nutrition) Study.

    PubMed

    Muthayya, Sumithra; Eilander, Ans; Transler, Catherine; Thomas, Tinku; van der Knaap, Henk C M; Srinivasan, Krishnamachari; van Klinken, B Jan Willem; Osendarp, Saskia J M; Kurpad, Anura V

    2009-06-01

    Fortification with multiple micronutrients has been shown to improve growth and cognitive performance among children in developing countries, but it is unknown whether higher concentrations are more effective than lower concentrations. We compared the effect of 2 different concentrations of a combination of micronutrients and n-3 (omega-3) fatty acids on indicators of growth and cognitive performance in low-income, marginally nourished schoolchildren in Bangalore, India. In a 2-by-2 factorial, double-blind, randomized controlled trial, 598 children aged 6-10 y were individually allocated to 1 of 4 intervention groups to receive foods fortified with either 100% or 15% of the Recommended Dietary Allowance of micronutrients in combination with either 900 mg alpha-linolenic acid plus 100 mg docosahexaenoic acid or 140 mg alpha-linolenic acid for 12 mo. Anthropometric and biochemical assessments were performed at baseline and 12 mo. Cognitive performance was measured at baseline and at 6 and 12 mo. The high micronutrient treatment significantly improved linear growth at 12 mo (0.19 cm; 0.01, 0.36) and short-term memory at 6 mo (0.11 SD; 0.01, 0.20) and was less beneficial on fluid reasoning at 6 (-0.10 SD; -0.17, -0.03) and 12 (-0.12 SD; -0.20, -0.04) mo than was the low micronutrient treatment, whereas no differences were observed on weight, retrieval ability, cognitive speediness, and overall cognitive performance. No significant differences were found between the n-3 treatments. The high micronutrient treatment was more beneficial for linear growth than was the low micronutrient treatment. However, with some small differential effects, higher micronutrient concentrations were as effective as lower concentrations on cognitive performance. This trial was registered at clinicaltrials.gov as NCT00467909.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Danevich, F. A., E-mail: danevich@kinr.kiev.ua; Boiko, R. S.; Chernyak, D. M.

    The LUMTNEU program aims at performing a pilot experiment on 0ν2β decay of {sup 100}Mo using radiopure ZnMoO{sub 4} crystals enriched in {sup 100}Mo operated as cryogenic scintillating bolometers. Large volume ZnMoO{sub 4} crystal scintillators (∼ 0.3 kg) were developed and tested showing high performance in terms of radiopurity, energy resolution and α/β particle discrimination capability. Zinc molybdate crystal scintillators enriched in {sup 100}Mo were grown for the first time by the low-thermal-gradient Czochralski technique with a high crystal yield and an acceptable level of enriched molybdenum irrecoverable losses. A background level of ∼ 0.5 counts/(yr keV ton) in the regionmore » of interest can be reached in a large detector array thanks to the excellent detectors radiopurity and particle discrimination capability, suppression of randomly coinciding events by pulse-shape analysis, and anticoincidence cut. These results pave the way to future sensitive searches based on the LUMTNEU technology, capable of approachingand exploring the inverted hierarchy region of the neutrino mass pattern.« less

  7. Irradiation testing of high density uranium alloy dispersion fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayes, S.L.; Trybus, C.L.; Meyer, M.K.

    1997-10-01

    Two irradiation test vehicles have been designed, fabricated, and inserted into the Advanced Test Reactor in Idaho. Irradiation of these experiments began in August 1997. These irradiation tests were designed to obtain irradiation performance information on a variety of potential new, high-density dispersion fuels. Each of the two irradiation vehicles contains 32 microplates. Each microplate is aluminum clad, having an aluminum matrix phase and containing one of the following compositions as the fuel phase: U-10Mo, U-8Mo, U-6Mo, U-4Mo, U-9Nb-3Zr, U-6Nb-4Zr, U-5Nb-3Zr, U-6Mo-1Pt, U-6Mo-0.6Ru, U-10Mo-0.05Sn, U{sub 2}Mo, or U{sub 3}Si{sub 2}. These experiments will be discharged at peak fuel burnups ofmore » 40% and 80%. Of particular interest is the fission gas retention/swelling characteristics of these new fuel alloys. This paper presents the design of the irradiation vehicles and the irradiation conditions.« less

  8. In-Situ Synthesis of NiMoO4 on Ni Foam as a Binder-Free Electrode for Supercapacitor

    NASA Astrophysics Data System (ADS)

    Chiu, Ta-Wei

    Transition metal oxides have attracted much attention for electrode materials of supercapacitors due to their outstanding capacitive behavior. One of them is NiMoO4 with the high electrochemical activity of Ni. Constricted by its intrinsically poor electrical conductivity and limited electroactive sites of aggregated NiMoO4, the capacitive performance of NiMoO 4 are far below expectation. Directly growth of NiMoO4 on nickel foam to fabricate binder-free electrodes is proposed to solve the issues. In this thesis, we successfully constructed interconnected NiMoO4 nanosheets on the Ni foam by a designed reaction between H2MoO 4 aqueous solution and Ni foam. The effects of H2MoO 4 concentration and reaction time were systematically investigated. The best electrochemical performance of NiMoO4 electrodes can be obtained with 0.005 M H2MoO4 for 80 hours. The maximum areal capacitance can reach 0.724 F/cm2 followed with outstanding rate capability (70.1% capacitance retention when current density increase from 1 mA/cm2 to 10 mA/cm2). The excellent areal capacitance and rate capability may be attributed to its interconnected NiMoO 4 nanosheets and good adhesion between electroactive materials and current collector.

  9. Electrohydrodynamic printing for scalable MoS2 flake coating: application to gas sensing device

    NASA Astrophysics Data System (ADS)

    Lim, Sooman; Cho, Byungjin; Bae, Jaehyun; Kim, Ah Ra; Lee, Kyu Hwan; Kim, Se Hyun; Hahm, Myung Gwan; Nam, Jaewook

    2016-10-01

    Scalable sub-micrometer molybdenum disulfide ({{MoS}}2) flake films with highly uniform coverage were created using a systematic approach. An electrohydrodynamic (EHD) printing process realized a remarkably uniform distribution of exfoliated {{MoS}}2 flakes on desired substrates. In combination with a fast evaporating dispersion medium and an optimal choice of operating parameters, the EHD printing can produce a film rapidly on a substrate without excessive agglomeration or cluster formation, which can be problems in previously reported liquid-based continuous film methods. The printing of exfoliated {{MoS}}2 flakes enabled the fabrication of a gas sensor with high performance and reproducibility for {{NO}}2 and {{NH}}3.

  10. Covalent heterogenization of discrete bis(8-quinolinolato)dioxomolybdenum(VI) and dioxotungsten(VI) complexes by a metal-template/metal-exchange method: Cyclooctene epoxidation catalysts with enhanced performances

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Ying; Chattopadhyay, Soma; Shibata, Tomohiro

    A metal-template/metal-exchange method was used to imprint covalently attached bis(8- quinolinolato)dioxomolybdenum(VI) and dioxotungsten(VI) complexes onto large surface-area, mesoporous SBA-15 silica to obtain discrete MoO2 VIT and WO2 VIT catalysts bearing different metal loadings, respectively. Homogeneous counterparts, MoO2 VIN and WO2 VIN, as well as randomly ligandgrafted heterogeneous analogues, MoO2 VIG and WO2 VIG, were also prepared for comparison. X-ray absorption fine structure (XAFS), pair distribution function (PDF) and UV–vis data demonstrate that MoO2 VIT and WO2 VIT adopt a more solution-like bis(8-quinolinol) coordination environment than MoO2 VIG and WO2 VIG, respectively. Correspondingly, the templated MoVI and WVI catalysts show superiormore » performances to their randomly grafted counterparts and neat analogues in the epoxidation of cyclooctene. It is found that the representative MoO2 VIT-10% catalyst can be recycled up to five times without significant loss of reactivity, and heterogeneity test confirms the high stability of MoO2 VIT-10% catalyst against leaching of active species into solution. The homogeneity of the discrete bis(8-quinolinol) metal spheres templated on SBA-15 should be responsible for the superior performances.« less

  11. Three-Dimensional Hierarchical MoS2 Nanosheets/Ultralong N-Doped Carbon Nanotubes as High-Performance Electromagnetic Wave Absorbing Material.

    PubMed

    Liu, Lianlian; Zhang, Shen; Yan, Feng; Li, Chunyan; Zhu, Chunling; Zhang, Xitian; Chen, Yujin

    2018-04-25

    Here, we report a simple method to grow thin MoS 2 nanosheets (NSs) on the ultralong nitrogen-doped carbon nanotubes through anion-exchange reaction. The MoS 2 NSs are grown on ultralong nitrogen-doped carbon nanotube surfaces, leading to an interesting three-dimensional hierarchical structure. The fabricated hybrid nanotubes have a length of approximately 100 μm, where the MoS 2 nanosheets have a thickness of less than 7.5 nm. The hybrid nanotubes show excellent electromagnetic wave attenuation performance, with the effective absorption bandwidth of 5.4 GHz at the thicknesses of 2.5 mm, superior to the pure MoS 2 nanosheets and the MoS 2 nanosheets grown on the short N-doped carbon nanotube surfaces. The experimental results indicate that the direct growth of MoS 2 on the ultralong nitrogen-doped carbon nanotube surfaces is a key factor for the enhanced electromagnetic wave attenuation property. The results open the avenue for the development of ultralong transition metal dichalcogenides for electromagnetic wave absorbers.

  12. Electrochemical investigation of MoTe2/rGO composite materials for sodium-ion battery application

    NASA Astrophysics Data System (ADS)

    Panda, Manas Ranjan; Anish Raj, K.; Sarkar, Ananta; Bao, Qiaoliang; Mitra, Sagar

    2018-05-01

    2D layered materials are found to be promising anode materials for renewable energy storage devices like sodium and Li-ion batteries and have become attractive options due to their high specific capacity, abundance and low cost. In this work, we synthesized 2D MoTe2 layers embedded in reduced graphene oxide (rGO) anode material for sodium-ion battery applications. 2D MoTe2 was prepared by a solid-state reaction in vacuum at a temperature of 800 °C. The prepared composite material MoTe2/rGO showed excellent electrochemical performance against the sodium metal. The discharge capacity of MoTe2/rGO was observed to be 280 mAh g-1 at a current rate of 1.0 A g-1 for 100 cycles. rGO plays an important role in embedding the MoTe2 structure, thus improving the electrical and mechanical properties, leading to a superior cycling stability and excellent electrochemical performances of MoTe2 for sodium-ion battery applications.

  13. Low content of Pt supported on Ni-MoCx/carbon black as a highly durable and active electrocatalyst for methanol oxidation, oxygen reduction and hydrogen evolution reactions in acidic condition

    NASA Astrophysics Data System (ADS)

    Zhang, Yan; Zang, Jianbing; Jia, Shaopei; Tian, Pengfei; Han, Chan; Wang, Yanhui

    2017-08-01

    Nickel and molybdenum carbide modified carbon black (Ni-MoCx/C) was synthesized by a two-step microwave-assisted deposition/carbonthermal reduction method and characterized by X-ray diffraction, transmission electron microscopy, energy dispersive spectroscopy and X-ray photoelectron spectroscopy. The as-prepared Ni-MoCx/C supported Pt (10 wt%) electrocatalyst (10Pt/Ni-MoCx/C) was synthesized through a microwave-assisted reduction method and 10Pt/Ni-MoCx/C exhibited high electrocatalytic activity for methanol oxidation, oxygen reduction and hydrogen evolution reactions. Results showed that 10Pt/Ni-MoCx/C electrocatalyst had better electrocatalytic activity and stability performance than 20 wt% Pt/C (20Pt/C) electrocatalyst. Among them, the electrochemical surface area of 10Pt/Ni-MoCx/C reached 68.4 m2 g-1, which was higher than that of 20Pt/C (63.2 m2 g-1). The enhanced stability and activity of 10Pt/Ni-MoCx/C electrocatalyst were attributed to: (1) an anchoring effect of Ni and MoCx formed during carbonthermal reduction process; (2) a synergistic effect among Pt, Ni, MoOx and MoCx. These findings indicated that 10Pt/Ni-MoCx/C was a promising electrocatalyst for direct methanol fuel cells.

  14. Structural investigation of MF, RF and DC sputtered Mo thin films for backside photovoltaic electrode

    NASA Astrophysics Data System (ADS)

    Małek, Anna K.; Marszałek, Konstanty W.; Rydosz, Artur M.

    2016-12-01

    Recently photovoltaics attracts much attention of research and industry. The multidirectional studies are carried out in order to improve solar cells performance, the innovative materials are still searched and existing materials and technology are optimized. In the multilayer structure of CIGS solar cells molybdenum (Mo) layer is used as a back contact. Mo layers meet all requirements for back side electrode: low resistivity, good adhesion to the substrate, high optical reflection in the visible range, columnar structure for Na ions diffusion, formation of an ohmic contact with the ptype CIGS absorber layer, and high stability during the corrosive selenization process. The high adhesion to the substrate and low resistivity in single Mo layer is difficult to be achieved because both properties depend on the deposition parameters, particularly on working gas pressure. Therefore Mo bilayers are applied as a back contact for CIGS solar cells. In this work the Mo layers were deposited by medium frequency sputtering at different process parameters. The effect of substrate temperature within the range of 50°C-200°C and working gas pressure from 0.7 mTorr to 7 mTorr on crystalline structure of Mo layers was studied.

  15. Highly Stable, Dual-Gated MoS2 Transistors Encapsulated by Hexagonal Boron Nitride with Gate-Controllable Contact, Resistance, and Threshold Voltage.

    PubMed

    Lee, Gwan-Hyoung; Cui, Xu; Kim, Young Duck; Arefe, Ghidewon; Zhang, Xian; Lee, Chul-Ho; Ye, Fan; Watanabe, Kenji; Taniguchi, Takashi; Kim, Philip; Hone, James

    2015-07-28

    Emerging two-dimensional (2D) semiconductors such as molybdenum disulfide (MoS2) have been intensively studied because of their novel properties for advanced electronics and optoelectronics. However, 2D materials are by nature sensitive to environmental influences, such as temperature, humidity, adsorbates, and trapped charges in neighboring dielectrics. Therefore, it is crucial to develop device architectures that provide both high performance and long-term stability. Here we report high performance of dual-gated van der Waals (vdW) heterostructure devices in which MoS2 layers are fully encapsulated by hexagonal boron nitride (hBN) and contacts are formed using graphene. The hBN-encapsulation provides excellent protection from environmental factors, resulting in highly stable device performance, even at elevated temperatures. Our measurements also reveal high-quality electrical contacts and reduced hysteresis, leading to high two-terminal carrier mobility (33-151 cm(2) V(-1) s(-1)) and low subthreshold swing (80 mV/dec) at room temperature. Furthermore, adjustment of graphene Fermi level and use of dual gates enable us to separately control contact resistance and threshold voltage. This novel vdW heterostructure device opens up a new way toward fabrication of stable, high-performance devices based on 2D materials.

  16. Highly Uniform Atomic Layer-Deposited MoS2@3D-Ni-Foam: A Novel Approach To Prepare an Electrode for Supercapacitors.

    PubMed

    Nandi, Dip K; Sahoo, Sumanta; Sinha, Soumyadeep; Yeo, Seungmin; Kim, Hyungjun; Bulakhe, Ravindra N; Heo, Jaeyeong; Shim, Jae-Jin; Kim, Soo-Hyun

    2017-11-22

    This article takes an effort to establish the potential of atomic layer deposition (ALD) technique toward the field of supercapacitors by preparing molybdenum disulfide (MoS 2 ) as its electrode. While molybdenum hexacarbonyl [Mo(CO) 6 ] serves as a novel precursor toward the low-temperature synthesis of ALD-grown MoS 2 , H 2 S plasma helps to deposit its polycrystalline phase at 200 °C. Several ex situ characterizations such as X-ray diffractometry (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and so forth are performed in detail to study the as-grown MoS 2 film on a Si/SiO 2 substrate. While stoichiometric MoS 2 with very negligible amount of C and O impurities was evident from XPS, the XRD and high-resolution transmission electron microscopy analyses confirmed the (002)-oriented polycrystalline h-MoS 2 phase of the as-grown film. A comparative study of ALD-grown MoS 2 as a supercapacitor electrode on 2-dimensional stainless steel and on 3-dimensional (3D) Ni-foam substrates clearly reflects the advantage and the potential of ALD for growing a uniform and conformal electrode material on a 3D-scaffold layer. Cyclic voltammetry measurements showed both double-layer capacitance and capacitance contributed by the faradic reaction at the MoS 2 electrode surface. The optimum number of ALD cycles was also found out for achieving maximum capacitance for such a MoS 2 @3D-Ni-foam electrode. A record high areal capacitance of 3400 mF/cm 2 was achieved for MoS 2 @3D-Ni-foam grown by 400 ALD cycles at a current density of 3 mA/cm 2 . Moreover, the ALD-grown MoS 2 @3D-Ni-foam composite also retains high areal capacitance, even up to a high current density of 50 mA/cm 2 . Finally, this directly grown MoS 2 electrode on 3D-Ni-foam by ALD shows high cyclic stability (>80%) over 4500 charge-discharge cycles which must invoke the research community to further explore the potential of ALD for such applications.

  17. Electric field modulation of Schottky barrier height in graphene/MoSe{sub 2} van der Waals heterointerface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sata, Yohta; Moriya, Rai, E-mail: moriyar@iis.u-tokyo.ac.jp, E-mail: tmachida@iis.u-tokyo.ac.jp; Morikawa, Sei

    2015-07-13

    We demonstrate a vertical field-effect transistor based on a graphene/MoSe{sub 2} van der Waals (vdW) heterostructure. The vdW interface between the graphene and MoSe{sub 2} exhibits a Schottky barrier with an ideality factor of around 1.3, suggesting a high-quality interface. Owing to the low density of states in graphene, the position of the Fermi level in the graphene can be strongly modulated by an external electric field. Therefore, the Schottky barrier height at the graphene/MoSe{sub 2} vdW interface is also modulated. We demonstrate a large current ON-OFF ratio of 10{sup 5}. These results point to the potential high performance ofmore » the graphene/MoSe{sub 2} vdW heterostructure for electronics applications.« less

  18. Template synthesis of hollow MoS2-carbon nanocomposites using microporous organic polymers and their lithium storage properties.

    PubMed

    Jin, Jaewon; Kim, Bolyong; Kim, Mincheol; Park, Nojin; Kang, Sungah; Lee, Sang Moon; Kim, Hae Jin; Son, Seung Uk

    2015-07-14

    This work shows that hollow and microporous organic polymers (H-MOPs) are good templating materials for the synthesis of inorganic material-carbon nanocomposites. The precursor compound, (NH4)2MoS4, was incorporated into H-MOPs. Heat treatment under argon resulted in the formation of hollow MoS2-carbon nanocomposites (MSC). According to microscopic analysis, the MoS2 in the MSC has a layered structure with an elongated interlayer distance. The MSC showed high reversible discharge capacities up to 802 mA h g(-1) after 30 cycles and excellent rate performance for lithium ion batteries. The promising electrochemical performance of the MSC is attributed to the very thin and disordered nature of MoS2 in the carbon skeleton. The role of chemical components of the MSC in the electrochemical process was suggested.

  19. Flower-like N-doped MoS2 for photocatalytic degradation of RhB by visible light irradiation

    NASA Astrophysics Data System (ADS)

    Liu, Peitao; Liu, Yonggang; Ye, Weichun; Ma, Ji; Gao, Daqiang

    2016-06-01

    In this paper, the photocatalytic performance and reusability of N-doped MoS2 nanoflowers with the specific surface area of 114.2 m2 g-1 was evaluated by discoloring of RhB under visible light irradiation. Results indicated that the 20 mg fabricated catalyst could completely degrade 50 ml of 30 mg l-1 RhB in 70 min with excellent recycling and structural stability. The optimized N-doped MoS2 nanoflowers showed a reaction rate constant (k) as high as 0.06928 min-1 which was 26.4 times that of bare MoS2 nanosheets (k = 0.00262). In addition, it was about seven times that of P25 (k = 0.01) (Hou et al 2015 Sci. Rep. 5 15228). The obtained outstanding photocatalytic performance of N-doped MoS2 nanoflowers provides potential applications in water pollution treatment, as well as other related fields.

  20. Synthesis and Characterization of CO-and H2S-Tolerant Electrocatalysts for PEM Fuel Cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shamsuddin Ilias

    2005-12-22

    The present state-of-art Proton Exchange Membrane Fuel Cell (PEMFC) technology is based on platinum (Pt) as a catalyst for both the fuel (anode) and air (cathode) electrodes. This catalyst is highly active but susceptible to poisoning by CO, which may be present in the H{sub 2}-fuel used or may be introduced during the fuel processing. Presence of trace amount of CO and H{sub 2}S in the H{sub 2}-fuel poisons the anode irreversibly and decreases the performance of the PEMFCs. In an effort to reduce the Pt-loading and improve the PEMFC performance, we propose to synthesize a number of Pt-based binary,more » ternary, and quaternary electrocatalysts using Ru, Mo, Ir, Ni, and Co as a substitute for Pt. By fine-tuning the metal loadings and compositions of candidate electrocatalysts, we plan to minimize the cost and optimize the catalyst activity and performance in PEMFC. The feasibility of the novel electrocatalysts will be demonstrated in the proposed effort with gas phase CO and H{sub 2}S concentrations typical of those found in reformed fuel gas with coal/natural gas/methanol feedstocks. During this reporting period we synthesized four Pt-based electrocatalysts catalysts (Pt/Ru/Mo/Se, Pt/Ru/Mo/Ir, Pt/Ru/Mo/W, Ptr/Ru/Mo/Co) on Vulcan XG72 Carbon support by both conventional and ultra-sonication method. From current-voltage performance study, the catalytic activity was found in the increasing order of Pt/Ru/Mo/Ir > Pt/Ru/Mo/W > Pt/Ru/Mo/Co > Pt/Ru/MO/Se. Sonication method appears to provide better dispersion of catalysts on carbon support.« less

  1. Approaching perfect absorption of monolayer molybdenum disulfide at visible wavelengths using critical coupling.

    PubMed

    Jiang, Xiaoyun; Wang, Tao; Xiao, Shuyuan; Yan, Xicheng; Cheng, Le; Zhong, Qingfang

    2018-08-17

    A simple perfect absorption structure is proposed to achieve the high efficiency light absorption of monolayer molybdenum disulfide (MoS 2 ) by the critical coupling mechanism of guided resonances. The results of numerical simulation and theoretical analysis show that the light absorption in this atomically thin layer can be as high as 98.3% at the visible wavelengths, which is over 12 times more than that of a bare monolayer MoS 2 . In addition, the operating wavelength can be tuned flexibly by adjusting the radius of the air hole and the thickness of the dielectric layers, which is of great practical significance to improve the efficiency and selectivity of the absorption in monolayer MoS 2 . The novel idea of using critical coupling to enhance the light-MoS 2 interaction can be also adopted in other atomically thin materials. The meaningful improvement and tunability of the absorption in monolayer MoS 2 provides a good prospect for the realization of high-performance MoS 2 -based optoelectronic applications, such as photodetection and photoluminescence.

  2. Lateral MoS2 p-n junction formed by chemical doping for use in high-performance optoelectronics.

    PubMed

    Choi, Min Sup; Qu, Deshun; Lee, Daeyeong; Liu, Xiaochi; Watanabe, Kenji; Taniguchi, Takashi; Yoo, Won Jong

    2014-09-23

    This paper demonstrates a technique to form a lateral homogeneous 2D MoS2 p-n junction by partially stacking 2D h-BN as a mask to p-dope MoS2. The fabricated lateral MoS2 p-n junction with asymmetric electrodes of Pd and Cr/Au displayed a highly efficient photoresponse (maximum external quantum efficiency of ∼7000%, specific detectivity of ∼5 × 10(10) Jones, and light switching ratio of ∼10(3)) and ideal rectifying behavior. The enhanced photoresponse and generation of open-circuit voltage (VOC) and short-circuit current (ISC) were understood to originate from the formation of a p-n junction after chemical doping. Due to the high photoresponse at low VD and VG attributed to its built-in potential, our MoS2 p-n diode made progress toward the realization of low-power operating photodevices. Thus, this study suggests an effective way to form a lateral p-n junction by the h-BN hard masking technique and to improve the photoresponse of MoS2 by the chemical doping process.

  3. Few-layered MoSe2 nanosheets as an advanced electrode material for supercapacitors.

    PubMed

    Balasingam, Suresh Kannan; Lee, Jae Sung; Jun, Yongseok

    2015-09-21

    We report the synthesis of few-layered MoSe2 nanosheets using a facile hydrothermal method and their electrochemical charge storage behavior. A systematic study of the structure and morphology of the as-synthesized MoSe2 nanosheets was performed. The downward peak shift in the Raman spectrum and the high-resolution transmission electron microscopy images confirmed the formation of few-layered nanosheets. The electrochemical energy-storage behavior of MoSe2 nanosheets was also investigated for supercapacitor applications in a symmetric cell configuration. The MoSe2 nanosheet electrode exhibited a maximum specific capacitance of 198.9 F g(-1) and the symmetric device showed 49.7 F g(-1) at a scan rate of 2 mV s(-1). A capacitance retention of approximately 75% was observed even after 10 000 cycles at a high charge-discharge current density of 5 A g(-1). The two-dimensional MoSe2 nanosheets exhibited a high specific capacitance and good cyclic stability, which makes it a promising electrode material for supercapacitor applications.

  4. Hierarchical MoS2 tubular structures internally wired by carbon nanotubes as a highly stable anode material for lithium-ion batteries

    PubMed Central

    Chen, Yu Ming; Yu, Xin Yao; Li, Zhen; Paik, Ungyu; Lou, Xiong Wen (David)

    2016-01-01

    Molybdenum disulfide (MoS2), a typical two-dimensional material, is a promising anode material for lithium-ion batteries because it has three times the theoretical capacity of graphite. The main challenges associated with MoS2 anodes are the structural degradation and the low rate capability caused by the low intrinsic electric conductivity and large strain upon cycling. Here, we design hierarchical MoS2 tubular structures internally wired by carbon nanotubes (CNTs) to tackle these problems. These porous MoS2 tubular structures are constructed from building blocks of ultrathin nanosheets, which are believed to benefit the electrochemical reactions. Benefiting from the unique structural and compositional characteristics, these CNT-wired MoS2 tubular structures deliver a very high specific capacity of ~1320 mAh g−1 at a current density of 0.1 A g−1, exceptional rate capability, and an ultralong cycle life of up to 1000 cycles. This work may inspire new ideas for constructing high-performance electrodes for electrochemical energy storage. PMID:27453938

  5. High-temperature performance of MoS2 thin-film transistors: Direct current and pulse current-voltage characteristics

    NASA Astrophysics Data System (ADS)

    Jiang, C.; Rumyantsev, S. L.; Samnakay, R.; Shur, M. S.; Balandin, A. A.

    2015-02-01

    We report on fabrication of MoS2 thin-film transistors (TFTs) and experimental investigations of their high-temperature current-voltage characteristics. The measurements show that MoS2 devices remain functional to temperatures of at least as high as 500 K. The temperature increase results in decreased threshold voltage and mobility. The comparison of the direct current (DC) and pulse measurements shows that the direct current sub-linear and super-linear output characteristics of MoS2 thin-films devices result from the Joule heating and the interplay of the threshold voltage and mobility temperature dependences. At temperatures above 450 K, a kink in the drain current occurs at zero gate voltage irrespective of the threshold voltage value. This intriguing phenomenon, referred to as a "memory step," was attributed to the slow relaxation processes in thin films similar to those in graphene and electron glasses. The fabricated MoS2 thin-film transistors demonstrated stable operation after two months of aging. The obtained results suggest new applications for MoS2 thin-film transistors in extreme-temperature electronics and sensors.

  6. Optical Properties of Lithium Terbium Fluoride and Implications for Performance in High Power Lasers (Postprint)

    DTIC Science & Technology

    2016-02-01

    Maximum 200 words) LiTbF4 has the potential to replace traditional magneto-optic (MO) garnet materials as a Faraday rotator in high power laser systems...TERMS LiTbF4; magneto-optic (MO) garnet materials; Faraday rotator; high power laser; Verdet constant; Sellmeier; optical isolator 16. SECURITY... Faraday rotator in high power laser systems due to its high Verdet constant. New measurements are reported of the ordinary and extraor- dinary

  7. Three-dimensional nitrogen and sulfur co-doped holey-reduced graphene oxide frameworks anchored with MoO2 nanodots for advanced rechargeable lithium-ion batteries.

    PubMed

    Pei, Jie; Geng, Hongbo; Ang, Huixiang; Zhang, Lingling; Wei, Huaixin; Cao, Xueqin; Zheng, Junwei; Gu, Hongwei

    2018-07-20

    In this manuscript, we synthesize a porous three-dimensional anode material consisting of molybdenum dioxide nanodots anchored on nitrogen (N)/sulfur (S) co-doped reduced graphene oxide (GO) (3D MoO 2 /NP-NSG) through hydrothermal, lyophilization and thermal treatment. First, the NP-NSG is formed via hydrothermal treatment using graphene oxide, hydrogen peroxide (H 2 O 2 ), and thiourea as the co-dopant for N and S, followed by calcination of the N/S co-doped GO in the presence of ammonium molybdate tetrahydrate to obtain the 3D MoO 2 /NP-NSG product. This novel material exhibits a series of out-bound electrochemical performances, such as superior conductivity, high specific capacity, and excellent stability. As an anode for lithium-ion batteries (LIBs), the MoO 2 /NP-NSG electrode has a high initial specific capacity (1376 mAh g -1 ), good cycling performance (1250 mAh g -1 after 100 cycles at a current density of 0.2 A g -1 ), and outstanding Coulombic efficiency (99% after 450 cycles at a current density of 1 A g -1 ). Remarkably, the MoO 2 /NP-NSG battery exhibits exceedingly good rate capacities of 1021, 965, 891, 760, 649, 500 and 425 mAh g -1 at different current densities of 200, 500, 1000, 2000, 3000, 4000 and 5000 mA g -1 , respectively. The superb electrochemical performance is owed to the high porosity of the 3D architecture, the synergistic effect contribution from N and S co-doped in the reduced graphene oxide (rGO), and the uniform distribution of MoO 2 nanodots on the rGO surface.

  8. Three-dimensional nitrogen and sulfur co-doped holey-reduced graphene oxide frameworks anchored with MoO2 nanodots for advanced rechargeable lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Pei, Jie; Geng, Hongbo; Ang, Huixiang; Zhang, Lingling; Wei, Huaixin; Cao, Xueqin; Zheng, Junwei; Gu, Hongwei

    2018-07-01

    In this manuscript, we synthesize a porous three-dimensional anode material consisting of molybdenum dioxide nanodots anchored on nitrogen (N)/sulfur (S) co-doped reduced graphene oxide (GO) (3D MoO2/NP-NSG) through hydrothermal, lyophilization and thermal treatment. First, the NP-NSG is formed via hydrothermal treatment using graphene oxide, hydrogen peroxide (H2O2), and thiourea as the co-dopant for N and S, followed by calcination of the N/S co-doped GO in the presence of ammonium molybdate tetrahydrate to obtain the 3D MoO2/NP-NSG product. This novel material exhibits a series of out-bound electrochemical performances, such as superior conductivity, high specific capacity, and excellent stability. As an anode for lithium-ion batteries (LIBs), the MoO2/NP-NSG electrode has a high initial specific capacity (1376 mAh g‑1), good cycling performance (1250 mAh g‑1 after 100 cycles at a current density of 0.2 A g‑1), and outstanding Coulombic efficiency (99% after 450 cycles at a current density of 1 A g‑1). Remarkably, the MoO2/NP-NSG battery exhibits exceedingly good rate capacities of 1021, 965, 891, 760, 649, 500 and 425 mAh g‑1 at different current densities of 200, 500, 1000, 2000, 3000, 4000 and 5000 mA g‑1, respectively. The superb electrochemical performance is owed to the high porosity of the 3D architecture, the synergistic effect contribution from N and S co-doped in the reduced graphene oxide (rGO), and the uniform distribution of MoO2 nanodots on the rGO surface.

  9. Laser Direct Writing Process for Making Electrodes and High-k Sol-Gel ZrO2 for Boosting Performances of MoS2 Transistors.

    PubMed

    Kwon, Hyuk-Jun; Jang, Jaewon; Grigoropoulos, Costas P

    2016-04-13

    A series of two-dimensional (2D) transition metal dichalcogenides (TMDCs), including molybdenum disulfide (MoS2), can be attractive materials for photonic and electronic applications due to their exceptional properties. Among these unique properties, high mobility of 2D TMDCs enables realization of high-performance nanoelectronics based on a thin film transistor (TFT) platform. In this contribution, we report highly enhanced field effect mobility (μ(eff) = 50.1 cm(2)/(V s), ∼2.5 times) of MoS2 TFTs through the sol-gel processed high-k ZrO2 (∼22.0) insulator, compared to those of typical MoS2/SiO2/Si structures (μ(eff) = 19.4 cm(2)/(V s)) because a high-k dielectric layer can suppress Coulomb electron scattering and reduce interface trap concentration. Additionally, in order to avoid costly conventional mask based photolithography and define the patterns, we employ a simple laser direct writing (LDW) process. This process allows precise and flexible control with reasonable resolution (up to ∼10 nm), depending on the system, and enables fabrication of arbitrarily patterned devices. Taking advantage of continuing developments in laser technology offers a substantial cost decrease, and LDW may emerge as a promising technology.

  10. Hierarchical core-shell structure of ZnO nanorod@NiO/MoO₂ composite nanosheet arrays for high-performance supercapacitors.

    PubMed

    Hou, Sucheng; Zhang, Guanhua; Zeng, Wei; Zhu, Jian; Gong, Feilong; Li, Feng; Duan, Huigao

    2014-08-27

    A hierarchical core-shell structure of ZnO nanorod@NiO/MoO2 composite nanosheet arrays on nickel foam substrate for high-performance supercapacitors was constructed by a two-step solution-based method involving two hydrothermal processes followed by a calcination treatment. Compared to one composed of pure NiO/MoO2 composite nanosheets, the hierarchical core-shell structure electrode displays better pseudocapacitive behaviors in 2 M KOH, including high areal specific capacitance values of 1.18 F cm(-2) at 5 mA cm(-2) and 0.6 F cm(-2) at 30 mA cm(-2) as well as relatively good rate capability at high current densities. Furthermore, it also shows remarkable cycle stability, remaining at 91.7% of the initial value even after 4000 cycles at a current density of 10 mA cm(-2). The enhanced pseudocapacitive behaviors are mainly due to the unique hierarchical core-shell structure and the synergistic effect of combining ZnO nanorod arrays and NiO/MoO2 composite nanosheets. This novel hierarchical core-shell structure shows promise for use in next-generation supercapacitors.

  11. Induced nano-scale self-formed metal-oxide interlayer in amorphous silicon tin oxide thin film transistors.

    PubMed

    Liu, Xianzhe; Xu, Hua; Ning, Honglong; Lu, Kuankuan; Zhang, Hongke; Zhang, Xiaochen; Yao, Rihui; Fang, Zhiqiang; Lu, Xubing; Peng, Junbiao

    2018-03-07

    Amorphous Silicon-Tin-Oxide thin film transistors (a-STO TFTs) with Mo source/drain electrodes were fabricated. The introduction of a ~8 nm MoO x interlayer between Mo electrodes and a-STO improved the electron injection in a-STO TFT. Mo adjacent to the a-STO semiconductor mainly gets oxygen atoms from the oxygen-rich surface of a-STO film to form MoO x interlayer. The self-formed MoO x interlayer acting as an efficient interface modification layer could conduce to the stepwise internal transport barrier formation while blocking Mo atoms diffuse into a-STO layer, which would contribute to the formation of ohmic contact between Mo and a-STO film. It can effectively improve device performance, reduce cost and save energy for the realization of large-area display with high resolution in future.

  12. Hydrogen attack in Cr-Mo steels. [3Cr-1. 5Mo and 2. 25Cr-1Mo steels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruoff, S.; Stone, D.; Wanagel, J.

    Experiments conducted upon 3Cr-1.5Mo steel at elevated temperatures (600 C), and high pressure hydrogen (2000 psi), have shown a greater resistence to hydrogen attack compared with similar studies of 2.25Cr-lMo steels. Hydrogen exposure tests with and without an applied stress have been performed on both types of steels. Results of similar conditions show clear evidence of hydrogen attack in 2.25Cr-lMo steel, however, for the 3Cr-1.5Mo steel with exposure time up to 80 days without an applied stress no evidence of hydrogen attack is observed. For stress-rupture tests using stresses of 14 and 16 ksi, the 3Cr-1.5Mo steel showed no effectsmore » of hydrogen attack, and no damage was observed using a SEM.« less

  13. High Efficient Photo-Fenton Catalyst of α-Fe2O3/MoS2 Hierarchical Nanoheterostructures: Reutilization for Supercapacitors

    NASA Astrophysics Data System (ADS)

    Yang, Xijia; Sun, Haiming; Zhang, Lishu; Zhao, Lijun; Lian, Jianshe; Jiang, Qing

    2016-08-01

    A novel three-dimensional (3D) α-Fe2O3/MoS2 hierarchical nanoheterostructure is effectively synthesized via a facile hydrothermal method. The zero-dimensional (0D) Fe2O3 nanoparticles guide the growth of two-dimensional (2D) MoS2 nanosheets and formed 3D flower-like structures, while MoS2 facilitates the good dispersion of porous Fe2O3 with abundant oxygen vacancies. This charming 3D-structure with perfect match of non-equal dimension exhibits high recyclable photo-Fenton catalytic activity for Methyl orange pollutant and nice specific capacity in reusing as supercapacitor after catalysis. The synergistic effect between Fe2O3 and MoS2, the intermediate nanointerfaces, the 3D porous structures, and the abundant oxygen vacancies both contribute to highly active catalysis, nice electrochemical performance and stable cycling. This strategy is simple, cheap, and feasible for maximizing the value of the materials, as well as eliminating the secondary pollution.

  14. High Efficient Photo-Fenton Catalyst of α-Fe2O3/MoS2 Hierarchical Nanoheterostructures: Reutilization for Supercapacitors.

    PubMed

    Yang, Xijia; Sun, Haiming; Zhang, Lishu; Zhao, Lijun; Lian, Jianshe; Jiang, Qing

    2016-08-16

    A novel three-dimensional (3D) α-Fe2O3/MoS2 hierarchical nanoheterostructure is effectively synthesized via a facile hydrothermal method. The zero-dimensional (0D) Fe2O3 nanoparticles guide the growth of two-dimensional (2D) MoS2 nanosheets and formed 3D flower-like structures, while MoS2 facilitates the good dispersion of porous Fe2O3 with abundant oxygen vacancies. This charming 3D-structure with perfect match of non-equal dimension exhibits high recyclable photo-Fenton catalytic activity for Methyl orange pollutant and nice specific capacity in reusing as supercapacitor after catalysis. The synergistic effect between Fe2O3 and MoS2, the intermediate nanointerfaces, the 3D porous structures, and the abundant oxygen vacancies both contribute to highly active catalysis, nice electrochemical performance and stable cycling. This strategy is simple, cheap, and feasible for maximizing the value of the materials, as well as eliminating the secondary pollution.

  15. Understanding the role of Co3O4 on stability between active hierarchies and scaffolds: An insight into NiMoO4 composites for supercapacitors

    NASA Astrophysics Data System (ADS)

    Zhao, Yuanyuan; Zhang, Peng; Fu, Wenbin; Ma, Xiangwen; Zhou, Jinyuan; Zhang, Xiaojuan; Li, Jian; Xie, Erqing; Pan, Xiaojun

    2017-09-01

    It is often reported that pseudocapacitive electrodes' mechanical stability seriously limited their cycling performances in supercapacitors due to their quick fall off the electrode matrix during frequent fast charge/discharge process. In this work, we have demonstrated the mechanical enhancement in hierarchical NiMoO4 nanosheet arrays (NSAs) on free-standing substrates after introducing Co3O4 hierarchies. Under sonication vibration environment, the mechanical stability of Co3O4@NiMoO4 NSAs was enhanced by ∼70% compared to that of the pure NiMoO4 ones. Moreover, the Co3O4@NiMoO4 NSAs can display a high specific capacitance of 1476 F g-1 at the current density of 1 A g-1, and an excellent rate capability (keeping 81% at 20 A g-1). And after 2000 cycles, high capacitance retention of 96% was achieved for the Co3O4@NiMoO4 core/shell NSAs, while only 70% for the pure NiMoO4 ones.

  16. MoS{sub 2} nanosheet functionalized with Cu nanoparticles and its application for glucose detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Jingwei; Dong, Zhengping; Gansu Provincial Engineering Laboratory for Chemical Catalysis, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000

    Graphical abstract: - Highlights: • First report on decorating MoS{sub 2} nanosheet with Cu nanoparticles by chemical reduction. • Cu nanoparticles were uniformly decorated on MoS{sub 2} nanosheet. • Glucose biosensor based on copper nanoparticles-MoS{sub 2} nanosheet hybrid is fabricated. • The biosensor exhibits high sensitivity. - Abstract: For the first time, Cu nanoparticles were evenly decorated on MoS{sub 2} nanosheet by chemical reduction. The as-prepared Cu-MoS{sub 2} hybrid was characterized by atomic force microscope (AFM), Raman spectroscopy, transmission electron microscopy (TEM), X-ray diffraction (XRD) and then used to fabricate a non-enzymatic glucose sensor. The performance of our sensor wasmore » investigated by cyclic voltammetry and amperometric measurement in alkaline media. Electrochemical tests showed that Cu-MoS{sub 2} hybrid exhibited synergistic electrocatalytic activity on the oxidation of glucose with a high sensitivity of 1055 μA mM{sup −1} cm{sup −2} and a linear range up to 4 mM.« less

  17. Design of refractory high-entropy alloys

    DOE PAGES

    Gao, M. C.; Carney, C. S.; Dogan, O. N.; ...

    2015-09-15

    Here, this report presents a design methodology for refractory high-entropy alloys with a body-centered cubic (bcc) structure using select empirical parameters (i.e., enthalpy of mixing, atomic size difference, Ω-parameter, and electronegativity difference) and CALPHAD approach. Sixteen alloys in equimolar compositions ranging from quinary to ennead systems were designed with experimental verification studies performed on two alloys using x-ray diffraction, energy-dispersive spectroscopy, and scanning electron microscopy. Two bcc phases were identified in the as-cast HfMoNbTaTiVZr, whereas multiple phases formed in the as-cast HfMoNbTaTiVWZr. Observed elemental segregation in the alloys qualitatively agrees with CALPHAD prediction. Comparisons of the thermodynamic mixing properties formore » liquid and bcc phases using the Miedema model and CALPHAD are presented. This study demonstrates that CALPHAD is more effective in predicting HEA formation than empirical parameters, and new single bcc HEAs are suggested: HfMoNbTiZr, HfMoTaTiZr, NbTaTiVZr, HfMoNbTaTiZr, HfMoTaTiVZr, and MoNbTaTiVZr.« less

  18. Variations of Contact Resistance in Dual-Gated Monolayer Molybdenum Disulfide Transistors Depending on Gate Bias Selection

    NASA Astrophysics Data System (ADS)

    Tran, P. X.

    2017-06-01

    Monolayer molybdenum disulfide (MoS2) is considered an alternative two-dimensional material for high performance ultra-thin field-effect transistors. MoS2 is a triple atomic layer with a direct 1.8 eV bandgap. Bulk MoS2 has an additional indirect bandgap of 1.2 eV, which leads to high current on/off ratio around 108. Flakes of MoS2 can be obtained by mechanical exfoliation or grown by chemical vapor deposition. Intrinsic cut-off frequency of multilayer MoS2 transistor has reached 42 GHz. Chemical doping of MoS2 is challenging and results in reduction of contact resistance. This paper focuses on modeling of dual-gated monolayer MoS2 transistors with effective mobility of carriers varying from 0.6 cm2/V s to 750 cm2/V s. In agreement with experimental data, the model demonstrates that in back-gate bias devices, the contact resistance decreases almost exponentially with increasing gate bias, whereas in top-gate bias devices, the contact resistance stays invariant when varying gate bias.

  19. In situ catalytic growth of large-area multilayered graphene/MoS2 heterostructures.

    PubMed

    Fu, Wei; Du, Fei-Hu; Su, Juan; Li, Xin-Hao; Wei, Xiao; Ye, Tian-Nan; Wang, Kai-Xue; Chen, Jie-Sheng

    2014-04-14

    Stacking various two-dimensional atomic crystals on top of each other is a feasible approach to create unique multilayered heterostructures with desired properties. Herein for the first time, we present a controlled preparation of large-area graphene/MoS2 heterostructures via a simple heating procedure on Mo-oleate complex coated sodium sulfate under N2 atmosphere. Through a direct in situ catalytic reaction, graphene layer has been uniformly grown on the MoS2 film formed by the reaction of Mo species with Species, which is from the carbothermal reduction of sodium sulfate. Due to the excellent graphene "painting" on MoS2 atomic layers, the significantly shortened lithium ion diffusion distance and the markedly enhanced electronic conductivity, these multilayered graphene/MoS2 heterostructures exhibit high specific capacity, unprecedented rate performance and outstanding cycling stability, especially at a high current density, when used as an anode material for lithium batteries. This work provides a simple but efficient route for the controlled fabrication of large-area multilayered graphene/metal sulfide heterostructures with promising applications in battery manufacture, electronics or catalysis.

  20. In situ catalytic growth of large-area multilayered graphene/MoS2 heterostructures

    PubMed Central

    Fu, Wei; Du, Fei-Hu; Su, Juan; Li, Xin-Hao; Wei, Xiao; Ye, Tian-Nan; Wang, Kai-Xue; Chen, Jie-Sheng

    2014-01-01

    Stacking various two-dimensional atomic crystals on top of each other is a feasible approach to create unique multilayered heterostructures with desired properties. Herein for the first time, we present a controlled preparation of large-area graphene/MoS2 heterostructures via a simple heating procedure on Mo-oleate complex coated sodium sulfate under N2 atmosphere. Through a direct in situ catalytic reaction, graphene layer has been uniformly grown on the MoS2 film formed by the reaction of Mo species with S pecies, which is from the carbothermal reduction of sodium sulfate. Due to the excellent graphene “painting” on MoS2 atomic layers, the significantly shortened lithium ion diffusion distance and the markedly enhanced electronic conductivity, these multilayered graphene/MoS2 heterostructures exhibit high specific capacity, unprecedented rate performance and outstanding cycling stability, especially at a high current density, when used as an anode material for lithium batteries. This work provides a simple but efficient route for the controlled fabrication of large-area multilayered graphene/metal sulfide heterostructures with promising applications in battery manufacture, electronics or catalysis. PMID:24728289

  1. In situ catalytic growth of large-area multilayered graphene/MoS2 heterostructures

    NASA Astrophysics Data System (ADS)

    Fu, Wei; Du, Fei-Hu; Su, Juan; Li, Xin-Hao; Wei, Xiao; Ye, Tian-Nan; Wang, Kai-Xue; Chen, Jie-Sheng

    2014-04-01

    Stacking various two-dimensional atomic crystals on top of each other is a feasible approach to create unique multilayered heterostructures with desired properties. Herein for the first time, we present a controlled preparation of large-area graphene/MoS2 heterostructures via a simple heating procedure on Mo-oleate complex coated sodium sulfate under N2 atmosphere. Through a direct in situ catalytic reaction, graphene layer has been uniformly grown on the MoS2 film formed by the reaction of Mo species with S pecies, which is from the carbothermal reduction of sodium sulfate. Due to the excellent graphene ``painting'' on MoS2 atomic layers, the significantly shortened lithium ion diffusion distance and the markedly enhanced electronic conductivity, these multilayered graphene/MoS2 heterostructures exhibit high specific capacity, unprecedented rate performance and outstanding cycling stability, especially at a high current density, when used as an anode material for lithium batteries. This work provides a simple but efficient route for the controlled fabrication of large-area multilayered graphene/metal sulfide heterostructures with promising applications in battery manufacture, electronics or catalysis.

  2. Two-dimensional MoS2-graphene hybrid nanosheets for high gravimetric and volumetric lithium storage

    NASA Astrophysics Data System (ADS)

    Deng, Yakai; Ding, Lixin; Liu, Qixing; Zhan, Liang; Wang, Yanli; Yang, Shubin

    2018-04-01

    Two-dimensional (2D) MoS2-graphene (MoS2-G) hybrid is fabricated simultaneously and scalablely with an efficient electrochemical exfoliation approach from the combined bulk MoS2-graphite wafer. The as-prepared 2D MoS2-G hybrid is tightly covered with each other with lateral sizes of 600 nm to few micrometers and can be directly assembled to flexible films for lithium storage. When used as anode material for lithium ion battery, the resultant MoS2-G hybrid film exhibits both high gravimetric (750 mA h g-1 at 50 mA g-1) and volumetric capacities (1200 mA h cm-3 at 0.1 mA cm-2). Such excellent electrochemical performance should attributed to the unique 2D structure and good conductive graphene network, which not only facilitates the diffusion of lithium ions, but also improves the fast transfer of electrons, satisfying the kinetics requirements for rapid lithium storage.

  3. Enhanced lithium storage performances of hierarchical hollow MoS₂ nanoparticles assembled from nanosheets.

    PubMed

    Wang, Meng; Li, Guangda; Xu, Huayun; Qian, Yitai; Yang, Jian

    2013-02-01

    MoS(2), because of its layered structure and high theoretical capacity, has been regarded as a potential candidate for electrode materials in lithium secondary batteries. But it suffers from the poor cycling stability and low rate capability. Here, hierarchical hollow nanoparticles of MoS(2) nanosheets with an increased interlayer distance are synthesized by a simple solvothermal reaction at a low temperature. The formation of hierarchical hollow nanoparticles is based on the intermediate, K(2)NaMoO(3)F(3), as a self-sacrificed template. These hollow nanoparticles exhibit a reversible capacity of 902 mA h g(-1) at 100 mA g(-1) after 80 cycles, much higher than the solid counterpart. At a current density of 1000 mA g(-1), the reversible capacity of the hierarchical hollow nanoparticles could be still maintained at 780 mAh g(-1). The enhanced lithium storage performances of the hierarchical hollow nanoparticles in reversible capacities, cycling stability and rate performances can be attributed to their hierarchical surface, hollow structure feature and increased layer distance of S-Mo-S. Hierarchical hollow nanoparticles as an ensemble of these features, could be applied to other electrode materials for the superior electrochemical performance.

  4. Synthesis and Characterization of CO- and H2S-Tolerant Electrocatalysts for PEM Fuel Cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shamsuddin Ilias

    2006-05-18

    The present state-of-art Proton Exchange Membrane Fuel Cell (PEMFC) technology is based on platinum (Pt) as a catalyst for both the fuel (anode) and air (cathode) electrodes. This catalyst is highly active but susceptible to poisoning by CO, which may be present in the H{sub 2}-fuel used or may be introduced during the fuel processing. Presence of trace amount of CO and H{sub 2}S in the H{sub 2}-fuel poisons the anode irreversibly and decreases the performance of the PEMFCs. In an effort to reduce the Pt-loading and improve the PEMFC performance, we propose to synthesize a number of Pt-based binary,more » ternary, and quaternary electrocatalysts using Ru, Mo, Ir, Ni, and Co as a substitute for Pt. By fine-tuning the metal loadings and compositions of candidate electrocatalysts, we plan to minimize the cost and optimize the catalyst activity and performance in PEMFC. The feasibility of the novel electrocatalysts will be demonstrated in the proposed effort with gas phase CO and H{sub 2}S concentrations typical of those found in reformed fuel gas with coal/natural gas/methanol feedstocks. During this reporting period we used four Pt-based electrocatalysts (Pt/Ru/Mo/Se, Pt/Ru/Mo/Ir, Pt/Ru/Mo/W, Ptr/Ru/Mo/Co) in MEAs and these were evaluated for CO-tolerance with 20 and 100 ppm CO concentration in H{sub 2}-fuel. From current-voltage performance study, the catalytic activity was found in the increasing order of Pt/Ru/Mo/Ir > Pt/Ru/Mo/W > Pt/Ru/Mo/Co > Pt/Ru/MO/Se. From preliminary cost analysis it appears that could of the catalyst metal loading can reduced by 40% to 60% depending on the selection of metal combinations without compromising the fuel cell performance.« less

  5. Simple synthesis of MoS{sub 2} inorganic fullerene-like nanomaterials from MoS{sub 2} amorphous nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang Lianxia; China Faw Group Corporation R and D Center, Changchun, 130011; Yang Haibin

    The amorphous MoS{sub 2} nanoparticles have been synthesized by a simple oxidation-reduction reaction in an aqueous solution. A series of products with different morphologies, such as MoS{sub 2} nanospheres, inorganic fullerene-like nanospheres, nanorods and Mo bended rods, can be obtained by annealing the amorphous MoS{sub 2} nanoparticles under N{sub 2} atmosphere under 400-1200 deg. C. These products have been characterized by X-ray diffraction, field emission scanning electronic microscopy, transmission electron microscopy and high-resolution transmission electron microscopy in detail. The possible transformation mechanism for the structure has been discussed based on the experimental results. In addition, the optical properties of IF-MoS{submore » 2} have also been performed by UV-vis absorption spectroscopy.« less

  6. Rapid Synthesis of Thin and Long Mo17O47 Nanowire-Arrays in an Oxygen Deficient Flame

    PubMed Central

    Allen, Patrick; Cai, Lili; Zhou, Lite; Zhao, Chenqi; Rao, Pratap M.

    2016-01-01

    Mo17O47 nanowire-arrays are promising active materials and electrically-conductive supports for batteries and other devices. While high surface area resulting from long, thin, densely packed nanowires generally leads to improved performance in a wide variety of applications, the Mo17O47 nanowire-arrays synthesized previously by electrically-heated chemical vapor deposition under vacuum conditions were relatively thick and short. Here, we demonstrate a method to grow significantly thinner and longer, densely packed, high-purity Mo17O47 nanowire-arrays with diameters of 20–60 nm and lengths of 4–6 μm on metal foil substrates using rapid atmospheric flame vapor deposition without any chamber or walls. The atmospheric pressure and 1000 °C evaporation temperature resulted in smaller diameters, longer lengths and order-of-magnitude faster growth rate than previously demonstrated. As explained by kinetic and thermodynamic calculations, the selective synthesis of high-purity Mo17O47 nanowires is achieved due to low oxygen partial pressure in the flame products as a result of the high ratio of fuel to oxidizer supplied to the flame, which enables the correct ratio of MoO2 and MoO3 vapor concentrations for the growth of Mo17O47. This flame synthesis method is therefore a promising route for the growth of composition-controlled one-dimensional metal oxide nanomaterials for many applications. PMID:27271194

  7. Investigation of the effect of Anodized Duration toward Photocatalytic Performance of Nb2O5

    NASA Astrophysics Data System (ADS)

    Sabirin Zoolfakar, Ahmad; Atiqah Mokhtar, Nurul; Rani, Rozina Abdul; Samihah Khairir, Nur; Aqma Abu Talip, Mahzaton; Hafiz Mamat, Mohamad; Kadir, Rosmalini Abdul; Rusop, M.

    2018-03-01

    Highly oriented Nb2O5 nanoporous network produced via anodization for photocatalytic activity of methyl orange (MO) is presented. The anodization duration was varies from 0.5 to 2 hours and the photocatalytic performance is observed by degradation of MO solution. The Nb2O5 nanoparticles were added in MO solution and were exposed to the solar simulator for 3 hours. The morphology of Nb2O5 nanoporous and the photocatalytic performance are characterized in Field Emission Scanning Electron Microscopy (FESEM) and UV-Vis spectrophotometer, respectively. The result shows that different duration of anodized produce different sizes of nanoporous diameter that will significantly affect the photocatalytic performance. The 1.5 hours of anodized has the largest diameter size of nanoporous and exhibited the best photocatalytic performance

  8. Two-dimensional molybdenum disulphide nanoflakes synthesized by liquid-solid phase reaction method: regenerative photocatalytic performance under UV-visible light irradiation by advance oxidation process

    NASA Astrophysics Data System (ADS)

    Afsar, M. F.; Rafiq, M. A.; Siddique, Fizza; Saira, F.; Chaudhary, M. M.; Hasan, M. M.; Tok, A. I. Y.

    2018-05-01

    Molybdenum disulphide (MoS2) nanoflakes were prepared through liquid-solid phase reaction technique. X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and transmission electron microscopy (TEM) analysis revealed the formation of pure, polycrystalline, hexagonal phase of MoS2 nanoflakes. The texture coefficient (T{c}hkl) analysis showed that (100) plane was preferentially oriented. The specific surface area of the nanoflakes was 21 m2 g‑1 as determined using Brunaure-Emmett-Teller (BET) technique. A band gap of ∼2.05 eV for MoS2 nanoflakes was estimated from UV-visible spectrum. Regenerative photocatalytic activity of MoS2 nanoflakes was assessed by degrading methylene blue (MB) and safranin-o (SO) dyes under UV-visible light irradiation. Under light irradiation, degradation efficiency for MB was ∼99.58% in 100 min while for SO it was ∼99.89% in 70 min. The MoS2 nanoflakes exhibited excellent photocatalytic performance and good stability in a wide pH range (3–11). MoS2 nanoflakes showed a high reaction rate constant (k app ) for SO ∼ 0.104 49 min‑1 and MB ∼ 0.092 18 min‑1 as compared to other MoS2 nanostructures. The obtained exceptional photocatalytic performance of MoS2 nanoflakes offers potential applications for the treatment of polluted water as well as in other correlated fields.

  9. Nanoporous Mo2C functionalized 3D carbon architecture anode for boosting flavins mediated interfacial bioelectrocatalysis in microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Zou, Long; Lu, Zhisong; Huang, Yunhong; Long, Zhong-er; Qiao, Yan

    2017-08-01

    An efficient microbial electrocatalysis in microbial fuel cells (MFCs) needs both high loading of microbes (biocatalysts) and robust interfacial electron transfer from microbes to electrode. Herein a nanoporous molybdenum carbide (Mo2C) functionalized carbon felt electrode with rich 3D hierarchical porous architecture is applied as MFC anode to achieve superior electrocatalytic performance. The nanoporous Mo2C functionalized anode exhibits strikingly improved microbial electrocatalysis in MFCs with 5-fold higher power density and long-term stability of electricity production. The great enhancement is attributed to the introduction of rough Mo2C nanostructural interface into macroporous carbon architecture for promoting microbial growth with great excretion of endogenous electron shuttles (flavins) and rich available nanopores for enlarging electrochemically active surface area. Importantly, the nanoporous Mo2C functionalized anode is revealed for the first time to have unique electrocatalytic activity towards redox reaction of flavins with more negative redox potential, indicating a more favourable thermodynamic driving force for anodic electron transfer. This work not only provides a promising electrode for high performance MFCs but also brings up a new insight into the effect of nanostructured materials on interfacial bioelectrocatalysis.

  10. Is there any difference in survivorship of total hip arthroplasty with different bearing surfaces? A systematic review and network meta-analysis.

    PubMed

    Yin, Si; Zhang, Dangfeng; Du, Hui; Du, Heng; Yin, Zhanhai; Qiu, Yusheng

    2015-01-01

    Although many total hip bearing implants are widely used all over the world, simultaneous comparisons across the numerous available bearing surfaces are rare. The purpose of this study was to compare the survivorship of total hip arthroplasty (THA) with six available bearing implants. We conducted a systematic review of randomized controlled trials (RCTs) reporting survivorship or revision of ceramic-on-ceramic (CoC), ceramic-on-conventional polyethylene (CoPc), ceramic-on-highly-crosslinked polyethylene (CoPxl), metal-on-conventional polyethylene (MoPc), metal-on-highly-crosslinked polyethylene (MoPxl), or metal-on-metal (MoM) bearing implants. The synthesis of present evidence was performed by both the traditional direct-comparison meta-analysis and network meta-analysis. In total, 40 RCTs involving a total of 5321 THAs were identified. The pooled data of network meta-analysis showed no difference in relative risk (RR) of revision across CoC, CoPc, CoPxl and MoPxl bearings. However, the MoM bearing was demonstrated with a significant higher risk of revision compared with CoC (RR 5.10; 95% CI=1.62 to 16.81), CoPc (RR 4.80; 95% CI=1.29 to 17.09), or MoPxl (RR 3.85; 95% CI=1.16 to 14.29), and the MoPc bearing was indicated with a higher risk of revision compared with CoC (RR 2.83; 95% CI=1.20 to 6.63). The ranking probabilities of the effective interventions also revealed the inferiority of the MoM and MoPc implants in survivorship (both 0%, 95% CI=0% to 0%) compared with CoC (39%, 95% CI=0% to 100%), CoPc (33%, 95% CI=0% to 100%), CoPxl (7%, 95% CI=0% to 100%) or MoPxl (21%, 95% CI=0% to 100%). The present evidence indicated the similar performance in survivorship among CoC, CoPc, CoPxl and MoPxl bearing implants, and that all likely have superiority compared with the MoM and MoPc bearing implants in THA procedures. Long-term RCT data are required to confirm these conclusions and better inform clinical decisions.

  11. Ultrahigh-performance pseudocapacitor based on phase-controlled synthesis of MoS2 nanosheets decorated Ni3S2 hybrid structure through annealing treatment

    NASA Astrophysics Data System (ADS)

    Huang, Long; Hou, Huijie; Liu, Bingchuan; Zeinu, Kemal; Zhu, Xiaolei; Yuan, Xiqing; He, Xiulin; Wu, Longsheng; Hu, Jingping; Yang, Jiakuan

    2017-12-01

    In this work, a hierarchical Ni3S2@MoS2 hybrid structure was synthesized by an effective strategy with a combined hydrothermal route and subsequent annealing treatment. When tested as supercapacitor electrodes, the Ni3S2@MoS2 composites exhibited high specific capacitance of 1418.5 F g-1 at 0.5 A g-1, which also showed a good capacitance retention of 75.8% at 5 A g-1 after 1250 cycles. The Ni3S2@MoS2 composites demonstrated 1.9 fold higher specific capacitance compared to the amorphous shell counterpart (NixSy@MoS2). Furthermore, the assembled asymmetric supercapacitor (Ni3S2@MoS2//rGO) also demonstrated a capacitance of 61 F g-1 at 0.5 A g-1, with energy and power densities of 21.7 Wh kg-1 at 400 W kg-1 and 12 Wh kg-1 at 2400 W kg-1 under an operating window of 1.6 V. The asymmetric supercapacitor also showed a favorable cycle stability with 72% capacity retention over 4000 cycles at 10 A g-1. The improved electrochemical performance is attributed to the synergetic effect of the large accessible surface area and optimal contacts between the MoS2 and the electrolyte, as well as high capacitance of the metallic Ni3S2 core.

  12. Mo-doped V2O5 hierarchical nanorod/nanoparticle core/shell porous microspheres with improved performance for cathode of lithium-ion battery

    NASA Astrophysics Data System (ADS)

    Yu, Haolin; Zeng, Jianyun; Hao, Wen; Zhou, Peng; Wen, Xiaogang

    2018-05-01

    Mo-doped V2O5 hierarchical nanorod/nanoparticle core/shell porous microspheres (MVHPMs) were prepared via a simple hydrothermal approach using ammonium metavanadate and ammonium molybdate as precursors followed by a thermal annealing process. The samples were characterized by XRD, SEM, TEM, EDS, and XPS carefully; it confirmed that porous microspheres with uniform Mo doping in the V2O5 matrix were obtained, and it contains an inner core self-assembled with 1D nanorods and outer shell consisting of nanoparticles. A plausible growth mechanism of Mo-doped V2O5 (Mo-V2O5) porous microspheres is suggested. The unique microstructure made the Mo-V2O5 hierarchical microspheres a good cathode material for Li-ion battery. The results indicate the synthesized Mo-V2O5 hierarchical microspheres exhibit well-improved electrochemical performance compared to the undoped samples. It delivers a high initial reversible capacity of 282 mAh g-1 at 0.2 C, 208 mAh g-1 at 2 C, and 111 mAh g-1 at 10 C, and it also exhibits good cycling stabilities; a capacity of 144 mAh g-1 is obtained after 200 cycles at 6 C with a capacity retention of > 82%, which is much high than that of pure V2O5 (95 mAh g-1 with a capacity retention of 72%). [Figure not available: see fulltext.

  13. A novel SWCNT-polyoxometalate nanohybrid material as an electrode for electrochemical supercapacitors

    NASA Astrophysics Data System (ADS)

    Chen, Han-Yi; Al-Oweini, Rami; Friedl, Jochen; Lee, Ching Yi; Li, Linlin; Kortz, Ulrich; Stimming, Ulrich; Srinivasan, Madhavi

    2015-04-01

    A novel nanohybrid material that combines single-walled carbon nanotubes (SWCNTs) with a polyoxometalate (TBA)5[PVV2MoVI10O40] (TBA-PV2Mo10, TBA: [(CH3(CH2)3)4N]+, tetra-n-butyl ammonium) is investigated for the first time as an electrode material for supercapacitors (SCs) in this study. The SWCNT-TBA-PV2Mo10 material has been prepared by a simple solution method which electrostatically attaches anionic [PV2Mo10O40]5- anions with organic TBA cations on the SWCNTs. The electrochemical performance of SWCNT-TBA-PV2Mo10 electrodes is studied in an acidic aqueous electrolyte (1 M H2SO4) by galvanostatic charge/discharge and cyclic voltammetry. In this SWCNT-TBA-PV2Mo10 nanohybrid material, TBA-PV2Mo10 provides redox activity while benefiting from the high electrical conductivity and high double-layer capacitance of the SWCNTs that improve both energy and power density. An assembled SWCNT-TBA-PV2Mo10 symmetric SC exhibits a 39% higher specific capacitance as compared to a symmetric SC employing only SWCNTs as electrode materials. Furthermore, the SWCNT-TBA-PV2Mo10 SC exhibits excellent cycling stability, retaining 95% of its specific capacitance after 6500 cycles.

  14. Single-layer MoS2 electronics.

    PubMed

    Lembke, Dominik; Bertolazzi, Simone; Kis, Andras

    2015-01-20

    CONSPECTUS: Atomic crystals of two-dimensional materials consisting of single sheets extracted from layered materials are gaining increasing attention. The most well-known material from this group is graphene, a single layer of graphite that can be extracted from the bulk material or grown on a suitable substrate. Its discovery has given rise to intense research effort culminating in the 2010 Nobel Prize in physics awarded to Andre Geim and Konstantin Novoselov. Graphene however represents only the proverbial tip of the iceberg, and increasing attention of researchers is now turning towards the veritable zoo of so-called "other 2D materials". They have properties complementary to graphene, which in its pristine form lacks a bandgap: MoS2, for example, is a semiconductor, while NbSe2 is a superconductor. They could hold the key to important practical applications and new scientific discoveries in the two-dimensional limit. This family of materials has been studied since the 1960s, but most of the research focused on their tribological applications: MoS2 is best known today as a high-performance dry lubricant for ultrahigh-vacuum applications and in car engines. The realization that single layers of MoS2 and related materials could also be used in functional electronic devices where they could offer advantages compared with silicon or graphene created a renewed interest in these materials. MoS2 is currently gaining the most attention because the material is easily available in the form of a mineral, molybdenite, but other 2D transition metal dichalcogenide (TMD) semiconductors are expected to have qualitatively similar properties. In this Account, we describe recent progress in the area of single-layer MoS2-based devices for electronic circuits. We will start with MoS2 transistors, which showed for the first time that devices based on MoS2 and related TMDs could have electrical properties on the same level as other, more established semiconducting materials. This allowed rapid progress in this area and was followed by demonstrations of basic digital circuits and transistors operating in the technologically relevant gigahertz range of frequencies, showing that the mobility of MoS2 and TMD materials is sufficiently high to allow device operation at such high frequencies. Monolayer MoS2 and other TMDs are also direct band gap semiconductors making them interesting for realizing optoelectronic devices. These range from simple phototransistors showing high sensitivity and low noise, to light emitting diodes and solar cells. All the electronic and optoelectronic properties of MoS2 and TMDs are accompanied by interesting mechanical properties with monolayer MoS2 being as stiff as steel and 30× stronger. This makes it especially interesting in the context of flexible electronics where it could combine the high degree of mechanical flexibility commonly associated with organic semiconductors with high levels of electrical performance. All these results show that MoS2 and TMDs are promising materials for electronic and optoelectronic applications.

  15. Strain and structure heterogeneity in MoS 2 atomic layers grown by chemical vapour deposition

    DOE PAGES

    Liu, Zheng; Amani, Matin; Najmaei, Sina; ...

    2014-11-18

    Monolayer molybdenum disulfide (MoS 2) has attracted tremendous attention due to its promising applications in high-performance field-effect transistors, phototransistors, spintronic devices, and nonlinear optics. The enhanced photoluminescence effect in monolayer MoS 2 was discovered and, as a strong tool, was employed for strain and defect analysis in MoS 2. Recently, large-size monolayer MoS 2 has been produced by chemical vapor deposition but has not yet been fully explored. Here we systematically characterize chemical vapor deposition grown MoS 2 by PL spectroscopy and mapping, and demonstrate non-uniform strain in single-crystalline monolayer MoS 2 and strain-induced band gap engineering. We also evaluatemore » the effective strain transferred from polymer substrates to MoS 2 by three-dimensional finite element analysis. In addition, our work demonstrates that PL mapping can be used as a non-contact approach for quick identification of grain boundaries in MoS 2.« less

  16. [MoS4]2- Cluster Bridges in Co-Fe Layered Double Hydroxides for Mercury Uptake from S-Hg Mixed Flue Gas.

    PubMed

    Xu, Haomiao; Yuan, Yong; Liao, Yong; Xie, Jiangkun; Qu, Zan; Shangguan, Wenfeng; Yan, Naiqiang

    2017-09-05

    [MoS 4 ] 2- clusters were bridged between CoFe layered double hydroxide (LDH) layers using the ion-exchange method. [MoS 4 ] 2- /CoFe-LDH showed excellent Hg 0 removal performance under low and high concentrations of SO 2 , highlighting the potential for such material in S-Hg mixed flue gas purification. The maximum mercury capacity was as high as 16.39 mg/g. The structure and physical-chemical properties of [MoS 4 ] 2- /CoFe-LDH composites were characterized with FT-IR, XRD, TEM&SEM, XPS, and H 2 -TPR. [MoS 4 ] 2- clusters intercalated into the CoFe-LDH layered sheets; then, we enlarged the layer-to-layer spacing (from 0.622 to 0.880 nm) and enlarged the surface area (from 41.4 m 2 /g to 112.1 m 2 /g) of the composite. During the adsorption process, the interlayer [MoS 4 ] 2- cluster was the primary active site for mercury uptake. The adsorbed mercury existed as HgS on the material surface. The absence of active oxygen results in a composite with high sulfur resistance. Due to its high efficiency and SO 2 resistance, [MoS 4 ] 2- /CoFe-LDH is a promising adsorbent for mercury uptake from S-Hg mixed flue gas.

  17. Non-enzymatic electrochemical glucose sensor based on NiMoO4 nanorods

    NASA Astrophysics Data System (ADS)

    Wang, Dandan; Cai, Daoping; Huang, Hui; Liu, Bin; Wang, Lingling; Liu, Yuan; Li, Han; Wang, Yanrong; Li, Qiuhong; Wang, Taihong

    2015-04-01

    A non-enzymatic glucose sensor based on the NiMoO4 nanorods has been fabricated for the first time. The electrocatalytic performance of the NiMoO4 nanorods’ modified electrode toward glucose oxidation was evaluated by cyclic voltammetry and amperometry. The NiMoO4 nanorods’ modified electrode showed a greatly enhanced electrocatalytic property toward glucose oxidation, as well as an excellent anti-interference and a good stability. Impressively, good accuracy and high precision for detecting glucose concentration in human serum samples were obtained. These excellent sensing properties, combined with good reproducibility and low cost, indicate that NiMoO4 nanorods are a promising candidate for non-enzymatic glucose sensors.

  18. Selective growth of MoS2 for proton exchange membranes with extremely high selectivity.

    PubMed

    Feng, Kai; Tang, Beibei; Wu, Peiyi

    2013-12-26

    Proton conductivity and methanol permeability are the most important transport properties of proton exchange membranes (PEMs). The ratio of proton conductivity to methanol permeability is usually called selectivity. Herein, a novel strategy of in situ growth of MoS2 is employed to prepare MoS2/Nafion composite membranes for highly selective PEM. The strong interactions between the Mo precursor ((NH4)2MoS4) and Nafion's sulfonic groups in a suitable solvent environment (DMF) probably lead to a selective growth of MoS2 flakes mainly around the ionic clusters of the resultant MoS2/Nafion composite membrane. Therefore, it would significantly promote the aggregation and hence lead to a better connectivity of these ionic clusters, which favors the increase in proton conductivity. Meanwhile, the existence of MoS2 in the ionic channels effectively prevents methanol transporting through the PEM, contributing to the dramatic decrease in the methanol permeability. Consequently, the MoS2/Nafion composite membranes exhibit greatly increased selectivity. Under some severe conditions, such as 50 °C with 80 v/v% of methanol concentration, an increase in the membrane selectivity by nearly 2 orders of magnitude compared with that of the recast Nafion membrane could be achieved here, proving our method as a very promising way to prepare high-performance PEMs. All these conclusions are confirmed by various characterizations, such as (FE-) SEM, TEM, AFM, IR, Raman, TGA, XRD, etc.

  19. Growth-substrate induced performance degradation in chemically synthesized monolayer MoS{sub 2} field effect transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amani, Matin; Chin, Matthew L.; Mazzoni, Alexander L.

    2014-05-19

    We report on the electronic transport properties of single-layer thick chemical vapor deposition (CVD) grown molybdenum disulfide (MoS{sub 2}) field-effect transistors (FETs) on Si/SiO{sub 2} substrates. MoS{sub 2} has been extensively investigated for the past two years as a potential semiconductor analogue to graphene. To date, MoS{sub 2} samples prepared via mechanical exfoliation have demonstrated field-effect mobility values which are significantly higher than that of CVD-grown MoS{sub 2}. In this study, we will show that the intrinsic electronic performance of CVD-grown MoS{sub 2} is equal or superior to that of exfoliated material and has been possibly masked by a combinationmore » of interfacial contamination on the growth substrate and residual tensile strain resulting from the high-temperature growth process. We are able to quantify this strain in the as-grown material using pre- and post-transfer metrology and microscopy of the same crystals. Moreover, temperature-dependent electrical measurements made on as-grown and transferred MoS{sub 2} devices following an identical fabrication process demonstrate the improvement in field-effect mobility.« less

  20. Highly Active 2D Layered MoS 2 -rGO Hybrids for Energy Conversion and Storage Applications.

    PubMed

    Kamila, Swagatika; Mohanty, Bishnupad; Samantara, Aneeya K; Guha, Puspendu; Ghosh, Arnab; Jena, Bijayalaxmi; Satyam, Parlapalli V; Mishra, B K; Jena, Bikash Kumar

    2017-08-21

    The development of efficient materials for the generation and storage of renewable energy is now an urgent task for future energy demand. In this report, molybdenum disulphide hollow sphere (MoS 2 -HS) and its reduced graphene oxide hybrid (rGO/MoS 2 -S) have been synthesized and explored for energy generation and storage applications. The surface morphology, crystallinity and elemental composition of the as-synthesized materials have been thoroughly analysed. Inspired by the fascinating morphology of the MoS 2 -HS and rGO/MoS 2 -S materials, the electrochemical performance towards hydrogen evolution and supercapacitor has been demonstrated. The rGO/MoS 2 -S shows enhanced gravimetric capacitance values (318 ± 14 Fg -1 ) with higher specific energy/power outputs (44.1 ± 2.1 Whkg -1 and 159.16 ± 7.0 Wkg -1 ) and better cyclic performances (82 ± 0.95% even after 5000 cycles). Further, a prototype of the supercapacitor in a coin cell configuration has been fabricated and demonstrated towards powering a LED. The unique balance of exposed edge site and electrical conductivity of rGO/MoS 2 -S shows remarkably superior HER performances with lower onset over potential (0.16 ± 0.05 V), lower Tafel slope (75 ± 4 mVdec -1 ), higher exchange current density (0.072 ± 0.023 mAcm -2 ) and higher TOF (1.47 ± 0.085 s -1 ) values. The dual performance of the rGO/MoS 2 -S substantiates the promising application for hydrogen generation and supercapacitor application of interest.

  1. CoMoS2/rGO/C3N4 ternary heterojunctions catalysts with high photocatalytic activity and stability for hydrogen evolution under visible light irradiation

    NASA Astrophysics Data System (ADS)

    Xu, Xuejun; Si, Zhichun; Liu, Liping; Wang, Zehao; Chen, Ze; Ran, Rui; He, Yonghong; Weng, Duan

    2018-03-01

    Noble metal free MoS2/g-C3N4 catalyst has attracted intense attentions for visible light photocatalytic hydrogen evolution as a result of its earth abundance, low cost and unique heterojunctions stacked with two dimensional sheets. However, the low charge separation efficiency resulted from the poor conductivity of g-C3N4 and MoS2, and lack of abundant active sites from coordinative unsaturated atoms in MoS2, restricts the photocatalytic hydrogen evolution activity and stability enhancement of MoS2/C3N4 composite catalysts. Herein, CoMoS2/rGO/g-C3N4 catalysts with ternary heterojunctions are prepared by facile solvothermal method, which exhibit high visible light photocatalytic activity and stability for hydrogen evolution. The optimal hydrogen evolution rate of CoMoS2/rGO/g-C3N4 catalysts is 684 μmol g-1 h-1 when the content of CoMoS2 is 2% and the content of rGO is 0.5%. The stability of CoMoS2/rGO/C3N4 catalysts just decrease about 3% after 4 cycling runs for 16 h. The good catalytic performances of catalysts are attributed to the synergistic effect among the g-C3N4 nanosheets, rGO nanosheets and CoMoS2 nanosheets. The high conductivity of rGO nanosheets enhances the electron-hole separation and charge transfer, and Co doping increases the active sites for hydrogen evolution due to the increase of unsaturated atoms in CoMoS2 nanosheets.

  2. Preparation of MoS2/TiO2 based nanocomposites for photocatalysis and rechargeable batteries: progress, challenges, and perspective.

    PubMed

    Chen, Biao; Meng, Yuhuan; Sha, Junwei; Zhong, Cheng; Hu, Wenbin; Zhao, Naiqin

    2017-12-21

    The rapidly increasing severity of the energy crisis and environmental degradation are stimulating the rapid development of photocatalysts and rechargeable lithium/sodium ion batteries. In particular, MoS 2 /TiO 2 based nanocomposites show great potential and have been widely studied in the areas of both photocatalysis and rechargeable lithium/sodium ion batteries due to their superior combination properties. In addition to the low-cost, abundance, and high chemical stability of both MoS 2 and TiO 2 , MoS 2 /TiO 2 composites also show complementary advantages. These include the strong optical absorption of TiO 2 vs. the high catalytic activity of MoS 2 , which is promising for photocatalysis; and excellent safety and superior structural stability of TiO 2 vs. the high theoretic specific capacity and unique layered structure of MoS 2 , thus, these composites are exciting as anode materials. In this review, we first summarize the recent progress in MoS 2 /TiO 2 -based nanomaterials for applications in photocatalysis and rechargeable batteries. We highlight the synthesis, structure and mechanism of MoS 2 /TiO 2 -based nanomaterials. Then, advancements and strategies for improving the performance of these composites in photocatalytic degradation, hydrogen evolution, CO 2 reduction, LIBs and SIBs are critically discussed. Finally, perspectives on existing challenges and probable opportunities for future exploration of MoS 2 /TiO 2 -based composites towards photocatalysis and rechargeable batteries are presented. We believe the present review would provide enriched information for a deeper understanding of MoS 2 /TiO 2 composites and open avenues for the rational design of MoS 2 /TiO 2 based composites for energy and environment-related applications.

  3. Boosting the catalytic performance of MoSx cocatalysts over CdS nanoparticles for photocatalytic H2 evolution by Co doping via a facile photochemical route

    NASA Astrophysics Data System (ADS)

    Lei, Yonggang; Hou, Jianhua; Wang, Fang; Ma, Xiaohua; Jin, Zhiliang; Xu, Jing; Min, Shixiong

    2017-10-01

    Low-crystalline or amorphous molybdenum sulfides (MoSx), bearing abundant unsaturated active sites, have been identified as efficient catalysts for electrocatalytic and photocatalytic H2 evolution reactions, however, their intrinsic activity is still low and need to be further improved for large-scale applications. In this paper, we report that low-crystalline MoSx doped with Co (Co-MoSx) as efficient cocatalysts could be loaded on CdS nanoparticles through a facile and controllable photochemical reduction method and showed high performances in catalyzing H2 evolution under visible light irradiation (≥420 nm). The photochemical loading of Co-MoSx was accomplished by using an in-situ formed molecular complex precursor and photogenerated electrons on CdS as reductants under mild conditions. The optimized CdS/Co-MoSx (Co:Mo = 1:4, 2 mol% loading) photocatalyst exhibited a catalytic H2 evolution rate of 535 μmol h-1, which is 1.8 times higher than that of CdS/MoSx, and an apparent quantum efficiency (AQE) of 23.5% was achieved over CdS/Co-MoSx photocatalyst at 420 nm. Co-MoSx catalyst also shows a long-term stability without noticeable activity degradation. Notably, Co-MoSx cocatalyst was found more efficient than that of noble metals in catalyzing photocatalytic H2 evolution on CdS. The formation of CoMoS phase, the enhanced electrocatalytic activity as well as reduced electron transfer resistance due to the doping effects of Co ions, account for the enhanced catalytic activity of this Co-MoSx cocatalyst.

  4. Seaurchin-like hierarchical NiCo2O4@NiMoO4 core-shell nanomaterials for high performance supercapacitors.

    PubMed

    Zhang, Qiang; Deng, Yanghua; Hu, Zhonghua; Liu, Yafei; Yao, Mingming; Liu, Peipei

    2014-11-14

    A novel electrode material of the three-dimensional (3D) multicomponent oxide NiCo2O4@NiMoO4 core-shell was synthesized via a facile two-step hydrothermal method using a post-annealing procedure. The uniform NiMoO4 nanosheets were grown on the seaurchin-like NiCo2O4 backbone to form a NiCo2O4@NiMoO4 core-shell material constructed by interconnected ultrathin nanosheets, so as to produce hierarchical mesopores with a large specific surface area of 100.3 m(2) g(-1). The porous feature and core-shell structure can facilitate the penetration of electrolytic ions and increases the number of electroactive sites. Hence, the NiCo2O4@NiMoO4 material exhibited a high specific capacitance of 2474 F g(-1) and 2080 F g(-1) at current densities of 1 A g(-1) and 20 A g(-1) respectively, suggesting that it has not only a very large specific capacitance, but also a good rate performance. In addition, the capacitance loss was only 5.0% after 1000 cycles of charge and discharge tests at the current density of 10 A g(-1), indicating high stability. The excellent electrochemical performance is mainly attributed to its 3D core-shell and hierarchical mesoporous structures which can provide unobstructed pathways for the fast diffusion and transportation of ions and electrons, a large number of active sites and good strain accommodation.

  5. TEM Characterization of High Burn-up Microstructure of U-7Mo Alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jian Gan; Brandon Miller; Dennis Keiser

    2014-04-01

    As an essential part of global nuclear non-proliferation effort, the RERTR program is developing low enriched U-Mo fuels (< 20% U-235) for use in research and test reactors that currently employ highly enriched uranium fuels. One type of fuel being developed is a dispersion fuel plate comprised of U-7Mo particles dispersed in Al alloy matrix. Recent TEM characterizations of the ATR irradiated U-7Mo dispersion fuel plates include the samples with a local fission densities of 4.5, 5.2, 5.6 and 6.3 E+21 fissions/cm3 and irradiation temperatures of 101-136?C. The development of the irradiated microstructure of the U-7Mo fuel particles consists ofmore » fission gas bubble superlattice, large gas bubbles, solid fission product precipitates and their association to the large gas bubbles, grain subdivision to tens or hundreds of nanometer size, collapse of bubble superlattice, and amorphisation. This presentation will describe the observed microstructures specifically focusing on the U-7Mo fuel particles. The impact of the observed microstructure on the fuel performance and the comparison of the relevant features with that of the high burn-up UO2 fuels will be discussed.« less

  6. Few-layer MoSe₂ possessing high catalytic activity towards iodide/tri-iodide redox shuttles.

    PubMed

    Lee, Lawrence Tien Lin; He, Jian; Wang, Baohua; Ma, Yaping; Wong, King Young; Li, Quan; Xiao, Xudong; Chen, Tao

    2014-02-14

    Due to the two-dimensional confinement of electrons, single- and few-layer MoSe₂ nanostructures exhibit unusual optical and electrical properties and have found wide applications in catalytic hydrogen evolution reaction, field effect transistor, electrochemical intercalation, and so on. Here we present a new application in dye-sensitized solar cell as catalyst for the reduction of I₃(-) to I(-) at the counter electrode. The few-layer MoSe₂ is fabricated by surface selenization of Mo-coated soda-lime glass. Our results show that the few-layer MoSe₂ displays high catalytic efficiency for the regeneration of I(-) species, which in turn yields a photovoltaic energy conversion efficiency of 9.00%, while the identical photoanode coupling with "champion" electrode based on Pt nanoparticles on FTO glass generates efficiency only 8.68%. Thus, a Pt- and FTO-free counter electrode outperforming the best conventional combination is obtained. In this electrode, Mo film is found to significantly decrease the sheet resistance of the counter electrode, contributing to the excellent device performance. Since all of the elements in the electrode are of high abundance ratios, this type of electrode is promising for the fabrication of large area devices at low materials cost.

  7. Well-Constructed Single-Layer Molybdenum Disulfide Nanorose Cross-Linked by Three Dimensional-Reduced Graphene Oxide Network for Superior Water Splitting and Lithium Storage Property

    PubMed Central

    Zhao, Yanyan; Kuai, Long; Liu, Yanguo; Wang, Pengpeng; Arandiyan, Hamidreza; Cao, Sufeng; Zhang, Jie; Li, Fengyun; Wang, Qing; Geng, Baoyou; Sun, Hongyu

    2015-01-01

    A facile one-step solution reaction route for growth of novel MoS2 nanorose cross-linked by 3D rGO network, in which the MoS2 nanorose is constructed by single-layered or few-layered MoS2 nanosheets, is presented. Due to the 3D assembled hierarchical architecture of the ultrathin MoS2 nanosheets and the interconnection of 3D rGO network, as well as the synergetic effects of MoS2 and rGO, the as-prepared MoS2-NR/rGO nanohybrids delivered high specific capacity, excellent cycling and good rate performance when evaluated as an anode material for lithium-ion batteries. Moreover, the nanohybrids also show excellent hydrogen-evolution catalytic activity and durability in an acidic medium, which is superior to MoS2 nanorose and their nanoparticles counterparts. PMID:25735416

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Pingrui; Liu, Ziyang; Liu, Dongyang

    Pentacene organic thin-film transistors (OTFTs) were prepared by introducing 4, 4″-tris(3-methylphenylphenylamino) triphenylamine (m-MTDATA): MoO{sub 3}, Pentacene: MoO{sub 3}, and Pentacene: m-MTDATA: MoO{sub 3} as buffer layers. These OTFTs all showed significant performance improvement comparing to the reference device. Significantly, we observe that the device employing Pentacene: m-MTDATA: MoO{sub 3} buffer layer can both take advantage of charge transfer complexes formed in the m-MTDATA: MoO{sub 3} device and suitable energy level alignment existed in the Pentacene: MoO{sub 3} device. These two parallel paths led to a high mobility, low threshold voltage, and contact resistance of 0.72 cm{sup 2}/V s, −13.4 V,more » and 0.83 kΩ at V{sub ds} = − 100 V. This work enriches the understanding of MoO{sub 3} doped organic materials for applications in OTFTs.« less

  9. Facile synthesis of 3D few-layered MoS2 coated TiO2 nanosheet core-shell nanostructures for stable and high-performance lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Chen, Biao; Zhao, Naiqin; Guo, Lichao; He, Fang; Shi, Chunsheng; He, Chunnian; Li, Jiajun; Liu, Enzuo

    2015-07-01

    Uniform transition metal sulfide deposition on a smooth TiO2 surface to form a coating structure is a well-known challenge, caused mainly due to their poor affinities. Herein, we report a facile strategy for fabricating mesoporous 3D few-layered (<4 layers) MoS2 coated TiO2 nanosheet core-shell nanocomposites (denoted as 3D FL-MoS2@TiO2) by a novel two-step method using a smooth TiO2 nanosheet as a template and glucose as a binder. The core-shell structure has been systematically examined and corroborated by transmission electron microscopy, scanning transmission electron microscopy, and X-ray photoelectron spectroscopy analyses. It is found that the resultant 3D FL-MoS2@TiO2 as a lithium-ion battery anode delivers an outstanding high-rate capability with an excellent cycling performance, relating to the unique structure of 3D FL-MoS2@TiO2. The 3D uniform coverage of few-layered (<4 layers) MoS2 onto the TiO2 can remarkably enhance the structure stability and effectively shortens the transfer paths of both lithium ions and electrons, while the strong synergistic effect between MoS2 and TiO2 can significantly facilitate the transport of ions and electrons across the interfaces, especially in the high-rate charge-discharge process. Moreover, the facile fabrication strategy can be easily extended to design other oxide/carbon-sulfide/oxide core-shell materials for extensive applications.Uniform transition metal sulfide deposition on a smooth TiO2 surface to form a coating structure is a well-known challenge, caused mainly due to their poor affinities. Herein, we report a facile strategy for fabricating mesoporous 3D few-layered (<4 layers) MoS2 coated TiO2 nanosheet core-shell nanocomposites (denoted as 3D FL-MoS2@TiO2) by a novel two-step method using a smooth TiO2 nanosheet as a template and glucose as a binder. The core-shell structure has been systematically examined and corroborated by transmission electron microscopy, scanning transmission electron microscopy, and X-ray photoelectron spectroscopy analyses. It is found that the resultant 3D FL-MoS2@TiO2 as a lithium-ion battery anode delivers an outstanding high-rate capability with an excellent cycling performance, relating to the unique structure of 3D FL-MoS2@TiO2. The 3D uniform coverage of few-layered (<4 layers) MoS2 onto the TiO2 can remarkably enhance the structure stability and effectively shortens the transfer paths of both lithium ions and electrons, while the strong synergistic effect between MoS2 and TiO2 can significantly facilitate the transport of ions and electrons across the interfaces, especially in the high-rate charge-discharge process. Moreover, the facile fabrication strategy can be easily extended to design other oxide/carbon-sulfide/oxide core-shell materials for extensive applications. Electronic supplementary information (ESI) available: Supplementary SEM, TEM, XPS and EIS analyses. See DOI: 10.1039/c5nr03334a

  10. 3D architecture of a graphene/CoMoO(4) composite for asymmetric supercapacitors usable at various temperatures.

    PubMed

    Jiang, Yaru; Zheng, Xin; Yan, Xiaoqin; Li, Yong; Zhao, Xuan; Zhang, Yue

    2017-05-01

    Designing and optimizing the electrode materials and studying the electrochemical performance or cycle life of the supercapacitor under different working conditions are crucial to its practical application. Herein, we proposed a rational design of 3D-graphene/CoMoO 4 nanoplates by a facile two-step hydrothermal method. Owing to the high electron transfer rate of graphene and the high activity of the CoMoO 4 nanoplates, the three-dimensional electrode architectures achieved remarkable electrochemical performances with high areal specific capacitance (1255.24F/g at 1A/g) and superior cycling stability (91.3% of the original specific capacitance after 3000 cycles at 1A/g). The all-solid-state asymmetric supercapacitor composed of 3D-graphene/CoMoO 4 and activated carbon (AC) exhibited a specific capacitance of 109F/g at 0.2A/g and an excellent cycling stability with only 12.1% of the initial specific capacitance off after 3000 cycles at 2A/g. The effects of temperature and charge-discharge current densities on the charge storage capacity of the supercapacitor were also investigated in detail for practical applications. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Pushing the Performance Limit of Sub-100 nm Molybdenum Disulfide Transistors.

    PubMed

    Liu, Yuan; Guo, Jian; Wu, Yecun; Zhu, Enbo; Weiss, Nathan O; He, Qiyuan; Wu, Hao; Cheng, Hung-Chieh; Xu, Yang; Shakir, Imran; Huang, Yu; Duan, Xiangfeng

    2016-10-12

    Two-dimensional semiconductors (2DSCs) such as molybdenum disulfide (MoS 2 ) have attracted intense interest as an alternative electronic material in the postsilicon era. However, the ON-current density achieved in 2DSC transistors to date is considerably lower than that of silicon devices, and it remains an open question whether 2DSC transistors can offer competitive performance. A high current device requires simultaneous minimization of the contact resistance and channel length, which is a nontrivial challenge for atomically thin 2DSCs, since the typical low contact resistance approaches for 2DSCs either degrade the electronic properties of the channel or are incompatible with the fabrication process for short channel devices. Here, we report a new approach toward high-performance MoS 2 transistors by using a physically assembled nanowire as a lift-off mask to create ultrashort channel devices with pristine MoS 2 channel and self-aligned low resistance metal/graphene hybrid contact. With the optimized contact in short channel devices, we demonstrate sub-100 nm MoS 2 transistor delivering a record high ON-current of 0.83 mA/μm at 300 K and 1.48 mA/μm at 20 K, which compares well with that of silicon devices. Our study, for the first time, demonstrates that the 2DSC transistors can offer comparable performance to the 2017 target for silicon transistors in International Technology Roadmap for Semiconductors (ITRS), marking an important milestone in 2DSC electronics.

  12. Physiotherapy Maneuver Is Critical to Recover Mouth Opening After Pediatric Trauma.

    PubMed

    Khalifa, Ghada Amin; El-Kilani, Naglaa Shawki; Shokier, Hanan Mohamed

    2016-12-01

    A restricted mouth opening (MO) is predominantly a complication of maxillofacial trauma in pediatric patients and develops in 4 to 26.2% of cases. The purpose of the present study was to quantitatively investigate the influence of patient demographic data, fracture characteristics, and regular vigorous physiotherapy, with either voluntary or forcible MO exercises, on the recovery of a post-traumatic restricted MO in pediatric patients. A prospective cohort study was performed of pediatric patients with maxillofacial injuries who had been referred to Al-Zahraa and El-Fayoum Hospitals from 2013 to 2015. The predictive variables were patient demographic data, fracture characteristics, and regular vigorous physiotherapy. The patients were treated with a closed technique. The MO measurements were the clinical outcome variables and were recorded at the first week and then monthly for 12 months. Regular vigorous physiotherapy was performed until the patients had returned to their preoperative MO. The data were tabulated and statistically analyzed. Eighty-six patients were enrolled in the present study. Males predominated. Falls were the most common cause of fracture. Condylar fractures had the greatest incidence. A restricted MO occurred in 81 patients. The results showed no interaction between MO recovery and age, gender, etiology, or fracture site. After physiotherapy, the patients had returned to their preoperative MO at the fourth month, with the measurements fixed at normal values at the sixth month. The recovery rate was nonlinear, with faster improvement in the months closest to the injury. Physiotherapy is more critical in the recovery of the MO and prevention of bony ankylosis than patient data or fracture characteristics in pediatric trauma. We highly advocate the performance of voluntary mouth exercises, even in the absence of fracture. Forcible MO exercises are mandatory to recover a restricted MO. These exercises should be performed under close supervision of the patient's surgeon with the parents motivated to cooperate for at least 6 months. Copyright © 2016 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  13. IRRADIATION PERFORMANCE OF U-Mo MONOLITHIC FUEL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    M.K. Meyer; J. Gan; J.-F. Jue

    2014-04-01

    High-performance research reactors require fuel that operates at high specific power to high fission density, but at relatively low temperatures. Research reactor fuels are designed for efficient heat rejection, and are composed of assemblies of thin-plates clad in aluminum alloy. The development of low-enriched fuels to replace high-enriched fuels for these reactors requires a substantially increased uranium density in the fuel to offset the decrease in enrichment. Very few fuel phases have been identified that have the required combination of very-high uranium density and stable fuel behavior at high burnup. UMo alloys represent the best known tradeoff in these properties.more » Testing of aluminum matrix U-Mo aluminum matrix dispersion fuel revealed a pattern of breakaway swelling behavior at intermediate burnup, related to the formation of a molybdenum stabilized high aluminum intermetallic phase that forms during irradiation. In the case of monolithic fuel, this issue was addressed by eliminating, as much as possible, the interfacial area between U-Mo and aluminum. Based on scoping irradiation test data, a fuel plate system composed of solid U-10Mo fuel meat, a zirconium diffusion barrier, and Al6061 cladding was selected for development. Developmental testing of this fuel system indicates that it meets core criteria for fuel qualification, including stable and predictable swelling behavior, mechanical integrity to high burnup, and geometric stability. In addition, the fuel exhibits robust behavior during power-cooling mismatch events under irradiation at high power.« less

  14. Molybdenum Carbide Nanoparticles on Carbon Nanotubes and Carbon Xerogel: Low-Cost Cathodes for Hydrogen Production by Alkaline Water Electrolysis.

    PubMed

    Šljukić, Biljana; Santos, Diogo M F; Vujković, Milica; Amaral, Luís; Rocha, Raquel P; Sequeira, César A C; Figueiredo, José L

    2016-05-23

    Low-cost molybdenum carbide (Mo2 C) nanoparticles supported on carbon nanotubes (CNTs) and on carbon xerogel (CXG) were prepared and their activity for the hydrogen evolution reaction (HER) was evaluated in 8 m KOH aqueous electrolyte at 25-85 °C. Measurements of the HER by linear scan voltammetry allowed us to determine Tafel slopes of 71 and 74 mV dec(-1) at 25 °C for Mo2 C/CNT and Mo2 C/CXG, respectively. Stability tests were also performed, which showed the steady performance of the two electrocatalysts. Moreover, the HER kinetics at Mo2 C/CNT was enhanced significantly after the long-term stability tests. The specific activity of both materials was high, and a higher stability was obtained for the activated Mo2 C/CNT (40 A g(-1) at -0.40 V vs. the reversible hydrogen electrode). © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. MoS 2-on-MXene Heterostructures as Highly Reversible Anode Materials for Lithium-Ion Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Chi; Xie, Xiuqiang; Anasori, Babak

    Two-dimensional (2D) heterostructured materials, combining the collective advantages of individual building blocks and synergistic properties, have spurred great interest as a new paradigm in materials science. The family of 2D transition-metal carbides and nitrides, MXenes, has emerged as an attractive platform to construct functional materials with enhanced performance for diverse applications. Here, we synthesized 2D MoS 2-on-MXene heterostructures through in situ sulfidation of Mo 2TiC 2Tx MXene. The computational results show that MoS 2-on-MXene heterostructures have metallic properties. Moreover, the presence of MXene leads to enhanced Li and Li2S adsorption during the intercalation and conversion reactions. These characteristics render themore » as-prepared MoS 2-on-MXene heterostructures stable Li-ion storage performance. In conclusion, this work paves the way to use MXene to construct 2D heterostructures for energy storage applications.« less

  16. Numerical characterization of micro-cell UO2sbnd Mo pellet for enhanced thermal performance

    NASA Astrophysics Data System (ADS)

    Lee, Heung Soo; Kim, Dong-Joo; Kim, Sun Woo; Yang, Jae Ho; Koo, Yang-Hyun; Kim, Dong Rip

    2016-08-01

    Metallic micro-cell UO2 pellet with high thermal conductivity has received attention as a promising accident-tolerant fuel. Although experimental demonstrations have been successful, studies on the potency of current metallic micro-cell UO2 fuels for further enhancement of thermal performance are lacking. Here, we numerically investigated the thermal conductivities of micro-cell UO2sbnd Mo pellets in terms of the amount of Mo content, the unit cell size, and the aspect ratio of the micro-cells. The results showed good agreement with experimental measurements, and more importantly, indicated the importance of optimizing the unit cell geometries of the micro-cell pellets for greater increases in thermal conductivity. Consequently, the micro-cell UO2sbnd Mo pellets (5 vol% Mo) with modified geometries increased the thermal conductivity of the current UO2 pellets by about 2.5 times, and lowered the temperature gradient within the pellets by 62.9% under a linear heat generation rate of 200 W/cm.

  17. MoS 2-on-MXene Heterostructures as Highly Reversible Anode Materials for Lithium-Ion Batteries

    DOE PAGES

    Chen, Chi; Xie, Xiuqiang; Anasori, Babak; ...

    2018-01-02

    Two-dimensional (2D) heterostructured materials, combining the collective advantages of individual building blocks and synergistic properties, have spurred great interest as a new paradigm in materials science. The family of 2D transition-metal carbides and nitrides, MXenes, has emerged as an attractive platform to construct functional materials with enhanced performance for diverse applications. Here, we synthesized 2D MoS 2-on-MXene heterostructures through in situ sulfidation of Mo 2TiC 2Tx MXene. The computational results show that MoS 2-on-MXene heterostructures have metallic properties. Moreover, the presence of MXene leads to enhanced Li and Li2S adsorption during the intercalation and conversion reactions. These characteristics render themore » as-prepared MoS 2-on-MXene heterostructures stable Li-ion storage performance. In conclusion, this work paves the way to use MXene to construct 2D heterostructures for energy storage applications.« less

  18. 3D-hierarchical MoSe2 nanoarchitecture as a highly efficient electrocatalyst for hydrogen evolution

    NASA Astrophysics Data System (ADS)

    Zheng, Binjie; Chen, Yuanfu; Qi, Fei; Wang, Xinqiang; Zhang, Wanli; Li, Yanrong; Li, Xuesong

    2017-06-01

    Clean hydrogen split from water by hydrogen evolution reaction (HER) is significant for sustainability, environmental emissions, and energy security. So far, it is still a big challenge to develop highly efficient noble metal-free electrocatalysts with comparable HER efficiency to platinum-based catalysts, which are mainly hindered by the intrinsic electrocatalytic property and particularly the reasonable nanostructure design of the electrocatalyst. Here we report a newly-designed three-dimensional hierarchical MoSe2 nanoarchitecture (3D-MoSe2) with outstanding HER performance. The 3D-MoSe2 is grown by chemical vapor deposition method with using perylene-3, 4, 9, 10-tetracarboxylic acid tetrapotassium salt as a seeding promoter. The as-grown 3D-MoSe2 nanoarchitecture is highly crystalline and constructed with curly few-layered vertical nanosheets onto the horizontal layer, which has much larger (~12 times) electrochemically active area and much smaller (only 2%) charge transfer resistance compared to conventional horizontal MoSe2 layer. With these advantages, the Tafel slope of 3D-MoSe2 can be as small as 47.3 mV/dev, which is the smallest record ever reported for pure MoSe2, even for pure two-dimensional transition metal dichalcogenides (2D-TMDs) catalysts. Furthermore, when 3D-MoSe2 is grown on the multiwall carbon nanotube film, its Tafel slope can be further reduced down to 32.5 mV/dec, which is close to the theoretical limit (29 mV/dec) of HER, and comparable to platinum-based electrocatalysts, making it promising as a highly efficient electrocatalyst for hydrogen evolution.

  19. Large Area CVD MoS2 RF transistors with GHz performance

    NASA Astrophysics Data System (ADS)

    Nagavalli Yogeesh, Maruthi; Sanne, Atresh; Park, Saungeun; Akinwade, Deji; Banerjee, Sanjay

    Molybdenum disulfide (MoS2) is a 2D semiconductor in the family of transition metal dichalcogenides (TMDs). Its single layer direct bandgap of 1.8 eV allows for high ION/IOFF metal-oxide semiconducting field-effect transistors (FETs). More relevant for radio frequency (RF) wireless applications, theoretical studies predict MoS2 to have saturation velocities, vsat >3×106 cm/s. Facilitated by cm-scale CVD MoS2, here we design and fabricate both top-gated and embedded gate short channel MoS2 RF transistors, and provide a systematic comparison of channel length scaling, extrinsic doping from oxygen-deficient dielectrics, and a gate-first gate-last process flow. The intrinsic fT (fmax) obtained from the embedded gate transistors shows 3X (2X) improvement over top-gated CVD MoS2 RF FETs, and the largest high-field saturation velocity, vsat = 1.88 ×106 cm/s, in MoS2 reported so far. The gate-first approach, offers enhancement mode operation, ION/IOFF ratio of 10, 8< and the highest reported transconductance (gm) of 70 μS/ μm. By manipulating the interfacial oxygen vacancies in atomic layer deposited (ALD) HfO2-x we are able to achieve 2X current density over stoichiometric Al2O3. We demonstrate a common-source (CS) amplifier with voltage gain of 14 dB and an active frequency mixer with conversion gain of -15 dB. Our results of gigahertz frequency performance as well as analog circuit operation show that large area CVD MoS2 may be suitable for industrial-scale electronic applications.

  20. Tunable Free-Standing Core-Shell CNT@MoSe2 Anode for Lithium Storage.

    PubMed

    Yousaf, Muhammad; Wang, Yunsong; Chen, Yijun; Wang, Zhipeng; Aftab, Waseem; Mahmood, Asif; Wang, Wei; Guo, Shaojun; Han, Ray P S

    2018-05-02

    Heterogeneous nanostructuring of MoSe 2 over a carbon nanotube (CNT) sponge as a free-standing electrode not only brings higher performance but also eliminates the need for dead elements such as a binder, conductive carbon, and supportive current collectors. Further, the porous CNT sponge can be easily compacted via an intense densification of the active material MoSe 2 to produce an electrode with a high mass loading for a significantly improved areal capacity. In this work, we present a tunable coating of MoSe 2 on a CNT sponge to fabricate a core-shell MoSe 2 @CNT anode. The three-dimensional nanotubular sponge is synthesized via a solvothermal process, followed by thermal annealing to improve crystallization. Structural and morphological studies revealed that MoSe 2 grew as a layered structure ( d = 0.66 nm), where numbers of layers can be controlled to yield optimized results for Li + storage. We showed that the 10-layer core-shell CNT@MoSe 2 hybrid sponge delivered a discharge capacity of 820.5 mAh g -1 after 100 cycles at 100 mA g -1 with a high cyclic stability and rate capability. Further, an ex situ structural and morphological analysis revealed that ionic storage causes a phase change in MoSe 2 from a crystalline to a partial amorphous state for a continuous increase in the capacity with extended cycling. We believe that the strategy developed here will assist users to tune the electrode materials for future energy-storage devices, especially how the materials are changing with the passage of time and their effects on the device performance.

  1. Large-area, continuous and high electrical performances of bilayer to few layers MoS2 fabricated by RF sputtering via post-deposition annealing method

    PubMed Central

    Hussain, Sajjad; Singh, Jai; Vikraman, Dhanasekaran; Singh, Arun Kumar; Iqbal, Muhammad Zahir; Khan, Muhammad Farooq; Kumar, Pushpendra; Choi, Dong-Chul; Song, Wooseok; An, Ki-Seok; Eom, Jonghwa; Lee, Wan-Gyu; Jung, Jongwan

    2016-01-01

    We report a simple and mass-scalable approach for thin MoS2 films via RF sputtering combined with the post-deposition annealing process. We have prepared as-sputtered film using a MoS2 target in the sputtering system. The as-sputtered film was subjected to post-deposition annealing to improve crystalline quality at 700 °C in a sulfur and argon environment. The analysis confirmed the growth of continuous bilayer to few-layer MoS2 film. The mobility value of ~29 cm2/Vs and current on/off ratio on the order of ~104 were obtained for bilayer MoS2. The mobility increased up to ~173–181 cm2/Vs, respectively, for few-layer MoS2. The mobility of our bilayer MoS2 FETs is larger than any previously reported values of single to bilayer MoS2 grown on SiO2/Si substrate with a SiO2 gate oxide. Moreover, our few-layer MoS2 FETs exhibited the highest mobility value ever reported for any MoS2 FETs with a SiO2 gate oxide. It is presumed that the high mobility behavior of our film could be attributed to low charged impurities of our film and dielectric screening effect by an interfacial MoOxSiy layer. The combined preparation route of RF sputtering and post-deposition annealing process opens up the novel possibility of mass and batch production of MoS2 film. PMID:27492282

  2. Synthesis of rambutan-like MoS2/mesoporous carbon spheres nanocomposites with excellent performance for supercapacitors

    NASA Astrophysics Data System (ADS)

    Zhang, Shouchuan; Hu, Ruirui; Dai, Peng; Yu, Xinxin; Ding, Zongling; Wu, Mingzai; Li, Guang; Ma, Yongqing; Tu, Chuanjun

    2017-02-01

    A novel rambutan-like composite of MoS2/mesoporous carbon spheres were synthesized by a simple two-step hydrothermal and post-annealing approach via using glucose as C source and Na2MoO4·2H2O and thiourea as Mo and S sources. It is found that the morphology and electrochemical properties can be effectively controlled by the change of the weight ratio of coated MoS2 sheets to carbon spheres. When used as electrode material for supercapacitor, the hybrid MoS2/carbon spheres show a high specific capacity of 411 F/g at a current density of 1 A/g and 272 F/g at a high discharge current density of 10 A/g. The annealing treatment at 700 °C transformed the core carbon spheres into mesoporous ones, which served as the conduction network and favor the enhancement of the specific capacitance. In addition, the strain released during the charge/discharge process can be accommodated and the structural integrity can be kept, improving the cycling life. After 1000 cycles, the capacitance retention of the hybrid MoS2/carbon spheres is 93.2%.

  3. High rate reactive sputtering of MoN(x) coatings

    NASA Technical Reports Server (NTRS)

    Rudnik, Paul J.; Graham, Michael E.; Sproul, William D.

    1991-01-01

    High rate reactive sputtering of MoN(x) films was performed using feedback control of the nitorgen partial pressure. Coatings were made at four different target powers: 2.5, 5.0, 7.5 and 10 kW. No hysteresis was observed in the nitrogen partial pressure vs. flow plot, as is typically seen for the Ti-N system. Four phases were determined by X-ray diffraction: molybdenum, Mo-N solid solution, Beta-Mo2N and gamma-Mo2N. The hardness of the coatings depended upon composition, substrate bias, and target power. The phases present in the hardest films differed depending upon deposition parameters. For example, the Beta-Mo2N phase was hardest (load 25 gf) at 5.0 kW with a value of 3200 kgf/sq mm, whereas the hardest coatings at 10 kW were the gamma-Mo2N phase (3000 kgf/sq mm). The deposition rate generally decreased with increasing nitrogen partial pressure, but there was a range of partial pressures where the rate was relatively constant. At a target power of 5.0 kW, for example, the deposition rates were 3300 A/min for a N2 partial pressure of 0.05 - 1.0 mTorr.

  4. Reducing the Schottky barrier between few-layer MoTe2 and gold

    NASA Astrophysics Data System (ADS)

    Qi, Dianyu; Wang, Qixing; Han, Cheng; Jiang, Jizhou; Zheng, Yujie; Chen, Wei; Zhang, Wenjing; Thye Shen Wee, Andrew

    2017-12-01

    Schottky barriers greatly influence the performance of optoelectronic devices. Schottky barriers can be reduced by harnessing the polymorphism of 2D metal transition dichalcogenides, since both semiconducting and metallic phases exist. However, high energy, high temperature or chemicals are normally required for phase transformation, or the processes are complex. In this work, stable low-resistance contacts between few layer MoTe2 flakes and gold electrodes are achieved by a simple thermal annealing treatment at low temperature (200-400 °C). The resulting Schottky barrier height of the annealed MoTe2/Au interface is low (~23 meV). A new Raman A g mode of the 1T‧ metallic phase of MoTe2 on gold electrode is observed, indicating that the low-resistance contact is due to the phase transition of 2H-MoTe2. The gold substrate plays an important role in the transformation, and a higher gold surface roughness increases the transformation rate. With this method, the mobility and ON-state current of the MoTe2 transistor increase by ~3-4 orders of magnitude, the photocurrent of vertically stacked graphene/MoTe2/Au device increases ~300%, and the response time decreases by ~20%.

  5. High-Performance Platinum-Free Dye-Sensitized Solar Cells with Molybdenum Disulfide Films as Counter Electrodes.

    PubMed

    Hussain, Sajjad; Shaikh, Shoyebmohamad F; Vikraman, Dhanasekaran; Mane, Rajaram S; Joo, Oh-Shim; Naushad, Mu; Jung, Jongwan

    2015-12-21

    By using a radio-frequency sputtering method, we synthesized large-area, uniform, and transparent molybdenum disulfide film electrodes (1, 3, 5, and 7 min) on transparent and conducting fluorine-doped tin oxide (FTO), as ecofriendly, cost-effective counter electrodes (CE) for dye-sensitized solar cells (DSSCs). These CEs were used in place of the routinely used expensive platinum CEs for the catalytic reduction of a triiodide electrolyte. The structure and morphology of the MoS2 was analyzed by using Raman spectroscopy, X-ray diffraction, and X-ray photoemission spectroscopy measurements and the DSSC characteristics were investigated. An unbroken film of MoS2 was identified on the FTO crystallites from field-emission scanning electron microscopy. Cyclic voltammetry, electrochemical impedance spectroscopy, and Tafel curve measurements reveal the promise of MoS2 as a CE with a low charge-transfer resistance, high electrocatalytic activity, and fast reaction kinetics for the reduction of triiodide to iodide. Finally, an optimized transparent MoS2 CE, obtained after 5 min synthesis time, showed a high power-conversion efficiency of 6.0 %, which comparable to the performance obtained with a Pt CE (6.6 %) when used in TiO2 -based DSCCs, thus signifying the importance of sputtering time on DSSC performance. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Low-resistance 2D/2D ohmic contacts: A universal approach to high-performance WSe 2, MoS 2, and MoSe 2 transistors

    DOE PAGES

    Chuang, Hsun -Jen; Chamlagain, Bhim; Koehler, Michael; ...

    2016-02-04

    Here, we report a new strategy for fabricating 2D/2D low-resistance ohmic contacts for a variety of transition metal dichalcogenides (TMDs) using van der Waals assembly of substitutionally doped TMDs as drain/source contacts and TMDs with no intentional doping as channel materials. We demonstrate that few-layer WSe 2 field-effect transistors (FETs) with 2D/2D contacts exhibit low contact resistances of ~0.3 kΩ μm, high on/off ratios up to >10 9, and high drive currents exceeding 320 μA μm –1. These favorable characteristics are combined with a two-terminal field-effect hole mobility μ FE ≈ 2 × 10 2 cm 2 V –1 smore » –1 at room temperature, which increases to >2 × 10 3 cm 2 V –1 s –1 at cryogenic temperatures. We observe a similar performance also in MoS 2 and MoSe 2 FETs with 2D/2D drain and source contacts. The 2D/2D low-resistance ohmic contacts presented here represent a new device paradigm that overcomes a significant bottleneck in the performance of TMDs and a wide variety of other 2D materials as the channel materials in postsilicon electronics.« less

  7. A novel SWCNT-polyoxometalate nanohybrid material as an electrode for electrochemical supercapacitors.

    PubMed

    Chen, Han-Yi; Al-Oweini, Rami; Friedl, Jochen; Lee, Ching Yi; Li, Linlin; Kortz, Ulrich; Stimming, Ulrich; Srinivasan, Madhavi

    2015-05-07

    A novel nanohybrid material that combines single-walled carbon nanotubes (SWCNTs) with a polyoxometalate (TBA)5[PVMoO40] (TBA-PV2Mo10, TBA: [(CH3(CH2)3)4N](+), tetra-n-butyl ammonium) is investigated for the first time as an electrode material for supercapacitors (SCs) in this study. The SWCNT-TBA-PV2Mo10 material has been prepared by a simple solution method which electrostatically attaches anionic [PV2Mo10O40](5-) anions with organic TBA cations on the SWCNTs. The electrochemical performance of SWCNT-TBA-PV2Mo10 electrodes is studied in an acidic aqueous electrolyte (1 M H2SO4) by galvanostatic charge/discharge and cyclic voltammetry. In this SWCNT-TBA-PV2Mo10 nanohybrid material, TBA-PV2Mo10 provides redox activity while benefiting from the high electrical conductivity and high double-layer capacitance of the SWCNTs that improve both energy and power density. An assembled SWCNT-TBA-PV2Mo10 symmetric SC exhibits a 39% higher specific capacitance as compared to a symmetric SC employing only SWCNTs as electrode materials. Furthermore, the SWCNT-TBA-PV2Mo10 SC exhibits excellent cycling stability, retaining 95% of its specific capacitance after 6500 cycles.

  8. Fabrication and electrical properties of MoS2 nanodisc-based back-gated field effect transistors.

    PubMed

    Gu, Weixia; Shen, Jiaoyan; Ma, Xiying

    2014-02-28

    Two-dimensional (2D) molybdenum disulfide (MoS2) is an attractive alternative semiconductor material for next-generation low-power nanoelectronic applications, due to its special structure and large bandgap. Here, we report the fabrication of large-area MoS2 nanodiscs and their incorporation into back-gated field effect transistors (FETs) whose electrical properties we characterize. The MoS2 nanodiscs, fabricated via chemical vapor deposition (CVD), are homogeneous and continuous, and their thickness of around 5 nm is equal to a few layers of MoS2. In addition, we find that the MoS2 nanodisc-based back-gated field effect transistors with nickel electrodes achieve very high performance. The transistors exhibit an on/off current ratio of up to 1.9 × 105, and a maximum transconductance of up to 27 μS (5.4 μS/μm). Moreover, their mobility is as high as 368 cm2/Vs. Furthermore, the transistors have good output characteristics and can be easily modulated by the back gate. The electrical properties of the MoS2 nanodisc transistors are better than or comparable to those values extracted from single and multilayer MoS2 FETs.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Youker, Amanda J.; Krebs, John F.; Quigley, Kevin J.

    With funding from the National Nuclear Security Administrations Material Management and Minimization Office, Argonne National Laboratory (Argonne) is providing technical assistance to help accelerate the U.S. production of Mo-99 using a non-highly enriched uranium (non-HEU) source. A potential Mo-99 production pathway is by accelerator-initiated fissioning in a subcritical uranyl sulfate solution containing low enriched uranium (LEU). As part of the Argonne development effort, we are undertaking the AMORE (Argonne Molybdenum Research Experiment) project, which is essentially a pilot facility for all phases of Mo-99 production, recovery, and purification. Production of Mo-99 and other fission products in the subcritical target solutionmore » is initiated by putting an electron beam on a depleted uranium (DU) target; the fast neutrons produced in the DU target are thermalized and lead to fissioning of U-235. At the end of irradiation, Mo is recovered from the target solution and separated from uranium and most of the fission products by using a titania column. The Mo is stripped from the column with an alkaline solution. After acidification of the Mo product solution from the recovery column, the Mo is concentrated (and further purified) in a second titania column. The strip solution from the concentration column is then purified with the LEU Modified Cintichem process. A full description of the process can be found elsewhere [1–3]. The initial commissioning steps for the AMORE project include performing a Mo-99 spike test with pH 1 sulfuric acid in the target vessel without a beam on the target to demonstrate the initial Mo separation-and-recovery process, followed by the concentration column process. All glovebox operations were tested with cold solutions prior to performing the Mo-99 spike tests. Two Mo-99 spike tests with pH 1 sulfuric acid have been performed to date. Figure 1 shows the flow diagram for the remotely operated Mo-recovery system for the AMORE project. There are two separate pumps and flow paths for the acid and base operations. The system contains three sample ladders with eight sample loops per ladder for target mixing; column loading, including acid and water washes; and column stripping, including the final water wash.« less

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Tianqi; Beidaghi, Majid; Xiao, Xu

    Orthorhombic molybdenum trioxide (α-MoO 3) is a layered oxide with promising performance as electrode material for Li-ion capacitors. In this study, we show that expansion of the interlayer spacing (by ~0.32 Å) of the structure along the b-axis, introduced by partial reduction of α-MoO 3 and formation of MoO 3-x (x=0.06–0.43), results in enhanced diffusion of Li ions. Binder-free hybrid electrodes made of MoO 3-x nanobelts and carbon nanotubes show excellent electrical conductivity. The combination of increased interlayer spacing and enhanced electron transport leads to high gravimetric and volumetric capacitances of about 420 F/g or F/cm 3 and excellent cyclemore » life of binder-free MoO 3-x electrodes.« less

  11. MoSi2-Base Structural Composite Passed Engine Test

    NASA Technical Reports Server (NTRS)

    Nathal, Michael V.; Hebsur, Mohan G.

    1999-01-01

    The intermetallic compound molybdenum disilicide (MoSi2) is an attractive high-temperature structural material for advanced engine applications. It has excellent oxidation resistance, a high melting point, relatively low density, and high thermal conductivity; and it is easily machined. Past research at the NASA Lewis Research Center has resulted in the development of a hybrid composite consisting of a MoSi2 matrix reinforced with silicon nitride (Si3N4) particulate and silicon carbide (SiC) fibers. This composite has demonstrated attractive strength, toughness, thermal fatigue, and oxidation resistance, including resistance to "pest" oxidation. These properties attracted the interest of the Office of Naval Research and Pratt & Whitney, and a joint NASA/Navy/Pratt & Whitney effort was developed to continue to mature the MoSi2 composite technology. A turbine blade outer air seal, which was part of the Integrated High Performance Turbine Engine Technology (IHPTET) program, was chosen as a first component on which to focus.

  12. Stretchable Electronic Sensors of Nanocomposite Network Films for Ultrasensitive Chemical Vapor Sensing.

    PubMed

    Yan, Hong; Zhong, Mengjuan; Lv, Ze; Wan, Pengbo

    2017-11-01

    A stretchable, transparent, and body-attachable chemical sensor is assembled from the stretchable nanocomposite network film for ultrasensitive chemical vapor sensing. The stretchable nanocomposite network film is fabricated by in situ preparation of polyaniline/MoS 2 (PANI/MoS 2 ) nanocomposite in MoS 2 suspension and simultaneously nanocomposite deposition onto prestrain elastomeric polydimethylsiloxane substrate. The assembled stretchable electronic sensor demonstrates ultrasensitive sensing performance as low as 50 ppb, robust sensing stability, and reliable stretchability for high-performance chemical vapor sensing. The ultrasensitive sensing performance of the stretchable electronic sensors could be ascribed to the synergistic sensing advantages of MoS 2 and PANI, higher specific surface area, the reliable sensing channels of interconnected network, and the effectively exposed sensing materials. It is expected to hold great promise for assembling various flexible stretchable chemical vapor sensors with ultrasensitive sensing performance, superior sensing stability, reliable stretchability, and robust portability to be potentially integrated into wearable electronics for real-time monitoring of environment safety and human healthcare. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. A resistance ratio change phenomenon observed in Al doped ZnO (AZO)/Cu(In1-xGax)Se2/Mo resistive switching memory device

    NASA Astrophysics Data System (ADS)

    Guo, Tao; Sun, Bai; Mao, Shuangsuo; Zhu, Shouhui; Xia, Yudong; Wang, Hongyan; Zhao, Yong; Yu, Zhou

    2018-03-01

    In this work, the Cu(In1-xGax)Se2 (CIGS), Al doped ZnO (AZO) and Mo has been used for constructing a resistive switching device with AZO/CIGS/Mo sandwich structure grown on a transparent glass substrate. The device represents a high-performance memory characteristics under ambient temperature. In particularly, a resistance ratio change phenomenon have been observed in our device for the first time.

  14. Large-area synthesis and photoelectric properties of few-layer MoSe2 on molybdenum foils

    NASA Astrophysics Data System (ADS)

    Wu, Zenghui; Tai, Guoan; Wang, Xufeng; Hu, Tingsong; Wang, Rui; Guo, Wanlin

    2018-03-01

    Compared with MoS2 and WS2, selenide analogs have narrower band gaps and higher electron mobilities, which make them more applicable to real electrical devices. In addition, few-layer metal selenides have higher electrical conductivity, carrier mobility and light absorption than the corresponding monolayers. However, the large-scale and high-quality growth of few-layer metal selenides remains a significant challenge. Here, we develop a facile method to grow large-area and highly crystalline few-layer MoSe2 by directly selenizing the Mo foil surface at 550 °C within 60 min under ambient pressure. The atomic layers were controllably grown with thicknesses between 3.4 and 6 nm, which just met the thickness range required for high-performance electrical devices. Furthermore, we fabricated a vertical p-n junction photodetector composed of few-layer MoSe2 and p-type silicon, achieving photoresponsivity higher by two orders of magnitude than that of the reported monolayer counterpart. This technique provides a feasible approach towards preparing other 2D transition metal dichalcogendes for device applications.

  15. Highly active Pt/MoC and Pt/TiC catalysts for the low-temperature water-gas shift reaction: Effects of the carbide metal/carbon ratio on the catalyst performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodriguez, José A.; Ramírez, Pedro J.; Gutierrez, Ramón A.

    We present that Pt/MoC and Pt/TiC(001) are excellent catalysts for the low-temperature water-gas shift (WGS, CO + H 2O → H 2 + CO 2) reaction. They exhibit high-activity, stability and selectivity. The highest catalytic activities are seen for small coverages of Pt on the carbide substrates. Synergistic effects at the metal-carbide interface produce an enhancement in chemical activity with respect to pure Pt, MoC and TiC. A clear correlation is found between the ability of the Pt/MoC and Pt/TiC(001) surfaces to partially dissociate water and their catalytic activity for the WGS reaction. Finally, an overall comparison of the resultsmore » for Pt/MoC and Pt/Mo 2C(001) indicates that the metal/carbon ratio in the carbide support can have a strong influence in the stability and selectivity of WGS catalysts and is a parameter that must be taken into consideration when designing these systems.« less

  16. Chemical Doping Effects in Multilayer MoS2 and its Application in Complementary Inverter.

    PubMed

    Yoo, Hocheon; Hong, Seongin; On, Sungmin; Ahn, Hyungju; Lee, Han-Koo; Hong, Young Ki; Kim, Sunkook; Kim, Jae-Joon

    2018-06-19

    Multilayer MoS2 has been gaining interests as a new semiconducting material for flexible displays, memory devices, chemical/bio sensors, and photodetectors. However, conventional multilayer MoS2 devices have exhibited limited performances due to the Schottky barrier (SB) and defects. Here, we demonstrate PDPP3T doping effects in multilayer MoS2, which results in improved electrical characteristics (~3.2X mobility compared to the baseline and a high current on/off ratio of 106). Synchrotron-based study using X-ray photoelectron spectroscopy (XPS) and grazing-incidence wide-angle X-ray diffraction (GIWAXD) provides mechanisms that align the edge-on crystallites (97.5 %) of the PDPP3T as well as a larger interaction with MoS2 that leads to dipole and charge transfer effects (at annealing temperature of 300 °C), which support the observed enhancement of the electrical characteristics. Furthermore, we demonstrate a hybrid CMOS inverter using the PDPP3T-doped MoS2 and organic DNTT transistors as n- and p-channels, respectively. The proposed hybrid inverter offers an ultra-high voltage gain of ~205 V/V.

  17. Highly active Pt/MoC and Pt/TiC catalysts for the low-temperature water-gas shift reaction: Effects of the carbide metal/carbon ratio on the catalyst performance

    DOE PAGES

    Rodriguez, José A.; Ramírez, Pedro J.; Gutierrez, Ramón A.

    2016-09-20

    We present that Pt/MoC and Pt/TiC(001) are excellent catalysts for the low-temperature water-gas shift (WGS, CO + H 2O → H 2 + CO 2) reaction. They exhibit high-activity, stability and selectivity. The highest catalytic activities are seen for small coverages of Pt on the carbide substrates. Synergistic effects at the metal-carbide interface produce an enhancement in chemical activity with respect to pure Pt, MoC and TiC. A clear correlation is found between the ability of the Pt/MoC and Pt/TiC(001) surfaces to partially dissociate water and their catalytic activity for the WGS reaction. Finally, an overall comparison of the resultsmore » for Pt/MoC and Pt/Mo 2C(001) indicates that the metal/carbon ratio in the carbide support can have a strong influence in the stability and selectivity of WGS catalysts and is a parameter that must be taken into consideration when designing these systems.« less

  18. High performance NO2 sensor using MoS2 nanowires network

    NASA Astrophysics Data System (ADS)

    Kumar, Rahul; Goel, Neeraj; Kumar, Mahesh

    2018-01-01

    We report on a high-performance NO2 sensor based on a one dimensional MoS2 nanowire (NW) network. The MoS2 NW network was synthesized using chemical transport reaction through controlled turbulent vapor flow. The crystal structure and surface morphology of MoS2 NWs were confirmed by X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy, and scanning electron microscopy. Further, the sensing behavior of the nanowires was investigated at different temperatures for various concentrations of NO2 and the sensor exhibited about 2-fold enhanced sensitivity with a low detection limit of 4.6 ppb for NO2 at 60 °C compared to sensitivity at room temperature. Moreover, it showed a fast response (16 s) with complete recovery (172 s) at 60 °C, while sensitivity of the device was decreased at 120 °C. The efficient sensing with reliable selectivity toward NO2 of the nanowires is attributed to a combination of abundant active edge sites along with a large surface area and tuning of the potential barrier at the intersections of nanowires during adsorption/desorption of gas molecules.

  19. 3D architecture constructed via the confined growth of MoS2 nanosheets in nanoporous carbon derived from metal-organic frameworks for efficient hydrogen production.

    PubMed

    Liu, Yun; Zhou, Xiaoli; Ding, Tao; Wang, Chunde; Yang, Qing

    2015-11-21

    The design and synthesis of robust, high-performance and low-cost three-dimensional (3D) hierarchical structured materials for the electrochemical reduction of water to generate hydrogen is of great significance for practical water splitting applications. In this study, we develop an in situ space-confined method to synthesize an MoS2-based 3D hierarchical structure, in which the MoS2 nanosheets grow in the confined nanopores of metal-organic frameworks (MOFs)-derived 3D carbons as electrocatalysts for efficient hydrogen production. Benefiting from its unique structure, which has more exposed active sites and enhanced conductivity, the as-prepared MoS2/3D nanoporous carbon (3D-NPC) composite exhibits remarkable electrocatalytic activity for the hydrogen evolution reaction (HER) with a small onset overpotential of ∼0.16 V, large cathodic currents, small Tafel slope of 51 mV per decade and good durability. We anticipate that this in situ confined growth provides new insights into the construction of high performance catalysts for energy storage and conversion.

  20. Achieving Ohmic Contact for High-quality MoS2 Devices on Hexagonal Boron Nitride

    NASA Astrophysics Data System (ADS)

    Cui, Xu

    MoS2, among many other transition metal dichalcogenides (TMDCs), holds great promise for future applications in nano-electronics, opto-electronics and mechanical devices due to its ultra-thin nature, flexibility, sizable band-gap, and unique spin-valley coupled physics. However, there are two main challenges that hinder careful study of this material. Firstly, it is hard to achieve Ohmic contacts to mono-layer MoS2, particularly at low temperatures (T) and low carrier densities. Secondly, materials' low quality and impurities introduced during the fabrication significantly limit the electron mobility of mono- and few-layer MoS2 to be substantially below theoretically predicted limits, which has hampered efforts to observe its novel quantum transport behaviours. Traditional low work function metals doesn't necessary provide good electron injection to thin MoS2 due to metal oxidation, Fermi level pinning, etc. To address the first challenge, we tried multiple contact schemes and found that mono-layer hexagonal boron nitride (h-BN) and cobalt (Co) provide robust Ohmic contact. The mono-layer spacer serves two advantageous purposes: it strongly interacts with the transition metal, reducing its work function by over 1 eV; and breaks the metal-TMDCs interaction to eliminate the interfacial states that cause Fermi level pinning. We measure a flat-band Schottky barrier of 16 meV, which makes thin tunnel barriers upon doping the channels, and thus achieve low-T contact resistance of 3 kohm.um at a carrier density of 5.3x10. 12/cm. 2. Similar to graphene, eliminating all potential sources of disorder and scattering is the key to achieving high performance in MoS2 devices. We developed a van der Waals heterostructure device platform where MoS2 layers are fully encapsulated within h-BN and electrically contacted in a multi-terminal geometry using gate-tunable graphene electrodes. The h-BN-encapsulation provides excellent protection from environmental factors, resulting in highly stable device performance, even at elevated temperatures. Both optical and electrical characterization confirms our high quality devices, including an ultra-clean interface, a record-high Hall mobility reaching 34,000 cm. 2/Vs, and first observation of Shubnikov–de Haas oscillations. The development of Ohmic contact and fabrication of high quality devices are critical to MoS2 application and studying its intrinsic properties. Therefore, the progress made in this work will facilitate efforts to study novel physical phenomena of MoS2 that were not accessible before.

  1. Atomically Thin-Layered Molybdenum Disulfide (MoS2) for Bulk-Heterojunction Solar Cells.

    PubMed

    Singh, Eric; Kim, Ki Seok; Yeom, Geun Young; Nalwa, Hari Singh

    2017-02-01

    Transition metal dichalcogenides (TMDs) are becoming significant because of their interesting semiconducting and photonic properties. In particular, TMDs such as molybdenum disulfide (MoS 2 ), molybdenum diselenide (MoSe 2 ), tungsten disulfide (WS 2 ), tungsten diselenide (WSe 2 ), titanium disulfide (TiS 2 ), tantalum sulfide (TaS 2 ), and niobium selenide (NbSe 2 ) are increasingly attracting attention for their applications in solar cell devices. In this review, we give a brief introduction to TMDs with a focus on MoS 2 ; and thereafter, emphasize the role of atomically thin MoS 2 layers in fabricating solar cell devices, including bulk-heterojunction, organic, and perovskites-based solar cells. Layered MoS 2 has been used as the hole-transport layer (HTL), electron-transport layer (ETL), interfacial layer, and protective layer in fabricating heterojunction solar cells. The trilayer graphene/MoS 2 /n-Si solar cell devices exhibit a power-conversion efficiency of 11.1%. The effects of plasma and chemical doping on the photovoltaic performance of MoS 2 solar cells have been analyzed. After doping and electrical gating, a power-conversion efficiency (PCE) of 9.03% has been observed for the MoS 2 /h-BN/GaAs heterostructure solar cells. The MoS 2 -containing perovskites-based solar cells show a PCE as high as 13.3%. The PCE of MoS 2 -based organic solar cells exceeds 8.40%. The stability of MoS 2 solar cells measured under ambient conditions and light illumination has been discussed. The MoS 2 -based materials show a great potential for solar cell devices along with high PCE; however, in this connection, their long-term environmental stability is also of equal importance for commercial applications.

  2. Effects of heat treatment on U-Mo fuel foils with a zirconium diffusion barrier

    NASA Astrophysics Data System (ADS)

    Jue, Jan-Fong; Trowbridge, Tammy L.; Breckenridge, Cynthia R.; Moore, Glenn A.; Meyer, Mitchell K.; Keiser, Dennis D.

    2015-05-01

    A monolith fuel design based on U-Mo alloy has been selected as the fuel type for conversion of the United States' high performance research reactors (HPRRs) from highly enriched uranium (HEU) to low-enriched uranium (LEU). In this fuel design, a thin layer of zirconium is used to eliminate the direct interaction between the U-Mo fuel meat and the aluminum-alloy cladding during irradiation. The co-rolling process used to bond the Zr barrier layer to the U-Mo foil during fabrication alters the microstructure of both the U-10Mo fuel meat and the U-Mo/Zr interface. This work studied the effects of post-rolling annealing treatment on the microstructure of the co-rolled U-Mo fuel meat and the U-Mo/Zr interaction layer. Microscopic characterization shows that the grain size of U-Mo fuel meat increases with the annealing temperature, as expected. The grain sizes were ∼9, ∼13, and ∼20 μm for annealing temperature of 650, 750, and 850 °C, respectively. No abnormal grain growth was observed. The U-Mo/Zr interaction-layer thickness increased with the annealing temperature with an Arrhenius constant for growth of 184 kJ/mole, consistent with a previous diffusion-couple study. The interaction layer thickness was 3.2 ± 0.5 μm, 11.1 ± 2.1 μm, 27.1 ± 0.9 μm for annealing temperature of 650, 750, to 850 °C, respectively. The homogeneity of Mo improves with post rolling annealing temperature and with U-Mo coupon homogenization. The phases in the Zr/U-Mo interaction layer produced by co-rolling, however, differ from those reported in the previous diffusion couple studies.

  3. Mechanical properties of Mo-Si-B alloys fabricated by using core-shell powder with dispersion of yttria nanoparticles

    NASA Astrophysics Data System (ADS)

    Byun, Jong Min; Bang, Su-Ryong; Choi, Won June; Kim, Min Sang; Noh, Goo Won; Kim, Young Do

    2017-01-01

    In recent years, refractory materials with excellent high-temperature properties have been in the spotlight as a next generation's high-temperature materials. Among these, Mo-Si-B alloys composed of two intermetallic compound phases (Mo5SiB2 and Mo3Si) and a ductile α-Mo phase have shown an outstanding thermal properties. However, due to the brittleness of the intermetallic compound phases, Mo-Si-B alloys were restricted to apply for the structural materials. So, to enhance the mechanical properties of Mo-Si-B alloys, many efforts to add rare-earth oxide particles in the Mo-Si-B alloy were performed to induce the improvement of strength and fracture toughness. In this study, to investigate the effect of adding nano-sized Y2O3 particles in Mo-Si-B alloy, a core-shell powder consisting of intermetallic compound phases as the core and nano-sized α-Mo and Y2O3 particles surrounding the core was fabricated. Then pressureless sintering was carried out at 1400 °C for 3 h, and the mechanical properties of sintered bodies with different amounts of Y2O3 particles were evaluated by Vickers hardness and 3-point bending test. Vickers hardness was improved by dispersed Y2O3 particles in the Mo-Si-B alloy. Especially, Mo-3Si-1B-1.5Y2O3 alloy had the highest value, 589 Hv. The fracture toughness was measured using Mo-3Si-1B-1.5Y2O3 alloy and the value indicated as 13.5 MPa·√m.

  4. Effects of heat treatment on U–Mo fuel foils with a zirconium diffusion barrier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jue, Jan-Fong; Trowbridge, Tammy L.; Breckenridge, Cynthia R.

    A monolith fuel design based on U–Mo alloy has been selected as the fuel type for conversion of the United States’ high performance research reactors (HPRRs) from highly enriched uranium (HEU) to low-enriched uranium (LEU). In this fuel design, a thin layer of zirconium is used to eliminate the direct interaction between the U–Mo fuel meat and the aluminum-alloy cladding during irradiation. The co-rolling process used to bond the Zr barrier layer to the U–Mo foil during fabrication alters the microstructure of both the U–10Mo fuel meat and the U–Mo/Zr interface. This work studied the effects of post-rolling annealing treatmentmore » on the microstructure of the co-rolled U–Mo fuel meat and the U–Mo/Zr interaction layer. Microscopic characterization shows that the grain size of U–Mo fuel meat increases with the annealing temperature, as expected. The grain sizes were ~9, ~13, and ~20 μm for annealing temperature of 650, 750, and 850 °C, respectively. No abnormal grain growth was observed. The U–Mo/Zr interaction-layer thickness increased with the annealing temperature with an Arrhenius constant for growth of 184 kJ/mole, consistent with a previous diffusion-couple study. The interaction layer thickness was 3.2 ± 0.5 μm, 11.1 ± 2.1 μm, 27.1 ± 0.9 μm for annealing temperature of 650, 750, to 850 °C, respectively. The homogeneity of Mo improves with post rolling annealing temperature and with U–Mo coupon homogenization. The phases in the Zr/U–Mo interaction layer produced by co-rolling, however, differ from those reported in the previous diffusion couple studies.« less

  5. Synthesis of MoS2 and MoO2 for their applications in H2 generation and lithium ion batteries: a review.

    PubMed

    Zhao, Yufei; Zhang, Yuxia; Yang, Zhiyu; Yan, Yiming; Sun, Kening

    2013-08-01

    Scientists increasingly witness the applications of MoS 2 and MoO 2 in the field of energy conversion and energy storage. On the one hand, MoS 2 and MoO 2 have been widely utilized as promising catalysts for electrocatalytic or photocatalytic hydrogen evolution in aqueous solution. On the other hand, MoS 2 and MoO 2 have also been verified as efficient electrode material for lithium ion batteries. In this review, the synthesis, structure and properties of MoS 2 and MoO 2 are briefly summarized according to their applications for H 2 generation and lithium ion batteries. Firstly, we overview the recent advancements in the morphology control of MoS 2 and MoO 2 and their applications as electrocatalysts for hydrogen evolution reactions. Secondly, we focus on the photo-induced water splitting for H 2 generation, in which MoS 2 acts as an important co-catalyst when combined with other semiconductor catalysts. The newly reported research results of the significant functions of MoS 2 nanocomposites in photo-induced water splitting are presented. Thirdly, we introduce the advantages of MoS 2 and MoO 2 for their enhanced cyclic performance and high capacity as electrode materials of lithium ion batteries. Recent key achievements in MoS 2 - and MoO 2 -based lithium ion batteries are highlighted. Finally, we discuss the future scope and the important challenges emerging from these fascinating materials.

  6. Investigation of an eco-friendly aerogel as a substrate for the immobilization of MoS2 nanoflowers for removal of mercury species from aqueous solutions.

    PubMed

    Ma, Chong-Bo; Du, Yan; Du, Baoji; Wang, Hao; Wang, Erkang

    2018-04-21

    An adsorbent that exhibits high affinity for inorganic mercury (Hg 2+ ) with a high removal efficiency of methylmercury (MeHg + ) has been developed. The adsorbent demonstrates a symbiotic relationship between its two components, molybdenum disulphide nanoflowers (MoS 2 NFs) and a poly (vinyl alcohol) (PVA) aerogel. Furthermore, we modified the distribution and loading of the MoS 2 NFs, which was possible due to the stable porous support, and investigated the biocompatibility of the aerogel-support adsorbent. The performance of the optimized material exhibited a distribution coefficient of 9.71 × 10 7  mL g -1 . In addition, the adsorbent was effective over a wide pH range and could efficiently purify both contaminated lake and sea water. The key motivation for using an aerogel support was to stabilise the MoS 2 NFs during purification of the water (resulting in improved performance compared to using freestanding MoS 2 NFs) and the ability to regenerate the used adsorbent. In addition, animal tests confirmed an extremely low toxicity of the adsorbent to fish, along with the excellent purification results. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Structural Evolution of Electrochemically Lithiated MoS2 Nanosheets and the Role of Carbon Additive in Li-Ion Batteries

    PubMed Central

    2016-01-01

    Understanding the structure and phase changes associated with conversion-type materials is key to optimizing their electrochemical performance in Li-ion batteries. For example, molybdenum disulfide (MoS2) offers a capacity up to 3-fold higher (∼1 Ah/g) than the currently used graphite anodes, but they suffer from limited Coulombic efficiency and capacity fading. The lack of insights into the structural dynamics induced by electrochemical conversion of MoS2 still hampers its implementation in high energy-density batteries. Here, by combining ab initio density-functional theory (DFT) simulation with electrochemical analysis, we found new sulfur-enriched intermediates that progressively insulate MoS2 electrodes and cause instability from the first discharge cycle. Because of this, the choice of conductive additives is critical for the battery performance. We investigate the mechanistic role of carbon additive by comparing equal loading of standard Super P carbon powder and carbon nanotubes (CNTs). The latter offer a nearly 2-fold increase in capacity and a 45% reduction in resistance along with Coulombic efficiency of over 90%. These insights into the phase changes during MoS2 conversion reactions and stabilization methods provide new solutions for implementing cost-effective metal sulfide electrodes, including Li–S systems in high energy-density batteries. PMID:27818575

  8. Quantitative analysis of trap states through the behavior of the sulfur ions in MoS2 FETs following high vacuum annealing

    NASA Astrophysics Data System (ADS)

    Bae, Hagyoul; Jun, Sungwoo; Kim, Choong-Ki; Ju, Byeong-Kwon; Choi, Yang-Kyu

    2018-03-01

    Few-layer molybdenum disulfide (MoS2) has attracted a great deal of attention as a semiconductor material for electronic and optoelectronic devices. However, the presence of localized states inside the bandgap is a critical issue that must be addressed to improve the applicability of MoS2 technology. In this work, we investigated the density of states (DOS: g(E)) inside the bandgap of MoS2 FET by using a current-voltage (I-V) analysis technique with the aid of high vacuum annealing (HVA). The g(E) can be obtained by combining the trap density and surface potential (ψ S) extracted from a consistent subthreshold current (I D-sub). The electrical performance of MoS2 FETs is strongly dependent on the inherent defects, which are closely related to the g(E) in the MoS2 active layer. By applying the proposed technique to the MoS2 FETs, we were able to successfully characterize the g(E) after stabilization of the traps by the HVA, which reduces the hysteresis distorting the intrinsic g(E). Also, the change of sulfur ions in MoS2 film before and after the HVA treatment is investigated directly by Auger electron spectroscopy analysis. The proposed technique provides a new methodology for active channel engineering of 2D channel based FETs such as MoS2, MoTe2, WSe2, and WS2.

  9. Confocal absorption spectral imaging of MoS2: optical transitions depending on the atomic thickness of intrinsic and chemically doped MoS2.

    PubMed

    Dhakal, Krishna P; Duong, Dinh Loc; Lee, Jubok; Nam, Honggi; Kim, Minsu; Kan, Min; Lee, Young Hee; Kim, Jeongyong

    2014-11-07

    We performed a nanoscale confocal absorption spectral imaging to obtain the full absorption spectra (over the range 1.5-3.2 eV) within regions having different numbers of layers and studied the variation of optical transition depending on the atomic thickness of the MoS2 film. Three distinct absorption bands corresponding to A and B excitons and a high-energy background (BG) peak at 2.84 eV displayed a gradual redshift as the MoS2 film thickness increased from the monolayer, to the bilayer, to the bulk MoS2 and this shift was attributed to the reduction of the gap energy in the Brillouin zone at the K-point as the atomic thickness increased. We also performed n-type chemical doping of MoS2 films using reduced benzyl viologen (BV) and the confocal absorption spectra modified by the doping showed a strong dependence on the atomic thickness: A and B exciton peaks were greatly quenched in the monolayer MoS2 while much less effect was shown in larger thickness and the BG peak either showed very small quenching for 1 L MoS2 or remained constant for larger thicknesses. Our results indicate that confocal absorption spectral imaging can provide comprehensive information on optical transitions of microscopic size intrinsic and doped two-dimensional layered materials.

  10. Microstructure and mechanical behavior of Zr substrates coated with FeCrAl and Mo by cold-spraying

    NASA Astrophysics Data System (ADS)

    Park, Dong Jun; Kim, Hyun Gil; Jung, Yang Il; Park, Jung Hwan; Yang, Jae Ho; Koo, Yang Hyun

    2018-06-01

    FeCrAl and Mo layers were cold-sprayed onto a Zr surface, with the Mo layer introduced between the FeCrAl coating and the Zr matrix preventing high-temperature interdiffusion. Microstructural characterization of the first-deposited Mo layer and the Zr matrix immediately below the Mo/Zr interface was performed using transmission electron microscopy, and near-interface elemental distributions were obtained using energy-dispersive X-ray spectroscopy. The deformation of the coated Mo powder induced the formation of microbands and mechanically interlocked nanoscale structures. The mechanical behavior of Zr with a coating layer was compared with those characteristic of conventional Zr samples. The coated sample showed smaller strength reduction in the test conducted at elevated temperature. The hardness and fracture morphology of the Zr matrix near the interface region were investigated to determine the effect of impacting Mo particles on the matrix microstructure. The enhanced hardness and cleavage fracture morphology of the Zr matrix immediately below the Mo/Zr interface indicated the occurrence of localized deformation owing to Mo particle impact.

  11. Epitaxial growth of single-orientation high-quality MoS2 monolayers

    NASA Astrophysics Data System (ADS)

    Bana, Harsh; Travaglia, Elisabetta; Bignardi, Luca; Lacovig, Paolo; Sanders, Charlotte E.; Dendzik, Maciej; Michiardi, Matteo; Bianchi, Marco; Lizzit, Daniel; Presel, Francesco; De Angelis, Dario; Apostol, Nicoleta; Das, Pranab Kumar; Fujii, Jun; Vobornik, Ivana; Larciprete, Rosanna; Baraldi, Alessandro; Hofmann, Philip; Lizzit, Silvano

    2018-07-01

    We present a study on the growth and characterization of high-quality single-layer MoS2 with a single orientation, i.e. without the presence of mirror domains. This single orientation of the MoS2 layer is established by means of x-ray photoelectron diffraction. The high quality is evidenced by combining scanning tunneling microscopy with x-ray photoelectron spectroscopy measurements. Spin- and angle-resolved photoemission experiments performed on the sample revealed complete spin-polarization of the valence band states near the K and -K points of the Brillouin zone. These findings open up the possibility to exploit the spin and valley degrees of freedom for encoding and processing information in devices that are based on epitaxially grown materials.

  12. Molecular interactions between single layered MoS2 and biological molecules† †Electronic supplementary information (ESI) available: SFG data analysis methods, spectral fitting parameters, additional spectra, CD spectrum, and details about MD simulation methods. See DOI: 10.1039/c7sc04884j

    PubMed Central

    Xiao, Minyu; Wei, Shuai; Li, Yaoxin; Jasensky, Joshua; Chen, Junjie; Brooks, Charles L.

    2017-01-01

    Two-dimensional (2D) materials such as graphene, molybdenum disulfide (MoS2), tungsten diselenide (WSe2), and black phosphorous are being developed for sensing applications with excellent selectivity and high sensitivity. In such applications, 2D materials extensively interact with various analytes including biological molecules. Understanding the interfacial molecular interactions of 2D materials with various targets becomes increasingly important for the progression of better-performing 2D-material based sensors. In this research, molecular interactions between several de novo designed alpha-helical peptides and monolayer MoS2 have been studied. Molecular dynamics simulations were used to validate experimental data. The results suggest that, in contrast to peptide–graphene interactions, peptide aromatic residues do not interact strongly with the MoS2 surface. It is also found that charged amino acids are important for ensuring a standing-up pose for peptides interacting with MoS2. By performing site-specific mutations on the peptide, we could mediate the peptide–MoS2 interactions to control the peptide orientation on MoS2. PMID:29675220

  13. Influence of H 2O and H 2S on the composition, activity, and stability of sulfided Mo, CoMo, and NiMo supported on MgAl 2O 4 for hydrodeoxygenation of ethylene glycol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dabros, Trine Marie Hartmann; Gaur, Abhijeet; Pintos, Delfina Garcia

    Here in this work, density functional theory (DFT), catalytic activity tests, and in-situ X-ray absorption spectroscopy (XAS) was performed to gain detailed insights into the activity and stability of MoS 2, Ni-MoS 2, and Co-MoS 2 catalysts used for hydrodeoxygenation (HDO) of ethylene glycol upon variation of the partial pressures of H 2O and H 2S. The results show high water tolerance of the catalysts and highlight the importance of promotion and H 2S level during HDO. DFT calculations unraveled that the active edge of MoS 2 could be stabilized against SO exchanges by increasing the partial pressure of Hmore » 2S or by promotion with either Ni or Co. The Mo, NiMo, and CoMo catalysts of the present study were all active and fairly selective for ethylene glycol HDO at 400 °C, 27 bar H 2, and 550–2200 ppm H 2S, and conversions of ≈50–100%. The unpromoted Mo/MgAl 2O 4 catalyst had a lower stability and activity per gram catalyst than the promoted analogues. The NiMo and CoMo catalysts produced ethane, ethylene, and C1 cracking products with a C 2/C 1 ratio of 1.5–2.0 at 550 ppm H 2S. This ratio of HDO to cracking could be increased to ≈2 at 2200 ppm H 2S which also stabilized the activity. Removing H 2S from the feed caused severe catalyst deactivation. Both DFT and catalytic activity tests indicated that increasing the H 2S concentration increased the concentration of SH groups on the catalyst, which correspondingly activated and stabilized the catalytic HDO performance. In-situ XAS further supported that the catalysts were tolerant towards water when exposed to increasing water concentration with H2O/H2S ratios up to 300 at 400–450 °C. Raman spectroscopy and XAS showed that MoS2 was present in the prepared catalysts as small and highly dispersed particles, probably owing to a strong interaction with the support. Linear combination fitting (LCF) analysis of the X-ray absorption near edge structure (XANES) spectra obtained during in-situ sulfidation showed that Ni was sulfided faster than Mo and CoMo, and that Mo was sulfided faster when promoted with Ni. Extended X-ray absorption fine structure (EXAFS) results showed the presence of MoS 2 in all sulfided catalysts. Lastly, sulfided CoMo was present as a mixture of CoMoS and Co 9S 8, whereas sulfided NiMo was present as NiMoS.« less

  14. Influence of H 2O and H 2S on the composition, activity, and stability of sulfided Mo, CoMo, and NiMo supported on MgAl 2O 4 for hydrodeoxygenation of ethylene glycol

    DOE PAGES

    Dabros, Trine Marie Hartmann; Gaur, Abhijeet; Pintos, Delfina Garcia; ...

    2017-12-10

    Here in this work, density functional theory (DFT), catalytic activity tests, and in-situ X-ray absorption spectroscopy (XAS) was performed to gain detailed insights into the activity and stability of MoS 2, Ni-MoS 2, and Co-MoS 2 catalysts used for hydrodeoxygenation (HDO) of ethylene glycol upon variation of the partial pressures of H 2O and H 2S. The results show high water tolerance of the catalysts and highlight the importance of promotion and H 2S level during HDO. DFT calculations unraveled that the active edge of MoS 2 could be stabilized against SO exchanges by increasing the partial pressure of Hmore » 2S or by promotion with either Ni or Co. The Mo, NiMo, and CoMo catalysts of the present study were all active and fairly selective for ethylene glycol HDO at 400 °C, 27 bar H 2, and 550–2200 ppm H 2S, and conversions of ≈50–100%. The unpromoted Mo/MgAl 2O 4 catalyst had a lower stability and activity per gram catalyst than the promoted analogues. The NiMo and CoMo catalysts produced ethane, ethylene, and C1 cracking products with a C 2/C 1 ratio of 1.5–2.0 at 550 ppm H 2S. This ratio of HDO to cracking could be increased to ≈2 at 2200 ppm H 2S which also stabilized the activity. Removing H 2S from the feed caused severe catalyst deactivation. Both DFT and catalytic activity tests indicated that increasing the H 2S concentration increased the concentration of SH groups on the catalyst, which correspondingly activated and stabilized the catalytic HDO performance. In-situ XAS further supported that the catalysts were tolerant towards water when exposed to increasing water concentration with H2O/H2S ratios up to 300 at 400–450 °C. Raman spectroscopy and XAS showed that MoS2 was present in the prepared catalysts as small and highly dispersed particles, probably owing to a strong interaction with the support. Linear combination fitting (LCF) analysis of the X-ray absorption near edge structure (XANES) spectra obtained during in-situ sulfidation showed that Ni was sulfided faster than Mo and CoMo, and that Mo was sulfided faster when promoted with Ni. Extended X-ray absorption fine structure (EXAFS) results showed the presence of MoS 2 in all sulfided catalysts. Lastly, sulfided CoMo was present as a mixture of CoMoS and Co 9S 8, whereas sulfided NiMo was present as NiMoS.« less

  15. Towards intrinsic MoS{sub 2} devices for high performance arsenite sensing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Peng, E-mail: pengli@mail.tsinghua.edu.cn, E-mail: dzzhang@upc.edu.cn; Zhang, Dongzhi, E-mail: pengli@mail.tsinghua.edu.cn, E-mail: dzzhang@upc.edu.cn; Sun, Yan'e

    2016-08-08

    Molybdenum disulphide (MoS{sub 2}) is one of the most attractive two dimensional materials other than graphene, and the exceptional properties make it a promising candidate for bio/chemical sensing. Nevertheless, intrinsic properties and sensing performances of MoS{sub 2} are easily masked by the presence of the Schottky barrier (SB) at source/drain electrodes, and its impact on MoS{sub 2} sensors remains unclear. Here, we systematically investigated the influence of the SB on MoS{sub 2} sensors, revealing the sensing mechanism of intrinsic MoS{sub 2}. By utilizing a small work function metal, Ti, to reduce the SB, excellent electrical properties of this 2D materialmore » were yielded with 2–3 times enhanced sensitivity. We experimentally demonstrated that the sensitivity of MoS{sub 2} is superior to that of graphene. Intrinsic MoS{sub 2} was able to realize rapid detection of arsenite down to 0.1 ppb without the influence of large SB, which is two-fold lower than the World Health Organization (WHO) tolerance level and better than the detection limit of recently reported arsenite sensors. Additionally, accurately discriminating target molecules is a great challenge for sensors based on 2D materials. This work demonstrates MoS{sub 2} sensors encapsulated with ionophore film which only allows certain types of molecules to selectively permeate through it. As a result, multiplex ion detection with superb selectivity was realized. Our results show prominent advantages of intrinsic MoS{sub 2} as a sensing material.« less

  16. NO-sensing performance of vacancy defective monolayer MoS2 predicted by density function theory

    NASA Astrophysics Data System (ADS)

    Li, Feifei; Shi, Changmin

    2018-03-01

    Using density functional theory (DFT), we predict the NO-sensing performance of monolayer MoS2 (MoS2-MLs) with and without MoS3-vacancy/S-vacancy defects. Our theoretical results demonstrate that MoS3- and S-vacancy defective MoS2-MLs show stronger chemisorption and greater electron transfer effects than pure MoS2-MLs. The charge transfer analysis showed pure and defective MoS2-MLs all act as donors. Both MoS3-vacancy and S-vacancy defects induce dramatic changes of electronic properties of MoS2-MLs, which have direct relationship with gas sensing performance. In addition, S-vacancy defect leads to more electrons transfer to NO molecule than MoS3-vacancy defect. The H2O molecule urges more electrons transfer from MoS3- or S-vacancy defective MoS2-MLs to NO molecule. We believe that this calculation results will provide some information for future experiment.

  17. Environmentally Resistant Mo-Si-B-Based Coatings

    NASA Astrophysics Data System (ADS)

    Perepezko, J. H.; Sossaman, T. A.; Taylor, M.

    2017-06-01

    High-temperature applications have demonstrated aluminide-coated nickel-base superalloys to be remarkably effective, but are reaching their service limit. Alternate materials such as refractory (e.g., W, Mo) silicide alloys and SiC composites are being considered to extend high temperature capability, but the silica surfaces on these materials require coatings for enhanced environmental resistance. This can be accomplished with a Mo-Si-B-based coating that is deposited by a spray deposition of Mo followed by a chemical vapor deposition of Si and B by pack cementation to develop an aluminoborosilica surface. Oxidation of the as-deposited (Si + B)-pack coatings proceeds with partial consumption of the initial MoSi2 forming amorphous silica. This Si depletion leads to formation of a B-saturated Mo5Si3 (T1) phase. Reactions between the Mo and the B rich phases develop an underlying Mo5SiB2 (T2) layer. The T1 phase saturated with B has robust oxidation resistance, and the Si depletion is prevented by the underlying diffusion barrier (T2). Further, due to the natural phase transformation characteristics of the Mo-Si-B system, cracks or scratches to the outer silica and T1 layers can be repaired from the Si and B reservoirs of T2 + MoB layer to yield a self-healing characteristic. Mo-Si-B-based coatings demonstrate robust performance up to at least 1700 °C not only to the rigors of elevated temperature oxidation, but also to CMAS attack, hot corrosion attack, water vapor and thermal cycling.

  18. Intrinsic electrical transport and performance projections of synthetic monolayer MoS2 devices

    NASA Astrophysics Data System (ADS)

    Smithe, Kirby K. H.; English, Chris D.; Suryavanshi, Saurabh V.; Pop, Eric

    2017-03-01

    We demonstrate monolayer (1L) MoS2 grown by chemical vapor deposition (CVD) with transport properties comparable to those of the best exfoliated 1L devices over a wide range of carrier densities (up to ˜1013 cm-2) and temperatures (80-500 K). Transfer length measurements decouple the intrinsic material mobility from the contact resistance, at practical carrier densities (>1012 cm-2). We demonstrate the highest current density reported to date (˜270 μA μm-1 or 44 MA cm-2) at 300 K for an 80 nm long device from CVD-grown 1L MoS2. Using simulations, we discuss what improvements of 1L MoS2 are still required to meet technology roadmap requirements for low power and high performance applications. Such results are an important step towards large-area electronics based on 1L semiconductors.

  19. Failure Behavior Characterization of Mo-Modified Ti Surface by Impact Test and Finite Element Analysis

    NASA Astrophysics Data System (ADS)

    Ma, Yong; Qin, Jianfeng; Zhang, Xiangyu; Lin, Naiming; Huang, Xiaobo; Tang, Bin

    2015-07-01

    Using the impact test and finite element simulation, the failure behavior of the Mo-modified layer on pure Ti was investigated. In the impact test, four loads of 100, 300, 500, and 700 N and 104 impacts were adopted. The three-dimensional residual impact dents were examined using an optical microscope (Olympus-DSX500i), indicating that the impact resistance of the Ti surface was improved. Two failure modes cohesive and wearing were elucidated by electron backscatter diffraction and energy-dispersive spectrometer performed in a field-emission scanning electron microscope. Through finite element forward analysis performed at a typical impact load of 300 N, stress-strain distributions in the Mo-modified Ti were quantitatively determined. In addition, the failure behavior of the Mo-modified layer was determined and an ideal failure model was proposed for high-load impact, based on the experimental and finite element forward analysis results.

  20. Hierarchical Heterostructures of NiCo2O4@XMoO4 (X = Ni, Co) as an Electrode Material for High-Performance Supercapacitors.

    PubMed

    Hu, Jiyu; Qian, Feng; Song, Guosheng; Wang, Linlin

    2016-12-01

    Hierarchical heterostructures of NiCo2O4@XMoO4 (X = Ni, Co) were developed as an electrode material for supercapacitor with improved pseudocapacitive performance. Within these hierarchical heterostructures, the mesoporous NiCo2O4 nanosheet arrays directly grown on the Ni foam can not only act as an excellent pseudocapacitive material but also serve as a hierarchical scaffold for growing NiMoO4 or CoMoO4 electroactive materials (nanosheets). The electrode made of NiCo2O4@NiMoO4 presented a highest areal capacitance of 3.74 F/cm(2) at 2 mA/cm(2), which was much higher than the electrodes made of NiCo2O4@CoMoO4 (2.452 F/cm(2)) and NiCo2O4 (0.456 F/cm(2)), respectively. Meanwhile, the NiCo2O4@NiMoO4 electrode exhibited good rate capability. It suggested the potential of the hierarchical heterostructures of NiCo2O4@CoMoO4 as an electrode material in supercapacitors.

  1. Two-dimensional MoS2 electromechanical actuators

    NASA Astrophysics Data System (ADS)

    Hung, Nguyen T.; Nugraha, Ahmad R. T.; Saito, Riichiro

    2018-02-01

    We investigate the electromechanical properties of two-dimensional MoS2 monolayers with 1H, 1T, and 1T‧ structures as a function of charge doping by using density functional theory. We find isotropic elastic moduli in the 1H and 1T structures, while the 1T‧ structure exhibits an anisotropic elastic modulus. Moreover, the 1T structure is shown to have a negative Poisson’s ratio, while Poisson’s ratios of the 1H and 1T‧ are positive. By charge doping, the monolayer MoS2 shows a reversible strain and work density per cycle ranging from  -0.68% to 2.67% and from 4.4 to 36.9 MJ m-3, respectively, making them suitable for applications in electromechanical actuators. We also examine the stress generated in the MoS2 monolayers and we find that 1T and 1T‧ MoS2 monolayers have relatively better performance than 1H MoS2 monolayer. We argue that such excellent electromechanical performance originate from the electrical conductivity of the metallic 1T and semimetallic 1T‧ structures and also from their high Young’s modulus of about 150-200 GPa.

  2. MnMoO4 nanosheet array: an efficient electrocatalyst for hydrogen evolution reaction with enhanced activity over a wide pH range.

    PubMed

    Wen, Lulu; Sun, Yiqiang; Zhang, Tao; Bai, Yu; Li, Xinyang; Lyu, Xianjun; Cai, Weiping; Li, Yue

    2018-08-17

    We report the preparation of MnMoO 4 nanosheet array on nickel foam (MnMoO 4 NSA/NF) as an excellent 3D hydrogen evolution reaction (HER) electrocatalyst with good catalytic performance applied under basic, acidic and neutral conditions. In 0.5 M H 2 SO 4 , this MnMoO 4 NSA/NF electrode needs an overpotential of 89 mV to drive current densities of 10 mA cm -2 , to achieve the same current density, it demands overpotentials of 105 mV in 1.0 M KOH, 161 mV in 1.0 M PBS (pH = 7), respectively. After continuous CV scanning for 1000 cycles under different pH conditions, it also demonstrates an excellent stability with ignorable activity decrease. Such preeminent HER performance may be derived from the synergistic effect between manganese (Mn) and molybdenum (Mo) atoms, exposure of more active sites on the nanosheets and effective electron transport along the nanosheets. This MnMoO 4 NSA/NF electrocatalyst provides us a highly efficient material for water splitting devices for industrial hydrogen production.

  3. Enhanced Electrochemical and Thermal Transport Properties of Graphene/MoS2 Heterostructures for Energy Storage: Insights from Multiscale Modeling.

    PubMed

    Gong, Feng; Ding, Zhiwei; Fang, Yin; Tong, Chuan-Jia; Xia, Dawei; Lv, Yingying; Wang, Bin; Papavassiliou, Dimitrios V; Liao, Jiaxuan; Wu, Mengqiang

    2018-05-02

    Graphene has been combined with molybdenum disulfide (MoS 2 ) to ameliorate the poor cycling stability and rate performance of MoS 2 in lithium ion batteries, yet the underlying mechanisms remain less explored. Here, we develop multiscale modeling to investigate the enhanced electrochemical and thermal transport properties of graphene/MoS 2 heterostructures (GM-Hs) with a complex morphology. The calculated electronic structures demonstrate the greatly improved electrical conductivity of GM-Hs compared to MoS 2 . Increasing the graphene layers in GM-Hs not only improves the electrical conductivity but also stabilizes the intercalated Li atoms in GM-Hs. It is also found that GM-Hs with three graphene layers could achieve and maintain a high thermal conductivity of 85.5 W/(m·K) at a large temperature range (100-500 K), nearly 6 times that of pure MoS 2 [∼15 W/(m·K)], which may accelerate the heat conduction from electrodes to the ambient. Our quantitative findings may shed light on the enhanced battery performances of various graphene/transition-metal chalcogenide composites in energy storage devices.

  4. Effects of tungsten on uptake, transport and subcellular distribution of molybdenum in oilseed rape at two different molybdenum levels.

    PubMed

    Qin, Shiyu; Sun, Xuecheng; Hu, Chengxiao; Tan, Qiling; Zhao, Xiaohu; Xu, Shoujun

    2017-03-01

    Due to the similarities of molybdenum (Mo) with tungsten (W) in the physical structure and chemical properties, studies involving the two elements have mainly examined their competitive relationships. The objectives of this study were to assess the effects of equimolar W on Mo accumulation, transport and subcellular distribution in oilseed rape at two Mo levels with four treatments: Mo 1 (1μmol/L Mo, Low Mo), Mo 1 +W 1 (1μmol/L Mo+1μmol/LW, Low Mo with Low W), Mo 200 (200μmol/L Mo, High Mo) and Mo 200 +W 200 (200μmol/L Mo+200μmol/L Mo, High Mo with high W). The fresh weight and root growth were inhibited by equimolar W at both low and high Mo levels. The Mo concentration and accumulation in root was increased by equimolar W at the low Mo level, but that in the root and shoot was decreased at the high Mo level. Additionally, equimolar W increased the Mo concentrations of xylem and phloem sap at low Mo level, but decreased that of xylem and increased that of phloem sap at the high Mo level. Furthermore, equimolar W decreased the expression of BnMOT1 in roots and leaves at the low Mo level, and only decreased its expression in leaves at the high Mo level. The expression of BnMOT2 was also decreased in root for equimolar W compared with the low Mo level, but increased compared with high Mo level. Moreover, equimolar W increased the proportion of Mo in cell wall fraction in root and that of soluble fraction in leaves when compared with the low Mo level. The results suggest that cell wall and soluble fractions might be responsible for the adaptation of oilseed rape to W stress. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  5. Few-Layer MoSe2 Possessing High Catalytic Activity towards Iodide/Tri-iodide Redox Shuttles

    PubMed Central

    Lee, Lawrence Tien Lin; He, Jian; Wang, Baohua; Ma, Yaping; Wong, King Young; Li, Quan; Xiao, Xudong; Chen, Tao

    2014-01-01

    Due to the two-dimensional confinement of electrons, single- and few-layer MoSe2 nanostructures exhibit unusual optical and electrical properties and have found wide applications in catalytic hydrogen evolution reaction, field effect transistor, electrochemical intercalation, and so on. Here we present a new application in dye-sensitized solar cell as catalyst for the reduction of I3− to I− at the counter electrode. The few-layer MoSe2 is fabricated by surface selenization of Mo-coated soda-lime glass. Our results show that the few-layer MoSe2 displays high catalytic efficiency for the regeneration of I− species, which in turn yields a photovoltaic energy conversion efficiency of 9.00%, while the identical photoanode coupling with “champion” electrode based on Pt nanoparticles on FTO glass generates efficiency only 8.68%. Thus, a Pt- and FTO-free counter electrode outperforming the best conventional combination is obtained. In this electrode, Mo film is found to significantly decrease the sheet resistance of the counter electrode, contributing to the excellent device performance. Since all of the elements in the electrode are of high abundance ratios, this type of electrode is promising for the fabrication of large area devices at low materials cost. PMID:24525919

  6. Atomistic Simulation of High-Density Uranium Fuels

    DOE PAGES

    Garcés, Jorge Eduardo; Bozzolo, Guillermo

    2011-01-01

    We apply an atomistic modeling approach to deal with interfacial phenomena in high-density uranium fuels. The effects of Si, as additive to Al or as U-Mo-particles coating, on the behavior of the Al/U-Mo interface is modeled by using the Bozzolo-Ferrante-Smith (BFS) method for alloys. The basic experimental features characterizing the real system are identified, via simulations and atom-by-atom analysis. These include (1) the trend indicating formation of interfacial compounds, (2) much reduced diffusion of Al into U-Mo solid solution due to the high Si concentration, (3) Si depletion in the Al matrix, (4) an unexpected interaction between Mo and Simore » which inhibits Si diffusion to deeper layers in the U-Mo solid solution, and (5) the minimum amount of Si needed to perform as an effective diffusion barrier. Simulation results related to alternatives to Si dispersed in the Al matrix, such as the use of C coating of U-Mo particles or Zr instead of the Al matrix, are also shown. Recent experimental results confirmed early theoretical proposals, along the lines of the results reported in this work, showing that atomistic computational modeling could become a valuable tool to aid the experimental work in the development of nuclear fuels.« less

  7. Enhanced photo-assistant electrocatalysis of anodization TiO2 nanotubes via surrounded surface decoration with MoS2 for hydrogen evolution reaction

    NASA Astrophysics Data System (ADS)

    Tian, Yuanyuan; Song, Ye; Dou, Meiling; Ji, Jing; Wang, Feng

    2018-03-01

    A highly ordered TiO2 nanotube array covered with MoS2 is fabricated through a facile anodization of a metallic Ti followed by electrochemical deposition approach. The morphologies characterization of v-TiO2@MoS2 indicate that a whole scale of 1D TiO2nanotube uniformly covered with the MoS2 layer inside and outside, and the pathway inside the TiO2nanotube is kept flow-through. The as-synthesized v-TiO2@MoS2 hybrid exhibits higher efficient and stable visible light activities than that of either pure TiO2 nanotubes or nv-TiO2@MoS2 nanostructures. By electrochemical measurements such as linear sweep voltammetry(LSV) and electrochemical impedance spectroscope (EIS) under light illumination or in dark, we find that the v-TiO2@MoS2hybrid shows markedly enhanced photoelectrochemical performance. Furthermore, we compare the electrocatalytic behavior of v-TiO2@MoS2under illumination in H2SO4/Lactic acid within Na2S/NaSO3 solution. The results show that the photo-assistant electrocatalytic activity in acidic environment is much better than in alkaline environment. The highly directional and orthogonal separation of charge carriers between TiO2 nanotubes and MoS2 layer, together with maximally exposed MoS2 edges, light harvesting and junctions formed between TiO2 and MoS2 is supposed to be mainly responsible for the enhanced photo-assistant electrocatalytic activity of v-TiO2@MoS2.

  8. Insights into highly improved solar-driven photocatalytic oxygen evolution over integrated Ag3PO4/MoS2 heterostructures

    NASA Astrophysics Data System (ADS)

    Cui, Xingkai; Yang, Xiaofei; Xian, Xiaozhai; Tian, Lin; Tang, Hua; Liu, Qinqin

    2018-04-01

    Oxygen evolution has been considered as the rate-determining step in photocatalytic water splitting due to its sluggish four-electron half-reaction rate, the development of oxygen-evolving photocatalysts with well-defined morphologies and superior interfacial contact is highly important for achieving high-performance solar water splitting. Herein, we report the fabrication of Ag3PO4/MoS2 nanocomposites and, for the first time, their use in photocatalytic water splitting into oxygen under LED light illumination. Ag3PO4 nanoparticles were found to be anchored evenly on the surface of MoS2 nanosheets, confirming an efficient hybridization of two semiconductor materials. A maximum oxygen-generating rate of 201.6 mol L-1 g-1 h-1 was determined when 200 mg MoS2 nanosheets were incorporated into Ag3PO4 nanoparticles, which is around 5 times higher than that of bulk Ag3PO4. Obvious enhancements in light-harvesting property, as well as electron-hole separation and charge transportation are revealed by the combination of different characterizations. ESR analysis verified that more active oxygen-containing radicals generate over illuminated Ag3PO4/MoS2 composite photocatalysts rather than irradiated Ag3PO4. The improvement in oxygen evolution performance of Ag3PO4/MoS2 composite photocatalysts is ascribed to wide spectra response in the visible-light region, more efficient charge separation and enhanced oxidation capacity in the valence band (VB). This study provides new insights into the design and development of novel composite photocatalytic materials for solar-to-fuel conversion.

  9. Ethanol Reduced Molybdenum Trioxide for Li-ion Capacitors

    DOE PAGES

    Li, Tianqi; Beidaghi, Majid; Xiao, Xu; ...

    2016-05-06

    Orthorhombic molybdenum trioxide (α-MoO 3) is a layered oxide with promising performance as electrode material for Li-ion capacitors. In this study, we show that expansion of the interlayer spacing (by ~0.32 Å) of the structure along the b-axis, introduced by partial reduction of α-MoO 3 and formation of MoO 3-x (x=0.06–0.43), results in enhanced diffusion of Li ions. Binder-free hybrid electrodes made of MoO 3-x nanobelts and carbon nanotubes show excellent electrical conductivity. The combination of increased interlayer spacing and enhanced electron transport leads to high gravimetric and volumetric capacitances of about 420 F/g or F/cm 3 and excellent cyclemore » life of binder-free MoO 3-x electrodes.« less

  10. Microstructural characteristics of HIP-bonded monolithic nuclear fuels with a diffusion barrier

    NASA Astrophysics Data System (ADS)

    Jue, Jan-Fong; Keiser, Dennis D.; Breckenridge, Cynthia R.; Moore, Glenn A.; Meyer, Mitchell K.

    2014-05-01

    Due to the limitation of maximum uranium load achievable by dispersion fuel type, the Global Threat Reduction Initiative is developing an advanced monolithic fuel to convert US high-performance research reactors to low-enriched uranium. Hot-isostatic-press (HIP) bonding was the single process down-selected to bond monolithic U-Mo fuel meat to aluminum alloy cladding. A diffusion barrier was applied to the U-Mo fuel meat by roll-bonding process to prevent extensive interaction between fuel meat and aluminum-alloy cladding. Microstructural characterization was performed on fresh fuel plates fabricated at Idaho National Laboratory. Interfaces between the fuel meat, the cladding, and the diffusion barrier, as well as between the U-10Mo fuel meat and the Al-6061 cladding, were characterized by scanning electron microscopy. Preliminary results indicate that the interfaces contain many different phases while decomposition, second phases, and chemical banding were also observed in the fuel meat. The important attributes of the HIP-bonded monolithic fuel are:

  11. Light illumination intensity dependence of photovoltaic parameter in polymer solar cells with ammonium heptamolybdate as hole extraction layer.

    PubMed

    Liu, Zhiyong; Niu, Shengli; Wang, Ning

    2018-01-01

    A low-temperature, solution-processed molybdenum oxide (MoO X ) layer and a facile method for polymer solar cells (PSCs) is developed. The PSCs based on a MoO X layer as the hole extraction layer (HEL) is a significant advance for achieving higher photovoltaic performance, especially under weaker light illumination intensity. Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) measurements show that the (NH 4 ) 6 Mo 7 O 24 molecule decomposes and forms the molybdenum oxide (MoO X ) molecule when undergoing thermal annealing treatment. In this study, PSCs with the MoO X layer as the HEL exhibited better photovoltaic performance, especially under weak light illumination intensity (from 100 to 10mWcm -2 ) compared to poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS)-based PSCs. Analysis of the current density-voltage (J-V) characteristics at various light intensities provides information on the different recombination mechanisms in the PSCs with a MoO X and PEDOT:PSS layer as the HEL. That the slopes of the open-circuit voltage (V OC ) versus light illumination intensity plots are close to 1 unity (kT/q) reveals that bimolecular recombination is the dominant and weaker monomolecular recombination mechanism in open-circuit conditions. That the slopes of the short-circuit current density (J SC ) versus light illumination intensity plots are close to 1 reveals that the effective charge carrier transport and collection mechanism of the MoO X /indium tin oxide (ITO) anode is the weaker bimolecular recombination in short-circuit conditions. Our results indicate that MoO X is an alternative candidate for high-performance PSCs, especially under weak light illumination intensity. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Carbon-based coating containing ultrafine MoO2 nanoparticles as an integrated anode for high-performance lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Li, Quanyi; Yang, Qi; Zhao, Yanhong; Wan, Bin

    2017-10-01

    Copper-supported MoO2-C composite as an integrated anode with excellent battery performance was synthesized by a facile knife coating technique followed by heat treatment in a vacuum. The obtained samples were characterized by X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), thermal analysis, nitrogen adsorption and desorption analysis, field emission scanning microscopy (FESEM), and transmission electron microscopy (TEM). The results show the MoO2-C composite coating is comprised of a porous carbon matrix with a pore size of 1-3 nm and ultrafine MoO2 nanoparticles with a size of 5-10 nm encapsulated inside, the coating is tightly attached on the surface of copper foil, and the interface between them is free of cracks. Stable PAN-DMF-H2O system containing ammonium molybdate suitable for knife coating technique and the MoO2-C composite with ultrafine MoO2 nanoparticles encapsulated in the carbon matrix can be prepared through controlling amount of added ammonium molybdate solution. The copper-supported MoO2-C composite coating can be directly utilized as the integrated anode for lithium-ion batteries (LIBs). It delivers a capacity of 814 mA h g-1 at a current density of 100 mA g-1 after 100 cycles without apparent capacity fading. Furthermore, with increase of current densities to 200, 500, 1000, 2000, and 5000 mA g-1, it exhibits average capacities of 809, 697, 568, 383, and 188 mA h g-1. Its outstanding electrochemical performance is attributed to combined merits of integrated anode and structure with ultrafine MoO2 nanoparticles embedded in the porous carbon matrix.

  13. Mo/Si and Mo/Be multilayer thin films on Zerodur substrates for extreme-ultraviolet lithography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mirkarimi, Paul B.; Bajt, Sasa; Wall, Mark A.

    2000-04-01

    Multilayer-coated Zerodur optics are expected to play a pivotal role in an extreme-ultraviolet (EUV) lithography tool. Zerodur is a multiphase, multicomponent material that is a much more complicated substrate than commonly used single-crystal Si or fused-silica substrates. We investigate the effect of Zerodur substrates on the performance of high-EUV reflectance Mo/Si and Mo/Be multilayer thin films. For Mo/Si the EUV reflectance had a nearly linear dependence on substrate roughness for roughness values of 0.06-0.36 nm rms, and the FWHM of the reflectance curves (spectral bandwidth) was essentially constant over this range. For Mo/Be the EUV reflectance was observed to decreasemore » more steeply than Mo/Si for roughness values greater than approximately 0.2-0.3 nm. Little difference was observed in the EUV reflectivity of multilayer thin films deposited on different substrates as long as the substrate roughness values were similar. (c) 2000 Optical Society of America.« less

  14. Mo/Si and Mo/Be multilayer thin films on Zerodur substrates for extreme-ultraviolet lithography.

    PubMed

    Mirkarimi, P B; Bajt, S; Wall, M A

    2000-04-01

    Multilayer-coated Zerodur optics are expected to play a pivotal role in an extreme-ultraviolet (EUV) lithography tool. Zerodur is a multiphase, multicomponent material that is a much more complicated substrate than commonly used single-crystal Si or fused-silica substrates. We investigate the effect of Zerodur substrates on the performance of high-EUV reflectance Mo/Si and Mo/Be multilayer thin films. For Mo/Si the EUV reflectance had a nearly linear dependence on substrate roughness for roughness values of 0.06-0.36 nm rms, and the FWHM of the reflectance curves (spectral bandwidth) was essentially constant over this range. For Mo/Be the EUV reflectance was observed to decrease more steeply than Mo/Si for roughness values greater than approximately 0.2-0.3 nm. Little difference was observed in the EUV reflectivity of multilayer thin films deposited on different substrates as long as the substrate roughness values were similar.

  15. A comparative study on top-gated and bottom-gated multilayer MoS2 transistors with gate stacked dielectric of Al2O3/HfO2.

    PubMed

    Zou, Xiao; Xu, Jingping; Huang, Hao; Zhu, Ziqang; Wang, Hongjiu; Li, Borui; Liao, Lei; Fang, Guojia

    2018-06-15

    Top-gated and bottom-gated transistors with multilayer MoS 2 channel fully encapsulated by stacked Al 2 O 3 /HfO 2 (9 nm/6 nm) were fabricated and comparatively studied. Excellent electrical properties are demonstrated for the TG transistors with high on-off current ratio of 10 8 , high field-effect mobility of 10 2 cm 2 V -1 s -1 , and low subthreshold swing of 93 mV dec -1 . Also, enhanced reliability has been achieved for the TG transistors with threshold voltage shift of 10 -3 -10 -2 V MV -1 cm -1 after 6 MV cm -1 gate-biased stressing. All improvement for the TG device can be ascribed to the formed device structure and dielectric environment. Degradation of the performance for the BG transistors should be attributed to reduced gate capacitance density and deteriorated interface properties related to vdW gap with a thickness about 0.4 nm. So, the TG transistor with MoS 2 channel fully encapsulated by stacked Al 2 O 3 /HfO 2 is a promising way to fabricate high-performance ML MoS 2 field-effect transistors for practical electron device applications.

  16. A comparative study on top-gated and bottom-gated multilayer MoS2 transistors with gate stacked dielectric of Al2O3/HfO2

    NASA Astrophysics Data System (ADS)

    Zou, Xiao; Xu, Jingping; Huang, Hao; Zhu, Ziqang; Wang, Hongjiu; Li, Borui; Liao, Lei; Fang, Guojia

    2018-06-01

    Top-gated and bottom-gated transistors with multilayer MoS2 channel fully encapsulated by stacked Al2O3/HfO2 (9 nm/6 nm) were fabricated and comparatively studied. Excellent electrical properties are demonstrated for the TG transistors with high on–off current ratio of 108, high field-effect mobility of 102 cm2 V‑1 s‑1, and low subthreshold swing of 93 mV dec–1. Also, enhanced reliability has been achieved for the TG transistors with threshold voltage shift of 10‑3–10‑2 V MV–1 cm–1 after 6 MV cm‑1 gate-biased stressing. All improvement for the TG device can be ascribed to the formed device structure and dielectric environment. Degradation of the performance for the BG transistors should be attributed to reduced gate capacitance density and deteriorated interface properties related to vdW gap with a thickness about 0.4 nm. So, the TG transistor with MoS2 channel fully encapsulated by stacked Al2O3/HfO2 is a promising way to fabricate high-performance ML MoS2 field-effect transistors for practical electron device applications.

  17. Observation of hole hopping via dopant in MoOx-doped organic semiconductors: Mechanism analysis and application for high performance organic light-emitting devices

    NASA Astrophysics Data System (ADS)

    Qiao, Xianfeng; Chen, Jiangshan; Li, Xinglin; Ma, Dongge

    2010-05-01

    Conduction mechanism in molybdenum trioxide (MoOx)-doped hole- and electron-type organic semiconductors is investigated. The used hole-transporting materials are N ,N'-diphenyl-N ,N'-bis(1-naphthylphenyl)-1, 1'-biphen4, 4'-diamine, 4',4″-tri(N-carbazolyl)triphenylamine, 4, 4'-N,N-dicarbazole-biphenyl, and pentacene and the used electron-transporting material is (8-quinolinolato) aluminum (Alq3). It can be seen that the hole conductivity is significantly enhanced upon MoOx doping, and more importantly, dominant hole current could be realized in a typical electron-transport material Alq3 by doping MoOx. Hence, high efficiency organic light-emitting devices can also be achieved even using MoOx-doped Alq3 film as hole transporting layer. The mechanism investigation indicates that the MoOx plays an important role in the hole transport. It is showed that the MoOx serves as the hole hopping sites, whereas the used organic materials serve as the transport medium and determine the magnitude of transport current. Furthermore, it is found that doping MoOx into the organic materials also reduces the energy and position disorders of the doped organic films, which are well demonstrated by the study on transport characteristics of the doped films at various temperatures.

  18. A label-free ultrasensitive electrochemical DNA sensor based on thin-layer MoS2 nanosheets with high electrochemical activity.

    PubMed

    Wang, Xinxing; Nan, Fuxin; Zhao, Jinlong; Yang, Tao; Ge, Tong; Jiao, Kui

    2015-02-15

    A label-free and ultrasensitive electrochemical DNA biosensor, based on thin-layer molybdenum disulfide (MoS2) nanosheets sensing platform and differential pulse voltammetry detection, is constructed in this paper. The thin-layer MoS2 nanosheets were prepared via a simple ultrasound exfoliation method from bulk MoS2, which is simpler and no distortion compared with mechanical cleavage and lithium intercalation. Most importantly, this procedure allows the formation of MoS2 with enhanced electrochemical activity. Based on the high electrochemical activity and different affinity toward ssDNA versus dsDNA of the thin-layer MoS2 nanosheets sensing platform, the tlh gene sequence assay can be performed label-freely from 1.0 × 10(-16)M to 1.0 × 10(-10)M with a detection limit of 1.9 × 10(-17)M. Without labeling and the use of amplifiers, the detection method described here not only expands the application of MoS2, but also offers a viable alternative for DNA analysis, which has the priority in sensitivity, simplicity, and costs. Moreover, the proposed sensing platform has good electrocatalytic activity, and can be extended to detect more targets, such as guanine and adenine, which further expands the application of MoS2. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Flexible low-power RF nanoelectronics in the GHz regime using CVD MoS2

    NASA Astrophysics Data System (ADS)

    Yogeesh, Maruthi

    Two-dimensional (2D) materials have attracted substantial interest for flexible nanoelectronics due to the overall device mechanical flexibility and thickness scalability for high mechanical performance and low operating power. In this work, we demonstrate the first MoS2 RF transistors on flexible substrates based on CVD-grown monolayers, featuring record GHz cutoff frequency (5.6 GHz) and saturation velocity (~1.8×106 cm/s), which is significantly superior to contemporary organic and metal oxide thin-film transistors. Furthermore, multicycle three-point bending results demonstrated the electrical robustness of our flexible MoS2 transistors after 10,000 cycles of mechanical bending. Additionally, basic RF communication circuit blocks such as amplifier, mixer and wireless AM receiver have been demonstrated. These collective results indicate that MoS2 is an ideal advanced semiconducting material for low-power, RF devices for large-area flexible nanoelectronics and smart nanosystems owing to its unique combination of large bandgap, high saturation velocity and high mechanical strength.

  20. Effect of Bulk MoS₂ on the Metabolic Profile of Yeast.

    PubMed

    Yu, Yadong; Yang, Qi; Wu, Na; Tang, Hanlin; Yi, Yanliang; Wang, Gaihong; Ge, Yilin; Zong, Jiajun; Madzak, Catherine; Zhao, Ye; Jiang, Ling; Huang, He

    2018-06-01

    MoS2, a kind of two-dimensional material with unique performances, has been widely used in many fields. However, an in-depth understanding of its toxicity is still needed, let alone its effects on the environmental microorganism. Herein, we used different methods, including metabolomics technology, to investigate the influence of bulk MoS2 (BMS) on yeast cells. The results indicated that high concentrations (1 mg/L and more) of BMS could destroy cell membrane and induce ROS accumulation. When exposed to a low concentration of BMS (0.1 mg/L), the intracellular concentrations of many metabolites (e.g., fumaric acid, lysine) increased. However, most of their concentrations descended significantly as the yeast cells were treated with BMS of high concentrations (1 mg/L and more). Metabolomics analysis further revealed that exposure to high concentrations of BMS could significantly affect some metabolic pathways such as amino acid and citrate cycle related metabolism. These findings will be beneficial for MoS2 toxicity assessment and further applications.

  1. Interface passivation and trap reduction via hydrogen fluoride for molybdenum disulfide on silicon oxide back-gate transistors

    NASA Astrophysics Data System (ADS)

    Hu, Yaoqiao; San Yip, Pak; Tang, Chak Wah; Lau, Kei May; Li, Qiang

    2018-04-01

    Layered semiconductor molybdenum disulfide (MoS2) has recently emerged as a promising material for flexible electronic and optoelectronic devices because of its finite bandgap and high degree of gate control. Here, we report a hydrogen fluoride (HF) passivation technique for improving the carrier mobility and interface quality of chemical vapor deposited monolayer MoS2 on a SiO2/Si substrate. After passivation, the fabricated MoS2 back-gate transistors demonstrate a more than double improvement in average electron mobility, a reduced gate hysteresis gap of 3 V, and a low interface trapped charge density of ˜5.8 × 1011 cm-2. The improvements are attributed to the satisfied interface dangling bonds, thus a reduction of interface trap states and trapped charges. Surface x-ray photoelectron spectroscopy analysis and first-principles simulation were performed to verify the HF passivation effect. The results here highlight the necessity of a MoS2/dielectric passivation strategy and provides a viable route for enhancing the performance of MoS2 nano-electronic devices.

  2. Inorganic fullerene-like molybdenum selenide with good biocompatibility synthesized by laser ablation in liquids

    NASA Astrophysics Data System (ADS)

    Wu, Xiaoju; Tian, Xiumei; Chen, Tongming; Zeng, Ao; Yang, Guowei

    2018-07-01

    The fabrication of inorganic fullerene-like nanoparticles (IFNPs) is an attractive idea due to their unique structures and various potential applications. To date, IFNPs have been made from numerous compounds with layered two-dimensional structures, based on various synthetic methods. Here we have demonstrated for the first time that inorganic fullerene-like molybdenum selenide nanoparticles (MoSe2 IFNPs) can be synthesized by laser ablating a molybdenum selenide target in 30 vol % ethanol/water mixture at ambient temperature and pressure. The formation mechanism was proposed to elucidate the production of MoSe2 IFNPs in the process of laser ablation in liquids (LAL). The appropriate solvent facilitates the condensation of the plasma plume created by LAL to planar MoSe2. Then, laser-induced high temperature and high pressure lead to the formation of a vacancy in the planar MoSe2, causing the generation of nucleation and growth of the MoSe2 IFNPs. In addition, a CCK-8 (cell counting kit-8) assay and a cell viability assay were performed to examine the cytotoxic behavior and the effect on cell viability of MoSe2 IFNPs. The results show that MoSe2 IFNPs are reasonably nontoxic and biocompatible with the given cells, showing they have significant potential in biomedical applications.

  3. Inorganic fullerene-like molybdenum selenide with good biocompatibility synthesized by laser ablation in liquids.

    PubMed

    Wu, Xiaoju; Tian, Xiumei; Chen, Tongming; Zeng, Ao; Yang, Guowei

    2018-07-20

    The fabrication of inorganic fullerene-like nanoparticles (IFNPs) is an attractive idea due to their unique structures and various potential applications. To date, IFNPs have been made from numerous compounds with layered two-dimensional structures, based on various synthetic methods. Here we have demonstrated for the first time that inorganic fullerene-like molybdenum selenide nanoparticles (MoSe 2 IFNPs) can be synthesized by laser ablating a molybdenum selenide target in 30 vol % ethanol/water mixture at ambient temperature and pressure. The formation mechanism was proposed to elucidate the production of MoSe 2 IFNPs in the process of laser ablation in liquids (LAL). The appropriate solvent facilitates the condensation of the plasma plume created by LAL to planar MoSe 2 . Then, laser-induced high temperature and high pressure lead to the formation of a vacancy in the planar MoSe 2 , causing the generation of nucleation and growth of the MoSe 2 IFNPs. In addition, a CCK-8 (cell counting kit-8) assay and a cell viability assay were performed to examine the cytotoxic behavior and the effect on cell viability of MoSe 2 IFNPs. The results show that MoSe 2 IFNPs are reasonably nontoxic and biocompatible with the given cells, showing they have significant potential in biomedical applications.

  4. Predictors of adolescent compliance with oral hygiene instructions during two-arch multibracket fixed orthodontic treatment.

    PubMed

    Al-Jewair, Thikriat S; Suri, Sunjay; Tompson, Bryan D

    2011-05-01

    To determine compliance with oral hygiene instructions (OHI) of adolescents receiving two-arch multibracket fixed appliances and identify its predictive factors. Forty-one patients in a longitudinal study were provided standardized OHI and assessed at baseline: before bonding (T0mo), approximately 30 days after bonding (T1mo), and approximately 150 days (T5mo) after bonding straight-wire appliances simultaneously in the maxillary and mandibular arches. Oral hygiene (OH) performance was measured using plaque and gingival indices. Compliance predictors were identified from questionnaires administered to patients and their parents and from patients' charts. OH performance worsened from T0mo to T1mo but then improved from T1mo to T5mo. At T5mo, 73% of the sample had good OH. Univariate analyses found perceived severity of malocclusion, school performance, and parental marital status to be significant predictors of good OH performance at T5mo. Multiple logistic regressions identified having married parents and good academic performance in school as significant predictors. In the sample studied, after initially worsening, compliance with OHI improved at 5 months after bonding. Adolescents with married parents and those reporting good academic performance in school were found more likely to have complied with OHI provided at baseline and to perform better OH.

  5. Molybdenum isotope fractionation in scleractinian corals and its implications on biological activities

    NASA Astrophysics Data System (ADS)

    Wei, G.; Wang, Z.; Li, J.; Deng, W.; Chen, X.; Ma, J.; Zeng, T.

    2017-12-01

    Molybdenum can actively involve in many biological processes on coral reefs, and its isotope fractionation in coral skeleton is possibly linked to some biological activities. We have performed a 3-days' time-series observation in a time interval of 4 hours on both Mo concentrations and δ98/85Mo of the seawater of the Luhuitou Reef in Sanya of Southern Hainan Islands in the northern South China Sea. Both Mo concentrations and δ98/85Mo show in pace diurnal variations with temperature, pH, dissolved oxygen (DO) contents, dissolved inorganic carbon (DIC) contents and its δ13C. High Mo concentrations and low δ98/85Mo generally occur during day time, and low Mo concentrations and high δ98/85Mo occur at night, suggesting that respiration of coral dominated at night tends to uptake more Mo from seawater. A further analysis on the Mo isotopic compositions of 6 different coral species on the Luhuitou Reef indicates that different coral species has different δ98/85Mo values in their skeleton. The lowest δ98/85Mo value occurs in Fungia of 0.34 ‰, and the highest occurs in Acropora sp of 1.91 ‰. These are all lower than that of the seawater, 2.04 ‰, suggesting a specie-depended Mo fractionation on coral skeleton. Meanwhile, we measured a 32-year time series of both Mo concentrations and δ98/85Mo of a Porites coral from the Great Barrier Reefs of Australia in annual resolution. The Mo concentrations vary from 12.5 to 78.0 ng/g, with an average of 21.4 ± 0.02 ng/g, and the δ98/95Mo values change from 0.46 to 1.83‰, with an average of 1.34 ± 0.09‰. A significant negative correlation occurs between the δ98/95Mo and the Mo concentration, and a positive correlation occurs between the δ98/95Mo and the seawater surface temperature. All these suggest that Mo isotope fractionation in coral skeleton is associated with biological activities of coral, such as respiration, and the δ98/95Mo values may be used to indicate changes in the related biological activities.

  6. Room temperature ammonia gas sensing properties of MoS2 nanostructured thin film

    NASA Astrophysics Data System (ADS)

    Sharma, Shubham; Kumar, Arvind; Kaur, Davinder

    2018-05-01

    Here, we have fabricated the MoS2 nanostructure thin films on the Si (100) substrate using DC magnetron sputtering technique. The MoS2 thin film sensor shows the selective responses towards the ammonia gas (NH3) under low detection range 10-500 ppm. The sensor displays a significantly high sensing response (Rg/Ra ˜2.2) towards 100 ppm ammonia gas with a very fast response and recovery time of 22 sec and 30 sec respectively. Selectivity and stability investigations exhibit the excellent sensing properties of MoS2 thin film sensor. The working principle and sensing mechanism behind their remarkable performance was also investigated in detail.

  7. Molybdenum-rhenium alloy based high-Q superconducting microwave resonators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Vibhor, E-mail: v.singh@tudelft.nl; Schneider, Ben H.; Bosman, Sal J.

    2014-12-01

    Superconducting microwave resonators (SMRs) with high quality factors have become an important technology in a wide range of applications. Molybdenum-Rhenium (MoRe) is a disordered superconducting alloy with a noble surface chemistry and a relatively high transition temperature. These properties make it attractive for SMR applications, but characterization of MoRe SMR has not yet been reported. Here, we present the fabrication and characterization of SMR fabricated with a MoRe 60–40 alloy. At low drive powers, we observe internal quality-factors as high as 700 000. Temperature and power dependence of the internal quality-factors suggest the presence of the two level systems from themore » dielectric substrate dominating the internal loss at low temperatures. We further test the compatibility of these resonators with high temperature processes, such as for carbon nanotube chemical vapor deposition growth, and their performance in the magnetic field, an important characterization for hybrid systems.« less

  8. Evaluation of border traps and interface traps in HfO2/MoS2 gate stacks by capacitance–voltage analysis

    NASA Astrophysics Data System (ADS)

    Zhao, Peng; Khosravi, Ava; Azcatl, Angelica; Bolshakov, Pavel; Mirabelli, Gioele; Caruso, Enrico; Hinkle, Christopher L.; Hurley, Paul K.; Wallace, Robert M.; Young, Chadwin D.

    2018-07-01

    Border traps and interface traps in HfO2/few-layer MoS2 top-gate stacks are investigated by C–V characterization. Frequency dependent C–V data shows dispersion in both the depletion and accumulation regions for the MoS2 devices. The border trap density is extracted with a distributed model, and interface traps are analyzed using the high-low frequency and multi-frequency methods. The physical origins of interface traps appear to be caused by impurities/defects in the MoS2 layers, performing as band tail states, while the border traps are associated with the dielectric, likely a consequence of the low-temperature deposition. This work provides a method of using multiple C–V measurements and analysis techniques to analyze the behavior of high-k/TMD gate stacks and deconvolute border traps from interface traps.

  9. Friction and wear behaviors of MoS2/Zr coated HSS in sliding wear and in drilling processes

    NASA Astrophysics Data System (ADS)

    Deng, Jianxin; Yan, Pei; Wu, Ze

    2012-11-01

    MoS2 metal composite coatings have been successful used in dry turning, but its suitability for dry drilling has not been yet established. Therefore, it is necessary to study the friction and wear behaviors of MoS2/Zr coated HSS in sliding wear and in drilling processes. In the present study, MoS2/Zr composite coatings are deposited on the surface of W6Mo5Cr4V2 high speed steel(HSS). Microstructural and fundamental properties of these coatings are examined. Ball-on-disc sliding wear tests on the coated discs are carried out, and the drilling performance of the coated drills is tested. Test results show that the MoS2/Zr composite coatings exhibit decreases friction coefficient to that of the uncoated HSS in sliding wear tests. Energy dispersive X-ray(EDX) analysis on the wear surface indicates that there is a transfer layer formed on the counterpart ball during sliding wear processes, which contributes to the decreasing of the friction coefficient between the sliding couple. Drilling tests indicate that the MoS2/Zr coated drills show better cutting performance compared to the uncoated HSS drills, coating delamination and abrasive are found to be the main flank and rake wear mode of the coated drills. The proposed research founds the base of the application of MoS2 metal composite coatings on dry drilling.

  10. Montreal Cognitive Assessment: One Cutoff Never Fits All.

    PubMed

    Wong, Adrian; Law, Lorraine S N; Liu, Wenyan; Wang, Zhaolu; Lo, Eugene S K; Lau, Alexander; Wong, Lawrence K S; Mok, Vincent C T

    2015-12-01

    The objective of this study is to examine the discrepancy between single versus age and education corrected cutoff scores in classifying performance on the Montreal Cognitive Assessment (MoCA) in patients with stroke or transient ischemic attack. MoCA norms were collected from 794 functionally independent and stroke- and dementia-free persons aged ≥65 years. magnetic resonance imaging was used to exclude healthy controls with significant brain pathology and medial temporal lobe atrophy. Cutoff scores at 16th, 7th, and 2nd percentiles by age and education were derived for the MoCA and MoCA 5-minute Protocol. MoCA performance in 919 patients with stroke or transient ischemic attack was classified using the single and norm-derived cutoff scores. The norms for the Hong Kong version of the MoCA total and domain scores and the total score of the MoCA 5-minute protocol are described. Only 65.1% and 25.7% healthy controls and 45.2% and 19.0% patients scored above the conventional cutoff scores of 21/22 and 25/26 on the MoCA. Using classification with norm-derived cutoff scores as reference, locally derived cutoff score of 21/22 yielded a classification discrepancy of ≤42.4%. Discrepancy increased with higher age and lower education level, with the majority being false positives by single cutoffs. With the 25/26 cutoff of the original MoCA, discrepancy further increased to ≤74.3%. Conventional single cutoff scores are associated with substantially high rates of misclassification especially in older and less-educated patients with stroke. These results caution against the use of one-size-fits-all cutoffs on the MoCA. © 2015 American Heart Association, Inc.

  11. Experimental investigation of the contact resistance of Graphene/MoS2 interface treated with O2 plasma

    NASA Astrophysics Data System (ADS)

    Lu, Qin; Liu, Yan; Han, Genquan; Fang, Cizhe; Shao, Yao; Zhang, Jincheng; Hao, Yue

    2018-02-01

    High contact resistance has been a major bottleneck for MoS2 to achieve high performances among two-dimensional material based optoelectronic and electronic devices. In this study, we investigate the contact resistances of different layered graphene film with MoS2 film with Ti/Au electrodes under different O2 plasma treatment time using the circular transmission line model (CTLM). Annealing process followed O2 plasma process to reduce the oxygen element introduced. Raman and X-ray photoelectric spectroscopy were used to analyze the quality of the materials. Finally, the current and voltage curve indicates good linear characteristics. Under the optimized condition of the O2 plasma treatment, a relatively low contact resistance (∼35.7 Ohm mm) without back gate voltage in single-layer graphene/MoS2 structure at room temperature was achieved compared with the existing reports. This method of introducing graphene as electrodes for MoS2 film demonstrates a remarkable ability to improve the contact resistance, without additional channel doping for two-dimensional materials based devices, which paves the way for MoS2 to be a more promising channel material in optoelectronic and electronic integration.

  12. Large-area synthesis of monolayered MoS(2(1-x))Se(2x) with a tunable band gap and its enhanced electrochemical catalytic activity.

    PubMed

    Yang, Lei; Fu, Qi; Wang, Wenhui; Huang, Jian; Huang, Jianliu; Zhang, Jingyu; Xiang, Bin

    2015-06-21

    "Band gap engineering" in two-dimensional (2D) materials plays an important role in tailoring their physical and chemical properties. The tuning of the band gap is typically achieved by controlling the composition of the semiconductor alloys. However, large-area preparation of 2D alloys remains a major challenge. Here, we report the large-area synthesis of high-quality monolayered MoS2(1-x)Se2x with a size coverage of hundreds of microns using a chemical vapor deposition method. The photoluminescence (PL) spectroscopy results confirm the tunable band gap in MoS2(1-x)Se2x, which is modulated by varying the Se content. Atomic-scale analysis was performed and the chemical composition was characterized using high-resolution scanning transmission electron microscopy and X-ray photoemission spectroscopy. With the introduction of Se into monolayered MoS2, it leads to enhanced catalytic activity in an electrochemical reaction for hydrogen generation, compared to monolayered MoS2 and MoSe2. It is promising as a potential alternative to expensive noble metals.

  13. Development of Advanced Li Rich xLi2MO3 (1-x)LiMO2 Composite Cathode for High Capacity Li Ion Batteries

    DTIC Science & Technology

    2016-12-22

    importance. Among advanced energy storage devices, lithium - ion batteries are remarkable systems due to their high energy density, high power density...and well cycled performance with considerable reliability. Lithium - ion batteries have been playing an important role in various application fields...Li0.24Mn0.55Co0.14Ni0.07]O2 cathode material for lithium ion batteries . Solid State Ionics, 2013. 233: p. 12-19. DISTRIBUTION A. Approved for public release

  14. Hydrogen Doping into MoO3 Supports toward Modulated Metal-Support Interactions and Efficient Furfural Hydrogenation on Iridium Nanocatalysts.

    PubMed

    Xie, Lifang; Chen, Ting; Chan, Hang Cheong; Shu, Yijin; Gao, Qingsheng

    2018-03-16

    As promising supports, reducible metal oxides afford strong metal-support interactions to achieve efficient catalysis, which relies on their band states and surface stoichiometry. In this study, in situ and controlled hydrogen doping (H doping) by means of H 2 spillover was employed to engineer the metal-support interactions in hydrogenated MoO x -supported Ir (Ir/H-MoO x ) catalysts and thus promote furfural hydrogenation to furfuryl alcohol. By easily varying the reduction temperature, the resulting H doping in a controlled manner tailors low-valence Mo species (Mo 5+ and Mo 4+ ) on H-MoO x supports, thereby promoting charge redistribution on Ir and H-MoO x interfaces. This further leads to clear differences in H 2 chemisorption on Ir, which illustrates its potential for catalytic hydrogenation. As expected, the optimal Ir/H-MoO x with controlled H doping afforded high activity (turnover frequency: 4.62 min -1 ) and selectivity (>99 %) in furfural hydrogenation under mild conditions (T=30 °C, PH2 =2 MPa), which means it performs among the best of current catalysts. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Non-enzymatic glucose sensing properties of MoO3 nanorods: experimental and density functional theory investigations

    NASA Astrophysics Data System (ADS)

    Sharma, Maneesha; Gangan, Abhijeet; Chakraborty, Brahmananda; Sekhar Rout, Chandra

    2017-11-01

    We report the growth of monoclinic MoO3 nanorods by a simple and highly reproducible hydrothermal method. Structural and morphological studies provide significant insights about the phase and crystalline structure of the synthesized samples. Further, the non-enzymatic glucose sensing properties were investigated and the MoO3 nanorods exhibited a sensitivity of 15.4 µA µM-1 cm-2 in the 5-175 µM linear range. Also, a quick response time of 8 s towards glucose molecules was observed, exhibiting an excellent electrochemical activity. We have also performed density functional theory (DFT) simulations to qualitatively support our experimental observations by investigating the interactions and charge-transfer mechanism of glucose on MoO3. There is a strong interaction between glucose and the MoO3 surface due to charge transfer from a bonded O atom of glucose to a Mo atom of MoO3 resulting in a strong hybridization between the p orbital of O and d orbital of Mo. Thus, the MoO3 nanorod-based electrodes are found to be good glucose sensing materials for practical industrial applications.

  16. Defect assisted coupling of a MoS2/TiO2 interface and tuning of its electronic structure.

    PubMed

    Chen, Guifeng; Song, Xiaolin; Guan, Lixiu; Chai, Jianwei; Zhang, Hui; Wang, Shijie; Pan, Jisheng; Tao, Junguang

    2016-09-02

    Although MoS2 based heterostructures have drawn increased attention, the van der Waals forces within MoS2 layers make it difficult for the layers to form strong chemical coupled interfaces with other materials. In this paper, we demonstrate the successful strong chemical attachment of MoS2 on TiO2 nanobelts after appropriate surface modifications. The etch-created dangling bonds on TiO2 surfaces facilitate the formation of a steady chemically bonded MoS2/TiO2 interface. With the aid of high resolution transmission electron microscope measurements, the in-plane structure registry of MoS2/TiO2 is unveiled at the atomic scale, which shows that MoS2[1-10] grows along the direction of TiO2[001] and MoS2[110] parallel to TiO2[100] with every six units of MoS2 superimposed on five units of TiO2. Electronically, type II band alignments are realized for all surface treatments. Moreover, the band offsets are delicately correlated to the surface states, which plays a significant role in their photocatalytic performance.

  17. Fabrication of a Mo based high temperature TZM alloy by non-consumable arc melting technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chakraborty, S.P.; Krishnamurthy, N., E-mail: spc@barc.gov.in

    High temperature structural materials are in great demand for power, chemical and nuclear industries which can perform beyond 1000 °C as super alloys usually fail. In this regard, Mo based TZM alloy is capable of retaining strength up to 1500 °C with excellent corrosion compatibility against molten alkali metals. Hence, currently this alloy is considered an important candidate material for high temperature compact nuclear and fusion reactors. Due to reactive nature of Mo and having high melting point, manufacturing this alloy by conventional process is unsuitable. Powder metallurgy technique has limited success due to restriction in quantity and purity. Thismore » paper deals with fabrication of TZM alloy by nonconsumable tungsten arc melting technique. Initially a ternary master alloy of Mo-Ti-Zr was prepared which subsequently by dilution method, was converted into TZM alloy gradually by external addition of Mo and C in various proportions. A number of melting trials were conducted to optimize the process parameters like current, voltage and time to achieve desired alloy composition. The alloy was characterized with respect to composition, elemental distribution profile, microstructure, hardness profile and phase analysis. Well consolidated alloy button was obtained having desired composition, negligible material loss and having microstructure as comparable to standard TZM alloy. (author)« less

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stillman, J. A.; Feldman, E. E.; Wilson, E. H.

    This report contains the results of reactor accident analyses for the University of Missouri Research Reactor (MURR). The calculations were performed as part of the conversion from the use of highly-enriched uranium (HEU) fuel to the use of low-enriched uranium (LEU) fuel. The analyses were performed by staff members of the Global Threat Reduction Initiative (GTRI) Reactor Conversion Program at the Argonne National Laboratory (ANL), the MURR Facility, and the Nuclear Engineering Program – College of Engineering, University of Missouri-Columbia. The core conversion to LEU is being performed with financial support from the U. S. government. This report contains themore » results of reactor accident analyses for the University of Missouri Research Reactor (MURR). The calculations were performed as part of the conversion from the use of highly-enriched uranium (HEU) fuel to the use of low-enriched uranium (LEU) fuel. The analyses were performed by staff members of the Global Threat Reduction Initiative (GTRI) Reactor Conversion Program at the Argonne National Laboratory (ANL), the MURR Facility, and the Nuclear Engineering Program – College of Engineering, University of Missouri-Columbia. The core conversion to LEU is being performed with financial support from the U. S. government. In the framework of non-proliferation policies, the international community presently aims to minimize the amount of nuclear material available that could be used for nuclear weapons. In this geopolitical context most research and test reactors, both domestic and international, have started a program of conversion to the use of LEU fuel. A new type of LEU fuel based on an alloy of uranium and molybdenum (U-Mo) is expected to allow the conversion of U.S. domestic high performance reactors like MURR. This report presents the results of a study of core behavior under a set of accident conditions for MURR cores fueled with HEU U-Alx dispersion fuel or LEU monolithic U-Mo alloy fuel with 10 wt% Mo (U-10Mo).« less

  19. Deconvoluting the Photonic and Electronic Response of 2D Materials: The Case of MoS2.

    PubMed

    Zhang, Kehao; Borys, Nicholas J; Bersch, Brian M; Bhimanapati, Ganesh R; Xu, Ke; Wang, Baoming; Wang, Ke; Labella, Michael; Williams, Teague A; Haque, Md Amanul; Barnard, Edward S; Fullerton-Shirey, Susan; Schuck, P James; Robinson, Joshua A

    2017-12-05

    Evaluating and tuning the properties of two-dimensional (2D) materials is a major focus of advancing 2D science and technology. While many claim that the photonic properties of a 2D layer provide evidence that the material is "high quality", this may not be true for electronic performance. In this work, we deconvolute the photonic and electronic response of synthetic monolayer molybdenum disulfide. We demonstrate that enhanced photoluminescence can be robustly engineered via the proper choice of substrate, where growth of MoS 2 on r-plane sapphire can yield >100x enhancement in PL and carrier lifetime due to increased molybdenum-oxygen bonding compared to that of traditionally grown MoS 2 on c-plane sapphire. These dramatic enhancements in optical properties are similar to those of super-acid treated MoS 2 , and suggest that the electronic properties of the MoS 2 are also superior. However, a direct comparison of the charge transport properties indicates that the enhanced PL due to increased Mo-O bonding leads to p-type compensation doping, and is accompanied by a 2x degradation in transport properties compared to MoS 2 grown on c-plane sapphire. This work provides a foundation for understanding the link between photonic and electronic performance of 2D semiconducting layers, and demonstrates that they are not always correlated.

  20. General synthesis of hierarchical C/MOx@MnO2 (M=Mn, Cu, Co) composite nanofibers for high-performance supercapacitor electrodes.

    PubMed

    Nie, Guangdi; Lu, Xiaofeng; Chi, Maoqiang; Gao, Mu; Wang, Ce

    2018-01-01

    Improving the conductivity and specific surface area of electrospun carbon nanofibers (CNFs) is beneficial to a rapid realization of their applications in energy storage field. Here, a series of one-dimensional C/MO x (M=Mn, Cu, Co) nanostructures are first prepared by a simple two-step process consisting of electrospinning and thermal treatment. The presence of low-valence MO x enhances the porosity and conductivity of nanocomposites to some extent through expanding graphitic domains or mixing metallic Cu into the CNF substrates. Next, the C/MO x frameworks are coated with MnO 2 nanosheets/nanowhiskers (C/MO x @MnO 2 ), during which process the low-valence MO x can partly reduce KMnO 4 so as to mitigate the consumption of CNFs. When used as active materials for supercapacitor electrodes, the obtained C/MO x @MnO 2 exhibit excellent electrochemical performances in comparison with the common CNFs@MnO 2 (CM) core-shell electrode due to the combination of desired functions of the individual components and the introduction of extra synergistic effect. It is believed that these results will provide an alternative way to further increase the capacitive properties of CNFs- or metal oxide-based nanomaterials and potentially stimulate the investigation on other kinds of C/MO x composite nanostructures for various applications. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Deconvoluting the Photonic and Electronic Response of 2D Materials: The Case of MoS 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Kehao; Borys, Nicholas J.; Bersch, Brian M.

    Evaluating and tuning the properties of two-dimensional (2D) materials is a major focus of advancing 2D science and technology. While many claim that the photonic properties of a 2D layer provide evidence that the material is "high quality", this may not be true for electronic performance. In this work, we deconvolute the photonic and electronic response of synthetic monolayer molybdenum disulfide. We demonstrate that enhanced photoluminescence can be robustly engineered via the proper choice of substrate, where growth of MoS 2 on r-plane sapphire can yield > 100x enhancement in PL and carrier lifetime due to increased molybdenum-oxygen bonding comparedmore » to that of traditionally grown MoS 2 on c-plane sapphire. These dramatic enhancements in optical properties are similar to those of super-acid treated MoS 2 , and suggest that the electronic properties of the MoS 2 are also superior. However, a direct comparison of the charge transport properties indicates that the enhanced PL due to increased Mo-O bonding leads to p-type compensation doping, and is accompanied by a 2x degradation in transport properties compared to MoS 2 grown on c-plane sapphire. This work provides a foundation for understanding the link between photonic and electronic performance of 2D semiconducting layers, and demonstrates that they are not always correlated.« less

  2. Deconvoluting the Photonic and Electronic Response of 2D Materials: The Case of MoS 2

    DOE PAGES

    Zhang, Kehao; Borys, Nicholas J.; Bersch, Brian M.; ...

    2017-12-05

    Evaluating and tuning the properties of two-dimensional (2D) materials is a major focus of advancing 2D science and technology. While many claim that the photonic properties of a 2D layer provide evidence that the material is "high quality", this may not be true for electronic performance. In this work, we deconvolute the photonic and electronic response of synthetic monolayer molybdenum disulfide. We demonstrate that enhanced photoluminescence can be robustly engineered via the proper choice of substrate, where growth of MoS 2 on r-plane sapphire can yield > 100x enhancement in PL and carrier lifetime due to increased molybdenum-oxygen bonding comparedmore » to that of traditionally grown MoS 2 on c-plane sapphire. These dramatic enhancements in optical properties are similar to those of super-acid treated MoS 2 , and suggest that the electronic properties of the MoS 2 are also superior. However, a direct comparison of the charge transport properties indicates that the enhanced PL due to increased Mo-O bonding leads to p-type compensation doping, and is accompanied by a 2x degradation in transport properties compared to MoS 2 grown on c-plane sapphire. This work provides a foundation for understanding the link between photonic and electronic performance of 2D semiconducting layers, and demonstrates that they are not always correlated.« less

  3. A plate-on-plate sandwiched Z-scheme heterojunction photocatalyst: BiOBr-Bi2MoO6 with enhanced photocatalytic performance

    NASA Astrophysics Data System (ADS)

    Wang, Shengyao; Yang, Xianglong; Zhang, Xuehao; Ding, Xing; Yang, Zixin; Dai, Ke; Chen, Hao

    2017-01-01

    In this study, a direct Z-scheme heterojunction BiOBr-Bi2MoO6 with greatly enhanced visible light photocatalytic performance was fabricated via a two-step coprecipitation method. It was indicated that a plate-on-plate heterojunctions be present between BiOBr and Bi2MoO6 through different characterization techniques including X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV-vis diffuse reflectance spectroscopy (DRS) and photoelectrochemical measurements. The crystal structure and morphology analysis revealed that the heterointerface in BiOBr-Bi2MoO6 occurred mainly on the (001) facets of BiOBr and (001) facets of Bi2MoO6. The photocatalytic activity of the BiOBr-Bi2MoO6 was investigated by degradation of RhB and about 66.7% total organic carbon (TOC) could be removed. Ciprofloxacin (CIP) was employed to rule out the photosensitization. It was implied that the higher activity of BiOBr-Bi2MoO6 could be attribute to the strong redox ability in the Z-scheme system, which was subsequently confirmed by photoluminescence spectroscopy (PL) and active spices trapping experiments. This study provides a promising platform for Z-scheme heterojunction constructing and also sheds light on highly efficient visible-light-driven photocatalysts designing.

  4. Prospects of e-beam evaporated molybdenum oxide as a hole transport layer for perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Ali, F.; Khoshsirat, N.; Duffin, J. L.; Wang, H.; Ostrikov, K.; Bell, J. M.; Tesfamichael, T.

    2017-09-01

    Perovskite solar cells have emerged as one of the most efficient and low cost technologies for delivering of solar electricity due to their exceptional optical and electrical properties. Commercialization of the perovskite solar cells is, however, limited because of the higher cost and environmentally sensitive organic hole transport materials such as spiro-OMETAD and PEDOT:PSS. In this study, an empirical simulation was performed using the Solar Cell Capacitance Simulator software to explore the MoOx thin film as an alternative hole transport material for perovskite solar cells. In the simulation, properties of MoOx thin films deposited by the electron beam evaporation technique from high purity (99.99%) MoO3 pellets at different substrate temperatures (room temperature, 100 °C and 200 °C) were used as input parameters. The films were highly transparent (>80%) and have low surface roughness (≤2 nm) with bandgap energy ranging between 3.75 eV and 3.45 eV. Device simulation has shown that the MoOx deposited at room temperature can work in both the regular and inverted structures of the perovskite solar cell with a promising efficiency of 18.25%. Manufacturing of the full device is planned in order to utilize the MoOx as an alternative hole transport material for improved performance, good stability, and low cost of the perovskite solar cell.

  5. An Innovative Accident Tolerant LWR Fuel Rod Design Based on Uranium-Molybdenum Metal Alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montgomery, Robert O.; Bennett, Wendy D.; Henager, Charles H.

    2016-09-12

    The US Department of Energy is developing a uranium-molybdenum metal alloy Enhanced Accident Tolerant Fuel concept for Light Water Reactor applications that provides improved fuel performance during normal operation, anticipated operational occurrences, and postulated accidents. The high initial uranium atom density, the high thermal conductivity, and a low heat capacity permit a U-Mo-based fuel assembly to meet important design and safety requirements. These attributes also result in a fuel design that can satisfy increased fuel utilization demands and allow for improved accident tolerance in LWRs. This paper summarizes the results obtained from the on-going activities to; 1) evaluate the impactmore » of the U-10wt%Mo thermal properties on operational and accident safety margins, 2) produce a triple extrusion of stainless steel cladding/niobium liner/U-10Mo fuel rod specimen and 3) test the high temperature water corrosion of rodlet samples containing a drilled hole in the cladding. Characterization of the cladding and liner thickness uniformity, microstructural features of the U-Mo gamma phase, and the metallurgical bond between the component materials will be presented. The results from corrosion testing will be discussed which yield insights into the resistance to attack by water ingress during high temperature water exposure for the triple extruded samples containing a drilled hole. These preliminary evaluations find that the U-10Mo fuel design concept has many beneficial features that can meet or improve conventional LWR fuel performance requirements under normal operation, AOOs, and postulated accidents. The viability of a deployable U-Mo fuel design hinges on demonstrating that fabrication processes and alloying additions can produce acceptable irradiation stability during normal operation and accident conditions and controlled metal-water reaction rates in the unlikely event of a cladding perforation. In the area of enhanced accident tolerance, a key objective is to establish that the lower stored energy of the U-Mo fuel design can provide the emergency core cooling systems the opportunity to maintain the reactor core in a coolable geometry following an accident.« less

  6. Direct laser-patterned micro-supercapacitors from paintable MoS2 films.

    PubMed

    Cao, Liujun; Yang, Shubin; Gao, Wei; Liu, Zheng; Gong, Yongji; Ma, Lulu; Shi, Gang; Lei, Sidong; Zhang, Yunhuai; Zhang, Shengtao; Vajtai, Robert; Ajayan, Pulickel M

    2013-09-09

    Micrometer-sized electrochemical capacitors have recently attracted attention due to their possible applications in micro-electronic devices. Here, a new approach to large-scale fabrication of high-capacitance, two-dimensional MoS2 film-based micro-supercapacitors is demonstrated via simple and low-cost spray painting of MoS2 nanosheets on Si/SiO2 chip and subsequent laser patterning. The obtained micro-supercapacitors are well defined by ten interdigitated electrodes (five electrodes per polarity) with 4.5 mm length, 820 μm wide for each electrode, 200 μm spacing between two electrodes and the thickness of electrode is ∼0.45 μm. The optimum MoS2 -based micro-supercapacitor exhibits excellent electrochemical performance for energy storage with aqueous electrolytes, with a high area capacitance of 8 mF cm(-2) (volumetric capacitance of 178 F cm(-3) ) and excellent cyclic performance, superior to reported graphene-based micro-supercapacitors. This strategy could provide a good opportunity to develop various micro-/nanosized energy storage devices to satisfy the requirements of portable, flexible, and transparent micro-electronic devices. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Detailed measurements of local thickness changes for U-7Mo dispersion fuel plates with Al-3.5Si matrix after irradiation at different powers in the RERTR-9B experiment

    NASA Astrophysics Data System (ADS)

    Keiser, Dennis D.; Williams, Walter; Robinson, Adam; Wachs, Dan; Moore, Glenn; Crawford, Doug

    2017-10-01

    The Materials Management and Minimization program is developing fuel designs to replace highly enriched fuel with fuels of low enrichment. Swelling is an important irradiation behavior that needs to be well understood. Data from high resolution thickness measurements performed on U-7Mo dispersion fuel plates with Al-Si alloy matrices that were irradiated at high power is sparse. This paper reports the results of detailed thickness measurements performed on two dispersion fuel plates that were irradiated at relatively high power to high fission densities in the Advanced Test Reactor in the same RERTR-9B experiment. Both plates were irradiated to similar fission densities, but one was irradiated at a higher power than the other. The goal of this work is to identify any differences in the swelling behavior when fuel plates are irradiated at different powers to the same fission densities. Based on the results of detailed thickness measurments, more swelling occurs when a U-7Mo dispersion fuel with Al-3.5Si matrix is irradiated to a high fission density at high power compared to one irradiated at a lower power to high fission density.

  8. Effect of Ni and noble metals (Ru, Pd and Pt) on performance of bifunctional MoP/SiO2 for hydroconversion of methyl laurate

    NASA Astrophysics Data System (ADS)

    Nie, Ziyang; Zhang, Zhena; Chen, Jixiang

    2017-10-01

    SiO2 supported bifunctional MoP catalysts modified with different metal promoters (Ni, Ru, Pd, Pt), where Mo/Ni and Mo/M(M = Ru, Pd and Pt) atomic ratios was respectively 10 and 40, were prepared by TPR method from the phosphate precursors. It was found that the introduction of metal promoters facilitated the reduction of phosphate precursor and enhanced the dispersion of MoP. However, the MoP catalyst acidity was scarcely influenced by the small amount of metal promoters. In the hydroconversion of methyl laurate, the promoters enhanced the MoP catalyst activity for conversion of methyl laurate and hydrogenation of alkenes (intermediate), but reduced isomerization ability. Among the promoters, Ru was an optimum to decrease selectivity to alkenes while maintain high selectivity to iso-alkanes, and Mo40RuP showed better stability than MoP. At 380 °C and 3.0 MPa, the conversion of methyl laurate, the total selectivity to C11 and C12 hydrocarbons and the selectivity to iso-alkanes maintained at 100%, ∼94% and ∼30% on Mo40RuP during 102 h, respectively. The good stability of Mo40RuP is ascribed to that the presence of Ru prevented the sintering of MoP particles and suppressed carbon deposition.

  9. Quantitative Analysis of Scattering Mechanisms in Highly Crystalline CVD MoS2 through a Self-Limited Growth Strategy by Interface Engineering.

    PubMed

    Wan, Xi; Chen, Kun; Xie, Weiguang; Wen, Jinxiu; Chen, Huanjun; Xu, Jian-Bin

    2016-01-27

    The electrical performance of highly crystalline monolayer MoS2 is remarkably enhanced by a self-limited growth strategy on octadecyltrimethoxysilane self-assembled monolayer modified SiO2 /Si substrates. The scattering mechanisms in low-κ dielectric, including the dominant charged impurities, acoustic deformation potentials, optical deformation potentials), Fröhlich interaction, and the remote interface phonon interaction in dielectrics, are quantitatively analyzed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Jue; Zeng, Min, E-mail: min-zeng@buaa.edu.cn, E-mail: rhyu@buaa.edu.cn; Dong, Hangrong

    Flower-like Fe{sub 3}O{sub 4}/Bi{sub 2}MoO{sub 6} has been prepared via a facile two-step thermosynthesis method. The composite displays high photocatalytic activity in Rhodamine B decomposition under visible light irradiation. Bi{sub 2}MoO{sub 6} with flower-like structure that has high specific surface area guarantees excellent photocatalytic performance. Fe{sub 3}O{sub 4} retards electron-hole recombination that contributes to photocatalytic property. Further, the stable composite exhibits remarkable reusability due to the incorporation of magnetic particle.

  11. Molybdenum carbides, active and in situ regenerable catalysts in hydroprocessing of fast pyrolysis bio-oil

    DOE PAGES

    Choi, Jae -Soon; Zacher, Alan; Wang, Huamin; ...

    2016-05-19

    This paper describes properties of molybdenum carbides as a potential catalyst for fast pyrolysis bio-oil hydroprocessing. Currently, high catalyst cost, short catalyst lifetime, and lack of effective regeneration methods are hampering the development of this otherwise attractive renewable hydrocarbon technology. A series of metal-doped bulk Mo carbides were synthesized, characterized, and evaluated in sequential low-temperature stabilization and high-temperature deoxygenation of a pine-derived bio-oil. During a typical 60 h run, Mo carbides were capable of upgrading raw bio-oil to a level suitable for direct insertion into the current hydrocarbon infrastructure with residual oxygen content and total acid number of upgraded oilsmore » below 2 wt % and 0.01 mg KOH g –1, respectively. The performance was shown to be sensitive to the type of metal dopant, Ni-doped Mo carbides outperforming Co-, Cu-, or Ca-doped counterparts; a higher Ni loading led to a superior catalytic performance. No bulk oxidation or other significant structural changes were observed. Besides the structural robustness, another attractive property of Mo carbides was in situ regenerability. The effectiveness of regeneration was demonstrated by successfully carrying out four consecutive 60 h runs with a reductive decoking between two adjacent runs. These results strongly suggest that Mo carbides are a good catalyst candidate which could lead to a significant cost reduction in hydroprocessing bio-oils. Furthermore, we highlight areas for future research which will be needed to further understand carbide structure–function relationships and help design practical bio-oil upgrading catalysts based on Mo carbides.« less

  12. Molybdenum Carbides, Active and In Situ Regenerable Catalysts in Hydroprocessing of Fast Pyrolysis Bio-Oil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Jae-Soon; Zacher, Alan H.; Wang, Huamin

    We assessed molybdenum carbides as a potential catalyst for fast pyrolysis bio-oil hydroprocessing. Currently, high catalyst cost, short catalyst lifetime, and lack of effective regeneration methods are hampering the development of this otherwise attractive renewable hydrocarbon technology. A series of metal-doped bulk Mo carbides were synthesized, characterized and evaluated in sequential low-temperature stabilization and high-temperature deoxygenation of a pine-derived bio-oil. During a typical 60-h run, Mo carbides were capable of upgrading raw bio-oil to a level suitable for direct insertion into the current hydrocarbon infrastructure with residual oxygen content and total acid number of upgraded oils below 2 wt% andmore » 0.01 mg KOH g-1, respectively. The performance was shown to be sensitive to the type of metal dopant, Ni-doped Mo carbides outperforming Co-, Cu-, or Ca-doped counterparts; a higher Ni loading led to a superior catalytic performance. No bulk oxidation or other significant structural changes were observed. Besides the structural robustness, another attractive property of Mo carbides was in situ regenerability. The effectiveness of regeneration was demonstrated by successfully carrying out four consecutive 60-h runs with a reductive decoking between two adjacent runs. These results strongly suggest that Mo carbides are promising catalytic materials which could lead to a significant cost reduction in hydroprocessing bio-oils. This paper highlights areas for future research which will be needed to further understand carbide structure-function relationships and help design practical bio-oil upgrading catalysts based on Mo carbides.« less

  13. Molybdenum carbides, active and in situ regenerable catalysts in hydroprocessing of fast pyrolysis bio-oil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Jae -Soon; Zacher, Alan; Wang, Huamin

    This paper describes properties of molybdenum carbides as a potential catalyst for fast pyrolysis bio-oil hydroprocessing. Currently, high catalyst cost, short catalyst lifetime, and lack of effective regeneration methods are hampering the development of this otherwise attractive renewable hydrocarbon technology. A series of metal-doped bulk Mo carbides were synthesized, characterized, and evaluated in sequential low-temperature stabilization and high-temperature deoxygenation of a pine-derived bio-oil. During a typical 60 h run, Mo carbides were capable of upgrading raw bio-oil to a level suitable for direct insertion into the current hydrocarbon infrastructure with residual oxygen content and total acid number of upgraded oilsmore » below 2 wt % and 0.01 mg KOH g –1, respectively. The performance was shown to be sensitive to the type of metal dopant, Ni-doped Mo carbides outperforming Co-, Cu-, or Ca-doped counterparts; a higher Ni loading led to a superior catalytic performance. No bulk oxidation or other significant structural changes were observed. Besides the structural robustness, another attractive property of Mo carbides was in situ regenerability. The effectiveness of regeneration was demonstrated by successfully carrying out four consecutive 60 h runs with a reductive decoking between two adjacent runs. These results strongly suggest that Mo carbides are a good catalyst candidate which could lead to a significant cost reduction in hydroprocessing bio-oils. Furthermore, we highlight areas for future research which will be needed to further understand carbide structure–function relationships and help design practical bio-oil upgrading catalysts based on Mo carbides.« less

  14. Improved Mo-Re VPS Alloys for High-Temperature Uses

    NASA Technical Reports Server (NTRS)

    Hickman, Robert; Martin, James; McKechnie, Timothy; O'Dell, John Scott

    2011-01-01

    Dispersion-strengthened molybdenum- rhenium alloys for vacuum plasma spraying (VPS) fabrication of high-temperature-resistant components are undergoing development. In comparison with otherwise equivalent non-dispersion-strengthened Mo-Re alloys, these alloys have improved high-temperature properties. Examples of VPS-fabricated high-temperature-resistant components for which these alloys are expected to be suitable include parts of aircraft and spacecraft engines, furnaces, and nuclear power plants; wear coatings; sputtering targets; x-ray targets; heat pipes in which liquid metals are used as working fluids; and heat exchangers in general. These alloys could also be useful as coating materials in some biomedical applications. The alloys consist of 60 weight percent Mo with 40 weight percent Re made from (1) blends of elemental Mo and Re powders or (2) Re-coated Mo particles that have been subjected to a proprietary powder-alloying-and-spheroidization process. For most of the dispersion- strengthening experiments performed thus far in this development effort, 0.4 volume percent of transition-metal ceramic dispersoids were mixed into the feedstock powders. For one experiment, the proportion of dispersoid was 1 volume percent. In each case, the dispersoid consisted of either ZrN particles having sizes <45 m, ZrO2 particles having sizes of about 1 m, HfO2 particles having sizes <45 m, or HfN particles having sizes <1 m. These materials were chosen for evaluation on the basis of previously published thermodynamic stability data. For comparison, Mo-Re feedstock powders without dispersoids were also prepared.

  15. Microstructural Characteristics of HIP-bonded Monolithic Nuclear Fuels with a Diffusion Barrier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jan-Fong Jue; Dennis D. Keiser, Jr.; Cynthia R. Breckenridge

    Due to the limitation of maximum uranium load achievable by dispersion fuel type, the Global Threat Reduction Initiative (GTRI) is developing an advanced monolithic fuel to convert US high performance research reactors to low-enriched uranium. Hot-isostatic-press bonding was the single process down-selected to bond monolithic U-Mo fuel meat to aluminum alloy cladding. A diffusion barrier was applied to the U–Mo fuel meat by roll-bonding process to prevent extensive interaction between fuel meat and aluminum-alloy cladding. Microstructural characterization was performed on fresh fuel plates fabricated at Idaho National Laboratory. Interfaces between fuel meat, cladding, and diffusion barrier, as well as U–10Momore » fuel meat and Al–6061 cladding were characterized by scanning electron microscopy. Preliminary results indicate that the interfaces contain many different phases while decomposition, second phases, and chemical banding were also observed in the fuel meat. The important attributes of the HIP-bonded monolithic fuel are • A typical Zr diffusion barrier of thickness 25 µm • Transverse cross section that exhibits relatively equiaxed grains with an average grain diameter of 10 µm • Chemical banding, in some areas more than 100 µm in length, that is very pronounced in longitudinal (i.e., rolling) direction with Mo concentration varying from 7–13 wt% • Decomposed areas containing plate-shaped low-Mo phase • A typical Zr/cladding interaction layer of thickness 1-2 µm • A visible UZr2 bearing layer of thickness 1-2 µm • Mo-rich precipitates (mainly Mo2Zr, forming a layer in some areas) followed by a Mo-depleted sub-layer between the visible UZr2-bearing layer and the U–Mo matrix • No excessive interaction between cladding and the uncoated fuel edge • Cladding-to-cladding bonding that exhibits no cracks or porosity with second phases high in Mg, Si, and O decorating the bond line. • Some of these attributes might be critical to the irradiation performance of monolithic U-10Mo nuclear fuel. There are several issues or concerns that warrant more detailed study, such as precipitation along cladding-to-cladding bond line, chemical banding, uncovered fuel-zone edge, and interaction layer between U–Mo fuel meat and zirconium. Future post-irradiation examination results will focus, among other things, on identifying in-reactor failure mechanisms and, eventually, directing further fresh fuel characterization efforts.« less

  16. Hybrid Mo-CT nanowires as highly efficient catalysts for direct dehydrogenation of isobutane.

    PubMed

    Mu, Jiali; Shi, Junjun; France, Liam John; Wu, Yongshan; Zeng, Qiang; Liu, Baoan; Jiang, Lilong; Long, Jinxing; Li, Xuehui

    2018-06-20

    Direct dehydrogenation of isobutane to isobutene has drawn extensive attention for synthesizing various chemicals. The Mo-based catalysts hold promise as an alternative to the toxic CrOx- and scarce Pt-based catalysts. However, the low activity and rapid deactivation of the Mo-based catalysts greatly hinder their practical applications. Herein, we demonstrate a feasible approach towards the development of efficient and non-noble metal dehydrogenation catalysts basing on Mo-CT hybrid nanowires calcined at different temperatures. In particular, the optimal Mo-C700 catalyst exhibits isobutane consumption rate of 3.9 mmol g-1 h-1, and isobutene selectivity of 73% with production rate of 2.8 mmol g-1 h-1. The catalyst maintained 90% of its initial activity after 50 h of reaction. Extensive characterizations reveal that such prominent performance is well-correlated with the adsorption abilities of isobutane and isobutene, and the formation of η-MoC species. By contrast, the generation of β-Mo2C crystalline phase during long-term reaction causes minor decline in activity. Compared to MoO2 and β-Mo2C, η-MoC plays a role more likely in suppressing the cracking reaction. This work demonstrates a feasible approach towards the development of efficient and non-noble metal dehydrogenation catalysts.

  17. Hydrothermal fabrication of few-layer MoS2 nanosheets within nanopores on TiO2 derived from MIL-125(Ti) for efficient photocatalytic H2 evolution

    NASA Astrophysics Data System (ADS)

    Ye, Fei; Li, Houfen; Yu, Hongtao; Chen, Shuo; Quan, Xie

    2017-12-01

    Protons tend to bond strongly with unsaturated-coordinate S element located at the edge of nano-MoS2 and are consequently reduced to H2. Therefore, increasing the active S atoms quantity will be a feasible approach to enhance hydrogen evolution. Herein we developed a porous TiO2 derived from metal organic frameworks (MOFs) as scaffold to restrict the growth and inhibit the aggregation of MoS2 nanosheets. As a result, the thickness of the prepared MoS2 nanosheets was less than 3 nm (1-4 layers), with more edges and active S atoms being exposed. This few-layer MoS2-porous TiO2 exhibits a H2 evolution rate of 897.5 μmol h-1 g-1, which is nearly twice as much as free-stand MoS2 nanosheets and twenty times more than physical mixture of MoS2 with porous TiO2. The high performance is attributed to that more active edge sites in few-layer MoS2-porous TiO2 are exposed than pure MoS2. This work provides a new method to construct MOFs derived porous structures for controlling MoS2 to expose active sites for HER.

  18. Lignin-assisted exfoliation of molybdenum disulfide in aqueous media and its application in lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Liu, Wanshuang; Zhao, Chenyang; Zhou, Rui; Zhou, Dan; Liu, Zhaolin; Lu, Xuehong

    2015-05-01

    In this article, alkali lignin (AL)-assisted direct exfoliation of MoS2 mineral into single-layer and few-layer nanosheets in water is reported for the first time. Under optimized conditions, the concentration of MoS2 nanosheets in the obtained dispersion can be as high as 1.75 +/- 0.08 mg mL-1, which is much higher than the typical reported concentrations (<1.0 mg mL-1) using synthetic polymers or compounds as surfactants. The stabilizing mechanism primarily lies in the electrostatic repulsion between negative charged AL, as suggested by zeta-potential measurements. When the exfoliated MoS2 nanosheets are applied as electrode materials for lithium ion batteries, they show much improved electrochemical performance compared with the pristine MoS2 mineral because of the enhanced ion and electron transfer kinetics. This facile, scalable and eco-friendly aqueous-based process in combination with renewable and ultra-low-cost lignin opens up possibilities for large-scale fabrication of MoS2-based nanocomposites and devices. Moreover, herein we demonstrate that AL is also an excellent surfactant for exfoliation of many other types of layered materials, including graphene, tungsten disulfide and boron nitride, in water, providing rich opportunities for a wider range of applications.In this article, alkali lignin (AL)-assisted direct exfoliation of MoS2 mineral into single-layer and few-layer nanosheets in water is reported for the first time. Under optimized conditions, the concentration of MoS2 nanosheets in the obtained dispersion can be as high as 1.75 +/- 0.08 mg mL-1, which is much higher than the typical reported concentrations (<1.0 mg mL-1) using synthetic polymers or compounds as surfactants. The stabilizing mechanism primarily lies in the electrostatic repulsion between negative charged AL, as suggested by zeta-potential measurements. When the exfoliated MoS2 nanosheets are applied as electrode materials for lithium ion batteries, they show much improved electrochemical performance compared with the pristine MoS2 mineral because of the enhanced ion and electron transfer kinetics. This facile, scalable and eco-friendly aqueous-based process in combination with renewable and ultra-low-cost lignin opens up possibilities for large-scale fabrication of MoS2-based nanocomposites and devices. Moreover, herein we demonstrate that AL is also an excellent surfactant for exfoliation of many other types of layered materials, including graphene, tungsten disulfide and boron nitride, in water, providing rich opportunities for a wider range of applications. Electronic supplementary information (ESI) available: CV of the bulk MoS2 between 1-3 V, electrochemical performances of the exfoliated MoS2 nanosheets between 1-3 V with 10 wt% carbon black, referenced table of exfoliation of MoS2 in aqueous media. See DOI: 10.1039/c5nr01891a

  19. Enhanced photocatalytic activity and synthesis of ZnO nanorods/MoS2 composites

    NASA Astrophysics Data System (ADS)

    Li, Hui; Shen, Hao; Duan, Libing; Liu, Ruidi; Li, Qiang; Zhang, Qian; Zhao, Xiaoru

    2018-05-01

    A stable and recyclable organic degradation catalyst based on MoS2 functionalized ZnO nanorods was introduced. ZnO nanorods were synthesized on the glass substrates (2 cm*2 cm) by sol-gel method and hydrothermal method and functionalized with MoS2 via an argon flow annealing method. The structure and morphology of the as-prepared samples were characterized by XRD, SEM and TEM. Results showed that a small amount of MoS2 was successfully wrapped on the surfaces of ZnO nanorods. XPS analyses showed the existence of Zn-S between ZnO and MoS2, indicating that the MoS2 was combined with ZnO through chemical bonds and formed the ZnO/MoS2 heterostructure. PL results revealed that ZnO/MoS2 had lower fluorescence spectra indicating an electron transport channel between ZnO and MoS2 which separated electrons and holes. Photocatalytic experiment showed that ZnO/MoS2 composites showed a better photodegradation performance of Rhodamine B (RhB) after functionalized with MoS2 under the UV light irradiation which could be attributed to the separation and transfer of photogenerated electrons and holes between ZnO and MoS2. Meanwhile, the high active adsorption sites on the edges of MoS2 also accelerated the degradation process. Furthermore, the scavengers were used to investigate the major active species and results indicated that h+ was the major reactive species for the degradation.

  20. Mechanism of Antiwear Property Under High Pressure of Synthetic Oil-Soluble Ultrathin MoS2 Sheets as Lubricant Additives.

    PubMed

    Chen, Zhe; Liu, Yuhong; Gunsel, Selda; Luo, Jianbin

    2018-01-30

    Wear occurs between two rubbing surfaces. Severe wear due to seizure under high pressure leads to catastrophic failures of mechanical systems and raises wide concerns. In this paper, a kind of synthetic oil-soluble ultrathin MoS 2 sheets is synthesized and investigated as lubricant additives between steel surfaces. It is found that, with the ultrathin MoS 2 sheets, the wear can be controlled under the nominal pressure of about 1 GPa, whereas the bearable nominal pressure for traditional lubricants is only a few hundred megapascals. It is found that when wear is under control, the real pressure between the asperities agrees with the breaking strength of ultrathin MoS 2 . Therefore, it is believed that, because of the good oil solubility and ultrasmall thickness, the ultrathin MoS 2 sheets can easily enter the contact area between the contacting asperities. Then, the localized seizure and further wear are prevented because there will be no metal-to-metal contact as long as the real pressure between the asperities is below the breaking strength of ultrathin MoS 2 . In this way, the upper limit pressure the lubricant can work is dependent on the mechanical properties of the containing ultrathin two-dimensional (2D) sheets. Additionally, ultrathin MoS 2 sheets with various lateral sizes are compared, and it is found that sheets with a larger size show better lubrication performance. This work discovers the lubrication mechanism of ultrathin MoS 2 sheets as lubricant additives and provides an inspiration to develop a novel generation of lubricant additives with high-strength ultrathin 2D materials.

  1. Carbon nanotubes-modified graphitic carbon nitride photocatalysts with synergistic effect of nickel(II) sulfide and molybdenum(II) disulfide co-catalysts for more efficient H2 evolution.

    PubMed

    Zhang, Yun-Xiao; Li, Kui; Yu, Yu-Xiang; Zhang, Wei-De

    2018-09-15

    This work reports effective photocatalysts which are composed of carbon nitride (CN), carbon nanotubes (CNTs), MoS 2 and NiS, for hydrogen evolution aiming at energy crises and environmental pollutions. The morphologies and optical properties of the photocatalysts were carefully characterized and their photocatalytic performance towards water reduction was studied afterwards. MoS 2 and NiS exhibit a significant synergistic effect working as co-catalysts. Compared to MoS 2 /CN nanohybrid, carbon nanotubes and NiS improved the absorption of visible light and the separation of charge carriers effectively. NiS-MoS 2 /CNTs/CN catalyst exhibits high performance for H 2 evolution and the optimized rate is 309.9 μmol·h -1 ·g -1 with no noble metals under visible light irradiation. The study demonstrates a non-noble metal photocatalyst system for effective generation of hydrogen with low cost. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Rational Design of Hierarchically Core-Shell Structured Ni3 S2 @NiMoO4 Nanowires for Electrochemical Energy Storage.

    PubMed

    Chen, Fangshuai; Ji, Shan; Liu, Quanbing; Wang, Hui; Liu, Hao; Brett, Dan J L; Wang, Guoxiu; Wang, Rongfang

    2018-05-30

    Rational design and controllable synthesis of nanostructured materials with unique microstructure and excellent electrochemical performance for energy storage are crucially desired. In this paper, a facile method is reported for general synthesis of hierarchically core-shell structured Ni 3 S 2 @NiMoO 4 nanowires (NWs) as a binder-free electrode for asymmetric supercapacitors. Due to the intimate contact between Ni 3 S 2 and NiMoO 4 , the hierarchical structured electrodes provide a promising unique structure for asymmetric supercapacitors. The as-prepared binder-free Ni 3 S 2 @NiMoO 4 electrode can significantly improve the electrical conductivity between Ni 3 S 2 and NiMoO 4 , and effectively avoid the aggregation of NiMoO 4 nanosheets, which provide more active space for storing charge. The Ni 3 S 2 @NiMoO 4 electrode presents a high areal capacity of 1327.3 µAh cm -2 and 67.8% retention of its initial capacity when current density increases from 2 to 40 mA cm -2 . In a two-electrode Ni 3 S 2 @NiMoO 4 //active carbon cell, the active materials deliver a high energy density of 121.5 Wh kg -1 at a power density of 2.285 kW kg -1 with excellent cycling stability. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Highly Reversible Zinc-ion Intercalation with Chevrel Phase Mo6S8 Nanocubes and Applications for Advanced Zinc-ion Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Yingwen; Luo, Langli; Zhong, Li

    We demonstrate the application of the Chevrel phase Mo6S8 nanocubes as the anode material for rechargeable Zn-ion batteries. Mo6S8 can host Zn2+ ions reversibility both in aqueous and nonaqueous electrolytes with specific capacities around 90 mAh/g and exhibited remarkable intercalation kinetics as well as stability. Furthermore, we assembled full cells by integrating Mo6S8 anode with zinc-polyiodide (I-/I3-) based catholytes, and demonstrated that such fuel cells was also able to deliver outstanding rate performance and cyclic stability. This first demonstration of zinc intercalating anode could inspire the design of advanced Zn ion batteries.

  4. Investigation on nonlinear optical properties of MoS2 nanoflake, grown on silicon and quartz substrates

    NASA Astrophysics Data System (ADS)

    Bayesteh, S.; Mortazavi, S. Z.; Reyhani, A.

    2018-03-01

    In this study, MoS2 was directly synthesized by one-step thermal chemical vapour deposition (TCVD), on different substrates including Si/SiO2 and quartz, using MoO3 and sulfide powders as precursor. The XRD patterns demonstrate the high crystallinity of MoS2 on Si/SiO2 and quartz substrates. SEM confirmed the formation of MoS2 grown on both substrates. According to line width and frequency difference between the E1 2g and A1g in Raman spectroscopy, it is inferred that the MoS2 grown on Si/SiO2 substrate is monolayer and the MoS2 grown on quartz substrate is multilayer. Moreover, by assessment of MoS2 nanoflake band gap via UV-visible analysis, it verified the formation of few layer structures. In addition, the open-aperture and close-aperture Z-scan techniques were employed to study the nonlinear optical properties including nonlinear absorption and nonlinear refraction of the synthesized MoS2. All experiments were performed using a diode laser with a wavelength of 532 nm as light source. The monolayer MoS2 synthesized on Si/SiO2, display considerable two-photon absorption. However, the multilayer MoS2 synthesized on quartz displayed saturable absorption (SA). It is noticeable that both samples demonstrate obvious self-defocusing behaviour.

  5. Performance comparison of MoNA and LISA neutron detectors

    NASA Astrophysics Data System (ADS)

    Purtell, Kimberly; Rethman, Kaitlynne; Haagsma, Autumn; Finck, Joseph; Smith, Jenna; Snyder, Jesse

    2010-11-01

    In 2002 eight primarily undergraduate institutions constructed and tested the Modular Neutron Array (MoNA) which has been used to detect high energy neutrons at the National Superconducting Cyclotron Laboratory (NSCL). Nine institutions have now designed, constructed and tested the Large-area multi-Institutional Scintillator Array (LISA) neutron detector which will be used at the NSCL and the future Facility for Rare Isotope Beams (FRIB). Both detectors are comprised of 144 detector modules. Each module is a 200 x 10 x 10 cm^3 bar organic plastic scintillator with a photomultiplier tube mounted on each end. Using cosmic rays and a gamma source, we compared the performance of MoNA and LISA by using the same electronics to check light attenuation, position resolution, rise times, and cosmic ray peak widths. Results will be presented.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stöber, Laura, E-mail: laura.stoeber@tuwien.ac.at; Patocka, Florian, E-mail: florian.patocka@tuwien.ac.at; Schneider, Michael, E-mail: michael.schneider@tuwien.ac.at

    In this paper, the authors report on the high temperature performance of sputter deposited molybdenum (Mo) and molybdenum nitride (Mo{sub 2}N) thin films. Various argon and nitrogen gas compositions are applied for thin film synthetization, and the amount of nitrogen incorporation is determined by Auger measurements. Furthermore, effusion measurements identifying the binding conditions of the nitrogen in the thin film are performed up to 1000 °C. These results are in excellent agreement with film stress and scanning electron microscope analyses, both indicating stable film properties up to annealing temperatures of 500 °C.

  7. Tailoring the charge carrier in few layers MoS2 field-effect transistors by Au metal adsorbate

    NASA Astrophysics Data System (ADS)

    Singh, Arun Kumar; Pandey, Rajiv K.; Prakash, Rajiv; Eom, Jonghwa

    2018-04-01

    It is an essential to tune the charge carrier concentrations in semiconductor in order to approach high-performance of the electronic and optoelectronic devices. Here, we report the effect of thin layer of gold (Au) metal on few layer (FL) molybdenum disulfide (MoS2) by atomic force microscopy (AFM), Raman spectroscopy and electrical charge transport measurements. The Raman spectra and charge transport measurements show that Au thin layer affect the electronic properties of the FL MoS2. After deposition of Au thin layer, the threshold voltages of FL MoS2 field-effect transistors (FETs) shift towards positive gate voltages, this reveal the p-doping in FL MoS2 nanosheets. The shift of peak frequencies of the Raman bands are also analyzed after the deposition of Au metal films of different thickness on FL MoS2 nanosheets. The surface morphology of Au metal on FL MoS2 is characterized by AFM and shows the smoother and denser film in comparison to Au metal on SiO2.

  8. CO2-assisted fabrication of novel heterostructures of h-MoO3/1T-MoS2 for enhanced photoelectrocatalytic performance

    NASA Astrophysics Data System (ADS)

    Zhu, Chuanhui; Xu, Qun; Liu, Wei; Ren, Yumei

    2017-12-01

    Combining the peculiar properties of different ingredients in one ultimate material is an efficient route to achieve the desired functional materials. Compared to 2H-MoS2, 1T-MoS2 nanosheets display the perfect performance of hydrogen evolution reaction (HER) because of the excellent electronic conductivity. However, how to further realize HER in the visual and near-infrared (NIR) region is a great challenge. Herein, we develop an efficient method to locally pattern h-MoO3 on the ultrathin metallic 1T-MoS2 nanosheets and obtain the novel heterostructures of h-MoO3/1T-MoS2. The enhanced photoelectrochemical performance of the as-prepared heterostructures has been demonstrated. Our study indicates it is originated from the synergistic effect between h-MoO3 and 1T-MoS2, i.e., the strong optical absorption of h-MoO3 in the visible and NIR region, the excellent electronic conductivity of 1T-MoS2 and as well as the efficient separation of the photo-induced carriers from the heterostructures.

  9. Microcapsules Containing pH-Responsive, Fluorescent Polymer-Integrated MoS2: An Effective Platform for in Situ pH Sensing and Photothermal Heating.

    PubMed

    Park, Chan Ho; Lee, Sangmin; Pornnoppadol, Ghasidit; Nam, Yoon Sung; Kim, Shin-Hyun; Kim, Bumjoon J

    2018-03-14

    We report the design of a novel microcapsule platform for in situ pH sensing and photothermal heating, which involves the encapsulation of pH-responsive polymer-coated molybdenum disulfide (MoS 2 ) nanosheets (NSs) in microcapsules with an aqueous core and a semipermeable polymeric shell. The MoS 2 NSs were functionalized with pH-responsive polymers having fluorescent groups at the distal end to provide pH-sensitive Förster resonance energy transfer (FRET) effect. The pH-responsive polymers were carefully designed to produce a dramatic change in the polymer conformation, which translated to a change in the FRET efficiency near pH 7.0 in response to subtle pH changes, enabling the detection of cancer cells. The pH-sensitive MoS 2 NSs were microfluidically encapsulated within semipermeable membranes to yield microcapsules with a uniform size and composition. The microcapsules retained the MoS 2 NSs without leakage while allowing the diffusion of small ions and water through the membrane. At the same time, the membranes excluded adhesive proteins and lipids in the surrounding media, protecting the encapsulated MoS 2 NSs from deactivation and enabling in situ pH monitoring. Moreover, the encapsulated MoS 2 NSs showed high-performance photothermal heating, rendering the dual-functional microcapsules highly suitable for cancer diagnosis and treatment.

  10. CVD synthesis of large-area, highly crystalline MoSe2 atomic layers on diverse substrates and application to photodetectors.

    PubMed

    Xia, Jing; Huang, Xing; Liu, Ling-Zhi; Wang, Meng; Wang, Lei; Huang, Ben; Zhu, Dan-Dan; Li, Jun-Jie; Gu, Chang-Zhi; Meng, Xiang-Min

    2014-08-07

    Synthesis of large-area, atomically thin transition metal dichalcogenides (TMDs) on diverse substrates is of central importance for the large-scale fabrication of flexible devices and heterojunction-based devices. In this work, we successfully synthesized a large area of highly-crystalline MoSe2 atomic layers on SiO2/Si, mica and Si substrates using a simple chemical vapour deposition (CVD) method at atmospheric pressure. Atomic force microscopy (AFM) and Raman spectroscopy reveal that the as-grown ultrathin MoSe2 layers change from a single layer to a few layers. Photoluminescence (PL) spectroscopy demonstrates that while the multi-layer MoSe2 shows weak emission peaks, the monolayer has a much stronger emission peak at ∼ 1.56 eV, indicating the transition from an indirect to a direct bandgap. Transmission electron microscopy (TEM) analysis confirms the single-crystallinity of MoSe2 layers with a hexagonal structure. In addition, the photoresponse performance of photodetectors based on MoSe2 monolayer was studied for the first time. The devices exhibit a rapid response of ∼ 60 ms and a good photoresponsivity of ∼ 13 mA/W (using a 532 nm laser at an intensity of 1 mW mm(-2) and a bias of 10 V), suggesting that MoSe2 monolayer is a promising material for photodetection applications.

  11. Solution-processed MoS(x) as an efficient anode buffer layer in organic solar cells.

    PubMed

    Li, Xiaodong; Zhang, Wenjun; Wu, Yulei; Min, Chao; Fang, Junfeng

    2013-09-25

    We reported a facile solution-processed method to fabricate a MoSx anode buffer layer through thermal decomposition of (NH4)2MoS4. Organic solar cells (OSCs) based on in situ growth MoSx as the anode buffer layer showed impressive improvements, and the power conversion efficiency was higher than that of conventional PEDOT:PSS-based device. The MoSx films obtained at different temperatures and the corresponding device performance were systematically studied. The results indicated that both MoS3 and MoS2 were beneficial to the device performance. MoS3 could result in higher Voc, while MoS2 could lead to higher Jsc. Our results proved that, apart from MoO3, molybdenum sulfides and Mo(4+) were also promising candidates for the anode buffer materials in OSCs.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wood, Elizabeth Sooby; Parker, Stephen Scott; Nelson, Andrew Thomas

    The Fuel Cycle Research and Development program’s Advanced Fuels Campaign is currently supporting a range of experimental efforts aimed at the development and qualification of ‘accident tolerant’ nuclear fuel forms. One route to enhance the accident tolerance of nuclear fuel is to replace the zirconium alloy cladding, which is prone to rapid oxidation in steam at elevated temperatures, with a more oxidation-resistant cladding. Several cladding replacement solutions have been envisaged. The cladding can be completely replaced with a more oxidation resistant alloy, a layered approach can be used to optimize the strength, creep resistance, and oxidation tolerance of various materials,more » or the existing zirconium alloy cladding can be coated with a more oxidation-resistant material. Molybdenum is one candidate cladding material favored due to its high temperature creep resistance. However, it performs poorly under autoclave testing and suffers degradation under high temperature steam oxidation exposure. Development of composite cladding architectures consisting of a molybdenum core shielded by a molybdenum disilicide (MoSi 2) coating is hypothesized to improve the performance of a Mo-based cladding system. MoSi 2 was identified based on its high temperature oxidation resistance in O 2 atmospheres (e.g. air and “wet air”). However, its behavior in H 2O is less known. This report presents thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and x-ray diffraction (XRD) results for MoSi 2 exposed to 670-1498 K water vapor. Synthetic air (80-20%, Ar-O 2) exposures were also performed, and those results are presented here for a comparative analysis. It was determined that MoSi 2 displays drastically different oxidation behavior in water vapor than in dry air. In the 670-1498 K temperature range, four distinct behaviors are observed. Parabolic oxidation is exhibited in only 670-773 K water vapor, a temperature range in which the material pests in dry O 2 environments. From 877-1084 K in water vapor, MoSi 2 undergoes rapid mass gain resulting in oxidation throughout the bulk of the sample at 980 K and 1084 K. The resulting material displays swelling and warping after the 980-1084 K exposures. A pre-passivation heat treatment performed at 1395 K was found capable of producing a coarse SiO 2 layer that limited pesting at lower temperatures in water vapor over the time periods investigated.« less

  13. Spectroscopic Characterization of YedY: The Role of Sulfur Coordination in a Mo(V) Sulfite Oxidase Family Enzyme Form

    PubMed Central

    Yang, Jing; Rothery, Richard; Sempombe, Joseph

    2011-01-01

    Electronic paramagnetic resonance, electronic absorption, and magnetic circular dichroism spectroscopies have been performed on YedY, a SUOX fold protein with a Mo domain that is remarkably similar to that found in chicken sulfite oxidase, A. thaliana plant sulfite oxidase, and the bacterial sulfite dehydrogenase from S. novella. Low-energy dithiolene→Mo and cysteine thiolate→Mo charge transfer bands have been assigned for the first time in a Mo(V) form of a SUOX fold protein, and the spectroscopic data have been used to interpret the results of bonding calculations. The analysis shows that second coordination sphere effects modulate dithiolene and cysteine sulfur covalency contributions to the Mo bonding scheme. Namely, a more acute Ooxo-Mo-SCys-C dihedral angle results in increased cysteine thiolate S→Mo charge transfer and a high g1 in the EPR spectrum. The spectrosocopic results, coupled with the available structural data, indicate that these second coordination sphere effects may play key roles in modulating the active site redox potential, facilitating hole superexchange pathways for electron transfer regeneration, and affecting the type of reactions catalyzed by sulfite oxidase family enzymes. PMID:19860477

  14. Engineering few-layer MoTe2 devices by Co/hBN tunnel contacts

    NASA Astrophysics Data System (ADS)

    Zhu, Mengjian; Luo, Wei; Wu, Nannan; Zhang, Xue-ao; Qin, Shiqiao

    2018-04-01

    2H phase Molybdenum ditelluride (MoTe2) is a layered two-dimensional (2D) semiconductor that has recently gained extensive attention for its intriguing properties, demonstrating great potential for nanoelectronics and optoelectronics. Optimizing the electric contacts to MoTe2 is a critical step for realizing high performance devices. Here, we demonstrate Co/hBN tunnel contacts to few-layer MoTe2. In sharp contrast to the p-type conduction of Co contacted MoTe2, Co/hBN tunnel contacted MoTe2 devices show clear n-type transport properties. Our first principles calculation reveals that the inserted few-layer hBN strongly interacts with Co and significantly reduces its work-function by ˜1.2 eV, while MoTe2 itself has a much weaker influence on the work-function of Co. This allows us to build MoTe2 diodes using the mixed Co/hBN and Co contact architecture, which can be switched from p-n type to n-p type by changing the gate-voltage, paving the way for engineering multi-functional devices based on atomically thin 2D semiconductors.

  15. First-principles study of the surface properties of U-Mo system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mei, Zhi-Gang; Liang, Linyun; Yacout, Abdellatif M.

    U-Mo alloys are promising fuels for future high-performance research reactors with low enriched uranium. Surface properties, such as surface energy, are important inputs for mesoscale simulations (e.g., phase field method) of fission gas bubble behaviors in irradiated nuclear fuels. The lack of surface energies of U-Mo alloys prevents an accurate modeling of the morphology of gas bubbles and gas bubble-induced fuel swelling. To this end, we study the surface properties of U-Mo system, including bcc Mo, alpha-U, gamma-U, and gamma U-Mo alloys. All surfaces up to a maximum Miller index of three and two are calculated for cubic Mo andmore » gamma-U and non-cubic alpha-U, respectively. The equilibrium crystal shapes of bcc Mo, alpha-U and gamma-U are constructed using the calculated surface energies. The dominant surface orientations and the area fraction of each facet are determined from the constructed equilibrium crystal shape. The disordered gamma U-Mo alloys are simulated using the Special Quasirandom Structure method. The (1 1 0) and (1 0 0) surface energies of gamma U-7Mo and U-10Mo alloys are predicted to lie between those of gamma-U and bcc Mo, following a linear combination of the two constituents' surface energies. To better compare with future measurements of surface energies, the area fraction weighted surface energies of alpha-U, gamma-U and gamma U-7Mo and U-10Mo alloys are also predicted. (C) 2017 Published by Elsevier B.V.« less

  16. Dual-Doped Molybdenum Trioxide Nanowires: A Bifunctional Anode for Fiber-Shaped Asymmetric Supercapacitors and Microbial Fuel Cells.

    PubMed

    Yu, Minghao; Cheng, Xinyu; Zeng, Yinxiang; Wang, Zilong; Tong, Yexiang; Lu, Xihong; Yang, Shihe

    2016-06-01

    A novel in situ N and low-valence-state Mo dual doping strategy was employed to significantly improve the conductivity, active-site accessibility, and electrochemical stability of MoO3 , drastically boosting its electrochemical properties. Consequently, our optimized N-MoO3-x nanowires exhibited exceptional performances as a bifunctional anode material for both fiber-shaped asymmetric supercapacitors (ASCs) and microbial fuel cells (MFCs). The flexible fiber-shaped ASC and MFC device based on the N-MoO3-x anode could deliver an unprecedentedly high energy density of 2.29 mWh cm(-3) and a remarkable power density of 0.76 μW cm(-1) , respectively. Such a bifunctional fiber-shaped N-MoO3-x electrode opens the way to integrate the electricity generation and storage for self-powered sources. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Fabrication of potato-like silver molybdate microstructures for photocatalytic degradation of chronic toxicity ciprofloxacin and highly selective electrochemical detection of H2O2

    NASA Astrophysics Data System (ADS)

    Kumar, J. Vinoth; Karthik, R.; Chen, Shen-Ming; Muthuraj, V.; Karuppiah, Chelladurai

    2016-09-01

    In the present work, potato-like silver molybdate (Ag2MoO4) microstructures were synthesized through a simple hydrothermal method. The microstructures of Ag2MoO4 were characterized by various analytical and spectroscopic techniques such as XRD, FTIR, Raman, SEM, EDX and XPS. Interestingly, the as-prepared Ag2MoO4 showed excellent photocatalytic and electrocatalytic activity for the degradation of ciprofloxacin (CIP) and electrochemical detection of hydrogen peroxide (H2O2), respectively. The ultraviolet-visible (UV-Vis) spectroscopy results revealed that the potato-like Ag2MoO4 microstructures could offer a high photocatalytic activity towards the degradation of CIP under UV-light illumination, leads to rapid degradation within 40 min with a degradation rate of above 98%. In addition, the cyclic voltammetry (CV) and amperometry studies were realized that the electrochemical performance of Ag2MoO4 modified electrode toward H2O2 detection. Our H2O2 sensor shows a wide linear range and lower detection limit of 0.04-240 μM and 0.03 μM, respectively. The Ag2MoO4 modified electrode exhibits a high selectivity towards the detection of H2O2 in the presence of different biological interferences. These results suggested that the development of potato-like Ag2MoO4 microstructure could be an efficient photocatalyst as well as electrocatalyst in the potential application of environmental, biomedical and pharmaceutical samples.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Hongying, E-mail: liuhongying@hdu.edu.cn; Gu, Chunchuan; Li, Dujuan

    Graphical abstract: A non-enzymatic H{sub 2}O{sub 2} sensor with high selectivity and sensitivity based on rose-shaped FeMoO{sub 4} synthesized by the convenient microwave-assisted hydrothermal method, was fabricated. - Highlights: • Rose-shaped FeMoO{sub 4} is synthesized within 10 min via microwave-assisted hydrothermal approach. • Non-enzymatic hydrogen peroxide biosensor based on FeMoO{sub 4} nanomaterials is fabricated. • The biosensor exhibits good performance. - Abstract: In this work, we demonstrated a simple, rapid and reliable microwave-assisted hydrothermal approach to synthesize the uniform rose-shaped FeMoO{sub 4} within 10 min. The morphologies of the synthesized materials were characterized by X-ray powder diffraction and scanning electronmore » microscopy. Moreover, a non-enzymatic amperometric sensor for the detection of hydrogen peroxide (H{sub 2}O{sub 2}) was fabricated on the basis of the FeMoO{sub 4} as electrocatalysis. The resulting FeMoO{sub 4} exhibited high sensitivity and good stability for the detection of H{sub 2}O{sub 2}, which may be attributed to the rose-shaped structure of the material and the catalytic property of FeMoO{sub 4}. Amperometric response showed that the modified electrode had a good response for H{sub 2}O{sub 2} with a linear range from 1 μM to 1.6 mM, a detection limit of 0.5 μM (S/N = 3), high selectivity and short response time. Additionally, good recoveries of analytes in real milk samples confirm the reliability of the prepared sensor in practical applications.« less

  19. Assessment of upper-limb capacity, performance, and developmental disregard in children with cerebral palsy: validity and reliability of the revised Video-Observation Aarts and Aarts module: Determine Developmental Disregard (VOAA-DDD-R).

    PubMed

    Houwink, Annemieke; Geerdink, Yvonne A; Steenbergen, Bert; Geurts, Alexander C H; Aarts, Pauline B M

    2013-01-01

    To investigate the validity and reliability of the revised Video-Observation Aarts and Aarts module: Determine Developmental Disregard (VOAA-DDD-R). Upper-limb capacity and performance were assessed in children with unilateral spastic cerebral palsy (CP) by measuring overall duration of affected upper-limb use and the frequency of specific behaviours during a task in which bimanual activity was demanded ('stringing beads') and stimulated ('decorating a muffin'). Developmental disregard was defined as the difference in duration of affected upper-limb use between both tasks. Raters were two occupational and one physical therapist who received 3 hours of training. Construct validity was determined by comparing children with CP with typically developing children. Intrarater, interrater, and test-retest reliability were determined using the intraclass correlation coefficient. Standard errors of measurement and smallest detectable differences were also calculated. Twenty-five children with CP (15 females, 10 males; mean age 4 y 9 mo [SD 1 y 7 mo], range 2 y 9 mo-8 y; Manual Ability Classification System levels I-III) scored lower on capacity (p=0.052) and performance (p<0.001), and higher on developmental disregard (p<0.001) than 46 age- and sex-matched typically developing children (23 males; mean age 5 y 3 mo [SD 1 y 5 mo], range 2 y 6 mo-8 y). The intraclass correlation coefficients (0.79-1.00) indicated good reliability. Absolute agreement was high, standard errors of measurement ranged from 4.5 to 6.8%, and smallest detectable differences ranged from 12.5 to 19.0%. The VOAA-DDD-R can be reliably and validly used by occupational and physical therapists to assess upper-limb capacity, performance, and developmental disregard in children (2 y 6 mo-8 y) with CP. © The Authors. Developmental Medicine & Child Neurology © 2012 Mac Keith Press.

  20. Visible light responsive Cu2MoS4 nanosheets incorporated reduced graphene oxide for efficient degradation of organic pollutant

    NASA Astrophysics Data System (ADS)

    Rameshbabu, R.; Vinoth, R.; Navaneethan, M.; Harish, S.; Hayakawa, Y.; Neppolian, B.

    2017-10-01

    Visible light active copper molybdenum sulfide (Cu2MoS4) nanosheets were successfully anchored on reduced graphene oxide (rGO) using facile hydrothermal method. During the hydrothermal reaction, reduction of graphene oxide into rGO and the formation of Cu2MoS4 nanosheets were successfully obtained. The charge transfer interaction between the rGO sheets and Cu2MoS4 nanosheets extended the absorption to visible region in comparison with bare Cu2MoS4 nanosheets i.e without rGO sheets. Furthermore, the notable photoluminescence quenching observed for Cu2MoS4/rGO nanocomposite revealed the effective role of rGO towards the significant inhibition of electron-hole pair recombination. The photocatalytic efficiencies of bare Cu2MoS4 and Cu2MoS4/rGO nanocomposite was evaluated for the degradation of methyl orange dye under visible irradiation (λ > 420 nm). A maximum photodegradation efficiency of 99% was achieved for Cu2MoS4/rGO nanocomposite, while only 64% photodegradation was noted for bare Cu2MoS4. The enhanced optical absorption in visible region, high surface area, and low charge carrier recombination in the presence of rGO sheets were the main reasons for the enhancement in photodegardation of MO dye. In addition, the resultant Cu2MoS4/rGO nanocomposite was found to be reusable for five successive cycles without significant loss in its photocatalytic performance.

  1. Re Effects on Phase Stability and Mechanical Properties of MoSS+Mo3Si+Mo5SiB2 alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Ying; Bei, Hongbin; George, Easo P

    2013-01-01

    Because of their high melting points and good oxidation resistance Mo-Si-B alloys are of interest as potential ultrahigh-temperature structural materials. But their major drawbacks are poor ductility and fracture toughness at room temperature. Since alloying with Re has been suggested as a possible solution, we investigate here the effects of Re additions on the microstructure and mechanical properties of a ternary alloy with the composition Mo-12.5Si-8.5B (at.%). This alloy has a three-phase microstructure consisting of Mo solid-solution (MoSS), Mo3Si, and Mo5SiB2 and our results show that up to 8.4 at.% Re can be added to it without changing its microstructuremore » or forming any brittle phase at 1600 C. Three-point bend tests using chevron-notched specimens showed that Re did not improve fracture toughness of the three-phase alloy. Nanoindentation performed on the MoSS phase in the three-phase alloy showed that Re increases Young s modulus, but does not lower hardness as in some Mo solid solution alloys. Based on our thermodynamic calculations and microstructural analyses, the lack of a Re softening effect is attributed to the increased Si levels in the Re-containing MoSS phase since Si is known to increase its hardness. This lack of softening is possibly why there is no Re-induced improvement in fracture toughness.« less

  2. Probing Interaction Between Platinum Group Metal (PGM) and Non-PGM Support Through Surface Characterization and Device Performance

    NASA Astrophysics Data System (ADS)

    Saha, Shibely

    High cost and limited abundance of Platinum (Pt) have hindered effective commercialization of Proton Exchange Membrane Fuel Cell and Electrolyzer. Efforts have been undertaken to reduce precious group metal (PGM) requirement for these devices without compromising the activity of the catalyst by using transition metal carbides (TMC) as non-PGM support thanks to their similar electronic and geometric structures as Pt. In this work Mo2C was selected as non-PGM support and Pt was used as the PGM of interest. We hypothesize that the hollow nanotube morphology of Mo2C support combined with Pt nano particles deposited on it via atomic layer deposition (ALD) technique would allow increased interaction between them which may increase the activity of Pt and Mo2C as well as maximize the Pt active surface area. Specifically, a rotary ALD equipment was used to grow Pt particles from atomic level to 2--3 nanometers by simply adjusting number of ALD cycles in order to probe the interaction between the deposited Pt nanoparticles and Mo2C nanotube support. Interaction between the Pt and Mo2 C was analyzed via surface characterization and electrochemical characterization. Interaction between Pt and Mo2C arises due to the lattice mismatch between Pt and Mo2C as well as electron migration between them. Lattice spacing analysis using high resolution transmission electron microscopy (HRTEM) images, combined with Pt binding energy shift in XPS results, clearly showed strong bonding between Pt nanoparticles and the Mo2C nanotube support in all the resultant Pt/Mo2C samples. We postulate that this strong interaction is responsible for the significantly enhanced durability observed in our constant potential electrolysis (CPE) and accelerated degradation testing (ADT). Of the three samples from different ALD cycles (15, 50 and 100), Mo2C nanotubes modified by 50 (1.07 wt% Pt loading) and 100 cycles (4.4 wt% Pt) of Pt deposition, showed higher HER and HOR activity per Pt mass than commercial 20% Pt supported on carbon black. Finally, we report the systematic investigation of the feasibility of this nanoscale Pt/Mo 2C catalyst in a practical device setting. The ORR activity of 100 Pt/Mo 2C was determined using the catalyst in the cathode of the MEA. Performance of this catalyst led the Pt utilization to be 10.35kWgPt-1 outperforming the target set by DOE for 2017--2020 by 30%.

  3. Highly Active Au/δ-MoC and Cu/δ-MoC Catalysts for the Conversion of CO2: The Metal/C Ratio as a Key Factor Defining Activity, Selectivity, and Stability.

    PubMed

    Posada-Pérez, Sergio; Ramírez, Pedro J; Evans, Jaime; Viñes, Francesc; Liu, Ping; Illas, Francesc; Rodriguez, José A

    2016-07-06

    The ever growing increase of CO2 concentration in the atmosphere is one of the main causes of global warming. Thus, CO2 activation and conversion toward valuable added compounds is a major scientific challenge. A new set of Au/δ-MoC and Cu/δ-MoC catalysts exhibits high activity, selectivity, and stability for the reduction of CO2 to CO with some subsequent selective hydrogenation toward methanol. Sophisticated experiments under controlled conditions and calculations based on density functional theory have been used to study the unique behavior of these systems. A detailed comparison of the behavior of Au/β-Mo2C and Au/δ-MoC catalysts provides evidence of the impact of the metal/carbon ratio in the carbide on the performance of the catalysts. The present results show that this ratio governs the chemical behavior of the carbide and the properties of the admetal, up to the point of being able to switch the rate and mechanism of the process for CO2 conversion. A control of the metal/carbon ratio paves the road for an efficient reutilization of this environmental harmful greenhouse gas.

  4. Highly active Au/δ-MoC and Cu/δ-MoC catalysts for the conversion of CO 2: The metal/C ratio as a key factor defining activity, selectivity, and stability

    DOE PAGES

    Posada-Pérez, Sergio; Ramírez, Pedro J.; Evans, Jaime; ...

    2016-06-16

    The ever growing increase of CO 2 concentration in the atmosphere is one of the main causes of global warming. Thus, CO 2 activation and conversion toward valuable added compounds is a major scientific challenge. A new set of Au/δ-MoC and Cu/δ-MoC catalysts exhibits high activity, selectivity, and stability for the reduction of CO 2 to CO with some subsequent selective hydrogenation toward methanol. Sophisticated experiments under controlled conditions and calculations based on density functional theory have been used to study the unique behavior of these systems. A detailed comparison of the behavior of Au/β-Mo 2C and Au/δ-MoC catalysts providesmore » evidence of the impact of the metal/carbon ratio in the carbide on the performance of the catalysts. The present results show that this ratio governs the chemical behavior of the carbide and the properties of the admetal, up to the point of being able to switch the rate and mechanism of the process for CO 2 conversion. Here, a control of the metal/carbon ratio paves the road for an efficient reutilization of this environmental harmful greenhouse gas.« less

  5. Constructing 2D layered MoS2 nanosheets-modified Z-scheme TiO2/WO3 nanofibers ternary nanojunction with enhanced photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Zhao, Jiangtao; Zhang, Peng; Fan, Jiajie; Hu, Junhua; Shao, Guosheng

    2018-02-01

    Advanced materials for photoelectrochemical H2 production are important to the field of renewable energy. Despite great efforts have been made, the present challenge in materials science is to explore highly active photocatalysts for splitting of water at low cost. In this work, we report a new composite material consisting of 2D layered MoS2 nanosheets grown on the presence of TiO2/WO3 nanofibers (TW) as a high-performance photocatalyst for H2 evolution. This composite material was prepared by a two-step simple process of electrospinning and hydrothermal. We found that the as-prepared TiO2/WO3@MoS2 (TWM) hybrid exhibited superior photocatalytic activity in the hydrogen evolution reaction (HER) even without the noble metal-cocatalyst. Importantly, the TiO2/WO3@MoS2 heterostructure with 60 wt% of MoS2 exhibits the highest hydrogen production rate. This great improvement is attributed to the positive synergetic effect between the WO3 and MoS2 components in this hybrid cocatalyst, which serve as hole collector and electron collector, respectively. Moreover, the effective charge separation was directly proved by ultraviolet photoelectron spectroscopy, electrochemical impedance spectroscopy, and photocurrent analysis.

  6. Correlation among personal, social performance and cognitive impairment in male schizophrenic patient

    NASA Astrophysics Data System (ADS)

    Damanik, R.; Effendy, E.; Camellia, V.

    2018-03-01

    Schizophrenia is a dramatic mental illness with tragic manifestation. The consequences of the illness are for the individual, affected his or her family and society. Schizophrenia is one of the twenty illness that causes Years Lost due to Disability. Treating only the symptom is insufficient. The aim of treatment must include the quality of life of aschizophrenic person. This study aims to examine the relationship between cognitive impairment and performance of the person with schizophrenia. Cognitive test is scaled with Indonesian version of Montreal Cognitive Assessment (MoCA-Ina), while personal and social performance isscaled with Personal and Social Performance scale. There are many studies that search the relationship between cognitive impairment and social functioning of schizophrenic patients, but this is the first study that uses PSP and MoCA-Ina. Both PSP and MoCA-Ina are easy to use but still have high sensitivity and specificity, and perhaps can build people’s interest to use it in clinical practice. Twenty-five male schizophrenic patients were assessed in Prof. M. Ildrem Mental Hospital of North Sumatera Province of Indonesia. Positive correlations between MoCA-Ina and PSP score were identified. Clinicians should pay attention to cognitive and might give some early intervention to it.

  7. Activating Aluminum Reactivity with Fluoropolymer Coatings for Improved Energetic Composite Combustion.

    PubMed

    McCollum, Jena; Pantoya, Michelle L; Iacono, Scott T

    2015-08-26

    Aluminum (Al) particles are passivated by an aluminum oxide (Al2O3) shell. Energetic blends of nanometer-sized Al particles with liquid perfluorocarbon-based oxidizers such as perfluoropolyethers (PFPE) excite surface exothermic reaction between fluorine and the Al2O3 shell. The surface reaction promotes Al particle reactivity. Many Al-fueled composites use solid oxidizers that induce no Al2O3 surface exothermicity, such as molybdenum trioxide (MoO3) or copper oxide (CuO). This study investigates a perfluorinated polymer additive, PFPE, incorporated to activate Al reactivity in Al-CuO and Al-MoO3. Flame speeds, differential scanning calorimetry (DSC), and quadrupole mass spectrometry (QMS) were performed for varying percentages of PFPE blended with Al/MoO3 or Al/CuO to examine reaction kinetics and combustion performance. X-ray photoelectron spectroscopy (XPS) was performed to identify product species. Results show that the performance of the thermite-PFPE blends is highly dependent on the bond dissociation energy of the metal oxide. Fluorine-Al-based surface reaction with MoO3 produces an increase in reactivity, whereas the blends with CuO show a decline when the PFPE concentration is increased. These results provide new evidence that optimizing Al combustion can be achieved through activating exothermic Al surface reactions.

  8. Effects of HfO2 encapsulation on electrical performances of few-layered MoS2 transistor with ALD HfO2 as back-gate dielectric.

    PubMed

    Xu, Jingping; Wen, Ming; Zhao, Xinyuan; Liu, Lu; Song, Xingjuan; Lai, Pui-To; Tang, Wing-Man

    2018-08-24

    The carrier mobility of MoS 2 transistors can be greatly improved by the screening role of high-k gate dielectric. In this work, atomic-layer deposited (ALD) HfO 2 annealed in NH 3 is used to replace SiO 2 as the gate dielectric to fabricate back-gated few-layered MoS 2 transistors, and good electrical properties are achieved with field-effect mobility (μ) of 19.1 cm 2 V -1 s -1 , subthreshold swing (SS) of 123.6 mV dec -1 and on/off ratio of 3.76 × 10 5 . Furthermore, enhanced device performance is obtained when the surface of the MoS 2 channel is coated by an ALD HfO 2 layer with different thicknesses (10, 15 and 20 nm), where the transistor with a 15 nm HfO 2 encapsulation layer exhibits the best overall electrical properties: μ = 42.1 cm 2 V -1 s -1 , SS = 87.9 mV dec -1 and on/off ratio of 2.72 × 10 6 . These improvements should be associated with the enhanced screening effect on charged-impurity scattering and protection from absorption of environmental gas molecules by the high-k encapsulation. The capacitance equivalent thickness of the back-gate dielectric (HfO 2 ) is only 6.58 nm, which is conducive to scaling of the MoS 2 transistors.

  9. Hierarchical Fe3O4@MoS2/Ag3PO4 magnetic nanocomposites: Enhanced and stable photocatalytic performance for water purification under visible light irradiation

    NASA Astrophysics Data System (ADS)

    Guo, Na; Li, Haiyan; Xu, Xingjian; Yu, Hongwen

    2016-12-01

    Novel hierarchical Fe3O4@MoS2/Ag3PO4 magnetic nanophotocatalyst with remarkable photocatalytic capability were prepared by simply depositing the Ag3PO4 onto the surface of crumpled Fe3O4@MoS2 nanosphere. The nanocomposites were characterized by XRD, TEM, HRTEM, XPS, BET, and UV-vis DRS. The outcome of the photocatalytic experiments demonstrated that Fe3O4@MoS2/Ag3PO4 with 6 wt% content of Ag3PO4 (FM/A-6%) showed the highest photocatalytic activity upon the degradation Congo red (CR) and Rhodamine B (RhB) under both visible light and simulated sunlight irradiation. In addition, FM/A-6% possessed larger specific surface area (76.56 m2/g) and excellent optical property. The possible Z-scheme charge carriers transfer mechanism for the enhanced photocatalytic properties of the FM/A-6% was also discussed. The Z-scheme charge carriers transfer mechanism established between MoS2 and Ag3PO4 facilitate the charge separation efficiency. Moreover, FM/A-6% can be separated and collected easily by external magnetic field and maintain high activity after five times photoreaction cycles. Given the remarkable photocatalytic performance and high stability of FM/A-6% nanocomposite, it is looking forward to exhibit great potential for applications in water purification.

  10. Montreal Cognitive Assessment 5-minute protocol is a brief, valid, reliable, and feasible cognitive screen for telephone administration.

    PubMed

    Wong, Adrian; Nyenhuis, David; Black, Sandra E; Law, Lorraine S N; Lo, Eugene S K; Kwan, Pauline W L; Au, Lisa; Chan, Anne Y Y; Wong, Lawrence K S; Nasreddine, Ziad; Mok, Vincent

    2015-04-01

    The National Institute of Neurological Disorders and Stroke-Canadian Stroke Network Vascular Cognitive Impairment Harmonization working group proposed a brief cognitive protocol for screening of vascular cognitive impairment. We investigated the validity, reliability, and feasibility of the Montreal Cognitive Assessment 5-minute protocol (MoCA 5-minute protocol) administered over the telephone. Four items examining attention, verbal learning and memory, executive functions/language, and orientation were extracted from the MoCA to form the MoCA 5-minute protocol. One hundred four patients with stroke or transient ischemic attack, including 53 with normal cognition (Clinical Dementia Rating, 0) and 51 with cognitive impairment (Clinical Dementia Rating, 0.5 or 1), were administered the MoCA in clinic and a month later, the MoCA 5-minute protocol over the telephone. Administration of the MoCA 5-minute protocol took 5 minutes over the telephone. Total score of the MoCA 5-minute protocol correlated negatively with age (r=-0.36; P<0.001) and positively with years of education (r=0.41; P<0.001) but not with sex (ρ=0.03; P=0.773). Total scores of the MoCA and MoCA 5-minute protocol were highly correlated (r=0.87; P<0.001). The MoCA 5-minute protocol performed equally well as the MoCA in differentiating patients with cognitive impairment from those without (areas under receiver operating characteristics curve for MoCA 5-minute protocol, 0.78; MoCA=0.74; P>0.05 for difference; Cohen d for group difference, 0.80-1.13). It differentiated cognitively impaired patients with executive domain impairment from those without (areas under receiver operating characteristics curve, 0.89; P<0.001; Cohen d=1.7 for group difference). Thirty-day test-retest reliability was excellent (intraclass correlation coefficient, 0.89). The MoCA 5-minute protocol is a free, valid, and reliable cognitive screen for stroke and transient ischemic attack. It is brief and highly feasible for telephone administration. © 2015 American Heart Association, Inc.

  11. Short-term blueberry-enriched diet prevents and reverses object recognition memory loss in aging rats.

    PubMed

    Malin, David H; Lee, David R; Goyarzu, Pilar; Chang, Yu-Hsuan; Ennis, Lalanya J; Beckett, Elizabeth; Shukitt-Hale, Barbara; Joseph, James A

    2011-03-01

    Previously, 4 mo of a blueberry-enriched (BB) antioxidant diet prevented impaired object recognition memory in aging rats. Experiment 1 determined whether 1- and 2-mo BB diets would have a similar effect and whether the benefits would disappear promptly after terminating the diets. Experiment 2 determined whether a 1-mo BB diet could subsequently reverse existing object memory impairment in aging rats. In experiment 1, Fischer-344 rats were maintained on an appropriate control diet or on 1 or 2 mo of the BB diet before testing object memory at 19 mo postnatally. In experiment 2, rats were tested for object recognition memory at 19 mo and again at 20 mo after 1 mo of maintenance on a 2% BB or control diet. In experiment 1, the control group performed no better than chance, whereas the 1- and 2-mo BB diet groups performed similarly and significantly better than controls. The 2-mo BB-diet group, but not the 1-mo group, maintained its performance over a subsequent month on a standard laboratory diet. In experiment 2, the 19-mo-old rats performed near chance. At 20 mo of age, the rats subsequently maintained on the BB diet significantly increased their object memory scores, whereas the control diet group exhibited a non-significant decline. The change in object memory scores differed significantly between the two diet groups. These results suggest that a considerable degree of age-related object memory decline can be prevented and reversed by brief maintenance on BB diets. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Effects of binders on the electrochemical performance of rechargeable magnesium batteries

    NASA Astrophysics Data System (ADS)

    Wang, Nan; NuLi, Yanna; Su, Shuojian; Yang, Jun; Wang, Jiulin

    2017-02-01

    A comparative study on the effects of different binders on the electrochemical performance of rechargeable magnesium batteries with Mo6S8 cathode is conducted for the first time. The selected binders are commercial organic-soluble polyvinylidene fluoride (PVDF), water-soluble poly(acrylic acid) (PAA), poly(vinyl alcohol) (PVA), gelatin, sodium alginate (SA) and Beta-cyclodextrin (β-CD). The binders significantly affect the physical properties, thus the electrochemical performance of Mo6S8 cathode. Compared with those using traditional PVDF binder, Mo6S8 electrodes with PAA and PVA exhibit enhanced cycling stabilities and rate capabilities, which are attributed to the improved cohesion among the electrode constituents and adhesion between the electrode laminate and the current collector. In addition, the anodic stability of these binders is not only related to the chemical structure of binders, but also to the uniformity of electrode surface. SA binder shows low anodic stability duo to containing easily oxidized groups. Non-uniform electrode surface decreases the anodic stability of PVDF based Mo6S8 electrode. Gelatin can be used as a binder in the formulation of high voltage cathodes for rechargeable magnesium batteries.

  13. MoO2-ordered mesoporous carbon nanocomposite as an anode material for lithium-ion batteries.

    PubMed

    Zeng, Lingxing; Zheng, Cheng; Deng, Cuilin; Ding, Xiaokun; Wei, Mingdeng

    2013-03-01

    In the present work, the nanocomposite of MoO2-ordered mesoporous carbon (MoO2-OMC) was synthesized for the first time using a carbon thermal reduction route and the mesoporous carbon as the nanoreactor. The synthesized nanocomposite was characterized by X-ray diffraction (XRD), thermogravimetric analysis (TGA), N2 adsorption-desorption, scanning electron microscopy (SEM), and transmission electron microscopy (TEM) measurements. Furthermore, this nanocomposite was used as an anode material for Li-ion intercalation and exhibited large reversible capacity, high rate performance, and good cycling stability. For instance, a high reversible capacity of 689 mAh g(-1) can remain after 50 cycles at a current density of 50 mA g(-1). It is worth mentioning that the MoO2-OMC nanocomposite electrode can attain a high reversible capacity of 401 mAh g(-1) at a current density as high as 2 A g(-1). These results might be due to the intrinsic characteristics of nanocomposite, which offered a better accommodation of the strain and volume changes and a shorter path for Li-ion and electron transport, leading to the improved capacity and enhanced rate capability.

  14. One-Pot Synthesis of Tunable Crystalline Ni3 S4 @Amorphous MoS2 Core/Shell Nanospheres for High-Performance Supercapacitors.

    PubMed

    Zhang, Yu; Sun, Wenping; Rui, Xianhong; Li, Bing; Tan, Hui Teng; Guo, Guilue; Madhavi, Srinivasan; Zong, Yun; Yan, Qingyu

    2015-08-12

    Transition metal sulfides gain much attention as electrode materials for supercapacitors due to their rich redox chemistry and high electrical conductivity. Designing hierarchical nanostructures is an efficient approach to fully utilize merits of each component. In this work, amorphous MoS(2) is firstly demonstrated to show specific capacitance 1.6 times as that of the crystalline counterpart. Then, crystalline core@amorphous shell (Ni(3)S(4)@MoS(2)) is prepared by a facile one-pot process. The diameter of the core and the thickness of the shell can be independently tuned. Taking advantages of flexible protection of amorphous shell and high capacitance of the conductive core, Ni(3)S(4) @amorphous MoS(2) nanospheres are tested as supercapacitor electrodes, which exhibit high specific capacitance of 1440.9 F g(-1) at 2 A g(-1) and a good capacitance retention of 90.7% after 3000 cycles at 10 A g(-1). This design of crystalline core@amorphous shell architecture may open up new strategies for synthesizing promising electrode materials for supercapacitors. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Synthesizing 2D MoS2 Nanofins on carbon nanospheres as catalyst support for Proton Exchange Membrane Fuel Cells.

    PubMed

    Hu, Yan; Chua, Daniel H C

    2016-06-15

    Highly dense 2D MoS2 fin-like nanostructures on carbon nanospheres were fabricated and formed the main catalyst support structure in the oxygen reduction reaction (ORR) for polymer electrolyte membrane (PEM) fuel cells. These nanofins were observed growing perpendicular to the carbon nanosphere surface in random orientations and high resolution transmission electron microscope confirmed 2D layers. The PEM fuel cell test showed enhanced electrochemical activity with good stability, generating over 8.5 W.mgPt(-1) as compared to standard carbon black of 7.4 W.mgPt(-1) under normal operating conditions. Electrochemical Impedance Spectroscopy confirmed that the performance improvement is highly due to the excellent water management of the MoS2 lamellar network, which facilitates water retention at low current density and flood prevention at high current density. Reliability test further demonstrated that these nanofins are highly stable in the electrochemical reaction and is an excellent ORR catalyst support.

  16. Synthesizing 2D MoS2 Nanofins on carbon nanospheres as catalyst support for Proton Exchange Membrane Fuel Cells

    PubMed Central

    Hu, Yan; Chua, Daniel H. C.

    2016-01-01

    Highly dense 2D MoS2 fin-like nanostructures on carbon nanospheres were fabricated and formed the main catalyst support structure in the oxygen reduction reaction (ORR) for polymer electrolyte membrane (PEM) fuel cells. These nanofins were observed growing perpendicular to the carbon nanosphere surface in random orientations and high resolution transmission electron microscope confirmed 2D layers. The PEM fuel cell test showed enhanced electrochemical activity with good stability, generating over 8.5 W.mgPt−1 as compared to standard carbon black of 7.4 W.mgPt−1 under normal operating conditions. Electrochemical Impedance Spectroscopy confirmed that the performance improvement is highly due to the excellent water management of the MoS2 lamellar network, which facilitates water retention at low current density and flood prevention at high current density. Reliability test further demonstrated that these nanofins are highly stable in the electrochemical reaction and is an excellent ORR catalyst support. PMID:27302135

  17. Uptake of trace elements and radionuclides from uranium mill tailings by four-wing saltbush (Atriplex canescens) and alkali sacaton (Sporobolus airoides). [Radium 226; Uranium; Molybdenum; Selenium; Vanadium; Astatine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dreesen, D.R.; Marple, M.L.

    1979-01-01

    A greenhouse experiment was performed to determine the uptake of trace elements and radionuclides from uranium mill tailings by native plant species. Four-wing saltbush and alkali sacaton were grown in alkaline tailings covered with soil and in soil alone as controls. The tailings material was highly enriched in Ra-226, Mo, U, Se, V, and As compared with three local soils. The shrub grown in tailings had elevated concentrations of Mo, Se, Ra-226, U, As, and Na compared with the controls. Alkali sacaton contained high concentrations of Mo, Se, Ra-226, and Ni when grown on tailings. Molybdenum and selenium concentrations inmore » plants grown in tailings are above levels reported to be toxic to grazing animals. These results indicate that the bioavailability of Mo and Se in alkaline environments makes these elements among the most hazardous contaminants present in uranium mill wastes.« less

  18. Phase Restructuring in Transition Metal Dichalcogenides for Highly Stable Energy Storage.

    PubMed

    Leng, Kai; Chen, Zhongxin; Zhao, Xiaoxu; Tang, Wei; Tian, Bingbing; Nai, Chang Tai; Zhou, Wu; Loh, Kian Ping

    2016-09-28

    Achieving homogeneous phase transition and uniform charge distribution is essential for good cycle stability and high capacity when phase conversion materials are used as electrodes. Herein, we show that chemical lithiation of bulk 2H-MoS 2 distorts its crystalline domains in three primary directions to produce mosaic-like 1T' nanocrystalline domains, which improve phase and charge uniformity during subsequent electrochemical phase conversion. 1T'-Li x MoS 2 , a macroscopic dense material with interconnected nanoscale grains, shows excellent cycle stability and rate capability in a lithium rechargeable battery compared to bulk or exfoliated-restacked MoS 2 . Transmission electron microscopy studies reveal that the interconnected MoS 2 nanocrystals created during the phase change process are reformable even after multiple cycles of galvanostatic charging/discharging, which allows them to play important roles in the long term cycling performance of the chemically intercalated TMD materials. These studies shed light on how bulk TMDs can be processed into quasi-2D nanophase material for stable energy storage.

  19. Highly sensitive MoS2 photodetectors with graphene contacts

    NASA Astrophysics Data System (ADS)

    Han, Peize; St. Marie, Luke; Wang, Qing X.; Quirk, Nicholas; El Fatimy, Abdel; Ishigami, Masahiro; Barbara, Paola

    2018-05-01

    Two-dimensional materials such as graphene and transition metal dichalcogenides (TMDs) are ideal candidates to create ultra-thin electronics suitable for flexible substrates. Although optoelectronic devices based on TMDs have demonstrated remarkable performance, scalability is still a significant issue. Most devices are created using techniques that are not suitable for mass production, such as mechanical exfoliation of monolayer flakes and patterning by electron-beam lithography. Here we show that large-area MoS2 grown by chemical vapor deposition and patterned by photolithography yields highly sensitive photodetectors, with record shot-noise-limited detectivities of 8.7 × 1014 Jones in ambient condition and even higher when sealed with a protective layer. These detectivity values are higher than the highest values reported for photodetectors based on exfoliated MoS2. We study MoS2 devices with gold electrodes and graphene electrodes. The devices with graphene electrodes have a tunable band alignment and are especially attractive for scalable ultra-thin flexible optoelectronics.

  20. Highly sensitive MoS2 photodetectors with graphene contacts.

    PubMed

    Han, Peize; St Marie, Luke; Wang, Qing X; Quirk, Nicholas; El Fatimy, Abdel; Ishigami, Masahiro; Barbara, Paola

    2018-05-18

    Two-dimensional materials such as graphene and transition metal dichalcogenides (TMDs) are ideal candidates to create ultra-thin electronics suitable for flexible substrates. Although optoelectronic devices based on TMDs have demonstrated remarkable performance, scalability is still a significant issue. Most devices are created using techniques that are not suitable for mass production, such as mechanical exfoliation of monolayer flakes and patterning by electron-beam lithography. Here we show that large-area MoS 2 grown by chemical vapor deposition and patterned by photolithography yields highly sensitive photodetectors, with record shot-noise-limited detectivities of 8.7 × 10 14 Jones in ambient condition and even higher when sealed with a protective layer. These detectivity values are higher than the highest values reported for photodetectors based on exfoliated MoS 2 . We study MoS 2 devices with gold electrodes and graphene electrodes. The devices with graphene electrodes have a tunable band alignment and are especially attractive for scalable ultra-thin flexible optoelectronics.

  1. Microstructural characterization of a thin film ZrN diffusion barrier in an As-fabricated U-7Mo/Al matrix dispersion fuel plate

    NASA Astrophysics Data System (ADS)

    Keiser, Dennis D.; Perez, Emmanuel; Wiencek, Tom; Leenaers, Ann; Van den Berghe, Sven

    2015-03-01

    The United States High Performance Research Reactor Fuel Development program is developing low enriched uranium fuels for application in research and test reactors. One concept utilizes U-7 wt.% Mo (U-7Mo) fuel particles dispersed in Al matrix, where the fuel particles are coated with a 1 μm-thick ZrN coating. The ZrN serves as a diffusion barrier to eliminate a deleterious reaction that can occur between U-7Mo and Al when a dispersion fuel is irradiated under aggressive reactor conditions. To investigate the final microstructure of a physically-vapor-deposited ZrN coating in a dispersion fuel plate after it was fabricated using a rolling process, characterization samples were taken from a fuel plate that was fabricated at 500 °C using ZrN-coated U-7Mo particles, Al matrix and AA6061 cladding. Scanning electron and transmission electron microscopy analysis were performed. Data from these analyses will be used to support future microstructural examinations of irradiated fuel plates, in terms of understanding the effects of irradiation on the ZrN microstructure, and to determine the role of diffusion barrier microstructure in eliminating fuel/matrix interactions during irradiation. The as-fabricated coating was determined to be cubic-ZrN (cF8) phase. It exhibited a columnar microstructure comprised of nanometer-sized grains and a region of relatively high porosity, mainly near the Al matrix. Small impurity-containing phases were observed at the U-7Mo/ZrN interface, and no interaction zone was observed at the ZrN/Al interface. The bonding between the U-7Mo and ZrN appeared to be mechanical in nature. A relatively high level of oxygen was observed in the ZrN coating, extending from the Al matrix in the ZrN coating in decreasing concentration. The above microstructural characteristics are discussed in terms of what may be most optimal for a diffusion barrier in a dispersion fuel plate application.

  2. Thermodynamic properties of gaseous cerium molybdates and tungstates studied by Knudsen effusion mass spectrometry.

    PubMed

    Shugurov, S M; Panin, A I; Lopatin, S I

    2018-06-21

    CeO 2 -WO 3 and CeO 2 -MoO 3 catalysts have shown excellent performance in the selective reduction of NO x by ammonia (NH 3 -selective catalytic reduction) over a wide temperature range. Strong interaction between CeO 2 and WO 3 or MoO 3 might be the dominant reason for the high activity of these mixed oxides. Studies of ceria-containing gaseous salts involve considerable experimental difficulties, since the transition of such salts to vapor requires high temperatures. To predict the possibility of the existence of gaseous associates formed by cerium and molybdenum (tungsten) oxides it is important to know their thermodynamic characteristics. Until the present investigation, gaseous cerium oxyacid salts were unknown. Knudsen effusion mass spectrometry was used to determine the partial pressures of vapor species and the equilibrium constants of gas-phase reactions, as well as the formation and atomization enthalpies of gaseous cerium molybdates and tungstates. CeO 2 was evaporated from molybdenum and tungsten effusion cells containing gold metal as a pressure standard. A theoretical study of gaseous cerium gaseous molybdates and tungstates was performed by several quantum chemical methods. In the temperature range 2050-2400 K, CeO, CeO 2 , XO 2 , XO 3 , CeWO 3 , CeXO 4 , CeXO 5 (X = Mo, W) and CeMo 2 O 7 were found to be the main vapor species over the CeO 2 - Mo (W) systems. On the basis of the equilibrium constants of the gaseous reactions, the standard formation enthalpies of gaseous CeWO 3 , CeXO 4 , CeXO 5 (X = Mo, W) and CeMo 2 O 7 at 298 K were determined. Energetically favorable structures of gaseous cerium salts were found and vibrational frequencies were evaluated in the harmonic approximation. The thermal stability of gaseous cerium oxyacid salts was confirmed by high-temperature mass spectrometry. Reaction enthalpies of the gaseous cerium molybdates and tungstates from gaseous cerium, molybdenum and tungsten oxides were evaluated theoretically and the obtained values are in reasonable agreement with the experimental one. This article is protected by copyright. All rights reserved.

  3. In situ TEM and synchrotron characterization of U–10Mo thin specimen annealed at the fast reactor temperature regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yun, Di, E-mail: diyun1979@xjtu.edu.cn; Xi'an Jiao Tong University, 28 Xian Ning West Road, Xi'an 710049; Mo, Kun

    2015-12-15

    U–Mo metallic alloys have been extensively used for the Reduced Enrichment for Research and Test Reactors (RERTR) program, which is now known as the Office of Material Management and Minimization under the Conversion Program. This fuel form has also recently been proposed as fast reactor metallic fuels in the recent DOE Ultra-high Burnup Fast Reactor project. In order to better understand the behavior of U–10Mo fuels within the fast reactor temperature regime, a series of annealing and characterization experiments have been performed. Annealing experiments were performed in situ at the Intermediate Voltage Electron Microscope (IVEM-Tandem) facility at Argonne National Laboratorymore » (ANL). An electro-polished U–10Mo alloy fuel specimen was annealed in situ up to 700 °C. At an elevated temperature of about 540 °C, the U–10Mo specimen underwent a relatively slow microstructure transition. Nano-sized grains were observed to emerge near the surface. At the end temperature of 700 °C, the near-surface microstructure had evolved to a nano-crystalline state. In order to clarify the nature of the observed microstructure, Laue diffraction and powder diffraction experiments were carried out at beam line 34-ID of the Advanced Photon Source (APS) at ANL. Phases present in the as-annealed specimen were identified with both Laue diffraction and powder diffraction techniques. The U–10Mo was found to recrystallize due to thermally-induced recrystallization driven by a high density of pre-existing dislocations. A separate in situ annealing experiment was carried out with a Focused Ion Beam processed (FIB) specimen. A similar microstructure transition occurred at a lower temperature of about 460 °C with a much faster transition rate compared to the electro-polished specimen. - Highlights: • TEM annealing experiments were performed in situ at the IVEM facility up to fast reactor temperature. • At 540 °C, the U-10Mo specimen underwent a slow microstructure transition where nano-sized grains were observed to emerge. • UO{sub 2} phase exists at the thin area of the as-annealed specimen whereas U-10Mo γ phase dominated at the thicker part. • Bcc γ U-10Mo recrystallized to become nano-meter sized crystallites near the specimen surface. • A separateannealing experiment was conducted with a FIB processed specimen where similar transition occurred at a lower temperature of 460 °C with a faster rate.« less

  4. MoS2-Filled PEEK Composite as a Self-Lubricating Material for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Theiler, Geraldine; Gradt, Thomas

    2010-01-01

    At BAM, several projects were conducted in the past years dealing with the tribological properties of friction couples at cryogenic temperature and in vacuum environment. Promising candidates for vacuum application are MoS2-filled PEEK/PTFE composites, which showed a friction coefficient as low as 0.03 in high vacuum. To complete the tribological profile of these composites, further tests were performed in ultra-high vacuum (UHV) at room temperature. In this paper, friction and stick slip behavior, as well as outgassing characteristics during the test are presented.

  5. Highly anisotropic solar-blind UV photodetector based on large-size two-dimensional α-MoO3 atomic crystals

    NASA Astrophysics Data System (ADS)

    Zhong, Mianzeng; Zhou, Ke; Wei, Zhongming; Li, Yan; Li, Tao; Dong, Huanli; Jiang, Lang; Li, Jingbo; Hu, Wenping

    2018-07-01

    Orthorhombic MoO3 (α-MoO3) is a typical layered n-type semiconductor with optical band gap over 2.7 eV, which have been widely studied in catalysis, gas sensing, lithium-ion batteries, field-emission, photoelectrical, photochromic and electrochromic devices, supercapacitors and organic solar cells. However, the bottleneck of generation large size atomic thin two-dimensional (2D) α-MoO3 crystals remain challenging this field (normally several micrometers size). Herein, we developed a facile vapor–solid (VS) process for controllable growth of large-size 2D α-MoO3 single crystals with a few nanometers thick and over 300 μm in lateral size. High-performance solar-blind photodetectors were fabricated based on individual 2D α-MoO3 single crystal. The detectors demonstrate outstanding optoelectronic properties under solar-blind UV light (254 nm), with a photoresponsivity of 67.9 A W‑1, external quantum efficiency of 3.3  ×  104%. More important, the devices showed strong in-plane anisotropy in optoelectronic response and transport properties, e.g. the photocurrent along b-axis was found to be 5 times higher than the values along c-axis under 254 nm UV light, and current ON/OFF ratio and mobility anisotropy is about 2 times high. Our work suggests an optimized synthesis routine for 2D crystals, and the great potential of 2D oxides in functional optoelectronics.

  6. Multi-component solid solution alloys having high mixing entropy

    DOEpatents

    Bei, Hongbin

    2015-10-06

    A multi-component high-entropy alloy includes a composition selected from the following group: VNbTaTiMoWRe, VNbTaTiMoW, VNbTaTiMoRe, VNbTaTiWRe, VNbTaMoWRe, VNbTiMoWRe, VTaTiMoWRe, NbTaTiMoWRe, VNbTaTiMo, VNbTaTiW, VNbTaMoW, VNbTiMoW, VTaTiMoW, NbTaTiMoW, VNbTaTiRe, VNbTaMoRe, VNbTiMoRe, VTaTiMoRe, NbTaTiMoRe, VNbTaWRe, VNbTiWRe, VTaTiWRe, NbTaTiWRe, VNbMoWRe, VTaMoWRe, NbTaMoWRe, VTiMoWRe, NbTiMoWRe, TaTiMoWRe, wherein relative amounts of each element vary by no more than .+-.15 atomic %.

  7. Synergetic effect of MoS{sub 2} and g-C{sub 3}N{sub 4} as cocatalysts for enhanced photocatalytic H{sub 2} production activity of TiO{sub 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Xixian; Huang, Hongyu, E-mail: huanghy@ms.giec.ac.cn; Kubota, Mitsuhiro

    Highlights: • A hydrogen evolution reaction of g-C{sub 3}N{sub 4}/MoS{sub 2}/TiO{sub 2} photocatalyst was synthesized. • g-C{sub 3}N{sub 4}/MoS{sub 2}/TiO{sub 2} presents highly efficient H{sub 2} evolution without noble metals. • The effect of g-C{sub 3}N{sub 4} and MoS{sub 2} co-catalyst content in the composites was studied. • The mechanism of g-C{sub 3}N{sub 4}/MoS{sub 2}/TiO{sub 2} photocatalyst under UV–vis light was discussed. - Abstract: In this paper, we report a new g-C{sub 3}N{sub 4}/MoS{sub 2}/TiO{sub 2} composite material as a high-performance photocatalyst for H{sub 2} evolution. Without a noble-metal cocatalyst, the g-C{sub 3}N{sub 4}/MoS{sub 2}/TiO{sub 2} composite reaches a highmore » H{sub 2} production rate of 125 μmol h{sup −1} when the content of the g-C{sub 3}N{sub 4}/MoS{sub 2} cocatalyst is 1.0 wt.% and the content of g-C{sub 3}N{sub 4} in this cocatalyst is 10 wt.%. This unusual photocatalytic activity is attributed to the positive synergetic effect between the MoS{sub 2} and g-C{sub 3}N{sub 4} components in this cocatalyst, which serve as an electron collector and a source of active adsorption sites, respectively.« less

  8. Impact of molybdenum out diffusion and interface quality on the performance of sputter grown CZTS based solar cells.

    PubMed

    Dalapati, Goutam Kumar; Zhuk, Siarhei; Masudy-Panah, Saeid; Kushwaha, Ajay; Seng, Hwee Leng; Chellappan, Vijila; Suresh, Vignesh; Su, Zhenghua; Batabyal, Sudip Kumar; Tan, Cheng Cheh; Guchhait, Asim; Wong, Lydia Helena; Wong, Terence Kin Shun; Tripathy, Sudhiranjan

    2017-05-02

    We have investigated the impact of Cu 2 ZnSnS 4 -Molybdenum (Mo) interface quality on the performance of sputter-grown Cu 2 ZnSnS 4 (CZTS) solar cell. Thin film CZTS was deposited by sputter deposition technique using stoichiometry quaternary CZTS target. Formation of molybdenum sulphide (MoS x ) interfacial layer is observed in sputter grown CZTS films after sulphurization. Thickness of MoS x layer is found ~142 nm when CZTS layer (550 nm thick) is sulphurized at 600 °C. Thickness of MoS x layer significantly increased to ~240 nm in case of thicker CZTS layer (650 nm) under similar sulphurization condition. We also observe that high temperature (600 °C) annealing suppress the elemental impurities (Cu, Zn, Sn) at interfacial layer. The amount of out-diffused Mo significantly varies with the change in sulphurization temperature. The out-diffused Mo into CZTS layer and reconstructed interfacial layer remarkably decreases series resistance and increases shunt resistance of the solar cell. The overall efficiency of the solar cell is improved by nearly five times when 600 °C sulphurized CZTS layer is applied in place of 500 °C sulphurized layer. Molybdenum and sulphur diffusion reconstruct the interface layer during heat treatment and play the major role in charge carrier dynamics of a photovoltaic device.

  9. Hydrothermally synthesized flower like MoS2 microsphere: A highly efficient adsorbent for methylene blue dye removal

    NASA Astrophysics Data System (ADS)

    Panda, Jnanranjan; Tudu, Bharati

    2018-05-01

    Herein, a flower like MoS2 (M1) microsphere assembled by layered porous nanosheet was successfully prepared by facile hydrothermal synthesis procedure. The structural, chemical and morphological characterizations for the as synthesized sample (M1) were carried out by powder x-ray diffraction (PXRD), Fourier-transform infrared (FTIR) and Field Emission Scanning Electron microscope (FESEM) respectively and spectroscopic characterization was performed by UV-Vis absorption and photoluminescence emission spectroscopy. The photocatalytic activity of the product was evaluated through photocatalytic degradation of Methylene Blue under visible light irradiation. The results indicate that layered MoS2structures possess significant adsorption ability, which may be useful for further research and practical applications of the layered MoS2 adsorbent in wastewater treatment.

  10. Ultra-thin bimetallic alloy nanowires with porous architecture/monolayer MoS2 nanosheet as a highly sensitive platform for the electrochemical assay of hazardous omethoate pollutant.

    PubMed

    Song, Dandan; Li, Qian; Lu, Xiong; Li, Yanshan; Li, Yan; Wang, Yuanzhe; Gao, Faming

    2018-06-18

    A novel electrochemical biosensor was designed for sensitive detection of organophosphate pesticides based on three-dimensional porous bimetallic alloy architecture with ultrathin nanowires (PdCo NWs, PdCu NWs, PdNi NWs) and monolayer MoS 2 nanosheet (m-MoS 2 ). The bimetallic alloy NWs/m-MoS 2 nanomaterials were used as a sensing platform for electrochemical analysis of omethoate, a representative organophosphate pesticide, via acetylcholinesterase inhibition pathway. We demonstrated that all three bimetallic alloy NWs enhanced electrochemical responses of enzymatic biosensor, benefited from bimetallic synergistic action and porous structure. In particular, PdNi NWs outperformed other two bimetallic alloy. Moreover, PdNi NWs/m-MoS 2 as an electronic transducer is superior to the corresponding biosensor in the absence of monolayer MoS 2 nanosheet, which arise from synergistic signal amplification effect between different components. Under optimized conditions, the developed biosensor on the basis of PdNi NWs/m-MoS 2 shows outstanding performance for the electrochemical assay of omethoate, such as a wide linear range (10 -13 M∼10 -7 M), a low detection limit of 0.05 pM at a signal-to-noise ratio of 3, high sensitivity and long-time stability. The results demonstrate that bimetallic alloy NWs/m-MoS 2 nanocomposites could be excellent transducers to promote electron transfer for the electrochemical reactions, holding great potentials in the construction of current and future biosensing devices. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Laser direct writing and inkjet printing for a sub-2 μm channel length MoS2 transistor with high-resolution electrodes

    NASA Astrophysics Data System (ADS)

    Kwon, Hyuk-Jun; Chung, Seungjun; Jang, Jaewon; Grigoropoulos, Costas P.

    2016-10-01

    Patterns formed by the laser direct writing (LDW) lithography process are used either as channels or barriers for MoS2 transistors fabricated via inkjet printing. Silver (Ag) nanoparticle ink is printed over patterns formed on top of the MoS2 flakes in order to construct high-resolution source/drain (S/D) electrodes. When positive photoresist is used, the produced grooves are filled with inkjetted Ag ink by capillary forces. On the other hand, in the case of negative photoresist, convex barrier-like patterns are written on the MoS2 flakes and patterns, dividing the printed Ag ink into the S/D electrodes by self-alignment. LDW lithography combined with inkjet printing is applied to MoS2 thin-film transistors that exhibit moderate electrical performance such as mobility and subthreshold swing. However, especially in the linear operation regime, their features are limited by the contact effect. The Y-function method can exclude the contact effect and allow proper evaluation of the maximum available mobility and contact resistance. The presented fabrication methods may facilitate the development of cost-effective fabrication processes.

  12. Persistent structural adaptation in the lungs of guinea pigs raised at high altitude.

    PubMed

    Ravikumar, Priya; Bellotto, Dennis J; Hsia, Connie C W

    2015-03-01

    Laboratory guinea pigs raised at high altitude (HA, 3800 m) for up to 6 mo exhibit enhanced alveolar growth and remodeling (Hsia et al., 2005. Resp. Physiol. Neurobiol. 147, 105-115). To determine whether initial HA-induced structural enhancement persists following return to intermediate altitude (IA), we raised weanling guinea pigs at (a) HA for 11-12 mo, (b) IA (1200 m) for 11-12 mo, and (c) HA for 4 mo followed by IA for 7-8 mo (HA-to-IA). Morphometric analysis was performed under light and electron microscopy. Body weight and lung volume were similar among groups. Prolonged HA residence increased alveolar epithelium and interstitium volumes while reducing alveolar-capillary blood volume. The HA-induced gains in type-1 epithelium volume and alveolar surface area were no longer present following return to IA whereas volume increases in type-2 epithelium and interstitium and the reduction in alveolar duct volume persisted. Results demonstrate persistent augmentation of some but not all aspects of lung structure throughout prolonged HA residence, with partial reversibility following re-acclimatization to IA. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Enhancement of photovoltaic response in multilayer MoS2 induced by plasma doping.

    PubMed

    Wi, Sungjin; Kim, Hyunsoo; Chen, Mikai; Nam, Hongsuk; Guo, L Jay; Meyhofer, Edgar; Liang, Xiaogan

    2014-05-27

    Layered transition-metal dichalcogenides hold promise for making ultrathin-film photovoltaic devices with a combination of excellent photovoltaic performance, superior flexibility, long lifetime, and low manufacturing cost. Engineering the proper band structures of such layered materials is essential to realize such potential. Here, we present a plasma-assisted doping approach for significantly improving the photovoltaic response in multilayer MoS2. In this work, we fabricated and characterized photovoltaic devices with a vertically stacked indium tin oxide electrode/multilayer MoS2/metal electrode structure. Utilizing a plasma-induced p-doping approach, we are able to form p-n junctions in MoS2 layers that facilitate the collection of photogenerated carriers, enhance the photovoltages, and decrease reverse dark currents. Using plasma-assisted doping processes, we have demonstrated MoS2-based photovoltaic devices exhibiting very high short-circuit photocurrent density values up to 20.9 mA/cm(2) and reasonably good power-conversion efficiencies up to 2.8% under AM1.5G illumination, as well as high external quantum efficiencies. We believe that this work provides important scientific insights for leveraging the optoelectronic properties of emerging atomically layered two-dimensional materials for photovoltaic and other optoelectronic applications.

  14. The synergetic effect of MoS2 and graphene on Ag3PO4 for its ultra-enhanced photocatalytic activity in phenol degradation under visible light

    NASA Astrophysics Data System (ADS)

    Peng, Wen-Chao; Wang, Xi; Li, Xiao-Yan

    2014-06-01

    The photo-degradation of organic pollutants using solar light is an attractive chemical process for water pollution control. In this study, we synthesized a new composite material consisting of silver phosphate (Ag3PO4) sub-microcrystals grown on a layered molybdenum disulfide (MoS2) and graphene (GR) hybrid as a high-performance photocatalyst for the degradation of toxic organic pollutants. This composite photocatalyst was prepared via a simple two-step hydrothermal process that used sodium molybdate, thiourea and graphene oxide as precursors for the MoS2/GR hybrid and silver nitrate for the Ag3PO4 sub-microcrystals. The composite Ag3PO4-0.02(MoS2/0.005GR) was found to be the most effective catalyst for the photo-decomposition of 2,4-dichlorophenol under simulated solar light and visible light (λ >= 420 nm). The photocatalyst was also highly active for the degradation of nitrophenol and chlorophenol. The ultra photocatalytic activity of the novel catalyst arose from the synergetic effects of MoS2 and GR as cocatalysts in the composite. MoS2/GR nanosheets served as electron collectors for the interfacial electron transfer from Ag3PO4 to electron acceptors in the aqueous solution and thus enhanced the separation of the photo-generated electron-hole pairs and made the holes more available for organic oxidation. In addition, the presence of MoS2 and GR provided more active adsorption sites and allowed for the activation of dissolved O2 for organic degradation in water.The photo-degradation of organic pollutants using solar light is an attractive chemical process for water pollution control. In this study, we synthesized a new composite material consisting of silver phosphate (Ag3PO4) sub-microcrystals grown on a layered molybdenum disulfide (MoS2) and graphene (GR) hybrid as a high-performance photocatalyst for the degradation of toxic organic pollutants. This composite photocatalyst was prepared via a simple two-step hydrothermal process that used sodium molybdate, thiourea and graphene oxide as precursors for the MoS2/GR hybrid and silver nitrate for the Ag3PO4 sub-microcrystals. The composite Ag3PO4-0.02(MoS2/0.005GR) was found to be the most effective catalyst for the photo-decomposition of 2,4-dichlorophenol under simulated solar light and visible light (λ >= 420 nm). The photocatalyst was also highly active for the degradation of nitrophenol and chlorophenol. The ultra photocatalytic activity of the novel catalyst arose from the synergetic effects of MoS2 and GR as cocatalysts in the composite. MoS2/GR nanosheets served as electron collectors for the interfacial electron transfer from Ag3PO4 to electron acceptors in the aqueous solution and thus enhanced the separation of the photo-generated electron-hole pairs and made the holes more available for organic oxidation. In addition, the presence of MoS2 and GR provided more active adsorption sites and allowed for the activation of dissolved O2 for organic degradation in water. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr01654h

  15. Networks consolidation program: Maintenance and Operations (M&O) staffing estimates

    NASA Technical Reports Server (NTRS)

    Goodwin, J. P.

    1981-01-01

    The Mark IV-A consolidate deep space and high elliptical Earth orbiter (HEEO) missions tracking and implements centralized control and monitoring at the deep space communications complexes (DSCC). One of the objectives of the network design is to reduce maintenance and operations (M&O) costs. To determine if the system design meets this objective an M&O staffing model for Goldstone was developed which was used to estimate the staffing levels required to support the Mark IV-A configuration. The study was performed for the Goldstone complex and the program office translated these estimates for the overseas complexes to derive the network estimates.

  16. Contrast-to-noise ratio in magnification mammography: a Monte Carlo study

    NASA Astrophysics Data System (ADS)

    Koutalonis, M.; Delis, H.; Spyrou, G.; Costaridou, L.; Tzanakos, G.; Panayiotakis, G.

    2007-06-01

    Magnification views are a common way to perform a secondary examination when suspicious abnormalities are found in a screening mammogram. The visibility of microcalcifications and breast lesions is restricted by the compromise between the image quality and the absorbed dose. In this study, image quality characteristics in magnification mammography were evaluated based on Monte Carlo techniques. A breast phantom was utilized, simulating a homogeneous mixture of adipose and glandular tissue in various percentages of glandularity, containing inhomogeneities of various sizes and compositions. The effect of the magnification degree, breast glandularity, tube voltage and anode/filter material combination on image quality characteristics was investigated in terms of a contrast-to-noise ratio (CNR). A performance index PIν was introduced in order to study the overall performance of various anode/filter combinations under different exposure parameters. Results demonstrate that CNR is improved with the degree of magnification and degraded as the breast glandularity is increased. Degree of magnification 1.3 offers the best overall performance for most of the anode/filter combinations utilized. Under magnification conditions, the role of dose is demoted against the image quality, as magnification views are secondary, diagnostic examinations and not screening procedures oriented to non-symptomatic women. For decreased image quality weighting, some anode/filter combinations different from Mo/0.030mmMo can be utilized as they offer a similar performance index. However, if the desired weighting for the image quality is high, the Mo/0.030mmMo combination has the best overall performance.

  17. Thermal Test on Target with Pressed Disks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woloshun, Keith Albert; Dale, Gregory E.; Olivas, Eric Richard

    A thorough test of the thermal performance of a target for Mo 99 production using solid Mo 100 target to produce the Mo 99 via a gamma-n reaction has previously been conducted at Argonne National Laboratory (ANL). The results are reported in “Zero Degree Line Mo Target Thermal Test Results and Analysis,” LANL report Number LA-UR-15-23134 dated 3/27/15. This target was comprised of 25 disks 1 mm thick and 12 mm in diameter, separated by helium coolant gaps 0.5 mm wide. The test reported in the above referenced report was conducted with natural Mo disks all cut from commercial rod.more » The production plant will have Mo 100 disks pressed and sintered using a process being developed at Oak Ridge National Laboratory (ORNL). The structural integrity of press-and-sinter disks is of some concern. The test reported herein included 4 disks made by the ORNL process and placed in the high heat, and therefore high thermal stress, region of the target. The electron beam energy was 23 MeV for these tests. Beam spot size was 3.5 mm horizontal and 3 mm vertical, FWHM. The thermal stress test of pressed-and-sintered disks resulted in no mechanical failures. The induced thermal stresses were below yield stress for natural Mo, indicating that up to that stress state no inherent deficiencies in the mechanical properties of the fabricated disks were evident.« less

  18. Enhanced field emission performance of NiMoO4 nanosheets by tuning the phase

    NASA Astrophysics Data System (ADS)

    Bankar, Prashant K.; Ratha, Satyajit; More, Mahendra A.; Late, Dattatray J.; Rout, Chandra Sekhar

    2017-10-01

    In this paper we report, large scale synthesis of α and β-NiMoO4 by a facile hydrothermal method and we observed that urea plays important role on the growth of β-NiMoO4 nanosheets. We have also carried out field emission (FE) investigations of α and β-NiMoO4 at a base pressure of ∼1 × 10-8 mbar. The obtained turn-on field at emission current density of 1 μA/cm2 for β-NiMoO4 nanosheets and α -NiMoO4 is 1.3 V/μm and 2.2 V/μm respectively were observed. The maximum field emission current density of 1.006 mA/cm2at an applied electric field of 2.7 V/μm was achieved for β-NiMoO4 nanosheets. Furthermore, we found that the β-NiMoO4 nanosheets possess good field emission performance compared to α-NiMoO4. The results indicate that NiMoO4can be used as a promising material in FE applications with possibility of tuning field emission performance by controlling the phase.

  19. Effects of anti-obesity drugs, diet, and exercise on weight-loss maintenance after a very-low-calorie diet or low-calorie diet: a systematic review and meta-analysis of randomized controlled trials.

    PubMed

    Johansson, Kari; Neovius, Martin; Hemmingsson, Erik

    2014-01-01

    Weight-loss maintenance remains a major challenge in obesity treatment. The objective was to evaluate the effects of anti-obesity drugs, diet, or exercise on weight-loss maintenance after an initial very-low-calorie diet (VLCD)/low-calorie diet (LCD) period (<1000 kcal/d). We conducted a systematic review by using MEDLINE, the Cochrane Controlled Trial Register, and EMBASE from January 1981 to February 2013. We included randomized controlled trials that evaluated weight-loss maintenance strategies after a VLCD/LCD period. Two authors performed independent data extraction by using a predefined data template. All pooled analyses were based on random-effects models. Twenty studies with a total of 27 intervention arms and 3017 participants were included with the following treatment categories: anti-obesity drugs (3 arms; n = 658), meal replacements (4 arms; n = 322), high-protein diets (6 arms; n = 865), dietary supplements (6 arms; n = 261), other diets (3 arms; n = 564), and exercise (5 arms; n = 347). During the VLCD/LCD period, the pooled mean weight change was -12.3 kg (median duration: 8 wk; range 3-16 wk). Compared with controls, anti-obesity drugs improved weight-loss maintenance by 3.5 kg [95% CI: 1.5, 5.5 kg; median duration: 18 mo (12-36 mo)], meal replacements by 3.9 kg [95% CI: 2.8, 5.0 kg; median duration: 12 mo (10-26 mo)], and high-protein diets by 1.5 kg [95% CI: 0.8, 2.1 kg; median duration: 5 mo (3-12 mo)]. Exercise [0.8 kg; 95% CI: -1.2, 2.8 kg; median duration: 10 mo (6-12 mo)] and dietary supplements [0.0 kg; 95% CI: -1.4, 1.4 kg; median duration: 3 mo (3-14 mo)] did not significantly improve weight-loss maintenance compared with control. Anti-obesity drugs, meal replacements, and high-protein diets were associated with improved weight-loss maintenance after a VLCD/LCD period, whereas no significant improvements were seen for dietary supplements and exercise.

  20. Mechanically delaminated few layered MoS2 nanosheets based high performance wire type solid-state symmetric supercapacitors

    NASA Astrophysics Data System (ADS)

    Krishnamoorthy, Karthikeyan; Pazhamalai, Parthiban; Veerasubramani, Ganesh Kumar; Kim, Sang Jae

    2016-07-01

    Two dimensional nanostructures are increasingly used as electrode materials in flexible supercapacitors for portable electronic applications. Herein, we demonstrated a ball milling approach for achieving few layered molybdenum disulfide (MoS2) via exfoliation from their bulk. Physico-chemical characterizations such as X-ray diffraction, field emission scanning electron microscope, and laser Raman analyses confirmed the occurrence of exfoliated MoS2 sheets with few layers from their bulk via ball milling process. MoS2 based wire type solid state supercapacitors (WSCs) are fabricated and examined using cyclic voltammetry (CV), electrochemical impedance spectroscopy, and galvanostatic charge discharge (CD) measurements. The presence of rectangular shaped CV curves and symmetric triangular shaped CD profiles suggested the mechanism of charge storage in MoS2 WSC is due to the formation of electrochemical double layer capacitance. The MoS2 WSC device delivered a specific capacitance of 119 μF cm-1, and energy density of 8.1 nW h cm-1 with better capacitance retention of about 89.36% over 2500 cycles, which ensures the use of the ball milled MoS2 for electrochemical energy storage devices.

  1. High-performance transition metal-doped Pt 3Ni octahedra for oxygen reduction reaction

    DOE PAGES

    Huang, Xiaoqing; Zhao, Zipeng; Cao, Liang; ...

    2015-06-11

    Bimetallic platinum-nickel (Pt-Ni) nanostructures represent an emerging class of electrocatalysts for oxygen reduction reaction (ORR) in fuel cells, but practical applications have been limited by catalytic activity and durability. We surface-doped Pt 3Ni octahedra supported on carbon with transition metals, termed M-Pt 3Ni/C, where M is vanadium, chromium, manganese, iron, cobalt, molybdenum (Mo), tungsten, or rhenium. The Mo-Pt 3Ni/C showed the best ORR performance, with a specific activity of 10.3 mA/cm2 and mass activity of 6.98 A/mgPt, which are 81- and 73-fold enhancements compared with the commercial Pt/C catalyst (0.127 mA/cm 2 and 0.096 A/mg Pt). In conclusion, theoretical calculationsmore » suggest that Mo prefers subsurface positions near the particle edges in vacuum and surface vertex/edge sites in oxidizing conditions, where it enhances both the performance and the stability of the Pt3Ni catalyst.« less

  2. Non-Traumatic Myositis Ossificans in the Lumbosacral Paravertebral Muscle

    PubMed Central

    Jung, DaeYoung; Roh, Ji Hyeon

    2013-01-01

    Myositis ossificans (MO) is a benign condition of non-neoplastic heterotopic bone formation in the muscle or soft tissue. Trauma plays a role in the development of MO, thus, non-traumatic MO is very rare. Although MO may occur anywhere in the body, it is rarely seen in the lumbosacral paravertebral muscle (PVM). Herein, we report a case of non-traumatic MO in the lumbosacral PVM. A 42-year-old man with no history of trauma was referred to our hospital for pain in the low back, left buttock, and left thigh. On physical examination, a slightly tender, hard, and fixed mass was palpated in the left lumbosacral PVM. Computed tomography showed a calcified mass within the left lumbosacral PVM. Magnetic resonance imaging (MRI) showed heterogeneous high signal intensity in T1- and T2-weighted image, and no enhancement of the mass was found in the postcontrast T1-weighted MRI. The lack of typical imaging features required an open biopsy, and MO was confirmed. MO should be considered in the differential diagnosis when the imaging findings show a mass involving PVM. When it is difficult to distinguish MO from soft tissue or bone malignancy by radiology, it is necessary to perform a biopsy to confirm the diagnosis. PMID:23908707

  3. Modeling the Homogenization Kinetics of As-Cast U-10wt% Mo alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Zhijie; Joshi, Vineet; Hu, Shenyang Y.

    2016-01-15

    Low-enriched U-22at% Mo (U-10Mo) alloy has been considered as an alternative material to replace the highly enriched fuels in research reactors. For the U-10Mo to work effectively and replace the existing fuel material, a thorough understanding of the microstructure development from as-cast to the final formed structure is required. The as-cast microstructure typically resembles an inhomogeneous microstructure with regions containing molybdenum-rich and -lean regions, which may affect the processing and possibly the in-reactor performance. This as-cast structure must be homogenized by thermal treatment to produce a uniform Mo distribution. The development of a modeling capability will improve the understanding ofmore » the effect of initial microstructures on the Mo homogenization kinetics. In the current work, we investigated the effect of as-cast microstructure on the homogenization kinetics. The kinetics of the homogenization was modeled based on a rigorous algorithm that relates the line scan data of Mo concentration to the gray scale in energy dispersive spectroscopy images, which was used to generate a reconstructed Mo concentration map. The map was then used as realistic microstructure input for physics-based homogenization models, where the entire homogenization kinetics can be simulated and validated against the available experiment data at different homogenization times and temperatures.« less

  4. Effects of irradiation on the microstructure of U-7Mo dispersion fuel with Al-2Si matrix

    NASA Astrophysics Data System (ADS)

    Keiser, Dennis D.; Jue, Jan-Fong; Robinson, Adam B.; Medvedev, Pavel; Gan, Jian; Miller, Brandon D.; Wachs, Daniel M.; Moore, Glenn A.; Clark, Curtis R.; Meyer, Mitchell K.; Ross Finlay, M.

    2012-06-01

    The Reduced Enrichment for Research and Test Reactor (RERTR) program is developing low-enriched uranium U-Mo dispersion fuels for application in research and test reactors around the world. As part of this development, fuel plates have been irradiated in the Advanced Test Reactor and then characterized using optical metallography (OM) and scanning electron microscopy (SEM) to determine the as-irradiated microstructure. To demonstrate the irradiation performance of U-7Mo dispersion fuel plates with 2 wt.% Si added to the matrix, fuel plates were tested to moderate burnups at intermediate fission rates as part of the RERTR-6 experiment. Further testing was performed to higher fission rates as part of the RERTR-7A experiment, and very aggressive testing (high temperature, high fission density, and high fission rate) was performed in the RERTR-9A, RERTR-9B, and AFIP-1 experiments. As-irradiated microstructures were compared to those observed after fabrication to determine the effects of irradiation on the microstructure. Based on comparison of the microstructural characterization results for each irradiated sample, some general conclusions can be drawn about how the microstructure evolves during irradiation: there is growth during irradiation of the fuel/matrix interaction (FMI) layer created during fabrication; Si diffuses from the FMI layer to deeper depths in the U-7Mo particles as the irradiation conditions are made more aggressive; lowering of the Si content in the FMI layer results in an increase in the size of the fission gas bubbles; as the FMI layer grows during irradiation, more Si diffuses from the matrix to the FMI layer/matrix interface; and interlinking of fission gas bubbles in the fuel plate microstructure that may indicate breakaway swelling is not observed.

  5. The nonconservative property of dissolved molybdenum in the western Taiwan Strait: Relevance of submarine groundwater discharges and biological utilization

    NASA Astrophysics Data System (ADS)

    Wang, Deli; Xia, Weiwei; Lu, Shuimiao; Wang, Guizhi; Liu, Qian; Moore, Willard S.; Arthur Chen, Chen-Tung

    2016-01-01

    This study examined dissolved Mo and sedimentary Mo along with hydrochemical parameters in the western Taiwan Strait (WTS) in May and August 2012. The results demonstrate that dissolved Mo could be depleted of as high as 10-20 nM during our May sampling period when the nutrient-enriched Min-Zhe coastal current ceased and spring blooms developed. The negative correlation between Chl-a and dissolved Mo suggests the possible involvement of high algal productivity in removing dissolved Mo out of the water column. Specific oceanographic settings (little currents) permitted a high sedimentary enrichment of Mo (>6 µg/g Mo) within the highly productive waters outside the Jiulong River mouth. Possibly, the high algal productivities and consequent organic matter sinks provide a pathway of Mo burial from water columns into sediments. Dissolved Mo was relatively high in groundwater samples, but we observed that submarine groundwater discharges (SGDs) only contributed to a relatively small percentage of the total dissolved Mo pool in WTS. It is probably attributable to the immediate removal of SGD-released Mo ions via adsorption onto newly formed Mn oxides once exposed to oxygenated seawater, followed by an elevated sedimentary Mo accumulation near the SGDs (˜5 µg/g). In addition to metal oxide particle scavenging and sulfide precipitation, we estimated that biological uptake along with Mo adsorption onto organic matter carriers could finally provide more than 10% of the annual sedimentary Mo accumulation in WTS.

  6. Late-Transition-Metal-Modified β-Mo 2C Catalysts for Enhanced Hydrogenation during Guaiacol Deoxygenation

    DOE PAGES

    Baddour, Frederick G.; Witte, Vanessa A.; Nash, Connor P.; ...

    2017-10-26

    Molybdenum carbide has been identified as a promising bifunctional catalyst in the deoxygenation of a variety of pyrolysis vapor model compounds. Although high deoxygenation activity has been demonstrated, complementary hydrogenation activity has been limited, especially for lignin-derived, aromatic model compounds. The ability to control the relative site densities of acidic and hydrogenation functionalities represents a catalyst design challenge for these materials with the goal to improve hydrogenation activity under ex situ catalytic fast pyrolysis (CFP) conditions. Here in this paper, we demonstrate that the addition of Pt and Ni to Mo 2C resulted in an increase in the H*-site densitymore » with only a minor decrease in the acid-site density. In contrast, the addition of Pd did not significantly alter the H* or acid site densities. High conversions (>94%) and high selectivities to 0-oxygen products (>80%) were observed in guaiacol deoxygenation under ex situ CFP conditions (350 °C and 0.44 MPa H 2) for all catalysts. Pt addition resulted in the greatest deoxygenation, and site-time yields to hydrogenated products over the Pt/Mo 2C catalyst were increased to 0.048 s -1 compared to 0.015-0.019 s -1 for all other catalysts. The Pt/Mo 2C catalyst demonstrated the highest hydrogenation performance, but modification with Ni also significantly enhanced hydrogenation performance, representing a promising lower-cost alternative.« less

  7. 2D MoS2 as an efficient protective layer for lithium metal anodes in high-performance Li-S batteries.

    PubMed

    Cha, Eunho; Patel, Mumukshu D; Park, Juhong; Hwang, Jeongwoon; Prasad, Vish; Cho, Kyeongjae; Choi, Wonbong

    2018-04-01

    Among the candidates to replace Li-ion batteries, Li-S cells are an attractive option as their energy density is about five times higher (~2,600 Wh kg -1 ). The success of Li-S cells depends in large part on the utilization of metallic Li as anode material. Metallic lithium, however, is prone to grow parasitic dendrites and is highly reactive to several electrolytes; moreover, Li-S cells with metallic Li are also susceptible to polysulfides dissolution. Here, we show that ~10-nm-thick two-dimensional (2D) MoS 2 can act as a protective layer for Li-metal anodes, greatly improving the performances of Li-S batteries. In particular, we observe stable Li electrodeposition and the suppression of dendrite nucleation sites. The deposition and dissolution process of a symmetric MoS 2 -coated Li-metal cell operates at a current density of 10 mA cm -2 with low voltage hysteresis and a threefold improvement in cycle life compared with using bare Li-metal. In a Li-S full-cell configuration, using the MoS 2 -coated Li as anode and a 3D carbon nanotube-sulfur cathode, we obtain a specific energy density of ~589 Wh kg -1 and a Coulombic efficiency of ~98% for over 1,200 cycles at 0.5 C. Our approach could lead to the realization of high energy density and safe Li-metal-based batteries.

  8. 2D MoS2 as an efficient protective layer for lithium metal anodes in high-performance Li-S batteries

    NASA Astrophysics Data System (ADS)

    Cha, Eunho; Patel, Mumukshu D.; Park, Juhong; Hwang, Jeongwoon; Prasad, Vish; Cho, Kyeongjae; Choi, Wonbong

    2018-04-01

    Among the candidates to replace Li-ion batteries, Li-S cells are an attractive option as their energy density is about five times higher ( 2,600 Wh kg-1). The success of Li-S cells depends in large part on the utilization of metallic Li as anode material. Metallic lithium, however, is prone to grow parasitic dendrites and is highly reactive to several electrolytes; moreover, Li-S cells with metallic Li are also susceptible to polysulfides dissolution. Here, we show that 10-nm-thick two-dimensional (2D) MoS2 can act as a protective layer for Li-metal anodes, greatly improving the performances of Li-S batteries. In particular, we observe stable Li electrodeposition and the suppression of dendrite nucleation sites. The deposition and dissolution process of a symmetric MoS2-coated Li-metal cell operates at a current density of 10 mA cm-2 with low voltage hysteresis and a threefold improvement in cycle life compared with using bare Li-metal. In a Li-S full-cell configuration, using the MoS2-coated Li as anode and a 3D carbon nanotube-sulfur cathode, we obtain a specific energy density of 589 Wh kg-1 and a Coulombic efficiency of 98% for over 1,200 cycles at 0.5 C. Our approach could lead to the realization of high energy density and safe Li-metal-based batteries.

  9. Late-Transition-Metal-Modified β-Mo 2C Catalysts for Enhanced Hydrogenation during Guaiacol Deoxygenation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baddour, Frederick G.; Witte, Vanessa A.; Nash, Connor P.

    Molybdenum carbide has been identified as a promising bifunctional catalyst in the deoxygenation of a variety of pyrolysis vapor model compounds. Although high deoxygenation activity has been demonstrated, complementary hydrogenation activity has been limited, especially for lignin-derived, aromatic model compounds. The ability to control the relative site densities of acidic and hydrogenation functionalities represents a catalyst design challenge for these materials with the goal to improve hydrogenation activity under ex situ catalytic fast pyrolysis (CFP) conditions. Here in this paper, we demonstrate that the addition of Pt and Ni to Mo 2C resulted in an increase in the H*-site densitymore » with only a minor decrease in the acid-site density. In contrast, the addition of Pd did not significantly alter the H* or acid site densities. High conversions (>94%) and high selectivities to 0-oxygen products (>80%) were observed in guaiacol deoxygenation under ex situ CFP conditions (350 °C and 0.44 MPa H 2) for all catalysts. Pt addition resulted in the greatest deoxygenation, and site-time yields to hydrogenated products over the Pt/Mo 2C catalyst were increased to 0.048 s -1 compared to 0.015-0.019 s -1 for all other catalysts. The Pt/Mo 2C catalyst demonstrated the highest hydrogenation performance, but modification with Ni also significantly enhanced hydrogenation performance, representing a promising lower-cost alternative.« less

  10. Synthesis and Characterization of Molybdenum (Mo) Thin Films Using DC-Magnetron Sputtering

    NASA Astrophysics Data System (ADS)

    Pandharkar, Subhash M.; Rondiya, Sachin R.; Rokade, Avinash V.; Gabhale, Bharat B.; Pathan, Habib M.; Jadkar, Sandesh R.

    2018-03-01

    In present work, we report synthesis of Mo thin films by DC-magnetron sputtering method. The structural, optical, morphological and electrical properties were investigated as a function of target-to-substrate distance. From the results, it is evident that with increase in target-to-substrate distance the thickness of films decreases while its sheet resistance and electrical resistivity increases, which is confirmed by van der Pauw method. Low angle XRD analysis revealed that with increase in target-to-substrate distance preferred orientation of Mo crystallites changes from (211) to (110) and its size decreases. The FE-SEM analysis revealed a significant change in surface morphology with increase in target-to-substrate distance. UV-Visible spectroscopy analysis showed that Mo films deposited at high target-to-substrate distance have more reflection than those deposited at lower target-to-substrate. Finally, adhesion test was performed using scotch hatch tape adhesion test which show all Mo films have excellent adhesion over the entire range of target-to-substrate distance studied. The employment of such Mo films as back contact can be useful to improve efficiency of CZTS solar cells.

  11. Preparation of 2D MoSe2/PEDOT:PSS composite and its thermoelectric properties

    NASA Astrophysics Data System (ADS)

    Li, Xia; Liu, Congcong; Wang, Tongzhou; Wang, Wenfang; Wang, Xiaodong; Jiang, Qinglin; Jiang, Fengxing; Xu, Jingkun

    2017-11-01

    Nowadays, inorganic/polymer composites have attracted significant interest in thermoelectric field, since the composite materials usually achieve their respective advantages complementary to each other. In this work, molybdenum diselenide (MoSe2) was synthesized by a facile hydrothermal method. Solution processible two-dimensional (2D) MoSe2 nanosheets (NSs) were successfully obtained using dimethylsulfoxide (DMSO) solvent or lithium intercalation procedure. Combined with Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS), MoSe2/PEDOT:PSS composite thin films were fabricated by direct vacuum-filtration method. Thermoelectric properties of composite thin films were investigated systematically and found that 2D MoSe2 NSs and PEDOT:PSS have the synergistic effect on improving thermoelectric properties. The maximum power factor was calculated to be 48.6 µW m-1 K-2 with 5 wt% 2D MoSe2 NSs embedding into PEDOT:PSS matrix, which is almost 69% higher than that of pure PEDOT:PSS. These results demonstrate that 2D inorganic/polymer composite method is one of promising strategies to get high-performance polymer-based thermoelectric composites.

  12. Experimental Determination of the Ionization Energies of MoSe 2, WS 2, and MoS 2 on SiO 2 Using Photoemission Electron Microscopy

    DOE PAGES

    Keyshar, Kunttal; Berg, Morgann; Zhang, Xiang; ...

    2017-07-19

    Here, the values of the ionization energies of transition metal dichalcogenides (TMDs) are needed to assess their potential usefulness in semiconductor heterojunctions for high-performance optoelectronics. Here, we report on the systematic determination of ionization energies for three prototypical TMD monolayers (MoSe 2, WS 2, and MoS 2) on SiO 2 using photoemission electron microscopy with deep ultraviolet illumination. The ionization energy displays a progressive decrease from MoS 2, to WS 2, to MoSe 2, in agreement with predictions of density functional theory calculations. Combined with the measured energy positions of the valence band edge at the Brillouin zone center, wemore » deduce that, in the absence of interlayer coupling, a vertical heterojunction comprising any of the three TMD monolayers would form a staggered (type-II) band alignment. This band alignment could give rise to long-lived interlayer excitons that are potentially useful for valleytronics or efficient electron–hole separation in photovoltaics.« less

  13. Multifunctional Interlayer Based on Molybdenum Diphosphide Catalyst and Carbon Nanotube Film for Lithium-Sulfur Batteries.

    PubMed

    Luo, Yufeng; Luo, Nannan; Kong, Weibang; Wu, Hengcai; Wang, Ke; Fan, Shoushan; Duan, Wenhui; Wang, Jiaping

    2018-02-01

    A multifunctional interlayer, composed of molybdenum diphosphide (MoP 2 ) nanoparticles and a carbon nanotube (CNT) film, is introduced into a lithium-sulfur (Li-S) battery system to suppress polysulfide migration. Molybdenum diphosphide acts as the catalyst and can capture polysulfides and improve the polysulfide conversion activity during the discharge/charge processes. The CNT film acts as a conductive skeleton to support the MoP 2 nanoparticles and to ensure their uniform distribution. The CNT film physically hinders polysulfide migration, acts as a current collector, and provides abundant electron pathways. The Li-S battery containing the multifunctional MoP 2 /CNT interlayer exhibits excellent electrochemical performance. It delivers a reversible specific capacity of 905 mA h g -1 over 100 cycles at 0.2 C, with a capacity decay of 0.152% per cycle. These results suggest the introduction of the multifunctional CNT/MoP 2 interlayer as an effective and practical method for producing high-performance Li-S batteries. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. MoO3 Thickness, Thermal Annealing and Solvent Annealing Effects on Inverted and Direct Polymer Photovoltaic Solar Cells

    PubMed Central

    Chambon, Sylvain; Derue, Lionel; Lahaye, Michel; Pavageau, Bertrand; Hirsch, Lionel; Wantz, Guillaume

    2012-01-01

    Several parameters of the fabrication process of inverted polymer bulk heterojunction solar cells based on titanium oxide as an electron selective layer and molybdenum oxide as a hole selective layer were tested in order to achieve efficient organic photovoltaic solar cells. Thermal annealing treatment is a common process to achieve optimum morphology, but it proved to be damageable for the performance of this kind of inverted solar cells. We demonstrate using Auger analysis combined with argon etching that diffusion of species occurs from the MoO3/Ag top layers into the active layer upon thermal annealing. In order to achieve efficient devices, the morphology of the bulk heterojunction was then manipulated using the solvent annealing technique as an alternative to thermal annealing. The influence of the MoO3 thickness was studied on inverted, as well as direct, structure. It appeared that only 1 nm-thick MoO3 is enough to exhibit highly efficient devices (PCE = 3.8%) and that increasing the thickness up to 15 nm does not change the device performance.

  15. High performance asymmetric supercapacitor based on molybdenum disulphide/graphene foam and activated carbon from expanded graphite.

    PubMed

    Masikhwa, Tshifhiwa M; Madito, Moshawe J; Bello, Abdulhakeem; Dangbegnon, Julien K; Manyala, Ncholu

    2017-02-15

    Molybdenum disulphide which has a graphene-like single layer structure has excellent mechanical and electrical properties and unique morphology, which might be used with graphene foam as composite in supercapacitor applications. In this work, Molybdenum disulphide (MoS 2 )/graphene foam (GF) composites with different graphene foam loading were synthesized by the hydrothermal process to improve on specific capacitance of the composites. Asymmetric supercapacitor device was fabricated using the best performing MoS 2 /GF composite and activated carbon derived from expanded graphite (AEG) as positive and negative electrodes, respectively, in 6M KOH electrolyte. The asymmetric MoS 2 /GF//AEG device exhibited a maximum specific capacitance of 59Fg -1 at a current density of 1Ag -1 with maximum energy and power densities of 16Whkg -1 and 758Wkg -1 , respectively. The supercapacitor also exhibited a good cyclic stability with 95% capacitance retention over 2000 constant charge-discharge cycles. The results obtained demonstrate the potential of MoS 2 /GF//AEG as a promising material for electrochemical energy storage application. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Congenital Microphthalmia, Anophthalmia and Coloboma among Live Births in Denmark.

    PubMed

    Roos, Laura; Jensen, Hanne; Grønskov, Karen; Holst, René; Tümer, Zeynep

    2016-10-01

    This study aims to quantify the occurrence of the congenital eye malformations anophthalmia (AO), microphthalmia (MO) and coloboma among liveborn infants in Denmark, and to estimate the rate of chromosomal abnormalities in this group of patients. A cohort of patients born in 1995-2012 with diagnoses of MO/AO or coloboma was identified from the Danish National Patient Registry (DNPR), and their ocular and extra-ocular diagnoses were reviewed. In order to assess the occurrence of chromosomal abnormalities in the cohort, the data were cross-referenced with the Danish Cytogenetic Central Registry (DCCR). We identified 415 patients with MO/AO/coloboma in the DNPR. The total number of live births from 1995-2012 was 1,174,299, and the average birth prevalence of MO/AO/coloboma was 3.6/10,000 live births and of MO/AO was 1.2/10,000 live births. Extra-ocular abnormalities were observed in 32.1% of MO/AO cases and 21.7% of coloboma cases. Chromosome analysis was performed in 36.1% of the cohort, and 14.7% of cases had an abnormal karyotype. In 8.7% of the cohort, a chromosome microarray analysis was performed, and in 44.4% of cases, a possibly pathogenic copy number variation was observed. The birth prevalence of MO/AO/coloboma in Denmark has been steady at 3.6/10,000 live births during the last 17 years. The rate of syndromic cases was lower compared to other studies. A relatively high rate of pathogenic chromosomal aberrations was observed, suggesting an important role for cytogenetic analysis in this group of patients.

  17. Mace-like hierarchical MoS2/NiCo2S4 composites supported by carbon fiber paper: An efficient electrocatalyst for the hydrogen evolution reaction

    NASA Astrophysics Data System (ADS)

    Sun, Lan; Wang, Tao; Zhang, Long; Sun, Yunjin; Xu, Kewei; Dai, Zhengfei; Ma, Fei

    2018-02-01

    The rational design and preparation of earth-abundant, stable and efficient electrocatalysts for hydrogen production is currently the subject in extensive scientific and technological researches toward the future of a clean-energy society. Herein, a mace-like MoS2/NiCo2S4 hierarchical structure is designed and synthesized on carbon fiber paper via a facile hydrothermal method, and evaluated as electrocatalyst for hydrogen evolution reaction. In the MoS2/NiCo2S4/carbon fiber paper hierarchical structures, MoS2 nanosheets are dispersively distributed on the surface of NiCo2S4 nanowires, which provides an enlarged surface area, abundant interfaces and catalytic active sites. As for hydrogen evolution reaction, such MoS2/NiCo2S4/carbon fiber paper heterostructures give rise to a hydrogen evolution reaction catalytic current density of 10 mA cm-2 with a lower overpotential of 139 mV and a smaller Tafel slope of 37 mV·dec-1 than those of MoS2/carbon fiber paper and NiCo2S4/carbon fiber paper counterparts, exhibiting a prominent electrocatalytic performance. Moreover, the electrocatalytic properties change little after 5000 CV cycles and continual electrolysis for 12 h without obvious decay, respectively, demonstrating high durability and stability. The excellent hydrogen evolution reaction performances endow the hierarchical configuration MoS2/NiCo2S4/carbon fiber paper with promising alternative in HER and other related renewable energy fields.

  18. Solution processable mixed-solvent exfoliated MoS2 nanosheets for efficient and robust organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Liu, Chia-Wei; Wang, Chia; Liao, Chia-Wei; Golder, Jan; Tsai, Ming-Chih; Young, Hong-Tsu; Chen, Chin-Ti; Wu, Chih-I.

    2018-04-01

    We demonstrate the use of solution-processed molybdenum trioxide (MoO3) nanoparticle-decorated molybdenum disulfide (MoS2) nanosheets (MoS2/MoO3) as hole injection layer (HIL) in organic lighting diodes (OLEDs). The device performance is shown to be significantly improved by the introduction of such MoS2/MoO3 HIL without any post-ultraviolet-ozone treatment, and is shown to better the performance of devices fabricated using conventional poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) and MoO3 nanoparticle HILs. The MoS2/MoO3 nanosheets form a compact film, as smooth as PEDOT:PSS films and smoother than MoO3 nanoparticle films, when simply spin-coated on indium tin oxide substrates. The improvement in device efficiency can be attributed to the smooth surface of the nanostructured MoS2/MoO3 HIL and the excellent conductivity characteristics of the two-dimensional (2D) layered material (MoS2), which facilitate carrier transport in the device and reduce the sheet resistance. Moreover, the long-term stability of OLED devices that use such MoS2/MoO3 layers is shown to be improved dramatically compared with hygroscopic and acidic PEDOT:PSS-based devices.

  19. High-work-function molybdenum oxide hole extraction contacts in hybrid organic–inorganic perovskite solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schulz, Philip; Tiepelt, Jan O.; Christians, Jeffrey A.

    2016-11-08

    Here, we investigate the effect of high work function contacts in halide perovskite absorber-based photovoltaic devices. Photoemission spectroscopy measurements reveal that band bending is induced in the absorber by the deposition of the high work function molybdenum trioxide (MoO 3). We find that direct contact between MoO 3 and the perovskite leads to a chemical reaction, which diminishes device functionality. Introducing an ultrathin spiro-MeOTAD buffer layer prevents the reaction, yet the altered evolution of the energy levels in the methylammonium lead iodide (MAPbI 3) layer at the interface still negatively impacts device performance.

  20. Concept Feasibility Report for Electroplating Zirconium onto Uranium Foil - Year 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coffey, Greg W.; Meinhardt, Kerry D.; Joshi, Vineet V.

    2015-03-01

    The Fuel Fabrication Capability within the U.S. High Performance Research Reactor Conversion Program is funded through the National Nuclear Security Administration (NNSA) NA-26 (Office of Material Management and Minimization). An investigation was commissioned to determine the feasibility of using electroplating techniques to apply a coating of zirconium onto depleted uranium/molybdenum alloy (U-10Mo). Electroplating would provide an alternative method to the existing process of hot roll-bonding zirconium foil onto the U-10Mo fuel foil during the fabrication of fuel elements for high-performance research reactors. The objective of this research was to develop a reproducible and scalable plating process that will produce amore » uniform, 25 μm thick zirconium metal coating on U-10Mo foil. In previous work, Pacific Northwest National Laboratory (PNNL) established a molten salt electroplating apparatus and protocol to plate zirconium metal onto molybdenum foil (Coffey 2015). During this second year of the research, PNNL furthered this work by moving to the U-10Mo alloy system (90 percent uranium:10 percent molybdenum). The original plating apparatus was disassembled and re-assembled in a laboratory capable of handling low-level radioactive materials. Initially, the work followed the previous year’s approach, and the salt bath composition was targeted at the eutectic composition (LiF:NaF:ZrF4 = 26:37:37 mol%). Early results indicated that the formation of uranium fluoride compounds would be problematic. Other salt bath compositions were investigated in order to eliminate the uranium fluoride production (LiF:NaF = 61:39 mol% and LiF:NaF:KF = 46.5:11.5:42 mol% ). Zirconium metal was used as the crucible for the molten salt. Three plating methods were used—isopotential, galvano static, and pulsed plating. The molten salt method for zirconium metal application provided high-quality plating on molybdenum in PNNL’s previous work. A key advantage of this approach is that plating can be performed under conditions that would greatly reduce the quantity of intermetallics that form at the interface between the zirconium and U-10Mo; unlike roll bonding, the molten salt plating approach would allow for complete coverage of the U-10Mo foil with zirconium. When utilizing the experimental parameters developed for zirconium plating onto molybdenum, a uranium fluoride reaction product was formed at the Zr/U-10Mo interface. By controlling the initial plating potential, the uranium fluoride could be prevented; however, the targeted zirconium thickness (25 ±12.5 μm) could not be achieved while maintaining 100% coverage.« less

  1. A novel Mo-W interlayer approach for CVD diamond deposition on steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kundrát, Vojtěch; Sullivan, John; Ye, Haitao, E-mail: h.ye@aston.ac.uk

    Steel is the most widely used material in engineering for its cost/performance ratio and coatings are routinely applied on its surface to further improve its properties. Diamond coated steel parts are an option for many demanding industrial applications through prolonging the lifetime of steel parts, enhancement of tool performance as well as the reduction of wear rates. Direct deposition of diamond on steel using conventional chemical vapour deposition (CVD) processes is known to give poor results due to the preferential formation of amorphous carbon on iron, nickel and other elements as well as stresses induced from the significant difference inmore » the thermal expansion coefficients of those materials. This article reports a novel approach of deposition of nanocrystalline diamond coatings on high-speed steel (M42) substrates using a multi-structured molybdenum (Mo) – tungsten (W) interlayer to form steel/Mo/Mo-W/W/diamond sandwich structures which overcome the adhesion problem related to direct magnetron sputtering deposition of pure tungsten. Surface, interface and tribology properties were evaluated to understand the role of such an interlayer structure. The multi-structured Mo-W interlayer has been proven to improve the adhesion between diamond films and steel substrates by acting as an effective diffusion barrier during the CVD diamond deposition.« less

  2. A novel Mo-W interlayer approach for CVD diamond deposition on steel

    NASA Astrophysics Data System (ADS)

    Kundrát, Vojtěch; Zhang, Xiaoling; Cooke, Kevin; Sun, Hailin; Sullivan, John; Ye, Haitao

    2015-04-01

    Steel is the most widely used material in engineering for its cost/performance ratio and coatings are routinely applied on its surface to further improve its properties. Diamond coated steel parts are an option for many demanding industrial applications through prolonging the lifetime of steel parts, enhancement of tool performance as well as the reduction of wear rates. Direct deposition of diamond on steel using conventional chemical vapour deposition (CVD) processes is known to give poor results due to the preferential formation of amorphous carbon on iron, nickel and other elements as well as stresses induced from the significant difference in the thermal expansion coefficients of those materials. This article reports a novel approach of deposition of nanocrystalline diamond coatings on high-speed steel (M42) substrates using a multi-structured molybdenum (Mo) - tungsten (W) interlayer to form steel/Mo/Mo-W/W/diamond sandwich structures which overcome the adhesion problem related to direct magnetron sputtering deposition of pure tungsten. Surface, interface and tribology properties were evaluated to understand the role of such an interlayer structure. The multi-structured Mo-W interlayer has been proven to improve the adhesion between diamond films and steel substrates by acting as an effective diffusion barrier during the CVD diamond deposition.

  3. Structural properties of Al/Mo/SiC multilayers with high reflectivity for extreme ultraviolet light.

    PubMed

    Hu, Min-Hui; Le Guen, Karine; André, Jean-Michel; Jonnard, Philippe; Meltchakov, Evgueni; Delmotte, Franck; Galtayries, Anouk

    2010-09-13

    We present the results of an optical and chemical, depth and surface study of Al/Mo/SiC periodic multilayers, designed as high reflectivity coatings for the extreme ultra-violet (EUV) range. In comparison to the previously studied Al/SiC system, the introduction of Mo as a third material in the multilayer structure allows us to decrease In comparison to the previously studied Al/SiC system with a reflectance of 37% at near normal incidence around 17 nm, the introduction of Mo as a third material in the multilayer structure allows us to decrease the interfacial roughness and achieve an EUV reflectivity of 53.4%, measured with synchrotron radiation. This is the first report of a reflectivity higher than 50% around 17 nm. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) and x-ray photoelectron spectroscopy (XPS) measurements are performed on the Al/Mo/SiC system in order to analyze the individual layers within the stack. ToF-SIMS and XPS results give evidence that the first SiC layer is partially oxidized, but the O atoms do not reach the first Mo and Al layers. We use these results to properly describe the multilayer stack and discuss the possible reasons for the difference between the measured and simulated EUV reflectivity values.

  4. Cobalt internal standard for Ni to assist the simultaneous determination of Mo and Ni in plant materials by high-resolution continuum source graphite furnace atomic absorption spectrometry employing direct solid sample analysis.

    PubMed

    de Babos, Diego Victor; Bechlin, Marcos André; Barros, Ariane Isis; Ferreira, Edilene Cristina; Gomes Neto, José Anchieta; de Oliveira, Silvana Ruella

    2016-05-15

    A new method is proposed for the simultaneous determination of Mo and Ni in plant materials by high-resolution continuum source graphite furnace atomic absorption spectrometry (HR-CS GFAAS), employing direct solid sample analysis (DSS) and internal standardization (IS). Cobalt was used as internal standard to minimize matrix effects during Ni determinations, enabling the use of aqueous standards for calibration. Correlation coefficients for the calibration curves were typically better than 0.9937. The performance of the method was checked by analysis of six plant certified reference materials, and the results for Mo and Ni were in agreement with the certified values (95% confidence level, t-test). Analysis was made of different types of plant materials used as renewable sources of energy, including sugarcane leaves, banana tree fiber, soybean straw, coffee pods, orange bagasse, peanut hulls, and sugarcane bagasse. The concentrations found for Mo and Ni ranged from 0.08 to 0.63 ng mg(-1) and from 0.41 to 6.92 ng mg(-1), respectively. Precision (RSD) varied from 2.1% to 11% for Mo and from 3.7% to 10% for Ni. Limits of quantification of 0.055 and 0.074 ng were obtained for Mo and Ni, respectively. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Improving the Electromagnetic Wave Absorption Properties of the Layered MoS2 by Cladding with Ni Nanoparticles

    NASA Astrophysics Data System (ADS)

    Zhang, Zilong; Wang, Zilin; Heng, Liuyang; Wang, Shuai; Chen, Xiqiao; Fu, Xiquan; Zou, Yanhong; Tang, Zhixiang

    2018-05-01

    MoS2 is a promising material with microwave absorption performance due to its high dielectric properties and low density. However, pure MoS2 is non-magnetic and has a bad impedance matching characteristic. In this study we prepared the Ni/MoS2 nanocomposites by cladding the MoS2 micrometer slices with magnetic Ni nanoparticles. Our results show that the microwave absorption properties of Ni/MoS2 nanocomposites have been improved obviously compared with the pure MoS2. Because of the introduction of Ni particles, the permeability of the nanocomposites has been turned from one to a complex, indicating a newly added magnetic loss. Meanwhile, the big gap between the permittivity and permeability of the Ni/MoS2 nanocomposites has been properly narrowed, which suggests an improved impedance matching. Moreover, the dielectric Cole-Cole semicircle shows that there are more Debye relaxation processes for the Ni/MoS2 nanocomposites, which further enhances the dielectric loss. Due to its improved electromagnetic properties, the minimum reflection loss (RL) value of the Ni/MoS2 nanocomposites with 60 wt % loading reaches -55 dB and the absorption bandwidth (<-10 dB) is up to 4.0 GHz (10.8-14.8 GHz) with a matching thickness of 1.5 mm. The results provide an excellent candidate for microwave absorbing materials with a broad effective absorption bandwidth at thin thicknesses.

  6. Synthesis and characterization of nanoscale molybdenum sulfide catalysts by controlled gas phase decomposition of Mo(CO){sub 6} and H{sub 2}S

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Close, M.R.; Petersen, J.L.; Kugler, E.L.

    1999-04-05

    Molybdenum sulfide catalysts with surface areas ranging from 16 to 120 m{sup 2}/g were prepared by the thermal decomposition of Mo(CO){sub 6} and H{sub 2}S vapors in a specially designed tubular reactor system. The gas phase decomposition (GPD) reactions performed at 500--1100 C produced only MoS{sub 2} when excess H{sub 2}S was used. The optimum temperature range for the high-yield production of MoS{sub 2} was from 500 to 700 C. By controlling the decomposition temperature, the Mo(CO){sub 6} partial pressure, or the inert gas flow rate, the surface area, oxidation state, chemical composition, and the grain size of the molybdenummore » sulfide product(s) were modified. At reactor temperatures between 300 and 400 C, lower valent molybdenum sulfide materials, which were sulfur deficient relative to MoS{sub 2}, were obtained with formal molybdenum oxidation states intermediate to those found for Chevrel phase compounds, M{prime}Mo{sub 6}S{sub 8} (M{prime} = Fe, Ni, Co) and MoS{sub 2}. By lowering the H{sub 2}S flow rate used for the GPD reaction at 1000 C, mixtures containing variable amounts of MoS{sub 2} and Mo{sub 2}S{sub 3} were produced. Thus, through the modification of critical reactor parameters used for these GPD reactions, fundamental material properties were controlled.« less

  7. Controllable Synthesis of Ordered Mesoporous Mo2C@Graphitic Carbon Core-Shell Nanowire Arrays for Efficient Electrocatalytic Hydrogen Evolution.

    PubMed

    Zhu, Jiahui; Yao, Yan; Chen, Zhi; Zhang, Aijian; Zhou, Mengyuan; Guo, Jun; Wu, Winston Duo; Chen, Xiao Dong; Li, Yanguang; Wu, Zhangxiong

    2018-06-06

    Mo 2 C is a possible substitute to Pt-group metals for electrocatalytic hydrogen evolution reaction (HER). Both support-free and carbon-supported Mo 2 C nanomaterials with improved HER performance have been developed. Herein, distinct from prior research, novel ordered mesoporous core-shell nanowires with Mo 2 C cores and ultrathin graphitic carbon (GC) shells are rationally synthesized and demonstrated to be excellent for HER. The synthesis is fulfilled via a hard-templating approach combining in situ carburization and localized carbon deposition. Phosphomolybdic acid confined in the SBA-15 template is first converted to MoO 2 , which is then in situ carburized to Mo 2 C nanowires with abundant surface defects. Simultaneously, GC layer (the thickness is down to ∼1.0 nm in most areas) is controlled to be locally deposited on the Mo 2 C surface because of its strong affinity with carbon and catalytic effect on graphitization. Removal of the template results in the Mo 2 C@GC core-shell nanowire arrays with the structural properties well-characterized. They exhibit excellent performance for HER with a low overpotential of 125 mV at 10 mA cm -2 , a small Tafel slope of 66 mV dec -1 , and an excellent stability in acidic electrolytes. The influences of several factors, especially the spatial configuration and relative contents of the GC and Mo 2 C components, on HER performance are elucidated with control experiments. The excellent HER performance of the mesoporous Mo 2 C@GC core-shell nanowire arrays originates from the rough Mo 2 C nanowires with diverse active sites and short charge-transfer paths and the ultrathin GC shells with improved surface area, electronic conductivity, and stabilizing effect on Mo 2 C.

  8. Effects of stress ratio on the temperature-dependent high-cycle fatigue properties of alloy steels

    NASA Astrophysics Data System (ADS)

    Lü, Zhi-yang; Wan, Ao-shuang; Xiong, Jun-jiang; Li, Kuang; Liu, Jian-zhong

    2016-12-01

    This paper addresses the effects of stress ratio on the temperature-dependent high-cycle fatigue (HCF) properties of alloy steels 2CrMo and 9CrCo, which suffer from substantial vibrational loading at small stress amplitude, high stress ratio, and high frequency in the high-temperature environments in which they function as blade and rotor spindle materials in advanced gas or steam turbine engines. Fatigue tests were performed on alloy steels 2CrMo and 9CrCo subjected to constant-amplitude loading at four stress ratios and at four and three temperatures, respectively, to determine their temperature-dependent HCF properties. The interaction mechanisms between high temperature and stress ratio were deduced and compared with each other on the basis of the results of fractographic analysis. A phenomenological model was developed to evaluate the effects of stress ratio on the temperature-dependent HCF properties of alloy steels 2CrMo and 9CrCo. Good correlation was achieved between the predictions and actual experiments, demonstrating the practical and effective use of the proposed method.

  9. Competing Role of Bioactive Constituents in Moringa oleifera Extract and Conventional Nutrition Feed on the Performance of Cobb 500 Broilers

    PubMed Central

    Karthivashan, Govindarajan; Arulselvan, Palanisamy; Alimon, Abd. Razak; Safinar Ismail, Intan; Fakurazi, Sharida

    2015-01-01

    The influence of Moringa oleifera (MO) leaf extract as a dietary supplement on the growth performance and antioxidant parameters was evaluated on broiler meat and the compounds responsible for the corresponding antioxidant activity were identified. 0.5%, 1.0%, and 1.5% w/v of MO leaf aqueous extracts (MOLE) were prepared, and nutritional feed supplemented with 0%, 0.5%, 1.0%, and 1.5% w/w of MO leaf meal (MOLM) extracts were also prepared and analysed for their in vitro antioxidant potential. Furthermore, the treated broiler groups (control (T1) and treatment (T2, T3, and T4)) were evaluated for performance, meat quality, and antioxidant status. The results of this study revealed that, among the broilers fed MOLM, the broilers fed 0.5% w/w MOLM (T2) exhibited enhanced meat quality and antioxidant status (P < 0.05). However, the antioxidant activity of the MOLE is greater than that of the MOLM. The LC-MS/MS analysis of MOLM showed high expression of isoflavones and fatty acids from soy and corn source, which antagonistically inhibit the expression of the flavonoids/phenols in the MO leaves thereby masking its antioxidant effects. Thus, altering the soy and corn gradients in conventional nutrition feed with 0.5% w/w MO leaves supplement would provide an efficient and cost-effective feed supplement. PMID:25793214

  10. An operando Raman study of molecular structure and reactivity of molybdenum(VI) oxide supported on anatase for the oxidative dehydrogenation of ethane.

    PubMed

    Tsilomelekis, George; Boghosian, Soghomon

    2012-02-21

    Supported molybdenum oxide catalysts on TiO(2) (anatase) with surface densities in the range of 1.8-17.0 Mo per nm(2) were studied at temperatures of 410-480 °C for unraveling the configuration and molecular structure of the deposited (MoO(x))(n) species and examining their behavior for the ethane oxidative dehydrogenation (ODH). In situ Raman and in situ FTIR spectra under oxidizing conditions combined with (18)O/(16)O isotope exchange studies provide the first sound evidence for mono-oxo configuration for the deposited (MoO(x))(n) species on anatase. Isolated O=Mo(-O-)(3) tetra-coordinated species in C(3v)-like symmetry prevail at all surface coverages with a low presence of associated (polymeric) species (probably penta-coordinated) evidenced at high coverages, below the approximate monolayer of 6 Mo per nm(2). A mechanistic scenario for (18)O/(16)O isotope exchange and next-nearest-neighbor vibrational isotope effect is proposed at the molecular level to account for the pertinent spectral observations. Catalytic measurements for ethane ODH with simultaneous monitoring of operando Raman spectra were performed. The selectivity to ethylene increases with increasing surface density up to the monolayer coverage, where primary steps of ethane activation follow selective reaction pathways leading to ∼100% C(2)H(4) selectivity. The operando Raman spectra and a quantitative exploitation of the relative normalized Mo=O band intensities for surface densities of 1.8-5.9 Mo per nm(2) and various residence times show that the terminal Mo=O sites are involved in non-selective reaction turnovers. Reaction routes follow primarily non-selective pathways at low coverage and selective pathways at high coverage. Trends in the initial rates of ethane consumption (apparent reactivity per Mo) as a function of Mo surface density are discussed on the basis of several factors.

  11. Synthesis of renewable diesel through hydrodeoxygenation reaction from nyamplung oil (Calophyllum Inophyllum oil) using NiMo/Z and NiMo/C catalysts with rapid heating and cooling method

    NASA Astrophysics Data System (ADS)

    Susanto, B. H.; Prakasa, M. B.; Shahab, M. H.

    2016-11-01

    The synthesis of metal nanocrystal was conducted by modification preparation from simple heating method which heating and cooling process run rapidly. The result of NiMo/Z 575 °C characterizations are 33.73 m2/gram surface area and 31.80 nm crystal size. By used NiMo/C 700 °C catalyst for 30 minutes which had surface area of 263.21 m2/gram, had 31.77 nm crystal size, and good morphology, obtained catalyst with high activity, selectivity, and stability. After catalyst activated, synthesis of renewable diesel performed in hydrogenation reactor at 375 °C, 12 bar, and 800 rpm. The result of conversion was 81.99%, yield was 68.08%, and selectivity was 84.54%.

  12. Hybrid MoS2/h-BN Nanofillers As Synergic Heat Dissipation and Reinforcement Additives in Epoxy Nanocomposites.

    PubMed

    Ribeiro, Hélio; Trigueiro, João Paulo C; Silva, Wellington M; Woellner, Cristiano F; Owuor, Peter S; Cristian Chipara, Alin; Lopes, Magnovaldo C; Tiwary, Chandra S; Pedrotti, Jairo J; Villegas Salvatierra, Rodrigo; Tour, James M; Chopra, Nitin; Odeh, Ihab N; Silva, Glaura G; Ajayan, Pulickel M

    2017-09-26

    Two-dimensional (2D) nanomaterials as molybdenum disulfide (MoS 2 ), hexagonal boron nitride (h-BN), and their hybrid (MoS 2 /h-BN) were employed as fillers to improve the physical properties of epoxy composites. Nanocomposites were produced in different concentrations and studied in their microstructure, mechanical and thermal properties. The hybrid 2D mixture imparted efficient reinforcement to the epoxy leading to increases of up to 95% in tensile strength, 60% in ultimate strain, and 58% in Young's modulus. Moreover, an enhancement of 203% in thermal conductivity was achieved for the hybrid composite as compared to the pure polymer. The incorporation of MoS 2 /h-BN mixture nanofillers in epoxy resulted in nanocomposites with multifunctional characteristics for applications that require high mechanical and thermal performance.

  13. MOEX: Solvent extraction approach for recycling enriched 98Mo/ 100Mo material

    DOE PAGES

    Tkac, Peter; Brown, M. Alex; Momen, Abdul; ...

    2017-03-20

    Several promising pathways exist for the production of 99Mo/ 99mTc using enriched 98Mo or 100Mo. Use of Mo targets require a major change in current generator technology, and the necessity for an efficient recycle pathway to recover valuable enriched Mo material. High recovery yields, purity, suitable chemical form and particle size are required. Results on the development of the MOEX– molybdenum solvent extraction – approach to recycle enriched Mo material are presented. Furthermore, the advantages of the MOEX process are very high decontamination factors from potassium and other elements, high throughput, easy scalability, automation, and minimal waste generation.

  14. MOEX: Solvent extraction approach for recycling enriched 98Mo/ 100Mo material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tkac, Peter; Brown, M. Alex; Momen, Abdul

    Several promising pathways exist for the production of 99Mo/ 99mTc using enriched 98Mo or 100Mo. Use of Mo targets require a major change in current generator technology, and the necessity for an efficient recycle pathway to recover valuable enriched Mo material. High recovery yields, purity, suitable chemical form and particle size are required. Results on the development of the MOEX– molybdenum solvent extraction – approach to recycle enriched Mo material are presented. Furthermore, the advantages of the MOEX process are very high decontamination factors from potassium and other elements, high throughput, easy scalability, automation, and minimal waste generation.

  15. Trilayer TMDC Heterostructures for MOSFETs and Nanobiosensors

    NASA Astrophysics Data System (ADS)

    Datta, Kanak; Shadman, Abir; Rahman, Ehsanur; Khosru, Quazi D. M.

    2017-02-01

    Two dimensional materials such as transition metal dichalcogenides (TMDC) and their bi-layer/tri-layer heterostructures have become the focus of intense research and investigation in recent years due to their promising applications in electronics and optoelectronics. In this work, we have explored device level performance of trilayer TMDC heterostructure (MoS2/MX2/MoS2; M = Mo or, W and X = S or, Se) metal oxide semiconductor field effect transistors (MOSFETs) in the quantum ballistic regime. Our simulation shows that device `on' current can be improved by inserting a WS2 monolayer between two MoS2 monolayers. Application of biaxial tensile strain reveals a reduction in drain current which can be attributed to the lowering of carrier effective mass with increased tensile strain. In addition, it is found that gate underlap geometry improves electrostatic device performance by improving sub-threshold swing. However, increase in channel resistance reduces drain current. Besides exploring the prospect of these materials in device performance, novel trilayer TMDC heterostructure double gate field effect transistors (FETs) are proposed for sensing Nano biomolecules as well as for pH sensing. Bottom gate operation ensures these FETs operating beyond Nernst limit of 59 mV/pH. Simulation results found in this work reveal that scaling of bottom gate oxide results in better sensitivity while top oxide scaling exhibits an opposite trend. It is also found that, for identical operating conditions, proposed TMDC FET pH sensors show super-Nernst sensitivity indicating these materials as potential candidates in implementing such sensor. Besides pH sensing, all these materials show high sensitivity in the sub-threshold region as a channel material in nanobiosensor while MoS2/WS2/MoS2 FET shows the least sensitivity among them.

  16. Metallic 1T-LixMoS2 Cocatalyst Significantly Enhanced the Photocatalytic H2 Evolution over Cd0.5Zn0.5S Nanocrystals under Visible Light Irradiation.

    PubMed

    Du, Hong; Guo, Hong-Li; Liu, Ya-Nan; Xie, Xiao; Liang, Kuang; Zhou, Xiao; Wang, Xin; Xu, An-Wu

    2016-02-17

    In the present work, metallic 1T-LixMoS2 is utilized as a novel cocatalyst for Cd0.5Zn0.5S photocatalyst. The obtained LixMoS2/Cd0.5Zn0.5S hybrids show excellent photocatalytic performance for H2 generation from aqueous solution containing Na2S and Na2SO3 under splitting visible light illumination (λ ≥ 420 nm) without precious metal cocatalysts. It turns out that a certain amount of intercalating Li(+) ions ultimately drives the transition of MoS2 crystal from semiconductor triagonal phase (2H phase) to metallic phase (1T phase). The distinct properties of 1T-LixMoS2 promote the efficient separation of photoexcited electrons and holes when used as cocatalyst for Cd0.5Zn0.5S photocatalyst. As compared to 2H-MoS2 nanosheets only having edge active sites, photoinduced electrons not only transfer to the edge sites of 1T-LixMoS2, but also to the plane active sites of 1T-LixMoS2 nanosheets. The content of LixMoS2 in hybrid photocatalysts influences the photocatalytic activity. The optimal 1T-LixMoS2 (1.0 wt %)/Cd0.5Zn0.5S nanojunctions display the best activity for hydrogen production, achieving a hydrogen evolution rate of 769.9 μmol h(-1), with no use of noble metal loading, which is about 3.5 times higher than that of sole Cd0.5Zn0.5S, and 2 times higher than that of 2H-MoS2 (1.0 wt %)/Cd0.5Zn0.5S samples. Our results demonstrate that Li(+)-intercalated MoS2 nanosheets with high conductivity, high densities of active sites, low cost, and environmental friendliness are a prominent H2 evolution cocatalyst that might substitute for noble metal for potential hydrogen energy applications.

  17. 2D molybdenum disulphide (2D-MoS2) modified electrodes explored towards the oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Rowley-Neale, Samuel J.; Fearn, Jamie M.; Brownson, Dale A. C.; Smith, Graham C.; Ji, Xiaobo; Banks, Craig E.

    2016-08-01

    Two-dimensional molybdenum disulphide nanosheets (2D-MoS2) have proven to be an effective electrocatalyst, with particular attention being focused on their use towards increasing the efficiency of the reactions associated with hydrogen fuel cells. Whilst the majority of research has focused on the Hydrogen Evolution Reaction (HER), herein we explore the use of 2D-MoS2 as a potential electrocatalyst for the much less researched Oxygen Reduction Reaction (ORR). We stray from literature conventions and perform experiments in 0.1 M H2SO4 acidic electrolyte for the first time, evaluating the electrochemical performance of the ORR with 2D-MoS2 electrically wired/immobilised upon several carbon based electrodes (namely; Boron Doped Diamond (BDD), Edge Plane Pyrolytic Graphite (EPPG), Glassy Carbon (GC) and Screen-Printed Electrodes (SPE)) whilst exploring a range of 2D-MoS2 coverages/masses. Consequently, the findings of this study are highly applicable to real world fuel cell applications. We show that significant improvements in ORR activity can be achieved through the careful selection of the underlying/supporting carbon materials that electrically wire the 2D-MoS2 and utilisation of an optimal mass of 2D-MoS2. The ORR onset is observed to be reduced to ca. +0.10 V for EPPG, GC and SPEs at 2D-MoS2 (1524 ng cm-2 modification), which is far closer to Pt at +0.46 V compared to bare/unmodified EPPG, GC and SPE counterparts. This report is the first to demonstrate such beneficial electrochemical responses in acidic conditions using a 2D-MoS2 based electrocatalyst material on a carbon-based substrate (SPEs in this case). Investigation of the beneficial reaction mechanism reveals the ORR to occur via a 4 electron process in specific conditions; elsewhere a 2 electron process is observed. This work offers valuable insights for those wishing to design, fabricate and/or electrochemically test 2D-nanosheet materials towards the ORR.Two-dimensional molybdenum disulphide nanosheets (2D-MoS2) have proven to be an effective electrocatalyst, with particular attention being focused on their use towards increasing the efficiency of the reactions associated with hydrogen fuel cells. Whilst the majority of research has focused on the Hydrogen Evolution Reaction (HER), herein we explore the use of 2D-MoS2 as a potential electrocatalyst for the much less researched Oxygen Reduction Reaction (ORR). We stray from literature conventions and perform experiments in 0.1 M H2SO4 acidic electrolyte for the first time, evaluating the electrochemical performance of the ORR with 2D-MoS2 electrically wired/immobilised upon several carbon based electrodes (namely; Boron Doped Diamond (BDD), Edge Plane Pyrolytic Graphite (EPPG), Glassy Carbon (GC) and Screen-Printed Electrodes (SPE)) whilst exploring a range of 2D-MoS2 coverages/masses. Consequently, the findings of this study are highly applicable to real world fuel cell applications. We show that significant improvements in ORR activity can be achieved through the careful selection of the underlying/supporting carbon materials that electrically wire the 2D-MoS2 and utilisation of an optimal mass of 2D-MoS2. The ORR onset is observed to be reduced to ca. +0.10 V for EPPG, GC and SPEs at 2D-MoS2 (1524 ng cm-2 modification), which is far closer to Pt at +0.46 V compared to bare/unmodified EPPG, GC and SPE counterparts. This report is the first to demonstrate such beneficial electrochemical responses in acidic conditions using a 2D-MoS2 based electrocatalyst material on a carbon-based substrate (SPEs in this case). Investigation of the beneficial reaction mechanism reveals the ORR to occur via a 4 electron process in specific conditions; elsewhere a 2 electron process is observed. This work offers valuable insights for those wishing to design, fabricate and/or electrochemically test 2D-nanosheet materials towards the ORR. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr04073j

  18. The Chemistry of MoS2 and Related Compounds and Their Applications in Electrocatalysis and Photoelectrochemistry

    NASA Astrophysics Data System (ADS)

    Ding, Qi

    The increasing energy demand in our society has stimulated intensive research in the development of sustainable and renewable energy sources to lessen our strong dependence on fossil fuels. Hydrogen is a clean, storable, and high-energy density energy carrier, and is a promising sustainable solution to achieve an environmentally friendly fuel economy. Electrochemical and solar-driven photoelectrochemical water splitting is regarded as one of the most promising approaches to utilize renewable energy to product hydrogen fuel, yet Pt remains the best electrocatalyst for hydrogen evolution reaction (HER), the high cost of which ultimately limit the scalability of such technologies. Layered transition metal dichalcogenides (TMDCs) is a family of compounds that has attracted widespread attention due to their broad range of applications in electronics, optoelectronics, sensing, energy storage, and catalysis. My research has primarily focused on understanding the chemistry of MoS2 and related compounds, and developing rational approaches to enable these materials for efficient electrocatalytic and photoelectrochemical (PEC) hydrogen evolution. We demonstrated highly efficient and robust photocathodes based on heterostructures of chemically exfoliated metallic 1T-MoS2 and planar p-type Si for PEC-HER. Photocurrents up to 17.6 mA/cm2 at 0 V vs reversible hydrogen electrode (RHE) were achieved under simulated 1 sun irradiation, and excellent stability was demonstrated over long-term operation. Building upon the 1T-MoS2 groundwork, amorphous ternary compounds MoQxCly (Q = S, Se) were then developed as excellent catalysts for HER. The preparation of MoQxCly requires much lower temperature and easier fabrication, yet the PEC performance of MoSxCly-based photocathode is even better than 1T-MoS2-based photocathode. Moreover, when MoSxCly is incorporated with n+pp+ Si micropyramids (MPs), we demonstrate the highest current density ever reported for Si-based photocathodes. Furthermore, to fully harness the potentials of MoS2 and utilize it for a broader range of applications, we demonstrate covalent functionalization on the basal plane of 2H-MoS2 via thiol conjugation, despite the general belief that the basal plane is too inert for functionalization. We correlate the degree of functionalization to the amount of sulfur vacancies on MoS2 basal plane, and successfully demonstrated the preparation of MoS2-PbSe quantum dot heterostructures using a bi-functional dithiol linker molecule.

  19. Molten salt-mediated formation of g-C3N4-MoS2 for visible-light-driven photocatalytic hydrogen evolution

    NASA Astrophysics Data System (ADS)

    Li, Ni; Zhou, Jing; Sheng, Ziqiong; Xiao, Wei

    2018-02-01

    Construction of two-dimensional/two-dimensional (2D/2D) hybrid with well-defined composition and microstructure is a general protocol to achieve high-performance catalysts. We herein report preparation of g-C3N4-MoS2 hybrid by pyrolysis of affordable melamine and (NH4)2MoS4 in molten LiCl-NaCl-KCl at 550 °C. Molten salts are confirmed as ideal reaction media for formation of homogeneous hybrid. Characterizations suggest a strong interaction between g-C3N4 and MoS2 in the hybrid, which results in an enhanced visible-light-driven photocatalytic hydrogen generation of the hybrid with an optimal g-C3N4/MoS2 ratio. The present study highlights the merits of molten salt methods on preparation of 2D photocatalysts and provides a rational design of 2D/2D hybrid catalysts for advanced environmental and energy applications.

  20. Human Actions Analysis: Templates Generation, Matching and Visualization Applied to Motion Capture of Highly-Skilled Karate Athletes

    PubMed Central

    Piekarczyk, Marcin; Ogiela, Marek R.

    2017-01-01

    The aim of this paper is to propose and evaluate the novel method of template generation, matching, comparing and visualization applied to motion capture (kinematic) analysis. To evaluate our approach, we have used motion capture recordings (MoCap) of two highly-skilled black belt karate athletes consisting of 560 recordings of various karate techniques acquired with wearable sensors. We have evaluated the quality of generated templates; we have validated the matching algorithm that calculates similarities and differences between various MoCap data; and we have examined visualizations of important differences and similarities between MoCap data. We have concluded that our algorithms works the best when we are dealing with relatively short (2–4 s) actions that might be averaged and aligned with the dynamic time warping framework. In practice, the methodology is designed to optimize the performance of some full body techniques performed in various sport disciplines, for example combat sports and martial arts. We can also use this approach to generate templates or to compare the correct performance of techniques between various top sportsmen in order to generate a knowledge base of reference MoCap videos. The motion template generated by our method can be used for action recognition purposes. We have used the DTW classifier with angle-based features to classify various karate kicks. We have performed leave-one-out action recognition for the Shorin-ryu and Oyama karate master separately. In this case, 100% actions were correctly classified. In another experiment, we used templates generated from Oyama master recordings to classify Shorin-ryu master recordings and vice versa. In this experiment, the overall recognition rate was 94.2%, which is a very good result for this type of complex action. PMID:29125560

  1. The relationship between dual-task and cognitive performance among elderly participants who exercise regularly

    PubMed Central

    Lima, Luciana C. A.; Ansai, Juliana H.; Andrade, Larissa P.; Takahashi, Anielle C. M.

    2015-01-01

    BACKGROUND: The dual-task performance is associated with the functionality of the elderly and it becomes more complex with age. OBJECTIVE: To investigate the relationship between the Timed Up and Go dual task (TUG-DT) and cognitive tests among elderly participants who exercise regularly. METHOD: This study examined 98 non-institutionalized people over 60 years old who exercised regularly. Participants were assessed using the TUG-DT (i.e. doing the TUG while listing the days of the week in reverse order), the Montreal Cognitive Assessment (MoCA), the Clock Drawing Test (CDT), and the Mini Mental State Examination (MMSE). The motor (i.e. time and number of steps) and cognitive (i.e. number of correct words) data were collected from TUG-DT . We used a significance level of α=0.05 and SPSS 17.0 for all data analyses. RESULTS: This current elderly sample featured a predominance of women (69.4%) who were highly educated (median=10 years of education) compared to Brazilian population and mostly non-fallers (86.7%). The volunteers showed a good performance on the TUG-DT and the other cognitive tests, except the MoCA, with scores below the cutoff of 26 points. Significant and weak correlations were observed between the TUG-DT (time) and the visuo-spatial/executive domain of the MoCA and the MMSE. The cognitive component of the TUG-DT showed strong correlations between the total MoCA performance score and its visuo-spatial/executive domain. CONCLUSIONS: The use of the TUG-DT to assess cognition is promising; however, the use of more challenging cognitive tasks should be considered when the study population has a high level of education. PMID:25993629

  2. Publisher Correction: 2D MoS2 as an efficient protective layer for lithium metal anodes in high-performance Li-S batteries

    NASA Astrophysics Data System (ADS)

    Cha, Eunho; Patel, Mumukshu D.; Park, Juhong; Hwang, Jeongwoon; Prasad, Vish; Cho, Kyeongjae; Choi, Wonbong

    2018-06-01

    In the version of this Article originally published, a technical error in typesetting led to the traces in Fig. 3a being trimmed and made to overlap. The figure has now been corrected with the traces as supplied by the authors; the original and corrected Fig. 3a are shown below. Also, in the last paragraph of the section "Mechanistic study on Li diffusion in MoS2" the authors incorrectly included the term `high-concentration' in the text "the Li diffusion will be dominated by high-concentration Li migration on the surface of T-MoS2 with a much smaller energy barrier (0.155 eV) to overcome". This term has now been removed from all versions of the Article. Finally, the authors have added an extra figure in the Supplementary Information (Supplementary Fig. 19) to show galvanostatic tests at 1 and 3 mA cm-2 for the MoS2-coated Li symmetric cells. The caption to Fig. 3 of the Article has been amended to reflect this, with the added wording "Galvanostatic tests at 1 and 3 mA cm-2 can be found in Supplementary Fig. 19."

  3. MoTe2, A novel anode material for sodium ion battery

    NASA Astrophysics Data System (ADS)

    Panda, Manas Ranjan; Anish Raj, K.; Bao, Qiaoliang; Mitra, Sagar

    2018-04-01

    2D layered transition metal dichalcogenides are considered as a potential anode for sodium-ion batteries due to their high specific capacity, structural stability and its well-developed two-dimensional layers. 2D layered structure Molybdenum ditelluride (MoTe2) provides a superior Na-ion storage properties in sodium ion battery due to its comparative more interlayer spacing (0.699 nm). In the current study MoTe2 polycrystalline powder sample has been prepared by solid state reaction process, the structural and morphological studies have been carried out by XRD, FE-SEM and EDS etc. XRD study revealsthe well crystalline structure of the material having hexagonal structure. FE-SEM and EDS studies depict the uniformflakes like structure of the material. When it is tested as sodium-ion battery anode by applying a potential window 0.1-2.5 V, the material demonstrates a high capacity and high power performances. The as prepared MoTe2 shows an initial discharge capacity of 376 mA h g-1 and a corresponding discharge capacity of 303 mA h g-1 after the 50th cycle at a current density of 500 mA g-1.

  4. Friction and Environmental Sensitivity of Molybdenum Disulfide: Effects of Microstructure

    NASA Astrophysics Data System (ADS)

    Curry, John F.

    For nearly a century, molybdenum disulfide has been employed as a solid lubricant to reduce the friction and wear between surfaces. MoS2 is in a class of unique materials, transition metal dichalcogens (TMDC), that have a single crystal structure forming lamellae that interact via weak van der Waals forces. This dissertation focuses on the link between the microstructure of MoS2 and the energetics of running film formation to reduce friction, and effects of environmental sensitivities on performance. Nitrogen impinged MoS2 films are utilized as a comparator to amorphous PVD deposited MoS2 in many of the studies due to the highly ordered surface parallel basal texture of sprayed films. Comparisons showed that films with a highly ordered structure can reduce high friction behavior during run-in. It is thought that shear induced reorientation of amorphous films contributes to typically high initial friction during run-in. In addition to a reduction in initial friction, highly ordered MoS2 films are shown to be more resistant to penetration from oxidative aging processes. High sensitivity, low-energy ion scattering (HS-LEIS) enabled depth profiles that showed oxidation limited to the first monolayer for ordered films and throughout the depth (4-5 nm) for amorphous films. X-ray photoelectron spectroscopy supported these findings, showing far more oxidation in amorphous films than ordered films. Many of these results show the benefits of a well run-in coating, yet transient increases in initial friction can still be noticed after only 5 - 10 minutes. It was found that the transient return to high initial friction after dwell times past 5 - 10 minutes was not due to adsorbed species such as water, but possibly an effect of basal plane relaxation to a commensurate state. Additional techniques and methods were developed to study the effect of adsorbed water and load on running film formation via spiral orbit XRD studies. Spiral orbit experiments enabled large enough worn areas for study in the XRD. Diffraction patterns for sputtered coatings at high loads (1N) showed more intense signals for surface parallel basal plane representation than lower loads (100mN). Tests run in dry and humid nitrogen (20% RH), however, showed no differences in reorientation of basal planes. Microstructure was found to be an important factor in determining the tribological performance of MoS2 films in a variety of testing conditions and environments. These findings will be useful in developing a mechanistic framework that better understands the energetics of running film formation and how different environments play a role.

  5. High temperature wear performance of HVOF-sprayed Cr3C2-WC-NiCoCrMo and Cr3C2-NiCr hardmetal coatings

    NASA Astrophysics Data System (ADS)

    Zhou, Wuxi; Zhou, Kesong; Li, Yuxi; Deng, Chunming; Zeng, Keli

    2017-09-01

    A novel Cr3C2-WC-NiCoCrMo and commercial Cr3C2-NiCr thermal spray-grade powders with particle size of -45 + 15 μm were prepared by an agglomeration and sintering process. Cr3C2-WC-NiCoCrMo and Cr3C2-NiCr coatings were deposited by high velocity oxygen fuel (HVOF) spraying. The fundamental properties of both coatings were evaluated and friction wear test against Al2O3 counterbodies of both coatings at high temperatures (450 °C, 550 °C, 650 °C) were carried out ball-on-disk high temperature tribometer. All specimens were characterized by optical microscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy with energy dispersive spectroscopy (SEM/EDS) and 3D non-contact surface mapping profiler. The results have shown that the Cr3C2-WC-NiCoCrMo coating exhibited lower porosity, higher micro-hardness compared to the Cr3C2-NiCr coating. The Cr3C2-WC-NiCoCrMo coating also exhibited better wear resistance and higher friction coefficient compared to the Cr3C2-NiCr coating when sliding against the Al2O3 counterpart. Wear rates of both coatings increased with raising temperature. Both coatings experienced abrasive wear; hard phase particles (WC and Cr3C2) with different sizes, distributed in the matrix phase, will effectively improve the resistance against wear at high temperatures.

  6. A Novel Bimetallic NiMo Carbide Nanowire Array for Efficient Hydrogen Evolution.

    PubMed

    Guo, Lixia; Wang, Jianying; Teng, Xue; Liu, Yangyang; He, Xiaoming; Chen, Zuofeng

    2018-06-12

    Design and fabrication of noble metal-free hydrogen evolution electrocatalysts with high activity is significant to future renewable energy systems. In this work, self-supported NiMo carbide nanowires have been developed on carbon cloth (Ni3Mo3C@NPC NWs/CC; NPC is N,P-doped carbon) through an electropolymerization-assisted procedure. During the synthesis process, NiMoO4 nanowires were first grown on CC through a hydrothermal reaction which is free of any polymer binder like Nafion. The as-prepared NiMoO4 NWs/CC was then coated by a layer of polypyrole (PPy) by electropolymerization that serves as carbon source for the subsequent conversion to Ni3Mo3C@NPC NWs/CC by carbothermal reduction. The experimental results indicate that the judicious choices of the amount of coated PPy and the pyrolysis temperature are essential for obtaining pure phase and nanowire array structure of Ni3Mo3C@NPC NWs/CC. Benefitting from the pure phase of bimetallic carbide, the unique architecture of nanowire array and the self-supported merit, the optimized Ni3Mo3C@NPC NWs/CC electrode exhibits excellent HER performance in both acidic and alkaline media. It requires low overpotentials of 161 mV and 215 mV to afford a high current density of 100 mA cm-2 toward the HER in acidic and alkaline media, respectively, and the catalytic activity is maintained for at least 48 h, which makes it among the best HER electrocatalysts based on metallic carbides yet reported. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. High-Yield Preparation and Electrochemical Properties of Few-Layer MoS2 Nanosheets by Exfoliating Natural Molybdenite Powders Directly via a Coupled Ultrasonication-Milling Process

    NASA Astrophysics Data System (ADS)

    Dong, Huina; Chen, Deliang; Wang, Kai; Zhang, Rui

    2016-09-01

    Cost-effective and scalable preparation of two-dimensional (2D) molybdenum disulfide (MoS2) has been the bottleneck that limits their applications. This paper reports a novel coupled ultrasonication-milling (CUM) process to exfoliate natural molybdenite powders to achieve few-layer MoS2 (FL-MoS2) nanosheets in the solvent of N-methyl-2-pyrrolidone (NMP) with polyvinylpyrrolidone (PVP) molecules. The synergistic effect of ultrasonication and sand milling highly enhanced the exfoliation efficiency, and the precursor of natural molybdenite powders minimizes the synthetic cost of FL-MoS2 nanosheets. The exfoliation of natural molybdenite powders was conducted in a home-made CUM system, mainly consisting of an ultrasonic cell disruptor and a ceramic sand mill. The samples were characterized by X-ray diffraction, UV-vis spectra, Raman spectra, FT-IR, SEM, TEM, AFM, and N2 adsorption-desorption. The factors that influence the exfoliation in the CUM process, including the initial concentration of natural molybdenite powders ( C in, 15-55 g L-1), ultrasonic power ( P u, 200-350 W), rotation speed of sand mill ( ω s, 1500-2250 r.p.m), exfoliation time ( t ex, 0.5-6 h), and the molar ratio of PVP unit to MoS2 ( R pm, 0-1), were systematically investigated. Under the optimal CUM conditions (i.e., C in = 45 g L-1, P u = 280 W, ω s = 2250 r.p.m and R pm = 0.5), the yield at t ex = 6 h reaches 21.6 %, and the corresponding exfoliation rate is as high as 1.42 g L-1 h-1. The exfoliation efficiency of the CUM mode is much higher than that of either the ultrasonication (U) mode or the milling (M) mode. The synergistic mechanism and influencing rules of the CUM process in exfoliating natural molybdenite powders were elaborated. The as-obtained FL-MoS2 nanosheets have a high specific surface area of 924 m2 g-1 and show highly enhanced electrocatalytic performance in hydrogen evolution reaction and good electrochemical sensing property in detecting ascorbic acid. The CUM process developed has paved a low-cost, green, and highly efficient way towards FL-MoS2 nanosheets from natural molybdenite powders.

  8. Effects of high Z probe on plasma behavior in HT-6M tokamak

    NASA Astrophysics Data System (ADS)

    Li, J.; Gong, X.; Luo, L.; Yin, F. X.; Noda, N.; Wan, B.; Xu, W.; Gao, X.; Yin, F.; Jiang, J. G.; Wu, Z.; Zhao, J. Y.; Wu, M.; Liu, S.; Han, Y.

    1997-02-01

    Molybdenum and tungsten probes have been tested in HT-6M tokamak under various discharge conditions aiming to find out the conditions in which high Z PFC can be used without serious degradation of core plasma performance. In normal OH discharges, the degradation of core plasma performance was found only when the probe was inserted beyond 3.0 cm inside the last closed flux surface (LCFS). The plasma performance did not change with positive biasing to the probe, whereas central Te degraded during negative biasing of -100 V. The insertion of the Mo probe to 1.5 cm inside the LCFS made a change in the threshold power of the L-H transition in EOH discharges. These results suggest a certain operation range of the H-mode in the EOH discharge with the Mo probe in HT-6M.

  9. Lifetime studies of high power rhodium/tungsten and molybdenum electrodes for application to AMTEC (alkali metal thermal-to-electric converter)

    NASA Technical Reports Server (NTRS)

    Williams, R. M.; Jeffries-Nakamura, B.; Underwood, M. L.; O'Connor, D.; Ryan, M. A.; Kikkert, S.; Bankston, C. P.

    1990-01-01

    A detailed and fundamental model for the electrochemical behavior of AMTEC electrodes is developed which can aid in interpreting the processes which occur during prolonged operation of these electrodes. Because the sintering and grain growth of metal particles is also a well-understood phenomenon, the changes in electrode performance which accompany its morphological evolution may be anticipated and modeled. The grain growth rate observed for porous Mo AMTEC electrodes is significantly higher than that predicted from surface diffusion data obtained at higher temperatures and incorporated into the grain growth model. The grain growth observed under AMTEC conditions is also somewhat higher than that measured for Mo films on BASE (beta-alumina solid electrolyte) substrates in vacuum or at similar temperatures. Results of modeling indicate that thin Mo electrodes may show significant performance degradation for extended operation (greater than 10,000 h) at higher operating temperatures (greater than 1150 K), whereas W/Rh and W/Pt electrodes are expected to show adequate performance at 1200 K for lifetimes greater than 10,000 h. It is pointed out that current collection grids and leads must consist of refractory metals such as Mo and W which do not accelerate sintering or metal migration.

  10. Tuning the Ignition Performance of a Microchip Initiator by Integrating Various Al/MoO3 Reactive Multilayer Films on a Semiconductor Bridge.

    PubMed

    Xu, Jianbing; Tai, Yu; Ru, Chengbo; Dai, Ji; Ye, Yinghua; Shen, Ruiqi; Zhu, Peng

    2017-02-15

    Reactive multilayer films (RMFs) can be integrated into semiconducting electronic structures with the use of microelectromechanical systems (MEMS) technology and represent potential applications in the advancement of microscale energy-demanding systems. In this study, aluminum/molybdenum trioxide (Al/MoO 3 )-based RMFs with different modulation periods were integrated on a semiconductor bridge (SCB) using a combination of an image reversal lift-off process and magnetron sputtering technology. This produced an energetic semiconductor bridge (ESCB)-chip initiator with controlled ignition performance. The effects of the Al/MoO 3 RMFs with different modulation periods on ignition properties of the ESCB initiator were then systematically investigated in terms of flame duration, maximum flame area, and the reaction ratio of the RMFs. These microchip initiators achieved flame durations of 60-600 μs, maximum flame areas of 2.85-17.61 mm 2 , and reaction ratios of ∼14-100% (discharged with 47 μF/30 V) by simply changing the modulation periods of the Al/MoO 3 RMFs. This behavior was also consistent with a one-dimensional diffusion reaction model. The microchip initiator exhibited a high level of integration and proved to have tuned ignition performance, which can potentially be used in civilian and military applications.

  11. Efficient solar-driven water splitting by nanocone BiVO4-perovskite tandem cells

    PubMed Central

    Qiu, Yongcai; Liu, Wei; Chen, Wei; Chen, Wei; Zhou, Guangmin; Hsu, Po-Chun; Zhang, Rufan; Liang, Zheng; Fan, Shoushan; Zhang, Yuegang; Cui, Yi

    2016-01-01

    Bismuth vanadate (BiVO4) has been widely regarded as a promising photoanode material for photoelectrochemical (PEC) water splitting because of its low cost, its high stability against photocorrosion, and its relatively narrow band gap of 2.4 eV. However, the achieved performance of the BiVO4 photoanode remains unsatisfactory to date because its short carrier diffusion length restricts the total thickness of the BiVO4 film required for sufficient light absorption. We addressed the issue by deposition of nanoporous Mo-doped BiVO4 (Mo:BiVO4) on an engineered cone-shaped nanostructure, in which the Mo:BiVO4 layer with a larger effective thickness maintains highly efficient charge separation and high light absorption capability, which can be further enhanced by multiple light scattering in the nanocone structure. As a result, the nanocone/Mo:BiVO4/Fe(Ni)OOH photoanode exhibits a high water-splitting photocurrent of 5.82 ± 0.36 mA cm−2 at 1.23 V versus the reversible hydrogen electrode under 1-sun illumination. We also demonstrate that the PEC cell in tandem with a single perovskite solar cell exhibits unassisted water splitting with a solar-to-hydrogen conversion efficiency of up to 6.2%. PMID:27386565

  12. Three-dimensional TiO2 nanowire@NiMoO4 ultrathin nanosheet core-shell arrays for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Cao, Minglei; Bu, Yi; Lv, Xiaowei; Jiang, Xingxing; Wang, Lichuan; Dai, Sirui; Wang, Mingkui; Shen, Yan

    2018-03-01

    This study reports a general and rational two-step hydrothermal strategy to fabricate three-dimensional (3D) TiO2 nanowire@NiMoO4 ultrathin nanosheet core-shell arrays (TNAs-NMO) as additives-free anodes for lithium-ion batteries (LIBs). The TNAs-NMO electrode delivers a reversible capacity of up to 446.6 mA h g-1 over 120 cycles at the current density of 0.2 A g-1 and a high rate capacity of 234.2 mA h g-1 at 2.0 A g-1. Impressively, the capacity retention efficiency is 74.7% after 2500 cycles at the high rate of 2.0 A g-1. In addition, the full cell consisting of TNAs-NMO anode and LCO cathode can afford a specific energy of up to 220.3 W h kg-1 (based on the entire mass of both electrodes). The high electrochemical performance of the TNAs-NMO electrode is ascribed to its 3D core-shell nanowire array architecture, in which the TiO2 nanowire arrays (TNAs) and the ultrathin NiMoO4 nanosheets exhibit strong synergistic effects. The TNAs maintain mechanical integrity of the electrode and the ultrathin NiMoO4 nanosheets contribute to high capacity and favorable electronic conductivity.

  13. MoS2 Nanosheets Vertically Grown on Carbonized Corn Stalks as Lithium-Ion Battery Anode.

    PubMed

    Ma, Luxiang; Zhao, Binglu; Wang, Xusheng; Yang, Junfeng; Zhang, Xinxiang; Zhou, Yuan; Chen, Jitao

    2018-06-25

    In this study, MoS 2 nanosheets are vertically grown on the inside and outside surfaces of the carbonized corn stalks (CCS) by a simple hydrothermal reaction. The vertically grown structure can not only improve the transmission rate of Li + and electrons but also avoid the agglomeration of the nanosheets. Meanwhile, a new approach of biomass source application is presented. We use CCS instead of graphite powders, which can not only avoid the exploitation of graphite resources, but also be used as a matrix for MoS 2 growth to prevent the electrode from being further decomposed during long cycles and at high current densities. Meanwhile, lithium-ion batteries show remarkable electrochemical performance. They demonstrate a high specific capacity of 1409.5 mA g -1 at 100 mA g -1 in the initial cycle. After 250 cycles, the discharge capacity is still as high as 1230.9 mAh g -1 . Even at 4000 mA g -1 , they show a high specific capacity of 777.7 mAh g -1 . Furthermore, the MoS 2 /CCS electrodes show long cycle life, and the specific capacity is still up to ∼500 mAh g -1 at 5000 mA g -1 after 1000 cycles.

  14. 3D Interconnected and Multiwalled Carbon@MoS2 @Carbon Hollow Nanocables as Outstanding Anodes for Na-Ion Batteries.

    PubMed

    Wang, Yan; Qu, Qunting; Li, Guangchao; Gao, Tian; Qian, Feng; Shao, Jie; Liu, Weijie; Shi, Qiang; Zheng, Honghe

    2016-11-01

    Currently, the specific capacity and cycling performance of various MoS 2 /carbon-based anode materials for Na-ion storage are far from satisfactory due to the insufficient structural stability of the electrode, incomplete protection of MoS 2 by carbon, difficult access of electrolyte to the electrode interior, as well as inactivity of the adopted carbon matrix. To address these issues, this work presents the rational design and synthesis of 3D interconnected and hollow nanocables composed of multiwalled carbon@MoS 2 @carbon. In this architecture, (i) the 3D nanoweb-like structure brings about excellent mechanical property of the electrode, (ii) the ultrathin MoS 2 nanosheets are sandwiched between and doubly protected by two layers of porous carbon, (iii) the hollow structure of the primary nanofibers facilitates the access of electrolyte to the electrode interior, (iv) the porous and nitrogen-doping properties of the two carbon materials lead to synergistic Na-storage of carbon and MoS 2 . As a result, this hybrid material as the anode material of Na-ion battery exhibits fast charge-transfer reaction, high utilization efficiency, and ultrastability. Outstanding reversible capacity (1045 mAh g -1 ), excellent rate behavior (817 mAh g -1 at 7000 mA g -1 ), and good cycling performance (747 mAh g -1 after 200 cycles at 700 mA g -1 ) are obtained. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Cognitive Screening in Brain Tumors: Short but Sensitive Enough?

    PubMed Central

    Robinson, Gail A.; Biggs, Vivien; Walker, David G.

    2015-01-01

    Cognitive deficits in brain tumors are generally thought to be relatively mild and non-specific, although recent evidence challenges this notion. One possibility is that cognitive screening tools are being used to assess cognitive functions but their sensitivity to detect cognitive impairment may be limited. For improved sensitivity to recognize mild and/or focal cognitive deficits in brain tumors, neuropsychological evaluation tailored to detect specific impairments has been thought crucial. This study investigates the sensitivity of a cognitive screening tool, the Montreal Cognitive Assessment (MoCA), compared to a brief but tailored cognitive assessment (CA) for identifying cognitive deficits in an unselected primary brain tumor sample (i.e., low/high-grade gliomas, meningiomas). Performance is compared on broad measures of impairment: (a) number of patients impaired on the global screening measure or in any cognitive domain; and (b) number of cognitive domains impaired and specific analyses of MoCA-Intact and MoCA-Impaired patients on specific cognitive tests. The MoCA-Impaired group obtained lower naming and word fluency scores than the MoCA-Intact group, but otherwise performed comparably on cognitive tests. Overall, based on our results from patients with brain tumor, the MoCA has extremely poor sensitivity for detecting cognitive impairments and a brief but tailored CA is necessary. These findings will be discussed in relation to broader issues for clinical management and planning, as well as specific considerations for neuropsychological assessment of brain tumor patients. PMID:25815273

  16. Electric field tuned MoS2/metal interface for hydrogen evolution catalyst from first-principles investigations

    NASA Astrophysics Data System (ADS)

    Ling, F. L.; Zhou, T. W.; Liu, X. Q.; Kang, W.; Zeng, W.; Zhang, Y. X.; Fang, L.; Lu, Y.; Zhou, M.

    2018-01-01

    Understanding the interfacial properties of catalyst/substrate is crucial for the design of high-performance catalyst for important chemical reactions. Recent years have witnessed a surge of research in utilizing MoS2 as a promising electro-catalyst for hydrogen production, and field effect has been employed to enhance the activity (Wang et al 2017 Adv. Mater. 29, 1604464; Yan et al 2017 Nano Lett. 17, 4109-15). However, the underlying atomic mechanism remains unclear. In this paper, by using the prototype MoS2/Au system as a probe, we investigate effects of external electric field on the interfacial electronic structures via density functional theory (DFT) based first-principles calculations. Our results reveal that although there is no covalent interaction between MoS2 overlayer and Au substrate, an applied electric field efficiently adjusts the charge transfer between MoS2 and Au, leading to tunable Schottky barrier type (n-type to p-type) and decrease of barrier height to facilitate charge injection. Furthermore, we predict that the adsorption energy of atomic hydrogen on MoS2/Au to be readily controlled by electric field to a broad range within a modest magnitude of field, which may benefit the performance enhancement of hydrogen evolution reaction. Our DFT results provide valuable insight into the experimental observations and pave the way for future understanding and control of catalysts in practice, such as those with vacancies, defects, edge states or synthesized nanostructures.

  17. Single-layer MoS2 - electrical transport properties, devices and circuits

    NASA Astrophysics Data System (ADS)

    Kis, Andras

    2013-03-01

    After quantum dots, nanotubes and nanowires, two-dimensional materials in the shape of sheets with atomic-scale thickness represent the newest addition to the diverse family of nanoscale materials. Single-layer molybdenum disulphide (MoS2) , a direct-gap semiconductor is a typical example of these new graphene-like materials that can be produced using the adhesive-tape based cleavage technique originally developed for graphene. The presence of a band gap in MoS2 allowed us to fabricate transistors that can be turned off and operate with negligible leakage currents. Furthermore, our transistors can be used to build simple integrated circuits capable of performing logic operations and amplifying small signals. I will report here on our latest 2D MoS2 transistors with improved performance due to enhanced electrostatic control, showing improved currents and transconductance as well as current saturation. We also record electrical breakdown of our devices and find that MoS2 can support very high current densities, exceeding the current carrying capacity of copper by a factor of fifty. Furthermore, I will show optoelectronic devices incorporating MoS2 with sensitivity that surpasses similar graphene devices by several orders of magnitude. Finally, I will present temperature-dependent electrical transport and mobility measurements that show clear mobility enhancement due to the suppression of the influence of charge impurities with the deposition of an HfO2 capping layer. Financially supported by grants from Swiss National Science Foundation, EU-FP7, EU-ERC and Swiss Nanoscience Institute.

  18. Oxidation resistant Mo-Mo2B-silica and Mo-Mo2B-silicate composites for high temperature applications

    NASA Astrophysics Data System (ADS)

    Cochran, J. K.; Daloz, W. L.; Marshall, P. E.

    2011-12-01

    Development of Mo composites based on the Mo-Si-B system has been demonstrated as a possible new route to achieving a high temperature Mobased material. In this new system, the silicide phases are replaced directly with silica or other silicate materials. These composites avoid the high ductile to brittle transition temperature observed for Mo-Si-B alloys by removing the Si that exists in solid solution in Mo at equilibrium with its silicides. A variety of compositions is tested for room temperature ductility and oxidation resistance. A system based upon Mo, Mo2B, and SrO·Al2O3·(SiO2)2 is shown to possess both ductility at 80 vol.% Mo and oxidation resistance at 60 vol.%. These composites can be produced using a powder processing approach and fired to greater than 95% theoretical density with a desirable microstructure of isolated boride and silicate phases within a ductile Mo matrix.

  19. Green synthesis of layered 1T-MoS2/reduced graphene oxide nanocomposite with excellent catalytic performances for 4-nitrophenol reduction

    NASA Astrophysics Data System (ADS)

    Meng, Nannan; Cheng, Jian; Zhou, Yifeng; Nie, Wangyan; Chen, Pengpeng

    2017-02-01

    A green and facile process was developed to prepare layered octahedral phase MoS2/reduced graphene oxide (1T-MoS2/RGO) nanocomposite by a Vitamin C-assisted self-assemble method, in which graphene oxide (GO) and LiMoS2 were used as starting materials. Catalytic performances of 1T-MoS2/RGO were evaluated by hydrogenation of 4-nitrophenol (4-NP). It was demonstrated that the prepared 1T-MoS2/RGO nanocomposite presented excellent catalytic performance and cycling stability for 4-NP reduction, which made it a promising noble-metal-free catalyst. Additionally, broadening work suggested some other RGO-based metal nanocomposite with well-defined porous structure could be also generated via this facile self-assembly method.

  20. A Versatile Glass Processor for High-Performance Photonic Platforms

    DTIC Science & Technology

    2015-12-08

    St . Louis, MO 63130 -4862 ABSTRACT Number of Papers published in peer...Skinner Professor, Electrical and Systems Engineering Department, Washington University, St . Louis, MO 63130 1. Introduction With...al iz ed re so na nc e w av el en gt h sh ift (W G M re so na nc e) a nd no rm al iz ed e la st ic m od ul us c ha ng e (rh eo lo gy ) 0

  1. Fabrication and testing of U–7Mo monolithic plate fuel with Zircaloy cladding

    DOE PAGES

    Pasqualini, E. E.; Robinson, A. B.; Porter, D. L.; ...

    2016-07-15

    The Materials Management and Minimization program is developing fuel designs to replace highly enriched fuel with fuels of low enrichment. In the most challenging cases, U–(7–10wt%)Mo monolithic plate fuel are proposed. The chosen design includes aluminum-alloy cladding, which provides some challenges in fabrication and fuel/cladding interaction in service. We investigated zircaloy cladding, specifically Zry–4as an alternative cladding, and development of a fabrication method was performed by researchers with the Comisión Nacionalde Energia Atómica (CNEA) in Argentina, resulting in test fuel plates (Zry–4 clad U–7Mo) which were subsequently tested in the Advanced Test Reactor in Idaho. Because Zry–4 and U–(7–10)Mo havemore » similar high-temperature mechanical properties, fabrication was simplified in that the fuel foil and cladding could be co-rolled and bonded. The challenge was to prevent a thermal-expansion mismatch which could destroy the fuel/cladding bond before complete bonding was achieved; the solution was to prevent the composites from cooling significantly between roll passes. Our final product performed very well in-reactor, showing good bonding, very little fuel/cladding interaction, either from fabrication or in-reactor testing, and little swelling, especially no detectable heterogeneous bubble formation at the fuel/cladding interface tested to a fission density of up to 2.54E+21« less

  2. Pore growth in U-Mo/Al dispersion fuel

    NASA Astrophysics Data System (ADS)

    Kim, Yeon Soo; Jeong, G. Y.; Sohn, D.-S.; Jamison, L. M.

    2016-09-01

    U-Mo/Al dispersion fuel is currently under development in the DOE's Material Management and Minimization program to convert HEU-fueled research reactors to LEU-fueled reactors. In some demanding conditions in high-power and high-performance reactors, large pores form in the interaction layers between the U-Mo fuel particles and the Al matrix, which pose a potential to cause fuel failure. In this study, comprehension of the formation and growth of these pores was explored. As a product, a model to predict pore growth and porosity increase was developed. The model includes three major topics: fission gas release from the U-Mo and the IL to the pores, stress evolution in the fuel meat, and the effect of amorphous IL growth. Well-characterized in-pile data from reduced-size plates were used to fit the model parameters. A data set from full-sized plates, independent and distinctively different from those used to fit the model parameters, was used to examine the accuracy of the model. The model showed fair agreement with the measured data. The model suggested that the growth of the IL has a critical effect on pore growth, as both its material properties and energetics are favorable to pore formation. Therefore, one area of the current effort, focused on suppressing IL growth, appears to be on the right track to improve the performance of this fuel.

  3. Fabrication and testing of U–7Mo monolithic plate fuel with Zircaloy cladding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pasqualini, E. E.; Robinson, A. B.; Porter, D. L.

    The Materials Management and Minimization program is developing fuel designs to replace highly enriched fuel with fuels of low enrichment. In the most challenging cases, U–(7–10wt%)Mo monolithic plate fuel are proposed. The chosen design includes aluminum-alloy cladding, which provides some challenges in fabrication and fuel/cladding interaction in service. We investigated zircaloy cladding, specifically Zry–4as an alternative cladding, and development of a fabrication method was performed by researchers with the Comisión Nacionalde Energia Atómica (CNEA) in Argentina, resulting in test fuel plates (Zry–4 clad U–7Mo) which were subsequently tested in the Advanced Test Reactor in Idaho. Because Zry–4 and U–(7–10)Mo havemore » similar high-temperature mechanical properties, fabrication was simplified in that the fuel foil and cladding could be co-rolled and bonded. The challenge was to prevent a thermal-expansion mismatch which could destroy the fuel/cladding bond before complete bonding was achieved; the solution was to prevent the composites from cooling significantly between roll passes. Our final product performed very well in-reactor, showing good bonding, very little fuel/cladding interaction, either from fabrication or in-reactor testing, and little swelling, especially no detectable heterogeneous bubble formation at the fuel/cladding interface tested to a fission density of up to 2.54E+21« less

  4. The Dichotic Digits difference Test (DDdT): Development, Normative Data, and Test-Retest Reliability Studies Part 1.

    PubMed

    Cameron, Sharon; Glyde, Helen; Dillon, Harvey; Whitfield, Jessica; Seymour, John

    2016-06-01

    The dichotic digits test is one of the most widely used assessment tools for central auditory processing disorder. However, questions remain concerning the impact of cognitive factors on test results. To develop the Dichotic Digits difference Test (DDdT), an assessment tool that could differentiate children with cognitive deficits from children with genuine dichotic deficits based on differential test results. The DDdT consists of four subtests: dichotic free recall (FR), dichotic directed left ear (DLE), dichotic directed right ear (DRE), and diotic. Scores for six conditions are calculated (FR left ear [LE], FR right ear [RE], and FR total, as well as DLE, DRE, and diotic). Scores for four difference measures are also calculated: dichotic advantage, right-ear advantage (REA) FR, REA directed, and attention advantage. Experiment 1 involved development of the DDdT, including error rate analysis. Experiment 2 involved collection of normative and test-retest reliability data. Twenty adults (aged 25 yr 10 mo to 50 yr 7 mo, mean 36 yr 4 mo) took part in the development study; 62 normal-hearing, typically developing, primary-school children (aged 7 yr 1 mo to 11 yr 11 mo, mean 9 yr 4 mo) and 10 adults (aged 25 yr 0 mo to 51 yr 6 mo, mean 34 yr 10 mo) took part in the normative and test-retest reliability study. In Experiment 1, error rate analysis was conducted on the 36 digit-pair combinations of the DDdT. Normative data collected in Experiment 2 were arcsine transformed to achieve a distribution that was closer to a normal distribution and z-scores calculated. Pearson product-moment correlations were used to determine the strength of relationships between DDdT conditions. The development study revealed no significant differences in the adult population between test and retest on any DDdT condition. Error rates on 36 digit pairs ranged from 1.5% to 16.7%. The most and the least error-prone digits were removed before commencement of the normative data study, leaving 25 unique digit pairs. Average z-scores calculated from the arcsine-transformed data collected from the 62 children who took part in the normative data study revealed that FR dichotic processing (LE, RE, and total) was highly correlated with diotic processing (r ranging from 0.5 to 0.6; p < 0.0001). Significant improvements in performance on retest occurred for the FR LE, RE, total, and diotic conditions (p ranging from 0.05 to 0.0004), the conditions that would be expected to improve with practice if the participant's response strategies are better the second time around. The addition of a diotic control task-that shares many response demands with the usual dichotic tasks-opens up the possibility of differentiating children who perform below expectations because of poor dichotic processing skills from those who perform poorly because of impaired attention, memory, or other cognitive abilities. The high correlation between dichotic and diotic performance suggests that factors other than dichotic performance play a substantial role in a child's ability to perform a dichotic listening task. This hypothesis is investigated further in the cognitive correlation study that follows in the companion paper (DDdT Study Part 2; Cameron et al, 2016). American Academy of Audiology.

  5. XAS Study at Mo and Co K-Edges of the Sulfidation of a CoMo / Al2O3 Hydrotreating Catalyst

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pichon, C.; Gandubert, A. D.; Legens, C.

    2007-02-02

    Because of its impact on environment, the removal of sulfur is an indispensable step, called hydrotreatment, in the refining of petroleum. One of the most commonly used hydrotreating catalysts is CoMo-type catalyst which is composed of molybdenum disulfide slabs promoted by cobalt atoms (CoMoS phase) and well dispersed on a high specific area alumina. As far as the highest sulfur content allowed in gasoline and diesel is continually decreasing, more and more efficient and active hydrotreating catalysts are required. In order to optimize the reactivity of the CoMo-type catalyst in hydrotreatment, a better understanding of the processes used to producemore » the active phase (CoMoS slabs) of the catalyst is necessary. The study reported here deals with the sulfiding mechanism of the slabs and the influence of temperature on the phenomenon. Ex situ X-ray absorption spectroscopy (XANES and EXAFS) was used to study the evolution of the structure of CoMo-type catalyst sulfided at various temperatures (from 293 to 873 K). XAS analysis was performed at both molybdenum and cobalt K-edges to obtain a cross-characterization of the sulfidation of the slabs. It evidenced the formation of various compounds, including two molybdenum oxides, MoS3 (or MoS3-like compound) and Co9S8, at specific steps of the sulfiding process. It showed the role of intermediate played by MoS3 (or MoS3-like compound) during the formation of the slabs and the competition between the appearance of promoted slabs (CoMoS phase) and Co9S8. At last, it leaded to the proposal of a mechanism for the sulfidation of the catalyst.« less

  6. Normal and grazing incidence pulsed laser deposition of nanostructured MoSx hydrogen evolution catalysts from a MoS2 target

    NASA Astrophysics Data System (ADS)

    Fominski, V. Yu.; Romanov, R. I.; Fominski, D. V.; Dzhumaev, P. S.; Troyan, I. A.

    2018-06-01

    Pulsed laser ablation of a MoS2 target causes enhanced splashing of the material. So, for MoSx films obtained by pulsed laser deposition (PLD) in the conventional normal incidence (NI) configuration, their typical morphology is characterized by an underlying granular structure with an overlayer of widely dispersed spherical Mo and MoSx particles possessing micro-, sub-micro- and nanometer sizes. We investigated the possibility of using high surface roughness, which occurs due to particle deposition, as a support with a large exposed surface area for thin MoSx catalytic layers for the hydrogen evolution reaction (HER). For comparison, the HER performance of MoSx layers formed by grazing incidence (GI) PLD was studied. During GI-PLD, a substrate was placed along the direction of laser plume transport and few large particles loaded the substrate. The local structure and composition of thin MoSx layers formed by the deposition of the vapor component of the laser plume were varied by changing the pressure of the buffer gas (argon, Ar). In the case of NI-PLD, an increase in Ar pressure caused the formation of quasi-amorphous MoSx (x ≥ 2) films that possessed highly active catalytic sites on the edges of the layered MoS2 nanophase. At the same time, a decrease in the deposition rate of the MoSx film appeared due to the scattering of the vapor flux by Ar molecules during flux transport from the target to the substrate. This effect prevented uniform deposition of the MoSx catalytic film on the surface of most particles, whose deposition rate was independent of Ar pressure. The scattered vapor flux containing Mo and S atoms was a dominant source for MoSx film growth during GI-PLD. The thickness and composition distribution of the MoSx film on the substrate depended on both the pressure of the buffer gas and the distance from the target. For 1.0-2.5 cm from the target, the deposition rate was quite sufficient to form S-enriched quasi-amorphous MoSx (2.5 < x < 6) catalytic films that consisted of densely packed 30-50 nm nanoparticles. The GI-PLD films possessed a greater density of catalytically active sites with a distinct local atomic configuration including edge sites of the layered MoS2 nanophase and diverse S ligands in the amorphous phase, which contained Mo3-S clusters. At a modest loading of ∼300 μg/cm2 on glassy carbon substrates and an overpotential of -140 mV, these films activated H2 production with geometric current densities up to -10 mA/cm2.

  7. Templated synthesis of plate-like MoS2 nanosheets assisted with HNTs and their tribological performance in oil

    NASA Astrophysics Data System (ADS)

    Wu, Pei-Rong; Cheng, Zhi-Lin; Kong, Ying-Chao; Ma, Zhan-Sheng; Liu, Zan

    2018-05-01

    Two-dimensional MoS2 nanosheets were synthesized by using halloysite nanotubes (HNTs) as template under the hydrothermal synthesis. The structure and morphology of the as-synthesized MoS2 nanosheets were determined by a series of characterizations. The results showed that the as-synthesized MoS2 nanosheets were of the plate-like structure with about five layers, and the basal spacing was about 0.63 nm. It was demonstrated that HNTs played a crucial template role in the formation of the plate-like MoS2 nanosheets. The formation mechanism was proposed. Furthermore, the tribological performance of the as-prepared MoS2 nanosheets in oil was intensively examined on the ball-on-ball wear tester. The testing results verified that the as-prepared MoS2 nanosheets as additive could significantly improve the friction performance of oil, which exhibited the good antifriction, antiwear, and load-carrying properties.

  8. Zero-static power radio-frequency switches based on MoS2 atomristors.

    PubMed

    Kim, Myungsoo; Ge, Ruijing; Wu, Xiaohan; Lan, Xing; Tice, Jesse; Lee, Jack C; Akinwande, Deji

    2018-06-28

    Recently, non-volatile resistance switching or memristor (equivalently, atomristor in atomic layers) effect was discovered in transitional metal dichalcogenides (TMD) vertical devices. Owing to the monolayer-thin transport and high crystalline quality, ON-state resistances below 10 Ω are achievable, making MoS 2 atomristors suitable as energy-efficient radio-frequency (RF) switches. MoS 2 RF switches afford zero-hold voltage, hence, zero-static power dissipation, overcoming the limitation of transistor and mechanical switches. Furthermore, MoS 2 switches are fully electronic and can be integrated on arbitrary substrates unlike phase-change RF switches. High-frequency results reveal that a key figure of merit, the cutoff frequency (f c ), is about 10 THz for sub-μm 2 switches with favorable scaling that can afford f c above 100 THz for nanoscale devices, exceeding the performance of contemporary switches that suffer from an area-invariant scaling. These results indicate a new electronic application of TMDs as non-volatile switches for communication platforms, including mobile systems, low-power internet-of-things, and THz beam steering.

  9. Phase restructuring in transition metal dichalcogenides for highly stable energy storage

    DOE PAGES

    Leng, Kai; Chen, Zhongxin; Zhao, Xiaoxu; ...

    2016-09-16

    Achieving homogeneous phase transition and uniform charge distribution is essential for good cycle stability and high capacity when phase conversion materials are used as electrodes. Herein, we show that chemical lithiation of bulk 2H-MoS 2 distorts its crystalline domains in three primary directions to produce mosaic-like 1T' nanocrystalline domains, which improve phase and charge uniformity during subsequent electrochemical phase conversion. 1T'-Li xMoS 2, a macroscopic dense material with interconnected nanoscale grains, shows excellent cycle stability and rate capability in a lithium rechargeable battery compared to bulk or exfoliated-restacked MoS 2. Transmission electron microscopy studies reveal that the interconnected MoS 2more » nanocrystals created during the phase change process are reformable even after multiple cycles of galvanostatic charging/discharging, which allows them to play important roles in the long term cycling performance of the chemically intercalated TMD materials. Finally, these studies shed light on how bulk TMDs can be processed into quasi-2D nanophase material for stable energy storage.« less

  10. Synthesis of Metal-Oxide/Carbon-Fiber Heterostructures and Their Properties for Organic Dye Removal and High-Temperature CO2 Adsorption

    NASA Astrophysics Data System (ADS)

    Shao, Liangzhi; Nie, Shibin; Shao, Xiankun; Zhang, LinLin; Li, Benxia

    2018-03-01

    One-dimensional metal-oxide/carbon-fiber (MO/CF) heterostructures were prepared by a facile two-step method using the natural cotton as a carbon source the low-cost commercial metal salts as precursors. The metal oxide nanostructures were first grown on the cotton fibers by a solution chemical deposition, and the metal-oxide/cotton heterostructures were then calcined and carbonized in nitrogen atmosphere. Three typical MO/CF heterostructures of TiO2/CF, ZnO/CF, and Fe2O3/CF were prepared and characterized. The loading amount of the metal oxide nanostructures on carbon fibers can be tuned by controlling the concentration of metal salt in the chemical deposition process. Finally, the performance of the as-obtained MO/CF heterostructures for organic dye removal from water was tested by the photocatalytic degradation under a simulated sunlight, and their properties of high-temperature CO2 adsorption were predicted by the temperature programmed desorption. The present study would provide a desirable strategy for the synthesis of MO/CF heterostructures for various applications.

  11. ANTIBODY RESPONSE TO EPSILON TOXIN OF CLOSTRIDIUM PERFRINGENS IN CAPTIVE RED DEER (CERVUS ELAPHUS) OVER A 13-MONTH PERIOD.

    PubMed

    Scala, Christopher; Duffard, Nicolas; Beauchamp, Guy; Boullier, Séverine; Locatelli, Yann

    2016-03-01

    Deer are sensitive to clostridial diseases, and vaccination with clostridial toxoids is the method of choice to prevent these infections in ruminants. The purpose of this study was to evaluate the serologic responses in red deer (Cervus elaphus) over a 13-mo period after vaccination with a multivalent clostridial vaccine, containing an aluminium hydroxide adjuvant. Antibody production to the Clostridium perfringens type D epsilon toxin component of the vaccine was measured using an indirect enzyme-linked immunosorbent assay. Animals from group 1 (9 mo old; n = 6) were naïve and received an initial vaccination with a booster vaccine 4 wk apart and one annual booster. Animals from group 2 (21 mo old; n = 10) had been previously vaccinated 12 mo prior and received a first annual booster at the beginning of this study and a second annual booster 12 mo later. The multivalent clostridial vaccine induced a high antibody response that peaked after each injection and then slowly decreased with time. In group 1, a booster vaccine was required to obtain an initial high humoral response. The annual booster injection induced a strong, rapid, and consistent anamnestic response in both groups. The serologic responses persisted significantly over the baseline value for 9-12 mo in group 1, but more than 12 mo in group 2. It is unknown whether the measured humoral immune responses would have been protective as no challenge studies were performed. Further investigation is needed to determine the protective antibody titers to challenge and how long this immunity might persist after vaccination.

  12. Verbal and memory skills in males with Duchenne muscular dystrophy

    PubMed Central

    Hinton, V J; BA, R J Fee; Goldstein, E M; De Vivo, D C

    2007-01-01

    Duchenne muscular dystrophy (DMD) is a progressive pediatric disorder that affects both muscle and brain. Children with DMD have mean IQ scores that are about one standard deviation lower than population means, with lower Verbal IQ than Performance IQ scores. For the present study, verbal skills and verbal memory skills were examined in males with DMD with the Clinical Evaluation of Language Fundamentals, 3rd edition, and the California Verbal Learning Test for Children. Performance of 50 males with DMD (age range 6–14y, mean 9y 4mo [SD 2y 1mo]) was compared to normative values. Two subsets of the probands were also compared with two comparison groups: unaffected siblings (n=24; DMD group age range 6–12y, mean 9y 1mo [SD 1y 8mo]; sibling age range 6–15y, mean 9y 11mo [SD 2y 4mo]) and males with cerebral palsy (CP); (n=23; DMD group age range 6–9y, mean 7y 8mo [SD 1y 2mo]; CP age range 6–8y, mean 6y 8mo [SD 0y 8mo]). Results demonstrated that although males with DMD performed slightly more poorly than normative values, they performed comparably to the controls on most measures. Consistent deficits were observed only on tests requiring immediate repetition for verbal material (Recalling Sentences, and Concepts and Directions). On other language tasks, including tests of understanding and use of grammar, and understanding of semantic relationships, the males with DMD performed well. Moreover, the males with DMD performed well on multiple indices of verbal recall, and there was no evidence of declarative memory deficits. DMD is a single-gene disorder that is selectively associated with decreased verbal span capacity, but not impaired recall. PMID:17254000

  13. Spectral reflectance data of a high temperature stable solar selective coating based on MoSi2 -Si3N4.

    PubMed

    Hernández-Pinilla, D; Rodríguez-Palomo, A; Álvarez-Fraga, L; Céspedes, E; Prieto, J E; Muñoz-Martín, A; Prieto, C

    2016-06-01

    Data of optical performance, thermal stability and ageing are given for solar selective coatings (SSC) based on a novel MoSi2-Si3N4 absorbing composite. SSC have been prepared as multilayer stacks formed by silver as metallic infrared reflector, a double layer composite and an antireflective layer (doi: 10.1016/j.solmat.2016.04.001 [1]). Spectroscopic reflectance data corresponding to the optical performance of samples after moderate vacuum annealing at temperatures up to 600 °C and after ageing test of more than 200 h with several heating-cooling cycles are shown here.

  14. Observed Changes in As-Fabricated U-10Mo Monolithic Fuel Microstructures After Irradiation in the Advanced Test Reactor

    NASA Astrophysics Data System (ADS)

    Keiser, Dennis; Jue, Jan-Fong; Miller, Brandon; Gan, Jian; Robinson, Adam; Madden, James

    2017-12-01

    A low-enriched uranium U-10Mo monolithic nuclear fuel is being developed by the Material Management and Minimization Program, earlier known as the Reduced Enrichment for Research and Test Reactors Program, for utilization in research and test reactors around the world that currently use high-enriched uranium fuels. As part of this program, reactor experiments are being performed in the Advanced Test Reactor. It must be demonstrated that this fuel type exhibits mechanical integrity, geometric stability, and predictable behavior to high powers and high fission densities in order for it to be a viable fuel for qualification. This paper provides an overview of the microstructures observed at different regions of interest in fuel plates before and after irradiation for fuel samples that have been tested. These fuel plates were fabricated using laboratory-scale fabrication methods. Observations regarding how microstructural changes during irradiation may impact fuel performance are discussed.

  15. Construction of Core-Shell NiMoO4@Ni-Co-S Nanorods as Advanced Electrodes for High-Performance Asymmetric Supercapacitors.

    PubMed

    Chen, Chao; Yan, Dan; Luo, Xin; Gao, Wenjia; Huang, Guanjie; Han, Ziwu; Zeng, Yan; Zhu, Zhihong

    2018-02-07

    In this work, hierarchical core-shell NiMoO 4 @Ni-Co-S nanorods were first successfully grown on nickel foam by a facile two-step method to fabricate a bind-free electrode. The well-aligned electrode wrapped by Ni-Co-S nanosheets displays excellent nanostructural properties and outstanding electrochemical performance, owing to the synergistic effects of both nickel molybdenum oxides and nickel cobalt sulfides. The prepared core-shell nanorods in a three-electrode cell yielded a high specific capacitance of 2.27 F cm -2 (1892 F g -1 ) at a current density of 5 mA cm -2 and retained 91.7% of the specific capacitance even after 6000 cycles. Their electrochemical performance was further investigated for their use as positive electrode for asymmetric supercapacitors. Notably, the energy density of the asymmetric supercapacitor device reached 2.45 mWh cm -3 at a power density of 0.131 W cm -3 , and still retained a remarkable 80.3% of the specific capacitance after 3500 cycles. There is great potential for the electrode composed of the core-shell NiMoO 4 @Ni-Co-S nanorods for use in an all-solid-state asymmetric supercapacitor device.

  16. Two-dimensional Layered MoS2 Biosensors Enable Highly Sensitive Detection of Biomolecules

    NASA Astrophysics Data System (ADS)

    Lee, Joonhyung; Dak, Piyush; Lee, Yeonsung; Park, Heekyeong; Choi, Woong; Alam, Muhammad A.; Kim, Sunkook

    2014-12-01

    We present a MoS2 biosensor to electrically detect prostate specific antigen (PSA) in a highly sensitive and label-free manner. Unlike previous MoS2-FET-based biosensors, the device configuration of our biosensors does not require a dielectric layer such as HfO2 due to the hydrophobicity of MoS2. Such an oxide-free operation improves sensitivity and simplifies sensor design. For a quantitative and selective detection of PSA antigen, anti-PSA antibody was immobilized on the sensor surface. Then, introduction of PSA antigen, into the anti-PSA immobilized sensor surface resulted in a lable-free immunoassary format. Measured off-state current of the device showed a significant decrease as the applied PSA concentration was increased. The minimum detectable concentration of PSA is 1 pg/mL, which is several orders of magnitude below the clinical cut-off level of ~4 ng/mL. In addition, we also provide a systematic theoretical analysis of the sensor platform - including the charge state of protein at the specific pH level, and self-consistent channel transport. Taken together, the experimental demonstration and the theoretical framework provide a comprehensive description of the performance potential of dielectric-free MoS2-based biosensor technology.

  17. Direct Metal Deposition of Refractory High Entropy Alloy MoNbTaW

    NASA Astrophysics Data System (ADS)

    Dobbelstein, Henrik; Thiele, Magnus; Gurevich, Evgeny L.; George, Easo P.; Ostendorf, Andreas

    Alloying of refractory high entropy alloys (HEAs) such as MoNbTaW is usually done by vacuum arc melting (VAM) or powder metallurgy (PM) due to the high melting points of the elements. Machining to produce the final shape of parts is often needed after the PM process. Casting processes, which are often used for aerospace components (turbine blades, vanes), are not possible. Direct metal deposition (DMD) is an additive manufacturing technique used for the refurbishment of superalloy components, but generating these components from the bottom up is also of current research interest. MoNbTaW possesses high yield strength at high temperatures and could be an alternative to state-of-the-art materials. In this study, DMD of an equimolar mixture of elemental powders was performed with a pulsed Nd:YAG laser. Single wall structures were built, deposition strategies developed and the microstructure of MoNbTaW was analyzed by back scattered electrons (BSE) and energy dispersive X-ray (EDX) spectroscopy in a scanning electron microscope. DMD enables the generation of composition gradients by using dynamic powder mixing instead of pre-alloyed powders. However, the simultaneous handling of several elemental or pre-alloyed powders brings new challenges to the deposition process. The influence of thermal properties, melting point and vapor pressure on the deposition process and chemical composition will be discussed.

  18. Structural Phase Transformation in Strained Monolayer MoWSe2 Alloy.

    PubMed

    Apte, Amey; Kochat, Vidya; Rajak, Pankaj; Krishnamoorthy, Aravind; Manimunda, Praveena; Hachtel, Jordan A; Idrobo, Juan Carlos; Syed Amanulla, Syed Asif; Vashishta, Priya; Nakano, Aiichiro; Kalia, Rajiv K; Tiwary, Chandra Sekhar; Ajayan, Pulickel M

    2018-04-24

    Two-dimensional (2D) materials exhibit different mechanical properties from their bulk counterparts owing to their monolayer atomic thickness. Here, we have examined the mechanical behavior of 2D molybdenum tungsten diselenide (MoWSe 2 ) precipitation alloy grown using chemical vapor deposition and composed of numerous nanoscopic MoSe 2 and WSe 2 regions. Applying a bending strain blue-shifted the MoSe 2 and WSe 2 A 1g Raman modes with the stress concentrated near the precipitate interfaces predominantly affecting the WSe 2 modes. In situ local Raman measurements suggested that the crack propagated primarily thorough MoSe 2 -rich regions in the monolayer alloy. Molecular dynamics (MD) simulations were performed to study crack propagation in an MoSe 2 monolayer containing nanoscopic WSe 2 regions akin to the experiment. Raman spectra calculated from MD trajectories of crack propagation confirmed the emergence of intermediate peaks in the strained monolayer alloy, mirroring experimental results. The simulations revealed that the stress buildup around the crack tip caused an irreversible structural transformation from the 2H to 1T phase both in the MoSe 2 matrix and WSe 2 patches. This was corroborated by high-angle annular dark-field images. Crack branching and subsequent healing of a crack branch were also observed in WSe 2 , indicating the increased toughness and crack propagation resistance of the alloyed 2D MoWSe 2 over the unalloyed counterparts.

  19. No association between month of birth and biliary atresia in a country with tropical climate.

    PubMed

    Tanpowpong, Pornthep; Lertudomphonwanit, Chatmanee; Phuapradit, Pornpimol; Treepongkaruna, Suporn

    2018-06-04

    Children with biliary atresia (BA) born in countries with temperate climate showed month-of-birth (MoB) predilection during cooler months. To date, no study on the MoB-BA association has been performed in a tropical country. Our aim was to define MoB variation in children with BA in a tropical country. We studied 150 children diagnosed with BA between January 1996 and April 2015 at a teaching hospital. MoB was defined by two categories based on the precipitation: rain and dry, and three categories based on the air temperature: high, average and low. We applied the country's population data on the number of births in each period as the expected proportions of birth. A slightly higher proportion of BA children was born in the rainy months (52.7%); however, the difference was not significant compared to the general population's birth (P = 0.87). For the MoB based on the air temperature, no statistically significant difference was noted. Males with BA seemed to have a greater MoB variation compared to females, but this did not reach statistical significance. We could not find an association between MoB and BA in a tropical country. Multinational studies may aid in understanding the MoB-BA association in the tropical countries. © 2018 Paediatrics and Child Health Division (The Royal Australasian College of Physicians).

  20. Synthesis of MoS2-reduced graphene oxide/Fe3O4 nanocomposite for enhanced electromagnetic interference shielding effectiveness

    NASA Astrophysics Data System (ADS)

    Prasad, Jagdees; Singh, Ashwani Kumar; Shah, Jyoti; Kotnala, R. K.; Singh, Kedar

    2018-05-01

    This article presents a facile two step hydrothermal process for the synthesis of MoS2-reduced graphene oxide/Fe3O4 (MoS2-rGO/Fe3O4) nanocomposite and its application as an excellent electromagnetic interference shielding material. Characterization tools like; scanning electron microscope, transmission electron microscope, x-ray diffraction, and Raman spectroscopy were used to confirm the formation of nanocomposite and found that spherical Fe3O4 nanoparticles are well dispersed over MoS2-rGO composite with average particle size ∼25–30 nm was confirmed by TEM. Structural characterization done by XRD was found inconsistent with the known lattice parameter of MoS2 nanosheet, reduced graphene oxide and Fe3O4 nanoparticles. Electromagnetic shielding effectiveness of MoS2-rGO/Fe3O4 nanocomposite was evaluated and found to be an excellent EMI shielding material in X-band range (8.0–12.0 GHz). MoS2-rGO composite shows poor shielding capacity (SET ∼ 3.81 dB) in entire range as compared to MoS2-rGO/Fe3O4 nanocomposite (SET ∼ 8.27 dB). It is due to interfacial polarization in the presence of EM field. The result indicates that MoS2-rGO/Fe3O4 nanocomposite provide a new stage for the next generation in high-performance EM wave absorption and EMI shielding effectiveness.

  1. Screening an elderly hearing impaired population for mild cognitive impairment using Mini-Mental State Examination (MMSE) and Montreal Cognitive Assessment (MoCA).

    PubMed

    Lim, Magdalene Yeok Leng; Loo, Jenny Hooi Yin

    2018-07-01

    To determine if there is an association between hearing loss and poorer cognitive scores on Mini-Mental State Examination (MMSE) and Montreal Cognitive Assessment (MoCA) and to determine if poor hearing acuity affects scoring on the cognitive screening tests of MMSE and MoCA. One hundred fourteen elderly patients (Singapore residents) aged between 55 and 86 years were sampled. Participants completed a brief history questionnaire, pure tone audiometry, and 2 cognitive screening tests-the MMSE and MoCA. Average hearing thresholds of the better ear in the frequencies of 0.5, 1, 2, and 4 kHz were used for data analysis. Hearing loss was significantly associated with poorer cognitive scores in Poisson regression models adjusted for age. Mini-Mental State Examination scores were shown to decrease by 2.8% (P = .029), and MoCA scores by 3.5% (P = .013) for every 10 dB of hearing loss. Analysis of hearing-sensitive components of "Registration" and "Recall" in MMSE and MoCA using chi-square tests showed significantly poorer performance in the hearing loss group as compared to the normal hearing group. Phonetic analysis of target words with high error rates shows that the poor performance was likely contributed by decreased hearing acuity, on top of a possible true deficit in cognition in the hearing impaired. Hearing loss is associated with poorer cognitive scores on MMSE and MoCA, and cognitive scoring is likely confounded by poor hearing ability. This highlights an important, often overlooked aspect of sensory impairment during cognitive screening. Provisions should be made when testing for cognition in the hearing-impaired population to avoid over-referral and subsequent misdiagnoses of cognitive impairment. Copyright © 2018 John Wiley & Sons, Ltd.

  2. Design and Performance of a 2.7 THz Waveguide Tripler

    NASA Technical Reports Server (NTRS)

    Maiwald, Frank; Martin, S.; Bruston, J.; Maestrini, A.; Crawford, T.; Siegel, P. H.

    2001-01-01

    The design and performance of a 0.9 THz to 2.7 THz waveguide tripler are presented. An unusual split block configuration with parallel input and output waveguides accommodates a monolithic membrane diode (MoMeD) circuit. Submicron planar GaAs Schottky diodes in single and antiparallel pairs are implemented with matching filters on a 3-micrometer thick suspended substrate as part of the MoMeD structure. The filters are a combination of short hammerheads and high-low impedance elements. Only a few circuit variations have been measured to date. The best current performance shows an output power of 0.1 microW and an efficiency of 0.002% at the band center frequency of 2.55 THz.

  3. Ab Initio High Pressure and Temperature Investigation on Cubic PbMoO3 Perovskite

    NASA Astrophysics Data System (ADS)

    Dar, Sajad Ahmad; Srivastava, Vipul; Sakalle, Umesh Kumar

    2017-12-01

    A combined high pressure and temperature investigation on recently reported cubic perovskite PbMoO3 have been performed within the most accurate density functional theory (DFT). The structure was found stable in cubic paramagnetic phase. The DFT calculated analytical and experimental lattice constant were found in good agreement. The analytical tolerance factor as well as the elastic properties further verifies the cubic stability for PbMoO3. The spin polarized electronic band structure and density of states presented metallic nature with symmetry in up and down states. The insignificant magnetic moment also confirms the paramagnetic nature for the compound. The high pressure elastic and mechanical study up to 35 GPa reveal the structural stability of the material in this pressure range. The compound was found to establish a ductile nature. The electrical conductivity obtained from the band structure results show a decreasing trend with increasing temperature. The temperature dependence of thermodynamic parameters such as specific heat ( C v), thermal expansion ( α) has also been evaluated.

  4. Microstructure of as atomized and annealed U-Mo7 particles: A SEM/EBSD study of grain growth

    NASA Astrophysics Data System (ADS)

    Iltis, X.; Zacharie-Aubrun, I.; Ryu, H. J.; Park, J. M.; Leenaers, A.; Yacout, A. M.; Keiser, D. D.; Vanni, F.; Stepnik, B.; Blay, T.; Tarisien, N.; Tanguy, C.; Palancher, H.

    2017-11-01

    Significant progresses in the performances under in-pile irradiation of particular U-Mo based fuels have been observed over the last fifteen years. One of the remaining issues has still to be tackled for use as a LEU fuel in the high power research reactors: the U-Mo recrystallization and its associated swelling have to be controlled or delayed. One way to mitigate this problem would be to optimize the initial microstructure of U-Mo atomized particle, by homogenizing Mo concentration and increasing grain size. This paper mainly focuses on U-Mo grain growth. Based on samples prepared in the framework of KOMO-5 and EMPIrE tests, a methodological work based on the use of EBSD is presented. In particular, surface preparation procedures are proposed for powders and rods, this last one being most likely readily applicable for plate analysis. As-atomized microstructures are analyzed in detail and subsequently compared to those obtained on particles annealed at 1000 °C under various conditions. It is found that 1 h annealing under vacuum is a good compromise of temperature and time to meet the development goals, provided that few impurity precipitates are present within U-Mo particles, since these can impact grain growth.

  5. Melamine-assisted one-pot synthesis of hierarchical nitrogen-doped carbon@MoS2 nanowalled core-shell microspheres and their enhanced Li-storage performances

    NASA Astrophysics Data System (ADS)

    Sun, Fugen; Wei, Yanju; Chen, Jianzhuang; Long, Donghui; Ling, Licheng; Li, Yongsheng; Shi, Jianlin

    2015-07-01

    A facile and scalable one-pot approach has been developed to synthesize carbon@MoS2 core-shell microspheres by a hydrothermal method, which involves the fast formation of melamine-resorcinol-formaldehyde polymeric microspheres in situ, followed by direct growth of the MoS2 nanowalls on them. The results give unequivocal proof that melamine could be the key to forming the core-shell microspherical morphology, and the contents of MoS2 shells can be easily tuned by initial ratios of the precursors. After a simple heat treatment, the obtained carbon@MoS2 microspheres simultaneously integrate the nitrogen-doped carbon cores and the hierarchical shells which consist of few-layered MoS2 nanowalls with an expanded interlayer spacing. Their unique architectures are favourable for high electronic/ionic conductivity and accommodate volume strain during the electrochemical reaction of the MoS2 anodes in lithium-ion batteries. Thus, a very high reversibility capacity of 771 mA h g-1 at 100 mA g-1 after 100 cycles, and a rate capacity of 598 mA h g-1 at 2000 mA g-1 could be achieved for the carbon@MoS2 core-shell microspheres with the optimal composition. Furthermore, a thin carbon coating on the carbon@MoS2 microspheres could further increase the reversible capacity to 856 mA h g-1 after 100 cycles at 100 mA g-1. These encouraging results suggest that such a facile and efficient protocol can provide a new pathway to produce hierarchical core-shell microspheres which integrate the structural, morphological and compositional design rationales for advanced lithium-ion batteries.A facile and scalable one-pot approach has been developed to synthesize carbon@MoS2 core-shell microspheres by a hydrothermal method, which involves the fast formation of melamine-resorcinol-formaldehyde polymeric microspheres in situ, followed by direct growth of the MoS2 nanowalls on them. The results give unequivocal proof that melamine could be the key to forming the core-shell microspherical morphology, and the contents of MoS2 shells can be easily tuned by initial ratios of the precursors. After a simple heat treatment, the obtained carbon@MoS2 microspheres simultaneously integrate the nitrogen-doped carbon cores and the hierarchical shells which consist of few-layered MoS2 nanowalls with an expanded interlayer spacing. Their unique architectures are favourable for high electronic/ionic conductivity and accommodate volume strain during the electrochemical reaction of the MoS2 anodes in lithium-ion batteries. Thus, a very high reversibility capacity of 771 mA h g-1 at 100 mA g-1 after 100 cycles, and a rate capacity of 598 mA h g-1 at 2000 mA g-1 could be achieved for the carbon@MoS2 core-shell microspheres with the optimal composition. Furthermore, a thin carbon coating on the carbon@MoS2 microspheres could further increase the reversible capacity to 856 mA h g-1 after 100 cycles at 100 mA g-1. These encouraging results suggest that such a facile and efficient protocol can provide a new pathway to produce hierarchical core-shell microspheres which integrate the structural, morphological and compositional design rationales for advanced lithium-ion batteries. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr03708e

  6. Fabrication of a 3D Hierarchical Sandwich Co9 S8 /α-MnS@N-C@MoS2 Nanowire Architectures as Advanced Electrode Material for High Performance Hybrid Supercapacitors.

    PubMed

    Kandula, Syam; Shrestha, Khem Raj; Kim, Nam Hoon; Lee, Joong Hee

    2018-06-01

    Supercapacitors suffer from lack of energy density and impulse the energy density limit, so a new class of hybrid electrode materials with promising architectures is strongly desirable. Here, the rational design of a 3D hierarchical sandwich Co 9 S 8 /α-MnS@N-C@MoS 2 nanowire architecture is achieved during the hydrothermal sulphurization reaction by the conversion of binary mesoporous metal oxide core to corresponding individual metal sulphides core along with the formation of outer metal sulphide shell at the same time. Benefiting from the 3D hierarchical sandwich architecture, Co 9 S 8 /α-MnS@N-C@MoS 2 electrode exhibits enhanced electrochemical performance with high specific capacity/capacitance of 306 mA h g -1 /1938 F g -1 at 1 A g -1 , and excellent cycling stability with a specific capacity retention of 86.9% after 10 000 cycles at 10 A g -1 . Moreover, the fabricated asymmetric supercapacitor device using Co 9 S 8 /α-MnS@N-C@MoS 2 as the positive electrode and nitrogen doped graphene as the negative electrode demonstrates high energy density of 64.2 Wh kg -1 at 729.2 W kg -1 , and a promising energy density of 23.5 Wh kg -1 is still attained at a high power density of 11 300 W kg -1 . The hybrid electrode with 3D hierarchical sandwich architecture promotes enhanced energy density with excellent cyclic stability for energy storage. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Few-layer molybdenum disulfide transistors and circuits for high-speed flexible electronics.

    PubMed

    Cheng, Rui; Jiang, Shan; Chen, Yu; Liu, Yuan; Weiss, Nathan; Cheng, Hung-Chieh; Wu, Hao; Huang, Yu; Duan, Xiangfeng

    2014-10-08

    Two-dimensional layered materials, such as molybdenum disulfide, are emerging as an exciting material system for future electronics due to their unique electronic properties and atomically thin geometry. Here we report a systematic investigation of MoS2 transistors with optimized contact and device geometry, to achieve self-aligned devices with performance including an intrinsic gain over 30, an intrinsic cut-off frequency fT up to 42 GHz and a maximum oscillation frequency fMAX up to 50 GHz, exceeding the reported values for MoS2 transistors to date (fT~0.9 GHz, fMAX~1 GHz). Our results show that logic inverters or radio frequency amplifiers can be formed by integrating multiple MoS2 transistors on quartz or flexible substrates with voltage gain in the gigahertz regime. This study demonstrates the potential of two-dimensional layered semiconductors for high-speed flexible electronics.

  8. Highly efficient hydrogen evolution based on Ni3S4@MoS2 hybrids supported on N-doped reduced graphene oxide

    NASA Astrophysics Data System (ADS)

    Xu, Xiaobing; Zhong, Wei; Wu, Liqian; Sun, Yuan; Wang, Tingting; Wang, Yuanqi; Du, Youwei

    2018-01-01

    Hydrogen evolution reaction (HER) through water splitting at low overpotential is an appealing technology to produce renewable energy, wherein the design of stable electrocatalysts is very critical. To achieve optimal electrochemical performance, a highly efficient and stable noble-metal-free HER catalyst is synthesized by means of a facile hydrothermal co-synthesis. It consists of Ni3S4 nanosheets and MoS2 nanolayers supported on N-doped reduced graphene oxide (Ni3S4/MoS2@N-rGO). The optimized sample provides a large amount of active sites that benefit electron transfer in 3D conductive networks. Thanks to the strong synergistic effect in the catalyst network, we achieved a low overpotential of 94 mV, a small Tafel slope of 56 mV/dec and remarkable durability in an acidic medium.

  9. Few-layer molybdenum disulfide transistors and circuits for high-speed flexible electronics

    PubMed Central

    Cheng, Rui; Jiang, Shan; Chen, Yu; Liu, Yuan; Weiss, Nathan; Cheng, Hung-Chieh; Wu, Hao; Huang, Yu; Duan, Xiangfeng

    2014-01-01

    Two-dimensional layered materials, such as molybdenum disulfide, are emerging as an exciting material system for future electronics due to their unique electronic properties and atomically thin geometry. Here we report a systematic investigation of MoS2 transistors with optimized contact and device geometry, to achieve self-aligned devices with performance including an intrinsic gain over 30, an intrinsic cut-off frequency fT up to 42 GHz and a maximum oscillation frequency fMAX up to 50 GHz, exceeding the reported values for MoS2 transistors to date (fT ~ 0.9 GHz, fMAX ~ 1 GHz). Our results show that logic inverters or radio frequency amplifiers can be formed by integrating multiple MoS2 transistors on quartz or flexible substrates with voltage gain in the gigahertz regime. This study demonstrates the potential of two-dimensional layered semiconductors for high-speed flexible electronics. PMID:25295573

  10. Atomic scale modelling of hexagonal structured metallic fission product alloys

    PubMed Central

    Middleburgh, S. C.; King, D. M.; Lumpkin, G. R.

    2015-01-01

    Noble metal particles in the Mo-Pd-Rh-Ru-Tc system have been simulated on the atomic scale using density functional theory techniques for the first time. The composition and behaviour of the epsilon phases are consistent with high-entropy alloys (or multi-principal component alloys)—making the epsilon phase the only hexagonally close packed high-entropy alloy currently described. Configurational entropy effects were considered to predict the stability of the alloys with increasing temperatures. The variation of Mo content was modelled to understand the change in alloy structure and behaviour with fuel burnup (Mo molar content decreases in these alloys as burnup increases). The predicted structures compare extremely well with experimentally ascertained values. Vacancy formation energies and the behaviour of extrinsic defects (including iodine and xenon) in the epsilon phase were also investigated to further understand the impact that the metallic precipitates have on fuel performance. PMID:26064629

  11. Green and Selective Fluorescent Sensor for Detection of Sn (IV) and Mo (VI) Based on Boron and Nitrogen-Co-Doped Carbon Dots.

    PubMed

    Tabaraki, Reza; Abdi, Omran; Yousefipour, Sedigheh

    2017-03-01

    A green and simple microwave-assisted method was used to synthesis water-soluble boron and nitrogen-co-doped carbon dots (B-N-CDs). These B-N-CDs were successfully used for the fluorescent determination of Sn 4+ and Mo 6+ ions. This probe had a fast response time at pH = 4 with high sensitivity and selectivity. Linear correlation between F 0 /F and the concentration was seen in the range of 0.2-18 μM and 0.2-25 μM for Sn 4+ and Mo 6+ , respectively. Under optimum condition, the limit of detection (LOD) for Sn 4+ and Mo 6+ were 150 nM and 132 nM, respectively. The performance of the sensor was evaluated by different real samples such as tap, river and mineral water, canned fish sample and tomato samples.

  12. Electronic structure and transport properties of zigzag MoS2 nanoribbons

    NASA Astrophysics Data System (ADS)

    Sharma, Uma Shankar; Shah, Rashmi; Mishra, Pankaj Kumar

    2018-05-01

    In present study, electronic and transport properties of the 8zigzag MoS2 nanoribbons (8ZMoS2NRs) are investigated using ab-initio density functional theory [DFT]. The calculations were performed using nonequilibrium Green's function (NEGF) formalism based on DFT as implemented in the TranSiesta code. Results show that the defect can introduces few extra states into the energy gap, which lead nanoribbons to reveal a metallic characteristic. The voltage-current (VI) graph of 8ZMoS2NRs show a threshold current increases after introducing Mo defect in the devices. when introducing a Mo vacancy under low biases, the current will be suppressed—whereas under high biases, the current through the defected 8ZMoS2NRs will increases rapidly, due to the other channel being opened, that make possibility of 8ZMoS2NRs application in electronic devices such as voltage regulation.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keyshar, Kunttal; Berg, Morgann; Zhang, Xiang

    Here, the values of the ionization energies of transition metal dichalcogenides (TMDs) are needed to assess their potential usefulness in semiconductor heterojunctions for high-performance optoelectronics. Here, we report on the systematic determination of ionization energies for three prototypical TMD monolayers (MoSe 2, WS 2, and MoS 2) on SiO 2 using photoemission electron microscopy with deep ultraviolet illumination. The ionization energy displays a progressive decrease from MoS 2, to WS 2, to MoSe 2, in agreement with predictions of density functional theory calculations. Combined with the measured energy positions of the valence band edge at the Brillouin zone center, wemore » deduce that, in the absence of interlayer coupling, a vertical heterojunction comprising any of the three TMD monolayers would form a staggered (type-II) band alignment. This band alignment could give rise to long-lived interlayer excitons that are potentially useful for valleytronics or efficient electron–hole separation in photovoltaics.« less

  14. The structure, thermal expansion and phase transition properties of Ho{sub 2}Mo{sub 3−x}W{sub x}O{sub 12} (x = 0, 1.0, 2.0) solid solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, X.Z.; Hao, L.J.; Wu, M.M.

    Graphical abstract: A polymorph with Gd{sub 2}Mo{sub 3}O{sub 12}-type structure (space group: Pba2) for negative thermal expansion material Ho{sub 2}Mo{sub 3}O{sub 12} is observed above 700 °C, this polymorphism could be effectively supressed by W-substiution for Mo, the give the temperature dependence of Pba2 phase contents for Ho{sub 2}Mo{sub 3−x}W{sub x}O{sub 12} (x = 0.0, 1.0, 2.0). - Highlights: • The solid solution Ho{sub 2}Mo{sub 3−x}W{sub x}O{sub 12} was investigated by in situ X-ray diffraction. • It is found that the substitution slightly influence thermal expansion property. • A polymorph of Ho{sub 2}Mo{sub 3}O{sub 12} with Pba2 space group wasmore » observed above 700 °C. • The W-substitution for Mo effectively suppresses this transformation. - Abstract: Three solid solutions of Ho{sub 2}Mo{sub 3−x}W{sub x}O{sub 12}(x = 0, 1.0, 2.0) were prepared by solid state reaction method, the temperature dependent in-situ X-ray diffraction and thermal analysis were performed to investigate their structure and thermal expansion. All samples have orthorhombic structure(space group Pbcn# 60) with negative thermal expansion at the room temperature. the substitution of W for Mo enlarges the lattice constant and slightly influences the negative thermal expansion. An irreversible phase transformation to the Pba2 phase(Tb{sub 2}Mo{sub 3}O{sub 12} structure) was observed at high temperature for Mo-rich samples. This ploymorphism could be effectively suppressed by the W-substitution for Mo, this phenomenon could be explained by the lower electronegativity of W{sup 6+} than Mo{sup 6+}.« less

  15. An investigation of material properties and tribological performance of magnetron sputtered thin film coatings

    NASA Astrophysics Data System (ADS)

    Singh, Harpal

    This dissertation is divided into two categories based upon lubrication functionality and its application. The categories are: Dry film lubrication and Fluid film lubrication with thin film coatings. Thin film coatings examined in this work were deposited using closed field unbalanced magnetron sputtering and RF-DC coupled magnetron sputtering systems. In Dry/Solid film lubrication, the mechanical, structural and tribological properties of two Molybdenum disulphide (MoS2) based coatings are examined and evaluated. Among the two coatings, one coating is doped with Ti (Ti-MoS2) and the other is a combination of metal, lubricant and oxide (Sb2O3/Au - MoS2). These coatings are known to provide low friction in vacuum environments. The goal of this work was to evaluate friction and wear performance of MoS2 doped coatings in unidirectional and reciprocating sliding contact under different environmental conditions. Sliding contact results showed friction and wear dependence on temperature and humidity. The formation and removal of transfer films and the recrystallization and reorientation of basal layers on the steel counterface was observed as the mechanism for low friction. Structural analysis revealed a relationship between the microstructural properties and tribological performance. It was also observed that the addition of dopants (Ti, Au, Sb 2O3) improved the mechanical properties as compared to pure MoS2 coatings. Further, the rolling contact performance of the coatings was measured on a five ball on rod tribometer and a Thrust bearing tribometer under vacuum and air environments. The rolling contact experiments indicated that life of the rolling components depend on the amount of material present between the contacts. Fluid film lubrication with thin film coatings investigates the possibilities to improve the performance and durability of tribological components when oils and thin films are synergistically coupled. In this work, the ability of a Diamond Like Carbon coating to increase the durability of contacting surfaces under boundary lubrication were studied. The performance of highly hydrogenated Diamond Like Carbon (DLC) was evaluated in a mixed sliding and rolling contact. Experimental results show significant improvement in fatigue life of steel specimens after coating with a highly hydrogenated Diamond Like Carbon coating. The improved fatigue life is attributed to the coating microstructure and the mechanical properties.

  16. Ultra-broadband nonlinear saturable absorption of high-yield MoS2 nanosheets

    NASA Astrophysics Data System (ADS)

    Wei, Rongfei; Zhang, Hang; Hu, Zhongliang; Qiao, Tian; He, Xin; Guo, Qiangbing; Tian, Xiangling; Chen, Zhi; Qiu, Jianrong

    2016-07-01

    High-yield MoS2 nanosheets with strong nonlinear optical (NLO) responses in a broad near-infrared range were synthesized by a facile hydrothermal method. The observation of saturable absorption, which was excited by the light with photon energy smaller than the gap energy of MoS2, can be attributed to the enhancement of the hybridization between the Mo d-orbital and S p-orbital by the oxygen incorporation into MoS2. High-yield MoS2 nanosheets with high modulation depth and large saturable intensity generated a stable, passively Q-switched fiber laser pulse at 1.56 μm. The high output power of 1.08 mW can be attained under a very low pump power of 30.87 mW. Compared to recently reported passively Q-switched fiber lasers utilizing exfoliated MoS2 nanosheets, the efficiency of the laser for our passive Q-switching operation is larger and reaches 3.50%. This research may extend the understanding on the NLO properties of MoS2 and indicate the feasibility of the high-yield MoS2 nanosheets to passively Q-switched fiber laser effectively at low pump strengths.

  17. MoRFchibi SYSTEM: software tools for the identification of MoRFs in protein sequences.

    PubMed

    Malhis, Nawar; Jacobson, Matthew; Gsponer, Jörg

    2016-07-08

    Molecular recognition features, MoRFs, are short segments within longer disordered protein regions that bind to globular protein domains in a process known as disorder-to-order transition. MoRFs have been found to play a significant role in signaling and regulatory processes in cells. High-confidence computational identification of MoRFs remains an important challenge. In this work, we introduce MoRFchibi SYSTEM that contains three MoRF predictors: MoRFCHiBi, a basic predictor best suited as a component in other applications, MoRFCHiBi_ Light, ideal for high-throughput predictions and MoRFCHiBi_ Web, slower than the other two but best for high accuracy predictions. Results show that MoRFchibi SYSTEM provides more than double the precision of other predictors. MoRFchibi SYSTEM is available in three different forms: as HTML web server, RESTful web server and downloadable software at: http://www.chibi.ubc.ca/faculty/joerg-gsponer/gsponer-lab/software/morf_chibi/. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  18. Ohmic Contact Fabrication Using a Focused-ion Beam Technique and Electrical Characterization for Layer Semiconductor Nanostructures.

    PubMed

    Chen, Ruei-San; Tang, Chih-Che; Shen, Wei-Chu; Huang, Ying-Sheng

    2015-12-05

    Layer semiconductors with easily processed two-dimensional (2D) structures exhibit indirect-to-direct bandgap transitions and superior transistor performance, which suggest a new direction for the development of next-generation ultrathin and flexible photonic and electronic devices. Enhanced luminescence quantum efficiency has been widely observed in these atomically thin 2D crystals. However, dimension effects beyond quantum confinement thicknesses or even at the micrometer scale are not expected and have rarely been observed. In this study, molybdenum diselenide (MoSe2) layer crystals with a thickness range of 6-2,700 nm were fabricated as two- or four-terminal devices. Ohmic contact formation was successfully achieved by the focused-ion beam (FIB) deposition method using platinum (Pt) as a contact metal. Layer crystals with various thicknesses were prepared through simple mechanical exfoliation by using dicing tape. Current-voltage curve measurements were performed to determine the conductivity value of the layer nanocrystals. In addition, high-resolution transmission electron microscopy, selected-area electron diffractometry, and energy-dispersive X-ray spectroscopy were used to characterize the interface of the metal-semiconductor contact of the FIB-fabricated MoSe2 devices. After applying the approaches, the substantial thickness-dependent electrical conductivity in a wide thickness range for the MoSe2-layer semiconductor was observed. The conductivity increased by over two orders of magnitude from 4.6 to 1,500 Ω(-) (1) cm(-) (1), with a decrease in the thickness from 2,700 to 6 nm. In addition, the temperature-dependent conductivity indicated that the thin MoSe2 multilayers exhibited considerably weak semiconducting behavior with activation energies of 3.5-8.5 meV, which are considerably smaller than those (36-38 meV) of the bulk. Probable surface-dominant transport properties and the presence of a high surface electron concentration in MoSe2 are proposed. Similar results can be obtained for other layer semiconductor materials such as MoS2 and WS2.

  19. Ohmic Contact Fabrication Using a Focused-ion Beam Technique and Electrical Characterization for Layer Semiconductor Nanostructures

    PubMed Central

    Chen, Ruei-San; Tang, Chih-Che; Shen, Wei-Chu; Huang, Ying-Sheng

    2015-01-01

    Layer semiconductors with easily processed two-dimensional (2D) structures exhibit indirect-to-direct bandgap transitions and superior transistor performance, which suggest a new direction for the development of next-generation ultrathin and flexible photonic and electronic devices. Enhanced luminescence quantum efficiency has been widely observed in these atomically thin 2D crystals. However, dimension effects beyond quantum confinement thicknesses or even at the micrometer scale are not expected and have rarely been observed. In this study, molybdenum diselenide (MoSe2) layer crystals with a thickness range of 6-2,700 nm were fabricated as two- or four-terminal devices. Ohmic contact formation was successfully achieved by the focused-ion beam (FIB) deposition method using platinum (Pt) as a contact metal. Layer crystals with various thicknesses were prepared through simple mechanical exfoliation by using dicing tape. Current-voltage curve measurements were performed to determine the conductivity value of the layer nanocrystals. In addition, high-resolution transmission electron microscopy, selected-area electron diffractometry, and energy-dispersive X-ray spectroscopy were used to characterize the interface of the metal–semiconductor contact of the FIB-fabricated MoSe2 devices. After applying the approaches, the substantial thickness-dependent electrical conductivity in a wide thickness range for the MoSe2-layer semiconductor was observed. The conductivity increased by over two orders of magnitude from 4.6 to 1,500 Ω−1 cm−1, with a decrease in the thickness from 2,700 to 6 nm. In addition, the temperature-dependent conductivity indicated that the thin MoSe2 multilayers exhibited considerably weak semiconducting behavior with activation energies of 3.5-8.5 meV, which are considerably smaller than those (36-38 meV) of the bulk. Probable surface-dominant transport properties and the presence of a high surface electron concentration in MoSe2 are proposed. Similar results can be obtained for other layer semiconductor materials such as MoS2 and WS2. PMID:26710105

  20. Diffusion Barrier Selection from Refractory Metals (Zr, Mo and Nb) via Interdiffusion Investigation for U-Mo RERTR Fuel Alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    K. Huang; C. Kammerer; D. D. Keiser, Jr.

    2014-04-01

    U-Mo alloys are being developed as low enrichment monolithic fuel under the Reduced Enrichment for Research and Test Reactor (RERTR) Program. Diffusional interactions between the U-Mo fuel alloy and Al-alloy cladding within the monolithic fuel plate construct necessitate incorporation of a barrier layer. Fundamentally, a diffusion barrier candidate must have good thermal conductivity, high melting point, minimal metallurgical interaction, and good irradiation performance. Refractory metals, Zr, Mo, and Nb are considered based on their physical properties, and the diffusion behavior must be carefully examined first with U-Mo fuel alloy. Solid-to-solid U-10wt.%Mo vs. Mo, Zr, or Nb diffusion couples were assembledmore » and annealed at 600, 700, 800, 900 and 1000 degrees C for various times. The interdiffusion microstructures and chemical composition were examined via scanning electron microscopy and electron probe microanalysis, respectively. For all three systems, the growth rate of interdiffusion zone were calculated at 1000, 900 and 800 degrees C under the assumption of parabolic growth, and calculated for lower temperature of 700, 600 and 500 degrees C according to Arrhenius relationship. The growth rate was determined to be about 10 3 times slower for Zr, 10 5 times slower for Mo and 10 6 times slower for Nb, than the growth rates reported for the interaction between the U-Mo fuel alloy and pure Al or Al-Si cladding alloys. Zr, however was selected as the barrier metal due to a concern for thermo- mechanical behavior of UMo/Nb interface observed from diffusion couples, and for ductile-to-brittle transition of Mo near room temperature.« less

Top