Sample records for high performance potential

  1. Planar junctionless phototransistor: A potential high-performance and low-cost device for optical-communications

    NASA Astrophysics Data System (ADS)

    Ferhati, H.; Djeffal, F.

    2017-12-01

    In this paper, a new junctionless optical controlled field effect transistor (JL-OCFET) and its comprehensive theoretical model is proposed to achieve high optical performance and low cost fabrication process. Exhaustive study of the device characteristics and comparison between the proposed junctionless design and the conventional inversion mode structure (IM-OCFET) for similar dimensions are performed. Our investigation reveals that the proposed design exhibits an outstanding capability to be an alternative to the IM-OCFET due to the high performance and the weak signal detection benefit offered by this design. Moreover, the developed analytical expressions are exploited to formulate the objective functions to optimize the device performance using Genetic Algorithms (GAs) approach. The optimized JL-OCFET not only demonstrates good performance in terms of derived drain current and responsivity, but also exhibits superior signal to noise ratio, low power consumption, high-sensitivity, high ION/IOFF ratio and high-detectivity as compared to the conventional IM-OCFET counterpart. These characteristics make the optimized JL-OCFET potentially suitable for developing low cost and ultrasensitive photodetectors for high-performance and low cost inter-chips data communication applications.

  2. Unfulfilled Potential: High-Achieving Minority Students and the High School Achievement Gap in Math

    ERIC Educational Resources Information Center

    Kotok, Stephen

    2017-01-01

    This study uses multilevel modeling to examine a subset of the highest performing 9th graders and explores the extent that achievement gaps in math widen for high performing African American and Latino students and their high performing White and Asian peers during high school. Using nationally representative data from the High School Longitudinal…

  3. Low physical activity as a key differentiating factor in the potential high-risk profile for depressive symptoms in older adults.

    PubMed

    Holmquist, Sofie; Mattsson, Sabina; Schele, Ingrid; Nordström, Peter; Nordström, Anna

    2017-09-01

    The identification of potential high-risk groups for depression is of importance. The purpose of the present study was to identify high-risk profiles for depressive symptoms in older individuals, with a focus on functional performance. The population-based Healthy Ageing Initiative included 2,084 community-dwelling individuals (49% women) aged 70. Explorative cluster analysis was used to group participants according to functional performance level, using measures of basic mobility skills, gait variability, and grip strength. Intercluster differences in depressive symptoms (measured by the Geriatric Depression Scale [GDS]-15), physical activity (PA; measured objectively with the ActiGraph GT3X+), and a rich set of covariates were examined. The cluster analysis yielded a seven-cluster solution. One potential high-risk cluster was identified, with overrepresentation of individuals with GDS scores >5 (15.1 vs. 2.7% expected; relative risk = 6.99, P < .001); the prevalence of depressive symptoms was significantly lower in the other clusters (all P < .01). The potential high-risk cluster had significant overrepresentations of obese individuals (39.7 vs. 17.4% expected) and those with type 2 diabetes (24.7 vs. 8.5% expected), and underrepresentation of individuals who fulfilled the World Health Organization's PA recommendations (15.6 vs. 59.1% expected; all P < .01), as well as low levels of functional performance. The present study provided a potential high-risk profile for depressive symptoms among elderly community-dwelling individuals, which included low levels functional performance combined with low levels of PA. Including PA in medical screening of the elderly may aid in identification of potential high-risk individuals for depressive symptoms. © 2017 Wiley Periodicals, Inc.

  4. Development of a Brief Pre-Implementation Screening Tool to Identify Teachers Who Are at Risk for Not Implementing Intervention Curriculum and High-Implementing Teachers

    ERIC Educational Resources Information Center

    Wang, Bo; Stanton, Bonita; Lunn, Sonja; Patel, Pooja; Koci, Veronica; Deveaux, Lynette

    2017-01-01

    Few questionnaires have been developed to screen for potentially poor implementers of school-based interventions. This study combines teacher characteristics, perceptions, and teaching/training experiences to develop a short screening tool that can identify potential "low-performing" or "high-performing" teachers…

  5. High-Performance Solid-State Thermionic Energy Conversion Based on 2D van der Waals Heterostructures: A First-Principles Study.

    PubMed

    Wang, Xiaoming; Zebarjadi, Mona; Esfarjani, Keivan

    2018-06-18

    Two-dimensional (2D) van der Waals heterostructures (vdWHs) have shown multiple functionalities with great potential in electronics and photovoltaics. Here, we show their potential for solid-state thermionic energy conversion and demonstrate a designing strategy towards high-performance devices. We propose two promising thermionic devices, namely, the p-type Pt-G-WSe 2 -G-Pt and n-type Sc-WSe 2 -MoSe 2 -WSe 2 -Sc. We characterize the thermionic energy conversion performance of the latter using first-principles GW calculations combined with real space Green's function (GF) formalism. The optimal barrier height and high thermal resistance lead to an excellent performance. The proposed device is found to have a room temperature equivalent figure of merit of 1.2 which increases to 3 above 600 K. A high performance with cooling efficiency over 30% of the Carnot efficiency above 450 K is achieved. Our designing and characterization method can be used to pursue other potential thermionic devices based on vdWHs.

  6. High-performance green flexible electronics based on biodegradable cellulose nanofibril paper

    PubMed Central

    Jung, Yei Hwan; Chang, Tzu-Hsuan; Zhang, Huilong; Yao, Chunhua; Zheng, Qifeng; Yang, Vina W.; Mi, Hongyi; Kim, Munho; Cho, Sang June; Park, Dong-Wook; Jiang, Hao; Lee, Juhwan; Qiu, Yijie; Zhou, Weidong; Cai, Zhiyong; Gong, Shaoqin; Ma, Zhenqiang

    2015-01-01

    Today's consumer electronics, such as cell phones, tablets and other portable electronic devices, are typically made of non-renewable, non-biodegradable, and sometimes potentially toxic (for example, gallium arsenide) materials. These consumer electronics are frequently upgraded or discarded, leading to serious environmental contamination. Thus, electronic systems consisting of renewable and biodegradable materials and minimal amount of potentially toxic materials are desirable. Here we report high-performance flexible microwave and digital electronics that consume the smallest amount of potentially toxic materials on biobased, biodegradable and flexible cellulose nanofibril papers. Furthermore, we demonstrate gallium arsenide microwave devices, the consumer wireless workhorse, in a transferrable thin-film form. Successful fabrication of key electrical components on the flexible cellulose nanofibril paper with comparable performance to their rigid counterparts and clear demonstration of fungal biodegradation of the cellulose-nanofibril-based electronics suggest that it is feasible to fabricate high-performance flexible electronics using ecofriendly materials. PMID:26006731

  7. High-performance green flexible electronics based on biodegradable cellulose nanofibril paper.

    PubMed

    Jung, Yei Hwan; Chang, Tzu-Hsuan; Zhang, Huilong; Yao, Chunhua; Zheng, Qifeng; Yang, Vina W; Mi, Hongyi; Kim, Munho; Cho, Sang June; Park, Dong-Wook; Jiang, Hao; Lee, Juhwan; Qiu, Yijie; Zhou, Weidong; Cai, Zhiyong; Gong, Shaoqin; Ma, Zhenqiang

    2015-05-26

    Today's consumer electronics, such as cell phones, tablets and other portable electronic devices, are typically made of non-renewable, non-biodegradable, and sometimes potentially toxic (for example, gallium arsenide) materials. These consumer electronics are frequently upgraded or discarded, leading to serious environmental contamination. Thus, electronic systems consisting of renewable and biodegradable materials and minimal amount of potentially toxic materials are desirable. Here we report high-performance flexible microwave and digital electronics that consume the smallest amount of potentially toxic materials on biobased, biodegradable and flexible cellulose nanofibril papers. Furthermore, we demonstrate gallium arsenide microwave devices, the consumer wireless workhorse, in a transferrable thin-film form. Successful fabrication of key electrical components on the flexible cellulose nanofibril paper with comparable performance to their rigid counterparts and clear demonstration of fungal biodegradation of the cellulose-nanofibril-based electronics suggest that it is feasible to fabricate high-performance flexible electronics using ecofriendly materials.

  8. High-performance green flexible electronics based on biodegradable cellulose nanofibril paper

    NASA Astrophysics Data System (ADS)

    Jung, Yei Hwan; Chang, Tzu-Hsuan; Zhang, Huilong; Yao, Chunhua; Zheng, Qifeng; Yang, Vina W.; Mi, Hongyi; Kim, Munho; Cho, Sang June; Park, Dong-Wook; Jiang, Hao; Lee, Juhwan; Qiu, Yijie; Zhou, Weidong; Cai, Zhiyong; Gong, Shaoqin; Ma, Zhenqiang

    2015-05-01

    Today's consumer electronics, such as cell phones, tablets and other portable electronic devices, are typically made of non-renewable, non-biodegradable, and sometimes potentially toxic (for example, gallium arsenide) materials. These consumer electronics are frequently upgraded or discarded, leading to serious environmental contamination. Thus, electronic systems consisting of renewable and biodegradable materials and minimal amount of potentially toxic materials are desirable. Here we report high-performance flexible microwave and digital electronics that consume the smallest amount of potentially toxic materials on biobased, biodegradable and flexible cellulose nanofibril papers. Furthermore, we demonstrate gallium arsenide microwave devices, the consumer wireless workhorse, in a transferrable thin-film form. Successful fabrication of key electrical components on the flexible cellulose nanofibril paper with comparable performance to their rigid counterparts and clear demonstration of fungal biodegradation of the cellulose-nanofibril-based electronics suggest that it is feasible to fabricate high-performance flexible electronics using ecofriendly materials.

  9. Implementing Molecular Dynamics on Hybrid High Performance Computers - Three-Body Potentials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, W Michael; Yamada, Masako

    The use of coprocessors or accelerators such as graphics processing units (GPUs) has become popular in scientific computing applications due to their low cost, impressive floating-point capabilities, high memory bandwidth, and low electrical power re- quirements. Hybrid high-performance computers, defined as machines with nodes containing more than one type of floating-point processor (e.g. CPU and GPU), are now becoming more prevalent due to these advantages. Although there has been extensive research into methods to efficiently use accelerators to improve the performance of molecular dynamics (MD) employing pairwise potential energy models, little is reported in the literature for models that includemore » many-body effects. 3-body terms are required for many popular potentials such as MEAM, Tersoff, REBO, AIREBO, Stillinger-Weber, Bond-Order Potentials, and others. Because the per-atom simulation times are much higher for models incorporating 3-body terms, there is a clear need for efficient algo- rithms usable on hybrid high performance computers. Here, we report a shared-memory force-decomposition for 3-body potentials that avoids memory conflicts to allow for a deterministic code with substantial performance improvements on hybrid machines. We describe modifications necessary for use in distributed memory MD codes and show results for the simulation of water with Stillinger-Weber on the hybrid Titan supercomputer. We compare performance of the 3-body model to the SPC/E water model when using accelerators. Finally, we demonstrate that our approach can attain a speedup of 5.1 with acceleration on Titan for production simulations to study water droplet freezing on a surface.« less

  10. New Synthesis Of High-Performance Bismaleimides

    NASA Technical Reports Server (NTRS)

    Pater, Ruth H.; Lowther, Sharon; Cannon, Michelle; Smith, Janice; Whitely, Karen

    1991-01-01

    New general synthesis of tough and easy-to-process high-performance bismaleimides (BMI's) developed. Involves reaction of acetylene-terminated compounds with BMI's or biscitraconimides. Offers matrix resins and adhesives having combined advantages of toughness characteristic of thermoplastics and easy processability characteristic of thermosetting materials. Scheme has potential for providing high-performance matrix resins surviving well at high temperatures and absorb little moisture.

  11. Advanced controls for airbreathing engines, volume 3: Allison gas turbine

    NASA Technical Reports Server (NTRS)

    Bough, R. M.

    1993-01-01

    The application of advanced control concepts to airbreathing engines may yield significant improvements in aircraft/engine performance and operability. Screening studies of advanced control concepts for airbreathing engines were conducted by three major domestic aircraft engine manufacturers to determine the potential impact of concepts on turbine engine performance and operability. The purpose of the studies was to identify concepts which offered high potential yet may incur high research and development risk. A target suite of proposed advanced control concepts was formulated and evaluated in a two-phase study to quantify each concept's impact on desired engine characteristics. To aid in the evaluation specific aircraft/engine combinations were considered: a Military High Performance Fighter mission, a High Speed Civil Transport mission, and a Civil Tiltrotor mission. Each of the advanced control concepts considered in the study are defined and described. The concept potential impact on engine performance was determined. Relevant figures of merit on which to evaluate the concepts are determined. Finally, the concepts are ranked with respect to the target aircraft/engine missions. A final report describing the screening studies was prepared by each engine manufacturer. Volume 3 of these reports describes the studies performed by the Allison Gas Turbine Division.

  12. Advanced control for airbreathing engines, volume 1: Pratt and Whitney

    NASA Technical Reports Server (NTRS)

    Ralph, J. A.

    1993-01-01

    The application of advanced control concepts to air breathing engines may yield significant improvements in aircraft/engine performance and operability. Screening studies of advanced control concepts for air breathing engines were conducted by three major domestic aircraft engine manufacturers to determine the potential impact of concepts on turbine engine performance and operability. The purpose of the studies was to identify concepts which offered high potential yet may incur high research and development risk. A target suite of proposed advanced control concepts was formulated and evaluated in a two phase study to quantify each concept's impact on desired engine characteristics. To aid in the evaluation specific aircraft/engine combinations were considered: a Military High Performance Fighter mission, a High Speed Civil Transport mission, and a Civil Tiltrotor mission. Each of the advanced control concepts considered in the study are defined and described. The concept potential impact on engine performance was determined. Relevant figures of merit on which to evaluate the concepts are determined. Finally, the concepts are ranked with respect to the target aircraft/engine missions. A final report describing the screening studies was prepared by each engine manufacturer. Volume 1 of these reports describes the studies performed by Pratt & Whitney.

  13. Advanced control for airbreathing engines, volume 2: General Electric aircraft engines

    NASA Technical Reports Server (NTRS)

    Bansal, Indar

    1993-01-01

    The application of advanced control concepts to air breathing engines may yield significant improvements in aircraft/engine performance and operability. Screening studies of advanced control concepts for air breathing engines were conducted by three major domestic aircraft engine manufacturers to determine the potential impact of concepts on turbine engine performance and operability. The purpose of the studies was to identify concepts which offered high potential yet may incur high research and development risk. A target suite of proposed advanced control concepts was formulated and evaluated in a two phase study to quantify each concept's impact on desired engine characteristics. To aid in the evaluation specific aircraft/engine combinations were considered: a Military High Performance Fighter mission, a High Speed Civil Transport mission, and a Civil Tiltrotor mission. Each of the advanced control concepts considered in the study are defined and described. The concept potential impact on engine performance was determined. Relevant figures of merit on which to evaluate the concepts are determined. Finally, the concepts are ranked with respect to the target aircraft/engine missions. A final report describing the screening studies was prepared by each engine manufacturer. Volume 2 of these reports describes the studies performed by GE Aircraft Engines.

  14. Screening studies of advanced control concepts for airbreathing engines

    NASA Technical Reports Server (NTRS)

    Ouzts, Peter J.; Lorenzo, Carl F.; Merrill, Walter C.

    1993-01-01

    The application of advanced control concepts to airbreathing engines may yield significant improvements in aircraft/engine performance and operability. Accordingly, the NASA Lewis Research Center has conducted screening studies of advanced control concepts for airbreathing engines to determine their potential impact on turbine engine performance and operability. The purpose of the studies was to identify concepts which offered high potential yet may incur high research and development risk. A target suite of proposed concepts was formulated by NASA and industry. These concepts were evaluated in a two phase study to quantify each concept's impact on desired engine characteristics. To aid in the evaluation, three target aircraft/engine combinations were considered: a military high performance fighter mission, a high speed civil transport mission, and a civil tiltrotor mission. Each of the advanced control concepts considered in the study were defined and described. The concept's potential impact on engine performance was determined. Relevant figures of merit on which to evaluate the concepts were also determined. Finally, the concepts were ranked with respect to the target aircraft/engine missions.

  15. High Value Talent: Identifying, Developing, and Retaining Naval Special Warfare’s Best Leaders

    DTIC Science & Technology

    2012-06-01

    Retaining Naval Special Warfare’s Best Leaders 6. AUTHOR(S) Walter H. Allman, Jonathan M. Fussell, Marty D. Timmons 5. FUNDING NUMBERS 7. PERFORMING ...ORGANIZATION NAME(S) AND ADDRESS(ES) Naval Postgraduate School Monterey, CA 93943-5000 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING...5 1. High Performers ...................................................................................5 2. High Potentials

  16. Silicon-Carbide Power MOSFET Performance in High Efficiency Boost Power Processing Unit for Extreme Environments

    NASA Technical Reports Server (NTRS)

    Ikpe, Stanley A.; Lauenstein, Jean-Marie; Carr, Gregory A.; Hunter, Don; Ludwig, Lawrence L.; Wood, William; Del Castillo, Linda Y.; Fitzpatrick, Fred; Chen, Yuan

    2016-01-01

    Silicon-Carbide device technology has generated much interest in recent years. With superior thermal performance, power ratings and potential switching frequencies over its Silicon counterpart, Silicon-Carbide offers a greater possibility for high powered switching applications in extreme environment. In particular, Silicon-Carbide Metal-Oxide- Semiconductor Field-Effect Transistors' (MOSFETs) maturing process technology has produced a plethora of commercially available power dense, low on-state resistance devices capable of switching at high frequencies. A novel hard-switched power processing unit (PPU) is implemented utilizing Silicon-Carbide power devices. Accelerated life data is captured and assessed in conjunction with a damage accumulation model of gate oxide and drain-source junction lifetime to evaluate potential system performance at high temperature environments.

  17. High-performance, polymer-based direct cellular interfaces for electrical stimulation and recording

    NASA Astrophysics Data System (ADS)

    Kim, Seong-Min; Kim, Nara; Kim, Youngseok; Baik, Min-Seo; Yoo, Minsu; Kim, Dongyoon; Lee, Won-June; Kang, Dong-Hee; Kim, Sohee; Lee, Kwanghee; Yoon, Myung-Han

    2018-04-01

    Due to the trade-off between their electrical/electrochemical performance and underwater stability, realizing polymer-based, high-performance direct cellular interfaces for electrical stimulation and recording has been very challenging. Herein, we developed transparent and conductive direct cellular interfaces based on a water-stable, high-performance poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) film via solvent-assisted crystallization. The crystallized PEDOT:PSS on a polyethylene terephthalate (PET) substrate exhibited excellent electrical/electrochemical/optical characteristics, long-term underwater stability without film dissolution/delamination, and good viability for primarily cultured cardiomyocytes and neurons over several weeks. Furthermore, the highly crystallized, nanofibrillar PEDOT:PSS networks enabled dramatically enlarged surface areas and electrochemical activities, which were successfully employed to modulate cardiomyocyte beating via direct electrical stimulation. Finally, the high-performance PEDOT:PSS layer was seamlessly incorporated into transparent microelectrode arrays for efficient, real-time recording of cardiomyocyte action potentials with a high signal fidelity. All these results demonstrate the strong potential of crystallized PEDOT:PSS as a crucial component for a variety of versatile bioelectronic interfaces.

  18. Identifying grasslands suitable for cellulosic feedstock crops in the Greater Platte River Basin: dynamic modeling of ecosystem performance with 250 m eMODIS

    USGS Publications Warehouse

    Gu, Yingxin; Boyte, Stephen P.; Wylie, Bruce K.; Tieszen, Larry L.

    2012-01-01

    This study dynamically monitors ecosystem performance (EP) to identify grasslands potentially suitable for cellulosic feedstock crops (e.g., switchgrass) within the Greater Platte River Basin (GPRB). We computed grassland site potential and EP anomalies using 9-year (2000–2008) time series of 250 m expedited moderate resolution imaging spectroradiometer Normalized Difference Vegetation Index data, geophysical and biophysical data, weather and climate data, and EP models. We hypothesize that areas with fairly consistent high grassland productivity (i.e., high grassland site potential) in fair to good range condition (i.e., persistent ecosystem overperformance or normal performance, indicating a lack of severe ecological disturbance) are potentially suitable for cellulosic feedstock crop development. Unproductive (i.e., low grassland site potential) or degraded grasslands (i.e., persistent ecosystem underperformance with poor range condition) are not appropriate for cellulosic feedstock development. Grassland pixels with high or moderate ecosystem site potential and with more than 7 years ecosystem normal performance or overperformance during 2000–2008 are identified as possible regions for future cellulosic feedstock crop development (ca. 68 000 km2 within the GPRB, mostly in the eastern areas). Long-term climate conditions, elevation, soil organic carbon, and yearly seasonal precipitation and temperature are important performance variables to determine the suitable areas in this study. The final map delineating the suitable areas within the GPRB provides a new monitoring and modeling approach that can contribute to decision support tools to help land managers and decision makers make optimal land use decisions regarding cellulosic feedstock crop development and sustainability.

  19. Investigation of spatial resolution and temporal performance of SAPHIRE (scintillator avalanche photoconductor with high resolution emitter readout) with integrated electrostatic focusing

    NASA Astrophysics Data System (ADS)

    Scaduto, David A.; Lubinsky, Anthony R.; Rowlands, John A.; Kenmotsu, Hidenori; Nishimoto, Norihito; Nishino, Takeshi; Tanioka, Kenkichi; Zhao, Wei

    2014-03-01

    We have previously proposed SAPHIRE (scintillator avalanche photoconductor with high resolution emitter readout), a novel detector concept with potentially superior spatial resolution and low-dose performance compared with existing flat-panel imagers. The detector comprises a scintillator that is optically coupled to an amorphous selenium photoconductor operated with avalanche gain, known as high-gain avalanche rushing photoconductor (HARP). High resolution electron beam readout is achieved using a field emitter array (FEA). This combination of avalanche gain, allowing for very low-dose imaging, and electron emitter readout, providing high spatial resolution, offers potentially superior image quality compared with existing flat-panel imagers, with specific applications to fluoroscopy and breast imaging. Through the present collaboration, a prototype HARP sensor with integrated electrostatic focusing and nano- Spindt FEA readout technology has been fabricated. The integrated electron-optic focusing approach is more suitable for fabricating large-area detectors. We investigate the dependence of spatial resolution on sensor structure and operating conditions, and compare the performance of electrostatic focusing with previous technologies. Our results show a clear dependence of spatial resolution on electrostatic focusing potential, with performance approaching that of the previous design with external mesh-electrode. Further, temporal performance (lag) of the detector is evaluated and the results show that the integrated electrostatic focusing design exhibits comparable or better performance compared with the mesh-electrode design. This study represents the first technical evaluation and characterization of the SAPHIRE concept with integrated electrostatic focusing.

  20. Friction Stir Additive Manufacturing: Route to High Structural Performance

    NASA Astrophysics Data System (ADS)

    Palanivel, S.; Sidhar, H.; Mishra, R. S.

    2015-03-01

    Aerospace and automotive industries provide the next big opportunities for additive manufacturing. Currently, the additive industry is confronted with four major challenges that have been identified in this article. These challenges need to be addressed for the additive technologies to march into new frontiers and create additional markets. Specific potential success in the transportation sectors is dependent on the ability to manufacture complicated structures with high performance. Most of the techniques used for metal-based additive manufacturing are fusion based because of their ability to fulfill the computer-aided design to component vision. Although these techniques aid in fabrication of complex shapes, achieving high structural performance is a key problem due to the liquid-solid phase transformation. In this article, friction stir additive manufacturing (FSAM) is shown as a potential solid-state process for attaining high-performance lightweight alloys for simpler geometrical applications. To illustrate FSAM as a high-performance route, manufactured builds of Mg-4Y-3Nd and AA5083 are shown as examples. In the Mg-based alloy, an average hardness of 120 HV was achieved in the built structure and was significantly higher than that of the base material (97 HV). Similarly for the Al-based alloy, compared with the base hardness of 88 HV, the average built hardness was 104 HV. A potential application of FSAM is illustrated by taking an example of a simple stiffener assembly.

  1. 76 FR 80905 - TRICARE Evaluation of Centers for Medicare & Medicaid Services Approved Laboratory Developed...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-27

    ... potential high utilization and potential high clinical impact on TRICARE beneficiaries. If no submission is... reviewed in numerical order beginning with the test listed as having the highest priority. Those selected... laboratories that use LDTs as well as FDA approved tests. Laboratories performing moderate or high complexity...

  2. Playing with Performance: The Use and Abuse of Beta-Blockers in the Performing Arts

    ERIC Educational Resources Information Center

    Patston, Tim; Loughlan, Terence

    2014-01-01

    This article discusses the use of beta-blockers by performing artists, the reasons why they are taken, and the potential associated risks. We argue that there are high levels of usage within sectors of the professional performing arts community and that there may be high levels of risk in using these medications, particularly without medical…

  3. Viscous investigation of a flapping foil propulsor

    NASA Astrophysics Data System (ADS)

    Posri, Attapol; Phoemsapthawee, Surasak; Thaweewat, Nonthipat

    2018-01-01

    Inspired by how fishes propel themselves, a flapping-foil device is invented as an alternative propulsion system for ships and boats. The performance of such propulsor has been formerly investigated using a potential flow code. The simulation results have shown that the device has high propulsive efficiency over a wide range of operation. However, the potential flow gives good results only when flow separation is not present. In case of high flapping frequency, the flow separation can occur over a short instant due to fluid viscosity and high angle of attack. This may cause a reduction of propulsive efficiency. A commercial CFD code based on Lattice Boltzmann Method, XFlow, is then employed in order to investigate the viscous effect over the propulsive performance of the flapping foil. The viscous results agree well with the potential flow results, confirming the high efficiency of the propulsor. As expected, viscous results show lower efficiency in high flapping frequency zone.

  4. Developing a Differentiated Model for the Teaching of Creative Writing to High Performing Students

    ERIC Educational Resources Information Center

    Ngo, Thu Thi Bich

    2016-01-01

    Differentiating writing instruction has been a puzzling matter for English teachers when it comes to teaching creative writing to high potential and high performing (HPHP) students. The lack of differentiation in creative writing pedagogy for HPHP students in Australia is due to two major issues: (1) teachers' lack of high-level linguistic and…

  5. The corrosion performance of high chromium stainless steels and titanium alloys at a reverse osmosis plant in Arabian Gulf seawater

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Odwani, A.; Al-Tabatabaei, M.; Carew, J.

    1997-08-01

    Electrochemical impedance spectroscopy (EIS) was used to evaluate the corrosion performance of four high chromium stainless steels and Grade 2 titanium in flowing Arabian Gulf natural seawater. The EIS provided information concerning the changes to the interfacial impedance as a function of exposure time for these alloys. The impedance spectra for all the alloys showed slight changes at the low frequency region over the exposure period. The open-circuit potentials (OCP) of these alloys were also monitored as a function of exposure time. The stainless steel alloys exhibited slight fluctuation in potential around the initial exposure potential. However, Grade 2 titaniummore » initial potential was more active and then gradually shifted towards the noble direction. The linear polarization resistance (LPR) method indicated that Grade 2 titanium exhibited the lowest corrosion rate with respect to the stainless steel alloys. The results of the EIS analysis and OCP indicated that Grade 2 titanium performed better than the four high chromium stainless steel alloys.« less

  6. The identification of high potential archers based on fitness and motor ability variables: A Support Vector Machine approach.

    PubMed

    Taha, Zahari; Musa, Rabiu Muazu; P P Abdul Majeed, Anwar; Alim, Muhammad Muaz; Abdullah, Mohamad Razali

    2018-02-01

    Support Vector Machine (SVM) has been shown to be an effective learning algorithm for classification and prediction. However, the application of SVM for prediction and classification in specific sport has rarely been used to quantify/discriminate low and high-performance athletes. The present study classified and predicted high and low-potential archers from a set of fitness and motor ability variables trained on different SVMs kernel algorithms. 50 youth archers with the mean age and standard deviation of 17.0 ± 0.6 years drawn from various archery programmes completed a six arrows shooting score test. Standard fitness and ability measurements namely hand grip, vertical jump, standing broad jump, static balance, upper muscle strength and the core muscle strength were also recorded. Hierarchical agglomerative cluster analysis (HACA) was used to cluster the archers based on the performance variables tested. SVM models with linear, quadratic, cubic, fine RBF, medium RBF, as well as the coarse RBF kernel functions, were trained based on the measured performance variables. The HACA clustered the archers into high-potential archers (HPA) and low-potential archers (LPA), respectively. The linear, quadratic, cubic, as well as the medium RBF kernel functions models, demonstrated reasonably excellent classification accuracy of 97.5% and 2.5% error rate for the prediction of the HPA and the LPA. The findings of this investigation can be valuable to coaches and sports managers to recognise high potential athletes from a combination of the selected few measured fitness and motor ability performance variables examined which would consequently save cost, time and effort during talent identification programme. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Performance potential of air turbo-ramjet employing supersonic through-flow fan

    NASA Technical Reports Server (NTRS)

    Kepler, C. E.; Champagne, G. A.

    1989-01-01

    A study was conducted to assess the performance potential of a supersonic through-flow fan in an advanced engine designed to power a Mach-5 cruise vehicle. It included a preliminary evaluation of fan performance requirements and the desirability of supersonic versus subsonic combustion, the design and performance of supersonic fans, and the conceptual design of a single-pass air-turbo-rocket/ramjet engine for a Mach 5 cruise vehicle. The study results showed that such an engine could provide high thrust over the entire speed range from sea-level takeoff to Mach 5 cruise, especially over the transonic speed range, and high fuel specific impulse at the Mach 5 cruise condition, with the fan windmilling.

  8. High-Performance Liquid Chromatography-Mass Spectrometry.

    ERIC Educational Resources Information Center

    Vestal, Marvin L.

    1984-01-01

    Reviews techniques for online coupling of high-performance liquid chromatography with mass spectrometry, emphasizing those suitable for application to nonvolatile samples. Also summarizes the present status, strengths, and weaknesses of various techniques and discusses potential applications of recently developed techniques for combined liquid…

  9. Only When the Societal Impact Potential Is High? A Panel Study of the Relationship Between Public Service Motivation and Perceived Performance

    PubMed Central

    van Loon, Nina; Kjeldsen, Anne Mette; Andersen, Lotte Bøgh; Vandenabeele, Wouter; Leisink, Peter

    2016-01-01

    Many studies find positive associations between public service motivation (PSM) and performance, but much of this literature is based on cross-sectional data prone to endogeneity and common method bias. Moreover, we know little about potential moderators. In this study, we test the moderating role of societal impact potential (SIP)—the degree to which the job is perceived to provide opportunities to contribute to society. We use cross-sectional data from 13,967 employees in 2010 and 2012 aggregated to construct longitudinal data for 42 organizations. As expected, the association between PSM and individual perceived performance is positive when SIP is high. However, when SIP is low, PSM is only weakly or not at all related to performance. This is an important insight for organizations that try to enhance performance through PSM. Our findings suggest that this can only be done when the employees think that their jobs allow them to contribute to society. PMID:29780203

  10. How a high working memory capacity can increase proactive interference.

    PubMed

    Steinwascher, Merle A; Meiser, Thorsten

    2016-08-01

    Previous findings suggested that a high working memory capacity (WMC) is potentially associated with a higher susceptibility to proactive interference (PI) if the latter is measured under high cognitive load. To explain such a finding, we propose to consider susceptibility to PI as a net effect of individual executive processes and the intrinsic potential for PI. With the latter, we refer to the amount of information that is activated at a given time and that has the potential to exert PI subsequently. In two studies deploying generalized linear mixed models, susceptibility to PI was modeled as the decline of performance over trials of a complex span task. The results revealed that a higher WMC was associated with a higher susceptibility to PI. Moreover, the number of stimuli recalled in one trial as a proxy variable for the intrinsic potential for PI negatively affected memory performance in the subsequent trial. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. beta-Aminoalcohols as Potential Reactivators of Aged Sarin-/Soman-Inhibited Acetylcholinesterase

    DTIC Science & Technology

    2017-02-08

    This approach includes high - quality quantum mechanical/molecular mechanical calcula- tions, providing reliable reactivation steps and energetics...I. V. Khavrutskii Department of Defense Biotechnology High Performance Computing Software Applications Institute Telemedicine and Advanced...b] Dr. A. Wallqvist Department of Defense Biotechnology High Performance Computing Software Applications Institute Telemedicine and Advanced

  12. Interphase Thermomechanical Reliability and Optimization for High-Performance Ti Metal Laminates

    DTIC Science & Technology

    2011-12-19

    Thermomechanical Reliability and Optimization for High-Performance Ti FA9550-08-l-0015 Metal Laminates Sb. GRANT NUMBER Program Manager: Dr Joycelyn Harrison...OSR-VA-TR-2012-0202 12. DISTRIBUTION/AVAILABILITY STATEMENT A 13. SUPPLEMENTARY NOTES 14. ABSTRACT Hybrid laminated composites such as titanium...graphite (TiGr) laminates are an emerging class of structural materials with the potential to enable a new generation of efficient, high-performance

  13. Cream-Skimming, Parking and Other Intended and Unintended Effects of High-Powered, Performance-Based Contracts

    ERIC Educational Resources Information Center

    Koning, Pierre; Heinrich, Carolyn J.

    2013-01-01

    As performance-based contracting in social welfare services continues to expand, concerns about potential unintended effects are also growing. We analyze the incentive effects of high-powered, performance-based contracts and their implications for program outcomes using panel data on Dutch cohorts of unemployed and disabled workers that were…

  14. STEM Attrition among High-Performing College Students in the United States: Scope and Potential Causes

    ERIC Educational Resources Information Center

    Chen, Xianglei

    2015-01-01

    Postsecondary education plays a critical role in building a strong workforce in Science, Technology, Engineering, and Mathematics (STEM) fields. The U.S. postsecondary education system, however, frequently loses many potential STEM graduates through attrition. An increasing portion of STEM leavers are top performers who might have made valuable…

  15. Jet engine applications for materials with nanometer-scale dimensions

    NASA Technical Reports Server (NTRS)

    Appleby, J. W., Jr.

    1995-01-01

    The performance of advanced military and commercial gas turbine engines is often linked to advances in materials technology. High performance gas turbine engines being developed require major material advances in strength, toughness, reduced density and improved temperature capability. The emerging technology of nanostructured materials has enormous potential for producing materials with significant improvements in these properties. Extraordinary properties demonstrated in the laboratory include material strengths approaching theoretical limit, ceramics that demonstrate ductility and toughness, and materials with ultra-high hardness. Nanostructured materials and coatings have the potential for meeting future gas turbine engine requirements for improved performance, reduced weight and lower fuel consumption.

  16. Jet engine applications for materials with nanometer-scale dimensions

    NASA Technical Reports Server (NTRS)

    Appleby, J. W., Jr.

    1995-01-01

    The performance of advanced military and commercial gas turbine engines is often linked to advances in materials technology. High performance gas turbine engines being developed require major material advances in strength, toughness, reduced density and improved temperature capability. The emerging technology of nanostructured materials has enormous potential for producing materials with significant improvements in these properties. Extraordinary properties demonstrated in the laboratory include material strengths approaching theoretical limit, ceramics that demonstrate ductility and toughness, and material with ultra-high hardness. Nanostructured materials and coatings have the potential for meeting future gas turbine engine requirements for improved performance, reduced weight and lower fuel consumption.

  17. C-SPECT - a Clinical Cardiac SPECT/Tct Platform: Design Concepts and Performance Potential

    PubMed Central

    Chang, Wei; Ordonez, Caesar E.; Liang, Haoning; Li, Yusheng; Liu, Jingai

    2013-01-01

    Because of scarcity of photons emitted from the heart, clinical cardiac SPECT imaging is mainly limited by photon statistics. The sub-optimal detection efficiency of current SPECT systems not only limits the quality of clinical cardiac SPECT imaging but also makes more advanced potential applications difficult to be realized. We propose a high-performance system platform - C-SPECT, which has its sampling geometry optimized for detection of emitted photons in quality and quantity. The C-SPECT has a stationary C-shaped gantry that surrounds the left-front side of a patient’s thorax. The stationary C-shaped collimator and detector systems in the gantry provide effective and efficient detection and sampling of photon emission. For cardiac imaging, the C-SPECT platform could achieve 2 to 4 times the system geometric efficiency of conventional SPECT systems at the same sampling resolution. This platform also includes an integrated transmission CT for attenuation correction. The ability of C-SPECT systems to perform sequential high-quality emission and transmission imaging could bring cost-effective high-performance to clinical imaging. In addition, a C-SPECT system could provide high detection efficiency to accommodate fast acquisition rate for gated and dynamic cardiac imaging. This paper describes the design concepts and performance potential of C-SPECT, and illustrates how these concepts can be implemented in a basic system. PMID:23885129

  18. High-Performance, Low Environmental Impact Refrigerants

    NASA Technical Reports Server (NTRS)

    McCullough, E. T.; Dhooge, P. M.; Glass, S. M.; Nimitz, J. S.

    2001-01-01

    Refrigerants used in process and facilities systems in the US include R-12, R-22, R-123, R-134a, R-404A, R-410A, R-500, and R-502. All but R-134a, R-404A, and R-410A contain ozone-depleting substances that will be phased out under the Montreal Protocol. Some of the substitutes do not perform as well as the refrigerants they are replacing, require new equipment, and have relatively high global warming potentials (GWPs). New refrigerants are needed that addresses environmental, safety, and performance issues simultaneously. In efforts sponsored by Ikon Corporation, NASA Kennedy Space Center (KSC), and the US Environmental Protection Agency (EPA), ETEC has developed and tested a new class of refrigerants, the Ikon (registered) refrigerants, based on iodofluorocarbons (IFCs). These refrigerants are nonflammable, have essentially zero ozone-depletion potential (ODP), low GWP, high performance (energy efficiency and capacity), and can be dropped into much existing equipment.

  19. 16 CFR 1505.6 - Performance.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... horizontal. No spillage of molten material or hot liquids from containers shall occur while the toy is... breakdown for 1 minute a sinusoidal test potential applied between the high-voltage and low-voltage windings... volts plus twice the rated voltage of the high-voltage winding. The test potential shall be supplied...

  20. MXene: a potential candidate for yarn supercapacitors.

    PubMed

    Zhang, Jizhen; Seyedin, Shayan; Gu, Zhoujie; Yang, Wenrong; Wang, Xungai; Razal, Joselito M

    2017-12-07

    The increasing developments in wearable electronics demand compatible power sources such as yarn supercapacitors (YSCs) that can effectively perform in a limited footprint. MXene nanosheets, which have been recently shown in the literature to possess ultra-high volumetric capacitance, were used in this study for the fabrication of YSCs in order to identify their potential merit and performance in YSCs. With the aid of a conductive binder (PEDOT-PSS), YSCs with high mass loading of MXene are demonstrated. These MXene-based YSCs exhibit excellent device performance and stability even under bending and twisting. This study demonstrates that MXene is a promising candidate for YSCs and its further development can lead to flexible power sources with sufficient performance for powering miniaturized and/or wearable electronics.

  1. High-Performance Thermoelectric Semiconductors

    NASA Technical Reports Server (NTRS)

    Fleurial, Jean-Pierre; Caillat, Thierry; Borshchevsky, Alexander

    1994-01-01

    Figures of merit almost double current state-of-art thermoelectric materials. IrSb3 is semiconductor found to exhibit exceptional thermoelectric properties. CoSb3 and RhSb3 have same skutterudite crystallographic structure as IrSb3, and exhibit exceptional transport properties expected to contribute to high thermoelectric performance. These three compounds form solid solutions. Combination of properties offers potential for development of new high-performance thermoelectric materials for more efficient thermoelectric power generators, coolers, and detectors.

  2. High-Performance Substrates for SERS Detection via Microphotonic Photopolymer Characterization and Coating With Functionalized Hydrogels

    DTIC Science & Technology

    2006-11-26

    with controlled micro and nanostructure for highly selective, high sensitivity assays. The process was modeled and a procedure for fabricating SERS...small volumes with controlled micro and nanostructure for highly selective, high sensitivity assays. We proved the feasibility of the technique and...films templated by colloidal crystals. The control over the film structure allowed optimizing their performance for potential sensor applications. The

  3. Thermally Stable Cellulose Nanocrystals toward High-Performance 2D and 3D Nanostructures.

    PubMed

    Jia, Chao; Bian, Huiyang; Gao, Tingting; Jiang, Feng; Kierzewski, Iain Michael; Wang, Yilin; Yao, Yonggang; Chen, Liheng; Shao, Ziqiang; Zhu, J Y; Hu, Liangbing

    2017-08-30

    Cellulose nanomaterials have attracted much attention in a broad range of fields such as flexible electronics, tissue engineering, and 3D printing for their excellent mechanical strength and intriguing optical properties. Economic, sustainable, and eco-friendly production of cellulose nanomaterials with high thermal stability, however, remains a tremendous challenge. Here versatile cellulose nanocrystals (DM-OA-CNCs) are prepared through fully recyclable oxalic acid (OA) hydrolysis along with disk-milling (DM) pretreatment of bleached kraft eucalyptus pulp. Compared with the commonly used cellulose nanocrystals from sulfuric acid hydrolysis, DM-OA-CNCs show several advantages including large aspect ratio, carboxylated surface, and excellent thermal stability along with high yield. We also successfully demonstrate the fabrication of high-performance films and 3D-printed patterns using DM-OA-CNCs. The high-performance films with high transparency, ultralow haze, and excellent thermal stability have the great potential for applications in flexible electronic devices. The 3D-printed patterns with porous structures can be potentially applied in the field of tissue engineering as scaffolds.

  4. WO3–x@Au@MnO2 core–shell nanowires on carbon fabric for high-performance flexible supercapacitors.

    PubMed

    Lu, Xihong; Zhai, Teng; Zhang, Xianghui; Shen, Yongqi; Yuan, Longyan; Hu, Bin; Gong, Li; Chen, Jian; Gao, Yihua; Zhou, Jun; Tong, Yexiang; Wang, Zhong Lin

    2012-02-14

    WO3–x@Au@MnO2 core–shell nanowires (NWs) are synthesized on a flexible carbon fabric and show outstanding electrochemical performance in supercapacitors such as high specific capacitance, good cyclic stability, high energy density, and high power density. These results suggest that the WO3–x@Au@MnO2 NWs have promising potential for use in high-performance flexible supercapacitors. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Building America Case Study: Simple Retrofit High-Efficiency Natural Gas Water Heater Field Test, Minneapolis, Minnesota

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    T. Schirber, B. Schoenbauer

    High-performance water heaters are typically more time consuming and costly to install in retrofit applications, making high-performance water heaters difficult to justify economically. However, recent advancements in high-performance water heaters have targeted the retrofit market, simplifying installations and reducing costs. Four high-efficiency natural gas water heaters designed specifically for retrofit applications were installed in single-family homes along with detailed monitoring systems to characterize their savings potential, their installed efficiencies, and their ability to meet household demands.

  6. High-performance supercapacitors based on hollow polyaniline nanofibers by electrospinning.

    PubMed

    Miao, Yue-E; Fan, Wei; Chen, Dan; Liu, Tianxi

    2013-05-22

    Hollow polyaniline (PANI) nanofibers with controllable wall thickness are fabricated by in situ polymerization of aniline using the electrospun poly(amic acid) fiber membrane as a template. A maximum specific capacitance of 601 F g(-1) has been achieved at 1 A g(-1), suggesting the potential application of hollow PANI nanofibers for supercapacitors. The superior electrochemical performance of the hollow nanofibers is attributed to their hollow structure, thin wall thickness, and orderly pore passages, which can drastically facilitate the ion diffusion and improve the utilization of the electroactive PANI during the charge-discharge processes. Furthermore, the high flexibility of the self-standing fiber membrane template provides possibilities for the facile construction and fabrication of conducting polymers with hollow nanostructures, which may find potential applications in various high-performance electrochemical devices.

  7. Low and high speed propellers for general aviation - Performance potential and recent wind tunnel test results

    NASA Technical Reports Server (NTRS)

    Jeracki, R. J.; Mitchell, G. A.

    1981-01-01

    A survey is presented of current research efforts in general aviation, low-speed propeller design and high-speed propfan design, with attention on such features as (1) advanced blade shapes, with novel airfoils and sweep, (2) tip devices, (3) integrated propeller/nacelle designs, (4) area-ruled spinners, (5) lightweight, all-composite blade construction, and (6) contra-rotating propfan systems. The potential overall improvements associated with these design modifications are calculated to lie at 10-15% for low-speed rotors and 15-30% for high-speed ones. Emphasis is placed on noise reduction, blade drag, performance prediction methods and wind tunnel testing of alternative rotor configurations. Extensive use of graphs is made in performance comparisons between alternative blade and rotor designs.

  8. Reliability of directional information in unsorted spikes and local field potentials recorded in human motor cortex.

    PubMed

    Perge, János A; Zhang, Shaomin; Malik, Wasim Q; Homer, Mark L; Cash, Sydney; Friehs, Gerhard; Eskandar, Emad N; Donoghue, John P; Hochberg, Leigh R

    2014-08-01

    Action potentials and local field potentials (LFPs) recorded in primary motor cortex contain information about the direction of movement. LFPs are assumed to be more robust to signal instabilities than action potentials, which makes LFPs, along with action potentials, a promising signal source for brain-computer interface applications. Still, relatively little research has directly compared the utility of LFPs to action potentials in decoding movement direction in human motor cortex. We conducted intracortical multi-electrode recordings in motor cortex of two persons (T2 and [S3]) as they performed a motor imagery task. We then compared the offline decoding performance of LFPs and spiking extracted from the same data recorded across a one-year period in each participant. We obtained offline prediction accuracy of movement direction and endpoint velocity in multiple LFP bands, with the best performance in the highest (200-400 Hz) LFP frequency band, presumably also containing low-pass filtered action potentials. Cross-frequency correlations of preferred directions and directional modulation index showed high similarity of directional information between action potential firing rates (spiking) and high frequency LFPs (70-400 Hz), and increasing disparity with lower frequency bands (0-7, 10-40 and 50-65 Hz). Spikes predicted the direction of intended movement more accurately than any individual LFP band, however combined decoding of all LFPs was statistically indistinguishable from spike-based performance. As the quality of spiking signals (i.e. signal amplitude) and the number of significantly modulated spiking units decreased, the offline decoding performance decreased 3.6[5.65]%/month (for T2 and [S3] respectively). The decrease in the number of significantly modulated LFP signals and their decoding accuracy followed a similar trend (2.4[2.85]%/month, ANCOVA, p = 0.27[0.03]). Field potentials provided comparable offline decoding performance to unsorted spikes. Thus, LFPs may provide useful external device control using current human intracortical recording technology. ( NCT00912041.).

  9. Designing high-performance layered thermoelectric materials through orbital engineering

    PubMed Central

    Zhang, Jiawei; Song, Lirong; Madsen, Georg K. H.; Fischer, Karl F. F.; Zhang, Wenqing; Shi, Xun; Iversen, Bo B.

    2016-01-01

    Thermoelectric technology, which possesses potential application in recycling industrial waste heat as energy, calls for novel high-performance materials. The systematic exploration of novel thermoelectric materials with excellent electronic transport properties is severely hindered by limited insight into the underlying bonding orbitals of atomic structures. Here we propose a simple yet successful strategy to discover and design high-performance layered thermoelectric materials through minimizing the crystal field splitting energy of orbitals to realize high orbital degeneracy. The approach naturally leads to design maps for optimizing the thermoelectric power factor through forming solid solutions and biaxial strain. Using this approach, we predict a series of potential thermoelectric candidates from layered CaAl2Si2-type Zintl compounds. Several of them contain nontoxic, low-cost and earth-abundant elements. Moreover, the approach can be extended to several other non-cubic materials, thereby substantially accelerating the screening and design of new thermoelectric materials. PMID:26948043

  10. Summary of directional divergence characteristics of several high performance aircraft configurations

    NASA Technical Reports Server (NTRS)

    Greer, H. D.

    1972-01-01

    The present paper summarizes the high-angle-of-attack characteristics of a number of high-performance aircraft as determined from model force tests and free-flight model tests and correlates these characteristics with the dynamic directional-stability parameter. This correlation shows that the dynamic directional-stability parameter correlates fairly well with directional divergence. Data are also presented to show the effect of some airframe modifications on the directional divergence potential of the configuration. These results show that leading-edge slates seem to be the most effective airframe modification for reducing or eliminating the directional divergence potential of aircraft with moderately swept wings.

  11. The Effect of Background Music and Background Noise on the Task Performance of Introverts and Extraverts

    ERIC Educational Resources Information Center

    Cassidy, Gianna; MacDonald, Raymond A. R.

    2007-01-01

    The study investigated the effects of music with high arousal potential and negative affect (HA), music with low arousal potential and positive affect (LA), and everyday noise, on the cognitive task performance of introverts and extraverts. Forty participants completed five cognitive tasks: immediate recall, free recall, numerical and delayed…

  12. Flywheel Energy Storage Technology Workshop

    NASA Astrophysics Data System (ADS)

    Okain, D.; Howell, D.

    Advances in recent years of high strength/lightweight materials, high performance magnetic bearings, and power electronics technology has spurred a renewed interest by the transportation, utility, and manufacturing industries in flywheel energy storage (FES) technologies. FES offers several advantages over conventional electrochemical energy storage, such as high specific energy and specific power, fast charging time, long service life, high turnaround efficiency (energy out/energy in), and no hazardous/toxic materials or chemicals are involved. Potential applications of FES units include power supplies for hybrid and electric vehicles, electric vehicle charging stations, space systems, and pulsed power devices. Also, FES units can be used for utility load leveling, uninterruptable power supplies to protect electronic equipment and electrical machinery, and for intermittent wind or photovoltaic energy sources. The purpose of this workshop is to provide a forum to highlight technologies that offer a high potential to increase the performance of FES systems and to discuss potential solutions to overcome present FES application barriers. This document consists of viewgraphs from 27 presentations.

  13. Improvement in Direct Methanol Fuel Cell Performance by Treating the Anode at High Anodic Potential

    DTIC Science & Technology

    2014-01-01

    stripping voltammetryReorganization of Na? on ionomer Prabhuram Joghee, Svitlana Pylypenko, Kevin Wood , April Corpuz, Guido Bender, Huyen N. Dinh...methanol fuel cell performance by treating the anode at high anodic potential Prabhuram Joghee a,*, Svitlana Pylypenko a,b, Kevin Wood a, April Corpuz c...References [1] B. McNicol, D.A.J. Rand, K.R. Williams, J. Power Sources 83 (1999) 15e31. [2] K. Scot , W.M. Taama, J. Power Sources 79 (1999) 43e59. [3] P

  14. Sugar Determination in Foods with a Radially Compressed High Performance Liquid Chromatography Column.

    ERIC Educational Resources Information Center

    Ondrus, Martin G.; And Others

    1983-01-01

    Advocates use of Waters Associates Radial Compression Separation System for high performance liquid chromatography. Discusses instrumentation and reagents, outlining procedure for analyzing various foods and discussing typical student data. Points out potential problems due to impurities and pump seal life. Suggests use of ribose as internal…

  15. Achieving High Performance with FPGA-Based Computing

    PubMed Central

    Herbordt, Martin C.; VanCourt, Tom; Gu, Yongfeng; Sukhwani, Bharat; Conti, Al; Model, Josh; DiSabello, Doug

    2011-01-01

    Numerous application areas, including bioinformatics and computational biology, demand increasing amounts of processing capability. In many cases, the computation cores and data types are suited to field-programmable gate arrays. The challenge is identifying the design techniques that can extract high performance potential from the FPGA fabric. PMID:21603088

  16. Characterization of phenolic amides from cortex lycii by ultra high-performance liquid chromatography coupled with LTQ-Orbitrap mass spectrometry

    USDA-ARS?s Scientific Manuscript database

    High performance liquid chromatography (UPLC) and flow injection electrospray ionization with ion trap mass spectrometry (FIMS) fingerprints combined with the principal component analysis (PCA) were examined for their potential in differentiating commercial organic and conventional sage samples. The...

  17. High-Voltage Polymers for High-Power Supercapacitors. Version 1

    DTIC Science & Technology

    2006-05-30

    affect the supercapacitor’s performance. Subsequently, our efforts focused on fabricating polymers with high oxidation potentials to increase the power...including spin activation with out significant modifications. Electroactive polymers such as polythiophene, polyacetylene, or polyaniline can be...potentials in excess of 2 V for facile polymerization. In the present case, the triaryl ammine functionality of 2 and 3 is oxidized at the low

  18. DeePMD-kit: A deep learning package for many-body potential energy representation and molecular dynamics

    NASA Astrophysics Data System (ADS)

    Wang, Han; Zhang, Linfeng; Han, Jiequn; E, Weinan

    2018-07-01

    Recent developments in many-body potential energy representation via deep learning have brought new hopes to addressing the accuracy-versus-efficiency dilemma in molecular simulations. Here we describe DeePMD-kit, a package written in Python/C++ that has been designed to minimize the effort required to build deep learning based representation of potential energy and force field and to perform molecular dynamics. Potential applications of DeePMD-kit span from finite molecules to extended systems and from metallic systems to chemically bonded systems. DeePMD-kit is interfaced with TensorFlow, one of the most popular deep learning frameworks, making the training process highly automatic and efficient. On the other end, DeePMD-kit is interfaced with high-performance classical molecular dynamics and quantum (path-integral) molecular dynamics packages, i.e., LAMMPS and the i-PI, respectively. Thus, upon training, the potential energy and force field models can be used to perform efficient molecular simulations for different purposes. As an example of the many potential applications of the package, we use DeePMD-kit to learn the interatomic potential energy and forces of a water model using data obtained from density functional theory. We demonstrate that the resulted molecular dynamics model reproduces accurately the structural information contained in the original model.

  19. Self-Heating Effects In Polysilicon Source Gated Transistors

    PubMed Central

    Sporea, R. A.; Burridge, T.; Silva, S. R. P.

    2015-01-01

    Source-gated transistors (SGTs) are thin-film devices which rely on a potential barrier at the source to achieve high gain, tolerance to fabrication variability, and low series voltage drop, relevant to a multitude of energy-efficient, large-area, cost effective applications. The current through the reverse-biased source barrier has a potentially high positive temperature coefficient, which may lead to undesirable thermal runaway effects and even device failure through self-heating. Using numerical simulations we show that, even in highly thermally-confined scenarios and at high current levels, self-heating is insufficient to compromise device integrity. Performance is minimally affected through a modest increase in output conductance, which may limit the maximum attainable gain. Measurements on polysilicon devices confirm the simulated results, with even smaller penalties in performance, largely due to improved heat dissipation through metal contacts. We conclude that SGTs can be reliably used for high gain, power efficient analog and digital circuits without significant performance impact due to self-heating. This further demonstrates the robustness of SGTs. PMID:26351099

  20. Orthographic recognition in late adolescents: an assessment through event-related brain potentials.

    PubMed

    González-Garrido, Andrés Antonio; Gómez-Velázquez, Fabiola Reveca; Rodríguez-Santillán, Elizabeth

    2014-04-01

    Reading speed and efficiency are achieved through the automatic recognition of written words. Difficulties in learning and recognizing the orthography of words can arise despite reiterative exposure to texts. This study aimed to investigate, in native Spanish-speaking late adolescents, how different levels of orthographic knowledge might result in behavioral and event-related brain potential differences during the recognition of orthographic errors. Forty-five healthy high school students were selected and divided into 3 equal groups (High, Medium, Low) according to their performance on a 5-test battery of orthographic knowledge. All participants performed an orthographic recognition task consisting of the sequential presentation of a picture (object, fruit, or animal) followed by a correctly, or incorrectly, written word (orthographic mismatch) that named the picture just shown. Electroencephalogram (EEG) recording took place simultaneously. Behavioral results showed that the Low group had a significantly lower number of correct responses and increased reaction times while processing orthographical errors. Tests showed significant positive correlations between higher performance on the experimental task and faster and more accurate reading. The P150 and P450 components showed higher voltages in the High group when processing orthographic errors, whereas N170 seemed less lateralized to the left hemisphere in the lower orthographic performers. Also, trials with orthographic errors elicited a frontal P450 component that was only evident in the High group. The present results show that higher levels of orthographic knowledge correlate with high reading performance, likely because of faster and more accurate perceptual processing, better visual orthographic representations, and top-down supervision, as the event-related brain potential findings seem to suggest.

  1. Contribution of ethylenetetrafluoroethylene (ETFE) insulation to the electrical performance of Riata® silicone leads having externalized conductors.

    PubMed

    Fischer, Avi; Klehn, Russell

    2013-08-01

    The insulation of St. Jude Medical Riata® leads contains a polytetrafluoroethylene (PTFE) liner, silicone tubing, and ethylenetetrafluoroethylene (ETFE) coating on individual cable conductors. ETFE has sufficient dielectric strength to assure electrical function. This investigation intended to analyze performance of leads with and without externalized conductors and with intact and breached ETFE. Testing was performed on ETFE-coated conductors to determine their ability to deliver high-voltage therapy. Tests were performed on samples under different conditions and current leakage was measured. A high-voltage test and a cyclic pulse test were performed, and the effect of lead modifications on the potential gradient from a high-voltage shock was used to determine functionality. Measurements from modified Riata® leads were compared with a control lead with all insulation and conducting elements intact. Current leakage for all conditions tested, was within the acceptance criteria for the high-voltage test and the cyclic pulse test. In conductors that underwent cyclic testing, the highest value of current leakage was within the limit of acceptability for both phases of the test. Testing of leads with externalized conductors and breached ETFE showed similar potential gradients compared with a control lead. Testing of ETFE-coated conductors following multiple preconditioning steps showed that ETFE serves as a redundant layer of insulation. In the event that the ETFE coating is breached, the potential gradient seen resulting from a high-voltage defibrillation shock was similar to a lead with no breach to the ETFE, even after 100 shocks.

  2. Space Nuclear Power and Propulsion: Materials Challenges for the 21st Century

    NASA Technical Reports Server (NTRS)

    Houts, Mike

    2008-01-01

    The current focus of NASA s space fission effort is Fission Surface Power (FSP). FSP systems could be used to provide power anytime, anywhere on the surface of the Moon or Mars. FSP systems could be used at locations away from the lunar poles or in permanently shaded regions, with no performance penalty. A potential reference 40 kWe option has been devised that is cost-competitive with alternatives while providing more power for less mass. The potential reference system is readily extensible for use on Mars. At Mars the system could be capable of operating through global dust storms and providing year-round power at any Martian latitude. To ensure affordability, the potential near-term, 40 kWe reference concept is designed to use only well established materials and fuels. However, if various materials challenges could be overcome, extremely high performance fission systems could be devised. These include high power, low mass fission surface power systems; in-space systems with high specific power; and high performance nuclear thermal propulsion systems. This tutorial will provide a brief overview of space fission systems and will focus on materials challenges that, if overcome, could help enable advanced exploration and utilization of the solar system.

  3. Comparison of a brain-based adaptive system and a manual adaptable system for invoking automation.

    PubMed

    Bailey, Nathan R; Scerbo, Mark W; Freeman, Frederick G; Mikulka, Peter J; Scott, Lorissa A

    2006-01-01

    Two experiments are presented examining adaptive and adaptable methods for invoking automation. Empirical investigations of adaptive automation have focused on methods used to invoke automation or on automation-related performance implications. However, no research has addressed whether performance benefits associated with brain-based systems exceed those in which users have control over task allocations. Participants performed monitoring and resource management tasks as well as a tracking task that shifted between automatic and manual modes. In the first experiment, participants worked with an adaptive system that used their electroencephalographic signals to switch the tracking task between automatic and manual modes. Participants were also divided between high- and low-reliability conditions for the system-monitoring task as well as high- and low-complacency potential. For the second experiment, participants operated an adaptable system that gave them manual control over task allocations. Results indicated increased situation awareness (SA) of gauge instrument settings for individuals high in complacency potential using the adaptive system. In addition, participants who had control over automation performed more poorly on the resource management task and reported higher levels of workload. A comparison between systems also revealed enhanced SA of gauge instrument settings and decreased workload in the adaptive condition. The present results suggest that brain-based adaptive automation systems may enhance perceptual level SA while reducing mental workload relative to systems requiring user-initiated control. Potential applications include automated systems for which operator monitoring performance and high-workload conditions are of concern.

  4. Lifetime laser damage performance of β -Ga2O3 for high power applications

    NASA Astrophysics Data System (ADS)

    Yoo, Jae-Hyuck; Rafique, Subrina; Lange, Andrew; Zhao, Hongping; Elhadj, Selim

    2018-03-01

    Gallium oxide (Ga2O3) is an emerging wide bandgap semiconductor with potential applications in power electronics and high power optical systems where gallium nitride and silicon carbide have already demonstrated unique advantages compared to gallium arsenide and silicon-based devices. Establishing the stability and breakdown conditions of these next-generation materials is critical to assessing their potential performance in devices subjected to large electric fields. Here, using systematic laser damage performance tests, we establish that β-Ga2O3 has the highest lifetime optical damage performance of any conductive material measured to date, above 10 J/cm2 (1.4 GW/cm2). This has direct implications for its use as an active component in high power laser systems and may give insight into its utility for high-power switching applications. Both heteroepitaxial and bulk β-Ga2O3 samples were benchmarked against a heteroepitaxial gallium nitride sample, revealing an order of magnitude higher optical lifetime damage threshold for β-Ga2O3. Photoluminescence and Raman spectroscopy results suggest that the exceptional damage performance of β-Ga2O3 is due to lower absorptive defect concentrations and reduced epitaxial stress.

  5. Correlation among High School Senior Students' Test Anxiety, Academic Performance and Points of University Entrance Exam

    ERIC Educational Resources Information Center

    Karatas, Hakan; Alci, Bulent; Aydin, Hasan

    2013-01-01

    Test anxiety seems like a benign problem to some people, but it can be potentially serious when it leads to high levels of distress and academic failure. The aim of this study is to define the correlation among high school senior students' test anxiety, academic performance (GPA) and points of university entrance exam (UEE). The study group of…

  6. A high-performance mesoporous carbon supported nitrogen-doped carbon electrocatalyst for oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Xu, Jingjing; Lu, Shiyao; Chen, Xu; Wang, Jianan; Zhang, Bo; Zhang, Xinyu; Xiao, Chunhui; Ding, Shujiang

    2017-12-01

    Investigating low-cost and highly active electrocatalysts for oxygen reduction reactions (ORR) is of crucial importance for energy conversion and storage devices. Herein, we design and prepare mesoporous carbon supported nitrogen-doped carbon by pyrolysis of polyaniline coated on CMK-3. This electrocatalyst exhibits excellent performance towards ORR in alkaline media. The optimized nitrogen-doped mesoporous electrocatalyst show an onset potential (E onset) of 0.95 V (versus reversible hydrogen electrode (RHE)) and half-wave potential (E 1/2) of 0.83 V (versus RHE) in 0.1 M KOH. Furthermore, the as-prepared catalyst presents superior durability and methanol tolerance compared to commercial Pt/C indicating its potential applications in fuel cells and metal-air batteries.

  7. Symmetric supercapacitor: Sulphurized graphene and ionic liquid.

    PubMed

    Shaikh, Jasmin S; Shaikh, Navajsharif S; Kharade, Rohini; Beknalkar, Sonali A; Patil, Jyoti V; Suryawanshi, Mahesh P; Kanjanaboos, Pongsakorn; Hong, Chang Kook; Kim, Jin Hyeok; Patil, Pramod S

    2018-10-01

    Symmetric supercapacitor is advanced over simple supercapacitor device due to their stability over a large potential window and high energy density. Graphene is a desired candidate for supercapacitor application since it has a high surface area, good electronic conductivity and high electro chemical stability. There is a pragmatic use of ionic liquid electrolyte for supercapacitor due to its stability over a large potential window, good ionic conductivity and eco-friendly nature. For high performance supercapacitor, the interaction between ionic liquid electrolyte and graphene are crucial for better charge transportation. In respect of this, a three-dimensional (3D) nanoporous honeycomb shaped sulfur embedded graphene (S-graphene) has been synthesized by simple chemical method. Here, the fabrication of high performance symmetric supercapacitor is done by using S-graphene as an electrode and [BMIM-PF 6 ] as an electrolyte. The particular architecture of S-graphene benefited to reduce the ion diffusion resistance, providing the large surface area for charge transportation and efficient charge storage. The S-graphene and ionic liquid-based symmetric supercapacitor device showed the large potential window of 3.2 V with high energy density 124 Wh kg -1 at 0.2 A g -1 constant applied current density. Furthermore, this device shows good cycling performance (stability) with a capacitive retention of 95% over 20,000 cycles at a higher current density of 2 A g -1 . Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Nickel-foam-supported ruthenium oxide/graphene sandwich composite constructed via one-step electrodeposition route for high-performance aqueous supercapacitors

    NASA Astrophysics Data System (ADS)

    Li, Meng; He, Hanwei

    2018-05-01

    A high-performance supercapacitor both considered high power and high energy density is needed for its applications such as portable electronics and electric vehicles. Herein, we construct a high-performance ruthenium oxide/graphene (RuO2-ERG) composite directly grown on Ni foam through cyclic voltammetric deposition process. The RuO2-ERG composite with sandwich structure is achieved effectively from a mixed solution of graphene oxide and ruthenium trichloride in the -1.4 V to 1.0 V potential range at a scan rate of 5 mV s-1. The electrochemical performance is optimized by tuning the concentration of the ruthenium trichloride. This integrative RuO2-ERG composite electrode can effectively maintains the accessible surface for redox reaction and stable channels for electrolyte penetration, leading to an improved electrochemical performance. Symmetrical aqueous supercapacitors based on RuO2-ERG electrodes exhibit a wider operational voltage window of 1.5 V. The optimized RuO2-ERG electrode displays a superior specific capacitance with 89% capacitance retention upon increasing the current density by 50 times. A high energy density of 43.8 W h kg-1 at a power density of 0.75 kW kg-1 is also obtained, and as high as 39.1 W h kg-1 can be retained at a power density of 37.5 kW kg-1. In addition, the capacitance retention is still maintained at 92.8% even after 10,000 cycles. The excellent electrochemical performance, long-term cycle stability, and the ease of preparation demonstrate that this typical RuO2-ERG electrode has great potentialities to develop high-performance supercapacitors.

  9. Investigation of positive shaft seals

    NASA Technical Reports Server (NTRS)

    Pfouts, J. O.

    1970-01-01

    Welded metal bellows secondary seals prevent secondary seal leakage with a minimum number of potential leak paths. High performance seal is obtained by controlling the potentially unstable seal-face movements induced by mechanical vibrations and fluid pressure pulsations.

  10. Analysis of advanced optical glass and systems

    NASA Technical Reports Server (NTRS)

    Johnson, R. Barry; Feng, Chen

    1991-01-01

    Optical lens systems performance utilizing optical materials comprising reluctant glass forming compositions was studied. Such special glasses are being explored by NASA/Marshall Space Flight Center (MSFC) researchers utilizing techniques such as containerless processing in space on the MSFC Acoustic Levitation Furnace and on the High Temperature Acoustic Levitation Furnace in the conceptual design phase for the United States Microgravity Laboratory (USML) series of shuttle flights. The application of high refractive index and low dispersive power glasses in optical lens design was investigated. The potential benefits and the impacts to the optical lens design performance were evaluated. The results of the studies revealed that the use of these extraordinary glasses can result in significant optical performance improvements. Recommendations of proposed optical properties for potential new glasses were also made. Applications of these new glasses are discussed, including the impact of high refractive index and low dispersive power, improvements of the system performance by using glasses which are located outside of traditional glass map, and considerations in establishing glass properties beyond conventional glass map limits.

  11. Metric-driven harm: an exploration of unintended consequences of performance measurement.

    PubMed

    Rambur, Betty; Vallett, Carol; Cohen, Judith A; Tarule, Jill Mattuck

    2013-11-01

    Performance measurement is an increasingly common element of the US health care system. Typically a proxy for high quality outcomes, there has been little systematic investigation of the potential negative unintended consequences of performance metrics, including metric-driven harm. This case study details an incidence of post-surgical metric-driven harm and offers Smith's 1995 work and a patient centered, context sensitive metric model for potential adoption by nurse researchers and clinicians. Implications for further research are discussed. © 2013.

  12. A review of advanced high performance, insensitive and thermally stable energetic materials emerging for military and space applications.

    PubMed

    Sikder, A K; Sikder, Nirmala

    2004-08-09

    Energetic materials used extensively both for civil and military applications. There are continuous research programmes worldwide to develop new materials with higher performance and enhanced insensitivity to thermal or shock insults than the existing ones in order to meet the requirements of future military and space applications. This review concentrates on recent advances in syntheses, potential formulations and space applications of potential compounds with respect to safety, performance and stability.

  13. High Performance Graphene Nano-ribbon Thermoelectric Devices by Incorporation and Dimensional Tuning of Nanopores

    PubMed Central

    Sharafat Hossain, Md; Al-Dirini, Feras; Hossain, Faruque M.; Skafidas, Efstratios

    2015-01-01

    Thermoelectric properties of Graphene nano-ribbons (GNRs) with nanopores (NPs) are explored for a range of pore dimensions in order to achieve a high performance two-dimensional nano-scale thermoelectric device. We reduce thermal conductivity of GNRs by introducing pores in them in order to enhance their thermoelectric performance. The electrical properties (Seebeck coefficient and conductivity) of the device usually degrade with pore inclusion; however, we tune the pore to its optimal dimension in order to minimize this degradation, enhancing the overall thermoelectric performance (high ZT value) of our device. We observe that the side channel width plays an important role to achieve optimal performance while the effect of pore length is less pronounced. This result is consistent with the fact that electronic conduction in GNRs is dominated along its edges. Ballistic transport regime is assumed and a semi-empirical method using Huckel basis set is used to obtain the electrical properties, while the phononic system is characterized by Tersoff empirical potential model. The proposed device structure has potential applications as a nanoscale local cooler and as a thermoelectric power generator. PMID:26083450

  14. High Performance Graphene Nano-ribbon Thermoelectric Devices by Incorporation and Dimensional Tuning of Nanopores.

    PubMed

    Hossain, Md Sharafat; Al-Dirini, Feras; Hossain, Faruque M; Skafidas, Efstratios

    2015-06-17

    Thermoelectric properties of Graphene nano-ribbons (GNRs) with nanopores (NPs) are explored for a range of pore dimensions in order to achieve a high performance two-dimensional nano-scale thermoelectric device. We reduce thermal conductivity of GNRs by introducing pores in them in order to enhance their thermoelectric performance. The electrical properties (Seebeck coefficient and conductivity) of the device usually degrade with pore inclusion; however, we tune the pore to its optimal dimension in order to minimize this degradation, enhancing the overall thermoelectric performance (high ZT value) of our device. We observe that the side channel width plays an important role to achieve optimal performance while the effect of pore length is less pronounced. This result is consistent with the fact that electronic conduction in GNRs is dominated along its edges. Ballistic transport regime is assumed and a semi-empirical method using Huckel basis set is used to obtain the electrical properties, while the phononic system is characterized by Tersoff empirical potential model. The proposed device structure has potential applications as a nanoscale local cooler and as a thermoelectric power generator.

  15. Prediction and characterization of application power use in a high-performance computing environment

    DOE PAGES

    Bugbee, Bruce; Phillips, Caleb; Egan, Hilary; ...

    2017-02-27

    Power use in data centers and high-performance computing (HPC) facilities has grown in tandem with increases in the size and number of these facilities. Substantial innovation is needed to enable meaningful reduction in energy footprints in leadership-class HPC systems. In this paper, we focus on characterizing and investigating application-level power usage. We demonstrate potential methods for predicting power usage based on a priori and in situ characteristics. Lastly, we highlight a potential use case of this method through a simulated power-aware scheduler using historical jobs from a real scientific HPC system.

  16. Potential for a mycotoxin deactivator to improve growth and performance of rainbow trout fed high levels of an ethanol industry co-Product, grain distiller’s dried yeast

    USDA-ARS?s Scientific Manuscript database

    Co-products from the production of fuel ethanol may have the potential to be used as protein sources for Rainbow Trout Oncorhynchus mykiss if dietary supplementation strategies that can maintain fish performance can be identified. A random sample of one such co-product, grain distiller’s dried yeast...

  17. Encore Performances: Tapping the Potential of Midcareer and Second-Career Teachers

    ERIC Educational Resources Information Center

    Haselkorn, David; Hammerness, Karen

    2008-01-01

    In 2007, the Woodrow Wilson National Fellowship Foundation, with support from the Lehman Brothers Foundation, commissioned Public Agenda to explore interest in teaching careers among high-achieving college students, recent graduates, and potential career changers. MetLife Foundation, specifically interested in potential career changers as…

  18. Revisiting the relevance of using a constant voltage step to improve electrochemical performances of Li-rich lamellar oxides

    NASA Astrophysics Data System (ADS)

    Pradon, A.; Caldes, M. T.; Petit, P.-E.; La Fontaine, C.; Elkaim, E.; Tessier, C.; Ouvrard, G.; Dumont, E.

    2018-03-01

    A Li-rich lamellar oxide was cycled at high potential and the relevance of using a constant voltage step (CVS) at the end of the charge, needed for industrial application, was investigated by electrochemical performance, X-ray diffraction (XRD) and high resolution transmission electron microscopy (HRTEM). Electrochemical studies at 4.7 and 4.5 V with and without CVS showed that capacity and voltage fading occurred mostly when cells operated at high potential. After cycling, 3D-type defects involving transition metals trapped in lithium layer were observed by HRTEM into the electrode bulk. These defects are responsible for the voltage fading. XRD microstrain parameter was used to evaluate defects rate in aged materials subjected to a CVS, showing more 3D-type defects when cycled at 4.7 V than at 4.5 V. The time spent at high potential at the end of the charge as well as the value of the upper potential limit, are both relevant parameters to voltage decay. The use of a CVS at the end of the charge needs at the same time, a reduced upper potential window in order to minimize 3D-type defects occurrence. Unfortunately, this approach is still not sufficient to prevent voltage fading.

  19. High resolution tsunami modelling for the evaluation of potential risk areas in Setúbal (Portugal)

    NASA Astrophysics Data System (ADS)

    Ribeiro, J.; Silva, A.; Leitão, P.

    2011-08-01

    The use of high resolution hydrodynamic modelling to simulate the potential effects of tsunami events can provide relevant information about the most probable inundation areas. Moreover, the consideration of complementary data such as the type of buildings, location of priority equipment, type of roads, enables mapping of the most vulnerable zones, computing of the expected damage on man-made structures, constrain of the definition of rescue areas and escape routes, adaptation of emergency plans and proper evaluation of the vulnerability associated with different areas and/or equipment. Such an approach was used to evaluate the specific risks associated with a potential occurrence of a tsunami event in the region of Setúbal (Portugal), which was one of the areas most seriously affected by the 1755 tsunami. In order to perform an evaluation of the hazard associated with the occurrence of a similar event, high resolution wave propagation simulations were performed considering different potential earthquake sources with different magnitudes. Based on these simulations, detailed inundation maps associated with the different events were produced. These results were combined with the available information on the vulnerability of the local infrastructures (building types, roads and streets characteristics, priority buildings) in order to impose restrictions in the production of high-scale potential damage maps, escape routes and emergency routes maps.

  20. Oxygen-Rich Lithium Oxide Phases Formed at High Pressure for Potential Lithium-Air Battery Electrode.

    PubMed

    Yang, Wenge; Kim, Duck Young; Yang, Liuxiang; Li, Nana; Tang, Lingyun; Amine, Khalil; Mao, Ho-Kwang

    2017-09-01

    The lithium-air battery has great potential of achieving specific energy density comparable to that of gasoline. Several lithium oxide phases involved in the charge-discharge process greatly affect the overall performance of lithium-air batteries. One of the key issues is linked to the environmental oxygen-rich conditions during battery cycling. Here, the theoretical prediction and experimental confirmation of new stable oxygen-rich lithium oxides under high pressure conditions are reported. Three new high pressure oxide phases that form at high temperature and pressure are identified: Li 2 O 3 , LiO 2 , and LiO 4 . The LiO 2 and LiO 4 consist of a lithium layer sandwiched by an oxygen ring structure inherited from high pressure ε-O 8 phase, while Li 2 O 3 inherits the local arrangements from ambient LiO 2 and Li 2 O 2 phases. These novel lithium oxides beyond the ambient Li 2 O, Li 2 O 2 , and LiO 2 phases show great potential in improving battery design and performance in large battery applications under extreme conditions.

  1. Applications of Endothermic Reaction Technology to the High Speed Civil Transport

    NASA Technical Reports Server (NTRS)

    Glickstein, Marvin R.; Spadaccini, Louis J.

    1998-01-01

    The success of strategies for controlling emissions and enhancing performance in High Speed Research applications may be Increased by more effective utilization of the heat sink afforded by the fuel in the vehicle thermal management system. This study quantifies the potential benefits associated with the use of supercritical preheating and endothermic cracking of let fuel prior to combustion to enhance the thermal management capabilities of the propulsion systems in the High Speed Civil Transport (HSCT). A fuel-cooled thermal management system, consisting of plate-fin heat exchangers and a small auxiliary compressor, is defined for the HSCT, Integrated with the engine, and an assessment of the effect on engine performance, weight, and operating cost is performed. The analysis indicates significant savings due a projected improvement in fuel economy, and the potential for additional benefit if the cycle is modified to take full advantage of all the heat sink available in the fuel.

  2. COTS displays applied to cockpit avionics applications

    NASA Astrophysics Data System (ADS)

    Thomas, J.; Lorimer, S.

    2007-04-01

    Avionics displays, particularly for cockpit applications are associated with high performance and high cost solutions. COTS displays have well acknowledged limitations but provide a potential high value for money solution if this performance can be stretched to a level compatible with "fit for use". This paper will describe the initial design tradeoffs and decisions that formed the basis for development of a low-cost cockpit display for a military helicopter.

  3. Silicon photonics for high-performance interconnection networks

    NASA Astrophysics Data System (ADS)

    Biberman, Aleksandr

    2011-12-01

    We assert in the course of this work that silicon photonics has the potential to be a key disruptive technology in computing and communication industries. The enduring pursuit of performance gains in computing, combined with stringent power constraints, has fostered the ever-growing computational parallelism associated with chip multiprocessors, memory systems, high-performance computing systems, and data centers. Sustaining these parallelism growths introduces unique challenges for on- and off-chip communications, shifting the focus toward novel and fundamentally different communication approaches. This work showcases that chip-scale photonic interconnection networks, enabled by high-performance silicon photonic devices, enable unprecedented bandwidth scalability with reduced power consumption. We demonstrate that the silicon photonic platforms have already produced all the high-performance photonic devices required to realize these types of networks. Through extensive empirical characterization in much of this work, we demonstrate such feasibility of waveguides, modulators, switches, and photodetectors. We also demonstrate systems that simultaneously combine many functionalities to achieve more complex building blocks. Furthermore, we leverage the unique properties of available silicon photonic materials to create novel silicon photonic devices, subsystems, network topologies, and architectures to enable unprecedented performance of these photonic interconnection networks and computing systems. We show that the advantages of photonic interconnection networks extend far beyond the chip, offering advanced communication environments for memory systems, high-performance computing systems, and data centers. Furthermore, we explore the immense potential of all-optical functionalities implemented using parametric processing in the silicon platform, demonstrating unique methods that have the ability to revolutionize computation and communication. Silicon photonics enables new sets of opportunities that we can leverage for performance gains, as well as new sets of challenges that we must solve. Leveraging its inherent compatibility with standard fabrication techniques of the semiconductor industry, combined with its capability of dense integration with advanced microelectronics, silicon photonics also offers a clear path toward commercialization through low-cost mass-volume production. Combining empirical validations of feasibility, demonstrations of massive performance gains in large-scale systems, and the potential for commercial penetration of silicon photonics, the impact of this work will become evident in the many decades that follow.

  4. Reliability of directional information in unsorted spikes and local field potentials recorded in human motor cortex

    PubMed Central

    Perge, János A.; Zhang, Shaomin; Malik, Wasim Q.; Homer, Mark L.; Cash, Sydney; Friehs, Gerhard; Eskandar, Emad N.; Donoghue, John P.; Hochberg, Leigh R.

    2014-01-01

    Objective Action potentials and local field potentials (LFPs) recorded in primary motor cortex contain information about the direction of movement. LFPs are assumed to be more robust to signal instabilities than action potentials, which makes LFPs along with action potentials a promising signal source for brain-computer interface applications. Still, relatively little research has directly compared the utility of LFPs to action potentials in decoding movement direction in human motor cortex. Approach We conducted intracortical multielectrode recordings in motor cortex of two persons (T2 and [S3]) as they performed a motor imagery task. We then compared the offline decoding performance of LFPs and spiking extracted from the same data recorded across a one-year period in each participant. Main results We obtained offline prediction accuracy of movement direction and endpoint velocity in multiple LFP bands, with the best performance in the highest (200–400Hz) LFP frequency band, presumably also containing low-pass filtered action potentials. Cross-frequency correlations of preferred directions and directional modulation index showed high similarity of directional information between action potential firing rates (spiking) and high frequency LFPs (70–400Hz), and increasing disparity with lower frequency bands (0–7, 10–40 and 50–65Hz). Spikes predicted the direction of intended movement more accurately than any individual LFP band, however combined decoding of all LFPs was statistically indistinguishable from spike based performance. As the quality of spiking signals (i.e. signal amplitude) and the number of significantly modulated spiking units decreased, the offline decoding performance decreased 3.6[5.65]%/month (for T2 and [S3] respectively). The decrease in the number of significantly modulated LFP signals and their decoding accuracy followed a similar trend (2.4[2.85]%/month, ANCOVA, p=0.27[0.03]). Significance Field potentials provided comparable offline decoding performance to unsorted spikes. Thus, LFPs may provide useful external device control using current human intracortical recording technology. (Clinical trial registration number: NCT00912041) PMID:24921388

  5. On the "Exchangeability" of Hands-On and Computer-Simulated Science Performance Assessments. CSE Technical Report.

    ERIC Educational Resources Information Center

    Rosenquist, Anders; Shavelson, Richard J.; Ruiz-Primo, Maria Araceli

    Inconsistencies in scores from computer-simulated and "hands-on" science performance assessments have led to questions about the exchangeability of these two methods in spite of the highly touted potential of computer-simulated performance assessment. This investigation considered possible explanations for students' inconsistent performances: (1)…

  6. Optical Computing, 1991, Technical Digest Series, Vol. 6

    DTIC Science & Technology

    1992-05-22

    lasers). Compound semiconductors may satisfy these requirements. For example, optical signal amplification by two-beam coupling and amplified phase... compound semiconductors can provide this type of implementationi. This paper presents results from a detailed investigation on potentials of the...conductivity to achieve high multichannel cell performance. We describe several high performance Gallium Phosphide multichannel Bragg cells which employ these

  7. The Pedagogy of Confidence: Inspiring High Intellectual Performance in Urban Schools

    ERIC Educational Resources Information Center

    Jackson, Yvette

    2011-01-01

    In her new book, Yvette Jackson shows educators how to focus on students' strengths to inspire learning and high intellectual performance. Jackson asserts that the myth that the route to increasing achievement by focusing on weaknesses (promoted by policies such as NCLB) has blinded us to the strengths and intellectual potential of urban…

  8. Supporting Early Math--Rationales and Requirements for High Quality Software

    ERIC Educational Resources Information Center

    Haake, Magnus; Husain, Layla; Gulz, Agneta

    2015-01-01

    There is substantial evidence that preschooler's performance in early math is highly correlated to math performance throughout school as well as academic skills in general. One way to help children attain early math skills is by using targeted educational software and the paper discusses potential gains of using such software to support early math…

  9. Social Performance Cues Induce Behavioral Flexibility in Humans

    PubMed Central

    Toelch, Ulf; Bruce, Matthew J.; Meeus, Marius T. H.; Reader, Simon M.

    2011-01-01

    Behavioral flexibility allows individuals to react to environmental changes, but changing established behavior carries costs, with unknown benefits. Individuals may thus modify their behavioral flexibility according to the prevailing circumstances. Social information provided by the performance level of others provides one possible cue to assess the potential benefits of changing behavior, since out-performance in similar circumstances indicates that novel behaviors (innovations) are potentially useful. We demonstrate that social performance cues, in the form of previous players’ scores in a problem-solving computer game, influence behavioral flexibility. Participants viewed only performance indicators, not the innovative behavior of others. While performance cues (high, low, or no scores) had little effect on innovation discovery rates, participants that viewed high scores increased their utilization of innovations, allowing them to exploit the virtual environment more effectively than players viewing low or no scores. Perceived conspecific performance can thus shape human decisions to adopt novel traits, even when the traits employed cannot be copied. This simple mechanism, social performance feedback, could be a driver of both the facultative adoption of innovations and cumulative cultural evolution, processes critical to human success. PMID:21811477

  10. The Effect of an Out-of-School Enrichment Program on the Academic Achievement of High-Potential Students from Low-Income Families

    ERIC Educational Resources Information Center

    Hodges, Jaret; McIntosh, Jason; Gentry, Marcia

    2017-01-01

    High-potential students from low-income families are at an academic disadvantage compared with their more affluent peers. To address this issue, researchers have suggested novel approaches to mitigate gaps in student performance, including out-of-school enrichment programs. Longitudinal mixed effects modeling was used to analyze the growth of…

  11. Evaluating Multi-Input/Multi-Output Digital Control Systems

    NASA Technical Reports Server (NTRS)

    Pototzky, Anthony S.; Wieseman, Carol D.; Hoadley, Sherwood T.; Mukhopadhyay, Vivek

    1994-01-01

    Controller-performance-evaluation (CPE) methodology for multi-input/multi-output (MIMO) digital control systems developed. Procedures identify potentially destabilizing controllers and confirm satisfactory performance of stabilizing ones. Methodology generic and used in many types of multi-loop digital-controller applications, including digital flight-control systems, digitally controlled spacecraft structures, and actively controlled wind-tunnel models. Also applicable to other complex, highly dynamic digital controllers, such as those in high-performance robot systems.

  12. Identifying potential recommendation domains for conservation agriculture in Ethiopia, Kenya, and Malawi.

    PubMed

    Tesfaye, Kindie; Jaleta, Moti; Jena, Pradyot; Mutenje, Munyaradzi

    2015-02-01

    Conservation agriculture (CA) is being promoted as an option for reducing soil degradation, conserving water, enhancing crop productivity, and maintaining yield stability. However, CA is a knowledge- and technology-intensive practice, and may not be feasible or may not perform better than conventional agriculture under all conditions and farming systems. Using high resolution (≈1 km(2)) biophysical and socioeconomic geospatial data, this study identified potential recommendation domains (RDs) for CA in Ethiopia, Kenya, and Malawi. The biophysical variables used were soil texture, surface slope, and rainfall while the socioeconomic variables were market access and human and livestock population densities. Based on feasibility and comparative performance of CA over conventional agriculture, the biophysical and socioeconomic factors were first used to classify cultivated areas into three biophysical and three socioeconomic potential domains, respectively. Combinations of biophysical and socioeconomic domains were then used to develop potential RDs for CA based on adoption potential within the cultivated areas. About 39, 12, and 5% of the cultivated areas showed high biophysical and socioeconomic potential while 50, 39, and 21% of the cultivated areas showed high biophysical and medium socioeconomic potential for CA in Malawi, Kenya, and Ethiopia, respectively. The results indicate considerable acreages of land with high CA adoption potential in the mixed crop-livestock systems of the studied countries. However, there are large differences among countries depending on biophysical and socio-economic conditions. The information generated in this study could be used for targeting CA and prioritizing CA-related agricultural research and investment priorities in the three countries.

  13. Identifying Potential Recommendation Domains for Conservation Agriculture in Ethiopia, Kenya, and Malawi

    NASA Astrophysics Data System (ADS)

    Tesfaye, Kindie; Jaleta, Moti; Jena, Pradyot; Mutenje, Munyaradzi

    2015-02-01

    Conservation agriculture (CA) is being promoted as an option for reducing soil degradation, conserving water, enhancing crop productivity, and maintaining yield stability. However, CA is a knowledge- and technology-intensive practice, and may not be feasible or may not perform better than conventional agriculture under all conditions and farming systems. Using high resolution (≈1 km2) biophysical and socioeconomic geospatial data, this study identified potential recommendation domains (RDs) for CA in Ethiopia, Kenya, and Malawi. The biophysical variables used were soil texture, surface slope, and rainfall while the socioeconomic variables were market access and human and livestock population densities. Based on feasibility and comparative performance of CA over conventional agriculture, the biophysical and socioeconomic factors were first used to classify cultivated areas into three biophysical and three socioeconomic potential domains, respectively. Combinations of biophysical and socioeconomic domains were then used to develop potential RDs for CA based on adoption potential within the cultivated areas. About 39, 12, and 5 % of the cultivated areas showed high biophysical and socioeconomic potential while 50, 39, and 21 % of the cultivated areas showed high biophysical and medium socioeconomic potential for CA in Malawi, Kenya, and Ethiopia, respectively. The results indicate considerable acreages of land with high CA adoption potential in the mixed crop-livestock systems of the studied countries. However, there are large differences among countries depending on biophysical and socio-economic conditions. The information generated in this study could be used for targeting CA and prioritizing CA-related agricultural research and investment priorities in the three countries.

  14. NASP X-30 Propulsion technology status

    NASA Technical Reports Server (NTRS)

    Powell, William E.

    1992-01-01

    The performance goals of the NASP program require an aero-propulsion system with a high effective specific impulse. In order to achieve these goals, the high potential performance of air-breathing engines must be achieved over a very wide Mach number operating range. This, in turn, demands high component performance and involves many important technical issues which must be resolved. Scramjet Propulsion Technology is divided into five major areas: (1) inlets, (2) combustors, (3) nozzles, (4) component integration, and (5) test facilities. A status report covering the five areas is presented.

  15. Using NVMe Gen3 PCIe SSD Cards in High-density Servers for High-performance Big Data Transfer Over Multiple Network Channels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, Chin

    This Technical Note describes how the Zettar team came up with a data transfer cluster design that convincingly proved the feasibility of using high-density servers for high-performance Big Data transfers. It then outlines the tests, operations, and observations that address a potential over-heating concern regarding the use of Non-Volatile Memory Host Controller Interface Specification (NVMHCI aka NVM Express or NVMe) Gen 3 PCIe SSD cards in high-density servers. Finally, it points out the possibility of developing a new generation of high-performance Science DMZ data transfer system for the data-intensive research community and commercial enterprises.

  16. Kinetic Behavior of Leucine and Other Amino Acids Modulating Cognitive Performance via mTOR Pathway

    DTIC Science & Technology

    2011-12-02

    is a potential target for modulation with leucine (or other therapeutic agents), to maintain/enhance normal functioning under stress conditions. Such... functioning under stress conditions. Such an effect has potential for optimizing warfighter cognitive performance under high demand conditions. The... Isoleucine L1 Essential Neutral Non-polar Branched chain Lysine Basic Y+ Essential Basic Polar Proline L1? Neutral Non-polar Aromatic Asparagine Neutral

  17. High performance direct methanol fuel cell with thin electrolyte membrane

    NASA Astrophysics Data System (ADS)

    Wan, Nianfang

    2017-06-01

    A high performance direct methanol fuel cell is achieved with thin electrolyte membrane. 320 mW cm-2 of peak power density and over 260 mW cm-2 at 0.4 V are obtained when working at 90 °C with normal pressure air supply. It is revealed that the increased anode half-cell performance with temperature contributes primarily to the enhanced performance at elevated temperature. From the comparison of iR-compensated cathode potential of methanol/air with that of H2/air fuel cell, the impact of methanol crossover on cathode performance decreases with current density and becomes negligible at high current density. Current density is found to influence fuel efficiency and methanol crossover significantly from the measurement of fuel efficiency at different current density. At high current density, high fuel efficiency can be achieved even at high temperature, indicating decreased methanol crossover.

  18. An Examination of Stereotype Threat Effects on Girls' Mathematics Performance

    ERIC Educational Resources Information Center

    Ganley, Colleen M.; Mingle, Leigh A.; Ryan, Allison M.; Ryan, Katherine; Vasilyeva, Marina; Perry, Michelle

    2013-01-01

    Stereotype threat has been proposed as 1 potential explanation for the gender difference in standardized mathematics test performance among high-performing students. At present, it is not entirely clear how susceptibility to stereotype threat develops, as empirical evidence for stereotype threat effects across the school years is inconsistent. In…

  19. Cytoprotective effect of seaweeds with high antioxidant activity from the Peniche coast (Portugal).

    PubMed

    Pinteus, Susete; Silva, Joana; Alves, Celso; Horta, André; Fino, Nádia; Rodrigues, Ana Inês; Mendes, Susana; Pedrosa, Rui

    2017-03-01

    Screening of antioxidant potential of dichloromethane and methanolic extracts of twenty-seven seaweeds from the Peniche coast was performed by: total phenolic contents (TPC), 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity and oxygen radical absorbance capacity (ORAC). Seaweeds revealing the highest antioxidant activity were screened for cytoprotective potential in MCF-7 cells, including the mitochondrial membrane potential analysis and the caspase-9 activity. High correlation was found between TPC of seaweed extracts and their scavenging capacity on DPPH and peroxyl radicals. The highest antioxidant activity was displayed by the methanolic fraction of brown seaweeds belonging to Fucales, however Ulva compressa presented the highest cytoprotective effect by blunting the apoptosis process. These results suggest that high antioxidant activity may not be directly related with high cytoprotective potential. Thus, seaweeds reveal to be a promising source of compounds with potential against oxidative stress. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Progress In Fresnel-Köhler Concentrators

    NASA Astrophysics Data System (ADS)

    Mohedano, Rubén; Cvetković, Aleksandra; Benítez, Pablo; Chaves, Julio; Miñano, Juan C.; Zamora, Pablo; Hernandez, Maikel; Vilaplana, Juan

    2011-12-01

    The Fresnel Köhler (FK) concentrator was first presented in 2008. Since then, various CPV companies have adopted this technology as base for their future commercial product. The key for this rapid penetration is a mixture of simplicity (the FK is essentially a Fresnel lens concentrator, a technology that dominates the market) and excellent performance: high concentration without giving up large manufacturing/aiming tolerances, enabling high efficiency even at the array level. All these features together have a great potential to lower energy costs. This work shows recent results and progress regarding this device, covering new design features, measurements and tests along with first performance achievements at the array level (pilot 6.5 Kwp plant). The work also discusses the potential impact of the FK enhanced performance on the Levelized Cost Of Electricity (LCOE).

  1. Final Environmental Assessment for Constructing a Magnet School at Laughlin Air Force Base, Texas

    DTIC Science & Technology

    2016-10-01

    agencies on the human health and environmental conditions in minority and low-income populations. Environmental justice analyses are performed to identify...potential disproportionately high and adverse human health or environmental effects from proposed federal actions on minority or low-income populations...considered to assess the potential for disproportionately high and adverse human health or environmental effects from proposed action on these

  2. A Better Leveled Playing Field for Assessing Satisfactory Job Performance of Superintendents on the Basis of High-Stakes Testing Outcomes

    ERIC Educational Resources Information Center

    Young, I. Phillip; Cox, Edward P.; Buckman, David G.

    2014-01-01

    To assess satisfactory job performance of superintendents on the basis of school districts' high-stakes testing outcomes, existing teacher models were reviewed and critiqued as potential options for retrofit. For these models, specific problems were identified relative to the choice of referent groups. An alternate referent group (statewide…

  3. Highly Branched Polyethylenes as Lubricant Viscosity and Friction Modifiers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, Joshua W.; Zhou, Yan; Qu, Jun

    2016-10-08

    A series of highly branched polyethylenes (BPE) were prepared and used in a Group I base oil as potential viscosity and friction modifiers. The lubricating performance of these BPEs supports the expected dual functionality. Changes in polarity, topology, and molecular weight of the BPEs showed significant effects on the lubricants’ performance, which provide scientific insights for polymer design in future lubricant development.

  4. All-solid-state lithium-oxygen battery with high safety in wide ambient temperature range

    NASA Astrophysics Data System (ADS)

    Kitaura, Hirokazu; Zhou, Haoshen

    2015-08-01

    There is need to develop high energy storage devices with high safety to satisfy the growing industrial demands. Here, we show the potential to realize such batteries by assembling a lithium-oxygen cell using an inorganic solid electrolyte without any flammable liquid or polymer materials. The lithium-oxygen battery using Li1.575Al0.5Ge1.5(PO4)3 solid electrolyte was examined in the pure oxygen atmosphere from room temperature to 120 °C. The cell works at room temperature and first full discharge capacity of 1420 mAh g-1 at 10 mA g-1 (based on the mass of carbon material in the air electrode) was obtained. The charge curve started from 3.0 V, and that the majority of it lay below 4.2 V. The cell also safely works at high temperature over 80 °C with the improved battery performance. Furthermore, fundamental data of the electrochemical performance, such as cyclic voltammogram, cycle performance and rate performance was obtained and this work demonstrated the potential of the all-solid-state lithium-oxygen battery for wide temperature application as a first step.

  5. All-solid-state lithium-oxygen battery with high safety in wide ambient temperature range

    PubMed Central

    Kitaura, Hirokazu; Zhou, Haoshen

    2015-01-01

    There is need to develop high energy storage devices with high safety to satisfy the growing industrial demands. Here, we show the potential to realize such batteries by assembling a lithium-oxygen cell using an inorganic solid electrolyte without any flammable liquid or polymer materials. The lithium-oxygen battery using Li1.575Al0.5Ge1.5(PO4)3 solid electrolyte was examined in the pure oxygen atmosphere from room temperature to 120 °C. The cell works at room temperature and first full discharge capacity of 1420 mAh g−1 at 10 mA g−1 (based on the mass of carbon material in the air electrode) was obtained. The charge curve started from 3.0 V, and that the majority of it lay below 4.2 V. The cell also safely works at high temperature over 80 °C with the improved battery performance. Furthermore, fundamental data of the electrochemical performance, such as cyclic voltammogram, cycle performance and rate performance was obtained and this work demonstrated the potential of the all-solid-state lithium-oxygen battery for wide temperature application as a first step. PMID:26293134

  6. All-solid-state lithium-oxygen battery with high safety in wide ambient temperature range.

    PubMed

    Kitaura, Hirokazu; Zhou, Haoshen

    2015-08-21

    There is need to develop high energy storage devices with high safety to satisfy the growing industrial demands. Here, we show the potential to realize such batteries by assembling a lithium-oxygen cell using an inorganic solid electrolyte without any flammable liquid or polymer materials. The lithium-oxygen battery using Li1.575Al0.5Ge1.5(PO4)3 solid electrolyte was examined in the pure oxygen atmosphere from room temperature to 120 °C. The cell works at room temperature and first full discharge capacity of 1420 mAh g(-1) at 10 mA g(-1) (based on the mass of carbon material in the air electrode) was obtained. The charge curve started from 3.0 V, and that the majority of it lay below 4.2 V. The cell also safely works at high temperature over 80 °C with the improved battery performance. Furthermore, fundamental data of the electrochemical performance, such as cyclic voltammogram, cycle performance and rate performance was obtained and this work demonstrated the potential of the all-solid-state lithium-oxygen battery for wide temperature application as a first step.

  7. Does intrinsic light heterogeneity in Ricinus communis L. monospecific thickets drive species' population dynamics?

    PubMed

    Goyal, Neha; Shah, Kanhaiya; Sharma, Gyan Prakash

    2018-06-19

    Ricinus communis L. colonizes heterogeneous urban landscapes as monospecific thickets. The ecological understanding on colonization success of R. communis population due to variable light availability is lacking. Therefore, to understand the effect of intrinsic light heterogeneity on species' population dynamics, R. communis populations exposed to variable light availability (low, intermediate, and high) were examined for performance strategies through estimation of key vegetative, eco-physiological, biochemical, and reproductive traits. Considerable variability existed in studied plant traits in response to available light. Individuals inhabiting high-light conditions exhibited high eco-physiological efficiency and reproductive performance that potentially confers population boom. Individuals exposed to low light showed poor performance in terms of eco-physiology and reproduction, which attribute to bust. However, individuals in intermediate light were observed to be indeterminate to light availability, potentially undergoing trait modulations with uncertainty of available light. Heterogeneous light availability potentially drives the boom and bust cycles in R. communis monospecific thickets. Such boom and bust cycles subsequently affect species' dominance, persistence, collapse, and/or resurgence as an aggressive colonizer in contrasting urban environments. The study fosters extensive monitoring of R. communis thickets to probe underlying mechanism(s) affecting expansions and/or collapses of colonizing populations.

  8. Improving thermal and electrochemical performances of LiCoO{sub 2} cathode at high cut-off charge potentials by MF{sub 3} (M=Ce, Al) coating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aboulaich, Abdelmaula, E-mail: a.aboulaich@managemgroup.com; Ouzaouit, Khalid; Faqir, Hakim

    2016-01-15

    Highlights: • Fluoride metal is successfully coated on the surface of LiCoO{sub 2}. • Easy and scalable method is adopted for the synthesis of coated-LiCoO{sub 2}. • Appropriate amount of AlF{sub 3} or CeF{sub 3} is beneficial to reduce cation disorder. • The electrochemical performances of coated LiCoO{sub 2} is significantly enhanced at higher potential (cycling efficiency and reversible capacity). • The coated cathode exhibits excellent thermal stability highlighted by calorimetric technique. - Abstract: Surface coating of LiCoO{sub 2} remained one of the efficient methods to enhance its electrochemical and thermal performances, especially at high cut-off potential. In this work,more » MF{sub 3} (M = Ce, Al) coated LiCoO{sub 2} was synthesized via co-precipitation method followed by a solid state reaction at 400 °C. The morphology and structure of the modified cathode material were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and transmission electron microscopy (TEM). The results show that the fluoride compound MF{sub 3} is successfully coated on the surface of LiCoO{sub 2} cathode particles with an average layer thickness about 12 nm and 40 nm for AlF{sub 3} and CeF{sub 3}, respectively. The electrochemical tests show that the AlF{sub 3}-coating layer significantly enhances the cycling performance of LiCoO{sub 2} cathode material, even at high cut-off potential. While the bare LiCoO{sub 2} cathode displays fast fading at 4.6 V vs. Li{sup +}/Li cutoff potential, the surface-modified electrode exhibits the great capacity of 160 mAh g{sup −1} with excellent capacity retention on several cycles. We concluded that the electrochemical and the thermal enhancement at high potential are ascribed to the presence of MF{sub 3} coating layer which prevent the side reaction during the charge discharge process, alleviate the attack by the acidic electrolyte and reduce the damage of electrode structure.« less

  9. Spontaneous and Selective Nanowelding of Silver Nanowires by Electrochemical Ostwald Ripening and High Electrostatic Potential at the Junctions for High-Performance Stretchable Transparent Electrodes.

    PubMed

    Lee, Hyo-Ju; Oh, Semi; Cho, Ki-Yeop; Jeong, Woo-Lim; Lee, Dong-Seon; Park, Seong-Ju

    2018-04-25

    Metal nanowires have been gaining increasing attention as the most promising stretchable transparent electrodes for emerging field of stretchable optoelectronic devices. Nanowelding technology is a major challenge in the fabrication of metal nanowire networks because the optoelectronic performances of metal nanowire networks are mostly limited by the high junction resistance between nanowires. We demonstrate the spontaneous and selective welding of Ag nanowires (AgNWs) by Ag solders via an electrochemical Ostwald ripening process and high electrostatic potential at the junctions of AgNWs. The AgNWs were welded by depositing Ag nanoparticles (AgNPs) on the conducting substrate and then exposing them to water at room temperature. The AgNPs were spontaneously dissolved in water to form Ag + ions, which were then reduced to single-crystal Ag solders selectively at the junctions of the AgNWs. Hence, the welded AgNWs showed higher optoelectronic and stretchable performance compared to that of as-formed AgNWs. These results indicate that electrochemical Ostwald ripening-based welding can be used as a promising method for high-performance metal nanowire electrodes in various next-generation devices such as stretchable solar cells, stretchable displays, organic light-emitting diodes, and skin sensors.

  10. Impact of the start-up process on the microbial communities in biocathodes for electrosynthesis.

    PubMed

    Mateos, Raúl; Sotres, Ana; Alonso, Raúl M; Escapa, Adrián; Morán, Antonio

    2018-06-01

    This study seeks to understand how the bacterial communities that develop on biocathodes are influenced by inocula diversity and electrode potential during start-up. Two different inocula are used: one from a highly diverse environment (river mud) and the other from a low diverse milieu (anaerobic digestion). In addition, both inocula were subjected to two different polarising voltages: oxidative (+0.2 V vs. Ag/AgCl) and reductive (-0.8 V vs. Ag/AgCl). Bacterial communities were analysed by means of high throughput sequencing. Possible syntrophic interactions and competitions between archaea and eubacteria were described together with a discussion of their potential role in product formation and current production. The results confirmed that reductive potentials lead to an inconsistent start-up procedure regardless of the inoculum used. However, imposing oxidative potentials help to quickly develop an electroactive biofilm ready to withstand reductive potentials (i.e. biocathodic operation). The microbial structure that finally developed on them was highly dependent on the raw community present in the inoculum. Using a non-specialised inoculum resulted in a highly specialised biofilm, which was accompanied by an improved performance in terms of consumed current and product generation. Interestingly, a much more specialised inoculum promoted a rediversification in the biofilm, with a lower general cell performance. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Reducing Avoidable Deaths Among Veterans: Directing Private-Sector Surgical Care to High-Performance Hospitals

    PubMed Central

    Weeks, William B.; West, Alan N.; Wallace, Amy E.; Lee, Richard E.; Goodman, David C.; Dimick, Justin B.; Bagian, James P.

    2007-01-01

    Objectives. We quantified older (65 years and older) Veterans Health Administration (VHA) patients’ use of the private sector to obtain 14 surgical procedures and assessed the potential impact of directing that care to high-performance hospitals. Methods. Using a merged VHA–Medicare inpatient database for 2000 and 2001, we determined where older VHA enrollees obtained 6 cardiovascular surgeries and 8 cancer resections and whether private-sector care was obtained in high- or low-performance hospitals (based on historical performance and determined 2 years in advance of the service year). We then modeled the mortality and travel burden effect of directing private-sector care to high-performance hospitals. Results. Older veterans obtained most of their procedures in the private sector, but that care was equally distributed across high- and low-performance hospitals. Directing private-sector care to high-performance hospitals could have led to the avoidance of 376 to 584 deaths, most through improved cardiovascular care outcomes. Using historical mortality to define performance would produce better outcomes with lower travel time. Conclusions. Policy that directs older VHA enrollees’ private-sector care to high-performance hospitals promises to reduce mortality for VHA’s service population and warrants further exploration. PMID:17971543

  12. Improving startup performance with carbon mesh anodes in separator electrode assembly microbial fuel cells.

    PubMed

    Zhang, Fang; Xia, Xue; Luo, Yong; Sun, Dan; Call, Douglas F; Logan, Bruce E

    2013-04-01

    In a separator electrode assembly microbial fuel cell, oxygen crossover from the cathode inhibits current generation by exoelectrogenic bacteria, resulting in poor reactor startup and performance. To determine the best approach for improving startup performance, the effect of acclimation to a low set potential (-0.2V, versus standard hydrogen electrode) was compared to startup at a higher potential (+0.2 V) or no set potential, and inoculation with wastewater or pre-acclimated cultures. Anodes acclimated to -0.2 V produced the highest power of 1330±60 mW m(-2) for these different anode conditions, but unacclimated wastewater inocula produced inconsistent results despite the use of this set potential. By inoculating reactors with transferred cell suspensions, however, startup time was reduced and high power was consistently produced. These results show that pre-acclimation at -0.2 V consistently improves power production compared to use of a more positive potential or the lack of a set potential. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Unified Kinetic Approach for Simulation of Gas Flows in Rarefied and Continuum Regimes

    DTIC Science & Technology

    2007-06-01

    potential , iii) the Lennard - Jones potential , iv) the Coulomb potential , and v) the BGK model. For 2D simulations, the BGK model was implemented in a...were performed for the Lennard - Jones interaction potential . The agreement of experimental and calculated profiles indicates the high accuracy of the...calculations by two potentials (Hard Spheres and Lennard - Jones ) demonstrated similar behavior of the main quantities. The flow field structures are quite

  14. Evaluation of the long-term performance of six alternative disposal methods for LLRW

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kossik, R.; Sharp, G.; Chau, T.

    1995-12-31

    The State of New York has carried out a comparison of six alternative disposal methods for low-level radioactive waste (LLRW). An important part of these evaluations involved quantitatively analyzing the long-term (10,000 yr) performance of the methods with respect to dose to humans, radionuclide concentrations in the environment, and cumulative release from the facility. Four near-surface methods (covered above-grade vault, uncovered above-grade vault, below-grade vault, augered holes) and two mine methods (vertical shaft mine and drift mine) were evaluated. Each method was analyzed for several generic site conditions applicable for the state. The evaluations were carried out using RIP (Repositorymore » Integration Program), an integrated, total system performance assessment computer code which has been applied to radioactive waste disposal facilities both in the U.S. (Yucca Mountain, WIPP) and worldwide. The evaluations indicate that mines in intact low-permeability rock and near-surface facilities with engineered covers generally have a high potential to perform well (within regulatory limits). Uncovered above-grade vaults and mines in highly fractured crystalline rock, however, have a high potential to perform poorly, exceeding regulatory limits.« less

  15. Holographic optical disc

    NASA Astrophysics Data System (ADS)

    Zhou, Gan; An, Xin; Pu, Allen; Psaltis, Demetri; Mok, Fai H.

    1999-11-01

    The holographic disc is a high capacity, disk-based data storage device that can provide the performance for next generation mass data storage needs. With a projected capacity approaching 1 terabit on a single 12 cm platter, the holographic disc has the potential to become a highly efficient storage hardware for data warehousing applications. The high readout rate of holographic disc makes it especially suitable for generating multiple, high bandwidth data streams such as required for network server computers. Multimedia applications such as interactive video and HDTV can also potentially benefit from the high capacity and fast data access of holographic memory.

  16. Self-Consistent Monte Carlo Study of the Coulomb Interaction under Nano-Scale Device Structures

    NASA Astrophysics Data System (ADS)

    Sano, Nobuyuki

    2011-03-01

    It has been pointed that the Coulomb interaction between the electrons is expected to be of crucial importance to predict reliable device characteristics. In particular, the device performance is greatly degraded due to the plasmon excitation represented by dynamical potential fluctuations in high-doped source and drain regions by the channel electrons. We employ the self-consistent 3D Monte Carlo (MC) simulations, which could reproduce both the correct mobility under various electron concentrations and the collective plasma waves, to study the physical impact of dynamical potential fluctuations on device performance under the Double-gate MOSFETs. The average force experienced by an electron due to the Coulomb interaction inside the device is evaluated by performing the self-consistent MC simulations and the fixed-potential MC simulations without the Coulomb interaction. Also, the band-tailing associated with the local potential fluctuations in high-doped source region is quantitatively evaluated and it is found that the band-tailing becomes strongly dependent of position in real space even inside the uniform source region. This work was partially supported by Grants-in-Aid for Scientific Research B (No. 2160160) from the Ministry of Education, Culture, Sports, Science and Technology in Japan.

  17. Automated Fabrication Technologies for High Performance Polymer Composites

    NASA Technical Reports Server (NTRS)

    Shuart , M. J.; Johnston, N. J.; Dexter, H. B.; Marchello, J. M.; Grenoble, R. W.

    1998-01-01

    New fabrication technologies are being exploited for building high graphite-fiber-reinforced composite structure. Stitched fiber preforms and resin film infusion have been successfully demonstrated for large, composite wing structures. Other automatic processes being developed include automated placement of tacky, drapable epoxy towpreg, automated heated head placement of consolidated ribbon/tape, and vacuum-assisted resin transfer molding. These methods have the potential to yield low cost high performance structures by fabricating composite structures to net shape out-of-autoclave.

  18. Binary Oxide p-n Heterojunction Piezoelectric Nanogenerators with an Electrochemically Deposited High p-Type Cu2O Layer.

    PubMed

    Baek, Seung Ki; Kwak, Sung Soo; Kim, Joo Sung; Kim, Sang Woo; Cho, Hyung Koun

    2016-08-31

    The high performance of ZnO-based piezoelectric nanogenerators (NGs) has been limited due to the potential screening from intrinsic electron carriers in ZnO. We have demonstrated a novel approach to greatly improve piezoelectric power generation by electrodepositing a high-quality p-type Cu2O layer between the piezoelectric semiconducting film and the metal electrode. The p-n heterojunction using only oxides suppresses the screening effect by forming an intrinsic depletion region, and thus sufficiently enhances the piezoelectric potential, compared to the pristine ZnO piezoelectric NG. Interestingly, a Sb-doped Cu2O layer has high mobility and low surface trap states. Thus, this doped layer is an attractive p-type material to significantly improve piezoelectric performance. Our results revealed that p-n junction NGs consisting of Au/ZnO/Cu2O/indium tin oxide with a Cu2O:Sb (cuprous oxide with a small amount of antimony) layer of sufficient thickness (3 μm) exhibit an extraordinarily high piezoelectric potential of 0.9 V and a maximum output current density of 3.1 μA/cm(2).

  19. An exploratory analysis linking neuropsychological testing to quantification of tractography using High Definition Fiber Tracking (HDFT) in military TBI.

    PubMed

    Presson, Nora; Beers, Sue R; Morrow, Lisa; Wagener, Lauren M; Bird, William A; Van Eman, Gina; Krishnaswamy, Deepa; Penderville, Joshua; Borrasso, Allison J; Benso, Steven; Puccio, Ava; Fissell, Catherine; Okonkwo, David O; Schneider, Walter

    2015-09-01

    To realize the potential value of tractography in traumatic brain injury (TBI), we must identify metrics that provide meaningful information about functional outcomes. The current study explores quantitative metrics describing the spatial properties of tractography from advanced diffusion imaging (High Definition Fiber Tracking, HDFT). In a small number of right-handed males from military TBI (N = 7) and civilian control (N = 6) samples, both tract homologue symmetry and tract spread (proportion of brain mask voxels contacted) differed for several tracts among civilian controls and extreme groups in the TBI sample (high scorers and low scorers) for verbal recall, serial reaction time, processing speed index, and trail-making. Notably, proportion of voxels contacted in the arcuate fasciculus distinguished high and low performers on the CVLT-II and PSI, potentially reflecting linguistic task demands, and GFA in the left corticospinal tract distinguished high and low performers in PSI and Trail Making Test Part A, potentially reflecting right hand motor response demands. The results suggest that, for advanced diffusion imaging, spatial properties of tractography may add analytic value to measures of tract anisotropy.

  20. High-performance wireless powering for peripheral nerve neuromodulation systems.

    PubMed

    Tanabe, Yuji; Ho, John S; Liu, Jiayin; Liao, Song-Yan; Zhen, Zhe; Hsu, Stephanie; Shuto, Chika; Zhu, Zi-Yi; Ma, Andrew; Vassos, Christopher; Chen, Peter; Tse, Hung Fat; Poon, Ada S Y

    2017-01-01

    Neuromodulation of peripheral nerves with bioelectronic devices is a promising approach for treating a wide range of disorders. Wireless powering could enable long-term operation of these devices, but achieving high performance for miniaturized and deeply placed devices remains a technological challenge. We report the miniaturized integration of a wireless powering system in soft neuromodulation device (15 mm length, 2.7 mm diameter) and demonstrate high performance (about 10%) during in vivo wireless stimulation of the vagus nerve in a porcine animal model. The increased performance is enabled by the generation of a focused and circularly polarized field that enhances efficiency and provides immunity to polarization misalignment. These performance characteristics establish the clinical potential of wireless powering for emerging therapies based on neuromodulation.

  1. High-performance wireless powering for peripheral nerve neuromodulation systems

    PubMed Central

    Liu, Jiayin; Liao, Song-Yan; Zhen, Zhe; Hsu, Stephanie; Shuto, Chika; Zhu, Zi-Yi; Ma, Andrew; Vassos, Christopher; Chen, Peter; Tse, Hung Fat; Poon, Ada S. Y.

    2017-01-01

    Neuromodulation of peripheral nerves with bioelectronic devices is a promising approach for treating a wide range of disorders. Wireless powering could enable long-term operation of these devices, but achieving high performance for miniaturized and deeply placed devices remains a technological challenge. We report the miniaturized integration of a wireless powering system in soft neuromodulation device (15 mm length, 2.7 mm diameter) and demonstrate high performance (about 10%) during in vivo wireless stimulation of the vagus nerve in a porcine animal model. The increased performance is enabled by the generation of a focused and circularly polarized field that enhances efficiency and provides immunity to polarization misalignment. These performance characteristics establish the clinical potential of wireless powering for emerging therapies based on neuromodulation. PMID:29065141

  2. Implementing High-Performance Geometric Multigrid Solver with Naturally Grained Messages

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shan, Hongzhang; Williams, Samuel; Zheng, Yili

    2015-10-26

    Structured-grid linear solvers often require manually packing and unpacking of communication data to achieve high performance.Orchestrating this process efficiently is challenging, labor-intensive, and potentially error-prone.In this paper, we explore an alternative approach that communicates the data with naturally grained messagesizes without manual packing and unpacking. This approach is the distributed analogue of shared-memory programming, taking advantage of the global addressspace in PGAS languages to provide substantial programming ease. However, its performance may suffer from the large number of small messages. We investigate theruntime support required in the UPC ++ library for this naturally grained version to close the performance gapmore » between the two approaches and attain comparable performance at scale using the High-Performance Geometric Multgrid (HPGMG-FV) benchmark as a driver.« less

  3. Effect of outboard vertical-fin position and orientation on the low-speed aerodynamic performance of highly swept wings. [supersonic cruise aircraft research

    NASA Technical Reports Server (NTRS)

    Johnson, V. S.; Coe, P. L., Jr.

    1979-01-01

    A theoretical study was conducted to determine the potential low-speed performance improvements which can be achieved by altering the position and orientation of the outboard vertical fins of low-aspect-ratio highly swept wings. Results show that the magnitude of the performance improvements is solely a function of the span-load distribution. Both the vertical-fin-chordwise position and toe angle provided effective means for adjusting the overall span-load distribution.

  4. All 2D materials as electrodes for high power hybrid energy storage applications

    NASA Astrophysics Data System (ADS)

    Kato, Keiko; Sayed, Farheen N.; Babu, Ganguli; Ajayan, Pulickel M.

    2018-04-01

    Achieving both high energy and power densities from energy storage devices is a core strategy to meet the increasing demands of high performance portable electronics and electric transportation systems. Li-ion capacitor is a promising hybrid technology that strategically exploits high energy density from a Li-ion battery electrode and high power density from a supercapacitor electrode. However, the performance and safety of hybrid devices are still major concerns due to the use of graphite anodes which form passivation layers with organic electrolytes at lower potentials. Here, we explore 2D nanosheets as both anode and cathode electrodes to build a high power system without compromising energy density. Owing to the high electrical conductivity and multivalent redox activity at higher potentials, the Li-ion intercalation electrode is capable of maintaining large energy density at higher current rates with less safety risk than conventional systems. Hybrid devices consisting of all in all 2D electrodes deliver energy density as high as 121 Wh g-1 (at 240 W kg-1) and retains 29 Wh g-1 at high power density of 3600 W kg-1.

  5. A high performing brain-machine interface driven by low-frequency local field potentials alone and together with spikes

    NASA Astrophysics Data System (ADS)

    Stavisky, Sergey D.; Kao, Jonathan C.; Nuyujukian, Paul; Ryu, Stephen I.; Shenoy, Krishna V.

    2015-06-01

    Objective. Brain-machine interfaces (BMIs) seek to enable people with movement disabilities to directly control prosthetic systems with their neural activity. Current high performance BMIs are driven by action potentials (spikes), but access to this signal often diminishes as sensors degrade over time. Decoding local field potentials (LFPs) as an alternative or complementary BMI control signal may improve performance when there is a paucity of spike signals. To date only a small handful of LFP decoding methods have been tested online; there remains a need to test different LFP decoding approaches and improve LFP-driven performance. There has also not been a reported demonstration of a hybrid BMI that decodes kinematics from both LFP and spikes. Here we first evaluate a BMI driven by the local motor potential (LMP), a low-pass filtered time-domain LFP amplitude feature. We then combine decoding of both LMP and spikes to implement a hybrid BMI. Approach. Spikes and LFP were recorded from two macaques implanted with multielectrode arrays in primary and premotor cortex while they performed a reaching task. We then evaluated closed-loop BMI control using biomimetic decoders driven by LMP, spikes, or both signals together. Main results. LMP decoding enabled quick and accurate cursor control which surpassed previously reported LFP BMI performance. Hybrid decoding of both spikes and LMP improved performance when spikes signal quality was mediocre to poor. Significance. These findings show that LMP is an effective BMI control signal which requires minimal power to extract and can substitute for or augment impoverished spikes signals. Use of this signal may lengthen the useful lifespan of BMIs and is therefore an important step towards clinically viable BMIs.

  6. Valence and arousal of emotional stimuli impact cognitive-motor performance in an oddball task.

    PubMed

    Lu, Yingzhi; Jaquess, Kyle J; Hatfield, Bradley D; Zhou, Chenglin; Li, Hong

    2017-04-01

    It is widely recognized that emotions impact an individual's ability to perform in a given task. However, little is known about how emotion impacts the various aspects of cognitive -motor performance. We recorded event-related potentials (ERPs) and chronometric responses from twenty-six participants while they performed a cognitive-motor oddball task in regard to four categories of emotional stimuli (high-arousing positive-valence, low-arousing positive-valence, high-arousing negative-valence, and low-arousing negative-valence) as "deviant" stimuli. Six chronometric responses (reaction time, press time, return time, choice time, movement time, and total time) and three ERP components (P2, N2 and late positive potential) were measured. Results indicated that reaction time was significantly affected by the presentation of emotional stimuli. Also observed was a negative relationship between N2 amplitude and elements of performance featuring reaction time in the low-arousing positive-valence condition. This study provides further evidence that emotional stimuli influence cognitive-motor performance in a specific manner. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Creating Small Learning Communities: Lessons from the Project on High-Performing Learning Communities about "What Works" in Creating Productive, Developmentally Enhancing, Learning Contexts

    ERIC Educational Resources Information Center

    Felner, Robert D.; Seitsinger, Anne M.; Brand, Stephen; Burns, Amy; Bolton, Natalie

    2007-01-01

    Personalizing the school environment is a central goal of efforts to transform America's schools. Three decades of work by the Project on High Performance Learning Communities are considered that demonstrate the potential impact and importance of the creation of "small learning environments" on student motivation, adjustment, and well-being.…

  8. Nanometer-Scale Electrical Potential Profiling Across Perovskite Solar Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, Chuanxiao; Jiang, Chun-Sheng; Ke, Weijun

    2016-11-21

    We used Kelvin probe force microscopy to study the potential distribution on cross-section of perovskite solar cells with different types of electron-transporting layers (ETLs). Our results explain the low open-circuit voltage and fill factor in ETL-free cells, and support the fact that intrinsic SnO2 as an alternative ETL material can make high-performance devices. Furthermore, the potential-profiling results indicate a reduction in junction-interface recombination by the optimized SnO2 layer and adding a fullerene layer, which is consistent with the improved device performance and current-voltage hysteresis.

  9. Neural correlates of pathological gamblers preference for immediate rewards during the iowa gambling task: an fMRI study.

    PubMed

    Power, Yuri; Goodyear, Bradley; Crockford, David

    2012-12-01

    The Iowa Gambling Task (IGT) involves exploratory learning via rewards and penalties, where most advantageous task performance requires subjects to forego potential large immediate rewards for small longer-term rewards to avoid larger punishments. Pathological gambling (PG) subjects perform worse on the IGT compared to controls, relating to their persistence at high risk decisions involving the continued choice of potential large immediate rewards despite experiencing larger punishments. We wished to determine if neural processing of risk and reward within striatal and frontal cortex is associated with this behaviour observed in PG. Functional magnetic resonance imaging (fMRI) was used to assess brain activity in response to a computerized version of the IGT. Thirteen male PG subjects with no active comorbidities were compared to 13 demographically matched control subjects. In agreement with previous behavioural studies, PG subjects performed worse on the IGT and made more high-risk choices compared to controls, particularly after experiencing wins and losses. During high-risk gambling decisions, fMRI demonstrated that PG subjects exhibited relatively increased frontal lobe and basal ganglia activation, particularly involving the orbitofrontal cortex (OFC), caudate and amygdala. Increased activation of regions encompassing the extended reward pathway in PG subjects during high risk choices suggests that the persistence of PG may be due to the increased salience of immediate and greater potential monetary rewards relative to lower monetary rewards or potential future losses. Whether this over activation of the reward pathway is associated with the development of PG warrants further investigation.

  10. Final Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stoessel, Chris

    2013-11-13

    This project developed a new high-performance R-10/high SHGC window design, reviewed market positioning and evaluated manufacturing solutions required for broad market adoption. The project objectives were accomplished by: identifying viable technical solutions based on modeling of modern and potential coating stacks and IGU designs; development of new coating material sets for HM thin film stacks, as well as improved HM IGU designs to accept multiple layers of HM films; matching promising new coating designs with new HM IGU designs to demonstrate performance gains; and, in cooperation with a window manufacturer, assess the potential for high-volume manufacturing and cost efficiency ofmore » a HM-based R-10 window with improved solar heat gain characteristics. A broad view of available materials and design options was applied to achieve the desired improvements. Gated engineering methodologies were employed to guide the development process from concept generation to a window demonstration. The project determined that a slightly de-rated window performance allows formulation of a path to achieve the desired cost reductions to support end consumer adoption.« less

  11. Technical assessment of maglev system concepts. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lever, J.H.

    1998-10-01

    The Government Maglev System Assessment Team operated from 1991 to 1993 as part of the National Maglev Initiative. They assessed the technical viability of four US Maglev system concepts, using the French TGV high speed train and the German TR07 Maglev system as assessment baselines. Maglev in general offers advantages that include high speed potential, excellent system control, high capacity, low energy consumption, low maintenance, modest land requirements, low operating costs, and ability to meet a variety of transportation missions. Further, the US Maglev concepts could provide superior performance to TR07 for similar cost or similar performance for less cost.more » They also could achieve both lower trip times and lower energy consumption along typical US routes. These advantages result generally from the use of large gap magnetic suspensions, more powerful linear synchronous motors and tilting vehicles. Innovative concepts for motors, guideways, suspension, and superconducting magnets all contribute to a potential for superior long term performance of US Maglev systems compared with TGV and TR07.« less

  12. Potential for high thermoelectric performance in n-type Zintl compounds: A case study of Ba doped KAlSb 4

    DOE PAGES

    Ortiz, Brenden R.; Gorai, Prashun; Krishna, Lakshmi; ...

    2017-01-11

    High-throughput calculations (first-principles density functional theory and semi-empirical transport models) have the potential to guide the discovery of new thermoelectric materials. Herein we have computationally assessed the potential for thermoelectric performance of 145 complex Zintl pnictides. Of the 145 Zintl compounds assessed, 17% show promising n-type transport properties, compared with only 6% showing promising p-type transport. We predict that n-type Zintl compounds should exhibit high mobility μ n while maintaining the low thermal conductivity κ L typical of Zintl phases. Thus, not only do candidate n-type Zintls outnumber their p-type counterparts, but they may also exhibit improved thermoelectric performance. Frommore » the computational search, we have selected n-type KAlSb 4 as a promising thermoelectric material. Synthesis and characterization of polycrystalline KAlSb 4 reveals non-degenerate n-type transport. With Ba substitution, the carrier concentration is tuned between 10 18 and 10 19 e – cm –3 with a maximum Ba solubility of 0.7% on the K site. High temperature transport measurements confirm a high μ n (50 cm 2 V –1 s –1) coupled with a near minimum κ L (0.5 W m –1 K –1) at 370 °C. Together, these properties yield a zT of 0.7 at 370 °C for the composition K 0.99Ba 0.01AlSb 4. As a result, based on the theoretical predictions and subsequent experimental validation, we find significant motivation for the exploration of n-type thermoelectric performance in other Zintl pnictides.« less

  13. Potential for high thermoelectric performance in n-type Zintl compounds: A case study of Ba doped KAlSb 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ortiz, Brenden R.; Gorai, Prashun; Krishna, Lakshmi

    High-throughput calculations (first-principles density functional theory and semi-empirical transport models) have the potential to guide the discovery of new thermoelectric materials. Herein we have computationally assessed the potential for thermoelectric performance of 145 complex Zintl pnictides. Of the 145 Zintl compounds assessed, 17% show promising n-type transport properties, compared with only 6% showing promising p-type transport. We predict that n-type Zintl compounds should exhibit high mobility μ n while maintaining the low thermal conductivity κ L typical of Zintl phases. Thus, not only do candidate n-type Zintls outnumber their p-type counterparts, but they may also exhibit improved thermoelectric performance. Frommore » the computational search, we have selected n-type KAlSb 4 as a promising thermoelectric material. Synthesis and characterization of polycrystalline KAlSb 4 reveals non-degenerate n-type transport. With Ba substitution, the carrier concentration is tuned between 10 18 and 10 19 e – cm –3 with a maximum Ba solubility of 0.7% on the K site. High temperature transport measurements confirm a high μ n (50 cm 2 V –1 s –1) coupled with a near minimum κ L (0.5 W m –1 K –1) at 370 °C. Together, these properties yield a zT of 0.7 at 370 °C for the composition K 0.99Ba 0.01AlSb 4. As a result, based on the theoretical predictions and subsequent experimental validation, we find significant motivation for the exploration of n-type thermoelectric performance in other Zintl pnictides.« less

  14. Neural Mechanisms Underlying Paradoxical Performance for Monetary Incentives Are Driven by Loss Aversion

    PubMed Central

    Chib, Vikram S.; De Martino, Benedetto; Shimojo, Shinsuke; O'Doherty, John P.

    2012-01-01

    Summary Employers often make payment contingent on performance in order to motivate workers. We used fMRI with a novel incentivized skill task to examine the neural processes underlying behavioral responses to performance-based pay. We found that individuals' performance increased with increasing incentives; however, very high incentive levels led to the paradoxical consequence of worse performance. Between initial incentive presentation and task execution, striatal activity rapidly switched between activation and deactivation in response to increasing incentives. Critically, decrements in performance and striatal deactivations were directly predicted by an independent measure of behavioral loss aversion. These results suggest that incentives associated with successful task performance are initially encoded as a potential gain; however, when actually performing a task, individuals encode the potential loss that would arise from failure. PMID:22578508

  15. Organic hydrogen peroxide-driven low charge potentials for high-performance lithium-oxygen batteries with carbon cathodes

    PubMed Central

    Wu, Shichao; Qiao, Yu; Yang, Sixie; Ishida, Masayoshi; He, Ping; Zhou, Haoshen

    2017-01-01

    Reducing the high charge potential is a crucial concern in advancing the performance of lithium-oxygen batteries. Here, for water-containing lithium-oxygen batteries with lithium hydroxide products, we find that a hydrogen peroxide aqueous solution added in the electrolyte can effectively promote the decomposition of lithium hydroxide compounds at the ultralow charge potential on a catalyst-free Ketjen Black-based cathode. Furthermore, for non-aqueous lithium-oxygen batteries with lithium peroxide products, we introduce a urea hydrogen peroxide, chelating hydrogen peroxide without any water in the organic, as an electrolyte additive in lithium-oxygen batteries with a lithium metal anode and succeed in the realization of the low charge potential of ∼3.26 V, which is among the best levels reported. In addition, the undesired water generally accompanying hydrogen peroxide solutions is circumvented to protect the lithium metal anode and ensure good battery cycling stability. Our results should provide illuminating insights into approaches to enhancing lithium-oxygen batteries. PMID:28585527

  16. Organic hydrogen peroxide-driven low charge potentials for high-performance lithium-oxygen batteries with carbon cathodes

    NASA Astrophysics Data System (ADS)

    Wu, Shichao; Qiao, Yu; Yang, Sixie; Ishida, Masayoshi; He, Ping; Zhou, Haoshen

    2017-06-01

    Reducing the high charge potential is a crucial concern in advancing the performance of lithium-oxygen batteries. Here, for water-containing lithium-oxygen batteries with lithium hydroxide products, we find that a hydrogen peroxide aqueous solution added in the electrolyte can effectively promote the decomposition of lithium hydroxide compounds at the ultralow charge potential on a catalyst-free Ketjen Black-based cathode. Furthermore, for non-aqueous lithium-oxygen batteries with lithium peroxide products, we introduce a urea hydrogen peroxide, chelating hydrogen peroxide without any water in the organic, as an electrolyte additive in lithium-oxygen batteries with a lithium metal anode and succeed in the realization of the low charge potential of ~3.26 V, which is among the best levels reported. In addition, the undesired water generally accompanying hydrogen peroxide solutions is circumvented to protect the lithium metal anode and ensure good battery cycling stability. Our results should provide illuminating insights into approaches to enhancing lithium-oxygen batteries.

  17. Electrochemical performances of graphene nanoribbons interlacing hollow NiCo oxide nanocages

    NASA Astrophysics Data System (ADS)

    Zhao, Xiyu; Li, Xinlu; Huang, Yanchun; Su, Zelong; Long, Junjun; Zhang, Shilei; Sha, Junwei; Wu, Tianli; Wang, Ronghua

    2017-12-01

    A hybrid of graphene nanoribbons (GNRs) interlacing hollow NiCoO2 (G-HNCO) nanocages in a size range of 300 500 nm with rough surface is synthesized by a chemical etching Cu2O templates and followed by GNR interlacing process. The G-HNCO showed high electrochemical performance of oxygen evolution reaction (OER), which exhibited small onset potential of 1.50 V and achieved current densities of 10 mA cm-2 at potentials of 1.62 V. Also, the hybrid delivered high capacitance of 937.8 F g-1 at 1 A g-1 in supercapacitor (SC) tests as well as stable cycling performance in both OER and SC measurements. The approach to synthesize the hybrid is simple and scalable for other graphene nanoribbon-based electrocatalysts. [Figure not available: see fulltext.

  18. Expression signature as a biomarker for prenatal diagnosis of trisomy 21.

    PubMed

    Volk, Marija; Maver, Aleš; Lovrečić, Luca; Juvan, Peter; Peterlin, Borut

    2013-01-01

    A universal biomarker panel with the potential to predict high-risk pregnancies or adverse pregnancy outcome does not exist. Transcriptome analysis is a powerful tool to capture differentially expressed genes (DEG), which can be used as biomarker-diagnostic-predictive tool for various conditions in prenatal setting. In search of biomarker set for predicting high-risk pregnancies, we performed global expression profiling to find DEG in Ts21. Subsequently, we performed targeted validation and diagnostic performance evaluation on a larger group of case and control samples. Initially, transcriptomic profiles of 10 cultivated amniocyte samples with Ts21 and 9 with normal euploid constitution were determined using expression microarrays. Datasets from Ts21 transcriptomic studies from GEO repository were incorporated. DEG were discovered using linear regression modelling and validated using RT-PCR quantification on an independent sample of 16 cases with Ts21 and 32 controls. The classification performance of Ts21 status based on expression profiling was performed using supervised machine learning algorithm and evaluated using a leave-one-out cross validation approach. Global gene expression profiling has revealed significant expression changes between normal and Ts21 samples, which in combination with data from previously performed Ts21 transcriptomic studies, were used to generate a multi-gene biomarker for Ts21, comprising of 9 gene expression profiles. In addition to biomarker's high performance in discriminating samples from global expression profiling, we were also able to show its discriminatory performance on a larger sample set 2, validated using RT-PCR experiment (AUC=0.97), while its performance on data from previously published studies reached discriminatory AUC values of 1.00. Our results show that transcriptomic changes might potentially be used to discriminate trisomy of chromosome 21 in the prenatal setting. As expressional alterations reflect both, causal and reactive cellular mechanisms, transcriptomic changes may thus have future potential in the diagnosis of a wide array of heterogeneous diseases that result from genetic disturbances.

  19. High-Performance, Semi-Interpenetrating Polymer Network

    NASA Technical Reports Server (NTRS)

    Pater, Ruth H.; Lowther, Sharon E.; Smith, Janice Y.; Cannon, Michelle S.; Whitehead, Fred M.; Ely, Robert M.

    1992-01-01

    High-performance polymer made by new synthesis in which one or more easy-to-process, but brittle, thermosetting polyimides combined with one or more tough, but difficult-to-process, linear thermoplastics to yield semi-interpenetrating polymer network (semi-IPN) having combination of easy processability and high tolerance to damage. Two commercially available resins combined to form tough, semi-IPN called "LaRC-RP49." Displays improvements in toughness and resistance to microcracking. LaRC-RP49 has potential as high-temperature matrix resin, adhesive, and molding resin. Useful in aerospace, automotive, and electronic industries.

  20. A Queue Simulation Tool for a High Performance Scientific Computing Center

    NASA Technical Reports Server (NTRS)

    Spear, Carrie; McGalliard, James

    2007-01-01

    The NASA Center for Computational Sciences (NCCS) at the Goddard Space Flight Center provides high performance highly parallel processors, mass storage, and supporting infrastructure to a community of computational Earth and space scientists. Long running (days) and highly parallel (hundreds of CPUs) jobs are common in the workload. NCCS management structures batch queues and allocates resources to optimize system use and prioritize workloads. NCCS technical staff use a locally developed discrete event simulation tool to model the impacts of evolving workloads, potential system upgrades, alternative queue structures and resource allocation policies.

  1. The High-Potential Fast-Flying Achiever: Themes from the English Language Literature 1976-1995.

    ERIC Educational Resources Information Center

    Altman, Yochanan

    1997-01-01

    Review of business management literature from the United States, United Kingdom, and Canada identified the following: the images of high flyer, fast track, and high achiever; the meaning of success; emphasis on performance; corporate rites of passage; and opportunities for women to be high flyers. (SK)

  2. Performance of a distributed superscalar storage server

    NASA Technical Reports Server (NTRS)

    Finestead, Arlan; Yeager, Nancy

    1993-01-01

    The RS/6000 performed well in our test environment. The potential exists for the RS/6000 to act as a departmental server for a small number of users, rather than as a high speed archival server. Multiple UniTree Disk Server's utilizing one UniTree Disk Server's utilizing one UniTree Name Server could be developed that would allow for a cost effective archival system. Our performance tests were clearly limited by the network bandwidth. The performance gathered by the LibUnix testing shows that UniTree is capable of exceeding ethernet speeds on an RS/6000 Model 550. The performance of FTP might be significantly faster if asked to perform across a higher bandwidth network. The UniTree Name Server also showed signs of being a potential bottleneck. UniTree sites that would require a high ratio of file creations and deletions to reads and writes would run into this bottleneck. It is possible to improve the UniTree Name Server performance by bypassing the UniTree LibUnix Library altogether and communicating directly with the UniTree Name Server and optimizing creations. Although testing was performed in a less than ideal environment, hopefully the performance statistics stated in this paper will give end-users a realistic idea as to what performance they can expect in this type of setup.

  3. High-Power Krypton Hall Thruster Technology Being Developed for Nuclear-Powered Applications

    NASA Technical Reports Server (NTRS)

    Jacobson, David T.; Manzella, David H.

    2004-01-01

    The NASA Glenn Research Center has been performing research and development of moderate specific impulse, xenon-fueled, high-power Hall thrusters for potential solar electric propulsion applications. These applications include Mars missions, reusable tugs for low-Earth-orbit to geosynchronous-Earth-orbit transportation, and missions that require transportation to libration points. This research and development effort resulted in the design and fabrication of the NASA-457M Hall thruster that has been tested at input powers up to 95 kW. During project year 2003, NASA established Project Prometheus to develop technology in the areas of nuclear power and propulsion, which are enabling for deep-space science missions. One of the Project-Prometheus-sponsored Nuclear Propulsion Research tasks is to investigate alternate propellants for high-power Hall thruster electric propulsion. The motivation for alternate propellants includes the disadvantageous cost and availability of xenon propellant for extremely large scale, xenon-fueled propulsion systems and the potential system performance benefits of using alternate propellants. The alternate propellant krypton was investigated because of its low cost relative to xenon. Krypton propellant also has potential performance benefits for deep-space missions because the theoretical specific impulse for a given voltage is 20 percent higher than for xenon because of krypton's lower molecular weight. During project year 2003, the performance of the high-power NASA-457M Hall thruster was measured using krypton as the propellant at power levels ranging from 6.4 to 72.5 kW. The thrust produced ranged from 0.3 to 2.5 N at a discharge specific impulse up to 4500 sec.

  4. Evidence of chemical-potential shift with hole doping in Bi2Sr2CaCu2O8+δ

    NASA Astrophysics Data System (ADS)

    Shen, Z.-X.; Dessau, D. S.; Wells, B. O.; Olson, C. G.; Mitzi, D. B.; Lombado, Lou; List, R. S.; Arko, A. J.

    1991-12-01

    We have performed photoemission studies on high-quality Bi2Sr2CaCu2O8+δ samples with various δ. Our results show a clear chemical-potential shift (0.15-0.2 eV) as a function of doping. This result and the existing angle-resolved-photoemission data give a rather standard doping behavior of this compound in its highly doped regime.

  5. Synergistic effects from graphene and carbon nanotubes enable flexible and robust electrodes for high-performance supercapacitors.

    PubMed

    Cheng, Yingwen; Lu, Songtao; Zhang, Hongbo; Varanasi, Chakrapani V; Liu, Jie

    2012-08-08

    Flexible and lightweight energy storage systems have received tremendous interest recently due to their potential applications in wearable electronics, roll-up displays, and other devices. To manufacture such systems, flexible electrodes with desired mechanical and electrochemical properties are critical. Herein we present a novel method to fabricate conductive, highly flexible, and robust film supercapacitor electrodes based on graphene/MnO(2)/CNTs nanocomposites. The synergistic effects from graphene, CNTs, and MnO(2) deliver outstanding mechanical properties (tensile strength of 48 MPa) and superior electrochemical activity that were not achieved by any of these components alone. These flexible electrodes allow highly active material loading (71 wt % MnO(2)), areal density (8.80 mg/cm(2)), and high specific capacitance (372 F/g) with excellent rate capability for supercapacitors without the need of current collectors and binders. The film can also be wound around 0.5 mm diameter rods for fabricating full cells with high performance, showing significant potential in flexible energy storage devices.

  6. Potential approaches to the spectroscopic characterization of high performance polymers exposed to energetic protons and heavy ions

    NASA Technical Reports Server (NTRS)

    Suleman, Naushadalli K.

    1991-01-01

    A potential limitation to human activity on the lunar surface or in deep space is the exposure of the crew to unacceptably high levels of penetrating space radiations. The radiations of most concerns for such missions are high-energy protons emitted during solar flares, and galactic cosmic rays which are high-energy ions ranging from protons to iron. The development of materials for effective shielding from energetic space radiations will clearly require a greater understanding of the underlying mechanisms of radiation-induced damage in bulk materials. This can be accomplished in part by the detailed spectroscopic characterization of bulk materials that were exposed to simulated space radiations. An experimental data base thus created can then be used in conjunction with existing radiation transport codes in the design and fabrication of effective radiation shielding materials. Electron Paramagnetic Resonance Spectroscopy was proven very useful in elucidating radiation effects in polymers (high performance polymers are often an important components of structural composites).

  7. The White Bear in the Classroom: On the Use of Thought Suppression When Stakes Are High and Pressure to Perform Increases

    ERIC Educational Resources Information Center

    Imhof, Margarete; Schulte-Jakubowski, Katja

    2015-01-01

    This study examined how students use volitional control of thoughts in a context of performance during the 3-year pre-college track in their high school program. A total of 142 students were surveyed on their ability to volitionally control potentially disruptive cognitions, on their perception of positive and negative mood, and how this is…

  8. High Performance Carbon Nanotube Yarn Supercapacitors with a Surface-Oxidized Copper Current Collector.

    PubMed

    Zhang, Daohong; Wu, Yunlong; Li, Ting; Huang, Yin; Zhang, Aiqing; Miao, Menghe

    2015-11-25

    Threadlike linear supercapacitors have demonstrated high potential for constructing fabrics to power electronic textiles (eTextiles). To improve the cyclic electrochemical performance and to produce power fabrics large enough for practical applications, a current collector has been introduced into the linear supercapcitors to transport charges produced by active materials along the length of the supercapacitor with high efficiency. Here, we first screened six candidate metal filaments (Pt, Au, Ag, AuAg, PtCu, and Cu) as current collectors for carbon nanotube (CNT) yarn-based linear supercapacitors. Although all of the metal filaments significantly improved the electrochemical performance of the linear supercapacitor, two supercapacitors constructed from Cu and PtCu filaments, respectively, demonstrate far better electrochemical performance than the other four supercapacitors. Further investigation shows that the surfaces of the two Cu-containing filaments are oxidized by the surrounding polymer electrolyte in the electrode. While the unoxidized core of the Cu-containing filaments remains highly conductive and functions as a current collector, the resulting CuO on the surface is an electrochemically active material. The linear supercapacitor architecture incorporating dual active materials CNT + Cu extends the potential window from 1.0 to 1.4 V, leading to significant improvement to the energy density and power density.

  9. Chiral Nucleon-Nucleus Potentials at N3LO

    NASA Astrophysics Data System (ADS)

    Finelli, Paolo; Vorabbi, Matteo; Giusti, Carlotta

    2018-03-01

    Elastic scattering is probably one of the most relevant tools to study nuclear interactions. In this contribution we study the domain of applicability of microscopic two-body chiral potentials in the construction of an optical potential. A microscopic complex optical potential is derived and tested performing calculations on 16O at different energies. Good agreement with empirical data is obtained if a Lippmann-Schwinger cutoff at relatively high energies (above 500 MeV) is employed.

  10. Birth Order, Age-Spacing, IQ Differences, and Family Relations.

    ERIC Educational Resources Information Center

    Pfouts, Jane H.

    1980-01-01

    Very close age spacing was an obstacle to high academic performance for later borns. In family relations and self-esteem, first borns scored better and performed in school as well as their potentially much more able younger siblings, regardless of age spacing. (Author)

  11. A trapped mercury 199 ion frequency standard

    NASA Technical Reports Server (NTRS)

    Cutler, L. S.; Giffard, R. P.; Mcguire, M. D.

    1982-01-01

    Mercury 199 ions confined in an RF quadrupole trap and optically pumped by mercury 202 ion resonance light are investigated as the basis for a high performance frequency standard with commercial possibilities. Results achieved and estimates of the potential performance of such a standard are given.

  12. Behavior of field-cast ultra-high performance concrete bridge deck connections under cyclic and static structural loading

    DOT National Transportation Integrated Search

    2010-11-01

    The use of modular bridge deck components has the potential to produce higher quality, more durable bridge decks; however, the required connections have often proved lacking, resulting in less than desirable overall system performance. Advanced cemen...

  13. Social status determines how we monitor and evaluate our performance

    PubMed Central

    Kostermans, Evelien; Milivojevic, Branka; De Cremer, David

    2012-01-01

    Since people with low status are more likely to experience social evaluative threat and are therefore more inclined to monitor for these threats and inhibit approach behaviour, we expected that low-status subjects would be more engaged in evaluating their own performance, compared with high-status subjects. We created a highly salient social hierarchy based on the performance of a simple time estimation task. Subjects could achieve high, middle or low status while performing this task simultaneously with other two players who were either higher or lower in status. Subjects received feedback on their own performance, as well as on the performance of the other two players simultaneously. Electroencephalography (EEG) was recorded from all three participants. The results showed that medial frontal negativity (an event-related potential reflecting performance evaluation) was significantly enhanced for low-status subjects. Implications for status-related differences in goal-directed behaviour are discussed. PMID:21421733

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Judd, Kathleen S.; Sanquist, Thomas F.; Zalesny, Mary D.

    This study, sponsored by the U.S. General Services Administration’s Office of Federal High-Performance Green Buildings, aimed to understand the potential for institutional and behavioral change to enhance the performance of buildings, through a demonstration project with the Department of Defense in five green buildings on the Fort Carson, Colorado, Army base. To approach this study, the research team identified specific occupant behaviors that had the potential to save energy in each building, defined strategies that might effectively support behavior change, and implemented a coordinated set of actions during a three-month intervention.

  15. Internal Flow of Contra-Rotating Small Hydroturbine at Off- Design Flow Rates

    NASA Astrophysics Data System (ADS)

    SHIGEMITSU, Toru; TAKESHIMA, Yasutoshi; OGAWA, Yuya; FUKUTOMI, Junichiro

    2016-11-01

    Small hydropower generation is one of important alternative energy, and enormous potential lie in the small hydropower. However, efficiency of small hydroturbines is lower than that of large one. Then, there are demands for small hydroturbines to keep high performance in wide flow rate range. Therefore, we adopted contra-rotating rotors, which can be expected to achieve high performance. In this research, performance of the contra-rotating small hydroturbine with 60mm casing diameter was investigated by an experiment and numerical analysis. Efficiency of the contra-rotating small hydroturbine was high in pico-hydroturbine and high efficiency could be kept in wide flow rate range, however the performance of a rear rotor decreased significantly in partial flow rates. Then, internal flow condition, which was difficult to measure experimentally, was investigated by the numerical flow analysis. Then, a relation between the performance and internal flow condition was considered by the numerical analysis result.

  16. A comparative assessment of GIS-based data mining models and a novel ensemble model in groundwater well potential mapping

    NASA Astrophysics Data System (ADS)

    Naghibi, Seyed Amir; Moghaddam, Davood Davoodi; Kalantar, Bahareh; Pradhan, Biswajeet; Kisi, Ozgur

    2017-05-01

    In recent years, application of ensemble models has been increased tremendously in various types of natural hazard assessment such as landslides and floods. However, application of this kind of robust models in groundwater potential mapping is relatively new. This study applied four data mining algorithms including AdaBoost, Bagging, generalized additive model (GAM), and Naive Bayes (NB) models to map groundwater potential. Then, a novel frequency ratio data mining ensemble model (FREM) was introduced and evaluated. For this purpose, eleven groundwater conditioning factors (GCFs), including altitude, slope aspect, slope angle, plan curvature, stream power index (SPI), river density, distance from rivers, topographic wetness index (TWI), land use, normalized difference vegetation index (NDVI), and lithology were mapped. About 281 well locations with high potential were selected. Wells were randomly partitioned into two classes for training the models (70% or 197) and validating them (30% or 84). AdaBoost, Bagging, GAM, and NB algorithms were employed to get groundwater potential maps (GPMs). The GPMs were categorized into potential classes using natural break method of classification scheme. In the next stage, frequency ratio (FR) value was calculated for the output of the four aforementioned models and were summed, and finally a GPM was produced using FREM. For validating the models, area under receiver operating characteristics (ROC) curve was calculated. The ROC curve for prediction dataset was 94.8, 93.5, 92.6, 92.0, and 84.4% for FREM, Bagging, AdaBoost, GAM, and NB models, respectively. The results indicated that FREM had the best performance among all the models. The better performance of the FREM model could be related to reduction of over fitting and possible errors. Other models such as AdaBoost, Bagging, GAM, and NB also produced acceptable performance in groundwater modelling. The GPMs produced in the current study may facilitate groundwater exploitation by determining high and very high groundwater potential zones.

  17. A pilot study comparing the metabolic profiles of elite-level athletes from different sporting disciplines.

    PubMed

    Al-Khelaifi, Fatima; Diboun, Ilhame; Donati, Francesco; Botrè, Francesco; Alsayrafi, Mohammed; Georgakopoulos, Costas; Suhre, Karsten; Yousri, Noha A; Elrayess, Mohamed A

    2018-01-05

    The outstanding performance of an elite athlete might be associated with changes in their blood metabolic profile. The aims of this study were to compare the blood metabolic profiles between moderate- and high-power and endurance elite athletes and to identify the potential metabolic pathways underlying these differences. Metabolic profiling of serum samples from 191 elite athletes from different sports disciplines (121 high- and 70 moderate-endurance athletes, including 44 high- and 144 moderate-power athletes), who participated in national or international sports events and tested negative for doping abuse at anti-doping laboratories, was performed using non-targeted metabolomics-based mass spectroscopy combined with ultrahigh-performance liquid chromatography. Multivariate analysis was conducted using orthogonal partial least squares discriminant analysis. Differences in metabolic levels between high- and moderate-power and endurance sports were assessed by univariate linear models. Out of 743 analyzed metabolites, gamma-glutamyl amino acids were significantly reduced in both high-power and high-endurance athletes compared to moderate counterparts, indicating active glutathione cycle. High-endurance athletes exhibited significant increases in the levels of several sex hormone steroids involved in testosterone and progesterone synthesis, but decreases in diacylglycerols and ecosanoids. High-power athletes had increased levels of phospholipids and xanthine metabolites compared to moderate-power counterparts. This pilot data provides evidence that high-power and high-endurance athletes exhibit a distinct metabolic profile that reflects steroid biosynthesis, fatty acid metabolism, oxidative stress, and energy-related metabolites. Replication studies are warranted to confirm differences in the metabolic profiles associated with athletes' elite performance in independent data sets, aiming ultimately for deeper understanding of the underlying biochemical processes that could be utilized as biomarkers with potential therapeutic implications.

  18. Effects of High Octane Ethanol Blends on Four Legacy Flex-Fuel Vehicles, and a Turbocharged GDI Vehicle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, John F; West, Brian H; Huff, Shean P

    The U.S. Department of Energy (DOE) is supporting engine and vehicle research to investigate the potential of high-octane fuels to improve fuel economy. Ethanol has very high research octane number (RON) and heat of vaporization (HoV), properties that make it an excellent spark ignition engine fuel. The prospects of increasing both the ethanol content and the octane number of the gasoline pool has the potential to enable improved fuel economy in future vehicles with downsized, downsped engines. This report describes a small study to explore the potential performance benefits of high octane ethanol blends in the legacy fleet. There aremore » over 17 million flex-fuel vehicles (FFVs) on the road today in the United States, vehicles capable of using any fuel from E0 to E85. If a future high-octane blend for dedicated vehicles is on the horizon, the nation is faced with the classic chicken-and-egg dilemma. If today’s FFVs can see a performance advantage with a high octane ethanol blend such as E25 or E30, then perhaps consumer demand for this fuel can serve as a bridge to future dedicated vehicles. Experiments were performed with four FFVs using a 10% ethanol fuel (E10) with 88 pump octane, and a market gasoline blended with ethanol to make a 30% by volume ethanol fuel (E30) with 94 pump octane. The research octane numbers were 92.4 for the E10 fuel and 100.7 for the E30 fuel. Two vehicles had gasoline direct injected (GDI) engines, and two featured port fuel injection (PFI). Significant wide open throttle (WOT) performance improvements were measured for three of the four FFVs, with one vehicle showing no change. Additionally, a conventional (non-FFV) vehicle with a small turbocharged direct-injected engine was tested with a regular grade of gasoline with no ethanol (E0) and a splash blend of this same fuel with 15% ethanol by volume (E15). RON was increased from 90.7 for the E0 to 97.8 for the E15 blend. Significant wide open throttle and thermal efficiency performance improvement was measured for this vehicle, which achieved near volumetric fuel economy parity on the aggressive US06 drive cycle, demonstrating the potential for improved fuel economy in forthcoming downsized, downsped engines with high-octane fuels.« less

  19. Highly uniform and monodisperse carbon nanospheres enriched with cobalt-nitrogen active sites as a potential oxygen reduction electrocatalyst

    NASA Astrophysics Data System (ADS)

    Wan, Xing; Wang, Hongjuan; Yu, Hao; Peng, Feng

    2017-04-01

    Uniform cobalt and nitrogen co-doped carbon nanospheres (CoN-CNS) with high specific surface area (865 m2 g-1) have been prepared by a simple but efficient method. The prepared CoN-CNS catalyst exhibits outstanding catalytic performance for the oxygen reduction reaction (ORR) in both alkaline and acidic electrolytes. In alkaline electrolyte, the prepared CoN-CNS has more positive half-wave potential and larger kinetic current density than commercial Pt/C. In acidic electrolyte, CoN-CNS also shows good ORR activity with high electron transfer number, its onset and half-wave potentials are all close to those of commercial carbon supported platinum catalyst (Pt/C). CoN-CNS catalyst shows more superior stability and higher methanol-tolerance than commercial Pt/C both in alkaline and in acidic electrolytes. The potassium thiocyanate-poisoning test further confirms that the cobalt-nitrogen active sites exist in CoN-CNS, which are dominating to endow high ORR catalytic activity in acidic electrolyte. This study develops a new method to prepare non-precious metal catalyst with excellent ORR performances for direct methanol fuel cells.

  20. Performance of a 300 Mbps 1:16 serial/parallel optoelectronic receiver module

    NASA Technical Reports Server (NTRS)

    Richard, M. A.; Claspy, P. C.; Bhasin, K. B.; Bendett, M. B.

    1990-01-01

    Optical interconnects are being considered for the high speed distribution of multiplexed control signals in GaAs monolithic microwave integrated circuit (MMIC) based phased array antennas. The performance of a hybrid GaAs optoelectronic integrated circuit (OEIC) is described, as well as its design and fabrication. The OEIC converts a 16-bit serial optical input to a 16 parallel line electrical output using an on-board 1:16 demultiplexer and operates at data rates as high as 30b Mbps. The performance characteristics and potential applications of the device are presented.

  1. High-performance supercapacitors based on vertically aligned carbon nanotubes and nonaqueous electrolytes

    NASA Astrophysics Data System (ADS)

    Kim, Byungwoo; Chung, Haegeun; Kim, Woong

    2012-04-01

    We demonstrate the high performance of supercapacitors fabricated with vertically aligned carbon nanotubes and nonaqueous electrolytes such as ionic liquids and conventional organic electrolytes. Specific capacitance, maximum power and energy density of the supercapacitor measured in ionic liquid were ˜75 F g-1, ˜987 kW kg-1 and ˜27 W h kg-1, respectively. The high power performance was consistently indicated by a fast relaxation time constant of 0.2 s. In addition, electrochemical oxidation of the carbon nanotubes improved the specific capacitance (˜158 F g-1) and energy density (˜53 W h kg-1). Both high power and energy density could be attributed to the fast ion transport realized by the alignment of carbon nanotubes and the wide operational voltage defined by the ionic liquid. The demonstrated carbon-nanotube- and nonaqueous-electrolyte-based supercapacitors show great potential for the development of high-performance energy storage devices.

  2. High-performance supercapacitors based on vertically aligned carbon nanotubes and nonaqueous electrolytes.

    PubMed

    Kim, Byungwoo; Chung, Haegeun; Kim, Woong

    2012-04-20

    We demonstrate the high performance of supercapacitors fabricated with vertically aligned carbon nanotubes and nonaqueous electrolytes such as ionic liquids and conventional organic electrolytes. Specific capacitance, maximum power and energy density of the supercapacitor measured in ionic liquid were ~75 F g(-1), ~987 kW kg(-1) and ~27 W h kg(-1), respectively. The high power performance was consistently indicated by a fast relaxation time constant of 0.2 s. In addition, electrochemical oxidation of the carbon nanotubes improved the specific capacitance (~158 F g(-1)) and energy density (~53 W h kg(-1)). Both high power and energy density could be attributed to the fast ion transport realized by the alignment of carbon nanotubes and the wide operational voltage defined by the ionic liquid. The demonstrated carbon-nanotube- and nonaqueous-electrolyte-based supercapacitors show great potential for the development of high-performance energy storage devices. © 2012 IOP Publishing Ltd

  3. Fabrication of ordered NiO coated Si nanowire array films as electrodes for a high performance lithium ion battery.

    PubMed

    Qiu, M C; Yang, L W; Qi, X; Li, Jun; Zhong, J X

    2010-12-01

    Highly ordered NiO coated Si nanowire array films are fabricated as electrodes for a high performance lithium ion battery via depositing Ni on electroless-etched Si nanowires and subsequently annealing. The structures and morphologies of as-prepared films are characterized by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. When the potential window versus lithium was controlled, the coated NiO can be selected to be electrochemically active to store and release Li+ ions, while highly conductive crystalline Si cores function as nothing more than a stable mechanical support and an efficient electrical conducting pathway. The hybrid nanowire array films exhibit superior cyclic stability and reversible capacity compared to that of NiO nanostructured films. Owing to the ease of large-scale fabrication and superior electrochemical performance, these hybrid nanowire array films will be promising anode materials for high performance lithium-ion batteries.

  4. Polarization-mediated Debye-screening of surface potential fluctuations in dual-channel AlN/GaN high electron mobility transistors

    NASA Astrophysics Data System (ADS)

    Deen, David A.; Miller, Ross A.; Osinsky, Andrei V.; Downey, Brian P.; Storm, David F.; Meyer, David J.; Scott Katzer, D.; Nepal, Neeraj

    2016-12-01

    A dual-channel AlN/GaN/AlN/GaN high electron mobility transistor (HEMT) architecture is proposed, simulated, and demonstrated that suppresses gate lag due to surface-originated trapped charge. Dual two-dimensional electron gas (2DEG) channels are utilized such that the top 2DEG serves as an equipotential that screens potential fluctuations resulting from surface trapped charge. The bottom channel serves as the transistor's modulated channel. Two device modeling approaches have been performed as a means to guide the device design and to elucidate the relationship between the design and performance metrics. The modeling efforts include a self-consistent Poisson-Schrodinger solution for electrostatic simulation as well as hydrodynamic three-dimensional device modeling for three-dimensional electrostatics, steady-state, and transient simulations. Experimental results validated the HEMT design whereby homo-epitaxial growth on free-standing GaN substrates and fabrication of the same-wafer dual-channel and recessed-gate AlN/GaN HEMTs have been demonstrated. Notable pulsed-gate performance has been achieved by the fabricated HEMTs through a gate lag ratio of 0.86 with minimal drain current collapse while maintaining high levels of dc and rf performance.

  5. High-performance radial AMTEC cell design for ultra-high-power solar AMTEC systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hendricks, T.J.; Huang, C.

    1999-07-01

    Alkali Metal Thermal to Electric Conversion (AMTEC) technology is rapidly maturing for potential application in ultra-high-power solar AMTEC systems required by potential future US Air Force (USAF) spacecraft missions in medium-earth and geosynchronous orbits (MEO and GEO). Solar thermal AMTEC power systems potentially have several important advantages over current solar photovoltaic power systems in ultra-high-power spacecraft applications for USAF MEO and GEO missions. This work presents key aspects of radial AMTEC cell design to achieve high cell performance in solar AMTEC systems delivering larger than 50 kW(e) to support high power USAF missions. These missions typically require AMTEC cell conversionmore » efficiency larger than 25%. A sophisticated design parameter methodology is described and demonstrated which establishes optimum design parameters in any radial cell design to satisfy high-power mission requirements. Specific relationships, which are distinct functions of cell temperatures and pressures, define critical dependencies between key cell design parameters, particularly the impact of parasitic thermal losses on Beta Alumina Solid Electrolyte (BASE) area requirements, voltage, number of BASE tubes, and system power production for both maximum power-per-BASE-area and optimum efficiency conditions. Finally, some high-level system tradeoffs are demonstrated using the design parameter methodology to establish high-power radial cell design requirements and philosophy. The discussion highlights how to incorporate this methodology with sophisticated SINDA/FLUINT AMTEC cell modeling capabilities to determine optimum radial AMTEC cell designs.« less

  6. Active Enhancement of Slow Light Based on Plasmon-Induced Transparency with Gain Materials.

    PubMed

    Zhang, Zhaojian; Yang, Junbo; He, Xin; Han, Yunxin; Zhang, Jingjing; Huang, Jie; Chen, Dingbo; Xu, Siyu

    2018-06-03

    As a plasmonic analogue of electromagnetically induced transparency (EIT), plasmon-induced transparency (PIT) has drawn more attention due to its potential of realizing on-chip sensing, slow light and nonlinear effect enhancement. However, the performance of a plasmonic system is always limited by the metal ohmic loss. Here, we numerically report a PIT system with gain materials based on plasmonic metal-insulator-metal waveguide. The corresponding phenomenon can be theoretically analyzed by coupled mode theory (CMT). After filling gain material into a disk cavity, the system intrinsic loss can be compensated by external pump beam, and the PIT can be greatly fueled to achieve a dramatic enhancement of slow light performance. Finally, a double-channel enhanced slow light is introduced by adding a second gain disk cavity. This work paves way for a potential new high-performance slow light device, which can have significant applications for high-compact plasmonic circuits and optical communication.

  7. End-to-End Assessment of a Large Aperture Segmented Ultraviolet Optical Infrared (UVOIR) Telescope Architecture

    NASA Technical Reports Server (NTRS)

    Feinberg, Lee; Rioux, Norman; Bolcar, Matthew; Liu, Alice; Guyon, Oliver; Stark, Chris; Arenberg, Jon

    2016-01-01

    Key challenges of a future large aperture, segmented Ultraviolet Optical Infrared (UVOIR) Telescope capable of performing a spectroscopic survey of hundreds of Exoplanets will be sufficient stability to achieve 10^-10 contrast measurements and sufficient throughput and sensitivity for high yield Exo-Earth spectroscopic detection. Our team has collectively assessed an optimized end to end architecture including a high throughput coronagraph capable of working with a segmented telescope, a cost-effective and heritage based stable segmented telescope, a control architecture that minimizes the amount of new technologies, and an Exo-Earth yield assessment to evaluate potential performance. These efforts are combined through integrated modeling, coronagraph evaluations, and Exo-Earth yield calculations to assess the potential performance of the selected architecture. In addition, we discusses the scalability of this architecture to larger apertures and the technological tall poles to enabling it.

  8. Utilization of potatoes for life support in space. V. Evaluation of cultivars in response to continuous light and high temperature

    NASA Technical Reports Server (NTRS)

    Tibbitts, T. W.; Cao, W.; Bennett, S. M.

    1992-01-01

    Twenty-four potato (Solanum tuberosum L.) cultivars from different regions of the world were evaluated in terms of their responses to continuous light (24 h photoperiod) and to high temperature (30 C) in two separate experiments under controlled environments. In each experiment, a first evaluation of the cultivars was made at day 35 after transplanting, at which time 12 cultivars exhibiting best growth and tuber initiation were selected. A final evaluation of the 12 cultivars was made after an additional 21 days of growth, at which time plant height, total dry weight, tuber dry weight, and tuber number were determined. In the continuous light evaluation, the 12 selected cultivars were Alaska 114, Atlantic, Bintje, Denali, Desiree, Haig, New York 81, Ottar, Rutt, Snogg, Snowchip, and Troll. In the high temperature evaluation, the 12 selected cultivars were Alpha, Atlantic, Bake King, Denali, Desiree, Haig, Kennebec, Norland, Russet Burbank, Rutt, Superior, and Troll. Among the cultivars selected under continuous irradiation, Desiree, Ottar, Haig, Rutt, Denali and Alaska showed the best potential for high productivity whereas New York 81 and Bintje showed the least production capability. Among the cultivars selected under high temperature, Rutt, Haig, Troll and Bake King had best performance whereas Atlantic, Alpha, Kennebec and Russet Burbank exhibited the least production potential. Thus, Haig and Rutt were the two cultivars that performed well under continuous irradiation and high temperature conditions, and could have maximum potential for adaptation to varying stress environments. These two cultivars may have the best potential for use in future space farming in which continuous light and/or high temperature conditions may exist. However, cultivar responses under combined conditions of continuous light and high temperature remains for further validation.

  9. Development of minimum standards for event-based data collection loggers and performance measure definitions for signalized intersections.

    DOT National Transportation Integrated Search

    2017-01-01

    The arterial traffic signal performance measures were not used to their fullest potential in the past. The development of traffic signal controllers with event-based, high-resolution data logging capabilities enabled the advances in derivation and vi...

  10. Methods for identifying high collision concentrations for identifying potential safety improvements : development of advanced type 2 safety performance functions.

    DOT National Transportation Integrated Search

    2016-06-30

    This research developed advanced type 2 safety performance functions (SPF) for roadway segments, intersections and ramps on the entire Caltrans network. The advanced type 2 SPFs included geometrics, traffic volume and hierarchical random effects, whi...

  11. Potential emission savings from refrigeration and air conditioning systems by using low GWP refrigerants

    DOE PAGES

    Beshr, Mohamed; Aute, Vikrant; Abdelaziz, Omar; ...

    2016-08-24

    Refrigeration and air conditioning systems have high, negative environmental impacts due to refrigerant charge leaks from the system and their corresponding high global warming potential. Thus, many efforts are in progress to obtain suitable low GWP alternative refrigerants and more environmentally friendly systems for the future. In addition, the system’s life cycle climate performance (LCCP) is a widespread metric proposed for the evaluation of the system’s environmental impact.

  12. Potential emission savings from refrigeration and air conditioning systems by using low GWP refrigerants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beshr, Mohamed; Aute, Vikrant; Abdelaziz, Omar

    Refrigeration and air conditioning systems have high, negative environmental impacts due to refrigerant charge leaks from the system and their corresponding high global warming potential. Thus, many efforts are in progress to obtain suitable low GWP alternative refrigerants and more environmentally friendly systems for the future. In addition, the system’s life cycle climate performance (LCCP) is a widespread metric proposed for the evaluation of the system’s environmental impact.

  13. Novel Transition Metal Compounds with Promising Thermoelectric Properties

    NASA Technical Reports Server (NTRS)

    Caillat, T.; Borshchevsky, A.; Fleurial, J. -P.

    1993-01-01

    Progress in the search for new high temperature thermoelectric materials at the Jet Propulsion Laboratory is reviewed. Novel transition metal compounds were selected as potential new high performance thermoelectric materials and criteria of selection are presented and discussed. Samples of these new compounds were prepared at JPL by a variety of techniques. Encouraging experimental results obtained on several of these compounds are reported and show that they have the potential to be the next generation of thermoelectric materials.

  14. Beyond Magnet® Designation: Perspectives From Nurse Managers on Factors of Sustainability and High-Performance Programming.

    PubMed

    Hayden, Margaret A; Wolf, Gail A; Zedreck-Gonzalez, Judith F

    2016-10-01

    The aim of this study was to identify patterns of high-performing behaviors and nurse manager perceptions of the factors of Magnet® sustainability at a multidesignated Magnet organization. The Magnet program recognizes exemplary professional nursing practice and is challenging to achieve and sustain. Only 10% (n = 42) of Magnet hospitals sustained designation for 12 years or longer. This study explored the perspectives of Magnet nurse managers regarding high-performing teams and the sustainability of Magnet designation. A qualitative study of nurse managers was conducted at 1 multidesignated Magnet organization (n = 13). Interview responses were analyzed using pattern recognition of Magnet model domains and characteristics of high-performing teams and then related to factors of Magnet sustainability. Transformational leadership is both an essential factor for sustainability and a potential barrier to sustainability of Magnet designation. Transformational nursing leaders lead high-performing teams and should be in place at all levels as an essential factor in sustaining Magnet redesignation.

  15. Analysis of nanopore arrangement of porous alumina layers formed by anodizing in oxalic acid at relatively high temperatures

    NASA Astrophysics Data System (ADS)

    Zaraska, Leszek; Stępniowski, Wojciech J.; Jaskuła, Marian; Sulka, Grzegorz D.

    2014-06-01

    Anodic aluminum oxide (AAO) layers were formed by a simple two-step anodization in 0.3 M oxalic acid at relatively high temperatures (20-30 °C) and various anodizing potentials (30-65 V). The effect of anodizing conditions on structural features of as-obtained oxides was carefully investigated. A linear and exponential relationships between cell diameter, pore density and anodizing potential were confirmed, respectively. On the other hand, no effect of temperature and duration of anodization on pore spacing and pore density was found. Detailed quantitative and qualitative analyses of hexagonal arrangement of nanopore arrays were performed for all studied samples. The nanopore arrangement was evaluated using various methods based on the fast Fourier transform (FFT) images, Delaunay triangulations (defect maps), pair distribution functions (PDF), and angular distribution functions (ADF). It was found that for short anodizations performed at relatively high temperatures, the optimal anodizing potential that results in formation of nanostructures with the highest degree of pore order is 45 V. No direct effect of temperature and time of anodization on the nanopore arrangement was observed.

  16. Microbial community activities during establishment, performance, and decline of bench-scale passive treatment systems for mine drainage.

    PubMed

    Logan, Miranda V; Reardon, Kenneth F; Figueroa, Linda A; McLain, Jean E T; Ahmann, Dianne M

    2005-11-01

    Permeable reactive barrier (PRB) technology, in which sulfate-reducing bacteria (SRB) facilitate precipitation of metal sulfides, is a promising approach for remediation of sulfate- and metal-laden mine drainage. While PRBs are easily established, they often decline for reasons not well understood. SRB depend on or compete with multiple dynamic microbial populations within a PRB; as a result, performance depends on the changing PRB chemical composition and on succession and competition within the microbial community. To investigate these interactions, we constructed and monitored eight bench-scale PRBs to define periods of establishment, performance, and decline. We then conducted short-term batch studies, using substrate-supplemented column materials, on Days 0 (pre-establishment), 27 (establishment), 41 (performance), and 99 (decline) to reveal potential activities of cellulolytic bacteria, fermenters + anaerobic respirers, SRB, and methanogens. PRBs showed active sulfate reduction, with sulfate removal rates (SRR) of approximately 1-3 mol/m3/d, as well as effective removal of Zn2+. Potential activities of fermentative + anaerobic respiratory bacteria were initially high but diminished greatly during establishment and dropped further during performance and decline. In contrast, potential SRB activity rose during establishment, peaked during performance, and diminished as performance declined. Potential methanogen activity was low; in addition, SRB-methanogen substrate competition was shown not to limit SRB activity. Cellulolytic bacteria showed no substrate limitation at any time. However, fermenters experienced substrate limitation by Day 0, SRB by Day 27, and methanogens by Day 41, showing the dependence of each group on upstream populations to provide substrates. All potential activities, except methanogenesis, were ultimately limited by cellulose hydrolysis; in addition, all potential activities except methanogenesis declined substantially by Day 99, showing that long-term substrate deprivation strongly diminished the intrinsic capacity of the PRB community to perform.

  17. Underachieving Gifted Students and Ways to Improve School Performance of at Risk Student Population Who Have High Potential: Improving Writing Performance in Underachieving Gifted Students

    ERIC Educational Resources Information Center

    Brown-Anfelouss, Marjorie

    2012-01-01

    Giftedness has often been equated with being academically talented or being a high achiever in school. However, there is often concern about the gifted students who could be described as unmotivated and underachieving in one or many academic areas. At the Jones Street School, a school for gifted elementary students, the location of this study,…

  18. Highly branched polyethylenes as lubricant viscosity and friction modifiers

    DOE PAGES

    Robinson, Joshua W.; Zhou, Yan; Qu, Jun; ...

    2016-10-08

    A series of highly branched polyethylene (BPE) were prepared and evaluated in a Group I base oil as potential viscosity and friction modifiers. The performance of these BPEs supports the expected dual functionality. Changes in polarity, topology, and molecular weight of the BPEs showed significant effects on the lubricants' performance with respect to viscosity index and friction reduction. In conclusion, this study provides scientific insights into polymer design for future lubricant development activities.

  19. High Performance Nanofiltration Membrane for Effective Removal of Perfluoroalkyl Substances at High Water Recovery.

    PubMed

    Boo, Chanhee; Wang, Yunkun; Zucker, Ines; Choo, Youngwoo; Osuji, Chinedum O; Elimelech, Menachem

    2018-05-31

    We demonstrate the fabrication of a loose, negatively charged nanofiltration (NF) membrane with tailored selectivity for the removal of perfluoroalkyl substances with reduced scaling potential. A selective polyamide layer was fabricated on top of a polyethersulfone support via interfacial polymerization of trimesoyl chloride and a mixture of piperazine and bipiperidine. Incorporating high molecular weight bipiperidine during the interfacial polymerization enables the formation of a loose, nanoporous selective layer structure. The fabricated NF membrane possessed a negative surface charge and had a pore diameter of ~1.2 nm, much larger than a widely used commercial NF membrane (i.e., NF270 with pore diameter of ~0.8 nm). We evaluated the performance of the fabricated NF membrane for the rejection of different salts (i.e., NaCl, CaCl2, and Na2SO4) and perfluorooctanoic acid (PFOA). The fabricated NF membrane exhibited a high retention of PFOA (~90%) while allowing high passage of scale-forming cations (i.e., calcium). We further performed gypsum scaling experiments to demonstrate lower scaling potential of the fabricated loose porous NF membrane compared to NF membranes having a dense selective layer under solution conditions simulating high water recovery. Our results demonstrate that properly designed NF membranes are a critical component of a high recovery NF system, which provide an efficient and sustainable solution for remediation of groundwater contaminated with perfluoroalkyl substances.

  20. Vortical flow management techniques

    NASA Technical Reports Server (NTRS)

    Rao, Dhanvada M.; Campbell, James F.

    1987-01-01

    The aerodynamic performance and controllability of advanced, highly maneuverable supersonic aircraft can be enhanced by means of 'vortex management', which refers to the purposeful manipulation and reordering of stable and concentrated vortical structures due to flow separations from highly swept leading edges and slender forebodies at moderate-to-high angles-of-attack. Attention is presently given to a variety of results obtained in the course of experiments on generic research models at NASA Langley, clarifying their underlying aerodynamics and evaluating their performance-improvement potential. The vortex-management concepts discussed encompass aerodynamic compartmentation of highly swept leading edges, vortex lift augmentation and modulation, and forebody vortex manipulation.

  1. NASA Research in aeropropulsion

    NASA Technical Reports Server (NTRS)

    Stewart, W. L.; Weber, R. J.

    1981-01-01

    Selected examples of recent accomplishments and current activities that are relevant to the principal classes of civil and military vehicles: subsonic transports, commuters, supersonic transports, general aviation, rotorcraft, V/STOL, and high performance. Some instances of emerging technologies with potential high impact on further progress are discussed.

  2. Nuclear Potential Clustering As a New Tool to Detect Patterns in High Dimensional Datasets

    NASA Astrophysics Data System (ADS)

    Tonkova, V.; Paulus, D.; Neeb, H.

    2013-02-01

    We present a new approach for the clustering of high dimensional data without prior assumptions about the structure of the underlying distribution. The proposed algorithm is based on a concept adapted from nuclear physics. To partition the data, we model the dynamic behaviour of nucleons interacting in an N-dimensional space. An adaptive nuclear potential, comprised of a short-range attractive (strong interaction) and a long-range repulsive term (Coulomb force) is assigned to each data point. By modelling the dynamics, nucleons that are densely distributed in space fuse to build nuclei (clusters) whereas single point clusters repel each other. The formation of clusters is completed when the system reaches the state of minimal potential energy. The data are then grouped according to the particles' final effective potential energy level. The performance of the algorithm is tested with several synthetic datasets showing that the proposed method can robustly identify clusters even when complex configurations are present. Furthermore, quantitative MRI data from 43 multiple sclerosis patients were analyzed, showing a reasonable splitting into subgroups according to the individual patients' disease grade. The good performance of the algorithm on such highly correlated non-spherical datasets, which are typical for MRI derived image features, shows that Nuclear Potential Clustering is a valuable tool for automated data analysis, not only in the MRI domain.

  3. Afterbody External Aerodynamic and Performance Prediction at High Reynolds Numbers

    NASA Technical Reports Server (NTRS)

    Carlson, John R.

    1999-01-01

    This CFD experiment concludes that the potential difference between the flow between a flight Reynolds number test and a sub-scale wind tunnel test are substantial for this particular nozzle boattail geometry. The early study was performed using a linear k-epsilon turbulence model. The present study was performed using the Girimaji formulation of a algebraic Reynolds stress turbulent simulation.

  4. Preformed amide-containing biopolymer for improving the environmental performance of synthesized urea–formaldehyde in agro-fiber composites

    Treesearch

    Altaf H. Basta; Houssni El-Saied; Jerrold E. Winandy; Ronald Sabo

    2011-01-01

    Investigations have continued for production high performance agro-based composites using environmentally acceptable approaches. This study examines the role of adding amide-containing biopolymers during synthesis of urea–formaldehyde (UF) on properties of adhesive produced, especially its adhesion potential. The environmental performance of UF-resin synthesized in the...

  5. The Pain in Storage: Work Safety in a High-Density Shelving Facility

    ERIC Educational Resources Information Center

    Atkins, Stephanie A.

    2005-01-01

    An increasing number of academic and research libraries have built high-density shelving facilities to address overcrowding conditions in their regular stacks. However, the work performed in these facilities is physically strenuous and highly repetitive in nature and may require the use of potentially dangerous equipment. This article will examine…

  6. MEASUREMENT OF HIGH-MOLECULAR-WEIGHT POLYCYCLIC AROMATIC HYDROCARBONS IN SOILS BY PARTICLE BEAM HIGH-PERFORMANCE LIQUID CHROMATOGRAPHY-MASS SPECTROMETRY

    EPA Science Inventory

    Polycyclic aromatic hydrocarbons (PAHs) comprise a class of potentially hazardous compounds of concern to the U.S.EPA. The application of particle-beam (PB) liquid chromatography-mass spectrometry (LC-MS) to the measurement of high-molecular-weight PAHs was investigated. Instrume...

  7. A Nuclear Cryogenic Propulsion Stage for Near-Term Space Missions

    NASA Technical Reports Server (NTRS)

    Houts, Michael G.; Kim, Tony; Emrich, William J.; Hickman, Robert R.; Broadway, Jeramie W.; Gerrish, Harold P.; Doughty, Glen E.; Adams, Robert B.; Bechtel, Ryan D.; Borowski, Stanley K.; hide

    2013-01-01

    Development efforts in the United States have demonstrated the viability and performance potential of NTP systems. For example, Project Rover (1955 - 1973) completed 22 high power rocket reactor tests. Peak performances included operating at an average hydrogen exhaust temperature of 2550 K and a peak fuel power density of 5200 MW/m3 (Pewee test), operating at a thrust of 930 kN (Phoebus-2A test), and operating for 62.7 minutes on a single burn (NRXA6 test).1 Results from Project Rover indicated that an NTP system with a high thrust-toweight ratio and a specific impulse greater than 900 s would be feasible. Binary and ternary carbide fuels may have the potential for providing even higher specific impulses.

  8. Simple arithmetic: not so simple for highly math anxious individuals.

    PubMed

    Chang, Hyesang; Sprute, Lisa; Maloney, Erin A; Beilock, Sian L; Berman, Marc G

    2017-12-01

    Fluency with simple arithmetic, typically achieved in early elementary school, is thought to be one of the building blocks of mathematical competence. Behavioral studies with adults indicate that math anxiety (feelings of tension or apprehension about math) is associated with poor performance on cognitively demanding math problems. However, it remains unclear whether there are fundamental differences in how high and low math anxious individuals approach overlearned simple arithmetic problems that are less reliant on cognitive control. The current study used functional magnetic resonance imaging to examine the neural correlates of simple arithmetic performance across high and low math anxious individuals. We implemented a partial least squares analysis, a data-driven, multivariate analysis method to measure distributed patterns of whole-brain activity associated with performance. Despite overall high simple arithmetic performance across high and low math anxious individuals, performance was differentially dependent on the fronto-parietal attentional network as a function of math anxiety. Specifically, low-compared to high-math anxious individuals perform better when they activate this network less-a potential indication of more automatic problem-solving. These findings suggest that low and high math anxious individuals approach even the most fundamental math problems differently. © The Author (2017). Published by Oxford University Press.

  9. Low and high speed propellers for general aviation: Performance potential and recent wind tunnel test results

    NASA Technical Reports Server (NTRS)

    Jeracki, R. J.; Mitchell, G. A.

    1981-01-01

    The performance of lower speed, 5 foot diameter model general aviation propellers, was tested in the Lewis wind tunnel. Performance was evaluated for various levels of airfoil technology and activity factor. The difference was associated with inadequate modeling of blade and spinner losses for propellers round shank blade designs. Suggested concepts for improvement are: (1) advanced blade shapes (airfoils and sweep); (2) tip devices (proplets); (3) integrated propeller/nacelles; and (4) composites. Several advanced aerodynamic concepts were evaluated in the Lewis wind tunnel. Results show that high propeller performance can be obtained to at least Mach 0.8.

  10. Laser Cladding of CPM Tool Steels on Hardened H13 Hot-Work Steel for Low-Cost High-Performance Automotive Tooling

    NASA Astrophysics Data System (ADS)

    Chen, J.; Xue, L.

    2012-06-01

    This paper summarizes our research on laser cladding of high-vanadium CPM® tool steels (3V, 9V, and 15V) onto the surfaces of low-cost hardened H13 hot-work tool steel to substantially enhance resistance against abrasive wear. The results provide great potential for fabricating high-performance automotive tooling (including molds and dies) at affordable cost. The microstructure and hardness development of the laser-clad tool steels so obtained are presented as well.

  11. The Odd Couple: The Australian NAPLAN and Singaporean PSLE

    ERIC Educational Resources Information Center

    Greenlees, Jane

    2013-01-01

    The use of high-stakes assessment to measure students' mathematical performance has become commonplace in schools all over the world. Such assessment instruments provide national or international comparisons of student (and potentially teacher performance). Each form of assessment is specialised in nature and is characteristic of the culture and…

  12. ADVANCED INSULATIONS FOR REFRIGERATOR/FREEZERS: THE POTENTIAL FOR NEW SHELL DESIGNS INCORPORATING POLYMER BARRIER CONSTRUCTION

    EPA Science Inventory

    The report examines domestic refrigerator/freezer (R/F) design alternatives which may offer greater increase in thermal performance than is possible with panel/foam composites. (NOTE: Current efforts to design and build R/Fs with high performance insulation technology are directe...

  13. Developing low-input, high-biomass, perennial cropping systems for advanced biofuels in the Intermountain West

    USDA-ARS?s Scientific Manuscript database

    Lignocellulosic biomass studies are being conducted to evaluate perennial herbaceous feedstocks and to determine their field performance and adaptation potential for biomass production in the Intermountain West. Field performance of four biomass entries and four inputs are being evaluated over a lo...

  14. Achieving significantly enhanced visible-light photocatalytic efficiency using a polyelectrolyte: the composites of exfoliated titania nanosheets, graphene, and poly(diallyl-dimethyl-ammonium chloride)

    NASA Astrophysics Data System (ADS)

    Zhang, Qian; An, Qi; Luan, Xinglong; Huang, Hongwei; Li, Xiaowei; Meng, Zilin; Tong, Wangshu; Chen, Xiaodong; Chu, Paul K.; Zhang, Yihe

    2015-08-01

    A high-performance visible-light-active photocatalyst is prepared using the polyelectrolyte/exfoliated titania nanosheet/graphene oxide (GO) precursor by flocculation followed by calcination. The polyelectrolyte poly(diallyl-dimethyl-ammonium chloride) serves not only as an effective binder to precipitate GO and titania nanosheets, but also boosts the overall performance of the catalyst significantly. Unlike most titania nanosheet-based catalysts reported in the literature, the composite absorbs light in the UV-Vis-NIR range. Its decomposition rate of methylene blue is 98% under visible light. This novel strategy of using a polymer to enhance the catalytic performance of titania nanosheet-based catalysts affords immense potential in designing and fabricating next-generation photocatalysts with high efficiency.A high-performance visible-light-active photocatalyst is prepared using the polyelectrolyte/exfoliated titania nanosheet/graphene oxide (GO) precursor by flocculation followed by calcination. The polyelectrolyte poly(diallyl-dimethyl-ammonium chloride) serves not only as an effective binder to precipitate GO and titania nanosheets, but also boosts the overall performance of the catalyst significantly. Unlike most titania nanosheet-based catalysts reported in the literature, the composite absorbs light in the UV-Vis-NIR range. Its decomposition rate of methylene blue is 98% under visible light. This novel strategy of using a polymer to enhance the catalytic performance of titania nanosheet-based catalysts affords immense potential in designing and fabricating next-generation photocatalysts with high efficiency. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr03256c

  15. Durable polydopamine-coated porous sulfur core-shell cathode for high performance lithium-sulfur batteries

    NASA Astrophysics Data System (ADS)

    Deng, Yuanfu; Xu, Hui; Bai, Zhaowen; Huang, Baoling; Su, Jingyang; Chen, Guohua

    2015-12-01

    Lithium-sulfur batteries show fascinating potential for advanced energy system due to their high specific capacity, low-cost, and environmental benignity. However, their wide applications have been plagued by low coulombic efficiency, fast capacity fading and poor rate performance. Herein, a facile method for preparation of S@PDA (PDA = polydopamine) composites with core-shell structure and good electrochemical performance as well as the First-Principles calculations on the interactions of PDA and polysulfides are reported. Taking the advantages of the core-shell structure with porous sulfur core, the high mechanical flexibility of PDA for accommodating the volumetric variation during the discharge/charge processes, the good lithium ion conductivity and the strong chemical interactions between the nitrogen/oxygen atoms with lone electron pair and lithium polysulfides for alleviating their dissolution, the S@PDA composites exhibit high discharge capacities at different current densities (1048 and 869 mAh g-1 at 0.2 and 0.8 A g-1, respectively) and excellent capacity retention capability. A capacity decay as low as 0.021% per cycle and an average coulombic efficiency of 98.5% is observed over a long-term cycling of 890 cycles at 0.8 A g-1. The S@PDA electrode has great potential as a low-cost cathode in high energy Li-S batteries.

  16. Human dopamine receptor nanovesicles for gate-potential modulators in high-performance field-effect transistor biosensors

    NASA Astrophysics Data System (ADS)

    Park, Seon Joo; Song, Hyun Seok; Kwon, Oh Seok; Chung, Ji Hyun; Lee, Seung Hwan; An, Ji Hyun; Ahn, Sae Ryun; Lee, Ji Eun; Yoon, Hyeonseok; Park, Tai Hyun; Jang, Jyongsik

    2014-03-01

    The development of molecular detection that allows rapid responses with high sensitivity and selectivity remains challenging. Herein, we demonstrate the strategy of novel bio-nanotechnology to successfully fabricate high-performance dopamine (DA) biosensor using DA Receptor-containing uniform-particle-shaped Nanovesicles-immobilized Carboxylated poly(3,4-ethylenedioxythiophene) (CPEDOT) NTs (DRNCNs). DA molecules are commonly associated with serious diseases, such as Parkinson's and Alzheimer's diseases. For the first time, nanovesicles containing a human DA receptor D1 (hDRD1) were successfully constructed from HEK-293 cells, stably expressing hDRD1. The nanovesicles containing hDRD1 as gate-potential modulator on the conducting polymer (CP) nanomaterial transistors provided high-performance responses to DA molecule owing to their uniform, monodispersive morphologies and outstanding discrimination ability. Specifically, the DRNCNs were integrated into a liquid-ion gated field-effect transistor (FET) system via immobilization and attachment processes, leading to high sensitivity and excellent selectivity toward DA in liquid state. Unprecedentedly, the minimum detectable level (MDL) from the field-induced DA responses was as low as 10 pM in real- time, which is 10 times more sensitive than that of previously reported CP based-DA biosensors. Moreover, the FET-type DRNCN biosensor had a rapid response time (<1 s) and showed excellent selectivity in human serum.

  17. High-Performance Na-O2 Batteries Enabled by Oriented NaO2 Nanowires as Discharge Products.

    PubMed

    Khajehbashi, S Mohammad B; Xu, Lin; Zhang, Guobin; Tan, Shuangshuang; Zhao, Yan; Wang, Lai-Sen; Li, Jiantao; Luo, Wen; Peng, Dong-Liang; Mai, Liqiang

    2018-06-13

    Na-O 2 batteries are emerging rechargeable batteries due to their high theoretical energy density and abundant resources, but they suffer from sluggish kinetics due to the formation of large-size discharge products with cubic or irregular particle shapes. Here, we report the unique growth of discharge products of NaO 2 nanowires inside Na-O 2 batteries that significantly boosts the performance of Na-O 2 batteries. For this purpose, a high-spin Co 3 O 4 electrocatalyst was synthesized via the high-temperature oxidation of pure cobalt nanoparticles in an external magnetic field. The discharge products of NaO 2 nanowires are 10-20 nm in diameter and ∼10 μm in length, characteristics that provide facile pathways for electron and ion transfer. With these nanowires, Na-O 2 batteries have surpassed 400 cycles with a fixed capacity of 1000 mA h g -1 , an ultra-low over-potential of ∼60 mV during charging, and near-zero over-potential during discharging. This strategy not only provides a unique way to control the morphology of discharge products to achieve high-performance Na-O 2 batteries but also opens up the opportunity to explore growing nanowires in novel conditions.

  18. Alignment of high-throughput sequencing data inside in-memory databases.

    PubMed

    Firnkorn, Daniel; Knaup-Gregori, Petra; Lorenzo Bermejo, Justo; Ganzinger, Matthias

    2014-01-01

    In times of high-throughput DNA sequencing techniques, performance-capable analysis of DNA sequences is of high importance. Computer supported DNA analysis is still an intensive time-consuming task. In this paper we explore the potential of a new In-Memory database technology by using SAP's High Performance Analytic Appliance (HANA). We focus on read alignment as one of the first steps in DNA sequence analysis. In particular, we examined the widely used Burrows-Wheeler Aligner (BWA) and implemented stored procedures in both, HANA and the free database system MySQL, to compare execution time and memory management. To ensure that the results are comparable, MySQL has been running in memory as well, utilizing its integrated memory engine for database table creation. We implemented stored procedures, containing exact and inexact searching of DNA reads within the reference genome GRCh37. Due to technical restrictions in SAP HANA concerning recursion, the inexact matching problem could not be implemented on this platform. Hence, performance analysis between HANA and MySQL was made by comparing the execution time of the exact search procedures. Here, HANA was approximately 27 times faster than MySQL which means, that there is a high potential within the new In-Memory concepts, leading to further developments of DNA analysis procedures in the future.

  19. Evaluating the Life Cycle Environmental Benefits and Trade-Offs of Water Reuse Systems for Net-Zero Buildings.

    PubMed

    Hasik, Vaclav; Anderson, Naomi E; Collinge, William O; Thiel, Cassandra L; Khanna, Vikas; Wirick, Jason; Piacentini, Richard; Landis, Amy E; Bilec, Melissa M

    2017-02-07

    Aging water infrastructure and increased water scarcity have resulted in higher interest in water reuse and decentralization. Rating systems for high-performance buildings implicitly promote the use of building-scale, decentralized water supply and treatment technologies. It is important to recognize the potential benefits and trade-offs of decentralized and centralized water systems in the context of high-performance buildings. For this reason and to fill a gap in the current literature, we completed a life cycle assessment (LCA) of the decentralized water system of a high-performance, net-zero energy, net-zero water building (NZB) that received multiple green building certifications and compared the results with two modeled buildings (conventional and water efficient) using centralized water systems. We investigated the NZB's impacts over varying lifetimes, conducted a break-even analysis, and included Monte Carlo uncertainty analysis. The results show that, although the NZB performs better in most categories than the conventional building, the water efficient building generally outperforms the NZB. The lifetime of the NZB, septic tank aeration, and use of solar energy have been found to be important factors in the NZB's impacts. While these findings are specific to the case study building, location, and treatment technologies, the framework for comparison of water and wastewater impacts of various buildings can be applied during building design to aid decision making. As we design and operate high-performance buildings, the potential trade-offs of advanced decentralized water treatment systems should be considered.

  20. Variables that influence Ironman triathlon performance – what changed in the last 35 years?

    PubMed Central

    Knechtle, Beat; Knechtle, Raphael; Stiefel, Michael; Zingg, Matthias Alexander; Rosemann, Thomas; Rüst, Christoph Alexander

    2015-01-01

    Objective This narrative review summarizes findings for Ironman triathlon performance and intends to determine potential predictor variables for Ironman race performance in female and male triathletes. Methods A literature search was performed in PubMed using the terms “Ironman”, “triathlon”, and “performance”. All resulting articles were searched for related citations. Results Age, previous experience, sex, training, origin, anthropometric and physiological characteristics, pacing, and performance in split disciplines were predictive. Differences exist between the sexes for anthropometric characteristics. The most important predictive variables for a fast Ironman race time were age of 30–35 years (women and men), a fast personal best time in Olympic distance triathlon (women and men), a fast personal best time in marathon (women and men), high volume and high speed in training where high volume was more important than high speed (women and men), low body fat, low skin-fold thicknesses and low circumference of upper arm (only men), and origin from the United States of America (women and men). Conclusion These findings may help athletes and coaches to plan an Ironman triathlon career. Age and previous experience are important to find the right point in the life of a triathlete to switch from the shorter triathlon distances to the Ironman distance. Future studies need to correlate physiological characteristics such as maximum oxygen uptake with Ironman race time to investigate their potential predictive value and to investigate socio-economic aspects in Ironman triathlon. PMID:26346992

  1. Electrocatalytic performance of fuel cell reactions at low catalyst loading and high mass transport.

    PubMed

    Zalitis, Christopher M; Kramer, Denis; Kucernak, Anthony R

    2013-03-28

    An alternative approach to the rotating disk electrode (RDE) for characterising fuel cell electrocatalysts is presented. The approach combines high mass transport with a flat, uniform, and homogeneous catalyst deposition process, well suited for studying intrinsic catalyst properties at realistic operating conditions of a polymer electrolyte fuel cell (PEFC). Uniform catalyst layers were produced with loadings as low as 0.16 μgPt cm(-2) and thicknesses as low as 200 nm. Such ultra thin catalyst layers are considered advantageous to minimize internal resistances and mass transport limitations. Geometric current densities as high as 5.7 A cm(-2)Geo were experimentally achieved at a loading of 10.15 μgPt cm(-2) for the hydrogen oxidation reaction (HOR) at room temperature, which is three orders of magnitude higher than current densities achievable with the RDE. Modelling of the associated diffusion field suggests that such high performance is enabled by fast lateral diffusion within the electrode. The electrodes operate over a wide potential range with insignificant mass transport losses, allowing the study of the ORR at high overpotentials. Electrodes produced a specific current density of 31 ± 9 mA cm(-2)Spec at a potential of 0.65 V vs. RHE for the oxygen reduction reaction (ORR) and 600 ± 60 mA cm(-2)Spec for the peak potential of the HOR. The mass activity of a commercial 60 wt% Pt/C catalyst towards the ORR was found to exceed a range of literature PEFC mass activities across the entire potential range. The HOR also revealed fine structure in the limiting current range and an asymptotic current decay for potentials above 0.36 V. These characteristics are not visible with techniques limited by mass transport in aqueous media such as the RDE.

  2. Phosphorization boosts the capacitance of mixed metal nanosheet arrays for high performance supercapacitor electrodes.

    PubMed

    Lan, Yingying; Zhao, Hongyang; Zong, Yan; Li, Xinghua; Sun, Yong; Feng, Juan; Wang, Yan; Zheng, Xinliang; Du, Yaping

    2018-05-01

    Binary transition metal phosphides hold immense potential as innovative electrode materials for constructing high-performance energy storage devices. Herein, porous binary nickel-cobalt phosphide (NiCoP) nanosheet arrays anchored on nickel foam (NF) were rationally designed as self-supported binder-free electrodes with high supercapacitance performance. Taking the combined advantages of compositional features and array architectures, the nickel foam supported NiCoP nanosheet array (NiCoP@NF) electrode possesses superior electrochemical performance in comparison with Ni-Co LDH@NF and NiCoO2@NF electrodes. The NiCoP@NF electrode shows an ultrahigh specific capacitance of 2143 F g-1 at 1 A g-1 and retained 1615 F g-1 even at 20 A g-1, showing excellent rate performance. Furthermore, a binder-free all-solid-state asymmetric supercapacitor device is designed, which exhibits a high energy density of 27 W h kg-1 at a power density of 647 W kg-1. The hierarchical binary nickel-cobalt phosphide nanosheet arrays hold great promise as advanced electrode materials for supercapacitors with high electrochemical performance.

  3. Recent Observations on the Performance of Hybrid Ceramic Tribo-Contacts

    NASA Astrophysics Data System (ADS)

    Buttery, M.; Cropper, M.; Wardzinski, B.; Lewis, S.; McLaren, S.; Kreuser, J.

    2015-09-01

    Hybrid ceramic ball bearings offer great promise in space applications but have not been rapidly adopted by industry perhaps partly due to the relatively low amount of published data on specific in-vacuum performance. Such bearings, having, typically, silicon nitride balls and 440C or high nitrogen steel (e.g. X30) raceways offer the potential for long life and low torque noise due a combination of chemical inertness, high hardness and the extremely smooth surfaces produced in ceramic balls. Though initial benefits were foreseen for high speed applications, the potential for reduced adhesive forces and wear in conditions of marginal lubrication, and for improvements in lubricant lifetime in long life applications limited by oil tribo-degradation render hybrid ceramic bearings more generally attractive.This paper draws together a number of experimental studies carried out at Pin-on-Disc (POD), Spiral Orbit Tribometer (SOT) and bearing-level recently at ESTL.

  4. High-frequency self-aligned graphene transistors with transferred gate stacks.

    PubMed

    Cheng, Rui; Bai, Jingwei; Liao, Lei; Zhou, Hailong; Chen, Yu; Liu, Lixin; Lin, Yung-Chen; Jiang, Shan; Huang, Yu; Duan, Xiangfeng

    2012-07-17

    Graphene has attracted enormous attention for radio-frequency transistor applications because of its exceptional high carrier mobility, high carrier saturation velocity, and large critical current density. Herein we report a new approach for the scalable fabrication of high-performance graphene transistors with transferred gate stacks. Specifically, arrays of gate stacks are first patterned on a sacrificial substrate, and then transferred onto arbitrary substrates with graphene on top. A self-aligned process, enabled by the unique structure of the transferred gate stacks, is then used to position precisely the source and drain electrodes with minimized access resistance or parasitic capacitance. This process has therefore enabled scalable fabrication of self-aligned graphene transistors with unprecedented performance including a record-high cutoff frequency up to 427 GHz. Our study defines a unique pathway to large-scale fabrication of high-performance graphene transistors, and holds significant potential for future application of graphene-based devices in ultra-high-frequency circuits.

  5. The study of aluminium anodes for high power density Al/air batteries with brine electrolytes

    NASA Astrophysics Data System (ADS)

    Nestoridi, Maria; Pletcher, Derek; Wood, Robert J. K.; Wang, Shuncai; Jones, Richard L.; Stokes, Keith R.; Wilcock, Ian

    Aluminium alloys containing small additions of both tin (∼0.1 wt%) and gallium (∼0.05 wt%) are shown to dissolve anodically at high rates in sodium chloride media at room temperatures; current densities >0.2 A cm -2 can be obtained at potentials close to the open circuit potential, ∼-1500 mV versus SCE. The tin exists in the alloys as a second phase, typically as ∼1 μm inclusions (precipitates) distributed throughout the aluminium structure, and anodic dissolution occurs to form pits around the tin inclusions. Although the distribution of the gallium in the alloy could not be established, it is also shown to be critical in the formation of these pits as well as maintaining their activity. The stability of the alloys to open circuit corrosion and the overpotential for high rate dissolution, both critical to battery performance, are shown to depend on factors in addition to elemental composition; both heat treatment and mechanical working influence the performance of the alloy. The correlation between alloy performance and their microstructure has been investigated.

  6. Mission Assessment of the Faraday Accelerator with Radio-frequency Assisted Discharge (FARAD)

    NASA Technical Reports Server (NTRS)

    Dankanich, John W.; Polzin, Kurt A.

    2008-01-01

    Pulsed inductive thrusters have typically been considered for future, high-power, missions requiring nuclear electric propulsion. These high-power systems, while promising equivalent or improved performance over state-of-the-art propulsion systems, presently have no planned missions for which they are well suited. The ability to efficiently operate an inductive thruster at lower energy and power levels may provide inductive thrusters near term applicability and mission pull. The Faraday Accelerator with Radio-frequency Assisted Discharge concept demonstrated potential for a high-efficiency, low-energy pulsed inductive thruster. The added benefits of energy recapture and/or pulse compression are shown to enhance the performance of the pulsed inductive propulsion system, yielding a system that con compete with and potentially outperform current state-of-the-art electric propulsion technologies. These enhancements lead to mission-level benefits associated with the use of a pulsed inductive thruster. Analyses of low-power near to mid-term missions and higher power far-term missions are undertaken to compare the performance of pulsed inductive thrusters with that delivered by state-of-the-art and development-level electric propulsion systems.

  7. 77 FR 8258 - Availability of ICCVAM Evaluation Report and Recommendations on the Usefulness and Limitations of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-14

    ... development of BG1Luc ER TA test method performance standards. ICCVAM assigned the activities a high priority... Vitro Test Methods for Detecting Potential Endocrine Disruptors. Research Triangle Park, NC: National...Final.pdf . ICCVAM. 2003a. ICCVAM Evaluation of In Vitro Test Methods For Detecting Potential Endocrine...

  8. Proximal soil sensing and sensor fusion for soil health assessment

    USDA-ARS?s Scientific Manuscript database

    Assessment of soil health involves determining how well a soil is performing its biological, chemical, and physical functions relative to its inherent potential. Due to high costs, labor requirements, and soil disturbance, traditional laboratory analyses cannot provide high resolution soil health da...

  9. Embedded I&C for Extreme Environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kisner, Roger A.

    2016-04-01

    This project uses embedded instrumentation and control (I&C) technologies to demonstrate potential performance gains of nuclear power plant components in extreme environments. Extreme environments include high temperature, radiation, high pressure, high vibration, and high EMI conditions. For extreme environments, performance gains arise from moment-to-moment sensing of local variables and immediate application of local feedback control. Planning for embedding I&C during early system design phases contrasts with the traditional, serial design approach that incorporates minimal I&C after mechanical and electrical design is complete. The demonstration application involves the development and control of a novel, proof-of-concept motor/pump design. The motor and pumpmore » combination operate within the fluid environment, eliminating the need for rotating seals. Actively controlled magnetic bearings also replace failure-prone mechanical contact bearings that typically suspend rotating components. Such as design has the potential to significantly enhance the reliability and life of the pumping system and would not be possible without embedded I&C.« less

  10. Doubling the critical current density in superconducting FeSe 0.5Te 0.5 thin films by low temperature oxygen annealing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Cheng; Si, Weidong; Li, Qiang

    Iron chalcogenide superconducting thin films and coated conductors are attractive for potential high field applications at liquid helium temperature for their high critical current densities J c, low anisotropies, and relatively strong grain couplings. Embedding flux pinning defects is a general approach to increase the in-field performance of superconductors. However, many effective pinning defects can adversely affect the zero field or self-field J c, particularly in cuprate high temperature superconductors. Here, we report the doubling of the self-field J c in FeSe 0.5Te 0.5 films by low temperature oxygen annealing, reaching ~3 MA/cm 2. In-field performance is also dramatically enhanced.more » In conclusion, our results demonstrate that low temperature oxygen annealing is a simple and cost-efficient post-treatment technique which can greatly help to accelerate the potential high field applications of the iron-based superconductors.« less

  11. Doubling the critical current density in superconducting FeSe 0.5Te 0.5 thin films by low temperature oxygen annealing

    DOE PAGES

    Zhang, Cheng; Si, Weidong; Li, Qiang

    2016-11-14

    Iron chalcogenide superconducting thin films and coated conductors are attractive for potential high field applications at liquid helium temperature for their high critical current densities J c, low anisotropies, and relatively strong grain couplings. Embedding flux pinning defects is a general approach to increase the in-field performance of superconductors. However, many effective pinning defects can adversely affect the zero field or self-field J c, particularly in cuprate high temperature superconductors. Here, we report the doubling of the self-field J c in FeSe 0.5Te 0.5 films by low temperature oxygen annealing, reaching ~3 MA/cm 2. In-field performance is also dramatically enhanced.more » In conclusion, our results demonstrate that low temperature oxygen annealing is a simple and cost-efficient post-treatment technique which can greatly help to accelerate the potential high field applications of the iron-based superconductors.« less

  12. Empathy, motivation, and P300 BCI performance

    PubMed Central

    Kleih, Sonja C.; Kübler, Andrea

    2013-01-01

    Motivation moderately influences brain–computer interface (BCI) performance in healthy subjects when monetary reward is used to manipulate extrinsic motivation. However, the motivation of severely paralyzed patients, who are potentially in need for BCI, could mainly be internal and thus, an intrinsic motivator may be more powerful. Also healthy subjects who participate in BCI studies could be internally motivated as they may wish to contribute to research and thus extrinsic motivation by monetary reward would be less important than the content of the study. In this respect, motivation could be defined as “motivation-to-help.” The aim of this study was to investigate, whether subjects with high motivation for helping and who are highly empathic would perform better with a BCI controlled by event-related potentials (P300-BCI). We included N = 20 healthy young participants naïve to BCI and grouped them according to their motivation for participating in a BCI study in a low and highly motivated group. Motivation was further manipulated with interesting or boring presentations about BCI and the possibility to help patients. Motivation for helping did neither influence BCI performance nor the P300 amplitude. Post hoc, subjects were re-grouped according to their ability for perspective taking. We found significantly higher P300 amplitudes on parietal electrodes in participants with a low ability for perspective taking and therefore, lower empathy, as compared to participants with higher empathy. The lack of an effect of motivation on BCI performance contradicts previous findings and thus, requires further investigation. We speculate that subjects with higher empathy who are good perspective takers with regards to patients in potential need of BCI, may be more emotionally involved and therefore, less able to allocate attention on the BCI task at hand. PMID:24146640

  13. Empathy, motivation, and P300 BCI performance.

    PubMed

    Kleih, Sonja C; Kübler, Andrea

    2013-01-01

    Motivation moderately influences brain-computer interface (BCI) performance in healthy subjects when monetary reward is used to manipulate extrinsic motivation. However, the motivation of severely paralyzed patients, who are potentially in need for BCI, could mainly be internal and thus, an intrinsic motivator may be more powerful. Also healthy subjects who participate in BCI studies could be internally motivated as they may wish to contribute to research and thus extrinsic motivation by monetary reward would be less important than the content of the study. In this respect, motivation could be defined as "motivation-to-help." The aim of this study was to investigate, whether subjects with high motivation for helping and who are highly empathic would perform better with a BCI controlled by event-related potentials (P300-BCI). We included N = 20 healthy young participants naïve to BCI and grouped them according to their motivation for participating in a BCI study in a low and highly motivated group. Motivation was further manipulated with interesting or boring presentations about BCI and the possibility to help patients. Motivation for helping did neither influence BCI performance nor the P300 amplitude. Post hoc, subjects were re-grouped according to their ability for perspective taking. We found significantly higher P300 amplitudes on parietal electrodes in participants with a low ability for perspective taking and therefore, lower empathy, as compared to participants with higher empathy. The lack of an effect of motivation on BCI performance contradicts previous findings and thus, requires further investigation. We speculate that subjects with higher empathy who are good perspective takers with regards to patients in potential need of BCI, may be more emotionally involved and therefore, less able to allocate attention on the BCI task at hand.

  14. Editors' Choice—Field Trials Testing of Mixed Potential Electrochemical Hydrogen Safety Sensors at Commercial California Hydrogen Filling Stations

    DOE PAGES

    Brosha, Eric Lanich; Romero, Christopher Jesse; Poppe, Daniel; ...

    2017-10-27

    Hydrogen safety sensors must meet specific performance requirements, mandated by the U.S. Department of Energy, for hydrogen fueling station monitoring. Here, we describe the long-term performance of two zirconia-based mixed potential electrochemical hydrogen gas sensors, developed specifically with a high sensitivity to hydrogen, low cross-sensitivity, and fast response time. Over a two-year period, sensors with tin-doped indium oxide and strontium doped lanthanum chromite electrodes were deployed at two stations in four field trials tests conducted in Los Angeles. The sensors documented the existence of hydrogen plumes ranging in concentration from 100 to as high as 2700 ppm in the areamore » surrounding the dispenser, consistent with depressurization from 700 bar following vehicle refueling. As expected, the hydrogen concentration reported by the mixed potential sensors was influenced by wind direction. Baseline stability testing at a Chino, CA station showed no measureable baseline drift throughout 206 days of uninterrupted data acquisition. The high baseline stability, excellent correlation with logged fueling/depressurization events, and absence of false alarms suggest that the zirconia-based mixed potential sensor platform is a good candidate for protecting hydrogen infrastructure where frequent calibrations or sensor replacement to reduce the false alarm frequency have been shown to be cost prohibitive.« less

  15. Decoding 3-D Reach and Grasp Kinematics from High-Frequency Local Field Potentials in Primate Primary Motor Cortex

    PubMed Central

    Zhuang, Jun; Vargas-Irwin, Carlos; Donoghue, John P.

    2011-01-01

    Intracortical microelectrode array recordings generate a variety of neural signals with potential application as control signals in neural interface systems. Previous studies have focused on single and multiunit activity, as well as low frequency local field potentials (LFPs), but have not explored higher frequency (>200 Hz) LFPs. In addition, the potential to decode three dimensional (3-D) reach and grasp kinematics based on LFPs has not been demonstrated. Here, we use mutual information and decoding analyses to probe the information content about 3-D reaching and grasping of 7 different LFP frequency bands in the range of 0.3 Hz – 400 Hz. LFPs were recorded via 96-microelectrode arrays in primary motor cortex (M1) of two monkeys performing free reaching to grasp moving objects. Mutual information analyses revealed that higher frequency bands (e.g. 100 – 200 Hz and 200 – 400 Hz) carried the most information about the examined kinematics. Furthermore, Kalman filter decoding revealed that broadband high frequency LFPs, likely reflecting multiunit activity, provided the best decoding performance as well as substantial accuracy in reconstructing reach kinematics, grasp aperture and aperture velocity. These results indicate that LFPs, especially high frequency bands, could be useful signals for neural interfaces controlling 3-D reach and grasp kinematics. PMID:20403782

  16. Editors' Choice—Field Trials Testing of Mixed Potential Electrochemical Hydrogen Safety Sensors at Commercial California Hydrogen Filling Stations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brosha, Eric Lanich; Romero, Christopher Jesse; Poppe, Daniel

    Hydrogen safety sensors must meet specific performance requirements, mandated by the U.S. Department of Energy, for hydrogen fueling station monitoring. Here, we describe the long-term performance of two zirconia-based mixed potential electrochemical hydrogen gas sensors, developed specifically with a high sensitivity to hydrogen, low cross-sensitivity, and fast response time. Over a two-year period, sensors with tin-doped indium oxide and strontium doped lanthanum chromite electrodes were deployed at two stations in four field trials tests conducted in Los Angeles. The sensors documented the existence of hydrogen plumes ranging in concentration from 100 to as high as 2700 ppm in the areamore » surrounding the dispenser, consistent with depressurization from 700 bar following vehicle refueling. As expected, the hydrogen concentration reported by the mixed potential sensors was influenced by wind direction. Baseline stability testing at a Chino, CA station showed no measureable baseline drift throughout 206 days of uninterrupted data acquisition. The high baseline stability, excellent correlation with logged fueling/depressurization events, and absence of false alarms suggest that the zirconia-based mixed potential sensor platform is a good candidate for protecting hydrogen infrastructure where frequent calibrations or sensor replacement to reduce the false alarm frequency have been shown to be cost prohibitive.« less

  17. Nitrated carbon nanoblisters for high-performance glucose dehydrogenase bioanodes.

    PubMed

    de Souza, João C P; Iost, Rodrigo M; Crespilho, Frank N

    2016-03-15

    Recently, many strategies are being explored for efficiently wiring glucose dehydrogenase (GDh) enzymes capable of glucose (fuel) oxidation. For instance, the use of GDh NAD(+)-dependent for glucose oxidation is of great interest in biofuel cell technology because the enzyme are unaffected by the presence of molecular oxygen commonly present in electrolyte. Here we present the fabrication of flexible carbon fibers modified with nitrated carbon nanoblisters and their application as high-performance GDh bioanodes. These bioelectrodes could electro-oxidize glucose at -360 mV (vs. Ag/AgClsat) in the presence of a molecular oxygen saturated electrolyte with current densities higher than 1.0 mAcm(-2) at 0.0 V. It is corroborated by open circuit potential, where a potential stabilization occurs at -150 mV in a long term stability current-transient experiment. This value is in agreement with the quasi-steady current obtained at very low scan rate (0.1 mVs(-1)), where the onset potential for glucose oxidation is -180 mV. X-ray photoelectron spectroscopy and scanning electron microscopy revealed that the nitrated blisters and edge-like carbon structures, enabling highly efficient enzyme immobilization and low overpotential for electron transfer, allowing for glucose oxidation with potential values close to the thermodynamic cofactor. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. wACSF—Weighted atom-centered symmetry functions as descriptors in machine learning potentials

    NASA Astrophysics Data System (ADS)

    Gastegger, M.; Schwiedrzik, L.; Bittermann, M.; Berzsenyi, F.; Marquetand, P.

    2018-06-01

    We introduce weighted atom-centered symmetry functions (wACSFs) as descriptors of a chemical system's geometry for use in the prediction of chemical properties such as enthalpies or potential energies via machine learning. The wACSFs are based on conventional atom-centered symmetry functions (ACSFs) but overcome the undesirable scaling of the latter with an increasing number of different elements in a chemical system. The performance of these two descriptors is compared using them as inputs in high-dimensional neural network potentials (HDNNPs), employing the molecular structures and associated enthalpies of the 133 855 molecules containing up to five different elements reported in the QM9 database as reference data. A substantially smaller number of wACSFs than ACSFs is needed to obtain a comparable spatial resolution of the molecular structures. At the same time, this smaller set of wACSFs leads to a significantly better generalization performance in the machine learning potential than the large set of conventional ACSFs. Furthermore, we show that the intrinsic parameters of the descriptors can in principle be optimized with a genetic algorithm in a highly automated manner. For the wACSFs employed here, we find however that using a simple empirical parametrization scheme is sufficient in order to obtain HDNNPs with high accuracy.

  19. Efficient parallelization of analytic bond-order potentials for large-scale atomistic simulations

    NASA Astrophysics Data System (ADS)

    Teijeiro, C.; Hammerschmidt, T.; Drautz, R.; Sutmann, G.

    2016-07-01

    Analytic bond-order potentials (BOPs) provide a way to compute atomistic properties with controllable accuracy. For large-scale computations of heterogeneous compounds at the atomistic level, both the computational efficiency and memory demand of BOP implementations have to be optimized. Since the evaluation of BOPs is a local operation within a finite environment, the parallelization concepts known from short-range interacting particle simulations can be applied to improve the performance of these simulations. In this work, several efficient parallelization methods for BOPs that use three-dimensional domain decomposition schemes are described. The schemes are implemented into the bond-order potential code BOPfox, and their performance is measured in a series of benchmarks. Systems of up to several millions of atoms are simulated on a high performance computing system, and parallel scaling is demonstrated for up to thousands of processors.

  20. Student-written single-best answer questions predict performance in finals.

    PubMed

    Walsh, Jason; Harris, Benjamin; Tayyaba, Saadia; Harris, David; Smith, Phil

    2016-10-01

    Single-best answer (SBA) questions are widely used for assessment in medical schools; however, often clinical staff have neither the time nor the incentive to develop high-quality material for revision purposes. A student-led approach to producing formative SBA questions offers a potential solution. Cardiff University School of Medicine students created a bank of SBA questions through a previously described staged approach, involving student question-writing, peer-review and targeted senior clinician input. We arranged questions into discrete tests and posted these online. Student volunteer performance on these tests from the 2012/13 cohort of final-year medical students was recorded and compared with the performance of these students in medical school finals (knowledge and objective structured clinical examinations, OSCEs). In addition, we compared the performance of students that participated in question-writing groups with the performance of the rest of the cohort on the summative SBA assessment. Often clinical staff have neither the time nor the incentive to develop high-quality material for revision purposes Performance in the end-of-year summative clinical knowledge SBA paper correlated strongly with performance in the formative student-written SBA test (r = ~0.60, p <0.01). There was no significant correlation between summative OSCE scores and formative student-written SBA test scores. Students who wrote and reviewed questions scored higher than average in the end-of-year summative clinical knowledge SBA paper. Student-written SBAs predict performance in end-of-year SBA examinations, and therefore can provide a potentially valuable revision resource. There is potential for student-written questions to be incorporated into summative examinations. © 2015 John Wiley & Sons Ltd.

  1. Quantitative Analysis of Scattering Mechanisms in Highly Crystalline CVD MoS2 through a Self-Limited Growth Strategy by Interface Engineering.

    PubMed

    Wan, Xi; Chen, Kun; Xie, Weiguang; Wen, Jinxiu; Chen, Huanjun; Xu, Jian-Bin

    2016-01-27

    The electrical performance of highly crystalline monolayer MoS2 is remarkably enhanced by a self-limited growth strategy on octadecyltrimethoxysilane self-assembled monolayer modified SiO2 /Si substrates. The scattering mechanisms in low-κ dielectric, including the dominant charged impurities, acoustic deformation potentials, optical deformation potentials), Fröhlich interaction, and the remote interface phonon interaction in dielectrics, are quantitatively analyzed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Investigating the effect of pixel size of high spatial resolution FTIR imaging for detection of colorectal cancer

    NASA Astrophysics Data System (ADS)

    Lloyd, G. R.; Nallala, J.; Stone, N.

    2016-03-01

    FTIR is a well-established technique and there is significant interest in applying this technique to medical diagnostics e.g. to detect cancer. The introduction of focal plane array (FPA) detectors means that FTIR is particularly suited to rapid imaging of biopsy sections as an adjunct to digital pathology. Until recently however each pixel in the image has been limited to a minimum of 5.5 µm which results in a comparatively low magnification image or histology applications and potentially the loss of important diagnostic information. The recent introduction of higher magnification optics gives image pixels that cover approx. 1.1 µm. This reduction in image pixel size gives images of higher magnification and improved spatial detail can be observed. However, the effect of increasing the magnification on spectral quality and the ability to discriminate between disease states is not well studied. In this work we test the discriminatory performance of FTIR imaging using both standard (5.5 µm) and high (1.1 µm) magnification for the detection of colorectal cancer and explore the effect of binning to degrade high resolution images to determine whether similar diagnostic information and performance can be obtained using both magnifications. Results indicate that diagnostic performance using high magnification may be reduced as compared to standard magnification when using existing multivariate approaches. Reduction of the high magnification data to standard magnification via binning can potentially recover some of the lost performance.

  3. NiCo2O4/N-doped graphene as an advanced electrocatalyst for oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Zhang, Hui; Li, Huiyong; Wang, Haiyan; He, Kejian; Wang, Shuangyin; Tang, Yougen; Chen, Jiajie

    2015-04-01

    Developing low-cost catalyst for high-performance oxygen reduction reaction (ORR) is highly desirable. Herein, NiCo2O4/N-doped reduced graphene oxide (NiCo2O4/N-rGO) hybrid is proposed as a high-performance catalyst for ORR for the first time. The well-formed NiCo2O4/N-rGO hybrid is studied by cyclic voltammetry (CV) curves and linear-sweep voltammetry (LSV) performed on the rotating-ring-disk-electrode (RDE) in comparison with N-rGO-free NiCo2O4 and the bare N-rGO. Due to the synergistic effect, the NiCo2O4/N-rGO hybrid exhibits significant improvement of catalytic performance with an onset potential of -0.12 V, which mainly favors a direct four electron pathway in ORR process, close to the behavior of commercial carbon-supported Pt. Also, the benefits of N-incorporation are investigated by comparing NiCo2O4/N-rGO with NiCo2O4/rGO, where higher cathodic currents, much more positive half-wave potential and more electron transfer numbers are observed for the N-doping one, which should be ascribed to the new highly efficient active sites created by N incorporation into graphene. The NiCo2O4/N-rGO hybrid could be used as a promising catalyst for high power metal/air battery.

  4. CF6 High Pressure Compressor and Turbine Clearance Evaluations

    NASA Technical Reports Server (NTRS)

    Radomski, M. A.; Cline, L. D.

    1981-01-01

    In the CF6 Jet Engine Diagnostics Program the causes of performance degradation were determined for each component of revenue service engines. It was found that a significant contribution to performance degradation was caused by increased airfoil tip radial clearances in the high pressure compressor and turbine areas. Since the influence of these clearances on engine performance and fuel consumption is significant, it is important to accurately establish these relatonships. It is equally important to understand the causes of clearance deterioration so that they can be reduced or eliminated. The results of factory engine tests run to enhance the understanding of the high pressure compressor and turbine clearance effects on performance are described. The causes of clearance deterioration are indicated and potential improvements in clearance control are discussed.

  5. The effects of individual status and group performance on network ties among teammates in the National Basketball Association

    PubMed Central

    Aven, Brandy

    2018-01-01

    For individuals, status is derived both from their personal attributes and the groups with whom they are affiliated. Depending on the performance of their groups, the status of individuals may benefit or suffer from identifying closely with the group. When the group excels, high-status members potentially receive much of the credit and increased status. Conversely, high-status members of underperforming groups potentially suffer disproportionate declines in their status relative to the low-status group members. We therefore predict an interaction between group performance and individual status on the willingness to associate with the group and its members. We test our prediction by examining social media ties among teammates in the National Basketball Association. Specifically, we investigate the “following” ties of teammates on Twitter at the end of the 2014–2015 season. Elections to All-Star games are used to measure the status of players, and team performance is measured by recent success in the postseason playoffs. The results show that compared to high-status players on successful teams, high-status players on underperforming teams are less likely to follow their teammates. This result aligns with research on status inconsistency, suggesting that individuals deemphasize their group affiliation when it jeopardizes their individual status. An additional contribution is the advancement of the probit Social Relations Model for the analysis of binary ties in social networks. PMID:29708984

  6. The effects of individual status and group performance on network ties among teammates in the National Basketball Association.

    PubMed

    Koster, Jeremy; Aven, Brandy

    2018-01-01

    For individuals, status is derived both from their personal attributes and the groups with whom they are affiliated. Depending on the performance of their groups, the status of individuals may benefit or suffer from identifying closely with the group. When the group excels, high-status members potentially receive much of the credit and increased status. Conversely, high-status members of underperforming groups potentially suffer disproportionate declines in their status relative to the low-status group members. We therefore predict an interaction between group performance and individual status on the willingness to associate with the group and its members. We test our prediction by examining social media ties among teammates in the National Basketball Association. Specifically, we investigate the "following" ties of teammates on Twitter at the end of the 2014-2015 season. Elections to All-Star games are used to measure the status of players, and team performance is measured by recent success in the postseason playoffs. The results show that compared to high-status players on successful teams, high-status players on underperforming teams are less likely to follow their teammates. This result aligns with research on status inconsistency, suggesting that individuals deemphasize their group affiliation when it jeopardizes their individual status. An additional contribution is the advancement of the probit Social Relations Model for the analysis of binary ties in social networks.

  7. Electrostatic spray deposition of porous Fe 2O 3 thin films as anode material with improved electrochemical performance for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Wang, L.; Xu, H. W.; Chen, P. C.; Zhang, D. W.; Ding, C. X.; Chen, C. H.

    Iron oxide materials are attractive anode materials for lithium-ion batteries for their high capacity and low cost compared with graphite and most of other transition metal oxides. Porous carbon-free α-Fe 2O 3 films with two types of pore size distribution were prepared by electrostatic spray deposition, and they were characterized by X-ray diffraction, scanning electron microscopy and X-ray absorption near-edge spectroscopy. The 200 °C-deposited thin film exhibits a high reversible capacity of up to 1080 mAh g -1, while the initial capacity loss is at a remarkable low level (19.8%). Besides, the energy efficiency and energy specific average potential (E av) of the Fe 2O 3 films during charge/discharge process were also investigated. The results indicate that the porous α-Fe 2O 3 films have significantly higher energy density than Li 4Ti 5O 12 while it has a similar E av of about 1.5 V. Due to the porous structure that can buffer the volume changes during lithium intercalation/de-intercalation, the films exhibit stable cycling performance. As a potential anode material for high performance lithium-ion batteries that can be applied on electric vehicle and energy storage, rate capability and electrochemical performance under high-low temperatures were also investigated.

  8. Epidemiologic study of Holstein dairy cow performance and reproduction near a high-voltage direct-current powerline.

    PubMed

    Martin, F B; Bender, A; Steuernagel, G; Robinson, R A; Revsbech, R; Sorensen, D K; Williamson, N; Williams, A

    1986-01-01

    The development and operation of a high-voltage direct-current (HVDC) transmission line in rural Minnesota generated public concern over potential adverse effects to nearby residents and their livestock. Electrical environmental parameters near an HVDC line decline rapidly with distance, but effects on ambient space charge have been detected out to 1 mile. Previous studies of powerline effects on livestock have involved the more common alternating-current (HVAC) lines, which create a different electrical environment. To identify potential adverse effects of HVDC line operation on livestock, case-control and cohort study methods were used to examine various indices of Holstein performance in relation to distance from the line and the onset of line operation. It was believed that these indices would reflect changes in physiologic function or overt health effects that might arise from the HVDC environment. High-quality performance data from existing Dairy Herd Improvement Association (DHIA) records were obtained for 97% of qualifying herds located within 10 miles of the line. The large number of animals and years of observation provided high statistical power to detect even small systematic changes in performance. No significant differences in milk production or reproductive capacity were associated with presumed exposure to the HVDC environment. The absence of measurable effects in a large "sentinel" animal population may have implications for the assessment of human health risks related to HVDC transmission lines.

  9. Antioxidant activity, phenolic-flavonoid content and high-performance liquid chromatography profiling of three different variants of Syzygium cumini seeds: A comparative study.

    PubMed

    Priya, Syama Hari; Prakasan, Nisha; Purushothaman, Jayamurthy

    2017-01-01

    The medicinally important phytochemicals present in Syzygium cumini seeds probably accounts for its wide use in traditional systems of medicines in India, like Ayurveda, Unani, and Siddha. The aim of the study was to determine the antioxidant potential of three different geographical variants of S. cumini seeds and to compare the phenolic profiling to know the effect of geographical variation in phenolic composition. Total phenolic and flavonoid content of S. cumini seeds were analyzed. Antioxidant activities in terms of 2,2-diphenyl-1-picrylhydrazyl, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid), nitric oxide and superoxide radical scavenging assays were performed. The most active fractions were subjected to high-performance liquid chromatography (HPLC) profiling to identify the phenolic composition. Among all the fractions, 70% methanol fraction of S. cumini seed showed significant antioxidant potential. There existed a linear correlation between phenolic content and antioxidant activity. HPLC profiling of 70% methanol (ME) fractions of all the variants revealed the presence of phenolic compounds with high concentrations of ellagic acid and gallic acid. The differences in phenolic concentration due to geographical changes might be the reason for higher antioxidant potential showed by 70% ME of Trivandrum variant. 70% methanolic fraction of S. cumini can act as a novel source of natural antioxidant.

  10. Cyberinfrastructure and Scientific Collaboration: Application of a Virtual Team Performance Framework with Potential Relevance to Education. WCER Working Paper No. 2010-12

    ERIC Educational Resources Information Center

    Kraemer, Sara; Thorn, Christopher A.

    2010-01-01

    The purpose of this exploratory study was to identify and describe some of the dimensions of scientific collaborations using high throughput computing (HTC) through the lens of a virtual team performance framework. A secondary purpose was to assess the viability of using a virtual team performance framework to study scientific collaborations using…

  11. Potential benefits for propfan technology on derivatives of future short- to medium-range transport aircraft

    NASA Technical Reports Server (NTRS)

    Goldsmith, I. M.; Bowles, J. V.

    1980-01-01

    It is noted that several NASA-sponsored studies have identified a substantial potential fuel savings for high subsonic speed aircraft utilizing the propfan concept compared to the equivalent technology turbofan aircraft. Attention is given to a feasibility study for propfan-powered short- to medium-haul commercial transport aircraft conducted to evaluate potential fuel savings and identify critical technology requirements using the latest propfan performance data. An analysis is made of the design and performance characteristics of a wing-mounted and two-aft-mounted derivative propfan aircraft configurations, based on a DC-9 Super 80 airframe, which are compared to the baseline turbofan design. Finally, recommendations for further research efforts are also made.

  12. A potassium Rankine multimegawatt nuclear electric propulsion concept

    NASA Technical Reports Server (NTRS)

    Baumeister, E.; Rovang, R.; Mills, J.; Sercel, J.; Frisbee, R.

    1990-01-01

    Multimegawatt nuclear electric propulsion (NEP) has been identified as a potentially attractive option for future space exploratory missions. A liquid-metal-cooled reactor, potassium Rankine power system that is being developed is suited to fulfill this application. The key features of the nuclear power system are described, and system characteristics are provided for various potential NEP power ranges and operational lifetimes. The results of recent mission studies are presented to illustrate some of the potential benefits to future space exploration to be gained from high-power NEP. Specifically, mission analyses have been performed to assess the mass and trip time performance of advanced NEP for both cargo and piloted missions to Mars.

  13. Simple arithmetic: not so simple for highly math anxious individuals

    PubMed Central

    Sprute, Lisa; Maloney, Erin A; Beilock, Sian L; Berman, Marc G

    2017-01-01

    Abstract Fluency with simple arithmetic, typically achieved in early elementary school, is thought to be one of the building blocks of mathematical competence. Behavioral studies with adults indicate that math anxiety (feelings of tension or apprehension about math) is associated with poor performance on cognitively demanding math problems. However, it remains unclear whether there are fundamental differences in how high and low math anxious individuals approach overlearned simple arithmetic problems that are less reliant on cognitive control. The current study used functional magnetic resonance imaging to examine the neural correlates of simple arithmetic performance across high and low math anxious individuals. We implemented a partial least squares analysis, a data-driven, multivariate analysis method to measure distributed patterns of whole-brain activity associated with performance. Despite overall high simple arithmetic performance across high and low math anxious individuals, performance was differentially dependent on the fronto-parietal attentional network as a function of math anxiety. Specifically, low—compared to high—math anxious individuals perform better when they activate this network less—a potential indication of more automatic problem-solving. These findings suggest that low and high math anxious individuals approach even the most fundamental math problems differently. PMID:29140499

  14. Performance Testing of a High Temperature Linear Alternator for Stirling Convertors

    NASA Technical Reports Server (NTRS)

    Metscher, Jonathan; Geng, Steven

    2016-01-01

    The NASA Glenn Research Center has conducted performance testing of a high temperature linear alternator (HTLA) in support of Stirling power convertor development for potential future Radioisotope Power Systems (RPS). The high temperature linear alternator is a modified version of that used in Sunpowers Advanced Stirling Convertor (ASC), and is capable of operation at temperatures up to 200 C. Increasing the temperature capability of the linear alternator could expand the mission space of future Stirling RPS designs. High temperature Neodymium-Iron-Boron (Nd-Fe-B) magnets were selected for the HTLA application, and were fully characterized and tested prior to uses. Higher temperature epoxy for alternator assembly was also selected and tested for thermal stability and strength. A characterization test was performed on the HTLA to measure its performance at various amplitudes, loads, and temperatures. HTLA endurance testing at 200 C is currently underway.

  15. Performance Testing of a High Temperature Linear Alternator for Stirling Convertors

    NASA Technical Reports Server (NTRS)

    Metscher, Jonathan F.; Geng, Steven M.

    2016-01-01

    The NASA Glenn Research Center has conducted performance testing of a high temperature linear alternator (HTLA) in support of Stirling power convertor development for potential future Radioisotope Power Systems (RPS). The high temperature linear alternator is a modified version of that used in Sunpower's Advanced Stirling Convertor (ASC), and is capable of operation at temperatures up to 200 deg. Increasing the temperature capability of the linear alternator could expand the mission set of future Stirling RPS designs. High temperature Neodymium-Iron-Boron (Nd-Fe-B) magnets were selected for the HTLA application, and were fully characterized and tested prior to use. Higher temperature epoxy for alternator assembly was also selected and tested for thermal stability and strength. A characterization test was performed on the HTLA to measure its performance at various amplitudes, loads, and temperatures. HTLA endurance testing at 200 deg is currently underway.

  16. Vehicle performance impact on space shuttle design and concept evaluation

    NASA Technical Reports Server (NTRS)

    Craig, M. K.

    1972-01-01

    The continuing examination of widely varied space shuttle concepts makes an understanding of concept interaction with vehicle performance imperative. The estimation of vehicle performance is highly appurtenant to all aspects of shuttle design and hence performance has classically been a key indicator of overall concept desirability and potential. Vehicle performance assumes the added role of defining interactions between specific design characteristics, the sum total of which define a specific concept. Special attention is given to external tank effects.

  17. High-Performance Supercapacitor Electrode Based on Cobalt Oxide-Manganese Dioxide-Nickel Oxide Ternary 1D Hybrid Nanotubes.

    PubMed

    Singh, Ashutosh K; Sarkar, Debasish; Karmakar, Keshab; Mandal, Kalyan; Khan, Gobinda Gopal

    2016-08-17

    We report a facile method to design Co3O4-MnO2-NiO ternary hybrid 1D nanotube arrays for their application as active material for high-performance supercapacitor electrodes. This as-prepared novel supercapacitor electrode can store charge as high as ∼2020 C/g (equivalent specific capacitance ∼2525 F/g) for a potential window of 0.8 V and has long cycle stability (nearly 80% specific capacitance retains after successive 5700 charge/discharge cycles), significantly high Coulombic efficiency, and fast response time (∼0.17s). The remarkable electrochemical performance of this unique electrode material is the outcome of its enormous reaction platform provided by its special nanostructure morphology and conglomeration of the electrochemical properties of three highly redox active materials in a single unit.

  18. Optical interconnection networks for high-performance computing systems

    NASA Astrophysics Data System (ADS)

    Biberman, Aleksandr; Bergman, Keren

    2012-04-01

    Enabled by silicon photonic technology, optical interconnection networks have the potential to be a key disruptive technology in computing and communication industries. The enduring pursuit of performance gains in computing, combined with stringent power constraints, has fostered the ever-growing computational parallelism associated with chip multiprocessors, memory systems, high-performance computing systems and data centers. Sustaining these parallelism growths introduces unique challenges for on- and off-chip communications, shifting the focus toward novel and fundamentally different communication approaches. Chip-scale photonic interconnection networks, enabled by high-performance silicon photonic devices, offer unprecedented bandwidth scalability with reduced power consumption. We demonstrate that the silicon photonic platforms have already produced all the high-performance photonic devices required to realize these types of networks. Through extensive empirical characterization in much of our work, we demonstrate such feasibility of waveguides, modulators, switches and photodetectors. We also demonstrate systems that simultaneously combine many functionalities to achieve more complex building blocks. We propose novel silicon photonic devices, subsystems, network topologies and architectures to enable unprecedented performance of these photonic interconnection networks. Furthermore, the advantages of photonic interconnection networks extend far beyond the chip, offering advanced communication environments for memory systems, high-performance computing systems, and data centers.

  19. Design options for improved performance with high-density carbon ablators and low-gas fill hohlraum targets

    NASA Astrophysics Data System (ADS)

    Berzak Hopkins, L.; Divol, L.; Lepape, S.; Meezan, N. B.; Dewald, E.; Ho, D.; Khan, S.; Pak, A.; Ralph, J.; Ross, J. S.

    2016-10-01

    Recent simulation-based and experimental work using high-density carbon ablators in unlined uranium hohlraums with 0.3 mg/cc helium fill have demonstrated round implosions with minimal evolution of Legendre moment P2 during burn. To extend this promising work, design studies have been performed to explore potential performance improvements with larger capsules, while maintaining similar case-to-capsule target ratios. We present here the results of these design studies, which will motivate a series of upcoming experiments at the National Ignition Facility. Prepared by LLNL under Contract DE-AC52-07NA27344.

  20. Viologen-modified electrodes for protection of hydrogenases from high potential inactivation while performing H2 oxidation at low overpotential.

    PubMed

    Oughli, Alaa A; Vélez, Marisela; Birrell, James A; Schuhmann, Wolfgang; Lubitz, Wolfgang; Plumeré, Nicolas; Rüdiger, Olaf

    2018-06-08

    In this work we present a viologen-modified electrode providing protection for hydrogenases against high potential inactivation. Hydrogenases, including O2-tolerant classes, suffer from reversible inactivation upon applying high potentials, which limits their use in biofuel cells to certain conditions. Our previously reported protection strategy based on the integration of hydrogenase into redox matrices enabled the use of these biocatalysts in biofuel cells even under anode limiting conditions. However, mediated catalysis required application of an overpotential to drive the reaction, and this translates into a power loss in a biofuel cell. In the present work, the enzyme is adsorbed on top of a covalently-attached viologen layer which leads to mixed, direct and mediated, electron transfer processes; at low overpotentials, the direct electron transfer process generates a catalytic current, while the mediated electron transfer through the viologens at higher potentials generates a redox buffer that prevents oxidative inactivation of the enzyme. Consequently, the enzyme starts the catalysis at no overpotential with viologen self-activated protection at high potentials.

  1. Core-shell heterojunction of silicon nanowire arrays and carbon quantum dots for photovoltaic devices and self-driven photodetectors.

    PubMed

    Xie, Chao; Nie, Biao; Zeng, Longhui; Liang, Feng-Xia; Wang, Ming-Zheng; Luo, Linbao; Feng, Mei; Yu, Yongqiang; Wu, Chun-Yan; Wu, Yucheng; Yu, Shu-Hong

    2014-04-22

    Silicon nanostructure-based solar cells have lately intrigued intensive interest because of their promising potential in next-generation solar energy conversion devices. Herein, we report a silicon nanowire (SiNW) array/carbon quantum dot (CQD) core-shell heterojunction photovoltaic device by directly coating Ag-assisted chemical-etched SiNW arrays with CQDs. The heterojunction with a barrier height of 0.75 eV exhibited excellent rectifying behavior with a rectification ratio of 10(3) at ±0.8 V in the dark and power conversion efficiency (PCE) as high as 9.10% under AM 1.5G irradiation. It is believed that such a high PCE comes from the improved optical absorption as well as the optimized carrier transfer and collection capability. Furthermore, the heterojunction could function as a high-performance self-driven visible light photodetector operating in a wide switching wavelength with good stability, high sensitivity, and fast response speed. It is expected that the present SiNW array/CQD core-shell heterojunction device could find potential applications in future high-performance optoelectronic devices.

  2. Shuttle orbiter Ku-band radar/communications system design evaluation: High gain antenna/widebeam horn

    NASA Technical Reports Server (NTRS)

    Iwasaki, R.; Dodds, J. G.; Broad, P.

    1979-01-01

    The physical characteristics of the high gain antenna reflector and feed elements are described. Deficiencies in the sum feed are discussed, and lack of atmospheric venting is posed as a potential problem area. The measured RF performance of the high gain antenna is examined and the high sidelobe levels measured are related to the physical characteristics of the antenna. An examination of the attributes of the feed which might be influenced by temperature extremes shows that the antenna should be insensitive to temperature variations. Because the feed support bipod structure is considered a significant contributor to the high sidelobe levels measured in the azimuth plane, pod relocation, material changes, and shaping are suggested as improvements. Alternate feed designs are presented to further improve system performance. The widebeam horn and potential temperature effects due to the polarizer are discussed as well as in the effects of linear polarization on TDRS acquisition, and the effects of circular polarization on radar sidelobe avoidance. The radar detection probability is analyzed as a function of scan overlap and target range.

  3. High Temperature Piezoelectric Drill

    NASA Technical Reports Server (NTRS)

    Bao, Xiaoqi; Scott, James; Boudreau, Kate; Bar-Cohen, Yoseph; Sherrit, Stewart; Badescu, Mircea; Shrout, Tom; Zhang, Shujun

    2009-01-01

    The current NASA Decadal mission planning effort has identified Venus as a significant scientific target for a surface in-situ sampling/analyzing mission. The Venus environment represents several extremes including high temperature (460 deg C), high pressure (9 MPa), and potentially corrosive (condensed sulfuric acid droplets that adhere to surfaces during entry) environments. This technology challenge requires new rock sampling tools for these extreme conditions. Piezoelectric materials can potentially operate over a wide temperature range. Single crystals, like LiNbO3, have a Curie temperature that is higher than 1000 deg C and the piezoelectric ceramics Bismuth Titanate higher than 600 deg C. A study of the feasibility of producing piezoelectric drills that can operate in the temperature range up to 500 deg C was conducted. The study includes the high temperature properties investigations of engineering materials and piezoelectric ceramics with different formulas and doping. The drilling performances of a prototype Ultrasonic/Sonic Drill/Corer (USDC) using high temperate piezoelectric ceramics and single crystal were tested at temperature up to 500 deg C. The detailed results of our study and a discussion of the future work on performance improvements are presented in this paper.

  4. Explosive Welding in the 1990's

    NASA Technical Reports Server (NTRS)

    Lalwaney, N. S.; Linse, V. D.

    1985-01-01

    Explosive bonding is a unique joining process with the serious potential to produce composite materials capable of fulfilling many of the high performance materials capable of fulfilling many of the high performance materials needs of the 1990's. The process has the technological versatility to provide a true high quality metallurgical compatible and incompatible systems. Metals routinely explosively bonded include a wide variety of combinations of reactive and refractory metals, low and high density metals and their alloys, corrosion resistant and high strength alloys, and common steels. The major advantage of the process is its ability to custom design and engineer composites with physical and/or mechanical properties that meet a specific or unusual performance requirement. Explosive bonding offers the designer unique opportunities in materials selection with unique combinations of properties and high integrity bonds that cannot be achieved by any other metal joining process. The process and some applications are discussed.

  5. Fusion of real-time simulation, sensing, and geo-informatics in assessing tsunami impact

    NASA Astrophysics Data System (ADS)

    Koshimura, S.; Inoue, T.; Hino, R.; Ohta, Y.; Kobayashi, H.; Musa, A.; Murashima, Y.; Gokon, H.

    2015-12-01

    Bringing together state-of-the-art high-performance computing, remote sensing and spatial information sciences, we establish a method of real-time tsunami inundation forecasting, damage estimation and mapping to enhance disaster response. Right after a major (near field) earthquake is triggered, we perform a real-time tsunami inundation forecasting with use of high-performance computing platform (Koshimura et al., 2014). Using Tohoku University's vector supercomputer, we accomplished "10-10-10 challenge", to complete tsunami source determination in 10 minutes, tsunami inundation modeling in 10 minutes with 10 m grid resolution. Given the maximum flow depth distribution, we perform quantitative estimation of exposed population using census data and mobile phone data, and the numbers of potential death and damaged structures by applying tsunami fragility curve. After the potential tsunami-affected areas are estimated, the analysis gets focused and moves on to the "detection" phase using remote sensing. Recent advances of remote sensing technologies expand capabilities of detecting spatial extent of tsunami affected area and structural damage. Especially, a semi-automated method to estimate building damage in tsunami affected areas is developed using pre- and post-event high-resolution SAR (Synthetic Aperture Radar) data. The method is verified through the case studies in the 2011 Tohoku and other potential tsunami scenarios, and the prototype system development is now underway in Kochi prefecture, one of at-risk coastal city against Nankai trough earthquake. In the trial operation, we verify the capability of the method as a new tsunami early warning and response system for stakeholders and responders.

  6. Is Education a Fundamental Right? People's Lay Theories About Intellectual Potential Drive Their Positions on Education.

    PubMed

    Savani, Krishna; Rattan, Aneeta; Dweck, Carol S

    2017-09-01

    Does every child have a fundamental right to receive a high-quality education? We propose that people's beliefs about whether "nearly everyone" or "only some people" have high intellectual potential drive their positions on education. Three studies found that the more people believed that nearly everyone has high potential, the more they viewed education as a fundamental human right. Furthermore, people who viewed education as a fundamental right, in turn (a) were more likely to support the institution of free public education, (b) were more concerned upon learning that students in the country were not performing well academically compared with students in peer nations, and (c) were more likely to support redistributing educational funds more equitably across wealthier and poorer school districts. The studies show that people's beliefs about intellectual potential can influence their positions on education, which can affect the future quality of life for countless students.

  7. Performance Evaluation of an Automotive-Grade, High Speed Gate Driver for SiC FETs, Type UCC27531, Over a Wide Temperature Range

    NASA Technical Reports Server (NTRS)

    Boomer, Kristen; Hammoud, Ahmad

    2015-01-01

    Silicon carbide (SiC) devices are becoming widely used in electronic power circuits as replacement for conventional silicon parts due to their attractive properties that include low on-state resistance, high temperature tolerance, and high frequency operation. These attributes have a significant impact by reducing system weight, saving board space, and conserving power. In this work, the performance of an automotive-grade high speed gate driver with potential use in controlling SiC FETs (field-Effect Transistors) in converters or motor control applications was evaluated under extreme temperatures and thermal cycling. The investigations were carried out to assess performance and to determine suitability of this device for use in space exploration missions under extreme temperature conditions.

  8. Carbon-Nanotube-Based Electrochemical Double-Layer Capacitor Technologies for Spaceflight Applications

    NASA Technical Reports Server (NTRS)

    Arepalli, S.; Fireman, H.; Huffman, C.; Maloney, P.; Nikolaev, P.; Yowell, L.; Kim, K.; Kohl, P. A.; Higgins, C. D.; Turano, S. P.

    2005-01-01

    Electrochemical double-layer capacitors, or supercapacitors, have tremendous potential as high-power energy sources for use in low-weight hybrid systems for space exploration. Electrodes based on single-wall carbon nanotubes (SWCNTs) offer exceptional power and energy performance due to the high surface area, high conductivity, and the ability to functionalize the SWCNTs to optimize capacitor properties. This paper will report on the preparation of electrochemical capacitors incorporating SWCNT electrodes and their performance compared with existing commercial technology. Preliminary results indicate that substantial increases in power and energy density are possible. The effects of nanotube growth and processing methods on electrochemical capacitor performance is also presented. The compatibility of different SWCNTs and electrolytes was studied by varying the type of electrolyte ions that accumulate on the high-surface-area electrodes.

  9. An Overview of High-performance Parallel Big Data transfers over multiple network channels with Transport Layer Security (TLS) and TLS plus Perfect Forward Secrecy (PFS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, Chin; Corttrell, R. A.

    This Technical Note provides an overview of high-performance parallel Big Data transfers with and without encryption for data in-transit over multiple network channels. It shows that with the parallel approach, it is feasible to carry out high-performance parallel "encrypted" Big Data transfers without serious impact to throughput. But other impacts, e.g. the energy-consumption part should be investigated. It also explains our rationales of using a statistics-based approach for gaining understanding from test results and for improving the system. The presentation is of high-level nature. Nevertheless, at the end we will pose some questions and identify potentially fruitful directions for futuremore » work.« less

  10. Disclosure of Individual Surgeon's Performance Rates During Informed Consent

    PubMed Central

    Burger, Ingrid; Schill, Kathryn; Goodman, Steven

    2007-01-01

    Objective: The purpose of the paper is to examine the ethical arguments for and against disclosing surgeon-specific performance rates to patients during informed consent, and to examine the challenges that generating and using performance rates entail. Methods: Ethical, legal, and statistical theory is explored to approach the question of whether, when, and how surgeons should disclosure their personal performance rates to patients. The main ethical question addressed is what type of information surgeons owe their patients during informed consent. This question comprises 3 related, ethically relevant considerations that are explored in detail: 1) Does surgeon-specific performance information enhance patient decision-making? 2) Do patients want this type of information? 3) How do the potential benefits of disclosure balance against the risks? Results: Calculating individual performance measures requires tradeoffs and involves inherent uncertainty. There is a lack of evidence regarding whether patients want this information, whether it facilitates their decision-making for surgery, and how it is best communicated to them. Disclosure of personal performance rates during informed consent has the potential benefits of enhancing patient autonomy, improving patient decision-making, and improving quality of care. The major risks of disclosure include inaccurate and misleading performance rates, avoidance of high-risk cases, unjust damage to surgeon's reputations, and jeopardized patient trust. Conclusion: At this time, we think that, for most conditions, surgical procedures, and outcomes, the accuracy of surgeon- and patient-specific performance rates is illusory, obviating the ethical obligation to communicate them as part of the informed consent process. Nonetheless, the surgical profession has the duty to develop information systems that allow for performance to be evaluated to a high degree of accuracy. In the meantime, patients should be informed of the quantity of procedures their surgeons have performed, providing an idea of the surgeon's experience and qualitative idea of potential risk. PMID:17414595

  11. Learning Motivation and Performance Excellence in Adolescents with High Intellectual Potential: What Really Matters?

    ERIC Educational Resources Information Center

    Schick, Hella; Phillipson, Shane N.

    2009-01-01

    In the development of performance excellence, the relative roles played by intellectual ability and motivation remain speculative. This study investigates the role played by general intelligence, school environment, self-efficacy, and aspects of personal identity in the formation of learning motivation in German students attending the Gymnasium…

  12. Educating Consumers in Self-Testing: The Development of an Online Decision Aid

    ERIC Educational Resources Information Center

    Ickenroth, Martine H. P.; Grispen, Janaica E. J.; Ronda, Gaby; Dinant, Geert-Jan; de Vries, Nanne K.; van der Weijden, Trudy

    2015-01-01

    Context and objective: Diagnostic self-tests have become available worldwide. The most frequently performed self-tests in the Netherlands are tests to detect high cholesterol and diabetes. Since these tests can be performed without professional guidance, potential consumers need to receive independent information on the pros and cons of…

  13. Basic and Advanced Numerical Performances Relate to Mathematical Expertise but Are Fully Mediated by Visuospatial Skills

    ERIC Educational Resources Information Center

    Sella, Francesco; Sader, Elie; Lolliot, Simon; Cohen Kadosh, Roi

    2016-01-01

    Recent studies have highlighted the potential role of basic numerical processing in the acquisition of numerical and mathematical competences. However, it is debated whether high-level numerical skills and mathematics depends specifically on basic numerical representations. In this study mathematicians and nonmathematicians performed a basic…

  14. Reynolds Number Effects on Leading Edge Radius Variations of a Supersonic Transport at Transonic Conditions

    NASA Technical Reports Server (NTRS)

    Rivers, S. M. B.; Wahls, R. A.; Owens, L. R.

    2001-01-01

    A computational study focused on leading-edge radius effects and associated Reynolds number sensitivity for a High Speed Civil Transport configuration at transonic conditions was conducted as part of NASA's High Speed Research Program. The primary purposes were to assess the capabilities of computational fluid dynamics to predict Reynolds number effects for a range of leading-edge radius distributions on a second-generation supersonic transport configuration, and to evaluate the potential performance benefits of each at the transonic cruise condition. Five leading-edge radius distributions are described, and the potential performance benefit including the Reynolds number sensitivity for each is presented. Computational results for two leading-edge radius distributions are compared with experimental results acquired in the National Transonic Facility over a broad Reynolds number range.

  15. Preliminary Evaluation of MapReduce for High-Performance Climate Data Analysis

    NASA Technical Reports Server (NTRS)

    Duffy, Daniel Q.; Schnase, John L.; Thompson, John H.; Freeman, Shawn M.; Clune, Thomas L.

    2012-01-01

    MapReduce is an approach to high-performance analytics that may be useful to data intensive problems in climate research. It offers an analysis paradigm that uses clusters of computers and combines distributed storage of large data sets with parallel computation. We are particularly interested in the potential of MapReduce to speed up basic operations common to a wide range of analyses. In order to evaluate this potential, we are prototyping a series of canonical MapReduce operations over a test suite of observational and climate simulation datasets. Our initial focus has been on averaging operations over arbitrary spatial and temporal extents within Modern Era Retrospective- Analysis for Research and Applications (MERRA) data. Preliminary results suggest this approach can improve efficiencies within data intensive analytic workflows.

  16. A Nuclear Cryogenic Propulsion Stage for Near-Term Space Missions

    NASA Technical Reports Server (NTRS)

    Houts, Michael G.; Kim, Tony; Emrich, William J.; Hickman, Robert R.; Broadway, Jeramie W.; Gerrish, Harold P.; Adams, Robert B.; Bechtel, Ryan D.; Borowski, Stanley K.; George, Jeffrey A.

    2013-01-01

    Development efforts in the United States have demonstrated the viability and performance potential of NTP systems. For example, Project Rover (1955 - 1973) completed 22 high power rocket reactor tests. Peak performances included operating at an average hydrogen exhaust temperature of 2550 K and a peak fuel power density of 5200 MW/m3 (Pewee test), operating at a thrust of 930 kN (Phoebus-2A test), and operating for 62.7 minutes on a single burn (NRXA6 test). Results from Project Rover indicated that an NTP system with a high thrust-toweight ratio and a specific impulse greater than 900 s would be feasible. Excellent results have also been obtained by Russia. Ternary carbide fuels developed in Russia may have the potential for providing even higher specific impulses.

  17. InP nanopore arrays for photoelectrochemical hydrogen generation.

    PubMed

    Li, Qiang; Zheng, Maojun; Zhang, Bin; Zhu, Changqing; Wang, Faze; Song, Jingnan; Zhong, Miao; Ma, Li; Shen, Wenzhong

    2016-02-19

    We report a facile and large-scale fabrication of highly ordered one-dimensional (1D) indium phosphide (InP) nanopore arrays (NPs) and their application as photoelectrodes for photoelectrochemical (PEC) hydrogen production. These InP NPs exhibit superior PEC performance due to their excellent light-trapping characteristics, high-quality 1D conducting channels and large surface areas. The photocurrent density of optimized InP NPs is 8.9 times higher than that of planar counterpart at an applied potential of +0.3 V versus RHE under AM 1.5G illumination (100 mW cm(-2)). In addition, the onset potential of InP NPs exhibits 105 mV of cathodic shift relative to planar control. The superior performance of the nanoporous samples is further explained by Mott-Schottky and electrochemical impedance spectroscopy ananlysis.

  18. Use of high temperature superconductors in magnetoplasmadynamic systems

    NASA Technical Reports Server (NTRS)

    Reed, C. B.; Sovey, J. S.

    1988-01-01

    The use of Tesla-class high-temperature superconducting magnets may have an extremely large impact on critical development issues (erosion, heat transfer, and performance) related to magnetoplasmadynamic (MPD) thrusters and also may provide significant benefits in reducing the mass of magnetics used in the power processing system. These potential performance improvements, coupled with additional benefits of high-temperature superconductivity, provide a very strong motivation to develop high-temperature superconductivity (HTS) applied-field MPD thruster propulsion systems. The application of HTS to MPD thruster propulsion systems may produce an enabling technology for these electric propulsion systems. This paper summarizes the impact that HTS may have upon MPD propulsion systems.

  19. Value-based management of design reuse

    NASA Astrophysics Data System (ADS)

    Carballo, Juan Antonio; Cohn, David L.; Belluomini, Wendy; Montoye, Robert K.

    2003-06-01

    Effective design reuse in electronic products has the potential to provide very large cost savings, substantial time-to-market reduction, and extra sources of revenue. Unfortunately, critical reuse opportunities are often missed because, although they provide clear value to the corporation, they may not benefit the business performance of an internal organization. It is therefore crucial to provide tools to help reuse partners participate in a reuse transaction when the transaction provides value to the corporation as a whole. Value-based Reuse Management (VRM) addresses this challenge by (a) ensuring that all parties can quickly assess the business performance impact of a reuse opportunity, and (b) encouraging high-value reuse opportunities by supplying value-based rewards to potential parties. In this paper we introduce the Value-Based Reuse Management approach and we describe key results on electronic designs that demonstrate its advantages. Our results indicate that Value-Based Reuse Management has the potential to significantly increase the success probability of high-value electronic design reuse.

  20. CD10 and osteopontin expression in dentigerous cyst and ameloblastoma.

    PubMed

    Masloub, Shaimaa M; Abdel-Azim, Adel M; Elhamid, Ehab S Abd

    2011-05-24

    To investigate the expression of CD10 and osteopontin in dentigerous cyst and ameloblastoma and to correlate their expression with neoplastic potentiality of dentigerous cyst and local invasion and risk of local recurrence in ameloblastoma. CD10 and osteopontin expression was studied by means of immunohistochemistry in 9 cases of dentigerous cysts (DC) and 17 cases of ameloblastoma. There were 7 unicystic ameloblastoma (UCA) and 10 multicystic ameloblastoma (MCA). Positive cases were included in the statistical analysis, carried on the tabulated data using the Open Office Spreadsheet 3.2.1 under Linux operating system. Analysis of variance and correlation studies were performed using "R" under Linux operating system (R Development Core Team (2010). Tukey post-hoc test was also performed as a pair-wise test. The significant level was set at 0.05. High CD10 and osteopontin expression was observed in UCA and MCA, and low CD10 and osteopontin expression was observed in DC. Significant correlation was seen between CD10 and osteopontin expression and neoplastic potentiality of DC and local invasion and risk of recurrences in ameloblastoma. In DC, high CD10 and osteopontin expression may indicate the neoplastic potentiality of certain areas. In UCA & MCA, high CD10 and osteopontin expression may identify areas with locally invasive behavior and high risk of recurrence.

  1. Demonstrating the Viability and Affordability of Nuclear Surface Power Systems

    NASA Technical Reports Server (NTRS)

    Vandyke, Melissa K.

    2006-01-01

    A set of tasks have been identified to help demonstrate the viability, performance, and affordability of surface fission systems. Completion of these tasks will move surface fission systems closer to reality by demonstrating affordability and performance potential. Tasks include fabrication and test of a 19-pin section of a Surface Power Unit Demonstrator (SPUD); design, fabrication, and utilization of thermal simulators optimized for surface fission' applications; design, fabrication, and utilization of GPHS module thermal simulators; design, fabrication, and test of a fission surface power system shield; and work related to potential fission surface power fuel/clad systems. Work on the SPUD will feed directly into joint NASA MSFC/NASA GRC fabrication and test of a surface power plant Engineering Development Unit (EDU). The goal of the EDU will be to perform highly realistic thermal, structural, and electrical testing on an integrated fission surface power system. Fission thermal simulator work will help enable high fidelity non-nuclear testing of pumped NaK surface fission power systems. Radioisotope thermal simulator work will help enable design and development of higher power radioisotope systems (power ultimately limited by Pu-238 availability). Shield work is designed to assess the potential of using a water neutron shield on the surface of the moon. Fuels work is geared toward assessing the current potential of using fuels that have already flown in space.

  2. Fostering Creativity in the Classroom for High Ability Students: Context Does Matter

    ERIC Educational Resources Information Center

    Tan, Liang See; Lee, Shu Shing; Ponnusamy, Letchmi Devi; Koh, Elizabeth Ruilin; Tan, Keith Chiu Kian

    2016-01-01

    Researchers have argued for the importance of the classroom context in developing students' creative potential. However, the emphasis on a performative learning culture in the classroom does not favour creativity. Thus, how creative potential can be realised as one of the educational goals in the classrooms remains a key question. This study…

  3. From Dimer to Crystal: Calculating the Cohesive Energy of Rare Gas Solids

    ERIC Educational Resources Information Center

    Halpern, Arthur M.

    2012-01-01

    An upper-level undergraduate project is described in which students perform high-level ab initio computational scans of the potential energy curves for Ne[subscript 2] and Ar[subscript 2] and obtain the respective Lennard-Jones (LJ) potential parameters [sigma] and [epsilon] for the dimers. Using this information, along with the summation of…

  4. Review on α-Fe2O3 based negative electrode for high performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Nithya, V. D.; Arul, N. Sabari

    2016-09-01

    Supercapacitor is an electrochemical energy storage device which has drawn attention of the researchers in recent years due to its high power density and long cycle life. Recently, an enormous effort has been imposed to improve the energy density of supercapacitor and might be attained through asymmetric cell configuration that offer wider potential window. Until now, a significant advancement has been achieved in the fabrication of positive electrodes for asymmetric cell. Nevertheless, the electrochemical performance of negative electrode materials is less explored, especially Hematite (α-Fe2O3). The α-Fe2O3 has been proved to be a promising negative electrode in supercapacitor application due to its wide operating potential, high redox activity, low cost, abundant availability and eco-friendliness. In this review, we have chosen α-Fe2O3 as the negative electrode and discussed its latest research progress with emphasis on various surface engineering synthesis strategies such as, carbon, polymer, metal-metal oxide, and ternary based α-Fe2O3 composites for supercapacitor. Besides, the importance of their synergistic effects over the supercapacitive performance in terms of specific capacitance, energy density, power density, cycling life and rate capability are highlighted. Also, an extensive analysis of the literature about its symmetric/asymmetric cell performance is explored.

  5. Nutritional quality of diet and academic performance in Chilean students.

    PubMed

    Correa-Burrows, Paulina; Burrows, Raquel; Blanco, Estela; Reyes, Marcela; Gahagan, Sheila

    2016-03-01

    To explore associations between the nutritional quality of diet at age 16 years and academic performance in students from Santiago, Chile. We assessed the nutritional quality of diet, using a validated food frequency questionnaire, in 395 students aged 16.8 ± 0.5 years. Depending on the amount of saturated fat, fibre, sugar and salt in the foods, diet was categorized as unhealthy, fair or healthy. Academic performance was assessed using high school grade-point average (GPA) and tests for college admission in language and mathematics. Academic results on or above the 75th percentile in our sample were considered good academic performance. We tested associations between nutritional quality of diet and good academic performance using logistic regression models. We considered sociodemographic, educational and body-mass index (BMI) factors as potential confounders. After controlling for potential confounding factors, an unhealthy diet at age 16 years was associated with reduced academic performance. Compared to participants with healthy diets, those with unhealthy diets were significantly less likely to perform well based on language tests (odds ratio, OR: 0.42; 95% confidence interval, CI: 0.18-0.98) mathematics tests (OR: 0.35; 95% CI: 0.15-0.82) or GPA (OR: 0.22; 95% CI: 0.09-0.56). In our sample, excessive consumption of energy-dense, low-fibre, high-fat foods at age 16 years was associated with reduced academic performance.

  6. Fast Track to Success: Top Young Trainers 2012

    ERIC Educational Resources Information Center

    Freifeld, Lorri

    2012-01-01

    Supercharged. High-performers. Leaders of the pack. This article presents "Training" magazine's 2012 Top Young Trainers--those high-potential training professionals who are on the fast track to success. For the fifth year, "Training" magazine is pleased to recognize the outstanding talents, accomplishments, and leadership exhibited by 40 learning…

  7. Virtual-Reality-Based Social Interaction Training for Children with High-Functioning Autism

    ERIC Educational Resources Information Center

    Ke, Fengfeng; Im, Tami

    2013-01-01

    Employing the multiple-baseline across-subjects design, the authors examined the implementation and potential effect of a virtual-reality-based social interaction program on the interaction and communication performance of children with high functioning autism. The data were collected via behavior observation and analysis, questionnaires, and…

  8. Laboratory evaluation of high asphalt binder replacement with recycled asphalt shingles (RAS) for a low n-design asphalt mixture.

    DOT National Transportation Integrated Search

    2012-10-01

    This study investigated the effect of high asphalt binder replacement for a low N-design asphalt mixture including : RAP and RAS on performance indicators such as permanent deformation, fracture, fatigue potentials, and : stiffness, was studied. An e...

  9. Optical Pumping of High Power Lasers with an Array of Plasma Pinches.

    DTIC Science & Technology

    1986-04-01

    Two dense plasma focus systems, the hypocycloidal pinch and the Mather type were investigated as the potential excitation light sources for high...was also performed for the first time using the Mather type dense plasma focus (MDPF) sucsessfully. Results thus fare indicate that both HCP and MDPF

  10. Scaling of Ion Thrusters to Low Power

    NASA Technical Reports Server (NTRS)

    Patterson, Michael J.; Grisnik, Stanley P.; Soulas, George C.

    1998-01-01

    Analyses were conducted to examine ion thruster scaling relationships in detail to determine performance limits, and lifetime expectations for thruster input power levels below 0.5 kW. This was motivated by mission analyses indicating the potential advantages of high performance, high specific impulse systems for small spacecraft. The design and development status of a 0.1-0.3 kW prototype small thruster and its components are discussed. Performance goals include thruster efficiencies on the order of 40% to 54% over a specific impulse range of 2000 to 3000 seconds, with a lifetime in excess of 8000 hours at full power. Thruster technologies required to achieve the performance and lifetime targets are identified.

  11. The role of potential agents in making spatial perspective taking social

    PubMed Central

    Clements-Stephens, Amy M.; Vasiljevic, Katarina; Murray, Alexandra J.; Shelton, Amy L.

    2013-01-01

    A striking relationship between visual spatial perspective taking (VSPT) and social skills has been demonstrated for perspective-taking tasks in which the target of the imagined or inferred perspective is a potential agent, suggesting that the presence of a potential agent may create a social context for the seemingly spatial task of imagining a novel visual perspective. In a series of studies, we set out to investigate how and when a target might be viewed as sufficiently agent-like to incur a social influence on VSPT performance. By varying the perceptual and conceptual features that defined the targets as potential agents, we find that even something as simple as suggesting animacy for a simple wooden block may be sufficient. More critically, we found that experience with one potential agent influenced the performance with subsequent targets, either by inducing or eliminating the influence of social skills on VSPT performance. These carryover effects suggest that the relationship between social skills and VSPT performance is mediated by a complex relationship that includes the task, the target, and the context in which that target is perceived. These findings highlight potential problems that arise when identifying a task as belonging exclusively to a single cognitive domain and stress instead the highly interactive nature of cognitive domains and their susceptibility to cross-domain individual differences. PMID:24046735

  12. Predicting Fish Growth Potential and Identifying Water Quality Constraints: A Spatially-Explicit Bioenergetics Approach

    NASA Astrophysics Data System (ADS)

    Budy, Phaedra; Baker, Matthew; Dahle, Samuel K.

    2011-10-01

    Anthropogenic impairment of water bodies represents a global environmental concern, yet few attempts have successfully linked fish performance to thermal habitat suitability and fewer have distinguished co-varying water quality constraints. We interfaced fish bioenergetics, field measurements, and Thermal Remote Imaging to generate a spatially-explicit, high-resolution surface of fish growth potential, and next employed a structured hypothesis to detect relationships among measures of fish performance and co-varying water quality constraints. Our thermal surface of fish performance captured the amount and spatial-temporal arrangement of thermally-suitable habitat for three focal species in an extremely heterogeneous reservoir, but interpretation of this pattern was initially confounded by seasonal covariation of water residence time and water quality. Subsequent path analysis revealed that in terms of seasonal patterns in growth potential, catfish and walleye responded to temperature, positively and negatively, respectively; crappie and walleye responded to eutrophy (negatively). At the high eutrophy levels observed in this system, some desired fishes appear to suffer from excessive cultural eutrophication within the context of elevated temperatures whereas others appear to be largely unaffected or even enhanced. Our overall findings do not lead to the conclusion that this system is degraded by pollution; however, they do highlight the need to use a sensitive focal species in the process of determining allowable nutrient loading and as integrators of habitat suitability across multiple spatial and temporal scales. We provide an integrated approach useful for quantifying fish growth potential and identifying water quality constraints on fish performance at spatial scales appropriate for whole-system management.

  13. Building America Case Study: Simple Retrofit High-Efficiency Natural Gas Water Heater Field Test, Minneapolis, Minnesota

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    High performance water heaters are typically more time consuming and costly to install in retrofit applications, making high performance water heaters difficult to justify economically. However, recent advancements in high performance water heaters have targeted the retrofit market, simplifying installations and reducing costs. Four high efficiency natural gas water heaters designed specifically for retrofit applications were installed in single-family homes along with detailed monitoring systems to characterize their savings potential, their installed efficiencies, and their ability to meet household demands. The water heaters tested for this project were designed to improve the cost-effectiveness and increase market penetration of high efficiencymore » water heaters in the residential retrofit market. The retrofit high efficiency water heaters achieved their goal of reducing costs, maintaining savings potential and installed efficiency of other high efficiency water heaters, and meeting the necessary capacity in order to improve cost-effectiveness. However, the improvements were not sufficient to achieve simple paybacks of less than ten years for the incremental cost compared to a minimum efficiency heater. Significant changes would be necessary to reduce the simple payback to six years or less. Annual energy savings in the range of $200 would also reduce paybacks to less than six years. These energy savings would require either significantly higher fuel costs (greater than $1.50 per therm) or very high usage (around 120 gallons per day). For current incremental costs, the water heater efficiency would need to be similar to that of a heat pump water heater to deliver a six year payback.« less

  14. Simple Retrofit High-Efficiency Natural Gas Water Heater Field Test

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schoenbauer, Ben

    High-performance water heaters are typically more time consuming and costly to install in retrofit applications, making high performance water heaters difficult to justify economically. However, recent advancements in high performance water heaters have targeted the retrofit market, simplifying installations and reducing costs. Four high efficiency natural gas water heaters designed specifically for retrofit applications were installed in single-family homes along with detailed monitoring systems to characterize their savings potential, their installed efficiencies, and their ability to meet household demands. The water heaters tested for this project were designed to improve the cost-effectiveness and increase market penetration of high efficiency watermore » heaters in the residential retrofit market. The retrofit high efficiency water heaters achieved their goal of reducing costs, maintaining savings potential and installed efficiency of other high efficiency water heaters, and meeting the necessary capacity in order to improve cost-effectiveness. However, the improvements were not sufficient to achieve simple paybacks of less than ten years for the incremental cost compared to a minimum efficiency heater. Significant changes would be necessary to reduce the simple payback to six years or less. Annual energy savings in the range of $200 would also reduce paybacks to less than six years. These energy savings would require either significantly higher fuel costs (greater than $1.50 per therm) or very high usage (around 120 gallons per day). For current incremental costs, the water heater efficiency would need to be similar to that of a heat pump water heater to deliver a six year payback.« less

  15. Simple Retrofit High-Efficiency Natural Gas Water Heater Field Test

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schoenbauer, Ben

    High performance water heaters are typically more time consuming and costly to install in retrofit applications, making high performance water heaters difficult to justify economically. However, recent advancements in high performance water heaters have targeted the retrofit market, simplifying installations and reducing costs. Four high efficiency natural gas water heaters designed specifically for retrofit applications were installed in single-family homes along with detailed monitoring systems to characterize their savings potential, their installed efficiencies, and their ability to meet household demands. The water heaters tested for this project were designed to improve the cost-effectiveness and increase market penetration of high efficiencymore » water heaters in the residential retrofit market. The retrofit high efficiency water heaters achieved their goal of reducing costs, maintaining savings potential and installed efficiency of other high efficiency water heaters, and meeting the necessary capacity in order to improve cost-effectiveness. However, the improvements were not sufficient to achieve simple paybacks of less than ten years for the incremental cost compared to a minimum efficiency heater. Significant changes would be necessary to reduce the simple payback to six years or less. Annual energy savings in the range of $200 would also reduce paybacks to less than six years. These energy savings would require either significantly higher fuel costs (greater than $1.50 per therm) or very high usage (around 120 gallons per day). For current incremental costs, the water heater efficiency would need to be similar to that of a heat pump water heater to deliver a six year payback.« less

  16. Highly Compressible Carbon Sponge Supercapacitor Electrode with Enhanced Performance by Growing Nickel-Cobalt Sulfide Nanosheets.

    PubMed

    Liang, Xu; Nie, Kaiwen; Ding, Xian; Dang, Liqin; Sun, Jie; Shi, Feng; Xu, Hua; Jiang, Ruibin; He, Xuexia; Liu, Zonghuai; Lei, Zhibin

    2018-03-28

    The development of compressible supercapacitor highly relies on the innovative design of electrode materials with both superior compression property and high capacitive performance. This work reports a highly compressible supercapacitor electrode which is prepared by growing electroactive NiCo 2 S 4 (NCS) nanosheets on the compressible carbon sponge (CS). The strong adhesion of the metallic conductive NCS nanosheets to the highly porous carbon scaffolds enable the CS-NCS composite electrode to exhibit an enhanced conductivity and ideal structural integrity during repeated compression-release cycles. Accordingly, the CS-NCS composite electrode delivers a specific capacitance of 1093 F g -1 at 0.5 A g -1 and remarkable rate performance with 91% capacitance retention in the range of 0.5-20 A g -1 . Capacitance performance under the strain of 60% shows that the incorporation of NCS nanosheets in CS scaffolds leads to over five times enhancement in gravimetric capacitance and 17 times enhancement in volumetric capacitance. These performances enable the CS-NCS composite to be one of the promising candidates for potential applications in compressible electrochemical energy storage devices.

  17. Flexible Fe3O4@Carbon Nanofibers Hierarchically Assembled with MnO2 Particles for High-Performance Supercapacitor Electrodes.

    PubMed

    Iqbal, Nousheen; Wang, Xianfeng; Babar, Aijaz Ahmed; Zainab, Ghazala; Yu, Jianyong; Ding, Bin

    2017-11-09

    Increasing use of wearable electronic devices have resulted in enhanced demand for highly flexible supercapacitor electrodes with superior electrochemical performance. In this study, flexible composite membranes with electrosprayed MnO 2 particles uniformly anchored on Fe 3 O 4 doped electrospun carbon nanofibers (Fe 3 O 4 @CNF Mn ) have been prepared as flexible electrodes for high-performance supercapacitors. The interconnected porous beaded structure ensures free movement of electrolyte within the composite membranes, therefore, the developed supercapacitor electrodes not only offer high specific capacitance of ~306 F/g, but also exhibit good capacitance retention of ~85% after 2000 cycles, which certify that the synthesized electrodes offer high and stable electrochemical performance. Additionally, the supercapacitors fabricated from our developed electrodes well maintain their performance under flexural stress and exhibit a very minute change in specific capacitance even up to 180° bending angle. The developed electrode fabrication strategy integrating electrospinning and electrospray techniques paves new insights into the development of potential functional nanofibrous materials for light weight and flexible wearable supercapacitors.

  18. Artificial semiconductor/insulator superlattice channel structure for high-performance oxide thin-film transistors

    PubMed Central

    Ahn, Cheol Hyoun; Senthil, Karuppanan; Cho, Hyung Koun; Lee, Sang Yeol

    2013-01-01

    High-performance thin-film transistors (TFTs) are the fundamental building blocks in realizing the potential applications of the next-generation displays. Atomically controlled superlattice structures are expected to induce advanced electric and optical performance due to two-dimensional electron gas system, resulting in high-electron mobility transistors. Here, we have utilized a semiconductor/insulator superlattice channel structure comprising of ZnO/Al2O3 layers to realize high-performance TFTs. The TFT with ZnO (5 nm)/Al2O3 (3.6 nm) superlattice channel structure exhibited high field effect mobility of 27.8 cm2/Vs, and threshold voltage shift of only < 0.5 V under positive/negative gate bias stress test during 2 hours. These properties showed extremely improved TFT performance, compared to ZnO TFTs. The enhanced field effect mobility and stability obtained for the superlattice TFT devices were explained on the basis of layer-by-layer growth mode, improved crystalline nature of the channel layers, and passivation effect of Al2O3 layers. PMID:24061388

  19. No Exit: Identifying Avoidable Terminal Oncology Intensive Care Unit Hospitalizations

    PubMed Central

    Hantel, Andrew; Wroblewski, Kristen; Balachandran, Jay S.; Chow, Selina; DeBoer, Rebecca; Fleming, Gini F.; Hahn, Olwen M.; Kline, Justin; Liu, Hongtao; Patel, Bhakti K.; Verma, Anshu; Witt, Leah J.; Fukui, Mayumi; Kumar, Aditi; Howell, Michael D.; Polite, Blase N.

    2016-01-01

    Purpose: Terminal oncology intensive care unit (ICU) hospitalizations are associated with high costs and inferior quality of care. This study identifies and characterizes potentially avoidable terminal admissions of oncology patients to ICUs. Methods: This was a retrospective case series of patients cared for in an academic medical center’s ambulatory oncology practice who died in an ICU during July 1, 2012 to June 30, 2013. An oncologist, intensivist, and hospitalist reviewed each patient’s electronic health record from 3 months preceding terminal hospitalization until death. The primary outcome was the proportion of terminal ICU hospitalizations identified as potentially avoidable by two or more reviewers. Univariate and multivariate analysis were performed to identify characteristics associated with avoidable terminal ICU hospitalizations. Results: Seventy-two patients met inclusion criteria. The majority had solid tumor malignancies (71%), poor performance status (51%), and multiple encounters with the health care system. Despite high-intensity health care utilization, only 25% had documented advance directives. During a 4-day median ICU length of stay, 81% were intubated and 39% had cardiopulmonary resuscitation. Forty-seven percent of these hospitalizations were identified as potentially avoidable. Avoidable hospitalizations were associated with factors including: worse performance status before admission (median 2 v 1; P = .01), worse Charlson comorbidity score (median 8.5 v 7.0, P = .04), reason for hospitalization (P = .006), and number of prior hospitalizations (median 2 v 1; P = .05). Conclusion: Given the high frequency of avoidable terminal ICU hospitalizations, health care leaders should develop strategies to prospectively identify patients at high risk and formulate interventions to improve end-of-life care. PMID:27601514

  20. High-performance solid polymer electrolytes for lithium batteries operational at ambient temperature

    NASA Astrophysics Data System (ADS)

    Mindemark, Jonas; Sun, Bing; Törmä, Erik; Brandell, Daniel

    2015-12-01

    Incorporation of carbonate repeating units in a poly(ε-caprolactone) (PCL) backbone used as a host material in solid polymer electrolytes is found to not only suppress crystallinity in the polyester material, but also give higher ionic conductivity in a wide temperature range exceeding the melting point of PCL crystallites. Combined with high cation transference numbers, this electrolyte material has sufficient lithium transport properties to be used in battery cells that are operational at temperatures down to below 23 °C, thus clearly demonstrating the potential of using non-polyether electrolytes in high-performance all-solid lithium polymer batteries.

  1. An Exploratory Study of OEE Implementation in Indian Manufacturing Companies

    NASA Astrophysics Data System (ADS)

    Kumar, J.; Soni, V. K.

    2015-04-01

    Globally, the implementation of Overall equipment effectiveness (OEE) has proven to be highly effective in improving availability, performance rate and quality rate while reducing unscheduled breakdown and wastage that stems from the equipment. This paper investigates the present status and future scope of OEE metrics in Indian manufacturing companies through an extensive survey. In this survey, opinions of Production and Maintenance Managers have been analyzed statistically to explore the relationship between factors, perspective of OEE and potential use of OEE metrics. Although the sample has been divers in terms of product, process type, size, and geographic location of the companies, they are enforced to implement improvement techniques such as OEE metrics to improve performance. The findings reveal that OEE metrics has huge potential and scope to improve performance. Responses indicate that Indian companies are aware of OEE but they are not utilizing full potential of OEE metrics.

  2. Free-piston Stirling engine/linear alternator 1000-hour endurance test

    NASA Technical Reports Server (NTRS)

    Rauch, J.; Dochat, G.

    1985-01-01

    The Free Piston Stirling Engine (FPSE) has the potential to be a long lived, highly reliable, power conversion device attractive for many product applications such as space, residential or remote site power. The purpose of endurance testing the FPSE was to demonstrate its potential for long life. The endurance program was directed at obtaining 1000 operational hours under various test conditions: low power, full stroke, duty cycle and stop/start. Critical performance parameters were measured to note any change and/or trend. Inspections were conducted to measure and compare critical seal/bearing clearances. The engine performed well throughout the program, completing more than 1100 hours. Hardware inspection, including the critical clearances, showed no significant change in hardware or clearance dimensions. The performance parameters did not exhibit any increasing or decreasing trends. The test program confirms the potential for long life FPSE applications.

  3. High-performance ferroelectric and magnetoresistive materials for next-generation thermal detector arrays

    NASA Astrophysics Data System (ADS)

    Todd, Michael A.; Donohue, Paul P.; Watton, Rex; Williams, Dennis J.; Anthony, Carl J.; Blamire, Mark G.

    2002-12-01

    This paper discusses the potential thermal imaging performance achievable from thermal detector arrays and concludes that the current generation of thin-film ferroelectric and resistance bolometer based detector arrays are limited by the detector materials used. It is proposed that the next generation of large uncooled focal plane arrays will need to look towards higher performance detector materials - particularly if they aim to approach the fundamental performance limits and compete with cooled photon detector arrays. Two examples of bolometer thin-film materials are described that achieve high performance from operating around phase transitions. The material Lead Scandium Tantalate (PST) has a paraelectric-to-ferroelectric phase transition around room temperature and is used with an applied field in the dielectric bolometer mode for thermal imaging. PST films grown by sputtering and liquid-source CVD have shown merit figures for thermal imaging a factor of 2 to 3 times higher than PZT-based pyroelectric thin films. The material Lanthanum Calcium Manganite (LCMO) has a paramagnetic to ferromagnetic phase transition around -20oC. This paper describes recent measurements of TCR and 1/f noise in pulsed laser-deposited LCMO films on Neodymium Gallate substrates. These results show that LCMO not only has high TCR's - up to 30%/K - but also low 1/f excess noise, with bolometer merit figures at least an order of magnitude higher than Vanadium Oxide, making it ideal for the next generation of microbolometer arrays. These high performance properties come at the expense of processing complexities and novel device designs will need to be introduced to realize the potential of these materials in the next generation of thermal detectors.

  4. A vanadium-doped ZnO nanosheets-polymer composite for flexible piezoelectric nanogenerators

    NASA Astrophysics Data System (ADS)

    Shin, Sung-Ho; Kwon, Yang Hyeog; Lee, Min Hyung; Jung, Joo-Yun; Seol, Jae Hun; Nah, Junghyo

    2016-01-01

    We report high performance flexible piezoelectric nanogenerators (PENGs) by employing vanadium (V)-doped ZnO nanosheets (NSs) and the polydimethylsiloxane (PDMS) composite structure. The V-doped ZnO NSs were synthesized to overcome the inherently low piezoelectric properties of intrinsic ZnO. Ferroelectric phase transition induced in the V-doped ZnO NSs contributed to significantly improve the performance of the PENGs after the poling process. Consequently, the PENGs exhibited high output voltage and current up to ~32 V and ~6.2 μA, respectively, under the applied strain, which are sufficient to directly turn on a number of light emitting diodes (LEDs). The composite approach for PENG fabrication is scalable, robust, and reproducible during periodic bending/releasing over extended cycles. The approach introduced here extends the performance limits of ZnO-based PENGs and demonstrates their potential as energy harvesting devices.We report high performance flexible piezoelectric nanogenerators (PENGs) by employing vanadium (V)-doped ZnO nanosheets (NSs) and the polydimethylsiloxane (PDMS) composite structure. The V-doped ZnO NSs were synthesized to overcome the inherently low piezoelectric properties of intrinsic ZnO. Ferroelectric phase transition induced in the V-doped ZnO NSs contributed to significantly improve the performance of the PENGs after the poling process. Consequently, the PENGs exhibited high output voltage and current up to ~32 V and ~6.2 μA, respectively, under the applied strain, which are sufficient to directly turn on a number of light emitting diodes (LEDs). The composite approach for PENG fabrication is scalable, robust, and reproducible during periodic bending/releasing over extended cycles. The approach introduced here extends the performance limits of ZnO-based PENGs and demonstrates their potential as energy harvesting devices. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr07185b

  5. High-Performance Computational Modeling of ICRF Physics and Plasma-Surface Interactions in Alcator C-Mod

    NASA Astrophysics Data System (ADS)

    Jenkins, Thomas; Smithe, David

    2016-10-01

    Inefficiencies and detrimental physical effects may arise in conjunction with ICRF heating of tokamak plasmas. Large wall potential drops, associated with sheath formation near plasma-facing antenna hardware, give rise to high-Z impurity sputtering from plasma-facing components and subsequent radiative cooling. Linear and nonlinear wave excitations in the plasma edge/SOL also dissipate injected RF power and reduce overall antenna efficiency. Recent advances in finite-difference time-domain (FDTD) modeling techniques allow the physics of localized sheath potentials, and associated sputtering events, to be modeled concurrently with the physics of antenna near- and far-field behavior and RF power flow. The new methods enable time-domain modeling of plasma-surface interactions and ICRF physics in realistic experimental configurations at unprecedented spatial resolution. We present results/animations from high-performance (10k-100k core) FDTD/PIC simulations spanning half of Alcator C-Mod at mm-scale resolution, exploring impurity production due to localized sputtering (in response to self-consistent sheath potentials at antenna surfaces) and the physics of parasitic slow wave excitation near the antenna hardware and SOL. Supported by US DoE (Award DE-SC0009501) and the ALCC program.

  6. Alkaline earth lead and tin compounds Ae2Pb, Ae2Sn, Ae = Ca, Sr, Ba, as thermoelectric materials

    PubMed Central

    Parker, David; Singh, David J

    2013-01-01

    We present a detailed theoretical study of three alkaline earth compounds Ca2Pb, Sr2Pb and Ba2Pb, which have undergone little previous study, calculating electronic band structures and Boltzmann transport and bulk moduli using density functional theory. We also study the corresponding tin compounds Ca2Sn, Sr2Sn and Ba2Sn. We find that these are all narrow band gap semiconductors with an electronic structure favorable for thermoelectric performance, with substantial thermopowers for the lead compounds at temperature ranges from 300 to 800 K. For the lead compounds, we further find very low calculated bulk moduli—roughly half of the values for the lead chalcogenides, suggestive of soft phonons and hence low lattice thermal conductivity. All these facts indicate that these materials merit experimental investigation as potential high performance thermoelectrics. We find good potential for thermoelectric performance in the environmentally friendly stannide materials, particularly at high temperature. PMID:27877610

  7. Combined 18F-Fluciclovine PET/MRI Shows Potential for Detection and Characterization of High-Risk Prostate Cancer.

    PubMed

    Elschot, Mattijs; Selnæs, Kirsten M; Sandsmark, Elise; Krüger-Stokke, Brage; Størkersen, Øystein; Giskeødegård, Guro F; Tessem, May-Britt; Moestue, Siver A; Bertilsson, Helena; Bathen, Tone F

    2018-05-01

    The objective of this study was to investigate whether quantitative imaging features derived from combined 18 F-fluciclovine PET/multiparametric MRI show potential for detection and characterization of primary prostate cancer. Methods: Twenty-eight patients diagnosed with high-risk prostate cancer underwent simultaneous 18 F-fluciclovine PET/MRI before radical prostatectomy. Volumes of interest (VOIs) for prostate tumors, benign prostatic hyperplasia (BPH) nodules, prostatitis, and healthy tissue were delineated on T2-weighted images, using histology as a reference. Tumor VOIs were marked as high-grade (≥Gleason grade group 3) or not. MRI and PET features were extracted on the voxel and VOI levels. Partial least-squared discriminant analysis (PLS-DA) with double leave-one-patient-out cross-validation was performed to distinguish tumors from benign tissue (BPH, prostatitis, or healthy tissue) and high-grade tumors from other tissue (low-grade tumors or benign tissue). The performance levels of PET, MRI, and combined PET/MRI features were compared using the area under the receiver-operating-characteristic curve (AUC). Results: Voxel and VOI features were extracted from 40 tumor VOIs (26 high-grade), 36 BPH VOIs, 6 prostatitis VOIs, and 37 healthy-tissue VOIs. PET/MRI performed better than MRI and PET alone for distinguishing tumors from benign tissue (AUCs of 87%, 81%, and 83%, respectively, at the voxel level and 96%, 93%, and 93%, respectively, at the VOI level) and high-grade tumors from other tissue (AUCs of 85%, 79%, and 81%, respectively, at the voxel level and 93%, 93%, and 91%, respectively, at the VOI level). T2-weighted MRI, diffusion-weighted MRI, and PET features were the most important for classification. Conclusion: Combined 18 F-fluciclovine PET/multiparametric MRI shows potential for improving detection and characterization of high-risk prostate cancer, in comparison to MRI and PET alone. © 2018 by the Society of Nuclear Medicine and Molecular Imaging.

  8. Effective Teaching Communities: Lessons from High-Needs, High-Performing Delaware Schools. SREB Spotlight Series

    ERIC Educational Resources Information Center

    Gandha, Tysza; Baxter, Andy

    2016-01-01

    Teachers hold the greatest potential impact on student achievement compared to every other in-school factor. Yet schools with the greatest needs, those with a high percentage of low-income students and students of color, face the greatest teacher and leader turnover. They also often have less experienced and less effective teachers, according to…

  9. Electrochemical fabrication of interconnected tungsten bronze nanosheets for high performance supercapacitor

    NASA Astrophysics Data System (ADS)

    Yang, Gan; Liu, Xiao-Xia

    2018-04-01

    Interconnected H0.12WO3ṡH2O nanosheets with high electrochemical performances are fabricated on partial exfoliated graphite substrate (Ex-GF) by potential-limited pulse galvanostatic method (PLPG). The dead volume problem of bulk pesudocapacitive materials is addressed by the novel interconnected nanosheets structure, enabling a large specific capacitance of 5.95 F cm-2 (495.8 F g-1) at 2 mA cm-2. Merited from the fluent electrolyte penetration channels established by the plenty voids among nanosheets, as well as fast electron transportation in the electronic conductive tungsten bronze which is directly grown from graphite substrate, the obtained WO3/Ex-GF demonstrates excellent rate capability. The material can maintain 60.0% of its capacitance when the discharge current density increases from 2 to 100 mA cm-2. Moreover, WO3/Ex-GF doesn't show capacitance decay after 5000 galvanostatic charge-discharge cycles, displaying its super stability. Furthermore, a high performance asymmetric supercapacitor assembled by using WO3/Ex-GF and electrochemical fabricated MnO2/Ex-GF as negative and positive electrodes, respectively displays a high energy density of 2.88 mWh cm-3 at the power density of 11.1 mW cm-3, demonstrating its potential application for energy storage.

  10. Transparent actuators and robots based on single-layer superaligned carbon nanotube sheet and polymer composites.

    PubMed

    Chen, Luzhuo; Weng, Mingcen; Zhang, Wei; Zhou, Zhiwei; Zhou, Yi; Xia, Dan; Li, Jiaxin; Huang, Zhigao; Liu, Changhong; Fan, Shoushan

    2016-03-28

    Transparent actuators have been attracting emerging interest recently, as they demonstrate potential applications in the fields of invisible robots, tactical displays, variable-focus lenses, and flexible cellular phones. However, previous technologies did not simultaneously realize macroscopic transparent actuators with advantages of large-shape deformation, low-voltage-driven actuation and fast fabrication. Here, we develop a fast approach to fabricate a high-performance transparent actuator based on single-layer superaligned carbon nanotube sheet and polymer composites. Various advantages of single-layer nanotube sheets including high transparency, considerable conductivity, and ultra-thin dimensions together with selected polymer materials completely realize all the above required advantages. Also, this is the first time that a single-layer nanotube sheet has been used to fabricate actuators with high transparency, avoiding the structural damage to the single-layer nanotube sheet. The transparent actuator shows a transmittance of 72% at the wavelength of 550 nm and bends remarkably with a curvature of 0.41 cm(-1) under a DC voltage for 5 s, demonstrating a significant advance in technological performances compared to previous conventional actuators. To illustrate their great potential usage, a transparent wiper and a humanoid robot "hand" were elaborately designed and fabricated, which initiate a new direction in the development of high-performance invisible robotics and other intelligent applications with transparency.

  11. Revisiting the Corrosion of the Aluminum Current Collector in Lithium-Ion Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Tianyuan; Xu, Gui-Liang; Li, Yan

    The corrosion of aluminum current collectors and the oxidation of solvents at a relatively high potential have been widely investigated with an aim to stabilize the electrochemical performance of lithium-ion batteries using such components. The corrosion behavior of aluminum current collectors was revisited using a home-build high-precision electrochemical measurement system, and the impact of electrolyte components and the surface protection layer on aluminum foil was systematically studied. The electrochemical results showed that the corrosion of aluminum foil was triggered by the electrochemical oxidation of solvent molecules, like ethylene carbonate, at a relative high potential. The organic radical cations generated frommore » the electrochemical oxidation are energetically unstable, and readily undergo a deprotonation reaction that generates protons and promote the dissolution of Al3+ from the aluminum foil. This new reaction mechanism can also shed light on the dissolution of transitional metal at high potentials.« less

  12. Revisiting the Corrosion of the Aluminum Current Collector in Lithium-Ion Batteries

    DOE PAGES

    Ma, Tianyuan; Xu, Gui -Liang; Li, Yan; ...

    2017-02-16

    The corrosion of aluminum current collectors and the oxidation of solvents at a relatively high potential have been widely investigated with an aim to stabilize the electrochemical performance of lithium-ion batteries using such components. The corrosion behavior of aluminum current collectors was revisited using a home-build high-precision electrochemical measurement system, and the impact of electrolyte components and the surface protection layer on aluminum foil was systematically studied. The electrochemical results showed that the corrosion of aluminum foil was triggered by the electrochemical oxidation of solvent molecules, like ethylene carbonate, at a relative high potential. The organic radical cations generated frommore » the electrochemical oxidation are energetically unstable, and readily undergo a deprotonation reaction that generates protons and promote the dissolution of Al 3+ from the aluminum foil. Finally, this new reaction mechanism can also shed light on the dissolution of transitional metal at high potentials.« less

  13. Revisiting the Corrosion of the Aluminum Current Collector in Lithium-Ion Batteries.

    PubMed

    Ma, Tianyuan; Xu, Gui-Liang; Li, Yan; Wang, Li; He, Xiangming; Zheng, Jianming; Liu, Jun; Engelhard, Mark H; Zapol, Peter; Curtiss, Larry A; Jorne, Jacob; Amine, Khalil; Chen, Zonghai

    2017-03-02

    The corrosion of aluminum current collectors and the oxidation of solvents at a relatively high potential have been widely investigated with an aim to stabilize the electrochemical performance of lithium-ion batteries using such components. The corrosion behavior of aluminum current collectors was revisited using a home-build high-precision electrochemical measurement system, and the impact of electrolyte components and the surface protection layer on aluminum foil was systematically studied. The electrochemical results showed that the corrosion of aluminum foil was triggered by the electrochemical oxidation of solvent molecules, like ethylene carbonate, at a relative high potential. The organic radical cations generated from the electrochemical oxidation are energetically unstable and readily undergo a deprotonation reaction that generates protons and promotes the dissolution of Al 3+ from the aluminum foil. This new reaction mechanism can also shed light on the dissolution of transitional metal at high potentials.

  14. Revisiting the Corrosion of the Aluminum Current Collector in Lithium-Ion Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Tianyuan; Xu, Gui -Liang; Li, Yan

    The corrosion of aluminum current collectors and the oxidation of solvents at a relatively high potential have been widely investigated with an aim to stabilize the electrochemical performance of lithium-ion batteries using such components. The corrosion behavior of aluminum current collectors was revisited using a home-build high-precision electrochemical measurement system, and the impact of electrolyte components and the surface protection layer on aluminum foil was systematically studied. The electrochemical results showed that the corrosion of aluminum foil was triggered by the electrochemical oxidation of solvent molecules, like ethylene carbonate, at a relative high potential. The organic radical cations generated frommore » the electrochemical oxidation are energetically unstable, and readily undergo a deprotonation reaction that generates protons and promote the dissolution of Al 3+ from the aluminum foil. Finally, this new reaction mechanism can also shed light on the dissolution of transitional metal at high potentials.« less

  15. The rate of high ovarian response in women identified at risk by a high serum AMH level is influenced by the type of gonadotropin.

    PubMed

    Arce, Joan-Carles; Klein, Bjarke M; La Marca, Antonio

    2014-06-01

    The aim was to compare ovarian response and clinical outcome of potential high-responders after stimulation with highly purified menotropin (HP-hMG) or recombinant follicle-stimulating hormone (rFSH) for in vitro fertilisation/intracytoplasmic sperm injection. Retrospective analysis was performed on data collected in two randomized controlled trials, one conducted following a long GnRH agonist protocol and the other with an antagonist protocol. Potential high-responders (n = 155 and n = 188 in the agonist and antagonist protocol, respectively) were defined as having an initial anti-Müllerian hormone (AMH) value >75th percentile (5.2 ng/ml). In both protocols, HP-hMG stimulation in women in the high AMH category was associated with a significantly lower occurrence of high response (≥15 oocytes retrieved) than rFSH stimulation; 33% versus 51% (p = 0.025) and 31% versus 49% (p = 0.015) in the long agonist and antagonist protocol, respectively. In the potential high-responder women, trends for improved live birth rate were observed with HP-hMG compared with rFSH (long agonist protocol: 33% versus 20%, p = 0.074; antagonist protocol: 34% versus 23%, p = 0.075; overall population: 34% versus 22%, p = 0.012). In conclusion, the type of gonadotropin used for ovarian stimulation influences high-response rates and potentially clinical outcome in women identified as potential high-responders.

  16. Development of next generation tempered and ODS reduced activation ferritic/martensitic steels for fusion energy applications

    DOE PAGES

    Zinkle, S. J.; Boutard, J. L.; Hoelzer, D. T.; ...

    2017-06-09

    Reduced activation ferritic/martensitic steels are currently the most technologically mature option for the structural material of proposed fusion energy reactors. Advanced next-generation higher performance steels offer the opportunity for improvements in fusion reactor operational lifetime and reliability, superior neutron radiation damage resistance, higher thermodynamic efficiency, and reduced construction costs. The two main strategies for developing improved steels for fusion energy applications are based on (1) an evolutionary pathway using computational thermodynamics modelling and modified thermomechanical treatments (TMT) to produce higher performance reduced activation ferritic/martensitic (RAFM) steels and (2) a higher risk, potentially higher payoff approach based on powder metallurgy techniquesmore » to produce very high strength oxide dispersion strengthened (ODS) steels capable of operation to very high temperatures and with potentially very high resistance to fusion neutron-induced property degradation. The current development status of these next-generation high performance steels is summarized, and research and development challenges for the successful development of these materials are outlined. In conclusion, material properties including temperature-dependent uniaxial yield strengths, tensile elongations, high-temperature thermal creep, Charpy impact ductile to brittle transient temperature (DBTT) and fracture toughness behaviour, and neutron irradiation-induced low-temperature hardening and embrittlement and intermediate-temperature volumetric void swelling (including effects associated with fusion-relevant helium and hydrogen generation) are described for research heats of the new steels.« less

  17. Development of next generation tempered and ODS reduced activation ferritic/martensitic steels for fusion energy applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zinkle, S. J.; Boutard, J. L.; Hoelzer, D. T.

    Reduced activation ferritic/martensitic steels are currently the most technologically mature option for the structural material of proposed fusion energy reactors. Advanced next-generation higher performance steels offer the opportunity for improvements in fusion reactor operational lifetime and reliability, superior neutron radiation damage resistance, higher thermodynamic efficiency, and reduced construction costs. The two main strategies for developing improved steels for fusion energy applications are based on (1) an evolutionary pathway using computational thermodynamics modelling and modified thermomechanical treatments (TMT) to produce higher performance reduced activation ferritic/martensitic (RAFM) steels and (2) a higher risk, potentially higher payoff approach based on powder metallurgy techniquesmore » to produce very high strength oxide dispersion strengthened (ODS) steels capable of operation to very high temperatures and with potentially very high resistance to fusion neutron-induced property degradation. The current development status of these next-generation high performance steels is summarized, and research and development challenges for the successful development of these materials are outlined. In conclusion, material properties including temperature-dependent uniaxial yield strengths, tensile elongations, high-temperature thermal creep, Charpy impact ductile to brittle transient temperature (DBTT) and fracture toughness behaviour, and neutron irradiation-induced low-temperature hardening and embrittlement and intermediate-temperature volumetric void swelling (including effects associated with fusion-relevant helium and hydrogen generation) are described for research heats of the new steels.« less

  18. N- and S-doped high surface area carbon derived from soya chunks as scalable and efficient electrocatalysts for oxygen reduction

    NASA Astrophysics Data System (ADS)

    Rana, Moumita; Arora, Gunjan; Gautam, Ujjal K.

    2015-02-01

    Highly stable, cost-effective electrocatalysts facilitating oxygen reduction are crucial for the commercialization of membrane-based fuel cell and battery technologies. Herein, we demonstrate that protein-rich soya chunks with a high content of N, S and P atoms are an excellent precursor for heteroatom-doped highly graphitized carbon materials. The materials are nanoporous, with a surface area exceeding 1000 m2 g-1, and they are tunable in doping quantities. These materials exhibit highly efficient catalytic performance toward oxygen reduction reaction (ORR) with an onset potential of -0.045 V and a half-wave potential of -0.211 V (versus a saturated calomel electrode) in a basic medium, which is comparable to commercial Pt catalysts and is better than other recently developed metal-free carbon-based catalysts. These exhibit complete methanol tolerance and a performance degradation of merely ˜5% as compared to ˜14% for a commercial Pt/C catalyst after continuous use for 3000 s at the highest reduction current. We found that the fraction of graphitic N increases at a higher graphitization temperature, leading to the near complete reduction of oxygen. It is believed that due to the easy availability of the precursor and the possibility of genetic engineering to homogeneously control the heteroatom distribution, the synthetic strategy is easily scalable, with further improvement in performance.

  19. Development of next generation tempered and ODS reduced activation ferritic/martensitic steels for fusion energy applications

    NASA Astrophysics Data System (ADS)

    Zinkle, S. J.; Boutard, J. L.; Hoelzer, D. T.; Kimura, A.; Lindau, R.; Odette, G. R.; Rieth, M.; Tan, L.; Tanigawa, H.

    2017-09-01

    Reduced activation ferritic/martensitic steels are currently the most technologically mature option for the structural material of proposed fusion energy reactors. Advanced next-generation higher performance steels offer the opportunity for improvements in fusion reactor operational lifetime and reliability, superior neutron radiation damage resistance, higher thermodynamic efficiency, and reduced construction costs. The two main strategies for developing improved steels for fusion energy applications are based on (1) an evolutionary pathway using computational thermodynamics modelling and modified thermomechanical treatments (TMT) to produce higher performance reduced activation ferritic/martensitic (RAFM) steels and (2) a higher risk, potentially higher payoff approach based on powder metallurgy techniques to produce very high strength oxide dispersion strengthened (ODS) steels capable of operation to very high temperatures and with potentially very high resistance to fusion neutron-induced property degradation. The current development status of these next-generation high performance steels is summarized, and research and development challenges for the successful development of these materials are outlined. Material properties including temperature-dependent uniaxial yield strengths, tensile elongations, high-temperature thermal creep, Charpy impact ductile to brittle transient temperature (DBTT) and fracture toughness behaviour, and neutron irradiation-induced low-temperature hardening and embrittlement and intermediate-temperature volumetric void swelling (including effects associated with fusion-relevant helium and hydrogen generation) are described for research heats of the new steels.

  20. N- and S-doped high surface area carbon derived from soya chunks as scalable and efficient electrocatalysts for oxygen reduction

    PubMed Central

    Rana, Moumita; Arora, Gunjan; Gautam, Ujjal K

    2015-01-01

    Highly stable, cost-effective electrocatalysts facilitating oxygen reduction are crucial for the commercialization of membrane-based fuel cell and battery technologies. Herein, we demonstrate that protein-rich soya chunks with a high content of N, S and P atoms are an excellent precursor for heteroatom-doped highly graphitized carbon materials. The materials are nanoporous, with a surface area exceeding 1000 m2 g−1, and they are tunable in doping quantities. These materials exhibit highly efficient catalytic performance toward oxygen reduction reaction (ORR) with an onset potential of −0.045 V and a half-wave potential of −0.211 V (versus a saturated calomel electrode) in a basic medium, which is comparable to commercial Pt catalysts and is better than other recently developed metal-free carbon-based catalysts. These exhibit complete methanol tolerance and a performance degradation of merely ∼5% as compared to ∼14% for a commercial Pt/C catalyst after continuous use for 3000 s at the highest reduction current. We found that the fraction of graphitic N increases at a higher graphitization temperature, leading to the near complete reduction of oxygen. It is believed that due to the easy availability of the precursor and the possibility of genetic engineering to homogeneously control the heteroatom distribution, the synthetic strategy is easily scalable, with further improvement in performance. PMID:27877746

  1. High performance felt-metal-wick heat pipe for solar receivers

    NASA Astrophysics Data System (ADS)

    Andraka, Charles E.; Moss, Timothy A.; Baturkin, Volodymyr; Zaripov, Vladlen; Nishchyk, Oleksandr

    2016-05-01

    Sodium heat pipes have been identified as a potentially effective heat transport approach for CSP systems that require near-isothermal input to power cycles or storage, such as dish Stirling and highly recuperated reheat-cycle supercritical CO2 turbines. Heat pipes offer high heat flux capabilities, leading to small receivers, as well as low exergetic losses through isothermal coupling with the engine. Sandia developed a felt metal wick approach in the 1990's, and demonstrated very high performance1. However, multiple durability issues arose, primarily the structural collapse of the wick at temperature over short time periods. NTUU developed several methods of improving robustness of the wick2, but the resulting wick had limited performance capabilities. For application to CSP systems, the wick structures must retain high heat pipe performance with robustness for long term operation. In this paper we present our findings in developing an optimal balance between performance and ruggedness, including operation of a laboratory-scale heat pipe for over 5500 hours so far. Application of heat pipes to dish-Stirling systems has been shown to increase performance as much as 20%3, and application to supercritical CO2 systems has been proposed.

  2. Detection of argan oil adulteration with vegetable oils by high-performance liquid chromatography-evaporative light scattering detection.

    PubMed

    Salghi, Rachid; Armbruster, Wolfgang; Schwack, Wolfgang

    2014-06-15

    Triacylglycerol profiles were selected as indicator of adulteration of argan oils to carry out a rapid screening of samples for the evaluation of authenticity. Triacylglycerols were separated by high-performance liquid chromatography-evaporative light scattering detection. Different peak area ratios were defined to sensitively detect adulteration of argan oil with vegetable oils such as sunflower, soy bean, and olive oil up to the level of 5%. Based on four reference argan oils, mean limits of detection and quantitation were calculated to approximately 0.4% and 1.3%, respectively. Additionally, 19 more argan oil reference samples were analysed by high-performance liquid chromatography-refractive index detection, resulting in highly comparative results. The overall strategy demonstrated a good applicability in practise, and hence a high potential to be transferred to routine laboratories. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Layer-by-Layer Assembly for Preparation of High-Performance Forward Osmosis Membrane

    NASA Astrophysics Data System (ADS)

    Yang, Libin; Zhang, Jinglong; Song, Peng; Wang, Zhan

    2018-01-01

    Forward osmosis (FO) membrane with high separation performance is needed to promote its practical applications. Herein, layer-by-layer (LbL) approach was used to prepare a thin and highly cross-linked polyamide layer on a polyacrylonitrile substrate surface to prepare a thin-film composite forward osmosis (TFC-FO) membrane with enhanced FO performance. The effects of monomer concentrations and assembly cycles on the performance of the TFC-FO membranes were systematically investigated. Under the optimal preparation condition, TFC-FO membrane achieved the best performance, exhibiting the water flux of 14.4/6.9 LMH and reverse salt flux of 7.7/3.8 gMH under the pressure retarded osmosis/forward osmosis (PRO/FO) mode using 1M NaCl as the draw against a DI-water feed, and a rejection of 96.1% for 2000 mg/L NaCl aqueous solution. The result indicated that layer-by-layer method was a potential method to regulate the structure and performance of the TFC-FO membrane.

  4. Performance and Durability Assessment of Two Emission Control Technologies Installed on a Legacy High-Speed Marine Diesel Engine

    DTIC Science & Technology

    2015-11-05

    program investigated cost- effective technologies to reduce emissions from legacy marine engines. High-speed, high-population engine models in both...respectively) were driven by health effects and environmental impacts. The U.S. Navy assessed its contribution to the domestic marine emission inventory...greatest potential. A laboratory developmental assessment was followed by a shipboard evaluation. Effective technology concepts applied to high

  5. A comparative study of scramjet injection strategies for high Mach numbers flows

    NASA Technical Reports Server (NTRS)

    Riggins, D. W.; Mcclinton, C. R.; Rogers, R. C.; Bittner, R. D.

    1992-01-01

    A simple method for predicting the axial distribution of supersonic combustor thrust potential is described. A complementary technique for illustrating the spatial evolution and distribution of thrust potential and loss mechanisms in reacting flows is developed. Wall jet cases and swept ramp injector cases for Mach 17 and Mach 13.5 flight enthalpy inflow conditions are numerically modeled and analyzed using these techniques. The visualization of thrust potential in the combustor for the various cases examined provides a unique tool for increasing understanding of supersonic combustor performance potential.

  6. Children's cognitive performance and selective attention following recent community violence.

    PubMed

    McCoy, Dana Charles; Raver, C Cybele; Sharkey, Patrick

    2015-03-01

    Research has shown robust relationships between community violence and psychopathology, yet relatively little is known about the ways in which community violence may affect cognitive performance and attention. The present study estimates the effects of police-reported community violence on 359 urban children's performance on a computerized neuropsychological task using a quasi-experimental fixed-effects design. Living in close proximity to a recent violent crime predicted faster but marginally less accurate task performance for the full sample, evolutionarily adaptive patterns of "vigilant" attention (i.e., less attention toward positive stimuli, more attention toward negative stimuli) for children reporting low trait anxiety, and potentially maladaptive patterns of "avoidant" attention for highly anxious children. These results suggest that community violence can directly affect children's cognitive performance while also having different (and potentially orthogonal) impacts on attention deployment depending on children's levels of biobehavioral risk. Implications for mental health and sociological research are discussed. © American Sociological Association 2015.

  7. Children's Cognitive Performance and Selective Attention Following Recent Community Violence

    PubMed Central

    McCoy, Dana Charles; Raver, C. Cybele; Sharkey, Patrick

    2015-01-01

    Research has shown robust relationships between community violence and psychopathology, yet relatively little is known about the ways in which community violence may affect cognitive performance and attention. The present study estimates the effects of police-reported community violence on 359 urban children's performance on a computerized neuropsychological task using a quasi-experimental fixed-effects design. Living in close proximity to a recent violent crime predicted faster but marginally less accurate task performance for the full sample, evolutionarily adaptive patterns of “vigilant” attention (i.e., less attention toward positive stimuli, more attention toward negative stimuli) for children reporting low trait anxiety, and potentially maladaptive patterns of “avoidant” attention for highly anxious children. These results suggest that community violence can directly affect children's cognitive performance while also having different (and potentially orthogonal) impacts on attention deployment depending on children's levels of biobehavioral risk. Implications for mental health and sociological research are discussed. PMID:25663176

  8. Chemical Potential Tuning and Enhancement of Thermoelectric Properties in Indium Selenides.

    PubMed

    Rhyee, Jong-Soo; Kim, Jin Hee

    2015-03-20

    Researchers have long been searching for the materials to enhance thermoelectric performance in terms of nano scale approach in order to realize phonon-glass-electron-crystal and quantum confinement effects. Peierls distortion can be a pathway to enhance thermoelectric figure-of-merit ZT by employing natural nano-wire-like electronic and thermal transport. The phonon-softening known as Kohn anomaly, and Peierls lattice distortion decrease phonon energy and increase phonon scattering, respectively, and, as a result, they lower thermal conductivity. The quasi-one-dimensional electrical transport from anisotropic band structure ensures high Seebeck coefficient in Indium Selenide. The routes for high ZT materials development of In₄Se₃ - δ are discussed from quasi-one-dimensional property and electronic band structure calculation to materials synthesis, crystal growth, and their thermoelectric properties investigations. The thermoelectric properties of In₄Se₃ - δ can be enhanced by electron doping, as suggested from the Boltzmann transport calculation. Regarding the enhancement of chemical potential, the chlorine doped In₄Se₃ - δ Cl 0.03 compound exhibits high ZT over a wide temperature range and shows state-of-the-art thermoelectric performance of ZT = 1.53 at 450 °C as an n -type material. It was proven that multiple elements doping can enhance chemical potential further. Here, we discuss the recent progress on the enhancement of thermoelectric properties in Indium Selenides by increasing chemical potential.

  9. Ionic-liquid-based ultrasound-assisted extraction of isoflavones from Belamcanda chinensis and subsequent screening and isolation of potential α-glucosidase inhibitors by ultrafiltration and semipreparative high-performance liquid chromatography.

    PubMed

    Li, Senlin; Li, Sainan; Huang, Yu; Liu, Chunming; Chen, Lina; Zhang, Yuchi

    2017-06-01

    The separation of a compound of interest from its structurally similar homologues to produce high-purity natural products is a challenging problem. This work proposes a novel method for the separation of iristectorigenin A from its structurally similar homologues by ionic-liquid-based ultrasound-assisted extraction and the subsequent screening and isolation of potential α-glucosidase inhibitors via ultrafiltration and semipreparative high-performance liquid chromatography. Ionic-liquid-based ultrasound-assisted extraction was successfully applied to the extraction of tectorigenin, iristectorigenin A, irigenin, and irisflorentin from Belamcanda chinensis. The optimum conditions for the efficient extraction of isoflavones were determined as 1.0 M 1-ethyl-3-methylimidazolium tetrafluoroborate with extraction time of 30 min and a solvent to solid ratio of 30 mL/g. Ultrafiltration with liquid chromatography and mass spectrometry was applied to screen and identify α-glucosidase inhibitors from B. chinensis, followed by the application of semipreparative high-performance liquid chromatography to separate and isolate the active constituents. Four major compounds including tectorigenin, iristectorigenin A, irigenin, and irisflorentin were screened and identified as α-glucosidase inhibitors, and then the four active compounds abovementioned were subsequently isolated by semipreparative high-performance liquid chromatography (99.89, 88.97, 99.79, and 99.97% purity, respectively). The results demonstrate that ionic liquid extraction can be successfully applied to the extraction of isoflavones from B. chinensis. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. High-indexed Pt 3Ni alloy tetrahexahedral nanoframes evolved through preferential CO etching

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Chenyu; Zhang, Lihua; Yang, Hongzhou

    2017-03-07

    Here, chemically controlling crystal structures in nanoscale is challenging, yet provides an effective way to improve catalytic performances. Pt-based nanoframes are a new class of nanomaterials that have great potential as high-performance catalysts. To date, these nanoframes are formed through acid etching in aqueous solutions, which demands long reaction time and often yields ill-defined surface structures. Herein we demonstrate a robust and unprecedented protocol for facile development of high-performance nanoframe catalysts using size and crystallographic facet-controlled PtNi 4 tetrahexahedral nanocrystals prepared through a colloidal synthesis approach as precursors. This new protocol employs the Mond process to preferentially dealloy nickel componentmore » in the <100> direction through carbon monoxide etching of carbon-supported PtNi 4 tetrahexahedral nanocrystals at an elevated temperature. The resultant Pt 3Ni alloy tetrahexahedral nanoframes possess an open, stable, and high-indexed microstructure, containing a segregated Pt thin layer strained to the Pt–Ni alloy surfaces and featuring a down-shift d-band center as revealed by the density functional theory calculations. These nanoframes exhibit much improved catalytic performance, such as high stability under prolonged electrochemical potential cycles, promoting direct electro-oxidation of formic acid to carbon dioxide and enhancing oxygen reduction reaction activities. Because carbon monoxide can be generated from the carbon support through thermal annealing in air, a common process for pretreating supported catalysts, the developed approach can be easily adopted for preparing industrial scale catalysts that are made of Pt–Ni and other alloy nanoframes.« less

  11. The Relationship between Engagement in Cocurricular Activities and Academic Performance: Exploring Gender Differences

    ERIC Educational Resources Information Center

    Zacherman, Avi; Foubert, John

    2014-01-01

    The effects of time spent in cocurricular activities on academic performance was tested. A curvilinear relationship between hours per week spent involved in cocurricular activities and grade point average was discovered such that a low amount of cocurricular involvement was beneficial to grades, while a high amount can potentially hurt academic…

  12. Heterogeneous High Throughput Scientific Computing with APM X-Gene and Intel Xeon Phi

    NASA Astrophysics Data System (ADS)

    Abdurachmanov, David; Bockelman, Brian; Elmer, Peter; Eulisse, Giulio; Knight, Robert; Muzaffar, Shahzad

    2015-05-01

    Electrical power requirements will be a constraint on the future growth of Distributed High Throughput Computing (DHTC) as used by High Energy Physics. Performance-per-watt is a critical metric for the evaluation of computer architectures for cost- efficient computing. Additionally, future performance growth will come from heterogeneous, many-core, and high computing density platforms with specialized processors. In this paper, we examine the Intel Xeon Phi Many Integrated Cores (MIC) co-processor and Applied Micro X-Gene ARMv8 64-bit low-power server system-on-a-chip (SoC) solutions for scientific computing applications. We report our experience on software porting, performance and energy efficiency and evaluate the potential for use of such technologies in the context of distributed computing systems such as the Worldwide LHC Computing Grid (WLCG).

  13. High performance Schottky diodes based on indium-gallium-zinc-oxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jiawei; Song, Aimin, E-mail: A.Song@manchester.ac.uk; Xin, Qian

    Indium-gallium-zinc-oxide (IGZO) Schottky diodes exhibit excellent performance in comparison with conventional devices used in future flexible high frequency electronics. In this work, a high performance Pt IGZO Schottky diode was presented by using a new fabrication process. An argon/oxygen mixture gas was introduced during the deposition of the Pt layer to reduce the oxygen deficiency at the Schottky interface. The diode showed a high barrier height of 0.92 eV and a low ideality factor of 1.36 from the current–voltage characteristics. Even the radius of the active area was 0.1 mm, and the diode showed a cut-off frequency of 6 MHz in themore » rectifier circuit. Using the diode as a demodulator, a potential application was also demonstrated in this work.« less

  14. Excellent electrochemical performances of cabbage-like polyaniline fabricated by template synthesis

    NASA Astrophysics Data System (ADS)

    Hu, Chenglong; Chen, Shaoyun; Wang, Yuan; Peng, Xianghong; Zhang, Weihong; Chen, Jian

    2016-07-01

    In this article, we explore a novel route to fabricate cabbage-like polyaniline (PANI) by in situ polymerization of aniline using the hydroxylated poly (methyl methacrylate) nanospheres (i.e. PMMAsbnd OHsbnd NS) as a template. A maximum specific capacitance of 584 F/g (the current density is 0.1 A/g) is achieved at 10 mV s-1 as well as a high stability of over 3000 cycles (the decrease in the SC is ∼9.1%), which suggests the potential application of the cabbage-like polyaniline in supercapacitors. The predominant electrochemical performances of the cabbage-like polyaniline can be attributed to their large surface area and larger-scale π-π conjugated system present in the quinoid structure of the PANI molecular chain, which can drastically facilitate electron diffusion and improve the utilization of the electroactive PANI during the charge/discharge processes. Accordingly, the facility of charge transfer can decrease resistance along with the PANI molecular chain to improve the electrochemical stability and achieve high-capacitance response characteristics. The present study introduces a new synthesis method for the development of various morphology of other conducting polymer, which may find potential applications in a variety of high-performance electrochemical devices.

  15. Investigation of Methods for Selectively Reinforcing Aluminum and Aluminum-Lithium Materials

    NASA Technical Reports Server (NTRS)

    Bird, R. Keith; Alexa, Joel A.; Messick, Peter L.; Domack, Marcia S.; Wagner, John A.

    2013-01-01

    Several studies have indicated that selective reinforcement offers the potential to significantly improve the performance of metallic structures for aerospace applications. Applying high-strength, high-stiffness fibers to the high-stress regions of aluminum-based structures can increase the structural load-carrying capability and inhibit fatigue crack initiation and growth. This paper discusses an investigation into potential methods for applying reinforcing fibers onto the surface of aluminum and aluminum-lithium plate. Commercially-available alumina-fiber reinforced aluminum alloy tapes were used as the reinforcing material. Vacuum hot pressing was used to bond the reinforcing tape to aluminum alloy 2219 and aluminum-lithium alloy 2195 base plates. Static and cyclic three-point bend testing and metallurgical analysis were used to evaluate the enhancement of mechanical performance and the integrity of the bond between the tape and the base plate. The tests demonstrated an increase in specific bending stiffness. In addition, no issues with debonding of the reinforcing tape from the base plate during bend testing were observed. The increase in specific stiffness indicates that selectively-reinforced structures could be designed with the same performance capabilities as a conventional unreinforced structure but with lower mass.

  16. 3D near-infrared imaging based on a single-photon avalanche diode array sensor

    NASA Astrophysics Data System (ADS)

    Mata Pavia, Juan; Charbon, Edoardo; Wolf, Martin

    2011-07-01

    An imager for optical tomography was designed based on a detector with 128×128 single-photon pixels that included a bank of 32 time-to-digital converters. Due to the high spatial resolution and the possibility of performing time resolved measurements, a new contact-less setup has been conceived in which scanning of the object is not necessary. This enables one to perform high-resolution optical tomography with much higher acquisition rate, which is fundamental in clinical applications. The setup has a resolution of 97ps and operates with a laser source with an average power of 3mW. This new imaging system generated a high amount of data that could not be processed by established methods, therefore new concepts and algorithms were developed to take full advantage of it. Images were generated using a new reconstruction algorithm that combined general inverse problem methods with Fourier transforms in order to reduce the complexity of the problem. Simulations show that the potential resolution of the new setup is in the order of millimeters. Experiments have been performed to confirm this potential. Images derived from the measurements demonstrate that we have already reached a resolution of 5mm.

  17. High-Performance Single-Photon Sources via Spatial Multiplexing

    DTIC Science & Technology

    2014-01-01

    ingredient for tasks such as quantum cryptography , quantum repeater, quantum teleportation, quantum computing, and truly-random number generation. Recently...SECURITY CLASSIFICATION OF: Single photons sources are desired for many potential quantum information applications. One common method to produce...photons sources are desired for many potential quantum information applications. One common method to produce single photons is based on a “heralding

  18. Potential relocation of climatic environments suggests high rates of climate displacement within the North American protection network

    Treesearch

    Enric Batllori; Marc-Andre Parisien; Sean A. Parks; Max A. Moritz; Carol Miller

    2017-01-01

    Ongoing climate change may undermine the effectiveness of protected area networks in preserving the set of biotic components and ecological processes they harbor, thereby jeopardizing their conservation capacity into the future. Metrics of climate change, particularly rates and spatial patterns of climatic alteration, can help assess potential threats. Here, we perform...

  19. Children's Performance on Pseudoword Repetition Depends on Auditory Trace Quality: Evidence from Event-Related Potentials.

    ERIC Educational Resources Information Center

    Ceponiene, Rita; Service, Elisabet; Kurjenluoma, Sanna; Cheour, Marie; Naatanen, Risto

    1999-01-01

    Compared the mismatch-negativity (MMN) component of auditory event-related brain potentials to explore the relationship between phonological short-term memory and auditory-sensory processing in 7- to 9-year olds scoring the highest and lowest on a pseudoword repetition test. Found that high and low repeaters differed in MMN amplitude to speech…

  20. Summary report for CF6 jet engine diagnostics program

    NASA Technical Reports Server (NTRS)

    Fasching, W. A.; Stricklin, R.

    1982-01-01

    Cockpit cruise recordings and test cell data in conjunction with hardware inspection results from airline overhaul shops were analyzed to define the extent and magnitude of performance deterioration of the General Electric CF6 high bypass turbofan engines. The magnitude of Short Term deterioration from the Long Term was isolated and the individual damage mechanisms that were the cause for the majority of the performance deterioration were identified. A potential for reduction in compressor clearance and a potential for improvement in turbine roundness, which corresponds to cruise SFC reductions of 0.38 and 0.36 percent, respectively, were identified.

  1. High Pulse Repetition Rate, Eye Safe, Visible Wavelength Lidar Systems: Design, Results and Potential

    NASA Technical Reports Server (NTRS)

    Spinhirne, James; Berkoff, Timothy; Welton, Elsworth; Campbell, James; OCStarr, David (Technical Monitor)

    2002-01-01

    In 1993 the first of the eye safe visible wavelength lidar systems known now as Micro Pulse Lidar (MPL) became operational. Since that time there have been several dozen of these systems produced and applied for full time profiling of atmospheric cloud and aerosol structure. There is currently an observational network of MPL sites to support global climate research. In the course of application of these instruments there have been significant improvements in understanding, design and performance of the systems. There are addition potential and applications beyond current practice for the high repetition rate, eye safe designs. The MPL network and the current capability, design and future potential of MPL systems are described.

  2. Transparent actuators and robots based on single-layer superaligned carbon nanotube sheet and polymer composites

    NASA Astrophysics Data System (ADS)

    Chen, Luzhuo; Weng, Mingcen; Zhang, Wei; Zhou, Zhiwei; Zhou, Yi; Xia, Dan; Li, Jiaxin; Huang, Zhigao; Liu, Changhong; Fan, Shoushan

    2016-03-01

    Transparent actuators have been attracting emerging interest recently, as they demonstrate potential applications in the fields of invisible robots, tactical displays, variable-focus lenses, and flexible cellular phones. However, previous technologies did not simultaneously realize macroscopic transparent actuators with advantages of large-shape deformation, low-voltage-driven actuation and fast fabrication. Here, we develop a fast approach to fabricate a high-performance transparent actuator based on single-layer superaligned carbon nanotube sheet and polymer composites. Various advantages of single-layer nanotube sheets including high transparency, considerable conductivity, and ultra-thin dimensions together with selected polymer materials completely realize all the above required advantages. Also, this is the first time that a single-layer nanotube sheet has been used to fabricate actuators with high transparency, avoiding the structural damage to the single-layer nanotube sheet. The transparent actuator shows a transmittance of 72% at the wavelength of 550 nm and bends remarkably with a curvature of 0.41 cm-1 under a DC voltage for 5 s, demonstrating a significant advance in technological performances compared to previous conventional actuators. To illustrate their great potential usage, a transparent wiper and a humanoid robot ``hand'' were elaborately designed and fabricated, which initiate a new direction in the development of high-performance invisible robotics and other intelligent applications with transparency.Transparent actuators have been attracting emerging interest recently, as they demonstrate potential applications in the fields of invisible robots, tactical displays, variable-focus lenses, and flexible cellular phones. However, previous technologies did not simultaneously realize macroscopic transparent actuators with advantages of large-shape deformation, low-voltage-driven actuation and fast fabrication. Here, we develop a fast approach to fabricate a high-performance transparent actuator based on single-layer superaligned carbon nanotube sheet and polymer composites. Various advantages of single-layer nanotube sheets including high transparency, considerable conductivity, and ultra-thin dimensions together with selected polymer materials completely realize all the above required advantages. Also, this is the first time that a single-layer nanotube sheet has been used to fabricate actuators with high transparency, avoiding the structural damage to the single-layer nanotube sheet. The transparent actuator shows a transmittance of 72% at the wavelength of 550 nm and bends remarkably with a curvature of 0.41 cm-1 under a DC voltage for 5 s, demonstrating a significant advance in technological performances compared to previous conventional actuators. To illustrate their great potential usage, a transparent wiper and a humanoid robot ``hand'' were elaborately designed and fabricated, which initiate a new direction in the development of high-performance invisible robotics and other intelligent applications with transparency. Electronic supplementary information (ESI) available: Video records of the actuation process of the transparent wiper and the grabbing-releasing process of the transparent robot ``hand'', transmittance spectra of the PET and BOPP films, the SEM image showing the thickness of the SACNT sheet, calculation of the curvature, calculation of energy efficiency, experimental results of the control experiment, modeling of the SACNT/PET and PET/BOPP composites and experimental results of the repeatability test. See DOI: 10.1039/c5nr07237a

  3. Identification of informative features for predicting proinflammatory potentials of engine exhausts.

    PubMed

    Wang, Chia-Chi; Lin, Ying-Chi; Lin, Yuan-Chung; Jhang, Syu-Ruei; Tung, Chun-Wei

    2017-08-18

    The immunotoxicity of engine exhausts is of high concern to human health due to the increasing prevalence of immune-related diseases. However, the evaluation of immunotoxicity of engine exhausts is currently based on expensive and time-consuming experiments. It is desirable to develop efficient methods for immunotoxicity assessment. To accelerate the development of safe alternative fuels, this study proposed a computational method for identifying informative features for predicting proinflammatory potentials of engine exhausts. A principal component regression (PCR) algorithm was applied to develop prediction models. The informative features were identified by a sequential backward feature elimination (SBFE) algorithm. A total of 19 informative chemical and biological features were successfully identified by SBFE algorithm. The informative features were utilized to develop a computational method named FS-CBM for predicting proinflammatory potentials of engine exhausts. FS-CBM model achieved a high performance with correlation coefficient values of 0.997 and 0.943 obtained from training and independent test sets, respectively. The FS-CBM model was developed for predicting proinflammatory potentials of engine exhausts with a large improvement on prediction performance compared with our previous CBM model. The proposed method could be further applied to construct models for bioactivities of mixtures.

  4. Potential uses of vacuum bubbles in noise and vibration control

    NASA Technical Reports Server (NTRS)

    Ver, Istvan L.

    1989-01-01

    Vacuum bubbles are new acoustic elements which are dynamically more compliant than the gas volume they replace, but which are statically robust. They are made of a thin metallic shell with vacuum in their cavity. Consequently, they pose no danger in terms of contamination or fire hazard. The potential of the vacuum bubble concept for noise and vibration control was assessed with special emphases on spacecraft and aircraft applications. The following potential uses were identified: (1) as a cladding, to reduce sound radiation of vibrating surfaces and the sound excitation of structures, (2) as a screen, to reflect or absorb an incident sound wave, and (3) as a liner, to increase low frequency sound transmission loss of double walls and to increase the low frequency sound attenuation of muffler baffles. It was found that geometric and material parameters must be controlled to a very high accuracy to obtain optimal performance and that performance is highly sensitive to variations in static pressure. Consequently, it was concluded that vacuum bubbles have more potential in spacecraft applications where static pressure is controlled more than in aircraft applications where large fluctuations in static pressure are common.

  5. Performance evaluation of the zero-multipole summation method in modern molecular dynamics software.

    PubMed

    Sakuraba, Shun; Fukuda, Ikuo

    2018-05-04

    The zero-multiple summation method (ZMM) is a cutoff-based method for calculating electrostatic interactions in molecular dynamics simulations, utilizing an electrostatic neutralization principle as a physical basis. Since the accuracies of the ZMM have been revealed to be sufficient in previous studies, it is highly desirable to clarify its practical performance. In this paper, the performance of the ZMM is compared with that of the smooth particle mesh Ewald method (SPME), where the both methods are implemented in molecular dynamics software package GROMACS. Extensive performance comparisons against a highly optimized, parameter-tuned SPME implementation are performed for various-sized water systems and two protein-water systems. We analyze in detail the dependence of the performance on the potential parameters and the number of CPU cores. Even though the ZMM uses a larger cutoff distance than the SPME does, the performance of the ZMM is comparable to or better than that of the SPME. This is because the ZMM does not require a time-consuming electrostatic convolution and because the ZMM gains short neighbor-list distances due to the smooth damping feature of the pairwise potential function near the cutoff length. We found, in particular, that the ZMM with quadrupole or octupole cancellation and no damping factor is an excellent candidate for the fast calculation of electrostatic interactions. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  6. High-frequency self-aligned graphene transistors with transferred gate stacks

    PubMed Central

    Cheng, Rui; Bai, Jingwei; Liao, Lei; Zhou, Hailong; Chen, Yu; Liu, Lixin; Lin, Yung-Chen; Jiang, Shan; Huang, Yu; Duan, Xiangfeng

    2012-01-01

    Graphene has attracted enormous attention for radio-frequency transistor applications because of its exceptional high carrier mobility, high carrier saturation velocity, and large critical current density. Herein we report a new approach for the scalable fabrication of high-performance graphene transistors with transferred gate stacks. Specifically, arrays of gate stacks are first patterned on a sacrificial substrate, and then transferred onto arbitrary substrates with graphene on top. A self-aligned process, enabled by the unique structure of the transferred gate stacks, is then used to position precisely the source and drain electrodes with minimized access resistance or parasitic capacitance. This process has therefore enabled scalable fabrication of self-aligned graphene transistors with unprecedented performance including a record-high cutoff frequency up to 427 GHz. Our study defines a unique pathway to large-scale fabrication of high-performance graphene transistors, and holds significant potential for future application of graphene-based devices in ultra–high-frequency circuits. PMID:22753503

  7. High-Performance Near-Infrared Photodetectors Based on p-type SnX (X=S, Se) Nanowires Grown via Chemical Vapor Deposition.

    PubMed

    Zheng, Dingshan; Fang, Hehai; Long, Mingsheng; Wu, Feng; Wang, Peng; Gong, Fan; Wu, Xing; Ho, Johnny C; Liao, Lei; Hu, Weida

    2018-06-21

    Because of the distinct electronic properties and strong interaction with light, quasi-one-dimensional nanowires (NWs) with semiconducting property have been demonstrated with tremendous potential for various technological applications, especially electronics and optoelectronics. However, until now, most of the state-of-the-art NW photodetectors are predominantly based on the N-type NW channel. Here, we successfully synthesized P-type SnSe and SnS NWs via chemical vapor deposition method and fabricated high-performance single SnSe and SnS NW photodetectors. Importantly, these two NW devices exhibit the impressive photodetection performance with the high photoconductive gain of 1.5 × 10 4 (2.8 × 10 4 ), good responsivity of 1.0× 10 4 A W -1 (1.6× 10 4 A W -1 ) as well as excellent detectivity of 3.3 × 10 12 Jones (2.4 × 10 12 Jones) under near-infrared illumination at a bias of 3 V for the SnSe NW (SnS NW) channel. The rise and fall times can be as efficient as 460 and 520 μs (1.2 and 15.1 ms), respectively, for the SnSe NW (SnS NW) device. Moreover, the spatially resolved photocurrent mapping of the devices further reveals the bias-dependent photocurrent generation. All these results evidently demonstrate that the P-type SnSe and SnS NWs have great potential to be applied in next-generation high-performance optoelectronic devices.

  8. Reducing Communication in Algebraic Multigrid Using Additive Variants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vassilevski, Panayot S.; Yang, Ulrike Meier

    Algebraic multigrid (AMG) has proven to be an effective scalable solver on many high performance computers. However, its increasing communication complexity on coarser levels has shown to seriously impact its performance on computers with high communication cost. Moreover, additive AMG variants provide not only increased parallelism as well as decreased numbers of messages per cycle but also generally exhibit slower convergence. Here we present various new additive variants with convergence rates that are significantly improved compared to the classical additive algebraic multigrid method and investigate their potential for decreased communication, and improved communication-computation overlap, features that are essential for goodmore » performance on future exascale architectures.« less

  9. Reducing Communication in Algebraic Multigrid Using Additive Variants

    DOE PAGES

    Vassilevski, Panayot S.; Yang, Ulrike Meier

    2014-02-12

    Algebraic multigrid (AMG) has proven to be an effective scalable solver on many high performance computers. However, its increasing communication complexity on coarser levels has shown to seriously impact its performance on computers with high communication cost. Moreover, additive AMG variants provide not only increased parallelism as well as decreased numbers of messages per cycle but also generally exhibit slower convergence. Here we present various new additive variants with convergence rates that are significantly improved compared to the classical additive algebraic multigrid method and investigate their potential for decreased communication, and improved communication-computation overlap, features that are essential for goodmore » performance on future exascale architectures.« less

  10. High Temperature Performance Evaluation of a Compliant Foil Seal

    NASA Technical Reports Server (NTRS)

    Salehi, Mohsen; Heshmat, Hooshang; Walton, James F., II

    2001-01-01

    The key points to be gleaned from the effort reported herein are that the CFS (Compliant Foil Seal) has been demonstrated in conjunction with a foil bearing in a small gas turbine simulator at temperatures as high as 1000 F and outperformed a comparable brush seal. Having demonstrated the feasibility of the CFS, it would appear that this new seal design has application potential in a wide range of machines. What remains is to demonstrate performance at higher pressure ratios, consistent performance at large rotor excursions and the ability to manufacture the seal in much larger sizes exceeding by an order of magnitude that which has been tested to date.

  11. Patient experience and process measures of quality of care at home health agencies: Factors associated with high performance.

    PubMed

    Smith, Laura M; Anderson, Wayne L; Lines, Lisa M; Pronier, Cristalle; Thornburg, Vanessa; Butler, Janelle P; Teichman, Lori; Dean-Whittaker, Debra; Goldstein, Elizabeth

    2017-01-01

    We examined the effects of provider characteristics on home health agency performance on patient experience of care (Home Health CAHPS) and process (OASIS) measures. Descriptive, multivariate, and factor analyses were used. While agencies score high on both domains, factor analyses showed that the underlying items represent separate constructs. Freestanding and Visiting Nurse Association agencies, higher number of home health aides per 100 episodes, and urban location were statistically significant predictors of lower performance. Lack of variation in composite measures potentially led to counterintuitive results for effects of organizational characteristics. This exploratory study showed the value of having separate quality domains.

  12. Design study of technology requirements for high performance single-propeller-driven business airplanes

    NASA Technical Reports Server (NTRS)

    Kohlman, D. L.; Hammer, J.

    1985-01-01

    Developments in aerodyamic, structural and propulsion technologies which influence the potential for significant improvements in performance and fuel efficiency of general aviation business airplanes are discussed. The advancements include such technolgies as natural laminar flow, composite materials, and advanced intermittent combustion engines. The design goal for this parameter design study is a range of 1300 nm at 300 knots true airspeed with a payload of 1200lbs at 35,000 ft cruise altitude. The individual and synergistic effects of various advanced technologies on the optimization of this class of high performance, single engine, propeller driven business airplanes are identified.

  13. Application of an inline dry powder inhaler to deliver high dose pharmaceutical aerosols during low flow nasal cannula therapy.

    PubMed

    Farkas, Dale; Hindle, Michael; Longest, P Worth

    2018-05-05

    Inline dry powder inhalers (DPIs) offer a potentially effective option to deliver high dose inhaled medications simultaneously with mechanical ventilation. The objective of this study was to develop an inline DPI that is actuated using a low volume of air (LV-DPI) to efficiently deliver pharmaceutical aerosols during low flow nasal cannula (LFNC) therapy. A characteristic feature of the new inline LV-DPIs was the use of hollow capillary tubes that both pierced the capsule and provided a pathway for inlet air and exiting aerosol. Aerosolization characteristics, LFNC depositional losses and emitted dose (ED) were determined using 10 mg powder masses of a small-particle excipient enhanced growth (EEG) formulation. While increasing the number of inlet capillaries from one to three did not improve performance, retracting the inlet and outlet capillaries did improve ED by over 30%. It was theorized that high quality performance requires both high turbulent energy to deaggregate the powder and high wall shear stresses to minimize capsule retention. Best case performance included a device ED of approximately 85% (of loaded dose) and device emitted mass median aerodynamic diameter of 1.77 µm. Maximum ED through the LFNC system and small diameter (4 mm) nasal cannula was approximately 65% of the loaded dose. Potential applications of this device include the delivery of high dose inhaled medications such as surfactants, antibiotics, mucolytics, and anti-inflammatories. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Kinetic experiments for evaluating the Nernst-Monod model for anode-respiring bacteria (ARB) in a biofilm anode.

    PubMed

    Torres, César I; Marcus, Andrew Kato; Parameswaran, Prathap; Rittmann, Bruce E

    2008-09-01

    Anode-respiring bacteria (ARB) are able to transfer electrons from reduced substrates to a solid electrode. Previously, we developed a biofilm model based on the Nernst-Monod equation to describe the anode potential losses of ARB that transfer electrons through a solid conductive matrix. In this work, we develop an experimental setup to demonstrate how well the Nernst-Monod equation is able to represent anode potential losses in an ARB biofilm. We performed low-scan cyclic voltammetry (LSCV) throughout the growth phase of an ARB biofilm on a graphite electrode growing on acetate in continuous mode. The (j)V response of 9 LSCVs corresponded well to the Nernst-Monod equation, and the half-saturation potential (E(KA)) was -0.425 +/- 0.002 V vs Ag/AgCl at 30 degrees C (-0.155 +/- 0.002 V vs SHE). Anode-potential losses from the potential of acetate reached approximately 0.225 V at current density saturation, and this loss was determined by our microbial community's E(KA) value. The LSCVs at high current densities showed no significant deviation from the Nernst-Monod ideal shape, indicating that the conductivity of the biofilm matrix (kappa(bio)) was high enough (> or = 0.5 mS/cm) that potential loss did not affect the performance of the biofilm anode. Our results confirm the applicability of the Nernst-Monod equation for a conductive biofilm anode and give insights of the processes that dominate anode potential losses in microbial fuel cells.

  15. Interpersonal Problem-Solving Skills, Executive Function and Learning Potential in Preadolescents with High/Low Family Risk.

    PubMed

    Mata, Sara; Gómez-Pérez, M Mar; Molinero, Clara; Calero, M Dolores

    2017-10-30

    Situations generated by high family risk have a negative effect on personal development, especially during preadolescence. Growing up in the presence of risk factors can lead to negative consequences on mental health or on school performance. The objective of this study focuses on individual factors related to this phenomenon during preadolescence. Specifically, we seek to establish whether level of family risk (high vs. low risk) is related to interpersonal problem-solving skills, executive function and learning potential in a sample of preadolescents controlling age, sex, total IQ, verbal comprehension ability and the classroom influences. The participants were 40 children, 23 boys and 17 girls between the ages of 7 and 12, twenty of which had a record on file with the Social and Childhood Protection Services of Information deleted to maintain the integrity of the review process, and therefore, a high family risk situation. The other 20 participants had a low family risk situation. Results show that the preadolescents from high family risk performed worse on interpersonal solving-problem skills and executive function (p < .05, b from -119,201.81 to 132,199.43, confidence interval from -162,589.78/-75,813.8 to 84,403.05/179,995.8). Nevertheless, they showed the same ability to learn as the participants from low family risk. These results highlight the negative effects of high family risk situation in preadolescents and give value of taking into account protective factors such as learning potential when assessing preadolescents from high family risk.

  16. Advances in Perovskite Solar Cells

    PubMed Central

    Zuo, Chuantian; Bolink, Henk J.; Han, Hongwei; Huang, Jinsong

    2016-01-01

    Organolead halide perovskite materials possess a combination of remarkable optoelectronic properties, such as steep optical absorption edge and high absorption coefficients, long charge carrier diffusion lengths and lifetimes. Taken together with the ability for low temperature preparation, also from solution, perovskite‐based devices, especially photovoltaic (PV) cells have been studied intensively, with remarkable progress in performance, over the past few years. The combination of high efficiency, low cost and additional (non‐PV) applications provides great potential for commercialization. Performance and applications of perovskite solar cells often correlate with their device structures. Many innovative device structures were developed, aiming at large‐scale fabrication, reducing fabrication cost, enhancing the power conversion efficiency and thus broadening potential future applications. This review summarizes typical structures of perovskite solar cells and comments on novel device structures. The applications of perovskite solar cells are discussed. PMID:27812475

  17. Differentiating Organic and Conventional Sage by Chromatographic and Mass Spectrometry Flow-Injection Fingerprints Combined with Principal Component Analysis

    PubMed Central

    Gao, Boyan; Lu, Yingjian; Sheng, Yi; Chen, Pei; Yu, Liangli (Lucy)

    2013-01-01

    High performance liquid chromatography (HPLC) and flow injection electrospray ionization with ion trap mass spectrometry (FIMS) fingerprints combined with the principal component analysis (PCA) were examined for their potential in differentiating commercial organic and conventional sage samples. The individual components in the sage samples were also characterized with an ultra-performance liquid chromatography with a quadrupole-time of flight mass spectrometer (UPLC Q-TOF MS). The results suggested that both HPLC and FIMS fingerprints combined with PCA could differentiate organic and conventional sage samples effectively. FIMS may serve as a quick test capable of distinguishing organic and conventional sages in 1 min, and could potentially be developed for high-throughput applications; whereas HPLC fingerprints could provide more chemical composition information with a longer analytical time. PMID:23464755

  18. Factors Associated with Participation in Employment for High School Leavers with Autism

    ERIC Educational Resources Information Center

    Chiang, Hsu-Min; Cheung, Ying Kuen; Li, Huacheng; Tsai, Luke Y.

    2013-01-01

    This study aimed to identify the factors associated with participation in employment for high school leavers with autism. A secondary data analysis of the National Longitudinal Transition Study 2 (NLTS2) data was performed. Potential factors were assessed using a weighted multivariate logistic regression. This study found that annual household…

  19. Observation and Analysis of Three Gifted Underachievers in an Underserved, Urban High School Setting

    ERIC Educational Resources Information Center

    Cavilla, Derek

    2017-01-01

    Underachievement among gifted students is a paradox that frustrates educators because of the significant disparity between students' potential and their performance. Complicating the issue is the highly individualized nature of the underperformance, which must take into consideration factors of student culture, socio-economic status, motivation,…

  20. A Guide to Group Counseling in Junior High School. Futureprint Counseling Component.

    ERIC Educational Resources Information Center

    Guillen, Mary A.

    Designed for junior high school counselors, the guide offers an outline for facilitating group counseling sessions. Intended to be held one class period a week for eight weeks, the sessions aim toward potential improvement in self-esteem, personal relationships, peer understanding, self-awareness, academic performance, and social skills. Each…

  1. The Practice of Co-Creating Leadership in High- and Low-Performing High Schools

    ERIC Educational Resources Information Center

    Jarrett, Ehren; Wasonga, Teresa; Murphy, John

    2010-01-01

    Purpose: The purpose of this paper is to examine teacher perceptions of the practice of co-creating leadership and its potential impacts on student achievement. Design/methodology/approach: Using a quantitative approach, the study compared the levels of the practice of co-creating leadership dispositional values and institutional conditions that…

  2. Multilevel Examination of Burnout among High School Staff: Importance of Staff and School Factors

    ERIC Educational Resources Information Center

    O'Brennan, Lindsey; Pas, Elise; Bradshaw, Catherine

    2017-01-01

    Previous studies have linked teacher burnout with job performance, satisfaction, and retention; however, there has been limited exploration of potential individual and school contextual factors that may influence burnout. The current study examined high school staff members' reports of burnout as they relate to staff demographics and perceptions…

  3. Compute Server Performance Results

    NASA Technical Reports Server (NTRS)

    Stockdale, I. E.; Barton, John; Woodrow, Thomas (Technical Monitor)

    1994-01-01

    Parallel-vector supercomputers have been the workhorses of high performance computing. As expectations of future computing needs have risen faster than projected vector supercomputer performance, much work has been done investigating the feasibility of using Massively Parallel Processor systems as supercomputers. An even more recent development is the availability of high performance workstations which have the potential, when clustered together, to replace parallel-vector systems. We present a systematic comparison of floating point performance and price-performance for various compute server systems. A suite of highly vectorized programs was run on systems including traditional vector systems such as the Cray C90, and RISC workstations such as the IBM RS/6000 590 and the SGI R8000. The C90 system delivers 460 million floating point operations per second (FLOPS), the highest single processor rate of any vendor. However, if the price-performance ration (PPR) is considered to be most important, then the IBM and SGI processors are superior to the C90 processors. Even without code tuning, the IBM and SGI PPR's of 260 and 220 FLOPS per dollar exceed the C90 PPR of 160 FLOPS per dollar when running our highly vectorized suite,

  4. Analysis of a Concentrated Solar Thermophotovoltaic System with Thermal Energy Storage

    NASA Astrophysics Data System (ADS)

    Seyf, Hamid Reza; Henry, Asegun

    2017-01-01

    We analyzed a high temperature concentrated solar thermophotovoltaic (TPV) system with thermal energy storage (TES), which is enabled by the potential usage of liquid metal as a high temperature heat transfer fluid. The system concept combines the great advantages of TES with the potential for low cost and high performance derived from photovoltaic cells fabricated on reusable substrates, with a high reflectivity back reflector for photon recycling. The TES makes the electricity produced dispatchable, and thus the system studied should be compared to technologies such as concentrated solar power (CSP) with TES (e.g., using a turbine) or PV with electrochemical batteries, instead of direct and intermittent electricity generation from flat plate PV alone. Thus, the addition of TES places the system in a different class than has previously been considered and based on the model results, appears worthy of increased attention. The system level analysis presented identifies important cell level parameters that have the greatest impact on the overall system performance, and as a result can help to set the priorities for future TPV cell development.

  5. Analysis of a Concentrated Solar Thermophotovoltaic System with Thermal Energy Storage

    NASA Astrophysics Data System (ADS)

    Seyf, Hamid Reza; Henry, Asegun

    We analyzed a high temperature concentrated solar thermophotovoltaic (TPV) system with thermal energy storage (TES), which is enabled by the potential usage of liquid metal as a high temperature heat transfer fluid. The system concept combines the great advantages of TES with the potential for low cost and high performance derived from photovoltaic cells fabricated on reusable substrates, with a high reflectivity back reflector for photon recycling. The TES makes the electricity produced dispatchable, and thus the system studied should be compared to technologies such as concentrated solar power (CSP) with TES (e.g., using a turbine) or PV with electrochemical batteries, instead of direct and intermittent electricity generation from flat plate PV alone. Thus, the addition of TES places the system in a different class than has previously been considered and based on the model results, appears worthy of increased attention. The system level analysis presented identifies important cell level parameters that have the greatest impact on the overall system performance, and as a result can help to set the priorities for future TPV cell development.

  6. Synergistic Effects between Doped Nitrogen and Phosphorus in Metal-Free Cathode for Zinc-Air Battery from Covalent Organic Frameworks Coated CNT.

    PubMed

    Li, Zhongtao; Zhao, Weinan; Yin, Changzhi; Wei, Liangqin; Wu, Wenting; Hu, Zhenpeng; Wu, Mingbo

    2017-12-27

    A covalent organic framework that is composed of hexachlorocyclotriphosphazene and dicyanamide has been coated on CNT to prepare metal-free oxygen reduction reaction catalyst through thermal polymerization of the Zn-air battery cathode. The N,P-codoped nanohybrids have highly porous structure and active synergistic effect between graphitic-N and -P, which promoted the electrocatalytic performance. The electrocatalysts exhibits remarkable half-wave potential (-0.162 V), high current density (6.1 mA/cm -2 ), good stability (83%), and excellent methanol tolerance for ORR in alkaline solution. Furthermore, the N,P-codoped nanohybrids were used as an air electrode for fabrication of a high performance Zn-air battery. The battery achieves a high open-circuit potential (1.53 V) and peak power density (0.255 W cm -2 ). Moreover, the effect of N,P codoping on the conjugate carbon system and the synergistic effect between graphitic-N and P have been calculated through density functional theory calculations, which are essentially in agreement with experimental data.

  7. Reorientation-effect measurement of the <21+∥E2̂∥21+> matrix element in 10Be

    NASA Astrophysics Data System (ADS)

    Orce, J. N.; Drake, T. E.; Djongolov, M. K.; Navrátil, P.; Triambak, S.; Ball, G. C.; Al Falou, H.; Churchman, R.; Cross, D. S.; Finlay, P.; Forssén, C.; Garnsworthy, A. B.; Garrett, P. E.; Hackman, G.; Hayes, A. B.; Kshetri, R.; Lassen, J.; Leach, K. G.; Li, R.; Meissner, J.; Pearson, C. J.; Rand, E. T.; Sarazin, F.; Sjue, S. K. L.; Stoyer, M. A.; Sumithrarachchi, C. S.; Svensson, C. E.; Tardiff, E. R.; Teigelhoefer, A.; Williams, S. J.; Wong, J.; Wu, C. Y.

    2012-10-01

    The highly-efficient and segmented TIGRESS γ-ray spectrometer at TRIUMF has been used to perform a reorientation-effect Coulomb-excitation study of the 21+ state at 3.368 MeV in 10Be. This is the first Coulomb-excitation measurement that enables one to obtain information on diagonal matrix elements for such a high-lying first excited state from γ-ray data. With the availability of accurate lifetime data, a value of -0.110±0.087 eb is determined for the <21+∥E2̂∥21+> diagonal matrix element, which assuming the rotor model, leads to a negative spectroscopic quadrupole moment of QS(21+)=-0.083±0.066 eb. This result is in agreement with both no-core shell-model calculations performed in this work with the CD-Bonn 2000 two-nucleon potential and large shell-model spaces, and Green's function Monte Carlo predictions with two- plus three-nucleon potentials.

  8. Stable platinum nanoclusters on genomic DNA–graphene oxide with a high oxygen reduction reaction activity

    PubMed Central

    Tiwari, Jitendra N.; Nath, Krishna; Kumar, Susheel; Tiwari, Rajanish N.; Kemp, K. Christian; Le, Nhien H.; Youn, Duck Hyun; Lee, Jae Sung; Kim, Kwang S.

    2013-01-01

    Nanosize platinum clusters with small diameters of 2–4 nm are known to be excellent catalysts for the oxygen reduction reaction. The inherent catalytic activity of smaller platinum clusters has not yet been reported due to a lack of preparation methods to control their size (<2 nm). Here we report the synthesis of platinum clusters (diameter ≤1.4 nm) deposited on genomic double-stranded DNA–graphene oxide composites, and their high-performance electrocatalysis of the oxygen reduction reaction. The electrochemical behaviour, characterized by oxygen reduction reaction onset potential, half-wave potential, specific activity, mass activity, accelerated durability test (10,000 cycles) and cyclic voltammetry stability (10,000 cycles) is attributed to the strong interaction between the nanosize platinum clusters and the DNA–graphene oxide composite, which induces modulation in the electronic structure of the platinum clusters. Furthermore, we show that the platinum cluster/DNA–graphene oxide composite possesses notable environmental durability and stability, vital for high-performance fuel cells and batteries. PMID:23900456

  9. Investigating the Potential of Deep Neural Networks for Large-Scale Classification of Very High Resolution Satellite Images

    NASA Astrophysics Data System (ADS)

    Postadjian, T.; Le Bris, A.; Sahbi, H.; Mallet, C.

    2017-05-01

    Semantic classification is a core remote sensing task as it provides the fundamental input for land-cover map generation. The very recent literature has shown the superior performance of deep convolutional neural networks (DCNN) for many classification tasks including the automatic analysis of Very High Spatial Resolution (VHR) geospatial images. Most of the recent initiatives have focused on very high discrimination capacity combined with accurate object boundary retrieval. Therefore, current architectures are perfectly tailored for urban areas over restricted areas but not designed for large-scale purposes. This paper presents an end-to-end automatic processing chain, based on DCNNs, that aims at performing large-scale classification of VHR satellite images (here SPOT 6/7). Since this work assesses, through various experiments, the potential of DCNNs for country-scale VHR land-cover map generation, a simple yet effective architecture is proposed, efficiently discriminating the main classes of interest (namely buildings, roads, water, crops, vegetated areas) by exploiting existing VHR land-cover maps for training.

  10. Sand-control completion design, installation, and performance in high-rate gas wells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burton, R.C.; Boggan, S.A.

    1998-09-01

    The Jupiter fields consist of a number of separate Rotliegendes gas reservoirs located approximately 90 miles off the Lincolnshire coast of the UK. The fields that make up Jupiter are Ganymede, Calisto, Europa, Sinope, and Thebe. Originally discovered in 1970, initial appraisal wells indicated poor reservoir properties and low deliverabilities. Development was postponed until a reappraisal of the area in the 1990`s indicated significant upside potential. The initial phase of the Jupiter development plan called for development of Ganymede and Calisto fields, with subsequent phases tying in Europa and Thebe. Initial development planning indicated a need for high field deliverabilitymore » at low capital cost to meet economic targets. A small number of high-rate-potential wells were to be used to deplete the reservoir. Ganymede would be developed by use of a 10-slot platform and Calisto would be developed subsea and tied back to the Ganymede platform. The paper discusses the reservoir, formation assessment, productivity design, drilling design, screen installation, and completion performance.« less

  11. Highly sensitive MoTe2 chemical sensor with fast recovery rate through gate biasing

    NASA Astrophysics Data System (ADS)

    Feng, Zhihong; Xie, Yuan; Chen, Jiancui; Yu, Yuanyuan; Zheng, Shijun; Zhang, Rui; Li, Quanning; Chen, Xuejiao; Sun, Chongling; Zhang, Hao; Pang, Wei; Liu, Jing; Zhang, Daihua

    2017-06-01

    The unique properties of two dimensional (2D) materials make them promising candidates for chemical and biological sensing applications. However, most 2D nanomaterial sensors suffer very long recovery time due to slow molecular desorption at room temperature. Here, we report a highly sensitive molybdenum ditelluride (MoTe2) gas sensor for NO2 and NH3 detection with greatly enhanced recovery rate. The effects of gate bias on sensing performance have been systematically studied. It is found that the recovery kinetics can be effectively adjusted by biasing the sensor to different gate voltages. Under the optimum biasing potential, the MoTe2 sensor can achieve more than 90% recovery after each sensing cycle well within 10 min at room temperature. The results demonstrate the potential of MoTe2 as a promising candidate for high-performance chemical sensors. The idea of exploiting gate bias to adjust molecular desorption kinetics can be readily applied to much wider sensing platforms based on 2D nanomaterials.

  12. Performance of R-410A Alternative Refrigerants in a Reciprocating Compressor Designed for Air Conditioning Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shrestha, Som S; Vineyard, Edward Allan; Mumpower, Kevin

    In response to environmental concerns raised by the use of refrigerants with high Global Warming Potential (GWP), the Air-Conditioning, Heating, and Refrigeration Institute (AHRI) has launched an industry-wide cooperative research program, referred to as the Low-GWP Alternative Refrigerants Evaluation Program (AREP), to identify and evaluate promising alternative refrigerants for major product categories. After successfully completing the first phase of the program in December 2013, AHRI launched a second phase of the Low-GWP AREP in 2014 to continue research in areas that were not previously addressed, including refrigerants in high ambient conditions, refrigerants in applications not tested in the first phase,more » and new refrigerants identified since testing for the program began. Although the Ozone Depletion Potential of R-410A is zero, this refrigerant is under scrutiny due to its high GWP. Several candidate alternative refrigerants have already demonstrated low global warming potential. Performance of these low-GWP alternative refrigerants is being evaluated for Air conditioning and heat pump applications to ensure acceptable system capacity and efficiency. This paper reports the results of a series of compressor calorimeter tests conducted for the second phase of the AREP to evaluate the performance of R-410A alternative refrigerants in a reciprocating compressor designed for air conditioning systems. It compares performance of alternative refrigerants ARM-71A, L41-1, DR-5A, D2Y-60, and R-32 to that of R-410A over a wide range of operating conditions. The tests showed that, in general, cooling capacities were slightly lower (except for the R-32), but energy efficiency ratios (EER) of the alternative refrigerants were comparable to that of R-410A.« less

  13. The roles of thermal insulation and heat storage in the energy performance of the wall materials: a simulation study.

    PubMed

    Long, Linshuang; Ye, Hong

    2016-04-07

    A high-performance envelope is the prerequisite and foundation to a zero energy building. The thermal conductivity and volumetric heat capacity of a wall are two thermophysical properties that strongly influence the energy performance. Although many case studies have been performed, the results failed to give a big picture of the roles of these properties in the energy performance of an active building. In this work, a traversal study on the energy performance of a standard room with all potential wall materials was performed for the first time. It was revealed that both heat storage materials and insulation materials are suitable for external walls. However, the importances of those materials are distinct in different situations: the heat storage plays a primary role when the thermal conductivity of the material is relatively high, but the effect of the thermal insulation is dominant when the conductivity is relatively low. Regarding internal walls, they are less significant to the energy performance than the external ones, and they need exclusively the heat storage materials with a high thermal conductivity. These requirements for materials are consistent under various climate conditions. This study may provide a roadmap for the material scientists interested in developing high-performance wall materials.

  14. The roles of thermal insulation and heat storage in the energy performance of the wall materials: a simulation study

    PubMed Central

    Long, Linshuang; Ye, Hong

    2016-01-01

    A high-performance envelope is the prerequisite and foundation to a zero energy building. The thermal conductivity and volumetric heat capacity of a wall are two thermophysical properties that strongly influence the energy performance. Although many case studies have been performed, the results failed to give a big picture of the roles of these properties in the energy performance of an active building. In this work, a traversal study on the energy performance of a standard room with all potential wall materials was performed for the first time. It was revealed that both heat storage materials and insulation materials are suitable for external walls. However, the importances of those materials are distinct in different situations: the heat storage plays a primary role when the thermal conductivity of the material is relatively high, but the effect of the thermal insulation is dominant when the conductivity is relatively low. Regarding internal walls, they are less significant to the energy performance than the external ones, and they need exclusively the heat storage materials with a high thermal conductivity. These requirements for materials are consistent under various climate conditions. This study may provide a roadmap for the material scientists interested in developing high-performance wall materials. PMID:27052186

  15. Development of high-performance printed organic field-effect transistors and integrated circuits.

    PubMed

    Xu, Yong; Liu, Chuan; Khim, Dongyoon; Noh, Yong-Young

    2015-10-28

    Organic electronics is regarded as an important branch of future microelectronics especially suited for large-area, flexible, transparent, and green devices, with their low cost being a key benefit. Organic field-effect transistors (OFETs), the primary building blocks of numerous expected applications, have been intensively studied, and considerable progress has recently been made. However, there are still a number of challenges to the realization of high-performance OFETs and integrated circuits (ICs) using printing technologies. Therefore, in this perspective article, we investigate the main issues concerning developing high-performance printed OFETs and ICs and seek strategies for further improvement. Unlike many other studies in the literature that deal with organic semiconductors (OSCs), printing technology, and device physics, our study commences with a detailed examination of OFET performance parameters (e.g., carrier mobility, threshold voltage, and contact resistance) by which the related challenges and potential solutions to performance development are inspected. While keeping this complete understanding of device performance in mind, we check the printed OFETs' components one by one and explore the possibility of performance improvement regarding device physics, material engineering, processing procedure, and printing technology. Finally, we analyze the performance of various organic ICs and discuss ways to optimize OFET characteristics and thus develop high-performance printed ICs for broad practical applications.

  16. Many shades of gray—The context-dependent performance of organic agriculture

    PubMed Central

    Seufert, Verena; Ramankutty, Navin

    2017-01-01

    Organic agriculture is often proposed as a more sustainable alternative to current conventional agriculture. We assess the current understanding of the costs and benefits of organic agriculture across multiple production, environmental, producer, and consumer dimensions. Organic agriculture shows many potential benefits (including higher biodiversity and improved soil and water quality per unit area, enhanced profitability, and higher nutritional value) as well as many potential costs including lower yields and higher consumer prices. However, numerous important dimensions have high uncertainty, particularly the environmental performance when controlling for lower organic yields, but also yield stability, soil erosion, water use, and labor conditions. We identify conditions that influence the relative performance of organic systems, highlighting areas for increased research and policy support. PMID:28345054

  17. Optical Properties of Lithium Terbium Fluoride and Implications for Performance in High Power Lasers (Postprint)

    DTIC Science & Technology

    2016-02-01

    Maximum 200 words) LiTbF4 has the potential to replace traditional magneto-optic (MO) garnet materials as a Faraday rotator in high power laser systems...TERMS LiTbF4; magneto-optic (MO) garnet materials; Faraday rotator; high power laser; Verdet constant; Sellmeier; optical isolator 16. SECURITY... Faraday rotator in high power laser systems due to its high Verdet constant. New measurements are reported of the ordinary and extraor- dinary

  18. Supporting the Development and Adoption of Automatic Lameness Detection Systems in Dairy Cattle: Effect of System Cost and Performance on Potential Market Shares

    PubMed Central

    Van Weyenberg, Stephanie; Van Nuffel, Annelies; Lauwers, Ludwig; Vangeyte, Jürgen

    2017-01-01

    Simple Summary Most prototypes of systems to automatically detect lameness in dairy cattle are still not available on the market. Estimating their potential adoption rate could support developers in defining development goals towards commercially viable and well-adopted systems. We simulated the potential market shares of such prototypes to assess the effect of altering the system cost and detection performance on the potential adoption rate. We found that system cost and lameness detection performance indeed substantially influence the potential adoption rate. In order for farmers to prefer automatic detection over current visual detection, the usefulness that farmers attach to a system with specific characteristics should be higher than that of visual detection. As such, we concluded that low system costs and high detection performances are required before automatic lameness detection systems become applicable in practice. Abstract Most automatic lameness detection system prototypes have not yet been commercialized, and are hence not yet adopted in practice. Therefore, the objective of this study was to simulate the effect of detection performance (percentage missed lame cows and percentage false alarms) and system cost on the potential market share of three automatic lameness detection systems relative to visual detection: a system attached to the cow, a walkover system, and a camera system. Simulations were done using a utility model derived from survey responses obtained from dairy farmers in Flanders, Belgium. Overall, systems attached to the cow had the largest market potential, but were still not competitive with visual detection. Increasing the detection performance or lowering the system cost led to higher market shares for automatic systems at the expense of visual detection. The willingness to pay for extra performance was €2.57 per % less missed lame cows, €1.65 per % less false alerts, and €12.7 for lame leg indication, respectively. The presented results could be exploited by system designers to determine the effect of adjustments to the technology on a system’s potential adoption rate. PMID:28991188

  19. Harnessing Diversity towards the Reconstructing of Large Scale Gene Regulatory Networks

    PubMed Central

    Yamanaka, Ryota; Kitano, Hiroaki

    2013-01-01

    Elucidating gene regulatory network (GRN) from large scale experimental data remains a central challenge in systems biology. Recently, numerous techniques, particularly consensus driven approaches combining different algorithms, have become a potentially promising strategy to infer accurate GRNs. Here, we develop a novel consensus inference algorithm, TopkNet that can integrate multiple algorithms to infer GRNs. Comprehensive performance benchmarking on a cloud computing framework demonstrated that (i) a simple strategy to combine many algorithms does not always lead to performance improvement compared to the cost of consensus and (ii) TopkNet integrating only high-performance algorithms provide significant performance improvement compared to the best individual algorithms and community prediction. These results suggest that a priori determination of high-performance algorithms is a key to reconstruct an unknown regulatory network. Similarity among gene-expression datasets can be useful to determine potential optimal algorithms for reconstruction of unknown regulatory networks, i.e., if expression-data associated with known regulatory network is similar to that with unknown regulatory network, optimal algorithms determined for the known regulatory network can be repurposed to infer the unknown regulatory network. Based on this observation, we developed a quantitative measure of similarity among gene-expression datasets and demonstrated that, if similarity between the two expression datasets is high, TopkNet integrating algorithms that are optimal for known dataset perform well on the unknown dataset. The consensus framework, TopkNet, together with the similarity measure proposed in this study provides a powerful strategy towards harnessing the wisdom of the crowds in reconstruction of unknown regulatory networks. PMID:24278007

  20. Thin-film-based scintillators for hard x-ray microimaging detectors: the ScinTAX Project

    NASA Astrophysics Data System (ADS)

    Rack, A.; Cecilia, A.; Douissard, P.-A.; Dupré, K.; Wesemann, V.; Baumbach, T.; Couchaud, M.; Rochet, X.; Riesemeier, H.; Radtke, M.; Martin, T.

    2014-09-01

    The project ScinTAX developed novel thin scintillating films for the application in high performance X-ray imaging and subsequent introduced new X-ray detectors to the market. To achieve this aim lutetium orthosilicate (LSO) scintillators doped with different activators were grown successfully by liquid phase epitaxy. The high density of LSO (7.4 g/cm3), the effective atomic number (65.2) and the high light yield make this scintillator highly applicable for indirect X-ray detection in which the ionizing radiation is converted into visible light and then registered by a digital detector. A modular indirect detection system has been developed to fully exploit the potential of this thin film scintillator for radiographic and tomographic imaging. The system is compatible for high-resolution imaging with moderate dose as well as adaptable to intense high-dose applications where radiation hard microimaging detectors are required. This proceedings article shall review the achieved performances and technical details on this high-resolution detector system which is now available. A selected example application demonstrates the great potential of the optimized detector system for hard X-ray microimaging, i.e. either to improve image contrast due to the availability of efficient thin crystal films or to reduce the dose to the sample.

  1. Analyzing the influence of high electrode potentials on intrinsic properties of catalyst coated membranes using impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Alink, Robert; Schüßler, Martina; Pospischil, Maximilian; Erath, Denis; Gerteisen, Dietmar

    2016-09-01

    Catalyst layers (CLs) with varying ionomer contents are produced using a stencil coating and screen printing technique. The optimum ionomer content of 31-34 wt% confirms the findings of other groups and performance is found to be independent of production technique. A new CL impedance transition line model is developed and fitted to in-situ data. The results indicate that the protonic contact resistance between CL and membrane is an important factor for the used transfer-decal process, especially for CLs with low ionomer loading. When subjected to potentials higher than 1.2 V, an increased performance is observed for low ionomer loading CLs. It is found that by applying the high potential to the electrode a significantly increased proton conductivity is counteracting and superimposing the loss of electrochemical surface area (ECSA) due to carbon corrosion. After aging, the performance of the 15 wt% CL is at the same level as the 31-34 wt% ionomer content CLs at the beginning of life, even though the ECSA is reduced due to carbon corrosion or platinum dissolution. The findings indicate that for the optimization of the ionomer loading, either the changing wetting properties or the redistribution of ionomer during lifetime have to be taken into account.

  2. Rhodium Nanoparticle-mesoporous Silicon Nanowire Nanohybrids for Hydrogen Peroxide Detection with High Selectivity

    PubMed Central

    Song, Zhiqian; Chang, Hucheng; Zhu, Weiqin; Xu, Chenlong; Feng, Xinjian

    2015-01-01

    Developing nanostructured electrocatalysts, with low overpotential, high selectivity and activity has fundamental and technical importance in many fields. We report here rhodium nanoparticle and mesoporous silicon nanowire (RhNP@mSiNW) hybrids for hydrogen peroxide (H2O2) detection with high electrocatalytic activity and selectivity. By employing electrodes that loaded with RhNP@mSiNW nanohybrids, interference caused from both many electroactive substances and dissolved oxygen were eliminated by electrochemical assaying at an optimal potential of +75 mV. Furthermore, the electrodes exhibited a high detection sensitivity of 0.53 μA/mM and fast response (< 5 s). This high-performance nanohybrid electrocatalyst has great potential for future practical application in various oxidase-base biosensors. PMID:25588953

  3. Potential Astrophysics Science Missions Enabled by NASA's Planned Ares V

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip; Thronson, Harley; Langhoff, Stepheni; Postman, Marc; Lester, Daniel; Lillie, Chuck

    2009-01-01

    NASA s planned Ares V cargo vehicle with its 10 meter diameter fairing and 60,000 kg payload mass to L2 offers the potential to launch entirely new classes of space science missions such as 8-meter monolithic aperture telescopes, 12- meter aperture x-ray telescopes, 16 to 24 meter segmented telescopes and highly capable outer planet missions. The paper will summarize the current Ares V baseline performance capabilities and review potential mission concepts enabled by these capabilities.

  4. The stingless bee species, Scaptotrigona aff. depilis, as a potential indicator of environmental pesticide contamination.

    PubMed

    de Souza Rosa, Annelise; I'Anson Price, Robbie; Ferreira Caliman, Maria Juliana; Pereira Queiroz, Elisa; Blochtein, Betina; Sílvia Soares Pires, Carmen; Imperatriz-Fonseca, Vera Lucia

    2015-08-01

    Neonicotinoids have the potential to enter the diet of pollinators that collect resources from contaminated plants. The species Scaptotrigona aff. depilis (Moure, 1942) can be a useful indicator of the prevalence of these chemicals in the environment. Using high-performance liquid chromatography-mass spectrometry, the authors devised a protocol for neonicotinoid residue extraction and detected the presence of neonicotinoids in the bee bodies. Thus, the authors consider this species to be a potential indicator of environmental contamination. © 2015 SETAC.

  5. High Resolution Far Infrared Spectroscopy of HFC-134a at Cold Temperatures

    NASA Astrophysics Data System (ADS)

    Wong, Andy; Medcraft, Chris; Thompson, Christopher; Robertson, Evan Gary; Appadoo, Dominique; McNaughton, Don

    2016-06-01

    Since the signing of the Montreal protocol, long-lived chlorofluorocarbons have been banned due to their high ozone depleting potential. In order to minimise the effect of such molecules, hydrofluorocarbons (HFCs) were synthesized as replacement molecules to be used as refrigerants and foam blowing agents. HFC-134a, or 1,1,1,2-tetrafluoroethane, is one of these molecules. Although HFCs do not cause ozone depletion, they are typically strong absorbers within the 10 micron atmospheric window, which lead to high global warming potentials. A high resolution FT-IR analysis of the νb{8} band (near 665 wn) of HFC-134a has been performed to help understand the intermode coupling between the νb{8} vibrational state and unobserved dark states.

  6. Additional Development and Systems Analyses of Pneumatic Technology for High Speed Civil Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Englar, Robert J.; Willie, F. Scott; Lee, Warren J.

    1999-01-01

    In the Task I portion of this NASA research grant, configuration development and experimental investigations have been conducted on a series of pneumatic high-lift and control surface devices applied to a generic High Speed Civil Transport (HSCT) model configuration to determine their potential for improved aerodynamic performance, plus stability and control of higher performance aircraft. These investigations were intended to optimize pneumatic lift and drag performance; provide adequate control and longitudinal stability; reduce separation flowfields at high angle of attack; increase takeoff/climbout lift-to-drag ratios; and reduce system complexity and weight. Experimental aerodynamic evaluations were performed on a semi-span HSCT generic model with improved fuselage fineness ratio and with interchangeable plain flaps, blown flaps, pneumatic Circulation Control Wing (CCW) high-lift configurations, plain and blown canards, a novel Circulation Control (CC) cylinder blown canard, and a clean cruise wing for reference. Conventional tail power was also investigated for longitudinal trim capability. Also evaluated was unsteady pulsed blowing of the wing high-lift system to determine if reduced pulsed mass flow rates and blowing requirements could be made to yield the same lift as that resulting from steady-state blowing. Depending on the pulsing frequency applied, reduced mass flow rates were indeed found able to provide lift augmentation at lesser blowing values than for the steady conditions. Significant improvements in the aerodynamic characteristics leading to improved performance and stability/control were identified, and the various components were compared to evaluate the pneumatic potential of each. Aerodynamic results were provided to the Georgia Tech Aerospace System Design Lab. to conduct the companion system analyses and feasibility study (Task 2) of theses concepts applied to an operational advanced HSCT aircraft. Results and conclusions from these experimental evaluations are presented herein, as are recommendations for further development and follow-on investigations. Also provided as an Appendix for reference are the basic results from the previous pneumatic HSCT investigations.

  7. Fe-Catalyzed Synthesis of Porous Carbons Spheres with High Graphitization Degree for High-Performance Supercapacitors

    NASA Astrophysics Data System (ADS)

    Zhu, Jun; Shi, Hongwei; Zhuo, Xin; Hu, Yalin

    2017-10-01

    We have developed a facile and efficient Fe-catalyzed method for fabrication of porous carbons spheres with high graphitization degree (GNPCs) using glucose as carbon precursor at relatively low carbonization temperature. GNPCs not only have relatively large accessible ion surface area to accommodate greater capacity but also high graphitization degree to accelerate ion diffusion. As a typical application, we demonstrate that GNPCs exhibit excellent electrochemical performance for use in supercapacitors, with high specific capacity of 150.6 F g-1 at current density of 1 A g-1 and good rate capability and superior cycling stability over 10,000 cycles, confirming their potential application for energy storage. Moreover, it is believed that this method offers a new strategy for synthesis of porous carbons with high graphitization degree.

  8. High-performance scientific computing in the cloud

    NASA Astrophysics Data System (ADS)

    Jorissen, Kevin; Vila, Fernando; Rehr, John

    2011-03-01

    Cloud computing has the potential to open up high-performance computational science to a much broader class of researchers, owing to its ability to provide on-demand, virtualized computational resources. However, before such approaches can become commonplace, user-friendly tools must be developed that hide the unfamiliar cloud environment and streamline the management of cloud resources for many scientific applications. We have recently shown that high-performance cloud computing is feasible for parallelized x-ray spectroscopy calculations. We now present benchmark results for a wider selection of scientific applications focusing on electronic structure and spectroscopic simulation software in condensed matter physics. These applications are driven by an improved portable interface that can manage virtual clusters and run various applications in the cloud. We also describe a next generation of cluster tools, aimed at improved performance and a more robust cluster deployment. Supported by NSF grant OCI-1048052.

  9. DEADS: Depth and Energy Aware Dominating Set Based Algorithm for Cooperative Routing along with Sink Mobility in Underwater WSNs.

    PubMed

    Umar, Amara; Javaid, Nadeem; Ahmad, Ashfaq; Khan, Zahoor Ali; Qasim, Umar; Alrajeh, Nabil; Hayat, Amir

    2015-06-18

    Performance enhancement of Underwater Wireless Sensor Networks (UWSNs) in terms of throughput maximization, energy conservation and Bit Error Rate (BER) minimization is a potential research area. However, limited available bandwidth, high propagation delay, highly dynamic network topology, and high error probability leads to performance degradation in these networks. In this regard, many cooperative communication protocols have been developed that either investigate the physical layer or the Medium Access Control (MAC) layer, however, the network layer is still unexplored. More specifically, cooperative routing has not yet been jointly considered with sink mobility. Therefore, this paper aims to enhance the network reliability and efficiency via dominating set based cooperative routing and sink mobility. The proposed work is validated via simulations which show relatively improved performance of our proposed work in terms the selected performance metrics.

  10. High-resolution MRI in detecting subareolar breast abscess.

    PubMed

    Fu, Peifen; Kurihara, Yasuyuki; Kanemaki, Yoshihide; Okamoto, Kyoko; Nakajima, Yasuo; Fukuda, Mamoru; Maeda, Ichiro

    2007-06-01

    Because subareolar breast abscess has a high recurrence rate, a more effective imaging technique is needed to comprehensively visualize the lesions and guide surgery. We performed a high-resolution MRI technique using a microscopy coil to reveal the characteristics and extent of subareolar breast abscess. High-resolution MRI has potential diagnostic value in subareolar breast abscess. This technique can be used to guide surgery with the aim of reducing the recurrence rate.

  11. Molecular dynamics simulation of thermal transport in UO 2 containing uranium, oxygen, and fission-product defects

    DOE PAGES

    Liu, Xiang -Yang; Cooper, Michael William D.; McClellan, Kenneth James; ...

    2016-10-25

    Uranium dioxide (UO 2) is the most commonly used fuel in light-water nuclear reactors and thermal conductivity controls the removal of heat produced by fission, thereby governing fuel temperature during normal and accident conditions. The use of fuel performance codes by the industry to predict operational behavior is widespread. A primary source of uncertainty in these codes is thermal conductivity, and optimized fuel utilization may be possible if existing empirical models are replaced with models that incorporate explicit thermal-conductivity-degradation mechanisms during fuel burn up. This approach is able to represent the degradation of thermal conductivity due to each individual defectmore » type, rather than the overall burn-up measure typically used, which is not an accurate representation of the chemical or microstructure state of the fuel that actually governs thermal conductivity and other properties. To generate a mechanistic thermal conductivity model, molecular dynamics (MD) simulations of UO 2 thermal conductivity including representative uranium and oxygen defects and fission products are carried out. These calculations employ a standard Buckingham-type interatomic potential and a potential that combines the many-body embedded-atom-method potential with Morse-Buckingham pair potentials. Potential parameters for UO 2+x and ZrO 2 are developed for the latter potential. Physical insights from the resonant phonon-spin-scattering mechanism due to spins on the magnetic uranium ions are introduced into the treatment of the MD results, with the corresponding relaxation time derived from existing experimental data. High defect scattering is predicted for Xe atoms compared to that of La and Zr ions. Uranium defects reduce the thermal conductivity more than oxygen defects. For each defect and fission product, scattering parameters are derived for application in both a Callaway model and the corresponding high-temperature model typically used in fuel-performance codes. The model is validated by comparison to low-temperature experimental measurements on single-crystal hyperstoichiometric UO 2+x samples and high-temperature literature data. Furthermore, this work will enable more accurate fuel-performance simulations and will extend to new fuel types and operating conditions, all of which improve the fuel economics of nuclear energy and maintain high fuel reliability and safety.« less

  12. Molecular dynamics simulation of thermal transport in UO 2 containing uranium, oxygen, and fission-product defects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xiang -Yang; Cooper, Michael William D.; McClellan, Kenneth James

    Uranium dioxide (UO 2) is the most commonly used fuel in light-water nuclear reactors and thermal conductivity controls the removal of heat produced by fission, thereby governing fuel temperature during normal and accident conditions. The use of fuel performance codes by the industry to predict operational behavior is widespread. A primary source of uncertainty in these codes is thermal conductivity, and optimized fuel utilization may be possible if existing empirical models are replaced with models that incorporate explicit thermal-conductivity-degradation mechanisms during fuel burn up. This approach is able to represent the degradation of thermal conductivity due to each individual defectmore » type, rather than the overall burn-up measure typically used, which is not an accurate representation of the chemical or microstructure state of the fuel that actually governs thermal conductivity and other properties. To generate a mechanistic thermal conductivity model, molecular dynamics (MD) simulations of UO 2 thermal conductivity including representative uranium and oxygen defects and fission products are carried out. These calculations employ a standard Buckingham-type interatomic potential and a potential that combines the many-body embedded-atom-method potential with Morse-Buckingham pair potentials. Potential parameters for UO 2+x and ZrO 2 are developed for the latter potential. Physical insights from the resonant phonon-spin-scattering mechanism due to spins on the magnetic uranium ions are introduced into the treatment of the MD results, with the corresponding relaxation time derived from existing experimental data. High defect scattering is predicted for Xe atoms compared to that of La and Zr ions. Uranium defects reduce the thermal conductivity more than oxygen defects. For each defect and fission product, scattering parameters are derived for application in both a Callaway model and the corresponding high-temperature model typically used in fuel-performance codes. The model is validated by comparison to low-temperature experimental measurements on single-crystal hyperstoichiometric UO 2+x samples and high-temperature literature data. Furthermore, this work will enable more accurate fuel-performance simulations and will extend to new fuel types and operating conditions, all of which improve the fuel economics of nuclear energy and maintain high fuel reliability and safety.« less

  13. Techniques for Enhancing Implosion Performance on High-Foot Ignition Capsules on NIF

    NASA Astrophysics Data System (ADS)

    Dittrich, T. R.; Hurricane, O.; Berzak Hopkins, L. F.; Callahan, D. A.; Clark, D.; Haan, S. W.; Hinkel, D. E.; Ma, T.; Nikroo, A.; Pak, A. E.; Park, H. S.; Salmonson, J. D.; Weber, C. R.

    2016-10-01

    Two options that have the potential to improve implosion performance in the High-Foot series of ignition capsules on NIF will be presented. The first option explores changing the shape of the x-ray drive to include a 4th and even a 5th shock in the implosion. According to simulations, these extra shocks improve the configuration of the assembled fuel and lead to improved confinement and performance. A ``ramp compression'' between the foot of the drive and the main pulse is also investigated. The second option studies the effect of increasing the Si dopant in a thin-shell capsule. NIF shot N150211 produced relatively high fusion yield (7.6E15 neutrons) but may have suffered from shell burn through. Increasing the Si dopant may delay this burn through yet preserve high implosion velocity. This work was performed under the auspices of the Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344.

  14. Three-dimensional nitrogen doped holey reduced graphene oxide framework as metal-free counter electrodes for high performance dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Yu, Mei; Zhang, Jindan; Li, Songmei; Meng, Yanbing; Liu, Jianhua

    2016-03-01

    Three-dimensional nitrogen doped holey reduced graphene oxide framework (NHGF) with hierarchical porosity structure was developed as high-performance metal-free counter electrodes (CEs) for dye-sensitized solar cells (DSSCs). With plenty of exposed active sites, efficient electron and ion transport pathways as well as a high surface hydrophilicity, NHGF-CE exhibits good electrocatalytic performances for I- /I3- redox couple and a low charge transfer resistance (Rct). The Rct of NHGF-CE is 1.46 Ω cm2, which is much lower than that of Pt-CE (4.02 Ω cm2). The DSSC with NHGF-CE reaches a power conversion efficiency of 5.56% and a fill factor of 65.5%, while those of the DSSC with Pt-CE are only 5.45% and 62.3%, respectively. The achievement of the highly efficient 3D structure presents a potential way to fabricate low-cost and metal-free counter electrodes with excellent performance.

  15. Aligned carbon nanotube/zinc oxide nanowire hybrids as high performance electrodes for supercapacitor applications

    NASA Astrophysics Data System (ADS)

    Al-Asadi, Ahmed S.; Henley, Luke Alexander; Wasala, Milinda; Muchharla, Baleeswaraiah; Perea-Lopez, Nestor; Carozo, Victor; Lin, Zhong; Terrones, Mauricio; Mondal, Kanchan; Kordas, Krisztian; Talapatra, Saikat

    2017-03-01

    Carbon nanotube/metal oxide based hybrids are envisioned as high performance electrochemical energy storage electrodes since these systems can provide improved performances utilizing an electric double layer coupled with fast faradaic pseudocapacitive charge storage mechanisms. In this work, we show that high performance supercapacitor electrodes with a specific capacitance of ˜192 F/g along with a maximum energy density of ˜3.8 W h/kg and a power density of ˜ 28 kW/kg can be achieved by synthesizing zinc oxide nanowires (ZnO NWs) directly on top of aligned multi-walled carbon nanotubes (MWCNTs). In comparison to pristine MWCNTs, these constitute a 12-fold of increase in specific capacitance as well as corresponding power and energy density values. These electrodes also possess high cycling stability and were able to retain ˜99% of their specific capacitance value over 2000 charging discharging cycles. These findings indicate potential use of a MWCNT/ZnO NW hybrid material for future electrochemical energy storage applications.

  16. Performance potential of an advanced technology Mach 3 turbojet engine installed on a conceptual high-speed civil transport

    NASA Technical Reports Server (NTRS)

    Morris, Shelby J., Jr.; Geiselhart, Karl A.; Coen, Peter G.

    1989-01-01

    The performance of an advanced technology conceptual turbojet optimized for a high-speed civil aircraft is presented. This information represents an estimate of performance of a Mach 3 Brayton (gas turbine) cycle engine optimized for minimum fuel burned at supersonic cruise. This conceptual engine had no noise or environmental constraints imposed upon it. The purpose of this data is to define an upper boundary on the propulsion performance for a conceptual commercial Mach 3 transport design. A comparison is presented demonstrating the impact of the technology proposed for this conceptual engine on the weight and other characteristics of a proposed high-speed civil transport. This comparison indicates that the advanced technology turbojet described could reduce the gross weight of a hypothetical Mach 3 high-speed civil transport design from about 714,000 pounds to about 545,000 pounds. The aircraft with the baseline engine and the aircraft with the advanced technology engine are described.

  17. Integrating Reconfigurable Hardware-Based Grid for High Performance Computing

    PubMed Central

    Dondo Gazzano, Julio; Sanchez Molina, Francisco; Rincon, Fernando; López, Juan Carlos

    2015-01-01

    FPGAs have shown several characteristics that make them very attractive for high performance computing (HPC). The impressive speed-up factors that they are able to achieve, the reduced power consumption, and the easiness and flexibility of the design process with fast iterations between consecutive versions are examples of benefits obtained with their use. However, there are still some difficulties when using reconfigurable platforms as accelerator that need to be addressed: the need of an in-depth application study to identify potential acceleration, the lack of tools for the deployment of computational problems in distributed hardware platforms, and the low portability of components, among others. This work proposes a complete grid infrastructure for distributed high performance computing based on dynamically reconfigurable FPGAs. Besides, a set of services designed to facilitate the application deployment is described. An example application and a comparison with other hardware and software implementations are shown. Experimental results show that the proposed architecture offers encouraging advantages for deployment of high performance distributed applications simplifying development process. PMID:25874241

  18. Porous Graphene Microflowers for High-Performance Microwave Absorption

    NASA Astrophysics Data System (ADS)

    Chen, Chen; Xi, Jiabin; Zhou, Erzhen; Peng, Li; Chen, Zichen; Gao, Chao

    2018-06-01

    Graphene has shown great potential in microwave absorption (MA) owing to its high surface area, low density, tunable electrical conductivity and good chemical stability. To fully realize graphene's MA ability, the microstructure of graphene should be carefully addressed. Here we prepared graphene microflowers (Gmfs) with highly porous structure for high-performance MA filler material. The efficient absorption bandwidth (reflection loss ≤ -10 dB) reaches 5.59 GHz and the minimum reflection loss is up to -42.9 dB, showing significant increment compared with stacked graphene. Such performance is higher than most graphene-based materials in the literature. Besides, the low filling content (10 wt%) and low density (40-50 mg cm-3) are beneficial for the practical applications. Without compounding with magnetic materials or conductive polymers, Gmfs show outstanding MA performance with the aid of rational microstructure design. Furthermore, Gmfs exhibit advantages in facile processibility and large-scale production compared with other porous graphene materials including aerogels and foams.

  19. High Performance MG-System Alloys For Weight Saving Applications: First Year Results From The Green Metallurgy EU Project

    NASA Astrophysics Data System (ADS)

    D'Errico, Fabrizio; Plaza, Gerardo Garces; Hofer, Markus; Kim, Shae K.

    The GREEN METALLURGY Project, a LIFE+ project co-financed by the EU Commission, has just concluded its first year. The Project seeks to set manufacturing processes at a pre-industrial scale for nanostructured-based high-performance Mg-Zn(Y) magnesium alloys. The Project's goal is the reduction of specific energy consumed and the overall carbon-footprint produced in the cradle-to-exit gate phases. Preliminary results addressed potentialities of the upstream manufacturing process pathway. Two Mg-Zn(Y) system alloys with rapid solidifying powders have been produced and directly extruded for 100% densification. Examination of the mechanical properties showed that such materials exhibit strength and elongation comparable to several high performing aluminum alloys; 390 MPa and 440 MPa for the average UTS for two different system alloys, and 10% and 15% elongations for two system alloys. These results, together with the low-environmental impact targeted, make these novel Mg alloys competitive as lightweight high-performance materials for automotive components.

  20. Static Indentation Load Capacity of the Superelastic 60NiTi for Rolling Element Bearings

    NASA Technical Reports Server (NTRS)

    DellaCorte, Christopher; Moore, Lewis E., III; Clifton, Joshua S.

    2012-01-01

    The nickel-rich, binary nickel-titanium alloys, such as 60NiTi (60Ni-40Ti by wt%), are emerging as viable materials for use in mechanical components like rolling element bearings and gears. 60NiTi is a superelastic material that simultaneously exhibits high hardness and a relatively low elastic modulus (approx.100 GPa). These properties result in the potential to endure extremely high indentation loads such as those encountered in bearings, gears and other mechanical components. In such applications, quantifying the load that results in permanent deformation that can affect component performance and life is important. In this paper, the static load capacity is measured by conducting indentation experiments in which 12.7 mm diameter balls made from the ceramic Si3N4 are pressed into highly polished, hardened 60NiTi flat plates. Hertz stress calculations are used to estimate contact stress. The results show that the 60NiTi surface can withstand an approximately 3400 kN load before significant denting (>0.6 microns deep) occurs. This load capacity is approximately twice that of high performance bearing steels suggesting that the potential exists to make highly resilient bearings and components from such materials.

  1. Honeycomb-like porous gel polymer electrolyte membrane for lithium ion batteries with enhanced safety.

    PubMed

    Zhang, Jinqiang; Sun, Bing; Huang, Xiaodan; Chen, Shuangqiang; Wang, Guoxiu

    2014-08-29

    Lithium ion batteries have shown great potential in applications as power sources for electric vehicles and large-scale energy storage. However, the direct uses of flammable organic liquid electrolyte with commercial separator induce serious safety problems including the risk of fire and explosion. Herein, we report the development of poly(vinylidene difluoride-co-hexafluoropropylene) polymer membranes with multi-sized honeycomb-like porous architectures. The as-prepared polymer electrolyte membranes contain porosity as high as 78%, which leads to the high electrolyte uptake of 86.2 wt%. The PVDF-HFP gel polymer electrolyte membranes exhibited a high ionic conductivity of 1.03 mS cm(-1) at room temperature, which is much higher than that of commercial polymer membranes. Moreover, the as-obtained gel polymer membranes are also thermally stable up to 350 °C and non-combustible in fire (fire-proof). When applied in lithium ion batteries with LiFePO4 as cathode materials, the gel polymer electrolyte demonstrated excellent electrochemical performances. This investigation indicates that PVDF-HFP gel polymer membranes could be potentially applicable for high power lithium ion batteries with the features of high safety, low cost and good performance.

  2. Honeycomb-like porous gel polymer electrolyte membrane for lithium ion batteries with enhanced safety

    NASA Astrophysics Data System (ADS)

    Zhang, Jinqiang; Sun, Bing; Huang, Xiaodan; Chen, Shuangqiang; Wang, Guoxiu

    2014-08-01

    Lithium ion batteries have shown great potential in applications as power sources for electric vehicles and large-scale energy storage. However, the direct uses of flammable organic liquid electrolyte with commercial separator induce serious safety problems including the risk of fire and explosion. Herein, we report the development of poly(vinylidene difluoride-co-hexafluoropropylene) polymer membranes with multi-sized honeycomb-like porous architectures. The as-prepared polymer electrolyte membranes contain porosity as high as 78%, which leads to the high electrolyte uptake of 86.2 wt%. The PVDF-HFP gel polymer electrolyte membranes exhibited a high ionic conductivity of 1.03 mS cm-1 at room temperature, which is much higher than that of commercial polymer membranes. Moreover, the as-obtained gel polymer membranes are also thermally stable up to 350°C and non-combustible in fire (fire-proof). When applied in lithium ion batteries with LiFePO4 as cathode materials, the gel polymer electrolyte demonstrated excellent electrochemical performances. This investigation indicates that PVDF-HFP gel polymer membranes could be potentially applicable for high power lithium ion batteries with the features of high safety, low cost and good performance.

  3. Honeycomb-like porous gel polymer electrolyte membrane for lithium ion batteries with enhanced safety

    PubMed Central

    Zhang, Jinqiang; Sun, Bing; Huang, Xiaodan; Chen, Shuangqiang; Wang, Guoxiu

    2014-01-01

    Lithium ion batteries have shown great potential in applications as power sources for electric vehicles and large-scale energy storage. However, the direct uses of flammable organic liquid electrolyte with commercial separator induce serious safety problems including the risk of fire and explosion. Herein, we report the development of poly(vinylidene difluoride-co-hexafluoropropylene) polymer membranes with multi-sized honeycomb-like porous architectures. The as-prepared polymer electrolyte membranes contain porosity as high as 78%, which leads to the high electrolyte uptake of 86.2 wt%. The PVDF-HFP gel polymer electrolyte membranes exhibited a high ionic conductivity of 1.03 mS cm−1 at room temperature, which is much higher than that of commercial polymer membranes. Moreover, the as-obtained gel polymer membranes are also thermally stable up to 350°C and non-combustible in fire (fire-proof). When applied in lithium ion batteries with LiFePO4 as cathode materials, the gel polymer electrolyte demonstrated excellent electrochemical performances. This investigation indicates that PVDF-HFP gel polymer membranes could be potentially applicable for high power lithium ion batteries with the features of high safety, low cost and good performance. PMID:25168687

  4. Ground and excited state properties of high performance anthocyanidin dyes-sensitized solar cells in the basic solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prima, Eka Cahya; Computational Material Design and Quantum Engineering Laboratory, Engineering Physics, Institut Teknologi Bandung; International Program on Science Education, Universitas Pendidikan Indonesia

    2015-09-30

    The aglycones of anthocyanidin dyes were previously reported to form carbinol pseudobase, cis-chalcone, and trans-chalcone due to the basic levels. The further investigations of ground and excited state properties of the dyes were characterized using density functional theory with PCM(UFF)/B3LYP/6-31+G(d,p) level in the basic solutions. However, to the best of our knowledge, the theoretical investigation of their potential photosensitizers has never been reported before. In this paper, the theoretical photovoltaic properties sensitized by dyes have been successfully investigated including the electron injections, the ground and excited state oxidation potentials, the estimated open circuit voltages, and the light harvesting efficiencies. Themore » results prove that the electronic properties represented by dyes’ LUMO-HOMO levels will affect to the photovoltaic performances. Cis-chalcone dye is the best anthocyanidin aglycone dye with the electron injection spontaneity of −1.208 eV, the theoretical open circuit voltage of 1.781 V, and light harvesting efficiency of 56.55% due to the best HOMO-LUMO levels. Moreover, the ethanol solvent slightly contributes to the better cell performance than the water solvent dye because of the better oxidation potential stabilization in the ground state as well as in the excited state. These results are in good agreement with the known experimental report that the aglycones of anthocyanidin dyes in basic solvent are the high potential photosensitizers for dye-sensitized solar cell.« less

  5. Non-Nuclear Testing of Space Nuclear Systems at NASA MSFC

    NASA Technical Reports Server (NTRS)

    Houts, Michael G.; Pearson, Boise J.; Aschenbrenner, Kenneth C.; Bradley, David E.; Dickens, Ricky; Emrich, William J.; Garber, Anne; Godfroy, Thomas J.; Harper, Roger T.; Martin, Jim J.; hide

    2010-01-01

    Highly realistic non-nuclear testing can be used to investigate and resolve potential issues with space nuclear power and propulsion systems. Non-nuclear testing is particularly useful for systems designed with fuels and materials operating within their demonstrated nuclear performance envelope. Non-nuclear testing allows thermal hydraulic, heat transfer, structural, integration, safety, operational, performance, and other potential issues to be investigated and resolved with a greater degree of flexibility and at reduced cost and schedule compared to nuclear testing. The primary limit of non-nuclear testing is that nuclear characteristics and potential nuclear issues cannot be directly investigated. However, non-nuclear testing can be used to augment the potential benefit from any nuclear testing that may be required for space nuclear system design and development. This paper describes previous and ongoing non-nuclear testing related to space nuclear systems at NASA's Marshall Space Flight Center (MSFC).

  6. Bipolar stacked quasi-all-solid-state lithium secondary batteries with output cell potentials of over 6 V

    PubMed Central

    Matsuo, Takahiro; Gambe, Yoshiyuki; Sun, Yan; Honma, Itaru

    2014-01-01

    Designing a lithium ion battery (LIB) with a three-dimensional device structure is crucial for increasing the practical energy storage density by avoiding unnecessary supporting parts of the cell modules. Here, we describe the superior secondary battery performance of the bulk all-solid-state LIB cell and a multilayered stacked bipolar cell with doubled cell potential of 6.5 V, for the first time. The bipolar-type solid LIB cell runs its charge/discharge cycle over 200 times in a range of 0.1–1.0 C with negligible capacity decrease despite their doubled output cell potentials. This extremely high performance of the bipolar cell is a result of the superior battery performance of the single cell; the bulk all-solid-state cell has a charge/discharge cycle capability of over 1500 although metallic lithium and LiFePO4 are employed as anodes and cathodes, respectively. The use of a quasi-solid electrolyte consisting of ionic liquid and Al2O3 nanoparticles is considered to be responsible for the high ionic conductivity and electrochemical stability at the interface between the electrodes and the electrolyte. This paper presents the effective applications of SiO2, Al2O3, and CeO2 nanoparticles and various Li+ conducting ionic liquids for the quasi-solid electrolytes and reports the best ever known cycle performances. Moreover, the results of this study show that the bipolar stacked three-dimensional device structure would be a smart choice for future LIBs with higher cell energy density and output potential. In addition, our report presents the advantages of adopting a three-dimensional cell design based on the solid-state electrolytes, which is of particular interest in energy-device engineering for mobile applications. PMID:25124398

  7. Epidermis Microstructure Inspired Graphene Pressure Sensor with Random Distributed Spinosum for High Sensitivity and Large Linearity.

    PubMed

    Pang, Yu; Zhang, Kunning; Yang, Zhen; Jiang, Song; Ju, Zhenyi; Li, Yuxing; Wang, Xuefeng; Wang, Danyang; Jian, Muqiang; Zhang, Yingying; Liang, Renrong; Tian, He; Yang, Yi; Ren, Tian-Ling

    2018-03-27

    Recently, wearable pressure sensors have attracted tremendous attention because of their potential applications in monitoring physiological signals for human healthcare. Sensitivity and linearity are the two most essential parameters for pressure sensors. Although various designed micro/nanostructure morphologies have been introduced, the trade-off between sensitivity and linearity has not been well balanced. Human skin, which contains force receptors in a reticular layer, has a high sensitivity even for large external stimuli. Herein, inspired by the skin epidermis with high-performance force sensing, we have proposed a special surface morphology with spinosum microstructure of random distribution via the combination of an abrasive paper template and reduced graphene oxide. The sensitivity of the graphene pressure sensor with random distribution spinosum (RDS) microstructure is as high as 25.1 kPa -1 in a wide linearity range of 0-2.6 kPa. Our pressure sensor exhibits superior comprehensive properties compared with previous surface-modified pressure sensors. According to simulation and mechanism analyses, the spinosum microstructure and random distribution contribute to the high sensitivity and large linearity range, respectively. In addition, the pressure sensor shows promising potential in detecting human physiological signals, such as heartbeat, respiration, phonation, and human motions of a pushup, arm bending, and walking. The wearable pressure sensor array was further used to detect gait states of supination, neutral, and pronation. The RDS microstructure provides an alternative strategy to improve the performance of pressure sensors and extend their potential applications in monitoring human activities.

  8. Performance Characterization of the Air Force Transformational Satellite 12 kW Hall Thruster

    NASA Technical Reports Server (NTRS)

    Kamhawi, Hani; Haag, Thomas W.; Smith, Timothy; Herman, Daniel; Huang, Wensheng; Shastry, Rohit; Peterson, Peter; Mathers, Alex

    2013-01-01

    The STMD GCD ISP project is tasked with developing, maturing, and testing enabling human exploration propulsion requirements and potential designs for advanced high-energy, in-space propulsion systems to support deep-space human exploration and reduce travel time between Earth's orbit and future destinations for human activity. High-power Hall propulsion systems have been identified as enabling technologies and have been the focus of the activities at NASA Glenn-In-house effort to evaluate performance and interrogate operation of NASA designed and manufactured Hall thrusters. Evaluate existing high TRL EP devices that may be suitable for implementation in SEP TDM.

  9. Mode-locked thin-disk lasers and their potential application for high-power terahertz generation

    NASA Astrophysics Data System (ADS)

    Saraceno, Clara J.

    2018-04-01

    The progress achieved in the last few decades in the performance of ultrafast laser systems with high average power has been tremendous, and continues to provide momentum to new exciting applications, both in scientific research and technology. Among the various technological advances that have shaped this progress, mode-locked thin-disk oscillators have attracted significant attention as a unique technology capable of providing ultrashort pulses with high energy (tens to hundreds of microjoules) and at very high repetition rates (in the megahertz regime) from a single table-top oscillator. This technology opens the door to compact high repetition rate ultrafast sources spanning the entire electromagnetic spectrum from the XUV to the terahertz regime, opening various new application fields. In this article, we focus on their unexplored potential as compact driving sources for high average power terahertz generation.

  10. A Control Strategy for High-Performance Macromolecular Materials

    DTIC Science & Technology

    2007-01-04

    None as of this date. Potential transitions with Moldflow Corporation, Boston, MA. New Discoveries None as of this date. Contract FA9550-06-C-0017, Final Technical Report, Submitted by Nonlinear Control Strategies, Inc.

  11. Alcoa Lafayette Operations Energy Efficiency Assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    2001-01-01

    The energy efficiency assessment performed at Alcoa's Lafayette Operations aluminum extrusion plant identified potential annual savings of $1,974,300 in eight high-energy-use areas with an estimated initial capital requirement of $2,308,500.

  12. Performance Model of Intercity Ground Passenger Transportation Systems

    DOT National Transportation Integrated Search

    1975-08-01

    A preliminary examination of the problems associated with mixed-traffic operations - conventional freight and high speed passenger trains - is presented. Approaches based upon a modest upgrading of existing signal systems are described. Potential cos...

  13. General Purpose Graphics Processing Unit Based High-Rate Rice Decompression and Reed-Solomon Decoding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loughry, Thomas A.

    As the volume of data acquired by space-based sensors increases, mission data compression/decompression and forward error correction code processing performance must likewise scale. This competency development effort was explored using the General Purpose Graphics Processing Unit (GPGPU) to accomplish high-rate Rice Decompression and high-rate Reed-Solomon (RS) decoding at the satellite mission ground station. Each algorithm was implemented and benchmarked on a single GPGPU. Distributed processing across one to four GPGPUs was also investigated. The results show that the GPGPU has considerable potential for performing satellite communication Data Signal Processing, with three times or better performance improvements and up to tenmore » times reduction in cost over custom hardware, at least in the case of Rice Decompression and Reed-Solomon Decoding.« less

  14. High-performance solid-state supercapacitors based on graphene-ZnO hybrid nanocomposites.

    PubMed

    Li, Zijiong; Zhou, Zhihua; Yun, Gaoqian; Shi, Kai; Lv, Xiaowei; Yang, Baocheng

    2013-11-12

    In this paper, we report a facile low-cost synthesis of the graphene-ZnO hybrid nanocomposites for solid-state supercapacitors. Structural analysis revealed a homogeneous distribution of ZnO nanorods that are inserted in graphene nanosheets, forming a sandwiched architecture. The material exhibited a high specific capacitance of 156 F g-1 at a scan rate of 5 mV.s-1. The fabricated solid-state supercapacitor device using these graphene-ZnO hybrid nanocomposites exhibits good supercapacitive performance and long-term cycle stability. The improved supercapacitance property of these materials could be ascribed to the increased conductivity of ZnO and better utilization of graphene. These results demonstrate the potential of the graphene-ZnO hybrid nanocomposites as an electrode in high-performance supercapacitors.

  15. High-performance solid-state supercapacitors based on graphene-ZnO hybrid nanocomposites

    NASA Astrophysics Data System (ADS)

    Li, Zijiong; Zhou, Zhihua; Yun, Gaoqian; Shi, Kai; Lv, Xiaowei; Yang, Baocheng

    2013-11-01

    In this paper, we report a facile low-cost synthesis of the graphene-ZnO hybrid nanocomposites for solid-state supercapacitors. Structural analysis revealed a homogeneous distribution of ZnO nanorods that are inserted in graphene nanosheets, forming a sandwiched architecture. The material exhibited a high specific capacitance of 156 F g-1 at a scan rate of 5 mV.s-1. The fabricated solid-state supercapacitor device using these graphene-ZnO hybrid nanocomposites exhibits good supercapacitive performance and long-term cycle stability. The improved supercapacitance property of these materials could be ascribed to the increased conductivity of ZnO and better utilization of graphene. These results demonstrate the potential of the graphene-ZnO hybrid nanocomposites as an electrode in high-performance supercapacitors.

  16. X-ray imaging detectors for synchrotron and XFEL sources

    PubMed Central

    Hatsui, Takaki; Graafsma, Heinz

    2015-01-01

    Current trends for X-ray imaging detectors based on hybrid and monolithic detector technologies are reviewed. Hybrid detectors with photon-counting pixels have proven to be very powerful tools at synchrotrons. Recent developments continue to improve their performance, especially for higher spatial resolution at higher count rates with higher frame rates. Recent developments for X-ray free-electron laser (XFEL) experiments provide high-frame-rate integrating detectors with both high sensitivity and high peak signal. Similar performance improvements are sought in monolithic detectors. The monolithic approach also offers a lower noise floor, which is required for the detection of soft X-ray photons. The link between technology development and detector performance is described briefly in the context of potential future capabilities for X-ray imaging detectors. PMID:25995846

  17. Hierarchical nanostructures of polypyrrole@MnO2 composite electrodes for high performance solid-state asymmetric supercapacitors.

    PubMed

    Tao, Jiayou; Liu, Nishuang; Li, Luying; Su, Jun; Gao, Yihua

    2014-03-07

    A solid-state high performance flexible asymmetric supercapacitor (ASC) was fabricated. Its anode is based on organic-inorganic materials, where polypyrrole (PPy) is uniformly wrapped on MnO2 nanoflowers grown on carbon cloth (CC), and its cathode is made of activated carbon (AC) on CC. The ASC has an areal capacitance of 1.41 F cm(-2) and an energy density of 0.63 mW h cm(-2) at a power density of 0.9 mW cm(-2). An energy storage unit fabricated using multiple ASCs can drive a light-emitting diode (LED) segment display, a mini motor and even a toy car after full charging. The high-performance ASCs have significant potential applications in flexible electronics and electrical vehicles.

  18. High-performance supercapacitors based on poly(ionic liquid)-modified graphene electrodes.

    PubMed

    Kim, Tae Young; Lee, Hyun Wook; Stoller, Meryl; Dreyer, Daniel R; Bielawski, Christopher W; Ruoff, Rodney S; Suh, Kwang S

    2011-01-25

    We report a high-performance supercapacitor incorporating a poly(ionic liquid)-modified reduced graphene oxide (PIL:RG-O) electrode and an ionic liquid (IL) electrolyte (specifically, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide or EMIM-NTf(2)). PIL:RG-O provides enhanced compatibility with the IL electrolyte, thereby increasing the effective electrode surface area accessible to electrolyte ions. The supercapacitor assembled with PIL:RG-O electrode and EMIM-NTf(2) electrolyte showed a stable electrochemical response up to 3.5 V operating voltage and was capable of yielding a maximum energy density of 6.5 W·h/kg with a power density of 2.4 kW/kg. These results demonstrate the potential of the PIL:RG-O material as an electrode in high-performance supercapacitors.

  19. High-performance solid-state supercapacitors based on graphene-ZnO hybrid nanocomposites

    PubMed Central

    2013-01-01

    In this paper, we report a facile low-cost synthesis of the graphene-ZnO hybrid nanocomposites for solid-state supercapacitors. Structural analysis revealed a homogeneous distribution of ZnO nanorods that are inserted in graphene nanosheets, forming a sandwiched architecture. The material exhibited a high specific capacitance of 156 F g−1 at a scan rate of 5 mV.s−1. The fabricated solid-state supercapacitor device using these graphene-ZnO hybrid nanocomposites exhibits good supercapacitive performance and long-term cycle stability. The improved supercapacitance property of these materials could be ascribed to the increased conductivity of ZnO and better utilization of graphene. These results demonstrate the potential of the graphene-ZnO hybrid nanocomposites as an electrode in high-performance supercapacitors. PMID:24215772

  20. The effects of physiological arousal on cognitive and psychomotor performance among individuals with high and low anxiety sensitivity.

    PubMed

    Barnard, Kirsten E; Broman-Fulks, Joshua J; Michael, Kurt D; Webb, Rosemary M; Zawilinski, Laci L

    2011-03-01

    Information-processing models of anxiety posit that anxiety pathology is associated with processing biases that consume cognitive resources and may detract from one's ability to process environmental stimuli. Previous research has consistently indicated that high anxiety has a negative impact on cognitive and psychomotor performance. Anxiety sensitivity, or the fear of anxiety and anxiety-related arousal sensations, is an anxiety vulnerability factor that has been shown to play a role in the development and maintenance of panic attacks and panic disorder. However, relatively little is known regarding the potential impact of anxiety sensitivity on performance. In the present study, 105 college students who scored either high (≥ 24) or low (≤ 14) on the Anxiety Sensitivity Index were randomly assigned to complete a series of arousal-induction tasks or no activity, followed immediately by three cognitive and psychomotor performance tasks: digit span - backward, math fluency, and grooved pegboard. Results indicated that participants with high anxiety sensitivity performed comparably to individuals with low anxiety sensitivity on each task, regardless of arousal level.

  1. Fabrication of highly ordered polyaniline nanocone on pristine graphene for high-performance supercapacitor electrodes

    NASA Astrophysics Data System (ADS)

    Song, Ningning; Wang, Wucong; Wu, Yue; Xiao, Ding; Zhao, Yaping

    2018-04-01

    The hybrids of pristine graphene with polyaniline were synthesized by in situ polymerizations for making a high-performance supercapacitor. The formed high-ordered PANI nanocones were vertically aligned on the graphene sheets. The length of the PANI nanocones increased with the concentration of aniline monomer. The specific capacitance of the hybrids electrode in the three-electrode system was measured as high as 481 F/g at a current density of 0.1 A/g, and its stability remained 87% after constant charge-discharge 10000 cycles at a current density of 1 A/g. This outstanding performance is attributed to the coupling effects of the pristine graphene and the hierarchical structure of the PANI possessing high specific surface area. The unique structure of the PANI provided more charge transmission pathways and fast charge-transfer speed of electrons to the pristine graphene because of its large specific area exposed to the electrolyte. The hybrid is expected to have potential applications in supercapacitor electrodes.

  2. Cannabis with high δ9-THC contents affects perception and visual selective attention acutely: an event-related potential study.

    PubMed

    Böcker, K B E; Gerritsen, J; Hunault, C C; Kruidenier, M; Mensinga, Tj T; Kenemans, J L

    2010-07-01

    Cannabis intake has been reported to affect cognitive functions such as selective attention. This study addressed the effects of exposure to cannabis with up to 69.4mg Delta(9)-tetrahydrocannabinol (THC) on Event-Related Potentials (ERPs) recorded during a visual selective attention task. Twenty-four participants smoked cannabis cigarettes with four doses of THC on four test days in a randomized, double blind, placebo-controlled, crossover study. Two hours after THC exposure the participants performed a visual selective attention task and concomitant ERPs were recorded. Accuracy decreased linearly and reaction times increased linearly with THC dose. However, performance measures and most of the ERP components related specifically to selective attention did not show significant dose effects. Only in relatively light cannabis users the Occipital Selection Negativity decreased linearly with dose. Furthermore, ERP components reflecting perceptual processing, as well as the P300 component, decreased in amplitude after THC exposure. Only the former effect showed a linear dose-response relation. The decrements in performance and ERP amplitudes induced by exposure to cannabis with high THC content resulted from a non-selective decrease in attentional or processing resources. Performance requiring attentional resources, such as vehicle control, may be compromised several hours after smoking cannabis cigarettes containing high doses of THC, as presently available in Europe and Northern America. Copyright 2010 Elsevier Inc. All rights reserved.

  3. Preliminary results with microchannel array plates employing curved microchannels to inhibit ion feedback. [for photon counters

    NASA Technical Reports Server (NTRS)

    Timothy, J. G.; Bybee, R. L.

    1977-01-01

    Up to now, microchannel array plates (MCPs) have been constructed with microchannels having a straight geometry and hence have been prone to ion-feedback instabilities at high operating potentials and high ambient pressures. This paper describes the performances of MCPs with curved (J and C configuration) microchannels to inhibit ion feedback. Plates with curved microchannels have demonstrated performances comparable to those of conventional channel electron multipliers with saturated output pulse-height distributions and modal gain values in excess of 10 to the 6th electrons/pulse.

  4. Comparison of High Performance Network Options: EDR InfiniBand vs.100Gb RDMA Capable Ethernet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kachelmeier, Luke Anthony; Van Wig, Faith Virginia; Erickson, Kari Natania

    These are the slides for a presentation at the HPC Mini Showcase. This is a comparison of two different high performance network options: EDR InfiniBand and 100Gb RDMA capable ethernet. The conclusion of this comparison is the following: there is good potential, as shown with the direct results; 100Gb technology is too new and not standardized, thus deployment effort is complex for both options; different companies are not necessarily compatible; if you want 100Gb/s, you must get it all from one place.

  5. Crystal habit-tuned nanoplate material of Li[Li1/3-2x/3NixMn2/3-x/3]O₂ for high-rate performance lithium-ion batteries.

    PubMed

    Wei, Guo-Zhen; Lu, Xia; Ke, Fu-Sheng; Huang, Ling; Li, Jun-Tao; Wang, Zhao-Xiang; Zhou, Zhi-You; Sun, Shi-Gang

    2010-10-15

    A cathode for high-rate performance lithium-ion batteries (LIBs) has been developed from a crystal habit-tuned nanoplate Li(Li(0.17)Ni(0.25)Mn(0.58))O₂ material, in which the proportion of (010) nanoplates (see figure) has been significantly increased. The results demonstrate that the fraction of the surface that is electrochemically active for Li(+) transportation is a key criterion for evaluating the different nanostructures of potential LIB materials.

  6. Strategic research in the social sciences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bainbridge, W.S.

    1995-12-31

    The federal government has identified a number of multi-agency funding initiatives for science in strategic areas, such as the initiatives on global environmental change and high performance computing, that give some role to the social sciences. Seven strategic areas for social science research are given with potential for federal funding: (1) Democratization. (2) Human Capital. (3) Administrative Science. (4) Cognitive Science. (5) High Performance Computing and Digital Libraries. (6) Human Dimensions of Environmental Change. and (7) Human Genetic Diversity. The first two are addressed in detail and the remainder as a group. 10 refs.

  7. Building a knowledge-based statistical potential by capturing high-order inter-residue interactions and its applications in protein secondary structure assessment.

    PubMed

    Li, Yaohang; Liu, Hui; Rata, Ionel; Jakobsson, Eric

    2013-02-25

    The rapidly increasing number of protein crystal structures available in the Protein Data Bank (PDB) has naturally made statistical analyses feasible in studying complex high-order inter-residue correlations. In this paper, we report a context-based secondary structure potential (CSSP) for assessing the quality of predicted protein secondary structures generated by various prediction servers. CSSP is a sequence-position-specific knowledge-based potential generated based on the potentials of mean force approach, where high-order inter-residue interactions are taken into consideration. The CSSP potential is effective in identifying secondary structure predictions with good quality. In 56% of the targets in the CB513 benchmark, the optimal CSSP potential is able to recognize the native secondary structure or a prediction with Q3 accuracy higher than 90% as best scored in the predicted secondary structures generated by 10 popularly used secondary structure prediction servers. In more than 80% of the CB513 targets, the predicted secondary structures with the lowest CSSP potential values yield higher than 80% Q3 accuracy. Similar performance of CSSP is found on the CASP9 targets as well. Moreover, our computational results also show that the CSSP potential using triplets outperforms the CSSP potential using doublets and is currently better than the CSSP potential using quartets.

  8. Review of Repair Materials for Fire-Damaged Reinforced Concrete Structures

    NASA Astrophysics Data System (ADS)

    Zahid, MZA Mohd; Abu Bakar, BH; Nazri, FM; Ahmad, MM; Muhamad, K.

    2018-03-01

    Reinforced concrete (RC) structures perform well during fire and may be repaired after the fire incident because their low heat conductivity prevents the loss or degradation of mechanical strength of the concrete core and internal reinforcing steel. When an RC structure is heated to more than 500 °C, mechanical properties such as compressive strength, stiffness, and tensile strength start to degrade and deformations occur. Although the fire-exposed RC structure shows no visible damage, its residual strength decreases compared with that in the pre-fire state. Upon thorough assessment, the fire-damaged RC structure can be repaired or strengthened, instead of subjecting to partial or total demolition followed by reconstruction. The structure can be repaired using several materials, such as carbon fiber-reinforced polymer, glass fiber-reinforced polymer, normal strength concrete, fiber-reinforced concrete, ferrocement, epoxy resin mortar, and high-performance concrete. Selecting an appropriate repair material that must be compatible with the substrate or base material is a vital step to ensure successful repair. This paper reviews existing repair materials and factors affecting their performance. Of the materials considered, ultra-high-performance fiber-reinforced concrete (UHPFRC) exhibits huge potential for repairing fire-damaged RC structures but lack of information available. Hence, further studies must be performed to assess the potential of UHPFRC in rehabilitating fire-damaged RC structures.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trędak, Przemysław, E-mail: przemyslaw.tredak@fuw.edu.pl; Rudnicki, Witold R.; Interdisciplinary Centre for Mathematical and Computational Modelling, University of Warsaw, ul. Pawińskiego 5a, 02-106 Warsaw

    The second generation Reactive Bond Order (REBO) empirical potential is commonly used to accurately model a wide range hydrocarbon materials. It is also extensible to other atom types and interactions. REBO potential assumes complex multi-body interaction model, that is difficult to represent efficiently in the SIMD or SIMT programming model. Hence, despite its importance, no efficient GPGPU implementation has been developed for this potential. Here we present a detailed description of a highly efficient GPGPU implementation of molecular dynamics algorithm using REBO potential. The presented algorithm takes advantage of rarely used properties of the SIMT architecture of a modern GPUmore » to solve difficult synchronizations issues that arise in computations of multi-body potential. Techniques developed for this problem may be also used to achieve efficient solutions of different problems. The performance of proposed algorithm is assessed using a range of model systems. It is compared to highly optimized CPU implementation (both single core and OpenMP) available in LAMMPS package. These experiments show up to 6x improvement in forces computation time using single processor of the NVIDIA Tesla K80 compared to high end 16-core Intel Xeon processor.« less

  10. A Male Advantage for Spatial and Object but Not Verbal Working Memory Using the N-Back Task

    ERIC Educational Resources Information Center

    Lejbak, Lisa; Crossley, Margaret; Vrbancic, Mirna

    2011-01-01

    Sex-related differences have been reported for performance and neural substrates on some working memory measures that carry a high cognitive load, including the popular n-back neuroimaging paradigm. Despite some evidence of a sex effect on the task, the influence of sex on performance represents a potential confound in neuroimaging research. The…

  11. Is robotic surgery cost-effective: yes.

    PubMed

    Liberman, Daniel; Trinh, Quoc-Dien; Jeldres, Claudio; Zorn, Kevin C

    2012-01-01

    With the expanding use of new technology in the treatment of clinically localized prostate cancer (PCa), the financial burden on the healthcare system and the individual has been important. Robotics offer many potential advantages to the surgeon and the patient. We assessed the potential cost-effectiveness of robotics in urological surgery and performed a comparative cost analysis with respect to other potential treatment modalities. The direct and indirect costs of purchasing, maintaining, and operating the robot must be compared to alternatives in treatment of localized PCa. Some expanding technologies including intensity-modulated radiation therapy are significantly more expensive than robotic surgery. Furthermore, the benefits of robotics including decreased length of stay and return to work are considerable and must be measured when evaluating its cost-effectiveness. Robot-assisted laparoscopic surgery comes at a high cost but can become cost-effective in mostly high-volume centers with high-volume surgeons. The device when utilized to its maximum potential and with eventual market-driven competition can become affordable.

  12. Paraffin-based hybrid rocket engines applications: A review and a market perspective

    NASA Astrophysics Data System (ADS)

    Mazzetti, Alessandro; Merotto, Laura; Pinarello, Giordano

    2016-09-01

    Hybrid propulsion technology for aerospace applications has received growing attention in recent years due to its important advantages over competitive solutions. Hybrid rocket engines have a great potential for several aeronautics and aerospace applications because of their safety, reliability, low cost and high performance. As a consequence, this propulsion technology is feasible for a number of innovative missions, including space tourism. On the other hand, hybrid rocket propulsion's main drawback, i.e. the difficulty in reaching high regression rate values using standard fuels, has so far limited the maturity level of this technology. The complex physico-chemical processes involved in hybrid rocket engines combustion are of major importance for engine performance prediction and control. Therefore, further investigation is ongoing in order to achieve a more complete understanding of such phenomena. It is well known that one of the most promising solutions for overcoming hybrid rocket engines performance limits is the use of liquefying fuels. Such fuels can lead to notably increased solid fuel regression rate due to the so-called "entrainment phenomenon". Among liquefying fuels, paraffin-based formulations have great potentials as solid fuels due to their low cost, availability (as they can be derived from industrial waste), low environmental impact and high performance. Despite the vast amount of literature available on this subject, a precise focus on market potential of paraffins for hybrid propulsion aerospace applications is lacking. In this work a review of hybrid rocket engines state of the art was performed, together with a detailed analysis of the possible applications of such a technology. A market study was carried out in order to define the near-future foreseeable development needs for hybrid technology application to the aforementioned missions. Paraffin-based fuels are taken into account as the most promising segment for market development.The present study is useful for driving future investigation and testing of paraffin-based fuels as solid fuels for hybrid propulsion technology, taking into account the needs of industrial applications of this technology.

  13. Properties of potential eco-friendly gas replacements for particle detectors in high-energy physics

    NASA Astrophysics Data System (ADS)

    Saviano, G.; Ferrini, M.; Benussi, L.; Bianco, S.; Piccolo, D.; Colafranceschi, S.; KjØlbro, J.; Sharma, A.; Yang, D.; Chen, G.; Ban, Y.; Li, Q.; Grassini, S.; Parvis, M.

    2018-03-01

    Gas detectors for elementary particles require F-based gases for optimal performance. Recent regulations demand the use of environmentally unfriendly F-based gases to be limited or banned. This work studies properties of potential eco-friendly gas replacements by computing the physical and chemical parameters relevant for use as detector media, and suggests candidates to be considered for experimental investigation.

  14. Psychrometric Field Measurement of Water Potential Changes following Leaf Excision.

    PubMed

    Savage, M J; Cass, A

    1984-01-01

    In situ measurement of sudden leaf water potential changes has not been performed under field conditions. A laboratory investigation involving the measurement of leaf water potential prior to and 2 to 200 minutes after excision of citrus leaves (Citrus jambhiri) showed good linear correlation (r = 0.99) between in situ leaf psychrometer and Scholander pressure chamber measurements. Following this, a field investigation was conducted which involved psychrometric measurement prior to petiole excision and 1 minute after excision. Simultaneous pressure chamber measurements were performed on neighboring leaves prior to the time of excision and then on the psychrometer leaf about 2 minutes after excision. These data indicate that within the first 2 minutes after excision, psychrometer and pressure chamber measurements were linearly correlated (r = 0.97). Under high evaporative demand conditions, the rate of water potential decrease was between 250 and 700 kilopascals in the first minute after excision. These results show that the thermocouple psychrometer can be used as a dynamic and nondestructive field technique for monitoring leaf water potential.

  15. Psychrometric Field Measurement of Water Potential Changes following Leaf Excision 1

    PubMed Central

    Savage, Michael J.; Cass, Alfred

    1984-01-01

    In situ measurement of sudden leaf water potential changes has not been performed under field conditions. A laboratory investigation involving the measurement of leaf water potential prior to and 2 to 200 minutes after excision of citrus leaves (Citrus jambhiri) showed good linear correlation (r = 0.99) between in situ leaf psychrometer and Scholander pressure chamber measurements. Following this, a field investigation was conducted which involved psychrometric measurement prior to petiole excision and 1 minute after excision. Simultaneous pressure chamber measurements were performed on neighboring leaves prior to the time of excision and then on the psychrometer leaf about 2 minutes after excision. These data indicate that within the first 2 minutes after excision, psychrometer and pressure chamber measurements were linearly correlated (r = 0.97). Under high evaporative demand conditions, the rate of water potential decrease was between 250 and 700 kilopascals in the first minute after excision. These results show that the thermocouple psychrometer can be used as a dynamic and nondestructive field technique for monitoring leaf water potential. PMID:16663394

  16. Non-Nuclear Testing of Fission Technologies at NASA MSFC

    NASA Technical Reports Server (NTRS)

    Houts, Robert G.; Pearson, J. Boise; Aschenbrenner, Kenneth C.; Bradley, David E.; Dickens, Ricky E.; Emrich, William J.; Garber, Anne E.; Godfroy, Thomas J.; Harper, Roger T.; Martin, Jim J.; hide

    2011-01-01

    Highly realistic non-nuclear testing can be used to investigate and resolve potential issues with space nuclear power and propulsion systems. Non-nuclear testing is particularly useful for systems designed with fuels and materials operating within their demonstrated nuclear performance envelope. Non-nuclear testing also provides an excellent way for screening potential advanced fuels and materials prior to nuclear testing, and for investigating innovative geometries and operating regimes. Non-nuclear testing allows thermal hydraulic, heat transfer, structural, integration, safety, operational, performance, and other potential issues to be investigated and resolved with a greater degree of flexibility and at reduced cost and schedule compared to nuclear testing. The primary limit of non-nuclear testing is that nuclear characteristics and potential nuclear issues cannot be directly investigated. However, non-nuclear testing can be used to augment the potential benefit from any nuclear testing that may be required for space nuclear system design and development. This paper describes previous and ongoing non-nuclear testing related to space nuclear systems at NASA s Marshall Space Flight Center (MSFC).

  17. High performance communication by people with paralysis using an intracortical brain-computer interface.

    PubMed

    Pandarinath, Chethan; Nuyujukian, Paul; Blabe, Christine H; Sorice, Brittany L; Saab, Jad; Willett, Francis R; Hochberg, Leigh R; Shenoy, Krishna V; Henderson, Jaimie M

    2017-02-21

    Brain-computer interfaces (BCIs) have the potential to restore communication for people with tetraplegia and anarthria by translating neural activity into control signals for assistive communication devices. While previous pre-clinical and clinical studies have demonstrated promising proofs-of-concept (Serruya et al., 2002; Simeral et al., 2011; Bacher et al., 2015; Nuyujukian et al., 2015; Aflalo et al., 2015; Gilja et al., 2015; Jarosiewicz et al., 2015; Wolpaw et al., 1998; Hwang et al., 2012; Spüler et al., 2012; Leuthardt et al., 2004; Taylor et al., 2002; Schalk et al., 2008; Moran, 2010; Brunner et al., 2011; Wang et al., 2013; Townsend and Platsko, 2016; Vansteensel et al., 2016; Nuyujukian et al., 2016; Carmena et al., 2003; Musallam et al., 2004; Santhanam et al., 2006; Hochberg et al., 2006; Ganguly et al., 2011; O'Doherty et al., 2011; Gilja et al., 2012), the performance of human clinical BCI systems is not yet high enough to support widespread adoption by people with physical limitations of speech. Here we report a high-performance intracortical BCI (iBCI) for communication, which was tested by three clinical trial participants with paralysis. The system leveraged advances in decoder design developed in prior pre-clinical and clinical studies (Gilja et al., 2015; Kao et al., 2016; Gilja et al., 2012). For all three participants, performance exceeded previous iBCIs (Bacher et al., 2015; Jarosiewicz et al., 2015) as measured by typing rate (by a factor of 1.4-4.2) and information throughput (by a factor of 2.2-4.0). This high level of performance demonstrates the potential utility of iBCIs as powerful assistive communication devices for people with limited motor function.Clinical Trial No: NCT00912041.

  18. Long-lasting effects of performance-contingent unconscious and conscious reward incentives during cued task-switching.

    PubMed

    Capa, Rémi L; Bouquet, Cédric A; Dreher, Jean-Claude; Dufour, André

    2013-01-01

    Motivation is often thought to interact consciously with executive control, although recent studies have indicated that motivation can also be unconscious. To date, however, the effects of unconscious motivation on high-order executive control functions have not been explored. Only a few studies using subliminal stimuli (i.e., those not related to motivation, such as an arrow to prime a response) have reported short-lived effects on high-order executive control functions. Here, building on research on unconscious motivation, in which a behavior of perseverance is induced to attain a goal, we hypothesized that subliminal motivation can have long-lasting effects on executive control processes. We investigated the impact of unconscious/conscious monetary reward incentives on evoked potentials and neural activity dynamics during cued task-switching performance. Participants performed long runs of task-switching. At the beginning of each run, a reward (50 cents or 1 cent) was displayed, either subliminally or supraliminally. Participants earned the reward contingent upon their correct responses to each trial of the run. A higher percentage of runs was achieved with higher (conscious and unconscious) than lower rewards, indicating that unconscious high rewards have long-lasting behavioral effects. Event-related potential (ERP) results indicated that unconscious and conscious rewards influenced preparatory effort in task preparation, as suggested by a greater fronto-central contingent negative variation (CNV) starting at cue-onset. However, a greater parietal P3 associated with better reaction times (RTs) was observed only under conditions of conscious high reward, suggesting a larger amount of working memory invested during task performance. Together, these results indicate that unconscious and conscious motivations are similar at early stages of task-switching preparation but differ during task performance. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Noninvasive beat-by-beat registration of ventricular late potentials using high resolution electrocardiography.

    PubMed

    Hombach, V; Kebbel, U; Höpp, H W; Winter, U; Hirche, H

    1984-08-01

    We have developed a new high resolution ECG equipment for recording cardiac microvolt potentials from the body surface. Noise reduction has been achieved by specially designed suction electrodes, by spatial averaging of the electrocardiograms from four electrode pairs, using extremely low noise amplifiers, by performing registrations within a Faraday cage, and by teaching the patient to relax during end expiratory breath holding. Fourteen young males (controls) and 30 patients with various cardiac diseases (27 with CHD) were studied. In normals ventricular late potentials were not seen, but in 12/30 patients clearcut diastolic potentials were found. In 7/12 patients with positive findings, late potentials appeared beat-by-beat, in 5/12 patients those signals occurred intermittently, in 11/30 patients questionably, and in the remaining 5/30 patients no late potentials were recorded. One patient with the Romano-Ward syndrome revealed phases with stable beat-by-beat and intermittently occurring ventricular late potentials. These results demonstrate the feasibility of continuous non-invasive recording of ventricular late potentials, whose clinical and prognostic significance remains to be established.

  20. Ultra-broad polypyrrole (PPy) nano-ribbons seeded by racemic surfactants aggregates and their high-performance electromagnetic radiation elimination.

    PubMed

    Jiao, Yingzhi; Wu, Fan; Zhang, Kun; Sun, Mengxiao; Xie, Aming; Dong, Wei

    2017-08-04

    Ribbon-like nano-structures possess high aspect ratios, and thus have great potential in the development of high-performance microwave absorption (MA) materials that can effectively eliminate adverse electromagnetic radiation. However, these nano-structures have been scarcely constructed in the field of MA, because of the lack of efficient synthetic routes. Herein, we developed an efficient method to successfully construct polypyrrole (PPy) nano-ribbons using the self-assembly aggregates of a racemic surfactant as the seeds. The frequency range with a reflection loss value of lower than -10 dB reached 7.68 GHz in the frequency range of 10.32-18.00 GHz, and surpassed all the currently reported PPy nano-structures, as well as most other MA nano-materials. Through changing the amount of surfactant, both the nano-structures and MA performance can be effectively regulated. Furthermore, the reason behind the high-performance MA of PPy nano-ribbons has been deeply explored. It opens up the opportunity for the application of conducting polymer nano-ribbons as a lightweight and tunable high-performance MA material, especially in applications of special aircraft and flexible electronics.

  1. Ultra-broad polypyrrole (PPy) nano-ribbons seeded by racemic surfactants aggregates and their high-performance electromagnetic radiation elimination

    NASA Astrophysics Data System (ADS)

    Jiao, Yingzhi; Wu, Fan; Zhang, Kun; Sun, Mengxiao; Xie, Aming; Dong, Wei

    2017-08-01

    Ribbon-like nano-structures possess high aspect ratios, and thus have great potential in the development of high-performance microwave absorption (MA) materials that can effectively eliminate adverse electromagnetic radiation. However, these nano-structures have been scarcely constructed in the field of MA, because of the lack of efficient synthetic routes. Herein, we developed an efficient method to successfully construct polypyrrole (PPy) nano-ribbons using the self-assembly aggregates of a racemic surfactant as the seeds. The frequency range with a reflection loss value of lower than -10 dB reached 7.68 GHz in the frequency range of 10.32-18.00 GHz, and surpassed all the currently reported PPy nano-structures, as well as most other MA nano-materials. Through changing the amount of surfactant, both the nano-structures and MA performance can be effectively regulated. Furthermore, the reason behind the high-performance MA of PPy nano-ribbons has been deeply explored. It opens up the opportunity for the application of conducting polymer nano-ribbons as a lightweight and tunable high-performance MA material, especially in applications of special aircraft and flexible electronics.

  2. Graphene base heterojunction transistor: An explorative study on device potential, optimization, and base parasitics

    NASA Astrophysics Data System (ADS)

    Di Lecce, Valerio; Grassi, Roberto; Gnudi, Antonio; Gnani, Elena; Reggiani, Susanna; Baccarani, Giorgio

    2015-12-01

    The Graphene-Base Heterojunction Transistor (GBHT) is a novel device concept with a high potential for analog high-frequency RF operation, in which the current is due to both thermionic emission and tunneling. In this paper we study through numerical simulations the influence of previously uninvestigated aspects of Si- and Ge-based GBHTs-namely, crystallographic orientation and doping density values-on the device performance; a comparison with an aggressively scaled HBT structure is then reported. The simulations are carried out with an in-house developed code based on a 1-D quantum transport model within the effective mass approximation and the assumptions of ballistic transport with non-parabolic corrections and ideal semiconductor-graphene interface. We show that crystallographic orientation has a negligible effect on the GBHT performance. The doping density values in the GBHT emitter and collector regions can be tailored to maximize the device performance: the Si device shows better overall performance than the Ge one, yielding a peak cut-off frequency fT higher than 4 THz together with an intrinsic voltage gain above 10, or even higher fT at the cost of a lower gain. The Si-based GBHT can potentially outperform the SiGe HBT by a 2.8 higher fT . For a Si-based GBHT with a circular active region of diameter 50-100 nm, a theoretical balanced value for fT and fmax above 2 THz can be achieved, provided the base parasitics are carefully minimized.

  3. Vertically-aligned BCN Nanotube Arrays with Superior Performance in Electrochemical capacitors

    PubMed Central

    Zhou, Junshuang; Li, Na; Gao, Faming; Zhao, Yufeng; Hou, Li; Xu, Ziming

    2014-01-01

    Electrochemical capacitors (EC) have received tremendous interest due to their high potential to satisfy the urgent demand in many advanced applications. The development of new electrode materials is considered to be the most promising approach to enhance the EC performance substantially. Herein, we present a high-capacity capacitor material based on vertically-aligned BC2N nanotube arrays (VA-BC2NNTAs) synthesized by low temperature solvothermal route. The obtained VA-BC2NNTAs display the good aligned nonbuckled tubular structure, which could indeed advantageously enhance capacitor performance. VA-BC2NNTAs exhibit an extremely high specific capacitance, 547 Fg−1, which is about 2–6 times larger than that of the presently available carbon-based materials. Meanwhile, VA-BC2NNTAs maintain an excellent rate capability and high durability. All these characteristics endow VA-BC2NNTAs an alternative promising candidate for an efficient electrode material for electrochemical capacitors (EC). PMID:25124300

  4. Challenge of Si/SiGe technology to optoelectronics

    NASA Astrophysics Data System (ADS)

    Chang, C. Y.; Jung, J. G.

    1993-01-01

    Low temperature epitaxy (LTE) of Si and SiGecanbe performed at a temperature of 550 C or lower. Very promising applications can be opened. Such as high speed/high frequency operations at 90GHZ by constructing heterojunction bipolar transistors. High performance FET'slikepseudomorphic p-channel orn-channel high mobility field effect transistors are presented which canbe composed to perform CMOS operations. Optoelectronic devices such as IRdetectors (1-12um), mutiple quantum well (MOW), disordered superlattice (d-SL) which are the potential candidatesof IR detector and optical sources (e.q. LED, LD etc.) Various physical insights regarding to SiGe heterostructures are presented which includeswave function filter, mass filter as well as band mixing are introduced. Researchesat National Nano Device Laboratory (NDL) which processes the capability of 0.3um Si ULSI technologies and SiGe works as well as lll-V, a-Si/SiGe lines are also presented.

  5. MnO2 nanowires-decorated carbon fiber cloth as electrodes for aqueous asymmetric supercapacitor

    NASA Astrophysics Data System (ADS)

    Hong, Congcong; Wang, Xing; Yu, Houlin; Wu, Huaping; Wang, Jianshan; Liu, Aiping

    Manganese dioxide nanowires (MnO2 NWs) anchored on carbon fiber cloth (CFC) were fabricated through a simple hydrothermal reaction and used as integrated electrodes for supercapacitor. The morphology-dependent electrochemical performance of MnO2 NWs was confirmed, yielding good capacitance performance with a high specific capacitance of 3.88Fṡcm‑2 at a charge-discharge current density of 5mAṡcm‑2 and excellent stability of 91.5% capacitance retention after 3000 cycles. Moreover, the composite electrodes were used to fabricate supercapacitors, which showed a high specific capacitance of 194mFṡcm‑2 at a charge-discharge current density of 2mAṡcm‑2 and high energy density of 0.108mWhṡcm‑2 at power density of 2mWṡcm‑2, foreboding its potential application for high-performance supercapacitor.

  6. Development of a high-specific-speed centrifugal compressor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodgers, C.

    1997-07-01

    This paper describes the development of a subscale single-stage centrifugal compressor with a dimensionless specific speed (Ns) of 1.8, originally designed for full-size application as a high volume flow, low pressure ratio, gas booster compressor. The specific stage is noteworthy in that it provides a benchmark representing the performance potential of very high-specific-speed compressors, of which limited information is found in the open literature. Stage and component test performance characteristics are presented together with traverse results at the impeller exit. Traverse test results were compared with recent CFD computational predictions for an exploratory analytical calibration of a very high-specific-speed impellermore » geometry. The tested subscale (0.583) compressor essentially satisfied design performance expectations with an overall stage efficiency of 74% including, excessive exit casing losses. It was estimated that stage efficiency could be increased to 81% with exit casing losses halved.« less

  7. High-Performance Flexible Perovskite Solar Cells on Ultrathin Glass: Implications of the TCO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dou, Benjia; Miller, Elisa M.; Christians, Jeffrey A.

    For halide perovskite solar cells (PSCs) to fulfill their vast potential for combining low-cost, high efficiency, and high throughput production they must be scaled using a truly transformative method, such as roll-to-roll processing. Bringing this reality closer to fruition, the present work demonstrates flexible perovskite solar cells with 18.1% power conversion efficiency on flexible Willow Glass substrates. Here, we highlight the importance of the transparent conductive oxide (TCO) layers on device performance by studying various TCOs. And while tin-doped indium oxide (ITO) and indium zinc oxide (IZO) based PSC devices demonstrate high photovoltaic performances, aluminum-doped zinc oxide (AZO) based devicesmore » underperformed in all device parameters. Analysis of X-ray photoemission spectroscopy data shows that the stoichiometry of the perovskite film surface changes dramatically when it is fabricated on AZO, demonstrating the importance of the substrate in perovskite film formation.« less

  8. Heterogeneous high throughput scientific computing with APM X-Gene and Intel Xeon Phi

    DOE PAGES

    Abdurachmanov, David; Bockelman, Brian; Elmer, Peter; ...

    2015-05-22

    Electrical power requirements will be a constraint on the future growth of Distributed High Throughput Computing (DHTC) as used by High Energy Physics. Performance-per-watt is a critical metric for the evaluation of computer architectures for cost- efficient computing. Additionally, future performance growth will come from heterogeneous, many-core, and high computing density platforms with specialized processors. In this paper, we examine the Intel Xeon Phi Many Integrated Cores (MIC) co-processor and Applied Micro X-Gene ARMv8 64-bit low-power server system-on-a-chip (SoC) solutions for scientific computing applications. As a result, we report our experience on software porting, performance and energy efficiency and evaluatemore » the potential for use of such technologies in the context of distributed computing systems such as the Worldwide LHC Computing Grid (WLCG).« less

  9. High-Performance Flexible Perovskite Solar Cells on Ultrathin Glass: Implications of the TCO

    DOE PAGES

    Dou, Benjia; Miller, Elisa M.; Christians, Jeffrey A.; ...

    2017-09-27

    For halide perovskite solar cells (PSCs) to fulfill their vast potential for combining low-cost, high efficiency, and high throughput production they must be scaled using a truly transformative method, such as roll-to-roll processing. Bringing this reality closer to fruition, the present work demonstrates flexible perovskite solar cells with 18.1% power conversion efficiency on flexible Willow Glass substrates. Here, we highlight the importance of the transparent conductive oxide (TCO) layers on device performance by studying various TCOs. And while tin-doped indium oxide (ITO) and indium zinc oxide (IZO) based PSC devices demonstrate high photovoltaic performances, aluminum-doped zinc oxide (AZO) based devicesmore » underperformed in all device parameters. Analysis of X-ray photoemission spectroscopy data shows that the stoichiometry of the perovskite film surface changes dramatically when it is fabricated on AZO, demonstrating the importance of the substrate in perovskite film formation.« less

  10. ZIF-8 Derived, Nitrogen-Doped Porous Electrodes of Carbon Polyhedron Particles for High-Performance Electrosorption of Salt Ions.

    PubMed

    Liu, Nei-Ling; Dutta, Saikat; Salunkhe, Rahul R; Ahamad, Tansir; Alshehri, Saad M; Yamauchi, Yusuke; Hou, Chia-Hung; Wu, Kevin C-W

    2016-07-12

    Three-dimensional (3-D) ZIF-8 derived carbon polyhedrons with high nitrogen (N) content, (denoted as NC-800) are synthesized for their application as high-performance electrodes in electrosorption of salt ions. The results showed a high specific capacitance of 160.8 F·g(-1) in 1 M NaCl at a scan rate of 5 mV·s(-1). Notably, integration of 3-D mesopores and micropores in NC-800 achieves an excellent capacitive deionization (CDI) performance. The electrosorption of salt ions at the electrical double layer is enhanced by N-doping at the edges of a hexagonal lattice of NC-800. As evidenced, when the initial NaCl solution concentration is 1 mM, the resultant NC-800 exhibits a remarkable CDI potential with a promising salt electrosorption capacity of 8.52 mg·g(-1).

  11. ZIF-8 Derived, Nitrogen-Doped Porous Electrodes of Carbon Polyhedron Particles for High-Performance Electrosorption of Salt Ions

    PubMed Central

    Liu, Nei-Ling; Dutta, Saikat; Salunkhe, Rahul R.; Ahamad, Tansir; Alshehri, Saad M.; Yamauchi, Yusuke; Hou, Chia-Hung; Wu, Kevin C.-W.

    2016-01-01

    Three-dimensional (3-D) ZIF-8 derived carbon polyhedrons with high nitrogen (N) content, (denoted as NC-800) are synthesized for their application as high-performance electrodes in electrosorption of salt ions. The results showed a high specific capacitance of 160.8 F·g−1 in 1 M NaCl at a scan rate of 5 mV·s−1. Notably, integration of 3-D mesopores and micropores in NC-800 achieves an excellent capacitive deionization (CDI) performance. The electrosorption of salt ions at the electrical double layer is enhanced by N-doping at the edges of a hexagonal lattice of NC-800. As evidenced, when the initial NaCl solution concentration is 1 mM, the resultant NC-800 exhibits a remarkable CDI potential with a promising salt electrosorption capacity of 8.52 mg·g−1. PMID:27404086

  12. Vapor Phase Catalytic Ammonia Reduction

    NASA Technical Reports Server (NTRS)

    Flynn, Michael T.; Harper, Lynn D. (Technical Monitor)

    1994-01-01

    This paper discusses the development of a Vapor Phase Catalytic Ammonia Reduction (VPCAR) teststand and the results of an experimental program designed to evaluate the potential of the technology as a water purification process. In the experimental program the technology is evaluated based upon product water purity, water recovery rate, and power consumption. The experimental work demonstrates that the technology produces high purity product water and attains high water recovery rates at a relatively high specific power consumption. The experimental program was conducted in 3 phases. In phase I an Igepon(TM) soap and water mixture was used to evaluate the performance of an innovative Wiped-Film Rotating-Disk evaporator and associated demister. In phase II a phenol-water solution was used to evaluate the performance of the high temperature catalytic oxidation reactor. In phase III a urine analog was used to evaluate the performance of the combined distillation/oxidation functions of the processor.

  13. Advances of aqueous rechargeable lithium-ion battery: A review

    NASA Astrophysics Data System (ADS)

    Alias, Nurhaswani; Mohamad, Ahmad Azmin

    2015-01-01

    The electrochemical characteristic of the aqueous rechargeable lithium-ion battery has been widely investigated in efforts to design a green and safe technology that can provide a highly specific capacity, high efficiency and long life for high power applications such as the smart grid and electric vehicle. It is believed that the advantages of this battery will overcome the limitations of the rechargeable lithium-ion battery with organic electrolytes that comprise safety and create high fabrication cost issues. This review focuses on the opportunities of the aqueous rechargeable lithium-ion battery compared to the conventional rechargeable lithium-ion battery with organic-based electrolytes. Previously reported studies are briefly summarised, together with the presentation of new findings based on the conductivity, morphology, electrochemical performance and cycling stability results. The factors that influence the electrochemical performance, the challenges and potential of the aqueous rechargeable lithium-ion battery are highlighted in order to understand and maintained the excellent battery performance.

  14. High-performance mesoporous LiFePO₄ from Baker's yeast.

    PubMed

    Zhang, Xudong; Zhang, Xueguang; He, Wen; Sun, Caiyun; Ma, Jingyun; Yuan, Junling; Du, Xiaoyong

    2013-03-01

    Based on the biomineralization assembly concept, a simple and inexpensive biomimetic sol-gel method is found to synthesize high-performance mesoporous LiFePO(4) (HPM-LFP). The key step of this approach is to apply Baker's yeast cells as both a structural template and a biocarbon source. The formation mechanism of ordered hierarchical mesoporous network structure is revealed by characterizing its morphology and microstructure. The HPM-LFP exhibits outstanding electrochemical performances. The HPM-LFP has a high discharge capacity (about 153 mAh g(-1) at a 0.1 C rate), only 2% capacity loss from the initial value after 100 cycles at a current density of 0.1 C. This simple and potentially universal design strategy is currently being pursued in the synthesis of an ideal cathode-active material for high power applications. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Potentiometric sensors with carbon black supporting platinum nanoparticles.

    PubMed

    Paczosa-Bator, Beata; Cabaj, Leszek; Piech, Robert; Skupień, Krzysztof

    2013-11-05

    For the first time, a single-piece, all-solid-state ion-selective electrode was fabricated with carbon black supporting platinum nanoparticles (PtNPs-CB) and a polymeric membrane. The PtNPs-CB, as an intermediate layer, was drop-casted directly on the solid substrate, and then an ionophore-doped solvent polymeric membrane was added in order to form a sensor. The performance of the newly developed electrodes was evaluated on the basis of potassium and nitrate ions. The stability of the electrical potential for the electrodes was examined by performing current-reversal chronopotentiometry, and the influence of the interfacial water film was assessed by the potentiometric aqueous-layer test. Fabricated potassium- and nitrate-selective electrodes displayed a Nernstian slope and several outstanding properties such as high long-term potential stability, potential repeatability, and reproducibility.

  16. Perceived Medical School stress of undergraduate medical students predicts academic performance: an observational study.

    PubMed

    Kötter, Thomas; Wagner, Josefin; Brüheim, Linda; Voltmer, Edgar

    2017-12-16

    Medical students are exposed to high amounts of stress. Stress and poor academic performance can become part of a vicious circle. In order to counteract this circularity, it seems important to better understand the relationship between stress and performance during medical education. The most widespread stress questionnaire designed for use in Medical School is the "Perceived Medical School Stress Instrument" (PMSS). It addresses a wide range of stressors, including workload, competition, social isolation and financial worries. Our aim was to examine the relation between the perceived Medical School stress of undergraduate medical students and academic performance. We measured Medical School stress using the PMSS at two different time points (at the end of freshman year and at the end of sophomore year) and matched stress scores together with age and gender to the first medical examination (M1) grade of the students (n = 456). PMSS scores from 2 and 14 months before M1 proved to be significant predictors for medical students' M1 grade. Age and gender also predict academic performance, making older female students with high stress scores a potential risk group for entering the vicious circle of stress and poor academic performance. PMSS sum scores 2 and 14 months before the M1 exam seem to have an independent predictive validity for medical students' M1 grade. More research is needed to identify potential confounders.

  17. Potential Lipid-Lowering Effects of Eleusine indica (L) Gaertn. Extract on High-Fat-Diet-Induced Hyperlipidemic Rats

    PubMed Central

    Ong, Siew Ling; Nalamolu, Koteswara Rao; Lai, How Yee

    2017-01-01

    Background: To date, anti-obesity agents based on natural products are tested for their potential using lipase inhibition assay through the interference of hydrolysis of fat by lipase resulting in reduced fat absorption without altering the central mechanisms. Previous screening study had indicated strong anti-obesity potential in Eleusine indica (E. indica), but to date, no pharmacologic studies have been reported so far. Objective: This study was performed to investigate the lipid-lowering effects of E. indica using both in vitro and in vivo models. Methods: The crude methanolic extract of E. indica was fractionated using hexane (H-Ei), dichloromethane (DCM-Ei), ethyl acetate (EA-Ei), butanol (B-Ei), and water (W-Ei). All the extracts were tested for antilipase activity using porcine pancreatic lipase. Because H-Ei showed the highest inhibition, it was further subjected to chemical profiling using high-performance liquid chromatography. Subsequently, oral toxicity analysis of H-Ei was performed [Organization for Economic Cooperation and Development guidelines using fixed dose procedure (No. 420)]; efficacy analysis was performed using high-fat diet (HFD)-induced hyperlipidemic female Sprague–Dawley rats. Results: According to the toxicity and efficacy analyses, H-Ei did not demonstrate any noticeable biochemical toxicity or physiologic abnormalities and did not cause any tissue damage as per histologic analysis. Furthermore, H-Ei significantly reduced body weight and improved serum profile and did not show hepatotoxicity and nephrotoxicity based on the serum profile. Moreover, H-Ei alleviated HFD-induced hepatosteatosis and ameliorated induced adiposity in both visceral and subcutaneous adipose tissue. Conclusion: Our results demonstrate that H-Ei effectively improved hyperlipidemia. Further studies to explore its possibility as an alternative pharmacologic agent to treat obesity are warranted. SUMMARY Hexane extract of Eleusine indica (H-Ei) showed strong potential in the inhibition of porcine pancreatic lipase (27.01 ± 5.68%).The acute oral toxicity of E. indica hexane extract on animal model falls into Globally Harmonized System Category 5 (low hazard), since mortality, clinical toxicity symptoms, gross pathologic, or histopathologic damage was not observed.The hexane extract of E. indica had significantly reduced the body weight and improved serum lipid profile, with reduction in serum triglycerides, total cholesterol, low-density lipoprotein, and elevation in high-density lipoprotein when comparing against the high-fat diet control group.Microscopic evaluation on histologic slides of liver and adipose tissues suggested that E. indica hexane extract had greatly improved liver steatosis and adipose tissue hypertrophy in high-fat diet control group. Abbreviation used: ALT: Alanine transaminase; AST: Aspartate transaminase; B-Ei: Butanol extract of E. indica; DCM-Ei: Dichloromethane extract of E. indica; EA-Ei: Ethyl acetate extract of E. indica; GHS: Globally Harmonized System; HDL: High-density lipoprotein; H-Ei: Hexane extract of E. indica; HFD: High-fat diet; HPLC: High-performance liquid chromatography; LDL: Low-density lipoprotein; NFD: Normal fed diet; PPL: Porcine pancreatic lipase; SEM: Standard error of mean; SD: Standard deviation; TC: Total cholesterol; TG: Triglycerides; W-Ei: Water extract of E. indica. PMID:28479718

  18. Potential Lipid-Lowering Effects of Eleusine indica (L) Gaertn. Extract on High-Fat-Diet-Induced Hyperlipidemic Rats.

    PubMed

    Ong, Siew Ling; Nalamolu, Koteswara Rao; Lai, How Yee

    2017-01-01

    To date, anti-obesity agents based on natural products are tested for their potential using lipase inhibition assay through the interference of hydrolysis of fat by lipase resulting in reduced fat absorption without altering the central mechanisms. Previous screening study had indicated strong anti-obesity potential in Eleusine indica ( E. indica ), but to date, no pharmacologic studies have been reported so far. This study was performed to investigate the lipid-lowering effects of E. indica using both in vitro and in vivo models. The crude methanolic extract of E. indica was fractionated using hexane (H-Ei), dichloromethane (DCM-Ei), ethyl acetate (EA-Ei), butanol (B-Ei), and water (W-Ei). All the extracts were tested for antilipase activity using porcine pancreatic lipase. Because H-Ei showed the highest inhibition, it was further subjected to chemical profiling using high-performance liquid chromatography. Subsequently, oral toxicity analysis of H-Ei was performed [Organization for Economic Cooperation and Development guidelines using fixed dose procedure (No. 420)]; efficacy analysis was performed using high-fat diet (HFD)-induced hyperlipidemic female Sprague-Dawley rats. According to the toxicity and efficacy analyses, H-Ei did not demonstrate any noticeable biochemical toxicity or physiologic abnormalities and did not cause any tissue damage as per histologic analysis. Furthermore, H-Ei significantly reduced body weight and improved serum profile and did not show hepatotoxicity and nephrotoxicity based on the serum profile. Moreover, H-Ei alleviated HFD-induced hepatosteatosis and ameliorated induced adiposity in both visceral and subcutaneous adipose tissue. Our results demonstrate that H-Ei effectively improved hyperlipidemia. Further studies to explore its possibility as an alternative pharmacologic agent to treat obesity are warranted. Hexane extract of Eleusine indica (H-Ei) showed strong potential in the inhibition of porcine pancreatic lipase (27.01 ± 5.68%).The acute oral toxicity of E. indica hexane extract on animal model falls into Globally Harmonized System Category 5 (low hazard), since mortality, clinical toxicity symptoms, gross pathologic, or histopathologic damage was not observed.The hexane extract of E. indica had significantly reduced the body weight and improved serum lipid profile, with reduction in serum triglycerides, total cholesterol, low-density lipoprotein, and elevation in high-density lipoprotein when comparing against the high-fat diet control group.Microscopic evaluation on histologic slides of liver and adipose tissues suggested that E. indica hexane extract had greatly improved liver steatosis and adipose tissue hypertrophy in high-fat diet control group. Abbreviation used: ALT: Alanine transaminase; AST: Aspartate transaminase; B-Ei: Butanol extract of E. indica ; DCM-Ei: Dichloromethane extract of E. indica ; EA-Ei: Ethyl acetate extract of E. indica ; GHS: Globally Harmonized System; HDL: High-density lipoprotein; H-Ei: Hexane extract of E. indica ; HFD: High-fat diet; HPLC: High-performance liquid chromatography; LDL: Low-density lipoprotein; NFD: Normal fed diet; PPL: Porcine pancreatic lipase; SEM: Standard error of mean; SD: Standard deviation; TC: Total cholesterol; TG: Triglycerides; W-Ei: Water extract of E. indica .

  19. Encapsulation of α-Fe2O3 nanoparticles in graphitic carbon microspheres as high-performance anode materials for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Zhang, Hongwei; Sun, Xiaoran; Huang, Xiaodan; Zhou, Liang

    2015-02-01

    A novel ``spray drying-carbonization-oxidation'' strategy has been developed for the fabrication of α-Fe2O3-graphitic carbon (α-Fe2O3@GC) composite microspheres, in which α-Fe2O3 nanoparticles with sizes of 30-50 nm are well-encapsulated by onion-like graphitic carbon shells with a thickness of 5-10 nm. In the constructed composite, the α-Fe2O3 nanoparticles act as the primary active material, providing a high capacity. Meanwhile, the graphitic carbon shells serve as the secondary active component, structural stabilizer, interfacial stabilizer, and electron-highway. As a result, the synthesized α-Fe2O3@GC nanocomposite exhibits a superior lithium-ion battery performance with a high reversible capacity (898 mA h g-1 at 400 mA g-1), outstanding rate capability, and excellent cycling stability. Our product, in terms of the facile and scalable preparation process and excellent electrochemical performance, demonstrates its great potential as a high-performance anode material for lithium-ion batteries.A novel ``spray drying-carbonization-oxidation'' strategy has been developed for the fabrication of α-Fe2O3-graphitic carbon (α-Fe2O3@GC) composite microspheres, in which α-Fe2O3 nanoparticles with sizes of 30-50 nm are well-encapsulated by onion-like graphitic carbon shells with a thickness of 5-10 nm. In the constructed composite, the α-Fe2O3 nanoparticles act as the primary active material, providing a high capacity. Meanwhile, the graphitic carbon shells serve as the secondary active component, structural stabilizer, interfacial stabilizer, and electron-highway. As a result, the synthesized α-Fe2O3@GC nanocomposite exhibits a superior lithium-ion battery performance with a high reversible capacity (898 mA h g-1 at 400 mA g-1), outstanding rate capability, and excellent cycling stability. Our product, in terms of the facile and scalable preparation process and excellent electrochemical performance, demonstrates its great potential as a high-performance anode material for lithium-ion batteries. Electronic supplementary information (ESI) available: XRD pattern, XPS spectrum, CV curves, TEM and SEM images, and table. See DOI: 10.1039/c4nr06771a

  20. Optically controlled phased-array antenna technology for space communication systems

    NASA Technical Reports Server (NTRS)

    Kunath, Richard R.; Bhasin, Kul B.

    1988-01-01

    Using MMICs in phased-array applications above 20 GHz requires complex RF and control signal distribution systems. Conventional waveguide, coaxial cable, and microstrip methods are undesirable due to their high weight, high loss, limited mechanical flexibility and large volume. An attractive alternative to these transmission media, for RF and control signal distribution in MMIC phased-array antennas, is optical fiber. Presented are potential system architectures and their associated characteristics. The status of high frequency opto-electronic components needed to realize the potential system architectures is also discussed. It is concluded that an optical fiber network will reduce weight and complexity, and increase reliability and performance, but may require higher power.

  1. Efficient implementation of the many-body Reactive Bond Order (REBO) potential on GPU

    NASA Astrophysics Data System (ADS)

    Trędak, Przemysław; Rudnicki, Witold R.; Majewski, Jacek A.

    2016-09-01

    The second generation Reactive Bond Order (REBO) empirical potential is commonly used to accurately model a wide range hydrocarbon materials. It is also extensible to other atom types and interactions. REBO potential assumes complex multi-body interaction model, that is difficult to represent efficiently in the SIMD or SIMT programming model. Hence, despite its importance, no efficient GPGPU implementation has been developed for this potential. Here we present a detailed description of a highly efficient GPGPU implementation of molecular dynamics algorithm using REBO potential. The presented algorithm takes advantage of rarely used properties of the SIMT architecture of a modern GPU to solve difficult synchronizations issues that arise in computations of multi-body potential. Techniques developed for this problem may be also used to achieve efficient solutions of different problems. The performance of proposed algorithm is assessed using a range of model systems. It is compared to highly optimized CPU implementation (both single core and OpenMP) available in LAMMPS package. These experiments show up to 6x improvement in forces computation time using single processor of the NVIDIA Tesla K80 compared to high end 16-core Intel Xeon processor.

  2. The Eighth Grade CRCT as a Predictive Measure of Student Success on the Ninth Grade EOCT

    ERIC Educational Resources Information Center

    Body, Matthew

    2013-01-01

    Student performance on high stakes testing in secondary education has contributed to the need for students' testing potential to be identified before entering high school. There is evidence to suggest that a greater understanding of how earlier test scores predict later test scores will help educators and school officials increase student…

  3. The Anonymity Factor in Making Multicultural Teams Work: Virtual and Real Teams

    ERIC Educational Resources Information Center

    Berg, Roberta Wiig

    2012-01-01

    A major purpose of courses in intercultural communication is often to improve students' ability to perform well in situations with the potential to be both highly enlightening and highly difficult--in multicultural teams. This article reports the results of exercises in which members of a dysfunctional multicultural class were assigned to teams…

  4. High altitude cognitive performance and COPD interaction

    PubMed Central

    Kourtidou-Papadeli, C; Papadelis, C; Koutsonikolas, D; Boutzioukas, S; Styliadis, C; Guiba-Tziampiri, O

    2008-01-01

    Introduction: Thousands of people work and perform everyday in high altitude environment, either as pilots, or shift workers, or mountaineers. The problem is that most of the accidents in this environment have been attributed to human error. The objective of this study was to assess complex cognitive performance as it interacts with respiratory insufficiency at altitudes of 8000 feet and identify the potential effect of hypoxia on safe performance. Methods: Twenty subjects participated in the study, divided in two groups: Group I with mild asymptomatic chronic obstructive pulmonary disease (COPD), and Group II with normal respiratory function. Altitude was simulated at 8000 ft. using gas mixtures. Results: Individuals with mild COPD experienced notable hypoxemia with significant performance decrements and increased number of errors at cabin altitude, compared to normal subjects, whereas their blood pressure significantly increased. PMID:19048098

  5. Classification accuracy of claims-based methods for identifying providers failing to meet performance targets.

    PubMed

    Hubbard, Rebecca A; Benjamin-Johnson, Rhondee; Onega, Tracy; Smith-Bindman, Rebecca; Zhu, Weiwei; Fenton, Joshua J

    2015-01-15

    Quality assessment is critical for healthcare reform, but data sources are lacking for measurement of many important healthcare outcomes. With over 49 million people covered by Medicare as of 2010, Medicare claims data offer a potentially valuable source that could be used in targeted health care quality improvement efforts. However, little is known about the operating characteristics of provider profiling methods using claims-based outcome measures that may estimate provider performance with error. Motivated by the example of screening mammography performance, we compared approaches to identifying providers failing to meet guideline targets using Medicare claims data. We used data from the Breast Cancer Surveillance Consortium and linked Medicare claims to compare claims-based and clinical estimates of cancer detection rate. We then demonstrated the performance of claim-based estimates across a broad range of operating characteristics using simulation studies. We found that identification of poor performing providers was extremely sensitive to algorithm specificity, with no approach identifying more than 65% of poor performing providers when claims-based measures had specificity of 0.995 or less. We conclude that claims have the potential to contribute important information on healthcare outcomes to quality improvement efforts. However, to achieve this potential, development of highly accurate claims-based outcome measures should remain a priority. Copyright © 2014 John Wiley & Sons, Ltd.

  6. Electrostatic force microscopy on oriented graphite surfaces: coexistence of insulating and conducting behaviors.

    PubMed

    Lu, Yonghua; Muñoz, M; Steplecaru, C S; Hao, Cheng; Bai, Ming; Garcia, N; Schindler, K; Esquinazi, P

    2006-08-18

    We present measurements of the electric potential fluctuations on the surface of highly oriented pyrolytic graphite using electrostatic force and atomic force microscopy. Micrometric domainlike potential distributions are observed even when the sample is grounded. Such potential distributions are unexpected given the good metallic conductivity of graphite because the surface should be an equipotential. Our results indicate the coexistence of regions with "metalliclike" and "insulatinglike" behaviors showing large potential fluctuations of the order of 0.25 V. In lower quality graphite, this effect is not observed. Experiments are performed in Ar and air atmospheres.

  7. Quantum Electrodynamical Shifts in Multivalent Heavy Ions.

    PubMed

    Tupitsyn, I I; Kozlov, M G; Safronova, M S; Shabaev, V M; Dzuba, V A

    2016-12-16

    The quantum electrodynamics (QED) corrections are directly incorporated into the most accurate treatment of the correlation corrections for ions with complex electronic structure of interest to metrology and tests of fundamental physics. We compared the performance of four different QED potentials for various systems to access the accuracy of QED calculations and to make a prediction of highly charged ion properties urgently needed for planning future experiments. We find that all four potentials give consistent and reliable results for ions of interest. For the strongly bound electrons, the nonlocal potentials are more accurate than the local potential.

  8. A modified potential for HO2 with spectroscopic accuracy

    NASA Astrophysics Data System (ADS)

    Brandão, João; Rio, Carolina M. A.; Tennyson, Jonathan

    2009-04-01

    Seven ground state potential energy surfaces for the hydroperoxyl radical are compared. The potentials were determined from either high-quality ab initio calculations, fits to spectroscopic data, or a combination of the two approaches. Vibration-rotation calculations are performed on each potential and the results compared with experiment. None of the available potentials is entirely satisfactory although the best spectroscopic results are obtained using the Morse oscillator rigid bender internal dynamics potential [Bunker et al., J. Mol. Spectrosc. 155, 44 (1992)]. We present modifications of the double many-body expansion IV potential of Pastrana et al. [J. Chem. Phys. 94, 8093 (1990)]. These new potentials reproduce the observed vibrational levels and observed vibrational levels and rotational constants, respectively, while preserving the good global properties of the original potential.

  9. A probability metric for identifying high-performing facilities: an application for pay-for-performance programs.

    PubMed

    Shwartz, Michael; Peköz, Erol A; Burgess, James F; Christiansen, Cindy L; Rosen, Amy K; Berlowitz, Dan

    2014-12-01

    Two approaches are commonly used for identifying high-performing facilities on a performance measure: one, that the facility is in a top quantile (eg, quintile or quartile); and two, that a confidence interval is below (or above) the average of the measure for all facilities. This type of yes/no designation often does not do well in distinguishing high-performing from average-performing facilities. To illustrate an alternative continuous-valued metric for profiling facilities--the probability a facility is in a top quantile--and show the implications of using this metric for profiling and pay-for-performance. We created a composite measure of quality from fiscal year 2007 data based on 28 quality indicators from 112 Veterans Health Administration nursing homes. A Bayesian hierarchical multivariate normal-binomial model was used to estimate shrunken rates of the 28 quality indicators, which were combined into a composite measure using opportunity-based weights. Rates were estimated using Markov Chain Monte Carlo methods as implemented in WinBUGS. The probability metric was calculated from the simulation replications. Our probability metric allowed better discrimination of high performers than the point or interval estimate of the composite score. In a pay-for-performance program, a smaller top quantile (eg, a quintile) resulted in more resources being allocated to the highest performers, whereas a larger top quantile (eg, being above the median) distinguished less among high performers and allocated more resources to average performers. The probability metric has potential but needs to be evaluated by stakeholders in different types of delivery systems.

  10. Construction of a hydrazone-linked chiral covalent organic framework-silica composite as the stationary phase for high performance liquid chromatography.

    PubMed

    Zhang, Kai; Cai, Song-Liang; Yan, Yi-Lun; He, Zi-Hao; Lin, Hui-Mei; Huang, Xiao-Ling; Zheng, Sheng-Run; Fan, Jun; Zhang, Wei-Guang

    2017-10-13

    Covalent organic frameworks (COFs), as an emerging class of crystalline porous organic polymers, have great potential for applications in chromatographic separation owning to their fascinating crystalline structures and outstanding properties. However, development of COF materials as novel stationary phases in high performance liquid chromatography (HPLC) is just in its infancy. Herein, we report the design and construction of a new hydrazone-linked chiral COF, termed BtaMth COF, from a chiral hydrazide building block (Mth) and present a one-pot synthetic method for the fabrication of BtaMth@SiO 2 composite for HPLC separation of isomers. The as-synthesized BtaMth chiral COF displays good crystallinity, high porosity, as well as excellent chemical stability. Meanwhile, the fabricated HPLC column by using BtaMth@SiO 2 composite as the new stationary phase exhibits high resolution performances for the separation of positional isomers including nitrotoluene and nitrochlorobenzene, as well as cis-trans isomers including beta-cypermethrin and metconazole. Additionally, some effects such as the composition of the mobile phase and column temperature for HPLC separations on the BtaMth@SiO 2 packed column also have been studied in detail. The successful applications indicate the great potentials of hydrazone-linked chiral COF-silica composite as novel stationary phase for the efficient HPLC separation. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Carryover effects of highly automated convoy driving on subsequent manual driving performance.

    PubMed

    Skottke, Eva-Maria; Debus, Günter; Wang, Lei; Huestegge, Lynn

    2014-11-01

    In the present study, we tested to what extent highly automated convoy driving involving small spacing ("platooning") may affect time headway (THW) and standard deviation of lateral position (SDLP) during subsequent manual driving. Although many previous studies have reported beneficial effects of automated driving, some research has also highlighted potential drawbacks, such as increased speed and reduced THW during the activation of semiautomated driving systems. Here, we rather focused on the question of whether switching from automated to manual driving may produce unwanted carryover effects on safety-relevant driving performance. We utilized a pre-post simulator design to measure THW and SDLP after highly automated driving and compared the data with those for a control group (manual driving throughout). Our data revealed that THW was reduced and SDLP increased after leaving the automation mode. A closer inspection of the data suggested that specifically the effect on THW is likely due to sensory and/or cognitive adaptation processes. Behavioral adaptation effects need to be taken into account in future implementations of automated convoy systems. Potential application areas of this research comprise automated freight traffic (truck convoys) and the design of driver assistance systems in general. Potential countermeasures against following at short distance as behavioral adaptation should be considered.

  12. In silico prediction of potential chemical reactions mediated by human enzymes.

    PubMed

    Yu, Myeong-Sang; Lee, Hyang-Mi; Park, Aaron; Park, Chungoo; Ceong, Hyithaek; Rhee, Ki-Hyeong; Na, Dokyun

    2018-06-13

    Administered drugs are often converted into an ineffective or activated form by enzymes in our body. Conventional in silico prediction approaches focused on therapeutically important enzymes such as CYP450. However, there are more than thousands of different cellular enzymes that potentially convert administered drug into other forms. We developed an in silico model to predict which of human enzymes including metabolic enzymes as well as CYP450 family can catalyze a given chemical compound. The prediction is based on the chemical and physical similarity between known enzyme substrates and a query chemical compound. Our in silico model was developed using multiple linear regression and the model showed high performance (AUC = 0.896) despite of the large number of enzymes. When evaluated on a test dataset, it also showed significantly high performance (AUC = 0.746). Interestingly, evaluation with literature data showed that our model can be used to predict not only enzymatic reactions but also drug conversion and enzyme inhibition. Our model was able to predict enzymatic reactions of a query molecule with a high accuracy. This may foster to discover new metabolic routes and to accelerate the computational development of drug candidates by enabling the prediction of the potential conversion of administered drugs into active or inactive forms.

  13. Helichrysum monizii Lowe: phenolic composition and antioxidant potential.

    PubMed

    Gouveia, Sandra; Castilho, Paula C

    2012-01-01

    In Madeira Archipelago there are four endemic Helichyrsum species and three of them are used in the traditional medicine. Helichrysum monizii is a rare endemism with very scarce information available concerning its uses in the local traditional medicine. The aim of this work was to study for the first time Helichrysum monizii in terms of its antioxidant capacity and the identification of the phenolic compounds to which that activity is due. Three different methods of extraction were performed and total phenolic and flavonoid contents of extracts were correlated to radical scavenging and antioxidant capacity by DPPH, ABTS, FRAP and β-carotene assays. An HPLC-DAD-ESI/MS(n) method was employed for the separation and identification of the phenolic and flavonoid components. The results revealed a high antioxidant potential mainly related to the phenolic profile of the plant. Polar components of methanol extracts of Helichrsyum monizii were detected by a high-performance liquid chromatography/electrospray ionisation tandem mass spectrometry (HPLC-DAD-ESI/MS(n) ) method. Thirty-three compounds were identified and 19 of them were identified as quinic acid derivatives. The high antioxidant potential Helichrysum monizii was for the first time established. Dicaffeoylquinic acids are the main responsible for that activity. Copyright © 2011 John Wiley & Sons, Ltd.

  14. An isotope dilution ultra high performance liquid chromatography-tandem mass spectrometry method for the simultaneous determination of sugars and humectants in tobacco products.

    PubMed

    Wang, Liqun; Cardenas, Roberto Bravo; Watson, Clifford

    2017-09-08

    CDC's Division of Laboratory Sciences developed and validated a new method for the simultaneous detection and measurement of 11 sugars, alditols and humectants in tobacco products. The method uses isotope dilution ultra high performance liquid chromatography coupled with tandem mass spectrometry (UHPLC-MS/MS) and has demonstrated high sensitivity, selectivity, throughput and accuracy, with recoveries ranging from 90% to 113%, limits of detection ranging from 0.0002 to 0.0045μg/mL and coefficients of variation (CV%) ranging from 1.4 to 14%. Calibration curves for all analytes were linear with linearity R 2 values greater than 0.995. Quantification of tobacco components is necessary to characterize tobacco product components and their potential effects on consumer appeal, smoke chemistry and toxicology, and to potentially help distinguish tobacco product categories. The researchers analyzed a variety of tobacco products (e.g., cigarettes, little cigars, cigarillos) using the new method and documented differences in the abundance of selected analytes among product categories. Specifically, differences were detected in levels of selected sugars found in little cigars and cigarettes, which could help address appeal potential and have utility when product category is unknown, unclear, or miscategorized. Copyright © 2017. Published by Elsevier B.V.

  15. Development of a Waterproof Crack-Based Stretchable Strain Sensor Based on PDMS Shielding.

    PubMed

    Hong, Seong Kyung; Yang, Seongjin; Cho, Seong J; Jeon, Hyungkook; Lim, Geunbae

    2018-04-12

    This paper details the design of a poly(dimethylsiloxane) (PDMS)-shielded waterproof crack-based stretchable strain sensor, in which the electrical characteristics and sensing performance are not influenced by changes in humidity. This results in a higher number of potential applications for the sensor. A previously developed omni-purpose stretchable strain (OPSS) sensor was used as the basis for this work, which utilizes a metal cracking structure and provides a wide sensing range and high sensitivity. Changes in the conductivity of the OPSS sensor, based on humidity conditions, were investigated along with the potential possibility of using the design as a humidity sensor. However, to prevent conductivity variation, which can decrease the reliability and sensing ability of the OPSS sensor, PDMS was utilized as a shielding layer over the OPSS sensor. The PDMS-shielded OPSS sensor showed approximately the same electrical characteristics as previous designs, including in a high humidity environment, while maintaining its strain sensing capabilities. The developed sensor shows promise for use under high humidity conditions and in underwater applications. Therefore, considering its unique features and reliable sensing performance, the developed PDMS-shielded waterproof OPSS sensor has potential utility in a wide range of applications, such as motion monitoring, medical robotics and wearable healthcare devices.

  16. Development of Modeling Approaches for Nuclear Thermal Propulsion Test Facilities

    NASA Technical Reports Server (NTRS)

    Jones, Daniel R.; Allgood, Daniel C.; Nguyen, Ke

    2014-01-01

    High efficiency of rocket propul-sion systems is essential for humanity to venture be-yond the moon. Nuclear Thermal Propulsion (NTP) is a promising alternative to conventional chemical rock-ets with relatively high thrust and twice the efficiency of the Space Shuttle Main Engine. NASA is in the pro-cess of developing a new NTP engine, and is evaluat-ing ground test facility concepts that allow for the thor-ough testing of NTP devices. NTP engine exhaust, hot gaseous hydrogen, is nominally expected to be free of radioactive byproducts from the nuclear reactor; how-ever, it has the potential to be contaminated due to off-nominal engine reactor performance. Several options are being investigated to mitigate this hazard potential with one option in particular that completely contains the engine exhaust during engine test operations. The exhaust products are subsequently disposed of between engine tests. For this concept (see Figure 1), oxygen is injected into the high-temperature hydrogen exhaust that reacts to produce steam, excess oxygen and any trace amounts of radioactive noble gases released by off-nominal NTP engine reactor performance. Water is injected to condense the potentially contaminated steam into water. This water and the gaseous oxygen (GO2) are subsequently passed to a containment area where the water and GO2 are separated into separate containment tanks.

  17. Young coconut water ameliorates depression via modulation of neurotransmitters: possible mechanism of action.

    PubMed

    Rao, Sadia Saleem; Najam, Rahila

    2016-10-01

    In the current era, plants are frequently tested for its antidepressant potential. Therefore young coconut water, a commonly used plant based beverage, was selected to explore its antidepressant potential. Rodents were selected for this study and forced swim test was conducted to explore antidepressant activity. Analysis of brain biogenic amines using high performance liquid chromatography coupled with electrochemical detection and potentiation of noradrenaline toxicity model were also incorporated in this study to demonstrate probable antidepressant mechanism of action. Coconut water was administered orally at the dose of 4 ml/100 g. Young coconut water showed highly significant increase in struggling time (p < 0.001) in forced swim test. This suggests antidepressant effect of young coconut water. In noradrenaline toxicity model, it was observed that young coconut water is not a good adrenergic component as its lethality percentage in this test was observed 0 % unlike imipramine which showed lethality of 100 %. High performance liquid chromatography-electrochemical detection of rodent's brain revealed decline in 5-hydroxytryptamine, noradrenaline and dopamine, with concomitant decline in metabolites 5-hydroxyindoleacetic acid, 3,4-dihydroxyphenylacetic acid, homovanillic acid and increase in 5-hydroxyindoleacetic acid/5-hydroxytryptamine ratio. Findings from the exploration of monoamines suggest antidepressant effect of young coconut water via homeostasis of monoamines synthesis.

  18. Potential Benefits of an Integrated Electric-Acoustic Sound Processor with Children: A Preliminary Report.

    PubMed

    Wolfe, Jace; Neumann, Sara; Schafer, Erin; Marsh, Megan; Wood, Mark; Baker, R Stanley

    2017-02-01

    A number of published studies have demonstrated the benefits of electric-acoustic stimulation (EAS) over conventional electric stimulation for adults with functional low-frequency acoustic hearing and severe-to-profound high-frequency hearing loss. These benefits potentially include better speech recognition in quiet and in noise, better localization, improvements in sound quality, better music appreciation and aptitude, and better pitch recognition. There is, however, a paucity of published reports describing the potential benefits and limitations of EAS for children with functional low-frequency acoustic hearing and severe-to-profound high-frequency hearing loss. The objective of this study was to explore the potential benefits of EAS for children. A repeated measures design was used to evaluate performance differences obtained with EAS stimulation versus acoustic- and electric-only stimulation. Seven users of Cochlear Nucleus Hybrid, Nucleus 24 Freedom, CI512, and CI422 implants were included in the study. Sentence recognition (assayed using the pediatric version of the AzBio sentence recognition test) was evaluated in quiet and at three fixed signal-to-noise ratios (SNR) (0, +5, and +10 dB). Functional hearing performance was also evaluated with the use of questionnaires, including the comparative version of the Speech, Spatial, and Qualities, the Listening Inventory for Education Revised, and the Children's Home Inventory for Listening Difficulties. Speech recognition in noise was typically better with EAS compared to participants' performance with acoustic- and electric-only stimulation, particularly when evaluated at the less favorable SNR. Additionally, in real-world situations, children generally preferred to use EAS compared to electric-only stimulation. Also, the participants' classroom teachers observed better hearing performance in the classroom with the use of EAS. Use of EAS provided better speech recognition in quiet and in noise when compared to performance obtained with use of acoustic- and electric-only stimulation, and children responded favorably to the use of EAS implemented in an integrated sound processor for real-world use. American Academy of Audiology

  19. Impact of monetary incentives on cognitive performance and error monitoring following sleep deprivation.

    PubMed

    Hsieh, Shulan; Li, Tzu-Hsien; Tsai, Ling-Ling

    2010-04-01

    To examine whether monetary incentives attenuate the negative effects of sleep deprivation on cognitive performance in a flanker task that requires higher-level cognitive-control processes, including error monitoring. Twenty-four healthy adults aged 18 to 23 years were randomly divided into 2 subject groups: one received and the other did not receive monetary incentives for performance accuracy. Both subject groups performed a flanker task and underwent electroencephalographic recordings for event-related brain potentials after normal sleep and after 1 night of total sleep deprivation in a within-subject, counterbalanced, repeated-measures study design. Monetary incentives significantly enhanced the response accuracy and reaction time variability under both normal sleep and sleep-deprived conditions, and they reduced the effects of sleep deprivation on the subjective effort level, the amplitude of the error-related negativity (an error-related event-related potential component), and the latency of the P300 (an event-related potential variable related to attention processes). However, monetary incentives could not attenuate the effects of sleep deprivation on any measures of behavior performance, such as the response accuracy, reaction time variability, or posterror accuracy adjustments; nor could they reduce the effects of sleep deprivation on the amplitude of the Pe, another error-related event-related potential component. This study shows that motivation incentives selectively reduce the effects of total sleep deprivation on some brain activities, but they cannot attenuate the effects of sleep deprivation on performance decrements in tasks that require high-level cognitive-control processes. Thus, monetary incentives and sleep deprivation may act through both common and different mechanisms to affect cognitive performance.

  20. Large Aperture "Photon Bucket" Optical Receiver Performance in High Background Environments

    NASA Technical Reports Server (NTRS)

    Vilnrotter, Victor A.; Hoppe, D.

    2011-01-01

    The potential development of large aperture groundbased "photon bucket" optical receivers for deep space communications, with acceptable performance even when pointing close to the sun, is receiving considerable attention. Sunlight scattered by the atmosphere becomes significant at micron wavelengths when pointing to a few degrees from the sun, even with the narrowest bandwidth optical filters. In addition, high quality optical apertures in the 10-30 meter range are costly and difficult to build with accurate surfaces to ensure narrow fields-of-view (FOV). One approach currently under consideration is to polish the aluminum reflector panels of large 34-meter microwave antennas to high reflectance, and accept the relatively large FOV generated by state-of-the-art polished aluminum panels with rms surface accuracies on the order of a few microns, corresponding to several-hundred micro-radian FOV, hence generating centimeter-diameter focused spots at the Cassegrain focus of 34-meter antennas. Assuming pulse-position modulation (PPM) and Poisson-distributed photon-counting detection, a "polished panel" photon-bucket receiver with large FOV will collect hundreds of background photons per PPM slot, along with comparable signal photons due to its large aperture. It is demonstrated that communications performance in terms of PPM symbol-error probability in high-background high-signal environments depends more strongly on signal than on background photons, implying that large increases in background energy can be compensated by a disproportionally small increase in signal energy. This surprising result suggests that large optical apertures with relatively poor surface quality may nevertheless provide acceptable performance for deep-space optical communications, potentially enabling the construction of cost-effective hybrid RF/optical receivers in the future.

  1. Self-Consolidating Concrete for Prestressed Bridge Girders

    DOT National Transportation Integrated Search

    2017-07-01

    This document reports the findings of a research project designed to better understand material and structural performance of prestressed bridge girders made with Self-Consolidating Concrete (SCC) from Wisconsin. SCC has high potential to be used for...

  2. Feasibility Study for Electronic Fitness for Duty Medical Examination Reporting and Oversight.

    DOT National Transportation Integrated Search

    2016-11-01

    This report examines the institutional and high-level technology aspects associated with potential mandated : electronic reporting of every commercial driver license (CDL) driver fitness-for-duty medical examination : performed by a medical examiner ...

  3. Composite pavement systems : synthesis of design and construction practices.

    DOT National Transportation Integrated Search

    2008-01-01

    Composite pavement systems have shown the potential for becoming a cost-effective pavement alternative for highways with high and heavy traffic volumes, especially in Europe. This study investigated the design and performance of composite pavement st...

  4. A potential drop strain sensor for in-situ power station creep monitoring

    NASA Astrophysics Data System (ADS)

    Corcoran, Joseph; Cawley, Peter; Nagy, Peter B.

    2014-02-01

    Creep is a high temperature damage mechanism of interest to the power industry and at present lacks a satisfactory inspection technique. Existing material inspection techniques are extremely laborious while strain measurements rely on often infrequent off-load measurements. A quasi-DC directional potential drop technique has been suggested that is able to suppress the effects of permeability and is primarily sensitive to changes in resistivity and also the geometry that will develop through strain. The change in creep related resistivity is shown by an equivalent effective resistivity approach to be small at <2% change when compared to the >100% change in transfer resistance that occurs due to strain as observed in laboratory tests. A biaxial inversion is then presented and demonstrated on in-lab samples showing good performance. The result is a sensor that performs as a very robust high temperature strain gauge.

  5. Estimates of dietary exposure of children to artificial food colours in Kuwait.

    PubMed

    Husain, A; Sawaya, W; Al-Omair, A; Al-Zenki, S; Al-Amiri, H; Ahmed, N; Al-Sinan, M

    2006-03-01

    To assess the intake of artificial food colour additives by 5-14-year-old children in the State of Kuwait, a 24-h dietary recall was conducted twice on 3141 male and female Kuwaiti and non-Kuwaiti children from 58 schools. The determination of colour additives in 344 foods items consumed was performed using high-performance liquid chromatography with diode array detector. A comparison with the Food and Agriculture Organization and World Health Organization acceptable daily intakes (ADIs) was undertaken to evaluate the potential risk associated with the consumption of artificial colour additives by children in Kuwait. The results indicated that out of nine permitted colours, four exceeded their ADIs by factors of 2-8: tartrazine, sunset yellow, carmoisine and allura red. Further, follow-up studies to provide insight into potential adverse health effects associated with the high intakes of these artificial colour additives on the test population are warranted.

  6. An Overview of the VHITAL Program: A Two-Stage Bismuth Fed Very High Specific Impulse Thruster with Anode Layer

    NASA Technical Reports Server (NTRS)

    Sengupta, Anita; Marrese-Reading, Colleen; Capelli, Mark; Scharfe, David; Tverdokhlebov, Sergey; Semenkin, Sasha; Tverdokhlebov, Oleg; Boyd, Ian; Keidar, Michael; Yalin, Azer; hide

    2005-01-01

    The Very High Isp Thruster with Anode Layer (VHITAL) is a two stage Hall thruster program that is a part of NASA's Prometheus Program in NASA's New Exploration Systems Mission Directorate (ESMD). It is a potentially viable low-cost alternative to ion engines for near-term NEP applications with the growth potential to support mid-term and far-term NEP missions... This paper will present an overview of the thruster fabrication, pre-existing TAL 160 demonstration, feed system development, lifetime assessment, contamination assessment, and mission study activities performed to date.

  7. Use of potentially harmful skin-lightening products among immigrant women in Rome, Italy: a pilot study.

    PubMed

    Cristaudo, A; D'Ilio, S; Gallinella, B; Mosca, A; Majorani, C; Violante, N; Senofonte, O; Morrone, A; Petrucci, F

    2013-01-01

    Skin-lightening products are increasingly common in European cities. These products may contain substances that are banned under EU regulations as they can induce adverse effects, including cutaneous and systemic reactions (e.g., mercury, hydroquinone and topical corticosteroids). To assess the knowledge, attitudes and practices of women regarding skin-lightening products and to quantify the potentially harmful substances in the products used. We performed a cross-sectional study among 82 non-Italian women visiting an outpatient facility in Rome, Italy. The women completed a questionnaire on product use, side effects and risk awareness. We performed patch tests among a subgroup of 48 women who presented with contact dermatitis. We also quantified the allergenic and toxic substances in the 14 products reported, using dynamic reaction cell inductively coupled plasma mass spectrometry for metals and high-performance liquid chromatography for hydroquinone and topical corticosteroids. Out of the 82 women, 33 used skin-lightening products; about one fourth of these women were aware of potential risks. Three cosmetic creams and two soaps contained high concentrations of metals (Cr, Ni and Pb); hydroquinone was found in three creams and one oil. The only topical corticosteroid detected was dexamethasone, in one product. More than half of the women in the clinical evaluation had irritant contact dermatitis (i.e., negative response to patch test). Among immigrant women in Rome, the use of skin-lightening products seems to be fairly common, and some of these products contain potentially hazardous substances. Consumers must be informed of the potential risks, and EU regulations must be more strictly enforced. Copyright © 2013 S. Karger AG, Basel.

  8. Potential pros and cons of external healthcare performance evaluation systems: real-life perspectives on Iranian hospital evaluation and accreditation program

    PubMed Central

    Jaafaripooyan, Ebrahim

    2014-01-01

    Background: Performance evaluation is essential to quality improvement in healthcare. The current study has identified the potential pros and cons of external healthcare evaluation programs, utilizing them subsequently to look into the merits of a similar case in a developing country. Methods: A mixed method study employing both qualitative and quantitative data collection and analysis techniques was adopted to achieve the study end. Subject Matter Experts (SMEs) and professionals were approached for two-stage process of data collection. Results: Potential advantages included greater attractiveness of high accreditation rank healthcare organizations to their customers/purchasers and boosted morale of their personnel. Downsides, as such, comprised the programs’ over-reliance on value judgment of surveyors, routinization and incurring undue cost on the organizations. In addition, the improved, standardized care processes as well as the judgmental nature of program survey were associated, as pros and cons, to the program investigated by the professionals. Conclusion: Besides rendering a tentative assessment of Iranian hospital evaluation program, the study provides those running external performance evaluations with a lens to scrutinize the virtues of their own evaluation systems through identifying the potential advantages and drawbacks of such programs. Moreover, the approach followed could be utilized for performance assessment of similar evaluation programs. PMID:25279381

  9. Potential pros and cons of external healthcare performance evaluation systems: real-life perspectives on Iranian hospital evaluation and accreditation program.

    PubMed

    Jaafaripooyan, Ebrahim

    2014-09-01

    Performance evaluation is essential to quality improvement in healthcare. The current study has identified the potential pros and cons of external healthcare evaluation programs, utilizing them subsequently to look into the merits of a similar case in a developing country. A mixed method study employing both qualitative and quantitative data collection and analysis techniques was adopted to achieve the study end. Subject Matter Experts (SMEs) and professionals were approached for two-stage process of data collection. Potential advantages included greater attractiveness of high accreditation rank healthcare organizations to their customers/purchasers and boosted morale of their personnel. Downsides, as such, comprised the programs' over-reliance on value judgment of surveyors, routinization and incurring undue cost on the organizations. In addition, the improved, standardized care processes as well as the judgmental nature of program survey were associated, as pros and cons, to the program investigated by the professionals. Besides rendering a tentative assessment of Iranian hospital evaluation program, the study provides those running external performance evaluations with a lens to scrutinize the virtues of their own evaluation systems through identifying the potential advantages and drawbacks of such programs. Moreover, the approach followed could be utilized for performance assessment of similar evaluation programs.

  10. High-Voltage-Input Level Translator Using Standard CMOS

    NASA Technical Reports Server (NTRS)

    Yager, Jeremy A.; Mojarradi, Mohammad M.; Vo, Tuan A.; Blalock, Benjamin J.

    2011-01-01

    proposed integrated circuit would translate (1) a pair of input signals having a low differential potential and a possibly high common-mode potential into (2) a pair of output signals having the same low differential potential and a low common-mode potential. As used here, "low" and "high" refer to potentials that are, respectively, below or above the nominal supply potential (3.3 V) at which standard complementary metal oxide/semiconductor (CMOS) integrated circuits are designed to operate. The input common-mode potential could lie between 0 and 10 V; the output common-mode potential would be 2 V. This translation would make it possible to process the pair of signals by use of standard 3.3-V CMOS analog and/or mixed-signal (analog and digital) circuitry on the same integrated-circuit chip. A schematic of the circuit is shown in the figure. Standard 3.3-V CMOS circuitry cannot withstand input potentials greater than about 4 V. However, there are many applications that involve low-differential-potential, high-common-mode-potential input signal pairs and in which standard 3.3-V CMOS circuitry, which is relatively inexpensive, would be the most appropriate circuitry for performing other functions on the integrated-circuit chip that handles the high-potential input signals. Thus, there is a need to combine high-voltage input circuitry with standard low-voltage CMOS circuitry on the same integrated-circuit chip. The proposed circuit would satisfy this need. In the proposed circuit, the input signals would be coupled into both a level-shifting pair and a common-mode-sensing pair of CMOS transistors. The output of the level-shifting pair would be fed as input to a differential pair of transistors. The resulting differential current output would pass through six standoff transistors to be mirrored into an output branch by four heterojunction bipolar transistors. The mirrored differential current would be converted back to potential by a pair of diode-connected transistors, which, by virtue of being identical to the input transistors, would reproduce the input differential potential at the output

  11. A Solar Dynamic Power Option for Space Solar Power

    NASA Technical Reports Server (NTRS)

    Mason, Lee S.

    1999-01-01

    A study was performed to determine the potential performance and related technology requirements of Solar Dynamic power systems for a Space Solar Power satellite. Space Solar Power is a concept where solar energy is collected in orbit and beamed to Earth receiving stations to supplement terrestrial electric power service. Solar Dynamic systems offer the benefits of high solar-to-electric efficiency, long life with minimal performance degradation, and high power scalability. System analyses indicate that with moderate component development, SD systems can exhibit excellent mass and deployed area characteristics. Using the analyses as a guide, a technology roadmap was -enerated which identifies the component advances necessary to make SD power generation a competitive option for the SSP mission.

  12. Pump-probe Kelvin-probe force microscopy: Principle of operation and resolution limits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murawski, J.; Graupner, T.; Milde, P., E-mail: peter.milde@tu-dresden.de

    Knowledge on surface potential dynamics is crucial for understanding the performance of modern-type nanoscale devices. We describe an electrical pump-probe approach in Kelvin-probe force microscopy that enables a quantitative measurement of dynamic surface potentials at nanosecond-time and nanometer-length scales. Also, we investigate the performance of pump-probe Kelvin-probe force microscopy with respect to the relevant experimental parameters. We exemplify a measurement on an organic field effect transistor that verifies the undisturbed functionality of our pump-probe approach in terms of simultaneous and quantitative mapping of topographic and electronic information at a high lateral and temporal resolution.

  13. Recent Studies on Methanol Crossover in Liquid-Feed Direct Methanol Fuel Cells

    NASA Technical Reports Server (NTRS)

    Valdez, T. I.; Narayanan, S. R.

    2000-01-01

    In this work, the effects of methanol crossover and airflow rates on the cathode potential of an operating direct methanol fuel cell are explored. Techniques for quantifying methanol crossover in a fuel cell and for separating the electrical performance of each electrode in a fuel cell are discussed. The effect of methanol concentration on cathode potential has been determined to be significant. The cathode is found to be mass transfer limited when operating on low flow rate air and high concentrations of methanol. Improvements in cathode structure and operation at low methanol concentration have been shown to result in improved cell performance.

  14. Cortical localization of cognitive function by regression of performance on event-related potentials

    NASA Technical Reports Server (NTRS)

    Montgomery, R. W.; Montgomery, L. D.; Guisado, R.

    1992-01-01

    This paper demonstrates a new method of mapping cortical localization of cognitive function, using electroencephalographic data. Cross-subject regression analyses are used to identify cortical sites and post-stimulus latencies where there is a high correlation between subjects' performance and their cognitive event-related potential amplitude. The procedure was tested using a mental arithmetic task and was found to identify essentially the same cortical regions that have been associated with such tasks on the basis of research with patients suffering localized cortical lesions. Thus, it appears to offer an inexpensive, noninvasive tool for exploring the dynamics of localization in neurologically normal subjects.

  15. Seismic, high wind, tornado, and probabilistic risk assessments of the High Flux Isotope Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harris, S.P.; Stover, R.L.; Hashimoto, P.S.

    1989-01-01

    Natural phenomena analyses were performed on the High Flux Isotope Reactor (HFIR) Deterministic and probabilistic evaluations were made to determine the risks resulting from earthquakes, high winds, and tornadoes. Analytic methods in conjunction with field evaluations and an earthquake experience data base evaluation methods were used to provide more realistic results in a shorter amount of time. Plant modifications completed in preparation for HFIR restart and potential future enhancements are discussed. 5 figs.

  16. Flexible graphene/carbon nanotube hybrid papers chemical-reduction-tailored by gallic acid for high-performance electrochemical capacitive energy storages

    NASA Astrophysics Data System (ADS)

    Yao, Lu; Zhou, Chao; Hu, Nantao; Hu, Jing; Hong, Min; Zhang, Liying; Zhang, Yafei

    2018-03-01

    Mechanically robust graphene papers with both high gravimetric and volumetric capacitances are desired for high-performance energy storages. However, it's still a challenge to tailor the structure of graphene papers in order to meet this requirement. In this work, a kind of chemical-reduction-tailored mechanically-robust reduced graphene oxide/carbon nanotube hybrid paper has been reported for high-performance electrochemical capacitive energy storages. Gallic acid (GA), as an excellent reducing agent, was used to reduce graphene oxide. Through vacuum filtration of gallic acid reduced graphene oxide (GA-rGO) and carboxylic multiwalled carbon nanotubes (MWCNTs) aqueous suspensions, mechanically robust GA-rGO/MWCNTs hybrid papers were obtained. The resultant hybrid papers showed high gravimetric capacitance of 337.6 F g-1 (0.5 A g-1) and volumetric capacitance of 151.2 F cm-3 (0.25 A cm-3). In addition, the assembled symmetric device based on the hybrid papers exhibited high gravimetric capacitance of 291.6 F g-1 (0.5 A g-1) and volumetric capacitance of 136.6 F cm-3 (0.25 A cm-3). Meanwhile, it exhibited excellent rate capability and cycling stability. Above all, this chemical reduction tailoring technique and the resultant high-performance GA-rGO/MWCNTs hybrid papers give an insight for designing high-performance electrodes and hold a great potential in the field of energy storages.

  17. Influence of Wake Models on Calculated Tiltrotor Aerodynamics

    NASA Technical Reports Server (NTRS)

    Johnson, Wayne

    2001-01-01

    The tiltrotor aircraft configuration has the potential to revolutionize air transportation by providing an economical combination of vertical take-off and landing capability with efficient, high-speed cruise flight. To achieve this potential it is necessary to have validated analytical tools that will support future tiltrotor aircraft development. These analytical tools must calculate tiltrotor aeromechanical behavior, including performance, structural loads, vibration, and aeroelastic stability, with an accuracy established by correlation with measured tiltrotor data. The recent test of the Tilt Rotor Aeroacoustic Model (TRAM) with a single,l/4-scale V-22 rotor in the German-Dutch Wind Tunnel (DNW) provides an extensive set of aeroacoustic, performance, and structural loads data. This paper will examine the influence of wake models on calculated tiltrotor aerodynamics, comparing calculations of performance and airloads with TRAM DNW measurements. The calculations will be performed using the comprehensive analysis CAMRAD II.

  18. Dynamics of action potential initiation in the GABAergic thalamic reticular nucleus in vivo.

    PubMed

    Muñoz, Fabián; Fuentealba, Pablo

    2012-01-01

    Understanding the neural mechanisms of action potential generation is critical to establish the way neural circuits generate and coordinate activity. Accordingly, we investigated the dynamics of action potential initiation in the GABAergic thalamic reticular nucleus (TRN) using in vivo intracellular recordings in cats in order to preserve anatomically-intact axo-dendritic distributions and naturally-occurring spatiotemporal patterns of synaptic activity in this structure that regulates the thalamic relay to neocortex. We found a wide operational range of voltage thresholds for action potentials, mostly due to intrinsic voltage-gated conductances and not synaptic activity driven by network oscillations. Varying levels of synchronous synaptic inputs produced fast rates of membrane potential depolarization preceding the action potential onset that were associated with lower thresholds and increased excitability, consistent with TRN neurons performing as coincidence detectors. On the other hand the presence of action potentials preceding any given spike was associated with more depolarized thresholds. The phase-plane trajectory of the action potential showed somato-dendritic propagation, but no obvious axon initial segment component, prominent in other neuronal classes and allegedly responsible for the high onset speed. Overall, our results suggest that TRN neurons could flexibly integrate synaptic inputs to discharge action potentials over wide voltage ranges, and perform as coincidence detectors and temporal integrators, supported by a dynamic action potential threshold.

  19. Chemical Potential Tuning and Enhancement of Thermoelectric Properties in Indium Selenides

    PubMed Central

    Rhyee, Jong-Soo; Kim, Jin Hee

    2015-01-01

    Researchers have long been searching for the materials to enhance thermoelectric performance in terms of nano scale approach in order to realize phonon-glass-electron-crystal and quantum confinement effects. Peierls distortion can be a pathway to enhance thermoelectric figure-of-merit ZT by employing natural nano-wire-like electronic and thermal transport. The phonon-softening known as Kohn anomaly, and Peierls lattice distortion decrease phonon energy and increase phonon scattering, respectively, and, as a result, they lower thermal conductivity. The quasi-one-dimensional electrical transport from anisotropic band structure ensures high Seebeck coefficient in Indium Selenide. The routes for high ZT materials development of In4Se3−δ are discussed from quasi-one-dimensional property and electronic band structure calculation to materials synthesis, crystal growth, and their thermoelectric properties investigations. The thermoelectric properties of In4Se3−δ can be enhanced by electron doping, as suggested from the Boltzmann transport calculation. Regarding the enhancement of chemical potential, the chlorine doped In4Se3−δCl0.03 compound exhibits high ZT over a wide temperature range and shows state-of-the-art thermoelectric performance of ZT = 1.53 at 450 °C as an n-type material. It was proven that multiple elements doping can enhance chemical potential further. Here, we discuss the recent progress on the enhancement of thermoelectric properties in Indium Selenides by increasing chemical potential. PMID:28788002

  20. Neural correlates of effective learning in experienced medical decision-makers.

    PubMed

    Downar, Jonathan; Bhatt, Meghana; Montague, P Read

    2011-01-01

    Accurate associative learning is often hindered by confirmation bias and success-chasing, which together can conspire to produce or solidify false beliefs in the decision-maker. We performed functional magnetic resonance imaging in 35 experienced physicians, while they learned to choose between two treatments in a series of virtual patient encounters. We estimated a learning model for each subject based on their observed behavior and this model divided clearly into high performers and low performers. The high performers showed small, but equal learning rates for both successes (positive outcomes) and failures (no response to the drug). In contrast, low performers showed very large and asymmetric learning rates, learning significantly more from successes than failures; a tendency that led to sub-optimal treatment choices. Consistently with these behavioral findings, high performers showed larger, more sustained BOLD responses to failed vs. successful outcomes in the dorsolateral prefrontal cortex and inferior parietal lobule while low performers displayed the opposite response profile. Furthermore, participants' learning asymmetry correlated with anticipatory activation in the nucleus accumbens at trial onset, well before outcome presentation. Subjects with anticipatory activation in the nucleus accumbens showed more success-chasing during learning. These results suggest that high performers' brains achieve better outcomes by attending to informative failures during training, rather than chasing the reward value of successes. The differential brain activations between high and low performers could potentially be developed into biomarkers to identify efficient learners on novel decision tasks, in medical or other contexts.

  1. Carboxyl-rich plasma polymer surfaces in surface plasmon resonance immunosensing

    NASA Astrophysics Data System (ADS)

    Makhneva, Ekaterina; Obrusník, Adam; Farka, Zdeněk; Skládal, Petr; Vandenbossche, Marianne; Hegemann, Dirk; Zajíčková, Lenka

    2018-01-01

    Stable carboxyl-rich plasma polymers (PPs) were deposited onto the gold surface of surface plasmon resonance (SPR) chips under conditions that were chosen based on lumped kinetic model results. Carboxyl-rich films are of high interest for bio-applications thanks to their high reactivity, allowing the formation of covalent linkages between biomolecules and a surface. Accordingly, the monoclonal antibody, specific to human serum albumin (HSA), was immobilized and the performance of SPR immunosensors was evaluated by the immunoassay flow test. The developed sensors performed high level of stability and provided selective and high response to the HSA antigen solutions. The achieved results confirmed that the presented methodologies for the grafting of biomolecules on the gold surfaces have great potential for biosensing applications.

  2. Conceptual design study of potential early commercial MHD powerplant. Report of task 2 results

    NASA Astrophysics Data System (ADS)

    Hals, F. A.

    1981-03-01

    The conceptual design of one of the potential early commercial MHD power plants was studied. The plant employs oxygen enrichment of the combustion air and preheating of this oxygen enriched air to an intermediate temperature of 1200 F attainable with a tubular type recuperative heat exchanger. Conceptual designs of plant componets and equipment with performance, operational characteristics, and costs are reported. Plant economics and overall performance including full and part load operation are reviewed. The projected performance and estimated cost of this early MHD plant are compared to conventional power plants, although it does not offer the same high efficiency and low costs as the mature MHD power plant. Environmental aspects and the methods incorporated in plant design for emission control of sulfur and nitrogen are reviewed.

  3. Conceptual design study of potential early commercial MHD powerplant. Report of task 2 results

    NASA Technical Reports Server (NTRS)

    Hals, F. A.

    1981-01-01

    The conceptual design of one of the potential early commercial MHD power plants was studied. The plant employs oxygen enrichment of the combustion air and preheating of this oxygen enriched air to an intermediate temperature of 1200 F attainable with a tubular type recuperative heat exchanger. Conceptual designs of plant componets and equipment with performance, operational characteristics, and costs are reported. Plant economics and overall performance including full and part load operation are reviewed. The projected performance and estimated cost of this early MHD plant are compared to conventional power plants, although it does not offer the same high efficiency and low costs as the mature MHD power plant. Environmental aspects and the methods incorporated in plant design for emission control of sulfur and nitrogen are reviewed.

  4. Experimental Evaluation of High Performance Integrated Heat Pump

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, William A; Berry, Robert; Durfee, Neal

    2016-01-01

    Integrated heat pump (IHP) technology provides significant potential for energy savings and comfort improvement for residential buildings. In this study, we evaluate the performance of a high performance IHP that provides space heating, cooling, and water heating services. Experiments were conducted according to the ASHRAE Standard 206-2013 where 24 test conditions were identified in order to evaluate the IHP performance indices based on the airside performance. Empirical curve fits of the unit s compressor maps are used in conjunction with saturated condensing and evaporating refrigerant conditions to deduce the refrigerant mass flowrate, which, in turn was used to evaluate themore » refrigerant side performance as a check on the airside performance. Heat pump (compressor, fans, and controls) and water pump power were measured separately per requirements of Standard 206. The system was charged per the system manufacturer s specifications. System test results are presented for each operating mode. The overall IHP performance metrics are determined from the test results per the Standard 206 calculation procedures.« less

  5. Next generation interatomic potentials for condensed systems

    NASA Astrophysics Data System (ADS)

    Handley, Christopher Michael; Behler, Jörg

    2014-07-01

    The computer simulation of condensed systems is a challenging task. While electronic structure methods like density-functional theory (DFT) usually provide a good compromise between accuracy and efficiency, they are computationally very demanding and thus applicable only to systems containing up to a few hundred atoms. Unfortunately, many interesting problems require simulations to be performed on much larger systems involving thousands of atoms or more. Consequently, more efficient methods are urgently needed, and a lot of effort has been spent on the development of a large variety of potentials enabling simulations with significantly extended time and length scales. Most commonly, these potentials are based on physically motivated functional forms and thus perform very well for the applications they have been designed for. On the other hand, they are often highly system-specific and thus cannot easily be transferred from one system to another. Moreover, their numerical accuracy is restricted by the intrinsic limitations of the imposed functional forms. In recent years, several novel types of potentials have emerged, which are not based on physical considerations. Instead, they aim to reproduce a set of reference electronic structure data as accurately as possible by using very general and flexible functional forms. In this review we will survey a number of these methods. While they differ in the choice of the employed mathematical functions, they all have in common that they provide high-quality potential-energy surfaces, while the efficiency is comparable to conventional empirical potentials. It has been demonstrated that in many cases these potentials now offer a very interesting new approach to study complex systems with hitherto unreached accuracy.

  6. Creating high performance buildings: Lower energy, better comfort

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brager, Gail; Arens, Edward

    2015-03-30

    Buildings play a critical role in the challenge of mitigating and adapting to climate change. It is estimated that buildings contribute 39% of the total U.S. greenhouse gas (GHG) emissions [1] primarily due to their operational energy use, and about 80% of this building energy use is for heating, cooling, ventilating, and lighting. An important premise of this paper is about the connection between energy and comfort. They are inseparable when one talks about high performance buildings. Worldwide data suggests that we are significantly overcooling buildings in the summer, resulting in increased energy use and problems with thermal comfort. Inmore » contrast, in naturally ventilated buildings without mechanical cooling, people are comfortable in much warmer temperatures due to shifting expectations and preferences as a result of occupants having a greater degree of personal control over their thermal environment; they have also become more accustomed to variable conditions that closely reflect the natural rhythms of outdoor climate patterns. This has resulted in an adaptive comfort zone that offers significant potential for encouraging naturally ventilated buildings to improve both energy use and comfort. Research on other forms for providing individualized control through low-energy personal comfort systems (desktop fans, foot warmed, and heated and cooled chairs) have also demonstrated enormous potential for improving both energy and comfort performance. Studies have demonstrated high levels of comfort with these systems while ambient temperatures ranged from 64–84°F. Energy and indoor environmental quality are inextricably linked, and must both be important goals of a high performance building.« less

  7. Use of an Objective Structured Clinical Examination in Clinical Nurse Specialist Education.

    PubMed

    Cuevas, Heather E; Timmerman, Gayle M

    2016-01-01

    Helping patients maximize their potential using expert coaching to facilitate lifestyle change is an important practice area for clinical nurse specialists (CNSs). The purpose is to determine the usefulness of objective structured clinical examinations (OSCEs) for evaluating CNS students' coaching competencies in the context of facilitating lifestyle change. Despite the use of OSCEs to assess competencies in clinical skills (eg, performance of procedures, decision making), its potential for evaluating coaching competencies for lifestyle change has not been demonstrated. We developed 4 OSCEs dealing with coaching patients in exercise, weight loss, stress reduction, or nonpharmacologic management of hyperlipidemia. Evaluation criteria included (1) approach to the patient, (2) information gathering, (3) motivational interviewing, and (4) management (medical and behavioral strategies). Student performance ranged from highly organized with proficient coaching skills to disorganized and focused solely on clinical management and prescriptive communication. Student responses were positive. Objective structured clinical examinations were highly useful for evaluating CNS students' coaching competencies for lifestyle change. Using OSCEs early in the semester to provide students feedback on their performance and again at the end to determine improvement optimizes use of this teaching strategy.

  8. ESH assessment of advanced lithography materials and processes

    NASA Astrophysics Data System (ADS)

    Worth, Walter F.; Mallela, Ram

    2004-05-01

    The ESH Technology group at International SEMATECH is conducting environment, safety, and health (ESH) assessments in collaboration with the lithography technologists evaluating the performance of an increasing number of new materials and technologies being considered for advanced lithography such as 157nm photresist and extreme ultraviolet (EUV). By performing data searches for 75 critical data types, emissions characterizations, and industrial hygiene (IH) monitoring during the use of the resist candidates, it has been shown that the best performing resist formulations, so far, appear to be free of potential ESH concerns. The ESH assessment of the EUV lithography tool that is being developed for SEMATECH has identified several features of the tool that are of ESH concern: high energy consumption, poor energy conversion efficiency, tool complexity, potential ergonomic and safety interlock issues, use of high powered laser(s), generation of ionizing radiation (soft X-rays), need for adequate shielding, and characterization of the debris formed by the extreme temperature of the plasma. By bringing these ESH challenges to the attention of the technologists and tool designers, it is hoped that the processes and tools can be made more ESH friendly.

  9. Inhibitory effect of Terminalia chebula Retz. fruit extracts on digestive enzyme related to diabetes and oxidative stress.

    PubMed

    Sasidharan, Indu; Sundaresan, A; Nisha, V M; Kirishna, Mahesh S; Raghu, K G; Jayamurthy, P

    2012-08-01

    Terminalia chebula fruit extracts were prepared sequentially with hexane, ethyl acetate, methanol and methanol-water (70:30) and tested for their α-glucosidase inhibitory and antioxidant potential. The study resulted in the formulation of an extract with high α-glucosidase inhibitory potential (IC(50) 0.19 ± 0.03 µg mL(-1)) enriched with hydrolysable tannins. Also, each of the extract was chemically characterized by reversed-phase high-performance liquid chromatography on the basis of their marker compounds chebulagic acid, chebulinic acid and corilagin in order to give explanation to the significant activity shown by the extracts. The antioxidant potential of the highly active extract was evaluated in the cellular level also using superoxide dismutase, glutathione S-transferase and induced oxidative stress assays. The results indicated the possibility of using the extract as a nutraceutical health supplement in the management of type 2 diabetes.

  10. On-Board Propulsion System Analysis of High Density Propellants

    NASA Technical Reports Server (NTRS)

    Schneider, Steven J.

    1998-01-01

    The impact of the performance and density of on-board propellants on science payload mass of Discovery Program class missions is evaluated. A propulsion system dry mass model, anchored on flight-weight system data from the Near Earth Asteroid Rendezvous mission is used. This model is used to evaluate the performance of liquid oxygen, hydrogen peroxide, hydroxylammonium nitrate, and oxygen difluoride oxidizers with hydrocarbon and metal hydride fuels. Results for the propellants evaluated indicate that the state-of-art, Earth Storable propellants with high performance rhenium engine technology in both the axial and attitude control systems has performance capabilities that can only be exceeded by liquid oxygen/hydrazine, liquid oxygen/diborane and oxygen difluoride/diborane propellant combinations. Potentially lower ground operations costs is the incentive for working with nontoxic propellant combinations.

  11. Low-Arousal Speech Noise Improves Performance in N-Back Task: An ERP Study

    PubMed Central

    Zhang, Dandan; Jin, Yi; Luo, Yuejia

    2013-01-01

    The relationship between noise and human performance is a crucial topic in ergonomic research. However, the brain dynamics of the emotional arousal effects of background noises are still unclear. The current study employed meaningless speech noises in the n-back working memory task to explore the changes of event-related potentials (ERPs) elicited by the noises with low arousal level vs. high arousal level. We found that the memory performance in low arousal condition were improved compared with the silent and the high arousal conditions; participants responded more quickly and had larger P2 and P3 amplitudes in low arousal condition while the performance and ERP components showed no significant difference between high arousal and silent conditions. These findings suggested that the emotional arousal dimension of background noises had a significant influence on human working memory performance, and that this effect was independent of the acoustic characteristics of noises (e.g., intensity) and the meaning of speech materials. The current findings improve our understanding of background noise effects on human performance and lay the ground for the investigation of patients with attention deficits. PMID:24204607

  12. High-performance Förster resonance energy transfer (FRET)-based dye-sensitized solar cells: rational design of quantum dots for wide solar-spectrum utilization.

    PubMed

    Lee, Eunwoo; Kim, Chanhoi; Jang, Jyongsik

    2013-07-29

    High-performance Förster resonance energy transfer (FRET)-based dye-sensitized solar cells (DSSCs) have been successfully fabricated through the optimized design of a CdSe/CdS quantum-dot (QD) donor and a dye acceptor. This simple approach enables quantum dots and dyes to simultaneously utilize the wide solar spectrum, thereby resulting in high conversion efficiency over a wide wavelength range. In addition, major parameters that affect the FRET interaction between donor and acceptor have been investigated including the fluorescent emission spectrum of QD, and the content of deposited QDs into the TiO2 matrix. By judicious control of these parameters, the FRET interaction can be readily optimized for high photovoltaic performance. In addition, the as-synthesized water-soluble quantum dots were highly dispersed in a nanoporous TiO2 matrix, thereby resulting in excellent contact between donors and acceptors. Importantly, high-performance FRET-based DSSCs can be prepared without any infrared (IR) dye synthetic procedures. This novel strategy offers great potential for applications of dye-sensitized solar cells. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. 3D hierarchical assembly of ultrathin MnO2 nanoflakes on silicon nanowires for high performance micro-supercapacitors in Li- doped ionic liquid

    PubMed Central

    Dubal, Deepak P.; Aradilla, David; Bidan, Gérard; Gentile, Pascal; Schubert, Thomas J.S.; Wimberg, Jan; Sadki, Saïd; Gomez-Romero, Pedro

    2015-01-01

    Building of hierarchical core-shell hetero-structures is currently the subject of intensive research in the electrochemical field owing to its potential for making improved electrodes for high-performance micro-supercapacitors. Here we report a novel architecture design of hierarchical MnO2@silicon nanowires (MnO2@SiNWs) hetero-structures directly supported onto silicon wafer coupled with Li-ion doped 1-Methyl-1-propylpyrrolidinium bis(trifluromethylsulfonyl)imide (PMPyrrBTA) ionic liquids as electrolyte for micro-supercapacitors. A unique 3D mesoporous MnO2@SiNWs in Li-ion doped IL electrolyte can be cycled reversibly across a voltage of 2.2 V and exhibits a high areal capacitance of 13 mFcm−2. The high conductivity of the SiNWs arrays combined with the large surface area of ultrathin MnO2 nanoflakes are responsible for the remarkable performance of these MnO2@SiNWs hetero-structures which exhibit high energy density and excellent cycling stability. This combination of hybrid electrode and hybrid electrolyte opens up a novel avenue to design electrode materials for high-performance micro-supercapacitors. PMID:25985388

  14. High-Performance Flexible All-Solid-State Supercapacitor from Large Free-Standing Graphene-PEDOT/PSS Films.

    PubMed

    Liu, Yuqing; Weng, Bo; Razal, Joselito M; Xu, Qun; Zhao, Chen; Hou, Yuyang; Seyedin, Shayan; Jalili, Rouhollah; Wallace, Gordon G; Chen, Jun

    2015-11-20

    Although great attention has been paid to wearable electronic devices in recent years, flexible lightweight batteries or supercapacitors with high performance are still not readily available due to the limitations of the flexible electrode inventory. In this work, highly flexible, bendable and conductive rGO-PEDOT/PSS films were prepared using a simple bar-coating method. The assembled device using rGO-PEDOT/PSS electrode could be bent and rolled up without any decrease in electrochemical performance. A relatively high areal capacitance of 448 mF cm(-2) was achieved at a scan rate of 10 mV s(-1) using the composite electrode with a high mass loading (8.49 mg cm(-2)), indicating the potential to be used in practical applications. To demonstrate this applicability, a roll-up supercapacitor device was constructed, which illustrated the operation of a green LED light for 20 seconds when fully charged.

  15. High-Performance Flexible All-Solid-State Supercapacitor from Large Free-Standing Graphene-PEDOT/PSS Films

    NASA Astrophysics Data System (ADS)

    Liu, Yuqing; Weng, Bo; Razal, Joselito M.; Xu, Qun; Zhao, Chen; Hou, Yuyang; Seyedin, Shayan; Jalili, Rouhollah; Wallace, Gordon G.; Chen, Jun

    2015-11-01

    Although great attention has been paid to wearable electronic devices in recent years, flexible lightweight batteries or supercapacitors with high performance are still not readily available due to the limitations of the flexible electrode inventory. In this work, highly flexible, bendable and conductive rGO-PEDOT/PSS films were prepared using a simple bar-coating method. The assembled device using rGO-PEDOT/PSS electrode could be bent and rolled up without any decrease in electrochemical performance. A relatively high areal capacitance of 448 mF cm-2 was achieved at a scan rate of 10 mV s-1 using the composite electrode with a high mass loading (8.49 mg cm-2), indicating the potential to be used in practical applications. To demonstrate this applicability, a roll-up supercapacitor device was constructed, which illustrated the operation of a green LED light for 20 seconds when fully charged.

  16. New support for high-performance liquid chromatography based on silica coated with alumina particles.

    PubMed

    Silveira, José Leandro R; Dib, Samia R; Faria, Anizio M

    2014-01-01

    A new material based on silica coated with alumina nanoparticles was proposed for use as a chromatographic support for reversed-phase high-performance liquid chromatography. Alumina nanoparticles were synthesized by a sol-gel process in reversed micelles composed of sodium bis(2-ethylhexyl)sulfosuccinate, and the support material was formed by the self-assembly of alumina layers on silica spheres. Spectroscopic and (29)Si nuclear magnetic resonance results showed evidence of chemical bonds between the alumina nanoparticles and the silica spheres, while morphological characterizations showed that the aluminized silica maintained the morphological properties of silica desired for chromatographic purposes after alumina incorporation. Stability studies indicated that bare silica showed high dissolution (~83%), while the aluminized silica remained practically unchanged (99%) after passing one liter of the alkaline mobile phase, indicating high stability under alkaline conditions. The C18 bonded aluminized silica phase showed great potential for use in high-performance liquid chromatography to separate basic molecules in the reversed-phase mode.

  17. Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells

    PubMed Central

    Liu, Yuhang; Zhao, Jingbo; Li, Zhengke; Mu, Cheng; Hu, Huawei; Jiang, Kui; Lin, Haoran; Ade, Harald; Yan, He

    2014-01-01

    Although the field of polymer solar cell has seen much progress in device performance in the past few years, several limitations are holding back its further development. For instance, current high-efficiency (>9.0%) cells are restricted to material combinations that are based on limited donor polymers and only one specific fullerene acceptor. Here we report the achievement of high-performance (efficiencies up to 10.8%, fill factors up to 77%) thick-film polymer solar cells for multiple polymer:fullerene combinations via the formation of a near-ideal polymer:fullerene morphology that contains highly crystalline yet reasonably small polymer domains. This morphology is controlled by the temperature-dependent aggregation behaviour of the donor polymers and is insensitive to the choice of fullerenes. The uncovered aggregation and design rules yield three high-efficiency (>10%) donor polymers and will allow further synthetic advances and matching of both the polymer and fullerene materials, potentially leading to significantly improved performance and increased design flexibility. PMID:25382026

  18. Can We Train Machine Learning Methods to Outperform the High-dimensional Propensity Score Algorithm?

    PubMed

    Karim, Mohammad Ehsanul; Pang, Menglan; Platt, Robert W

    2018-03-01

    The use of retrospective health care claims datasets is frequently criticized for the lack of complete information on potential confounders. Utilizing patient's health status-related information from claims datasets as surrogates or proxies for mismeasured and unobserved confounders, the high-dimensional propensity score algorithm enables us to reduce bias. Using a previously published cohort study of postmyocardial infarction statin use (1998-2012), we compare the performance of the algorithm with a number of popular machine learning approaches for confounder selection in high-dimensional covariate spaces: random forest, least absolute shrinkage and selection operator, and elastic net. Our results suggest that, when the data analysis is done with epidemiologic principles in mind, machine learning methods perform as well as the high-dimensional propensity score algorithm. Using a plasmode framework that mimicked the empirical data, we also showed that a hybrid of machine learning and high-dimensional propensity score algorithms generally perform slightly better than both in terms of mean squared error, when a bias-based analysis is used.

  19. Graphene-Encapsulated Nanosheet-Assembled Zinc-Nickel-Cobalt Oxide Microspheres for Enhanced Lithium Storage.

    PubMed

    Zhang, Qiaobao; Chen, Huixin; Han, Xiang; Cai, Junjie; Yang, Yong; Liu, Meilin; Zhang, Kaili

    2016-01-01

    The appropriate combination of hierarchical transition-metal oxide (TMO) micro-/nanostructures constructed from porous nanobuilding blocks with graphene sheets (GNS) in a core/shell geometry is highly desirable for high-performance lithium-ion batteries (LIBs). A facile and scalable process for the fabrication of 3D hierarchical porous zinc-nickel-cobalt oxide (ZNCO) microspheres constructed from porous ultrathin nanosheets encapsulated by GNS to form a core/shell geometry is reported for improved electrochemical performance of the TMOs as an anode in LIBs. By virtue of their intriguing structural features, the produced ZNCO/GNS core/shell hybrids exhibit an outstanding reversible capacity of 1015 mA h g(-1) at 0.1 C after 50 cycles. Even at a high rate of 1 C, a stable capacity as high as 420 mA h g(-1) could be maintained after 900 cycles, which suggested their great potential as efficient electrodes for high-performance LIBs. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. High Efficiency Low Global Warming Potential Compressor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cogswell, Frederick; Verma, Parmesh

    During this project UTRC designed a novel compressor for use with new low Global-Warming-Potential (GWP) refrigerants. Through two design and testing iterations, UTRC advanced the compressor technology from TRL3 to TRL5. The target application was a 5 Tons of Refrigeration (TR) capacity Roof-Top Unit (RTU), although this technology may be applied to other low-capacity systems such as residential. The prototype unit met all design goals at the ARI-A rating condition and requires high efficiency motor to meet high performance targets at the ARI-B condition. This technology may be used in high efficiency units and with seasonal energy efficiency rating (SEER)more » exceeding 20. A preliminary cost analysis estimated that there would be less than $25/kbtuh cost impact to the customer.« less

Top