Frequency stabilization for mobile satellite terminals via LORAN
NASA Technical Reports Server (NTRS)
Ernst, Gregory J.; Kee, Steven M.; Marquart, Robert C.
1990-01-01
Digital satellite communication systems require careful management of frequency stability. Historically, frequency stability has been accomplished by continuously powered, high cost, high performance reference oscillators. Today's low cost mobile satellite communication equipment must operate under wide ranging environmental conditions, stabilize quickly after application of power, and provide adequate performance margin to overcome RF link impairments unique to the land mobile environment. Methods for frequency stabilization in land mobile applications must meet these objectives without incurring excessive performance degradation. A frequency stabilization scheme utilizing the LORAN (Long Range Navigation) system is presented.
Stabilized TiN nanowire arrays for high-performance and flexible supercapacitors.
Lu, Xihong; Wang, Gongming; Zhai, Teng; Yu, Minghao; Xie, Shilei; Ling, Yichuan; Liang, Chaolun; Tong, Yexiang; Li, Yat
2012-10-10
Metal nitrides have received increasing attention as electrode materials for high-performance supercapacitors (SCs). However, most of them are suffered from poor cycling stability. Here we use TiN as an example to elucidate the mechanism causing the capacitance loss. X-ray photoelectron spectroscopy analyses revealed that the instability is due to the irreversible electrochemical oxidation of TiN during the charging/discharging process. Significantly, we demonstrate for the first time that TiN can be stabilized without sacrificing its electrochemical performance by using poly(vinyl alcohol) (PVA)/KOH gel as the electrolyte. The polymer electrolyte suppresses the oxidation reaction on electrode surface. Electrochemical studies showed that the TiN solid-state SCs exhibit extraordinary stability up to 15,000 cycles and achieved a high volumetric energy density of 0.05 mWh/cm(3). The capability of effectively stabilizing nitride materials could open up new opportunities in developing high-performance and flexible SCs.
High mobility and high stability glassy metal-oxynitride materials and devices
NASA Astrophysics Data System (ADS)
Lee, Eunha; Kim, Taeho; Benayad, Anass; Hur, Jihyun; Park, Gyeong-Su; Jeon, Sanghun
2016-04-01
In thin film technology, future semiconductor and display products with high performance, high density, large area, and ultra high definition with three-dimensional functionalities require high performance thin film transistors (TFTs) with high stability. Zinc oxynitride, a composite of zinc oxide and zinc nitride, has been conceded as a strong substitute to conventional semiconductor film such as silicon and indium gallium zinc oxide due to high mobility value. However, zinc oxynitride has been suffered from poor reproducibility due to relatively low binding energy of nitrogen with zinc, resulting in the instability of composition and its device performance. Here we performed post argon plasma process on zinc oxynitride film, forming nano-crystalline structure in stable amorphous matrix which hampers the reaction of oxygen with zinc. Therefore, material properties and device performance of zinc oxynitride are greatly enhanced, exhibiting robust compositional stability even exposure to air, uniform phase, high electron mobility, negligible fast transient charging and low noise characteristics. Furthermore, We expect high mobility and high stability zinc oxynitride customized by plasma process to be applicable to a broad range of semiconductor and display devices.
Calculated performance, stability and maneuverability of high-speed tilting-prop-rotor aircraft
NASA Technical Reports Server (NTRS)
Johnson, Wayne; Lau, Benton H.; Bowles, Jeffrey V.
1986-01-01
The feasibility of operating tilting-prop-rotor aircraft at high speeds is examined by calculating the performance, stability, and maneuverability of representative configurations. The rotor performance is examined in high-speed cruise and in hover. The whirl-flutter stability of the coupled-wing and rotor motion is calculated in the cruise mode. Maneuverability is examined in terms of the rotor-thrust limit during turns in helicopter configuration. Rotor airfoils, rotor-hub configuration, wing airfoil, and airframe structural weights representing demonstrated advance technology are discussed. Key rotor and airframe parameters are optimized for high-speed performance and stability. The basic aircraft-design parameters are optimized for minimum gross weight. To provide a focus for the calculations, two high-speed tilt-rotor aircraft are considered: a 46-passenger, civil transport and an air-combat/escort fighter, both with design speeds of about 400 knots. It is concluded that such high-speed tilt-rotor aircraft are quite practical.
Compact fiber optic gyroscopes for platform stabilization
NASA Astrophysics Data System (ADS)
Dickson, William C.; Yee, Ting K.; Coward, James F.; McClaren, Andrew; Pechner, David A.
2013-09-01
SA Photonics has developed a family of compact Fiber Optic Gyroscopes (FOGs) for platform stabilization applications. The use of short fiber coils enables the high update rates required for stabilization applications but presents challenges to maintain high performance. We are able to match the performance of much larger FOGs by utilizing several innovative technologies. These technologies include source noise reduction to minimize Angular Random Walk (ARW), advanced digital signal processing that minimizes bias drift at high update rates, and advanced passive thermal packaging that minimizes temperature induced bias drift while not significantly affecting size, weight, or power. In addition, SA Photonics has developed unique distributed FOG packaging technologies allowing the FOG electronics and photonics to be packaged remotely from the sensor head or independent axis heads to minimize size, weight, and power at the sensing location(s). The use of these technologies has resulted in high performance, including ARW less than 0.001 deg/rt-hr and bias drift less than 0.004 deg/hr at an update rate of 10 kHz, and total packaged volume less than 30 cu. in. for a 6 degree of freedom FOG-based IMU. Specific applications include optical beam stabilization for LIDAR and LADAR, beam stabilization for long-range free-space optical communication, Optical Inertial Reference Units for HEL stabilization, and Ka band antenna pedestal pointing and stabilization. The high performance of our FOGs also enables their use in traditional navigation and positioning applications. This paper will review the technologies enabling our high-performance compact FOGs, and will provide performance test results.
Rotordynamic Instability Problems in High-Performance Turbomachinery
NASA Technical Reports Server (NTRS)
1984-01-01
Rotordynamics and predictions on the stability of characteristics of high performance turbomachinery were discussed. Resolutions of problems on experimental validation of the forces that influence rotordynamics were emphasized. The programs to predict or measure forces and force coefficients in high-performance turbomachinery are illustrated. Data to design new machines with enhanced stability characteristics or upgrading existing machines are presented.
Footwear and ankle stability in the basketball player.
Petrov, O; Blocher, K; Bradbury, R L; Saxena, A; Toy, M L
1988-04-01
Ankle stability in basketball players is affected by footwear. Athletic shoe manufacturers have introduced specialized lacing systems and high-top performance shoes to improve ankle stability. These performance shoes not only aid in preventing ankle injuries, but also protect injured ankles.
Nonlinear stability and control study of highly maneuverable high performance aircraft
NASA Technical Reports Server (NTRS)
Mohler, R. R.
1993-01-01
This project is intended to research and develop new nonlinear methodologies for the control and stability analysis of high-performance, high angle-of-attack aircraft such as HARV (F18). Past research (reported in our Phase 1, 2, and 3 progress reports) is summarized and more details of final Phase 3 research is provided. While research emphasis is on nonlinear control, other tasks such as associated model development, system identification, stability analysis, and simulation are performed in some detail as well. An overview of various models that were investigated for different purposes such as an approximate model reference for control adaptation, as well as another model for accurate rigid-body longitudinal motion is provided. Only a very cursory analysis was made relative to type 8 (flexible body dynamics). Standard nonlinear longitudinal airframe dynamics (type 7) with the available modified F18 stability derivatives, thrust vectoring, actuator dynamics, and control constraints are utilized for simulated flight evaluation of derived controller performance in all cases studied.
Collar height and heel counter-stiffness for ankle stability and athletic performance in basketball.
Liu, Hui; Wu, Zitian; Lam, Wing-Kai
2017-01-01
This study examined the effects of collar height and heel counter-stiffness of basketball shoes on ankle stability during sidestep cutting and athletic performance. 15 university basketball players wore customized shoes with different collar heights (high and low) and heel counter-stiffness (regular, stiffer and stiffest) for this study. Ankle stability was evaluated in sidestep cutting while athletic performance evaluated in jumping and agility tasks. All variables were analysed using two-way repeated ANOVA. Results showed shorter time to peak ankle inversion for both high collar and stiff heel counter conditions (P < 0.05), while smaller initial ankle inversion angle, peak inversion velocity and total range of inversion for wearing high collar shoes (P < 0.05). No shoe differences were found for performance variables. These findings imply that the collar height might play a larger role in lateral stability than heel counter-stiffness, while both collar height and counter-stiffness have no effect on athletic performance.
A Historical Review of Cermet Fuel Development and the Engine Performance Implications
NASA Technical Reports Server (NTRS)
Stewart, Mark E.
2015-01-01
To better understand Cermet engine performance, examined historical material development reports two issues: High vaporization rate of UO2, High temperature chemical stability of UO2. Cladding and chemical stabilizers each result in large, order of magnitude improvements in high temperature performance. Few samples were tested above 2770 K. Results above 2770 K are ambiguous. Contemporary testing may clarify performance. Cermet sample testing during the NERVA Rover era. Important properties, melting temperature, vaporization rate, strength, Brittle-to-Ductile Transition, cermet sample test results, engine performance, location, peak temperature.
Zhang, Xinghao; Qiu, Xiongying; Kong, Debin; Zhou, Lu; Li, Zihao; Li, Xianglong; Zhi, Linjie
2017-07-25
Nanostructuring is a transformative way to improve the structure stability of high capacity silicon for lithium batteries. Yet, the interface instability issue remains and even propagates in the existing nanostructured silicon building blocks. Here we demonstrate an intrinsically dual stabilized silicon building block, namely silicene flowers, to simultaneously address the structure and interface stability issues. These original Si building blocks as lithium battery anodes exhibit extraordinary combined performance including high gravimetric capacity (2000 mAh g -1 at 800 mA g -1 ), high volumetric capacity (1799 mAh cm -3 ), remarkable rate capability (950 mAh g -1 at 8 A g -1 ), and excellent cycling stability (1100 mA h g -1 at 2000 mA g -1 over 600 cycles). Paired with a conventional cathode, the fabricated full cells deliver extraordinarily high specific energy and energy density (543 Wh kg ca -1 and 1257 Wh L ca -1 , respectively) based on the cathode and anode, which are 152% and 239% of their commercial counterparts using graphite anodes. Coupled with a simple, cost-effective, scalable synthesis approach, this silicon building block offers a horizon for the development of high-performance batteries.
Gilbert, Sarah Skye; Thakare, Neeraj; Ramanujapuram, Arun; Akkihal, Anup
2017-04-19
Immunization supply chains in low resource settings do not always reach children with necessary vaccines. Digital information systems can enable real time visibility of inventory and improve vaccine availability. In 2014, a digital, mobile/web-based information system was implemented in two districts of Uttar Pradesh, India. This retrospective investigates improvements and stabilization of supply chain performance following introduction of the digital information system. All data were collected via the digital information system between March 2014 and September 2015. Data included metadata and transaction logs providing information about users, facilities, and vaccines. Metrics evaluated include adoption (system access, timeliness and completeness), data quality (error rates), and performance (stock availability on immunization session days, replenishment response duration, rate of zero stock events). Stability was defined as the phase in which quality and performance metrics achieved equilibrium rates with minimal volatility. The analysis compared performance across different facilities and vaccines. Adoption appeared sufficiently high from the onset to commence stability measures of data quality and supply chain performance. Data quality stabilized from month 3 onwards, and supply chain performance stabilized from month 13 onwards. For data quality, error rates reduced by two thirds post stabilization. Although vaccine availability remained high throughout the pilot, the three lowest-performing facilities improved from 91.05% pre-stability to 98.70% post-stability (p<0.01; t-test). Average replenishment duration (as a corrective response to stock-out events) decreased 52.3% from 4.93days to 2.35days (p<0.01; t-test). Diphtheria-tetanus-pertussis vaccine was significantly less likely to be stocked out than any other material. The results suggest that given sufficient adoption, stability is sequentially achieved, beginning with data quality, and then performance. Identifying when a pilot stabilizes can enable more predictable, reliable cost estimates, and outcome forecasts in the scale-up phase. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
NASA Technical Reports Server (NTRS)
Chattopadhyay, Aditi; Mccarthy, Thomas R.; Madden, John F., III
1992-01-01
An optimization procedure is developed for the design of high speed prop-rotors to be used in civil tiltrotor applications. The goal is to couple aerodynamic performance, aeroelastic stability, and structural design requirements inside a closed-loop optimization procedure. The objective is to minimize the gross weight and maximize the propulsive efficiency in high speed cruise. Constraints are imposed on the rotor aeroelastic stability in both hover and cruise and rotor figure of merit in hover. Both structural and aerodynamic design variables are used.
Kibria, Md Golam; Qiao, Ruimin; Yang, Wanli; Boukahil, Idris; Kong, Xianghua; Chowdhury, Faqrul Alam; Trudeau, Michel L; Ji, Wei; Guo, Hong; Himpsel, F J; Vayssieres, Lionel; Mi, Zetian
2016-10-01
The atomic-scale origin of the unusually high performance and long-term stability of wurtzite p-GaN oriented nanowire arrays is revealed. Nitrogen termination of both the polar (0001¯) top face and the nonpolar (101¯0) side faces of the nanowires is essential for long-term stability and high efficiency. Such a distinct atomic configuration ensures not only stability against (photo) oxidation in air and in water/electrolyte but, as importantly, also provides the necessary overall reverse crystal polarization needed for efficient hole extraction in p-GaN. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Technical Reports Server (NTRS)
Charlton, Eric F.
1998-01-01
Aerodynamic analysis are performed using the Lockheed-Martin Tactical Aircraft Systems (LMTAS) Splitflow computational fluid dynamics code to investigate the computational prediction capabilities for vortex-dominated flow fields of two different tailless aircraft models at large angles of attack and sideslip. These computations are performed with the goal of providing useful stability and control data to designers of high performance aircraft. Appropriate metrics for accuracy, time, and ease of use are determined in consultations with both the LMTAS Advanced Design and Stability and Control groups. Results are obtained and compared to wind-tunnel data for all six components of forces and moments. Moment data is combined to form a "falling leaf" stability analysis. Finally, a handful of viscous simulations were also performed to further investigate nonlinearities and possible viscous effects in the differences between the accumulated inviscid computational and experimental data.
NASA Astrophysics Data System (ADS)
Lin, Yung-Hao; Lee, Ching-Ting
2017-08-01
High-quality indium gallium zinc aluminum oxide (IGZAO) thin films with various Al contents have been deposited using the vapor cooling condensation method. The electron mobility of the IGZAO films was improved by 89.4% on adding Al cation to IGZO film. The change in the electron concentration and mobility of the IGZAO films was 7.3% and 7.0%, respectively, when the temperature was changed from 300 K to 225 K. These experimental results confirm the high performance and stability of the IGZAO films. The performance stability mechanisms of IGZAO thin-film transistors (TFTs) were investigated in comparison with IGZO TFTs.
Adaptability and stability of soybean genotypes in off-season cultivation.
Batista, R O; Hamawaki, R L; Sousa, L B; Nogueira, A P O; Hamawaki, O T
2015-08-14
The oil and protein contents of soybean grains are important quantitative traits for use in breeding. However, few breeding programs perform selection based on these traits in different environments. This study assessed the adaptability and stability of 14 elite early soybean breeding lines in off-season cultivation with respect to yield, and oil and protein contents. A range of statistical methods was applied and these analyses indicated that for off-season cultivation, the lines UFUS 5 and UFUS 10 could be recommended due to their superior performance in grain yield, oil content, and specific adaptability to unfavorable environments along with high stability in these characteristics. Also recommended were UFUS 06, which demonstrated superior performance in all three tested characteristics and showed adaptation to favorable environments, and UFUS 13, which showed high adaptability and stability and a superior performance for protein content.
NASA Astrophysics Data System (ADS)
Chang, En-Chih
2018-02-01
This paper presents a high-performance AC power source by applying robust stability control technology for precision material machining (PMM). The proposed technology associates the benefits of finite-time convergent sliding function (FTCSF) and firefly optimization algorithm (FOA). The FTCSF maintains the robustness of conventional sliding mode, and simultaneously speeds up the convergence speed of the system state. Unfortunately, when a highly nonlinear loading is applied, the chatter will occur. The chatter results in high total harmonic distortion (THD) output voltage of AC power source, and even deteriorates the stability of PMM. The FOA is therefore used to remove the chatter, and the FTCSF still preserves finite system-state convergence time. By combining FTCSF with FOA, the AC power source of PMM can yield good steady-state and transient performance. Experimental results are performed in support of the proposed technology.
High Stability Engine Control (HISTEC) Flight Test Results
NASA Technical Reports Server (NTRS)
Southwick, Robert D.; Gallops, George W.; Kerr, Laura J.; Kielb, Robert P.; Welsh, Mark G.; DeLaat, John C.; Orme, John S.
1998-01-01
The High Stability Engine Control (HISTEC) Program, managed and funded by the NASA Lewis Research Center, is a cooperative effort between NASA and Pratt & Whitney (P&W). The program objective is to develop and flight demonstrate an advanced high stability integrated engine control system that uses real-time, measurement-based estimation of inlet pressure distortion to enhance engine stability. Flight testing was performed using the NASA Advanced Controls Technologies for Integrated Vehicles (ACTIVE) F-15 aircraft at the NASA Dryden Flight Research Center. The flight test configuration, details of the research objectives, and the flight test matrix to achieve those objectives are presented. Flight test results are discussed that show the design approach can accurately estimate distortion and perform real-time control actions for engine accommodation.
Stability and the Evolvability of Function in a Model Protein
Bloom, Jesse D.; Wilke, Claus O.; Arnold, Frances H.; Adami, Christoph
2004-01-01
Functional proteins must fold with some minimal stability to a structure that can perform a biochemical task. Here we use a simple model to investigate the relationship between the stability requirement and the capacity of a protein to evolve the function of binding to a ligand. Although our model contains no built-in tradeoff between stability and function, proteins evolved function more efficiently when the stability requirement was relaxed. Proteins with both high stability and high function evolved more efficiently when the stability requirement was gradually increased than when there was constant selection for high stability. These results show that in our model, the evolution of function is enhanced by allowing proteins to explore sequences corresponding to marginally stable structures, and that it is easier to improve stability while maintaining high function than to improve function while maintaining high stability. Our model also demonstrates that even in the absence of a fundamental biophysical tradeoff between stability and function, the speed with which function can evolve is limited by the stability requirement imposed on the protein. PMID:15111394
Dai, Xiaohu; Duan, Nina; Dong, Bin; Dai, Lingling
2013-02-01
System stability and performance of high-solids anaerobic co-digestion of dewatered sludge (DS) and food waste (FW) in comparison with mono digestions were investigated. System stability was improved in co-digestion systems with co-substrate acting as a diluting agent to toxic chemicals like ammonia or Na(+). For high-solids digestion of DS, the addition of FW not only improved system stability but also greatly enhanced volumetric biogas production. For high-solids digestion of FW, the addition of DS could reduce Na(+) concentration and help maintain satisfactory stability during the conversion of FW into biogas. System performances of co-digestion systems were mainly determined by the mixing ratios of DS and FW. Biogas production and volatile solids (VSs) reduction in digestion of the co-mixture of DS and FW increased linearly with higher ratios of FW. A kinetic model, which aimed to forecast the performance of co-digestion and to assist reactor design, was developed from long-term semi-continuous experiments. Maximum VS reduction for DS and FW was estimated to be 44.3% and 90.3%, respectively, and first order constant k was found to be 0.17d(-1) and 0.50 d(-1), respectively. Experimental data of co-digestion were in good conformity to the predictions of the model. Copyright © 2012 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ohashi, Haruhiko; Tanaka, Takashi; Kitamura, Hideo
2007-01-19
A new soft x-ray beamline BL17SU (RIKEN) has been constructed at SPring-8. The beamline consists of two branches with each varied-line-spacing-plane-grating-monochromator. Both monochromators perform high energy resolution (E/{delta}E > 10,000) between 0.2 and 1 keV. One of the monochromator achieves high energy stability of 10 meV over a period of half a day.
Stability of High-Performance Pt-Based Catalysts for Oxygen Reduction Reactions.
Lin, Rui; Cai, Xin; Zeng, Hao; Yu, Zhuoping
2018-04-01
Due to their environmental sustainability and high efficiency, proton-exchange-membrane fuel cells (PEMFCs) are expected to be an essential type of energy source for electric vehicles, energy generation, and the space industry in the coming decades. Here, the recent developments regarding shape-controlled nanostructure catalysts are reviewed, with a focus on the stability of high-performance Pt-based catalysts and related mechanisms. The catalysts, which possess great activity, are still far from meeting the requirements of their applications, due to stability issues, especially in membrane electrode assemblies (MEAs). Thus, solutions toward the comprehensive performance of Pt-based catalysts are discussed here. The research trends and related theories that can promote the application of Pt-based catalysts are also provided. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Ping; Barkholtz, Heather M.; Wang, Ying
We demonstrate a new and simple method for pre-treating the carbon material and iron precursor to prepare oxygen reduction reaction (ORR) catalysts, which can produce super-high performance and stability in alkaline solution, with high performance in acid solution. This strategy using cheap materials is simply controllable. Moreover, it has achieved smaller uniform nanoparticles to exhibit high stability, and the synergetic effect of Fe and N offered much higher performance in ORR than commercial Pt/C, with high maximum power density in alkaline and acid fuel cell test. So it can make this kind of catalysts be the most promising alternatives ofmore » Pt-based catalysts with best performance/price.« less
Thermally Stable Cellulose Nanocrystals toward High-Performance 2D and 3D Nanostructures.
Jia, Chao; Bian, Huiyang; Gao, Tingting; Jiang, Feng; Kierzewski, Iain Michael; Wang, Yilin; Yao, Yonggang; Chen, Liheng; Shao, Ziqiang; Zhu, J Y; Hu, Liangbing
2017-08-30
Cellulose nanomaterials have attracted much attention in a broad range of fields such as flexible electronics, tissue engineering, and 3D printing for their excellent mechanical strength and intriguing optical properties. Economic, sustainable, and eco-friendly production of cellulose nanomaterials with high thermal stability, however, remains a tremendous challenge. Here versatile cellulose nanocrystals (DM-OA-CNCs) are prepared through fully recyclable oxalic acid (OA) hydrolysis along with disk-milling (DM) pretreatment of bleached kraft eucalyptus pulp. Compared with the commonly used cellulose nanocrystals from sulfuric acid hydrolysis, DM-OA-CNCs show several advantages including large aspect ratio, carboxylated surface, and excellent thermal stability along with high yield. We also successfully demonstrate the fabrication of high-performance films and 3D-printed patterns using DM-OA-CNCs. The high-performance films with high transparency, ultralow haze, and excellent thermal stability have the great potential for applications in flexible electronic devices. The 3D-printed patterns with porous structures can be potentially applied in the field of tissue engineering as scaffolds.
Next-generation fiber lasers enabled by high-performance components
NASA Astrophysics Data System (ADS)
Kliner, D. A. V.; Victor, B.; Rivera, C.; Fanning, G.; Balsley, D.; Farrow, R. L.; Kennedy, K.; Hampton, S.; Hawke, R.; Soukup, E.; Reynolds, M.; Hodges, A.; Emery, J.; Brown, A.; Almonte, K.; Nelson, M.; Foley, B.; Dawson, D.; Hemenway, D. M.; Urbanek, W.; DeVito, M.; Bao, L.; Koponen, J.; Gross, K.
2018-02-01
Next-generation industrial fiber lasers enable challenging applications that cannot be addressed with legacy fiber lasers. Key features of next-generation fiber lasers include robust back-reflection protection, high power stability, wide power tunability, high-speed modulation and waveform generation, and facile field serviceability. These capabilities are enabled by high-performance components, particularly pump diodes and optical fibers, and by advanced fiber laser designs. We summarize the performance and reliability of nLIGHT diodes, fibers, and next-generation industrial fiber lasers at power levels of 500 W - 8 kW. We show back-reflection studies with up to 1 kW of back-reflected power, power-stability measurements in cw and modulated operation exhibiting sub-1% stability over a 5 - 100% power range, and high-speed modulation (100 kHz) and waveform generation with a bandwidth 20x higher than standard fiber lasers. We show results from representative applications, including cutting and welding of highly reflective metals (Cu and Al) for production of Li-ion battery modules and processing of carbon fiber reinforced polymers.
NASA Astrophysics Data System (ADS)
Zhang, Hongwei; Sun, Xiaoran; Huang, Xiaodan; Zhou, Liang
2015-02-01
A novel ``spray drying-carbonization-oxidation'' strategy has been developed for the fabrication of α-Fe2O3-graphitic carbon (α-Fe2O3@GC) composite microspheres, in which α-Fe2O3 nanoparticles with sizes of 30-50 nm are well-encapsulated by onion-like graphitic carbon shells with a thickness of 5-10 nm. In the constructed composite, the α-Fe2O3 nanoparticles act as the primary active material, providing a high capacity. Meanwhile, the graphitic carbon shells serve as the secondary active component, structural stabilizer, interfacial stabilizer, and electron-highway. As a result, the synthesized α-Fe2O3@GC nanocomposite exhibits a superior lithium-ion battery performance with a high reversible capacity (898 mA h g-1 at 400 mA g-1), outstanding rate capability, and excellent cycling stability. Our product, in terms of the facile and scalable preparation process and excellent electrochemical performance, demonstrates its great potential as a high-performance anode material for lithium-ion batteries.A novel ``spray drying-carbonization-oxidation'' strategy has been developed for the fabrication of α-Fe2O3-graphitic carbon (α-Fe2O3@GC) composite microspheres, in which α-Fe2O3 nanoparticles with sizes of 30-50 nm are well-encapsulated by onion-like graphitic carbon shells with a thickness of 5-10 nm. In the constructed composite, the α-Fe2O3 nanoparticles act as the primary active material, providing a high capacity. Meanwhile, the graphitic carbon shells serve as the secondary active component, structural stabilizer, interfacial stabilizer, and electron-highway. As a result, the synthesized α-Fe2O3@GC nanocomposite exhibits a superior lithium-ion battery performance with a high reversible capacity (898 mA h g-1 at 400 mA g-1), outstanding rate capability, and excellent cycling stability. Our product, in terms of the facile and scalable preparation process and excellent electrochemical performance, demonstrates its great potential as a high-performance anode material for lithium-ion batteries. Electronic supplementary information (ESI) available: XRD pattern, XPS spectrum, CV curves, TEM and SEM images, and table. See DOI: 10.1039/c4nr06771a
NASA Astrophysics Data System (ADS)
Huang, Diyun; Parker, Timothy; Guan, Hann Wen; Cong, Shuxin; Jin, Danliang; Dinu, Raluca; Chen, Baoquan; Tolstedt, Don; Wolf, Nick; Condon, Stephen
2005-01-01
The electro-optic coefficient and long-term dipole alignment stability are two major factors in the development of high performance NLO materials for the application of high-speed EO devices. We have developed a high performance non-linear organic chromophore and incorporated it into a crosslinkable side-chain polyimide system. The polymer was synthesized through stepwise grafting of the crosslinker followed by the chromophore onto the polyimide backbone via esterification. Different chromophore loading levels were achieved by adjusting the crosslinker/chromophore feeding ratio. The polyimides films were contact-poled with second-harmonic generation monitoring. A large EO coefficient value was obtained and good long-term thermal stability at 85°C was observed.
Reduced Graphene Oxide-Wrapped FeS2 Composite as Anode for High-Performance Sodium-Ion Batteries
NASA Astrophysics Data System (ADS)
Wang, Qinghong; Guo, Can; Zhu, Yuxuan; He, Jiapeng; Wang, Hongqiang
2018-06-01
Iron disulfide is considered to be a potential anode material for sodium-ion batteries due to its high theoretical capacity. However, its applications are seriously limited by the weak conductivity and large volume change, which results in low reversible capacity and poor cycling stability. Herein, reduced graphene oxide-wrapped FeS2 (FeS2/rGO) composite was fabricated to achieve excellent electrochemical performance via a facile two-step method. The introduction of rGO effectively improved the conductivity, BET surface area, and structural stability of the FeS2 active material, thus endowing it with high specific capacity, good rate capability, as well as excellent cycling stability. Electrochemical measurements show that the FeS2/rGO composite had a high initial discharge capacity of 1263.2 mAh g-1 at 100 mA g-1 and a high discharge capacity of 344 mAh g-1 at 10 A g-1, demonstrating superior rate performance. After 100 cycles at 100 mA g-1, the discharge capacity remained at 609.5 mAh g-1, indicating the excellent cycling stability of the FeS2/rGO electrode.
Nonlinear stability and control study of highly maneuverable high performance aircraft, phase 2
NASA Technical Reports Server (NTRS)
Mohler, R. R.
1992-01-01
Research leading to the development of new nonlinear methodologies for the adaptive control and stability analysis of high angle of attack aircraft such as the F-18 is discussed. The emphasis has been on nonlinear adaptive control, but associated model development, system identification, stability analysis, and simulation were studied in some detail as well. Studies indicated that nonlinear adaptive control can outperform linear adaptive control for rapid maneuvers with large changes in angle of attack. Included here are studies on nonlinear model algorithmic controller design and an analysis of nonlinear system stability using robust stability analysis for linear systems.
Polymer stabilized liquid crystals: Topology-mediated electro-optical behavior and applications
NASA Astrophysics Data System (ADS)
Weng, Libo
There has been a wide range of liquid crystal polymer composites that vary in polymer concentration from as little as 3 wt.% (polymer stabilized liquid crystal) to as high as 60 wt.% (polymer dispersed liquid crystals). In this dissertation, an approach of surface polymerization based on a low reactive monomer concentration about 1 wt.% is studied in various liquid crystal operation modes. The first part of dissertation describes the development of a vertical alignment (VA) mode with surface polymer stabilization, and the effects of structure-performance relationship of reactive monomers (RMs) and polymerization conditions on the electro-optical behaviors of the liquid crystal device has been explored. The polymer topography plays an important role in modifying and enhancing the electro-optical performance of stabilized liquid crystal alignment. The enabling surface-pinned polymer stabilized vertical alignment (PSVA) approach has led to the development of high-performance and fast-switching displays with controllable pretilt angle, increase in surface anchoring energy, high optical contrast and fast response time. The second part of the dissertation explores a PSVA mode with in-plane switching (IPS) and its application for high-efficiency and fast-switching phase gratings. The diffraction patterns and the electro-optical behaviors including diffraction efficiency and response time are characterized. The diffraction grating mechanism and performance have been validated by computer simulation. Finally, the advantages of surface polymerization approach such as good optical contrast and fast response time have been applied to the fringe-field switching (FFS) system. The concentration of reactive monomer on the electro-optical behavior of the FFS cells is optimized. The outstanding electro-optical results and mechanism of increase in surface anchoring strength are corroborated by the director field simulation. The density and topology of nanoscale polymer protrusions are analyzed and confirmed by morphological study. The developed high-performance polymer-stabilized fringe-field-switching (PS-FFS) could open new types of device applications.
Coated Porous Si for High Performance On-Chip Supercapacitors
NASA Astrophysics Data System (ADS)
Grigoras, K.; Keskinen, J.; Grönberg, L.; Ahopelto, J.; Prunnila, M.
2014-11-01
High performance porous Si based supercapacitor electrodes are demonstrated. High power density and stability is provided by ultra-thin TiN coating of the porous Si matrix. The TiN layer is deposited by atomic layer deposition (ALD), which provides sufficient conformality to reach the bottom of the high aspect ratio pores. Our porous Si supercapacitor devices exhibit almost ideal double layer capacitor characteristic with electrode volumetric capacitance of 7.3 F/cm3. Several orders of magnitude increase in power and energy density is obtained comparing to uncoated porous silicon electrodes. Good stability of devices is confirmed performing several thousands of charge/discharge cycles.
NASA Astrophysics Data System (ADS)
Ko, Younji; Kim, Donghee; Kwon, Cheong Hoon; Cho, Jinhan
2018-04-01
In this study, we introduce hydrophobic and hydrophilic graphene oxide nanosheet (GON) catalysts prepared by consecutive ligand replacement of hydrophobically stabilized magnetic and catalytic nanoparticles (NPs); it exhibits high catalytic activity, fast magnetic response, and good dispersion in both nonpolar and aqueous media, allowing high loading amount of magnetic and catalytic NPs onto GON sheets. More specifically, these GON catalysts showed a high product yield of 66-99% and notable recyclability (93% of the initial product yield after 10 reaction cycles) in a Suzuki-Miyaura reaction in nonpolar media, outperforming the performance of the conventional hydrophilic GON catalysts. Additional coating of a hydrophilic layer onto GON catalysts also showed the notable performance (product yield ∼99%) in catalytic reactions performed in aqueous media. Given that ligand-controlled catalytic NPs adsorbed onto 2D nanosheets can be used as hydrophobic and hydrophilic stabilizers as well as catalysts, our approach can provide a tool for developing and designing 2D-nanosheet catalysts with high performance in nonpolar and polar media.
Deller, Timothy W; Khalighi, Mohammad Mehdi; Jansen, Floris P; Glover, Gary H
2018-01-01
The recent introduction of simultaneous whole-body PET/MR scanners has enabled new research taking advantage of the complementary information obtainable with PET and MRI. One such application is kinetic modeling, which requires high levels of PET quantitative stability. To accomplish the required PET stability levels, the PET subsystem must be sufficiently isolated from the effects of MR activity. Performance measurements have previously been published, demonstrating sufficient PET stability in the presence of MR pulsing for typical clinical use; however, PET stability during radiofrequency (RF)-intensive and gradient-intensive sequences has not previously been evaluated for a clinical whole-body scanner. In this work, PET stability of the GE SIGNA PET/MR was examined during simultaneous scanning of aggressive MR pulse sequences. Methods: PET performance tests were acquired with MR idle and during simultaneous MR pulsing. Recent system improvements mitigating RF interference and gain variation were used. A fast recovery fast spin echo MR sequence was selected for high RF power, and an echo planar imaging sequence was selected for its high heat-inducing gradients. Measurements were performed to determine PET stability under varying MR conditions using the following metrics: sensitivity, scatter fraction, contrast recovery, uniformity, count rate performance, and image quantitation. A final PET quantitative stability assessment for simultaneous PET scanning during functional MRI studies was performed with a spiral in-and-out gradient echo sequence. Results: Quantitation stability of a 68 Ge flood phantom was demonstrated within 0.34%. Normalized sensitivity was stable during simultaneous scanning within 0.3%. Scatter fraction measured with a 68 Ge line source in the scatter phantom was stable within the range of 40.4%-40.6%. Contrast recovery and uniformity were comparable for PET images acquired simultaneously with multiple MR conditions. Peak noise equivalent count rate was 224 kcps at an effective activity concentration of 18.6 kBq/mL, and the count rate curves and scatter fraction curve were consistent for the alternating MR pulsing states. A final test demonstrated quantitative stability during a spiral functional MRI sequence. Conclusion: PET stability metrics demonstrated that PET quantitation was not affected during simultaneous aggressive MRI. This stability enables demanding applications such as kinetic modeling. © 2018 by the Society of Nuclear Medicine and Molecular Imaging.
A novel adaptive finite time controller for bilateral teleoperation system
NASA Astrophysics Data System (ADS)
Wang, Ziwei; Chen, Zhang; Liang, Bin; Zhang, Bo
2018-03-01
Most bilateral teleoperation researches focus on the system stability within time-delays. However, practical teleoperation tasks require high performances besides system stability, such as convergence rate and accuracy. This paper investigates bilateral teleoperation controller design with transient performances. To ensure the transient performances and system stability simultaneously, an adaptive non-singular fast terminal mode controller is proposed to achieve practical finite-time stability considering system uncertainties and time delays. In addition, a novel switching scheme is introduced, in which way the singularity problem of conventional terminal sliding manifold is avoided. Finally, numerical simulations demonstrate the effectiveness and validity of the proposed method.
NASA Astrophysics Data System (ADS)
Green, K. N.; van Alstine, R. L.
This paper presents the current performance levels of the SDG-5 gyro, a high performance two-axis dynamically tuned gyro, and the DRIRU II redundant inertial reference unit relating to stabilization and pointing applications. Also presented is a discussion of a product improvement program aimed at further noise reductions to meet the demanding requirements of future space defense applications.
Wu, Guangbao; Zhang, Zhi-Guo; Li, Yongfang; Gao, Caiyan; Wang, Xin; Chen, Guangming
2017-06-27
Taking advantage of the high electrical conductivity of a single-walled carbon nanotube (SWCNT) and the large Seebeck coefficient of rylene diimide, a convenient strategy is proposed to achieve high-performance n-type thermoelectric (TE) composites containing a SWCNT and amino-substituted perylene diimide (PDINE) or naphthalene diimide (NDINE). The obtained n-type composites display greatly enhanced TE performance with maximum power factors of 112 ± 8 (PDINE/SWCNT) and 135 ± 14 (NDINE/SWCNT) μW m -1 K -2 . A short doping time of 0.5 h can ensure high TE performance. The corresponding TE module consisting of five p-n junctions reaches a large output power of 3.3 μW under a 50 °C temperature gradient. In addition, the n-type composites exhibit high air stability and excellent thermal stability. This design strategy benefits the future fabricating of high-performance n-type TE materials and devices.
Zhang, Shuangyou; Wu, Jiutao; Leng, Jianxiao; Lai, Shunnan; Zhao, Jianye
2014-11-15
In this Letter, we demonstrate a fully stabilized Er:fiber frequency comb by using a fiber-based, high-precision optical-microwave phase detector. To achieve high-precision and long-term phase locking of the repetition rate to a microwave reference, frequency control techniques (tuning pump power and cavity length) are combined together as its feedback. Since the pump power has been used for stabilization of the repetition rate, we introduce a pair of intracavity prisms as a regulator for carrier-envelope offset frequency, thereby phase locking one mode of the comb to the rubidium saturated absorption transition line. The stabilized comb performs the same high stability as the reference for the repetition rate and provides a residual frequency instability of 3.6×10(-13) for each comb mode. The demonstrated stabilization scheme could provide a high-precision comb for optical communication, direct frequency comb spectroscopy.
Towards highly stable polymer electronics (Conference Presentation)
NASA Astrophysics Data System (ADS)
Nikolka, Mark; Nasrallah, Iyad; Broch, Katharina; Sadhanala, Aditya; Hurhangee, Michael; McCulloch, Iain; Sirringhaus, Henning
2016-11-01
Due to their ease of processing, organic semiconductors are promising candidates for applications in high performance flexible displays and fast organic electronic circuitry. Recently, a lot of advances have been made on organic semiconductors exhibiting surprisingly high performance and carrier mobilities exceeding those of amorphous silicon. However, there remain significant concerns about their operational and environmental stability, particularly in the context of applications that require a very high level of threshold voltage stability, such as active-matrix addressing of organic light-emitting diode (OLED) displays. Here, we report a novel technique for dramatically improving the operational stress stability, performance and uniformity of high mobility polymer field-effect transistors by the addition of specific small molecule additives to the polymer semiconductor film. We demonstrate for the first time polymer FETs that exhibit stable threshold voltages with threshold voltage shifts of less than 1V when subjected to a constant current operational stress for 1 day under conditions that are representative for applications in OLED active matrix displays. The approach constitutes in our view a technological breakthrough; it also makes the device characteristics independent of the atmosphere in which it is operated, causes a significant reduction in contact resistance and significantly improves device uniformity. We will discuss in detail the microscopic mechanism by which the molecular additives lead to this significant improvement in device performance and stability.
Electrolytes for Use in High Energy Lithium-Ion Batteries with Wide Operating Temperature Range
NASA Technical Reports Server (NTRS)
Smart, Marshall C.; Ratnakumar, B. V.; West, W. C.; Whitcanack, L. D.; Huang, C.; Soler, J.; Krause, F. C.
2011-01-01
Objectives of this work are: (1) Develop advanced Li -ion electrolytes that enable cell operation over a wide temperature range (i.e., -30 to +60C). (2) Improve the high temperature stability and lifetime characteristics of wide operating temperature electrolytes. (3) Improve the high voltage stability of these candidate electrolytes systems to enable operation up to 5V with high specific energy cathode materials. (4) Define the performance limitations at low and high temperature extremes, as well as, life limiting processes. (5) Demonstrate the performance of advanced electrolytes in large capacity prototype cells.
Tunneled Mesoporous Carbon Nanofibers with Embedded ZnO Nanoparticles for Ultrafast Lithium Storage.
An, Geon-Hyoung; Lee, Do-Young; Ahn, Hyo-Jin
2017-04-12
Carbon and metal oxide composites have received considerable attention as anode materials for Li-ion batteries (LIBs) owing to their excellent cycling stability and high specific capacity based on the chemical and physical stability of carbon and the high theoretical specific capacity of metal oxides. However, efforts to obtain ultrafast cycling stability in carbon and metal oxide composites at high current density for practical applications still face important challenges because of the longer Li-ion diffusion pathway, which leads to poor ultrafast performance during cycling. Here, tunneled mesoporous carbon nanofibers with embedded ZnO nanoparticles (TMCNF/ZnO) are synthesized by electrospinning, carbonization, and postcalcination. The optimized TMCNF/ZnO shows improved electrochemical performance, delivering outstanding ultrafast cycling stability, indicating a higher specific capacity than previously reported ZnO-based anode materials in LIBs. Therefore, the unique architecture of TMCNF/ZnO has potential for use as an anode material in ultrafast LIBs.
Novel LLM series high density energy materials: Synthesis, characterization, and thermal stability
NASA Astrophysics Data System (ADS)
Pagoria, Philip; Zhang, Maoxi; Tsyshevskiy, Roman; Kuklja, Maija
Novel high density energy materials must satisfy specific requirements, such as an increased performance, reliably high stability to external stimuli, cost-efficiency and ease of synthesis, be environmentally benign, and be safe for handling and transportation. During the last decade, the attention of researchers has drifted from widely used nitroester-, nitramine-, and nitroaromatic-based explosives to nitrogen-rich heterocyclic compounds. Good thermal stability, the low melting point, high density, and moderate sensitivity make heterocycle materials attractive candidates for use as oxidizers in rocket propellants and fuels, secondary explosives, and possibly as melt-castable ingredients of high explosive formulations. In this report, the synthesis, characterization, and results of quantum-chemical DFT study of thermal stability of LLM-191, LLM-192 and LLM-200 high density energy materials are presented. Work performed under the auspices of the DOE by the LLNL (Contract DE-AC52-07NA27344). This research is supported in part by ONR (Grant N00014-12-1-0529) and NSF. We used NSF XSEDE (Grant DMR-130077) and DOE NERSC (Contract DE-AC02-05CH11231) resources.
NASA Technical Reports Server (NTRS)
Seidel, David J.; Dubovitsky, Serge
2000-01-01
We report on the development, functional performance and space-qualification status of a laser stabilization system supporting a space-based metrology source used to measure changes in optical path lengths in space-based stellar interferometers. The Space Interferometry Mission (SIM) and Deep Space 3 (DS-3) are two missions currently funded by the National Aeronautics and Space Administration (NASA) that are space-based optical interferometers. In order to properly recombine the starlight received at each telescope of the interferometer it is necessary to perform high resolution laser metrology to stabilize the interferometer. A potentially significant error source in performing high resolution metrology length measurements is the potential for fluctuations in the laser gauge itself. If the laser frequency or wavelength is changing over time it will be misinterpreted as a length change in one of the legs of the interferometer. An analysis of the frequency stability requirement for SIM resulted in a fractional frequency stability requirement of square root (S(sub y)(f)) = <2 x 10(exp -12)/square root(Hz) at Fourier frequencies between 10 Hz and 1000 Hz. The DS-3 mission stability requirement is further increased to square root (S(sub y)(f)) = <5 x 10(exp -14)/Square root(Hz) at Fourier frequencies between 0.2 Hz and 10 kHz with a goal of extending the low frequency range to 0.05 Hz. The free running performance of the Lightwave Electronics NPRO lasers, which are the baseline laser for both SIM and DS-3 vary in stability and we have measured them to perform as follows (9 x l0(exp -11)/ f(Hz))(Hz)/square root(Hz)) = <( square root (S(sub y)(f)) = <(1.3 x l0(exp -8)/ f(Hz))/Square root(Hz). In order to improve the frequency stability of the laser we stabilize the laser to a high finesse optical cavity by locking the optical frequency of the laser to one of the transmission modes of the cavity. At JPL we have built a prototype space-qualifiable system meeting the stability requirements of SIM, which has been delivered to one of the SIM testbeds. We have also started on the development of a system to meet the stability needs of DS-3.
Huang, Yuanyuan; Shi, Tielin; Jiang, Shulan; Cheng, Siyi; Tao, Xiangxu; Zhong, Yan; Liao, Guanglan; Tang, Zirong
2016-12-07
As a new class of pseudocapacitive material, metal sulfides possess high electrochemical performance. However, their cycling performance as conventional electrodes is rather poor for practical applications. In this article, we report an original composite electrode based on NiCo 2 S 4 @NiO core-shell nanowire arrays (NWAs) with enhanced cycling stability. This three-dimensional electrode also has a high specific capacitance of 12.2 F cm -2 at the current density of 1 mA cm -2 and excellent cycling stability (about 89% retention after 10,000 cycles). Moreover, an all-solid-state asymmetric supercapacitor (ASC) device has been assembled with NiCo 2 S 4 @NiO NWAs as the positive electrode and active carbon (AC) as the negative electrode, delivering a high energy density of 30.38 W h kg -1 at 0.288 KW kg -1 and good cycling stability (about 109% retention after 5000 cycles). The results show that NiCo 2 S 4 @NiO NWAs are promising for high-performance supercapacitors with stable cycling based on the unique core-shell structure and well-designed combinations.
NASA Astrophysics Data System (ADS)
Huang, Yuanyuan; Shi, Tielin; Jiang, Shulan; Cheng, Siyi; Tao, Xiangxu; Zhong, Yan; Liao, Guanglan; Tang, Zirong
2016-12-01
As a new class of pseudocapacitive material, metal sulfides possess high electrochemical performance. However, their cycling performance as conventional electrodes is rather poor for practical applications. In this article, we report an original composite electrode based on NiCo2S4@NiO core-shell nanowire arrays (NWAs) with enhanced cycling stability. This three-dimensional electrode also has a high specific capacitance of 12.2 F cm-2 at the current density of 1 mA cm-2 and excellent cycling stability (about 89% retention after 10,000 cycles). Moreover, an all-solid-state asymmetric supercapacitor (ASC) device has been assembled with NiCo2S4@NiO NWAs as the positive electrode and active carbon (AC) as the negative electrode, delivering a high energy density of 30.38 W h kg-1 at 0.288 KW kg-1 and good cycling stability (about 109% retention after 5000 cycles). The results show that NiCo2S4@NiO NWAs are promising for high-performance supercapacitors with stable cycling based on the unique core-shell structure and well-designed combinations.
Huang, Yuanyuan; Shi, Tielin; Jiang, Shulan; Cheng, Siyi; Tao, Xiangxu; Zhong, Yan; Liao, Guanglan; Tang, Zirong
2016-01-01
As a new class of pseudocapacitive material, metal sulfides possess high electrochemical performance. However, their cycling performance as conventional electrodes is rather poor for practical applications. In this article, we report an original composite electrode based on NiCo2S4@NiO core-shell nanowire arrays (NWAs) with enhanced cycling stability. This three-dimensional electrode also has a high specific capacitance of 12.2 F cm−2 at the current density of 1 mA cm−2 and excellent cycling stability (about 89% retention after 10,000 cycles). Moreover, an all-solid-state asymmetric supercapacitor (ASC) device has been assembled with NiCo2S4@NiO NWAs as the positive electrode and active carbon (AC) as the negative electrode, delivering a high energy density of 30.38 W h kg−1 at 0.288 KW kg−1 and good cycling stability (about 109% retention after 5000 cycles). The results show that NiCo2S4@NiO NWAs are promising for high-performance supercapacitors with stable cycling based on the unique core-shell structure and well-designed combinations. PMID:27924927
NASA Astrophysics Data System (ADS)
Klug, A.; Meingast, A.; Wurzinger, G.; Blümel, A.; Schmoltner, K.; Scherf, U.; List, E. J. W.
2011-10-01
For high-performance low-cost applications based on organic field-effect transistors (OFETs) and corresponding sensors essential properties of the applied semiconducting materials include solution-processability, high field-effect mobility, compatibility with adjacent layers and stability with respect to ambient conditions. In this combined study regioregular poly(3-hexylthiophene)- and pentacene-based bottom-gate bottom-contact OFETs with various channel lengths are thoroughly investigated with respect to short-channel effects and the implications of dielectric surface modification with hexamethyldisilazane (HMDS) on device performance. In addition, the influences of oxygen, moisture and HMDStreatment on the ambient stability of the devices are evaluated in detail. While OFETs without surface modification exhibited the expected degradation behavior upon air exposure mainly due to oxygen/moisture-induced doping or charge-carrier trapping, the stability of the investigated semiconductors was found to be distinctly increased when the substrate surface was hydrophobized. The presented results thoroughly summarize important issues which have to be considered when selecting semiconducting materials for high-performance OFETs and OFET-based sensors.
Damping seals for turbomachinery
NASA Technical Reports Server (NTRS)
Vonpragenau, G. L.
1985-01-01
Rotor whirl stabilization of high performance turbomachinery which operates at supercritical speed is discussed. Basic whirl driving forces are reviewed. Stabilization and criteria are discussed. Damping seals are offered as a solution to whirl and high vibration problems. Concept, advantages, retrofitting, and limits of damping seals are explained. Dynamic and leakage properties are shown to require a rough stator surface for stability and efficiency. Typical seal characteristics are given for the case of the high pressure oxidizer turbopump of the Space Shuttle. Ways of implementation and bearing load effects are discussed.
Core stability training: applications to sports conditioning programs.
Willardson, Jeffrey M
2007-08-01
In recent years, fitness practitioners have increasingly recommended core stability exercises in sports conditioning programs. Greater core stability may benefit sports performance by providing a foundation for greater force production in the upper and lower extremities. Traditional resistance exercises have been modified to emphasize core stability. Such modifications have included performing exercises on unstable rather than stable surfaces, performing exercises while standing rather than seated, performing exercises with free weights rather than machines, and performing exercises unilaterally rather than bilaterally. Despite the popularity of core stability training, relatively little scientific research has been conducted to demonstrate the benefits for healthy athletes. Therefore, the purpose of this review was to critically examine core stability training and other issues related to this topic to determine useful applications for sports conditioning programs. Based on the current literature, prescription of core stability exercises should vary based on the phase of training and the health status of the athlete. During preseason and in-season mesocycles, free weight exercises performed while standing on a stable surface are recommended for increases in core strength and power. Free weight exercises performed in this manner are specific to the core stability requirements of sports-related skills due to moderate levels of instability and high levels of force production. Conversely, during postseason and off-season mesocycles, Swiss ball exercises involving isometric muscle actions, small loads, and long tension times are recommended for increases in core endurance. Furthermore, balance board and stability disc exercises, performed in conjunction with plyometric exercises, are recommended to improve proprioceptive and reactive capabilities, which may reduce the likelihood of lower extremity injuries.
Prediction of pilot-aircraft stability boundaries and performance contours
NASA Technical Reports Server (NTRS)
Stengel, R. F.; Broussard, J. R.
1977-01-01
Control-theoretic pilot models can provide important new insights regarding the stability and performance characteristics of the pilot-aircraft system. Optimal-control pilot models can be formed for a wide range of flight conditions, suggesting that the human pilot can maintain stability if he adapts his control strategy to the aircraft's changing dynamics. Of particular concern is the effect of sub-optimal pilot adaptation as an aircraft transitions from low to high angle-of-attack during rapid maneuvering, as the changes in aircraft stability and control response can be extreme. This paper examines the effects of optimal and sub-optimal effort during a typical 'high-g' maneuver, and it introduces the concept of minimum-control effort (MCE) adaptation. Limited experimental results tend to support the MCE adaptation concept.
NASA Astrophysics Data System (ADS)
Sweeney, Mike; Redd, Lafe; Vettese, Tom; Myatt, Ray; Uchida, David; Sellers, Del
2015-09-01
High performance stabilized EO/IR surveillance and targeting systems are in demand for a wide variety of military, law enforcement, and commercial assets for land, sea, air, and space. Operating ranges, wavelengths, and angular resolution capabilities define the requirements for EO/IR optics and sensors, and line of sight stabilization. Many materials and design configurations are available for EO/IR pointing gimbals depending on trade-offs of size, weight, power (SWaP), performance, and cost. Space and high performance military aircraft applications are often driven toward expensive but exceptionally performing beryllium and aluminum beryllium components. Commercial applications often rely on aluminum and composite materials. Gimbal design considerations include achieving minimized mass and inertia simultaneous with demanding structural, thermal, optical, and scene stabilization requirements when operating in dynamic operational environments. Manufacturing considerations include precision lapping and honing of ball bearing interfaces, brazing, welding, and casting of complex aluminum and beryllium alloy structures, and molding of composite structures. Several notional and previously developed EO/IR gimbal platforms are profiled that exemplify applicable design and manufacturing technologies.
Qin, Botao; Ma, Dong; Li, Fanglei; Li, Yong
2017-11-01
We have developed aqueous clay suspensions stabilized by alginate fluid gels (AFG) for coal spontaneous combustion prevention and control. Specially, this study aimed to characterize the effect of AFG on the microstructure, static and dynamic stability, and coal fire inhibition performances of the prepared AFG-stabilized clay suspensions. Compared with aqueous clay suspensions, the AFG-stabilized clay suspensions manifest high static and dynamic stability, which can be ascribed to the formation of a robust three-dimensional gel network by AFG. The coal acceleration oxidation experimental results show that the prepared AFG-stabilized clay suspensions can improve the coal thermal stability and effectively inhibit the coal spontaneous oxidation process by increasing crossing point temperature (CPT) and reducing CO emission. The prepared low-cost and nontoxic AFG-stabilized clay suspensions, exhibiting excellent coal fire extinguishing performances, indicate great application potentials in coal spontaneous combustion prevention and control.
Exploratory Research on Bearing Characteristics of Confined Stabilized Soil
NASA Astrophysics Data System (ADS)
Wu, Shuai Shuai; Gao, Zheng Guo; Li, Shi Yang; Cui, Wen Bo; Huang, Xin
2018-06-01
The performance of a new kind of confined stabilized soil (CSS) was investigated which was constructed by filling the stabilized soil, which was made by mixing soil with a binder containing a high content of expansive component, into an engineering plastic pipe. Cube compressive strength of the stabilized soil formed with constraint and axial compression performance of stabilized soil cylinders confined with the constraint pipe were measured. The results indicated that combining the constraint pipe and the binder containing expansion component could achieve such effects: higher production of expansive hydrates could be adopted so as to fill more voids in the stabilized soil and improve its strength; at the same time compressive prestress built on the core stabilized soil, combined of which hoop constraint provided effective radial compressive force on the core stabilized soil. These effects made the CSS acquire plastic failure mode and more than twice bearing capacity of ordinary stabilized soil with the same binder content.
Thermocouples of tantalum and rhenium alloys for more stable vacuum-high temperature performance
NASA Technical Reports Server (NTRS)
Morris, J. F. (Inventor)
1977-01-01
Thermocouples of the present invention provide stability and performance reliability in systems involving high temperatures and vacuums by employing a bimetallic thermocouple sensor wherein each metal of the sensor is selected from a group of metals comprising tantalum and rhenium and alloys containing only those two metals. The tantalum, rhenium thermocouple sensor alloys provide bare metal thermocouple sensors having advantageous vapor pressure compatibilities and performance characteristics. The compatibility and physical characteristics of the thermocouple sensor alloys of the present invention result in improved emf, temperature properties and thermocouple hot junction performance. The thermocouples formed of the tantalum, rhenium alloys exhibit reliability and performance stability in systems involving high temperatures and vacuums and are adaptable to space propulsion and power systems and nuclear environments.
Stability Analysis of High-Speed Boundary-Layer Flow with Gas Injection
2014-06-01
Vitaly G. Soudakov; Ivett A Leyva 5e. TASK NUMBER 5f. WORK UNIT NUMBER Q0AF 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING...cases of low injection rates in which the N -factors in the near field region are below the critical level, shaping can produce a significant...distribution unlimited Stability analysis of high-speed boundary-layer flow with gas injection Alexander V. Fedorov* and Vitaly G. Soudakov
Stability Analysis of High-Speed Boundary-Layer Flow with Gas Injection (Briefing Charts)
2014-06-01
Vitaly G. Soudakov; Ivett A Leyva 5e. TASK NUMBER 5f. WORK UNIT NUMBER Q0AF 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING...cases of low injection rates in which the N -factors in the near field region are below the critical level, shaping can produce a significant...Release; Distribution Unlimited Stability analysis of high-speed boundary-layer flow with gas injection Alexander Fedorov and Vitaly Soudakov Moscow
Generalized internal model robust control for active front steering intervention
NASA Astrophysics Data System (ADS)
Wu, Jian; Zhao, Youqun; Ji, Xuewu; Liu, Yahui; Zhang, Lipeng
2015-03-01
Because of the tire nonlinearity and vehicle's parameters' uncertainties, robust control methods based on the worst cases, such as H ∞, µ synthesis, have been widely used in active front steering control, however, in order to guarantee the stability of active front steering system (AFS) controller, the robust control is at the cost of performance so that the robust controller is a little conservative and has low performance for AFS control. In this paper, a generalized internal model robust control (GIMC) that can overcome the contradiction between performance and stability is used in the AFS control. In GIMC, the Youla parameterization is used in an improved way. And GIMC controller includes two sections: a high performance controller designed for the nominal vehicle model and a robust controller compensating the vehicle parameters' uncertainties and some external disturbances. Simulations of double lane change (DLC) maneuver and that of braking on split- µ road are conducted to compare the performance and stability of the GIMC control, the nominal performance PID controller and the H ∞ controller. Simulation results show that the high nominal performance PID controller will be unstable under some extreme situations because of large vehicle's parameters variations, H ∞ controller is conservative so that the performance is a little low, and only the GIMC controller overcomes the contradiction between performance and robustness, which can both ensure the stability of the AFS controller and guarantee the high performance of the AFS controller. Therefore, the GIMC method proposed for AFS can overcome some disadvantages of control methods used by current AFS system, that is, can solve the instability of PID or LQP control methods and the low performance of the standard H ∞ controller.
Stabilizing an optoelectronic microwave oscillator with photonic filters
NASA Technical Reports Server (NTRS)
Strekalov, D.; Aveline, D.; Yu, N.; Thompson, R.; Matsko, A. B.; Maleki, L.
2003-01-01
This paper compares methods of active stabilization of an optoelectronic microwave oscillator (OEO) based on insertion of a source of optical group delay into an OEO loop. The performance of an OEO stabilized with either a high- optical cavity or an atomic cell is analyzed. We show that the elements play a role of narrow-band microwave filters improving an OEO stability.
Symmetric supercapacitor: Sulphurized graphene and ionic liquid.
Shaikh, Jasmin S; Shaikh, Navajsharif S; Kharade, Rohini; Beknalkar, Sonali A; Patil, Jyoti V; Suryawanshi, Mahesh P; Kanjanaboos, Pongsakorn; Hong, Chang Kook; Kim, Jin Hyeok; Patil, Pramod S
2018-10-01
Symmetric supercapacitor is advanced over simple supercapacitor device due to their stability over a large potential window and high energy density. Graphene is a desired candidate for supercapacitor application since it has a high surface area, good electronic conductivity and high electro chemical stability. There is a pragmatic use of ionic liquid electrolyte for supercapacitor due to its stability over a large potential window, good ionic conductivity and eco-friendly nature. For high performance supercapacitor, the interaction between ionic liquid electrolyte and graphene are crucial for better charge transportation. In respect of this, a three-dimensional (3D) nanoporous honeycomb shaped sulfur embedded graphene (S-graphene) has been synthesized by simple chemical method. Here, the fabrication of high performance symmetric supercapacitor is done by using S-graphene as an electrode and [BMIM-PF 6 ] as an electrolyte. The particular architecture of S-graphene benefited to reduce the ion diffusion resistance, providing the large surface area for charge transportation and efficient charge storage. The S-graphene and ionic liquid-based symmetric supercapacitor device showed the large potential window of 3.2 V with high energy density 124 Wh kg -1 at 0.2 A g -1 constant applied current density. Furthermore, this device shows good cycling performance (stability) with a capacitive retention of 95% over 20,000 cycles at a higher current density of 2 A g -1 . Copyright © 2018 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Hahne, D. E.
1985-01-01
A wind tunnel investigation of concepts to improve the high angle-of-attack stability and control characteristics of a high performance aircraft was conducted. The effect of vertical tail geometry on stability and the effectiveness of several conventional and unusual control concepts was determined. These results were obtained over a large angle-of-attack range. Vertical tail location, cant angle and leading edge sweep could influence both longitudinal and lateral-directional stability. The control concepts tested were found to be effective and to provide control into the post stall angle-of-attack region.
What Matters from Admissions? Identifying Success and Risk Among Canadian Dental Students.
Plouffe, Rachel A; Hammond, Robert; Goldberg, Harvey A; Chahine, Saad
2018-05-01
The aims of this study were to determine whether different student profiles would emerge in terms of high and low GPA performance in each year of dental school and to investigate the utility of preadmissions variables in predicting performance and performance stability throughout each year of dental school. Data from 11 graduating cohorts (2004-14) at the Schulich School of Medicine & Dentistry, University of Western Ontario, Canada, were collected and analyzed using bivariate correlations, latent profile analysis, and hierarchical generalized linear models (HGLMs). The data analyzed were for 616 students in total (332 males and 284 females). Four models were developed to predict adequate and poor performance throughout each of four dental school years. An additional model was developed to predict student performance stability across time. Two separate student profiles reflecting high and low GPA performance across each year of dental school were identified, and scores on cognitive preadmissions variables differentially predicted the probability of grouping into high and low performance profiles. Students with higher pre-dental GPAs and DAT chemistry were most likely to remain stable in a high-performance group across each year of dental school. Overall, the findings suggest that selection committees should consider pre-dental GPA and DAT chemistry scores as important tools for predicting dental school performance and stability across time. This research is important in determining how to better predict success and failure in various areas of preclinical dentistry courses and to provide low-performing students with adequate academic assistance.
Banger, Kulbinder K; Peterson, Rebecca L; Mori, Kiyotaka; Yamashita, Yoshihisa; Leedham, Timothy; Sirringhaus, Henning
2014-01-28
Amorphous mixed metal oxides are emerging as high performance semiconductors for thin film transistor (TFT) applications, with indium gallium zinc oxide, InGaZnO (IGZO), being one of the most widely studied and best performing systems. Here, we investigate alkaline earth (barium or strontium) doped InBa(Sr)ZnO as alternative, semiconducting channel layers and compare their performance of the electrical stress stability with IGZO. In films fabricated by solution-processing from metal alkoxide precursors and annealed to 450 °C we achieve high field-effect electron mobility up to 26 cm 2 V -1 s -1 . We show that it is possible to solution-process these materials at low process temperature (225-200 °C yielding mobilities up to 4.4 cm 2 V -1 s -1 ) and demonstrate a facile "ink-on-demand" process for these materials which utilizes the alcoholysis reaction of alkyl metal precursors to negate the need for complex synthesis and purification protocols. Electrical bias stress measurements which can serve as a figure of merit for performance stability for a TFT device reveal Sr- and Ba-doped semiconductors to exhibit enhanced electrical stability and reduced threshold voltage shift compared to IGZO irrespective of the process temperature and preparation method. This enhancement in stability can be attributed to the higher Gibbs energy of oxidation of barium and strontium compared to gallium.
2013-01-01
Amorphous mixed metal oxides are emerging as high performance semiconductors for thin film transistor (TFT) applications, with indium gallium zinc oxide, InGaZnO (IGZO), being one of the most widely studied and best performing systems. Here, we investigate alkaline earth (barium or strontium) doped InBa(Sr)ZnO as alternative, semiconducting channel layers and compare their performance of the electrical stress stability with IGZO. In films fabricated by solution-processing from metal alkoxide precursors and annealed to 450 °C we achieve high field-effect electron mobility up to 26 cm2 V–1 s–1. We show that it is possible to solution-process these materials at low process temperature (225–200 °C yielding mobilities up to 4.4 cm2 V–1 s–1) and demonstrate a facile “ink-on-demand” process for these materials which utilizes the alcoholysis reaction of alkyl metal precursors to negate the need for complex synthesis and purification protocols. Electrical bias stress measurements which can serve as a figure of merit for performance stability for a TFT device reveal Sr- and Ba-doped semiconductors to exhibit enhanced electrical stability and reduced threshold voltage shift compared to IGZO irrespective of the process temperature and preparation method. This enhancement in stability can be attributed to the higher Gibbs energy of oxidation of barium and strontium compared to gallium. PMID:24511184
NASA Astrophysics Data System (ADS)
Xu, Han; Zhang, Chi; Zhou, Wen; Li, Gao-Ren
2015-10-01
High power density, high energy density and excellent cycling stability are the main requirements for high-performance supercapacitors (SCs) that will be widely used for portable consumer electronics and hybrid electric vehicles. Here we investigate novel types of hybrid Co(OH)2/reduced graphene oxide (RGO)/NiO sandwich-structured nanotube arrays (SNTAs) as positive electrodes for asymmetric supercapacitors (ASCs). The synthesized Co(OH)2/RGO/NiO SNTAs exhibit a significantly improved specific capacity (~1470 F g-1 at 5 mV s-1) and excellent cycling stability with ~98% Csp retention after 10 000 cycles because of the fast transport and short diffusion paths for electroactive species, the high utilization rate of electrode materials, and special synergistic effects among Co(OH)2, RGO, and NiO. The high-performance ASCs are assembled using Co(OH)2/RGO/NiO SNTAs as positive electrodes and active carbon (AC) as negative electrodes, and they exhibit a high energy density (115 Wh kg-1), a high power density (27.5 kW kg-1) and an excellent cycling stability (less 5% Csp loss after 10 000 cycles). This study shows an important breakthrough in the design and fabrication of multi-walled hybrid nanotube arrays as positive electrodes for ASCs.High power density, high energy density and excellent cycling stability are the main requirements for high-performance supercapacitors (SCs) that will be widely used for portable consumer electronics and hybrid electric vehicles. Here we investigate novel types of hybrid Co(OH)2/reduced graphene oxide (RGO)/NiO sandwich-structured nanotube arrays (SNTAs) as positive electrodes for asymmetric supercapacitors (ASCs). The synthesized Co(OH)2/RGO/NiO SNTAs exhibit a significantly improved specific capacity (~1470 F g-1 at 5 mV s-1) and excellent cycling stability with ~98% Csp retention after 10 000 cycles because of the fast transport and short diffusion paths for electroactive species, the high utilization rate of electrode materials, and special synergistic effects among Co(OH)2, RGO, and NiO. The high-performance ASCs are assembled using Co(OH)2/RGO/NiO SNTAs as positive electrodes and active carbon (AC) as negative electrodes, and they exhibit a high energy density (115 Wh kg-1), a high power density (27.5 kW kg-1) and an excellent cycling stability (less 5% Csp loss after 10 000 cycles). This study shows an important breakthrough in the design and fabrication of multi-walled hybrid nanotube arrays as positive electrodes for ASCs. Electronic supplementary information (ESI) available: SEM images, XPS spectra, equivalent circuit, and CVs. See DOI: 10.1039/c5nr04449a
A passive microfluidic hydrogen-air fuel cell with exceptional stability and high performance.
Mitrovski, Svetlana M; Nuzzo, Ralph G
2006-03-01
We describe an advanced microfluidic hydrogen-air fuel cell (FC) that exhibits exceptional durability and high performance, most notably yielding stable output power (>100 days) without the use of an anode-cathode separator membrane. This FC embraces an entirely passive device architecture and, unlike conventional microfluidic designs that exploit laminar hydrodynamics, no external pumps are used to sustain or localize the reagent flow fields. The devices incorporate high surface area/porous metal and metal alloy electrodes that are embedded and fully immersed in liquid electrolyte confined in the channels of a poly(dimethylsiloxane) (PDMS)-based microfluidic network. The polymeric network also serves as a self-supporting membrane through which oxygen and hydrogen are supplied to the cathode and alloy anode, respectively, by permeation. The operational stability of the device and its performance is strongly dependent on the nature of the electrolyte used (5 M H2SO4 or 2.5 M NaOH) and composition of the anode material. The latter choice is optimized to decrease the sensitivity of the system to oxygen cross-over while still maintaining high activity towards the hydrogen oxidation reaction (HOR). Three types of high surface area anodes were tested in this work. These include: high-surface area electrodeposited Pt (Pt); high-surface area electrodeposited Pd (Pd); and thin palladium adlayers supported on a "porous" Pt electrode (Pd/Pt). The FCs display their best performance in 5 M H2SO4 using the Pd/Pt anode. This exceptional stability and performance was ascribed to several factors, namely: the high permeabilities of O2, H2, and CO2 in PDMS; the inhibition of the formation of insoluble carbonate species due to the presence of a highly acidic electrolyte; and the selectivity of the Pd/Pt anode toward the HOR. The stability of the device for long-term operation was modeled using a stack of three FCs as a power supply for a portable display that otherwise uses a 3 V battery.
Guo, Bingkun; Kong, Qingyu; Zhu, Ying; Mao, Ya; Wang, Zhaoxiang; Wan, Meixiang; Chen, Liquan
2011-12-23
Current lithium-ion battery (LIB) technologies are all based on inorganic electrode materials, though organic materials have been used as electrodes for years. Disadvantages such as limited thermal stability and low specific capacity hinder their applications. On the other hand, the transition metal oxides that provide high lithium-storage capacity by way of electrochemical conversion reaction suffer from poor cycling stability. Here we report a novel high-performance, organic, lithium-storage material, a polypyrrole-cobalt-oxygen (PPy-Co-O) coordination complex, with high lithium-storage capacity and excellent cycling stability. Extended X-ray absorption fine structure and Raman spectroscopy and other physical and electrochemical characterizations demonstrate that this coordination complex can be electrochemically fabricated by cycling PPy-coated Co(3)O(4) between 0.0 V and 3.0 V versus Li(+)/Li. Density functional theory (DFT) calculations indicate that each cobalt atom coordinates with two nitrogen atoms within the PPy-Co coordination layer and the layers are connected with oxygen atoms between them. Coordination weakens the C-H bonds on PPy and makes the complex a novel lithium-storage material with high capacity and high cycling stability. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Vibration Isolation and Stabilization System for Spacecraft Exercise Treadmill Devices
NASA Technical Reports Server (NTRS)
Fialho, Ian; Tyer, Craig; Murphy, Bryan; Cotter, Paul; Thampi, Sreekumar
2011-01-01
A novel, passive system has been developed for isolating an exercise treadmill device from a spacecraft in a zero-G environment. The Treadmill 2 Vibration Isolation and Stabilization System (T2-VIS) mechanically isolates the exercise treadmill from the spacecraft/space station, thereby eliminating the detrimental effect that high impact loads generated during walking/running would have on the spacecraft structure and sensitive microgravity science experiments. This design uses a second stage spring, in series with the first stage, to achieve an order of magnitude higher exercise- frequency isolation than conventional systems have done, while maintaining desirable low-frequency stability performance. This novel isolator design, in conjunction with appropriately configured treadmill platform inertia properties, has been shown (by on-orbit zero-G testing onboard the International Space Station) to deliver exceedingly high levels of isolation/ stability performance.
Anastos, N; Barnett, N W; Pfeffer, F M; Lewis, S W
2006-01-01
This paper reports an investigation into the temporal stability of aqueous solutions of psilocin and psilocybin reference drug standards over a period of fourteen days. This study was performed using high performance liquid chromatography utilising a (95:5% v/v) methanol: 10 mM ammonium formate, pH 3.5 mobile phase and absorption detection at 269 nm. It was found that the exclusion of light significantly prolonged the useful life of standards, with aqueous solutions of both psilocin and psilocybin being stable over a period of seven days.
How do Stability Corrections Perform in the Stable Boundary Layer Over Snow?
NASA Astrophysics Data System (ADS)
Schlögl, Sebastian; Lehning, Michael; Nishimura, Kouichi; Huwald, Hendrik; Cullen, Nicolas J.; Mott, Rebecca
2017-10-01
We assess sensible heat-flux parametrizations in stable conditions over snow surfaces by testing and developing stability correction functions for two alpine and two polar test sites. Five turbulence datasets are analyzed with respect to, (a) the validity of the Monin-Obukhov similarity theory, (b) the model performance of well-established stability corrections, and (c) the development of new univariate and multivariate stability corrections. Using a wide range of stability corrections reveals an overestimation of the turbulent sensible heat flux for high wind speeds and a generally poor performance of all investigated functions for large temperature differences between snow and the atmosphere above (>10 K). Applying the Monin-Obukhov bulk formulation introduces a mean absolute error in the sensible heat flux of 6 W m^{-2} (compared with heat fluxes calculated directly from eddy covariance). The stability corrections produce an additional error between 1 and 5 W m^{-2}, with the smallest error for published stability corrections found for the Holtslag scheme. We confirm from previous studies that stability corrections need improvements for large temperature differences and wind speeds, where sensible heat fluxes are distinctly overestimated. Under these atmospheric conditions our newly developed stability corrections slightly improve the model performance. However, the differences between stability corrections are typically small when compared to the residual error, which stems from the Monin-Obukhov bulk formulation.
Rotordynamic Instability Problems in High-Performance Turbomachinery, 1986
NASA Technical Reports Server (NTRS)
1987-01-01
The first rotordynamics workshop proceedings (NASA CP-2133, 1980) emphasized a feeling of uncertainty in predicting the stability of characteristics of high-performance turbomachinery. In the second workshop proceedings (NASA CP-2250, 1982) these uncertainities were reduced through programs established to systematically resolve problems, with emphasis on experimental validiation of the forces that influence rotordynamics. In third proceedings (NASA CP-2338, 1984) many programs for predicting or measuring forces and force coefficients in high-performance turbomachinery produced results. Data became available for designing new machines with enhanced stability characteristics or for upgrading existing machines. The present workshop proceedings illustrates a continued trend toward a more unified view of rotordynamic instability problems and several encouraging new analytical developments.
Xia, Wei; Xu, Xinxin; Qian, Lichun; Shi, Pengjun; Bai, Yingguo; Luo, Huiying; Ma, Rui; Yao, Bin
2016-01-01
β-Glucosidase is an important member of the biomass-degrading enzyme system, and plays vital roles in enzymatic saccharification for biofuels production. Candidates with high activity and great stability over high temperature and varied pHs are always preferred in industrial practice. To achieve cost-effective biomass conversion, exploring natural enzymes, developing high level expression systems and engineering superior mutants are effective approaches commonly used. A newly identified β-glucosidase of GH3, Bgl3A, from Talaromyces leycettanus JCM12802, was overexpressed in yeast strain Pichia pastoris GS115, yielding a crude enzyme activity of 6000 U/ml in a 3 L fermentation tank. The purified enzyme exhibited outstanding enzymatic properties, including favorable temperature and pH optima (75 °C and pH 4.5), good thermostability (maintaining stable at 60 °C), and high catalytic performance (with a specific activity and catalytic efficiency of 905 U/mg and 9096/s/mM on pNPG, respectively). However, the narrow stability of Bgl3A at pH 4.0-5.0 would limit its industrial applications. Further site-directed mutagenesis indicated the role of excessive O-glycosylation in pH liability. By removing the potential O-glycosylation sites, two mutants showed improved pH stability over a broader pH range (3.0-10.0). Besides, with better stability under pH 5.0 and 50 °C compared with wild type Bgl3A, saccharification efficiency of mutant M1 was improved substantially cooperating with cellulase Celluclast 1.5L. And mutant M1 reached approximately equivalent saccharification performance to commercial β-glucosidase Novozyme 188 with identical β-glucosidase activity, suggesting its great prospect in biofuels production. In this study, we overexpressed a novel β-glucosidase Bgl3A with high specific activity and high catalytic efficiency in P. pastoris. We further proved the negative effect of excessive O-glycosylation on the pH stability of Bgl3A, and enhanced the pH stability by reducing the O-glycosylation. And the enhanced mutants showed much better application prospect with substantially improved saccharification efficiency on cellulosic materials.
Nonlinear stability and control study of highly maneuverable high performance aircraft, phase 2
NASA Technical Reports Server (NTRS)
Mohler, R. R.
1992-01-01
This research should lead to the development of new nonlinear methodologies for the adaptive control and stability analysis of high angle-of-attack aircraft such as the F18 (HARV). The emphasis has been on nonlinear adaptive control, but associated model development, system identification, stability analysis and simulation is performed in some detail as well. Various models under investigation for different purposes are summarized in tabular form. Models and simulation for the longitudinal dynamics have been developed for all types except the nonlinear ordinary differential equation model. Briefly, studies completed indicate that nonlinear adaptive control can outperform linear adaptive control for rapid maneuvers with large changes in alpha. The transient responses are compared where the desired alpha varies from 5 degrees to 60 degrees to 30 degrees and back to 5 degrees in all about 16 sec. Here, the horizontal stabilator is the only control used with an assumed first-order linear actuator with a 1/30 sec time constant.
Self-grown oxy-hydroxide@ nanoporous metal electrode for high-performance supercapacitors.
Kang, JianLi; Hirata, Akihiko; Qiu, H-J; Chen, LuYang; Ge, XingBo; Fujita, Takeshi; Chen, MingWei
2014-01-15
A binder-free self-grown oxy-hydroxide@nanoporous Ni-Mn hybrid electrode with high capacitance and cyclic stability is fabricated by electrochemical polarization of a dealloyed nanoporous Ni-Mn alloy. Combined with the low material costs, high electrochemical stability, and environmentally friendly nature, this novel electrode holds great promise for applications in high-capacity commercial supercapacitors. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Torres, F E; Teodoro, P E; Rodrigues, E V; Santos, A; Corrêa, A M; Ceccon, G
2016-04-29
The aim of this study was to select erect cowpea (Vigna unguiculata L.) genotypes simultaneously for high adaptability, stability, and yield grain in Mato Grosso do Sul, Brazil using mixed models. We conducted six trials of different cowpea genotypes in 2005 and 2006 in Aquidauana, Chapadão do Sul, Dourados, and Primavera do Leste. The experimental design was randomized complete blocks with four replications and 20 genotypes. Genetic parameters were estimated by restricted maximum likelihood/best linear unbiased prediction, and selection was based on the harmonic mean of the relative performance of genetic values method using three strategies: selection based on the predicted breeding value, having considered the performance mean of the genotypes in all environments (no interaction effect); the performance in each environment (with an interaction effect); and the simultaneous selection for grain yield, stability, and adaptability. The MNC99542F-5 and MNC99-537F-4 genotypes could be grown in various environments, as they exhibited high grain yield, adaptability, and stability. The average heritability of the genotypes was moderate to high and the selective accuracy was 82%, indicating an excellent potential for selection.
Naeem, Muhammad Awais; Armutlulu, Andac; Imtiaz, Qasim; Donat, Felix; Schäublin, Robin; Kierzkowska, Agnieszka; Müller, Christoph R
2018-06-19
Calcium looping, a CO 2 capture technique, may offer a mid-term if not near-term solution to mitigate climate change, triggered by the yet increasing anthropogenic CO 2 emissions. A key requirement for the economic operation of calcium looping is the availability of highly effective CaO-based CO 2 sorbents. Here we report a facile synthesis route that yields hollow, MgO-stabilized, CaO microspheres featuring highly porous multishelled morphologies. As a thermal stabilizer, MgO minimized the sintering-induced decay of the sorbents' CO 2 capacity and ensured a stable CO 2 uptake over multiple operation cycles. Detailed electron microscopy-based analyses confirm a compositional homogeneity which is identified, together with the characteristics of its porous structure, as an essential feature to yield a high-performance sorbent. After 30 cycles of repeated CO 2 capture and sorbent regeneration, the best performing material requires as little as 11 wt.% MgO for structural stabilization and exceeds the CO 2 uptake of the limestone-derived reference material by ~500%.
NASA Astrophysics Data System (ADS)
Harris, B. J.; Sun, S. S.; Li, W. H.
2017-03-01
With the growing need for effective intercity transport, the need for more advanced rail vehicle technology has never been greater. The conflicting primary longitudinal suspension requirements of high speed stability and curving performance limit the development of rail vehicle technology. This paper presents a novel magnetorheological fluid based joint with variable stiffness characteristics for the purpose of overcoming this parameter conflict. Firstly, the joint design and working principle is developed. Following this, a prototype is tested by MTS to characterize its variable stiffness properties under a range of conditions. Lastly, the performance of the proposed MRF rubber joint with regard to improving train stability and curving performance is numerically evaluated.
A Historical Review of Cermet Fuel Development and the Engine Performance Implications
NASA Technical Reports Server (NTRS)
Stewart, Mark E. M.
2015-01-01
This paper reviews test data for cermet fuel samples developed in the 1960's to better quantify Nuclear Thermal Propulsion (NTP) cermet engine performance, and to better understand contemporary fuel testing results. Over 200 cermet (W-UO2) samples were tested by thermally cycling to 2500 deg (2770 K) in hydrogen. The data indicates two issues at high temperatures: the vaporization rate of UO2 and the chemical stability of UO2. The data show that cladding and chemical stabilizers each result in large, order of magnitude improvements in high temperature performance, while other approaches yield smaller, incremental improvements. Data is very limited above 2770 K, and this complicates predictions of engine performance at high Isp. The paper considers how this material performance data translates into engine performance. In particular, the location of maximum temperature within the fuel element and the effect of heat deposition rate are examined.
Design of flexible polyphenylene proton-conducting membrane for next-generation fuel cells.
Miyake, Junpei; Taki, Ryunosuke; Mochizuki, Takashi; Shimizu, Ryo; Akiyama, Ryo; Uchida, Makoto; Miyatake, Kenji
2017-10-01
Proton exchange membrane fuel cells (PEMFCs) are promising devices for clean power generation in automotive, stationary, and portable applications. Perfluorosulfonic acid (PFSA) ionomers (for example, Nafion) have been the benchmark PEMs; however, several problems, including high gas permeability, low thermal stability, high production cost, and environmental incompatibility, limit the widespread dissemination of PEMFCs. It is believed that fluorine-free PEMs can potentially address all of these issues; however, none of these membranes have simultaneously met the criteria for both high performance (for example, proton conductivity) and durability (for example, mechanical and chemical stability). We present a polyphenylene-based PEM (SPP-QP) that fulfills the required properties for fuel cell applications. The newly designed PEM exhibits very high proton conductivity, excellent membrane flexibility, low gas permeability, and extremely high stability, with negligible degradation even under accelerated degradation conditions, which has never been achieved with existing fluorine-free PEMs. The polyphenylene PEM also exhibits reasonably high fuel cell performance, with excellent durability under practical conditions. This new PEM extends the limits of existing fluorine-free proton-conductive materials and will help to realize the next generation of PEMFCs via cost reduction as well as the performance improvement compared to the present PFSA-based PEMFC systems.
Morphological Control of Au Dendrite Electrocatalysts for CO2 Reduction
NASA Astrophysics Data System (ADS)
Nesbitt, Nathan T.; Ma, Ming; Carter, Brittany E.; D'Imperio, Luke A.; Naughton, Jeffrey R.; Courtney, Dave T.; Shepard, Steve; Burns, Michael J.; Smith, Wilson A.; Naughton, Michael J.
Au has demonstrated the highest catalytic selectivity, activity, and stability for CO2 reduction to CO of any metal, but the mechanism for this performance remains unclear. Studies of nanoparticle films have shown that higher index facets have improved performance, but the preeminent nanoparticle films, from oxide-derived Au, lack well-defined facets and morphological stability to illuminate their enabling mechanism. More recent work has shown Au needles with a sub 5 nm radius of curvature have excellent performance and stability, independent of crystal facet. The same studies, however, still show calculations expecting a facet dependance. Here we demonstrate a facile and novel dendrite fabrication process with tunable morphology. The dendrites show high catalytic selectivity, activity, and stability for CO2 reduction to CO, along with morphological stability after 18 hours of operation, allowing correlation between morphology and performance. The influence of exposed facets will be discussed. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. (DGE-1258923).
Prospects for spinel-stabilized, high-capacity lithium-ion battery cathodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Croy, Jason R.; Park, Joong Sun; Shin, Youngho
Herein we report early results on efforts to optimize the electrochemical performance of a cathode composed of a lithium- and manganese-rich “layered-layered-spinel” material for lithium-ion battery applications. Pre-pilot scale synthesis leads to improved particle properties compared with lab-scale efforts, resulting in high capacities (≳200 mAh/g) and good energy densities (>700 Wh/kg) in tests with lithium-ion cells. Subsequent surface modifications give further improvements in rate capabilities and high-voltage stability. These results bode well for advances in the performance of this class of lithium- and manganese-rich cathode materials.
Prospects for spinel-stabilized, high-capacity lithium-ion battery cathodes
Croy, Jason R.; Park, Joong Sun; Shin, Youngho; ...
2016-10-13
Herein we report early results on efforts to optimize the electrochemical performance of a cathode composed of a lithium- and manganese-rich “layered-layered-spinel” material for lithium-ion battery applications. Pre-pilot scale synthesis leads to improved particle properties compared with lab-scale efforts, resulting in high capacities (≳200 mAh/g) and good energy densities (>700 Wh/kg) in tests with lithium-ion cells. Subsequent surface modifications give further improvements in rate capabilities and high-voltage stability. These results bode well for advances in the performance of this class of lithium- and manganese-rich cathode materials.
Angell, C Austen [Mesa, AZ; Xu, Wu [Broadview Heights, OH; Belieres, Jean-Philippe [Chandler, AZ; Yoshizawa, Masahiro [Tokyo, JP
2011-01-11
Disclosed are developments in high temperature fuel cells including ionic liquids with high temperature stability and the storage of inorganic acids as di-anion salts of low volatility. The formation of ionically conducting liquids of this type having conductivities of unprecedented magnitude for non-aqueous systems is described. The stability of the di-anion configuration is shown to play a role in the high performance of the non-corrosive proton-transfer ionic liquids as high temperature fuel cell electrolytes. Performance of simple H.sub.2(g) electrolyte/O.sub.2(g) fuel cells with the new electrolytes is described. Superior performance both at ambient temperature and temperatures up to and above 200.degree. C. are achieved. Both neutral proton transfer salts and the acid salts with HSO.sup.-.sub.4 anions, give good results, the bisulphate case being particularly good at low temperatures and very high temperatures. The performance of all electrolytes is improved by the addition of a small amount of involatile base of pK.sub.a value intermediate between those of the acid and base that make the bulk electrolyte. The preferred case is the imidazole-doped ethylammonium hydrogensulfate which yields behavior superior in all respects to that of the industry standard phosphoric acid electrolyte.
Mosaic-shaped cathode for highly durable solid oxide fuel cell under thermal stress
NASA Astrophysics Data System (ADS)
Joo, Jong Hoon; Jeong, Jaewon; Kim, Se Young; Yoo, Chung-Yul; Jung, Doh Won; Park, Hee Jung; Kwak, Chan; Yu, Ji Haeng
2014-02-01
In this study, we propose a novel "mosaic structure" for a SOFC (solid oxide fuel cell) cathode with high thermal expansion to improve the stability against thermal stress. Self-organizing mosaic-shaped cathode has been successfully achieved by controlling the amount of binder in the dip-coating solution. The anode-supported cell with mosaic-shaped cathode shows itself to be highly durable performance for rapid thermal cycles, however, the performance of the cell with a non-mosaic cathode exhibits severe deterioration originated from the delamination at the cathode/electrolyte interface after 7 thermal cycles. The thermal stability of an SOFC cathode can be evidently improved by controlling the surface morphology. In view of the importance of the thermal expansion properties of the cathode, the effects of cathode morphology on the thermal stress stability are discussed.
Li, Heng; Wu, Dabei; Wu, Jin; Dong, Li-Ying; Zhu, Ying-Jie; Hu, Xianluo
2017-11-01
Separators play a pivotal role in the electrochemical performance and safety of lithium-ion batteries (LIBs). The commercial microporous polyolefin-based separators often suffer from inferior electrolyte wettability, low thermal stability, and severe safety concerns. Herein, a novel kind of highly flexible and porous separator based on hydroxyapatite nanowires (HAP NWs) with excellent thermal stability, fire resistance, and superior electrolyte wettability is reported. A hierarchical cross-linked network structure forms between HAP NWs and cellulose fibers (CFs) via hybridization, which endows the separator with high flexibility and robust mechanical strength. The high thermal stability of HAP NW networks enables the separator to preserve its structural integrity at temperatures as high as 700 °C, and the fire-resistant property of HAP NWs ensures high safety of the battery. In particular, benefiting from its unique composition and highly porous structure, the as-prepared HAP/CF separator exhibits near zero contact angle with the liquid electrolyte and high electrolyte uptake of 253%, indicating superior electrolyte wettability compared with the commercial polyolefin separator. The as-prepared HAP/CF separator has unique advantages of superior electrolyte wettability, mechanical robustness, high thermal stability, and fire resistance, thus, is promising as a new kind of separator for advanced LIBs with enhanced performance and high safety. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Coppock, Matthew B.; Farrow, Blake; Warner, Candice; Finch, Amethist S.; Lai, Bert; Sarkes, Deborah A.; Heath, James R.; Stratis-Cullum, Dimitra
2014-05-01
Current biodetection assays that employ monoclonal antibodies as primary capture agents exhibit limited fieldability, shelf life, and performance due to batch-to-batch production variability and restricted thermal stability. In order to improve upon the detection of biological threats in fieldable assays and systems for the Army, we are investigating protein catalyzed capture (PCC) agents as drop-in replacements for the existing antibody technology through iterative in situ click chemistry. The PCC agent oligopeptides are developed against known protein epitopes and can be mass produced using robotic methods. In this work, a PCC agent under development will be discussed. The performance, including affinity, selectivity, and stability of the capture agent technology, is analyzed by immunoprecipitation, western blotting, and ELISA experiments. The oligopeptide demonstrates superb selectivity coupled with high affinity through multi-ligand design, and improved thermal, chemical, and biochemical stability due to non-natural amino acid PCC agent design.
Simultaneous structural and environmental loading of an ultra-high performance concrete component
DOT National Transportation Integrated Search
2010-07-01
Ultra-high performance concrete (UHPC) is an advanced cementitious composite material which tends to exhibit superior properties such as increased durability, strength, and long-term stability. This experimental investigation focused on the flexural ...
High performance aluminum–cerium alloys for high-temperature applications
Sims, Zachary C.; Rios, Orlando R.; Weiss, David; ...
2017-08-01
Light-weight high-temperature alloys are important to the transportation industry where weight, cost, and operating temperature are major factors in the design of energy efficient vehicles. Aluminum alloys fill this gap economically but lack high-temperature mechanical performance. Alloying aluminum with cerium creates a highly castable alloy, compatible with traditional aluminum alloy additions, that exhibits dramatically improved high-temperature performance. These compositions display a room temperature ultimate tensile strength of 400 MPa and yield strength of 320 MPa, with 80% mechanical property retention at 240 °C. A mechanism is identified that addresses the mechanical property stability of the Al-alloys to at least 300more » °C and their microstructural stability to above 500 °C which may enable applications without the need for heat treatment. Lastly, neutron diffraction under load provides insight into the unusual mechanisms driving the mechanical strength.« less
Stability of Materials in High Temperature Water Vapor: SOFC Applications
NASA Technical Reports Server (NTRS)
Opila, E. J.; Jacobson, N. S.
2010-01-01
Solid oxide fuel cell material systems require long term stability in environments containing high-temperature water vapor. Many materials in fuel cell systems react with high-temperature water vapor to form volatile hydroxides which can degrade cell performance. In this paper, experimental methods to characterize these volatility reactions including the transpiration technique, thermogravimetric analysis, and high pressure mass spectrometry are reviewed. Experimentally determined data for chromia, silica, and alumina volatility are presented. In addition, data from the literature for the stability of other materials important in fuel cell systems are reviewed. Finally, methods for predicting material recession due to volatilization reactions are described.
Miao, Xinmei; Ma, Yiwen; Chen, Zezhi; Gong, Huijuan
2017-09-05
Catalytic oxidation desulfurization using chelated iron catalyst is an effective method to remove H 2 S from various gas streams including biogas. However, the ligand of ethylenediaminetetraacetic acid (EDTA), which is usually adopted to prepare chelated iron catalyst, is liable to be oxidative degraded, and leads to the loss of desulfurization performance. In order to improve the degradation stability of the iron chelate, a series of iron chelates composed of two ligands including citric acid (CA) and EDTA were prepared and the oxidative degradation stability as well as desulfurization performance of these chelated iron catalysts were studied. Results show that the iron chelate of Fe-CA is more stable than Fe-EDTA, while for the desulfurization performance, the situation is converse. For the dual-ligand iron chelates of Fe-EDTA/CA, with the increase of mol ratio of CA to EDTA in the iron chelate solution, the oxidative degradation stability increased while the desulfurization performance decreased. The results of this work showed that Fe-EDTA/CA with a mol ratio of CA:EDTA = 1:1 presents a relative high oxidative degradation stability and an acceptable desulfurization performance with over 90% of H 2 S removal efficiency.
NASA Astrophysics Data System (ADS)
Yao, Yuan; Wu, Guosong; Sardahi, Yousef; Sun, Jian-Qiao
2018-02-01
In this paper, we study a multi-objective optimal design of three different frame vibration control configurations and compare their performances in improving the lateral stability of a high-speed train bogie. The existence of the time-delay in the control system and its impact on the bogie hunting stability are also investigated. The continuous time approximation method is used to approximate the time-delay system dynamics and then the root locus curves of the system before and after applying control are depicted. The analysis results show that the three control cases could improve the bogie hunting stability effectively. But the root locus of low- frequency hunting mode of bogie which determinates the system critical speed is different, thus affecting the system stability with the increasing of speed. Based on the stability analysis at different bogie dynamics parameters, the robustness of the control case (1) is the strongest. However, the case (2) is more suitable for the dynamic performance requirements of bogie. For the case (1), the time-delay over 10 ms may lead to instability of the control system which will affect the bogie hunting stability seriously. For the case (2) and (3), the increasing time-delay reduces the hunting stability gradually over the high-speed range. At a certain speed, such as 200 km/h, an appropriate time-delay is favourable to the bogie hunting stability. The mechanism is proposed according to the root locus analysis of time-delay system. At last, the nonlinear bifurcation characteristics of the bogie control system are studied by the numerical integration methods to verify the effects of these active control configurations and the delay on the bogie hunting stability.
ZrP nanoplates based fire-fighting foams stabilizer
NASA Astrophysics Data System (ADS)
Zhang, Lecheng; Cheng, Zhengdong; Li, Hai
2015-03-01
Firefighting foam, as a significant innovation in fire protection, greatly facilitates extinguishments for liquid pool fire. Recently, with developments in LNG industry, high-expansion firefighting foams are also used for extinguishing LNG fire or mitigating LNG leakage. Foam stabilizer, an ingredient in fire-fighting foam, stabilizes foam bubbles and maintains desired foam volume. Conventional foam stabilizers are organic molecules. In this work, we developed a inorganic based ZrP (Zr(HPO4)2 .H2O, Zirconium phosphate) plates functionalized as firefighting foam stabilizer, improving firefighting foam performance under harsh conditions. Several tests were conducted to illustrate performance. The mechanism for the foam stabilization is also proposed. Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA. Mary Kay O'Connor Process Safety Center, Texas A&M University, College Station, TX, 77843-3122
Hierarchy stability moderates the effect of status on stress and performance in humans
Knight, Erik L.; Mehta, Pranjal H.
2017-01-01
High social status reduces stress responses in numerous species, but the stress-buffering effect of status may dissipate or even reverse during times of hierarchical instability. In an experimental test of this hypothesis, 118 participants (57.3% female) were randomly assigned to a high- or low-status position in a stable or unstable hierarchy and were then exposed to a social-evaluative stressor (a mock job interview). High status in a stable hierarchy buffered stress responses and improved interview performance, but high status in an unstable hierarchy boosted stress responses and did not lead to better performance. This general pattern of effects was observed across endocrine (cortisol and testosterone), psychological (feeling in control), and behavioral (competence, dominance, and warmth) responses to the stressor. The joint influence of status and hierarchy stability on interview performance was explained by feelings of control and testosterone reactivity. Greater feelings of control predicted enhanced interview performance, whereas increased testosterone reactivity predicted worse performance. These results provide direct causal evidence that high status confers adaptive benefits for stress reduction and performance only when the social hierarchy is stable. When the hierarchy is unstable, high status actually exacerbates stress responses. PMID:27994160
Hierarchy stability moderates the effect of status on stress and performance in humans.
Knight, Erik L; Mehta, Pranjal H
2017-01-03
High social status reduces stress responses in numerous species, but the stress-buffering effect of status may dissipate or even reverse during times of hierarchical instability. In an experimental test of this hypothesis, 118 participants (57.3% female) were randomly assigned to a high- or low-status position in a stable or unstable hierarchy and were then exposed to a social-evaluative stressor (a mock job interview). High status in a stable hierarchy buffered stress responses and improved interview performance, but high status in an unstable hierarchy boosted stress responses and did not lead to better performance. This general pattern of effects was observed across endocrine (cortisol and testosterone), psychological (feeling in control), and behavioral (competence, dominance, and warmth) responses to the stressor. The joint influence of status and hierarchy stability on interview performance was explained by feelings of control and testosterone reactivity. Greater feelings of control predicted enhanced interview performance, whereas increased testosterone reactivity predicted worse performance. These results provide direct causal evidence that high status confers adaptive benefits for stress reduction and performance only when the social hierarchy is stable. When the hierarchy is unstable, high status actually exacerbates stress responses.
Automated Portable Test System (APTS) - A performance envelope assessment tool
NASA Technical Reports Server (NTRS)
Kennedy, R. S.; Dunlap, W. P.; Jones, M. B.; Wilkes, R. L.; Bittner, A. C., Jr.
1985-01-01
The reliability and stability of microcomputer-based psychological tests are evaluated. The hardware, test programs, and system control of the Automated Portable Test System, which assesses human performance and subjective status, are described. Subjects were administered 11 pen-and-pencil and microcomputer-based tests for 10 sessions. The data reveal that nine of the 10 tests stabilized by the third administration; inertial correlations were high and consistent. It is noted that the microcomputer-based tests display good psychometric properties in terms of differential stability and reliability.
NASA Astrophysics Data System (ADS)
Wilcox, R. B.; Byrd, J. M.; Doolittle, L. R.; Holzwarth, R.; Huang, G.
2011-09-01
We propose a method of synchronizing mode-locked lasers separated by hundreds of meters with the possibility of achieving sub-fs performance by locking the phases of corresponding lines in the optical comb spectrum. The optical phase from one comb line is transmitted to the remote laser over an interferometrically stabilized link by locking a single frequency laser to a comb line with high phase stability. We describe how these elements are integrated into a complete system and estimate the potential performance.
Cartes, David A; Ray, Laura R; Collier, Robert D
2002-04-01
An adaptive leaky normalized least-mean-square (NLMS) algorithm has been developed to optimize stability and performance of active noise cancellation systems. The research addresses LMS filter performance issues related to insufficient excitation, nonstationary noise fields, and time-varying signal-to-noise ratio. The adaptive leaky NLMS algorithm is based on a Lyapunov tuning approach in which three candidate algorithms, each of which is a function of the instantaneous measured reference input, measurement noise variance, and filter length, are shown to provide varying degrees of tradeoff between stability and noise reduction performance. Each algorithm is evaluated experimentally for reduction of low frequency noise in communication headsets, and stability and noise reduction performance are compared with that of traditional NLMS and fixed-leakage NLMS algorithms. Acoustic measurements are made in a specially designed acoustic test cell which is based on the original work of Ryan et al. ["Enclosure for low frequency assessment of active noise reducing circumaural headsets and hearing protection," Can. Acoust. 21, 19-20 (1993)] and which provides a highly controlled and uniform acoustic environment. The stability and performance of the active noise reduction system, including a prototype communication headset, are investigated for a variety of noise sources ranging from stationary tonal noise to highly nonstationary measured F-16 aircraft noise over a 20 dB dynamic range. Results demonstrate significant improvements in stability of Lyapunov-tuned LMS algorithms over traditional leaky or nonleaky normalized algorithms, while providing noise reduction performance equivalent to that of the NLMS algorithm for idealized noise fields.
Shi, Ji-Lei; Qi, Ran; Zhang, Xu-Dong; Wang, Peng-Fei; Fu, Wei-Gui; Yin, Ya-Xia; Xu, Jian; Wan, Li-Jun; Guo, Yu-Guo
2017-12-13
Delivery of high capacity with high thermal and air stability is a great challenge in the development of Ni-rich layered cathodes for commercialized Li-ion batteries (LIBs). Herein we present a surface concentration-gradient spherical particle with varying elemental composition from the outer end LiNi 1/3 Co 1/3 Mn 1/3 O 2 (NCM) to the inner end LiNi 0.8 Co 0.15 Al 0.05 O 2 (NCA). This cathode material with the merit of NCM concentration-gradient protective buffer and the inner NCA core shows high capacity retention of 99.8% after 200 cycles at 0.5 C. Furthermore, this cathode material exhibits much improved thermal and air stability compared with bare NCA. These results provide new insights into the structural design of high-performance cathodes with high energy density, long life span, and storage stability materials for LIBs in the future.
Guidelines for LTS magnet design based on transient stability
NASA Astrophysics Data System (ADS)
Seo, Kazutaka; Morita, Masao
2006-05-01
Stabilities of low critical temperature superconducting (LTS) magnets and their designs are studied and discussed. There are two contradictory necessities; those are low cost and high performance, in the other words, high magnetic field and large current density. Especially, the maximum magnetic fields of the latest high performance Nb 3Sn magnets are around 20 T. Mentioned necessities result in the small stability margins. Needless to say, the superconducting magnet must produce its nominal field reliably. Therefore, maintaining adequate stability margin, the magnet design to draw out the high potential of the superconductor is required. The transient stability of the superconducting magnet is determined by the relationship between mechanical disturbance energy and stability margin. The minimum quench energy (MQE) is one of the index of stability margin and it is defined as the minimum energy to trigger quenching of a superconductor. MQE should be beyond any possible disturbance energy during the operation. It is difficult to identify the mechanical disturbance energy quantitatively. On the contrary, MQE had been evaluated precisely by means of our developed resistive carbon paste heater (CPH). At the same time, we can predict MQE by numerical simulations. Because the magnet comes to quench if the mechanical disturbance exceeds the MQE, the disturbance energies are suspected to be equivalent to MQEs during the magnet-training. When we achieved somewhat larger MQE, we may exclude numbers of training quenches. In this paper, we discuss the guidelines of LTS magnet design from the standpoint of MQE. We represent some case studies for various superconducting magnets and/or some different winding methods.
High-performance, polymer-based direct cellular interfaces for electrical stimulation and recording
NASA Astrophysics Data System (ADS)
Kim, Seong-Min; Kim, Nara; Kim, Youngseok; Baik, Min-Seo; Yoo, Minsu; Kim, Dongyoon; Lee, Won-June; Kang, Dong-Hee; Kim, Sohee; Lee, Kwanghee; Yoon, Myung-Han
2018-04-01
Due to the trade-off between their electrical/electrochemical performance and underwater stability, realizing polymer-based, high-performance direct cellular interfaces for electrical stimulation and recording has been very challenging. Herein, we developed transparent and conductive direct cellular interfaces based on a water-stable, high-performance poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) film via solvent-assisted crystallization. The crystallized PEDOT:PSS on a polyethylene terephthalate (PET) substrate exhibited excellent electrical/electrochemical/optical characteristics, long-term underwater stability without film dissolution/delamination, and good viability for primarily cultured cardiomyocytes and neurons over several weeks. Furthermore, the highly crystallized, nanofibrillar PEDOT:PSS networks enabled dramatically enlarged surface areas and electrochemical activities, which were successfully employed to modulate cardiomyocyte beating via direct electrical stimulation. Finally, the high-performance PEDOT:PSS layer was seamlessly incorporated into transparent microelectrode arrays for efficient, real-time recording of cardiomyocyte action potentials with a high signal fidelity. All these results demonstrate the strong potential of crystallized PEDOT:PSS as a crucial component for a variety of versatile bioelectronic interfaces.
Development of a Family of Ultra-High Performance Concrete Pi-Girders
DOT National Transportation Integrated Search
2014-01-01
Ultra-high performance concrete (UHPC) is an advanced cementitious composite material, which tends to exhibit superior properties such as exceptional durability, increased strength, and long-term stability. (See references 1-4.) The use of existing s...
Cadmium sulfide anchored in three-dimensional graphite cage for high performance supercapacitors
NASA Astrophysics Data System (ADS)
Chen, Liang; Zuo, Yinze; Zhang, Yu; Gao, Yanmin
2018-05-01
Cadmium sulfide (CdS) nanoparticles were anchored in a three-dimensional (3D) graphite cage for high performance supercapacitors. Significantly, the graphite cage intensified the construction of electroactive materials and facilitated the transfer of ions. As a result, the 3D-CdS/graphite cage revealed a great thermal stability and high specific capacitance (511 F/g at 5 A/g). Additionally, the 3D-CdS/graphite//reduced graphene oxide (rGO) asymmetric supercapacitor revealed a high energy density (30.4 Wh/kg at a power density of 800 W/kg) and long-term cycling stability (90.1% retention after 5000 cycles at 10 A/g) for practical applications.
NASA Technical Reports Server (NTRS)
Greer, H. D.
1972-01-01
The present paper summarizes the high-angle-of-attack characteristics of a number of high-performance aircraft as determined from model force tests and free-flight model tests and correlates these characteristics with the dynamic directional-stability parameter. This correlation shows that the dynamic directional-stability parameter correlates fairly well with directional divergence. Data are also presented to show the effect of some airframe modifications on the directional divergence potential of the configuration. These results show that leading-edge slates seem to be the most effective airframe modification for reducing or eliminating the directional divergence potential of aircraft with moderately swept wings.
Ausar, Salvador F; Chan, Judy; Hoque, Warda; James, Olive; Jayasundara, Kavisha; Harper, Kevin
2011-02-01
High throughput screening (HTS) of excipients for proteins in solution can be achieved by several analytical techniques. The screening of stabilizers for proteins adsorbed onto adjuvants, however, may be difficult due to the limited amount of techniques that can measure stability of adsorbed protein in high throughput mode. Here, we demonstrate that extrinsic fluorescence spectroscopy can be successfully applied to study the physical stability of adsorbed antigens at low concentrations in 96-well plates, using a real-time polymerase chain reaction (RT-PCR) instrument. HTS was performed on three adjuvanted pneumococcal proteins as model antigens in the presence of a standard library of stabilizers. Aluminum hydroxide appeared to decrease the stability of all three proteins at relatively high and low pH values, showing a bell-shaped curve as the pH was increased from 5 to 9 with a maximum stability at near neutral pH. Nonspecific stabilizers such as mono- and disaccharides could increase the conformational stability of the antigens. In addition, those excipients that increased the melting temperature of adsorbed antigens could improve antigenicity and chemical stability. To the best of our knowledge, this is the first report describing an HTS technology amenable for low concentration of antigens adsorbed onto aluminum-containing adjuvants. Copyright © 2010 Wiley-Liss, Inc.
Rush, Steven D; Vernak, Charlene; Zhao, Fang
2017-01-01
Dehydroepiandrosterone supplementation is used to treat a variety of conditions. Rapid-dissolving tablets are a relatively novel choice for compounded dehydroepiandrosterone dosage forms. While rapid-dissolving tablets offer ease of administration, there are uncertainties about the physical and chemical stability of the drug and dosage form during preparation and over long-term storage. This study was designed to evaluate the stability of dehydroepiandrosterone rapid-dissolving tablets just after preparation and over six months of storage. The Professional Compounding Centers of America rapid-dissolving tablet mold and base formula were used to prepare 10-mg strength dehydroepiandrosterone rapid-dissolving tablets. The formulation was heated at 100°C to 110°C for 30 minutes, released from the mold, and cooled at room temperature for 30 minutes. The resulting rapid-dissolving tablets were individually packaged in amber blister packs and stored in a stability chamber maintained at 25°C and 60% relative humidity. The stability samples were pulled at pre-determined time points for evaluation, which included visual inspection, tablet weight check, United States Pharmacopeia disintegration test, and stability-indicating high-performance liquid chromatography. The freshly prepared dehydroepiandrosterone rapiddissolving tablets exhibited satisfactory chemical and physical stability. Time 0 samples disintegrated within 40 seconds in water kept at 37°C. The high-performance liquid chromatographic results confirmed that the initial potency was 101.9% of label claim and that there was no chemical degradation from the heating procedure. Over six months of storage, there were no significant changes in visual appearance, physical integrity, or disintegration time for any of the stability samples. The high-performance liquid chromatographic results also indicated that dehydroepiandrosterone rapid-dissolving tablets retained >95% label claim with no detectable degradation products. The dehydroepiandrosterone rapid-dissolving tablets investigated in this pilot study were physically and chemically stable during preparation and over six months of storage at 25°C and 60% relative humidity. Copyright© by International Journal of Pharmaceutical Compounding, Inc.
Huang, Wu-Jang; Wu, Chia-Teng; Wu, Chang-En; Hsieh, Lin-Huey; Li, Chang-Chien; Lain, Chi-Yuan; Chu, Wei
2008-08-15
This paper describes the solidification and stabilization of electroplating sludge treated with a high-performance binder made from portland type-I cement, municipal solid waste incineration fly ash, and lighting phosphor powder (called as cement-fly ash-phosphor binder, CFP). The highest 28-day unconfined compressive strength of the CFP-treated paste was 816 kg/cm(2) at a ratio of cement to fly ash to lighting phosphor powder of 90:5:5; the strength of this composition also fulfilled the requirement of a high-strength concrete (>460 kg/cm(2) at 28 days). The CFP-stabilized sludge paste samples passed the Taiwanese EPA toxicity characteristic leaching procedure test and, therefore, could be used either as a building material or as a controlled low-strength material, depending on the sludge-to-CFP binder ratio.
Liu, Bin; Liu, Boyang; Wang, Qiufan; Wang, Xianfu; Xiang, Qingyi; Chen, Di; Shen, Guozhen
2013-10-23
Hierarchical ZnCo2O4/nickel foam architectures were first fabricated from a simple scalable solution approach, exhibiting outstanding electrochemical performance in supercapacitors with high specific capacitance (∼1400 F g(-1) at 1 A g(-1)), excellent rate capability (72.5% capacity retention at 20 A g(-1)), and good cycling stability (only 3% loss after 1000 cycles at 6 A g(-1)). All-solid-state supercapacitors were also fabricated by assembling two pieces of the ZnCo2O4-based electrodes, showing superior performance in terms of high specific capacitance and long cycling stability. Our work confirms that the as-prepared architectures can not only be applied in high energy density fields, but also be used in high power density applications, such as electric vehicles, flexible electronics, and energy storage devices.
Chemically durable polymer electrolytes for solid-state alkaline water electrolysis
NASA Astrophysics Data System (ADS)
Park, Eun Joo; Capuano, Christopher B.; Ayers, Katherine E.; Bae, Chulsung
2018-01-01
Generation of high purity hydrogen using electrochemical splitting of water is one of the most promising methods for sustainable fuel production. The materials to be used as solid-state electrolytes for alkaline water electrolyzer require high thermochemical stability against hydroxide ion attack in alkaline environment during the operation of electrolysis. In this study, two quaternary ammonium-tethered aromatic polymers were synthesized and investigated for anion exchange membrane (AEM)-based alkaline water electrolyzer. The membranes properties including ion exchange capacity (IEC), water uptake, swelling degree, and anion conductivity were studied. The membranes composed of all C-C bond polymer backbones and flexible side chain terminated by cation head groups exhibited remarkably good chemical stability by maintaining structural integrity in 1 M NaOH solution at 95 °C for 60 days. Initial electrochemical performance and steady-state operation performance were evaluated, and both membranes showed a good stabilization of the cell voltage during the steady-state operation at the constant current density at 200 mA/cm2. Although both membranes in current form require improvement in mechanical stability to afford better durability in electrolysis operation, the next generation AEMs based on this report could lead to potentially viable AEM candidates which can provide high electrolysis performance under alkaline operating condition.
Accelerated loading evaluation of stabilized BCS layers in pavement performance : tech summary.
DOT National Transportation Integrated Search
2012-03-01
The Louisiana Department of Transportation and Development (LADOTD) began to use blended calcium sulfate (BCS) as : an alternative base material in the 1990s. Raw BCS base without further chemical stabilization can achieve relatively high : strength ...
Design of flexible polyphenylene proton-conducting membrane for next-generation fuel cells
Miyake, Junpei; Taki, Ryunosuke; Mochizuki, Takashi; Shimizu, Ryo; Akiyama, Ryo; Uchida, Makoto; Miyatake, Kenji
2017-01-01
Proton exchange membrane fuel cells (PEMFCs) are promising devices for clean power generation in automotive, stationary, and portable applications. Perfluorosulfonic acid (PFSA) ionomers (for example, Nafion) have been the benchmark PEMs; however, several problems, including high gas permeability, low thermal stability, high production cost, and environmental incompatibility, limit the widespread dissemination of PEMFCs. It is believed that fluorine-free PEMs can potentially address all of these issues; however, none of these membranes have simultaneously met the criteria for both high performance (for example, proton conductivity) and durability (for example, mechanical and chemical stability). We present a polyphenylene-based PEM (SPP-QP) that fulfills the required properties for fuel cell applications. The newly designed PEM exhibits very high proton conductivity, excellent membrane flexibility, low gas permeability, and extremely high stability, with negligible degradation even under accelerated degradation conditions, which has never been achieved with existing fluorine-free PEMs. The polyphenylene PEM also exhibits reasonably high fuel cell performance, with excellent durability under practical conditions. This new PEM extends the limits of existing fluorine-free proton-conductive materials and will help to realize the next generation of PEMFCs via cost reduction as well as the performance improvement compared to the present PFSA-based PEMFC systems. PMID:29075671
NASA Astrophysics Data System (ADS)
Rodriguez, Steven; Jaworski, Justin
2017-11-01
The impact of above-rated wave-induced motions on the stability of floating offshore wind turbine near-wakes is studied numerically. The rotor near-wake is generated using a lifting-line free vortex wake method, which is strongly coupled to a finite element solver for kinematically nonlinear blade deformations. A synthetic time series of relatively high-amplitude/high-frequency representative of above-rated conditions of the NREL 5MW referece wind turbine is imposed on the rotor structure. To evaluate the impact of these above-rated conditions, a linear stability analysis is first performed on the near wake generated by a fixed-tower wind turbine configuration at above-rated inflow conditions. The platform motion is then introduced via synthetic time series, and a stability analysis is performed on the wake generated by the floating offshore wind turbine at the same above-rated inflow conditions. The stability trends (disturbance modes versus the divergence rate of vortex structures) of the two analyses are compared to identify the impact that above-rated wave-induced structural motions have on the stability of the floating offshore wind turbine wake.
NASA Astrophysics Data System (ADS)
Sankar, K. Vijaya; Lee, S. C.; Seo, Y.; Ray, C.; Liu, S.; Kundu, A.; Jun, S. C.
2018-01-01
One-dimensional (1D) nanostructure exhibits excellent electrochemical performance because of their unique physico-chemical properties like fast electron transfer, good rate capability, and cyclic stability. In the present study, Co3(PO4)2 1D nanograsses are grown on Ni foam using a simple and eco-friendly hydrothermal technique with different reaction times. The open space with uniform nanograsses displays a high areal capacitance, rate capability, energy density, and cyclic stability due to the nanostructure enhancing fast ion and material interactions. Ex-situ microscope images confirm the dependence of structural stability on the reaction time, and the nanograsses promoted ion interaction through material. Further, the reproducibility of the electrochemical performance confirms the binder-free Co3(PO4)2 1D nanograsses to be a suitable high-performance cathode material for application to hybrid supercapacitor. Finally, the assembled hybrid supercapacitor exhibits a high energy density (26.66 Wh kg-1 at 750 W kg-1) and longer lifetimes (80% retained capacitance after 6000 cycles). Our results suggests that the Co3(PO4)2 1D nanograss design have a great promise for application to hybrid supercapacitor.
Electrochemical Stability of Li 10GeP 2S 12 and Li 7La 3Zr 2O 12 Solid Electrolytes
Han, Fudong; Zhu, Yizhou; He, Xingfeng; ...
2016-01-21
The electrochemical stability window of solid electrolyte is overestimated by the conventional experimental method using a Li/electrolyte/inert metal semiblocking electrode because of the limited contact area between solid electrolyte and inert metal. Since the battery is cycled in the overestimated stability window, the decomposition of the solid electrolyte at the interfaces occurs but has been ignored as a cause for high interfacial resistances in previous studies, limiting the performance improvement of the bulk-type solid-state battery despite the decades of research efforts. Thus, there is an urgent need to identify the intrinsic stability window of the solid electrolyte. The thermodynamic electrochemicalmore » stability window of solid electrolytes is calculated using first principles computation methods, and an experimental method is developed to measure the intrinsic electrochemical stability window of solid electrolytes using a Li/electrolyte/electrolyte-carbon cell. The most promising solid electrolytes, Li10GeP2S12 and cubic Li-garnet Li7La3Zr2O12, are chosen as the model materials for sulfide and oxide solid electrolytes, respectively. The results provide valuable insights to address the most challenging problems of the interfacial stability and resistance in high-performance solid-state batteries.« less
Huang, Jiajia; Liu, Haodong; Zhou, Naixie; An, Ke; Meng, Ying Shirley; Luo, Jian
2017-10-25
Spontaneous and anisotropic surface segregation of W cations in LiMn 1.5 Ni 0.5 O 4 particles can alter the Wulff shape and improve surface stability, thereby significantly improving the electrochemical performance. An Auger electron nanoprobe was employed to identify the anisotropic surface segregation, whereby W cations prefer to segregate to {110} surface facets to decrease its relative surface energy according to Gibbs adsorption theory and subsequently increase its surface area according to Wulff theory. Consequently, the rate performance is improved (e.g., by ∼5-fold at a high rate of 25C) because the {110} facets have more open channels for fast lithium ion diffusion. Furthermore, X-ray photoelectron spectroscopy (XPS) depth profiling suggested that the surface segregation and partial reduction of W cation inhibit the formation of Mn 3+ on surfaces to improve cycling stability via enhancing the cathode electrolyte interphase (CEI) stability at high charging voltages. This is the first report of using anisotropic surface segregation to thermodynamically control the particle morphology as well as enhancing CEI stability as a facile, and potentially general, method to significantly improve the electrochemical performance of battery electrodes. Combining neutron diffraction, an Auger electron nanoprobe, XPS, and other characterizations, we depict the underlying mechanisms of improved ionic transport and CEI stability in high-voltage LiMn 1.5 Ni 0.5 O 4 spinel materials.
NASA Astrophysics Data System (ADS)
Haller, J.; Wilkens, V.
2017-03-01
The objective of this work was to create highly stable therapeutic ultrasound fields with well-known exposimetry and dosimetry parameters that are reproducible and hence predictable with well-known uncertainties. Such well- known and reproducible fields would allow validation and secondary calibrations of different measuring capabilities, which is already a widely accepted strategy for diagnostic fields. For this purpose, a reference setup was established that comprises two therapeutic ultrasound sources (one High-Intensity Therapeutic Ultrasound (HITU) source and one physiotherapy-like source), standard rf electronics for signal creation, and computer-controlled feedback to stabilize the input voltage. The short- and longtime stability of the acoustic output were evaluated - for the former, measurements over typical laboratory measurement time periods (i.e. some seconds or minutes) of the input voltage stability with and without feedback control were performed. For the latter, measurements of typical acoustical exposimetry parameters were performed bimonthly over one year. The measurement results show that the short- and the longtime stability of the reference setup are very good and that it is especially significantly improved in comparison to a setup without any feedback control.
Li, Yue-Ying; Wang, Jian-Gan; Sun, Huan-Huan; Wei, Bingqing
2018-04-11
Organic dyes used in the conventional dye-sensitized solar cells (DSSCs) suffer from poor light stability and high cost. In this work, we demonstrate a new inorganic sensitized solar cell based on ordered one-dimensional semiconductor nanorod arrays of TiO 2 /NiTiO 3 (NTO) heterostructures prepared via a facile two-step hydrothermal approach. The semiconductor heterostructure arrays are highly desirable and promising for DSSCs because of their direct charge transport capability and slow charge recombination rate. The low-cost NTO inorganic semiconductor possesses an appropriate band gap that matches well with TiO 2 , which behaves like a "dye" to enable efficient light harvesting and fast electron-hole separation. The solar cells constructed by the ordered TiO 2 /NTO heterostructure photoanodes show a significantly improved power conversion efficiency, high fill factor, and more promising, outstanding life stability. The present work will open up an avenue to design heterostructured inorganics for high-performance solar cells.
Performance and stability of a liquid anode high-temperature metal-air battery
NASA Astrophysics Data System (ADS)
Otaegui, L.; Rodriguez-Martinez, L. M.; Wang, L.; Laresgoiti, A.; Tsukamoto, H.; Han, M. H.; Tsai, C.-L.; Laresgoiti, I.; López, C. M.; Rojo, T.
2014-02-01
A High-Temperature Metal-Air Battery (HTMAB) that operates based on a simple redox reaction between molten metal and atmospheric oxygen at 600-1000 °C is presented. This innovative HTMAB concept combines the technology of conventional metal-air batteries with that of solid oxide fuel cells to provide a high energy density system for many applications. Electrochemical reversibility is demonstrated with 95% coulomb efficiency. Cell sealing has been identified as a key issue in order to determine the end-of-charge voltage, enhance coulomb efficiency and ensure long term stability. In this work, molten Sn is selected as anode material. Low utilization of the stored material due to precipitation of the SnO2 on the electrochemically active area limits the expected capacity, which should theoretically approach 903 mAh g-1. Nevertheless, more than 1000 charge/discharge cycles are performed during more than 1000 h at 800 °C, showing highly promising results of stability, reversibility and cyclability.
NASA Astrophysics Data System (ADS)
Dadashzadeh, N.; Duzgun, H. S. B.; Yesiloglu-Gultekin, N.
2017-08-01
While advanced numerical techniques in slope stability analysis are successfully used in deterministic studies, they have so far found limited use in probabilistic analyses due to their high computation cost. The first-order reliability method (FORM) is one of the most efficient probabilistic techniques to perform probabilistic stability analysis by considering the associated uncertainties in the analysis parameters. However, it is not possible to directly use FORM in numerical slope stability evaluations as it requires definition of a limit state performance function. In this study, an integrated methodology for probabilistic numerical modeling of rock slope stability is proposed. The methodology is based on response surface method, where FORM is used to develop an explicit performance function from the results of numerical simulations. The implementation of the proposed methodology is performed by considering a large potential rock wedge in Sumela Monastery, Turkey. The accuracy of the developed performance function to truly represent the limit state surface is evaluated by monitoring the slope behavior. The calculated probability of failure is compared with Monte Carlo simulation (MCS) method. The proposed methodology is found to be 72% more efficient than MCS, while the accuracy is decreased with an error of 24%.
Xu, Han; Zhang, Chi; Zhou, Wen; Li, Gao-Ren
2015-10-28
High power density, high energy density and excellent cycling stability are the main requirements for high-performance supercapacitors (SCs) that will be widely used for portable consumer electronics and hybrid electric vehicles. Here we investigate novel types of hybrid Co(OH)2/reduced graphene oxide (RGO)/NiO sandwich-structured nanotube arrays (SNTAs) as positive electrodes for asymmetric supercapacitors (ASCs). The synthesized Co(OH)2/RGO/NiO SNTAs exhibit a significantly improved specific capacity (∼1470 F g(-1) at 5 mV s(-1)) and excellent cycling stability with ∼98% Csp retention after 10 000 cycles because of the fast transport and short diffusion paths for electroactive species, the high utilization rate of electrode materials, and special synergistic effects among Co(OH)2, RGO, and NiO. The high-performance ASCs are assembled using Co(OH)2/RGO/NiO SNTAs as positive electrodes and active carbon (AC) as negative electrodes, and they exhibit a high energy density (115 Wh kg(-1)), a high power density (27.5 kW kg(-1)) and an excellent cycling stability (less 5% Csp loss after 10 000 cycles). This study shows an important breakthrough in the design and fabrication of multi-walled hybrid nanotube arrays as positive electrodes for ASCs.
Optimizing performance by improving core stability and core strength.
Hibbs, Angela E; Thompson, Kevin G; French, Duncan; Wrigley, Allan; Spears, Iain
2008-01-01
Core stability and core strength have been subject to research since the early 1980s. Research has highlighted benefits of training these processes for people with back pain and for carrying out everyday activities. However, less research has been performed on the benefits of core training for elite athletes and how this training should be carried out to optimize sporting performance. Many elite athletes undertake core stability and core strength training as part of their training programme, despite contradictory findings and conclusions as to their efficacy. This is mainly due to the lack of a gold standard method for measuring core stability and strength when performing everyday tasks and sporting movements. A further confounding factor is that because of the differing demands on the core musculature during everyday activities (low load, slow movements) and sporting activities (high load, resisted, dynamic movements), research performed in the rehabilitation sector cannot be applied to the sporting environment and, subsequently, data regarding core training programmes and their effectiveness on sporting performance are lacking. There are many articles in the literature that promote core training programmes and exercises for performance enhancement without providing a strong scientific rationale of their effectiveness, especially in the sporting sector. In the rehabilitation sector, improvements in lower back injuries have been reported by improving core stability. Few studies have observed any performance enhancement in sporting activities despite observing improvements in core stability and core strength following a core training programme. A clearer understanding of the roles that specific muscles have during core stability and core strength exercises would enable more functional training programmes to be implemented, which may result in a more effective transfer of these skills to actual sporting activities.
NASA Astrophysics Data System (ADS)
Liu, Xuesong; Shi, Zhaohui; Huang, Yutao; Fan, Zhongwei; Yu, Jin; Zhang, Jing; Hou, Liqun
2015-02-01
In this paper, a very high repetition-rate, short-pulse, electro-optical cavity-dumped Nd: YVO4 laser is experimentally and theoretically investigated. The laser performance is optimized from two aspects. Firstly, the laser resonator is designed for a good thermal stability under large pump power fluctuation through optics methods. Secondly, dynamics simulation as well as experiments verifies that cavity dumping at very high repetition rate has better stability than medium/high repetition rate. At 30 W, 880 nm pump power, up to 500 kHz, constant 5 ns, stable 1064 nm fundamental-mode laser pulses can be obtained with 10 W average output power.
NASA Technical Reports Server (NTRS)
Orlik-Ruckemann, K. J.
1973-01-01
A survey was conducted relative to future requirements for dynamic stability information for such aerospace vehicles as the space shuttle and advanced high performance military aircraft. High-angle-of-attack and high-Reynolds number conditions were emphasized. A review was made of the wind-tunnel capabilities in North America for measuring dynamic stability derivatives, revealing an almost total lack of capabilities that could satisfy these requirements. Recommendations are made regarding equipment that should be constructed to remedy this situation. A description is given of some of the more advanced existing capabilities, which can be used to at least partly satisfy immediate demands.
NASA Technical Reports Server (NTRS)
Mercer, C. E.; Maiden, D. L.
1972-01-01
The changes in thrust minus drag performance as well as longitudinal and directional stability and control characteristics of a single-engine jet aircraft attributable to an in-flight thrust reverser of the blocker-deflector door type were investigated in a 16-foot transonic wind tunnel. The longitudinal and directional stability data are presented. Test conditions simulated landing approach conditions as well as high speed maneuvering such as may be required for combat or steep descent from high altitude.
Analyses of a heterogeneous lattice hydrodynamic model with low and high-sensitivity vehicles
NASA Astrophysics Data System (ADS)
Kaur, Ramanpreet; Sharma, Sapna
2018-06-01
Basic lattice model is extended to study the heterogeneous traffic by considering the optimal current difference effect on a unidirectional single lane highway. Heterogeneous traffic consisting of low- and high-sensitivity vehicles is modeled and their impact on stability of mixed traffic flow has been examined through linear stability analysis. The stability of flow is investigated in five distinct regions of the neutral stability diagram corresponding to the amount of higher sensitivity vehicles present on road. In order to investigate the propagating behavior of density waves non linear analysis is performed and near the critical point, the kink antikink soliton is obtained by driving mKdV equation. The effect of fraction parameter corresponding to high sensitivity vehicles is investigated and the results indicates that the stability rise up due to the fraction parameter. The theoretical findings are verified via direct numerical simulation.
Optimum Design of High-Speed Prop-Rotors
NASA Technical Reports Server (NTRS)
Chattopadhyay, Aditi; McCarthy, Thomas Robert
1993-01-01
An integrated multidisciplinary optimization procedure is developed for application to rotary wing aircraft design. The necessary disciplines such as dynamics, aerodynamics, aeroelasticity, and structures are coupled within a closed-loop optimization process. The procedure developed is applied to address two different problems. The first problem considers the optimization of a helicopter rotor blade and the second problem addresses the optimum design of a high-speed tilting proprotor. In the helicopter blade problem, the objective is to reduce the critical vibratory shear forces and moments at the blade root, without degrading rotor aerodynamic performance and aeroelastic stability. In the case of the high-speed proprotor, the goal is to maximize the propulsive efficiency in high-speed cruise without deteriorating the aeroelastic stability in cruise and the aerodynamic performance in hover. The problems studied involve multiple design objectives; therefore, the optimization problems are formulated using multiobjective design procedures. A comprehensive helicopter analysis code is used for the rotary wing aerodynamic, dynamic and aeroelastic stability analyses and an algorithm developed specifically for these purposes is used for the structural analysis. A nonlinear programming technique coupled with an approximate analysis procedure is used to perform the optimization. The optimum blade designs obtained in each case are compared to corresponding reference designs.
Cognition-emotion interactions: patterns of change and implications for math problem solving
Trezise, Kelly; Reeve, Robert A.
2014-01-01
Surprisingly little is known about whether relationships between cognitive and emotional states remain stable or change over time, or how different patterns of stability and/or change in the relationships affect problem solving abilities. Nevertheless, cross-sectional studies show that anxiety/worry may reduce working memory (WM) resources, and the ability to minimize the effects anxiety/worry is higher in individuals with greater WM capacity. To investigate the patterns of stability and/or change in cognition-emotion relations over time and their implications for problem solving, 126 14-year-olds’ algebraic WM and worry levels were assessed twice in a single day before completing an algebraic math problem solving test. We used latent transition analysis to identify stability/change in cognition-emotion relations, which yielded a six subgroup solution. Subgroups varied in WM capacity, worry, and stability/change relationships. Among the subgroups, we identified a high WM/low worry subgroup that remained stable over time and a high WM/high worry, and a moderate WM/low worry subgroup that changed to low WM subgroups over time. Patterns of stability/change in subgroup membership predicted algebraic test results. The stable high WM/low worry subgroup performed best and the low WM capacity-high worry “unstable across time” subgroup performed worst. The findings highlight the importance of assessing variations in cognition-emotion relationships over time (rather than assessing cognition or emotion states alone) to account for differences in problem solving abilities. PMID:25132830
Anion control as a strategy to achieve high-mobility and high-stability oxide thin-film transistors.
Kim, Hyun-Suk; Jeon, Sang Ho; Park, Joon Seok; Kim, Tae Sang; Son, Kyoung Seok; Seon, Jong-Baek; Seo, Seok-Jun; Kim, Sun-Jae; Lee, Eunha; Chung, Jae Gwan; Lee, Hyungik; Han, Seungwu; Ryu, Myungkwan; Lee, Sang Yoon; Kim, Kinam
2013-01-01
Ultra-definition, large-area displays with three-dimensional visual effects represent megatrend in the current/future display industry. On the hardware level, such a "dream" display requires faster pixel switching and higher driving current, which in turn necessitate thin-film transistors (TFTs) with high mobility. Amorphous oxide semiconductors (AOS) such as In-Ga-Zn-O are poised to enable such TFTs, but the trade-off between device performance and stability under illumination critically limits their usability, which is related to the hampered electron-hole recombination caused by the oxygen vacancies. Here we have improved the illumination stability by substituting oxygen with nitrogen in ZnO, which may deactivate oxygen vacancies by raising valence bands above the defect levels. Indeed, the stability under illumination and electrical bias is superior to that of previous AOS-based TFTs. By achieving both mobility and stability, it is highly expected that the present ZnON TFTs will be extensively deployed in next-generation flat-panel displays.
Anion control as a strategy to achieve high-mobility and high-stability oxide thin-film transistors
Kim, Hyun-Suk; Jeon, Sang Ho; Park, Joon Seok; Kim, Tae Sang; Son, Kyoung Seok; Seon, Jong-Baek; Seo, Seok-Jun; Kim, Sun-Jae; Lee, Eunha; Chung, Jae Gwan; Lee, Hyungik; Han, Seungwu; Ryu, Myungkwan; Lee, Sang Yoon; Kim, Kinam
2013-01-01
Ultra-definition, large-area displays with three-dimensional visual effects represent megatrend in the current/future display industry. On the hardware level, such a “dream” display requires faster pixel switching and higher driving current, which in turn necessitate thin-film transistors (TFTs) with high mobility. Amorphous oxide semiconductors (AOS) such as In-Ga-Zn-O are poised to enable such TFTs, but the trade-off between device performance and stability under illumination critically limits their usability, which is related to the hampered electron-hole recombination caused by the oxygen vacancies. Here we have improved the illumination stability by substituting oxygen with nitrogen in ZnO, which may deactivate oxygen vacancies by raising valence bands above the defect levels. Indeed, the stability under illumination and electrical bias is superior to that of previous AOS-based TFTs. By achieving both mobility and stability, it is highly expected that the present ZnON TFTs will be extensively deployed in next-generation flat-panel displays. PMID:23492854
Stability studies of oxytetracycline in methanol solution
NASA Astrophysics Data System (ADS)
Wang, Wei; Wu, Nan; Yang, Jinghui; Zeng, Ming; Xu, Chenshan; Li, Lun; Zhang, Meng; Li, Liting
2018-02-01
As one kind of typical tetracycline antibiotics, antibiotic residues of oxytetracycline have been frequently detected in many environmental media. In this study, the stability of oxytetracycline in methanol solution was investigated by high-performance liquid chromatography combined with UV-vis (HPLC-UV). The results show that the stability of oxytetracycline in methanol solution is highly related to its initial concentration and the preserved temperature. Under low temperature condition, the solution was more stable than under room temperature preservation. Under the same temperature preservation condition, high concentrations of stock solutions are more stable than low concentrations. The study provides a foundation for preserving the oxytetracycline-methanol solution.
NASA Technical Reports Server (NTRS)
Hahne, David E.; Glaab, Louis J.
1999-01-01
An investigation was performed to evaluate leading-and trailing-edge flap deflections for optimal aerodynamic performance of a High-Speed Civil Transport concept during takeoff and approach-to-landing conditions. The configuration used for this study was designed by the Douglas Aircraft Company during the 1970's. A 0.1-scale model of this configuration was tested in the Langley 30- by 60-Foot Tunnel with both the original leading-edge flap system and a new leading-edge flap system, which was designed with modem computational flow analysis and optimization tools. Leading-and trailing-edge flap deflections were generated for the original and modified leading-edge flap systems with the computational flow analysis and optimization tools. Although wind tunnel data indicated improvements in aerodynamic performance for the analytically derived flap deflections for both leading-edge flap systems, perturbations of the analytically derived leading-edge flap deflections yielded significant additional improvements in aerodynamic performance. In addition to the aerodynamic performance optimization testing, stability and control data were also obtained. An evaluation of the crosswind landing capability of the aircraft configuration revealed that insufficient lateral control existed as a result of high levels of lateral stability. Deflection of the leading-and trailing-edge flaps improved the crosswind landing capability of the vehicle considerably; however, additional improvements are required.
Novel Nanofiber-based Membrane Separators for Lithium-Ion Batteries
NASA Astrophysics Data System (ADS)
Yanilmaz, Meltem
Lithium-ion batteries have been widely used in electronic devices including mobile phones, laptop computers, and cameras due to their high specific energy, high energy density, long cycling lifetime, and low self-discharge rate. Nowadays, lithium-ion batteries are finding new applications in electric/hybrid vehicles and energy storage for smart grids. To be used in these new applications, novel battery components are needed so that lithiumion batteries with higher cell performance, better safety, and lower cost can be developed. A separator is an important component to obtain safe batteries and its primary function is to prevent electronic contact between electrodes while regulating cell kinetics and ionic flow. Currently, microporous membranes are the most commonly used separator type and they have good mechanical properties and chemical stability. However, their wettability and thermal stabilities are not sufficient for applications that require high operating temperature and high performance. Due to the superior properties such as large specific surface area, small pore size and high porosity, electrospun nanofiber membranes can be good separator candidate for highperformance lithium-ion batteries. In this work, we focus our research on fabricating nanofiber-based membranes to design new high-performance separators with good thermal stability, as well as superior electrochemical performance compared to microporous polyolefin membranes. To combine the good mechanical strength of PP nonwovens with the excellent electrochemical properties of SiO2/polyvinylidene fluoride (PVDF) composite nanofibers, SiO 2/PVDF composite nanofiber-coated PP nonwoven membranes were prepared. It was found that the addition of SiO2 nanoparticles played an important role in improving the overall performance of these nanofiber-coated nonwoven membranes. Although ceramic/polymer composites can be prepared by encapsulating ceramic particles directly into polymer nanofibers, the performance of the resultant composite membranes is restricted because these nanoparticles are not exposed to liquid electrolytes and have limited effect on improving the cell performance. Hence, we introduced new nanoparticle-on-nanofiber hybrid membrane separators by combining electrospraying with electrospinning techniques. Electrochemical properties were enhanced due to the increased surface area caused by the unique hybrid structure of SiO2 nanoparticles and PVDF nanofibers. To design a high-performance separator with enhanced mechanical properties and good thermal stability, electrospun SiO2/nylon 6,6 nanofiber membranes were fabricated. It was found that SiO2/nylon 6,6 nanofiber membranes had superior thermal stability and mechanical strength. Electrospinning has serious drawbacks such as low spinning rate and high production cost. Centrifugal spinning is a fast, cost-effective and safe alternative to the electrospinning. SiO2/polyacrylonitrile (PAN) membranes were produced by using centrifugal spinning. Compared with commercial microporous polyolefin membranes, SiO2/PAN membranes had larger liquid electrolyte uptake, higher electrochemical oxidation limit, and lower interfacial resistance with lithium. SiO2/PAN membrane separators were assembled into lithium/lithium iron phosphate cells and these cells exhibited good cycling and C-rate performance.
NASA Technical Reports Server (NTRS)
Tam, Christopher; Krothapalli, A
1993-01-01
The research program for the first year of this project (see the original research proposal) consists of developing an explicit marching scheme for solving the parabolized stability equations (PSE). Performing mathematical analysis of the computational algorithm including numerical stability analysis and the determination of the proper boundary conditions needed at the boundary of the computation domain are implicit in the task. Before one can solve the parabolized stability equations for high-speed mixing layers, the mean flow must first be found. In the past, instability analysis of high-speed mixing layer has mostly been performed on mean flow profiles calculated by the boundary layer equations. In carrying out this project, it is believed that the boundary layer equations might not give an accurate enough nonparallel, nonlinear mean flow needed for parabolized stability analysis. A more accurate mean flow can, however, be found by solving the parabolized Navier-Stokes equations. The advantage of the parabolized Navier-Stokes equations is that its accuracy is consistent with the PSE method. Furthermore, the method of solution is similar. Hence, the major part of the effort of the work of this year has been devoted to the development of an explicit numerical marching scheme for the solution of the Parabolized Navier-Stokes equation as applied to the high-seed mixing layer problem.
Yesiltas, Betül; Sørensen, Ann-Dorit Moltke; García-Moreno, Pedro J; Anankanbil, Sampson; Guo, Zheng; Jacobsen, Charlotte
2018-07-30
Sodium caseinate (CAS) and commercial sodium alginate (CA), long chain modified alginate (LCMA) or short chain modified alginate (SCMA) were used in combination for emulsifying and stabilizing high fat (50-70%) fish oil-in-water emulsions. Physical (creaming, droplet size, viscosity and protein determination) and oxidative (primary and secondary oxidation products) stabilities of the emulsions were studied during 12 days of storage. Creaming stability was higher for emulsions produced with alginates and CAS compared to emulsions prepared with only CAS. Combined use of CAS + LCMA performed better in terms of physical stability compared to emulsions produced with only CAS. However, the oxidative stability of this emulsion was inferior probably due to the presence of an unsaturated carbon chain in LCMA structure. CAS + SCMA emulsions not only showed better physical stability such as smaller droplet size, lower creaming and higher viscosity, but also had an improved oxidative stability than emulsions produced with only CAS. Copyright © 2018 Elsevier Ltd. All rights reserved.
Robust Control for Microgravity Vibration Isolation using Fixed Order, Mixed H2/Mu Design
NASA Technical Reports Server (NTRS)
Whorton, Mark
2003-01-01
Many space-science experiments need an active isolation system to provide a sufficiently quiescent microgravity environment. Modern control methods provide the potential for both high-performance and robust stability in the presence of parametric uncertainties that are characteristic of microgravity vibration isolation systems. While H2 and H(infinity) methods are well established, neither provides the levels of attenuation performance and robust stability in a compensator with low order. Mixed H2/H(infinity), controllers provide a means for maximizing robust stability for a given level of mean-square nominal performance while directly optimizing for controller order constraints. This paper demonstrates the benefit of mixed norm design from the perspective of robustness to parametric uncertainties and controller order for microgravity vibration isolation. A nominal performance metric analogous to the mu measure, for robust stability assessment is also introduced in order to define an acceptable trade space from which different control methodologies can be compared.
Houadria, Mickal; Blüthgen, Nico; Salas-Lopez, Alex; Schmitt, Mona-Isabel; Arndt, Johanna; Schneider, Eric; Orivel, Jérôme; Menzel, Florian
2016-01-01
The diversity-stability relationship has been under intense scrutiny for the past decades, and temporal asynchrony is recognized as an important aspect of ecosystem stability. In contrast to relatively well-studied interannual and seasonal asynchrony, few studies investigate the role of circadian cycles for ecosystem stability. Here, we studied multifunctional redundancy of diurnal and nocturnal ant communities in four tropical rain forest sites. We analyzed how it was influenced by species richness, functional performance, and circadian asynchrony. In two neotropical sites, species richness and functional redundancy were lower at night. In contrast, these parameters did not differ in the two paleotropical sites we studied. Circadian asynchrony between species was pronounced in the neotropical sites, and increased circadian functional redundancy. In general, species richness positively affected functional redundancy, but the effect size depended on the temporal and spatial breadth of the species with highest functional performance. Our analysis shows that high levels of trophic performance were only reached through the presence of such high-performing species, but not by even contributions of multiple, less-efficient species. Thus, these species can increase current functional performance, but reduce overall functional redundancy. Our study highlights that diurnal and nocturnal ecosystem properties of the very same habitat can markedly differ in terms of species richness and functional redundancy. Consequently, like the need to study multiple ecosystem functions, multiple periods of the circadian cycle need to be assessed in order to fully understand the diversity-stability relationship in an ecosystem.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walters, Diane M; Antony, Lucas; de Pablo, Juan
High thermal stability and anisotropic molecular orientation enhance the performance of vapor-deposited organic semiconductors, but controlling these properties is a challenge in amorphous materials. To understand the influence of molecular shape on these properties, vapor-deposited glasses of three disk-shaped molecules were prepared. For all three systems, enhanced thermal stability is observed for glasses prepared over a wide range of substrate temperatures and anisotropic molecular orientation is observed at lower substrate temperatures. For two of the disk-shaped molecules, atomistic simulations of thin films were also performed and anisotropic molecular orientation was observed at the equilibrium liquid surface. We find that themore » structure and thermal stability of these vapor-deposited glasses results from high surface mobility and partial equilibration toward the structure of the equilibrium liquid surface during the deposition process. For the three molecules studied, molecular shape is a dominant factor in determining the anisotropy of vapor-deposited glasses.« less
Wei, Xiaoliang; Xu, Wu; Huang, Jinhua; Zhang, Lu; Walter, Eric; Lawrence, Chad; Vijayakumar, M; Henderson, Wesley A; Liu, Tianbiao; Cosimbescu, Lelia; Li, Bin; Sprenkle, Vincent; Wang, Wei
2015-07-20
Nonaqueous redox flow batteries hold the promise of achieving higher energy density because of the broader voltage window than aqueous systems, but their current performance is limited by low redox material concentration, cell efficiency, cycling stability, and current density. We report a new nonaqueous all-organic flow battery based on high concentrations of redox materials, which shows significant, comprehensive improvement in flow battery performance. A mechanistic electron spin resonance study reveals that the choice of supporting electrolytes greatly affects the chemical stability of the charged radical species especially the negative side radical anion, which dominates the cycling stability of these flow cells. This finding not only increases our fundamental understanding of performance degradation in flow batteries using radical-based redox species, but also offers insights toward rational electrolyte optimization for improving the cycling stability of these flow batteries. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Method of electrode fabrication for solid oxide electrochemical cells
Jensen, R.R.
1990-11-20
A process for fabricating cermet electrodes for solid oxide electrochemical cells by sintering is disclosed. First, a porous metal electrode is fabricated on a solid oxide cell, such as a fuel cell by, for example, sintering, and is then infiltrated with a high volume fraction stabilized zirconia suspension. A second sintering step is used to sinter the infiltrated zirconia to a high density in order to more securely attach the electrode to the solid oxide electrolyte of the cell. High performance fuel electrodes can be obtained with this process. Further electrode performance enhancement may be achieved if stabilized zirconia doped with cerium oxide, chromium oxide, titanium oxide, and/or praseodymium oxide for electronic conduction is used. 5 figs.
Method of electrode fabrication for solid oxide electrochemical cells
Jensen, Russell R.
1990-01-01
A process for fabricating cermet electrodes for solid oxide electrochemical cells by sintering is disclosed. First, a porous metal electrode is fabricated on a solid oxide cell, such as a fuel cell by, for example, sintering, and is then infiltrated with a high volume fraction stabilized zirconia suspension. A second sintering step is used to sinter the infiltrated zirconia to a high density in order to more securely attach the electrode to the solid oxide electrolyte of the cell. High performance fuel electrodes can be obtained with this process. Further electrode performance enhancement may be achieved if stabilized zirconia doped with cerium oxide, chromium oxide, titanium oxide, and/or praseodymium oxide for electronic conduction is used.
Western Wind and Solar Integration Study Phase 3A: Low Levels of Synchronous Generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, Nicholas W.; Leonardi, Bruno; D'Aquila, Robert
The stability of the North American electric power grids under conditions of high penetrations of wind and solar is a significant concern and possible impediment to reaching renewable energy goals. The 33% wind and solar annual energy penetration considered in this study results in substantial changes to the characteristics of the bulk power system. This includes different power flow patterns, different commitment and dispatch of existing synchronous generation, and different dynamic behavior from wind and solar generation. The Western Wind and Solar Integration Study (WWSIS), sponsored by the U.S. Department of Energy, is one of the largest regional solar andmore » wind integration studies to date. In multiple phases, it has explored different aspects of the question: Can we integrate large amounts of wind and solar energy into the electric power system of the West? The work reported here focused on the impact of low levels of synchronous generation on the transient stability performance in one part of the region in which wind generation has displaced synchronous thermal generation under highly stressed, weak system conditions. It is essentially an extension of WWSIS-3. Transient stability, the ability of the power system to maintain synchronism among all elements following disturbances, is a major constraint on operations in many grids, including the western U.S. and Texas systems. These constraints primarily concern the performance of the large-scale bulk power system. But grid-wide stability concerns with high penetrations of wind and solar are still not thoroughly understood. This work focuses on 'traditional' fundamental frequency stability issues, such as maintaining synchronism, frequency, and voltage. The objectives of this study are to better understand the implications of low levels of synchronous generation and a weak grid on overall system performance by: 1) Investigating the Western Interconnection under conditions of both high renewable generation (e.g., wind and solar) and low synchronous generation (e.g., significant coal power plant decommitment or retirement); and 2) Analyzing both the large-scale stability of the Western Interconnection and regional stability issues driven by more geographically dispersed renewable generation interacting with a transmission grid that evolved with large, central station plants at key nodes. As noted above, the work reported here is an extension of the research performed in WWSIS-3.« less
High-Performance Optical Frequency References for Space
NASA Astrophysics Data System (ADS)
Schuldt, Thilo; Döringshoff, Klaus; Milke, Alexander; Sanjuan, Josep; Gohlke, Martin; Kovalchuk, Evgeny V.; Gürlebeck, Norman; Peters, Achim; Braxmaier, Claus
2016-06-01
A variety of future space missions rely on the availability of high-performance optical clocks with applications in fundamental physics, geoscience, Earth observation and navigation and ranging. Examples are the gravitational wave detector eLISA (evolved Laser Interferometer Space Antenna), the Earth gravity mission NGGM (Next Generation Gravity Mission) and missions, dedicated to tests of Special Relativity, e.g. by performing a Kennedy- Thorndike experiment testing the boost dependence of the speed of light. In this context we developed optical frequency references based on Doppler-free spectroscopy of molecular iodine; compactness and mechanical and thermal stability are main design criteria. With a setup on engineering model (EM) level we demonstrated a frequency stability of about 2·10-14 at an integration time of 1 s and below 6·10-15 at integration times between 100s and 1000s, determined from a beat-note measurement with a cavity stabilized laser where a linear drift was removed from the data. A cavity-based frequency reference with focus on improved long-term frequency stability is currently under development. A specific sixfold thermal shield design based on analytical methods and numerical calculations is presented.
Numerical Prediction of the Influence of Thrust Reverser on Aeroengine's Aerodynamic Stability
NASA Astrophysics Data System (ADS)
Zhiqiang, Wang; Xigang, Shen; Jun, Hu; Xiang, Gao; Liping, Liu
2017-11-01
A numerical method was developed to predict the aerodynamic stability of a high bypass ratio turbofan engine, at the landing stage of a large transport aircraft, when the thrust reverser was deployed. 3D CFD simulation and 2D aeroengine aerodynamic stability analysis code were performed in this work, the former is to achieve distortion coefficient for the analysis of engine stability. The 3D CFD simulation was divided into two steps, the single engine calculation and the integrated aircraft and engine calculation. Results of the CFD simulation show that with the decreasing of relative wind Mach number, the engine inlet will suffer more severe flow distortion. The total pressure and total temperature distortion coefficients at the inlet of the engines were obtained from the results of the numerical simulation. Then an aeroengine aerodynamic stability analysis program was used to quantitatively analyze the aerodynamic stability of the high bypass ratio turbofan engine. The results of the stability analysis show that the engine can work stably, when the reverser flow is re-ingested. But the anti-distortion ability of the booster is weaker than that of the fan and high pressure compressor. It is a weak link of engine stability.
Li, Wenwen; Zhang, Sanpei; Wang, Bangrun; Gu, Sui; Xu, Dong; Wang, Jianing; Chen, Chunhua; Wen, Zhaoyin
2018-06-19
Solid polymer electrolytes (SPEs) have shown extraordinary promise for all-solid-state lithium metal batteries with high energy density and flexibility but are mainly limited by the low ionic conductivity and their poor stability with lithium metal anode. In this work, we propose a highly ordered porous electrolyte additive derived from SSZ-13 for high-rate all-solid-state lithium metal batteries. The nanoporous adsorption effect provided by the highly ordered porous nanoparticles in the poly (ethylene oxide) (PEO) electrolyte are found to significantly improve the Li + conductivity (1.91×10 -3 S cm -1 at 60°C, 4.43×10 -5 S cm -1 at 20°C) and widen the electrochemical stability window to 4.7 V vs Li + /Li. Meanwhile, the designed PEO-based electrolyte demonstrates enhanced stability with the lithium metal anode. Through systematically increasing Li + diffusion, widening the electrochemical stability window and enhancing the stability of the SSZ-CPE electrolyte, the LiFePO4/SSZ-CPE/Li cell is optimized to deliver high-rate capability and stable cycling performance, which demonstrates great potential for all-solid-state energy storage application.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lyu, Hailong; Li, Peipei; Liu, Jiurong
A composite organic cathode material based on aromatic polyimide (PI) and highly conductive graphene was prepared through a facile in situ polymerization method for application in lithium-ion batteries. The in situ polymerization generated intimate contact between PI and electronically conductive graphene, resulting in conductive composites with highly reversible redox reactions and good structure stability. The synergistic effect between PI and graphene enabled not only a high reversible capacity of 232.6 mAh g -1 at a charge–discharge rate of C/10 but also exceptionally high-rate cycling stability, that is, a high capacity of 108.9 mAh g -1 at a very high charge–dischargemore » rate of 50C with a capacity retention of 80 % after 1000 cycles. This improved electrochemical performance resulted from the combination of stable redox reversibility of PI and high electronic conductivity of the graphene additive. In conclusion, the graphene-based composite also exhibited much better performance than composites based on multi-walled carbon nanotubes and the conductive carbon black C45 in terms of specific capacity and long-term cycling stability under the same charge–discharge rates.« less
Lyu, Hailong; Li, Peipei; Liu, Jiurong; ...
2018-01-24
A composite organic cathode material based on aromatic polyimide (PI) and highly conductive graphene was prepared through a facile in situ polymerization method for application in lithium-ion batteries. The in situ polymerization generated intimate contact between PI and electronically conductive graphene, resulting in conductive composites with highly reversible redox reactions and good structure stability. The synergistic effect between PI and graphene enabled not only a high reversible capacity of 232.6 mAh g -1 at a charge–discharge rate of C/10 but also exceptionally high-rate cycling stability, that is, a high capacity of 108.9 mAh g -1 at a very high charge–dischargemore » rate of 50C with a capacity retention of 80 % after 1000 cycles. This improved electrochemical performance resulted from the combination of stable redox reversibility of PI and high electronic conductivity of the graphene additive. In conclusion, the graphene-based composite also exhibited much better performance than composites based on multi-walled carbon nanotubes and the conductive carbon black C45 in terms of specific capacity and long-term cycling stability under the same charge–discharge rates.« less
Novel high-resolution VGA QWIP detector
NASA Astrophysics Data System (ADS)
Kataria, H.; Asplund, C.; Lindberg, A.; Smuk, S.; Alverbro, J.; Evans, D.; Sehlin, S.; Becanovic, S.; Tinghag, P.; Höglund, L.; Sjöström, F.; Costard, E.
2017-02-01
Continuing with its legacy of producing high performance infrared detectors, IRnova introduces its high resolution LWIR IDDCA (Integrated Detector Dewar Cooler assembly) based on QWIP (quantum well infrared photodetector) technology. The Focal Plane Array (FPA) has 640×512 pixels, with small (15μm) pixel pitch, and is based on the FLIRIndigo ISC0403 Readout Integrated Circuit (ROIC). The QWIP epitaxial structures are grown by metal-organic vapor phase epitaxy (MOVPE) at IRnova. Detector stability and response uniformity inherent to III/V based material will be demonstrated in terms of high performing detectors. Results showing low NETD at high frame rate will be presented. This makes it one of the first 15μm pitch QWIP based LWIR IDDCA commercially available on the market. High operability and stability of our other QWIP based products will also be shared.
Stability of DIII-D high-performance, negative central shear discharges
Hanson, Jeremy M.; Berkery, John W.; Bialek, James M.; ...
2017-03-20
Tokamak plasma experiments on the DIII-D device demonstrate high-performance, negative central shear (NCS) equilibria with enhanced stability when the minimum safety factor q min exceeds 2, qualitatively confirming theoretical predictions of favorable stability in the NCS regime. The discharges exhibit good confinement with an L-mode enhancement factor H 89 = 2.5, and are ultimately limited by the ideal-wall external kink stability boundary as predicted by ideal MHD theory, as long as tearing mode (TM) locking events, resistive wall modes (RWMs), and internal kink modes are properly avoided or controlled. Although the discharges exhibit rotating TMs, locking events are avoided asmore » long as a threshold minimum safety factor value q min > 2 is maintained. Fast timescale magnetic feedback control ameliorates RWM activity, expanding the stable operating space and allowing access to β N values approaching the ideal-wall limit. Quickly growing and rotating instabilities consistent with internal kink mode dynamics are encountered when the ideal-wall limit is reached. The RWM events largely occur between the no- and ideal-wall pressure limits predicted by ideal MHD. However, evaluating kinetic contributions to the RWM dispersion relation results in a prediction of passive stability in this regime due to high plasma rotation. In addition, the ideal MHD stability analysis predicts that the ideal-wall limit can be further increased to β N > 4 by broadening the current profile. Furthermore, this path toward improved stability has the potential advantage of being compatible with the bootstrap-dominated equilibria envisioned for advanced tokamak (AT) fusion reactors.« less
Stability of DIII-D high-performance, negative central shear discharges
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanson, Jeremy M.; Berkery, John W.; Bialek, James M.
Tokamak plasma experiments on the DIII-D device demonstrate high-performance, negative central shear (NCS) equilibria with enhanced stability when the minimum safety factor q min exceeds 2, qualitatively confirming theoretical predictions of favorable stability in the NCS regime. The discharges exhibit good confinement with an L-mode enhancement factor H 89 = 2.5, and are ultimately limited by the ideal-wall external kink stability boundary as predicted by ideal MHD theory, as long as tearing mode (TM) locking events, resistive wall modes (RWMs), and internal kink modes are properly avoided or controlled. Although the discharges exhibit rotating TMs, locking events are avoided asmore » long as a threshold minimum safety factor value q min > 2 is maintained. Fast timescale magnetic feedback control ameliorates RWM activity, expanding the stable operating space and allowing access to β N values approaching the ideal-wall limit. Quickly growing and rotating instabilities consistent with internal kink mode dynamics are encountered when the ideal-wall limit is reached. The RWM events largely occur between the no- and ideal-wall pressure limits predicted by ideal MHD. However, evaluating kinetic contributions to the RWM dispersion relation results in a prediction of passive stability in this regime due to high plasma rotation. In addition, the ideal MHD stability analysis predicts that the ideal-wall limit can be further increased to β N > 4 by broadening the current profile. Furthermore, this path toward improved stability has the potential advantage of being compatible with the bootstrap-dominated equilibria envisioned for advanced tokamak (AT) fusion reactors.« less
Keogh, Justin W L; Aickin, Sam E; Oldham, Anthony R H
2010-02-01
The primary purpose of this study was to determine whether a range of static core stability (CS) measures could distinguish shoulder press performance in unstable vs. stable conditions. Thirty resistance-trained men gave informed consent to participate in this study. One-repetition maximum strength (from < 6 repetitions) was predicted in the seated shoulder dumbbell press performed in unstable (Swiss ball[SB]) and stable (back-support bench) environments. Three CS muscle endurance tests were performed, with 4 CS ratios also calculated. The degree of strength decrement, referred to as the instability strength level (ISL), was calculated by dividing the predicted 1RM Unstable score by the 1RM Stable score. All subjects were categorized as high (ISL > 0.90), moderate (0.85 < or = ISL < or = 0.90), or low (ISL < 0.85). Between-group differences for the high- and low-ISL groups were assessed using analysis of variance and effect sizes. Pearson product moment correlations were then performed to examine the relationships between the CS measures and the ISL for the entire group. No significant between-group differences (p = 0.132-0.999) or large effect sizes were observed for any of the CS measures. Trunk flexion endurance was the only CS measure significantly correlated to the ISL (r = 0.477). In line with muscular strength research, these results suggest that CS exhibits relatively high levels of task specificity and that CS performance in static single-joint exercises may not be highly related to that in more dynamic multijoint activities. Core stability training (with or without a SB) may therefore only lead to significant improvements in functional dynamic performance if the postures, mode and velocity of contraction performed in training, are similar to the competitive tasks.
NASA Astrophysics Data System (ADS)
Bigikocin, Erman; Mert, Behic; Alpas, Hami
2011-09-01
Both static and dynamic high pressure applications provide interesting modifications in food structures which lead to new product formulations. In this study, the effects of two different treatments, high hydrostatic pressure (HHP) and high dynamic pressure (HDP), on oil-in-water emulsions were identified and compared. Microfluidization was selected from among the HDP homogenization techniques. The performance of each process was analyzed in terms of rheological modifications and emulsion stability improvements compared with the coarse emulsions. The stability of the emulsions was determined comparatively by using an analytical photo-centrifuge device employing novel analysis technology. Whey protein isolate (WPI) in combination with a food polysaccharide (xanthan gum, guar gum or locust bean gum) were used as emulsifying and stabilizing ingredients. The effective disruption of oil droplets and the degradation of polysaccharides by the shear forces under high pressure in HDP microfluidization yielded finer emulsions with lower viscosities, leading to distinctive improvements in emulsion stability. On the other hand, improvements in stability obtained with HHP treatment were due to the thickening of the emulsions mainly induced by protein unfolding. The corresponding increases in viscosity were intensified in emulsion formulations containing higher oil content. Apart from these, HHP treatment was found to be relatively more contributive to the enhancements in viscoelastic properties.
Ready to rumble: how team personality composition and task conflict interact to improve performance.
Bradley, Bret H; Klotz, Anthony C; Postlethwaite, Bennett E; Brown, Kenneth G
2013-03-01
Although prior work has proposed a number of conditions under which task conflict in teams may improve performance, composition variables have been left unexplored. Given the effects of personality traits on team processes and outcomes demonstrated in prior work, investigating whether specific personality compositions influence the effect of task conflict on team performance is critical to researchers' understanding of conflict in teams. Our results indicate that team-level averages of both openness to experience and emotional stability function as moderators of the relationship between task conflict and team performance. Specifically, task conflict had a positive impact on performance in teams with high levels of openness or emotional stability; in contrast, task conflict had a negative impact on performance in teams with low levels of openness or emotional stability. Thus, when task conflict emerges, teams composed of members who are open minded or emotionally stable are best able to leverage conflict to improve performance. Implications for theory and practice are discussed.
Optimization of a pressure control valve for high power automatic transmission considering stability
NASA Astrophysics Data System (ADS)
Jian, Hongchao; Wei, Wei; Li, Hongcai; Yan, Qingdong
2018-02-01
The pilot-operated electrohydraulic clutch-actuator system is widely utilized by high power automatic transmission because of the demand of large flowrate and the excellent pressure regulating capability. However, a self-excited vibration induced by the inherent non-linear characteristics of valve spool motion coupled with the fluid dynamics can be generated during the working state of hydraulic systems due to inappropriate system parameters, which causes sustaining instability in the system and leads to unexpected performance deterioration and hardware damage. To ensure a stable and fast response performance of the clutch actuator system, an optimal design method for the pressure control valve considering stability is proposed in this paper. A non-linear dynamic model of the clutch actuator system is established based on the motion of the valve spool and coupling fluid dynamics in the system. The stability boundary in the parameter space is obtained by numerical stability analysis. Sensitivity of the stability boundary and output pressure response time corresponding to the valve parameters are identified using design of experiment (DOE) approach. The pressure control valve is optimized using particle swarm optimization (PSO) algorithm with the stability boundary as constraint. The simulation and experimental results reveal that the optimization method proposed in this paper helps in improving the response characteristics while ensuring the stability of the clutch actuator system during the entire gear shift process.
NASA Technical Reports Server (NTRS)
Pieper, Jerry L.; Walker, Richard E.
1993-01-01
During the past three decades, an enormous amount of resources were expended in the design and development of Liquid Oxygen/Hydrocarbon and Hydrogen (LOX/HC and LOX/H2) rocket engines. A significant portion of these resources were used to develop and demonstrate the performance and combustion stability for each new engine. During these efforts, many analytical and empirical models were developed that characterize design parameters and combustion processes that influence performance and stability. Many of these models are suitable as design tools, but they have not been assembled into an industry-wide usable analytical design methodology. The objective of this program was to assemble existing performance and combustion stability models into a usable methodology capable of producing high performing and stable LOX/hydrocarbon and LOX/hydrogen propellant booster engines.
Thangavel, Ranjith; Kaliyappan, Karthikeyan; Ramasamy, Hari Vignesh; Sun, Xueliang; Lee, Yun-Sung
2017-07-10
Electrochemical supercapacitors with high energy density are promising devices due to their simple construction and long-term cycling performance. The development of a supercapacitor based on electrical double-layer charge storage with high energy density that can preserve its cyclability at higher power presents an ongoing challenge. Herein, we provide insights to achieve a high energy density at high power with an ultrahigh stability in an electrical double-layer capacitor (EDLC) system by using carbon from a biomass precursor (cinnamon sticks) in a sodium ion-based organic electrolyte. Herein, we investigated the dependence of EDLC performance on structural, textural, and functional properties of porous carbon engineered by using various activation agents. The results demonstrate that the performance of EDLCs is not only dependent on their textural properties but also on their structural features and surface functionalities, as is evident from the electrochemical studies. The electrochemical results are highly promising and revealed that the porous carbon with poor textural properties has great potential to deliver high capacitance and outstanding stability over 300 000 cycles compared with porous carbon with good textural properties. A very low capacitance degradation of around 0.066 % per 1000 cycles, along with high energy density (≈71 Wh kg -1 ) and high power density, have been achieved. These results offer a new platform for the application of low-surface-area biomass-derived carbons in the design of highly stable high-energy supercapacitors. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
High Reynolds Number Effects on HSCT Stability and Control Characteristics
NASA Technical Reports Server (NTRS)
Elzey, Michael B.; Owens, Lewis R., Jr.; Wahls, Richard A.; Wilson, Douglas L.
1999-01-01
Two wind tunnel tests during 1995 in the National Transonic Facility (NTF 070 and 073) served to define Reynolds number effects on longitudinal and lateral-directional stability and control. Testing was completed at both high lift and transonic conditions. The effect of Reynolds number on the total airplane configuration, horizontal and vertical tail effectiveness, forebody chine performance, rudder control and model aeroelastics was investigated. This paper will present pertinent stability and control results from these two test entries. Note that while model aeroelastic effects are examined in this presentation, no corrections for these effects have been made to the data.
Design, synthesis, and structure-property relationships of isoindigo-based conjugated polymers.
Lei, Ting; Wang, Jie-Yu; Pei, Jian
2014-04-15
Conjugated polymers have developed rapidly due to their promising applications in low-cost, lightweight, and flexible electronics. The development of the third-generation donor-acceptor (D-A) polymers greatly improved the device performance in organic solar cells (OSCs) and field-effect transistors (FETs). However, for further improvement of device performance, scientists need to develop new building blocks, in particular electron-deficient aromatics, and gain an in-depth understanding of the structure-property relationships. Recently, isoindigo has been used as a new acceptor of D-A conjugated polymers. An isomer of indigo, isoindigo is a less well-known dye and can be isolated as a by-product from certain biological processes. It has two lactam rings and exhibits strong electron-withdrawing character. This electron deficiency gives isoindigo-based polymers intriguing properties, such as broad absorption and high open circuit voltage in OSCs, as well as high mobility and good ambient stability in FETs. In this Account, we review our recent progress on the design, synthesis, and structure-property relationship study of isoindigo-based polymers for FETs. Starting with some discussion on carrier transport in polymer films, we provide some basic strategies towards high-performance polymer FETs. We discuss the stability issue of devices, the impediment of the alkyl side chains, and the choice of the donor part of conjugated polymers. We demonstrate that introducing the isoindigo core effectively lowers the HOMO levels of polymers and provides FETs with long-time stability. In addition, we have found that when we use inappropriate alkyl side chains or non-centrosymmetric donors, the device performance of isoindigo polymers suffers. To further improve device performance and ambient stability, we propose several design strategies, such as using farther branched alkyl chains, modulating polymer energy levels, and extending π-conjugated backbones. We have found that using farther branched alkyl chains can effectively decrease interchain π-π stacking distance and improve carrier mobility. When we introduce electron-deficient functional groups on the isoindigo core, the LUMO levels of the polymers markedly decrease, which significantly improves the electron mobility and device stability. In addition, we present a new polymer system called BDOPV, which is based on the concept of π-extended isoindigo. By application of some strategies successfully used in isoindigo-based polymers, BDOPV-based polymers exhibit high mobility and good stability both in n-type and in ambipolar FETs. We believe that a synergy of molecular engineering strategies towards the isoindigo core, donor units, and side chains may further improve the performance and broaden the application of isoindigo-based polymers.
Innovation Meets Performance Demands of Advanced Lithium-ion Batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Advancements in high capacity and low density battery technologies have led to a growing need for battery materials with greater charge capacity and therefore stability. NREL's developments in ALD and molecular layer MLD allow for thin film coatings to battery composite electrodes, which can improve battery lifespan, high charge capacity, and stability. Silicon, one of the best high-energy anode materials for Li-ion batteries, can experience capacity fade from volumetric expansion. Using MLD to examine how surface modification could stabilize silicon anode material in Li-ion batteries, researchers discovered a new reaction precursor that leads to a flexible surface coating that accommodatesmore » volumetric expansion of silicon electrodes.« less
Liu, Chongxin; Liu, Hang
2017-01-01
This paper presents a continuous composite control scheme to achieve fixed-time stabilization for nonlinear systems with mismatched disturbances. The composite controller is constructed in two steps: First, uniformly finite time exact disturbance observers are proposed to estimate and compensate the disturbances. Then, based on adding a power integrator technique and fixed-time stability theory, continuous fixed-time stable state feedback controller and Lyapunov functions are constructed to achieve global fixed-time system stabilization. The proposed control method extends the existing fixed-time stable control results to high order nonlinear systems with mismatched disturbances and achieves global fixed-time system stabilization. Besides, the proposed control scheme improves the disturbance rejection performance and achieves performance recovery of nominal system. Simulation results are provided to show the effectiveness, the superiority and the applicability of the proposed control scheme. PMID:28406966
Silveira, José Leandro R; Dib, Samia R; Faria, Anizio M
2014-01-01
A new material based on silica coated with alumina nanoparticles was proposed for use as a chromatographic support for reversed-phase high-performance liquid chromatography. Alumina nanoparticles were synthesized by a sol-gel process in reversed micelles composed of sodium bis(2-ethylhexyl)sulfosuccinate, and the support material was formed by the self-assembly of alumina layers on silica spheres. Spectroscopic and (29)Si nuclear magnetic resonance results showed evidence of chemical bonds between the alumina nanoparticles and the silica spheres, while morphological characterizations showed that the aluminized silica maintained the morphological properties of silica desired for chromatographic purposes after alumina incorporation. Stability studies indicated that bare silica showed high dissolution (~83%), while the aluminized silica remained practically unchanged (99%) after passing one liter of the alkaline mobile phase, indicating high stability under alkaline conditions. The C18 bonded aluminized silica phase showed great potential for use in high-performance liquid chromatography to separate basic molecules in the reversed-phase mode.
Carbohydrate-Assisted Combustion Synthesis To Realize High-Performance Oxide Transistors.
Wang, Binghao; Zeng, Li; Huang, Wei; Melkonyan, Ferdinand S; Sheets, William C; Chi, Lifeng; Bedzyk, Michael J; Marks, Tobin J; Facchetti, Antonio
2016-06-08
Owing to high carrier mobilities, good environmental/thermal stability, excellent optical transparency, and compatibility with solution processing, thin-film transistors (TFTs) based on amorphous metal oxide semiconductors (AOSs) are promising alternatives to those based on amorphous silicon (a-Si:H) and low-temperature (<600 °C) poly-silicon (LTPS). However, solution-processed display-relevant indium-gallium-tin-oxide (IGZO) TFTs suffer from low carrier mobilities and/or inferior bias-stress stability versus their sputtered counterparts. Here we report that three types of environmentally benign carbohydrates (sorbitol, sucrose, and glucose) serve as especially efficient fuels for IGZO film combustion synthesis to yield high-performance TFTs. The results indicate that these carbohydrates assist the combustion process by lowering the ignition threshold temperature and, for optimal stoichiometries, enhancing the reaction enthalpy. IGZO TFT mobilities are increased to >8 cm(2) V(-1) s(-1) on SiO2/Si gate dielectrics with significantly improved bias-stress stability. The first correlations between precursor combustion enthalpy and a-MO densification/charge transport are established.
Wu, Zhen-Guo; Li, Jun-Tao; Zhong, Yan-Jun; Guo, Xiao-Dong; Huang, Ling; Zhong, Ben-He; Agyeman, Daniel-Adjei; Lim, Jin-Myoung; Kim, Du-Ho; Cho, Maeng-Hyo; Kang, Yong-Mook
2017-06-28
A synergistic approach for advanced cathode materials is proposed. Sodium manganese oxide with a layered-tunnel hybrid structure was designed, synthesized, and subsequently investigated. The layered-tunnel hybrid structure provides fast Na ion diffusivity and high structural stability thanks to the tunnel phase, enabling high rate capability and greatly improved cycling stability compared to that of the pure P2 layered phase while retaining the high specific capacity of the P2 layered phase. The hybrid structure provided a decent discharge capacity of 133.4 mAh g -1 even at 8 C, which exceeds the reported best rate capability for Mn-based cathodes. It also displayed an impressive cycling stability, maintaining 83.3 mAh g -1 after 700 cycles at 10 C. Theoretical calculation and the potentiostatic intermittent titration technique (PITT) demonstrated that this hybrid structure helps enhance Na ion diffusivity during charge and discharge, attaining, as a result, an unprecendented electrochemical performance.
Development of a high efficiency thin silicon solar cell. [fabrication and stability tests
NASA Technical Reports Server (NTRS)
Lindmayer, J.
1976-01-01
One hundred thin (120 microns to 260 microns) silicon-aluminum solar cells were fabricated and tested. Silicon slices were prepared, into which an aluminum alloy was evaporated over a range of temperatures and times. Antireflection coatings of tantalum oxide were applied to the cells. Reflectance of the silicon-aluminum interfaces was correlated to alloy temperature (graphs are shown). Optical measurements of the rear surface-internal reflectance of the cells were performed using a Beckman spectrophotometer. An improved gridline pattern was evaluated and stability tests (thermal cycling tests) were performed. Results show that: (1) a high-index, high-transmittance antireflection coating was obtained; (2) the improved metallization of the cells gave a 60 percent rear surface-internal reflectance, and the cells displayed excellent fill factors and blue response of the spectrum; (3) an improved gridline pattern (5 micron linewidths compared to 13 micron linewidths) resulted in a 1.3 percent improvement in short circuit currents; and (4) the stability tests showed no change in cell properties.
Zhang, Juzhou; Li, Jing; Shao, Dongliang; Yao, Bangben; Jiang, Junshu
2012-02-01
An effective high performance liquid chromatographic (HPLC) method has been developed for the simultaneous determination of 9 ultraviolet stabilizers in food plastic packaging materials. The food packaging samples were firstly extracted by methanol-ethyl acetate, and then purified by a C18 solid-phase extraction (SPE) column. The target compounds were separated on a ZORBAX SB-C18 column (250 mm x 4.6 mm, 5 microm) in gradient elution mode using methanol and water as mobile phases. The detection wavelength was at 310 nm. The linear plots of the nine ultraviolet stabilizers were obtained between 0.2 and 10 mg/L, with the correlation coefficients of above 0. 999 for the nine ultraviolet stabilizers. The limits of detection for this method were in the range from 0.05 to 0.1 mg/L. The recoveries spiked in commercial food plastic packaging materials were in the range of 70.2% - 89.0% with the relative standard deviations of 0.4% - 4.5%. The results indicated that the method is simple, accurate, and suitable for the simultaneous determination of the nine ultraviolet stabilizers in food plastic packaging materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wen, Haifang; Li, Xiaojun; Edil, Tuncer
The purpose of this study was to evaluate the performance of cementitious high carbon fly ash (CHCFA) stabilized recycled asphalt pavement as a base course material in a real world setting. Three test road cells were built at MnROAD facility in Minnesota. These cells have the same asphalt surface layers, subbases, and subgrades, but three different base courses: conventional crushed aggregates, untreated recycled pavement materials (RPM), and CHCFA stabilized RPM materials. During and after the construction of the three cells, laboratory and field tests were carried out to characterize the material properties. The test results were used in the mechanistic-empiricalmore » pavement design guide (MEPDG) to predict the pavement performance. Based on the performance prediction, the life cycle analyses of cost, energy consumption, and greenhouse gasses were performed. The leaching impacts of these three types of base materials were compared. The laboratory and field tests showed that fly ash stabilized RPM had higher modulus than crushed aggregate and RPM did. Based on the MEPDG performance prediction, the service life of the Cell 79 containing fly ash stabilized RPM, is 23.5 years, which is about twice the service life (11 years) of the Cell 77 with RPM base, and about three times the service life (7.5 years) of the Cell 78 with crushed aggregate base. The life cycle analysis indicated that the usage of the fly ash stabilized RPM as the base of the flexible pavement can significantly reduce the life cycle cost, the energy consumption, the greenhouse gases emission. Concentrations of many trace elements, particularly those with relatively low water quality standards, diminish over time as water flows through the pavement profile. For many elements, concentrations below US water drinking water quality standards are attained at the bottom of the pavement profile within 2-4 pore volumes of flow.« less
Bernuy-Lopez, Carlos; Rioja-Monllor, Laura; Nakamura, Takashi; Ricote, Sandrine; O’Hayre, Ryan; Amezawa, Koji; Einarsrud, Mari-Ann
2018-01-01
The effect of A-site cation ordering on the cathode performance and chemical stability of A-site cation ordered LaBaCo2O5+δ and disordered La0.5Ba0.5CoO3−δ materials are reported. Symmetric half-cells with a proton-conducting BaZr0.9Y0.1O3−δ electrolyte were prepared by ceramic processing, and good chemical compatibility of the materials was demonstrated. Both A-site ordered LaBaCo2O5+δ and A-site disordered La0.5Ba0.5CoO3−δ yield excellent cathode performance with Area Specific Resistances as low as 7.4 and 11.5 Ω·cm2 at 400 °C and 0.16 and 0.32 Ω·cm2 at 600 °C in 3% humidified synthetic air respectively. The oxygen vacancy concentration, electrical conductivity, basicity of cations and crystal structure were evaluated to rationalize the electrochemical performance of the two materials. The combination of high-basicity elements and high electrical conductivity as well as sufficient oxygen vacancy concentration explains the excellent performance of both LaBaCo2O5+δ and La0.5Ba0.5CoO3−δ materials at high temperatures. At lower temperatures, oxygen-deficiency in both materials is greatly reduced, leading to decreased performance despite the high basicity and electrical conductivity. A-site cation ordering leads to a higher oxygen vacancy concentration, which explains the better performance of LaBaCo2O5+δ. Finally, the more pronounced oxygen deficiency of the cation ordered polymorph and the lower chemical stability at reducing conditions were confirmed by coulometric titration. PMID:29373541
Young, Tony; Dowsey, Michelle M.; Pandy, Marcus; Choong, Peter F.
2018-01-01
Background Medial stabilized total knee joint replacement (TKJR) construct is designed to closely replicate the kinematics of the knee. Little is known regarding comparison of clinical functional outcomes of patients utilising validated patient reported outcome measures (PROM) after medial stabilized TKJR and other construct designs. Purpose To perform a systematic review of the available literature related to the assessment of clinical functional outcomes following a TKJR employing a medial stabilized construct design. Methods The review was performed with a Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA) algorithm. The literature search was performed using variouscombinations of keywords. The statistical analysis was completed using Review Manager (RevMan), Version 5.3. Results In the nineteen unique studies identified, there were 2,448 medial stabilized TKJRs implanted in 2,195 participants, there were 1,777 TKJRs with non-medial stabilized design constructs implanted in 1,734 subjects. The final mean Knee Society Score (KSS) value in the medial stabilized group was 89.92 compared to 90.76 in the non-medial stabilized group, with the final KSS mean value difference between the two groups was statistically significant and favored the non-medial stabilized group (SMD 0.21; 95% CI: 0.01 to 0.41; p = 004). The mean difference in the final WOMAC values between the two groups was also statistically significant and favored the medial stabilized group (SMD: −0.27; 95% CI: −0.47 to −0.07; p = 0.009). Moderate to high values (I2) of heterogeneity were observed during the statistical comparison of these functional outcomes. Conclusion Based on the small number of studies with appropriate statistical analysis, we are unable to reach a clear conclusion in the clinical performance of medial stabilized knee replacement construct. Level of Evidence Level II PMID:29696144
Young, Tony; Dowsey, Michelle M; Pandy, Marcus; Choong, Peter F
2018-01-01
Medial stabilized total knee joint replacement (TKJR) construct is designed to closely replicate the kinematics of the knee. Little is known regarding comparison of clinical functional outcomes of patients utilising validated patient reported outcome measures (PROM) after medial stabilized TKJR and other construct designs. To perform a systematic review of the available literature related to the assessment of clinical functional outcomes following a TKJR employing a medial stabilized construct design. The review was performed with a Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA) algorithm. The literature search was performed using variouscombinations of keywords. The statistical analysis was completed using Review Manager (RevMan), Version 5.3. In the nineteen unique studies identified, there were 2,448 medial stabilized TKJRs implanted in 2,195 participants, there were 1,777 TKJRs with non-medial stabilized design constructs implanted in 1,734 subjects. The final mean Knee Society Score (KSS) value in the medial stabilized group was 89.92 compared to 90.76 in the non-medial stabilized group, with the final KSS mean value difference between the two groups was statistically significant and favored the non-medial stabilized group (SMD 0.21; 95% CI: 0.01 to 0.41; p = 004). The mean difference in the final WOMAC values between the two groups was also statistically significant and favored the medial stabilized group (SMD: -0.27; 95% CI: -0.47 to -0.07; p = 0.009). Moderate to high values ( I 2 ) of heterogeneity were observed during the statistical comparison of these functional outcomes. Based on the small number of studies with appropriate statistical analysis, we are unable to reach a clear conclusion in the clinical performance of medial stabilized knee replacement construct. Level II.
Stability and performance of notch filter control for unbalance response
NASA Technical Reports Server (NTRS)
Knospe, C. R.
1992-01-01
Many current applications of magnetic bearings for rotating machinery employ notch filters in the feedback control loop to reduce the synchronous forces transmitted through the bearings. The capabilities and limitations of notch filter control are investigated. First, a rigid rotor is examined with some classical root locus techniques. Notch filter control is shown to result in conditional stability whenever complete synchronous attenuation is required. Next, a nondimensional parametric symmetric flexible three mass rotor model is constructed. An examination of this model for several test cases illustrates the limited attenuation possible with notch filters at and near the system critical speeds when the bearing damping is low. The notch filter's alteration of the feedback loop is shown to cause stability problems which limits performance. Poor transient response may also result. A high speed compressor is then examined as a candidate for notch filter control. A collocated 22 mass station model with lead-lag control is used. The analysis confirms the reduction in stability robustness that can occur with notch filter control. It is concluded that other methods of synchronous vibration control yield greater performance without compromising stability.
NASA Technical Reports Server (NTRS)
Mccaskill, T. B.; Buisson, J. A.; Reid, W. G.
1984-01-01
An on-orbit frequency stability performance analysis of the GPS NAVSTAR-1 quartz clock and the NAVSTARs-6 and -8 rubidium clocks is presented. The clock offsets were obtained from measurements taken at the GPS monitor stations which use high performance cesium standards as a reference. Clock performance is characterized through the use of the Allan variance, which is evaluated for sample times of 15 minutes to two hours, and from one day to 10 days. The quartz and rubidium clocks' offsets were corrected for aging rate before computing the frequency stability. The effect of small errors in aging rate is presented for the NAVSTAR-8 rubidium clock's stability analysis. The analysis includes presentation of time and frequency residuals with respect to linear and quadratic models, which aid in obtaining aging rate values and identifying systematic and random effects. The frequency stability values were further processed with a time domain noise process analysis, which is used to classify random noise process and modulation type.
Designing Liquid Rocket Engine Injectors for Performance, Stability, and Cost
NASA Technical Reports Server (NTRS)
Westra, Douglas G.; West, Jeffrey S.
2014-01-01
NASA is developing the Space Launch System (SLS) for crewed exploration missions beyond low Earth orbit. Marshall Space Flight Center (MSFC) is designing rocket engines for the SLS Advanced Booster (AB) concepts being developed to replace the Shuttle-derived solid rocket boosters. One AB concept uses large, Rocket-Propellant (RP)-fueled engines that pose significant design challenges. The injectors for these engines require high performance and stable operation while still meeting aggressive cost reduction goals for access to space. Historically, combustion stability problems have been a critical issue for such injector designs. Traditional, empirical injector design tools and methodologies, however, lack the ability to reliably predict complex injector dynamics that often lead to combustion stability. Reliance on these tools alone would likely result in an unaffordable test-fail-fix cycle for injector development. Recently at MSFC, a massively parallel computational fluid dynamics (CFD) program was successfully applied in the SLS AB injector design process. High-fidelity reacting flow simulations were conducted for both single-element and seven-element representations of the full-scale injector. Data from the CFD simulations was then used to significantly augment and improve the empirical design tools, resulting in a high-performance, stable injector design.
Ren, Lijun; Zhang, Gaini; Lei, Ji; Wang, Yan; Hu, Dengwei
2018-02-15
It is a challenge to fabricate polyaniline (PANI) materials with high rate performance and excellent stability. Herein a new special supercapacitor electrode material of polyaniline-poly(hydroquinone)/graphene (PANI-PHQ/RGO) film with layered structure was prepared by chemical oxidative polymerization of aniline and hydroquinone (H 2 Q) in the presence of RGO hydrogel film. The synergistic effect and loose layered structure of the composite film facilitate fast diffusion and transportation of electrolyte ions through unimpeded channels during rapid charge-discharge process, resulting in high rate capability and stable cycling performance. As a result, the PANI-PHQ/RGO-61 film electrode exhibited 356 F g -1 at a current density of 0.5 A g -1 and high capacitance retention of 83% from 0.5 to 30 A g -1 . Moreover, it presented an excellent cycling stability with 94% of capacitance retention in comparison with 60% of pure PANI electrode and an outstanding Coulombic efficiency of 99% after 1000 cycles of galvanostatic charge-discharge. These superior electrocapacitive properties make it one of promising candidates for electrochemical energy storage. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Duan, Jianguo; Hu, Guorong; Cao, Yanbing; Tan, Chaopu; Wu, Ceng; Du, Ke; Peng, Zhongdong
2016-09-01
LiNi1-x-yCoxAlyO2 is a commonly used Ni-rich cathode material because of its relatively low cost, excellent rate capability and high gravimetric energy density. Surface modification is an efficient way to overcome the shortcomings of Ni-rich cathodes such as poor cycling stability and poor thermal stability. A high-powered concentration-gradient cathode material with an average composition of LiNi0.815Co0.15Al0.035O2 (LGNCAO) has been successfully synthesized by using spherical concentration-gradient Ni0.815Co0.15Al0.035(OH)2 (GNCA)as the starting material. An efficient design of the Al3+ precipitation method is developed, which enables obtaining spherical GNCA with ∼10 μm particle size and high tap density. In LGNCAO, the nickel and cobalt concentration decreases gradually whereas the aluminum concentration increases from the centre to the outer layer of each particle. Electrochemical performance and storage properties of LGNCAO have been investigated comparatively. The LGNCAO displays better electrochemical performance and improved storage stability than LNCAO.
Kunnikuruvan, Sooraj; Parandekar, Priya V; Prakash, Om; Tsotsis, Thomas K; Nair, Nisanth N
2016-06-02
The growing requisite for materials having high thermo-oxidative stability makes the design and development of high performance materials an active area of research. Fluorination of the polymer backbone is a widely applied strategy to improve various properties of the polymer, most importantly the thermo-oxidative stability. Many of these fluorinated polymers are known to have thermo-oxidative stability up to 700 K. However, for space and aerospace applications, it is important to improve its thermo-oxidative stability beyond 700 K. Molecular-level details of the thermo-oxidative degradation of such polymers can provide vital information to improve the polymer. In this spirit, we have applied quantum mechanical and microkinetic analysis to scrutinize the mechanism and kinetics of the thermo-oxidative degradation of a fluorinated polymer with phenylethenyl end-cap, HFPE. This study gives an insight into the thermo-oxidative degradation of HFPE and explains most of the experimental observations on the thermo-oxidative degradation of this polymer. Thermolysis of C-CF3 bond in the dianhydride component (6FDA) of HFPE is found to be the rate-determining step of the degradation. Reaction pathways that are responsible for the experimentally observed weight loss of the polymer is also scrutinized. On the basis of these results, we propose a modification of HFPE polymer to improve its thermo-oxidative stability.
Linearization of digital derived rate algorithm for use in linear stability analysis
NASA Technical Reports Server (NTRS)
Graham, R. E.; Porada, T. W.
1985-01-01
The digital derived rate (DDR) algorithm is used to calculate the rate of rotation of the Centaur upper-stage rocket. The DDR is highly nonlinear algorithm, and classical linear stability analysis of the spacecraft cannot be performed without linearization. The performance of this rate algorithm is characterized by a gain and phase curve that drop off at the same frequency. This characteristic is desirable for many applications. A linearization technique for the DDR algorithm is investigated. The linearization method is described. Examples of the results of the linearization technique are illustrated, and the effects of linearization are described. A linear digital filter may be used as a substitute for performing classical linear stability analyses, while the DDR itself may be used in time response analysis.
Gao, Guoxin; Wu, Hao Bin; Ding, Shujiang; Liu, Li-Min; Lou, Xiong Wen David
2015-02-18
A high-performance electrode for supercapacitors is designed and synthesized by growing electroactive NiCo2 O4 nanosheets on conductive Ni nanofoam. Because of the structural advantages, the as-prepared Ni@NiCo2 O4 hybrid nanostructure exhibits significantly improved electrochemical performance with high capacitance, excellent rate capability, and good cycling stability. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Final Report: Novel ALD-Coated Nanoparticle Anodes for Enhanced Performance Lithium-Ion Batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Groner, Markus
2009-04-16
The Phase I effort is described in detail in the Phase I report given below. The key accomplishments of the Phase I project were (1) the demonstration of high stability LiCoO2 cathodes using ALD-coated LiCoO2 particles, as well as on ALD-coated LiCoO2 electrodes and (2) the demonstration of high stability of graphite anodes using ALD-coated graphite electrodes.
An, Geon-Hyoung; Kim, Hyeonjin; Ahn, Hyo-Jin
2018-02-21
Because of their combined effects of outstanding mechanical stability, high electrical conductivity, and high theoretical capacity, silicon (Si) nanoparticles embedded in carbon are a promising candidate as electrode material for practical utilization in Li-ion batteries (LIBs) to replace the conventional graphite. However, because of the poor ionic diffusion of electrode materials, the low-grade ultrafast cycling performance at high current densities remains a considerable challenge. In the present study, seeking to improve the ionic diffusion, we propose a novel design of mesoporous carbon skin on the Si nanoparticles embedded in carbon by hydrothermal reaction, poly(methyl methacrylate) coating process, and carbonization. The resultant electrode offers a high specific discharge capacity with excellent cycling stability (1140 mA h g -1 at 100 mA g -1 after 100 cycles), superb high-rate performance (969 mA h g -1 at 2000 mA g -1 ), and outstanding ultrafast cycling stability (532 mA h g -1 at 2000 mA g -1 after 500 cycles). The battery performances are surpassing the previously reported results for carbon and Si composite-based electrodes on LIBs. Therefore, this novel approach provides multiple benefits in terms of the effective accommodation of large volume expansions of the Si nanoparticles, a shorter Li-ion diffusion pathway, and stable electrochemical conditions from a faster ionic diffusion during cycling.
Kim, Hyun-Suk; Park, Joon Seok; Jeong, Hyun-Kwang; Son, Kyoung Seok; Kim, Tae Sang; Seon, Jong-Baek; Lee, Eunha; Chung, Jae Gwan; Kim, Dae Hwan; Ryu, Myungkwan; Lee, Sang Yoon
2012-10-24
A novel method to design metal oxide thin-film transistor (TFT) devices with high performance and high photostability for next-generation flat-panel displays is reported. Here, we developed bilayer metal oxide TFTs, where the front channel consists of indium-zinc-oxide (IZO) and the back channel material on top of it is hafnium-indium-zinc-oxide (HIZO). Density-of-states (DOS)-based modeling and device simulation were performed in order to determine the optimum thickness ratio within the IZO/HIZO stack that results in the best balance between device performance and stability. As a result, respective values of 5 and 40 nm for the IZO and HIZO layers were determined. The TFT devices that were fabricated accordingly exhibited mobility values up to 48 cm(2)/(V s), which is much elevated compared to pure HIZO TFTs (∼13 cm(2)/(V s)) but comparable to pure IZO TFTs (∼59 cm(2)/(V s)). Also, the stability of the bilayer device (-1.18 V) was significantly enhanced compared to the pure IZO device (-9.08 V). Our methodology based on the subgap DOS model and simulation provides an effective way to enhance the device stability while retaining a relatively high mobility, which makes the corresponding devices suitable for ultradefinition, large-area, and high-frame-rate display applications.
NASA Astrophysics Data System (ADS)
Bakir, A.; Rocher, C.; Maréchal, B.; Bigler, E.; Boudot, R.; Kersalé, Y.; Millo, J.
2018-05-01
We report on the development of a simple-architecture fiber-based frequency distribution system used to transfer high frequency stability 100 MHz signals. This work is focused on the emitter and the receiver performances that allow the transmission of the radio-frequency signal over an optical fiber. The system exhibits a residual fractional frequency stability of 1 × 10-14 at 1 s integration time and in the low 10-16 range after 100 s. These performances are suitable to transfer the signal of frequency references such as those of a state-of-the-art hydrogen maser without any phase noise compensation scheme. As an application, we demonstrate the dissemination of such a signal through a 100 m long optical fiber without any degradation. The proposed setup could be easily extended for operating frequencies in the 10 MHz-1 GHz range.
Cui, Yanyan; Liang, Xinmiao; Chai, Jingchao; Cui, Zili; Wang, Qinglei; He, Weisheng; Liu, Xiaochen; Liu, Zhihong; Cui, Guanglei; Feng, Jiwen
2017-11-01
It is urgent to seek high performance solid polymer electrolytes (SPEs) via a facile chemistry and simple process. The lithium salts are composed of complex anions that are stabilized by a Lewis acid agent. This Lewis acid can initiate the ring opening polymerization. Herein, a self-catalyzed strategy toward facile synthesis of crosslinked poly(ethylene glycol) diglycidyl ether-based solid polymer electrolyte (C-PEGDE) is presented. It is manifested that the poly(ethylene glycol) diglycidyl ether-based solid polymer electrolyte possesses a superior electrochemical stability window up to 4.5 V versus Li/Li + and considerable ionic conductivity of 8.9 × 10 -5 S cm -1 at ambient temperature. Moreover, the LiFePO 4 /C-PEGDE/Li batteries deliver stable charge/discharge profiles and considerable rate capability. It is demonstrated that this self-catalyzed strategy can be a very effective approach for high performance solid polymer electrolytes.
Double-tilt in situ TEM holder with ultra-high stability.
Xu, Mingjie; Dai, Sheng; Blum, Thomas; Li, Linze; Pan, Xiaoqing
2018-05-06
A double tilting holder with high stability is essential for acquiring atomic-scale information by transmission electron microscopy (TEM), but the availability of such holders for in situ TEM studies under various external stimuli is limited. Here, we report a unique design of seal-bearing components that provides ultra-high stability and multifunctionality (including double tilting) in an in situ TEM holder. The seal-bearing subsystem provides superior vibration damping and electrical insulation while maintaining excellent vacuum sealing and small form factor. A wide variety of in situ TEM applications including electrical measurement, STM mapping, photovoltaic studies, and CL spectroscopy can be performed on this platform with high spatial resolution imaging and electrical sensitivity at the pA scale. Copyright © 2018 Elsevier B.V. All rights reserved.
Stability of DIII-D high-performance, negative central shear discharges
NASA Astrophysics Data System (ADS)
Hanson, J. M.; Berkery, J. W.; Bialek, J.; Clement, M.; Ferron, J. R.; Garofalo, A. M.; Holcomb, C. T.; La Haye, R. J.; Lanctot, M. J.; Luce, T. C.; Navratil, G. A.; Olofsson, K. E. J.; Strait, E. J.; Turco, F.; Turnbull, A. D.
2017-05-01
Tokamak plasma experiments on the DIII-D device (Luxon et al 2005 Fusion Sci. Tech. 48 807) demonstrate high-performance, negative central shear (NCS) equilibria with enhanced stability when the minimum safety factor {{q}\\text{min}} exceeds 2, qualitatively confirming theoretical predictions of favorable stability in the NCS regime. The discharges exhibit good confinement with an L-mode enhancement factor H 89 = 2.5, and are ultimately limited by the ideal-wall external kink stability boundary as predicted by ideal MHD theory, as long as tearing mode (TM) locking events, resistive wall modes (RWMs), and internal kink modes are properly avoided or controlled. Although the discharges exhibit rotating TMs, locking events are avoided as long as a threshold minimum safety factor value {{q}\\text{min}}>2 is maintained. Fast timescale magnetic feedback control ameliorates RWM activity, expanding the stable operating space and allowing access to {β\\text{N}} values approaching the ideal-wall limit. Quickly growing and rotating instabilities consistent with internal kink mode dynamics are encountered when the ideal-wall limit is reached. The RWM events largely occur between the no- and ideal-wall pressure limits predicted by ideal MHD. However, evaluating kinetic contributions to the RWM dispersion relation results in a prediction of passive stability in this regime due to high plasma rotation. In addition, the ideal MHD stability analysis predicts that the ideal-wall limit can be further increased to {β\\text{N}}>4 by broadening the current profile. This path toward improved stability has the potential advantage of being compatible with the bootstrap-dominated equilibria envisioned for advanced tokamak (AT) fusion reactors.
Edge Stabilized Ribbon (ESR); Stress, Dislocation Density and Electronic Performance
NASA Technical Reports Server (NTRS)
Sachs, E. M.
1984-01-01
The edge stabilized ribbon (ESR) silicon ribbon was grown in widths of 1, 2.2 and 4.0 inches at speeds ranging from .6 to 7 in/min, which result in ribbon thicknesses of 5 to 400 microns. One of the primary problems remaining in ESR growth is that of thermally induced mechanical stresses. This problem is manifested as ribbon with a high degree of residual stress or as ribbon with buckled ribbon. Thermal stresses result in a high dislocation density in the grown material, resulting in compromised electronic performance. Improvements in ribbon flatness were accomplished by modification of the ribbon cooling profile. Ribbon flatness and other experimental observations of ESR ribbon are discussed. Laser scanner measurements show a good correlation between diffusion length and dislocation density which indicates that the high dislocation densities are the primary cause of the poor current performance of ESR materials. Dislocation densities were reduced and improved electronic performance resulted. Laser scanner data on new and old material are presented.
Chen, Wenju; Shi, Liyi; Wang, Zhuyi; Zhu, Jiefang; Yang, Haijun; Mao, Xufeng; Chi, Mingming; Sun, Lining; Yuan, Shuai
2016-08-20
The developments of high-performance lithium ion battery are eager to the separators with high ionic conductivity and thermal stability. In this work, a new way to adjust the comprehensive properties of inorganic-organic composite separator was investigated. The cellulose diacetate (CDA)-SiO2 composite coating is beneficial for improving the electrolyte wettability and the thermal stability of separators. Interestingly, the pore structure of composite coating can be regulated by the weight ratio of SiO2 precursor tetraethoxysilane (TEOS) in the coating solution. The electronic performance of lithium ion batteries assembled with modified separators are improved compared with the pristine PE separator. When weight ratio of TEOS in the coating solution was 9.4%, the composite separator shows the best comprehensive performance. Compared with the pristine PE separator, its meltdown temperature and the break-elongation at elevated temperature increased. More importantly, the discharge capacity and the capacity retention improved significantly. Copyright © 2016 Elsevier Ltd. All rights reserved.
Zhang, Jianjun; Yue, Liping; Kong, Qingshan; Liu, Zhihong; Zhou, Xinhong; Zhang, Chuanjian; Xu, Quan; Zhang, Bo; Ding, Guoliang; Qin, Bingsheng; Duan, Yulong; Wang, Qingfu; Yao, Jianhua; Cui, Guanglei; Chen, Liquan
2014-01-01
A sustainable, heat-resistant and flame-retardant cellulose-based composite nonwoven has been successfully fabricated and explored its potential application for promising separator of high-performance lithium ion battery. It was demonstrated that this flame-retardant cellulose-based composite separator possessed good flame retardancy, superior heat tolerance and proper mechanical strength. As compared to the commercialized polypropylene (PP) separator, such composite separator presented improved electrolyte uptake, better interface stability and enhanced ionic conductivity. In addition, the lithium cobalt oxide (LiCoO2)/graphite cell using this composite separator exhibited better rate capability and cycling retention than that for PP separator owing to its facile ion transport and excellent interfacial compatibility. Furthermore, the lithium iron phosphate (LiFePO4)/lithium cell with such composite separator delivered stable cycling performance and thermal dimensional stability even at an elevated temperature of 120°C. All these fascinating characteristics would boost the application of this composite separator for high-performance lithium ion battery. PMID:24488228
Physically-based landslide assessment for railway infrastructure
NASA Astrophysics Data System (ADS)
Heyerdahl, Håkon; Høydal, Øyvind
2017-04-01
A new high-speed railway line in Eastern Norway passes through areas with Quaternary soil deposits where stability of natural slopes poses considerable challenges. The ground typically consist of thick layers of marine clay deposits, overlain by 8-10 m of silt and sand. Both shallow landslides in the top layers of silt and sand and deep-seated failures in clay must be accounted for. In one section of the railway, the potential for performing stabilizing measures is limited due to existing cultural heritage on top of the slope. Hence, the stability of a steep top section of the slope needs to be evaluated. Assessment of the slope stability for rainfall-triggered slides relies on many parameters. An approach based only on empirical relations will not comply with the design criteria, which only allows deterministic safety margins. From a classic geotechnical approach, the slope would also normally be considered unsafe. However, considerable suction is assumed to exist in the silty and sandy deposits above ground-water level, which will improve the stability. The stabilizing effect however is highly dependent on rainfall, infiltration and soil moisture, and thereby varies continuously. An unsaturated geomechanical approach was taken to assess the slope stability. Soil moisture sensors were installed to monitor changes of in situ water content in the vadose zone. Retention curves for silt/sand specimens samples were measured by pressure plate tests. Some triaxial tests soil strength were performed to check the effect of suction on soil shear strength (performed as drained constant water content tests on compacted specimens). Based on the performed laboratory tests, the unsaturated response of the slope will be modelled numerically and compared with measured soil moisture in situ. Work is still on-going. Initial conditions after respectively dry and wet periods need to be coupled with selected rainfall intensities and duration to see the effect on slope stability. The aim of the work is to reach a result informing the client about the probability of a landslide in the slope, based on expected critical rainfall. A strictly deterministic criterion for minimum safety margin may need to be replaced by scenarios for probability and geometry of potential failures for given return periods and rainfall events.
Synthesis of high-temperature viscosity stabilizer used in drilling fluid
NASA Astrophysics Data System (ADS)
Zhang, Yanna; Luo, Huaidong; Shi, Libao; Huang, Hongjun
2018-02-01
Abstract For a well performance drilling fluid, when it operates in deep wells under high temperature, the most important property required is the thermal stability. The drilling fluid properties under high temperature can be controlled by proper selection of viscosity stabilizer, which can capture oxygen to protect polymer agent in the drilling fluid. In this paper a viscosity stabilizer PB-854 is described, which was synthesized by 4-phenoxybutyl bromide, paraformaldehyde, and phloroglucinol using etherification method and condensation reaction. We studied the effect of catalyst dosage, temperature, time, and stirring rate on the synthetic yield. Under this condition: molar ratio of 2-tert-Butylphenol, paraformaldehyde and phloroglucinol of 2:1:2.5, reacting temperature of 100 °C, stirring rate of 100 r min-1, and mass content of catalyst of 15 %, char yield of 5-bromine-3-tert-butyl salicylaldehyde reached 86 %. Under this condition: molar ratio of 5-bromine-3-tert-butyl salicylaldehyde and phloroglucinol of 4, reacting temperature of 60 °C, reacting time of 30 min, volume content of sulphuric acid of 80 %, char yield of the target product viscosity stabilizer PB-854 is 86%. Finally, in this paper, infrared spectroscopy is adopted to analyse the structure of the synthetic product PB-854.The improvement in the stability of drilling fluid was further shown after adding the viscosity stabilizer in the common polymer drilling fluid under high temperature conditions of 120 °C ˜ 180 °C. The results show significant change in terms of fluid stability in the presence of this new stabilizer as it provides better stability.
Chekol, Solomon Amsalu; Yoo, Jongmyung; Park, Jaehyuk; Song, Jeonghwan; Sung, Changhyuck; Hwang, Hyunsang
2018-08-24
In this letter, we demonstrate a new binary ovonic threshold switching (OTS) selector device scalable down to ø30 nm based on C-Te. Our proposed selector device exhibits outstanding performance such as a high switching ratio (I on /I off > 10 5 ), an extremely low off-current (∼1 nA), an extremely fast operating speed of <10 ns (transition time of <2 ns and delay time of <8 ns), high endurance (10 9 ), and high thermal stability (>450 °C). The observed high thermal stability is caused by the relatively small atomic size of C, compared to Te, which can effectively suppress the segregation and crystallization of Te in the OTS film. Furthermore, to confirm the functionality of the selector in a crossbar array, we evaluated a 1S-1R device by integrating our OTS device with a ReRAM (resistive random access memory) device. The 1S-1R integrated device exhibits a successful suppression of leakage current at the half-selected cell and shows an excellent read-out margin (>2 12 word lines) in a fast read operation.
Borri, Simone; Siciliani de Cumis, Mario; Insero, Giacomo; Bartalini, Saverio; Cancio Pastor, Pablo; Mazzotti, Davide; Galli, Iacopo; Giusfredi, Giovanni; Santambrogio, Gabriele; Savchenkov, Anatoliy; Eliyahu, Danny; Ilchenko, Vladimir; Akikusa, Naota; Matsko, Andrey; Maleki, Lute; De Natale, Paolo
2016-02-17
The need for highly performing and stable methods for mid-IR molecular sensing and metrology pushes towards the development of more and more compact and robust systems. Among the innovative solutions aimed at answering the need for stable mid-IR references are crystalline microresonators, which have recently shown excellent capabilities for frequency stabilization and linewidth narrowing of quantum cascade lasers with compact setups. In this work, we report on the first system for mid-IR high-resolution spectroscopy based on a quantum cascade laser locked to a CaF₂ microresonator. Electronic locking narrows the laser linewidth by one order of magnitude and guarantees good stability over long timescales, allowing, at the same time, an easy way for finely tuning the laser frequency over the molecular absorption line. Improvements in terms of resolution and frequency stability of the source are demonstrated by direct sub-Doppler recording of a molecular line.
Borri, Simone; Siciliani de Cumis, Mario; Insero, Giacomo; Bartalini, Saverio; Cancio Pastor, Pablo; Mazzotti, Davide; Galli, Iacopo; Giusfredi, Giovanni; Santambrogio, Gabriele; Savchenkov, Anatoliy; Eliyahu, Danny; Ilchenko, Vladimir; Akikusa, Naota; Matsko, Andrey; Maleki, Lute; De Natale, Paolo
2016-01-01
The need for highly performing and stable methods for mid-IR molecular sensing and metrology pushes towards the development of more and more compact and robust systems. Among the innovative solutions aimed at answering the need for stable mid-IR references are crystalline microresonators, which have recently shown excellent capabilities for frequency stabilization and linewidth narrowing of quantum cascade lasers with compact setups. In this work, we report on the first system for mid-IR high-resolution spectroscopy based on a quantum cascade laser locked to a CaF2 microresonator. Electronic locking narrows the laser linewidth by one order of magnitude and guarantees good stability over long timescales, allowing, at the same time, an easy way for finely tuning the laser frequency over the molecular absorption line. Improvements in terms of resolution and frequency stability of the source are demonstrated by direct sub-Doppler recording of a molecular line. PMID:26901199
Superconducting Rebalance Accelerometer
NASA Technical Reports Server (NTRS)
Torti, R. P.; Gerver, M.; Leary, K. J.; Jagannathan, S.; Dozer, D. M.
1996-01-01
A multi-axis accelerometer which utilizes a magnetically-suspended, high-TC proof mass is under development. The design and performance of a single axis device which is stabilized actively in the axial direction but which utilizes ring magnets for passive radial stabilization is discussed. The design of a full six degree-of-freedom device version is also described.
Developments in Cylindrical Shell Stability Analysis
NASA Technical Reports Server (NTRS)
Knight, Norman F., Jr.; Starnes, James H., Jr.
1998-01-01
Today high-performance computing systems and new analytical and numerical techniques enable engineers to explore the use of advanced materials for shell design. This paper reviews some of the historical developments of shell buckling analysis and design. The paper concludes by identifying key research directions for reliable and robust methods development in shell stability analysis and design.
Flexibility of Expressive Timing in Repeated Musical Performances
Demos, Alexander P.; Lisboa, Tânia; Chaffin, Roger
2016-01-01
Performances by soloists in the Western classical tradition are normally highly prepared, yet must sound fresh and spontaneous. How do musicians manage this? We tested the hypothesis that they achieve the necessary spontaneity by varying the musical gestures that express their interpretation of a piece. We examined the tempo arches produced by final slowing at the ends of phrases in performances of J. S. Bach’s No. 6 (Prelude) for solo cello (12 performances) and the Italian Concerto (Presto) for solo piano (eight performances). The performances were given by two experienced concert soloists during a short time period (3½ months for the Prelude, 2 weeks for the Presto) after completing their preparations for public performance. We measured the tempo of each bar or half-bar, and the stability of tempo across performances (difference of the tempo of each bar/half bar from each of the other performances). There were phrase arches for both tempo and stability with slower, less stable tempi at beginnings and ends of phrases and faster, more stable tempi mid-phrase. The effects of practice were complex. Tempo decreased overall with practice, while stability increased in some bars and decreased in others. One effect of practice may be to imbue well-learned, automatic motor sequences with freshness and spontaneity through cognitive control at phrase boundaries where slower tempi and decreased stability provide opportunities for slower cognitive processes to modulate rapid automatic motor sequences. PMID:27757089
Teodoro, P E; Bhering, L L; Costa, R D; Rocha, R B; Laviola, B G
2016-08-19
The aim of this study was to estimate genetic parameters via mixed models and simultaneously to select Jatropha progenies grown in three regions of Brazil that meet high adaptability and stability. From a previous phenotypic selection, three progeny tests were installed in 2008 in the municipalities of Planaltina-DF (Midwest), Nova Porteirinha-MG (Southeast), and Pelotas-RS (South). We evaluated 18 families of half-sib in a randomized block design with three replications. Genetic parameters were estimated using restricted maximum likelihood/best linear unbiased prediction. Selection was based on the harmonic mean of the relative performance of genetic values method in three strategies considering: 1) performance in each environment (with interaction effect); 2) performance in each environment (with interaction effect); and 3) simultaneous selection for grain yield, stability and adaptability. Accuracy obtained (91%) reveals excellent experimental quality and consequently safety and credibility in the selection of superior progenies for grain yield. The gain with the selection of the best five progenies was more than 20%, regardless of the selection strategy. Thus, based on the three selection strategies used in this study, the progenies 4, 11, and 3 (selected in all environments and the mean environment and by adaptability and phenotypic stability methods) are the most suitable for growing in the three regions evaluated.
Numerical Prediction of Pitch Damping Stability Derivatives for Finned Projectiles
2013-11-01
in part by a grant of high-performance computing time from the U.S. DOD High Performance Computing Modernization Program (HPCMP) at the Army...to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data...12 3.3.2 Time -Accurate Simulations
Light-induced lattice expansion leads to high-efficiency perovskite solar cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsai, Hsinhan; Asadpour, Reza; Blancon, Jean-Christophe
Hybrid-perovskite based high-performance optoelectronic devices and clues from their operation has led to the realization that light-induced structural dynamics play a vital role on their physical properties, device performance and stability. Here, we report that continuous light illumination leads to a uniform lattice expansion in hybrid perovskite thin-films, which is critical for obtaining high-efficiency photovoltaic devices. Correlated, in-situ structural and device characterizations reveal that light-induced lattice expansion significantly benefits the performances of a mixed-cation pure-halide planar device, boosting the power conversion efficiency from 18.5% to 20.5%. This is a direct consequence of the relaxation of local lattice strains during latticemore » expansion, which results in the reduction of the energetic barriers at the perovskite/contact interfaces in devices, thus improving the open circuit voltage and fill factor. The light-induced lattice expansion stabilizes these high-efficiency photovoltaic devices under continuous operation of full-spectrum 1-Sun illumination for over 1500 hours. One Sentence Summary: Light-induced lattice expansion improves crystallinity, relaxes lattice strain, which enhances photovoltaic performance in hybrid perovskite device.« less
NASA Astrophysics Data System (ADS)
Tanaka, Manabu; Takeda, Yasushi; Wakiya, Takeru; Wakamoto, Yuta; Harigaya, Kaori; Ito, Tatsunori; Tarao, Takashi; Kawakami, Hiroyoshi
2017-02-01
High-performance polymer electrolyte membranes (PEMs) with excellent proton conductivity, gas barrier property, and membrane stability are desired for future fuel cells. Here we report the development of PEMs based on our proposed new concept "Nanofiber Framework (NfF)." The NfF composite membranes composed of phytic acid-doped polybenzimidazole nanofibers (PBINf) and Nafion matrix show higher proton conductivity than the recast-Nafion membrane without nanofibers. A series of analyses reveal the formation of three-dimensional network nanostructures to conduct protons and water effectively through acid-condensed layers at the interface of PBINf and Nafion matrix. In addition, the NfF composite membrane achieves high gas barrier property and distinguished membrane stability. The fuel cell performance by the NfF composite membrane, which enables ultra-thin membranes with their thickness less than 5 μm, is superior to that by the recast-Nafion membrane, especially at low relative humidity. Such NfF-based high-performance PEM will be accomplished not only by the Nafion matrix used in this study but also by other polymer electrolyte matrices for future PEFCs.
NASA Astrophysics Data System (ADS)
Geng, Hongbo; Ang, Huixiang; Ding, Xianguang; Tan, Huiteng; Guo, Guile; Qu, Genlong; Yang, Yonggang; Zheng, Junwei; Yan, Qingyu; Gu, Hongwei
2016-01-01
In this work, a one-dimensional Co3O4@TiO2 core-shell electrode material with superior electrochemical performance is fabricated by a convenient and controllable route. The approach involves two main steps: the homogeneous deposition of polydopamine and TiO2 layers in sequence on the cobalt coordination polymer and the thermal decomposition of the polymer matrix. The as-prepared electrode material can achieve excellent electrochemical properties and stability as an anode material for lithium ion batteries, such as a high specific capacity of 1279 mA h g-1, good cycling stability (around 803 mA h g-1 at a current density of 200 mA g-1 after 100 cycles), and stable rate performance (around 520 mA h g-1 at a current density of 1000 mA g-1). This dramatic electrochemical performance is mainly attributed to the excellent structural characteristics, which could improve the electrical conductivity and lithium ion mobility, as well as electrolyte permeability and architectural stability during cycling.In this work, a one-dimensional Co3O4@TiO2 core-shell electrode material with superior electrochemical performance is fabricated by a convenient and controllable route. The approach involves two main steps: the homogeneous deposition of polydopamine and TiO2 layers in sequence on the cobalt coordination polymer and the thermal decomposition of the polymer matrix. The as-prepared electrode material can achieve excellent electrochemical properties and stability as an anode material for lithium ion batteries, such as a high specific capacity of 1279 mA h g-1, good cycling stability (around 803 mA h g-1 at a current density of 200 mA g-1 after 100 cycles), and stable rate performance (around 520 mA h g-1 at a current density of 1000 mA g-1). This dramatic electrochemical performance is mainly attributed to the excellent structural characteristics, which could improve the electrical conductivity and lithium ion mobility, as well as electrolyte permeability and architectural stability during cycling. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr08570e
Feng, Dawei; Lei, Ting; Lukatskaya, Maria R.; ...
2018-01-01
For miniaturized capacitive energy storage, volumetric and areal capacitances are more important metrics than gravimetric ones because of the constraints imposed by device volume and chip area. Typically used in commercial supercapacitors, porous carbons, although they provide a stable and reliable performance, lack volumetric performance because of their inherently low density and moderate capacitances. In this paper, we report a high-performing electrode based on conductive hexaaminobenzene (HAB)-derived two-dimensional metal-organic frameworks (MOFs). In addition to possessing a high packing density and hierarchical porous structure, these MOFs also exhibit excellent chemical stability in both acidic and basic aqueous solutions, which is inmore » sharp contrast to conventional MOFs. Submillimetre-thick pellets of HAB MOFs showed high volumetric capacitances up to 760 F cm -3 and high areal capacitances over 20 F cm -2. Furthermore, the HAB MOF electrodes exhibited highly reversible redox behaviours and good cycling stability with a capacitance retention of 90% after 12,000 cycles. In conclusion, these promising results demonstrate the potential of using redox-active conductive MOFs in energy-storage applications.« less
Xu, Ming; Fei, Linfeng; Zhang, Weibing; Li, Tao; Lu, Wei; Zhang, Nian; Lai, Yanqing; Zhang, Zhian; Fang, Jing; Zhang, Kai; Li, Jie; Huang, Haitao
2017-03-08
High-performance Li-rich layered oxide (LRLO) cathode material is appealing for next-generation Li-ion batteries owing to its high specific capacity (>300 mAh g -1 ). Despite intense studies in the past decade, the low initial Coulombic efficiency and unsatisfactory cycling stability of LRLO still remain as great challenges for its practical applications. Here, we report a rational design of the orthogonally arranged {010}-oriented LRLO nanoplates with built-in anisotropic Li + ion transport tunnels. Such a novel structure enables fast Li + ion intercalation and deintercalation kinetics and enhances structural stability of LRLO. Theoretical calculations and experimental characterizations demonstrate the successful synthesis of target cathode material that delivers an initial discharge capacity as high as 303 mAh g -1 with an initial Coulombic efficiency of 93%. After 200 cycles at 1.0 C rate, an excellent capacity retention of 92% can be attained. Our method reported here opens a door to the development of high-performance Ni-Co-Mn-based cathode materials for high-energy density Li-ion batteries.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, Dawei; Lei, Ting; Lukatskaya, Maria R.
For miniaturized capacitive energy storage, volumetric and areal capacitances are more important metrics than gravimetric ones because of the constraints imposed by device volume and chip area. Typically used in commercial supercapacitors, porous carbons, although they provide a stable and reliable performance, lack volumetric performance because of their inherently low density and moderate capacitances. In this paper, we report a high-performing electrode based on conductive hexaaminobenzene (HAB)-derived two-dimensional metal-organic frameworks (MOFs). In addition to possessing a high packing density and hierarchical porous structure, these MOFs also exhibit excellent chemical stability in both acidic and basic aqueous solutions, which is inmore » sharp contrast to conventional MOFs. Submillimetre-thick pellets of HAB MOFs showed high volumetric capacitances up to 760 F cm -3 and high areal capacitances over 20 F cm -2. Furthermore, the HAB MOF electrodes exhibited highly reversible redox behaviours and good cycling stability with a capacitance retention of 90% after 12,000 cycles. In conclusion, these promising results demonstrate the potential of using redox-active conductive MOFs in energy-storage applications.« less
NASA Astrophysics Data System (ADS)
Feng, Dawei; Lei, Ting; Lukatskaya, Maria R.; Park, Jihye; Huang, Zhehao; Lee, Minah; Shaw, Leo; Chen, Shucheng; Yakovenko, Andrey A.; Kulkarni, Ambarish; Xiao, Jianping; Fredrickson, Kurt; Tok, Jeffrey B.; Zou, Xiaodong; Cui, Yi; Bao, Zhenan
2018-01-01
For miniaturized capacitive energy storage, volumetric and areal capacitances are more important metrics than gravimetric ones because of the constraints imposed by device volume and chip area. Typically used in commercial supercapacitors, porous carbons, although they provide a stable and reliable performance, lack volumetric performance because of their inherently low density and moderate capacitances. Here we report a high-performing electrode based on conductive hexaaminobenzene (HAB)-derived two-dimensional metal-organic frameworks (MOFs). In addition to possessing a high packing density and hierarchical porous structure, these MOFs also exhibit excellent chemical stability in both acidic and basic aqueous solutions, which is in sharp contrast to conventional MOFs. Submillimetre-thick pellets of HAB MOFs showed high volumetric capacitances up to 760 F cm-3 and high areal capacitances over 20 F cm-2. Furthermore, the HAB MOF electrodes exhibited highly reversible redox behaviours and good cycling stability with a capacitance retention of 90% after 12,000 cycles. These promising results demonstrate the potential of using redox-active conductive MOFs in energy-storage applications.
Chiral stability of an extemporaneously prepared clopidogrel bisulfate oral suspension.
Tynes, Clay R; Livingston, Brad; Patel, Hetesh; Arnold, John J
2014-01-01
The purpose of this study was to evaluate the chiral stability of clopidogrel bisulfate in an extemporaneously compounded oral suspension for a period of 60 days. A 5 mg/mL oral suspension of clopidogrel bisulfate was prepared from commercially available Plavix tablets. The clopidogrel suspension was then evenly divided between two light-resistant prescription bottles and stored either under refrigeration (4°C) or at room temperature (25°C). Samples were drawn from the stored suspensions immediately after preparation and on days 7, 14, 28, and 60. Samples were subsequently analyzed at each time point by high-performance liquid chromatography using a reversed-phase column, with chemical stability defined as the retention of at least 90% of the initial intact clopidogrel concentration measured. To determine the chiral stability of the suspension, samples were also analyzed by high-performance liquid chromatography using a chiral column to investigate possible enantiomeric inversion. Chiral stability was defined as the retention of at least 90% of the initial concentration of the suspension as the S-enantiomer, the active moiety of Plavix. Regardless of storage conditions, the oral suspension of clopidogrel retained at least 98% of the active S-enantiomer for 60 days after preparation. Compared with the clopidogrel suspension stored in the refrigerator, more chiral inversion was noted in the clopidogrel suspension stored at room temperature. Our investigation of chiral stability indicates that a 5 mg/mL clopidogrel oral suspension stored under refrigeration and at room temperature maintains chiral stability as the active S-enantiomer.
Dong, Yucheng; Ma, Ruguang; Hu, Mingjun; Cheng, Hua; Yang, Qingdan; Li, Yang Yang; Zapien, Juan Antonio
2013-05-21
We present a high-yield and low cost thermal evaporation-induced anhydrous strategy to prepare hybrid materials of Fe3O4 nanoparticles and graphene as an advanced anode for high-performance lithium ion batteries. The ~10-20 nm Fe3O4 nanoparticles are densely anchored on conducting graphene sheets and act as spacers to keep the adjacent sheets separated. The Fe3O4-graphene composite displays a superior battery performance with high retained capacity of 868 mA h g(-1) up to 100 cycles at a current density of 200 mA g(-1), and 539 mA h g(-1) up to 200 cycles when cycling at 1000 mA g(-1), high Coulombic efficiency (above 99% after 200 cycles), good rate capability, and excellent cyclic stability. The simple approach offers a promising route to prepare anode materials for practical fabrication of lithium ion batteries.
Connecticut Mobility and Stability Rate Study
ERIC Educational Resources Information Center
Apaloo, Francis
2014-01-01
Educators and policymakers are concerned about high student mobility, especially because mobility is associated with negative academic performance outcomes for students in particular and for schools more generally. Furthermore, student mobility may lower educational performance for at-risk and low-performing students compared with peers who remain…
High-rate synthesis of phosphine-stabilized undecagold nanoclusters using a multilayered micromixer.
Jin, Hyung Dae; Garrison, Anna; Tseng, T; Paul, Brian K; Chang, Chih-Hung
2010-11-05
Growth in the potential applications of nanomaterials has led to a focus on the development of new manufacturing approaches for these materials. In particular, an increased demand due to the unique properties of nanomaterials requires a substantial yield of high-performance materials and a simultaneous reduction in the environmental impact of these processes. In this paper, a high-rate production of phosphine-stabilized undecagold nanoclusters was achieved using a layer-up strategy which involves the use of microlamination architectures; the patterning and bonding of thin layers of material (laminae) to create a multilayered micromixer in the range of 25-250 µm thick was used to step up the production of phosphine-stabilized undecagold nanoclusters. The continuous production of highly monodispersed phosphine-stabilized undecagold nanoclusters at a rate of about 11.8 (mg s(-1)) was achieved using a microreactor with a size of 1.687 cm(3). This result is about 500 times over conventional batch syntheses based on the production rate per reactor volume.
High-rate synthesis of phosphine-stabilized undecagold nanoclusters using a multilayered micromixer
NASA Astrophysics Data System (ADS)
Jin, Hyung Dae; Garrison, Anna; Tseng, T.; Paul, Brian K.; Chang, Chih-Hung
2010-11-01
Growth in the potential applications of nanomaterials has led to a focus on the development of new manufacturing approaches for these materials. In particular, an increased demand due to the unique properties of nanomaterials requires a substantial yield of high-performance materials and a simultaneous reduction in the environmental impact of these processes. In this paper, a high-rate production of phosphine-stabilized undecagold nanoclusters was achieved using a layer-up strategy which involves the use of microlamination architectures; the patterning and bonding of thin layers of material (laminae) to create a multilayered micromixer in the range of 25-250 µm thick was used to step up the production of phosphine-stabilized undecagold nanoclusters. The continuous production of highly monodispersed phosphine-stabilized undecagold nanoclusters at a rate of about 11.8 (mg s - 1) was achieved using a microreactor with a size of 1.687 cm3. This result is about 500 times over conventional batch syntheses based on the production rate per reactor volume.
Stability analysis of oil yield in oil palm (Elaeis guineensis) progenies in different environments.
Rafii, M Y; Jalani, B S; Rajanaidu, N; Kushairi, A; Puteh, A; Latif, M A
2012-10-04
We evaluated 38 dura x pisifera (DP) oil palm progenies in four locations in Malaysia for genotype by environment interaction and genotypic stability studies. The DP progenies derived from crosses between pisifera palms of AVROS, Serdang S27B, Serdang 29/36, and Lever Cameroon were chosen to be the males' parent and Deli dura palms designated as females' parent. All the locations differed in terms of soil physical and chemical properties, and the soil types ranged from coastal clay to inland soils. The genotype by environment interaction and stability of the individual genotypes were analyzed for oil yield trait using several stability techniques. A genotype by environment interaction was detected for oil yield and it had a larger variance component than genotypic variance (σ(2)(gl)/σ(2)(g) = 139.7%). Genotype by environment interaction of oil yield was largely explained by a non-linear relationship between genotypic and environmental values. Overall assessment of individual genotypic stability showed that seven genotypes were highly stable and had consistent performance over the environments for the oil yield trait [total individual genotype stability scored more than 10 and mean oil yielded above the average of the environment (genotype means are more than 34.37 kg·palm(-1)·year(-1))]. These genotypes will be useful for oil palm breeding and tissue culture programs for developing high oil yielding planting materials with stable performance.
Computerized dynamic posturography: the influence of platform stability on postural control.
Palm, Hans-Georg; Lang, Patricia; Strobel, Johannes; Riesner, Hans-Joachim; Friemert, Benedikt
2014-01-01
Postural stability can be quantified using posturography systems, which allow different foot platform stability settings to be selected. It is unclear, however, how platform stability and postural control are mathematically correlated. Twenty subjects performed tests on the Biodex Stability System at all 13 stability levels. Overall stability index, medial-lateral stability index, and anterior-posterior stability index scores were calculated, and data were analyzed using analysis of variance and linear regression analysis. A decrease in platform stability from the static level to the second least stable level was associated with a linear decrease in postural control. The overall stability index scores were 1.5 ± 0.8 degrees (static), 2.2 ± 0.9 degrees (level 8), and 3.6 ± 1.7 degrees (level 2). The slope of the regression lines was 0.17 for the men and 0.10 for the women. A linear correlation was demonstrated between platform stability and postural control. The influence of stability levels seems to be almost twice as high in men as in women.
Kim, Chul Ho; Rim, You Seung; Kim, Hyun Jae
2013-07-10
We investigated the chemical stability and electrical properties of dual-active-layered zinc-tin-oxide (ZTO)/indium-gallium-zinc-oxide (IGZO) structures (DALZI) with the durability of the chemical damage. The IGZO film was easily corroded or removed by an etchant, but the DALZI film was effectively protected by the high chemical stability of ZTO. Furthermore, the electrical performance of the DALZI thin-film transistor (TFT) was improved by densification compared to the IGZO TFT owing to the passivation of the pin holes or pore sites and the increase in the carrier concentration due to the effect of Sn(4+) doping.
He, L; Yang, J; Chen, W; Zhou, Z; Wu, H; Meng, Q
2018-03-01
As lack of forage resource, alternative roughage sources have been developed for ruminant production and their inclusion would exert a great effect on the dietary nutrition, consequently affecting animal performance. Four silages (corn silage (CS), corn stalk silage (SS), inoculated CS and inoculated SS) were separately offered to 60 Bohai Black cattle (15 cattle/group) during a 24-week finishing period, in which the growth performance, carcass trait, beef quality and oxidative stability of steers were determined. Neither silage material nor silage inoculant exerted a significant effect on the growth performance, carcass trait and oxidative stability of beef cattle (P>0.05). As to beef quality, cattle offered CS had higher (P0.05) on the proximate components and fatty acids profile of beef muscle. There was neither an interaction (P>0.05) between inoculated treatment and silage material. There were no differences (P>0.05) in cholesterol content and meat quality traits in animals fed alternative silages. The collective findings suggest that it is not economical to substitute high-quality forage for relative low-quality forage in a high-concentrate finishing ration of beef cattle and silage inoculant inclusion would not exert a direct effect on animal performance.
WO3–x@Au@MnO2 core–shell nanowires on carbon fabric for high-performance flexible supercapacitors.
Lu, Xihong; Zhai, Teng; Zhang, Xianghui; Shen, Yongqi; Yuan, Longyan; Hu, Bin; Gong, Li; Chen, Jian; Gao, Yihua; Zhou, Jun; Tong, Yexiang; Wang, Zhong Lin
2012-02-14
WO3–x@Au@MnO2 core–shell nanowires (NWs) are synthesized on a flexible carbon fabric and show outstanding electrochemical performance in supercapacitors such as high specific capacitance, good cyclic stability, high energy density, and high power density. These results suggest that the WO3–x@Au@MnO2 NWs have promising potential for use in high-performance flexible supercapacitors. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Geng, Qin; Tong, Xin; Wenya, Gideon Evans; Yang, Chao; Wang, Jide; Maloletnev, A. S.; Wang, Zhiming M.; Su, Xintai
2018-04-01
A facile, cost-effective, non-toxic, and surfactant-free route has been developed to synthesize MoS2/carbon (MoS2/C) nanocomposites. Potassium humate consists of a wide variety of oxygen-containing functional groups, which is considered as promising candidates for functionalization of graphene. Using potassium humate as carbon source, two-dimensional MoS2/C nanosheets with irregular shape were synthesized via a stabilized co-precipitation/calcination process. Electrochemical performance of the samples as an anode of lithium ion battery was measured, demonstrating that the MoS2/C nanocomposite calcinated at 700 °C (MoS2/C-700) electrode showed outstanding performance with a high discharge capacity of 554.9 mAh g- 1 at a current density of 100 mA g- 1 and the Coulomb efficiency of the sample maintained a high level of approximately 100% after the first 3 cycles. Simultaneously, the MoS2/C-700 electrode exhibited good cycling stability and rate performance. The success in synthesizing MoS2/C nanocomposites via co-precipitation/calcination route may pave a new way to realize promising anode materials for high-performance lithium ion batteries.
Instabilities and turbulence in highly ionized plasmas in a magnetic field
NASA Technical Reports Server (NTRS)
Jennings, W. C.
1972-01-01
Physical mechanisms were considered which are responsible for plasma turbulence and the establishment of necessary conditions for energy exchange and transfer in the frequency spectrum. In addition, work was performed to better understand the drift instability in the highly inhomogeneous Rensselaer arc, and methods to suppress this instability using feedback stabilization techniques. Correlation techniques were refined to study plasma turbulence, the diffusion wave technique for monitoring cross-field diffusion was extended to include regimes of high turbulence levels, and a technique for coupling stabilizing RF power to the Rensselaer arc was developed.
Li, Nan; Zhu, Zonglong; Chueh, Chu -Chen; ...
2016-09-26
In this study, different from the commonly explored strategy of incorporating a smaller cation, MA + and Cs + into FAPbI 3 lattice to improve efficiency and stability, it is revealed that the introduction of phenylethylammonium iodide (PEAI) into FAPbI 3 perovksite to form mixed cation FA xPEA 1–xPbI 3 can effectively enhance both phase and ambient stability of FAPbI 3 as well as the resulting performance of the derived devices. From our experimental and theoretical calculation results, it is proposed that the larger PEA cation is capable of assembling on both the lattice surface and grain boundaries to formmore » quais-3D perovskite structures. The surrounding of PEA + ions at the crystal grain boundaries not only can serve as molecular locks to tighten FAPbI 3 domains but also passivate the surface defects to improve both phase and moisture stablity. Consequently, a high-performance (PCE:17.7%) and ambient stable FAPbI 3 solar cell could be developed« less
On the Nonlinear Stability of a High-Speed, Axisymmetric Boundary Layer
1991-03-01
NASA Contractor Report 187538 IN ICASE Report No. 91-30 ICASE ON THE NONLINEAR STABILITY OF A HIGH-SPEED, AXISYMMETRIC BOUNDARY LAYER C. David Pruett... David Pruett National Research Council Associate Lian L. Ng Analytical Services and Materials Gordon Erlebacher t Senior Scientist, ICASE NASA Langley...Oct. 5, 1989. 29) Fetterman , D. E., Jr., "Preliminary Sizing and Performance of Aircraft", NASA TM-86357, July 1985. 30) Gaster, M., "A Note on the
Stability of extemporaneous oral ribavirin liquid preparation.
Chan, John P; Tong, Henry H Y; Chow, Albert H L
2004-01-01
Ribavirin is an antiviral agent commonly used in Hong Kong for the treatment of severe acute respiratory syndrome. The choice of oral ribavirin therapeutic products available in the local market is currently limited to capsules. The present study investigated the chemical stability of an oral ribavirin suspension (200 mg/5mL) prepared extemporaneously from oral capsules using a sugar-free suspension formula. The suspension was subjected to stability testing at 4 deg C for up to 28 days. Employing a validated stability-indicating high-performance liquid chromatographic method, the ribavirin content of the extemporaneous preparation has been demonstrated to exhibit negligible changes throughout the storage period. No degradation product was observable in all high-peroformance liquid chromatograms, suggesting that the suspension remained chermically stable under the stated conditions.
NASA Astrophysics Data System (ADS)
Kuang, Jun; Dai, Zhaohe; Liu, Luqi; Yang, Zhou; Jin, Ming; Zhang, Zhong
2015-05-01
Nanostructured carbon material based three-dimensional porous architectures have been increasingly developed for various applications, e.g. sensors, elastomer conductors, and energy storage devices. Maintaining architectures with good mechanical performance, including elasticity, load-bearing capacity, fatigue resistance and mechanical stability, is prerequisite for realizing these functions. Though graphene and CNT offer opportunities as nanoscale building blocks, it still remains a great challenge to achieve good mechanical performance in their microarchitectures because of the need to precisely control the structure at different scales. Herein, we fabricate a hierarchical honeycomb-like structured hybrid foam based on both graphene and CNT. The resulting materials possess excellent properties of combined high specific strength, elasticity and mechanical stability, which cannot be achieved in neat CNT and graphene foams. The improved mechanical properties are attributed to the synergistic-effect-induced highly organized, multi-scaled hierarchical architectures. Moreover, with their excellent electrical conductivity, we demonstrated that the hybrid foams could be used as pressure sensors in the fields related to artificial skin.Nanostructured carbon material based three-dimensional porous architectures have been increasingly developed for various applications, e.g. sensors, elastomer conductors, and energy storage devices. Maintaining architectures with good mechanical performance, including elasticity, load-bearing capacity, fatigue resistance and mechanical stability, is prerequisite for realizing these functions. Though graphene and CNT offer opportunities as nanoscale building blocks, it still remains a great challenge to achieve good mechanical performance in their microarchitectures because of the need to precisely control the structure at different scales. Herein, we fabricate a hierarchical honeycomb-like structured hybrid foam based on both graphene and CNT. The resulting materials possess excellent properties of combined high specific strength, elasticity and mechanical stability, which cannot be achieved in neat CNT and graphene foams. The improved mechanical properties are attributed to the synergistic-effect-induced highly organized, multi-scaled hierarchical architectures. Moreover, with their excellent electrical conductivity, we demonstrated that the hybrid foams could be used as pressure sensors in the fields related to artificial skin. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr00841g
Carbon Disulfide Cosolvent Electrolytes for High-Performance Lithium Sulfur Batteries.
Gu, Sui; Wen, Zhaoyin; Qian, Rong; Jin, Jun; Wang, Qingsong; Wu, Meifen; Zhuo, Shangjun
2016-12-21
Development of lithium sulfur (Li-S) batteries with high Coulombic efficiency and long cycle stability remains challenging due to the dissolution and shuttle of polysulfides in electrolyte. Here, a novel additive, carbon disulfide (CS 2 ), to the organic electrolyte is reported to improve the cycling performance of Li-S batteries. The cells with the CS 2 -additive electrolyte exhibit high Coulombic efficiency and long cycle stability, showing average Coulombic efficiency >99% and a capacity retention of 88% over the entire 300 cycles. The function of the CS 2 additive is 2-fold: (1) it inhibits the migration of long-chain polysulfides to the anode by forming complexes with polysulfides and (2) it passivates electrode surfaces by inducing the protective coatings on both the anode and the cathode.
Modeling of rolling element bearing mechanics
NASA Technical Reports Server (NTRS)
Greenhill, L. M.
1991-01-01
Roller element bearings provide the primary mechanical interface between rotating and nonrotating components in the high performance turbomachinery of the Space Shuttle Main Engine (SSME). Knowledge of bearing behavior under various loading and environmental conditions is essential to predicting and understanding the overall behavior of turbopumps, including rotordynamic stability, critical speeds and bearing life. The objective is to develop mathematical models and computer programs to describe the mechanical behavior of ball and cylinder roller bearings under the loading and environmental conditions encountered in the SSME and future high performance rocket engines. This includes characteristics such as nonlinear load/motion relationships, stiffness and damping, rolling element loads for life prediction, and roller and cage stability.
3D printed high performance strain sensors for high temperature applications
NASA Astrophysics Data System (ADS)
Rahman, Md Taibur; Moser, Russell; Zbib, Hussein M.; Ramana, C. V.; Panat, Rahul
2018-01-01
Realization of high temperature physical measurement sensors, which are needed in many of the current and emerging technologies, is challenging due to the degradation of their electrical stability by drift currents, material oxidation, thermal strain, and creep. In this paper, for the first time, we demonstrate that 3D printed sensors show a metamaterial-like behavior, resulting in superior performance such as high sensitivity, low thermal strain, and enhanced thermal stability. The sensors were fabricated using silver (Ag) nanoparticles (NPs), using an advanced Aerosol Jet based additive printing method followed by thermal sintering. The sensors were tested under cyclic strain up to a temperature of 500 °C and showed a gauge factor of 3.15 ± 0.086, which is about 57% higher than that of those available commercially. The sensor thermal strain was also an order of magnitude lower than that of commercial gages for operation up to a temperature of 500 °C. An analytical model was developed to account for the enhanced performance of such printed sensors based on enhanced lateral contraction of the NP films due to the porosity, a behavior akin to cellular metamaterials. The results demonstrate the potential of 3D printing technology as a pathway to realize highly stable and high-performance sensors for high temperature applications.
Diagnostic of Gravitropism-like Stabilizer of Inspection Drone Using Neural Networks
NASA Astrophysics Data System (ADS)
Kruglova, Tatyana; Sayfeddine, Daher; Bulgakov, Alexey
2018-03-01
This paper discusses the enhancement of flight stability of using an inspection drone to scan the condition of buildings on low and high altitude. Due to aerial perturbations and wakes, the drone starts to shake and may be damaged. One of the mechanical optimization methods it so add a built-in stabilizing mechanism. However, the performance of this supporting device becomes critical on certain flying heights, thus to avoid losing the drone. The paper is divided in two parts: the description of the gravitropism-like stabilizer and the diagnostic of its status using wavelet transformation and neural network classification.
NASA Technical Reports Server (NTRS)
Neveu, M. C.; Stocker, D. P.
1985-01-01
High pressure differential scanning calorimetry (DSC) was studied as an alternate method for performing high temperature fuel thermal stability research. The DSC was used to measure the heat of reaction versus temperature of a fuel sample heated at a programmed rate in an oxygen pressurized cell. Pure hydrocarbons and model fuels were studied using typical DSC operating conditions of 600 psig of oxygen and a temperature range from ambient to 500 C. The DSC oxidation onset temperature was determined and was used to rate the fuels on thermal stability. Kinetic rate constants were determined for the global initial oxidation reaction. Fuel deposit formation is measured, and the high temperature volatility of some tetralin deposits is studied by thermogravimetric analysis. Gas chromatography and mass spectrometry are used to study the chemical composition of some DSC stressed fuels.
Steven D. Warren
2014-01-01
Biological soil crusts, composed of soil surfaces stabilized by a consortium of cyanobacteria, algae, fungi, lichens, and/or bryophytes, are common in most deserts and perform functions of primary productivity, nitrogen fixation, nutrient cycling, water redistribution, and soil stabilization. The crusts are highly susceptible to disturbance. The degree of perturbation...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoo, Chun S
2011-01-01
Direct numerical simulation (DNS) of the near-field of a three-dimensional spatially-developing turbulent ethylene jet flame in highly-heated coflow is performed with a reduced mechanism to determine the stabilization mechanism. The DNS was performed at a jet Reynolds number of 10,000 with over 1.29 billion grid points. The results show that auto-ignition in a fuel-lean mixture at the flame base is the main source of stabilization of the lifted jet flame. The Damkoehler number and chemical explosive mode (CEM) analysis also verify that auto-ignition occurs at the flame base. In addition to auto-ignition, Lagrangian tracking of the flame base reveals themore » passage of large-scale flow structures and their correlation with the fluctuations of the flame base similar to a previous study (Yoo et al., J. Fluid Mech. 640 (2009) 453-481) with hydrogen/air jet flames. It is also observed that the present lifted flame base exhibits a cyclic 'saw-tooth' shaped movement marked by rapid movement upstream and slower movement downstream. This is a consequence of the lifted flame being stabilized by a balance between consecutive auto-ignition events in hot fuel-lean mixtures and convection induced by the high-speed jet and coflow velocities. This is confirmed by Lagrangian tracking of key variables including the flame-normal velocity, displacement speed, scalar dissipation rate, and mixture fraction at the stabilization point.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoo, C. S.; Richardson, E.; Sankaran, R.
2011-01-01
Direct numerical simulation (DNS) of the near-field of a three-dimensional spatially-developing turbulent ethylene jet flame in highly-heated coflow is performed with a reduced mechanism to determine the stabilization mechanism. The DNS was performed at a jet Reynolds number of 10,000 with over 1.29 billion grid points. The results show that auto-ignition in a fuel-lean mixture at the flame base is the main source of stabilization of the lifted jet flame. The Damköhler number and chemical explosive mode (CEM) analysis also verify that auto-ignition occurs at the flame base. In addition to auto-ignition, Lagrangian tracking of the flame base reveals themore » passage of large-scale flow structures and their correlation with the fluctuations of the flame base similar to a previous study (Yoo et al., J. Fluid Mech. 640 (2009) 453–481) with hydrogen/air jet flames. It is also observed that the present lifted flame base exhibits a cyclic ‘saw-tooth’ shaped movement marked by rapid movement upstream and slower movement downstream. This is a consequence of the lifted flame being stabilized by a balance between consecutive auto-ignition events in hot fuel-lean mixtures and convection induced by the high-speed jet and coflow velocities. This is confirmed by Lagrangian tracking of key variables including the flame-normal velocity, displacement speed, scalar dissipation rate, and mixture fraction at the stabilization point.« less
Modeling and Simulation of Swirl Stabilized Turbulent Non-Premixed Flames
NASA Astrophysics Data System (ADS)
Badillo-Rios, Salvador; Karagozian, Ann
2017-11-01
Flame stabilization is an important design criterion for many combustion chambers, especially at lean conditions and/or high power output, where insufficient stabilization can result in dangerous oscillations and noisy or damaged combustors. At high flow rates, swirling flow can offer a suitable stabilization mechanism, although understanding the dynamics of swirl-stabilized turbulent flames remains a significant challenge. Utilizing the General Equation and Mesh Solver (GEMS) code, which solves the Navier-Stokes equations along with the energy equation and five species equations, 2D axisymmetric and full 3D parametric studies and simulations are performed to guide the design and development of an experimental swirl combustor configuration and to study the effects of swirl on statistically stationary combustion. Results show that as the momentum of air is directed into the inner air inlet rather than the outer inlet of the swirl combustor, the central recirculating region becomes stronger and more unsteady, improving mixing and burning efficiency in that region. A high temperature region is found to occur as a result of burning of the trapped fuel from the central toroidal vortex. The effects of other parameters on flowfield and flame-stabilization dynamics are explored. Supported by ERC, Inc. (PS150006) and AFOSR (Dr. Chiping Li).
NASA Astrophysics Data System (ADS)
Zhou, Wanhai; Zhu, Ding; Tang, Zhengyao; Wu, Chaoling; Huang, Liwu; Ma, Zhewen; Chen, Yungui
2017-03-01
A series of Al-free Mn-modified AB5-type hydrogen storage alloys have been designed and the effects of thermodynamic stability and electrochemical kinetics on electrochemical performance via Mn substituting have been investigated. Compared with high-Al alloys, the Al-free alloys in this study have better low-temperature performance and instantaneous high-rate output because of the higher surface catalytic ability. After partial substitution of Ni by Mn, both the hydrogen desorption capacity and plateau pressure decrease, and correspondingly results in an improved thermodynamic stability which is adverse to low-temperature delivery. Additionally, with the improvement of charge acceptance ability and anti-corrosion property via Mn substitution, the room-temperature discharge capacity and cycling stability increase slightly. However, Mn adversely affects the electrochemical kinetics and deteriorates both the surface catalytic ability and the bulk hydrogen diffusion ability, leading to the drop of low-temperature dischargeability, high-rate dischargeability and peak power (Ppeak). Based on the thermodynamic and kinetic regulation and overall electrochemical properties, the optimal composition is obtained when x = 0.2, the discharge capacity is 243.6 mAh g-1 at -40 °C with 60 mA g-1, and the Ppeak attains to 969.6 W kg-1 at -40 °C.
Effect of thermal aging on stability of transformer oil based temperature sensitive magnetic fluids
NASA Astrophysics Data System (ADS)
Kaur, Navjot; Chudasama, Bhupendra
2018-04-01
Synthesizing stable temperature sensitive magnetic fluids with tunable magnetic properties that can be used as coolant in transformers is of great interest, however not exploited commercially due to the lack of its stability at elevated temperatures in bulk quantities. The task is quite challenging as the performance parameters of magnetic fluids are strongly influenced by thermal aging. In this article, we report the effect of thermal aging on colloidal stability and magnetic properties of Mn1-xZnxFe2O4 magnetic fluids prepared in industrial grade transformer oil. As-synthesized magnetic fluids possess good dispersion stability and tunable magnetic properties. Effect of accelerated thermal aging on the dispersion stability and magnetic properties have been evaluated by photon correlation spectroscopy and vibration sample magnetometry, respectively. Magnetic fluids are stable under accelerated aging at elevated temperatures (from 50 °C to 125 °C), which is critical for their efficient performance in high power transformers.
A One-Axis-Controlled Magnetic Bearing and Its Performance
NASA Astrophysics Data System (ADS)
Li, Lichuan; Shinshi, Tadahiko; Kuroki, Jiro; Shimokohbe, Akira
Magnetic bearings (MBs) are complex machines in which sensors and controllers must be used to stabilize the rotor. A standard MB requires active control of five motion axes, imposing significant complexity and high cost. In this paper we report a very simple MB and its experimental testing. In this MB, the rotor is stabilized by active control of only one motion axis. The other four motion axes are passively stabilized by permanent magnets and appropriate magnetic circuit design. In rotor radial translational motion, which is passively stabilized, a resonant frequency of 205Hz is achieved for a rotor mass of 11.5×10-3kg. This MB features virtually zero control current and zero rotor iron loss (hysteresis and eddy current losses). Although the rotational speed and accuracy are limited by the resonance of passively stabilized axes, the MB is still suitable for applications where cost is critical but performance is not, such as cooling fans and auxiliary support for aerodynamic bearings.
Partial Analysis of Insta-Foam
NASA Technical Reports Server (NTRS)
Chou, L. W.
1983-01-01
Insta-Foam, used as a thermal insulator for the non-critical area of the external tank during the prelaunch phase to minimize icing, is a two-component system. Component A has polyisocyanates, blowing agents, and stabilizers; Component B has the polyols, catalysts, blowing agents, stabilizers and fire retardant. The blowing agents are Freon 11 and Freon 12, the stabilizers are silicone surfactants, the catalysts are tertiary amines, and the fire retardant is tri-(beta-chloro-isopropyl) phosphate (PCF). High performance liquid chromatography (HPLC) was quantitatively identified polyols and PFC.
Lin, Zhuchong; Liu, Kun; Zhang, Li; Zeng, Delin
2016-09-01
Maglev dual-stage inertially stabilization (MDIS) system is a newly proposed system which combines a conventional two-axis gimbal assembly and a 5-DOF (degree of freedom) magnetic bearing with vernier tilting capacity to perform dual-stage stabilization for the LOS of the suspended optical instrument. Compared with traditional dual-stage system, maglev dual-stage system exhibits different characteristics due to the negative position stiffness of the magnetic forces, which introduces additional coupling in the dual stage control system. In this paper, the coupling effect on the system performance is addressed based on frequency-domain analysis, including disturbance rejection, fine stage saturation and coarse stage structural resonance suppression. The difference between various control strategies is also discussed, including pile-up(PU), stabilize-follow (SF) and stabilize-compensate (SC). A number of principles for the design of a maglev dual stage system are proposed. A general process is also suggested, which leads to a cost-effective design striking a balance between high performance and complexity. At last, a simulation example is presented to illustrate the arguments in the paper. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
DelPapa, Steven V.
2005-01-01
Arc jet tests of candidate tile repair materials and baseline Orbiter uncoated reusable surface insulation (RSI) were performed in the Johnson Space Center's (JSC) Atmospheric Reentry Materials and Structures Evaluation Facility (ARMSEF) from June 23, 2003, through August 19, 2003. These tests were performed to screen candidate tile repair materials by verifying the high temperature performance and determining the thermal stability. In addition, tests to determine the surface emissivity at high temperatures and the geometric shrinkage of bare RSI were performed. In addition, tests were performed to determine the surface emissivity at high temperatures and the geometric shrinkage of uncoated RSI.
Tail Rotor Airfoils Stabilize Helicopters, Reduce Noise
NASA Technical Reports Server (NTRS)
2010-01-01
Founded by former Ames Research Center engineer Jim Van Horn, Van Horn Aviation of Tempe, Arizona, built upon a Langley Research Center airfoil design to create a high performance aftermarket tail rotor for the popular Bell 206 helicopter. The highly durable rotor has a lifetime twice that of the original equipment manufacturer blade, reduces noise by 40 percent, and displays enhanced performance at high altitudes. These improvements benefit helicopter performance for law enforcement, military training, wildfire and pipeline patrols, and emergency medical services.
Note: A temperature-stable low-noise transimpedance amplifier for microcurrent measurement.
Xie, Kai; Shi, Xueyou; Zhao, Kai; Guo, Lixin; Zhang, Hanlu
2017-02-01
Temperature stability and noise characteristics often run contradictory in microcurrent (e.g., pA-scale) measurement instruments because low-noise performance requires high-value resistors with relatively poor temperature coefficients. A low-noise transimpedance amplifier with high-temperature stability, which involves an active compensation mechanism to overcome the temperature drift mainly caused by high-value resistors, is presented. The implementation uses a specially designed R-2R compensating network to provide programmable current gain with extra-fine trimming resolution. The temperature drifts of all components (e.g., feedback resistors, operational amplifiers, and the R-2R network itself) are compensated simultaneously. Therefore, both low-temperature drift and ultra-low-noise performance can be achieved. With a current gain of 10 11 V/A, the internal current noise density was about 0.4 fA/√Hz, and the average temperature coefficient was 4.3 ppm/K at 0-50 °C. The amplifier module maintains accuracy across a wide temperature range without additional thermal stabilization, and its compact size makes it especially suitable for high-precision, low-current measurement in outdoor environments for applications such as electrochemical emission supervision, air pollution particles analysis, radiation monitoring, and bioelectricity.
Note: A temperature-stable low-noise transimpedance amplifier for microcurrent measurement
NASA Astrophysics Data System (ADS)
Xie, Kai; Shi, Xueyou; Zhao, Kai; Guo, Lixin; Zhang, Hanlu
2017-02-01
Temperature stability and noise characteristics often run contradictory in microcurrent (e.g., pA-scale) measurement instruments because low-noise performance requires high-value resistors with relatively poor temperature coefficients. A low-noise transimpedance amplifier with high-temperature stability, which involves an active compensation mechanism to overcome the temperature drift mainly caused by high-value resistors, is presented. The implementation uses a specially designed R-2R compensating network to provide programmable current gain with extra-fine trimming resolution. The temperature drifts of all components (e.g., feedback resistors, operational amplifiers, and the R-2R network itself) are compensated simultaneously. Therefore, both low-temperature drift and ultra-low-noise performance can be achieved. With a current gain of 1011 V/A, the internal current noise density was about 0.4 fA/√Hz, and the average temperature coefficient was 4.3 ppm/K at 0-50 °C. The amplifier module maintains accuracy across a wide temperature range without additional thermal stabilization, and its compact size makes it especially suitable for high-precision, low-current measurement in outdoor environments for applications such as electrochemical emission supervision, air pollution particles analysis, radiation monitoring, and bioelectricity.
RP-1 Thermal Stability and Copper Based Materials Compatibility Study
NASA Technical Reports Server (NTRS)
Stiegemeier, B. R.; Meyer, M. L.; Driscoll, E.
2005-01-01
A series of electrically heated tube tests was performed at the NASA Glenn Research Center s Heated Tube Facility to investigate the effect that sulfur content, test duration, and tube material play in the overall thermal stability and materials compatibility characteristics of RP-1. Scanning-electron microscopic (SEM) analysis in conjunction with energy dispersive spectroscopy (EDS) were used to characterize the condition of the tube inner wall surface and any carbon deposition or corrosion formed during these runs. Results of the parametric study indicate that tests with standard RP-1 (total sulfur -23 ppm) and pure copper tubing are characterized by a depostion/deposit shedding process producing local wall temperature swings as high as 500 F. The effect of this shedding is to keep total carbon deposition levels relatively constant for run times from 20 minutes up to 5 hours, though increasing tube pressure drops were observed in all runs. Reduction in the total sulfur content of the fuel from 23 ppm to less than 0.1 ppm resulted in the elimination of deposit shedding, local wall temperature variation, and the tube pressure drop increases that were observed in standard sulfur level RP-1 tests. The copper alloy GRCop-84, a copper alloy developed specifically for high heat flux applications, was found to exhibit higher carbon deposition levels compared to identical tests performed in pure copper tubes. Results of the study are consistent with previously published heated tube data which indicates that small changes in fuel total sulfur content can lead to significant differences in the thermal stability of kerosene type fuels and their compatibility with copper based materials. In conjunction with the existing thermal stability database, these findings give insight into the feasibility of cooling a long life, high performance, high-pressure liquid rocket combustor and nozzle with RP-1.
Heuberger, Adam L; Broeckling, Corey D; Sedin, Dana; Holbrook, Christian; Barr, Lindsay; Kirkpatrick, Kaylyn; Prenni, Jessica E
2016-06-01
Flavour stability is vital to the brewing industry as beer is often stored for an extended time under variable conditions. Developing an accelerated model to evaluate brewing techniques that affect flavour stability is an important area of research. Here, we performed metabolomics on non-volatile compounds in beer stored at 37 °C between 1 and 14 days for two beer types: an amber ale and an India pale ale. The experiment determined high temperature to influence non-volatile metabolites, including the purine 5-methylthioadenosine (5-MTA). In a second experiment, three brewing techniques were evaluated for improved flavour stability: use of antioxidant crowns, chelation of pro-oxidants, and varying plant content in hops. Sensory analysis determined the hop method was associated with improved flavour stability, and this was consistent with reduced 5-MTA at both regular and high temperature storage. Future studies are warranted to understand the influence of 5-MTA on flavour and aging within different beer types. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Lai, Ming-Hui; Sermon Wu, YewChung; Huang, Jung-Jie
2012-01-01
Ni-metal-induced crystallization (MIC) of amorphous Si (α-Si) has been employed to fabricate low-temperature polycrystalline silicon (poly-Si) thin-film transistors (TFTs). Although the high leakage current is a major issue in the performance of conventional MIC-TFTs since Ni contamination induces deep-level state traps, it can be greatly improved by using well-known technologies to reduce Ni contamination. However, for active-matrix organic light-emitting diode (AMOLED) display applications, the bias reliability and thermal stability are major concerns especially when devices are operated under a hot carrier condition and in a high-temperature environment. It will be interesting to determine how the bias reliability and thermal stability are affected by the reduction of Ni concentration. In the study, the effect of Ni concentration on bias reliability and thermal stability was investigated. We found that a device exhibited high immunity against hot-carrier stress and elevated temperatures. These findings demonstrated that reducing the Ni concentration in MIC films was also beneficial for bias reliability and thermal stability.
Averina, E S; Müller, R H; Popov, D V; Radnaeva, L D
2011-05-01
At the turn of the millennium, a new generation of lipid nanoparticles for pharmacology was developed, nanostructured lipid carriers (NLC). The features of NLC structure which allow the inclusion of natural biologically active lipids in the NLC matrix open a wide prospect for the creation of high performance drug carriers. In this study NLC formulations were developed based on natural lipids from the Siberia region (Russia): fish oil from Lake Baikal fish; polyunsaturated fatty acid fractions and monounsaturated and saturated fatty acid fractions from fish oil and Siberian pine seed oil. Formulation parameters of NLC such as as type of surfactant and storage conditions were evaluated. The data obtained indicated high physical stability of NLC formulated on the basis of pure fish oil stabilized by Tween 80 and NLC formulated on the basis of free fatty acids stabilized by Poloxamer 188. The good chemical stability of the lipid matrix and the high concentrations of the biologically active polyunsaturated fatty acids in the NLC developed open wide prospects for their use in pharmaceutics and cosmetics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahn, Hye-Kyung; Kim, Byoung Chan; Jun, Seung-Hyun
2010-12-15
An efficient protein digestion in proteomic analysis requires the stabilization of proteases such as trypsin. In the present work, trypsin was stabilized in the form of enzyme coating on electrospun polymer nanofibers (EC-TR), which crosslinks additional trypsin molecules onto covalently-attached trypsin (CA-TR). EC-TR showed better stability than CA-TR in rigorous conditions, such as at high temperatures of 40 °C and 50 °C, in the presence of organic co-solvents, and at various pH's. For example, the half-lives of CA-TR and EC-TR were 0.24 and 163.20 hours at 40 ºC, respectively. The improved stability of EC-TR can be explained by covalent-linkages onmore » the surface of trypsin molecules, which effectively inhibits the denaturation, autolysis, and leaching of trypsin. The protein digestion was performed at 40 °C by using both CA-TR and EC-TR in digesting a model protein, enolase. EC-TR showed better performance and stability than CA-TR by maintaining good performance of enolase digestion under recycled uses for a period of one week. In the same condition, CA-TR showed poor performance from the beginning, and could not be used for digestion at all after a few usages. The enzyme coating approach is anticipated to be successfully employed not only for protein digestion in proteomic analysis, but also for various other fields where the poor enzyme stability presently hampers the practical applications of enzymes.« less
Lee, In-Kyu; Lee, Kwan Hyi; Lee, Seok; Cho, Won-Ju
2014-12-24
We used a microwave annealing process to fabricate a highly reliable biosensor using amorphous-InGaZnO (a-IGZO) thin-film transistors (TFTs), which usually experience threshold voltage instability. Compared with furnace-annealed a-IGZO TFTs, the microwave-annealed devices showed superior threshold voltage stability and performance, including a high field-effect mobility of 9.51 cm(2)/V·s, a low threshold voltage of 0.99 V, a good subthreshold slope of 135 mV/dec, and an outstanding on/off current ratio of 1.18 × 10(8). In conclusion, by using the microwave-annealed a-IGZO TFT as the transducer in an extended-gate ion-sensitive field-effect transistor biosensor, we developed a high-performance biosensor with excellent sensing properties in terms of pH sensitivity, reliability, and chemical stability.
NASA Astrophysics Data System (ADS)
Nakano, Kouichi
Austenitic stainless steel, which includes nickel for stabilizing austenitic structure, is used for various purposes, for example, for structural material, corrosion-resistant material, biomaterial etc. Nickel is set as one of the rare metals and economizing on nickel as the natural resources is required. On the other hand, nickel is one of the metals that cause metallic allergy frequently. Therefore, high nitrogen stainless steel, where nitrogen stabilizes austenitic structure instead of nickel, has been developed in Japan and some of the foreign countries for the above reason. When high nitrogen stainless steel is fused and bonded, dissolved nitrogen is released to the atmospheric area, and some of the material properties will change. In this study, we bonded high nitrogen stainless steel by stud welding process, which is able to bond at short time, and we evaluate joint performance. We have got some interesting results from the other tests and examinations.
Wu, Meng-Ke; Zhou, Jiao-Jiao; Yi, Fei-Yan; Chen, Chen; Li, Yan-Li; Li, Qin; Tao, Kai; Han, Lei
2017-12-12
Electrode materials for supercapacitors with one-dimensional porous nanostructures, such as nanowires and nanotubes, are very attractive for high-efficiency storage of electrochemical energy. Herein, ultralong Cu-based porous coordination polymer nanowires (copper-l-aspartic acid) were used as the electrode material for supercapacitors, for the first time. The as-prepared material exhibits a high specific capacitance of 367 F g -1 at 0.6 A g -1 and excellent cycling stability (94% retention over 1000 cycles). Moreover, porous CuO nanotubes were successfully fabricated by the thermal decomposition of this nanowire precursor. The CuO nanotube exhibits good electrochemical performance with high rate capacity (77% retention at 12.5 A g -1 ) and long-term stability (96% retention over 1000 cycles). The strategy developed here for the synthesis of porous nanowires and nanotubes can be extended to the construction of other electrode materials for more efficient energy storage.
Zhou, Ruifeng; Meng, Chuizhou; Zhu, Feng; Li, Qunqing; Liu, Changhong; Fan, Shoushan; Jiang, Kaili
2010-08-27
Nanoporous current collectors for supercapacitors have been fabricated by cross-stacking super-aligned carbon nanotube (SACNT) films as a replacement for heavy conventional metallic current collectors. The CNT-film current collectors have good conductivity, extremely low density (27 microg cm(-2)), high specific surface area, excellent flexibility and good electrochemical stability. Nanosized active materials such as NiO, Co(3)O(4) or Mn(2)O(3) nanoparticles can be directly synthesized on the SACNT films by a straightforward one-step, in situ decomposition strategy that is both efficient and environmentally friendly. These composite films can be integrated into a pseudo-capacitor that does not use metallic current collectors, but nevertheless shows very good performance, including high specific capacitance (approximately 500 F g(-1), including the current collector mass), reliable electrochemical stability (<4.5% degradation in 2500 cycles) and a very high rate capability (245 F g(-1) at 155 A g(-1)).
NASA Astrophysics Data System (ADS)
Zhou, Ruifeng; Meng, Chuizhou; Zhu, Feng; Li, Qunqing; Liu, Changhong; Fan, Shoushan; Jiang, Kaili
2010-08-01
Nanoporous current collectors for supercapacitors have been fabricated by cross-stacking super-aligned carbon nanotube (SACNT) films as a replacement for heavy conventional metallic current collectors. The CNT-film current collectors have good conductivity, extremely low density (27 µg cm - 2), high specific surface area, excellent flexibility and good electrochemical stability. Nanosized active materials such as NiO, Co3O4 or Mn2O3 nanoparticles can be directly synthesized on the SACNT films by a straightforward one-step, in situ decomposition strategy that is both efficient and environmentally friendly. These composite films can be integrated into a pseudo-capacitor that does not use metallic current collectors, but nevertheless shows very good performance, including high specific capacitance (~500 F g - 1, including the current collector mass), reliable electrochemical stability (<4.5% degradation in 2500 cycles) and a very high rate capability (245 F g - 1 at 155 A g - 1).
NASA Astrophysics Data System (ADS)
Kong, Hyun-Joon
This dissertation investigates a dispersion/stabilization technique to improve the fluidity of heteroflocculating concentrated suspensions, and applies the technique to develop self-compacting Engineered Cementitious Composites (ECC), defined as a cementitious material which compacts without any external consolidation in the fresh state, while exhibiting strain-hardening performance in the hardened state. To meet the criteria of micromechanical design to achieve the ductile performance and processing design to attain high fluidity, this work has focused on preparing cement suspensions with low viscosity and high cohesiveness at a particle loading determined by the micromechanical design. Therefore, the goal of this work is to quantify how to adjust the strong flocculation between cement particles due to electrostatic and van der Waals attractive forces. For this purpose, a strong polyelectrolyte, melamine formaldehyde sulfonate (MFS), to disperse the oppositely-charged particles present in the cement dispersion, is combined with a non-ionic polymer, hydroxypropylmethylcellulose (HPMC). The combination of these two polymers to prevent re-flocculation leads to "complementary electrosteric dispersion/ stabilization". With these polymers, suspensions with the desired fluidity for processing are obtained. To quantify the roles of the two polymers in imparting stability, a heteroflocculating model suspension was developed, which facilitates the control of the interactions typical of cement suspensions, but without irreversible hydration. This model suspension is composed of alumina and silica particles, which bear surface potentials of opposite sign at intermediate pHs, as well as has a comparable magnitude of the Hamaker constant as compared to cement particles. As a result, the model system displays not only van der Waals attraction but also electrostatic attraction between dissimilar particles. Rheological studies of the model system stabilized by MFS and HPMC show behavior identical to that of the cement suspensions, allowing the model system to be used to interpret the role of the stabilizers in altering the system microstructure and fluidity. Finally, the self-compacting performance of fresh ECC mixes made with the electrosterically stabilized fresh matrix mix and the ductile strain-hardening performance of the hardened ECC were demonstrated.
Large-field-of-view, modular, stabilized, adaptive-optics-based scanning laser ophthalmoscope.
Burns, Stephen A; Tumbar, Remy; Elsner, Ann E; Ferguson, Daniel; Hammer, Daniel X
2007-05-01
We describe the design and performance of an adaptive optics retinal imager that is optimized for use during dynamic correction for eye movements. The system incorporates a retinal tracker and stabilizer, a wide-field line scan scanning laser ophthalmoscope (SLO), and a high-resolution microelectromechanical-systems-based adaptive optics SLO. The detection system incorporates selection and positioning of confocal apertures, allowing measurement of images arising from different portions of the double pass retinal point-spread function (psf). System performance was excellent. The adaptive optics increased the brightness and contrast for small confocal apertures by more than 2x and decreased the brightness of images obtained with displaced apertures, confirming the ability of the adaptive optics system to improve the psf. The retinal image was stabilized to within 18 microm 90% of the time. Stabilization was sufficient for cross-correlation techniques to automatically align the images.
NASA Astrophysics Data System (ADS)
Ball, James M.; Bouwer, Ricardo K. M.; Kooistra, Floris B.; Frost, Jarvist M.; Qi, Yabing; Domingo, Ester Buchaca; Smith, Jeremy; de Leeuw, Dago M.; Hummelen, Jan C.; Nelson, Jenny; Kahn, Antoine; Stingelin, Natalie; Bradley, Donal D. C.; Anthopoulos, Thomas D.
2011-07-01
The family of soluble fullerene derivatives comprises a widely studied group of electron transporting molecules for use in organic electronic and optoelectronic devices. For electronic applications, electron transporting (n-channel) materials are required for implementation into organic complementary logic circuit architectures. To date, few soluble candidate materials have been studied that fulfill the stringent requirements of high carrier mobility and air stability. Here we present a study of three soluble fullerenes with varying electron affinity to assess the impact of electronic structure on device performance and air stability. Through theoretical and experimental analysis of the electronic structure, characterization of thin-film structure, and characterization of transistor device properties we find that the air stability of the present series of fullerenes not only depends on the absolute electron affinity of the semiconductor but also on the disorder within the thin-film.
Large Field of View, Modular, Stabilized, Adaptive-Optics-Based Scanning Laser Ophthalmoscope
Burns, Stephen A.; Tumbar, Remy; Elsner, Ann E.; Ferguson, Daniel; Hammer, Daniel X.
2007-01-01
We describe the design and performance of an adaptive optics retinal imager that is optimized for use during dynamic correction for eye movements. The system incorporates a retinal tracker and stabilizer, a wide field line scan Scanning Laser Ophthalmocsope (SLO), and a high resolution MEMS based adaptive optics SLO. The detection system incorporates selection and positioning of confocal apertures, allowing measurement of images arising from different portions of the double pass retinal point spread function (psf). System performance was excellent. The adaptive optics increased the brightness and contrast for small confocal apertures by more than 2x, and decreased the brightness of images obtained with displaced apertures, confirming the ability of the adaptive optics system to improve the pointspread function. The retinal image was stabilized to within 18 microns 90% of the time. Stabilization was sufficient for cross-correlation techniques to automatically align the images. PMID:17429477
Active vibration suppression of helicopter horizontal stabilizers
NASA Astrophysics Data System (ADS)
Cinquemani, Simone; Cazzulani, Gabriele; Resta, Ferruccio
2017-04-01
Helicopters are among the most complex machines ever made. While ensuring high performance from the aeronautical point of view, they are not very comfortable due to vibration mainly created by the main rotor and by the interaction with the surrounding air. One of the most solicited structural elements of the vehicle are the horizontal stabilizers. These elements are particularly stressed because of their composite structure which, while guaranteeing lightness and strength, is characterized by a low damping. This work makes a preliminary analysis on the dynamics of the structure and proposes different solutions to actively suppress vibrations. Among them, the best in terms of the relationship between performance and weight / complexity of the system is that based on inertial actuators mounted on the inside of the horizontal stabilizers. The work addresses the issue of the design of the device and its use in the stabilizer from both the numerical and the experimental points of view.
Ma, Yanxia; Yin, Lisi; Cao, Guojian; Huang, Qingli; He, Maoshuai; Wei, Wenxian; Zhao, Hong; Zhang, Dongen; Wang, Mingyan; Yang, Tao
2018-04-01
Exploration of highly efficient electrocatalysts is significantly urgent for the extensive adoption of the fuel cells. Because of their high activity and super stability, Pt-Pd bimetal nanocrystals have been widely recognized as one class of promising electrocatalysts for oxygen reduction. This article presents the synthesis of popcorn-shaped Pt-Pd bimetal nanoparticles with a wide composition range through a facile hydrothermal strategy. The hollow-centered nanoparticles are surrounded by several petals and concave surfaces. By exploring the oxygen reduction reaction on the carbon supported Pt-Pd popcorns in perchloric acid solution, it is found that compared with the commercial Pt/C catalyst the present catalysts display superior catalytic performances in aspects of catalytic activity and stability. More importantly, the Pt-Pd popcorns display minor performance degradations through prolonged potential cycling. The enhanced performances can be mainly attributed to the unique popcorn structure of the Pt-Pd components, which allows the appearance and long existence of the high active sites with more accessibility. The present work highlights the key roles of accessible high active sites in the oxygen reduction reaction, which will ultimately guide the design of highly durable Pt-Pd catalysts. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Svirskis, Darren; Lin, Shao-Wei; Brown, Helen; Sangaroomthong, Annie; Shin, Daniel; Wang, Ziqi; Xu, Hongtao; Dean, Rebecca; Vareed, Preetika; Jensen, Maree; Wu, Zimei
2018-01-01
Three brands of levothyroxine tablets are currently available in New Zealand (Eltroxin, Mercury Pharma, Synthroid) for extemporaneous compounding into suspensions. This study aims to determine whether tablet brand (i.e., formulation), concentration, storage conditions, as well as pH, impact the stability of compounded levothyroxine suspensions. Using the three available brands of levothyroxine tablets, suspensions were compounded at concentrations of 15 µg/mL and 25 µg/mL and stored at 4°C and 22°C. Samples were withdrawn weekly for 4 weeks, and chemical stability was evaluated using high-performance liquid chromatographic analysis. Physical appearance, ease of resuspension, and pH were also monitored weekly. To evaluate the effect on drug stability, pH modifiers were added to a suspension. As demonstrated by high-performance liquid chromatographic analysis, the suspensions compounded from the Eltroxin and Mercury Pharma tablets were more stable (>90% remaining after 4 weeks) than Synthroid across both storage conditions and concentrations. The drug was more stable at the higher concentration of 25 µg/mL than at 15 µg/mL. Levothyroxine was stable when pH was increased to pH 8 through the addition of sodium citrate; stability was reduced at a lower pH. Storage temperature did not affect the stability of the suspensions during the 4-week study. This is the first study demonstrating the impact of tablet brand, with different excipients, and drug concentrations on stability, and thus the beyond-use date of the compounded levothyroxine liquid formulations. The pH control achieved by sodium citrate, either as an excipient in tablets or an additive during compounding, improved drug stability. Copyright© by International Journal of Pharmaceutical Compounding, Inc.
Fiber-based confocal microscope for cryogenic spectroscopy.
Högele, Alexander; Seidl, Stefan; Kroner, Martin; Karrai, Khaled; Schulhauser, Christian; Sqalli, Omar; Scrimgeour, Jan; Warburton, Richard J
2008-02-01
We describe the design and performance of a fiber-based confocal microscope for cryogenic operation. The microscope combines positioning at low temperatures along three space coordinates of millimeter translation and nanometer precision with high stability and optical performance at the diffraction limit. It was successfully tested under ambient conditions as well as at liquid nitrogen (77 K) and liquid helium (4 K) temperatures. The compact nonmagnetic design provides for long term position stability against helium refilling transfers, temperature sweeps, as well as magnetic field variation between -9 and 9 T. As a demonstration of the microscope performance, applications in the spectroscopy of single semiconductor quantum dots are presented.
Hu, Nantao; Zhang, Liling; Yang, Chao; Zhao, Jian; Yang, Zhi; Wei, Hao; Liao, Hanbin; Feng, Zhenxing; Fisher, Adrian; Zhang, Yafei; Xu, Zhichuan J.
2016-01-01
Thin, robust, lightweight, and flexible supercapacitors (SCs) have aroused growing attentions nowadays due to the rapid development of flexible electronics. Graphene-polyaniline (PANI) hybrids are attractive candidates for high performance SCs. In order to utilize them in real devices, it is necessary to improve the capacitance and the structure stability of PANI. Here we report a hierarchical three-dimensional structure, in which all of PANI nanofibers (NFs) are tightly wrapped inside reduced graphene oxide (rGO) nanosheet skeletons, for high-performance flexible SCs. The as-fabricated film electrodes with this unique structure showed a highest gravimetric specific capacitance of 921 F/g and volumetric capacitance of 391 F/cm3. The assembled solid-state SCs gave a high specific capacitance of 211 F/g (1 A/g), a high area capacitance of 0.9 F/cm2, and a competitive volumetric capacitance of 25.6 F/cm3. The SCs also exhibited outstanding rate capability (~75% retention at 20 A/g) as well as excellent cycling stability (100% retention at 10 A/g for 2000 cycles). Additionally, no structural failure and loss of performance were observed under the bending state. This structure design paves a new avenue for engineering rGO/PANI or other similar hybrids for high performance flexible energy storage devices. PMID:26795067
Hu, Nantao; Zhang, Liling; Yang, Chao; ...
2016-01-22
Thin, robust, lightweight, and flexible supercapacitors (SCs) have aroused growing attentions nowadays due to the rapid development of flexible electronics. Graphene-polyaniline (PANI) hybrids are attractive candidates for high performance SCs. In order to utilize them in real devices, it is necessary to improve the capacitance and the structure stability of PANI. Here we report a hierarchical three-dimensional structure, in which all of PANI nanofibers (NFs) are tightly wrapped inside reduced graphene oxide (rGO) nanosheet skeletons, for high-performance flexible SCs. The as-fabricated film electrodes with this unique structure showed a highest gravimetric specific capacitance of 921 F/g and volumetric capacitance ofmore » 391 F/cm 3. The assembled solid-state SCs gave a high specific capacitance of 211 F/g (1 A/g), a high area capacitance of 0.9 F/cm 2, and a competitive volumetric capacitance of 25.6 F/cm 3. The SCs also exhibited outstanding rate capability (~75% retention at 20 A/g) as well as excellent cycling stability (100% retention at 10 A/g for 2000 cycles). Additionally, no structural failure and loss of performance were observed under the bending state. Lastly, this structure design paves a new avenue for engineering rGO/PANI or other similar hybrids for high performance flexible energy storage devices.« less
Tsuruta, Lilian Rumi; Lopes Dos Santos, Mariana; Yeda, Fernanda Perez; Okamoto, Oswaldo Keith; Moro, Ana Maria
2016-12-01
Genetic characterization of protein-producing clones represents additional value to cell line development. In the present study, ten Per.C6 clones producing a Rebmab100 monoclonal antibody were selected using two cloning methods: six clones originated from limiting dilution cloning and four by the automated colony picker ClonePix FL. A stability program was performed for 50 generations, including 4 batches distributed along the timeframe to determine specific productivity (Qp) maintenance. Four stable clones (two from limiting dilution and two from ClonePix FL) were further evaluated. The relative mRNA expression levels of both heavy chain (HC) and light chain (LC) genes were verified at generations 0, 30-35, and 50-55 of the stability program. At generations 0 and 30-35, LC gene expression level was higher than HC gene, whereas at generation 50-55, the opposite prevailed. A high correlation was observed between Qp and HC or LC mRNA expression level for all clones at each generation analyzed along the continuous culture. The mRNA stability study was performed at steady-state culture. The LC gene displayed a higher half-life and lower decay constant than HC gene, accounting for the higher observed expression level of LC mRNA in comparison to HC mRNA. Clone R6 was highlighted due its high Qp, mRNA expression levels, and mRNA stability. Besides the benefits of applying genetic characterization for the selection of stable and high-producing clones, the present study shows for the first time the correlation between Qp and HC or LC expression levels and also mRNA stability in clones derived from human cell line Per.C6(®).
An ACC Design Method for Achieving Both String Stability and Ride Comfort
NASA Astrophysics Data System (ADS)
Yamamura, Yoshinori; Seto, Yoji; Nishira, Hikaru; Kawabe, Taketoshi
An investigation was made of a method for designing adaptive cruise control (ACC) so as to achieve a headway distance response that feels natural to the driver while at the same time obtaining high levels of both string stability and ride comfort. With this design method, the H∞ norm is adopted as the index of string stability. Additionally, two norms are introduced for evaluating ride comfort and natural vehicle behavior. The relationship between these three norms and headway distance response characteristics was analyzed, and an evaluation method was established for achieving high levels of the various performance characteristics required of ACC. An ACC system designed with this method was evaluated in driving tests conducted on a proving ground course, and the results confirmed that it achieved the targeted levels of string stability, ride comfort and natural vehicle behavior.
Stability of cyanocobalamin in sugar-coated tablets.
Ohmori, Shinji; Kataoka, Masumi; Koyama, Hiroyoshi
2007-06-07
The purpose of this study was to clarify the stability of cyanocobalamin (VB(12)-CN) in sugar-coated tablets containing fursultiamine hydrochloride (TTFD-HCl), riboflavin (VB(2)), and pyridoxine hydrochloride (VB(6)), and to identify the factors affecting the stability of VB(12)-CN in these sugar-coated tablets. The stability of VB(12)-CN was investigated using high-performance liquid chromatography while decomposition was evaluated kinetically. The decomposition of VB(12)-CN in sugar-coated tablets with high equilibrium relative humidity (more than 60%) under closed conditions showed complex kinetics and followed an Avrami-Erofe'ev equation, which expresses a random nucleation (two-dimensional growth of nuclei) model. We showed that equilibrium relative humidity, the incorporation of VB(2) and VB(6), and sugar coating, are the main factors influencing decomposition and that these factors cause the complex decomposition kinetics.
Engineering proteins with tunable thermodynamic and kinetic stabilities.
Pey, Angel L; Rodriguez-Larrea, David; Bomke, Susanne; Dammers, Susanne; Godoy-Ruiz, Raquel; Garcia-Mira, Maria M; Sanchez-Ruiz, Jose M
2008-04-01
It is widely recognized that enhancement of protein stability is an important biotechnological goal. However, some applications at least, could actually benefit from stability being strongly dependent on a suitable environment variable, in such a way that enhanced stability or decreased stability could be realized as required. In therapeutic applications, for instance, a long shelf-life under storage conditions may be convenient, but a sufficiently fast degradation of the protein after it has performed the planned molecular task in vivo may avoid side effects and toxicity. Undesirable effects associated to high stability are also likely to occur in food-industry applications. Clearly, one fundamental factor involved here is the kinetic stability of the protein, which relates to the time-scale of the irreversible denaturation processes and which is determined to some significant extent by the free-energy barrier for unfolding (the barrier that "separates" the native state from the highly-susceptible-to-irreversible-alterations nonnative states). With an appropriate experimental model, we show that strong environment-dependencies of the thermodynamic and kinetic stabilities can be achieved using robust protein engineering. We use sequence-alignment analysis and simple computational electrostatics to design stabilizing and destabilizing mutations, the latter introducing interactions between like charges which are screened out at high salt. Our design procedures lead naturally to mutating regions which are mostly unstructured in the transition state for unfolding. As a result, the large salt effect on the thermodynamic stability of our consensus plus charge-reversal variant translates into dramatic changes in the time-scale associated to the unfolding barrier: from the order of years at high salt to the order of days at low salt. Certainly, large changes in salt concentration are not expected to occur in biological systems in vivo. Hence, proteins with strong salt-dependencies of the thermodynamic and kinetic stabilities are more likely to be of use in those cases in which high-stability is required only under storage conditions. A plausible scenario is that inclusion of high salt in liquid formulations will contribute to a long protein shelf-life, while the lower salt concentration under the conditions of the application will help prevent the side effects associated with high-stability which may potentially arise in some therapeutic and food-industry applications. From a more general viewpoint, this work shows that consensus engineering and electrostatic engineering can be readily combined and clarifies relevant aspects of the relation between thermodynamic stability and kinetic stability in proteins. (c) 2007 Wiley-Liss, Inc.
Yang, Yang; He, Jinliang; Wu, Guangning; Hu, Jun
2015-01-01
Insulation performance of the dielectrics under extreme conditions always attracts widespread attention in electrical and electronic field. How to improve the high-temperature dielectric properties of insulation materials is one of the key issues in insulation system design of electrical devices. This paper studies the temperature-dependent corona resistance of polyimide (PI)/Al2O3 nanocomposite films under high-frequency square-wave pulse conditions. Extended corona resistant lifetime under high-temperature conditions is experimentally observed in the 2 wt% nanocomposite samples. The “thermal stabilization effect” is proposed to explain this phenomenon which attributes to a new kind of trap band caused by nanoparticles. This effect brings about superior space charge characteristics and corona resistance under high temperature with certain nano-doping concentration. The proposed theory is experimentally demonstrated by space charge analysis and thermally stimulated current (TSC) tests. This discovered effect is of profound significance on improving high-temperature dielectric properties of nanocomposites towards various applications. PMID:26597981
Vehicle dynamics control by using a three-dimensional stabilizer pendulum system
NASA Astrophysics Data System (ADS)
Goodarzi, A.; Naghibian, M.; Choodan, D.; Khajepour, A.
2016-12-01
Active safety systems of a vehicle normally work well on tyre-road interactions, however, these systems deteriorate in performance on low-friction road conditions. To combat this effect, an innovative idea for the yaw moment and roll dynamic control is presented in this paper. This idea was inspired by the chase and run dynamics animals like cheetahs in the nature; cheetahs have the ability to swerve while running at very high speeds. A cheetah controls its dynamics by rotating its long tail. A three-dimensional stabilizer pendulum system (3D-SPS) resembles the rotational motion of the tail of a cheetah to improve the stability and safety of a vehicle. The idea has been developed in a stand-alone 3D stabilizer pendulum system as well as in an integrated control system, which consists of an ordinary differential braking direct yaw control (DYC) and active steering control that is assisted by the 3D-SPS. The performance of the proposed 3D-SPS has been evaluated over a wide range of handling manoeuvres by using a comprehensive numerical simulation. The results show the advantage of 3D-SPS over conventional control approaches, which are ineffective on low-friction road conditions and high lateral acceleration manoeuvres. It should however be noted that the best vehicle dynamics performance is obtained when an integrated 3D-SPS and DYC and AFS is utilised.
Elia, Giuseppe Antonio; Ducros, Jean-Baptiste; Sotta, Dane; Delhorbe, Virginie; Brun, Agnès; Marquardt, Krystan; Hahn, Robert
2017-11-08
Herein we report, for the first time, an overall evaluation of commercially available battery separators to be used for aluminum batteries, revealing that most of them are not stable in the highly reactive 1-ethyl-3-methylimidazolium chloride:aluminum trichloride (EMIMCl:AlCl 3 ) electrolyte conventionally employed in rechargeable aluminum batteries. Subsequently, a novel highly stable polyacrylonitrile (PAN) separator obtained by the electrospinning technique for application in high-performance aluminum batteries has been prepared. The developed PAN separator has been fully characterized in terms of morphology, thermal stability, and air permeability, revealing its suitability as a separator for battery applications. Furthermore, extremely good compatibility and improved aluminum interface stability in the highly reactive EMIMCl:AlCl 3 electrolyte were discovered. The use of the PAN separator strongly affects the aluminum dissolution/deposition process, leading to a quite homogeneous deposition compared to that of a glass fiber separator. Finally, the applicability of the PAN separator has been demonstrated in aluminum/graphite cells. The electrochemical tests evidence the full compatibility of the PAN separator in aluminum cells. Furthermore, the aluminum/graphite cells employing the PAN separator are characterized by a slightly higher delivered capacity compared to those employing glass fiber separators, confirming the superior characteristics of the PAN separator as a more reliable separator for the emerging aluminum battery technology.
NASA Technical Reports Server (NTRS)
Englar, Robert J.; Willie, F. Scott; Lee, Warren J.
1999-01-01
In the Task I portion of this NASA research grant, configuration development and experimental investigations have been conducted on a series of pneumatic high-lift and control surface devices applied to a generic High Speed Civil Transport (HSCT) model configuration to determine their potential for improved aerodynamic performance, plus stability and control of higher performance aircraft. These investigations were intended to optimize pneumatic lift and drag performance; provide adequate control and longitudinal stability; reduce separation flowfields at high angle of attack; increase takeoff/climbout lift-to-drag ratios; and reduce system complexity and weight. Experimental aerodynamic evaluations were performed on a semi-span HSCT generic model with improved fuselage fineness ratio and with interchangeable plain flaps, blown flaps, pneumatic Circulation Control Wing (CCW) high-lift configurations, plain and blown canards, a novel Circulation Control (CC) cylinder blown canard, and a clean cruise wing for reference. Conventional tail power was also investigated for longitudinal trim capability. Also evaluated was unsteady pulsed blowing of the wing high-lift system to determine if reduced pulsed mass flow rates and blowing requirements could be made to yield the same lift as that resulting from steady-state blowing. Depending on the pulsing frequency applied, reduced mass flow rates were indeed found able to provide lift augmentation at lesser blowing values than for the steady conditions. Significant improvements in the aerodynamic characteristics leading to improved performance and stability/control were identified, and the various components were compared to evaluate the pneumatic potential of each. Aerodynamic results were provided to the Georgia Tech Aerospace System Design Lab. to conduct the companion system analyses and feasibility study (Task 2) of theses concepts applied to an operational advanced HSCT aircraft. Results and conclusions from these experimental evaluations are presented herein, as are recommendations for further development and follow-on investigations. Also provided as an Appendix for reference are the basic results from the previous pneumatic HSCT investigations.
NASA Astrophysics Data System (ADS)
Dewell, Larry D.; Tajdaran, Kiarash; Bell, Raymond M.; Liu, Kuo-Chia; Bolcar, Matthew R.; Sacks, Lia W.; Crooke, Julie A.; Blaurock, Carl
2017-09-01
The need for high payload dynamic stability and ultra-stable mechanical systems is an overarching technology need for large space telescopes such as the Large Ultraviolet / Optical / Infrared (LUVOIR) Surveyor. Wavefront error stability of less than 10 picometers RMS of uncorrected system WFE per wavefront control step represents a drastic performance improvement over current space-based telescopes being fielded. Previous studies of similar telescope architectures have shown that passive telescope isolation approaches are hard-pressed to meet dynamic stability requirements and usually involve complex actively-controlled elements and sophisticated metrology. To meet these challenging dynamic stability requirements, an isolation architecture that involves no mechanical contact between telescope and the host spacecraft structure has the potential of delivering this needed performance improvement. One such architecture, previously developed by Lockheed Martin called Disturbance Free Payload (DFP), is applied to and analyzed for LUVOIR. In a noncontact DFP architecture, the payload and spacecraft fly in close proximity, and interact via non-contact actuators to allow precision payload pointing and isolation from spacecraft vibration. Because disturbance isolation through non-contact, vibration isolation down to zero frequency is possible, and high-frequency structural dynamics of passive isolators are not introduced into the system. In this paper, the system-level analysis of a non-contact architecture is presented for LUVOIR, based on requirements that are directly traceable to its science objectives, including astrophysics and the direct imaging of habitable exoplanets. Aspects of architecture and how they contribute to system performance are examined and tailored to the LUVOIR architecture and concept of operation.
NASA Technical Reports Server (NTRS)
Lindensmith, Chris A.; Briggs, H. Clark; Beregovski, Yuri; Feria, V. Alfonso; Goullioud, Renaud; Gursel, Yekta; Hahn, Inseob; Kinsella, Gary; Orzewalla, Matthew; Phillips, Charles
2006-01-01
SIM Planetquest (SIM) is a large optical interferometer for making microarcsecond measurements of the positions of stars, and to detect Earth-sized planets around nearby stars. To achieve this precision, SIM requires stability of optical components to tens of picometers per hour. The combination of SIM s large size (9 meter baseline) and the high stability requirement makes it difficult and costly to measure all aspects of system performance on the ground. To reduce risks, costs and to allow for a design with fewer intermediate testing stages, the SIM project is developing an integrated thermal, mechanical and optical modeling process that will allow predictions of the system performance to be made at the required high precision. This modeling process uses commercial, off-the-shelf tools and has been validated against experimental results at the precision of the SIM performance requirements. This paper presents the description of the model development, some of the models, and their validation in the Thermo-Opto-Mechanical (TOM3) testbed which includes full scale brassboard optical components and the metrology to test them at the SIM performance requirement levels.
Heavy hydrocarbon main injector technology
NASA Technical Reports Server (NTRS)
Fisher, S. C.; Arbit, H. A.
1988-01-01
One of the key components of the Advanced Launch System (ALS) is a large liquid rocket, booster engine. To keep the overall vehicle size and cost down, this engine will probably use liquid oxygen (LOX) and a heavy hydrocarbon, such as RP-1, as propellants and operate at relatively high chamber pressures to increase overall performance. A technology program (Heavy Hydrocarbon Main Injector Technology) is being studied. The main objective of this effort is to develop a logic plan and supporting experimental data base to reduce the risk of developing a large scale (approximately 750,000 lb thrust), high performance main injector system. The overall approach and program plan, from initial analyses to large scale, two dimensional combustor design and test, and the current status of the program are discussed. Progress includes performance and stability analyses, cold flow tests of injector model, design and fabrication of subscale injectors and calorimeter combustors for performance, heat transfer, and dynamic stability tests, and preparation of hot fire test plans. Related, current, high pressure, LOX/RP-1 injector technology efforts are also briefly discussed.
Zaid, Abdel Naser; Assali, Mohyeddin; Qaddomi, Aiman; Ghanem, Mashhour; Zaaror, Yara Abu
2014-01-01
The aim of this study was to develop an extemporaneous valsartan suspension (80 mg valsartan/5 mL) starting from commercial tablets (80-mg/ tablet). A high-performance liquid chromatographic system was used for the analysis and quantification of valsartan in the samples studied. Samples of valsartan suspension for analysis were prepared as reported by the validated high-performance liquid chromatographic method and the dissolution tests were performed according to the U.S. Food and Drug Administration's method. The high-performance liquid chromatographic assay indicated that the 80-mg/5-mL valsartan suspension was stable for 30 days when stored at long-term and accelerated storage conditions. Valsartan release profile showed that approximately 85% of valsartan dissolved after 10 minutes and, accordingly, the calculation of similarity factor was not necessary. It is possible for the pharmacist to crush valsartan 80-mg tablets and prepare a suspension which has dosage flexibility that can be calculated according to body-surface area, kidney, and liver functions, without affecting the chemical stability of the active ingredient nor its dissolution profile and also have a cost-effective dosage form.
Life Testing of Yb14MnSb11 for High Performance Thermoelectric Couples
NASA Technical Reports Server (NTRS)
Paik, Jong-Ah; Brandon, Erik; Caillat, Thierry; Ewell, Richard; Fleurial, Jean-Pierre
2011-01-01
The goal of this study is to verify the long term stability of Yb14MnSb11 for high performance thermoelectric (TE) couples. Three main requirements need to be satisfied to ensure the long term stability of thermoelectric couples: 1) stable thermoelectric properties, 2) stable bonding interfaces, and 3) adequate sublimation suppression. The efficiency of the couple is primarily based on the thermoelectric properties of the materials selected for the couple. Therefore, these TE properties should exhibit minimal degradation during the operating period of the thermoelectric couples. The stability of the bonding is quantified by low contact resistances of the couple interfaces. In order to ensure high efficiency, the contact resistances of the bonding interfaces should be negligible. Sublimation suppression is important because the majority of thermoelectric materials used for power generation have peak figures of merit at temperatures where sublimation rates are high. Controlling sublimation is also essential to preserve the efficiency of the couple. During the course of this research, three different life tests were performed with Yb14MnSb11 coupons. TE properties of Yb14MnSb11 exhibited no degradation after 6 months of aging at 1273K, and the electrical contact resistance between a thin metallization layer and the Yb14MnSb11 remained negligible after 1500hr aging at 1273K. A sublimation suppression layer for Yb14MnSb11 was developed and demonstrated for more than 18 months with coupon testing at 1273K. These life test data indicate that thermoelectric elements based on Yb14MnSb11 are a promising technology for use in future high performance thermoelectric power generating couples.
Evaluating Multi-Input/Multi-Output Digital Control Systems
NASA Technical Reports Server (NTRS)
Pototzky, Anthony S.; Wieseman, Carol D.; Hoadley, Sherwood T.; Mukhopadhyay, Vivek
1994-01-01
Controller-performance-evaluation (CPE) methodology for multi-input/multi-output (MIMO) digital control systems developed. Procedures identify potentially destabilizing controllers and confirm satisfactory performance of stabilizing ones. Methodology generic and used in many types of multi-loop digital-controller applications, including digital flight-control systems, digitally controlled spacecraft structures, and actively controlled wind-tunnel models. Also applicable to other complex, highly dynamic digital controllers, such as those in high-performance robot systems.
Pastor, Marc-Frederic; Kraemer, Manuel; Wellmann, Mathias; Hurschler, Christof; Smith, Tomas
2016-11-01
The aim of this study was to investigate the stabilizing influence of the rotator cuff as well as the importance of glenosphere and onlay configuration on the anterior stability of the reverse total shoulder replacement (RTSR). A reverse total shoulder replacement was implanted into eight human cadaveric shoulders, and biomechanical testing was performed under three conditions: after implantation of the RTSR, after additional dissection of the subscapularis tendon, and after additional dissection of the infraspinatus and teres minor tendon. Testing was performed in 30° of abduction and three rotational positions: 30° internal rotation, neutral rotation, and 30° external rotation. Furthermore, the 38-mm and 42-mm glenospheres were tested in combination with a standard and a high-mobility humeral onlay. A gradually increased force was applied to the glenohumeral joint in anterior direction until the RTSR dislocated. The 42-mm glenosphere showed superior stability compared with the 38-mm glenosphere. The standard humeral onlay required significantly higher anterior dislocation forces than the more shallow high-mobility onlay. External rotation was the most stable position. Furthermore, isolated detachment of the subscapularis and combined dissection of the infraspinatus, teres minor, and subscapularis tendon increased anterior instability. This study showed superior stability with the 42-mm glenosphere and the more conforming standard onlay. External rotation was the most stable position. Detachment of the subscapularis as well as dissection of the complete rotator cuff decreased anterior stability.
Kerr, David; Wizemann, Erik; Senstius, Jakob; Zacho, Mette; Ampudia-Blasco, Francisco Javier
2013-01-01
Aim: We review and summarize the literature on the safety and stability of rapid-acting insulin analogs used for continuous subcutaneous insulin infusion (CSII) in patients with diabetes. Methods Two predefined search strategies were systematically implemented to search Medline and the Cochrane Register of Clinical Trials for publications between 1996 and 2012. Results Twenty studies were included in the review: 13 in vitro studies and 7 clinical studies. In vitro studies investigated the effects of extreme CSII conditions (high temperature and mechanical agitation) on the risk of catheter occlusions and insulin stability factors, such as potency, purity, high molecular weight protein content, pH stability, and preservative content (m-cresol, phenol). Under these conditions, the overall stability of rapid-acting insulin analogs was similar for insulin lispro, insulin aspart, and insulin glulisine, although insulin glulisine showed greater susceptibility to insulin precipitation and catheter occlusions. A limited number of clinical trials were identified; this evidence-based information suggests that the rate of catheter occlusions in patients with type 1 diabetes using CSII treatment may vary depending on the rapid-acting analog used. Conclusions Based on a limited amount of available data, the safety, stability, and performance of the three available rapid-acting insulin analogs available for use with CSII were similar. However, there is limited evidence suggesting that the risk of occlusion may vary with the insulin preparation under certain circumstances. PMID:24351186
Airfoil stall interpreted through linear stability analysis
NASA Astrophysics Data System (ADS)
Busquet, Denis; Juniper, Matthew; Richez, Francois; Marquet, Olivier; Sipp, Denis
2017-11-01
Although airfoil stall has been widely investigated, the origin of this phenomenon, which manifests as a sudden drop of lift, is still not clearly understood. In the specific case of static stall, multiple steady solutions have been identified experimentally and numerically around the stall angle. We are interested here in investigating the stability of these steady solutions so as to first model and then control the dynamics. The study is performed on a 2D helicopter blade airfoil OA209 at low Mach number, M 0.2 and high Reynolds number, Re 1.8 ×106 . Steady RANS computation using a Spalart-Allmaras model is coupled with continuation methods (pseudo-arclength and Newton's method) to obtain steady states for several angles of incidence. The results show one upper branch (high lift), one lower branch (low lift) connected by a middle branch, characterizing an hysteresis phenomenon. A linear stability analysis performed around these equilibrium states highlights a mode responsible for stall, which starts with a low frequency oscillation. A bifurcation scenario is deduced from the behaviour of this mode. To shed light on the nonlinear behavior, a low order nonlinear model is created with the same linear stability behavior as that observed for that airfoil.
Gorman, Gregory; Sokom, Simara; Coward, Lori; Arnold, John J
2017-01-01
Topical gels compounded by pharmacists are important clinical tools for the management of pain. Nevertheless, there is often a dearth of information about the chemical stability of drugs included in these topical formulations, complicating the assignment of beyond-use dating. The purpose of this study was to develop a high-performance liquid chromatography photodiode array-based stability-indicating assay that could simultaneously resolve six drugs (amitriptyline, baclofen, clonidine, gabapentin, ketoprofen, lidocaine) commonly included in topical gels for pain management and their potential degradation products. Furthermore, this method was applied to the determination of beyond-use dating of combinations of these drugs prepared in commonly utilized bases (Lipobase, Lipoderm, Pluronic organogel). Gabapentin was determined to be the least stable component in all formulations tested. Measured stability ranged between 7 to 49 days depending on the base and other active drugs present in the formulation. In the absence of gabapentin, baclofen was the next least stable component, lasting for 120 days, regardless of the type of formulating base used. Copyright© by International Journal of Pharmaceutical Compounding, Inc.
Seo, Jin-Suk; Bae, Byeong-Soo
2014-09-10
We fabricated active single- and bilayer structure thin film transistors (TFTs) with aluminum or gallium doped (IZO:Al or IZO:Ga) and undoped indium zinc oxide (IZO) thin film layers using an aqueous solution process. The electrical performance and bias stability of these active single- and bilayer structure TFTs were investigated and compared to reveal the effects of Al/Gal doping and bilayer structure. The single-layer structure IZO TFT shows a high mobility of 19 cm(2)/V · s with a poor positive bias stability (PBS) of ΔVT + 3.4 V. However, Al/Ga doped in IZO TFT reduced mobility to 8.5-9.9 cm(2)/V · s but improved PBS to ΔVT + 1.6-1.7 V due to the reduction of oxygen vacancy. Thus, it is found the bilayer structure TFTs with a combination of bottom- and top-layer compositions modify both the mobility and bias stability of the TFTs to be optimized. The bilayer structure TFT with an IZO:X bottom layer possess high mobility and an IZO bottom layer improves the PBS.
Li, Zhenglong; Choi, Jae-Soon; Wang, Huamin; ...
2017-08-18
Low-temperature hydrogenation of carbonyl fractions can greatly improve the thermal stability of fast pyrolysis bio-oil which is crucial to achieve long-term operation of high-temperature upgrading reactors. The current state of the art, precious metals such as ruthenium, although highly effective in carbonyl hydrogenation, rapidly loses performance due to sulfur sensitivity. The present work showed that molybdenum carbides were active and sulfur-tolerant in low-temperature conversion carbonyl compounds. Furthermore, due to surface bifunctionality (presence of both metallic and acid sites), carbides catalyzed both C=O bond hydrogenation and C-C coupling reactions retaining most of carbon atoms in liquid products as more stable andmore » higher molecular weight oligomeric compounds while consuming less hydrogen than ruthenium. The carbides proved to be resistant to other deactivation mechanisms including hydrothermal aging, oxidation, coking and leaching. These properties enabled carbides to achieve and maintain good catalytic performance in both aqueous-phase furfural conversion and real bio-oil stabilization with sulfur present. This finding strongly suggests that molybdenum carbides can provide a catalyst solution necessary for the development of commercially viable bio-oil stabilization technology.« less
Improvement of the thermal stability of Nb:TiO2-x samples for uncooled infrared detectors
NASA Astrophysics Data System (ADS)
Reddy, Y. Ashok Kumar; Kang, In-Ku; Shin, Young Bong; Lee, Hee Chul
2018-01-01
In order to reduce the sun-burn effect in a sample of the bolometric material Nb:TiO2-x , oxygen annealing was carried out. This effect can be examined by comparing thermal stability test results between the as-deposited and oxygen-atmosphere-annealed samples under high-temperature exposure conditions. Structural studies confirm the presence of amorphous and rutile phases in the as-deposited and annealed samples, respectively. Composition studies reveal the offset of oxygen vacancies in the Nb:TiO2-x samples through oxygen-atmosphere annealing. The oxygen atoms were diffused and seemed to occupy the vacant sites in the annealed samples. As a result, the annealed samples show better thermal stability performance than the as-deposited samples. The universal bolometric parameter (β) values were slightly decreased in the oxygen-annealed Nb:TiO2-x samples. Although bolometric performance was slightly decreased in the oxygen-annealed samples, high thermal stability would be the most essential factor in the case of special applications, such as the military and space industries. Finally, these results will be very useful for reducing the sun-burn effect in infrared detectors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Zhenglong; Choi, Jae-Soon; Wang, Huamin
Low-temperature hydrogenation of carbonyl fractions can greatly improve the thermal stability of fast pyrolysis bio-oil which is crucial to achieve long-term operation of high-temperature upgrading reactors. The current state of the art, precious metals such as ruthenium, although highly effective in carbonyl hydrogenation, rapidly loses performance due to sulfur sensitivity. The present work showed that molybdenum carbides were active and sulfur-tolerant in low-temperature conversion carbonyl compounds. Furthermore, due to surface bifunctionality (presence of both metallic and acid sites), carbides catalyzed both C=O bond hydrogenation and C-C coupling reactions retaining most of carbon atoms in liquid products as more stable andmore » higher molecular weight oligomeric compounds while consuming less hydrogen than ruthenium. The carbides proved to be resistant to other deactivation mechanisms including hydrothermal aging, oxidation, coking and leaching. These properties enabled carbides to achieve and maintain good catalytic performance in both aqueous-phase furfural conversion and real bio-oil stabilization with sulfur present. This finding strongly suggests that molybdenum carbides can provide a catalyst solution necessary for the development of commercially viable bio-oil stabilization technology.« less
NASA Astrophysics Data System (ADS)
Chen, Kongfa; He, Shuai; Li, Na; Cheng, Yi; Ai, Na; Chen, Minle; Rickard, William D. A.; Zhang, Teng; Jiang, San Ping
2018-02-01
La0.6Sr0.2Co0.2Fe0.8O3-δ (LSCF) is the most intensively investigated high performance cathode for intermediate temperature solid oxide fuel cells (IT-SOFCs), but strontium segregation and migration at the electrode/electrolyte interface is a critical issue limiting the electrocatalytic activity and stability of LSCF based cathodes. Herein, we report a Nb and Pd co-doped LSCF (La0.57Sr0.38Co0.19Fe0.665Nb0.095Pd0.05O3-δ, LSCFNPd) perovskite as stable and active cathode on a barrier-layer-free anode-supported yttria-stabilized zirconia (YSZ) electrolyte cell using direct assembly method without pre-sintering at high temperatures. The cell exhibits a peak power density of 1.3 W cm-2 at 750 °C and excellent stability with no degradation during polarization at 500 mA cm-2 and 750 °C for 175 h. Microscopic and spectroscopic analysis show that the electrochemical polarization promotes the formation of electrode/electrolyte interface in operando and exsolution of Pd/PdO nanoparticles. The Nb doping in the B-site of LSCF significantly reduces the Sr surface segregation, enhancing the stability of the cathode, while the exsoluted Pd/PdO nanoparticles increases the electrocatalytic activity for the oxygen reduction reaction. The present study opens up a new route for the development of cobaltite-based perovskite cathodes with high activity and stability for barrier-layer-free YSZ electrolyte based IT-SOFCs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barnett, Scott; Poeppelmeier, Ken; Mason, Tom
This project addresses fundamental materials challenges in solid oxide electrochemical cells, devices that have a broad range of important energy applications. Although nano-scale mixed ionically and electronically conducting (MIEC) materials provide an important opportunity to improve performance and reduce device operating temperature, durability issues threaten to limit their utility and have remained largely unexplored. Our work has focused on both (1) understanding the fundamental processes related to oxygen transport and surface-vapor reactions in nano-scale MIEC materials, and (2) determining and understanding the key factors that control their long-term stability. Furthermore, materials stability has been explored under the “extreme” conditions encounteredmore » in many solid oxide cell applications, i.e, very high or very low effective oxygen pressures, and high current density.« less
A time delay controller for magnetic bearings
NASA Technical Reports Server (NTRS)
Youcef-Toumi, K.; Reddy, S.
1991-01-01
The control of systems with unknown dynamics and unpredictable disturbances has raised some challenging problems. This is particularly important when high system performance needs to be guaranteed at all times. Recently, the Time Delay Control has been suggested as an alternative control scheme. The proposed control system does not require an explicit plant model nor does it depend on the estimation of specific plant parameters. Rather, it combines adaptation with past observations to directly estimate the effect of the plant dynamics. A control law is formulated for a class of dynamic systems and a sufficient condition is presented for control systems stability. The derivation is based on the bounded input-bounded output stability approach using L sub infinity function norms. The control scheme is implemented on a five degrees of freedom high speed and high precision magnetic bearing. The control performance is evaluated using step responses, frequency responses, and disturbance rejection properties. The experimental data show an excellent control performance despite the system complexity.
Cui, Yanyan; Liang, Xinmiao; Chai, Jingchao; Cui, Zili; Wang, Qinglei; He, Weisheng; Liu, Xiaochen; Feng, Jiwen
2017-01-01
Abstract It is urgent to seek high performance solid polymer electrolytes (SPEs) via a facile chemistry and simple process. The lithium salts are composed of complex anions that are stabilized by a Lewis acid agent. This Lewis acid can initiate the ring opening polymerization. Herein, a self‐catalyzed strategy toward facile synthesis of crosslinked poly(ethylene glycol) diglycidyl ether‐based solid polymer electrolyte (C‐PEGDE) is presented. It is manifested that the poly(ethylene glycol) diglycidyl ether‐based solid polymer electrolyte possesses a superior electrochemical stability window up to 4.5 V versus Li/Li+ and considerable ionic conductivity of 8.9 × 10−5 S cm−1 at ambient temperature. Moreover, the LiFePO4/C‐PEGDE/Li batteries deliver stable charge/discharge profiles and considerable rate capability. It is demonstrated that this self‐catalyzed strategy can be a very effective approach for high performance solid polymer electrolytes. PMID:29201612
1988-07-15
solvents were used. For high performance liquid chromatographic studies, the DNA bases thymine, adenine, cytocine, uracil, and guanine (Aldrich...this experiment. The DNA bases guanine, adenine, cytocine, uracil, and thymine were detected for a gradient elution of a mixture of the bases in a
NASA Astrophysics Data System (ADS)
Ye, Xingke; Zhu, Yucan; Tang, Zhonghua; Wan, Zhongquan; Jia, Chunyang
2017-08-01
For practical applications of graphene-based materials in flexible supercapacitors, a technological breakthrough is currently required to fabricate high-performance graphene paper by a facile method. Herein, highly conductive (∼6900 S m-1) graphene paper with loose multilayered structure is produced by a high-efficiency in-situ chemical reduction process, which assembles graphite oxide suspensions into film and simultaneously conducts chemical reduction. Graphene papers with different parameters (including different types and doses of reductants, different thicknesses and areas of films) are successfully fabricated through this in-situ chemical reduction method. Meanwhile, the influences of the graphene papers with different parameters upon the supercapacitor performance are systematically investigated. Flexible supercapacitor based on the graphene paper exhibits high areal capacitance (152.4 mF cm-2 at current density of 2.0 mA cm-2 in aqueous electrolyte), and excellent rate performance (88.7% retention at 8.0 mA cm-2). Furthermore, bracelet-shaped all-solid supercapacitor with fascinating cycling stability (96.6% retention after 10 000 cycles) and electrochemical stability (an almost negligible capacity loss under different bending states and 99.6% retention after 4000 bending cycles) is established by employing the graphene paper electrode material and polymer electrolyte.
Ma, Guofu; Hua, Fengting; Sun, Kanjun; Fenga, Enke; Peng, Hui; Zhang, Zhiguo; Lei, Ziqiang
2018-01-01
The electrochemical performance of an energy conversion and storage device like the supercapacitor mainly depends on the microstructure and morphology of the electrodes. In this paper, to improve the capacitance performance of the supercapacitor, the all-pseudocapacitive electrodes of lamella-like Bi 18 SeO 29 /BiSe as the negative electrode and flower-like Co 0.85 Se nanosheets as the positive electrode are synthesized by using a facile low-temperature one-step hydrothermal method. The microstructures and morphology of the electrode materials are carefully characterized, and the capacitance performances are also tested. The Bi 18 SeO 29 /BiSe and Co 0.85 Se have high specific capacitance (471.3 F g -1 and 255 F g -1 at 0.5 A g -1 ), high conductivity, outstanding cycling stability, as well as good rate capability. The assembled asymmetric supercapacitor completely based on the pseudocapacitive electrodes exhibits outstanding cycling stability (about 93% capacitance retention after 5000 cycles). Moreover, the devices exhibit high energy density of 24.2 Wh kg -1 at a power density of 871.2 W kg -1 in the voltage window of 0-1.6 V with 2 M KOH solution.
Practical stability limits of magnesium electrolytes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lipson, Albert L.; Han, Sang -Don; Pan, Baofei
2016-08-13
The development of a Mg ion based energy storage system could provide several benefits relative to today's Li-ion batteries, such as improved energy density. The electrolytes for Mg batteries, which are typically designed to efficiently plate and strip Mg, have not yet been proven to work with high voltage cathode materials that are needed to achieve high energy density. One possibility is that these electrolytes are inherently unstable on porous electrodes. To determine if this is indeed the case, the electrochemical properties of a variety of electrolytes were tested using a porous carbon coating on graphite foil and stainless steelmore » electrodes. It was determined that the oxidative stability limit on these porous electrodes is considerably reduced as compared to those found using polished platinum electrodes. Furthermore, the voltage stability was found to be about 3 V vs. Mg metal for the best performing electrolytes. In conclusion, these results imply the need for further research to improve the stability of Mg electrolytes to enable high voltage Mg batteries.« less
NASA Astrophysics Data System (ADS)
Jia, S.; Sun, H. D.; Du, J. H.; Zhang, Z. K.; Zhang, D. D.; Ma, L. P.; Chen, J. S.; Ma, D. G.; Cheng, H. M.; Ren, W. C.
2016-05-01
The relatively high sheet resistance, low work function and poor compatibility with hole injection layers (HILs) seriously limit the applications of graphene as transparent conductive electrodes (TCEs) for organic light emitting diodes (OLEDs). Here, a graphene oxide/graphene (GO/G) vertical heterostructure is developed as TCEs for high-performance OLEDs, by directly oxidizing the top layer of three-layer graphene films with ozone treatment. Such GO/G heterostructure electrodes show greatly improved optical transmittance, a large work function, high stability, and good compatibility with HIL materials (MoO3 in this work). Moreover, the conductivity of the heterostructure is not sacrificed compared to the pristine three-layer graphene electrodes, but is significantly higher than that of pristine two-layer graphene films. In addition to high flexibility, OLEDs with different emission colors based on the GO/G heterostructure TCEs show much better performance than those based on indium tin oxide (ITO) anodes. Green OLEDs with GO/G heterostructure electrodes have the maximum current efficiency and power efficiency, as high as 82.0 cd A-1 and 98.2 lm W-1, respectively, which are 36.7% (14.8%) and 59.2% (15.0%) higher than those with pristine graphene (ITO) anodes. These findings open up the possibility of using graphene for next generation high-performance flexible and wearable optoelectronics with high stability.The relatively high sheet resistance, low work function and poor compatibility with hole injection layers (HILs) seriously limit the applications of graphene as transparent conductive electrodes (TCEs) for organic light emitting diodes (OLEDs). Here, a graphene oxide/graphene (GO/G) vertical heterostructure is developed as TCEs for high-performance OLEDs, by directly oxidizing the top layer of three-layer graphene films with ozone treatment. Such GO/G heterostructure electrodes show greatly improved optical transmittance, a large work function, high stability, and good compatibility with HIL materials (MoO3 in this work). Moreover, the conductivity of the heterostructure is not sacrificed compared to the pristine three-layer graphene electrodes, but is significantly higher than that of pristine two-layer graphene films. In addition to high flexibility, OLEDs with different emission colors based on the GO/G heterostructure TCEs show much better performance than those based on indium tin oxide (ITO) anodes. Green OLEDs with GO/G heterostructure electrodes have the maximum current efficiency and power efficiency, as high as 82.0 cd A-1 and 98.2 lm W-1, respectively, which are 36.7% (14.8%) and 59.2% (15.0%) higher than those with pristine graphene (ITO) anodes. These findings open up the possibility of using graphene for next generation high-performance flexible and wearable optoelectronics with high stability. Electronic supplementary information (ESI) available: XPS spectra, Raman spectra, sheet resistance and transmittance of graphene films with different numbers of layers and different ozone treatment times, doping effect of MoO3 on graphene and GO/G electrodes, performance of green OLEDs with different graphene anodes, a movie showing the flexibility of device. See DOI: 10.1039/c6nr01649a
Emotional stability, anxiety, and natural killer activity under examination stress.
Borella, P; Bargellini, A; Rovesti, S; Pinelli, M; Vivoli, R; Solfrini, V; Vivoli, G
1999-08-01
This study was performed to evaluate the relation between a stable personality trait, a mood state and immune response to an examination stress. A self-reported measure of emotional stability (BFQ-ES scale) was obtained in a sample (n = 39) randomly selected from 277 cadets; this personality trait was also investigated by completing a neuroticism scale (Eysenck personality inventory) and a trait-anxiety scale (STAI). Natural killer (NK) cell activity was measured at baseline, long before the examination time and the examination day. The state-anxiety scale evaluated the response to the stressful stimulus. Taking subjects all together, the academic task did not result in significant modification over baseline in NK cell activity. Subjects were then divided into three groups based on emotional stability and state-anxiety scores: high emotional stability/low anxiety, medium, and low emotional stability/high anxiety. Examination stress induced significant increases in NK cell activity in the high emotional stability/low anxiety group, no effect in the medium group, and significant decreases in the low emotional stability/high anxiety group. The repeated-measure ANOVA revealed a significant interaction of group x period (baseline vs. examination) for both lytic units and percent cytolysis. The results did not change after introducing coffee and smoking habits as covariates. Our findings suggest that the state-anxiety acts in concert with a stable personality trait to modulate NK response in healthy subjects exposed to a psychological naturalistic stress. The relation between anxiety and poor immune control has been already described, whereas the ability of emotional stability to associate with an immunoenhancement has not yet reported. The peculiarity of our population, a very homogeneous and healthy group for life style and habits, can have highlighted the role of emotional stability, and may account for the difference with other studies.
Stability of cognitive performance in children with mild intellectual disability.
Jenni, Oskar G; Fintelmann, Sylvia; Caflisch, Jon; Latal, Beatrice; Rousson, Valentin; Chaouch, Aziz
2015-05-01
Longitudinal studies that have examined cognitive performance in children with intellectual disability more than twice over the course of their development are scarce. We assessed population and individual stability of cognitive performance in a clinical sample of children with borderline to mild non-syndromic intellectual disability. Thirty-six children (28 males, eight females; age range 3-19y) with borderline to mild intellectual disability (Full-scale IQ [FSIQ] 50-85) of unknown origin were examined in a retrospective clinical case series using linear mixed models including at least three assessments with standardized intelligence tests. Average cognitive performance remained remarkably stable over time (high population stability, drop of only 0.38 IQ points per year, standard error=0.39, p=0.325) whereas individual stability was at best moderate (intraclass correlation of 0.58), indicating that about 60% of the residual variation in FSIQ scores can be attributed to between-child variability. Neither sex nor socio-economic status had a statistically significant impact on FSIQ. Although intellectual disability during childhood is a relatively stable phenomenon, individual stability of IQ is only moderate, likely to be caused by test-to-test reliability (e.g. level of child's cooperation, motivation, and attention). Therefore, clinical decisions and predictions should not rely on single IQ assessments, but should also consider adaptive functioning and previous developmental history. © 2014 Mac Keith Press.
Kong, Dezhi; Ren, Weina; Cheng, Chuanwei; Wang, Ye; Huang, Zhixiang; Yang, Hui Ying
2015-09-30
In this article, we report a novel electrode of NiCo2O4 nanowire arrays (NWAs) on carbon textiles with a polypyrrole (PPy) nanosphere shell layer to enhance the pseudocapacitive performance. The merits of highly conductive PPy and short ion transport channels in ordered NiCo2O4 mesoporous nanowire arrays together with the synergistic effect between NiCo2O4 and PPy result in a high specific capacitance of 2244 F g(-1), excellent rate capability, and cycling stability in NiCo2O4/PPy electrode. Moreover, a lightweight and flexible asymmetric supercapacitor (ASC) device is successfully assembled using the hybrid NiCo2O4@PPy NWAs and activated carbon (AC) as electrodes, achieving high energy density (58.8 W h kg(-1) at 365 W kg(-1)), outstanding power density (10.2 kW kg(-1) at 28.4 W h kg(-1)) and excellent cycling stability (∼89.2% retention after 5000 cycles), as well as high flexibility. The three-dimensional coaxial architecture design opens up new opportunities to fabricate a high-performance flexible supercapacitor for future portable and wearable electronic devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prodanovic, Masa; Johnston, Keith P.
We have successfully created ultra dry carbon-dioxide-in-water and nitrogen-in-water foams (with water content down to 2-5% range), that are remarkably stable at high temperatures (up to 120 deg, C) and pressures (up to 3000psi) and viscous enough (100-200 cP tunable range) to carry proppant. Two generations of these ultra-dry foams have been developed; they are stabilized either with a synergy of surfactants and nanoparticle, or just with viscoelastic surfactants that viscosify the aqueous phase. Not only does this reduce water utilization and disposal, but it minimizes fluid blocking of hydrocarbon production. Further, the most recent development shows successful use ofmore » environmentally friendly surfactants at high temperature and pressure. We pay special attention to the role of nanoparticles in stabilization of the foams, specifically for high salinity brines. The preliminary numerical simulation for which shows they open wider fractures with shorter half-length and require less clean-up due to minimal water use. We also tested the stability and sand carrying properties of these foams at high pressure, room temperature conditions in sapphire cell. We performed on a preliminary numerical investigation of applicability for improved oil recovery applications. The applicability was evaluated by running multiphase flow injection simulations in a case-study oil reservoir. The results of this research thus expand the options available to operators for hydraulic fracturing and can simplify the design and field implementation of foamed fracturing fluids.« less
A high-performance Hg(+) trapped ion frequency standard
NASA Technical Reports Server (NTRS)
Prestage, J. D.; Tjoelker, R. L.; Dick, G. J.; Maleki, L.
1992-01-01
A high-performance frequency standard based on (199)Hg(+) ions confined in a hybrid radio frequency (RF)/dc linear ion trap is demonstrated. This trap permits storage of large numbers of ions with reduced susceptibility to the second-order Doppler effect caused by the RF confining fields. A 160-mHz-wide atomic resonance line for the 40.5-GHz clock transition is used to steer the output of a 5-mHz crystal oscillator to obtain a stability of 2 x 10(exp -15) for 24,000-second averaging times. Measurements with a 37-mHz line width for the Hg(+) clock transition demonstrate that the inherent stability for this frequency standard is better than 1 x 10(exp -15) at 10,000-second averaging times.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tkac, Peter; Gromov, Roman; Chemerisov, Sergey D.
2016-09-01
Four irradiations of ultra-high-purity natural Mo targets and one irradiation using 97.4% Mo-100-enriched material were performed. The purpose of these irradiations was to determine whether the presence of Sn stabilizer in the H 2O 2 used for the dissolution of sintered Mo disks can affect the radiochemical purity of the final K 2MoO 4 in 5M KOH solution. Results from radiochemical purity tests performed using thin-layer paper chromatography show that even 2– 3× excess of Sn-stabilized H 2O 2 typically used for dissolution of sintered Mo disks did not affect the radiochemical purity of the final product.
Polakovič, Milan; Švitel, Juraj; Bučko, Marek; Filip, Jaroslav; Neděla, Vilém; Ansorge-Schumacher, Marion B; Gemeiner, Peter
2017-05-01
Viable microbial cells are important biocatalysts in the production of fine chemicals and biofuels, in environmental applications and also in emerging applications such as biosensors or medicine. Their increasing significance is driven mainly by the intensive development of high performance recombinant strains supplying multienzyme cascade reaction pathways, and by advances in preservation of the native state and stability of whole-cell biocatalysts throughout their application. In many cases, the stability and performance of whole-cell biocatalysts can be highly improved by controlled immobilization techniques. This review summarizes the current progress in the development of immobilized whole-cell biocatalysts, the immobilization methods as well as in the bioreaction engineering aspects and economical aspects of their biocatalytic applications.
Ai, Na; Li, Na; Rickard, William D A; Cheng, Yi; Chen, Kongfa; Jiang, San Ping
2017-03-09
Direct assembly is a newly developed technique in which a cobaltite-based perovskite (CBP) cathode can be directly applied to a barrier-layer-free Y 2 O 3 -ZrO 2 (YSZ) electrolyte with no high-temperature pre-sintering steps. Solid oxide fuel cells (SOFCs) based on directly assembled CBPs such as La 0.6 Sr 0.4 Co 0.2 Fe 0.8 O 3-δ show high performance initially but degrade rapidly under SOFC operation conditions at 750 °C owing to Sr segregation and accumulation at the electrode/electrolyte interface. Herein, the performance and interface of Sr-free CBPs such as LaCoO 3-δ (LC) and Sm 0.95 CoO 3-δ (SmC) and their composite cathodes directly assembled on YSZ electrolyte was studied systematically. The LC electrode underwent performance degradation, most likely owing to cation demixing and accumulation of La on the YSZ electrolyte under polarization at 500 mA cm -2 and 750 °C. However, the performance and stability of LC electrodes could be substantially enhanced by the formation of LC-gadolinium-doped ceria (GDC) composite cathodes. Replacement of La by Sm increased the cell stability, and doping of 5 % Pd to form Sm 0.95 Co 0.95 Pd 0.05 O 3-δ (SmCPd) significantly improved the electrode activity. An anode-supported YSZ-electrolyte cell with a directly assembled SmCPd-GDC composite electrode exhibited a peak power density of 1.4 W cm -2 at 750 °C, and an excellent stability at 750 °C for over 240 h. The higher stability of SmC as compared to that of LC is most likely a result of the lower reactivity of SmC with YSZ. This study demonstrates the new opportunities in the design and development of intermediate-temperature SOFCs based on the directly assembled high-performance and durable Sr-free CBP cathodes. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zhang, Taiyang; Dar, M. Ibrahim; Li, Ge; Xu, Feng; Guo, Nanjie; Grätzel, Michael; Zhao, Yixin
2017-01-01
Among various all-inorganic halide perovskites exhibiting better stability than organic-inorganic halide perovskites, α-CsPbI3 with the most suitable band gap for tandem solar cell application faces an issue of phase instability under ambient conditions. We discovered that a small amount of two-dimensional (2D) EDAPbI4 perovskite containing the ethylenediamine (EDA) cation stabilizes the α-CsPbI3 to avoid the undesirable formation of the nonperovskite δ phase. Moreover, not only the 2D perovskite of EDAPbI4 facilitate the formation of α-CsPbI3 perovskite films exhibiting high phase stability at room temperature for months and at 100°C for >150 hours but also the α-CsPbI3 perovskite solar cells (PSCs) display highly reproducible efficiency of 11.8%, a record for all-inorganic lead halide PSCs. Therefore, using the bication EDA presents a novel and promising strategy to design all-inorganic lead halide PSCs with high performance and reliability. PMID:28975149
Wendt, Lynn M.; Wahlen, Bradley D.; Li, Chenlin; ...
2017-06-01
Here, algal biomass is becoming increasingly attractive as a feedstock for biofuel production. However, the swing in algal biomass production between summer and winter months poses a challenge for delivering predictable, constant feedstock supply to a conversion facility. Drying is one approach for stabilizing algal biomass produced in excess during high productivity summer months for utilization during low productivity months, yet drying is energy intensive and thus costly. Wet, anaerobic storage, or ensiling, is a low-cost approach that is commonly used to preserve high moisture herbaceous feedstock. The potential for microalgae stabilization without the need for drying was investigated inmore » this study by simulating ensiling, in which oxygen limitation drives anaerobic fermentation of soluble sugars to organic acids, dropping the pH and thereby stabilizing the material. Algal biomass, Scenedesmus obliquus, was blended with corn stover and stored in acidic, anaerobic conditions at 60% moisture (wet basis) to simulate wet storage by means of ensiling. Results demonstrate that algae and corn stover blends were successfully preserved in anaerobic, acidic conditions for 30 days with < 2% dry matter loss occurring during storage compared to 21% loss in aerobic, non-acidified conditions. Likewise, Scenedesmus obliquus stored alone at 80% moisture (wet basis) in acidified, anaerobic conditions for 30 days, resulted in dry matter losses of 6–14%, compared to 44% loss in neutral pH, anaerobic storage and 37% loss in a neutral pH, aerobically stored condition. Additional experiments were performed at a larger scale in which an algae and corn stover blend was subject to mechanical oxygen exclusion and a Lactobacillus acidophilus inoculum, resulting in 8% loss over 35 days and further indicating that acidic, anaerobic conditions can stabilize microalgae biomass. In summary, the stabilization of harvested algae can be achieved through anaerobic storage, securing a feedstock that is labile yet of high value.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wendt, Lynn M.; Wahlen, Bradley D.; Li, Chenlin
Here, algal biomass is becoming increasingly attractive as a feedstock for biofuel production. However, the swing in algal biomass production between summer and winter months poses a challenge for delivering predictable, constant feedstock supply to a conversion facility. Drying is one approach for stabilizing algal biomass produced in excess during high productivity summer months for utilization during low productivity months, yet drying is energy intensive and thus costly. Wet, anaerobic storage, or ensiling, is a low-cost approach that is commonly used to preserve high moisture herbaceous feedstock. The potential for microalgae stabilization without the need for drying was investigated inmore » this study by simulating ensiling, in which oxygen limitation drives anaerobic fermentation of soluble sugars to organic acids, dropping the pH and thereby stabilizing the material. Algal biomass, Scenedesmus obliquus, was blended with corn stover and stored in acidic, anaerobic conditions at 60% moisture (wet basis) to simulate wet storage by means of ensiling. Results demonstrate that algae and corn stover blends were successfully preserved in anaerobic, acidic conditions for 30 days with < 2% dry matter loss occurring during storage compared to 21% loss in aerobic, non-acidified conditions. Likewise, Scenedesmus obliquus stored alone at 80% moisture (wet basis) in acidified, anaerobic conditions for 30 days, resulted in dry matter losses of 6–14%, compared to 44% loss in neutral pH, anaerobic storage and 37% loss in a neutral pH, aerobically stored condition. Additional experiments were performed at a larger scale in which an algae and corn stover blend was subject to mechanical oxygen exclusion and a Lactobacillus acidophilus inoculum, resulting in 8% loss over 35 days and further indicating that acidic, anaerobic conditions can stabilize microalgae biomass. In summary, the stabilization of harvested algae can be achieved through anaerobic storage, securing a feedstock that is labile yet of high value.« less
Resolving phase stability in the Ti-O binary with first-principles statistical mechanics methods
NASA Astrophysics Data System (ADS)
Gunda, N. S. Harsha; Puchala, Brian; Van der Ven, Anton
2018-03-01
The Ti-O system consists of a multitude of stable and metastable oxides that are used in wide ranging applications. In this work we investigate phase stability in the Ti-O binary from first principles. We perform a systematic search for ground state structures as a function of oxygen concentration by considering oxygen-vacancy and/or titanium-vacancy orderings over four parent crystal structures: (i) hcp Ti, (ii) ω -Ti, (iii) rocksalt, and (iv) hcp oxygen containing interstitial titanium. We explore phase stability at finite temperature using cluster expansion Hamiltonians and Monte Carlo simulations. The calculations predict a high oxygen solubility in hcp Ti and the stability of suboxide phases that undergo order-disorder transitions upon heating. Vacancy ordered rocksalt phases are also predicted at low temperature that disorder to form an extended solid solution at high temperatures. Predicted stable and metastable phase diagrams are qualitatively consistent with experimental observations, however, important discrepancies are revealed between first-principles density functional theory predictions of phase stability and the current understanding of phase stability in this system.
Zequine, Camila; Ranaweera, C. K.; Wang, Z.; Singh, Sweta; Tripathi, Prashant; Srivastava, O. N.; Gupta, Bipin Kumar; Ramasamy, K.; Kahol, P. K.; Dvornic, P. R.; Gupta, Ram K.
2016-01-01
High performance carbonized bamboo fibers were synthesized for a wide range of temperature dependent energy storage applications. The structural and electrochemical properties of the carbonized bamboo fibers were studied for flexible supercapacitor applications. The galvanostatic charge-discharge studies on carbonized fibers exhibited specific capacity of ~510F/g at 0.4 A/g with energy density of 54 Wh/kg. Interestingly, the carbonized bamboo fibers displayed excellent charge storage stability without any appreciable degradation in charge storage capacity over 5,000 charge-discharge cycles. The symmetrical supercapacitor device fabricated using these carbonized bamboo fibers exhibited an areal capacitance of ~1.55 F/cm2 at room temperature. In addition to high charge storage capacity and cyclic stability, the device showed excellent flexibility without any degradation to charge storage capacity on bending the electrode. The performance of the supercapacitor device exhibited ~65% improvement at 70 °C compare to that at 10 °C. Our studies suggest that carbonized bamboo fibers are promising candidates for stable, high performance and flexible supercapacitor devices. PMID:27546225
Zequine, Camila; Ranaweera, C K; Wang, Z; Singh, Sweta; Tripathi, Prashant; Srivastava, O N; Gupta, Bipin Kumar; Ramasamy, K; Kahol, P K; Dvornic, P R; Gupta, Ram K
2016-08-22
High performance carbonized bamboo fibers were synthesized for a wide range of temperature dependent energy storage applications. The structural and electrochemical properties of the carbonized bamboo fibers were studied for flexible supercapacitor applications. The galvanostatic charge-discharge studies on carbonized fibers exhibited specific capacity of ~510F/g at 0.4 A/g with energy density of 54 Wh/kg. Interestingly, the carbonized bamboo fibers displayed excellent charge storage stability without any appreciable degradation in charge storage capacity over 5,000 charge-discharge cycles. The symmetrical supercapacitor device fabricated using these carbonized bamboo fibers exhibited an areal capacitance of ~1.55 F/cm(2) at room temperature. In addition to high charge storage capacity and cyclic stability, the device showed excellent flexibility without any degradation to charge storage capacity on bending the electrode. The performance of the supercapacitor device exhibited ~65% improvement at 70 °C compare to that at 10 °C. Our studies suggest that carbonized bamboo fibers are promising candidates for stable, high performance and flexible supercapacitor devices.
NASA Astrophysics Data System (ADS)
Zequine, Camila; Ranaweera, C. K.; Wang, Z.; Singh, Sweta; Tripathi, Prashant; Srivastava, O. N.; Gupta, Bipin Kumar; Ramasamy, K.; Kahol, P. K.; Dvornic, P. R.; Gupta, Ram K.
2016-08-01
High performance carbonized bamboo fibers were synthesized for a wide range of temperature dependent energy storage applications. The structural and electrochemical properties of the carbonized bamboo fibers were studied for flexible supercapacitor applications. The galvanostatic charge-discharge studies on carbonized fibers exhibited specific capacity of ~510F/g at 0.4 A/g with energy density of 54 Wh/kg. Interestingly, the carbonized bamboo fibers displayed excellent charge storage stability without any appreciable degradation in charge storage capacity over 5,000 charge-discharge cycles. The symmetrical supercapacitor device fabricated using these carbonized bamboo fibers exhibited an areal capacitance of ~1.55 F/cm2 at room temperature. In addition to high charge storage capacity and cyclic stability, the device showed excellent flexibility without any degradation to charge storage capacity on bending the electrode. The performance of the supercapacitor device exhibited ~65% improvement at 70 °C compare to that at 10 °C. Our studies suggest that carbonized bamboo fibers are promising candidates for stable, high performance and flexible supercapacitor devices.
Zhang, Lin-Lin; Li, Huan-Huan; Shi, Yan-Hong; Fan, Chao-Ying; Wu, Xing-Long; Wang, Hai-Feng; Sun, Hai-Zhu; Zhang, Jing-Ping
2016-02-17
In this paper, gelatin as a natural biomass was selected to successfully prepare an oxygen-enriched carbon with layered sedimentary rocks structure, which exhibited ultrahigh-rate performance and excellent cycling stability as supercapacitors. The specific capacitance reached 272.6 F g(-1) at 1 A g(-1) and still retained 197.0 F g(-1) even at 100 A g(-1) (with high capacitance retention of 72.3%). The outstanding electrochemical performance resulted from the special layered structure with large surface area (827.8 m(2) g(-1)) and high content of oxygen (16.215 wt %), which effectively realized the synergistic effects of the electrical double-layer capacitance and pseudocapacitance. Moreover, it delivered an energy density of 25.3 Wh kg(-1) even with a high power density of 34.7 kW kg(-1) and ultralong cycling stability (with no capacitance decay even over 10,000 cycles at 2 A g(-1)) in a symmetric supercapacitor, which are highly desirable for their practical application in energy storage devices and conversion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, Nicholas W.; Shao, Miaolei; Pajic, Slobodan
The addition of large amounts of wind and solar generation to bulk power systems that are traditionally subject to operating constraints set by transient stability and frequency response limitations is the subject of considerable concern in the industry. The US Western Interconnection (WI) is expected to experience substantial additional growth in both wind and solar generation. These plants will, to some extent, displace large central station thermal generation, both coal and gas-fired, which have traditionally helped maintain stability. This paper reports the results of a study that investigated the transient stability and frequency response of the WI with high penetrationsmore » of wind and solar generation. The main goals of this work were to (1) create a realistic, baseline model of the WI, (2) test selected transient stability and frequency events, (3) investigate the impact of large amounts of wind and solar generation, and (4) examine means to improve performance.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clark, Kara; Miller, Nicholas W.; Shao, Miaolei
Adding large amounts of wind and solar generation to bulk power systems that are traditionally subject to operating constraints set by transient stability and frequency response limitations is the subject of considerable concern in the industry. The US Western Interconnection (WI) is expected to experience substantial additional growth in both wind and solar generation. These plants will, to some extent, displace large central station thermal generation, both coal and gas-fired, which have traditionally helped maintain stability. Our paper reports the results of a study that investigated the transient stability and frequency response of the WI with high penetrations of windmore » and solar generation. Moreover, the main goals of this work were to (1) create a realistic, baseline model of the WI, (2) test selected transient stability and frequency events, (3) investigate the impact of large amounts of wind and solar generation, and (4) examine means to improve performance.« less
Very high stability systems: LMJ target alignment system and MTG imager test setup
NASA Astrophysics Data System (ADS)
Compain, Eric; Maquet, Philippe; Kunc, Thierry; Marque, Julien; Lauer-Solelhac, Maxime; Delage, Laurent; Lanternier, Catherine
2015-09-01
Most of space instruments and research facilities require test equipment with demanding opto-mechanical stability. In some specific cases, when the stability performance directly drives the final performance of the scientific mission and when feasibility is questionable, specific methods must be implemented for the associated technical risk management. In present paper, we will present our heritage in terms of methodology, design, test and the associated results for two specific systems : the SOPAC-POS and the MOTA, generating new references for future developments. From a performance point of view, we will emphasis on following key parameters : design symmetry, thermal load management, and material and structural choices. From a method point of view the difficulties arise first during design, from the strong coupling between the thermal, mechanical and optical performance models, and then during testing, from the difficulty of conceiving test setup having appropriate performance level. We will present how these limitations have been overcome. SOPAC-POS is the target alignment system of the LMJ, Laser Mega Joule, the French inertial confinement fusion research center. Its stability has been demonstrated by tests in 2014 after 10 years of research and development activities, achieving 1μm stability @ 6m during one hour periods. MOTA is an Optical Ground Support Equipment aiming at qualifying by tests the Flexible Combined Imager (FCI). FCI is an instrument for the meteorological satellite MTG-I, a program of and funded by the European Space Agency and under prime contractorship of Thales Alenia Space. Optimized design will allow to get better than 0.2 μrad stability for one hour periods, as required for MTF measurement.
Handling performance control for hybrid 8-wheel-drive vehicle and simulation verification
NASA Astrophysics Data System (ADS)
Ni, Jun; Hu, Jibin
2016-08-01
In order to improve handling performance of a hybrid 8-Wheel-Drive vehicle, the handling performance control strategy was proposed. For armoured vehicle, besides handling stability in high speed, the minimum steer radius in low speed is also a key tactical and technical index. Based on that, the proposed handling performance control strategy includes 'Handling Stability' and 'Radius Minimization' control modes. In 'Handling Stability' control mode, 'Neutralsteer Radio' is defined to adjust the steering characteristics to satisfy different demand in different speed range. In 'Radius Minimization' control mode, the independent motors are controlled to provide an additional yaw moment to decrease the minimum steer radius. In order to verify the strategy, a simulation platform was built including engine and continuously variable transmission systems, generator and battery systems, independent motors and controllers systems, vehicle dynamic and tyre mechanical systems. The simulation results show that the handling performance of the vehicle can be enhanced significantly, and the minimum steer radius can be decreased by 20% which is significant improvement compared to the common level of main battle armoured vehicle around the world.
Park, A Reum; Son, Dae-Yong; Kim, Jung Sub; Lee, Jun Young; Park, Nam-Gyu; Park, Juhyun; Lee, Joong Kee; Yoo, Pil J
2015-08-26
Silicon (Si) has attracted tremendous attention as a high-capacity anode material for next generation Li-ion batteries (LIBs); unfortunately, it suffers from poor cyclic stability due to excessive volume expansion and reduced electrical conductivity after repeated cycles. To circumvent these issues, we propose that Si can be complexed with electrically conductive Ti2O3 to significantly enhance the reversible capacity and cyclic stability of Si-based anodes. We prepared a ternary nanocomposite of Si/Ti2O3/reduced graphene oxide (rGO) using mechanical blending and subsequent thermal reduction of the Si, TiO2 nanoparticles, and rGO nanosheets. As a result, the obtained ternary nanocomposite exhibited a specific capacity of 985 mAh/g and a Coulombic efficiency of 98.4% after 100 cycles at a current density of 100 mA/g. Furthermore, these ternary nanocomposite anodes exhibited outstanding rate capability characteristics, even with an increased current density of 10 A/g. This excellent electrochemical performance can be ascribed to the improved electron and ion transport provided by the Ti2O3 phase within the Si domains and the structurally reinforced conductive framework comprised of the rGO nanosheets. Therefore, it is expected that our approach can also be applied to other anode materials to enable large reversible capacity, excellent cyclic stability, and good rate capability for high-performance LIBs.
Price, Eric W; Edwards, Kimberly J; Carnazza, Kathryn E; Carlin, Sean D; Zeglis, Brian M; Adam, Michael J; Orvig, Chris; Lewis, Jason S
2016-09-01
To compare the radiolabeling performance, stability, and practical efficacy of the chelators CHX-A″-DTPA and H4octapa with the therapeutic radiometal (90)Y. The bifunctional chelators p-SCN-Bn-H4octapa and p-SCN-Bn-CHX-A″-DTPA were conjugated to the HER2-targeting antibody trastuzumab. The resulting immunoconjugates were radiolabeled with (90)Y to compare radiolabeling efficiency, in vitro and in vivo stability, and in vivo performance in a murine model of ovarian cancer. High radiochemical yields (>95%) were obtained with (90)Y-CHX-A″-DTPA-trastuzumab and (90)Y-octapa-trastuzumab after 15min at room temperature. Both (90)Y-CHX-A″-DTPA-trastuzumab and (90)Y-octapa-trastuzumab exhibited excellent in vitro and in vivo stability. Furthermore, the radioimmunoconjugates displayed high tumoral uptake values (42.3±4.0%ID/g for (90)Y-CHX-A″-DTPA-trastuzumab and 30.1±7.4%ID/g for (90)Y-octapa-trastuzumab at 72h post-injection) in mice bearing HER2-expressing SKOV3 ovarian cancer xenografts. Finally, (90)Y radioimmunotherapy studies performed in tumor-bearing mice demonstrated that (90)Y-CHX-A″-DTPA-trastuzumab and (90)Y-octapa-trastuzumab are equally effective therapeutic agents, as treatment with both radioimmunoconjugates yielded substantially decreased tumor growth compared to controls. Ultimately, this work demonstrates that the acyclic chelators CHX-A″-DTPA and H4octapa have comparable radiolabeling, stability, and in vivo performance, making them both suitable choices for applications requiring (90)Y. Copyright © 2016 Elsevier Inc. All rights reserved.
Ma, Lianbo; Zhang, Wenjun; Wang, Lei; Hu, Yi; Zhu, Guoyin; Wang, Yanrong; Chen, Renpeng; Chen, Tao; Tie, Zuoxiu; Liu, Jie; Jin, Zhong
2018-05-22
The development of flexible lithium-sulfur (Li-S) batteries with high energy density and long cycling life are very appealing for the emerging flexible, portable, and wearable electronics. However, the progress on flexible Li-S batteries was limited by the poor flexibility and serious performance decay of existing sulfur composite cathodes. Herein, we report a freestanding and highly flexible sulfur host that can simultaneously meet the flexibility, stability, and capacity requirements of flexible Li-S batteries. The host consists of a crisscrossed network of carbon nanotubes reinforced CoS nanostraws (CNTs/CoS-NSs). The CNTs/CoS-NSs with large inner space and high conductivity enable high loading and efficient utilization of sulfur. The strong capillarity effect and chemisorption of CNTs/CoS-NSs to sulfur species were verified, which can efficiently suppress the shuttle effect and promote the redox kinetics of polysulfides. The sulfur-encapsulated CNTs/CoS-NSs (S@CNTs/CoS-NSs) cathode in Li-S batteries exhibits superior performance, including high discharge capacity, rate capability (1045 mAh g -1 at 0.5 C and 573 mAh g -1 at 5.0 C), and cycling stability. Intriguingly, the soft-packed Li-S batteries based on S@CNTs/CoS-NSs cathode show good flexibility and stability upon bending.
The sol-gel template synthesis of porous TiO2 for a high performance humidity sensor
NASA Astrophysics Data System (ADS)
Wang, Zhuyi; Shi, Liyi; Wu, Fengqing; Yuan, Shuai; Zhao, Yin; Zhang, Meihong
2011-07-01
This research develops a simple template assisted sol-gel process for preparing porous TiO2 for a high performance humidity sensor. Tetraethyl orthosilicate (TEOS) as a template was directly introduced into TiO2 sol formed by the hydrolysis and condensation of titanium alkoxide; the following calcination led to the formation of TiO2-SiO2 composite, and the selective removal of SiO2 by dilute HF solution led to the formation of porous structure in TiO2. The resulting porous TiO2-based sensor exhibits high sensitivity and linear response in the wide relative humidity (RH) range of 11%-95%, with an impedance variation of four orders of magnitude to humidity change. Moreover, it exhibits a rapid and highly reversible response characterized by a very small hysteresis of < 1% RH and a short response-recovery time (5 s for adsorption and 8 s for desorption), and a 30-day stability test also confirms its long-term stability. Compared with pure TiO2 prepared by the conventional sol-gel method, our product shows remarkably improved performance and good prospect for a high performance humidity sensor. The complex impedance spectra were used to elucidate its humidity sensing mechanism in detail.
Zhang, Xinyang; Zhang, Ziqing; Sun, Shuanggan; Sun, Qiushi; Liu, Xiaoyang
2018-02-13
Hierarchical NiFe 2 O 4 @MnO 2 core-shell nanosheet arrays (NSAs) were synthesized on Ni foam as an integrated electrode for supercapacitors, using a facile two-step hydrothermal method followed by calcination treatment. The NiFe 2 O 4 nanosheets were designed as the core and ultrathin MnO 2 nanoflakes as the shell, creating a unique three-dimensional (3D) hierarchical electrode on Ni foam. The composite electrode exhibited remarkable electrochemical performance with a high specific capacitance of 1391 F g -1 at a current density of 2 mA cm -2 and long cycling stability at a high current density of 10 mA cm -2 (only 11.4% loss after 3000 cycles). Additionally, an asymmetric supercapacitor (ASC) device was fabricated with a NiFe 2 O 4 @MnO 2 composite as the positive electrode material and activated carbon (AC) as the negative one. The ASC device exhibited a high energy density (45.2 W h kg -1 ) at a power density of 174 W kg -1 , and an excellent cycling stability over 3000 cycles with 92.5% capacitance retention. The remarkable electrochemical performance demonstrated its great potential as a promising candidate for high-performance supercapacitors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Nantao; Zhang, Liling; Yang, Chao
Thin, robust, lightweight, and flexible supercapacitors (SCs) have aroused growing attentions nowadays due to the rapid development of flexible electronics. Graphene-polyaniline (PANI) hybrids are attractive candidates for high performance SCs. In order to utilize them in real devices, it is necessary to improve the capacitance and the structure stability of PANI. Here we report a hierarchical three-dimensional structure, in which all of PANI nanofibers (NFs) are tightly wrapped inside reduced graphene oxide (rGO) nanosheet skeletons, for high-performance flexible SCs. The as-fabricated film electrodes with this unique structure showed a highest gravimetric specific capacitance of 921 F/g and volumetric capacitance ofmore » 391 F/cm 3. The assembled solid-state SCs gave a high specific capacitance of 211 F/g (1 A/g), a high area capacitance of 0.9 F/cm 2, and a competitive volumetric capacitance of 25.6 F/cm 3. The SCs also exhibited outstanding rate capability (~75% retention at 20 A/g) as well as excellent cycling stability (100% retention at 10 A/g for 2000 cycles). Additionally, no structural failure and loss of performance were observed under the bending state. Lastly, this structure design paves a new avenue for engineering rGO/PANI or other similar hybrids for high performance flexible energy storage devices.« less
Li, Daohao; Sun, Yuanyuan; Chen, Shuai; Yao, Jiuyong; Zhang, Yuhui; Xia, Yanzhi; Yang, Dongjiang
2018-05-08
The nanostructured metal sulfides have been reported as promising anode materials for sodium-ion batteries (SIBs) due to their high theoretical capacities but have suffered from the unsatisfactory electronic conductivity and poor structural stability during a charge/discharge process, thus limiting their applications. Herein, the one-dimensional (1D) porous FeS/carbon fibers (FeS/CFs) micro/nanostructures are fabricated through facile pyrolysis of double-helix-structured Fe-carrageenan fibers. The FeS nanoparticles are in situ formed by interacting with sulfur-containing group of natural material ι-carrageenan and uniformly embedded in the unique 1D porous carbon fibrous matrix, significantly enhancing the sodium-ion storage performance. The obtained FeS/CFs with optimized sodium storage performance benefits from the appropriate carbon content (20.9 wt %). The composite exhibits high capacity and excellent cycling stability (283 mAh g -1 at current density of 1 A g -1 after 400 cycles) and rate performance (247 mAh g -1 at 5 A g -1 ). This work provides a simple strategy to construct 1D porous FeS/CFs micro/nanostructures as high-performance anode materials for SIBs via a unique sustainable and environmentally friendly way.
Wu, Ying; Liu, Zheng; Zhong, Xiongwu; Cheng, Xiaolong; Fan, Zhuangjun; Yu, Yan
2018-03-01
The red P anode for sodium ion batteries has attracted great attention recently due to the high theoretical capacity, but the poor intrinsic electronic conductivity and large volume expansion restrain its widespread applications. Herein, the red P is successfully encapsulated into the cube shaped sandwich-like interconnected porous carbon building (denoted as P@C-GO/MOF-5) via the vaporization-condensation method. Superior cycling stability (high capacity retention of about 93% at 2 A g -1 after 100 cycles) and excellent rate performance (502 mAh g -1 at 10 A g -1 ) can be obtained for the P@C-GO/MOF-5 electrode. The superior electrochemical performance can be ascribed to the successful incorporation of red P into the unique carbon matrix with large surface area and pore volume, interconnected porous structure, excellent electronic conductivity and superior structural stability. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Development of low head Kaplan turbine for power station rehabilitation project
NASA Astrophysics Data System (ADS)
Lim, S. M.; Ohtake, N.; Kurosawa, S.; Suzuki, T.; Yamasaki, T.; Nishi, H.
2012-11-01
This paper presents the latest Kaplan turbine rehabilitation project for Funagira Power Station in Japan completed by J-POWER Group in collaboration with Toshiba Corporation. Area of rehabilitation was restricted to guide vane and runner. The main goal of the rehabilitation project was to expand the operating range of the existing turbine in terms of discharge and power with high operational stability, low noise as well as high cavitation performance. Computational Fluids Dynamics and model test were used to optimize the shape of guide vane and runner in development stage. Finally, field tests and runner inspection were carried out to confirm the performance of the new turbine. It was found that the new turbine has excellent performance in efficiency, power output, operational stability compared with existing turbine. Moreover, no sign of cavitation on the runner blade surface was observed after 5078 hours of operation near 100% load.
Wang, Wei; Favors, Zachary; Li, Changling; Liu, Chueh; Ye, Rachel; Fu, Chengyin; Bozhilov, Krassimir; Guo, Juchen; Ozkan, Mihrimah; Ozkan, Cengiz S.
2017-01-01
Herein, facile synthesis of monodisperse silicon and carbon nanocomposite spheres (MSNSs) is achieved via a simple and scalable surface-protected magnesiothermic reduction with subsequent chemical vapor deposition (CVD) process. Li-ion batteries (LIBs) were fabricated to test the utility of MSNSs as an anode material. LIB anodes based on MSNSs demonstrate a high reversible capacity of 3207 mAh g−1, superior rate performance, and excellent cycling stability. Furthermore, the performance of full cell LIBs was evaluated by using MSNS anode and a LiCoO2 cathode with practical electrode loadings. The MSNS/LiCoO2 full cell demonstrates high gravimetric energy density in the order of 850 Wh L−1 with excellent cycling stability. This work shows a proof of concept of the use of monodisperse Si and C nanocomposite spheres toward practical lithium-ion battery applications. PMID:28322285
Tang, Yongchao; Zhao, Zongbin; Wang, Yuwei; Dong, Yanfeng; Liu, Yang; Wang, Xuzhen; Qiu, Jieshan
2016-11-30
Sodium ion batteries (SIBs) have been considered as a promising alternative to lithium ion batteries, owing to the abundant reserve and low-cost accessibility of the sodium source. To date, the pursuit of high-performance anode materials remains a great challenge for the SIBs. In this work, carbon-stabilized interlayer-expanded few-layer MoSe 2 nanosheets (MoSe 2 @C) have been fabricated by an oleic acid (OA) functionalized synthesis-polydopamine (PDA) stabilization-carbonization strategy, and their structural, morphological, and electrochemical properties have been carefully characterized and compared with the carbon-free MoSe 2 . When evaluated as anode for sodium ion half batteries, the MoSe 2 @C exhibits a remarkably enhanced rate capability of 367 mA h g -1 at 5 A g -1 , a high reversible discharge capacity of 445 mA h g -1 at 1 A g -1 , and a long-term cycling stability over 100 cycles. To further explore the potential applications, the MoSe 2 @C is assembled into sodium ion full batteries with Na 3 V 2 (PO 4 ) 3 (NVP) as cathode materials, showing an impressively high reversible capacity of 421 mA h g -1 at 0.2 A g -1 after 100 cycles. Such results are primarily attributed to the unique carbon-stabilized interlayer-expanded few-layer MoSe 2 nanosheets structure, which facilitates the permeation of electrolyte into the inner of MoSe 2 nanosheets, promoting charge transfer efficiency among MoSe 2 nanosheets, and accommodating the volume change from discharge-charge cycling.
NASA Astrophysics Data System (ADS)
Prochazka, Ivan; Kodet, Jan; Eckl, Johann; Blazej, Josef
2017-10-01
We are reporting on the design, construction, and performance of a photon counting detector system, which is based on single photon avalanche diode detector technology. This photon counting device has been optimized for very high timing resolution and stability of its detection delay. The foreseen application of this detector is laser ranging of space objects, laser time transfer ground to space and fundamental metrology. The single photon avalanche diode structure, manufactured on silicon using K14 technology, is used as a sensor. The active area of the sensor is circular with 200 μm diameter. Its photon detection probability exceeds 40% in the wavelength range spanning from 500 to 800 nm. The sensor is operated in active quenching and gating mode. A new control circuit was optimized to maintain high timing resolution and detection delay stability. In connection to this circuit, timing resolution of the detector is reaching 20 ps FWHM. In addition, the temperature change of the detection delay is as low as 70 fs/K. As a result, the detection delay stability of the device is exceptional: expressed in the form of time deviation, detection delay stability of better than 60 fs has been achieved. Considering the large active area aperture of the detector, this is, to our knowledge, the best timing performance reported for a solid state photon counting detector so far.
High speed, high performance, portable, dual-channel, optical fiber Bragg grating (FBG) demodulator
NASA Astrophysics Data System (ADS)
Zhang, Hongtao; Wei, Zhanxiong; Fan, Lingling; Wang, Pengfei; Zhao, Xilin; Wang, Zhenhua; Yang, Shangming; Cui, Hong-Liang
2009-10-01
A high speed, high performance, portable, dual-channel, optical Fiber Bragg Grating demodulator based on fiber Fabry- Pérot tunable filter (FFP-FT) is reported in this paper. The high speed demodulation can be achieved to detect the dynamical loads of vehicles with speed of 15 mph. However, the drifts of piezoelectric transducer (PZT) in the cavity of FFP-FT dramatically degrade the stability of system. Two schemes are implemented to improve the stability of system. Firstly, a temperature control system is installed to effectively remove the thermal drifts of PZT. Secondly, a scheme of changing the bias voltage of FFP-FT to restrain non-thermal drifts has been realized at lab and will be further developed to an automatic control system based on microcontroller. Although this demodulator is originally used in Weight-In- Motion (WIM) sensing system, it can be extended into other aspects and the schemes presented in this paper will be useful in many applications.
Yuan, Fanglong; Yuan, Ting; Sui, Laizhi; Wang, Zhibin; Xi, Zifan; Li, Yunchao; Li, Xiaohong; Fan, Louzhen; Tan, Zhan'ao; Chen, Anmin; Jin, Mingxing; Yang, Shihe
2018-06-08
Carbon quantum dots (CQDs) have emerged as promising materials for optoelectronic applications on account of carbon's intrinsic merits of high stability, low cost, and environment-friendliness. However, the CQDs usually give broad emission with full width at half maximum exceeding 80 nm, which fundamentally limit their display applications. Here we demonstrate multicolored narrow bandwidth emission (full width at half maximum of 30 nm) from triangular CQDs with a quantum yield up to 54-72%. Detailed structural and optical characterizations together with theoretical calculations reveal that the molecular purity and crystalline perfection of the triangular CQDs are key to the high color-purity. Moreover, multicolored light-emitting diodes based on these CQDs display good stability, high color-purity, and high-performance with maximum luminance of 1882-4762 cd m -2 and current efficiency of 1.22-5.11 cd A -1 . This work will set the stage for developing next-generation high-performance CQDs-based light-emitting diodes.
von Guggenberg, E; Dietrich, H; Skvortsova, I; Gabriel, M; Virgolini, I J; Decristoforo, C
2007-08-01
Different attempts have been made to develop a suitable radioligand for targeting CCK-2 receptors in vivo, for staging of medullary thyroid carcinoma (MTC) and other receptor-expressing tumours. After initial successful clinical studies with [DTPA(0),D: Glu(1)]minigastrin (DTPA-MG0) radiolabelled with (111)In and (90)Y, our group developed a (99m)Tc-labelled radioligand, based on HYNIC-MG0. A major drawback observed with these derivatives is their high uptake by the kidneys. In this study we describe the preclinical evaluation of the optimised shortened peptide analogue, [HYNIC(0),D: Glu(1),desGlu(2-6)]minigastrin (HYNIC-MG11). (99m)Tc labelling of HYNIC-MG11 was performed using tricine and EDDA as coligands. Stability experiments were carried out by reversed phase HPLC analysis in PBS, PBS/cysteine and plasma as well as rat liver and kidney homogenates. Receptor binding and cell uptake experiments were performed using AR4-2J rat pancreatic tumour cells. Animal biodistribution was studied in AR4-2J tumour-bearing nude mice. Radiolabelling was performed at high specific activities and radiochemical purity was >90%. (99m)Tc-EDDA-HYNIC-MG11 showed high affinity for the CCK-2 receptor and cell internalisation comparable to that of (99m)Tc-EDDA-HYNIC-MG0. Despite high stability in solution, a low metabolic stability in rat tissue homogenates was found. In a nude mouse tumour model, very low unspecific retention in most organs, rapid renal excretion with reduced renal retention and high tumour uptake were observed. (99m)Tc-EDDA-HYNIC-MG11 shows advantages over (99m)Tc-EDDA-HYNIC-MG0 in terms of lower kidney retention with unchanged uptake in tumours and CCK-2 receptor-positive tissue. However, the lower metabolic stability and impurities formed in the labelling process still leave room for further improvement.
Massicano, Adriana V F; Pujatti, Priscilla B; Alcarde, Lais F; Suzuki, Miriam F; Spencer, Patrick J; Araújo, Elaine B
2016-01-01
The optimization of DOTA-NHS-ester conjugation to Rituximab using different Ab:DOTA molar ratios (1:10, 1:20, 1:50 and 1:100) was studied. High radiochemical yield, in vitro stability and immunoreactive fraction were obtained for the Rituximab conjugated at 1:50 molar ratio, resulting in the incorporation of an average number of 4.9 ± 1.1 DOTA per Rituximab molecule. Labeling with 177Lu was performed in high specific activity with great in vitro stability. Biodistribution in healthy and xenographed mice showed tumor uptake and high in vivo stability as evidenced by low uptake in bone. The properties of 177Lu-DOTA-Rituximab prepared from DOTA-NHS-ester suggest the potential for the application of the 177Lu-labeled antibody in preliminary clinical studies.
Method to predict seasonal high ground water table (SHGWT) [summary].
DOT National Transportation Integrated Search
2017-04-01
To help assure stability and long-term performance of pavement, a roadways base layer must : remain dry and be higher than the seasonal high groundwater table (SHGWT). Otherwise, the : roadways foundation can be weakened during certain times of...
Chemical Reactivity Test (CRT)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zaka, F.
The Chemical Reactivity Test (CRT) is used to determine the thermal stability of High Explosives (HEs) and chemical compatibility between (HEs) and alien materials. The CRT is one of the small-scale safety tests performed on HE at the High Explosives Applications Facility (HEAF).
Advanced Li-Ion Hybrid Supercapacitors Based on 3D Graphene-Foam Composites.
Liu, Wenwen; Li, Jingde; Feng, Kun; Sy, Abel; Liu, Yangshuai; Lim, Lucas; Lui, Gregory; Tjandra, Ricky; Rasenthiram, Lathankan; Chiu, Gordon; Yu, Aiping
2016-10-05
Li-ion hybrid supercapacitors (LIHSs) have recently attracted increasing attention as a new and promising energy storage device. However, it is still a great challenge to construct novel LIHSs with high-performance due to the majority of battery-type anodes retaining the sluggish kinetics of Li-ion storage and most capacitor-type cathodes with low specific capacitance. To solve this problem, 3D graphene-wrapped MoO 3 nanobelt foam with the unique porous network structure has been designed and prepared as anode material, which delivers high capacity, improved rate performance, and enhanced cycle stability. First-principles calculation reveals that the combination of graphene dramatically reduces the diffusion energy barrier of Li + adsorbed on the surface of MoO 3 nanobelt, thus improving its electrochemical performance. Furthermore, 3D graphene-wrapped polyaniline nanotube foam derived carbon is employed as a new type of capacitor-type cathode, demonstrating high specific capacitance, good rate performance, and long cycle stability. Benefiting from these two graphene foam-enhanced materials, the constructed LIHSs show a wide operating voltage range (3.8 V), a long stable cycle life (90% capacity retention after 3000 cycles), a high energy density (128.3 Wh·kg -1 ), and a high power density (13.5 kW·kg -1 ). These encouraging performances indicate that the obtained LIHSs may have promising prospect as next-generation energy-storage devices.
Aluminum-stabilized NB3SN superconductor
Scanlan, Ronald M.
1988-01-01
An aluminum-stabilized Nb.sub.3 Sn superconductor and process for producing same, utilizing ultrapure aluminum. Ductile components are co-drawn with aluminum to produce a conductor suitable for winding magnets. After winding, the conductor is heated to convert it to the brittle Nb.sub.3 Sn superconductor phase, using a temperature high enough to perform the transformation but still below the melting point of the aluminum. This results in reaction of substantially all of the niobium, while providing stabilization and react-in-place features which are beneficial in the fabrication of magnets utilizing superconducting materials.
NASA Technical Reports Server (NTRS)
Seacord, Charles L.; Campbell, John P.
1945-01-01
Force and flight tests were performance on an all-wing model with windmilling propellers. Tests were conducted with deflected and retracted flaps, with and without auxiliary vertical tail surfaces, and with different centers of gravity and trim coefficients. Results indicate serious reduction of stick-fixed longitudinal stability because of wing-tip stalling at high lift coefficient. Directional stability without vertical tail is undesirably low. Low effective dihedral should be maintained. Elevator and rudder control system is satisfactory.
High performance EUV multilayer structures insensitive to capping layer optical parameters.
Pelizzo, Maria Guglielmina; Suman, Michele; Monaco, Gianni; Nicolosi, Piergiorgio; Windt, David L
2008-09-15
We have designed and tested a-periodic multilayer structures containing protective capping layers in order to obtain improved stability with respect to any possible changes of the capping layer optical properties (due to oxidation and contamination, for example)-while simultaneously maximizing the EUV reflection efficiency for specific applications, and in particular for EUV lithography. Such coatings may be particularly useful in EUV lithographic apparatus, because they provide both high integrated photon flux and higher stability to the harsh operating environment, which can affect seriously the performance of the multilayer-coated projector system optics. In this work, an evolutive algorithm has been developed in order to design these a-periodic structures, which have been proven to have also the property of stable performance with respect to random layer thickness errors that might occur during coating deposition. Prototypes have been fabricated, and tested with EUV and X-ray reflectometry, and secondary electron spectroscopy. The experimental results clearly show improved performance of our new a-periodic coatings design compared with standard periodic multilayer structures.
Wang, Yongyi; Xu, Jinzhong; Qu, Haibin
2013-01-01
A simple and accurate analytical method was developed for simultaneous quantification of three steroidal saponins in the roots of Ophiopogon japonicus via high-performance liquid chromatography (HPLC) with mass spectrometry (MS) in this study. Separation was performed on a Tigerkin C(18) column and detection was performed by mass spectrometry. A mobile phase consisted of 0.02% formic acid in water (v/v) and 0.02% formic acid in acetonitrile (v/v) was used with a flow rate of 0.5 mL min(-1). The quantitative HPLC-MS method was validated for linearity, precision, repeatability, stability, recovery, limits of detection and quantification. This developed method provides good linearity (r >0.9993), intra- and inter-day precisions (RSD <4.18%), repeatability (RSD <5.05%), stability (RSD <2.08%) and recovery (93.82-102.84%) for three steroidal saponins. It could be considered as a suitable quality control method for O. japonicus.
No complexity–stability relationship in empirical ecosystems
Jacquet, Claire; Moritz, Charlotte; Morissette, Lyne; Legagneux, Pierre; Massol, François; Archambault, Philippe; Gravel, Dominique
2016-01-01
Understanding the mechanisms responsible for stability and persistence of ecosystems is one of the greatest challenges in ecology. Robert May showed that, contrary to intuition, complex randomly built ecosystems are less likely to be stable than simpler ones. Few attempts have been tried to test May's prediction empirically, and we still ignore what is the actual complexity–stability relationship in natural ecosystems. Here we perform a stability analysis of 116 quantitative food webs sampled worldwide. We find that classic descriptors of complexity (species richness, connectance and interaction strength) are not associated with stability in empirical food webs. Further analysis reveals that a correlation between the effects of predators on prey and those of prey on predators, combined with a high frequency of weak interactions, stabilize food web dynamics relative to the random expectation. We conclude that empirical food webs have several non-random properties contributing to the absence of a complexity–stability relationship. PMID:27553393
Zhou, Fei; Li, Zheng; Luo, Xuan; Wu, Tong; Jiang, Bin; Lu, Lei-Lei; Yao, Hong-Bin; Antonietti, Markus; Yu, Shu-Hong
2018-02-14
Lithium sulfur (Li-S) batteries are considered as promising energy storage systems for the next generation of batteries due to their high theoretical energy densities and low cost. Much effort has been made to improve the practical energy densities and cycling stability of Li-S batteries via diverse designs of materials nanostructure. However, achieving simultaneously good rate capabilities and stable cycling of Li-S batteries is still challenging. Herein, we propose a strategy to utilize a dual effect of metal carbide nanoparticles decorated on carbon nanofibers (MC NPs-CNFs) to realize high rate performance, low hysteresis, and long cycling stability of Li-S batteries in one system. The adsorption experiments of lithium polysulfides (LiPS) to MC NPs and corresponding theoretical calculations demonstrate that LiPS are likely to be adsorbed and diffused on the surface of MC NPs because of their moderate chemical bonding. MC NPs turn out to have also an electrocatalytic role and accelerate electrochemical redox reactions of LiPS, as proven by cyclic voltammetry analysis. The fabricated Li-S batteries based on the W 2 C NPs-CNFs hybrid electrodes display not only high specific capacity of 1200 mAh/g at 0.2C but also excellent rate performance and cycling stability, for example, a model setup can be operated at 1C for 500 cycles maintaining a final specific capacity of 605 mAh/g with a degradation rate as low as 0.06%/cycle.
Carbon Dots/NiCo2 O4 Nanocomposites with Various Morphologies for High Performance Supercapacitors.
Wei, Ji-Shi; Ding, Hui; Zhang, Peng; Song, Yan-Fang; Chen, Jie; Wang, Yong-Gang; Xiong, Huan-Ming
2016-11-01
A series of carbon dots/NiCo 2 O 4 composites with various morphologies are prepared and tested for supercapacitors. These samples have good electrical conductivities and efficient ions transport paths, so they exhibit high specific capacitances, superior rate performances, and high cycling stabilities. The optimal composite for hybrid supercapacitor exhibits a high energy density up to 62.0 Wh kg -1 . © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2014-01-09
High-performance transparent and stretchable all-solid supercapacitors based on highly aligned carbon nanotube sheets Tao Chen1, Huisheng Peng2...stretchable all-solid supercapacitors with a good stability were developed. A transmittance up to 75% at the wavelength of 550 nmwas achieved for a...supercapacitormade from a cross-over assembly of two single-layer CNT sheets. The transparent supercapacitor has a specific capacitance of 7.3 F g21 and can be
Development and Testing of a High Stability Engine Control (HISTEC) System
NASA Technical Reports Server (NTRS)
Orme, John S.; DeLaat, John C.; Southwick, Robert D.; Gallops, George W.; Doane, Paul M.
1998-01-01
Flight tests were recently completed to demonstrate an inlet-distortion-tolerant engine control system. These flight tests were part of NASA's High Stability Engine Control (HISTEC) program. The objective of the HISTEC program was to design, develop, and flight demonstrate an advanced integrated engine control system that uses measurement-based, real-time estimates of inlet airflow distortion to enhance engine stability. With improved stability and tolerance of inlet airflow distortion, future engine designs may benefit from a reduction in design stall-margin requirements and enhanced reliability, with a corresponding increase in performance and decrease in fuel consumption. This paper describes the HISTEC methodology, presents an aircraft test bed description (including HISTEC-specific modifications) and verification and validation ground tests. Additionally, flight test safety considerations, test plan and technique design and approach, and flight operations are addressed. Some illustrative results are presented to demonstrate the type of analysis and results produced from the flight test program.
Transient Stability of the US Western Interconnection with High Wind and Solar Generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clark, Kara; Miller, Nicholas W.; Shao, Miaolei
The addition of large amounts of wind and solar generation to bulk power systems that are traditionally subject to operating constraints set by transient limitations is the subject of considerable concern in the industry. The US Western Interconnection (WI) is expected to experience substantial additional growth in both wind and solar generation. These plants will, to some extent, displace large central station thermal generation, both coal and gas-fired, which have traditionally helped maintain stability. This paper reports the results of a study that investigated the transient stability of the WI with high penetrations of wind and solar generation. The mainmore » goals of this work were to (1) create a realistic, baseline model of the WI, (2) test selected transient stability events, (3) investigate the impact of large amounts of wind and solar generation, and (4) examine means to improve performance.« less
Mesoporous LiFeBO3/C hollow spheres for improved stability lithium-ion battery cathodes
NASA Astrophysics Data System (ADS)
Chen, Zhongxue; Cao, Liufei; Chen, Liang; Zhou, Haihui; Zheng, Chunman; Xie, Kai; Kuang, Yafei
2015-12-01
Polyanionic compounds are regarded as one of the most promising cathode materials for the next generation lithium-ion batteries due to their abundant resource and thermal stability. LiFeBO3 has a relatively higher capacity than olivine LiFePO4, however, moisture sensitivity and low conductivity hinder its further development. Here, we design and synthesize mesoporous LiFeBO3/C (LFB/C) hollow spheres to enhance its structural stability and electric conductivity, two LiFeBO3/C electrodes with different carbon content are prepared and tested. The experimental results show that mesoporous LiFeBO3/C hollow spheres with higher carbon content exhibit superior lithium storage capacity, cycling stability and rate capability. Particularly, the LFB/C electrode with higher carbon content demonstrates good structural stability, which can maintain its original crystal structure and Li storage properties even after three months of air exposure at room temperature. The exceptional structural stability and electrochemical performance may justify their potential use as high-performance cathode materials for advanced lithium-ion batteries. In addition, the synthesis strategy demonstrated herein is simple and versatile for the fabrication of other polyanionic cathode materials with mesoporous hollow spherical structure.
NASA Technical Reports Server (NTRS)
Campbell, John P; Mckinney, Marion O , Jr
1954-01-01
Considerable interest has recently been shown in means of obtaining satisfactory stability of the dutch roll oscillation for modern high-performance airplanes without resort to complicated artificial stabilizing devices. One approach to this problem is to lay out the airplane in the earliest stages of design so that it will have the greatest practicable inherent stability of the lateral oscillation. The present report presents some preliminary results of a theoretical analysis to determine the design features that appear most promising in providing adequate inherent stability. These preliminary results cover the case of fighter airplanes at subsonic speeds. The investigation indicated that it is possible to design fighter airplanes to have substantially better inherent stability than most current designs. Since the use of low-aspect-ratio swept-back wings is largely responsible for poor dutch roll stability, it is important to design the airplane with the maximum aspect ratio and minimum sweep that will permit attainment of the desired performance. The radius of gyration in roll should be kept as low as possible and the nose-up inclination of the principal longitudinal axis of inertia should be made as great as practicable. (author)
Li, Na; Du, Yi; Feng, Qing-Ping; Huang, Gui-Wen; Xiao, Hong-Mei; Fu, Shao-Yun
2017-12-27
The sharp proliferation of high power electronics and electrical vehicles has promoted growing demands for power sources with both high energy and power densities. Under these circumstances, battery-supercapacitor hybrid devices are attracting considerable attention as they combine the advantages of both batteries and supercapacitors. Here, a novel type of hybrid device based on a carbon skeleton/Mg 2 Ni free-standing electrode without the traditional nickel foam current collector is reported, which has been designed and fabricated through a dispersing-freeze-drying method by employing reduced graphene oxide (rGO) and multiwalled carbon nanotubes (MWCNTs) as a hybrid skeleton. As a result, the Mg 2 Ni alloy is able to deliver a high discharge capacity of 644 mAh g -1 and, more importantly, a high cycling stability with a retention of over 78% after 50 charge/discharge cycles have been achieved, which exceeds almost all the results ever reported on the Mg 2 Ni alloy. Simultaneously, the electrode could also exhibit excellent supercapacitor performances including high specific capacities (296 F g -1 ) and outstanding cycling stability (100% retention after 100 cycles). Moreover, the hybrid device can switch between battery and supercapacitor modes immediately as needed during application. These features make the C skeleton/alloy electrode a highly promising candidate for battery-supercapacitor hybrid devices with high power/energy density and favorable cycling stability.
Hossain, R.; Pahlevani, F.; Quadir, M. Z.; Sahajwalla, V.
2016-01-01
Although high carbon martensitic steels are well known for their industrial utility in high abrasion and extreme operating environments, due to their hardness and strength, the compressive stability of their retained austenite, and the implications for the steels’ performance and potential uses, is not well understood. This article describes the first investigation at both the macro and nano scale of the compressive stability of retained austenite in high carbon martensitic steel. Using a combination of standard compression testing, X-ray diffraction, optical microstructure, electron backscattering diffraction imaging, electron probe micro-analysis, nano-indentation and micro-indentation measurements, we determined the mechanical stability of retained austenite and martensite in high carbon steel under compressive stress and identified the phase transformation mechanism, from the macro to the nano level. We found at the early stage of plastic deformation hexagonal close-packed (HCP) martensite formation dominates, while higher compression loads trigger body-centred tetragonal (BCT) martensite formation. The combination of this phase transformation and strain hardening led to an increase in the hardness of high carbon steel of around 30%. This comprehensive characterisation of stress induced phase transformation could enable the precise control of the microstructures of high carbon martensitic steels, and hence their properties. PMID:27725722
NASA Astrophysics Data System (ADS)
Zeng, Yong; Ning, Honglong; Zheng, Zeke; Zhang, Hongke; Fang, Zhiqiang; Yao, Rihui; Xu, Miao; Wang, Lei; Lan, Linfeng; Peng, Junbiao; Lu, Xubing
2017-04-01
Thermal annealing is a conventional and effective way to improve the bias stress stability of oxide thin film transistors (TFT) on solid substrates. However, it is still a challenge for enhancing the bias stress stability of oxide TFTs on flexible substrates by high-temperature post-treatment due to the thermal sensitivity of flexible substrates. Here, a room temperature strategy is presented towards enhanced performance and bias stability of oxide TFTs by intentionally engineering a sandwich structure channel layer consisting of a superlattice with aluminum doped zinc oxide (AZO) and Al2O3 thin films. The Al2O3/AZO/Al2O3-TFTs not only exhibit a saturation mobility of 9.27 cm2 V-1 s-1 and a linear mobility of 11.38 cm2 V-1 s-1 but also demonstrate a better bias stress stability than AZO/Al2O3-TFT. Moreover, the underlying mechanism of this enhanced electrical performance of TFTs with a sandwich structure channel layer is that the bottom Al2O3 thin films can obviously improve the crystalline phase of AZO films while decreasing electrical trapping centers and adsorption sites for undesirable molecules such as water and oxygen.
Childers, Christine L; Green, Stuart R; Dawson, Neal J; Storey, Kenneth B
2016-09-01
The effect of protein stability on kinetic function is monitored with many techniques that often require large amounts of expensive substrates and specialized equipment not universally available. We present differential scanning fluorimetry (DSF), a simple high-throughput assay performed in real-time thermocyclers, as a technique for analysis of protein unfolding. Furthermore, we demonstrate a correlation between the half-maximal rate of protein unfolding (Knd), and protein unfolding by urea (I50). This demonstrates that DSF methods can determine the structural stability of an enzyme's active site and can compare the relative structural stability of homologous enzymes with a high degree of sequence similarity. Copyright © 2016 Elsevier Inc. All rights reserved.
Advanced aeroservoelastic stabilization techniques for hypersonic flight vehicles
NASA Technical Reports Server (NTRS)
Chan, Samuel Y.; Cheng, Peter Y.; Myers, Thomas T.; Klyde, David H.; Magdaleno, Raymond E.; Mcruer, Duane T.
1992-01-01
Advanced high performance vehicles, including Single-Stage-To-Orbit (SSTO) hypersonic flight vehicles, that are statically unstable, require higher bandwidth flight control systems to compensate for the instability resulting in interactions between the flight control system, the engine/propulsion dynamics, and the low frequency structural modes. Military specifications, such as MIL-F-9490D and MIL-F-87242, tend to limit treatment of structural modes to conventional gain stabilization techniques. The conventional gain stabilization techniques, however, introduce low frequency effective time delays which can be troublesome from a flying qualities standpoint. These time delays can be alleviated by appropriate blending of gain and phase stabilization techniques (referred to as Hybrid Phase Stabilization or HPS) for the low frequency structural modes. The potential of using HPS for compensating structural mode interaction was previously explored. It was shown that effective time delay was significantly reduced with the use of HPS; however, the HPS design was seen to have greater residual response than a conventional gain stablized design. Additional work performed to advance and refine the HPS design procedure, to further develop residual response metrics as a basis for alternative structural stability specifications, and to develop strategies for validating HPS design and specification concepts in manned simulation is presented. Stabilization design sensitivity to structural uncertainties and aircraft-centered requirements are also assessed.
ERIC Educational Resources Information Center
Cheng, Hsin-Yi Kathy; Lien, Yueh-Ju; Yu, Yu-Chun; Ju, Yan-Ying; Pei, Yu-Cheng; Cheng, Chih-Hsiu; Wu, David Bin-Chia
2013-01-01
A high percentage of children with cerebral palsy (CP) have difficulty keeping up with the handwriting demands at school. Previous studies have addressed the effects of proper sitting and writing tool on writing performance, but less on body biomechanics. The aim of this study was to investigate the influence of lower body stabilization and pencil…
2016-10-03
dissolution, toughener dissolution and controlled chain-extension reactions in the continuous reactor high temperature “hot-zone” to advance conversion...rheology and tack. 2. Simultaneous MWCNT dispersion and stabilization in the continuous reactor low temperature “cold-zone” leading to an increased...Weight and Low Dispersity Polyacrylonitrile by Low Temperature RAFT Polymerization, Moskowitz, Jeremy, Abel, Brooks, McCormick, Charles, Wiggins
Possibilities of further improvement of 1 s fluxgate variometers
NASA Astrophysics Data System (ADS)
Marusenkov, Andriy
2017-08-01
The paper discusses the possibility of improving temperature and noise characteristics of fluxgate variometers. The new fluxgate sensor with a Co-based amorphous ring core is described. This sensor is capable of improving the signal-to-noise ratio at the recording short-period geomagnetic variations. Besides the sensor performance, it is very important to create the high-stability compensation field that cancels the main Earth magnetic field inside the magnetic cores. For this purpose the new digitally controlled current source with low noise level and high temperature stability is developed.
Cross-Linked Enzyme Aggregates for Applications in Aqueous and Nonaqueous Media.
Roy, Ipsita; Mukherjee, Joyeeta; Gupta, Munishwar N
2017-01-01
Extensive cross-linking of a precipitate of a protein by a cross-linking reagent (glutaraldehyde has been most commonly used) creates an insoluble enzyme preparation called cross-linked enzyme aggregates (CLEAs). CLEAs show high stability and performance in conventional aqueous as well as nonaqueous media. These are also stable at fairly high temperatures. CLEAs with more than one kind of enzyme activity can be prepared, and such CLEAs are called combi-CLEAs or multipurpose CLEAs. Extent of cross-linking often influences their morphology, stability, activity, and enantioselectivity.
Huang, Gui-Wen; Xiao, Hong-Mei; Fu, Shao-Yun
2014-08-07
Here a facile, green and efficient printing-filtration-press (PFP) technique is reported for room-temperature (RT) mass-production of low-cost, environmentally friendly, high performance paper-based electronic circuits. The as-prepared silver nanowires (Ag-NWs) are uniformly deposited at RT on a pre-printed paper substrate to form high quality circuits via vacuum filtration and pressing. The PFP circuit exhibits more excellent electrical property and bending stability compared with other flexible circuits made by existing techniques. Furthermore, practical applications of the PFP circuits are demonstrated.
Optimized Li-Ion Electrolytes Containing Fluorinated Ester Co-Solvents
NASA Technical Reports Server (NTRS)
Prakash, G. K. Surya; Smart, Marshall; Smith, Kiah; Bugga, Ratnakumar
2010-01-01
A number of experimental lithium-ion cells, consisting of MCMB (meso-carbon microbeads) carbon anodes and LiNi(0.8)Co(0.2)O2 cathodes, have been fabricated with increased safety and expanded capability. These cells serve to verify and demonstrate the reversibility, low-temperature performance, and electrochemical aspects of each electrode as determined from a number of electrochemical characterization techniques. A number of Li-ion electrolytes possessing fluorinated ester co-solvents, namely trifluoroethyl butyrate (TFEB) and trifluoroethyl propionate (TFEP), were demonstrated to deliver good performance over a wide temperature range in experimental lithium-ion cells. The general approach taken in the development of these electrolyte formulations is to optimize the type and composition of the co-solvents in ternary and quaternary solutions, focusing upon adequate stability [i.e., EC (ethylene carbonate) content needed for anode passivation, and EMC (ethyl methyl carbonate) content needed for lowering the viscosity and widening the temperature range, while still providing good stability], enhancing the inherent safety characteristics (incorporation of fluorinated esters), and widening the temperature range of operation (the use of both fluorinated and non-fluorinated esters). Further - more, the use of electrolyte additives, such as VC (vinylene carbonate) [solid electrolyte interface (SEI) promoter] and DMAc (thermal stabilizing additive), provide enhanced high-temperature life characteristics. Multi-component electrolyte formulations enhance performance over a temperature range of -60 to +60 C. With the need for more safety with the use of these batteries, flammability was a consideration. One of the solvents investigated, TFEB, had the best performance with improved low-temperature capability and high-temperature resilience. This work optimized the use of TFEB as a co-solvent by developing the multi-component electrolytes, which also contain non-halogenated esters, film forming additives, thermal stabilizing additives, and flame retardant additives. Further optimization of these electrolyte formulations is anticipated to yield improved performance. It is also anticipated that much improved performance will be demonstrated once these electrolyte solutions are incorporated into hermetically sealed, large capacity prototype cells, especially if effort is devoted to ensure that all electrolyte components are highly pure.
Robust, Decoupled, Flight Control Design with Rate Saturating Actuators
NASA Technical Reports Server (NTRS)
Snell, S. A.; Hess, R. A.
1997-01-01
Techniques for the design of control systems for manually controlled, high-performance aircraft must provide the following: (1) multi-input, multi-output (MIMO) solutions, (2) acceptable handling qualities including no tendencies for pilot-induced oscillations, (3) a tractable approach for compensator design, (4) performance and stability robustness in the presence of significant plant uncertainty, and (5) performance and stability robustness in the presence actuator saturation (particularly rate saturation). A design technique built upon Quantitative Feedback Theory is offered as a candidate methodology which can provide flight control systems meeting these requirements, and do so over a considerable part of the flight envelope. An example utilizing a simplified model of a supermaneuverable fighter aircraft demonstrates the proposed design methodology.
NASA Astrophysics Data System (ADS)
Qiu, Xiaoming; Liu, Yongchang; Wang, Luning; Fan, Li-Zhen
2018-03-01
Prussian blue analogues with tunable open channels are of fundamental and technological importance for energy storage systems. Herein, a novel facile synthesis of nickel-cobalt hexacyanoferrate/reduced graphene oxide (denoted as Ni-CoHCF/rGO) nanocomposite is realized by a reverse microemulsion method. The very fine Ni-CoHCF nanoparticles (10-20 nm) are homogeneously anchored on the surface of reduced graphene oxide by electrostatic adsorption and reduced graphene oxide is well-separated by Ni-CoHCF particles. Benefiting from the combined advantages of this structure, the Ni-. It CoHCF/rGO nanocomposite can be used as electrodes for both supercapacitors and sodium ion batteries exhibits excellent pseudocapacitve performance in terms of high specific capacitance of 466 F g-1 at 0.2 A g-1 and 350 F g-1 at 10 A g-1, along with high cycling stabilities. As a cathode material for sodium ion batteries, it also demonstrates a high reversible capacity of 118 mAh g-1 at 0.1 A g-1, good rate capability, and superior cycling stability. These results suggest its potential as an efficient electrode for high-performance energy storage and renewable delivery devices.
NASA Astrophysics Data System (ADS)
Shan, Dongfang; Han, Dedong; Huang, Fuqing; Tian, Yu; Zhang, Suoming; Qi, Lin; Cong, Yingying; Zhang, Shengdong; Zhang, Xing; Wang, Yi
2014-01-01
Fully transparent aluminum-doped zinc oxide (AZO) thin-film transistors (TFTs) were successfully fabricated on glass substrates at room temperature. Superior properties, such as a high saturation mobility of 59.3 cm2 V-1 s-1, a positive threshold voltage of 1.3 V, a steep subthreshold swing of 122.9 mV/dec, an off-state current on the order of 10-12 A, and an on/off ratio of 2.7 × 108, were obtained. The electrical properties of the AZO TFTs were successively studied within a period of six months. Small property degenerations could be observed from the test results obtained within the study period, which proved the high-performance and high-stability characteristics of AZO TFTs. Furthermore, hysteresis loop scanning of AZO TFTs was performed, and a small hysteresis could be detected in the scanning curves, which suggested the superior properties of a dielectric and a channel-insulator interface. Lastly, we succeeded in manufacturing an organic LED (OLED) flat panel display panel driven by AZO TFTs and obtained an excellent display effect from it. We believe that AZO TFTs are a promising candidate successor to Si-based TFTs in next-generation flat panel displays.
Coordination in Fast Repetitive Violin-Bowing Patterns
Schoonderwaldt, Erwin; Altenmüller, Eckart
2014-01-01
We present a study of coordination behavior in complex violin-bowing patterns involving simultaneous bow changes (reversal of bowing direction) and string crossings (changing from one string to another). Twenty-two violinists (8 advanced amateurs, 8 students with violin as major subject, and 6 elite professionals) participated in the experiment. We investigated the influence of a variety of performance conditions (specific bowing patterns, dynamic level, tempo, and transposition) and level of expertise on coordination behavior (a.o., relative phase and amplitude) and stability. It was found that the general coordination behavior was highly consistent, characterized by a systematic phase lead of bow inclination over bow velocity of about 15° (i.e., string crossings were consistently timed earlier than bow changes). Within similar conditions, a high individual consistency was found, whereas the inter-individual agreement was considerably less. Furthermore, systematic influences of performance conditions on coordination behavior and stability were found, which could be partly explained in terms of particular performance constraints. Concerning level of expertise, only subtle differences were found, the student and professional groups (higher level of expertise) showing a slightly higher stability than the amateur group (lower level of expertise). The general coordination behavior as observed in the current study showed a high agreement with perceptual preferences reported in an earlier study to similar bowing patterns, implying that complex bowing trajectories for an important part emerge from auditory-motor interaction. PMID:25207542
Tian, Xinlong; Adzic, Radoslav R.; Luo, Junming; ...
2016-02-10
Here, the main challenges to the commercial viability of polymer electrolyte membrane fuel cells are (i) the high cost associated with using large amounts of Pt in fuel cell cathodes to compensate for the sluggish kinetics of the oxygen reduction reaction, (ii) catalyst degradation, and (iii) carbon-support corrosion. To address these obstacles, our group has focused on robust, carbon-free transition metal nitride materials with low Pt content that exhibit tunable physical and catalytic properties. Here, we report on the high performance of a novel catalyst with low Pt content, prepared by placing several layers of Pt atoms on nanoparticles ofmore » titanium nickel binary nitride. For the ORR, the catalyst exhibited a more than 400% and 200% increase in mass activity and specific activity, respectively, compared with the commercial Pt/C catalyst. It also showed excellent stability/durability, experiencing only a slight performance loss after 10,000 potential cycles, while TEM results showed its structure had remained intact. The catalyst’s outstanding performance may have resulted from the ultrahigh dispersion of Pt (several atomic layers coated on the nitride nanoparticles), and the excellent stability/durability may have been due to the good stability of nitride and synergetic effects between ultrathin Pt layer and the robust TiNiN support.« less
NASA Astrophysics Data System (ADS)
Becerril, S.; Mirabet, E.; Lizon, J. L.; Calvo, R.; Abril, M.; Cárdenas, C.; Ferro, I.; Morales, R.; Pérez, D.; Ramón, A.; Sánchez-Carrasco, M. A.; Quirrenbach, A.; Amado, P.; Ribas, I.; Reiners, A.; Caballero, J. A.; Seifert, W.; Herranz, J.
2017-12-01
CARMENES is the new high-resolution high-stability spectrograph built for the 3.5m telescope at the Calar Alto Observatory (CAHA, Almería, Spain) by a consortium formed by German and Spanish institutions. This instrument is composed of two separate spectrographs, VIS channel (550-1050 nm) and NIR channel (900-1700 nm). The Instituto de Astrofísica de Andalucía, IAA-CSIC was responsible for the NIR-channel spectrograph. This was installed at the telescope by the end of 2015, technical commissioning and final tuning of the instrument being extended up to fall 2016. In that sense, one of the most challenging systems in the instrument involves the cooling system of the NIR channel. It is a key system within the stability budget and was entirely under the control of the IAA-CSIC. That development has been possible thanks to a very fruitful collaboration with ESO (Jean-Louis Lizon). The present work describes the performance of the CARMENES-NIR cooling system, mainly focusing on the extremely high thermal stability -on the order of few cK-around the working temperature (138K), as well as the main events and upgrades achieved during commissioning. As a result of its performance, CARMENES-NIR is a cornerstone within the field of astrophysical instrumentation and, in particular, related to discovery of earth-like exoplanets.
Bang-Bang Practical Stabilization of Rigid Bodies
NASA Astrophysics Data System (ADS)
Serpelloni, Edoardo
In this thesis, we study the problem of designing a practical stabilizer for a rigid body equipped with a set of actuators generating only constant thrust. Our motivation stems from the fact that modern space missions are required to accurately control the position and orientation of spacecraft actuated by constant-thrust jet-thrusters. To comply with the performance limitations of modern thrusters, we design a feedback controller that does not induce high-frequency switching of the actuators. The proposed controller is hybrid and it asymptotically stabilizes an arbitrarily small compact neighborhood of the target position and orientation of the rigid body. The controller is characterized by a hierarchical structure comprising of two control layers. At the low level of the hierarchy, an attitude controller stabilizes the target orientation of the rigid body. At the high level, after the attitude controller has steered the rigid body sufficiently close to its desired orientation, a position controller stabilizes the desired position. The size of the neighborhood being stabilized by the controller can be adjusted via a proper selection of the controller parameters. This allows us to stabilize the rigid body to virtually any degree of accuracy. It is shown that the controller, even in the presence of measurement noise, does not induce high-frequency switching of the actuators. The key component in the design of the controller is a hybrid stabilizer for the origin of double-integrators affected by bounded external perturbations. Specifically, both the position and the attitude stabilizers consist of multiple copies of such a double-integrator controller. The proposed controller is applied to two realistic spacecraft control problems. First, we apply the position controller to the problem of stabilizing the relative position between two spacecraft flying in formation in the vicinity of the L2 libration point of the Sun-Earth system as a part of a large space telescope. The proposed position controller represents the first feedback strategy to guarantee the accuracy level required by this class of space missions using real-life electric thrusters. The final controller is applied to the control of a large space vehicle performing rendezvous and docking operations with the International Space Station. It is shown that the controller guarantees a safe docking even under the effects of biases in the placement of the on-board thrusters.
Laser direct writing of carbon/Au composite electrodes for high-performance micro-supercapacitors
NASA Astrophysics Data System (ADS)
Cai, Jinguang; Watanabe, Akira; Lv, Chao
2017-02-01
Micro-supercapacitors with small size, light weight, flexibility while maintaining high energy and power output are required for portable miniaturized electronics. The fabrication methods and materials should be cost-effective, scalable, and easily integrated to current electronic industry. Carbon materials have required properties for high-performance flexible supercapacitors, including high specific surface areas, electrochemical stability, and high electrical conductivity, as well as the high mechanical tolerance. Laser direct writing method is a non-contact, efficient, single-step fabrication technique without requirements of masks, post-processing, and complex clean room, which is a useful patterning technique, and can be easily integrated with current electronic product lines for commercial use. Previously we have reported micro-supercapacitors fabricated by laser direct writing on polyimide films in air or Ar, which showed highcapacitive performance. However, the conductivity of the carbon materials is still low for fast charge-discharge use. Here, we demonstrated the fabrication of flexible carbon/Au composite high-performance MSCs by first laser direct writing on commercial polyimide films followed by spin-coating Au nanoparticles ink and second in-situ laser direct writing using the low-cost semiconductor laser. As-prepared micro-supercapacitors show an improved conductivity and capacitance of 1.17 mF/cm2 at a high scanning rate of 10,000 mV/s, which is comparable to the reported capacitance of carbon-based micro-supercapacitors. In addition, the micro-supercapacitors have high bend tolerance and long-cycle stability.
NASA Astrophysics Data System (ADS)
Zhou, Qingwei; Su, Shaoqiang; Hu, Die; Lin, Lin; Yan, Zhibo; Gao, Xingsen; Zhang, Zhang; Liu, Jun-Ming
2018-03-01
Solar-driven photoelectrochemical (PEC) water splitting has attracted a great deal of attention recently. Silicon (Si) is an ideal light absorber for solar energy conversion. However, the poor stability and inefficient surface catalysis of Si photocathodes for the hydrogen evolution reaction (HER) have remained key challenges. Alternatively, MoS2 has been reported to exhibit excellent catalysis performance if sufficient active sites for the HER are available. Here, ultrathin MoS2 nanoflakes are directly synthesized to coat arrays of Ag-core Si-shell nanospheres (Ag@Si NSs) by using chemical vapor deposition. Due to the high surface area ratio and large curvature of these NSs, the as-grown MoS2 nanoflakes can accommodate more active sites. In addition, the high-quality coating of MoS2 nanoflakes on the Ag@Si NSs protects the photocathode from damage during the PEC reaction. An photocurrent density of 33.3 mA cm-2 at a voltage of -0.4 V is obtained versus the reversible hydrogen electrode. The as-prepared nanostructure as a hydrogen photocathode is evidenced to have high stability over 12 h PEC performance. This work opens up opportunities for composite photocathodes with high activity and stability using cheap and stable co-catalysts.
Zhou, Qingwei; Su, Shaoqiang; Hu, Die; Lin, Lin; Yan, Zhibo; Gao, Xingsen; Zhang, Zhang; Liu, Jun-Ming
2018-01-30
Solar-driven photoelectrochemical (PEC) water splitting has attracted a great deal of attention recently. Silicon (Si) is an ideal light absorber for solar energy conversion. However, the poor stability and inefficient surface catalysis of Si photocathodes for the hydrogen evolution reaction (HER) have remained key challenges. Alternatively, MoS 2 has been reported to exhibit excellent catalysis performance if sufficient active sites for the HER are available. Here, ultrathin MoS 2 nanoflakes are directly synthesized to coat arrays of Ag-core Si-shell nanospheres (Ag@Si NSs) by using chemical vapor deposition. Due to the high surface area ratio and large curvature of these NSs, the as-grown MoS 2 nanoflakes can accommodate more active sites. In addition, the high-quality coating of MoS 2 nanoflakes on the Ag@Si NSs protects the photocathode from damage during the PEC reaction. An photocurrent density of 33.3 mA cm -2 at a voltage of -0.4 V is obtained versus the reversible hydrogen electrode. The as-prepared nanostructure as a hydrogen photocathode is evidenced to have high stability over 12 h PEC performance. This work opens up opportunities for composite photocathodes with high activity and stability using cheap and stable co-catalysts.
NASA Astrophysics Data System (ADS)
Zhou, Jinyuan; Zhao, Hao; Mu, Xuemei; Chen, Jiayi; Zhang, Peng; Wang, Yaling; He, Yongmin; Zhang, Zhenxing; Pan, Xiaojun; Xie, Erqing
2015-08-01
This study reports the preparation of 3D hierarchical carbon nanotube (CNT) @MnO2 core-shell nanostructures under the assistance of polypyrrole (PPy). The as-prepared CNT@PPy@MnO2 core-shell structures show a perfect coating of MnO2 on each CNT and, more importantly, a robust bush-like pseudocapacitive shell to effectively increase the specific surface area and enhance the ion accessibility. As expected, a high specific capacity of 490-530 F g-1 has been achieved from CNT@PPy@MnO2 single electrodes. And about 98.5% of the capacity is retained after 1000 charge/discharge cycles at a current density of 5 A g-1. Furthermore, the assembled asymmetric CNT@PPy@MnO2//AC capacitors show the maximum energy density of 38.42 W h kg-1 (2.24 mW h cm-3) at a power density of 100 W kg-1 (5.83 mW cm-3), and they maintain 59.52% of the initial value at 10 000 W kg-1 (0.583 W cm-3). In addition, the assembled devices show high cycling stabilities (89.7% after 2000 cycles for asymmetric and 87.2% for symmetric), and a high bending stability (64.74% after 200 bending tests). This ability to obtain high energy densities at high power rates while maintaining high cycling stability demonstrates that this well-designed structure could be a promising electrode material for high-performance supercapacitors.This study reports the preparation of 3D hierarchical carbon nanotube (CNT) @MnO2 core-shell nanostructures under the assistance of polypyrrole (PPy). The as-prepared CNT@PPy@MnO2 core-shell structures show a perfect coating of MnO2 on each CNT and, more importantly, a robust bush-like pseudocapacitive shell to effectively increase the specific surface area and enhance the ion accessibility. As expected, a high specific capacity of 490-530 F g-1 has been achieved from CNT@PPy@MnO2 single electrodes. And about 98.5% of the capacity is retained after 1000 charge/discharge cycles at a current density of 5 A g-1. Furthermore, the assembled asymmetric CNT@PPy@MnO2//AC capacitors show the maximum energy density of 38.42 W h kg-1 (2.24 mW h cm-3) at a power density of 100 W kg-1 (5.83 mW cm-3), and they maintain 59.52% of the initial value at 10 000 W kg-1 (0.583 W cm-3). In addition, the assembled devices show high cycling stabilities (89.7% after 2000 cycles for asymmetric and 87.2% for symmetric), and a high bending stability (64.74% after 200 bending tests). This ability to obtain high energy densities at high power rates while maintaining high cycling stability demonstrates that this well-designed structure could be a promising electrode material for high-performance supercapacitors. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr03426d
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wei, Xiaoliang; Duan, Wentao; Huang, Jinhua
Nonaqueous redox flow batteries are promising in pursuit of high-energy storage systems owing to the broad voltage window, but currently are facing key challenges such as poor cycling stability and lack of suitable membranes. Here we report a new nonaqueous all-organic flow chemistry that demonstrates an outstanding cell cycling stability primarily because of high chemical persistency of the organic radical redox species and their good compatibility with the supporting electrolyte. A feasibility study shows that Daramic® and Celgard® porous separators can lead to high cell conductivity in flow cells thus producing remarkable cell efficiency and material utilization even at highmore » current operations. This result suggests that the thickness and pore size are the key performance-determining factors for porous separators. With the greatly improved flow cell performance, this new flow system largely addresses the above mentioned challenges and the findings may greatly expedite the development of durable nonaqueous flow batteries.« less
Huang, Liang; Zhang, Wei; Xiang, Jinwei; Xu, Henghui; Li, Guolong; Huang, Yunhui
2016-01-01
Hierarchical core-shell NiCo2O4@NiMoO4 nanowires were grown on carbon cloth (CC@NiCo2O4@NiMoO4) by a two-step hydrothermal route to fabricate a flexible binder-free electrode. The prepared CC@NiCo2O4@NiMoO4 integrated electrode was directly used as an electrode for faradaic supercapacitor. It shows a high areal capacitance of 2.917 F cm−2 at 2 mA cm−2 and excellent cycling stability with 90.6% retention over 2000 cycles at a high current density of 20 mA cm−2. The superior specific capacitance, rate and cycling performance can be ascribed to the fast transferring path for electrons and ions, synergic effect and the stability of the hierarchical core-shell structure. PMID:27515274
Huang, Liang; Zhang, Wei; Xiang, Jinwei; Xu, Henghui; Li, Guolong; Huang, Yunhui
2016-08-12
Hierarchical core-shell NiCo2O4@NiMoO4 nanowires were grown on carbon cloth (CC@NiCo2O4@NiMoO4) by a two-step hydrothermal route to fabricate a flexible binder-free electrode. The prepared CC@NiCo2O4@NiMoO4 integrated electrode was directly used as an electrode for faradaic supercapacitor. It shows a high areal capacitance of 2.917 F cm(-2) at 2 mA cm(-2) and excellent cycling stability with 90.6% retention over 2000 cycles at a high current density of 20 mA cm(-2). The superior specific capacitance, rate and cycling performance can be ascribed to the fast transferring path for electrons and ions, synergic effect and the stability of the hierarchical core-shell structure.
NASA Astrophysics Data System (ADS)
Huang, Liang; Zhang, Wei; Xiang, Jinwei; Xu, Henghui; Li, Guolong; Huang, Yunhui
2016-08-01
Hierarchical core-shell NiCo2O4@NiMoO4 nanowires were grown on carbon cloth (CC@NiCo2O4@NiMoO4) by a two-step hydrothermal route to fabricate a flexible binder-free electrode. The prepared CC@NiCo2O4@NiMoO4 integrated electrode was directly used as an electrode for faradaic supercapacitor. It shows a high areal capacitance of 2.917 F cm-2 at 2 mA cm-2 and excellent cycling stability with 90.6% retention over 2000 cycles at a high current density of 20 mA cm-2. The superior specific capacitance, rate and cycling performance can be ascribed to the fast transferring path for electrons and ions, synergic effect and the stability of the hierarchical core-shell structure.
High performance porous Si@C anodes synthesized by low temperature aluminothermic reaction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mishra, Kuber; Zheng, Jianming; Patel, Rajankumar
A low temperature (210°C) aluminothermic reduction reaction process has been developed to synthesis porous silicon (Si) as an anode for Li ion battery applications. An eutectic mixture of AlCl3 and ZnCl2 is used as the mediator to reduce the reaction temperature. With carbon pre-coated on the porous SiO2 precursor, porous Si@C core shell structured anodes could be obtained with structure and morphology similar to that of the porous precursor. In addition, carbon coated porous Si also exhibits superior cyclic stability, higher rate performance, and higher coulombic efficiency. The porous Si anode demonstrates a high specific capacity of ~2100 mAh/g atmore » the current density of 1.2 A/g and has a good cycling stability with ~76% capacity retention over 250 cycles. Therefore, it will be a good candidate for anode used in high energy density Li-ion batteries.« less
Light-induced lattice expansion leads to high-efficiency perovskite solar cells
NASA Astrophysics Data System (ADS)
Tsai, Hsinhan; Asadpour, Reza; Blancon, Jean-Christophe; Stoumpos, Constantinos C.; Durand, Olivier; Strzalka, Joseph W.; Chen, Bo; Verduzco, Rafael; Ajayan, Pulickel M.; Tretiak, Sergei; Even, Jacky; Alam, Muhammad Ashraf; Kanatzidis, Mercouri G.; Nie, Wanyi; Mohite, Aditya D.
2018-04-01
Light-induced structural dynamics plays a vital role in the physical properties, device performance, and stability of hybrid perovskite–based optoelectronic devices. We report that continuous light illumination leads to a uniform lattice expansion in hybrid perovskite thin films, which is critical for obtaining high-efficiency photovoltaic devices. Correlated, in situ structural and device characterizations reveal that light-induced lattice expansion benefits the performances of a mixed-cation pure-halide planar device, boosting the power conversion efficiency from 18.5 to 20.5%. The lattice expansion leads to the relaxation of local lattice strain, which lowers the energetic barriers at the perovskite-contact interfaces, thus improving the open circuit voltage and fill factor. The light-induced lattice expansion did not compromise the stability of these high-efficiency photovoltaic devices under continuous operation at full-spectrum 1-sun (100 milliwatts per square centimeter) illumination for more than 1500 hours.
High-stability compact atomic clock based on isotropic laser cooling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Esnault, Francois-Xavier; Holleville, David; Rossetto, Nicolas
2010-09-15
We present a compact cold-atom clock configuration where isotropic laser cooling, microwave interrogation, and clock signal detection are successively performed inside a spherical microwave cavity. For ground operation, a typical Ramsey fringe width of 20 Hz has been demonstrated, limited by the atom cloud's free fall in the cavity. The isotropic cooling light's disordered properties provide a large and stable number of cold atoms, leading to a high signal-to-noise ratio limited by atomic shot noise. A relative frequency stability of 2.2x10{sup -13{tau}-1/2} has been achieved, averaged down to 4x10{sup -15} after 5x10{sup 3} s of integration. Development of such amore » high-performance compact clock is of major relevance for on-board applications, such as satellite-positioning systems. As a cesium clock, it opens the door to a new generation of compact primary standards and timekeeping devices.« less
Development of High Performance Piezoelectric Polyimides
NASA Technical Reports Server (NTRS)
Simpson, Joycelyn O.; St.Clair, Terry L.; Welch, Sharon S.
1996-01-01
In this work a series of polyimides are investigated which exhibit a strong piezoelectric response and polarization stability at temperatures in excess of 100 C. This work was motivated by the need to develop piezoelectric sensors suitable for use in high temperature aerospace applications.
High-performance liquid chromatography of oligoguanylates at high pH
NASA Technical Reports Server (NTRS)
Stribling, R.; Deamer, D. (Principal Investigator)
1991-01-01
Because of the stable self-structures formed by oligomers of guanosine, standard high-performance liquid chromatography techniques for oligonucleotide fractionation are not applicable. Previously, oligoguanylate separations have been carried out at pH 12 using RPC-5 as the packing material. While RPC-5 provides excellent separations, there are several limitations, including the lack of a commercially available source. This report describes a new anion-exchange high-performance liquid chromatography method using HEMA-IEC BIO Q, which successfully separates different forms of the guanosine monomer as well as longer oligoguanylates. The reproducibility and stability at high pH suggests a versatile role for this material.
NASA Astrophysics Data System (ADS)
Banham, Dustin; Kishimoto, Takeaki; Sato, Tetsutaro; Kobayashi, Yoshikazu; Narizuka, Kumi; Ozaki, Jun-ichi; Zhou, Yingjie; Marquez, Emil; Bai, Kyoung; Ye, Siyu
2017-03-01
The activity of non-precious metal catalysts (NPMCs) has now reached a stage at which they can be considered as possible alternatives to Pt for some proton exchange membrane fuel cell (PEMFC) applications. However, despite significant efforts over the past 50 years on catalyst development, only limited studies have been performed on NPMC-based cathode catalyst layer (CCL) designs. In this work, an extensive ionomer study is performed to investigate the impact of ionomer equivalent weight on performance, which has uncovered two crucial findings. Firstly, it is demonstrated that beyond a critical CCL conductance, no further improvement in performance is observed. The procedure used to determine this critical conductance can be used by other researchers in this field to aid in their design of high performing NPMC-based CCLs. Secondly, it is shown that the stability of NPMC-based CCLs can be improved through the use of low equivalent weight ionomers. This represents a completely unexplored pathway for further stability improvements, and also provides new insights into the possible degradation mechanisms occurring in NPMC-based CCLs. These findings have broad implications on all future NPMC-based CCL designs.
Multimetallic nanosheets: synthesis and applications in fuel cells.
Zeb Gul Sial, Muhammad Aurang; Ud Din, Muhammad Aizaz; Wang, Xun
2018-04-03
Two-dimensional nanomaterials, particularly multimetallic nanosheets with single or few atoms thickness, are attracting extensive research attention because they display remarkable advantages over their bulk counterparts, including high electron mobility, unsaturated surface coordination, a high aspect ratio, and distinctive physical, chemical, and electronic properties. In particular, their ultrathin thickness endows them with ultrahigh specific surface areas and a relatively high surface energy, making them highly favorable for surface active applications; for example, they have great potential for a broad range of fuel cell applications. First, the state-of-the-art research on the synthesis of nanosheets with a controlled size, thickness, shape, and composition is described and special emphasis is placed on the rational design of multimetallic nanosheets. Then, a correlation is performed with the performance of multimetallic nanosheets with modified and improved electrochemical properties and high stability, including for the oxygen reduction reaction (ORR), hydrogen evolution reaction (HER), formic acid oxidation (FAO), methanol oxidation reaction (MOR), ethanol oxidation reaction (EOR), and methanol tolerance are outlined. Finally, some perspectives and advantages offered by this class of materials are highlighted for the development of highly efficient fuel cell electrocatalysts, featuring low cost, enhanced performance, and high stability, which are the key factors for accelerating the commercialization of future promising fuel cells.
Fang, Yang; Liu, Wei; Teat, Simon J.; ...
2016-12-07
We have designed and synthesized a family of high-performance inorganic-organic hybrid phosphor materials composed of extended and robust networks of one-, two- and three-dimensions. Following a bottom-up solution-based synthetic approach, these structures are constructed by connecting highly emissive Cu 4I 4 cubic clusters via carefully selected ligands that form strong Cu-N bonds. They emit intensive yellow-orange light with high luminescence quantum efficiency, coupled with large Stokes shift which greatly reduces self-absorption. They also demonstrate exceptionally high framework- and photo-stability, comparable to those of commercial phosphors. The high stabilities are the result of significantly enhanced Cu-N bonds, as confirmed by themore » DFT binding energy and electron density calculations. Possible emission mechanisms are analyzed based on the results of theoretical calculations and optical experiments. Two-component white phosphors obtained by blending blue and yellow emitters reach an internal quantum yield (IQY) as high as 82% and correlated color temperature (CCT) as low as 2534 K. The performance level of this sub-family exceeds all other types of Cu-I based hybrid systems. The combined advantages make them excellent candidates as alternative rare-earth element (REE) free phosphors for possible use in energy-efficient lighting devices.« less
Closed-loop, pilot/vehicle analysis of the approach and landing task
NASA Technical Reports Server (NTRS)
Schmidt, D. K.; Anderson, M. R.
1985-01-01
Optimal-control-theoretic modeling and frequency-domain analysis is the methodology proposed to evaluate analytically the handling qualities of higher-order manually controlled dynamic systems. Fundamental to the methodology is evaluating the interplay between pilot workload and closed-loop pilot/vehicle performance and stability robustness. The model-based metric for pilot workload is the required pilot phase compensation. Pilot/vehicle performance and loop stability is then evaluated using frequency-domain techniques. When these techniques were applied to the flight-test data for thirty-two highly-augmented fighter configurations, strong correlation was obtained between the analytical and experimental results.
Performance mapping of a 30 cm engineering model thruster
NASA Technical Reports Server (NTRS)
Poeschel, R. L.; Vahrenkamp, R. P.
1975-01-01
A 30 cm thruster representative of the engineering model design has been tested over a wide range of operating parameters to document performance characteristics such as electrical and propellant efficiencies, double ion and beam divergence thrust loss, component equilibrium temperatures, operational stability, etc. Data obtained show that optimum power throttling, in terms of maximum thruster efficiency, is not highly sensitive to parameter selection. Consequently, considerations of stability, discharge chamber erosion, thrust losses, etc. can be made the determining factors for parameter selection in power throttling operations. Options in parameter selection based on these considerations are discussed.
NASA Astrophysics Data System (ADS)
Choi, C.; Baek, Y.; Lee, B. M.; Kim, K. H.; Rim, Y. S.
2017-12-01
We report solution-processed, amorphous indium-gallium-zinc-oxide-based (a-IGZO-based) thin-film transistors (TFTs). Our proposed solution-processed a-IGZO films, using a simple spin-coating method, were formed through nitrate ligand-based metal complexes, and they were annealed at low temperature (250 °C) to achieve high-quality oxide films and devices. We investigated solution-processed a-IGZO TFTs with various thicknesses, ranging from 4 to 16 nm. The 4 nm-thick TFT films had smooth morphology and high-density, and they exhibited excellent performance, i.e. a high saturation mobility of 7.73 ± 0.44 cm2 V-1 s-1, a sub-threshold swing of 0.27 V dec-1, an on/off ratio of ~108, and a low threshold voltage of 3.10 ± 0.30 V. However, the performance of the TFTs degraded as the film thickness was increased. We further performed positive and negative bias stress tests to examine their electrical stability, and it was noted that the operating behavior of the devices was highly stable. Despite a small number of free charges, the high performance of the ultrathin a-IGZO TFTs was attributed to the small effect of the thickness of the channel, low bulk resistance, the quality of the a-IGZO/SiO2 interface, and high film density.
AsteroidFinder - the space-borne telescope to search for NEO Asteroids
NASA Astrophysics Data System (ADS)
Hartl, M.; Mosebach, H.; Schubert, J.; Michaelis, H.; Mottola, S.; Kührt, E.; Schindler, K.
2017-11-01
This paper presents the mission profile as well as the optical configuration of the space-borne AsteroidFinder telescope. Its main objective is to retrieve asteroids with orbits interior to the earth's orbit. The instrument requires high sensitivity to detect asteroids with a limiting magnitude of equal or larger than 18.5mag (V-Band) and astrometric accuracy of 1arcsec (1σ). This requires a telescope aperture greater than 400cm2, high image stability, detector with high quantum efficiency (peak > 90%) and very low noise, which is only limited by zodiacal background. The telescope will observe the sky between 30° and 60° in solar elongation. The telescope optics is based on a Cook type TMA. An effective 2°×2° field of view (FOV) is achieved by a fast F/3.4 telescope with near diffraction-limited performance. The absence of centre obscuration or spiders in combination with an accessible intermediate field plane and exit pupil allow for efficient stray light mitigation. Design drivers for the telescope are the required point spread function (PSF) values, an extremely efficient stray light suppression (due to the magnitude requirement mentioned above), the detector performance, and the overall optical and mechanical stability for all orientations of the satellite. To accommodate the passive thermal stabilization scheme and the necessary structural stability, the materials selection for the telescope main structure and the mirrors are of vital importance. A focal plane with four EMCCD detectors is envisaged. The EMCCD technology features shorter integration times, which is in favor regarding the pointing performance of the satellite. The launch of the mission is foreseen for the year 2013 with a subsequent mission lifetime of at least 1 year.
NASA Technical Reports Server (NTRS)
Niiya, Karen E.; Walker, Richard E.; Pieper, Jerry L.; Nguyen, Thong V.
1993-01-01
This final report includes a discussion of the work accomplished during the period from Dec. 1988 through Nov. 1991. The objective of the program was to assemble existing performance and combustion stability models into a usable design methodology capable of designing and analyzing high-performance and stable LOX/hydrocarbon booster engines. The methodology was then used to design a validation engine. The capabilities and validity of the methodology were demonstrated using this engine in an extensive hot fire test program. The engine used LOX/RP-1 propellants and was tested over a range of mixture ratios, chamber pressures, and acoustic damping device configurations. This volume contains time domain and frequency domain stability plots which indicate the pressure perturbation amplitudes and frequencies from approximately 30 tests of a 50K thrust rocket engine using LOX/RP-1 propellants over a range of chamber pressures from 240 to 1750 psia with mixture ratios of from 1.2 to 7.5. The data is from test configurations which used both bitune and monotune acoustic cavities and from tests with no acoustic cavities. The engine had a length of 14 inches and a contraction ratio of 2.0 using a 7.68 inch diameter injector. The data was taken from both stable and unstable tests. All combustion instabilities were spontaneous in the first tangential mode. Although stability bombs were used and generated overpressures of approximately 20 percent, no tests were driven unstable by the bombs. The stability instrumentation included six high-frequency Kistler transducers in the combustion chamber, a high-frequency Kistler transducer in each propellant manifold, and tri-axial accelerometers. Performance data is presented, both characteristic velocity efficiencies and energy release efficiencies, for those tests of sufficient duration to record steady state values.
NASA Astrophysics Data System (ADS)
Huang, Xiaosong
2014-06-01
Porous separator functions to electrically insulate the negative and positive electrodes yet communicate lithium ions between the two electrodes when infiltrated with a liquid electrolyte. The separator must fulfill numerous requirements (e.g. permeability, wettability, and thermal stability) in order to optimize the abuse tolerance and electrochemical performance of a battery. Non-woven mat separators have advantages such as high porosity and heat resistance. However, their applications in lithium ion batteries are very limited as their inadequate pore structures could cause accelerated battery performance degradation and even internal short. This work features the development of thermally stable non-woven composite separators using a low cost paper-making process. The composite separators offer significantly improved thermal dimensional stability and exhibit superior wettability by the liquid electrolyte compared to a conventional polypropylene separator. The open porous structures of the non-woven composite separators also resulted in high effective ionic conductivities. The electrochemical performance of the composite separators was tested in coin cells. Stable cycle performances and improved rate capabilities have been observed for the coin cells with these composite separators.
Research on liquid sloshing performance in vane type tank under microgravity
NASA Astrophysics Data System (ADS)
Hu, Q.; Li, Y.; Liu, J. T.; Liang, J. Q.
2016-05-01
Propellant management device (PMD) in vane type tank mainly comprises of vane type structure parts, whose performance of restraining liquid sloshing should satisfy spacecraft requirements of high stabilization and fast orbital maneuver. Aiming at liquid sloshing performance in vane type tank under microgravity environment, gas-liquid flow model based on the volume of fluid (VOF) method was put forward, and via numerical simulation liquid sloshing performances of vane type PMD with anti-sloshing baffles and without anti-sloshing baffles in microgravity were analyzed and compared. Simulation results reveal that liquid sloshing performance of vane type PMD with anti-sloshing baffles is markedly superior vane type PMD without anti-sloshing baffles and the baffles make liquid surface become stable fast. Then by comparing between results of microgravity experiments and results of numerical simulations, they are very similar. According to present research, vane type PMD with antisloshing baffles has better effects on restraining liquid sloshing and is able to restrain observably propellant sloshing in tanks in order to satisfy spacecraft requirements of high stabilization and fast orbital maneuver.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Medvedev, S. Yu., E-mail: medvedev@a5.kiam.ru; Ivanov, A. A., E-mail: aai@a5.kiam.ru; Martynov, A. A., E-mail: martynov@a5.kiam.ru
The influence of current density and pressure gradient profiles in the pedestal on the access to the regimes free from edge localized modes (ELMs) like quiescent H-mode in ITER is investigated. Using the simulator of MHD modes localized near plasma boundary based on the KINX code, calculations of the ELM stability were performed for the ITER plasma in scenarios 2 and 4 under variations of density and temperature profiles with the self-consistent bootstrap current in the pedestal. Low pressure gradient values at the separatrix, the same position of the density and temperature pedestals and high poloidal beta values facilitate reachingmore » high current density in the pedestal and a potential transition into the regime with saturated large scale kink modes. New version of the localized MHD mode simulator allows one to compute the growth rates of ideal peeling-ballooning modes with different toroidal mode numbers and to determine the stability region taking into account diamagnetic stabilization. The edge stability diagrams computations and sensitivity studies of the stability limits to the value of diamagnetic frequency show that diamagnetic stabilization of the modes with high toroidal mode numbers can help to access the quiescent H-mode even with high plasma density but only with low pressure gradient values at the separatrix. The limiting pressure at the top of the pedestal increases for higher plasma density. With flat density profile the access to the quiescent H-mode is closed even with diamagnetic stabilization taken into account, while toroidal mode numbers of the most unstable peeling-ballooning mode decrease from n = 10−40 to n = 3−20.« less
Effect of core stability training on throwing velocity in female handball players.
Saeterbakken, Atle H; van den Tillaar, Roland; Seiler, Stephen
2011-03-01
The purpose was to study the effect of a sling exercise training (SET)-based core stability program on maximal throwing velocity among female handball players. Twenty-four female high-school handball players (16.6 ± 0.3 years, 63 ± 6 kg, and 169 ± 7 cm) participated and were initially divided into a SET training group (n = 14) and a control group (CON, n = 10). Both groups performed their regular handball training for 6 weeks. In addition, twice a week, the SET group performed a progressive core stability-training program consisting of 6 unstable closed kinetic chain exercises. Maximal throwing velocity was measured before and after the training period using photocells. Maximal throwing velocity significantly increased 4.9% from 17.9 ± 0.5 to 18.8 ± 0.4 m·s in the SET group after the training period (p < 0.01), but was unchanged in the control group (17.1 ± 0.4 vs. 16.9 ± 0.4 m·s). These results suggest that core stability training using unstable, closed kinetic chain movements can significantly improve maximal throwing velocity. A stronger and more stable lumbopelvic-hip complex may contribute to higher rotational velocity in multisegmental movements. Strength coaches can incorporate exercises exposing the joints for destabilization force during training in closed kinetic chain exercises. This may encourage an effective neuromuscular pattern and increase force production and can improve a highly specific performance task such as throwing.
Morais, Helena; Ramos, Cristina; Forgács, Esther; Cserháti, Tibor; Oliviera, José
2002-04-25
The effect of light, storage time and temperature on the decomposition rate of monomeric anthocyanin pigments extracted from skins of grape (Vitis vinifera var. Red globe) was determined by reversed-phase high-performance liquid chromatography (RP-HPLC). The impact of various storage conditions on the pigment stability was assessed by stepwise regression analysis. RP-HPLC separated well the five anthocyanins identified and proved the presence of other unidentified pigments at lower concentrations. Stepwise regression analysis confirmed that the overall decomposition rate of monomeric anthocyanins, peonidin-3-glucoside and malvidin-3-glucoside significantly depended on the time and temperature of storage, the effect of storage time being the most important. The presence or absence of light exerted a negligible impact on the decomposition rate.
Li, Zhihao; Yang, Xiangdong; Yang, Yanbing; Tan, Yaning; He, Yue; Liu, Meng; Liu, Xinwen; Yuan, Quan
2018-01-09
Peroxidase-mimicking nanozymes offer unique advantages in terms of high stability and low cost over natural peroxidase for applications in bioanalysis, biomedicine, and the treatment of pollution. However, the design of high-efficiency peroxidase-mimicking nanozymes remains a great challenge. In this study, we adopted a structural-design approach through hybridization of cube-CeO 2 and Pt nanoparticles to create a new peroxidase-mimicking nanozyme with high efficiency and excellent stability. Relative to pure cube-CeO 2 and Pt nanoparticles, the as-hybridized Pt/cube-CeO 2 nanocomposites display much improved activities because of the strong metal-support interaction. Meanwhile, the nanocomposites also maintain high catalytic activity after long-term storage and multiple recycling. Based on their excellent properties, Pt/cube-CeO 2 nanocomposites were used to construct high-performance colorimetric biosensors for the sensitive detection of metabolites, including H 2 O 2 and glucose. Our findings highlight opportunities for the development of high-efficiency peroxidase-mimicking nanozymes with potential applications such as diagnostics, biomedicine, and the treatment of pollution. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zhou, Qingwei; Su, Shaoqiang; Hu, Die; Lin, Lin; Yan, Zhibo; Gao, Xingsen; Zhang, Zhang; Liu, Junming
2018-01-02
Solar-driven photoelectrochemical (PEC) water splitting has recently attracted much attention. Silicon (Si) is an ideal light absorber for solar energy conversion. However, the poor stability and inefficient surface catalysis of Si photocathode for hydrogen evolution reaction (HER) have been remained as the key challenges. Alternatively, MoS2 has been reported to exhibit the excellent catalysis performance if sufficient active sites for the HER are available. Here, ultra-thin MoS2 nanoflakes are directly synthesized to coat on the arrays of Ag-core Si-shell nanospheres (Ag@Si NSs) using the chemical vapor deposition (CVD). Due to the high surface area ratio and large curvature of these NSs, the as-grown MoS2 nanoflakes can accommodate more active sites. Meanwhile, the high-quality coating of MoS2 nanoflakes on the Ag@Si NSs protects the photocathode from damage during the PEC reaction. A high efficiency with a photocurrent of 33.3 mA cm-2 at a voltage of -0.4 V vs. the reversible hydrogen electrode is obtained. The as-prepared nanostructure as hydrogen photocathode is evidenced to have high stability over 12 hour PEC performance. This work opens opportunities for composite photocathode with high activity and stability using cheap and stable co-catalysts. © 2017 IOP Publishing Ltd.
The importance of being top-heavy: Intrinsic stability of flapping flight
NASA Astrophysics Data System (ADS)
Ristroph, Leif; Liu, Bin; Zhang, Jun
2011-11-01
We explore the stability of flapping flight in a model system that consists of a pyramid-shaped object that freely hovers in a vertically oscillating airflow. Such a ``bug'' not only generates sufficient aerodynamic force to keep aloft but also robustly maintains balance during free-flight. Flow visualization reveals that both weight support and intrinsic stability result from the periodic shedding of dipolar vortices. Counter-intuitively, the observed pattern of vortex shedding suggests that stability requires a high center-of-mass, which we verify by comparing the performance of top- and bottom-heavy bugs. Finally, we visit a zoo of other flapping flyers, including Mary Poppins' umbrella, a flying saucer or UFO, and Da Vinci's helicopter.
Spherical gyroscopic moment stabilizer for attitude control of microsatellites
NASA Astrophysics Data System (ADS)
Keshtkar, Sajjad; Moreno, Jaime A.; Kojima, Hirohisa; Uchiyama, Kenji; Nohmi, Masahiro; Takaya, Keisuke
2018-02-01
This paper presents a new and improved concept of recently proposed two-degrees of freedom spherical stabilizer for triaxial orientation of microsatellites. The analytical analysis of the advantages of the proposed mechanism over the existing inertial attitude control devices are introduced. The extended equations of motion of the stabilizing satellite including the spherical gyroscope, for control law design and numerical simulations, are studied in detail. A new control algorithm based on continuous high-order sliding mode algorithms, for managing the torque produced by the stabilizer and therefore the attitude control of the satellite in the presence of perturbations/uncertainties, is presented. Some numerical simulations are carried out to prove the performance of the proposed mechanism and control laws.
Li Anode Technology for Improved Performance
NASA Technical Reports Server (NTRS)
Chen, Tuqiang
2011-01-01
A novel, low-cost approach to stabilization of Li metal anodes for high-performance rechargeable batteries was developed. Electrolyte additives are selected and used in Li cell electrolyte systems, promoting formation of a protective coating on Li metal anodes for improved cycle and safety performance. Li batteries developed from the new system will show significantly improved battery performance characteristics, including energy/power density, cycle/ calendar life, cost, and safety.
Smith, Ryan P.; Roos, Peter A.; Wahlstrand, Jared K.; Pipis, Jessica A.; Rivas, Maria Belmonte; Cundiff, Steven T.
2007-01-01
We perform optical frequency metrology of an iodine-stabilized He-Ne laser using a mode-locked Ti:sapphire laser frequency comb that is stabilized using quantum interference of photocurrents in a semiconductor. Using this technique, we demonstrate carrier-envelope offset frequency fluctuations of less than 5 mHz using a 1 s gate time. With the resulting stable frequency comb, we measure the optical frequency of the iodine transition [127I2 R(127) 11-5 i component] to be 473 612 214 712.96 ± 0.66 kHz, well within the uncertainty of the CIPM recommended value. The stability of the quantum interference technique is high enough such that it does not limit the measurements. PMID:27110472
Model-independent position domain sliding mode control for contour tracking of robotic manipulator
NASA Astrophysics Data System (ADS)
Yue, W. H.; Pano, V.; Ouyang, P. R.; Hu, Y. Q.
2017-01-01
In this paper, a new position domain feedback type sliding mode control (PDC-SMC) law is proposed for contour tracking control of multi-DOF (degree of freedom) nonlinear robotic manipulators focusing on the improvement of contour tracking performances. One feature of the proposed control law is its model-independent control scheme that can avoid calculation of the feedforward part in a standard SMC. The new control law takes the advantages of the high contour tracking performance of PD type feedback position domain control (PDC) and the robustness of SMC. Stability analysis is performed using the Lyapunov stability theory, and simulation studies are conducted to verify the effectiveness of the developed PDC-SMC control system. In addition, the effects of control parameters of the SMC on system performances are studied.
AMTD - Advanced Mirror Technology Development in Mechanical Stability
NASA Technical Reports Server (NTRS)
Knight, J. Brent
2015-01-01
Analytical tools and processes are being developed at NASA Marshal Space Flight Center in support of the Advanced Mirror Technology Development (AMTD) project. One facet of optical performance is mechanical stability with respect to structural dynamics. Pertinent parameters are: (1) the spacecraft structural design, (2) the mechanical disturbances on-board the spacecraft (sources of vibratory/transient motion such as reaction wheels), (3) the vibration isolation systems (invariably required to meet future science needs), and (4) the dynamic characteristics of the optical system itself. With stability requirements of future large aperture space telescopes being in the lower Pico meter regime, it is paramount that all sources of mechanical excitation be considered in both feasibility studies and detailed analyses. The primary objective of this paper is to lay out a path to perform feasibility studies of future large aperture space telescope projects which require extreme stability. To get to that end, a high level overview of a structural dynamic analysis process to assess an integrated spacecraft and optical system is included.
Ultrafast and Stable CO2 Capture Using Alkali Metal Salt-Promoted MgO-CaCO3 Sorbents.
Cui, Hongjie; Zhang, Qiming; Hu, Yuanwu; Peng, Chong; Fang, Xiangchen; Cheng, Zhenmin; Galvita, Vladimir V; Zhou, Zhiming
2018-06-20
As a potential candidate for precombustion CO 2 capture at intermediate temperatures (200-400 °C), MgO-based sorbents usually suffer from low kinetics and poor cyclic stability. Herein, a general and facile approach is proposed for the fabrication of high-performance MgO-based sorbents via incorporation of CaCO 3 into MgO followed by deposition of a mixed alkali metal salt (AMS). The AMS-promoted MgO-CaCO 3 sorbents are capable of adsorbing CO 2 at an ultrafast rate, high capacity, and good stability. The CO 2 uptake of sorbent can reach as high as above 0.5 g CO 2 g sorbent -1 after only 5 min of sorption at 350 °C, accounting for vast majority of the total uptake. In addition, the sorbents are very stable even under severe but more realistic conditions (desorption in CO 2 at 500 °C), where the CO 2 uptake of the best sorbent is stabilized at 0.58 g CO 2 g sorbent -1 in 20 consecutive cycles. The excellent CO 2 capture performance of the sorbent is mainly due to the promoting effect of molten AMS, the rapid formation of CaMg(CO 3 ) 2 , and the plate-like structure of sorbent. The exceptional ultrafast rate and the good stability of the AMS-promoted MgO-CaCO 3 sorbents promise high potential for practical applications, such as precombustion CO 2 capture from integrated gasification combined cycle plants and sorption-enhanced water gas shift process.
A high stability and repeatability electrochemical scanning tunneling microscope.
Xia, Zhigang; Wang, Jihao; Hou, Yubin; Lu, Qingyou
2014-12-01
We present a home built electrochemical scanning tunneling microscope (ECSTM) with very high stability and repeatability. Its coarse approach is driven by a closely stacked piezo motor of GeckoDrive type with four rigid clamping points, which enhances the rigidity, compactness, and stability greatly. It can give high clarity atomic resolution images without sound and vibration isolations. Its drifting rates in XY and Z directions in solution are as low as 84 pm/min and 59 pm/min, respectively. In addition, repeatable coarse approaches in solution within 2 mm travel distance show a lateral deviation less than 50 nm. The gas environment can be well controlled to lower the evaporation rate of the cell, thus reducing the contamination and elongating the measurement time. Atomically resolved SO4(2-) image on Au (111) work electrode is demonstrated to show the performance of the ECSTM.
Synthesis of cage-like LiFePO4/C microspheres for high performance lithium ion batteries
NASA Astrophysics Data System (ADS)
Deng, Honggui; Jin, Shuangling; Zhan, Liang; Wang, Yanli; Qiao, Wenming; Ling, Licheng
2012-12-01
Cage-like LiFePO4 microspheres are synthesized by a solvothermal reaction-calcination process, using Fe(NO3)3·9H2O as iron source and ethylene glycol/water as co-solvent medium. The microsphere is the assembly of LiFePO4 nanoparticles with an open porous structure, thus the carbon coating can be easily introduced on the surface of the nanoparticles by the chemical vapor deposition of C2H4 during calcination process. When used as the cathode materials for the lithium-ion batteries, the resultant cage-like LiFePO4/C microsphere shows high capacity and good cycle stability (160 mAh g-1 at 0.1 C over 300 cycles), as well as good rate capability (120 mAh g-1 at 10 C). The desirable electrochemical performance can be attributed to high rate of ionic/electronic conduction and the high structural stability arising from the interconnected open pores, carbon-coated nanoparticles and microsized structure.
GAIA payload module mechanical development
NASA Astrophysics Data System (ADS)
Touzeau, S.; Sein, E.; Lebranchu, C.
2017-11-01
Gaia is the European Space Agency's cornerstone mission for global space astrometry. Its goal is to make the largest, most precise three-dimensional map of our Galaxy by surveying an unprecedented number of stars. This paper gives an overview of the mechanical system engineering and verification of the payload module. This development includes several technical challenges. First of all, the very high stability performance as required for the mission is a key driver for the design, which incurs a high degree of stability. This is achieved through the extensive use of Silicon Carbide (Boostec® SiC) for both structures and mirrors, a high mechanical and thermal decoupling between payload and service modules, and the use of high-performance engineering tools. Compliance of payload mass and volume with launcher capability is another key challenge, as well as the development and manufacturing of the 3.2-meter diameter toroidal primary structure. The spacecraft mechanical verification follows an innovative approach, with direct testing on the flight model, without any dedicated structural model.
Thiol antioxidant-functionalized CdSe/ZnS quantum dots: Synthesis, Characterization, Cytotoxicity
Zheng, Hong; Mortensen, Luke J.; DeLouise, Lisa A.
2016-01-01
Nanotechnology is a growing industry with wide ranging applications in consumer product and technology development. In the biomedical field, nanoparticles are finding increasing use as imaging agents for biomolecular labeling and tumor targeting. The nanoparticle physiochemical properties must be tailored for the specific application but chemical and physical stability in the biological milieu (no oxidation, aggregation, agglomeration or toxicity) are often required. Nanoparticles used for biomolecular fluorescent imaging should also have high quantum yield (QY). The aim of this paper is to examine the QY, stability, and cell toxicity of a series of positive, negative and neutral surface charge quantum dot (QD) nanoparticles. Simple protocols are described to prepare water soluble QDs by modifying the surface with thiol containing antioxidant ligands and polymers keeping the QD core/shell composition constant. The ligands used to produce negatively charged QDs include glutathione (GSH), N-acetyl-L-cysteine (NAC), dihydrolipoic acid (DHLA), tiopronin (TP), bucilliamine (BUC), and mercaptosuccinic acid (MSA). Ligands used to produce positively charged QDs include cysteamine (CYS) and polyethylenimine (PEI). Dithiothreitol (DTT) was used to produce neutral charged QDs. Commercially available nonaqueous octadecylamine (ODA) capped QDs served as the starting material. Our results suggest that QD uptake and cytotoxicity are both dependent on surface ligand coating composition. The negative charged GSH coated QDs show superior performance exhibiting low cytotoxicity, high stability, high QY and therefore are best suited for bioimaging applications. PEI coated QD also show superior performance exhibiting high QY and stability. However, they are considerably more cytotoxic due to their high positive charge which is an advantageous property that can be exploited for gene transfection and/or tumor targeting applications. The synthetic procedures described are straightforward and can be easily adapted in most laboratory settings. PMID:23620993
Lou, Shuaifeng; Ma, Yulin; Cheng, Xinqun; Gao, Jinlong; Gao, Yunzhi; Zuo, Pengjian; Du, Chunyu; Yin, Geping
2015-12-18
One-dimensional nanostructured TiNb2O7 was prepared by a simple solution-based process and subsequent thermal annealing. The obtained anode materials exhibited excellent electrochemical performance with superior reversible capacity, rate capability and cyclic stability.
NASA Technical Reports Server (NTRS)
Numata, Kenji; Camp, Jordan
2012-01-01
We have developed a linearly polarized Ytterbium-doped fiber ring laser with a single longitudinal mode output at 1064 run. A fiber-coupled intracavity phase modulator ensured mode-hop free operation and allowed fast frequency tuning. The fiber laser was locked with high stability to an iodine-stabilized laser, showing a frequency noise suppression of a factor approx 10 (exp 5) at 1 mHz
Gou, Xinlei; Zhao, Xinying; Chi, Haitao; Gao, Xia; Zhou, Mingqiang; Liu, Weili
2015-06-01
A sensitive method was developed for the simultaneous determination of ten benzotriazole ultraviolet stabilizers in food contact plastic materials by ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The sample was extracted by methanol-dichloromethane, and purified by a C18 solid-phase extraction (SPE) column. The separation was performed by using water containing 0. 1% (v/v) formic acid and methanol as the mobile phases with gradient elution at a flow rate of 0. 3 mL/min. The electrospray ionization (ESI) source in positive ion mode was used for the analysis of the ten benzotriazole ultraviolet stabilizers in multiple reaction monitoring (MRM) mode. The results showed that the standard curves were obtained with good correlation coefficients (r2 > 0.996) in their linear concentration ranges. The limits of detection (LODs, S/N = 3) for the ten benzotriazole ultraviolet stabilizers were in the range of 0.6-1.6 µg/kg. The mean recoveries for the ten benzotriazole ultraviolet stabilizers at three spiked levels (low, medium and high) were 75.2%-85.3% with relative standard deviations of 1.0%-5.7%. Ten kinds of food contact plastic materials were tested, and 2,2'-methylenebis (6-(benzotriazol-2-yl)-4-tert-octylphenol) (UV-360) was found in a sample of polyethylene (PE) material. The method is accurate, simple, rapid and feasible for the simultaneous determination of benzotriazole ultraviolet stabilizers in food plastic materials.
Darrington, Richard T; Jiao, Jim
2004-04-01
Rapid and accurate stability prediction is essential to pharmaceutical formulation development. Commonly used stability prediction methods include monitoring parent drug loss at intended storage conditions or initial rate determination of degradants under accelerated conditions. Monitoring parent drug loss at the intended storage condition does not provide a rapid and accurate stability assessment because often <0.5% drug loss is all that can be observed in a realistic time frame, while the accelerated initial rate method in conjunction with extrapolation of rate constants using the Arrhenius or Eyring equations often introduces large errors in shelf-life prediction. In this study, the shelf life prediction of a model pharmaceutical preparation utilizing sensitive high-performance liquid chromatography-mass spectrometry (LC/MS) to directly quantitate degradant formation rates at the intended storage condition is proposed. This method was compared to traditional shelf life prediction approaches in terms of time required to predict shelf life and associated error in shelf life estimation. Results demonstrated that the proposed LC/MS method using initial rates analysis provided significantly improved confidence intervals for the predicted shelf life and required less overall time and effort to obtain the stability estimation compared to the other methods evaluated. Copyright 2004 Wiley-Liss, Inc. and the American Pharmacists Association.
Tough, High-Performance, Thermoplastic Addition Polymers
NASA Technical Reports Server (NTRS)
Pater, Ruth H.; Proctor, K. Mason; Gleason, John; Morgan, Cassandra; Partos, Richard
1991-01-01
Series of addition-type thermoplastics (ATT's) exhibit useful properties. Because of their addition curing and linear structure, ATT polymers have toughness, like thermoplastics, and easily processed, like thermosets. Work undertaken to develop chemical reaction forming stable aromatic rings in backbone of ATT polymer, combining high-temperature performance and thermo-oxidative stability with toughness and easy processibility, and minimizing or eliminating necessity for tradeoffs among properties often observed in conventional polymer syntheses.
Hua, Fengting; Sun, Kanjun; Fenga, Enke; Peng, Hui; Zhang, Zhiguo; Lei, Ziqiang
2018-01-01
The electrochemical performance of an energy conversion and storage device like the supercapacitor mainly depends on the microstructure and morphology of the electrodes. In this paper, to improve the capacitance performance of the supercapacitor, the all-pseudocapacitive electrodes of lamella-like Bi18SeO29/BiSe as the negative electrode and flower-like Co0.85Se nanosheets as the positive electrode are synthesized by using a facile low-temperature one-step hydrothermal method. The microstructures and morphology of the electrode materials are carefully characterized, and the capacitance performances are also tested. The Bi18SeO29/BiSe and Co0.85Se have high specific capacitance (471.3 F g–1 and 255 F g–1 at 0.5 A g–1), high conductivity, outstanding cycling stability, as well as good rate capability. The assembled asymmetric supercapacitor completely based on the pseudocapacitive electrodes exhibits outstanding cycling stability (about 93% capacitance retention after 5000 cycles). Moreover, the devices exhibit high energy density of 24.2 Wh kg–1 at a power density of 871.2 W kg–1 in the voltage window of 0–1.6 V with 2 M KOH solution. PMID:29410830
Citti, Cinzia; Ciccarella, Giuseppe; Braghiroli, Daniela; Parenti, Carlo; Vandelli, Maria Angela; Cannazza, Giuseppe
2016-09-05
In the last few years, there has been a boost in the use of cannabis-based extracts for medicinal purposes, although their preparation procedure has not been standardized but rather decided by the individual pharmacists. The present work describes the development of a simple and rapid high performance liquid chromatography method with UV detection (HPLC-UV) for the qualitative and quantitative determination of the principal cannabinoids (CBD-A, CBD, CBN, THC and THC-A) that could be applied to all cannabis-based medicinal extracts (CMEs) and easily performed by a pharmacist. In order to evaluate the identity and purity of the analytes, a high-resolution mass spectrometry (HPLC-ESI-QTOF) analysis was also carried out. Full method validation has been performed in terms of specificity, selectivity, linearity, recovery, dilution integrity and thermal stability. Moreover, the influence of the solvent (ethyl alcohol and olive oil) was evaluated on cannabinoids degradation rate. An alternative extraction method has then been proposed in order to preserve cannabis monoterpene component in final CMEs. Copyright © 2016 Elsevier B.V. All rights reserved.
Simulating Effects of High Angle of Attack on Turbofan Engine Performance
NASA Technical Reports Server (NTRS)
Liu, Yuan; Claus, Russell W.; Litt, Jonathan S.; Guo, Ten-Huei
2013-01-01
A method of investigating the effects of high angle of attack (AOA) flight on turbofan engine performance is presented. The methodology involves combining a suite of diverse simulation tools. Three-dimensional, steady-state computational fluid dynamics (CFD) software is used to model the change in performance of a commercial aircraft-type inlet and fan geometry due to various levels of AOA. Parallel compressor theory is then applied to assimilate the CFD data with a zero-dimensional, nonlinear, dynamic turbofan engine model. The combined model shows that high AOA operation degrades fan performance and, thus, negatively impacts compressor stability margins and engine thrust. In addition, the engine response to high AOA conditions is shown to be highly dependent upon the type of control system employed.
COLLINS, BRIAN A.; O'CONNOR, ERIN E.; SUÁREZ-OROZCO, CAROLA; NIETO-CASTAÑON, ALFONSO; TOPPELBERG, CLAUDIO O.
2013-01-01
Dual language children enter school with varying levels of proficiencies in their first and second language. This study of Latino children of immigrants (N = 163) analyzes their dual language profiles at kindergarten and second grade, derived from the direct assessment of Spanish and English proficiencies (Woodcock Language Proficiency Batteries–Revised). Children were grouped based on the similarity of language profiles (competent profiles, such as dual proficient, Spanish proficient, and English proficient; and low-performing profiles, including borderline proficient and limited proficient). At kindergarten, the majority of children (63%) demonstrated a low-performing profile; by second grade, however, the majority of children (64%) had competent profiles. Change and stability of language profiles over time of individual children were then analyzed. Of concern, are children who continued to demonstrate a low-performing, high-risk profile. Factors in the linguistic environments at school and home, as well as other family and child factors associated with dual language profiles and change/stability over time were examined, with a particular focus on the persistently low-performing profile groups. PMID:24825925
Effects of binders on the electrochemical performance of rechargeable magnesium batteries
NASA Astrophysics Data System (ADS)
Wang, Nan; NuLi, Yanna; Su, Shuojian; Yang, Jun; Wang, Jiulin
2017-02-01
A comparative study on the effects of different binders on the electrochemical performance of rechargeable magnesium batteries with Mo6S8 cathode is conducted for the first time. The selected binders are commercial organic-soluble polyvinylidene fluoride (PVDF), water-soluble poly(acrylic acid) (PAA), poly(vinyl alcohol) (PVA), gelatin, sodium alginate (SA) and Beta-cyclodextrin (β-CD). The binders significantly affect the physical properties, thus the electrochemical performance of Mo6S8 cathode. Compared with those using traditional PVDF binder, Mo6S8 electrodes with PAA and PVA exhibit enhanced cycling stabilities and rate capabilities, which are attributed to the improved cohesion among the electrode constituents and adhesion between the electrode laminate and the current collector. In addition, the anodic stability of these binders is not only related to the chemical structure of binders, but also to the uniformity of electrode surface. SA binder shows low anodic stability duo to containing easily oxidized groups. Non-uniform electrode surface decreases the anodic stability of PVDF based Mo6S8 electrode. Gelatin can be used as a binder in the formulation of high voltage cathodes for rechargeable magnesium batteries.
Development of an advanced pitch active control system for a wide body jet aircraft
NASA Technical Reports Server (NTRS)
Guinn, Wiley A.; Rising, Jerry J.; Davis, Walt J.
1984-01-01
An advanced PACS control law was developed for a commercial wide-body transport (Lockheed L-1011) by using modern control theory. Validity of the control law was demonstrated by piloted flight simulation tests on the NASA Langley visual motion simulator. The PACS design objective was to develop a PACS that would provide good flying qualities to negative 10 percent static stability margins that were equivalent to those of the baseline aircraft at a 15 percent static stability margin which is normal for the L-1011. Also, the PACS was to compensate for high-Mach/high-g instabilities that degrade flying qualities during upset recoveries and maneuvers. The piloted flight simulation tests showed that the PACS met the design objectives. The simulation demonstrated good flying qualities to negative 20 percent static stability margins for hold, cruise and high-speed flight conditions. Analysis and wind tunnel tests performed on other Lockheed programs indicate that the PACS could be used on an advanced transport configuration to provide a 4 percent fuel savings which results from reduced trim drag by flying at negative static stability margins.
Lens-mount stability trade-off: a survey exemplified for DUV wafer inspection objectives
NASA Astrophysics Data System (ADS)
Bouazzam, Achmed; Erbe, Torsten; Fahr, Stephan; Werschnik, Jan
2015-09-01
The position stability of optical elements is an essential part of the tolerance budget of an optical system because its compensation would require an alignment step after the lens has left the factory. In order to achieve a given built performance the stability error contribution needs to be known and accounted for. Given a high-end lens touching the edge of technology not knowing, under- or overestimating this contribution becomes a serious cost and risk factor. If overestimated the remaining parts of the budget need to be tighter. If underestimated the total project might fail. For many mounting principles the stability benchmark is based on previous systems or information gathered by elaborated testing of complete optical systems. This renders the development of a new system into a risky endeavour, because these experiences are not sufficiently precise and tend to be not transferable when scaling of the optical elements is intended. This contribution discusses the influences of different optical mounting concepts on the position stability using the example of high numerical aperture (HNA) inspection lenses working in the deep ultraviolet (DUV) spectrum. A method to investigate the positional stability is presented for selected mounting examples typical for inspection lenses.
Factors that affect Pickering emulsions stabilized by graphene oxide.
He, Yongqiang; Wu, Fei; Sun, Xiying; Li, Ruqiang; Guo, Yongqin; Li, Chuanbao; Zhang, Lu; Xing, Fubao; Wang, Wei; Gao, Jianping
2013-06-12
Stable Pickering emulsions were prepared using only graphene oxide (GO) as a stabilizer, and the effects of the type of oil, the sonication time, the GO concentration, the oil/water ratio, and the pH value on the stability, type, and morphology of these emulsions were investigated. In addition, the effects of salt and the extent of GO reduction on emulsion formation and stability were studied and discussed. The average droplet size decreased with sonication time and with GO concentration, and the emulsions tended to achieve good stability at intermediate oil/water ratios and at low pH values. In all solvents, the emulsions were of the oil-in-water type, but interestingly, some water-in-oil-in-water (w/o/w) multiple emulsion droplets were also observed with low GO concentrations, low pH values, high oil/water ratios, high salt concentrations, or moderately reduced GO in the benzyl chloride-water system. A Pickering emulsion stabilized by Ag/GO was also prepared, and its catalytic performance for the reduction of 4-nitrophenol was investigated. This research paves the way for the fabrication of graphene-based functional materials with novel nanostructures and microstructures.
Liu, Guodong; Zhao, Xinfu; Zhang, Jian; Liu, Shaojie; Sha, Jingquan
2018-05-01
To develop solar light-driven photocatalysts with high activity and structural stability, Ag3PO4/POM/GO heterojunction has been successfully prepared by a facile method at room temperature. Ag3PO4/POM/GO shows remarkably enhanced activity and stability for photocatalytic degradation and H2 production from water-splitting under simulated solar light. The degradation rate of Ag3PO4/POM/GO is 1.8 times and 1.2 times those of Ag3PO4 and Ag3PO4/POMs, respectively. H2 production using Ag3PO4/POM/GO is 2.0 times that of Ag3PO4/GO. The enhanced photocatalytic performance of Ag3PO4/POM/GO is attributed to the increased surface area, electronegativity and structure stability. The Z-scheme system of Ag3PO4/POM/GO effectively promotes charge separation, resulting in enhanced photocatalytic performance under simulated solar light.
Nanostructured core-shell electrode materials for electrochemical capacitors
NASA Astrophysics Data System (ADS)
Jiang, Long-bo; Yuan, Xing-zhong; Liang, Jie; Zhang, Jin; Wang, Hou; Zeng, Guang-ming
2016-11-01
Core-shell nanostructure represents a unique system for applications in electrochemical energy storage devices. Owing to the unique characteristics featuring high power delivery and long-term cycling stability, electrochemical capacitors (ECs) have emerged as one of the most attractive electrochemical storage systems since they can complement or even replace batteries in the energy storage field, especially when high power delivery or uptake is needed. This review aims to summarize recent progress on core-shell nanostructures for advanced supercapacitor applications in view of their hierarchical architecture which not only create the desired hierarchical porous channels, but also possess higher electrical conductivity and better structural mechanical stability. The core-shell nanostructures include carbon/carbon, carbon/metal oxide, carbon/conducting polymer, metal oxide/metal oxide, metal oxide/conducting polymer, conducting polymer/conducting polymer, and even more complex ternary core-shell nanoparticles. The preparation strategies, electrochemical performances, and structural stabilities of core-shell materials for ECs are summarized. The relationship between core-shell nanostructure and electrochemical performance is discussed in detail. In addition, the challenges and new trends in core-shell nanomaterials development have also been proposed.
Kuang, Jun; Dai, Zhaohe; Liu, Luqi; Yang, Zhou; Jin, Ming; Zhang, Zhong
2015-01-01
Nanostructured carbon material based three-dimensional porous architectures have been increasingly developed for various applications, e.g. sensors, elastomer conductors, and energy storage devices. Maintaining architectures with good mechanical performance, including elasticity, load-bearing capacity, fatigue resistance and mechanical stability, is prerequisite for realizing these functions. Though graphene and CNT offer opportunities as nanoscale building blocks, it still remains a great challenge to achieve good mechanical performance in their microarchitectures because of the need to precisely control the structure at different scales. Herein, we fabricate a hierarchical honeycomb-like structured hybrid foam based on both graphene and CNT. The resulting materials possess excellent properties of combined high specific strength, elasticity and mechanical stability, which cannot be achieved in neat CNT and graphene foams. The improved mechanical properties are attributed to the synergistic-effect-induced highly organized, multi-scaled hierarchical architectures. Moreover, with their excellent electrical conductivity, we demonstrated that the hybrid foams could be used as pressure sensors in the fields related to artificial skin.
High Stability Engine Control (HISTEC): Flight Demonstration Results
NASA Technical Reports Server (NTRS)
Delaat, John C.; Southwick, Robert D.; Gallops, George W.; Orme, John S.
1998-01-01
Future aircraft turbine engines, both commercial and military, must be able to accommodate expected increased levels of steady-state and dynamic engine-face distortion. The current approach of incorporating sufficient design stall margin to tolerate these increased levels of distortion would significantly reduce performance. The High Stability Engine Control (HISTEC) program has developed technologies for an advanced, integrated engine control system that uses measurement- based estimates of distortion to enhance engine stability. The resulting distortion tolerant control reduces the required design stall margin, with a corresponding increase in performance and/or decrease in fuel burn. The HISTEC concept was successfully flight demonstrated on the F-15 ACTIVE aircraft during the summer of 1997. The flight demonstration was planned and carried out in two parts, the first to show distortion estimation, and the second to show distortion accommodation. Post-flight analysis shows that the HISTEC technologies are able to successfully estimate and accommodate distortion, transiently setting the stall margin requirement on-line and in real-time. Flight demonstration of the HISTEC technologies has significantly reduced the risk of transitioning the technology to tactical and commercial engines.
NASA Astrophysics Data System (ADS)
Park, Jinhee; Rim, You Seung; Li, Chao; Wu, Jiechen; Goorsky, Mark; Streit, Dwight
2018-04-01
We report the device performance and stability of sputtered amorphous indium-tin-zinc-oxide (ITZO) thin-film transistors as a function of oxygen ratio [O2/(Ar + O2)] during growth. Increasing the oxygen ratio enhanced the incorporation of oxygen during ITZO film growth and reduced the concentration of deep-level defects associated with oxygen vacancies. Under illumination with no bias stress, device stability and persistent photocurrent were improved with increased oxygen ratio. Bias stress tests of the devices were also performed with and without illumination. While high oxygen ratio growth conditions resulted in decreased deep-level oxygen vacancies in the ITZO material, the same conditions resulted in degradation of the interfacial layer between the ITZO channel and dielectric due to the migration of energetic oxygen ions to the interface. Therefore, when bias stress was applied, increased carrier trap density at the interface led to a decrease in device stability that offsets any improvement in the material itself. In order to take advantage of the improved ITZO material growth at a high oxygen ratio, the interface-related problems must be solved.
Mesoporous CLEAs-silica composite microparticles with high activity and enhanced stability
Cui, Jiandong; Jia, Shiru; Liang, Longhao; Zhao, Yamin; Feng, Yuxiao
2015-01-01
A novel enzyme immobilization approach was used to generate mesoporous enzymes-silica composite microparticles by co-entrapping gelatinized starch and cross-linked phenylalanine ammonia lyase (PAL) aggregates (CLEAs) containing gelatinized starch into biomemitic silica and subsequently removing the starch by α-amylase treatment. During the preparation process, the gelatinzed starch served as a pore-forming agent to create pores in CLEAs and biomimetic silica. The resulting mesoporous CLEAs-silica composite microparticles exhibited higher activity and stability than native PAL, conventional CLEAs, and PAL encapsulated in biomimetic silica. Furthermore, the mesoporous CLEAs-silica composite microparticles displayed good reusability due to its suitable size and mechanical properties, and had excellent stability for storage. The superior catalytic performances were attributed to the combinational unique structure from the intra-cross-linking among enzyme aggregates and hard mesoporous silica shell, which not only decreased the enzyme-support negative interaction and mass-transfer limitations, but also improved the mechanical properties and monodispersity. This approach will be highly beneficial for preparing various bioactive mesoporous composites with excellent catalytic performance. PMID:26374188
Peptide-based antibody alternatives for biological sensing in austere environments
NASA Astrophysics Data System (ADS)
Coppock, Matthew B.; Sarkes, Deborah A.; Hurley, Margaret M.; Stratis-Cullum, Dimitra N.
2017-02-01
The most critical component of a biosensor, the biorecognition element, must exhibit high selectivity and strong affinity for a target of interest in operational sensing. Monoclonal antibodies are the current standard reagents for such devices, but their adaptability, manufacturability, and stability greatly limit their effectiveness in fieldable sensors. Peptides have emerged as potential antibody replacements in such applications due to their similar binding performance, extreme chemical and thermal stabilities, and on-demand scalability. In conjunction with modeling capabilities, work at the Army Research Lab focuses on protein catalyzed capture (PCC) agent technology and bacterial display for the discovery of these novel peptide binding reagents. The synthetic, bottom-up PCC agent technology uses an iterative, in situ "click chemistry" approach to produce high performing peptides against specific epitopes translatable to the protein target. Bacterial display allows rapid reagent discovery due to the combination of fast bacterial growth and effective peptide sequence enrichment through multiple rounds of biopanning. Recent advances in both methods are highlighted in regards to the discovery of reagents against Army high priority protein targets for soldier safety, performance, and diagnostics.
NASA Astrophysics Data System (ADS)
Liu, Yanxia; Zhou, Zhaoxiao; Zhang, Shengping; Luo, Wenhao; Zhang, Guofeng
2018-06-01
One of the major challenges of high-performance asymmetric supercapacitors is engineering electrode materials with high capacitance and good cycling stability. Hence, we have successfully prepared different CuS hierarchical structures including CuS tubular structures (T-CuS), CuS hollow microspheres (S-CuS) and CuS hollow microflowers (H-CuS) by adjusting the solvents, all of which are investigated as electrode materials for supercapacitors. Among them, the H-CuS electrode exhibits the best electrochemical performance involving a high capacitance of 536.7 F g-1 at a current density of 8 A g-1 and excellent cycling stability with 83.6% capacitance retention for 20,000 continuous cycles at a current density of 5 A g-1. In addition, an asymmetric supercapacitor has assembled with H-CuS as positive electrode and activated carbon (AC) as negative electrode, which exhibits a desirable energy density of 15.97 W h kg-1 when the power density is 185.4 W kg-1. These desirable electrochemical performances powerfully demonstrate that the H-CuS electrode has promising potential for applications in energy storage fields.
Cation exchange properties of zeolites in hyper alkaline aqueous media.
Van Tendeloo, Leen; de Blochouse, Benny; Dom, Dirk; Vancluysen, Jacqueline; Snellings, Ruben; Martens, Johan A; Kirschhock, Christine E A; Maes, André; Breynaert, Eric
2015-02-03
Construction of multibarrier concrete based waste disposal sites and management of alkaline mine drainage water requires cation exchangers combining excellent sorption properties with a high stability and predictable performance in hyper alkaline media. Though highly selective organic cation exchange resins have been developed for most pollutants, they can serve as a growth medium for bacterial proliferation, impairing their long-term stability and introducing unpredictable parameters into the evolution of the system. Zeolites represent a family of inorganic cation exchangers, which naturally occur in hyper alkaline conditions and cannot serve as an electron donor or carbon source for microbial proliferation. Despite their successful application as industrial cation exchangers under near neutral conditions, their performance in hyper alkaline, saline water remains highly undocumented. Using Cs(+) as a benchmark element, this study aims to assess the long-term cation exchange performance of zeolites in concrete derived aqueous solutions. Comparison of their exchange properties in alkaline media with data obtained in near neutral solutions demonstrated that the cation exchange selectivity remains unaffected by the increased hydroxyl concentration; the cation exchange capacity did however show an unexpected increase in hyper alkaline media.
Postural Stability of Special Warfare Combatant-Craft Crewmen With Tactical Gear.
Morgan, Paul M; Williams, Valerie J; Sell, Timothy C
The US Naval Special Warfare's Special Warfare Combatant-Craft Crewmen (SWCC) operate on small, high-speed boats while wearing tactical gear (TG). The TG increases mission safety and success but may affect postural stability, potentially increasing risk for musculoskeletal injury. Therefore, the purpose of this study was to examine the effects of TG on postural stability during the Sensory Organization Test (SOT). Eight SWCC performed the SOT on NeuroCom's Balance Manager with TG and with no tactical gear (NTG). The status of gear was performed in randomized order. The SOT consisted of six different conditions that challenge sensory systems responsible for postural stability. Each condition was performed for three trials, resulting in a total of 18 trials. Overall performance, each individual condition, and sensory system analysis (somatosensory, visual, vestibular, preference) were scored. Data were not normally distributed therefore Wilcoxon signed-rank tests were used to compare each variable (ρ = .05). No significant differences were found between NTG and TG tests. No statistically significant differences were detected under the two TG conditions. This may be due to low statistical power, or potentially insensitivity of the assessment. Also, the amount and distribution of weight worn during the TG conditions, and the SWCC's unstable occupational platform, may have contributed to the findings. The data from this sample will be used in future research to better understand how TG affects SWCC. The data show that the addition of TG used in our study did not affect postural stability of SWCC during the SOT. Although no statistically significant differences were observed, there are clinical reasons for continued study of the effect of increased load on postural stability, using more challenging conditions, greater surface perturbations, dynamic tasks, and heavier loads. 2016.
Ionic Liquid Confined in Mesoporous Polymer Membrane with Improved Stability for CO2/N2 Separation
Tan, Ming; Lu, Jingting; Zhang, Yang; Jiang, Heqing
2017-01-01
Supported ionic liquid membranes (SILMs) have a promising prospect of application in flue gas separation, owing to its high permeability and selectivity of CO2. However, existing SILMs have the disadvantage of poor stability due to the loss of ionic liquid from the large pores of the macroporous support. In this study, a novel SILM with high stability was developed by confining ionic liquid in a mesoporous polymer membrane. First, a mesoporous polymer membrane derived from a soluble, low-molecular-weight phenolic resin precursor was deposited on a porous Al2O3 support, and then 1-ethyl-3-methylimidazolium tetrafluoroborate ([emim][BF4]) was immobilized inside mesopores of phenolic resin, forming the SILM under vacuum. Effects of trans-membrane pressure difference on the SILM separation performance were investigated by measuring the permeances of CO2 and N2. The SILM exhibits a high ideal CO2/N2 selectivity of 40, and an actual selectivity of approximately 25 in a mixed gas (50% CO2 and 50% N2) at a trans-membrane pressure difference of 2.5 bar. Compared to [emim][BF4] supported by polyethersulfone membrane with a pore size of around 0.45 μm, the [emim][BF4] confined in a mesoporous polymer membrane exhibits an improved stability, and its separation performance remained stable for 40 h under a trans-membrane pressure difference of 1.5 bar in a mixed gas before the measurement was intentionally stopped. PMID:28961187
NASA Astrophysics Data System (ADS)
Barreiro-Argüelles, Denisse; Ramos-Ortiz, Gabriel; Maldonado, José-Luis L.; Romero-Borja, Daniel; Meneses-Nava, Marco-Antonio; Pérez-Gutiérrez, Enrique
2017-08-01
The PV performance and aging/stability of organic photovoltaic (OPV) devices based on the well-known system PTB7:[70]PCBM and an alternative air-stable electrode deposited at room conditions are fully studied when the active area is scaled by a factor of 25. On the other hand, the aging/stability processes were also studied through single diode model, impedance spectroscopy and light-beam induced current (LBIC) measurements in accordance with the established ISOS-D1 (dark storage) and ISOS-L1 (illumination conditions) protocols. Results are a good indication that the alternative cathode Field's metal (FM) cathode works as an encapsulating material and provides excellent PV performance comparable with the common and costly high-vacuum evaporated Al cathode.
Highly stable thin film transistors using multilayer channel structure
NASA Astrophysics Data System (ADS)
Nayak, Pradipta K.; Wang, Zhenwei; Anjum, D. H.; Hedhili, M. N.; Alshareef, H. N.
2015-03-01
We report highly stable gate-bias stress performance of thin film transistors (TFTs) using zinc oxide (ZnO)/hafnium oxide (HfO2) multilayer structure as the channel layer. Positive and negative gate-bias stress stability of the TFTs was measured at room temperature and at 60 °C. A tremendous improvement in gate-bias stress stability was obtained in case of the TFT with multiple layers of ZnO embedded between HfO2 layers compared to the TFT with a single layer of ZnO as the semiconductor. The ultra-thin HfO2 layers act as passivation layers, which prevent the adsorption of oxygen and water molecules in the ZnO layer and hence significantly improve the gate-bias stress stability of ZnO TFTs.
NASA Astrophysics Data System (ADS)
Rajesh, B.; Ravindranathan Thampi, K.; Bonard, J.-M.; Mathieu, H. J.; Xanthopoulos, N.; Viswanathan, B.
The electronically conducting hybrid material based on transition metal oxide and conducting polymer has been used as the catalyst support for Pt nanoparticles. The Pt nanoparticles loaded hybrid organic (polyaniline)-inorganic (vanadium pentoxide) composite has been used as the electrode material for methanol oxidation, a reaction of importance for the development of direct methanol fuel cells (DMFC). The hybrid material exhibited excellent electrochemical and thermal stability in comparison to the physical mixture of conducting polymer and transition metal oxide. The Pt nanoparticles loaded hybrid material exhibited high electrocatalytic activity and stability for methanol oxidation in comparison to the Pt supported on the Vulcan XC 72R carbon support. The higher activity and stability is attributed to the better CO tolerance of the composite material.
A PILOT STUDY OF CORE STABILITY AND ATHLETIC PERFORMANCE: IS THERE A RELATIONSHIP?
Sharrock, Chris; Cropper, Jarrod; Mostad, Joel; Johnson, Matt
2011-01-01
Study Design: Correlation study Objectives: To objectively evaluate the relationship between core stability and athletic performance measures in male and female collegiate athletes. Background: The relationship between core stability and athletic performance has yet to be quantified in the available literature. The current literature does not demonstrate whether or not core strength relates to functional performance. Questions remain regarding the most important components of core stability, the role of sport specificity, and the measurement of core stability in relation to athletic performance. Methods: A sample of 35 volunteer student athletes from Asbury College (NAIA Division II) provided informed consent. Participants performed a series of five tests: double leg lowering (core stability test), the forty yard dash, the T-test, vertical jump, and a medicine ball throw. Participants performed three trials of each test in a randomized order. Results: Correlations between the core stability test and each of the other four performance tests were determined using a General Linear Model. Medicine ball throw negatively correlated to the core stability test (r –0.389, p=0.023). Participants that performed better on the core stability test had a stronger negative correlation to the medicine ball throw (r =–0.527). Gender was the most strongly correlated variable to core strength, males with a mean measurement of double leg lowering of 47.43 degrees compared to females having a mean of 54.75 degrees. Conclusions: There appears to be a link between a core stability test and athletic performance tests; however, more research is needed to provide a definitive answer on the nature of this relationship. Ideally, specific performance tests will be able to better define and to examine relationships to core stability. Future studies should also seek to determine if there are specific sub-categories of core stability which are most important to allow for optimal training and performance for individual sports. PMID:21713228
An appraisal of the enzyme stability-activity trade-off.
Miller, Scott R
2017-07-01
A longstanding idea in evolutionary physiology is that an enzyme cannot jointly optimize performance at both high and low temperatures due to a trade-off between stability and activity. Although a stability-activity trade-off has been observed for well-characterized examples, such a trade-off is not imposed by any physical chemical constraint. To better understand the pervasiveness of this trade-off, I investigated the stability-activity relationship for comparative biochemical studies of purified orthologous enzymes identified by a literature search. The nature of this relationship varied greatly among studies. Notably, studies of enzymes with low mean synonymous nucleotide sequence divergence were less likely to exhibit the predicted negative correlation between stability and activity. Similarly, a survey of directed evolution investigations of the stability-activity relationship indicated that these traits are often uncoupled among nearly identical yet phenotypically divergent enzymes. This suggests that the presumptive trade-off often reported for investigations of enzymes with high mean sequence divergence may in some cases instead be a consequence of the degeneration over time of enzyme function in unselected environments, rather than a direct effect of thermal adaptation. The results caution against the general assertion of a stability-activity trade-off during enzyme adaptation. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.
Tsao, Yuchi; Chen, Zheng; Rondeau-Gagne, Simon; ...
2017-09-20
Porous carbons have previously been widely used as host materials for sulfur (S) electrodes because of their high conductivity and high surface area. However, they generally lack strong chemical affinity to stabilize polysulfide species. Therefore, conducting polymers have been employed to stabilize S electrodes. Integrating conducting polymers with high-surface-area carbons can create a new materials platform and synergize their functions. However, the previously used conducting polymers were often insoluble, and coating them uniformly from solution onto a nonpolar carbon substrate is a challenge. Here, we report that solution-processable isoindigo-based polymers incorporating polar substituents provide critical features: the conjugated backbone providesmore » good conductivity; functional pyridine groups provide high affinity to polysulfide species; and they possess high solubility in organic solvents. Here, these lead to effective coating on various carbonaceous substrates to provide highly stable sulfur electrodes. Importantly, the electrodes exhibit good capacity retention (80% over 300 cycles) at sulfur mass loading of 3.2 mg/cm 2, which significantly surpasses the performance of others reported in polymer-enabled sulfur cathodes.« less
The effect of packaging materials on the stability of sunscreen emulsions.
Santoro, Maria Inês R M; Da Costa E Oliveira, Daniella Almança Gonçalves; Kedor-Hackmann, Erika R M; Singh, Anil K
2005-06-13
The purpose of this research was to study the stability of a emulsion containing UVA, UVB and infrared sunscreens after storage in different types of packaging materials (glass and plastic flasks; plastic and metallic tubes). The samples, emulsions containing benzophenone-3 (B-3), octyl methoxycinnamate (OM) and Phycocorail, were stored at 10, 25, 35 and 45 degrees C and representative samples were analyzed after 2, 7, 30, 60 and 90 days period. The stability studies were conducted by analyzing samples at pre-determined intervals by high performance liquid chromatography (HPLC) along with periodic rheological measurements.
Aluminum-stabilized Nb/sub 3/Sn superconductor
Scanlan, R.M.
1984-02-10
This patent discloses an aluminum-stabilized Nb/sub 3/Sn superconductor and process for producing same, utilizing ultrapure aluminum. Ductile components are co-drawn with aluminum to produce a conductor suitable for winding magnets. After winding, the conductor is heated to convert it to the brittle Nb/sub 3/Sn superconductor phase, using a temperature high enough to perform the transformation but still below the melting point of the aluminum. This results in reaction of substantially all of the niobium, while providing stabilization and react-in-place features which are beneficial in the fabrication of magnets utilizing superconducting materials.
Aluminum-stabilized Nb[sub 3]Sn superconductor
Scanlan, R.M.
1988-05-10
Disclosed are an aluminum-stabilized Nb[sub 3]Sn superconductor and process for producing same, utilizing ultrapure aluminum. Ductile components are co-drawn with aluminum to produce a conductor suitable for winding magnets. After winding, the conductor is heated to convert it to the brittle Nb[sub 3]Sn superconductor phase, using a temperature high enough to perform the transformation but still below the melting point of the aluminum. This results in reaction of substantially all of the niobium, while providing stabilization and react-in-place features which are beneficial in the fabrication of magnets utilizing superconducting materials. 4 figs.
Sami, Syed Kamran; Siddiqui, Saqib; Shrivastava, Sajal; Lee, Nae-Eung; Chung, Chan-Hwa
2017-12-01
Flexible supercapacitors with high electrochemical performance and stability along with mechanical robustness have gained immense attraction due to the substantial advancements and rampant requirements of storage devices. To meet the exponentially growing demand of microsized energy storage device, a cost-effective and durable supercapacitor is mandatory to realize their practical applications. Here, in this work, the fabrication route of novel electrode materials with high flexibility and charge-storage capability is reported using the hybrid structure of 1D zinc oxide (ZnO) nanorods and conductive polyvinylidene fluoride-tetrafluoroethylene (P(VDF-TrFE)) electrospun nanofibers. The ZnO nanorods are conformably grown on conductive P(VDF-TrFE) nanofibers to fabricate the light-weighted porous electrodes for supercapacitors. The conductive nanofibers acts as a high surface area scaffold with significant electrochemical performance, while the addition of ZnO nanorods further enhances the specific capacitance by 59%. The symmetric cell with the fabricated electrodes presents high areal capacitance of 1.22 mF cm -2 at a current density of 0.1 mA cm -2 with a power density of more than 1600 W kg -1 . Furthermore, these electrodes show outstanding flexibility and high stability with 96% and 78% retention in specific capacitance after 1000 and 5000 cycles, respectively. The notable mechanical durability and robustness of the cell acquire both good flexibility and high performance. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Li, Jianjiang; Chen, Shuai; Zhu, Xiaoyi; She, Xilin; Liu, Tongchao; Zhang, Huawei; Komarneni, Sridhar; Yang, Dongjiang; Yao, Xiangdong
2017-12-01
A biomass-templated pathway is developed for scalable synthesis of NiCo 2 O 4 @carbon aerogel electrodes for supercapacitors, where NiCo 2 O 4 hollow nanoparticles with an average outer diameter of 30-40 nm are conjoined by graphitic carbon forming a 3D aerogel structure. This kind of NiCo 2 O 4 aerogel structure shows large specific surface area (167.8 m 2 g -1 ), high specific capacitance (903.2 F g -1 at a current density of 1 A g -1 ), outstanding rate performance (96.2% capacity retention from 1 to 10 A g -1 ), and excellent cycling stability (nearly without capacitance loss after 3000 cycles at 10 A g -1 ). The unique structure of the 3D hollow aerogel synergistically contributes to the high performance. For instance, the 3D interconnected porous structure of the aerogel is beneficial for electrolyte ion diffusion and for shortening the electron transport pathways, and thus can improve the rate performance. The conductive carbon joint greatly enhances the specific capacity, and the hollow structure prohibits the volume changes during the charge-discharge process to significantly improve the cycling stability. This work represents a giant step toward the preparation of high-performance commercial supercapacitors.
Imtiaz, Qasim; Kurlov, Alexey; Rupp, Jennifer Lilia Marguerite; Müller, Christoph Rüdiger
2015-06-22
Chemical looping combustion (CLC) and chemical looping with oxygen uncoupling (CLOU) are emerging thermochemical CO2 capture cycles that allow the capture of CO2 with a small energy penalty. Here, the development of suitable oxygen carrier materials is a key aspect to transfer these promising concepts to practical installations. CuO is an attractive material for CLC and CLOU because of its high oxygen-storage capacity (20 wt %), fast reaction kinetics, and high equilibrium partial pressure of oxygen at typical operating temperatures (850-1000 °C). However, despite its promising characteristics, its low Tammann temperature requires the development of new strategies to phase-stabilize CuO-based oxygen carriers. In this work, we report a strategy based on stabilization by co-precipitated ceria (CeO2-x ), which allowed us to increase the oxygen capacity, coke resistance, and redox stability of CuO-based oxygen carriers substantially. The performance of the new oxygen carriers was evaluated in detail and compared to the current state-of-the-art materials, that is, Al2 O3 -stabilized CuO with similar CuO loadings. We also demonstrate that the higher intrinsic oxygen uptake, release, and mobility in CeO2-x -stabilized CuO leads to a three times higher carbon deposition resistance compared to that of Al2 O3 -stabilized CuO. Moreover, we report a high cyclic stability without phase intermixing for CeO2-x -supported CuO. This was accompanied by a lower reduction temperature compared to state-of-the-art Al2 O3 -supported CuO. As a result of its high resistance towards carbon deposition and fast oxygen uncoupling kinetics, CeO2-x -stabilized CuO is identified as a very promising material for CLC- and CLOU-based CO2 capture architectures. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Chen, Tao; Peng, Huisheng; Durstock, Michael; Dai, Liming
2014-01-01
By using highly aligned carbon nanotube (CNT) sheets of excellent optical transmittance and mechanical stretchability as both the current collector and active electrode, high-performance transparent and stretchable all-solid supercapacitors with a good stability were developed. A transmittance up to 75% at the wavelength of 550 nm was achieved for a supercapacitor made from a cross-over assembly of two single-layer CNT sheets. The transparent supercapacitor has a specific capacitance of 7.3 F g−1 and can be biaxially stretched up to 30% strain without any obvious change in electrochemical performance even over hundreds stretching cycles. PMID:24402400
Age-related declines of stability in visual perceptual learning.
Chang, Li-Hung; Shibata, Kazuhisa; Andersen, George J; Sasaki, Yuka; Watanabe, Takeo
2014-12-15
One of the biggest questions in learning is how a system can resolve the plasticity and stability dilemma. Specifically, the learning system needs to have not only a high capability of learning new items (plasticity) but also a high stability to retain important items or processing in the system by preventing unimportant or irrelevant information from being learned. This dilemma should hold true for visual perceptual learning (VPL), which is defined as a long-term increase in performance on a visual task as a result of visual experience. Although it is well known that aging influences learning, the effect of aging on the stability and plasticity of the visual system is unclear. To address the question, we asked older and younger adults to perform a task while a task-irrelevant feature was merely exposed. We found that older individuals learned the task-irrelevant features that younger individuals did not learn, both the features that were sufficiently strong for younger individuals to suppress and the features that were too weak for younger individuals to learn. At the same time, there was no plasticity reduction in older individuals within the task tested. These results suggest that the older visual system is less stable to unimportant information than the younger visual system. A learning problem with older individuals may be due to a decrease in stability rather than a decrease in plasticity, at least in VPL. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Wei, L.; Zhao, T. S.; Zeng, L.; Zeng, Y. K.; Jiang, H. R.
2017-02-01
In this work, we prepare a highly catalytic and stabilized titanium nitride (TiN) nanowire array-decorated graphite felt electrode for all vanadium redox flow batteries (VRFBs). Free-standing TiN nanowires are synthesized by a two-step process, in which TiO2 nanowires are first grown onto the surface of graphite felt via a seed-assisted hydrothermal method and then converted to TiN through nitridation reaction. When applied to VRFBs, the prepared electrode enables the electrolyte utilization and energy efficiency to be 73.9% and 77.4% at a high current density of 300 mA cm-2, which are correspondingly 43.3% and 15.4% higher than that of battery assembled with a pristine electrode. More impressively, the present battery exhibits good stability and high capacity retention during the cycle test. The superior performance is ascribed to the significant improvement in the electrochemical kinetics and enlarged active sites toward V3+/V2+ redox reaction.
ERIC Educational Resources Information Center
King, Alan; Grieves, Julie; Opp, Dean
2007-01-01
In a brief survey, the authors solicited professional opinions regarding the probable impact of performing arts on adolescent mood stability using a hypothetical scenario where 20 moderately depressed 15-year-olds agreed to participate in a high school play, musical, or other singing performance. The results of the survey indicated that clinicians…
Instability resistance training across the exercise continuum.
Behm, David G; Colado, Juan C; Colado, Juan C
2013-11-01
Instability resistance training (IRT; unstable surfaces and devices to strengthen the core or trunk muscles) is popular in fitness training facilities. To examine contradictory IRT recommendations for health enthusiasts and rehabilitation. A literature search was performed using MEDLINE, SPORT Discus, ScienceDirect, Web of Science, and Google Scholar databases from 1990 to 2012. Databases were searched using key terms, including "balance," "stability," "instability," "resistance training," "core," "trunk," and "functional performance." Additionally, relevant articles were extracted from reference lists. To be included, research questions addressed the effect of balance or IRT on performance, healthy and active participants, and physiologic or performance outcome measures and had to be published in English in a peer-reviewed journal. There is a dichotomy of opinions on the effectiveness and application of instability devices and conditions for health and performance training. Balance training without resistance has been shown to improve not only balance but functional performance as well. IRT studies document similar training adaptations as stable resistance training programs with recreationally active individuals. Similar progressions with lower resistance may improve balance and stability, increase core activation, and improve motor control. IRT is highly recommended for youth, elderly, recreationally active individuals, and highly trained enthusiasts.
NASA Astrophysics Data System (ADS)
Srivastava, Anurag; SanthiBhushan, Boddepalli
2018-03-01
Defects are inevitable most of the times either at the synthesis, handling or processing stage of graphene, causes significant deviation of properties. The present work discusses the influence of vacancy defects on the quantum capacitance as well as thermodynamic stability of graphene, and the nitrogen doping pattern needs to be followed to attain a trade-off between these two. Density Functional Theory (DFT) calculations have been performed to analyze various vacancy defects and different possible nitrogen doping patterns at the vacancy site of graphene, with an implication for supercapacitor electrodes. The results signify that vacancy defect improves the quantum capacitance of graphene at the cost of thermodynamic stability, while the nitrogen functionalization at the vacancy improves thermodynamic stability and quantum capacitance both. It has been observed that functionalizing all the dangling carbons at the defect site with nitrogen is the key to attain high thermodynamic stability as well as quantum capacitance. Furthermore, the results signify the suitability of these functionalized graphenes for anode electrode of high energy density asymmetric supercapacitors.
Solar thermal drum drying performance of prune and tomato pomaces
USDA-ARS?s Scientific Manuscript database
Fruit and vegetable pomaces are co-products of the food processing industry; they are underutilized in part because their high water activity (aw) renders them unstable. Drum drying is one method that can dry/stabilize pomaces, but current drum drying methods utilize conventional, high-environmental...
Enhanced surface transfer doping of diamond by V{sub 2}O{sub 5} with improved thermal stability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crawford, Kevin G., E-mail: k.crawford.2@research.gla.ac.uk; Moran, David A. J.; Cao, Liang
2016-01-25
Surface transfer doping of hydrogen-terminated diamond has been achieved utilising V{sub 2}O{sub 5} as a surface electron accepting material. Contact between the oxide and diamond surface promotes the transfer of electrons from the diamond into the V{sub 2}O{sub 5} as revealed by the synchrotron-based high resolution photoemission spectroscopy. Electrical characterization by Hall measurement performed before and after V{sub 2}O{sub 5} deposition shows an increase in hole carrier concentration in the diamond from 3.0 × 10{sup 12} to 1.8 × 10{sup 13 }cm{sup −2} at room temperature. High temperature Hall measurements performed up to 300 °C in atmosphere reveal greatly enhanced thermal stability of the hole channelmore » produced using V{sub 2}O{sub 5} in comparison with an air-induced surface conduction channel. Transfer doping of hydrogen-terminated diamond using high electron affinity oxides such as V{sub 2}O{sub 5} is a promising approach for achieving thermally stable, high performance diamond based devices in comparison with air-induced surface transfer doping.« less
NASA Astrophysics Data System (ADS)
Yang, Chao; Zhang, Liling; Hu, Nantao; Yang, Zhi; Wei, Hao; Wang, Yanyan; Zhang, Yafei
2016-11-01
Graphene-based all-solid-state supercapacitors (ASSSCs) have received increasing attention. It's a great challenge to fabricate high-performance flexible solid-state supercapacitors with high areal and volumetric energy storage capability, superior electron and ion conductivity, robust mechanical flexibility, as well as long term stability. Herein, we report a facile method to fabricate flexible ASSSCs based on densely-packed reduced graphene oxide (rGO)/polypyrrole nanoparticle (PPy NP) hybrid papers with a sandwich framework, which consists of well-separated and continuously-aligned rGO sheets. The incorporation of PPy NPs not only provides pseudocapacitance but also facilitates the infiltration of gel electrolyte. The assembled ASSSCs possess maximum areal and volumetric specific capacitances of 477 mF/cm2 and 94.9 F/cm3 at 0.5 mA/cm2. They also exhibit little capacitance deviation under different bending states, excellent cycling stability, small leakage current and low self-discharge characteristics. Additionally, the maximum areal and volumetric energy densities of 132.5 μWh/cm2 and 26.4 mWh/cm3 are achieved, which indicate that this hybrid paper is a promising candidate for high-performance flexible energy storage devices.
New organic semiconductors with imide/amide-containing molecular systems.
Liu, Zitong; Zhang, Guanxin; Cai, Zhengxu; Chen, Xin; Luo, Hewei; Li, Yonghai; Wang, Jianguo; Zhang, Deqing
2014-10-29
Due to their high electron affinities, chemical and thermal stabilities, π-conjugated molecules with imide/amide frameworks have received considerable attentions as promising candidates for high-performance optoelectronic materials, particularly for organic semiconductors with high carrier mobilities. The purpose of this Research News is to give an overview of recent advances in development of high performance imide/amide based organic semiconductors for field-effect transistors. It covers naphthalene diimide-, perylene diimide- and amide-based conjugated molecules and polymers for organic semiconductors. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Pandey, G. P.; Hashmi, S. A.
2013-12-01
Performance characteristics of the solid-state supercapacitors fabricated with ionic liquid (IL) incorporated gel polymer electrolyte and acid treated multiwalled carbon nanotube (MWCNT) electrodes have been studied. The effect of Li-salt (LiPF6) addition in the IL (1-ethyl-3-methylimidazolium tris(pentafluoroethyl) trifluorophosphate, EMImFAP) based gel electrolyte on the performance of supercapacitors has been specifically investigated. The LiPF6/IL/poly(vinylidine fluoride-co-hexafluoropropylene) (PVdF-HFP) gel electrolyte film possesses excellent electrochemical window of 4 V (from -2.0 to 2.0 V), high ionic conductivity ∼2.6 × 10-3 S cm-1 at 20 °C and high enough thermal stability. The comparative performance of supercapacitors employing electrolytes with and without lithium salt has been evaluated by impedance spectroscopy and cyclic voltammetric studies. The acid-treated MWCNT electrodes show specific capacitance of ∼127 F g-1 with IL/LiPF6 containing gel polymer electrolyte as compared to that with the gel polymer electrolyte without Li-salt, showing the value of ∼76 F g-1. The long cycling stability of the solid state supercapacitor based on the Li-salt containing gel polymer electrolyte confirms the electrochemical stability of the electrolyte.
Machine Learning methods for Quantitative Radiomic Biomarkers.
Parmar, Chintan; Grossmann, Patrick; Bussink, Johan; Lambin, Philippe; Aerts, Hugo J W L
2015-08-17
Radiomics extracts and mines large number of medical imaging features quantifying tumor phenotypic characteristics. Highly accurate and reliable machine-learning approaches can drive the success of radiomic applications in clinical care. In this radiomic study, fourteen feature selection methods and twelve classification methods were examined in terms of their performance and stability for predicting overall survival. A total of 440 radiomic features were extracted from pre-treatment computed tomography (CT) images of 464 lung cancer patients. To ensure the unbiased evaluation of different machine-learning methods, publicly available implementations along with reported parameter configurations were used. Furthermore, we used two independent radiomic cohorts for training (n = 310 patients) and validation (n = 154 patients). We identified that Wilcoxon test based feature selection method WLCX (stability = 0.84 ± 0.05, AUC = 0.65 ± 0.02) and a classification method random forest RF (RSD = 3.52%, AUC = 0.66 ± 0.03) had highest prognostic performance with high stability against data perturbation. Our variability analysis indicated that the choice of classification method is the most dominant source of performance variation (34.21% of total variance). Identification of optimal machine-learning methods for radiomic applications is a crucial step towards stable and clinically relevant radiomic biomarkers, providing a non-invasive way of quantifying and monitoring tumor-phenotypic characteristics in clinical practice.
The High Stability Engine Control (HISTEC) Program: Flight Demonstration Phase
NASA Technical Reports Server (NTRS)
DeLaat, John C.; Southwick, Robert D.; Gallops, George W.; Orme, John S.
1998-01-01
Future aircraft turbine engines, both commercial and military, must be able to accommodate expected increased levels of steady-state and dynamic engine-face distortion. The current approach of incorporating sufficient design stall margin to tolerate these increased levels of distortion would significantly reduce performance. The objective of the High Stability Engine Control (HISTEC) program is to design, develop, and flight-demonstrate an advanced, integrated engine control system that uses measurement-based estimates of distortion to enhance engine stability. The resulting distortion tolerant control reduces the required design stall margin, with a corresponding increase in performance and decrease in fuel burn. The HISTEC concept has been developed and was successfully flight demonstrated on the F-15 ACTIVE aircraft during the summer of 1997. The flight demonstration was planned and carried out in two phases, the first to show distortion estimation, and the second to show distortion accommodation. Post-flight analysis shows that the HISTEC technologies are able to successfully estimate and accommodate distortion, transiently setting the stall margin requirement on-line and in real-time. This allows the design stall margin requirement to be reduced, which in turn can be traded for significantly increased performance and/or decreased weight. Flight demonstration of the HISTEC technologies has significantly reduced the risk of transitioning the technology to tactical and commercial engines.
Sun, Pengzhan; Sasaki, Takayoshi
2017-01-01
Ion conducting membranes/electrolytes have been employed extensively in some important industrial and biological systems, especially in fuel cells, water electrolyzers, gas separation, sensors and biological selective ion transport, acting as one of the core components and sometimes directly determining the device performance. However, the traditional polymeric proton exchange membranes (PEMs)/anion exchange membranes (AEMs) suffer from highly toxic preparation procedures, poor thermal and chemical stabilities, and unsatisfactory ion conductivities. This has triggered researchers worldwide to explore alternative inorganic building blocks with high ion conductivities and stabilities from the new materials library, hoping to solve the above long-lasting problems. The recent burgeoning research on two-dimensional (2D) materials has unveiled exceptionally high ionic conductivities, which raises the feasibility of fabricating high-performance nanosheet-based ion conductors/membranes. In this perspective, the recent advances in measuring and understanding the exceptionally high and anisotropic H+/OH– ion conductivities of representative 2D materials, e.g. graphene oxide (GO), vermiculite and layered double hydroxide (LDH) nanosheets, are reviewed. In particular, regarding the anisotropic ionic conduction in 2D nanosheets, possible design strategies and technological innovations for fabricating macroscopic nanosheet-based ionic conductors/membranes are proposed for maximizing the high in-plane conduction, which may serve to guide future development of high-performance industrial and biological systems relying on H+/OH– conducting membranes. PMID:29629071
Sun, Pengzhan; Ma, Renzhi; Sasaki, Takayoshi
2018-01-07
Ion conducting membranes/electrolytes have been employed extensively in some important industrial and biological systems, especially in fuel cells, water electrolyzers, gas separation, sensors and biological selective ion transport, acting as one of the core components and sometimes directly determining the device performance. However, the traditional polymeric proton exchange membranes (PEMs)/anion exchange membranes (AEMs) suffer from highly toxic preparation procedures, poor thermal and chemical stabilities, and unsatisfactory ion conductivities. This has triggered researchers worldwide to explore alternative inorganic building blocks with high ion conductivities and stabilities from the new materials library, hoping to solve the above long-lasting problems. The recent burgeoning research on two-dimensional (2D) materials has unveiled exceptionally high ionic conductivities, which raises the feasibility of fabricating high-performance nanosheet-based ion conductors/membranes. In this perspective, the recent advances in measuring and understanding the exceptionally high and anisotropic H + /OH - ion conductivities of representative 2D materials, e.g. graphene oxide (GO), vermiculite and layered double hydroxide (LDH) nanosheets, are reviewed. In particular, regarding the anisotropic ionic conduction in 2D nanosheets, possible design strategies and technological innovations for fabricating macroscopic nanosheet-based ionic conductors/membranes are proposed for maximizing the high in-plane conduction, which may serve to guide future development of high-performance industrial and biological systems relying on H + /OH - conducting membranes.
Zhou, Jinyuan; Zhao, Hao; Mu, Xuemei; Chen, Jiayi; Zhang, Peng; Wang, Yaling; He, Yongmin; Zhang, Zhenxing; Pan, Xiaojun; Xie, Erqing
2015-09-21
This study reports the preparation of 3D hierarchical carbon nanotube (CNT) @MnO2 core-shell nanostructures under the assistance of polypyrrole (PPy). The as-prepared CNT@PPy@MnO2 core-shell structures show a perfect coating of MnO2 on each CNT and, more importantly, a robust bush-like pseudocapacitive shell to effectively increase the specific surface area and enhance the ion accessibility. As expected, a high specific capacity of 490-530 F g(-1) has been achieved from CNT@PPy@MnO2 single electrodes. And about 98.5% of the capacity is retained after 1000 charge/discharge cycles at a current density of 5 A g(-1). Furthermore, the assembled asymmetric CNT@PPy@MnO2//AC capacitors show the maximum energy density of 38.42 W h kg(-1) (2.24 mW h cm(-3)) at a power density of 100 W kg(-1) (5.83 mW cm(-3)), and they maintain 59.52% of the initial value at 10,000 W kg(-1) (0.583 W cm(-3)). In addition, the assembled devices show high cycling stabilities (89.7% after 2000 cycles for asymmetric and 87.2% for symmetric), and a high bending stability (64.74% after 200 bending tests). This ability to obtain high energy densities at high power rates while maintaining high cycling stability demonstrates that this well-designed structure could be a promising electrode material for high-performance supercapacitors.
Zhang, Xuming; Peng, Xiang; Li, Wan; Li, Limin; Gao, Biao; Wu, Guosong; Huo, Kaifu; Chu, Paul K
2015-04-17
A coaxial electrode structure composed of manganese oxide-decorated TiC/C core/shell nanofiber arrays is produced hydrothermally in a KMnO4 solution. The pristine TiC/C core/shell structure prepared on the Ti alloy substrate provides the self-sacrificing carbon shell and highly conductive TiC core, thus greatly simplifying the fabrication process without requiring an additional reduction source and conductive additive. The as-prepared electrode exhibits a high specific capacitance of 645 F g(-1) at a discharging current density of 1 A g(-1) attributable to the highly conductive TiC/C and amorphous MnO2 shell with fast ion diffusion. In the charging/discharging cycling test, the as-prepared electrode shows high stability and 99% capacity retention after 5000 cycles. Although the thermal treatment conducted on the as-prepared electrode decreases the initial capacitance, the electrode undergoes capacitance recovery through structural transformation from the crystalline cluster to layered birnessite type MnO2 nanosheets as a result of dissolution and further electrodeposition in the cycling. 96.5% of the initial capacitance is retained after 1000 cycles at high charging/discharging current density of 25 A g(-1). This study demonstrates a novel scaffold to construct MnO2 based SCs with high specific capacitance as well as excellent mechanical and cycling stability boding well for future design of high-performance MnO2-based SCs. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Stabilized display of coronary x-ray image sequences
NASA Astrophysics Data System (ADS)
Close, Robert A.; Whiting, James S.; Da, Xiaolin; Eigler, Neal L.
2004-05-01
Display stabilization is a technique by which a feature of interest in a cine image sequence is tracked and then shifted to remain approximately stationary on the display device. Prior simulations indicate that display stabilization with high playback rates ( 30 f/s) can significantly improve detectability of low-contrast features in coronary angiograms. Display stabilization may also help to improve the accuracy of intra-coronary device placement. We validated our automated tracking algorithm by comparing the inter-frame difference (jitter) between manual and automated tracking of 150 coronary x-ray image sequences acquired on a digital cardiovascular X-ray imaging system with CsI/a-Si flat panel detector. We find that the median (50%) inter-frame jitter between manual and automatic tracking is 1.41 pixels or less, indicating a jump no further than an adjacent pixel. This small jitter implies that automated tracking and manual tracking should yield similar improvements in the performance of most visual tasks. We hypothesize that cardiologists would perceive a benefit in viewing the stabilized display as an addition to the standard playback of cine recordings. A benefit of display stabilization was identified in 87 of 101 sequences (86%). The most common tasks cited were evaluation of stenosis and determination of stent and balloon positions. We conclude that display stabilization offers perceptible improvements in the performance of visual tasks by cardiologists.
High performance advanced tokamak regimes in DIII-D for next-step experiments
NASA Astrophysics Data System (ADS)
Greenfield, C. M.; Murakami, M.; Ferron, J. R.; Wade, M. R.; Luce, T. C.; Petty, C. C.; Menard, J. E.; Petrie, T. W.; Allen, S. L.; Burrell, K. H.; Casper, T. A.; DeBoo, J. C.; Doyle, E. J.; Garofalo, A. M.; Gorelov, I. A.; Groebner, R. J.; Hobirk, J.; Hyatt, A. W.; Jayakumar, R. J.; Kessel, C. E.; La Haye, R. J.; Jackson, G. L.; Lohr, J.; Makowski, M. A.; Pinsker, R. I.; Politzer, P. A.; Prater, R.; Strait, E. J.; Taylor, T. S.; West, W. P.; DIII-D Team
2004-05-01
Advanced Tokamak (AT) research in DIII-D [K. H. Burrell for the DIII-D Team, in Proceedings of the 19th Fusion Energy Conference, Lyon, France, 2002 (International Atomic Energy Agency, Vienna, 2002) published on CD-ROM] seeks to provide a scientific basis for steady-state high performance operation in future devices. These regimes require high toroidal beta to maximize fusion output and poloidal beta to maximize the self-driven bootstrap current. Achieving these conditions requires integrated, simultaneous control of the current and pressure profiles, and active magnetohydrodynamic stability control. The building blocks for AT operation are in hand. Resistive wall mode stabilization via plasma rotation and active feedback with nonaxisymmetric coils allows routine operation above the no-wall beta limit. Neoclassical tearing modes are stabilized by active feedback control of localized electron cyclotron current drive (ECCD). Plasma shaping and profile control provide further improvements. Under these conditions, bootstrap supplies most of the current. Steady-state operation requires replacing the remaining Ohmic current, mostly located near the half radius, with noninductive external sources. In DIII-D this current is provided by ECCD, and nearly stationary AT discharges have been sustained with little remaining Ohmic current. Fast wave current drive is being developed to control the central magnetic shear. Density control, with divertor cryopumps, of AT discharges with edge localized moding H-mode edges facilitates high current drive efficiency at reactor relevant collisionalities. A sophisticated plasma control system allows integrated control of these elements. Close coupling between modeling and experiment is key to understanding the separate elements, their complex nonlinear interactions, and their integration into self-consistent high performance scenarios. Progress on this development, and its implications for next-step devices, will be illustrated by results of recent experiment and simulation efforts.
He, Linxiang; Liao, Chengzhu
2018-01-01
Recent development in liquid-phase processing of single-walled carbon nanotubes (SWNTs) has revealed rod-coating as a promising approach for large-scale production of SWNT-based transparent conductors. Of great importance in the ink formulation is the stabilizer having excellent dispersion stability, environmental friendly and tunable rheology in the liquid state, and also can be readily removed to enhance electrical conductivity and mechanical stability. Herein we demonstrate the promise of graphene oxide (GO) as a synergistic stabilizer for SWNTs in water. SWNTs dispersed in GO is formulated into inks with homogeneous nanotube distribution, good wetting and rheological properties, and compatible with industrial rod coating practice. Microwave treatment of rod-coated films can reduce GOs and enhance electro-optical performance. The resultant films offer a sheet resistance of ~80 Ω/sq at 86% transparency, along with good mechanical flexibility. Doping the films with nitric acid can further decrease the sheet resistance to ~25 Ω/sq. Comparing with the films fabricated from typical surfactant-based SWNT inks, our films offer superior adhesion as assessed by the Scotch tape test. This study provides new insight into the selection of suitable stabilizers for functional SWNT inks with strong potential for printed electronics. PMID:29642446
Improvement in the control aspect of laser frequency stabilization for SUNLITE project
NASA Technical Reports Server (NTRS)
Zia, Omar
1992-01-01
Flight Electronics Division of Langley Research Center is developing a spaceflight experiment called the Stanford University and NASA Laser In-Space Technology (SUNLITE). The objective of the project is to explore the fundamental limits on frequency stability using an FM laser locking technique on a Nd:YAG non-planar ring (free-running linewidth of 5 KHz) oscillator in the vibration free, microgravity environment of space. Compact and automated actively stabilized terahertz laser oscillators will operate in space with an expected linewidth of less than 3 Hz. To implement and verify this experiment, NASA engineers have designed and built a state of the art, space qualified high speed data acquisition system for measuring the linewidth and stability limits of a laser oscillator. In order to achieve greater stability and better performance, an active frequency control scheme requiring the use of a feedback control loop has been applied. In the summer of 1991, the application of control theory in active frequency control as a frequency stabilization technique was investigated. The results and findings were presented in 1992 at the American Control Conference in Chicago, and have been published in Conference Proceedings. The main focus was to seek further improvement in the overall performance of the system by replacing the analogue controller by a digital algorithm.
Improved Stability of a Model IgG3 by DoE-Based Evaluation of Buffer Formulations
Chavez, Brittany K.; Agarabi, Cyrus D.; Read, Erik K.; ...
2016-01-01
Formulating appropriate storage conditions for biopharmaceutical proteins is essential for ensuring their stability and thereby their purity, potency, and safety over their shelf-life. Using a model murine IgG3 produced in a bioreactor system, multiple formulation compositions were systematically explored in a DoE design to optimize the stability of a challenging antibody formulation worst case. The stability of the antibody in each buffer formulation was assessed by UV/VIS absorbance at 280 nm and 410 nm and size exclusion high performance liquid chromatography (SEC) to determine overall solubility, opalescence, and aggregate formation, respectively. Upon preliminary testing, acetate was eliminated as a potentialmore » storage buffer due to significant visible precipitate formation. An additional 2 4full factorial DoE was performed that combined the stabilizing effect of arginine with the buffering capacity of histidine. From this final DoE, an optimized formulation of 200 mM arginine, 50 mM histidine, and 100 mM NaCl at a pH of 6.5 was identified to substantially improve stability under long-term storage conditions and after multiple freeze/thaw cycles. Therefore, our data highlights the power of DoE based formulation screening approaches even for challenging monoclonal antibody molecules.« less
Zhu, Yizhou; He, Xingfeng; Mo, Yifei
2015-12-11
All-solid-state Li-ion batteries based on ceramic solid electrolyte materials are a promising next-generation energy storage technology with high energy density and enhanced cycle life. The poor interfacial conductance is one of the key limitations in enabling all-solid-state Li-ion batteries. However, the origin of this poor conductance has not been understood, and there is limited knowledge about the solid electrolyte–electrode interfaces in all-solid-state Li-ion batteries. In this paper, we performed first principles calculations to evaluate the thermodynamics of the interfaces between solid electrolyte and electrode materials and to identify the chemical and electrochemical stabilities of these interfaces. Our computation results revealmore » that many solid electrolyte–electrode interfaces have limited chemical and electrochemical stability, and that the formation of interphase layers is thermodynamically favorable at these interfaces. These formed interphase layers with different properties significantly affect the electrochemical performance of all-solid-state Li-ion batteries. The mechanisms of applying interfacial coating layers to stabilize the interface and to reduce interfacial resistance are illustrated by our computation. This study demonstrates a computational scheme to evaluate the chemical and electrochemical stability of heterogeneous solid interfaces. Finally, the enhanced understanding of the interfacial phenomena provides the strategies of interface engineering to improve performances of all-solid-state Li-ion batteries.« less
Arcjet thruster research and technology
NASA Technical Reports Server (NTRS)
Makel, Darby B.; Cann, Gordon L.
1988-01-01
The design, analysis, and performance testing of an advanced lower power arcjet is described. A high impedance, vortex stabilized 1-kw class arcjet has been studied. A baseline research thruster has been built and endurance and performance tested. This advanced arcjet has demonstrated long lifetime characteristics, but lower than expected performance. Analysis of the specific design has identified modifications which should improve performance and maintain the long life time shown by the arcjet.
Processing bulk natural wood into a high-performance structural material.
Song, Jianwei; Chen, Chaoji; Zhu, Shuze; Zhu, Mingwei; Dai, Jiaqi; Ray, Upamanyu; Li, Yiju; Kuang, Yudi; Li, Yongfeng; Quispe, Nelson; Yao, Yonggang; Gong, Amy; Leiste, Ulrich H; Bruck, Hugh A; Zhu, J Y; Vellore, Azhar; Li, Heng; Minus, Marilyn L; Jia, Zheng; Martini, Ashlie; Li, Teng; Hu, Liangbing
2018-02-07
Synthetic structural materials with exceptional mechanical performance suffer from either large weight and adverse environmental impact (for example, steels and alloys) or complex manufacturing processes and thus high cost (for example, polymer-based and biomimetic composites). Natural wood is a low-cost and abundant material and has been used for millennia as a structural material for building and furniture construction. However, the mechanical performance of natural wood (its strength and toughness) is unsatisfactory for many advanced engineering structures and applications. Pre-treatment with steam, heat, ammonia or cold rolling followed by densification has led to the enhanced mechanical performance of natural wood. However, the existing methods result in incomplete densification and lack dimensional stability, particularly in response to humid environments, and wood treated in these ways can expand and weaken. Here we report a simple and effective strategy to transform bulk natural wood directly into a high-performance structural material with a more than tenfold increase in strength, toughness and ballistic resistance and with greater dimensional stability. Our two-step process involves the partial removal of lignin and hemicellulose from the natural wood via a boiling process in an aqueous mixture of NaOH and Na 2 SO 3 followed by hot-pressing, leading to the total collapse of cell walls and the complete densification of the natural wood with highly aligned cellulose nanofibres. This strategy is shown to be universally effective for various species of wood. Our processed wood has a specific strength higher than that of most structural metals and alloys, making it a low-cost, high-performance, lightweight alternative.
Processing bulk natural wood into a high-performance structural material
NASA Astrophysics Data System (ADS)
Song, Jianwei; Chen, Chaoji; Zhu, Shuze; Zhu, Mingwei; Dai, Jiaqi; Ray, Upamanyu; Li, Yiju; Kuang, Yudi; Li, Yongfeng; Quispe, Nelson; Yao, Yonggang; Gong, Amy; Leiste, Ulrich H.; Bruck, Hugh A.; Zhu, J. Y.; Vellore, Azhar; Li, Heng; Minus, Marilyn L.; Jia, Zheng; Martini, Ashlie; Li, Teng; Hu, Liangbing
2018-02-01
Synthetic structural materials with exceptional mechanical performance suffer from either large weight and adverse environmental impact (for example, steels and alloys) or complex manufacturing processes and thus high cost (for example, polymer-based and biomimetic composites). Natural wood is a low-cost and abundant material and has been used for millennia as a structural material for building and furniture construction. However, the mechanical performance of natural wood (its strength and toughness) is unsatisfactory for many advanced engineering structures and applications. Pre-treatment with steam, heat, ammonia or cold rolling followed by densification has led to the enhanced mechanical performance of natural wood. However, the existing methods result in incomplete densification and lack dimensional stability, particularly in response to humid environments, and wood treated in these ways can expand and weaken. Here we report a simple and effective strategy to transform bulk natural wood directly into a high-performance structural material with a more than tenfold increase in strength, toughness and ballistic resistance and with greater dimensional stability. Our two-step process involves the partial removal of lignin and hemicellulose from the natural wood via a boiling process in an aqueous mixture of NaOH and Na2SO3 followed by hot-pressing, leading to the total collapse of cell walls and the complete densification of the natural wood with highly aligned cellulose nanofibres. This strategy is shown to be universally effective for various species of wood. Our processed wood has a specific strength higher than that of most structural metals and alloys, making it a low-cost, high-performance, lightweight alternative.
Molecular gated-AlGaN/GaN high electron mobility transistor for pH detection.
Ding, Xiangzhen; Yang, Shuai; Miao, Bin; Gu, Le; Gu, Zhiqi; Zhang, Jian; Wu, Baojun; Wang, Hong; Wu, Dongmin; Li, Jiadong
2018-04-18
A molecular gated-AlGaN/GaN high electron mobility transistor has been developed for pH detection. The sensing surface of the sensor was modified with 3-aminopropyltriethoxysilane to provide amphoteric amine groups, which would play the role of receptors for pH detection. On modification with 3-aminopropyltriethoxysilane, the transistor exhibits good chemical stability in hydrochloric acid solution and is sensitive for pH detection. Thus, our molecular gated-AlGaN/GaN high electron mobility transistor acheived good electrical performances such as chemical stability (remained stable in hydrochloric acid solution), good sensitivity (37.17 μA/pH) and low hysteresis. The results indicate a promising future for high-quality sensors for pH detection.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kizu, Takio, E-mail: KIZU.Takio@nims.go.jp, E-mail: TSUKAGOSHI.Kazuhito@nims.go.jp; Mitoma, Nobuhiko; Tsukagoshi, Kazuhito, E-mail: KIZU.Takio@nims.go.jp, E-mail: TSUKAGOSHI.Kazuhito@nims.go.jp
2015-09-28
Using practical high-density sputtering targets, we investigated the effect of Zn and W codoping on the thermal stability of the amorphous film and the electrical characteristics in thin film transistors. zinc oxide is a potentially conductive component while W oxide is an oxygen vacancy suppressor in oxide films. The oxygen vacancy from In-O and Zn-O was suppressed by the W additive because of the high oxygen bond dissociation energy. With controlled codoping of W and Zn, we demonstrated a high mobility with a maximum mobility of 40 cm{sup 2}/V s with good stability under a negative bias stress in InWZnO thinmore » film transistors.« less
Tsukamoto, Takashi; Mizutani, Kenji; Hasegawa, Taisuke; Takahashi, Megumi; Honda, Naoya; Hashimoto, Naoki; Shimono, Kazumi; Yamashita, Keitaro; Yamamoto, Masaki; Miyauchi, Seiji; Takagi, Shin; Hayashi, Shigehiko; Murata, Takeshi; Sudo, Yuki
2016-06-03
Thermophilic rhodopsin (TR) is a photoreceptor protein with an extremely high thermal stability and the first characterized light-driven electrogenic proton pump derived from the extreme thermophile Thermus thermophilus JL-18. In this study, we confirmed its high thermal stability compared with other microbial rhodopsins and also report the potential availability of TR for optogenetics as a light-induced neural silencer. The x-ray crystal structure of TR revealed that its overall structure is quite similar to that of xanthorhodopsin, including the presence of a putative binding site for a carotenoid antenna; but several distinct structural characteristics of TR, including a decreased surface charge and a larger number of hydrophobic residues and aromatic-aromatic interactions, were also clarified. Based on the crystal structure, the structural changes of TR upon thermal stimulation were investigated by molecular dynamics simulations. The simulations revealed the presence of a thermally induced structural substate in which an increase of hydrophobic interactions in the extracellular domain, the movement of extracellular domains, the formation of a hydrogen bond, and the tilting of transmembrane helices were observed. From the computational and mutational analysis, we propose that an extracellular LPGG motif between helices F and G plays an important role in the thermal stability, acting as a "thermal sensor." These findings will be valuable for understanding retinal proteins with regard to high protein stability and high optogenetic performance. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Yoshihara, Hiroyuki
2014-07-01
Numerous surgical procedures and instrumentation techniques for lumbosacral fusion (LSF) have been developed. This is probably because of its high mechanical demand and unique anatomy. Surgical options include anterior column support (ACS) and posterior stabilization procedures. Biomechanical studies have been performed to verify the stability of those options. The options have their own advantage but also disadvantage aspects. This review article reports the surgical options for lumbosacral fusion, their biomechanical stability, advantages/disadvantages, and affecting factors in option selection. Review of literature. LSF has lots of options both for ACS and posterior stabilization procedures. Combination of posterior stabilization procedures is an option. Furthermore, combinations of ACS and posterior stabilization procedures are other options. It is difficult to make a recommendation or treatment algorithm of LSF from the current literature. However, it is important to know all aspects of the options and decision-making of surgical options for LSF needs to be tailored for each patient, considering factors such as biomechanical stress and osteoporosis.
Garnero, Claudia; Chattah, Ana Karina; Aloisio, Carolina; Fabietti, Luis; Longhi, Marcela
2018-05-10
Norfloxacin, an antibiotic that exists in different solid forms, has very unfavorable properties in terms of solubility and stability. Binary complexes of norfloxacin, in the solid form C, and β-cyclodextrin were procured by the kneading method and physical mixture. Their effect on the solubility, the dissolution rate, and the chemical and physical stability of norfloxacin was evaluated. To perform stability studies, the solid samples were stored under accelerated storage conditions, for a period of 6 months. Physical stability was monitored through powder X-ray diffraction, high-resolution 13 C solid-state nuclear magnetic resonance, and scanning electron microscopy. The results showed evidence that the kneaded complex increased and modulated the dissolution rate of norfloxacin C. Furthermore, it was demonstrated that the photochemical stability was increased in the complex, without affecting its physical stability. The results point to the conclusion that the new kneading complex of norfloxacin constitutes an alternative tool to formulate a potential oral drug delivery system with improve oral bioavailability.
Aladedunye, Felix; Przybylski, Roman
2013-12-01
The influence of linoleic acid content and tocopherol isomeric composition on the frying performance of high oleic sunflower oil was evaluated during a 14-day restaurant style frying operation. At equal linoleic acid content, no significant difference was observed between high oleic sunflower oil containing only α-tocopherol and the sample containing a mixture of α-, γ-, and δ-isomers as measured by the amount of total polar components, oligomers, anisidine value, and free fatty acids. On the contrary, at similar tocopherol isomeric composition, high oleic sunflower oil containing lower amount of linoleic acid showed superior frying stability compared to the sample with a higher content of linoleic acid, suggesting that the frying performance of high oleic sunflower oil is dictated primarily by the level of linoleic acid, with the tocopherol isomeric composition of the oil having no significant influence. In all oil samples, the loss of γ-tocopherol was higher than the corresponding loss of α-tocopherol. Copyright © 2013 Elsevier Ltd. All rights reserved.
Analysis of seismic stability of large-sized tank VST-20000 with software package ANSYS
NASA Astrophysics Data System (ADS)
Tarasenko, A. A.; Chepur, P. V.; Gruchenkova, A. A.
2018-05-01
The work is devoted to the study of seismic stability of vertical steel tank VST-20000 with due consideration of the system response “foundation-tank-liquid”, conducted on the basis of the finite element method, modal analysis and linear spectral theory. The calculations are performed for the tank model with a high degree of detailing of metallic structures: shells, a fixed roof, a bottom, a reinforcing ring.
NASA Astrophysics Data System (ADS)
He, Shuijian; Chen, Linlin; Xie, Chencheng; Hu, Huan; Chen, Shuiliang; Hanif, Muddasir; Hou, Haoqing
2013-12-01
Due to their cycling stability and high power density, the supercapacitors bridge the power/energy gap between traditional dielectric capacitors and batteries/fuel cells. Electrode materials are key components for making high performance supercapacitors. An activated carbon nanowhiskers (ACNWs) wrapped-on graphitized electrospun nanofiber (GENF) network (ACNWs/GENFN) with 3D porous structure is prepared as a new type of binder-free electrode material for supercapacitors. The supercapacitor based on the ACNWs/GENFN composite material displays an excellent performance with a specific capacitance of 176.5 F g-1 at current density of 0.5 A g-1, an ultrahigh power density of 252.8 kW kg-1 at current density of 800 A g-1 and an outstanding cycling stability of no capacitance loss after 10,000 charge/discharge cycles.
Hsu, M C; Hsu, P W
1992-01-01
A reversed-phase column liquid chromatographic method was developed for the assay of amoxicillin and its preparations. The linear calibration range was 0.2 to 2.0 mg/ml (r = 0.9998), and recoveries were generally greater than 99%. The high-performance liquid chromatographic assay results were compared with those obtained from a microbiological assay of bulk drug substance and capsule, injection, and granule formulations containing amoxicillin and degraded amoxicillin. At the 99% confidence level, no significant intermethod differences were noted for the paired results. Commercial formulations were also analyzed, and the results obtained by the proposed method closely agreed with those found by the microbiological method. The results indicated that the proposed method is a suitable substitute for the microbiological method for assays and stability studies of amoxicillin preparations. PMID:1416827
NASA Technical Reports Server (NTRS)
Smart, M. C.; Ratnakumar, B. V.; West, W. C.; Brandon, E. J.
2011-01-01
Objectives and Approach: (1) Develop advanced Li ]ion electrolytes that enable cell operation over a wide temperature range (i.e., -60 to +60 C). Improve the high temperature stability and lifetime characteristics of wide operating temperature electrolytes. (2) Define the performance limitations at low and high temperature extremes, as well as, life limiting processes. (3) Demonstrate the performance of advanced electrolytes in large capacity prototype cells.
Dimensional stability performance of a CFRP sandwich optical bench for microsatellite payload
NASA Astrophysics Data System (ADS)
Desnoyers, N.; Goyette, P.; Leduc, B.; Boucher, M.-A.
2017-09-01
Microsatellite market requires high performance while minimizing mass, volume and cost. Telescopes are specifically targeted by these trade-offs. One of these is to use the optomechanical structure of the telescope to mount electronic devices that may dissipate heat. However, such approach may be problematic in terms of distortions due to the presence of high thermal gradients throughout the telescope structure. To prevent thermal distortions, Carbon Fiber Reinforced Polymer (CFRP) technology can be used for the optomechanical telescope material structure. CFRP is typically about 100 times less sensitive to thermal gradients and its coefficient of thermal expansion (CTE) is about 200 to 600 times lower than standard aluminum alloys according to inhouse measurements. Unfortunately, designing with CFRP material is not as straightforward as with metallic materials. There are many parameters to consider in order to reach the desired dimensional stability under thermal, moisture and vibration exposures. Designing optomechanical structures using CFRP involves many challenges such as interfacing with optics and sometimes dealing with high CTE mounting interface structures like aluminum spacecraft buses. INO has designed a CFRP sandwich telescope structure to demonstrate the achievable performances of such technology. Critical parameters have been optimized to maximize the dimensional stability while meeting the stringent environmental requirements that microsatellite payloads have to comply with. The telescope structure has been tested in vacuum from -40°C to +50°C and has shown a good fit with finite element analysis predictions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
West, W P; Burrell, K H; Casper, T A
2004-12-03
The quiescent H (QH) mode, an edge localized mode (ELM)-free, high-confinement mode, combines well with an internal transport barrier to form quiescent double barrier (QDB) stationary state, high performance plasmas. The QH-mode edge pedestal pressure is similar to that seen in ELMing phases of the same discharge, with similar global energy confinement. The pedestal density in early ELMing phases of strongly pumped counter injection discharges drops and a transition to QH-mode occurs, leading to lower calculated edge bootstrap current. Plasmas current ramp experiment and ELITE code modeling of edge stability suggest that QH-modes lie near an edge current stability boundary.more » At high triangularity, QH-mode discharges operate at higher pedestal density and pressure, and have achieved ITER level values of {beta}{sub PED} and {nu}*. The QDB achieves performance of {alpha}{sub N}H{sub 89} {approx} 7 in quasi-stationary conditions for a duration of 10 tE, limited by hardware. Recently we demonstrated stationary state QDB discharges with little change in kinetic and q profiles (q{sub 0} > 1) for 2 s, comparable to ELMing ''hybrid scenarios'', yet without the debilitating effects of ELMs. Plasma profile control tools, including electron cyclotron heating and current drive and neutral beam heating, have been demonstrated to control simultaneously the q profile development, the density peaking, impurity accumulation and plasma beta.« less
Huang, Yilun; Li, Yuyao; Gong, Qianming; Zhao, Guanlei; Zheng, Pengjie; Bai, Junfei; Gan, Jianning; Zhao, Ming; Shao, Yang; Wang, Dazhi; Liu, Lei; Zou, Guisheng; Zhuang, Daming; Liang, Ji; Zhu, Hongwei; Nan, Cewen
2018-05-16
Aluminum (Al) current collector is one of the most important components of supercapacitors, and its performance has vital effects on the electrochemical performance and cyclic stability of supercapacitors. In the present work, a scalable and low-cost, yet highly efficient, picosecond laser processing method of Al current collectors was developed to improve the overall performance of supercapacitors. The laser treatment resulted in hierarchical micro-nanostructures on the surface of the commercial Al foil and reduced the surface oxygen content of the foil. The electrochemical performance of the Al foil with the micro-nanosurface structures was examined in the symmetrical activated carbon-based coin supercapacitors with an organic electrolyte. The results suggest that the laser-treated Al foil (laser-Al) increased the capacitance density of supercapacitors up to 110.1 F g -1 and promoted the rate capability due to its low contact resistance with the carbonaceous electrode and high electrical conductivity derived from its larger specific surface areas and deoxidized surface. In addition, the capacitor with the laser-Al current collector exhibited high cyclic stability with 91.5% capacitance retention after 10 000 cycles, 21.3% higher than that with pristine-Al current collector due to its stronger bonding with the carbonaceous electrode that prevented any delamination during aging. Our work has provided a new strategy for improving the electrochemical performance of supercapacitors.
Performance of the CHIRON high-resolution Echelle spectrograph
NASA Astrophysics Data System (ADS)
Schwab, Christian; Spronck, Julien F. P.; Tokovinin, Andrei; Szymkowiak, Andrew; Giguere, Matthew; Fischer, Debra A.
2012-09-01
CHIRON is a fiber-fed Echelle spectrograph with observing modes for resolutions from 28,000 to 120,000, built primarily for measuring precise radial velocities (RVs). We present the instrument performance as determined during integration and commissioning. We discuss the PSF, the effect of glass inhomogeneity on the cross-dispersion prism, temperature stabilization, stability of the spectrum on the CCD, and detector characteristics. The RV precision is characterized, with an iodine cell or a ThAr lamp as the wavelength reference. Including all losses from the sky to the detector, the overall efficiency is about 6%; the dominant limitation is coupling losses into the fiber due to poor guiding.
Design and performance of a production-worthy excimer-laser-based stepper
NASA Astrophysics Data System (ADS)
Unger, Robert; Sparkes, Christopher; Disessa, Peter A.; Elliott, David J.
1992-06-01
Excimer-laser-based steppers have matured to a production-worthy state. Widefield high-NA lenses have been developed and characterized for imaging down to 0.35 micron and below. Excimer lasers have attained practical levels of performance capability and stability, reliability, safety, and operating cost. Excimer stepper system integration and control issues such as focus, exposure, and overlay stability have been addressed. Enabling support technologies -- resist systems, resist processing, metrology and conventional mask making -- continue to progress and are becoming available. This paper discusses specific excimer stepper design challenges, and presents characterization data from several field installations of XLSTM deep-UV steppers configured with an advanced lens design.
Non-Static error tracking control for near space airship loading platform
NASA Astrophysics Data System (ADS)
Ni, Ming; Tao, Fei; Yang, Jiandong
2018-01-01
A control scheme based on internal model with non-static error is presented against the uncertainty of the near space airship loading platform system. The uncertainty in the tracking table is represented as interval variations in stability and control derivatives. By formulating the tracking problem of the uncertainty system as a robust state feedback stabilization problem of an augmented system, sufficient condition for the existence of robust tracking controller is derived in the form of linear matrix inequality (LMI). Finally, simulation results show that the new method not only has better anti-jamming performance, but also improves the dynamic performance of the high-order systems.
Chen, Qun-Feng; Troshyn, Andrei; Ernsting, Ingo; Kayser, Steffen; Vasilyev, Sergey; Nevsky, Alexander; Schiller, Stephan
2011-11-25
Using an ultrastable continuous-wave laser at 580 nm we performed spectral hole burning of Eu(3+):Y(2)SiO(5) at a very high spectral resolution. The essential parameters determining the usefulness as a macroscopic frequency reference, linewidth, temperature sensitivity, and long-term stability, were characterized using a H-maser stabilized frequency comb. Spectral holes with a linewidth as low as 6 kHz were observed and the upper limit of the drift of the hole frequency was determined to be 5±3 mHz/s. We discuss the necessary requirements for achieving ultrahigh stability in laser frequency stabilization to these spectral holes.
High-density fuel effects. Final report, September 1985-April 1988
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rizk, N.K.; Oechsie, V.L.; Ross, P.T.
1988-08-18
The purpose of this program was to determine, by combustor rig tests and data evaluation, the effects of the high-density fuel properties on the performance and durability of the Allison T56-A-15 combustion system. Four high-density fuels in addition to baseline JP4 were evaluated in the effort. The rig-test program included: nozzle-flow bench testing, aerothermal performance and wall temperature, flame stability and ignition, injector coking and plugging, and flow-transient effect. The data-evaluation effort involved the utilization of empirical correlations in addition to analytical multidimensional tools to analyze the performance of the combustor. The modifications required to optimize the performance with high-densitymore » fuels were suggested and the expected improvement in performance was evaluated.« less
Functionalized graphene hydrogel-based high-performance supercapacitors.
Xu, Yuxi; Lin, Zhaoyang; Huang, Xiaoqing; Wang, Yang; Huang, Yu; Duan, Xiangfeng
2013-10-25
Functionalized graphene hydrogels are prepared by a one-step low-temperature reduction process and exhibit ultrahigh specific capacitances and excellent cycling stability in the aqueous electrolyte. Flexible solid-state supercapacitors based on functionalized graphene hydrogels are demonstrated with superior capacitive performances and extraordinary mechanical flexibility. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
MacLeod, Bradley; Tremolet de Villers, Bertrand; Cowan, Sarah; Ratcliff, Erin; Olson, Dana
2014-03-01
Solution-processed ZnO thin films are now commonly used as n-type bottom contacts in inverted-geometry organic photovoltaics (OPVs). The use of ZnO eliminates the need for highly-reactive top-contact (air-interface) electrode material, such as calcium and aluminum which are commonly used in conventional geometries, which enables operational lifetimes of unencapsulated devices to shift from minutes or hours to days. Modification of the ZnO film by self-assembled monolayers (SAMs) has been shown to enhance performance as well as air-stability during storage. We modify ZnO with dipolar phosphonic acids and observe enhanced performance and stability. We show for the first time devices measured under continuous illumination at one-sun intensity which have significantly enhanced stability when utilizing SAM-modified ZnO. These continuous-illumination stability measurements allow us to investigate the degradation mechanisms of these more stable inverted OPV devices. This work was was supported by of the Center for Interface Science: Solar Electric Materials (CISSEM), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001084.
Ground effects on the stability of separated flow around an airfoil at low Reynolds numbers
NASA Astrophysics Data System (ADS)
He, Wei; Yu, Peng; Li, Larry K. B.
2017-11-01
We perform a BiGlobal stability analysis on the separated flow around a NACA 4415 airfoil at low Reynolds numbers (Re = 300 - 1000) and a high angle of attack α =20° with a focus on the effect of the airfoil's proximity to a moving ground. The results show that the most dominant perturbation is the Kelvin-Helmholtz mode and that this traveling mode becomes less unstable as the airfoil approaches the ground, although this stabilizing effect diminishes with increasing Reynolds number. By performing a Floquet analysis, we find that this ground effect can also stabilize secondary instabilities. This numerical-theoretical study shows that the ground can have a significant influence on the stability of separated flow around an airfoil at low Reynolds numbers, which could have implications for the design of micro aerial vehicles and for the understanding of natural flyers such as insects and birds. This work was supported by the Research Grants Council of Hong Kong (Project No. 16235716 and 26202815) and the Special Program for Applied Research on Super Computation of the NSFC-Guangdong Joint Fund (the second phase) under Grant No.U1501501.
Kim, Ki Jae; Kwon, Hyuk Kwon; Park, Min-Sik; Yim, Taeeun; Yu, Ji-Sang; Kim, Young-Jun
2014-05-28
We introduce a ceramic composite separator prepared by coating moisturized ZrO2 nanoparticles with a poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF-12wt%HFP) copolymer on a polyethylene separator. The effect of moisturized ZrO2 nanoparticles on the morphology and the microstructure of the polymeric coating layer is investigated. A large number of micropores formed around the embedded ZrO2 nanoparticles in the coating layer as a result of the phase inversion caused by the adsorbed moisture. The formation of micropores highly affects the ionic conductivity and electrolyte uptake of the ceramic composite separator and, by extension, the rate discharge properties of lithium ion batteries. In particular, thermal stability of the ceramic composite separators coated with the highly moisturized ZrO2 nanoparticles (a moisture content of 16 000 ppm) is dramatically improved without any degradation in electrochemical performance compared to the performance of pristine polyethylene separators.
Zhang, Guangzhao; Chen, Yunhua; Deng, Yonghong; Wang, Chaoyang
2017-10-18
We report here an intriguing hybrid conductive hydrogel as electrode for high-performance flexible supercapacitor. The key is using a rationally designed water-soluble ABA triblock copolymer (termed as IAOAI) containing a central poly(ethylene oxide) block (A) and terminal poly(acrylamide) (PAAm) block with aniline moieties randomly incorporated (B), which was synthesized by reversible additional fragment transfer polymerization. The subsequent copolymerization of aniline monomers with the terminated aniline moieties on the IAOAI polymer generates a three-dimensional cross-linking hybrid network. The hybrid hydrogel electrode demonstrates robust mechanical flexibility, remarkable electrochemical capacitance (919 F/g), and cyclic stability (90% capacitance retention after 1000 cycles). Moreover, the flexible supercapacitor based on this hybrid hydrogel electrode presents a large specific capacitance (187 F/g), superior to most reported conductive hydrogel-based supercapacitors. With the demonstrated additional favorable cyclic stability and excellent capacitive and rate performance, this hybrid hydrogel-based supercapacitor holds great promise for flexible energy-storage device.
Kim, Ok-Hee; Cho, Yoon-Hwan; Jeon, Tae-Yeol; Kim, Jung Won; Cho, Yong-Hun; Sung, Yung-Eun
2015-07-01
Core-shell structure nanoparticles have been the subject of many studies over the past few years and continue to be studied as electrocatalysts for fuel cells. Therefore, many excellent core-shell catalysts have been fabricated, but few studies have reported the real application of these catalysts in a practical device actual application. In this paper, we demonstrate the use of platinum (Pt)-exoskeleton structure nanoparticles as cathode catalysts with high stability and remarkable Pt mass activity and report the outstanding performance of these materials when used in membrane-electrode assemblies (MEAs) within a polymer electrolyte membrane fuel cell. The stability and degradation characteristics of these materials were also investigated in single cells in an accelerated degradation test using load cycling, which is similar to the drive cycle of a polymer electrolyte membrane fuel cell used in vehicles. The MEAs with Pt-exoskeleton structure catalysts showed enhanced performance throughout the single cell test and exhibited improved degradation ability that differed from that of a commercial Pt/C catalyst.
Niu, Xiao-Qing; Wang, Xiu-Li; Xie, Dong; Wang, Dong-Huang; Zhang, Yi-Di; Li, Yi; Yu, Ting; Tu, Jiang-Ping
2015-08-05
Tailored sulfur cathode is vital for the development of a high performance lithium-sulfur (Li-S) battery. A surface modification on the sulfur/carbon composite would be an efficient strategy to enhance the cycling stability. Herein, we report a nickel hydroxide-modified sulfur/conductive carbon black composite (Ni(OH)2@S/CCB) as the cathode material for the Li-S battery through the thermal treatment and chemical precipitation method. In this composite, the sublimed sulfur is stored in the CCB, followed by a surface modification of Ni(OH)2 nanoparticles with size of 1-2 nm. As a cathode for the Li-S battery, the as-prepared Ni(OH)2@S/CCB electrode exhibits better cycle stability and higher rate discharge capacity, compared with the bare S/CCB electrode. The improved performance is largely due to the introduction of Ni(OH)2 surface modification, which can effectively suppress the "shuttle effect" of polysulfides, resulting in enhanced cycling life and higher capacity.
NASA Astrophysics Data System (ADS)
Zheng, Longhui; Yuan, Li; Guan, Qingbao; Liang, Guozheng; Gu, Aijuan
2018-01-01
Higher dielectric constant, lower dielectric loss and better frequency stability have been the developing trends for high dielectric constant (high-k) materials. Herein, new composites have been developed through building unique structure by using hyperbranched polysiloxane modified 3D-barium titanate foam (BTF) (BTF@HSi) as the functional fillers and phenolphthalein poly(ether sulfone) (cPES)/cyanate ester (CE) blend as the resin matrix. For BTF@HSi/cPES/CE composite with 34.1 vol% BTF, its dielectric constant at 100 Hz is as high as 162 and dielectric loss is only 0.007; moreover, the dielectric properties of BTF@HSi/cPES/CE composites exhibit excellent frequency stability. To reveal the mechanism behind these attractive performances of BTF@HSi/cPES/CE composites, three kinds of composites (BTF/CE, BTF/cPES/CE, BTF@HSi/CE) were prepared, their structure and integrated performances were intensively investigated and compared with those of BTF@HSi/cPES/CE composites. Results show that the surface modification of BTF is good for preparing composites with improved thermal stability; while introducing flexible cPES to CE is beneficial to fabricate composites with good quality through effectively blocking cracks caused by the stress concentration, and then endowing the composites with good dielectric properties at reduced concentration of ceramics.
Jiao, Xinyan; Hao, Qingli; Xia, Xifeng; Lei, Wu; Ouyang, Yu; Ye, Haitao; Mandler, Daniel
2018-03-09
The incorporation of spacers between graphene sheets has been investigated as an effective method to improve the electrochemical performance of graphene papers (GPs) for supercapacitors. Here, we report the design of free-standing GP@NiO and GP@Ni hybrid GPs in which NiO nanoclusters and Ni nanoparticles are encapsulated into graphene sheets through electrostatic assembly and subsequent vacuum filtration. The encapsulated NiO nanoclusters and Ni nanoparticles can mitigate the restacking of graphene sheets, providing sufficient spaces for high-speed ion diffusion and electron transport. In addition, the spacers strongly bind to graphene sheets, which can efficiently improve the electrochemical stability. Therefore, at a current density of 0.5 A g -1 , the GP@NiO and GP@Ni electrodes exhibit higher specific capacitances of 306.9 and 246.1 F g -1 than the GP electrode (185.7 F g -1 ). The GP@NiO and GP@Ni electrodes exhibit capacitance retention of 98.7 % and 95.6 % after 10000 cycles, demonstrating an outstanding cycling stability. Additionally, the GP@NiO∥GP@Ni delivers excellent cycling stability (93.7 % after 10 000 cycles) and high energy density. These free-standing encapsulated hybrid GPs have great potential as electrode for high-performance supercapacitors. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Shi, Peipei; Li, Li; Hua, Li; Qian, Qianqian; Wang, Pengfei; Zhou, Jinyuan; Sun, Gengzhi; Huang, Wei
2017-01-24
Solid-state fiber-based supercapacitors have been considered promising energy storage devices for wearable electronics due to their lightweight and amenability to be woven into textiles. Efforts have been made to fabricate a high performance fiber electrode by depositing pseudocapacitive materials on the outer surface of carbonaceous fiber, for example, crystalline manganese oxide/multiwalled carbon nanotubes (MnO 2 /MWCNTs). However, a key challenge remaining is to achieve high specific capacitance and energy density without compromising the high rate capability and cycling stability. In addition, amorphous MnO 2 is actually preferred due to its disordered structure and has been proven to exhibit superior electrochemical performance over the crystalline one. Herein, by incorporating amorphous MnO 2 onto a well-aligned MWCNT sheet followed by twisting, we design an amorphous MnO 2 @MWCNT fiber, in which amorphous MnO 2 nanoparticles are distributed in MWCNT fiber uniformly. The proposed structure gives the amorphous MnO 2 @MWCNT fiber good mechanical reliability, high electrical conductivity, and fast ion-diffusion. Solid-state supercapacitor based on amorphous MnO 2 @MWCNT fibers exhibits improved energy density, superior rate capability, exceptional cycling stability, and excellent flexibility. This study provides a strategy to design a high performance fiber electrode with microstructure control for wearable energy storage devices.
NASA Astrophysics Data System (ADS)
Jo, Jea Woong; Seo, Myung-Seok; Jung, Jae Woong; Park, Joon-Suh; Sohn, Byeong-Hyeok; Ko, Min Jae; Son, Hae Jung
2018-02-01
The control of the optoelectronic properties of the interlayers of perovskite solar cells (PSCs) is crucial for achieving high photovoltaic performances. Of the solution-processable interlayer candidates, NiOx is considered one of the best inorganic hole-transporting layer (HTL) materials. However, the power conversion efficiencies (PCEs) of NiOx-based PSCs are limited by the unfavorable contact between perovskite layers and NiOx HTLs, the high density of surface trap sites, and the inefficient charge extraction from perovskite photoactive layers to anodes. Here, we introduce a new organic-inorganic double HTL consisting of a Cu:NiOx thin film passivated by a conjugated polyelectrolyte (PhNa-1T) film. This double HTL has a significantly lower pinhole density and forms better contact with perovskite films, which results in enhanced charge extraction. As a result, the PCEs of PSCs fabricated with the double HTL are impressively improved up to 17.0%, which is more than 25% higher than that of the corresponding PSC with a Cu:NiOx HTL. Moreover, PSCs with the double HTLs exhibit similar stabilities under ambient conditions to devices using inorganic Cu:NiOx. Therefore, this organic-inorganic double HTL is a promising interlayer material for high performance PSCs with high air stability.
Stability and Phase Noise Tests of Two Cryo-Cooled Sapphire Oscillators
NASA Technical Reports Server (NTRS)
Dick, G. John; Wang, Rabi T.
1998-01-01
A cryocooled Compensated Sapphire Oscillator (CSO), developed for the Cassini Ka-band Radio Science experiment, and operating in the 8K - 10K temperature range was previously demonstrated to show ultra-high stability of sigma(sub y) = 2.5 x 10 (exp -15) for measuring times 200 seconds less than or equal to tau less than or equal to 600 seconds using a hydrogen maser as reference. We present here test results for a second unit which allows CSO short-term stability and phase noise to be measured for the first time. Also included are design details of a new RF receiver and an intercomparison with the first CSO unit. Cryogenic oscillators operating below about 10K offer the highest possible short term stability of any frequency sources. However, their use has so far been restricted to research environments due to the limited operating periods associated with liquid helium consumption. The cryocooled CSO is being built in support of the Cassini Ka-band Radio Science experiment and is designed to operate continuously for periods of a year or more. Performance targets are a stability of 3-4 x 10 (exp -15) (1 second less than or equal to tau less than or equal to 100 seconds) and phase noise of -73dB/Hz @ 1Hz measured at 34 GHz. Installation in 5 stations of NASA's deep space network (DSN) is planned in the years 2000 - 2002. In the previous tests, actual stability of the CSO for measuring times tau less than or equal to 200 seconds could not be directly measured, being masked by short-term fluctuations of the H-maser reference. Excellent short-term performance, however, could be inferred by the success of an application of the CSO as local oscillator (L.O.) to the JPL LITS passive atomic standard, where medium-term stability showed no degradation due to L.O. instabilities at a level of (sigma)y = 3 x 10 (exp -14)/square root of tau. A second CSO has now been constructed, and all cryogenic aspects have been verified, including a resonator turn-over temperature of 7.907 K, and Q of 7.4 x 10 (exp 8). These values compare to a turn-over of 8.821 K and Q of 1.0 x 10 (exp 9) for the first resonator. Operation of this second unit provides a capability to directly verify for the first time the short-term (1 second less than or equal to tau less than or equal to 200 seconds) stability and the phase noise of the CSO units. The RF receiver used in earlier tests was sufficient to meet Cassini requirements for tau greater than or equal to 10 seconds but had short-term stability limited to 2-4 x 10 (exp -14) at tau = 1 second, a value 10 times too high to meet our requirements. A new low-noise receiver has been designed to provide approximately equal to 10-15 performance at 1 second, and one receiver is now operational, demonstrating again short-term CSO performance with H maser-limited stability. Short-term performance was degraded in the old receiver due to insufficient tuning bandwidth in a 100MHZ quartz VCO that was frequency-locked to the cryogenic sapphire resonator. The new receivers are designed for sufficient bandwidth, loop gain and low noise to achieve the required performance.
High-efficiency and air-stable P3HT-based polymer solar cells with a new non-fullerene acceptor
Holliday, Sarah; Ashraf, Raja Shahid; Wadsworth, Andrew; Baran, Derya; Yousaf, Syeda Amber; Nielsen, Christian B.; Tan, Ching-Hong; Dimitrov, Stoichko D.; Shang, Zhengrong; Gasparini, Nicola; Alamoudi, Maha; Laquai, Frédéric; Brabec, Christoph J.; Salleo, Alberto; Durrant, James R.; McCulloch, Iain
2016-01-01
Solution-processed organic photovoltaics (OPV) offer the attractive prospect of low-cost, light-weight and environmentally benign solar energy production. The highest efficiency OPV at present use low-bandgap donor polymers, many of which suffer from problems with stability and synthetic scalability. They also rely on fullerene-based acceptors, which themselves have issues with cost, stability and limited spectral absorption. Here we present a new non-fullerene acceptor that has been specifically designed to give improved performance alongside the wide bandgap donor poly(3-hexylthiophene), a polymer with significantly better prospects for commercial OPV due to its relative scalability and stability. Thanks to the well-matched optoelectronic and morphological properties of these materials, efficiencies of 6.4% are achieved which is the highest reported for fullerene-free P3HT devices. In addition, dramatically improved air stability is demonstrated relative to other high-efficiency OPV, showing the excellent potential of this new material combination for future technological applications. PMID:27279376
NASA Astrophysics Data System (ADS)
Rerucha, Simon; Yacoot, Andrew; Pham, Tuan M.; Cizek, Martin; Hucl, Vaclav; Lazar, Josef; Cip, Ondrej
2017-04-01
We demonstrated that an iodine stabilized distributed Bragg reflector (DBR) diode based laser system lasing at a wavelength in close proximity to λ =633 nm could be used as an alternative laser source to the helium-neon lasers in both scientific and industrial metrology. This yields additional advantages besides the optical frequency stability and coherence: inherent traceability, wider optical frequency tuning range, higher output power and high frequency modulation capability. We experimentally investigated the characteristics of the laser source in two major steps: first using a wavelength meter referenced to a frequency comb controlled with a hydrogen maser and then on an interferometric optical bench testbed where we compared the performance of the laser system with that of a traditional frequency stabilized He-Ne laser. The results indicate that DBR diode laser system provides a good laser source for applications in dimensional (nano)metrology, especially in conjunction with novel interferometric detection methods exploiting high frequency modulation or multiaxis measurement systems.
A first look at resistive MHD stability differences between NSTX and NSTX-U high beta discharges
NASA Astrophysics Data System (ADS)
Morton, L. A.; La Haye, R. J.; Berkery, J. W.; Menard, J. E.; Ferraro, N. M.; Brennan, D. P.; Sabbagh, S. A.; Delgado-Aparicio, L. F.; Tritz, K.
2017-10-01
Comparison is made of the onset, growth rate and saturation of m/n = 2/1 tearing modes in NSTX and NSTX-U high beta discharges. NSTX-U has stronger toroidal field, higher electron temperature (thus longer resistive diffusion time) and a larger aspect ratio (due to the expansion of the center stack). Experimental identification of the mode helicity, radial location, and width is accomplished by synergistically combining information from soft x-ray emission, Thomson scattering (Te profile), Charge Exchange Recombination (Ti profile) and Mirnov diagnostics. Fitting the generalized Rutherford equation to the time-evolution of the island width allows evaluation of the different drive and stabilizing terms. Linear stability calculations have also been performed with M3D-C1. The possibility of a reduction in the stabilizing interchange effect due to curvature at somewhat larger aspect ratio in NSTX-U is one focus of the analysis. This work is supported by the US DOE under Grant DE-FG02-99ER54522.
Changes in the Balance Performance of Polish Recreational Skiers after Seven Days of Alpine Skiing
Wojtyczek, Beata; Pasławska, Małgorzata; Raschner, Christian
2014-01-01
Alpine skiing is one of the most popular leisure time winter sporting activities. Skiing imposes high requirements concerning physical fitness, particularly regarding balance abilities. The main objective of this study was to evaluate the changes in balance performance of recreational skiers after a seven-day ski camp. A total of 78 students - 24 women and 54 men - participated in the study. The ski course was held in accordance with the official program of the Polish Ski Federation. The study sample was comprised of 43 beginners and 35 intermediate skiers. All students were tested with the MFT S3-Check, the day before and the day after the ski camp. The test system consisted of an unstable uniaxial platform, with an integrated sensor and corresponding software. Changes in balance performance (sensory and stability index) were evaluated using paired t-tests. Additionally, changes in sensory and stability categories, which were based on the norm data, were analyzed. Female and male participants showed significantly better sensory and stability indices after skiing. Considerable changes from weak or very weak to average or good balance categories could be seen after skiing for both sexes. Regarding skiing experience, both beginners and intermediate skiers improved their sensory and stability indices significantly after skiing. Hence, recreational alpine skiing resulted in better balance performance regardless of sex or skiing experience. Skiing as an outdoor activity offers the opportunity to improve balance performance with a positive impact on everyday life activities. PMID:25713663
Changes in the balance performance of polish recreational skiers after seven days of alpine skiing.
Wojtyczek, Beata; Pasławska, Małgorzata; Raschner, Christian
2014-12-09
Alpine skiing is one of the most popular leisure time winter sporting activities. Skiing imposes high requirements concerning physical fitness, particularly regarding balance abilities. The main objective of this study was to evaluate the changes in balance performance of recreational skiers after a seven-day ski camp. A total of 78 students - 24 women and 54 men - participated in the study. The ski course was held in accordance with the official program of the Polish Ski Federation. The study sample was comprised of 43 beginners and 35 intermediate skiers. All students were tested with the MFT S3-Check, the day before and the day after the ski camp. The test system consisted of an unstable uniaxial platform, with an integrated sensor and corresponding software. Changes in balance performance (sensory and stability index) were evaluated using paired t-tests. Additionally, changes in sensory and stability categories, which were based on the norm data, were analyzed. Female and male participants showed significantly better sensory and stability indices after skiing. Considerable changes from weak or very weak to average or good balance categories could be seen after skiing for both sexes. Regarding skiing experience, both beginners and intermediate skiers improved their sensory and stability indices significantly after skiing. Hence, recreational alpine skiing resulted in better balance performance regardless of sex or skiing experience. Skiing as an outdoor activity offers the opportunity to improve balance performance with a positive impact on everyday life activities.
Implications of scaling on static RAM bit cell stability and reliability
NASA Astrophysics Data System (ADS)
Coones, Mary Ann; Herr, Norm; Bormann, Al; Erington, Kent; Soorholtz, Vince; Sweeney, John; Phillips, Michael
1993-01-01
In order to lower manufacturing costs and increase performance, static random access memory (SRAM) bit cells are scaled progressively toward submicron geometries. The reliability of an SRAM is highly dependent on the bit cell stability. Smaller memory cells with less capacitance and restoring current make the array more susceptible to failures from defectivity, alpha hits, and other instabilities and leakage mechanisms. Improving long term reliability while migrating to higher density devices makes the task of building in and improving reliability increasingly difficult. Reliability requirements for high density SRAMs are very demanding with failure rates of less than 100 failures per billion device hours (100 FITs) being a common criteria. Design techniques for increasing bit cell stability and manufacturability must be implemented in order to build in this level of reliability. Several types of analyses are performed to benchmark the performance of the SRAM device. Examples of these analysis techniques which are presented here include DC parametric measurements of test structures, functional bit mapping of the circuit used to characterize the entire distribution of bits, electrical microprobing of weak and/or failing bits, and system and accelerated soft error rate measurements. These tests allow process and design improvements to be evaluated prior to implementation on the final product. These results are used to provide comprehensive bit cell characterization which can then be compared to device models and adjusted accordingly to provide optimized cell stability versus cell size for a particular technology. The result is designed in reliability which can be accomplished during the early stages of product development.
Experimentation and Modeling of Jet A Thermal Stability in a Heated Tube
NASA Technical Reports Server (NTRS)
Khodabandeh, Julia W.
2005-01-01
High performance aircraft typically use hydrocarbon fuel to regeneratively cool the airframe and engine components. As the coolant temperatures increase, the fuel may react with dissolved oxygen forming deposits that limit the regenerative cooling system performance. This study investigates the deposition of Jet A using a thermal stability experiment and computational fluid dynamics (CFD) modeling. The experimental portion of this study is performed with a high Reynolds number thermal stability (HiRets) tester in which fuel passes though an electrically heated tube and the fuel outlet temperature is held constant. If the thermal stability temperature of the fuel is exceeded, deposits form and adhere to the inside of the tube creating an insulating layer between the tube and the fuel. The HiRets tester measures the tube outer wall temperatures near the fuel outlet to report the effect of deposition occurring inside the tube. Final deposits are also estimated with a carbon burn off analysis. The CFD model was developed and used to simulate the fluid dynamics, heat transfer, chemistry, and transport of the deposit precursors. The model is calibrated to the experiment temperature results and carbon burn-off deposition results. The model results show that the dominant factor in deposition is the heated wall temperature and that most of the deposits are formed in the laminar sublayer. The models predicted a 7.0E-6 kilograms per square meter-sec deposition rate, which compared well to the carbon burn-off analysis deposition rate of 1.0E-6 kilograms per square meter-sec.
Ju, Enguo; Liu, Zhen; Du, Yingda; Tao, Yu; Ren, Jinsong; Qu, Xiaogang
2014-06-24
Probes for detecting highly reactive oxygen species (hROS) are critical to both understanding the etiology of the disease and optimizing therapeutic interventions. However, problems such as low stability due to autoxidation and photobleaching and unsuitability for biological application in vitro and in vivo, as well as the high cost and complex procedure in synthesis and modification, largely limit their application. In this work, binary heterogeneous nanocomplexes (termed as C-dots-AuNC) constructed from gold clusters and carbon dots were reported. The fabrication takes full advantages of the inherent active groups on the surface of the nanoparticles to avoid tedious modification and chemical synthetic processes. Additionally, the assembly endowed C-dots-AuNC with improved performance such as the fluorescence enhancement of AuNCs and stability of C-dots to hROS. Moreover, the dual-emission property allows sensitive imaging and monitoring of the hROS signaling in living cells with high contrast. Importantly, with high physiological stability and excellent biocompatibility, C-dots-AuNC allows for the detection of hROS in the model of local ear inflammation.
High-performance IR detector modules
NASA Astrophysics Data System (ADS)
Wendler, Joachim; Cabanski, Wolfgang; Rühlich, Ingo; Ziegler, Johann
2004-02-01
The 3rd generation of infrared (IR) detection modules is expected to provide higher video resolution, advanced functions like multi band or multi color capability, higher frame rates, and better thermal resolution. AIM has developed staring and linear high performance focal plane arrays (FPA) integrated into detector/dewar cooler assemblies (IDCA). Linear FPA"s support high resolution formats such as 1920 x 1152 (HDTV), 1280 x 960, or 1536 x 1152. Standard format for staring FPA"s is 640 x 512. In this configuration, QEIP devices sensitive in the 8 10 µm band as well as MCT devices sensitive in the 3.4 5.0 µm band are available. A 256 x 256 high speed detection module allows a full frame rate >800 Hz. Especially usability of long wavelength devices in high performance FLIR systems does not only depend on the classical electrooptical performance parameters such as NEDT, detectivity, and response homogeneity, but are mainly characterized by the stability of the correction coefficients used for image correction. The FPA"s are available in suited integrated detector/dewar cooler assemblies. The linear cooling engines are designed for maximum stability of the focal plane temperature, low operating temperatures down to 60K, high MTTF lifetimes of 6000h and above even under high ambient temperature conditions. The IDCA"s are equipped with AIM standard or custom specific command and control electronics (CCE) providing a well defined interface to the system electronics. Video output signals are provided as 14 bit digital data rates up to 80 MHz for the high speed devices.
Zhang, Genqiang; (David) Lou, Xiong Wen
2013-01-01
Two one-dimensional hierarchical hybrid nanostructures composed of NiCo2O4 nanorods and ultrathin nanosheets on carbon nanofibers (CNFs) are controllably synthesized through facile solution methods combined with a simple thermal treatment. The structure of NiCo2O4 can be easily controlled to be nanorods or nanosheets by using different additives in the synthesis. These two different nanostructures are evaluated as electrodes for high performance supercapacitors, in view of their apparent advantages, such as high electroactive surface area, ultrathin and porous features, robust mechanical strength, shorter ion and electron transport path. Their electrochemical performance is systematically studied, and both of these two hierarchical hybrid nanostructures exhibit high capacitance and excellent cycling stability. The remarkable electrochemical performance will undoubtedly make these hybrid structures attractive for high-performance supercapacitors with high power and energy densities. PMID:23503561
Rehan, Waqas; Fischer, Stefan; Rehan, Maaz
2016-09-12
Wireless sensor networks (WSNs) have become more and more diversified and are today able to also support high data rate applications, such as multimedia. In this case, per-packet channel handshaking/switching may result in inducing additional overheads, such as energy consumption, delays and, therefore, data loss. One of the solutions is to perform stream-based channel allocation where channel handshaking is performed once before transmitting the whole data stream. Deciding stream-based channel allocation is more critical in case of multichannel WSNs where channels of different quality/stability are available and the wish for high performance requires sensor nodes to switch to the best among the available channels. In this work, we will focus on devising mechanisms that perform channel quality/stability estimation in order to improve the accommodation of stream-based communication in multichannel wireless sensor networks. For performing channel quality assessment, we have formulated a composite metric, which we call channel rank measurement (CRM), that can demarcate channels into good, intermediate and bad quality on the basis of the standard deviation of the received signal strength indicator (RSSI) and the average of the link quality indicator (LQI) of the received packets. CRM is then used to generate a data set for training a supervised machine learning-based algorithm (which we call Normal Equation based Channel quality prediction (NEC) algorithm) in such a way that it may perform instantaneous channel rank estimation of any channel. Subsequently, two robust extensions of the NEC algorithm are proposed (which we call Normal Equation based Weighted Moving Average Channel quality prediction (NEWMAC) algorithm and Normal Equation based Aggregate Maturity Criteria with Beta Tracking based Channel weight prediction (NEAMCBTC) algorithm), that can perform channel quality estimation on the basis of both current and past values of channel rank estimation. In the end, simulations are made using MATLAB, and the results show that the Extended version of NEAMCBTC algorithm (Ext-NEAMCBTC) outperforms the compared techniques in terms of channel quality and stability assessment. It also minimizes channel switching overheads (in terms of switching delays and energy consumption) for accommodating stream-based communication in multichannel WSNs.
Rehan, Waqas; Fischer, Stefan; Rehan, Maaz
2016-01-01
Wireless sensor networks (WSNs) have become more and more diversified and are today able to also support high data rate applications, such as multimedia. In this case, per-packet channel handshaking/switching may result in inducing additional overheads, such as energy consumption, delays and, therefore, data loss. One of the solutions is to perform stream-based channel allocation where channel handshaking is performed once before transmitting the whole data stream. Deciding stream-based channel allocation is more critical in case of multichannel WSNs where channels of different quality/stability are available and the wish for high performance requires sensor nodes to switch to the best among the available channels. In this work, we will focus on devising mechanisms that perform channel quality/stability estimation in order to improve the accommodation of stream-based communication in multichannel wireless sensor networks. For performing channel quality assessment, we have formulated a composite metric, which we call channel rank measurement (CRM), that can demarcate channels into good, intermediate and bad quality on the basis of the standard deviation of the received signal strength indicator (RSSI) and the average of the link quality indicator (LQI) of the received packets. CRM is then used to generate a data set for training a supervised machine learning-based algorithm (which we call Normal Equation based Channel quality prediction (NEC) algorithm) in such a way that it may perform instantaneous channel rank estimation of any channel. Subsequently, two robust extensions of the NEC algorithm are proposed (which we call Normal Equation based Weighted Moving Average Channel quality prediction (NEWMAC) algorithm and Normal Equation based Aggregate Maturity Criteria with Beta Tracking based Channel weight prediction (NEAMCBTC) algorithm), that can perform channel quality estimation on the basis of both current and past values of channel rank estimation. In the end, simulations are made using MATLAB, and the results show that the Extended version of NEAMCBTC algorithm (Ext-NEAMCBTC) outperforms the compared techniques in terms of channel quality and stability assessment. It also minimizes channel switching overheads (in terms of switching delays and energy consumption) for accommodating stream-based communication in multichannel WSNs. PMID:27626429
High performance bilateral telerobot control.
Kline-Schoder, Robert; Finger, William; Hogan, Neville
2002-01-01
Telerobotic systems are used when the environment that requires manipulation is not easily accessible to humans, as in space, remote, hazardous, or microscopic applications or to extend the capabilities of an operator by scaling motions and forces. The Creare control algorithm and software is an enabling technology that makes possible guaranteed stability and high performance for force-feedback telerobots. We have developed the necessary theory, structure, and software design required to implement high performance telerobot systems with time delay. This includes controllers for the master and slave manipulators, the manipulator servo levels, the communication link, and impedance shaping modules. We verified the performance using both bench top hardware as well as a commercial microsurgery system.
The Deep Space Atomic Clock Mission
NASA Technical Reports Server (NTRS)
Ely, Todd A.; Koch, Timothy; Kuang, Da; Lee, Karen; Murphy, David; Prestage, John; Tjoelker, Robert; Seubert, Jill
2012-01-01
The Deep Space Atomic Clock (DSAC) mission will demonstrate the space flight performance of a small, low-mass, high-stability mercury-ion atomic clock with long term stability and accuracy on par with that of the Deep Space Network. The timing stability introduced by DSAC allows for a 1-Way radiometric tracking paradigm for deep space navigation, with benefits including increased tracking via utilization of the DSN's Multiple Spacecraft Per Aperture (MSPA) capability and full ground station-spacecraft view periods, more accurate radio occultation signals, decreased single-frequency measurement noise, and the possibility for fully autonomous on-board navigation. Specific examples of navigation and radio science benefits to deep space missions are highlighted through simulations of Mars orbiter and Europa flyby missions. Additionally, this paper provides an overview of the mercury-ion trap technology behind DSAC, details of and options for the upcoming 2015/2016 space demonstration, and expected on-orbit clock performance.