Sample records for high performance static

  1. Characterization and Performance Optimization of a Cementitious Composite for Quasi-Static and Dynamic Loads

    DTIC Science & Technology

    2011-01-01

    blast and weapon fragmentation. A particular cementitious composite of interest is an inorganic polymer cement or “ geopolymer ” cement. The term...www.sciencedirect.com ICM11 Characterization and performance optimization of a cementitious composite for quasi-static and dynamic loads W.F. Hearda,b, P.K. Basub...rapid-set, high-strength geopolymer cement under quasi-static and dynamic loads. Four unique tensile experiments were conducted to characterize and

  2. Technical Evaluation Motor No. 7 (TEM-07)

    NASA Technical Reports Server (NTRS)

    Hugh, Phil

    1991-01-01

    Technical Evaluation Motor Number 7 (TEM-7) was a full scale, full-duration static test firing of a high performance motor (HPM) configuration solid rocket motor (SRM) with nozzle vectoring. The static test fire occurred on 11 December 1990 at the Thiokol Corporation Static Test Bay T-97. Documented here are the procedures, performance, and results available through 22 January 1991. Critical post test hardware activities and assessment of the test data are not complete. A completed test report will be submitted 60 days after the test date. Included here is a presentation and discussion of the TEM-7 performance, anomalies, and test result concurrence with the objectives outlined in CTP-0107 Revision A, Space Shuttle Technical Evaluation Motor number 7 (TEM-07) Static Fire Test Plan.

  3. Theoretical research and experimental validation of quasi-static load spectra on bogie frame structures of high-speed trains

    NASA Astrophysics Data System (ADS)

    Zhu, Ning; Sun, Shou-Guang; Li, Qiang; Zou, Hua

    2014-12-01

    One of the major problems in structural fatigue life analysis is establishing structural load spectra under actual operating conditions. This study conducts theoretical research and experimental validation of quasi-static load spectra on bogie frame structures of high-speed trains. The quasistatic load series that corresponds to quasi-static deformation modes are identified according to the structural form and bearing conditions of high-speed train bogie frames. Moreover, a force-measuring frame is designed and manufactured based on the quasi-static load series. The load decoupling model of the quasi-static load series is then established via calibration tests. Quasi-static load-time histories, together with online tests and decoupling analysis, are obtained for the intermediate range of the Beijing—Shanghai dedicated passenger line. The damage consistency calibration of the quasi-static discrete load spectra is performed according to a damage consistency criterion and a genetic algorithm. The calibrated damage that corresponds with the quasi-static discrete load spectra satisfies the safety requirements of bogie frames.

  4. Acute Effects of Static Stretching, Dynamic Exercises, and High Volume Upper Extremity Plyometric Activity on Tennis Serve Performance

    PubMed Central

    Gelen, Ertugrul; Dede, Muhittin; Bingul, Bergun Meric; Bulgan, Cigdem; Aydin, Mensure

    2012-01-01

    The purpose of this study was to compare the acute effects of static stretching; dynamic exercises and high volume upper extremity plyometric activity on tennis serve performance. Twenty-six elite young tennis players (15.1 ± 4.2 years, 167.9 ± 5.8 cm and 61.6 ± 8.1 kg) performed 4 different warm-up (WU) routines in a random order on non-consecutive days. The WU methods consisted of traditional WU (jogging, rally and serve practice) (TRAD); traditional WU and static stretching (TRSS); traditional WU and dynamic exercise (TRDE); and traditional WU and high volume upper extremity plyometric activity (TRPLYP). Following each WU session, subjects were tested on a tennis serve ball speed test. TRAD, TRSS, TRDE and TRPLYO were compared by repeated measurement analyses of variance and post-hoc comparisons. In this study a 1 to 3 percent increase in tennis serve ball speed was recorded in TRDE and TRPLYO when compared to TRAD (p< 0.05). However, no significant change in ball speed performance between TRSS and TRAD. (p> 0.05). ICCs for ball speed showed strong reliability (0.82 to 0.93) for the ball speed measurements.The results of this study indicate that dynamic and high volume upper extremity plyometric WU activities are likely beneficial to serve speed of elite junior tennis players. Key points After the traditional warm up in tennis, static stretching has no effect on serve speed. Tennis players should perform dynamic exercises and/or high volume upper extremity plyometric activities to improve their athletic performance. PMID:24150068

  5. Optimal design of high-speed loading spindle based on ABAQUS

    NASA Astrophysics Data System (ADS)

    Yang, Xudong; Dong, Yu; Ge, Qingkuan; Yang, Hai

    2017-12-01

    The three-dimensional model of high-speed loading spindle is established by using ABAQUS’s modeling module. A finite element analysis model of high-speed loading spindle was established by using spring element to simulate bearing boundary condition. The static and dynamic performance of the spindle structure with different specifications of the rectangular spline and the different diameter neck of axle are studied in depth, and the influence of different spindle span on the static and dynamic performance of the high-speed loading spindle is studied. Finally, the optimal structure of the high-speed loading spindle is obtained. The results provide a theoretical basis for improving the overall performance of the test-bed

  6. Evaluation of a flow direction probe and a pitot-static probe on the F-14 airplane at high angles of attack and sideslip

    NASA Technical Reports Server (NTRS)

    Larson, T. J.

    1984-01-01

    The measurement performance of a hemispherical flow-angularity probe and a fuselage-mounted pitot-static probe was evaluated at high flow angles as part of a test program on an F-14 airplane. These evaluations were performed using a calibrated pitot-static noseboom equipped with vanes for reference flow direction measurements, and another probe incorporating vanes but mounted on a pod under the fuselage nose. Data are presented for angles of attack up to 63, angles of sideslip from -22 deg to 22 deg, and for Mach numbers from approximately 0.3 to 1.3. During maneuvering flight, the hemispherical flow-angularity probe exhibited flow angle errors that exceeded 2 deg. Pressure measurements with the pitot-static probe resulted in very inaccurate data above a Mach number of 0.87 and exhibited large sensitivities with flow angle.

  7. Technical Evaluation Motor No. 7 (TEM-7)

    NASA Technical Reports Server (NTRS)

    Hughes, Phil

    1991-01-01

    The Technical Evaluation Motor No. 7 (TEM-7) test was a full-scale, full duration static test firing of a high performance motor-configuration solid rocket motor with nozzle vectoring. The final test report documents the procedures, performance, and results of the static test firing of TEM-7. All observations, discussions, conclusions, and recommendations included in the report are complete and final except for the TEM-7 fixed housing unbond investigation. A presentation and discussion of TEM-7 performance, anomalies, and test result concurrence with the objectives outlined in CTP-0107, Rev A, Space Shuttle Technical Evaluation Motor No. 7 (TEM-7) Static Fire Test Plan are included.

  8. A High Performance Piezoelectric Sensor for Dynamic Force Monitoring of Landslide.

    PubMed

    Li, Ming; Cheng, Wei; Chen, Jiangpan; Xie, Ruili; Li, Xiongfei

    2017-02-17

    Due to the increasing influence of human engineering activities, it is important to monitor the transient disturbance during the evolution process of landslide. For this purpose, a high-performance piezoelectric sensor is presented in this paper. To adapt the high static and dynamic stress environment in slope engineering, two key techniques, namely, the self-structure pressure distribution method (SSPDM) and the capacitive circuit voltage distribution method (CCVDM) are employed in the design of the sensor. The SSPDM can greatly improve the compressive capacity and the CCVDM can quantitatively decrease the high direct response voltage. Then, the calibration experiments are conducted via the independently invented static and transient mechanism since the conventional testing machines cannot match the calibration requirements. The sensitivity coefficient is obtained and the results reveal that the sensor has the characteristics of high compressive capacity, stable sensitivities under different static preload levels and wide-range dynamic measuring linearity. Finally, to reduce the measuring error caused by charge leakage of the piezoelectric element, a low-frequency correction method is proposed and experimental verified. Therefore, with the satisfactory static and dynamic properties and the improving low-frequency measuring reliability, the sensor can complement dynamic monitoring capability of the existing landslide monitoring and forecasting system.

  9. Static and dynamic stress analyses of the prototype high head Francis runner based on site measurement

    NASA Astrophysics Data System (ADS)

    Huang, X.; Oram, C.; Sick, M.

    2014-03-01

    More efforts are put on hydro-power to balance voltage and frequency within seconds for primary control in modern smart grids. This requires hydraulic turbines to run at off-design conditions. especially at low load or speed-no load. Besides. the tendency of increasing power output and decreasing weight of the turbine runners has also led to the high level vibration problem of the runners. especially high head Francis runners. Therefore. it is important to carry out the static and dynamic stress analyses of prototype high head Francis runners. This paper investigates the static and dynamic stresses on the prototype high head Francis runner based on site measurements and numerical simulations. The site measurements are performed with pressure transducers and strain gauges. Based on the measured results. computational fluid dynamics (CFD) simulations for the flow channel from stay vane to draft tube cone are performed. Static pressure distributions and dynamic pressure pulsations caused by rotor-stator interaction (RSI) are obtained under various operating conditions. With the CFD results. static and dynamic stresses on the runner at different operating points are calculated by means of the finite element method (FEM). The agreement between simulation and measurement is analysed with linear regression method. which indicates that the numerical result agrees well with that of measurement. Furthermore. the maximum static and dynamic stresses on the runner blade are obtained at various operating points. The relations of the maximum stresses and the power output are discussed in detail. The influences of the boundary conditions on the structural behaviour of the runner are also discussed.

  10. Crashworthiness testing of Amtrak's traditional coach seat : safety of high-speed ground transportation systems

    DOT National Transportation Integrated Search

    1996-10-01

    Tests have been conducted on Amtrak's traditional passenger seat to evaluate its performance under static and dynamic loading conditions. Quasi-static tests have been conducted to establish the load-deflection characteristics of the seat. Dynamic tes...

  11. Force fluctuations while pressing and moving against high- and low-friction touch screen surfaces.

    PubMed

    Joshi, Mukta N; Keenan, Kevin G

    2016-07-01

    The purpose of this study was to identify the influence of a high- and low-friction surface on the ability to maintain a steady downward force during an index finger pressing and moving task. Fifteen right-handed subjects (24-48 years) performed a static force pressing task and a hybrid pressing and moving task on the surface of an iPad mini while holding a steady 2-N force on high- and low-friction surfaces. Variability of force was quantified as the standard deviation (SD) of normal force (F z) and shear force (F xy) across friction conditions and tasks. The SD of F z was 227 % greater during the hybrid task as compared to the static task (p < .001) and was 19 % greater for the high- versus low-friction condition (p = .033). There were positive correlations between SD of F z and F xy during the hybrid force/motion tasks on the high- and low-friction conditions (r (2) = 0.5 and 0.86, respectively), suggesting significant associations between normal and shear forces for this hybrid task. The correlation between the SD of F z for static and hybrid tasks was r (2) = 0.44, indicating that the common practice of examining the control of static tasks may not sufficiently explain performance during hybrid tasks, at least for the young subjects tested in the current study. As activities of daily living frequently require hybrid force/motion tasks (e.g., writing, doing the dishes, and cleaning counters), the results of this study emphasize the need to study motor performance during hybrid tasks in addition to static force tasks.

  12. Technical Evaluation Motor no. 5 (TEM-5)

    NASA Technical Reports Server (NTRS)

    Cook, M.

    1990-01-01

    Technical Evaluation Motor No. 5 (TEM-5) was static test fired at the Thiokol Corporation Static Test Bay T-97. TEM-5 was a full scale, full duration static test fire of a high performance motor (HPM) configuration solid rocket motor (SRM). The primary purpose of TEM static tests is to recover SRM case and nozzle hardware for use in the redesigned solid rocket motor (RSRM) flight program. Inspection and instrumentation data indicate that the TEM-5 static test firing was successful. The ambient temperature during the test was 41 F and the propellant mean bulk temperature (PMBT) was 72 F. Ballistics performance values were within the specified requirements. The overall performance of the TEM-5 components and test equipment was nominal. Dissembly inspection revealed that joint putty was in contact with the inner groove of the inner primary seal of the ignitor adapter-to-forward dome (inner) joint gasket; this condition had not occurred on any previous static test motor or flight RSRM. While no qualification issues were addressed on TEM-5, two significant component changes were evaluated. Those changes were a new vented assembly process for the case-to-nozzle joint and the installation of two redesigned field joint protection systems. Performance of the vented case-to-nozzle joint assembly was successful, and the assembly/performance differences between the two field joint protection system (FJPS) configurations were compared.

  13. Quasi-static Design of Electrically Small Ultra-Wideband Antennas

    DTIC Science & Technology

    2017-02-01

    this design reduces the width of the antenna, which implies that the bulb shape can be non -spherical at high frequencies. The stored energy in an...conclusion. The Quasi-static Antenna Design Algorithm generates three UWB non -spherical bulb shapes. The non -spherical bulb shape performs as well...TECHNICAL REPORT 3056 February 2017 Quasi-static Design of Electrically Small Ultra-Wideband Antennas Thomas O. Jones III Approved for public

  14. Static tensile and tensile creep testing of five ceramic fibers at elevated temperatures

    NASA Technical Reports Server (NTRS)

    Zimmerman, Richard S.; Adams, Donald F.

    1989-01-01

    Static tensile and tensile creep testing of five ceramic fibers at elevated temperature was performed. J.P. Stevens, Co., Astroquartz 9288 glass fiber; Nippon Carbon, Ltd., (Dow Corning) nicalon NLM-102 silicon carbide fiber; and 3M Company Nextel 312, 380, and 480 alumina/silica/boria fibers were supplied in unsized tows. Single fibers were separated from the tows and tested in static tension and tensile creep. Elevated test temperatures ranged from 400 C to 1300 C and varied for each fiber. Room temperature static tension was also performed. Computer software was written to reduce all single fiber test data into engineering constants using ASTM Standard Test Method D3379-75 as a reference. A high temperature furnace was designed and built to perform the single fiber elevated temperature testing up to 1300 C. A computerized single fiber creep apparatus was designed and constructed to perform four fiber creep tests simultaneously at temperatures up to 1300 C. Computer software was written to acquire and reduce all creep data.

  15. Static tensile and tensile creep testing of five ceramic fibers at elevated temperatures

    NASA Technical Reports Server (NTRS)

    Zimmerman, Richard S.; Adams, Donald F.

    1988-01-01

    Static tensile and tensile creep testing of five ceramic fibers at elevated temperature was performed. J.P. Stevens, Co., Astroquartz 9288 glass fiber, Nippon Carbon, Ltd., (Dow Corning) Nicalon NLM-102 silicon carbide fiber, and 3M Company Nextel 312, 380, and 480 alumina/silica/boria fibers were supplied in unsized tows. Single fibers were separated from the tows and tested in static tension and tensile creep. Elevated test temperatures ranged from 400 to 1300 C and varied for each fiber. Room temperature static tension was also performed. Computer software was written to reduce all single fiber test data into engineering constants using ASTM Standard Test Method D3379-75 as a reference. A high temperature furnace was designed and built to perform the single fiber elevated temperature testing up to 1300 C. A computerized single fiber creep apparatus was designed and constructed to perform four fiber creep tests simultaneously at temperatures up to 1300 C. Computer software was written to acquire and reduce all creep data.

  16. A High Performance Piezoelectric Sensor for Dynamic Force Monitoring of Landslide

    PubMed Central

    Li, Ming; Cheng, Wei; Chen, Jiangpan; Xie, Ruili; Li, Xiongfei

    2017-01-01

    Due to the increasing influence of human engineering activities, it is important to monitor the transient disturbance during the evolution process of landslide. For this purpose, a high-performance piezoelectric sensor is presented in this paper. To adapt the high static and dynamic stress environment in slope engineering, two key techniques, namely, the self-structure pressure distribution method (SSPDM) and the capacitive circuit voltage distribution method (CCVDM) are employed in the design of the sensor. The SSPDM can greatly improve the compressive capacity and the CCVDM can quantitatively decrease the high direct response voltage. Then, the calibration experiments are conducted via the independently invented static and transient mechanism since the conventional testing machines cannot match the calibration requirements. The sensitivity coefficient is obtained and the results reveal that the sensor has the characteristics of high compressive capacity, stable sensitivities under different static preload levels and wide-range dynamic measuring linearity. Finally, to reduce the measuring error caused by charge leakage of the piezoelectric element, a low-frequency correction method is proposed and experimental verified. Therefore, with the satisfactory static and dynamic properties and the improving low-frequency measuring reliability, the sensor can complement dynamic monitoring capability of the existing landslide monitoring and forecasting system. PMID:28218673

  17. Encapsulation of Capacitive Micromachined Ultrasonic Transducers Using Viscoelastic Polymer

    PubMed Central

    Lin, Der-Song; Zhuang, Xuefeng; Wong, Serena H.; Kupnik, Mario; Khuri-Yakub, Butrus Thomas

    2010-01-01

    The packaging of a medical imaging or therapeutic ultrasound transducer should provide protective insulation while maintaining high performance. For a capacitive micromachined ultrasonic transducer (CMUT), an ideal encapsulation coating would therefore require a limited and predictable change on the static operation point and the dynamic performance, while insulating the high dc and dc actuation voltages from the environment. To fulfill these requirements, viscoelastic materials, such as polydimethylsiloxane (PDMS), were investigated for an encapsulation material. In addition, PDMS, with a glass-transition temperature below room temperature, provides a low Young's modulus that preserves the static behavior; at higher frequencies for ultrasonic operation, this material becomes stiffer and acoustically matches to water. In this paper, we demonstrate the modeling and implementation of the viscoelastic polymer as the encapsulation material. We introduce a finite element model (FEM) that addresses viscoelasticity. This enables us to correctly calculate both the static operation point and the dynamic behavior of the CMUT. CMUTs designed for medical imaging and therapeutic ultrasound were fabricated and encapsulated. Static and dynamic measurements were used to verify the FEM and show excellent agreement. This paper will help in the design process for optimizing the static and the dynamic behavior of viscoelastic-polymer-coated CMUTs. PMID:21170294

  18. Rectifier cabinet static breaker

    DOEpatents

    Costantino, Jr, Roger A.; Gliebe, Ronald J.

    1992-09-01

    A rectifier cabinet static breaker replaces a blocking diode pair with an SCR and the installation of a power transistor in parallel with the latch contactor to commutate the SCR to the off state. The SCR serves as a static breaker with fast turnoff capability providing an alternative way of achieving reactor scram in addition to performing the function of the replaced blocking diodes. The control circuitry for the rectifier cabinet static breaker includes on-line test capability and an LED indicator light to denote successful test completion. Current limit circuitry provides high-speed protection in the event of overload.

  19. Increased fall risk is associated with elevated co-contraction about the ankle during static balance challenges in older adults.

    PubMed

    Nelson-Wong, Erika; Appell, Ryan; McKay, Mike; Nawaz, Hannah; Roth, Joanna; Sigler, Robert; Third, Jacqueline; Walker, Mark

    2012-04-01

    Falls are a leading contributor to disability in older adults. Increased muscle co-contraction in the lower extremities during static and dynamic balance challenges has been associated with aging, and also with a history of falling. Co-contraction during static balance challenges has not been previously linked with performance on clinical tests designed to ascertain fall risk. The purpose of this study was to investigate the relationship between co-contraction about the ankle during static balance challenges with fall risk on a commonly used dynamic balance assessment, the Four Square Step Test (FSST). Twenty-three volunteers (mean age 73 years) performed a series of five static balance challenges (Romberg eyes open/closed, Sharpened Romberg eyes open/closed, and Single Leg Standing) with continuous electromyography (EMG) of bilateral tibialis anterior and gastrocnemius muscles. Participants then completed the FSST and were categorized as 'at-risk' or 'not-at-risk' to fall based on a cutoff time of 12 s. Co-contraction was quantified with co-contraction index (CCI). CCI during narrow base conditions was positively correlated with time to complete FSST. High CCIs during all static balance challenges with the exception of Romberg stance with eyes closed were predictive of being at-risk to fall based on FSST time, odds ratio 19.3. The authors conclude that co-contraction about the ankle during static balance challenges can be predictive of performance on a dynamic balance test.

  20. Effects of sidewall geometry on the installed performance of nonaxisymmetric convergent-divergent exhaust nozzles

    NASA Technical Reports Server (NTRS)

    Yetter, J. A.; Leavitt, L. D.

    1980-01-01

    The investigation was conducted at static conditions and over a Mach number range from 0.6 to 1.2. Angle of attack was held constant at 0 deg. High pressure air was used to simulate jet exhaust flow at ratios of jet total pressure to free-stream static pressure from 1 (jet off) to approximately 10. Sidewall cutback appears to be a viable way of reducing nozzle weight and cooling requirements without compromising installed performance.

  1. Potential uses of vacuum bubbles in noise and vibration control

    NASA Technical Reports Server (NTRS)

    Ver, Istvan L.

    1989-01-01

    Vacuum bubbles are new acoustic elements which are dynamically more compliant than the gas volume they replace, but which are statically robust. They are made of a thin metallic shell with vacuum in their cavity. Consequently, they pose no danger in terms of contamination or fire hazard. The potential of the vacuum bubble concept for noise and vibration control was assessed with special emphases on spacecraft and aircraft applications. The following potential uses were identified: (1) as a cladding, to reduce sound radiation of vibrating surfaces and the sound excitation of structures, (2) as a screen, to reflect or absorb an incident sound wave, and (3) as a liner, to increase low frequency sound transmission loss of double walls and to increase the low frequency sound attenuation of muffler baffles. It was found that geometric and material parameters must be controlled to a very high accuracy to obtain optimal performance and that performance is highly sensitive to variations in static pressure. Consequently, it was concluded that vacuum bubbles have more potential in spacecraft applications where static pressure is controlled more than in aircraft applications where large fluctuations in static pressure are common.

  2. Calculating Reuse Distance from Source Code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Narayanan, Sri Hari Krishna; Hovland, Paul

    The efficient use of a system is of paramount importance in high-performance computing. Applications need to be engineered for future systems even before the architecture of such a system is clearly known. Static performance analysis that generates performance bounds is one way to approach the task of understanding application behavior. Performance bounds provide an upper limit on the performance of an application on a given architecture. Predicting cache hierarchy behavior and accesses to main memory is a requirement for accurate performance bounds. This work presents our static reuse distance algorithm to generate reuse distance histograms. We then use these histogramsmore » to predict cache miss rates. Experimental results for kernels studied show that the approach is accurate.« less

  3. Prediction of Mechanical Behaviour of Low Carbon Steel at High Strain Rate Using Thermal Activation Theory and Static Data

    NASA Astrophysics Data System (ADS)

    Ogawa, Kinya; Kobayashi, Hidetoshi; Sugiyama, Fumiko; Horikawa, Keitaro

    Thermal activation theory is well-known to be a useful theory to explain the mechanical behaviour of various metals in the wide range of temperature and strain-rate. In this study, a number of trials to obtain the lower yield stress or flow stress at high strain rates from quasi-static data were carried out using the data shown in the report titled “The final report of research group on high-speed deformation of steels for automotive use”. A relation between the thermal component of stress and the strain rate obtained from experiments for αFe and the temperature-strain rate parameter were used with thermal activation theory. The predictions were successfully performed and they showed that the stress-strain behaviour at high strain rates can be evaluated from quasi-static data with good accuracy.

  4. Microfog lubrication for aircraft engine bearings

    NASA Technical Reports Server (NTRS)

    Rosenlieb, J. W.

    1976-01-01

    An analysis and system study was performed to provide design information regarding lubricant and coolant flow rates and flow paths for effective utilization of the lubricant and coolant in a once through bearing oil mist (microfog) and coolant air system. Both static and dynamic tests were performed. Static tests were executed to evaluate and calibrate the mist supply system. A total of thirteen dynamic step speed bearing tests were performed using four different lubricants and several different mist and air supply configurations. The most effective configuration consisted of supplying the mist and the major portion of the cooling air axially through the bearing. The results of these tests have shown the feasibility of using a once through oil mist and cooling air system to lubricate and cool a high speed, high temperature aircraft engine mainshaft bearing.

  5. Compilation time analysis to minimize run-time overhead in preemptive scheduling on multiprocessors

    NASA Astrophysics Data System (ADS)

    Wauters, Piet; Lauwereins, Rudy; Peperstraete, J.

    1994-10-01

    This paper describes a scheduling method for hard real-time Digital Signal Processing (DSP) applications, implemented on a multi-processor. Due to the very high operating frequencies of DSP applications (typically hundreds of kHz) runtime overhead should be kept as small as possible. Because static scheduling introduces very little run-time overhead it is used as much as possible. Dynamic pre-emption of tasks is allowed if and only if it leads to better performance in spite of the extra run-time overhead. We essentially combine static scheduling with dynamic pre-emption using static priorities. Since we are dealing with hard real-time applications we must be able to guarantee at compile-time that all timing requirements will be satisfied at run-time. We will show that our method performs at least as good as any static scheduling method. It also reduces the total amount of dynamic pre-emptions compared with run time methods like deadline monotonic scheduling.

  6. Measurement of noise and its correlation to performance and geometry of small aircraft propellers

    NASA Astrophysics Data System (ADS)

    Štorch, Vít; Nožička, Jiří; Brada, Martin; Gemperle, Jiří; Suchý, Jakub

    2016-03-01

    A set of small model and UAV propellers is measured both in terms of aerodynamic performance and acoustic noise under static conditions. Apart from obvious correlation of noise to tip speed and propeller diameter the influence of blade pitch, blade pitch distribution, efficiency and shape of the blade is sought. Using the measured performance data a computational model for calculation of aerodynamic noise of propellers will be validated. The range of selected propellers include both propellers designed for nearly static conditions and propellers that are running at highly offdesign conditions, which allows to investigate i.e. the effect of blade stall on both noise level and performance results.

  7. The effects of a combined static-dynamic stretching protocol on athletic performance in elite Gaelic footballers: A randomised controlled crossover trial.

    PubMed

    Loughran, Martin; Glasgow, Philip; Bleakley, Chris; McVeigh, Joseph

    2017-05-01

    To determine the effect of three different static-dynamic stretching protocols on sprint and jump performance in Gaelic footballers. Double-blind, controlled, crossover trial. Sports Institute research environment. Seventeen male elite level Gaelic footballers, aged 18-30 years, completed three stretching protocols. Athletic performance was measured by countermovement jump height and power, and timed 10 m, 20 m, and 40 m sprints. Static stretching reduced sprint speed by 1.1% over 40 m and 1.0% over 20 m. Static stretching also reduced countermovement jump height by 10.6% and jump power by 6.4%. When static stretching was followed by dynamic stretching, sprint speed improved by 1.0% over 20 m and 0.7% over 40 m (p < 0.05). The static - dynamic stretching protocol also improved countermovement jump height by 8.7% (p < 0.01) and power by 6.7% (p < 0.01). Static stretching reduces sprint speed and jump performance. Static stretching should be followed by dynamic stretching during warm-up to nullify any performance deficits caused by static stretching. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Aging and loading rate effects on the mechanical behavior of equine bone

    NASA Astrophysics Data System (ADS)

    Kulin, Robb M.; Jiang, Fengchun; Vecchio, Kenneth S.

    2008-06-01

    Whether due to a sporting accident, high-speed impact, fall, or other catastrophic event, the majority of clinical bone fractures occur under dynamic loading conditions. However, although extensive research has been performed on the quasi-static fracture and mechanical behavior of bone to date, few high-quality studies on the fracture behavior of bone at high strain rates have been performed. Therefore, many questions remain regarding the material behavior, including not only the loading-rate-dependent response of bone, but also how this response varies with age. In this study, tests were performed on equine femoral bone taken post-mortem from donors 6 months to 28 years of age. Quasi-static and dynamic tests were performed to determine the fracture toughness and compressive mechanical behavior as a function of age at varying loading rates. Fracture paths were then analyzed using scanning confocal and scanning-electron microscopy techniques to assess the role of various microstructural features on toughening mechanisms.

  9. A static induction device manufactured by silicon direct bonding

    NASA Astrophysics Data System (ADS)

    Chen, Xin'an; Liu, Su; Huang, Qing'an

    2004-07-01

    It is always a key problem how to improve the gate-source breakdown voltage (VGK) of static induction devices during manufacturing. By using a silicon direct bonding process to replace the high resistivity epitaxy process, a bonding buried gate structure is formed, which is different from an epitaxy buried gate structure. The new structure can improve the gate-source breakdown voltage from the process and the structure. It is shown that the bonding buried gate structure is a promising structure, that can improve the VGK and other performances of devices, by manufacture of a static induction thyristor.

  10. The value of Tablets as reading aids for individuals with central visual field loss: an evaluation of eccentric reading with static and scrolling text.

    PubMed

    Walker, Robin; Bryan, Lauren; Harvey, Hannah; Riazi, Afsane; Anderson, Stephen J

    2016-07-01

    Technological devices such as smartphones and tablets are widely available and increasingly used as visual aids. This study evaluated the use of a novel app for tablets (MD_evReader) developed as a reading aid for individuals with a central field loss resulting from macular degeneration. The MD_evReader app scrolls text as single lines (similar to a news ticker) and is intended to enhance reading performance using the eccentric viewing technique by both reducing the demands on the eye movement system and minimising the deleterious effects of perceptual crowding. Reading performance with scrolling text was compared with reading static sentences, also presented on a tablet computer. Twenty-six people with low vision (diagnosis of macular degeneration) read static or dynamic text (scrolled from right to left), presented as a single line at high contrast on a tablet device. Reading error rates and comprehension were recorded for both text formats, and the participant's subjective experience of reading with the app was assessed using a simple questionnaire. The average reading speed for static and dynamic text was not significantly different and equal to or greater than 85 words per minute. The comprehension scores for both text formats were also similar, equal to approximately 95% correct. However, reading error rates were significantly (p = 0.02) less for dynamic text than for static text. The participants' questionnaire ratings of their reading experience with the MD_evReader were highly positive and indicated a preference for reading with this app compared with their usual method. Our data show that reading performance with scrolling text is at least equal to that achieved with static text and in some respects (reading error rate) is better than static text. Bespoke apps informed by an understanding of the underlying sensorimotor processes involved in a cognitive task such as reading have excellent potential as aids for people with visual impairments. © 2016 The Authors Ophthalmic and Physiological Optics published by John Wiley & Sons Ltd on behalf of College of Optometrists.

  11. Development of an advanced pitch active control system for a wide body jet aircraft

    NASA Technical Reports Server (NTRS)

    Guinn, Wiley A.; Rising, Jerry J.; Davis, Walt J.

    1984-01-01

    An advanced PACS control law was developed for a commercial wide-body transport (Lockheed L-1011) by using modern control theory. Validity of the control law was demonstrated by piloted flight simulation tests on the NASA Langley visual motion simulator. The PACS design objective was to develop a PACS that would provide good flying qualities to negative 10 percent static stability margins that were equivalent to those of the baseline aircraft at a 15 percent static stability margin which is normal for the L-1011. Also, the PACS was to compensate for high-Mach/high-g instabilities that degrade flying qualities during upset recoveries and maneuvers. The piloted flight simulation tests showed that the PACS met the design objectives. The simulation demonstrated good flying qualities to negative 20 percent static stability margins for hold, cruise and high-speed flight conditions. Analysis and wind tunnel tests performed on other Lockheed programs indicate that the PACS could be used on an advanced transport configuration to provide a 4 percent fuel savings which results from reduced trim drag by flying at negative static stability margins.

  12. Application and Prospects of High-strength Lightweight Materials used in Coal mine

    NASA Astrophysics Data System (ADS)

    He, Pan

    2017-09-01

    This paper describes some high-strength lightweight materials used in coal mine, and if their performance can meet the requirements of underground safety for explosion-proof, anti-static, friction sparks mine; and reviewed the species, characteristic, preparation process of high-strength lightweight materials for having inspired lightweight high-strength performance by modifying or changing the synthesis mode used in coal mine equipment.

  13. Impact Behavior of Composite Fan Blade Leading Edge Subcomponent with Thermoplastic Polyurethane Interleave

    NASA Technical Reports Server (NTRS)

    Miller, Sandi G.; Roberts, Gary D.; Kohlman, Lee W.; Heimann, Paula J.; Pereira, J. Michael; Ruggeri, Charles R.; Martin, Richard E.; McCorkle, Linda S.

    2015-01-01

    Impact damage tolerance and damage resistance is a critical metric for application of polymer matrix composites where failure caused by impact damage could compromise structural performance and safety. As a result, several materials and/or design approaches to improve impact damage tolerance have been investigated over the past several decades. Many composite toughening methodologies impart a trade-off between increased fracture toughness and compromised in-plane strength and modulus. In large part, mechanical tests to evaluate composite damage tolerance include static methods such as Mode I, Mode II, and mixed mode failures. However, ballistic impact damage resistance does not always correlate with static properties. The intent of this paper is to evaluate the influence of a thermoplastic polyurethane veil interleave on the static and dynamic performance of composite test articles. Static coupon tests included tension, compression, double cantilever beam, and end notch flexure. Measurement of the resistance to ballistic impact damage were made to evaluate the composites response to high speed impact. The interlayer material showed a decrease of in-plane performance with only a moderate improvement to Mode I and Mode II fracture toughness. However, significant benefit to impact damage tolerance was observed through ballistic tests.

  14. Nasal Histopathology and Intracage Ammonia Levels in Female Groups and Breeding Mice Housed in Static Isolation Cages

    PubMed Central

    Mexas, Angela M; Brice, Angela K; Caro, Adam C; Hillanbrand, Troy S

    2015-01-01

    Many factors influence ammonia levels in rodent cages, and high intracage ammonia has been associated with specific types of abnormal nasal pathology in mice. The use of autoclaved corncob bedding and the maintenance of low room humidity reduce the accumulation of ammonia in mouse cages. However, there are no engineering standards that define the limits of ammonia exposure for mice housed in static isolation cages. Regulatory guidance indicates that solid bottom cages must be sanitized at least weekly and that cage components in direct contact with animals must be sanitized at least every 2 wk. Common practice is to replace the bottoms and bedding of static isolation cages once weekly. To determine whether changing static isolation cages once weekly is an appropriate performance standard for mice, we prospectively evaluated the relationship between ammonia levels, nasal histopathology, and housing densities in various grouping strategies of mice housed in static isolation cages. Here, we report that the average nasal pathology score per cage and intracage ammonia levels were correlated, but nasal pathology scores did not differ among mice housed in breeding pairs, breeding trios, or female groups. In light of ammonia levels and histopathology scores as performance standards, these results suggest that a weekly cage-change frequency for static isolation cages does not result in adverse effects. Our results provide evidence to support current practices in the use of static isolation cages for housing laboratory mice in modern vivaria. PMID:26424245

  15. Designing automation for complex work environments under different levels of stress.

    PubMed

    Sauer, Juergen; Nickel, Peter; Wastell, David

    2013-01-01

    This article examines the effectiveness of different forms of static and adaptable automation under low- and high-stress conditions. Forty participants were randomly assigned to one of four experimental conditions, comparing three levels of static automation (low, medium and high) and one level of adaptable automation, with the environmental stressor (noise) being varied as a within-subjects variable. Participants were trained for 4 h on a simulation of a process control environment, called AutoCAMS, followed by a 2.5-h testing session. Measures of performance, psychophysiology and subjective reactions were taken. The results showed that operators preferred higher levels of automation under noise than under quiet conditions. A number of parameters indicated negative effects of noise exposure, such as performance impairments, physiological stress reactions and higher mental workload. It also emerged that adaptable automation provided advantages over low and intermediate static automation, with regard to mental workload, effort expenditure and diagnostic performance. The article concludes that for the design of automation a wider range of operational scenarios reflecting adverse as well as ideal working conditions needs to be considered. Copyright © 2012 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  16. Aero-thermal investigation of a highly loaded transonic linear turbine guide vane cascade. A test case for inviscid and viscous flow computations

    NASA Astrophysics Data System (ADS)

    Arts, T.; Lambertderouvroit, M.; Rutherford, A. W.

    1990-09-01

    An experimental aerothermal investigation of a highly loaded transonic turbine nozzle guide vane mounted in a linear cascade arrangement is presented. The measurements were performed in a short duration isentropic light piston compression tube facility, allowing a correct simulation of Mach and Reynolds numbers as well as of the gas to wall temperature ratio compared to the values currently observed in modern aeroengines. The experimental program consisted of the following: (1) flow periodicity checks by means of wall static pressure measurements and Schlieren flow visualizations; (2) blade velocity distribution measurements by means of static pressure tappings; (3) blade convective heat transfer measurements by means of static pressure tappings; (4) blade convective heat transfer measurements by means of platinium thin films; (5) downstream loss coefficient and exit flow angle determinations by using a new fast traversing mechanism; and (6) free stream turbulence intensity and spectrum measurements. These different measurements were performed for several combinations of the free stream flow parameters looking at the relative effects on the aerodynamic blade performance and blade convective heat transfer of Mach number, Reynolds number, and freestream turbulence intensity.

  17. Magnetoacoustic tomography with magnetic induction for high-resolution bioimepedance imaging through vector source reconstruction under the static field of MRI magnet.

    PubMed

    Mariappan, Leo; Hu, Gang; He, Bin

    2014-02-01

    Magnetoacoustic tomography with magnetic induction (MAT-MI) is an imaging modality to reconstruct the electrical conductivity of biological tissue based on the acoustic measurements of Lorentz force induced tissue vibration. This study presents the feasibility of the authors' new MAT-MI system and vector source imaging algorithm to perform a complete reconstruction of the conductivity distribution of real biological tissues with ultrasound spatial resolution. In the present study, using ultrasound beamformation, imaging point spread functions are designed to reconstruct the induced vector source in the object which is used to estimate the object conductivity distribution. Both numerical studies and phantom experiments are performed to demonstrate the merits of the proposed method. Also, through the numerical simulations, the full width half maximum of the imaging point spread function is calculated to estimate of the spatial resolution. The tissue phantom experiments are performed with a MAT-MI imaging system in the static field of a 9.4 T magnetic resonance imaging magnet. The image reconstruction through vector beamformation in the numerical and experimental studies gives a reliable estimate of the conductivity distribution in the object with a ∼ 1.5 mm spatial resolution corresponding to the imaging system frequency of 500 kHz ultrasound. In addition, the experiment results suggest that MAT-MI under high static magnetic field environment is able to reconstruct images of tissue-mimicking gel phantoms and real tissue samples with reliable conductivity contrast. The results demonstrate that MAT-MI is able to image the electrical conductivity properties of biological tissues with better than 2 mm spatial resolution at 500 kHz, and the imaging with MAT-MI under a high static magnetic field environment is able to provide improved imaging contrast for biological tissue conductivity reconstruction.

  18. Assessment of Diagnostic Value of Single View Dynamic Technique in Diagnosis of Developmental Dysplasia of Hip: A Comparison with Static and Dynamic Ultrasond Techniques

    PubMed Central

    Alamdaran, Seyed Ali; Kazemi, Sahar; Parsa, Ali; Moghadam, Mohammad Hallaj; Feyzi, Ali; Mardani, Reza

    2016-01-01

    Background: Developmental dysplasia of hip (DDH) is a common childhood disorder, and ultrasonography examination is routinely used for screening purposes. In this study, we aimed to evaluate a modified combined static and dynamic ultrasound technique for the detection of DDH and to compare with the results of static and dynamic ultrasound techniques. Methods: In this cross-sectional study, during 2013- 2015, 300 high-risk infants were evaluated by ultrasound for DDH. Both hips were examined with three techniques: static, dynamic and single view static and dynamic technique. Statistical analysis was performed using SPSS version 11.5. Results: Patients aged 9 days to 83 weeks. 75% of the patients were 1 to 3 months old. Among 600 hip joints, about 5% were immature in static sonography and almost all of them were unstable in dynamic techniques. 0.3% of morphologically normal hips were unstable in dynamic sonography and 9% of unstable hips had normal morphology. The mean β angle differences in coronal view before and after stress maneuver was 14.43±5.47° in unstable hips. Single view static and dynamic technique revealed that all cases with acetabular dysplasia, instability and dislocation, except two dislocations, were detected by dynamic transverse view. For two cases, Ortolani maneuver showed femoral head reversibility in dislocated hips. Using single view static and dynamic technique was indicative and applicable for detection of more than 99% of cases. Conclusion: Single view static and dynamic technique not only is a fast and easy technique, but also it is of high diagnostic value in assessment of DDH. PMID:27847852

  19. Stress Corrosion Cracking of Annealed and Cold Worked Titanium Grade 7 and Alloy 22 in 110 C Concentrated Salt Environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    P. Andresen

    2000-11-08

    Stress corrosion crack growth studies have been performed on annealed and cold worked Titanium Grade 7 and Alloy 22 in 110 C, aerated, concentrated, high pH salt environments characteristic of concentrated ground water. Following a very careful transition from fatigue precracking conditions to SCC conditions, the long term behavior under very stable conditions was monitored using reversing dc potential drop. Titanium Grade 7 exhibited continuous crack growth under both near-static and complete static loading conditions. Alloy 22 exhibited similar growth rates, but was less prone to maintain stable crack growth as conditions approached fully static loading.

  20. Short Durations of Static Stretching when Combined with Dynamic Stretching do not Impair Repeated Sprints and Agility

    PubMed Central

    Wong, Del P.; Chaouachi, Anis; Lau, Patrick W.C.; Behm, David G.

    2011-01-01

    This study aimed to compare the effect of different static stretching durations followed by dynamic stretching on repeated sprint ability (RSA) and change of direction (COD). Twenty-five participants performed the RSA and COD tests in a randomized order. After a 5 min aerobic warm up, participants performed one of the three static stretching protocols of 30 s, 60 s or 90 s total duration (3 stretches x 10 s, 20 s or 30 s). Three dynamic stretching exercises of 30 s duration were then performed (90 s total). Sit-and-reach flexibility tests were conducted before the aerobic warm up, after the combined static and dynamic stretching, and post- RSA/COD test. The duration of static stretching had a positive effect on flexibility with 36.3% and 85.6% greater sit-and-reach scores with the 60 s and 90 s static stretching conditions respectively than with the 30 s condition (p ≤ 0.001). However there were no significant differences in RSA and COD performance between the 3 stretching conditions. The lack of change in RSA and COD might be attributed to a counterbalancing of static and dynamic stretching effects. Furthermore, the short duration (≤ 90 s) static stretching may not have provided sufficient stimulus to elicit performance impairments. Key points The duration of combined static and dynamic stretching had a positive effect on flexibility with 36.3% and 85.6% greater sit and reach scores with the 60 s and 90 s static stretching conditions respectively than with the 30 s condition (p ≤ 0.001). No significant differences in RSA and COD between the 3 stretching conditions. The lack of change in RSA and COD might be attributed to a counterbalancing of static and dynamic stretching effects. The short duration (≤ 90 s) static stretching may not have provided sufficient stimulus to elicit performance impairments. PMID:24149890

  1. Short Durations of Static Stretching when Combined with Dynamic Stretching do not Impair Repeated Sprints and Agility.

    PubMed

    Wong, Del P; Chaouachi, Anis; Lau, Patrick W C; Behm, David G

    2011-01-01

    This study aimed to compare the effect of different static stretching durations followed by dynamic stretching on repeated sprint ability (RSA) and change of direction (COD). Twenty-five participants performed the RSA and COD tests in a randomized order. After a 5 min aerobic warm up, participants performed one of the three static stretching protocols of 30 s, 60 s or 90 s total duration (3 stretches x 10 s, 20 s or 30 s). Three dynamic stretching exercises of 30 s duration were then performed (90 s total). Sit-and-reach flexibility tests were conducted before the aerobic warm up, after the combined static and dynamic stretching, and post- RSA/COD test. The duration of static stretching had a positive effect on flexibility with 36.3% and 85.6% greater sit-and-reach scores with the 60 s and 90 s static stretching conditions respectively than with the 30 s condition (p ≤ 0.001). However there were no significant differences in RSA and COD performance between the 3 stretching conditions. The lack of change in RSA and COD might be attributed to a counterbalancing of static and dynamic stretching effects. Furthermore, the short duration (≤ 90 s) static stretching may not have provided sufficient stimulus to elicit performance impairments. Key pointsThe duration of combined static and dynamic stretching had a positive effect on flexibility with 36.3% and 85.6% greater sit and reach scores with the 60 s and 90 s static stretching conditions respectively than with the 30 s condition (p ≤ 0.001).No significant differences in RSA and COD between the 3 stretching conditions.The lack of change in RSA and COD might be attributed to a counterbalancing of static and dynamic stretching effects.The short duration (≤ 90 s) static stretching may not have provided sufficient stimulus to elicit performance impairments.

  2. Space Shuttle Main Engine structural analysis and data reduction/evaluation. Volume 3B: High pressure fuel turbo-pump preburner pump bearing assembly analysis

    NASA Technical Reports Server (NTRS)

    Power, Gloria B.; Violett, Rebeca S.

    1989-01-01

    The analysis performed on the High Pressure Oxidizer Turbopump (HPOTP) preburner pump bearing assembly located on the Space Shuttle Main Engine (SSME) is summarized. An ANSYS finite element model for the inlet assembly was built and executed. Thermal and static analyses were performed.

  3. Pilot Line Development of High-Performance Thermal Insulation

    DTIC Science & Technology

    1989-09-01

    with the fiber blend described, full attention was given to the problems of pilot pro- duction. C. Assembly of the Pilot Production Line and Initial...that virtually all possible static control steps had been taken, we presented the problem to the fiber manufacturer, TeiJin. They re- sponded by...1988. The line was operated continuously during production of the 5-roll sample se, as static generation within the fiber was no longer a problem

  4. Correction of static axial alignment in children with knee varus or valgus deformities through guided growth: Does it also correct dynamic frontal plane moments during walking?

    PubMed

    Böhm, Harald; Stief, Felix; Sander, Klaus; Hösl, Matthias; Döderlein, Leonhard

    2015-09-01

    Malaligned knees are predisposed to the development and progression of unicompartmental degenerations because of the excessive load placed on one side of the knee. Therefore, guided growth in skeletally immature patients is recommended. Indication for correction of varus/valgus deformities are based on static weight bearing radiographs. However, the dynamic knee abduction moment during walking showed only a weak correlation to malalignment determined by static radiographs. Therefore, the aim of the study was to measure the effects of guided growth on the normalization of frontal plane knee joint moments during walking. 15 legs of 8 patients (11-15 years) with idiopathic axial varus or valgus malalignment were analyzed. 16 typically developed peers served as controls. Instrumented gait analysis and clinical assessment were performed the day before implantation and explantation of eight-plates. Correlation between static mechanical tibiofemoral axis angle (MAA) and dynamic frontal plane knee joint moments and their change by guided growth were performed. The changes in dynamic knee moment in the frontal plane following guided growth showed high and significant correlation to the changes in static MAA (R=0.97, p<0.001). Contrary to the correlation of the changes, there was no correlation between static and dynamic measures in both sessions. In consequence two patients that had a natural knee moment before treatment showed a more pathological one after treatment. In conclusion, the changes in the dynamic load situation during walking can be predicted from the changes in static alignment. If pre-surgical gait analysis reveals a natural load situation, despite a static varus or valgus deformity, the intervention must be critically discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Explaining efficient search for conjunctions of motion and form: evidence from negative color effects.

    PubMed

    Dent, Kevin

    2014-05-01

    Dent, Humphreys, and Braithwaite (2011) showed substantial costs to search when a moving target shared its color with a group of ignored static distractors. The present study further explored the conditions under which such costs to performance occur. Experiment 1 tested whether the negative color-sharing effect was specific to cases in which search showed a highly serial pattern. The results showed that the negative color-sharing effect persisted in the case of a target defined as a conjunction of movement and form, even when search was highly efficient. In Experiment 2, the ease with which participants could find an odd-colored target amongst a moving group was examined. Participants searched for a moving target amongst moving and stationary distractors. In Experiment 2A, participants performed a highly serial search through a group of similarly shaped moving letters. Performance was much slower when the target shared its color with a set of ignored static distractors. The exact same displays were used in Experiment 2B; however, participants now responded "present" for targets that shared the color of the static distractors. The same targets that had previously been difficult to find were now found efficiently. The results are interpreted in a flexible framework for attentional control. Targets that are linked with irrelevant distractors by color tend to be ignored. However, this cost can be overridden by top-down control settings.

  6. Laboratory and field performance of FOS sensors in static and dynamic strain monitoring in concrete bridge decks

    NASA Astrophysics Data System (ADS)

    Benmokrane, B.; Debaiky, A.; El-Ragaby, A.; Roy, R.; El-Gamal, S.; El-Salakawy, E.

    2006-03-01

    There is a growing need for designing and constructing innovative concrete bridges using FRP reinforcing bars as internal reinforcement to avoid the corrosion problems and high costs of maintenance and repair. For efficient use and to increase the lifetime of these bridges, it is important to develop efficient monitoring systems for such innovative structures. Fabry-Perot and Bragg fibre optic sensors (FOS) that can measure the strains and temperature are promising candidates for life-long health monitoring of these structures. This article reports laboratory and field performance of Fabry-Perot and Bragg FOS sensors as well as electrical strain gauges in static and dynamic strain monitoring in concrete bridge decks. The laboratory tests include tensile testing of glass FRP bars and testing of full-scale concrete bridge deck slabs reinforced with glass and carbon FRP bars under static and cyclic concentrated loads. The field tests include static and dynamic testing of two bridges reinforced with steel and glass FRP bars. The obtained strain results showed satisfactory agreement between the different gauges.

  7. Effect of Eccentricity on the Static and Dynamic Performance of a Turbulent Hybrid Bearing

    NASA Technical Reports Server (NTRS)

    Sanandres, Luis A.

    1991-01-01

    The effect of journal eccentricity on the static and dynamic performance of a water lubricated, 5-recess hybrid bearing is presented in detail. The hydrostatic bearing has been designed to operate at a high speed and with a large level of external pressurization. The operating conditions determine the flow in the bearing to be highly turbulent and strongly dominated by fluid inertia effects. The analysis covers the spectrum of journal center displacements directed towards the middle of a recess and towards the mid-land portion between two consecutive recesses. Predicted dynamic force coefficients are uniform for small to moderate eccentricities. For large journal center displacements, fluid cavitation and recess position determine large changes in the bearing dynamic performance. The effect of fluid inertia force coefficients on the threshold speed of instability and whirl ratio of a single mass flexible rotor is discussed.

  8. Cold flow testing of the Space Shuttle Main Engine high pressure fuel turbine model

    NASA Technical Reports Server (NTRS)

    Hudson, Susan T.; Gaddis, Stephen W.; Johnson, P. D.; Boynton, James L.

    1991-01-01

    In order to experimentally determine the performance of the Space Shuttle Main Engine (SSME) High Pressure Fuel Turbopump (HPFTP) turbine, a 'cold' air flow turbine test program was established at NASA's Marshall Space Flight Center. As part of this test program, a baseline test of Rocketdyne's HPFTP turbine has been completed. The turbine performance and turbine diagnostics such as airfoil surface static pressure distributions, static pressure drops through the turbine, and exit swirl angles were investigated at the turbine design point, over its operating range, and at extreme off-design points. The data was compared to pretest predictions with good results. The test data has been used to improve meanline prediction codes and is now being used to validate various three-dimensional codes. The data will also be scaled to engine conditions and used to improve the SSME steady-state performance model.

  9. Acoustic and aerodynamic performance investigation of inverted velocity profile coannular plug nozzles. [variable cycle engines

    NASA Technical Reports Server (NTRS)

    Knott, P. R.; Blozy, J. T.; Staid, P. S.

    1981-01-01

    The results of model scale parametric static and wind tunnel aerodynamic performance tests on unsuppressed coannular plug nozzle configurations with inverted velocity profile are discussed. The nozzle configurations are high-radius-ratio coannular plug nozzles applicable to dual-stream exhaust systems typical of a variable cycle engine for Advanced Supersonic Transport application. In all, seven acoustic models and eight aerodynamic performance models were tested. The nozzle geometric variables included outer stream radius ratio, inner stream to outer stream ratio, and inner stream plug shape. When compared to a conical nozzle at the same specific thrust, the results of the static acoustic tests with the coannular nozzles showed noise reductions of up to 7 PNdB. Extensive data analysis showed that the overall acoustic results can be well correlated using the mixed stream velocity and the mixed stream density. Results also showed that suppression levels are geometry and flow regulation dependent with the outer stream radius ratio, inner stream-to-outer stream velocity ratio and inner stream velocity ratio and inner stream plug shape, as the primary suppression parameters. In addition, high-radius ratio coannular plug nozzles were found to yield shock associated noise level reductions relative to a conical nozzle. The wind tunnel aerodynamic tests showed that static and simulated flight thrust coefficient at typical takeoff conditions are quite good - up to 0.98 at static conditions and 0.974 at a takeoff Mach number of 0.36. At low inner stream flow conditions significant thrust loss was observed. Using an inner stream conical plug resulted in 1% to 2% higher performance levels than nozzle geometries using a bent inner plug.

  10. Comparing performance of many-core CPUs and GPUs for static and motion compensated reconstruction of C-arm CT data.

    PubMed

    Hofmann, Hannes G; Keck, Benjamin; Rohkohl, Christopher; Hornegger, Joachim

    2011-01-01

    Interventional reconstruction of 3-D volumetric data from C-arm CT projections is a computationally demanding task. Hardware optimization is not an option but mandatory for interventional image processing and, in particular, for image reconstruction due to the high demands on performance. Several groups have published fast analytical 3-D reconstruction on highly parallel hardware such as GPUs to mitigate this issue. The authors show that the performance of modern CPU-based systems is in the same order as current GPUs for static 3-D reconstruction and outperforms them for a recent motion compensated (3-D+time) image reconstruction algorithm. This work investigates two algorithms: Static 3-D reconstruction as well as a recent motion compensated algorithm. The evaluation was performed using a standardized reconstruction benchmark, RABBITCT, to get comparable results and two additional clinical data sets. The authors demonstrate for a parametric B-spline motion estimation scheme that the derivative computation, which requires many write operations to memory, performs poorly on the GPU and can highly benefit from modern CPU architectures with large caches. Moreover, on a 32-core Intel Xeon server system, the authors achieve linear scaling with the number of cores used and reconstruction times almost in the same range as current GPUs. Algorithmic innovations in the field of motion compensated image reconstruction may lead to a shift back to CPUs in the future. For analytical 3-D reconstruction, the authors show that the gap between GPUs and CPUs became smaller. It can be performed in less than 20 s (on-the-fly) using a 32-core server.

  11. Interset stretching does not influence the kinematic profile of consecutive bench-press sets.

    PubMed

    García-López, David; Izquierdo, Mikel; Rodríguez, Sergio; González-Calvo, Gustavo; Sainz, Nuria; Abadía, Olaia; Herrero, Azael J

    2010-05-01

    This study was undertaken to examine the role of interset stretching on the time course of acceleration portion AP and mean velocity profile during the concentric phase of 2 bench-press sets with a submaximal load (60% of the 1 repetition maximum). Twenty-five college students carried out, in 3 different days, 2 consecutive bench-press sets leading to failure, performing between sets static stretching, ballistic stretching, or no stretching. Acceleration portion and lifting velocity patterns of the concentric phase were not altered during the second set, regardless of the stretching treatment performed. However, when velocity was expressed in absolute terms, static stretching reduced significantly (p <0.05) the average lifting velocity during the second set compared to the first one. Therefore, if maintenance of a high absolute velocity over consecutive sets is important for training-related adaptations, static stretching should be avoided or replaced by ballistic stretching.

  12. Analysis and testing of high entrainment single nozzle jet pumps with variable mixing tubes

    NASA Technical Reports Server (NTRS)

    Hickman, K. E.; Hill, P. G.; Gilbert, G. B.

    1972-01-01

    An analytical model was developed to predict the performance characteristics of axisymmetric single-nozzle jet pumps with variable area mixing tubes. The primary flow may be subsonic or supersonic. The computer program uses integral techniques to calculate the velocity profiles and the wall static pressures that result from the mixing of the supersonic primary jet and the subsonic secondary flow. An experimental program was conducted to measure mixing tube wall static pressure variations, velocity profiles, and temperature profiles in a variable area mixing tube with a supersonic primary jet. Static pressure variations were measured at four different secondary flow rates. These test results were used to evaluate the analytical model. The analytical results compared well to the experimental data. Therefore, the analysis is believed to be ready for use to relate jet pump performance characteristics to mixing tube design.

  13. Performance characteristics of axisymmetric convergent-divergent exhaust nozzles with longitudinal slots in the divergent

    NASA Technical Reports Server (NTRS)

    Leavitt, L. D.; Bangert, L. S.

    1982-01-01

    An investigation was conducted in the Langley 16 foot Transonic Tunnel and in the static test facility of that tunnel to determine the effects of divergent flap ventilation of an axisymmetric nozzle on nozzle internal (static) and wind on performance. Tests were conducted at 0 deg angle of attack at static conditions and at Mach numbers from 0.6 to 1.2. Ratios of jet total pressure to free stream static pressure were varied from 1.0 (jet off) to approximately 14.0 depending on Mach number. The results of this study indicate that divergent flap ventilation generally provided large performance benefits at overexpanded nozzle conditions and performance reductions at underexpanded nozzle conditions when compared to the baseline (unventilated) nozzles. Ventilation also reduced the peak static and wind on performance levels.

  14. An analysis of the precision and reliability of the leap motion sensor and its suitability for static and dynamic tracking.

    PubMed

    Guna, Jože; Jakus, Grega; Pogačnik, Matevž; Tomažič, Sašo; Sodnik, Jaka

    2014-02-21

    We present the results of an evaluation of the performance of the Leap Motion Controller with the aid of a professional, high-precision, fast motion tracking system. A set of static and dynamic measurements was performed with different numbers of tracking objects and configurations. For the static measurements, a plastic arm model simulating a human arm was used. A set of 37 reference locations was selected to cover the controller's sensory space. For the dynamic measurements, a special V-shaped tool, consisting of two tracking objects maintaining a constant distance between them, was created to simulate two human fingers. In the static scenario, the standard deviation was less than 0.5 mm. The linear correlation revealed a significant increase in the standard deviation when moving away from the controller. The results of the dynamic scenario revealed the inconsistent performance of the controller, with a significant drop in accuracy for samples taken more than 250 mm above the controller's surface. The Leap Motion Controller undoubtedly represents a revolutionary input device for gesture-based human-computer interaction; however, due to its rather limited sensory space and inconsistent sampling frequency, in its current configuration it cannot currently be used as a professional tracking system.

  15. An Analysis of the Precision and Reliability of the Leap Motion Sensor and Its Suitability for Static and Dynamic Tracking

    PubMed Central

    Guna, Jože; Jakus, Grega; Pogačnik, Matevž; Tomažič, Sašo; Sodnik, Jaka

    2014-01-01

    We present the results of an evaluation of the performance of the Leap Motion Controller with the aid of a professional, high-precision, fast motion tracking system. A set of static and dynamic measurements was performed with different numbers of tracking objects and configurations. For the static measurements, a plastic arm model simulating a human arm was used. A set of 37 reference locations was selected to cover the controller's sensory space. For the dynamic measurements, a special V-shaped tool, consisting of two tracking objects maintaining a constant distance between them, was created to simulate two human fingers. In the static scenario, the standard deviation was less than 0.5 mm. The linear correlation revealed a significant increase in the standard deviation when moving away from the controller. The results of the dynamic scenario revealed the inconsistent performance of the controller, with a significant drop in accuracy for samples taken more than 250 mm above the controller's surface. The Leap Motion Controller undoubtedly represents a revolutionary input device for gesture-based human-computer interaction; however, due to its rather limited sensory space and inconsistent sampling frequency, in its current configuration it cannot currently be used as a professional tracking system. PMID:24566635

  16. Behavior of field-cast ultra-high performance concrete bridge deck connections under cyclic and static structural loading

    DOT National Transportation Integrated Search

    2010-11-01

    The use of modular bridge deck components has the potential to produce higher quality, more durable bridge decks; however, the required connections have often proved lacking, resulting in less than desirable overall system performance. Advanced cemen...

  17. A Stewart isolator with high-static-low-dynamic stiffness struts based on negative stiffness magnetic springs

    NASA Astrophysics Data System (ADS)

    Zheng, Yisheng; Li, Qingpin; Yan, Bo; Luo, Yajun; Zhang, Xinong

    2018-05-01

    In order to improve the isolation performance of passive Stewart platforms, the negative stiffness magnetic spring (NSMS) is employed to construct high static low dynamic stiffness (HSLDS) struts. With the NSMS, the resonance frequencies of the platform can be reduced effectively without deteriorating its load bearing capacity. The model of the Stewart isolation platform with HSLDS struts is presented and the stiffness characteristic of its struts is studied firstly. Then the nonlinear dynamic model of the platform including both geometry nonlinearity and stiffness nonlinearity is established; and its simplified dynamic model is derived under the condition of small vibration. The effect of nonlinearity on the isolation performance is also evaluated. Finally, a prototype is built and the isolation performance is tested. Both simulated and experimental results demonstrate that, by using the NSMS, the resonance frequencies of the Stewart isolator are reduced and the isolation performance in all six directions is improved: the isolation frequency band is increased and extended to a lower-frequency level.

  18. A nonlinear vibration isolator achieving high-static-low-dynamic stiffness and tunable anti-resonance frequency band

    NASA Astrophysics Data System (ADS)

    Sun, Xiuting; Jing, Xingjian

    2016-12-01

    This study investigates theoretically and experimentally a vibration isolator constructed by an n-layer Scissor-Like Structure (SLS), focusing on the analysis and design of nonlinear stiffness and damping characteristics for advantageous isolation performance in both orthogonal directions. With the mathematical modeling, the influence incurred by different structural parameters on system isolation performance is studied. It is shown that, (a) nonlinear high-static-low-dynamic stiffness and damping characteristics can be seen such that the system can achieve good isolation performance in both directions, (b) an anti-resonance frequency band exists due to the coupling effect between the linear and nonlinear stiffness in the two orthogonal directions within the structure, and (c) all these performances are designable with several structural parameters. The advantages of the proposed system are shown through comparisons with an existing quasi-zero-stiffness vibration isolator (QZS-VI) and a traditional mass-spring-damper vibration isolator (MSD-VI), and further validated by experimental results.

  19. Processing and Characterization of Lightweight Syntactic Materials

    DTIC Science & Technology

    2016-10-01

    into lightweight (aluminum, magnesium) metal matrices via various metal processing methods. The performance of the resulting foam materials under quasi ...18 3.3 Other Alloys 20 4. Testing and Characterization of LSAMs 21 4.1 Finite Element Modeling of the Quasi -static Deformation 21 4.2 Compressive...Response at Quasi -static and High Strain Rates 27 4.2.1 Materials and Methods 27 4.2.2 Results 28 4.2.3 Conclusions 35 4.3 Thermal Properties of

  20. Broadband polarizing beam splitter based on the form birefringence of a subwavelength grating in the quasi-static domain.

    PubMed

    Yi, Deer; Yan, Yingbai; Liu, Haitao; Lu, Si; Jin, Guofan

    2004-04-01

    We propose a novel broadband polarizing beam splitter with a compact sandwich structure that has a subwavelength grating in the quasi-static domain as the filling. The design is based on effective-medium theory an anisotropic thin-film theory, and the performance is investigated with rigorous coupled-wave theory. The design results show that the structure can provide a high polarization extinction ratio in a broad spectral range.

  1. Overview of the 6 Meter HIAD Inflatable Structure and Flexible TPS Static Load Test Series

    NASA Technical Reports Server (NTRS)

    Swanson, Greg; Kazemba, Cole; Johnson, Keith; Calomino, Anthony; Hughes, Steve; Cassell, Alan; Cheatwood, Neil

    2014-01-01

    To support NASAs long term goal of landing humans on Mars, technologies which enable the landing of heavy payloads are being developed. Current entry, decent, and landing technologies are not practical for this class of payloads due to geometric constraints dictated by current launch vehicle fairing limitations. Therefore, past and present technologies are now being explored to provide a mass and volume efficient solution to atmospheric entry, including Hypersonic Inflatable Aerodynamic Decelerators (HIADs). At the beginning of 2014, a 6m HIAD inflatable structure with an integrated flexible thermal protection system (TPS) was subjected to a static load test series to verify the designs structural performance. The 6m HIAD structure was constructed in a stacked toroid configuration using nine inflatable torus segments composed of fiber reinforced thin films, which were joined together using adhesives and high strength textile woven structural straps to help distribute the loads throughout the inflatable structure. The 6m flexible TPS was constructed using multiple layers of high performance materials to protect the inflatable structure from heat loads that would be seen during atmospheric entry. To perform the static load test series, a custom test fixture was constructed. The fixture consisted of a structural tub rim with enough height to allow for displacement of the inflatable structure as loads were applied. The bottom of the tub rim had an airtight seal with the floor. The centerbody of the inflatable structure was attached to a pedestal mount as seen in Figure 1. Using an impermeable membrane seal draped over the test article, partial vacuum was pulled beneath the HIAD, resulting in a uniform static pressure load applied to the outer surface. During the test series an extensive amount of instrumentation was used to provide many data sets including: deformed shape, shoulder deflection, strap loads, cord loads, inflation pressures, and applied static load.In this overview, the 6m HIAD static load test series will be discussed in detail, including the 6m HIAD inflatable structure and flexible TPS design, test setup and execution, and finally initial results and conclusions from the test series.

  2. Non-Static error tracking control for near space airship loading platform

    NASA Astrophysics Data System (ADS)

    Ni, Ming; Tao, Fei; Yang, Jiandong

    2018-01-01

    A control scheme based on internal model with non-static error is presented against the uncertainty of the near space airship loading platform system. The uncertainty in the tracking table is represented as interval variations in stability and control derivatives. By formulating the tracking problem of the uncertainty system as a robust state feedback stabilization problem of an augmented system, sufficient condition for the existence of robust tracking controller is derived in the form of linear matrix inequality (LMI). Finally, simulation results show that the new method not only has better anti-jamming performance, but also improves the dynamic performance of the high-order systems.

  3. Monte-Carlo Geant4 numerical simulation of experiments at 247-MeV proton microscope

    NASA Astrophysics Data System (ADS)

    Kantsyrev, A. V.; Skoblyakov, A. V.; Bogdanov, A. V.; Golubev, A. A.; Shilkin, N. S.; Yuriev, D. S.; Mintsev, V. B.

    2018-01-01

    A radiographic facility for an investigation of fast dynamic processes with areal density of targets up to 5 g/cm2 is under development on the basis of high-current proton linear accelerator at the Institute for Nuclear Research (Troitsk, Russia). A virtual model of the proton microscope developed in a software toolkit Geant4 is presented in the article. Fullscale Monte-Carlo numerical simulation of static radiographic experiments at energy of a proton beam 247 MeV was performed. The results of simulation of proton radiography experiments with static model of shock-compressed xenon are presented. The results of visualization of copper and polymethyl methacrylate step wedges static targets also described.

  4. Level of functional capacities following soccer-specific warm-up methods among elite collegiate soccer players.

    PubMed

    Vazini Taher, Amir; Parnow, Abdolhossein

    2017-05-01

    Different methods of warm-up may have implications in improving various aspects of soccer performance. The present study aimed to investigate acute effects of soccer specific warm-up protocols on functional performance tests. This study using randomized within-subject design, investigated the performance of 22 collegiate elite soccer player following soccer specific warm-ups using dynamic stretching, static stretching, and FIFA 11+ program. Post warm-up examinations consisted: 1) Illinois Agility Test; 2) vertical jump; 3) 30 meter sprint; 4) consecutive turns; 5) flexibility of knee. Vertical jump performance was significantly lower following static stretching, as compared to dynamic stretching (P=0.005). Sprint performance declined significantly following static stretching as compared to FIFA 11+ (P=0.023). Agility time was significantly faster following dynamic stretching as compared to FIFA 11+ (P=0.001) and static stretching (P=0.001). Knee flexibility scores were significantly improved following the static stretching as compared to dynamic stretching (P=016). No significant difference was observed for consecutive turns between three warm-up protocol. The present finding showed that a soccer specific warm-up protocol relied on dynamic stretching is preferable in enhancing performance as compared to protocols relying on static stretches and FIFA 11+ program. Investigators suggest that while different soccer specific warm-up protocols have varied types of effects on performance, acute effects of dynamic stretching on performance in elite soccer players are assured, however application of static stretching in reducing muscle stiffness is demonstrated.

  5. Hyperswitch Network For Hypercube Computer

    NASA Technical Reports Server (NTRS)

    Chow, Edward; Madan, Herbert; Peterson, John

    1989-01-01

    Data-driven dynamic switching enables high speed data transfer. Proposed hyperswitch network based on mixed static and dynamic topologies. Routing header modified in response to congestion or faults encountered as path established. Static topology meets requirement if nodes have switching elements that perform necessary routing header revisions dynamically. Hypercube topology now being implemented with switching element in each computer node aimed at designing very-richly-interconnected multicomputer system. Interconnection network connects great number of small computer nodes, using fixed hypercube topology, characterized by point-to-point links between nodes.

  6. Empirical modeling of Single-Event Upset (SEU) in NMOS depletion-mode-load static RAM (SRAM) chips

    NASA Technical Reports Server (NTRS)

    Zoutendyk, J. A.; Smith, L. S.; Soli, G. A.; Smith, S. L.; Atwood, G. E.

    1986-01-01

    A detailed experimental investigation of single-event upset (SEU) in static RAM (SRAM) chips fabricated using a family of high-performance NMOS (HMOS) depletion-mode-load process technologies, has been done. Empirical SEU models have been developed with the aid of heavy-ion data obtained with a three-stage tandem van de Graaff accelerator. The results of this work demonstrate a method by which SEU may be empirically modeled in NMOS integrated circuits.

  7. Preston Probe Calibrations at High Reynolds Number

    NASA Technical Reports Server (NTRS)

    Smits, Alexander J.

    1998-01-01

    The overall goal of the research effort is to study the performance of two Preston probes designed by NASA Langley Research Center across an unprecedented range of Reynolds number (based on friction velocity and probe diameter), and perform an accurate calibration over the same Reynolds number range. Using the Superpipe facility in Princeton, two rounds of experiments were performed. In each round of experiments for each Reynolds number, the pressure gradient, static pressure from the Preston probes and the total pressure from the Preston probes were measured. In the first round, 3 Preston probes having outer diameters of 0.058 inches, 0.083 inches and 0.203 inches were tested over a large range of pipe Reynolds numbers. Two data reduction methods were employed: first, the static pressure measured on the Preston probe was used to calculate P (modified Preston probe configuration), and secondly, the static pressure measured at the reference pressure tap was used to calculate P (un-modified Preston probe configuration). For both methods, the static pressure was adjusted to correspond with the static pressure at the Preston probe tip using the pressure gradient. The measurements for Preston probes with diameters of 0.058 inches, and 0.083 inches respectively were performed in the test pipe before it was polished a second time. Therefore, the measurements at high pipe Reynolds numbers may have been affected by roughness. In the second round of experiments the 0.058 inches and 0.083 inches diameter, un-modified probes were tested after the pipe was polished and prepared to ensure that the surface was smooth. The average velocity was estimated by assuming that the connection between the centerline velocity and the average velocity was known, and by using a Pitot tube to measure the centerline velocity. A preliminary error estimate suggests that it is possible to introduce a 1% to 2% error in estimating the average velocity using this approach. The evidence on the errors attending the second data set is somewhat circumstantial, and the measurements have not been repeated using a better approach, it seems probable that the correlation given applies to un-modified Preston probes over the range 6.4 less than x* less than 11.3.

  8. An improved EMD method for modal identification and a combined static-dynamic method for damage detection

    NASA Astrophysics Data System (ADS)

    Yang, Jinping; Li, Peizhen; Yang, Youfa; Xu, Dian

    2018-04-01

    Empirical mode decomposition (EMD) is a highly adaptable signal processing method. However, the EMD approach has certain drawbacks, including distortions from end effects and mode mixing. In the present study, these two problems are addressed using an end extension method based on the support vector regression machine (SVRM) and a modal decomposition method based on the characteristics of the Hilbert transform. The algorithm includes two steps: using the SVRM, the time series data are extended at both endpoints to reduce the end effects, and then, a modified EMD method using the characteristics of the Hilbert transform is performed on the resulting signal to reduce mode mixing. A new combined static-dynamic method for identifying structural damage is presented. This method combines the static and dynamic information in an equilibrium equation that can be solved using the Moore-Penrose generalized matrix inverse. The combination method uses the differences in displacements of the structure with and without damage and variations in the modal force vector. Tests on a four-story, steel-frame structure were conducted to obtain static and dynamic responses of the structure. The modal parameters are identified using data from the dynamic tests and improved EMD method. The new method is shown to be more accurate and effective than the traditional EMD method. Through tests with a shear-type test frame, the higher performance of the proposed static-dynamic damage detection approach, which can detect both single and multiple damage locations and the degree of the damage, is demonstrated. For structures with multiple damage, the combined approach is more effective than either the static or dynamic method. The proposed EMD method and static-dynamic damage detection method offer improved modal identification and damage detection, respectively, in structures.

  9. Evaluation of the in-flight noise signature of a 32-chute suppressor nozzle: Acoustic data report. [outdoor static and 40 x 80 ft. wind tunnel tests

    NASA Technical Reports Server (NTRS)

    Moore, M. T.; Doyle, V. L.

    1977-01-01

    Outdoor static and 40 x 80 FT wind tunnel tests of the J79-15 engine/nacelle system with the conic nozzle and 32-chute exhaust suppressor were conducted to acquire the data necessary to evaluate the simulated in-flight signature of an engine-size 32-chute exhaust nozzle suppressor using the 40 x 80 ft wind tunnel and to study possible engine core noise contamination of the jet signature. The tests are described and and a sampling of the data acquired is presented. Included are aero performance summaries, as-measured and composite 1/3 OBSPL spectra for the 70 ft sideline high and low mics from the outdoor static tests, sideline traverse spectra and internal noise measurements from both the outdoor static and the 40 x 80 ft wind tunnel tests.

  10. Rapid kinematic finite source inversion for Tsunamic Early Warning using high rate GNSS data

    NASA Astrophysics Data System (ADS)

    Chen, K.; Liu, Z.; Song, Y. T.

    2017-12-01

    Recently, Global Navigation Satellite System (GNSS) has been used for rapid earthquake source inversion towards tsunami early warning. In practice, two approaches, i.e., static finite source inversion based on permanent co-seismic offsets and kinematic finite source inversion using high-rate (>= 1 Hz) co-seismic displacement waveforms, are often employed to fulfill the task. The static inversion is relatively easy to be implemented and does not require additional constraints on rupture velocity, duration, and temporal variation. However, since most GNSS receivers are deployed onshore locating on one side of the subduction fault, there is very limited resolution on near-trench fault slip using GNSS in static finite source inversion. On the other hand, the high-rate GNSS displacement waveforms, which contain the timing information of earthquake rupture explicitly and static offsets implicitly, have the potential to improve near-trench resolution by reconciling with the depth-dependent megathrust rupture behaviors. In this contribution, we assess the performance of rapid kinematic finite source inversion using high-rate GNSS by three selected historical tsunamigenic cases: the 2010 Mentawai, 2011 Tohoku and 2015 Illapel events. With respect to the 2010 Mentawai case, it is a typical tsunami earthquake with most slip concentrating near the trench. The static inversion has little resolution there and incorrectly puts slip at greater depth (>10km). In contrast, the recorded GNSS displacement waveforms are deficit in high-frequency energy, the kinematic source inversion recovers a shallow slip patch (depth less than 6 km) and tsunami runups are predicted quite reasonably. For the other two events, slip from kinematic and static inversion show similar characteristics and comparable tsunami scenarios, which may be related to dense GNSS network and behavior of the rupture. Acknowledging the complexity of kinematic source inversion in real-time, we adopt the back-projection approach to provide constraint on rupture velocity.

  11. Static and dynamic strain energy release rates in toughened thermosetting composite laminates

    NASA Technical Reports Server (NTRS)

    Cairns, Douglas S.

    1992-01-01

    In this work, the static and dynamic fracture properties of several thermosetting resin based composite laminates are presented. Two classes of materials are explored. These are homogeneous, thermosetting resins and toughened, multi-phase, thermosetting resin systems. Multi-phase resin materials have shown enhancement over homogenous materials with respect to damage resistance. The development of new dynamic tests are presented for composite laminates based on Width Tapered Double Cantilevered Beam (WTDCB) for Mode 1 fracture and the End Notched Flexure (ENF) specimen. The WTDCB sample was loaded via a low inertia, pneumatic cylinder to produce rapid cross-head displacements. A high rate, piezo-electric load cell and an accelerometer were mounted on the specimen. A digital oscilloscope was used for data acquisition. Typical static and dynamic load versus displacement plots are presented. The ENF specimen was impacted in three point bending with an instrumented impact tower. Fracture initiation and propagation energies under static and dynamic conditions were determined analytically and experimentally. The test results for Mode 1 fracture are relatively insensitive to strain rate effects for the laminates tested in this study. The test results from Mode 2 fracture indicate that the toughened systems provide superior fracture initiation and higher resistance to propagation under dynamic conditions. While the static fracture properties of the homogeneous systems may be relatively high, the apparent Mode 2 dynamic critical strain energy release rate drops significantly. The results indicate that static Mode 2 fracture testing is inadequate for determining the fracture performance of composite structures subjected to conditions such as low velocity impact. A good correlation between the basic Mode 2 dynamic fracture properties and the performance is a combined material/structural Compression After Impact (CAI) test is found. These results underscore the importance of examining rate-dependent behavior for determining the longevity of structures manufactured from composite materials.

  12. Performance tradeoffs in static and dynamic load balancing strategies

    NASA Technical Reports Server (NTRS)

    Iqbal, M. A.; Saltz, J. H.; Bokhart, S. H.

    1986-01-01

    The problem of uniformly distributing the load of a parallel program over a multiprocessor system was considered. A program was analyzed whose structure permits the computation of the optimal static solution. Then four strategies for load balancing were described and their performance compared. The strategies are: (1) the optimal static assignment algorithm which is guaranteed to yield the best static solution, (2) the static binary dissection method which is very fast but sub-optimal, (3) the greedy algorithm, a static fully polynomial time approximation scheme, which estimates the optimal solution to arbitrary accuracy, and (4) the predictive dynamic load balancing heuristic which uses information on the precedence relationships within the program and outperforms any of the static methods. It is also shown that the overhead incurred by the dynamic heuristic is reduced considerably if it is started off with a static assignment provided by either of the other three strategies.

  13. Magneto-induced large deformation and high-damping performance of a magnetorheological plastomer

    NASA Astrophysics Data System (ADS)

    Liu, Taixiang; Gong, Xinglong; Xu, Yangguang; Pang, Haoming; Xuan, Shouhu

    2014-10-01

    A magnetorheological plastomer (MRP) is a new kind of soft magneto-sensitive polymeric composite. This work reports on the large magneto-deforming effect and high magneto-damping performance of MRPs under a quasi-statical shearing condition. We demonstrate that an MRP possesses a magnetically sensitive malleability, and its magneto-mechanical behavior can be analytically described by the magneto-enhanced Bingham fluid-like model. The magneto-induced axial stress, which drives the deformation of the MRP with 70 wt % carbonyl iron powder, can be tuned in a large range from nearly 0.0 kPa to 55.4 kPa by an external 662.6 kA m-1 magnetic field. The damping performance of an MRP has a significant correlation with the magnetic strength, shear rate, carbonyl iron content and shear strain amplitude. For an MRP with 60 wt % carbonyl iron powder, the relative magneto-enhanced damping effect can reach as high as 716.2% under a quasi-statically shearing condition. Furthermore, the related physical mechanism is proposed, and we reveal that the magneto-induced, particle-assembled microstructure directs the magneto-mechanical behavior of the MRP.

  14. Static adsorptive coating of poly(methyl methacrylate) microfluidic chips for extended usage in DNA separations.

    PubMed

    Du, Xiao-Guang; Fang, Zhao-Lun

    2005-12-01

    A simple and robust static adsorptive (dynamic) coating process using 2% hydroxyethylcellulose was developed for surface modification of poly(methyl methacrylate) (PMMA) microfluidic chips for DNA separations, suitable for usage over extended periods, involving hundreds of runs. The coating medium was also used as a sieving matrix for the DNA separations following the coating process. Four consecutive static treatments, by simply filling the PMMA chip channels with sieving matrix once every day, were required for obtaining a stable coating and optimum performance. The performance of the coated chips at different phases of the coating process was studied by consecutive gel electrophoretic separations with LIF detection using a PhiX-174/HaeIII DNA digest sample. The coated chip, with daily renewal of the sieving matrix, showed high stability in performance during a 25-day period of systematic study, involving more than 100 individual runs. The performance of the coated chip also remained almost the same after 3 months of continuous usage, during which over 200 separations were performed. The average precision of migration time for the 603-bp fragment was 1.31% RSD (n = 6) during the 25-day study, with a separation efficiency of 6.5 x 10(4) plates (effective separation length 5.4 cm).

  15. Development of High Fidelity, Fuel-Like Thermal Simulators for Non-Nuclear Testing

    NASA Technical Reports Server (NTRS)

    Bragg-Sitton, S. M.; Farmer, J.; Dixon, D.; Kapernick, R.; Dickens, R.; Adams, M.

    2007-01-01

    Non-nuclear testing can be a valuable tool in development of a space nuclear power or propulsion system. In a non-nuclear test bed, electric heaters are used to simulate the heat from nuclear fuel. Work at the NASA Marshall Space Flight Center seeks to develop high fidelity thermal simulators that not only match the static power profile that would be observed in an operating, fueled nuclear reactor, but to also match the dynamic fuel pin performance during feasible transients. Comparison between the fuel pins and thermal simulators is made at the fuel clad surface, which corresponds to the sheath surface in the thermal simulator. Static and dynamic fuel pin performance was determined using SINDA-FLUINT analysis, and the performance of conceptual thermal simulator designs was compared to the expected nuclear performance. Through a series of iterative analysis, a conceptual high fidelity design will be developed, followed by engineering design, fabrication, and testing to validate the overall design process. Although the resulting thermal simulator will be designed for a specific reactor concept, establishing this rigorous design process will assist in streamlining the thermal simulator development for other reactor concepts.

  16. Magnetoacoustic tomography with magnetic induction for high-resolution bioimepedance imaging through vector source reconstruction under the static field of MRI magnet

    PubMed Central

    Mariappan, Leo; Hu, Gang; He, Bin

    2014-01-01

    Purpose: Magnetoacoustic tomography with magnetic induction (MAT-MI) is an imaging modality to reconstruct the electrical conductivity of biological tissue based on the acoustic measurements of Lorentz force induced tissue vibration. This study presents the feasibility of the authors' new MAT-MI system and vector source imaging algorithm to perform a complete reconstruction of the conductivity distribution of real biological tissues with ultrasound spatial resolution. Methods: In the present study, using ultrasound beamformation, imaging point spread functions are designed to reconstruct the induced vector source in the object which is used to estimate the object conductivity distribution. Both numerical studies and phantom experiments are performed to demonstrate the merits of the proposed method. Also, through the numerical simulations, the full width half maximum of the imaging point spread function is calculated to estimate of the spatial resolution. The tissue phantom experiments are performed with a MAT-MI imaging system in the static field of a 9.4 T magnetic resonance imaging magnet. Results: The image reconstruction through vector beamformation in the numerical and experimental studies gives a reliable estimate of the conductivity distribution in the object with a ∼1.5 mm spatial resolution corresponding to the imaging system frequency of 500 kHz ultrasound. In addition, the experiment results suggest that MAT-MI under high static magnetic field environment is able to reconstruct images of tissue-mimicking gel phantoms and real tissue samples with reliable conductivity contrast. Conclusions: The results demonstrate that MAT-MI is able to image the electrical conductivity properties of biological tissues with better than 2 mm spatial resolution at 500 kHz, and the imaging with MAT-MI under a high static magnetic field environment is able to provide improved imaging contrast for biological tissue conductivity reconstruction. PMID:24506649

  17. A new rational-based optimal design strategy of ship structure based on multi-level analysis and super-element modeling method

    NASA Astrophysics Data System (ADS)

    Sun, Li; Wang, Deyu

    2011-09-01

    A new multi-level analysis method of introducing the super-element modeling method, derived from the multi-level analysis method first proposed by O. F. Hughes, has been proposed in this paper to solve the problem of high time cost in adopting a rational-based optimal design method for ship structural design. Furthermore, the method was verified by its effective application in optimization of the mid-ship section of a container ship. A full 3-D FEM model of a ship, suffering static and quasi-static loads, was used as the analyzing object for evaluating the structural performance of the mid-ship module, including static strength and buckling performance. Research results reveal that this new method could substantially reduce the computational cost of the rational-based optimization problem without decreasing its accuracy, which increases the feasibility and economic efficiency of using a rational-based optimal design method in ship structural design.

  18. Emotion recognition in Parkinson's disease: Static and dynamic factors.

    PubMed

    Wasser, Cory I; Evans, Felicity; Kempnich, Clare; Glikmann-Johnston, Yifat; Andrews, Sophie C; Thyagarajan, Dominic; Stout, Julie C

    2018-02-01

    The authors tested the hypothesis that Parkinson's disease (PD) participants would perform better in an emotion recognition task with dynamic (video) stimuli compared to a task using only static (photograph) stimuli and compared performances on both tasks to healthy control participants. In a within-subjects study, 21 PD participants and 20 age-matched healthy controls performed both static and dynamic emotion recognition tasks. The authors used a 2-way analysis of variance (controlling for individual participant variance) to determine the effect of group (PD, control) on emotion recognition performance in static and dynamic facial recognition tasks. Groups did not significantly differ in their performances on the static and dynamic tasks; however, the trend was suggestive that PD participants performed worse than controls. PD participants may have subtle emotion recognition deficits that are not ameliorated by the addition of contextual cues, similar to those found in everyday scenarios. Consistent with previous literature, the results suggest that PD participants may have underlying emotion recognition deficits, which may impact their social functioning. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  19. MCT/MOSFET Switch

    NASA Technical Reports Server (NTRS)

    Rippel, Wally E.

    1990-01-01

    Metal-oxide/semiconductor-controlled thyristor (MCT) and metal-oxide/semiconductor field-effect transistor (MOSFET) connected in switching circuit to obtain better performance. Offers high utilization of silicon, low forward voltage drop during "on" period of operating cycle, fast turnon and turnoff, and large turnoff safe operating area. Includes ability to operate at high temperatures, high static blocking voltage, and ease of drive.

  20. Analysis of static and dynamic characteristic of spindle system and its structure optimization in camshaft grinding machine

    NASA Astrophysics Data System (ADS)

    Feng, Jianjun; Li, Chengzhe; Wu, Zhi

    2017-08-01

    As an important part of the valve opening and closing controller in engine, camshaft has high machining accuracy requirement in designing. Taking the high-speed camshaft grinder spindle system as the research object and the spindle system performance as the optimizing target, this paper firstly uses Solidworks to establish the three-dimensional finite element model (FEM) of spindle system, then conducts static analysis and the modal analysis by applying the established FEM in ANSYS Workbench, and finally uses the design optimization function of the ANSYS Workbench to optimize the structure parameter in the spindle system. The study results prove that the design of the spindle system fully meets the production requirements, and the performance of the optimized spindle system is promoted. Besides, this paper provides an analysis and optimization method for other grinder spindle systems.

  1. An abstract class loader for the SSP and its implementation in TL.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wickstrom, Gregory Lloyd; Winter, Victor Lono; Fraij, Fares

    2004-08-01

    The SSP is a hardware implementation of a subset of the JVM for use in high consequence embedded applications. In this context, a majority of the activities belonging to class loading, as it is defined in the specification of the JVM, can be performed statically. Static class loading has the net result of dramatically simplifying the design of the SSP as well as increasing its performance. Due to the high consequence nature of its applications, strong evidence must be provided that all aspects of the SSP have been implemented correctly. This includes the class loader. This article explores the possibilitymore » of formally verifying a class loader for the SSP implemented in the strategic programming language TL. Specifically, an implementation of the core activities of an abstract class loader is presented and its verification in ACL2 is considered.« less

  2. Measurements of millimeter wave radar transmission and backscatter during dusty infrared test 2, dirt 2

    NASA Astrophysics Data System (ADS)

    Petito, F. C.; Wentworth, E. W.

    1980-05-01

    Recently there has been much interest expressed to determine the ability of millimeter wave radar to perform target acquisition during degraded visibility conditions. In this regard, one of the primary issues of concern has been the potential of high-explosive artillery barrages to obscure the battlefield from millimeter wave radar systems. To address this issue 95 GHz millimeter wave radar measurements were conducted during the Dusty Infrared Test 2 (DIRT 2). This test was held at White Sands Missile Range, NM, 18-28 July 1979. Millimeter wave transmission and backscatter measurements were performed during singular live firings and static detonations of 155 mm and 105 mm high-explosive artillery rounds in addition to static detonations of C-4 explosives. A brief description of the millimeter wave portion of the test and instrumentation is given. The data along with some preliminary conclusions are presented.

  3. Magnetizing technique for permanent magnets by intense static fields generated by HTS bulk magnets: Numerical Analysis

    NASA Astrophysics Data System (ADS)

    N. Kawasaki; Oka, T.; Fukui, S.; Ogawa, J.; Sato, T.; Terasawa, T.; Itoh, Y.

    A demagnetized Nd-Fe-B permanent magnet was scanned in the strong magnetic field space just above the magnetic pole containing a HTS bulk magnet which generates the magnetic field 3.4 T. The magnet sample was subsequently found to be fully magnetized in the open space of the static magnetic fields. The finite element method was carried out for the static field magnetization of a permanent magnet using a HTS bulk magnet. Previously, our research group experimentally demonstrated the possibility of full magnetization of rare earth permanent magnets with high-performance magnetic properties with use of the static field of HTS bulk magnets. In the present study, however, we succeeded for the first time in visualizing the behavior of the magnetizing field of the bulk magnet during the magnetization process and the shape of the magnetic field inside the body being magnetized. By applying this kind of numerical analysis to the magnetization for planned motor rotors which incorporate rare-earth permanent magnets, we hope to study the fully magnetized regions for the new magnetizing method using bulk magnets and to give motor designing a high degree of freedom.

  4. High-Subsonic Performance Characteristics and Boundary-Layer Investigations of a 12 deg 10-Inch-Inlet-Diameter Conical Diffuser

    DTIC Science & Technology

    1950-05-11

    available condition supersonic flow was obtained as far as K.5 inches downstream from the diffueer inlet with a maximum Mach number of M % 1.5...Boundary—layer total-pressure measurements were made with the rake shown in figure k. The tubes varied in size from 0.030-Inch outside diameter...at the wall to 0.050—inch outside diameter farther out. A static-pressure tube was mounted on the rake to measure static pressures at the same

  5. Design and fabrication of composite wing panels containing a production splice

    NASA Technical Reports Server (NTRS)

    Reed, D. L.

    1975-01-01

    Bolted specimens representative of both upper and lower wing surface splices of a transport aircraft were designed and manufactured for static and random load tension and compression fatigue testing including ground-air-ground load reversals. The specimens were fabricated with graphite-epoxy composite material. Multiple tests were conducted at various load levels and the results were used as input to a statistical wearout model. The statically designed specimens performed very well under highly magnified fatigue loadings. Two large panels, one tension and compression, were fabricated for testing by NASA-LRC.

  6. Finite element analyses of continuous filament ties for masonry applications : final report for the Arquin Corporation.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quinones, Armando, Sr.; Bibeau, Tiffany A.; Ho, Clifford Kuofei

    2008-08-01

    Finite-element analyses were performed to simulate the response of a hypothetical vertical masonry wall subject to different lateral loads with and without continuous horizontal filament ties laid between rows of concrete blocks. A static loading analysis and cost comparison were also performed to evaluate optimal materials and designs for the spacers affixed to the filaments. Results showed that polypropylene, ABS, and polyethylene (high density) were suitable materials for the spacers based on performance and cost, and the short T-spacer design was optimal based on its performance and functionality. Simulations of vertical walls subject to static loads representing 100 mph windsmore » (0.2 psi) and a seismic event (0.66 psi) showed that the simulated walls performed similarly and adequately when subject to these loads with and without the ties. Additional simulations and tests are required to assess the performance of actual walls with and without the ties under greater loads and more realistic conditions (e.g., cracks, non-linear response).« less

  7. PSP Measurement of Stator Vane Surface Pressures in a High Speed Fan

    NASA Technical Reports Server (NTRS)

    Lepicovsky, Jan

    1998-01-01

    This paper presents measurements of static pressures on the stator vane suction side of a high-speed single stage fan using the technique of pressure sensitive paint (PSP). The paper illustrates development in application of the relatively new experimental technique to the complex environment of internal flows in turbomachines. First, there is a short explanation of the physics of the PSP technique and a discussion of calibration methods for pressure sensitive paint in the turbomachinery environment. A description of the image conversion process follows. The recorded image of the stator vane pressure field is skewed due to the limited optical access and must be converted to the meridional plane projection for comparison with analytical predictions. The experimental results for seven operating conditions along an off-design rotational speed line are shown in a concise form, including performance map points, mindspan static tap pressure distributions, and vane suction side pressure fields. Then, a comparison between static tap and pressure sensitive paint data is discussed. Finally, the paper lists shortcomings of the pressure sensitive paint technology and lessons learned in this high-speed fan application.

  8. Constrained posture in dentistry - a kinematic analysis of dentists.

    PubMed

    Ohlendorf, Daniela; Erbe, Christina; Nowak, Jennifer; Hauck, Imke; Hermanns, Ingo; Ditchen, Dirk; Ellegast, Rolf; Groneberg, David A

    2017-07-05

    How a dentist works, such as the patterns of movements performed daily, is also largely affected by the workstation Dental tasks are often executed in awkward body positions, thereby causing a very high degree of strain on the corresponding muscles. The objective of this study is to detect those dental tasks, during which awkward postures occur most frequently. The isolated analysis of static postures will examine the duration for which these postures are maintained during the corresponding dental, respectively non-dental, activities. 21 (11f/10 m) dentists (age: 40.1 ± 10.4 years) participated in this study. An average dental workday was collected for every subject. To collect kinematic data of all activities, the CUELA system was used. Parallel to the kinematic examination, a detailed computer-based task analysis was conducted. Afterwards, both data sets were synchronized based on the chronological order of the postures assumed in the trunk and the head region. All tasks performed were assigned to the categories "treatment" (I), "office" (II) and "other activities" (III). The angle values of each body region (evaluation parameter) were examined and assessed corresponding to ergonomic standards. Moreover, this study placed a particular focus on static positions, which are held statically for 4 s and longer. For "treatment" (I), the entire head and trunk area is anteriorly tilted while the back is twisted to the right, in (II) and (III) the back is anteriorly tilted and twisted to the right (non-neutral position). Static positions in (I) last for 4-10s, static postures (approx. 60%) can be observed while in (II) and (III) in the back area static positions for more than 30 s are most common. Moreover, in (II) the back is twisted to the right for more than 60 s in 26.8%. Awkward positions are a major part of a dentists' work. This mainly pertains to static positions of the trunk and head in contrast to "office work." These insights facilitate the quantitative description of the dentist profession with regard to the related physical load along with the health hazards to the musculoskeletal system. Moreover, the results allow for a selective extraction of the most unfavorable static body positions that dentists assume for each of the activities performed.

  9. Silicon Carbide Diodes Performance Characterization at High Temperatures

    NASA Technical Reports Server (NTRS)

    Lebron-Velilla, Ramon C.; Schwarze, Gene E.; Gardner, Brent G.; Adams, Jerry

    2004-01-01

    NASA Glenn Research center's Electrical Systems Development branch is working to demonstrate and test the advantages of Silicon Carbide (SiC) devices in actual power electronics applications. The first step in this pursuit is to obtain commercially available SiC Schottky diodes and to individually test them under both static and dynamic conditions, and then compare them with current state of the art silicon Schottky and ultra fast p-n diodes of similar voltage and current ratings. This presentation covers the results of electrical tests performed at NASA Glenn. Steady state forward and reverse current-volt (I-V) curves were generated for each device to compare performance and to measure their forward voltage drop at rated current, as well as the reverse leakage current at rated voltage. In addition, the devices were individually connected as freewheeling diodes in a Buck (step down) DC to DC converter to test their reverse recovery characteristics and compare their transient performance in a typical converter application. Both static and transient characterization tests were performed at temperatures ranging from 25 C to 300 C, in order to test and demonstrate the advantages of SiC over Silicon at high temperatures.

  10. Alterations in Body Fluid Balance During Fin Swimming in 29 °C Water in a Population of Special Forces Divers.

    PubMed

    Castagna, O; Desruelle, A V; Blatteau, J E; Schmid, B; Dumoulin, G; Regnard, J

    2015-12-01

    Highly trained "combat swimmers" encounter physiological difficulties when performing missions in warm water. The aim of this study was to assess the respective roles of immersion and physical activity in perturbing fluid balance of military divers on duty in warm water. 12 trained divers performed 2 dives each (2 h, 3 m depth) in fresh water at 29 °C. Divers either remained Static or swam continuously (Fin) during the dive. In the Fin condition, oxygen consumption and heart rate were 2-fold greater than during the Static dive. Core and skin temperatures were also higher (Fin: 38.5±0.4 °C and 36.2±0.3 °C and Static: 37.2±0.3 °C and 34.3±0.3 °C; respectively p=0.0002 and p=0.0003). During the Fin dive, the average mass loss was 989 g (39% urine loss, 41% sweating and 20% insensible water loss and blood sampling); Static divers lost 720 g (84% urine loss, 2% sweating and 14% insensible water loss and blood sampling) (p=0.003). In the Fin condition, a greater decrease in total body mass and greater sweating occurred, without effects on circulating renin and aldosterone concentrations; diuresis was reduced, and plasma volume decreased more than in the Static condition. © Georg Thieme Verlag KG Stuttgart · New York.

  11. A comparison of the calculated and experimental off-design performance of a radial flow turbine

    NASA Technical Reports Server (NTRS)

    Tirres, Lizet

    1992-01-01

    Off design aerodynamic performance of the solid version of a cooled radial inflow turbine is analyzed. Rotor surface static pressure data and other performance parameters were obtained experimentally. Overall stage performance and turbine blade surface static to inlet total pressure ratios were calculated by using a quasi-three dimensional inviscid code. The off design prediction capability of this code for radial inflow turbines shows accurate static pressure prediction. Solutions show a difference of 3 to 5 points between the experimentally obtained efficiencies and the calculated values.

  12. A comparison of the calculated and experimental off-design performance of a radial flow turbine

    NASA Technical Reports Server (NTRS)

    Tirres, Lizet

    1991-01-01

    Off design aerodynamic performance of the solid version of a cooled radial inflow turbine is analyzed. Rotor surface static pressure data and other performance parameters were obtained experimentally. Overall stage performance and turbine blade surface static to inlet total pressure ratios were calculated by using a quasi-three dimensional inviscid code. The off design prediction capability of this code for radial inflow turbines shows accurate static pressure prediction. Solutions show a difference of 3 to 5 points between the experimentally obtained efficiencies and the calculated values.

  13. a Virtual Trip to the Schwarzschild-De Sitter Black Hole

    NASA Astrophysics Data System (ADS)

    Bakala, Pavel; Hledík, Stanislav; Stuchlík, Zdenĕk; Truparová, Kamila; Čermák, Petr

    2008-09-01

    We developed realistic fully general relativistic computer code for simulation of optical projection in a strong, spherically symmetric gravitational field. Standard theoretical analysis of optical projection for an observer in the vicinity of a Schwarzschild black hole is extended to black hole spacetimes with a repulsive cosmological constant, i.e, Schwarzschild-de Sitter (SdS) spacetimes. Influence of the cosmological constant is investigated for static observers and observers radially free-falling from static radius. Simulation includes effects of gravitational lensing, multiple images, Doppler and gravitational frequency shift, as well as the amplification of intensity. The code generates images of static observers sky and a movie simulations for radially free-falling observers. Techniques of parallel programming are applied to get high performance and fast run of the simulation code.

  14. Effect of structural factors on mechanical properties of the magnesium alloy Ma2-1 under quasi-static and high strain rate deformation conditions

    NASA Astrophysics Data System (ADS)

    Garkushin, G. V.; Razorenov, S. V.; Krasnoveikin, V. A.; Kozulin, A. A.; Skripnyak, V. A.

    2015-02-01

    The elastic limit and tensile strength of deformed magnesium alloys Ma2-1 with different structures and textures were measured with the aim of finding a correlation between the spectrum of defects in the material and the resistance to deformation and fracture under quasi-static and dynamic loading conditions. The studies were performed using specimens in the as-received state after high-temperature annealing and specimens subjected to equal-channel angular pressing at a temperature of 250°C. The anisotropy of strength characteristics of the material after shock compression with respect to the direction of rolling of the original alloy was investigated. It was shown that, in contrast to the quasi-static loading conditions, under the shock wave loading conditions, the elastic limit and tensile strength of the magnesium alloy Ma2-1 after equal-channel angular pressing decrease as compared to the specimens in the as-received state.

  15. Phase-based, high spatial resolution and distributed, static and dynamic strain sensing using Brillouin dynamic gratings in optical fibers.

    PubMed

    Bergman, Arik; Langer, Tomi; Tur, Moshe

    2017-03-06

    A novel technique combining Brillouin phase-shift measurements with Brillouin dynamic gratings (BDGs) reflectometry in polarization-maintaining fibers is presented here for the first time. While a direct measurement of the optical phase in standard BDG setups is impractical due to non-local phase contributions, their detrimental effect is reduced by ~4 orders of magnitude through the coherent addition of Stokes and anti-Stokes reflections from two counter-propagating BDGs in the fiber. The technique advantageously combines the high-spatial-resolution of BDGs reflectometry with the increased tolerance to optical power fluctuations of phasorial measurements, to enhance the performance of fiber-optic strain sensors. We demonstrate a distributed measurement (20cm spatial-resolution) of both static and dynamic (5kHz of vibrations at a sampling rate of 1MHz) strain fields acting on the fiber, in good agreement with theory and (for the static case) with the results of commercial reflectometers.

  16. A static investigation of the thrust vectoring system of the F/A-18 high-alpha research vehicle

    NASA Technical Reports Server (NTRS)

    Mason, Mary L.; Capone, Francis J.; Asbury, Scott C.

    1992-01-01

    A static (wind-off) test was conducted in the static test facility of the Langley 16-foot Transonic Tunnel to evaluate the vectoring capability and isolated nozzle performance of the proposed thrust vectoring system of the F/A-18 high alpha research vehicle (HARV). The thrust vectoring system consisted of three asymmetrically spaced vanes installed externally on a single test nozzle. Two nozzle configurations were tested: A maximum afterburner-power nozzle and a military-power nozzle. Vane size and vane actuation geometry were investigated, and an extensive matrix of vane deflection angles was tested. The nozzle pressure ratios ranged from two to six. The results indicate that the three vane system can successfully generate multiaxis (pitch and yaw) thrust vectoring. However, large resultant vector angles incurred large thrust losses. Resultant vector angles were always lower than the vane deflection angles. The maximum thrust vectoring angles achieved for the military-power nozzle were larger than the angles achieved for the maximum afterburner-power nozzle.

  17. Numerical analyses of a rocket engine turbine and comparison with air test data

    NASA Technical Reports Server (NTRS)

    Tran, Ken; Chan, Daniel C.; Hudson, Susan T.; Gaddis, Stephen W.

    1992-01-01

    The study presents cold air test data on the Space Shuttle Main Engine High Pressure Fuel Turbopump turbine recently collected at the NASA Marshall Space Flight Center. Overall performance data, static pressures on the first- and second-stage nozzles, and static pressures along with the gas path at the hub and tip are gathered and compared with various (1D, quasi-3D, and 3D viscous) analysis procedures. The results of each level of analysis are compared to test data to demonstrate the range of applicability for each step in the design process of a turbine. One-dimensional performance prediction, quasi-3D loading prediction, 3D wall pressure distribution prediction, and 3D viscous wall pressure distribution prediction are illustrated.

  18. Static, Dynamic, and Fatigue Analysis of the Mechanical System of Ultrasonic Scanner for Inservice Inspection of Research Reactors

    NASA Astrophysics Data System (ADS)

    Awwaluddin, Muhammad; Kristedjo, K.; Handono, Khairul; Ahmad, H.

    2018-02-01

    This analysis is conducted to determine the effects of static and dynamic loads of the structure of mechanical system of Ultrasonic Scanner i.e., arm, column, and connection systems for inservice inspection of research reactors. The analysis is performed using the finite element method with 520 N static load. The correction factor of dynamic loads used is the Gerber mean stress correction (stress life). The results of the analysis show that the value of maximum equivalent von Mises stress is 1.3698E8 Pa for static loading and value of the maximum equivalent alternating stress is 1.4758E7 Pa for dynamic loading. These values are below the upper limit allowed according to ASTM A240 standards i.e. 2.05E8 Pa. The result analysis of fatigue life cycle are at least 1E6 cycle, so it can be concluded that the structure is in the high life cycle category.

  19. Technical Evaluation Motor No. 10 (TEM-10)

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Technical Evaluation Motor No. 10 (TEM-10) was static fired on 27 Apr. 1993 at the Thiokol Corporation full-scale motor static test bay, T-24. This final test report documents the procedures, performance, and results of the static test firing of TEM-10. All observations, discussions, conclusions, and recommendations contained are final. Included is a presentation and discussion of TEM-10 performance, anomalies, and test results in concurrence with the objectives outlined in CTP-0110, Revision D, Space Shuttle Technical Evaluation Motor No. 10 (TEM-10) Static Fire Test Plan.

  20. Adaptive function allocation reduces performance costs of static automation

    NASA Technical Reports Server (NTRS)

    Parasuraman, Raja; Mouloua, Mustapha; Molloy, Robert; Hilburn, Brian

    1993-01-01

    Adaptive automation offers the option of flexible function allocation between the pilot and on-board computer systems. One of the important claims for the superiority of adaptive over static automation is that such systems do not suffer from some of the drawbacks associated with conventional function allocation. Several experiments designed to test this claim are reported in this article. The efficacy of adaptive function allocation was examined using a laboratory flight-simulation task involving multiple functions of tracking, fuel-management, and systems monitoring. The results show that monitoring inefficiency represents one of the performance costs of static automation. Adaptive function allocation can reduce the performance cost associated with long-term static automation.

  1. High strain FBG sensors for structural fatigue testing of military aircraft

    NASA Astrophysics Data System (ADS)

    Tejedor, S.; Kopczyk, J.; Nuyens, T.; Davis, C.

    2012-02-01

    This paper reports on a series of tests investigating the performance of Draw Tower Gratings (DTGs) combined with custom-designed broad area packaging and bonding techniques for high-strain sensing applications on Defence platforms. The sensors and packaging were subjected to a series of high-strain static and cyclic loading tests and a summary of these results is presented.

  2. A planar shock isolation system with high-static-low-dynamic-stiffness characteristic based on cables

    NASA Astrophysics Data System (ADS)

    Ma, Yanhui; He, Minghua; Shen, Wenhou; Ren, Gexue

    2015-12-01

    In this paper, a simple and designable shock isolation system with ideal high-static-low-dynamic-stiffness (HSLDS) is proposed, which is intended for the horizontal plane shock isolation application. In this system, the isolated object is suspended by several bearing cables and constrained by a number of uniformly distributed pretensioned cables in the horizontal plane, where the low dynamic stiffness of the system is main controlled by the pretension of the planar cables, whilst the high static stiffness is determined by the axial stiffness of the planar cables and their geometric settings. To obtain the HSLDS characteristic of the system, a brief theoretical description of the relationship between the restoring force and displacement is derived. By obtaining the three-order Taylor expansion with sufficient accuracy of the restoring force, influence of planar cable parameters on the low dynamic and high static stiffness is thus given, therefore, the required HSLDS isolator can be easily designed by adjusting the planar cable length, pretension and tensile stiffness. Finally, the isotropy characteristic of the restoring force of the system with different numbers of planar cables is investigated. To evaluate the performance of the system, a rigid isolated object and flexible cables coupling simulation model considering the contacts of the system is established by using multibody dynamics approach. In this model, flexible cables are simulated by 3-node cable element based on the absolute nodal coordinate formulation; the contact between cable and isolated object is simulated based on Hertz contact theory. Finally, the time-domain shock excitation is converted from the design shock spectrum on the basis of BV043/85 criterion. The design procedure of this isolator and some useful guidelines for choosing cable parameters are presented. In addition, a summary about the performance of the isolators with different numbers of cables shocking in an arbitrary direction is given in the conclusion.

  3. Transient beam oscillation with a highly dynamic scanner for laser beam fusion cutting

    NASA Astrophysics Data System (ADS)

    Goppold, Cindy; Pinder, Thomas; Herwig, Patrick

    2016-02-01

    Sheet metals with thicknesses >8 mm have a distinct cutting performance. The free choice of the optical configuration composed of fiber diameter, collimation, and focal length offers many opportunities to influence the static beam geometry. Previous analysis points out the limitations of this method in the thick section area. Within the present study, an experimental investigation of fiber laser fusion cutting of 12 mm stainless steel was performed by means of dynamical beam oscillation. Two standard optical setups are combined with a highly dynamic galvano-driven scanner that achieves frequencies up to 4 kHz. Dependencies of the scanner parameter, the optical circumstances, and the conventional cutting parameters are discussed. The aim is to characterize the capabilities and challenges of the dynamic beam shaping in comparison to the state-of-the-art static beam shaping. Thus, the trials are evaluated by quality criteria of the cut edge as surface roughness and burr height, the feed rate, and the cut kerf geometry. The investigation emphasizes promising procedural possibilities for improvements of the cutting performance in the case of fiber laser fusion cutting of thick stainless steel by means of the application of a highly dynamic scanner.

  4. Comparing spatially static and dynamic vibrotactile take-over requests in the driver seat.

    PubMed

    Petermeijer, S M; Cieler, S; de Winter, J C F

    2017-02-01

    Vibrotactile stimuli can be effective as warning signals, but their effectiveness as directional take-over requests in automated driving is yet unknown. This study aimed to investigate the correct response rate, reaction times, and eye and head orientation for static versus dynamic directional take-over requests presented via vibrating motors in the driver seat. In a driving simulator, eighteen participants performed three sessions: 1) a session involving no driving (Baseline), 2) driving a highly automated car without additional task (HAD), and 3) driving a highly automated car while performing a mentally demanding task (N-Back). Per session, participants received four directional static (in the left or right part of the seat) and four dynamic (moving from one side towards the opposite left or right of the seat) take-over requests via two 6×4 motor matrices embedded in the seat back and bottom. In the Baseline condition, participants reported whether the cue was left or right, and in the HAD and N-Back conditions participants had to change lanes to the left or to the right according to the directional cue. The correct response rate was operationalized as the accuracy of the self-reported direction (Baseline session) and the accuracy of the lane change direction (HAD & N-Back sessions). The results showed that the correct response rate ranged between 94% for static patterns in the Baseline session and 74% for dynamic patterns in the N-Back session, although these effects were not statistically significant. Steering wheel touch and steering input reaction times were approximately 200ms faster for static patterns than for dynamic ones. Eye tracking results revealed a correspondence between head/eye-gaze direction and lane change direction, and showed that head and eye-gaze movements where initiated faster for static vibrations than for dynamic ones. In conclusion, vibrotactile stimuli presented via the driver seat are effective as warnings, but their effectiveness as directional take-over requests may be limited. The present study may encourage further investigation into how to get drivers safely back into the loop. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. A Low-Cost and High-Performance Sulfonated Polyimide Proton-Conductive Membrane for Vanadium Redox Flow/Static Batteries.

    PubMed

    Li, Jinchao; Yuan, Xiaodong; Liu, Suqin; He, Zhen; Zhou, Zhi; Li, Aikui

    2017-09-27

    A novel side-chain-type fluorinated sulfonated polyimide (s-FSPI) membrane is synthesized for vanadium redox batteries (VRBs) by high-temperature polycondensation and grafting reactions. The s-FSPI membrane has a vanadium ion permeability that is over an order of magnitude lower and has a proton selectivity that is 6.8 times higher compared to those of the Nafion 115 membrane. The s-FSPI membrane possesses superior chemical stability compared to most of the linear sulfonated aromatic polymer membranes reported for VRBs. Also, the vanadium redox flow/static batteries (VRFB/VRSB) assembled with the s-FSPI membranes exhibit stable battery performance over 100- and 300-time charge-discharge cycling tests, respectively, with significantly higher battery efficiencies and lower self-discharge rates than those with the Nafion 115 membranes. The excellent physicochemical properties and VRB performance of the s-FSPI membrane could be attributed to the specifically designed molecular structure with the hydrophobic trifluoromethyl groups and flexible sulfoalkyl pendants being introduced on the main chains of the membrane. Moreover, the cost of the s-FSPI membrane is only one-fourth that of the commercial Nafion 115 membrane. This work opens up new possibilities for fabricating high-performance proton-conductive membranes at low costs for VRBs.

  6. Static Fatigue of a Siliconized Silicon Carbide

    DTIC Science & Technology

    1987-03-01

    flexitral stress rupture and stepped temperature stress rupture (STSR) testing were performed to assess the static fatigue and creep resistances. Isothermal... stress rupture experiments were performed at 1200 0C in air for com- parison to previous results. - 10 STSR experiments 15 were under deadweight...temperature and stress levels that static fatigue and creep processes are active. The applied stresses were computed on the basis of the elastic

  7. Characterization of Space Shuttle Reusable Rocket Motor Static Test Stand Thrust Measurements

    NASA Technical Reports Server (NTRS)

    Cook, Mart L.; Gruet, Laurent; Cash, Stephen F. (Technical Monitor)

    2003-01-01

    Space Shuttle Reusable Solid Rocket Motors (RSRM) are static tested at two ATK Thiokol Propulsion facilities in Utah, T-24 and T-97. The newer T-97 static test facility was recently upgraded to allow thrust measurement capability. All previous static test motor thrust measurements have been taken at T-24; data from these tests were used to characterize thrust parameters and requirement limits for flight motors. Validation of the new T-97 thrust measurement system is required prior to use for official RSRM performance assessments. Since thrust cannot be measured on RSRM flight motors, flight motor measured chamber pressure and a nominal thrust-to-pressure relationship (based on static test motor thrust and pressure measurements) are used to reconstruct flight motor performance. Historical static test and flight motor performance data are used in conjunction with production subscale test data to predict RSRM performance. The predicted motor performance is provided to support Space Shuttle trajectory and system loads analyses. Therefore, an accurate nominal thrust-to-pressure (F/P) relationship is critical for accurate RSRM flight motor performance and Space Shuttle analyses. Flight Support Motors (FSM) 7, 8, and 9 provided thrust data for the validation of the T-97 thrust measurement system. The T-97 thrust data were analyzed and compared to thrust previously measured at T-24 to verify measured thrust data and identify any test-stand bias. The T-97 FIP data were consistent and within the T-24 static test statistical family expectation. The FSMs 7-9 thrust data met all NASA contract requirements, and the test stand is now verified for future thrust measurements.

  8. Equipment and Protocols for Quasi-Static and Dynamic Tests of Very-High-Strength Concrete (VHSC) and High-Strength High-Ductility Concrete (HSHDC)

    DTIC Science & Technology

    2016-08-01

    quasi -static mechanical properties, deformation behavior, and damage mechanisms in HSHDC and compare the behavior with VHSC. 2. Develop experimental ...using the experimental setup described in Chapter 6. The quasi -static strain rate was approximately 10-4/s. All panels tested have nominal dimensions...ER D C TR -1 6- 13 Force Protection Basing; TeCD 1a Equipment and Protocols for Quasi -Static and Dynamic Tests of Very-High-Strength

  9. A CPV System with Static Linear Fresnel Lenses in a Greenhouse

    NASA Astrophysics Data System (ADS)

    Sonneveld, Piet; Zahn, Helmut; Swinkels, Gert-Jan

    2010-10-01

    A new CPV system with a static linear Fresnel lens, silicon PV module suitable for concentrated radiation and an innovative tracking system is integrated in a greenhouse covering. The basic idea of this horticultural application is to develop a greenhouse for pot plants (typical shadow plants) which don't like high direct radiation. Removing all direct radiation will block up to 77% of the solar energy, which will reduce the necessary cooling capacity. The solar energy focused on the Thermal Photovoltaic (PV/T) module generates electric and thermal energy. The PV/T module is tracked in the focal line and requires cooling due to the high heat load of the concentrated radiation (concentration factor of 50 times). All parts are integrated in a greenhouse with a size of about 36 m2. The electrical and thermal yield is determined for Dutch climate circumstances. Some measurements were performed with a PMMA linear Fresnel lens between double glass. Further improvement of the performance of the CPV-system is possible by using a PDMS lens directly laminated on glass and using AR-coated glass. This lens is developed with ZEMAX and the results of the Ray-tracing simulations are presented with the lens structure oriented in an upwards and downwards position. The best performance of the static linear Fresnel lens is achieved with upwards orientation of the lens structures. In practice this is only possible with the Fresnel lens placed between a double glass structure, which will keep the lens clean and free of water.

  10. Effect of revised high-heeled shoes on foot pressure and static balance during standing.

    PubMed

    Bae, Young-Hyeon; Ko, Mansoo; Park, Young-Soul; Lee, Suk-Min

    2015-04-01

    [Purpose] The purpose of this study was to investigate the effects of revised high-heeled shoes on the foot pressure ratio and static balance during standing. [Subjects and Methods] A single-subject design was used, 15 healthy women wearing revised high-heeled shoes and general high-heeled shoes in a random order. The foot pressure ratio and static balance scores during standing were measured using a SpaceBalance 3D system. [Results] Forefoot and rearfoot pressures were significantly different between the 2 types of high-heeled shoes. Under the 3 conditions tested, the static balance score was higher for the revised high-heeled shoes than for the general high-heeled shoes, but this difference was not statistically significant. [Conclusion] Revised high-heeled shoes are preferable to general high-heeled shoes, as they result in normalization of normalized foot pressure and a positive effect on static balance.

  11. Effect of revised high-heeled shoes on foot pressure and static balance during standing

    PubMed Central

    Bae, Young-Hyeon; Ko, Mansoo; Park, Young-Soul; Lee, Suk-Min

    2015-01-01

    [Purpose] The purpose of this study was to investigate the effects of revised high-heeled shoes on the foot pressure ratio and static balance during standing. [Subjects and Methods] A single-subject design was used, 15 healthy women wearing revised high-heeled shoes and general high-heeled shoes in a random order. The foot pressure ratio and static balance scores during standing were measured using a SpaceBalance 3D system. [Results] Forefoot and rearfoot pressures were significantly different between the 2 types of high-heeled shoes. Under the 3 conditions tested, the static balance score was higher for the revised high-heeled shoes than for the general high-heeled shoes, but this difference was not statistically significant. [Conclusion] Revised high-heeled shoes are preferable to general high-heeled shoes, as they result in normalization of normalized foot pressure and a positive effect on static balance. PMID:25995572

  12. Relationship between antigravity control and postural control in young children.

    PubMed

    Sellers, J S

    1988-04-01

    The purposes of this study were 1) to determine the relationship between antigravity control (supine flexion and prone extension) and postural control (static and dynamic balance), 2) to determine the quality of antigravity and postural control, and 3) to determine whether sex and ethnic group differences correlate with differences in antigravity control and postural control in young children. I tested 107 black, Hispanic, and Caucasian children in a Head Start program, with a mean age of 61 months. The study results showed significant relationships between antigravity control and postural control. Subjects' supine flexion performance was significantly related to the quantity and quality of their static and dynamic balance performance, whereas prone extension performance was related only to the quality of dynamic balance performance. Quality scale measurements (r = .90) indicated that the children in this study had not yet developed full antigravity or postural control. The study results revealed differences between sexes in the quality of static balance and prone extension performance and ethnic differences in static balance, dynamic balance, and prone extension performance.

  13. Telescope Array Radar (TARA) Observatory for Ultra-High Energy Cosmic Rays

    DOE PAGES

    Abbasi, R.; Takai, H.; Allen, C.; ...

    2014-08-19

    Construction was completed during summer 2013 on the Telescope Array RAdar (TARA) bi-static radar observatory for Ultra-High Energy Cosmic Rays (UHECR). TARA is co-located with the Telescope Array, the largest “conventional” cosmic ray detector in the Northern Hemisphere, in radio-quiet Western Utah. TARA employs an 8 MW Effective Radiated Power (ERP) VHF transmitter and smart receiver system based on a 250 MS/s data acquisition system in an effort to detect the scatter of sounding radiation by UHECR-induced atmospheric ionization. TARA seeks to demonstrate bi-static radar as a useful new remote sensing technique for UHECRs. In this report, we describe themore » design and performance of the TARA transmitter and receiver systems.« less

  14. Static Indentation Load Capacity of the Superelastic 60NiTi for Rolling Element Bearings

    NASA Technical Reports Server (NTRS)

    DellaCorte, Christopher; Moore, Lewis E., III; Clifton, Joshua S.

    2012-01-01

    The nickel-rich, binary nickel-titanium alloys, such as 60NiTi (60Ni-40Ti by wt%), are emerging as viable materials for use in mechanical components like rolling element bearings and gears. 60NiTi is a superelastic material that simultaneously exhibits high hardness and a relatively low elastic modulus (approx.100 GPa). These properties result in the potential to endure extremely high indentation loads such as those encountered in bearings, gears and other mechanical components. In such applications, quantifying the load that results in permanent deformation that can affect component performance and life is important. In this paper, the static load capacity is measured by conducting indentation experiments in which 12.7 mm diameter balls made from the ceramic Si3N4 are pressed into highly polished, hardened 60NiTi flat plates. Hertz stress calculations are used to estimate contact stress. The results show that the 60NiTi surface can withstand an approximately 3400 kN load before significant denting (>0.6 microns deep) occurs. This load capacity is approximately twice that of high performance bearing steels suggesting that the potential exists to make highly resilient bearings and components from such materials.

  15. Non-Contacting Finger Seals Static Performance Test Results at Ambient and High Temperatures

    NASA Technical Reports Server (NTRS)

    Proctor, Margaret P.

    2016-01-01

    The non-contacting finger seal is an advanced seal concept with potential to reduce specific fuel consumption in gas turbine engines by 2 to 3 percent with little to no wear of the seal or rotor. Static performance tests and bind-up tests of eight different non-contacting finger seal configurations were conducted in air at pressure differentials up to 689.4 kPa and temperatures up to 922 K. Four of the seals tested were designed to have lift pads concentric to a herringbone-grooved rotor which generates hydrodynamic lift when rotating. The remaining seals were tested with a smooth rotor; one seal had a circumferential taper and one had an axial taper on the lift pad inner diameter to create hydrodynamic lift during rotation. The effects of the aft finger axial thickness and of the forward finger inner diameter on leakage performance were investigated as well and compared to analytical predictions.

  16. Non-Contacting Finger Seals Static Performance Test Results at Ambient and High Temperatures

    NASA Technical Reports Server (NTRS)

    Proctor, Margaret P.

    2016-01-01

    The non-contacting finger seal is an advanced seal concept with potential to reduce specific fuel consumption in gas turbine engines by 2 to 3 with little to no wear of the seal or rotor. Static performance tests and bind-up tests of eight different non-contacting finger seal configurations were conducted in air at pressure differentials up to 689.4 kPa and temperatures up to 922 K. Four of the seals tested were designed to have lift pads concentric to a herringbone-grooved rotor which generates hydrodynamic lift when rotating. The remaining seals were tested with a smooth rotor; one seal had a circumferential taper and one had an axial taper on the lift pad inner diameter to create hydrodynamic lift during rotation. The effects of the aft finger axial thickness and of the forward finger inner diameter on leakage performance were investigated as well and compared to analytical predictions.

  17. Estimation of elastic moduli of graphene monolayer in lattice statics approach at nonzero temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zubko, I. Yu., E-mail: zoubko@list.ru; Kochurov, V. I.

    2015-10-27

    For the aim of the crystal temperature control the computational-statistical approach to studying thermo-mechanical properties for finite sized crystals is presented. The approach is based on the combination of the high-performance computational techniques and statistical analysis of the crystal response on external thermo-mechanical actions for specimens with the statistically small amount of atoms (for instance, nanoparticles). The heat motion of atoms is imitated in the statics approach by including the independent degrees of freedom for atoms connected with their oscillations. We obtained that under heating, graphene material response is nonsymmetric.

  18. Static inverter with synchronous output waveform synthesized by time-optimal-response feedback

    NASA Technical Reports Server (NTRS)

    Kernick, A.; Stechschulte, D. L.; Shireman, D. W.

    1976-01-01

    Time-optimal-response 'bang-bang' or 'bang-hang' technique, using four feedback control loops, synthesizes static-inverter sinusoidal output waveform by self-oscillatory but yet synchronous pulse-frequency-modulation (SPFM). A single modular power stage per phase of ac output entails the minimum of circuit complexity while providing by feedback synthesis individual phase voltage regulation, phase position control and inherent compensation simultaneously for line and load disturbances. Clipped sinewave performance is described under off-limit load or input voltage conditions. Also, approaches to high power levels, 3-phase arraying and parallel modular connection are given.

  19. Static magnetic field reduced exogenous oligonucleotide uptake by spermatozoa using magnetic nanoparticle gene delivery system

    NASA Astrophysics Data System (ADS)

    Katebi, Samira; Esmaeili, Abolghasem; Ghaedi, Kamran

    2016-03-01

    Spermatozoa could introduce exogenous oligonucleotides of interest to the oocyte. The most important reason of low efficiency of sperm mediated gene transfer (SMGT) is low uptake of exogenous DNA by spermatozoa. The aim of this study was to evaluate the effects of static magnetic field on exogenous oligonucleotide uptake of spermatozoa using magnetofection method. Magnetic nanoparticles (MNPs) associated with the labeled oligonucleotides were used to increase the efficiency of exogenous oligonucleotide uptake by rooster spermatozoa. We used high-field/high-gradient magnet (NdFeB) to enhance and accelerate exogenous DNA sedimentation at the spermatozoa surface. Flow cytometry analysis was performed to measure viability and percentage of exogenous oligonucleotide uptake by sperm. Flow cytometry analysis showed a significant increase in exogenous oligonucleotide uptake by rooster spermatozoa (P<0.001) when spermatozoa were incubated in exogenous oligonucleotide solution and MNPs. However, by applying static magnetic field during magnetofection method, a significant decrease in exogenous oligonucleotide uptake was observed (P<0.05). Findings of this study showed that MNPs were effective to increase exogenous oligonucleotide uptake by rooster spermatozoa; however unlike others studies, static magnetic field, was not only ineffective to enhance exogenous oligonucleotide uptake by rooster spermatozoa but also led to reduction in efficiency of magnetic nanoparticles in gene transfer.

  20. Results of the first complete static calibration of the RSRA rotor-load-measurement system

    NASA Technical Reports Server (NTRS)

    Acree, C. W., Jr.

    1984-01-01

    The compound Rotor System Research Aircraft (RSRA) is designed to make high-accuracy, simultaneous measurements of all rotor forces and moments in flight. Physical calibration of the rotor force- and moment-measurement system when installed in the aircraft is required to account for known errors and to ensure that measurement-system accuracy is traceable to the National Bureau of Standards. The first static calibration and associated analysis have been completed with good results. Hysteresis was a potential cause of static calibration errors, but was found to be negligible in flight compared to full-scale loads, and analytical methods have been devised to eliminate hysteresis effects on calibration data. Flight tests confirmed that the calibrated rotor-load-measurement system performs as expected in flight and that it can dependably make direct measurements of fuselage vertical drag in hover.

  1. Mechanical Properties of Transgenic Silkworm Silk Under High Strain Rate Tensile Loading

    NASA Astrophysics Data System (ADS)

    Chu, J.-M.; Claus, B.; Chen, W.

    2017-12-01

    Studies have shown that transgenic silkworm silk may be capable of having similar properties of spider silk while being mass-producible. In this research, the tensile stress-strain response of transgenic silkworm silk fiber is systematically characterized using a quasi-static load frame and a tension Kolsky bar over a range of strain-rates between 10^{-3} and 700/s. The results show that transgenic silkworm silk tends to have higher overall ultimate stress and failure strain at high strain rate (700/s) compared to quasi-static strain rates, indicating rate sensitivity of the material. The failure strain at the high strain rate is higher than that of spider silk. However, the stress levels are significantly below that of spider silk, and far below that of high-performance fiber. Failure surfaces are examined via scanning electron microscopy and reveal that the failure modes are similar to those of spider silk.

  2. Control definition study for advanced vehicles

    NASA Technical Reports Server (NTRS)

    Lapins, M.; Martorella, R. P.; Klein, R. W.; Meyer, R. C.; Sturm, M. J.

    1983-01-01

    The low speed, high angle of attack flight mechanics of an advanced, canard-configured, supersonic tactical aircraft designed with moderate longitudinal relaxed static stability (Static Margin, SM = 16% C sub W at M = 0.4) was investigated. Control laws were developed for the longitudinal axis (""G'' or maneuver and angle of attack command systems) and for the lateral/directional axes. The performance of these control laws was examined in engineering simulation. A canard deflection/rate requirement study was performed as part of the ""G'' command law evaluation at low angles of attack. Simulated coupled maneuvers revealed the need for command limiters in all three aircraft axes to prevent departure from controlled flight. When modified with command/maneuver limiters, the control laws were shown to be adequate to prevent aircraft departure during aggressive air combat maneuvering.

  3. A Passive Cavity Concept for Improving the Off-Design Performance of Fixed-Geometry Exhaust Nozzles

    NASA Technical Reports Server (NTRS)

    Asbury, Scott C.; Gunther, Christopher L.; Hunter, Craig A.

    1996-01-01

    An investigation was conducted in the model preparation area of the Langley 16-Foot Transonic Tunnel to study a passive cavity concept for improving the off-design performance of fixed-geometry exhaust nozzles. Passive cavity ventilation (through a porous surface) was applied to divergent flap surfaces and tested at static conditions in a sub-scale, nonaxisymmetric, convergent-divergent nozzle. As part of a comprehensive investigation, force, moment and pressure measurements were taken and focusing schlieren flow visualization was obtained for a baseline configuration and D passive cavity configurations. All tests were conducted with no external flow and high-pressure air was used to simulate jet-exhaust flow at nozzle pressure ratios from 1.25 to approximately 9.50. Results indicate that baseline nozzle performance was dominated by unstable shock-induced boundary-layer separation at off-design conditions, which came about through the natural tendency of overexpanded exhaust flow to satisfy conservation requirements by detaching from the nozzle divergent flaps. Passive cavity ventilation added the ability to control off-design separation in the nozzle by either alleviating separation or encouraging stable separation of the exhaust flow. Separation alleviation offers potential for installed nozzle performance benefits by reducing drag at forward flight speeds, even though it may reduce off-design static thrust efficiency as much as 3.2 percent. Encouraging stable separation of the exhaust flow offers significant performance improvements at static, low NPR and low Mach number flight conditions by improving off-design static thrust efficiency as much as 2.8 percent. By designing a fixed-geometry nozzle with fully porous divergent flaps, where both cavity location and percent open porosity of the flaps could be varied, passive flow control would make it possible to improve off-design nozzle performance across a wide operating range. In addition, the ability to encourage separation on one flap while alleviating it on the other makes it possible to generate thrust vectoring in the nozzle through passive flow control.

  4. Cockpit Adaptive Automation and Pilot Performance

    NASA Technical Reports Server (NTRS)

    Parasuraman, Raja

    2001-01-01

    The introduction of high-level automated systems in the aircraft cockpit has provided several benefits, e.g., new capabilities, enhanced operational efficiency, and reduced crew workload. At the same time, conventional 'static' automation has sometimes degraded human operator monitoring performance, increased workload, and reduced situation awareness. Adaptive automation represents an alternative to static automation. In this approach, task allocation between human operators and computer systems is flexible and context-dependent rather than static. Adaptive automation, or adaptive task allocation, is thought to provide for regulation of operator workload and performance, while preserving the benefits of static automation. In previous research we have reported beneficial effects of adaptive automation on the performance of both pilots and non-pilots of flight-related tasks. For adaptive systems to be viable, however, such benefits need to be examined jointly in the context of a single set of tasks. The studies carried out under this project evaluated a systematic method for combining different forms of adaptive automation. A model for effective combination of different forms of adaptive automation, based on matching adaptation to operator workload was proposed and tested. The model was evaluated in studies using IFR-rated pilots flying a general-aviation simulator. Performance, subjective, and physiological (heart rate variability, eye scan-paths) measures of workload were recorded. The studies compared workload-based adaptation to to non-adaptive control conditions and found evidence for systematic benefits of adaptive automation. The research provides an empirical basis for evaluating the effectiveness of adaptive automation in the cockpit. The results contribute to the development of design principles and guidelines for the implementation of adaptive automation in the cockpit, particularly in general aviation, and in other human-machine systems. Project goals were met or exceeded. The results of the research extended knowledge of automation-related performance decrements in pilots and demonstrated the positive effects of adaptive task allocation. In addition, several practical implications for cockpit automation design were drawn from the research conducted. A total of 12 articles deriving from the project were published.

  5. Measurement and Computation of Supersonic Flow in a Lobed Diffuser-Mixer for Trapped Vortex Combustors

    NASA Technical Reports Server (NTRS)

    Brankovic, Andreja; Ryder, Robert C., Jr.; Hendricks, Robert C.; Liu, Nan-Suey; Gallagher, John R.; Shouse, Dale T.; Roquemore, W. Melvyn; Cooper, Clayton S.; Burrus, David L.; Hendricks, John A.

    2002-01-01

    The trapped vortex combustor (TVC) pioneered by Air Force Research Laboratories (AFRL) is under consideration as an alternative to conventional gas turbine combustors. The TVC has demonstrated excellent operational characteristics such as high combustion efficiency, low NO(x) emissions, effective flame stabilization, excellent high-altitude relight capability, and operation in the lean-burn or rich burn-quick quench-lean burn (RQL) modes of combustion. It also has excellent potential for lowering the engine combustor weight. This performance at low to moderate combustor mach numbers has stimulated interest in its ability to operate at higher combustion mach number, and for aerospace, this implies potentially higher flight mach numbers. To this end, a lobed diffuser-mixer that enhances the fuel-air mixing in the TVC combustor core was designed and evaluated, with special attention paid to the potential shock system entering the combustor core. For the present investigation, the lobed diffuser-mixer combustor rig is in a full annular configuration featuring sixfold symmetry among the lobes, symmetry within each lobe, and plain parallel, symmetric incident flow. During hardware cold-flow testing, significant discrepancies were found between computed and measured values for the pitot-probe-averaged static pressure profiles at the lobe exit plane. Computational fluid dynamics (CFD) simulations were initiated to determine whether the static pressure probe was causing high local flow-field disturbances in the supersonic flow exiting the diffuser-mixer and whether shock wave impingement on the pitot probe tip, pressure ports, or surface was the cause of the discrepancies. Simulations were performed with and without the pitot probe present in the modeling. A comparison of static pressure profiles without the probe showed that static pressure was off by nearly a factor of 2 over much of the radial profile, even when taking into account potential axial displacement of the probe by up to 0.25 in. (0.64 cm). Including the pitot probe in the CFD modeling and data interpretation lead to good agreement between measurement and prediction. Graphical inspection of the results showed that the shock waves impinging on the probe surface were highly nonuniform, with static pressure varying circumferentially among the pressure ports by over 10 percent in some cases. As part of the measurement methodology, such measurements should be routinely supplemented with CFD analyses that include the pitot probe as part of the flow-path geometry.

  6. Characterizing the Peano fluidic muscle and the effects of its geometry properties on its behavior

    NASA Astrophysics Data System (ADS)

    Veale, Allan Joshua; Xie, Sheng Quan; Anderson, Iain Alexander

    2016-06-01

    In this work, we explore the basic static and dynamic behavior of a hydraulically actuated Peano muscle and how its geometry affects key static and dynamic performance metrics. The Peano muscle, or pouch motor is a fluid powered artificial muscle. Similar to McKibben pneumatic artificial muscles (PAMs), it has the ability to generate the high forces of biological muscles with the low threshold pressure of pleated PAMs, but in a slim, easily distributed form. We found that Peano muscles have similar characteristics to other PAMs, but produce lower free-strains. A test rig capable of measuring high-speed flow rates with a Venturi tube revealed that their efficiency peaks at about 40% during highly dynamic movements. Peano muscles with more tubes and of a greater size do not move faster. Also, their muscle tubes should have an aspect ratio of at least 1:3 and channel width greater than 20% to maximize performance. These findings suggest that finite element modeling be used to optimize more complex Peano muscle geometries.

  7. [Assessment of the macula function by static perimetry, microperimetry and rarebit perimetry in patients suffering from dry age related macular degeneration].

    PubMed

    Nowomiejska, Katarzyna; Oleszczuk, Agnieszka; Zubilewicz, Anna; Krukowski, Jacek; Mańkowska, Anna; Rejdak, Robert; Zagórski, Zbigniew

    2007-01-01

    To compare the visual field results obtained by static perimetry, microperimetry and rabbit perimetry in patients suffering from dry age related macular degeneration (AMD). Fifteen eyes with dry AMD (hard or soft macula drusen and RPE disorders) were enrolled into the study. Static perimetry was performed using M2 macula program included in Octopus 101 instrument. Microperimetry was performed using macula program (14-2 threshold, 10dB) within 10 degrees of the central visual field. The fovea program within 4 degrees was used while performing rarebit perimetry. The mean sensitivity was significantly lower (p<0.001) during microperimetry (13.5 dB) comparing to static perimetry (26.7 dB). The mean deviation was significantly higher (p<0.001) during microperimetry (-6.32 dB) comparing to static perimetry (-3.11 dB). The fixation was unstable in 47% and eccentric in 40% while performing microperimetry. The median of the "mean hit rate" in rarebit perimetry was 90% (range 40-100%). The mean examination duration was 6.5 min. in static perimetry, 10.6 min. in microperimetry and 5,5 min. in rarebit perimetry (p<0.001). Sensitivity was 30%, 53% and 93% respectively. The visual field defects obtained by microperimetry were more pronounced than those obtained by static perimetry. Microperimetry was the most sensitive procedure although the most time-consuming. Microperimetry enables the control of the fixation position and stability, that is not possible using the remaining methods. Rarebit perimetry revealed slight reduction of the integrity of neural architecture of the retina. Microperimetry and rarebit perimetry provide more information in regard to the visual function than static perimetry, thus are the valuable method in the diagnosis of dry AMD.

  8. Comparison of Inter-Observer Variability and Diagnostic Performance of the Fifth Edition of BI-RADS for Breast Ultrasound of Static versus Video Images.

    PubMed

    Youk, Ji Hyun; Jung, Inkyung; Yoon, Jung Hyun; Kim, Sung Hun; Kim, You Me; Lee, Eun Hye; Jeong, Sun Hye; Kim, Min Jung

    2016-09-01

    Our aim was to compare the inter-observer variability and diagnostic performance of the Breast Imaging Reporting and Data System (BI-RADS) lexicon for breast ultrasound of static and video images. Ninety-nine breast masses visible on ultrasound examination from 95 women 19-81 y of age at five institutions were enrolled in this study. They were scheduled to undergo biopsy or surgery or had been stable for at least 2 y of ultrasound follow-up after benign biopsy results or typically benign findings. For each mass, representative long- and short-axis static ultrasound images were acquired; real-time long- and short-axis B-mode video images through the mass area were separately saved as cine clips. Each image was reviewed independently by five radiologists who were asked to classify ultrasound features according to the fifth edition of the BI-RADS lexicon. Inter-observer variability was assessed using kappa (κ) statistics. Diagnostic performance on static and video images was compared using the area under the receiver operating characteristic curve. No significant difference was found in κ values between static and video images for all descriptors, although κ values of video images were higher than those of static images for shape, orientation, margin and calcifications. After receiver operating characteristic curve analysis, the video images (0.83, range: 0.77-0.87) had higher areas under the curve than the static images (0.80, range: 0.75-0.83; p = 0.08). Inter-observer variability and diagnostic performance of video images was similar to that of static images on breast ultrasonography according to the new edition of BI-RADS. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  9. Space Shuttle Main Engine structural analysis and data reduction/evaluation. Volume 3A: High pressure oxidizer turbo-pump preburner pump housing stress analysis report

    NASA Technical Reports Server (NTRS)

    Shannon, Robert V., Jr.

    1989-01-01

    The model generation and structural analysis performed for the High Pressure Oxidizer Turbopump (HPOTP) preburner pump volute housing located on the main pump end of the HPOTP in the space shuttle main engine are summarized. An ANSYS finite element model of the volute housing was built and executed. A static structural analysis was performed on the Engineering Analysis and Data System (EADS) Cray-XMP supercomputer

  10. A comparison between different coronagraphic data reduction techniques

    NASA Astrophysics Data System (ADS)

    Carolo, E.; Vassallo, D.; Farinato, J.; Bergomi, M.; Bonavita, M.; Carlotti, A.; D'Orazi, V.; Greggio, D.; Magrin, D.; Mesa, D.; Pinna, E.; Puglisi, A.; Stangalini, M.; Verinaud, C.; Viotto, V.

    2016-07-01

    A robust post processing technique is mandatory for analysing the coronagraphic high contrast imaging data. Angular Differential Imaging (ADI) and Principal Component Analysis (PCA) are the most used approaches to suppress the quasi-static structure presents in the Point Spread Function (PSF) for revealing planets at different separations from the host star. In this work, we present the comparison between ADI and PCA applied to System of coronagraphy with High order Adaptive optics from R to K band (SHARK-NIR), which will be implemented at Large Binocular Telescope (LBT). The comparison has been carried out by using as starting point the simulated wavefront residuals of the LBT Adaptive Optics (AO) system, in different observing conditions. Accurate tests for tuning the post processing parameters to obtain the best performance from each technique were performed in various seeing conditions (0:4"-1") for star magnitude ranging from 8 to 12, with particular care in finding the best compromise between quasi static speckle subtraction and planets detection.

  11. Static/dynamic trade-off performance of PZT thick film micro-actuators

    NASA Astrophysics Data System (ADS)

    Bienaimé, Alex; Chalvet, Vincent; Clévy, Cédric; Gauthier-Manuel, Ludovic; Baron, Thomas; Rakotondrabe, Micky

    2015-07-01

    Piezoelectric actuators are widespread in the design of micro/nanorobotic tools and microsystems. Studies toward the integration of such actuators in complex micromechatronic systems require the size reduction of these actuators while retaining a wide range of performance. Two main fabrication processes are currently used for the fabrication of piezoelectric actuators, providing very different behaviors: (i) the use of a bulk lead zirconate titanate (PZT) layer and (ii) the use of thin film growth. In this paper, we propose a trade-off between these two extreme processes and technologies in order to explore the performance of new actuators. This resulted in the design and fabrication of thick film PZT unimorph cantilevers. They allowed a high level of performance, both in the static (displacement) and dynamic (first resonance frequency) regimes, in addition to being small in size. Such cantilever sizes are obtained through the wafer scale bonding and thinning of a PZT plate onto a silicon on insulator wafer. The piezoelectric cantilevers have a 26 μm thick PZT layer with a 5 μm thick silicon layer, over a length of 4 mm and a width of 150 μm. Experimental characterization has shown that the static displacements obtained are in excess of 4.8 μm V-1 and the resonance frequencies are up to 1103 Hz, which are useful for large displacements and low voltage actuators.

  12. Can common measures of core stability distinguish performance in a shoulder pressing task under stable and unstable conditions?

    PubMed

    Keogh, Justin W L; Aickin, Sam E; Oldham, Anthony R H

    2010-02-01

    The primary purpose of this study was to determine whether a range of static core stability (CS) measures could distinguish shoulder press performance in unstable vs. stable conditions. Thirty resistance-trained men gave informed consent to participate in this study. One-repetition maximum strength (from < 6 repetitions) was predicted in the seated shoulder dumbbell press performed in unstable (Swiss ball[SB]) and stable (back-support bench) environments. Three CS muscle endurance tests were performed, with 4 CS ratios also calculated. The degree of strength decrement, referred to as the instability strength level (ISL), was calculated by dividing the predicted 1RM Unstable score by the 1RM Stable score. All subjects were categorized as high (ISL > 0.90), moderate (0.85 < or = ISL < or = 0.90), or low (ISL < 0.85). Between-group differences for the high- and low-ISL groups were assessed using analysis of variance and effect sizes. Pearson product moment correlations were then performed to examine the relationships between the CS measures and the ISL for the entire group. No significant between-group differences (p = 0.132-0.999) or large effect sizes were observed for any of the CS measures. Trunk flexion endurance was the only CS measure significantly correlated to the ISL (r = 0.477). In line with muscular strength research, these results suggest that CS exhibits relatively high levels of task specificity and that CS performance in static single-joint exercises may not be highly related to that in more dynamic multijoint activities. Core stability training (with or without a SB) may therefore only lead to significant improvements in functional dynamic performance if the postures, mode and velocity of contraction performed in training, are similar to the competitive tasks.

  13. Structural Testing of a 6m Hypersonic Inflatable Aerodynamic Decelerator System

    NASA Technical Reports Server (NTRS)

    Swanson, G. T.; Kazemba, C. D.; Johnson, R. K.; Hughes, S. J.; Calomino, A. M.

    2015-01-01

    NASA is developing low ballistic coefficient technologies to support the Nations long-term goal of landing humans on Mars. Current entry, decent, and landing technologies are not practical for this class of payloads due to geometric constraints dictated by current and future launch vehicle fairing limitations. Hypersonic Inflatable Aerodynamic Decelerators (HIADs) are being developed to circumvent this limitation and are now considered a leading technology to enable landing of heavy payloads on Mars. At the beginning of 2014, a 6m diameter HIAD inflatable structure with an integrated flexible thermal protection system (TPS) was subjected to a static load test series to verify its structural performance under flight-relevant loads. The inflatable structure was constructed into a 60 degree sphere-cone configuration using nine inflatable torus segments composed of fiber-reinforced thin films. The inflatable tori were joined together using adhesives and high-strength textile woven structural straps. These straps help distribute the load throughout the inflatable structure. The 6m flexible TPS was constructed using multiple layers of high performance materials that are designed to protect the inflatable structure from heat loads that would be seen in flight during atmospheric entry. A custom test fixture was constructed to perform the static load test series. The fixture consisted of a round structural tub with enough height and width to allow for displacement of the HIAD test article as loads were applied. The bottom of the tub rim had an airtight seal with the floor. The rigid centerbody of the HIAD was mounted to a pedestal in the center of the structural tub. Using an impermeable membrane draped over the HIAD test article, an airtight seal was created with the top rim of the static load tub. This seal allowed partial vacuum to be pulled beneath the HIAD resulting in a uniform static pressure load applied to the outer surface. Using this technique, the test article was subjected to loads of up to 50,000lbs. During the test series an extensive amount of instrumentation was used to provide a rich data set, including deflected shape, structural strap loads, torus cord loads, inflation pressures, and applied static load. In this paper the 2014 6m HIAD static load test series will be discussed in detail, including the design of the 6m HIAD test article, the test setup, and test execution. Analysis results will be described supporting the conclusions that were drawn from the test series..

  14. Effects of video compression on target acquisition performance

    NASA Astrophysics Data System (ADS)

    Espinola, Richard L.; Cha, Jae; Preece, Bradley

    2008-04-01

    The bandwidth requirements of modern target acquisition systems continue to increase with larger sensor formats and multi-spectral capabilities. To obviate this problem, still and moving imagery can be compressed, often resulting in greater than 100 fold decrease in required bandwidth. Compression, however, is generally not error-free and the generated artifacts can adversely affect task performance. The U.S. Army RDECOM CERDEC Night Vision and Electronic Sensors Directorate recently performed an assessment of various compression techniques on static imagery for tank identification. In this paper, we expand this initial assessment by studying and quantifying the effect of various video compression algorithms and their impact on tank identification performance. We perform a series of controlled human perception tests using three dynamic simulated scenarios: target moving/sensor static, target static/sensor static, sensor tracking the target. Results of this study will quantify the effect of video compression on target identification and provide a framework to evaluate video compression on future sensor systems.

  15. The relationship between stereoacuity and stereomotion thresholds.

    PubMed

    Cumming, B G

    1995-01-01

    There are in principle at least two binocular sources of information that could be used to determine the motion of an object towards or away from an observer; such motion produces changes in binocular disparities over time and also generates different image velocities in the two eyes. It has been argued in the past that stereomotion is detected by a mechanism that is independent of that which detects static disparities. More recently this conclusion has been questioned. If stereomotion detection in fact depends upon detecting disparities, there should be a clear correlation between static stereo-detection thresholds and stereomotion thresholds. If the systems are separate, there need be no such correlation. Four types of threshold measurement were performed by means of random-dot stereograms: (1) static stereo detection/discrimination; (2) stereomotion detection in random-dot stereograms (temporally uncorrelated); (3) stereomotion detection in temporally correlated random-dot stereograms; and (4) binocular detection of frontoparallel motion. Three normal subjects and five subjects with unusually high stereoacuities were studied. In addition, two manipulations were performed that altered stereomotion thresholds: changes in mean disparity, and image defocus produced by positive spectacle lenses. Across subjects and conditions, stereomotion thresholds were well correlated with stereo-discrimination thresholds. Stereomotion was poorly correlated with binocular frontoparallel-motion thresholds. These results suggest that stereomotion is detected by means of registering changes in the output of the same disparity detectors that are used to detect static disparities.

  16. Evaluation of Geosynthetic-Reinforced Flexible Pavements using Static Plate Load Tests

    DOT National Transportation Integrated Search

    2010-01-01

    This study focuses on the response of full-scale geogrid-reinforced flexible pavements to static surface loading. Specifically, static plate load (SPL) tests were performed on a low-volume, asphalt pavement frontage road in Eastern Arkansas, USA (the...

  17. Effects of age and loading rate on equine cortical bone failure.

    PubMed

    Kulin, Robb M; Jiang, Fengchun; Vecchio, Kenneth S

    2011-01-01

    Although clinical bone fractures occur predominantly under impact loading (as occurs during sporting accidents, falls, high-speed impacts or other catastrophic events), experimentally validated studies on the dynamic fracture behavior of bone, at the loading rates associated with such events, remain limited. In this study, a series of tests were performed on femoral specimens obtained post-mortem from equine donors ranging in age from 6 months to 28 years. Fracture toughness and compressive tests were performed under both quasi-static and dynamic loading conditions in order to determine the effects of loading rate and age on the mechanical behavior of the cortical bone. Fracture toughness experiments were performed using a four-point bending geometry on single and double-notch specimens in order to measure fracture toughness, as well as observe differences in crack initiation between dynamic and quasi-static experiments. Compressive properties were measured on bone loaded parallel and transverse to the osteonal growth direction. Fracture propagation was then analyzed using scanning electron and scanning confocal microscopy to observe the effects of microstructural toughening mechanisms at different strain rates. Specimens from each horse were also analyzed for dry, wet and mineral densities, as well as weight percent mineral, in order to investigate possible influences of composition on mechanical behavior. Results indicate that bone has a higher compressive strength, but lower fracture toughness when tested dynamically as compared to quasi-static experiments. Fracture toughness also tends to decrease with age when measured quasi-statically, but shows little change with age under dynamic loading conditions, where brittle "cleavage-like" fracture behavior dominates. Copyright © 2010 Elsevier Ltd. All rights reserved.

  18. Functional and Neuromuscular Changes in the Hamstrings After Drop Jumps and Leg Curls

    PubMed Central

    Sarabon, Nejc; Panjan, Andrej; Rosker, Jernej; Fonda, Borut

    2013-01-01

    The purpose of this study was to use a holistic approach to investigate changes in jumping performance, kinaesthesia, static balance, isometric strength and fast stepping on spot during a 5-day recovery period, following an acute bout of damaging exercise consisted of drop jumps and leg curls, where specific emphasis was given on the hamstring muscles. Eleven young healthy subjects completed a series of highly intensive damaging exercises for their hamstring muscles. Prior to the exercise, and during the 5-day recovery period, the subjects were tested for biochemical markers (creatine kinase, aspartate aminotransferase, and lactate dehydrogenase), perceived pain sensation, physical performance (squat jump, counter movement jump, maximal frequency leg stamping, maximal isometric torque production and maximally explosive isometric torque production), kinaesthesia (active torque tracking) and static balance. We observed significant decreases in maximal isometric knee flexion torque production, the rate of torque production, and majority of the parameters for vertical jump performance. No alterations were found in kinaesthesia, static balance and fast stepping on spot. The highest drop in performance and increase in perceived pain sensation generally occurred 24 or 48 hours after the exercise. Damaging exercise substantially alters the neuromuscular functions of the hamstring muscles, which is specifically relevant for sports and rehabilitation experts, as the hamstrings are often stretched to significant lengths, in particular when the knee is extended and hip flexed. These findings are practically important for recovery after high-intensity trainings for hamstring muscles. Key Points Hamstring function is significantly reduced following specifically damaging exercise. It fully recovers 120 hours after the exercise. Prevention of exercise-induced muscle damage is cruicial for maintaining normal training regime. PMID:24149148

  19. Evaluation of High-Precision Sensors in Structural Monitoring

    PubMed Central

    Erol, Bihter

    2010-01-01

    One of the most intricate branches of metrology involves the monitoring of displacements and deformations of natural and anthropogenic structures under environmental forces, such as tidal or tectonic phenomena, or ground water level changes. Technological progress has changed the measurement process, and steadily increasing accuracy requirements have led to the continued development of new measuring instruments. The adoption of an appropriate measurement strategy, with proper instruments suited for the characteristics of the observed structure and its environmental conditions, is of high priority in the planning of deformation monitoring processes. This paper describes the use of precise digital inclination sensors in continuous monitoring of structural deformations. The topic is treated from two viewpoints: (i) evaluation of the performance of inclination sensors by comparing them to static and continuous GPS observations in deformation monitoring and (ii) providing a strategy for analyzing the structural deformations. The movements of two case study objects, a tall building and a geodetic monument in Istanbul, were separately monitored using dual-axes micro-radian precision inclination sensors (inclinometers) and GPS. The time series of continuous deformation observations were analyzed using the Least Squares Spectral Analysis Technique (LSSA). Overall, the inclinometers showed good performance for continuous monitoring of structural displacements, even at the sub-millimeter level. Static GPS observations remained insufficient for resolving the deformations to the sub-centimeter level due to the errors that affect GPS signals. With the accuracy advantage of inclination sensors, their use with GPS provides more detailed investigation of deformation phenomena. Using inclinometers and GPS is helpful to be able to identify the components of structural responses to the natural forces as static, quasi-static, or resonant. PMID:22163499

  20. Novel models and algorithms of load balancing for variable-structured collaborative simulation under HLA/RTI

    NASA Astrophysics Data System (ADS)

    Yue, Yingchao; Fan, Wenhui; Xiao, Tianyuan; Ma, Cheng

    2013-07-01

    High level architecture(HLA) is the open standard in the collaborative simulation field. Scholars have been paying close attention to theoretical research on and engineering applications of collaborative simulation based on HLA/RTI, which extends HLA in various aspects like functionality and efficiency. However, related study on the load balancing problem of HLA collaborative simulation is insufficient. Without load balancing, collaborative simulation under HLA/RTI may encounter performance reduction or even fatal errors. In this paper, load balancing is further divided into static problems and dynamic problems. A multi-objective model is established and the randomness of model parameters is taken into consideration for static load balancing, which makes the model more credible. The Monte Carlo based optimization algorithm(MCOA) is excogitated to gain static load balance. For dynamic load balancing, a new type of dynamic load balancing problem is put forward with regards to the variable-structured collaborative simulation under HLA/RTI. In order to minimize the influence against the running collaborative simulation, the ordinal optimization based algorithm(OOA) is devised to shorten the optimization time. Furthermore, the two algorithms are adopted in simulation experiments of different scenarios, which demonstrate their effectiveness and efficiency. An engineering experiment about collaborative simulation under HLA/RTI of high speed electricity multiple units(EMU) is also conducted to indentify credibility of the proposed models and supportive utility of MCOA and OOA to practical engineering systems. The proposed research ensures compatibility of traditional HLA, enhances the ability for assigning simulation loads onto computing units both statically and dynamically, improves the performance of collaborative simulation system and makes full use of the hardware resources.

  1. Emotion recognition through static faces and moving bodies: a comparison between typically developed adults and individuals with high level of autistic traits

    PubMed Central

    Actis-Grosso, Rossana; Bossi, Francesco; Ricciardelli, Paola

    2015-01-01

    We investigated whether the type of stimulus (pictures of static faces vs. body motion) contributes differently to the recognition of emotions. The performance (accuracy and response times) of 25 Low Autistic Traits (LAT group) young adults (21 males) and 20 young adults (16 males) with either High Autistic Traits or with High Functioning Autism Spectrum Disorder (HAT group) was compared in the recognition of four emotions (Happiness, Anger, Fear, and Sadness) either shown in static faces or conveyed by moving body patch-light displays (PLDs). Overall, HAT individuals were as accurate as LAT ones in perceiving emotions both with faces and with PLDs. Moreover, they correctly described non-emotional actions depicted by PLDs, indicating that they perceived the motion conveyed by the PLDs per se. For LAT participants, happiness proved to be the easiest emotion to be recognized: in line with previous studies we found a happy face advantage for faces, which for the first time was also found for bodies (happy body advantage). Furthermore, LAT participants recognized sadness better by static faces and fear by PLDs. This advantage for motion kinematics in the recognition of fear was not present in HAT participants, suggesting that (i) emotion recognition is not generally impaired in HAT individuals, (ii) the cues exploited for emotion recognition by LAT and HAT groups are not always the same. These findings are discussed against the background of emotional processing in typically and atypically developed individuals. PMID:26557101

  2. Emotion recognition through static faces and moving bodies: a comparison between typically developed adults and individuals with high level of autistic traits.

    PubMed

    Actis-Grosso, Rossana; Bossi, Francesco; Ricciardelli, Paola

    2015-01-01

    We investigated whether the type of stimulus (pictures of static faces vs. body motion) contributes differently to the recognition of emotions. The performance (accuracy and response times) of 25 Low Autistic Traits (LAT group) young adults (21 males) and 20 young adults (16 males) with either High Autistic Traits or with High Functioning Autism Spectrum Disorder (HAT group) was compared in the recognition of four emotions (Happiness, Anger, Fear, and Sadness) either shown in static faces or conveyed by moving body patch-light displays (PLDs). Overall, HAT individuals were as accurate as LAT ones in perceiving emotions both with faces and with PLDs. Moreover, they correctly described non-emotional actions depicted by PLDs, indicating that they perceived the motion conveyed by the PLDs per se. For LAT participants, happiness proved to be the easiest emotion to be recognized: in line with previous studies we found a happy face advantage for faces, which for the first time was also found for bodies (happy body advantage). Furthermore, LAT participants recognized sadness better by static faces and fear by PLDs. This advantage for motion kinematics in the recognition of fear was not present in HAT participants, suggesting that (i) emotion recognition is not generally impaired in HAT individuals, (ii) the cues exploited for emotion recognition by LAT and HAT groups are not always the same. These findings are discussed against the background of emotional processing in typically and atypically developed individuals.

  3. Transient Pressure Test Article (TPTA) 1.1 and 1.1A, volume 1

    NASA Technical Reports Server (NTRS)

    Rebells, Clarence A.

    1988-01-01

    This final test report presents the results obtained during the static hot firing and cold-gas high Q tests of the first Transient Pressure Test Article (TPTA) 1.1. The TPTA consisted of field test joints A and B, which were the original RSRM J-insulation configuration, with a metal capture feature. It also consisted of a flight configuration nozzle-to-case test joint (Joint D) with shorter vent slots. Fluorocarbon O-rings were used in all the test joints. The purpose of the TPTA tests is to evaluate and characterize the RSMR field and nozzle-to-case joints under the influence of ignition and strut loads during liftoff anf high Q. All objectives of the cold-gas high Q (TPTA 1.1A) test were met and all measurements were close to predicted values. During the static hot-firing test (TPTA 1.1), the motor was inadvertently plugged by the quench injector plug, making it a more severe test, although no strut loads were applied. The motor was depressurized after approximately 11 min using an auxiliary system, and no anomalies were noted. In the static hot-firing test, pressure was incident on the insulation and the test joint gaps were within the predicted range. During the static hot-firing test, no strut loads were applied because the loading system malfunctioned. For this test, all measurements were within range of similar tests performed without strut loads.

  4. PLAStiCC: Predictive Look-Ahead Scheduling for Continuous dataflows on Clouds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumbhare, Alok; Simmhan, Yogesh; Prasanna, Viktor K.

    2014-05-27

    Scalable stream processing and continuous dataflow systems are gaining traction with the rise of big data due to the need for processing high velocity data in near real time. Unlike batch processing systems such as MapReduce and workflows, static scheduling strategies fall short for continuous dataflows due to the variations in the input data rates and the need for sustained throughput. The elastic resource provisioning of cloud infrastructure is valuable to meet the changing resource needs of such continuous applications. However, multi-tenant cloud resources introduce yet another dimension of performance variability that impacts the application’s throughput. In this paper wemore » propose PLAStiCC, an adaptive scheduling algorithm that balances resource cost and application throughput using a prediction-based look-ahead approach. It not only addresses variations in the input data rates but also the underlying cloud infrastructure. In addition, we also propose several simpler static scheduling heuristics that operate in the absence of accurate performance prediction model. These static and adaptive heuristics are evaluated through extensive simulations using performance traces obtained from public and private IaaS clouds. Our results show an improvement of up to 20% in the overall profit as compared to the reactive adaptation algorithm.« less

  5. A Multiscale Model for the Quasi-Static Thermo-Plastic Behavior of Highly Cross-Linked Glassy Polymers

    DOE PAGES

    Vu-Bac, N.; Bessa, M. A.; Rabczuk, Timon; ...

    2015-09-10

    In this paper, we present experimentally validated molecular dynamics predictions of the quasi- static yield and post-yield behavior for a highly cross-linked epoxy polymer under gen- eral stress states and for different temperatures. In addition, a hierarchical multiscale model is presented where the nano-scale simulations obtained from molecular dynamics were homogenized to a continuum thermoplastic constitutive model for the epoxy that can be used to describe the macroscopic behavior of the material. Three major conclusions were achieved: (1) the yield surfaces generated from the nano-scale model for different temperatures agree well with the paraboloid yield crite- rion, supporting previous macroscopicmore » experimental observations; (2) rescaling of the entire yield surfaces to the quasi-static case is possible by considering Argon’s theoretical predictions for pure compression of the polymer at absolute zero temperature; (3) nano- scale simulations can be used for an experimentally-free calibration of macroscopic con- tinuum models, opening new avenues for the design of materials and structures through multi-scale simulations that provide structure-property-performance relationships.« less

  6. Effects of the Strain Rate and Temperature on the Microstructural Evolution of Twin-Rolled Cast Wrought AZ31B Alloys Sheets

    NASA Astrophysics Data System (ADS)

    Rodriguez, A. K.; Kridli, G.; Ayoub, G.; Zbib, H.

    2013-10-01

    This article investigates the effects of the strain rate and temperature on the microstructural evolution of twin-rolled cast wrought AZ31B sheets. This was achieved through static heating and through tensile test performed at strain rates from 10-4 to 10-1 s-1 and temperatures between room temperature (RT) and 300 °C. While brittle fracture with high stresses and limited elongation was observed at the RT, ductile behavior was obtained at higher temperatures with low strain rates. The strain rate sensitivity and activation energy calculations indicate that grain boundary diffusion and lattice diffusion are the two rate-controlling mechanisms at warm and high temperatures, respectively. An analysis of the evolution of the microstructure provided some indications of the most probable deformation mechanisms in the material: twinning operates at lower temperatures, and dynamic recrystallization dominates at higher temperatures. The static evolution of the microstructure was also studied, proving a gradual static grain growth of the AZ31B with annealing temperature and time.

  7. Gas Measurement Using Static Fourier Transform Infrared Spectrometers.

    PubMed

    Köhler, Michael H; Schardt, Michael; Rauscher, Markus S; Koch, Alexander W

    2017-11-13

    Online monitoring of gases in industrial processes is an ambitious task due to adverse conditions such as mechanical vibrations and temperature fluctuations. Whereas conventional Fourier transform infrared (FTIR) spectrometers use rather complex optical and mechanical designs to ensure stable operation, static FTIR spectrometers do not require moving parts and thus offer inherent stability at comparatively low costs. Therefore, we present a novel, compact gas measurement system using a static single-mirror Fourier transform spectrometer (sSMFTS). The system works in the mid-infrared range from 650 cm - 1 to 1250 cm - 1 and can be operated with a customized White cell, yielding optical path lengths of up to 120 cm for highly sensitive quantification of gas concentrations. To validate the system, we measure different concentrations of 1,1,1,2-Tetrafluoroethane (R134a) and perform a PLS regression analysis of the acquired infrared spectra. Thereby, the measured absorption spectra show good agreement with reference data. Since the system additionally permits measurement rates of up to 200 Hz and high signal-to-noise ratios, an application in process analysis appears promising.

  8. Gas Measurement Using Static Fourier Transform Infrared Spectrometers

    PubMed Central

    Schardt, Michael; Rauscher, Markus S.; Koch, Alexander W.

    2017-01-01

    Online monitoring of gases in industrial processes is an ambitious task due to adverse conditions such as mechanical vibrations and temperature fluctuations. Whereas conventional Fourier transform infrared (FTIR) spectrometers use rather complex optical and mechanical designs to ensure stable operation, static FTIR spectrometers do not require moving parts and thus offer inherent stability at comparatively low costs. Therefore, we present a novel, compact gas measurement system using a static single-mirror Fourier transform spectrometer (sSMFTS). The system works in the mid-infrared range from 650 cm−1 to 1250 cm−1 and can be operated with a customized White cell, yielding optical path lengths of up to 120 cm for highly sensitive quantification of gas concentrations. To validate the system, we measure different concentrations of 1,1,1,2-Tetrafluoroethane (R134a) and perform a PLS regression analysis of the acquired infrared spectra. Thereby, the measured absorption spectra show good agreement with reference data. Since the system additionally permits measurement rates of up to 200 Hz and high signal-to-noise ratios, an application in process analysis appears promising. PMID:29137193

  9. Subsonic Maneuvering Effectiveness of High Performance Aircraft Which Employ Quasi-Static Shape Change Devices

    NASA Technical Reports Server (NTRS)

    Montgomery, Raymond C.; Scott, Michael A.; Weston, Robert P.

    1998-01-01

    This paper represents an initial study on the use of quasi-static shape change devices in aircraft maneuvering. The macroscopic effects and requirements for these devices in flight control are the focus of this study. Groups of devices are postulated to replace the conventional leading-edge flap (LEF) and the all-moving wing tip (AMT) on the tailless LMTAS-ICE (Lockheed Martin Tactical Aircraft Systems - Innovative Control Effectors) configuration. The maximum quasi-static shape changes are 13.8% and 7.7% of the wing section thickness for the LEF and AMT replacement devices, respectively. A Computational Fluid Dynamics (CFD) panel code is used to determine the control effectiveness of groups of these devices. A preliminary design of a wings-leveler autopilot is presented. Initial evaluation at 0.6 Mach at 15,000 ft. altitude is made through batch simulation. Results show small disturbance stability is achieved, however, an increase in maximum distortion is needed to statically offset five degrees of sideslip. This only applies to the specific device groups studied, encouraging future research on optimal device placement.

  10. Model-based restoration using light vein for range-gated imaging systems.

    PubMed

    Wang, Canjin; Sun, Tao; Wang, Tingfeng; Wang, Rui; Guo, Jin; Tian, Yuzhen

    2016-09-10

    The images captured by an airborne range-gated imaging system are degraded by many factors, such as light scattering, noise, defocus of the optical system, atmospheric disturbances, platform vibrations, and so on. The characteristics of low illumination, few details, and high noise make the state-of-the-art restoration method fail. In this paper, we present a restoration method especially for range-gated imaging systems. The degradation process is divided into two parts: the static part and the dynamic part. For the static part, we establish the physical model of the imaging system according to the laser transmission theory, and estimate the static point spread function (PSF). For the dynamic part, a so-called light vein feature extraction method is presented to estimate the fuzzy parameter of the atmospheric disturbance and platform movement, which make contributions to the dynamic PSF. Finally, combined with the static and dynamic PSF, an iterative updating framework is used to restore the image. Compared with the state-of-the-art methods, the proposed method can effectively suppress ringing artifacts and achieve better performance in a range-gated imaging system.

  11. Application of prognostic scores in the STOPAH trial: Discriminant function is no longer the optimal scoring system in alcoholic hepatitis.

    PubMed

    Forrest, Ewan H; Atkinson, Stephen R; Richardson, Paul; Masson, Steven; Ryder, Stephen; Thursz, Mark R; Allison, Michael

    2018-03-01

    'Static' prognostic models in alcoholic hepatitis, using data from a single time point, include the discriminant function (DF), Glasgow alcoholic hepatitis score (GAHS), the age, serum bilirubin, international normalized ratio and serum creatinine (ABIC) score and the model of end-stage liver disease (MELD). 'Dynamic' scores, incorporating evolution of bilirubin at seven days, include the Lille score. The aim of this study was to assess these scores' performance in patients from the STOPAH trial. Predictive performance of scores was assessed by area under the receiver operating curve (AUC). The effect of different therapeutic strategies upon survival was assessed by Kaplan-Meier analysis and tested using the log-rank test. A total of 1,068 patients were studied. The AUCs for the DF were significantly lower than for MELD, ABIC and GAHS for both 28- and 90-day outcomes: 90-day values were 0.670, 0.704, 0.726 and 0.713, respectively. 'Dynamic' scores and change in 'static' scores by Day 7 had similar AUCs. Patients with consistently low 'static' scores had low 28-day mortalities that were not improved with prednisolone (MELD <25: 8.6%; ABIC <6.71: 6.6%; GAHS <9: 5.9%). In patients with high 'static' scores without gastrointestinal bleeding or sepsis, prednisolone reduced 28-day mortality (MELD: 22.2% vs. 28.9%, p = 0.13; ABIC 14.6% vs. 21%, p = 0.02; GAHS 21% vs. 29.3%, p = 0.04). Overall mortality from treating all patients with a DF ≥32 and Lille assessment (90-day mortality 26.8%) was greater than combining newer 'static' and 'dynamic' scores (90-day mortality: MELD/Lille 21.8%; ABIC/Lille 23.7%; GAHS/Lille 20.6%). MELD, ABIC and GAHS are superior to the DF in alcoholic hepatitis. Consistently low scores have a favourable outcome not improved with prednisolone. Combined baseline 'static' and Day 7 scores reduce the number of patients exposed to corticosteroids and improve 90-day outcome. Alcoholic hepatitis is a life-threatening condition. Several scores exist to determine the outcome of these patients as well as to identify those who may benefit from treatment. This study looked at the performance of existing scores in patients who had been recruited to the largest alcoholic hepatitis clinical trial: STOPAH. 'Static' scores are calculable at the start of assessment. The three newer static scores (ABIC, GAHS and MELD) were shown to be superior to the oldest score (DF). ABIC and GAHS could also identify patients who had a survival benefit 28 days after starting prednisolone treatment. 'Dynamic' scores relate to the change in disease over the first week of treatment. Combination of the 'static' scores 'with the 'dynamic' scores or change in 'static' scores allowed identification of patients who could benefit from prednisolone up to 90 days. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  12. Measures of static postural control moderate the association of strength and power with functional dynamic balance.

    PubMed

    Forte, Roberta; Boreham, Colin A G; De Vito, Giuseppe; Ditroilo, Massimiliano; Pesce, Caterina

    2014-12-01

    Age-related reductions in strength and power are considered to negatively impact balance control, but the existence of a direct association is still an issue of debate. This is possibly due to the fact that balance assessment is complex, reflects different underlying physiologic mechanisms and involves quantitative measurements of postural sway or timing of performance during balance tasks. The present study evaluated the moderator effect of static postural control on the association of power and strength with dynamic balance tasks. Fifty-seven healthy 65-75 year old individuals performed tests of dynamic functional balance (walking speed under different conditions) and of strength, power and static postural control. Dynamic balance performance (walking speed) was associated with lower limb strength and power, as well as postural control under conditions requiring postural adjustments (narrow surface walking r(2) = 0.31, p < 0.001). An interaction effect between strength and static postural control was found with narrow surface walking and talking while walking (change of β 0.980, p < 0.001 in strength for 1 SD improvements in static postural control for narrow walking, and [Formula: see text] -0.730, p < 0.01 in talking while walking). These results indicate that good static postural control facilitates the utilisation of lower limb strength to better perform complex, dynamic functional balance tasks. Practical implications for assessment and training are discussed.

  13. Body measurements of Chinese males in dynamic postures and application.

    PubMed

    Wang, Y J; Mok, P Y; Li, Y; Kwok, Y L

    2011-11-01

    It is generally accepted that there is a relationship between body dimensions, body movement and clothing wearing ease design, and yet previous research in this area has been neither sufficient nor systematic. This paper proposes a method to measure the human body in the static state and in 17 dynamic postures, so as to understand dimensional changes of different body parts during dynamic movements. Experimental work is carried out to collect 30 measurements of 10 male Chinese subjects in both static and dynamic states. Factor analysis is used to analyse body measurement data in a static state, and such key measurements describe the characteristics of different body figures. Moreover, one-way ANOVA is used to analyse how dynamic postures affect these key body measurements. Finally, an application of the research results is suggested: a dynamic block patternmaking method for high-performance clothing design. Copyright © 2011 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  14. Development of a static feed water electrolysis system

    NASA Technical Reports Server (NTRS)

    Schubert, F. H.; Lantz, J. B.; Hallick, T. M.

    1982-01-01

    A one person level oxygen generation subsystem was developed and production of the one person oxygen metabolic requirements, 0.82 kg, per day was demonstrated without the need for condenser/separators or electrolyte pumps. During 650 hours of shakedown, design verification, and endurance testing, cell voltages averaged 1.62 V at 206 mA/sq cm and at average operating temperature as low as 326 K, virtually corresponding to the state of the art performance previously established for single cells. This high efficiency and low waste heat generation prevented maintenance of the 339 K design temperature without supplemental heating. Improved water electrolysis cell frames were designed, new injection molds were fabricated, and a series of frames was molded. A modified three fluid pressure controller was developed and a static feed water electrolysis that requires no electrolyte in the static feed compartment was developed and successfully evaluated.

  15. CFD Assessment of Aerodynamic Degradation of a Subsonic Transport Due to Airframe Damage

    NASA Technical Reports Server (NTRS)

    Frink, Neal T.; Pirzadeh, Shahyar Z.; Atkins, Harold L.; Viken, Sally A.; Morrison, Joseph H.

    2010-01-01

    A computational study is presented to assess the utility of two NASA unstructured Navier-Stokes flow solvers for capturing the degradation in static stability and aerodynamic performance of a NASA General Transport Model (GTM) due to airframe damage. The approach is to correlate computational results with a substantial subset of experimental data for the GTM undergoing progressive losses to the wing, vertical tail, and horizontal tail components. The ultimate goal is to advance the probability of inserting computational data into the creation of advanced flight simulation models of damaged subsonic aircraft in order to improve pilot training. Results presented in this paper demonstrate good correlations with slope-derived quantities, such as pitch static margin and static directional stability, and incremental rolling moment due to wing damage. This study further demonstrates that high fidelity Navier-Stokes flow solvers could augment flight simulation models with additional aerodynamic data for various airframe damage scenarios.

  16. Analysis of the separated boundary layer flow on the surface and in the wake of blunt trailing edge airfoils

    NASA Technical Reports Server (NTRS)

    Goradia, S. H.; Mehta, J. M.; Shrewsbury, G. S.

    1977-01-01

    The viscous flow phenomena associated with sharp and blunt trailing edge airfoils were investigated. Experimental measurements were obtained for a 17 percent thick, high performance GAW-1 airfoil. Experimental measurements consist of velocity and static pressure profiles which were obtained by the use of forward and reverse total pressure probes and disc type static pressure probes over the surface and in the wake of sharp and blunt trailing edge airfoils. Measurements of the upper surface boundary layer were obtained in both the attached and separated flow regions. In addition, static pressure data were acquired, and skin friction on the airfoil upper surface was measured with a specially constructed device. Comparison of the viscous flow data with data previously obtained elsewhere indicates reasonable agreement in the attached flow region. In the separated flow region, considerable differences exist between these two sets of measurements.

  17. Comparison of Walking and Traveling-Wave Piezoelectric Motors as Actuators in Kinesthetic Haptic Devices.

    PubMed

    Olsson, Pontus; Nysjo, Fredrik; Carlbom, Ingrid B; Johansson, Stefan

    2016-01-01

    Piezoelectric motors offer an attractive alternative to electromagnetic actuators in portable haptic interfaces: they are compact, have a high force-to-volume ratio, and can operate with limited or no gearing. However, the choice of a piezoelectric motor type is not obvious due to differences in performance characteristics. We present our evaluation of two commercial, operationally different, piezoelectric motors acting as actuators in two kinesthetic haptic grippers, a walking quasi-static motor and a traveling wave ultrasonic motor. We evaluate each gripper's ability to display common virtual objects including springs, dampers, and rigid walls, and conclude that the walking quasi-static motor is superior at low velocities. However, for applications where high velocity is required, traveling wave ultrasonic motors are a better option.

  18. Numerical study on the aerodynamic characteristics of both static and flapping wing with attachments

    NASA Astrophysics Data System (ADS)

    Xie, Lingwang; Zhang, Xingwei; Luo, Pan; Huang, Panpan

    2017-10-01

    The purpose of this paper is to investigate the aerodynamic mechanism of airfoils under different icing situations which are different icing type, different icing time, and different icing position. Numerical simulation is carried out by using the finite volume method for both static and flapping airfoils, when Reynolds number is kept at 135000. The difference of aerodynamic performance between the airfoil with attachments and without attachments are be investigated by comparing the force coefficients, lift-to-drag ratios and flow field contour. The present simulations reveal that some influences of attachment are similar in the static airfoil and the flapping airfoil. Specifically, the airfoil with the attachment derived from glaze ice type causes the worse aerodynamic performance than that derived from rime ice type. The longer the icing time, the greater influence of aerodynamic performance the attachment causes. The attachments on the leading-edge have the greater influence of aerodynamic performance than other positions. Moreover, there are little differences between the static airfoil and the flapping airfoil. Compared with the static airfoil, the flapping airfoil which attachment located on the trailing edge causes a worse aerodynamic performance. Both attachments derived from rime ice type and glaze ice type all will deteriorate the aerodynamic performance of the asymmetrical airfoils. Present work provides the systematic and comprehensive study about icing blade which is conducive to the development of the wind power generation technology.

  19. Trajectory Adjustments Underlying Task-Specific Intermittent Force Behaviors and Muscular Rhythms

    PubMed Central

    Chen, Yi-Ching; Lin, Yen-Ting; Huang, Chien-Ting; Shih, Chia-Li; Yang, Zong-Ru; Hwang, Ing-Shiou

    2013-01-01

    Force intermittency is one of the major causes of motor variability. Focusing on the dynamics of force intermittency, this study was undertaken to investigate how force trajectory is fine-tuned for static and dynamic force-tracking of a comparable physical load. Twenty-two healthy adults performed two unilateral resistance protocols (static force-tracking at 75% maximal effort and dynamic force-tracking in the range of 50%–100% maximal effort) using the left hand. The electromyographic activity and force profile of the designated hand were monitored. Gripping force was off-line decomposed into a primary movement spectrally identical to the target motion and a force intermittency profile containing numerous force pulses. The results showed that dynamic force-tracking exhibited greater intermittency amplitude and force pulse but a smaller amplitude ratio of primary movement to force intermittency than static force-tracking. Multi-scale entropy analysis revealed that force intermittency during dynamic force-tracking was more complex on a low time scale but more regular on a high time scale than that of static force-tracking. Together with task-dependent force intermittency properties, dynamic force-tracking exhibited a smaller 8–12 Hz muscular oscillation but a more potentiated muscular oscillation at 35–50 Hz than static force-tracking. In conclusion, force intermittency reflects differing trajectory controls for static and dynamic force-tracking. The target goal of dynamic tracking is achieved through trajectory adjustments that are more intricate and more frequent than those of static tracking, pertaining to differing organizations and functioning of muscular oscillations in the alpha and gamma bands. PMID:24098640

  20. Comparison between static stretching and the Pilates method on the flexibility of older women.

    PubMed

    Oliveira, Laís Campos de; Oliveira, Raphael Gonçalves de; Pires-Oliveira, Deise Aparecida de Almeida

    2016-10-01

    Flexibility decreases with advancing age and some forms of exercise, such as static stretching and Pilates, can contribute to the improvement of this physical ability. To compare the effects of static stretching and Pilates on the flexibility of healthy older women, over the age of 60 years. Thirty-two volunteers were randomized into two groups (Static stretching or Pilates) to perform exercises for 60 min, twice a week, for three months. Evaluations to analyze the movements of the trunk (flexion and extension), hip flexion and plantar and dorsiflexion of the ankle were performed before and after the intervention, using a fleximeter. The static stretching exercises improved the trunk flexion and hip flexion movements, while the Pilates improved all evaluated movements. However, over time, the groups presented differences only for the trunk extension movement. For some body segments, Pilates may be more effective for improving flexibility in older women compared to static stretching. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Experimental and Computational Studies of Molecular and Lattice Symmetries of Energetic Materials at High Pressure

    DTIC Science & Technology

    2002-01-01

    Prescribed by ANSI Std Z39-18 Research and Technology Department Dynamics and Diagnostics Division, Static High- Pressure Group Overall Research...Department Dynamics and Diagnostics Division, Static High- Pressure Group Impact of this Basic Research • This research generates phase and density...Static High- Pressure Group Experimental Methodology Use Diamond Anvil Cells (DAC) with coil Heaters (HDAC) to achieve • High pressures (P) to 10 GPa

  2. Water electrolysis system - H2 and O2 generation. [for spacecraft atmosphere revitalization

    NASA Technical Reports Server (NTRS)

    Schubert, F. H.; Lee, M. K.; Davenport, R. J.; Quattrone, P. D.

    1978-01-01

    An oxygen generation system design based on the static feed water electrolysis concept is described. The system is designed to generate 4.20 kg/d of oxygen to satisfy the metabolic needs of a three-person crew, to compensate for spacecraft leakage, and to provide the oxygen required by the electrochemical depolarized CO2 concentrator. The system has a fixed hardware weight of 75 kg, occupies a volume of 0.11 cu m, and requires only 1.1 kw of electrical power. The static feed electrolysis concept is discussed, and experimental data on the high-performance electrode are presented.

  3. Hypersonic and Supersonic Static Aerodynamics of Mars Science Laboratory Entry Vehicle

    NASA Technical Reports Server (NTRS)

    Dyakonov, Artem A.; Schoenenberger, Mark; Vannorman, John W.

    2012-01-01

    This paper describes the analysis of continuum static aerodynamics of Mars Science Laboratory (MSL) entry vehicle (EV). The method is derived from earlier work for Mars Exploration Rover (MER) and Mars Path Finder (MPF) and the appropriate additions are made in the areas where physics are different from what the prior entry systems would encounter. These additions include the considerations for the high angle of attack of MSL EV, ablation of the heatshield during entry, turbulent boundary layer, and other aspects relevant to the flight performance of MSL. Details of the work, the supporting data and conclusions of the investigation are presented.

  4. Manipulation of nanoparticles of different shapes inside a scanning electron microscope

    PubMed Central

    Polyakov, Boris; Dorogin, Leonid M; Butikova, Jelena; Antsov, Mikk; Oras, Sven; Lõhmus, Rünno; Kink, Ilmar

    2014-01-01

    Summary In this work polyhedron-like gold and sphere-like silver nanoparticles (NPs) were manipulated on an oxidized Si substrate to study the dependence of the static friction and the contact area on the particle geometry. Measurements were performed inside a scanning electron microscope (SEM) that was equipped with a high-precision XYZ-nanomanipulator. To register the occurring forces a quartz tuning fork (QTF) with a glued sharp probe was used. Contact areas and static friction forces were calculated by using different models and compared with the experimentally measured force. The effect of NP morphology on the nanoscale friction is discussed. PMID:24605279

  5. Some effects of sleep deprivation on tracking performance in static and dynamic environments.

    DOT National Transportation Integrated Search

    1976-01-01

    The influence of approximately 34 and 55 h of sleep deprivation on performance scores derived from manually tracking the localizer needle on an aircraft instrument was assessed under both static (no motion) and dynamic (whole-body angular acceleratio...

  6. Static and dynamic modes of 810 nm diode laser hair removal compared: A clinical and histological study

    PubMed Central

    2017-01-01

    Background and Aims Laser hair removal has recently become a major indication. Diode lasers have become commercially available offering two modes of application: a stamping or static mode, and a dynamic mode whereby the handpiece is continuously moved across the target tissue. The present study was designed to compare the efficacy of these two approaches clinically and histologically. Subjects and Methods Twenty-five subjects participated in the study, 12 males and 13 females, ages ranging from 20 to 57 yr (Mean age 41.6 yr). A baseline hair count was performed on both the target areas. The ms-pulsed diode laser delivered 810 nm via a handpiece with a cooled tip, offering both static and dynamic modes which were used on the subjects' left and right crura, respectively. Pain during treatment was assessed using a visual analog scale (VAS) and gross inspection was performed immediately after treatment for any abnormality in the treated skin. Hair counts were performed on both crura at 1 and 3 months after the treatment, and compared with the baseline counts. Biopsies were performed in the dynamic mode treated skin at baseline and at 1 month after the treatment, and assessed with light microscopy, immunohistochemistry and transmission electron microscopy (TEM). Results All subjects completed the study. Compared with baseline, hair counts were significantly lower at 1 and 3 months post-treatment with no significant difference between the static and dynamic laser depilation modes, nor in the severity of the pain experienced during the procedure. Histologically, degenerative changes in the hair follicles were noted immediately after laser treatment. At one month, cystic formation was seen in the hair follicles showing a strong tendency towards apoptotic cell death. Conclusions With the diode laser system and at the parameters used in the present study, high depilation efficacy was seen with no significant difference between the static and dynamic modes. Interestingly, good long-term depilation is probably a result of induced apoptotic cell death in the follicles rather than any other mechanism. PMID:28740327

  7. Warm-up effects from concomitant use of vibration and static stretching after cycling.

    PubMed

    Yang, Wen-Wen; Liu, Chiang; Shiang, Tzyy-Yuang

    2017-04-01

    Static stretch is routinely used in traditional warm-up but impaired muscle performance. Combining vibration with static stretching as a feasible component may be an alternative to static stretching after submaximal aerobic exercise to improve jumping as well as flexibility. Therefore, the purpose of this study was to investigate and compare the effects of aerobic exercise, static stretching, and vibration with static stretching on flexibility and vertical jumping performance. A repeated measures experimental design was used in this study. Twelve participants randomly underwent 5 different warm-ups including cycling alone (C warm-up), static stretching alone (S warm-up), combining vibration with static stretching (VS warm-up), cycling followed by S (C+S warm-up), and cycling followed by VS (C+VS warm-up) on 5 separate days. Sit-and-reach, squat jump (SJ), and counter movement jump (CMJ) were measured for pre- and post- tests. The sit-and-reach scores after the S, VS, C+S and C+VS warm-ups were significantly enhanced (P<0.001), and were significantly greater than that of the C warm-up (P<0.05). The jumping height of SJ and CMJ after the C and C+VS warm-ups were significantly increased (P<0.05), whereas a significant reduction was found after the S warm-up (P<0.05). Vibration combined with stretching after submaximal cycling exercise (C+VS warm-up) could be a feasible warm-up protocol to improve both flexibility and vertical jump performance, compared with the traditional warm-up (C+S warm-up).

  8. Cooperation among wirelessly connected static and mobile sensor nodes for surveillance applications.

    PubMed

    de Freitas, Edison Pignaton; Heimfarth, Tales; Vinel, Alexey; Wagner, Flávio Rech; Pereira, Carlos Eduardo; Larsson, Tony

    2013-09-25

    This paper presents a bio-inspired networking strategy to support the cooperation between static sensors on the ground and mobile sensors in the air to perform surveillance missions in large areas. The goal of the proposal is to provide low overhead in the communication among sensor nodes, while allocating the mobile sensors to perform sensing activities requested by the static ones. Simulations have shown that the strategy is efficient in maintaining low overhead and achieving the desired coordination.

  9. Mechanical characterization of hybrid and functionally-graded aluminum open-cell foams with nanocrystalline-copper coatings

    NASA Astrophysics Data System (ADS)

    Sun, Yi

    Cellular/foam materials found in nature such as bone, wood, and bamboo are usually functionally graded by having a non-uniform density distribution and inhomogenous composition that optimizes their global mechanical performance. Inspired by such naturally engineered products, the current study was conducted towards the development of functionally graded hybrid metal foams (FGHMF) with electrodeposited (ED) nanocrystalline coatings. First, the deformation and failure mechanisms of aluminum/copper (Al/Cu) hybrid foams were investigated using finite element analyses at different scales. The micro-scale behavior was studied based on single ligament models discretized using continuum elements and the macro-scale behavior was investigated using beam-element based finite element models of representative unit volumes consisting of multiple foam cells. With a detailed constitutive material behavior and material failure considered for both the aluminum ligament and the nano-copper coating, the numerical models were able to capture the unique behavior of Al/Cu hybrid foams, such as the typically observed sudden load drop after yielding. The numerical models indicate that such load drop is caused by the fracture of foam ligaments initiated from the rupture of the ED nano-copper coating due to its low ductility. This failure mode jeopardizes the global energy absorption capacity of hybrid foams, especially when a thick coating is applied. With the purpose of enhancing the performance of Al/Cu hybrid foams, an annealing process, which increased the ductility of the nanocrystalline copper coating by causing recovery, recrystallination and grain growth, was introduced in the manufacturing of Al/Cu hybrid foams. Quasi-static experimental results indicate that when a proper amount of annealing is applied, the ductility of the ED copper can be effectively improved and the compressive and tensile behavior of Al/Cu hybrid foams can be significantly enhanced, including better energy absorption capacity. The behavior of Al/Cu hybrid foams under high-strain-rate condition was then investigated using experiments on a split Hopkinson pressure bar. It was found that the ED nano-copper coating can also effectively enhance the energy absorption capacities of aluminum open-cell foams under high strain rate. Similar to the quasi-static behavior, a large stress drop was observed in the compressive response of Al/Cu hybrid foams under high strain rate, which was accompanied by dramatic shattering of material. It is shown that a more ductile behavior and better energy absorption performance under high strain rate condition can be also obtained by introducing an annealing process. Finally, the manufacturing process of Al/Cu hybrid foams was customized to fabricate FGHMF systems with two dimensional property gradients. The performance of these FGHMFs at both quasi-static and dynamic conditions was evaluated. Under quasi-static condition, two flexural type loading conditions were considered, namely, a three point bending condition and a cantilever beam condition. The dynamic behavior of FGHMFs was investigated by conducting drop weight tower tests on a three point bending setup. It was found that the failure mechanism of hybrid metal foams can be modified and the mechanical properties, such as stiffness and strength, and energy absorption capacities of hybrid metal foams can be optimized under both quasi-static and dynamic conditions by introducing strategically designed coating patterns. The presented novel approach and findings in this study provide valuable information on the development of high performance hybrid and functionally-graded cellular materials.

  10. Acoustic tests of duct-burning turbofan jet noise simulation

    NASA Technical Reports Server (NTRS)

    Knott, P. R.; Stringas, E. J.; Brausch, J. F.; Staid, P. S.; Heck, P. H.; Latham, D.

    1978-01-01

    The results of a static acoustic and aerodynamic performance, model-scale test program on coannular unsuppressed and multielement fan suppressed nozzle configurations are summarized. The results of the static acoustic tests show a very beneficial interaction effect. When the measured noise levels were compared with the predicted noise levels of two independent but equivalent conical nozzle flow streams, noise reductions for the unsuppressed coannular nozzles were of the order of 10 PNdB; high levels of suppression (8 PNdB) were still maintained even when only a small amount of core stream flow was used. The multielement fan suppressed coannular nozzle tests showed 15 PNdB noise reductions and up to 18 PNdB noise reductions when a treated ejector was added. The static aerodynamic performance tests showed that the unsuppressed coannular plug nozzles obtained gross thrust coefficients of 0.972, with 1.2 to 1.7 percent lower levels for the multielement fan-suppressed coannular flow nozzles. For the first time anywhere, laser velocimeter velocity profile measurements were made on these types of nozzle configurations and with supersonic heated flow conditions. Measurements showed that a very rapid decay in the mean velocity occurs for the nozzle tested.

  11. Solid-State Nuclear Power

    NASA Technical Reports Server (NTRS)

    George, Jeffrey A.

    2012-01-01

    A strategy for "Solid-State" Nuclear Power is proposed to guide development of technologies and systems into the second 50 years of nuclear spaceflight. The strategy emphasizes a simple and highly integrated system architecture with few moving parts or fluid loops; the leverage of modern advances in materials, manufacturing, semiconductors, microelectromechanical and nanotechnology devices; and the targeted advancement of high temperature nuclear fuels, materials and static power conversion to enable high performance from simple system topologies.

  12. Correlation-based static correction of 4D seismic data with a demonstration at the Ketzin CO2 storage site, Germany

    NASA Astrophysics Data System (ADS)

    Bergmann, P.; Kashubin, A.; Ivandic, M.; Lueth, S.; Juhlin, C.

    2013-12-01

    Statics are time-shifts that occur in reflection seismic trace data and are generally considered to be mainly due to shallow velocity variations. Since the refraction static correction is most often based on first break picking and subsequent velocity model estimation, it is even today a labor-consuming and error-prone procedure. Time-lapse seismic also faces this issue in a temporal sense, since changes in statics, due to temporally variable near-surface conditions, are known to be first-order contributors to time-lapse noise. Considerable changes in the statics of repeated on-shore seismic surveys can occur due to precipitation-related changes in soil moisture and in the groundwater table, or may be due to man-made earthworks. Production-related or injection-related processes can cause considerable velocity changes, which leave time-shift imprints on time-lapse seismic data that can be very similar to that of near-surface velocity variations. In this context it is crucial to consider that refraction static corrections are in many cases of limited use, as they aim to enhance the stack coherency of the individual time-lapse data sets only. As an alternative, we propose a time-lapse difference (TLD) static correction that is focused on the accommodation of static changes between the time-lapse data sets. This TLD static correction decomposes the static differences that are determined from cross-correlations in a surface-consistent manner. It therefore does not require first break picking and inversion for velocities from repeat data sets. We tested the TLD static correction for a 4D case study from the Ketzin CO2 storage site, Germany. As a reference we used the results that were obtained from a recent processing in which refraction static corrections were performed individually on the time-lapse data sets. Although the TLD static corrections method is considerably less time-consuming, we found that it is providing a stack difference with enhanced S/N. This is particularly demonstrated for a 4D seismic signature that is proven to be due to injected CO2. This Ketzin case study shows further that the pattern of the TLD statics is highly consistent with patterns in the cumulative precipitation data. This observation confirms that near-surface velocity changes are due to changes in the soil-moisture saturation and that an efficient compensation for them can be achieved by the TLD static correction.

  13. Dynamic stretching and golf swing performance.

    PubMed

    Moran, K A; McGrath, T; Marshall, B M; Wallace, E S

    2009-02-01

    The aim of the present study was to examine the effect of dynamic stretching, static stretching and no stretching, as part of a general warm-up, on golf swing performance with a five-iron. Measures of performance were taken 0 min, 5 min, 15 min and 30 min after stretching. Dynamic stretching produced significantly greater club head speeds than both static stretching (Delta=1.9m.s (-1); p=0.000) and no stretching (Delta=1.7 m.s (-1); p=0.000), and greater ball speeds than both static stretching (Delta=3.5m.s (-1); p=0.003) and no stretching (Delta=3.3m.s (-1); p=0.001). Dynamic stretching produced significantly straighter swing-paths than both static stretching (Delta=-0.61 degrees , p=0.000) and no stretching (Delta=-0.72 degrees , p=0.01). Dynamic stretching also produced more central impact points than the static stretch (Delta=0.7 cm, p=0.001). For the club face angle, there was no effect of either stretch or time. For all of the variables measured, there was no significant difference between the static stretch and no stretch conditions. All of the results were unaffected by the time of measurement after stretching. The results indicate that dynamic stretching should be used as part of a general warm-up in golf.

  14. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT, C. LEE COOK DIVISION, DOVER CORPORATION, STATIC PAC (TM) SYSTEM, PHASE II REPORT

    EPA Science Inventory

    The Environmental Technology Verification report discusses the technology and performance of the Static Pac System, Phase II, natural gas reciprocating compressor rod packing manufactured by the C. Lee Cook Division, Dover Corporation. The Static Pac System is designed to seal th...

  15. 40 CFR 53.64 - Test procedure: Static fractionator test.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 5 2011-07-01 2011-07-01 false Test procedure: Static fractionator test. 53.64 Section 53.64 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Performance Characteristics of Class II Equivalent Methods for PM2.5 § 53.64 Test procedure: Static...

  16. 40 CFR 53.64 - Test procedure: Static fractionator test.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 5 2010-07-01 2010-07-01 false Test procedure: Static fractionator test. 53.64 Section 53.64 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Performance Characteristics of Class II Equivalent Methods for PM2.5 § 53.64 Test procedure: Static...

  17. Static and Wind Tunnel Aero-Performance Tests of NASA AST Separate Flow Nozzle Noise Reduction Configurations

    NASA Technical Reports Server (NTRS)

    Mikkelsen, Kevin L.; McDonald, Timothy J.; Saiyed, Naseem (Technical Monitor)

    2001-01-01

    This report presents the results of cold flow model tests to determine the static and wind tunnel performance of several NASA AST separate flow nozzle noise reduction configurations. The tests were conducted by Aero Systems Engineering, Inc., for NASA Glenn Research Center. The tests were performed in the Channels 14 and 6 static thrust stands and the Channel 10 transonic wind tunnel at the FluiDyne Aerodynamics Laboratory in Plymouth, Minnesota. Facility checkout tests were made using standard ASME long-radius metering nozzles. These tests demonstrated facility data accuracy at flow conditions similar to the model tests. Channel 14 static tests reported here consisted of 21 ASME nozzle facility checkout tests and 57 static model performance tests (including 22 at no charge). Fan nozzle pressure ratio varied from 1.4 to 2.0, and fan to core total pressure ratio varied from 1.0 to 1.19. Core to fan total temperature ratio was 1.0. Channel 10 wind tunnel tests consisted of 15 tests at Mach number 0.28 and 31 tests at Mach 0.8. The sting was checked out statically in Channel 6 before the wind tunnel tests. In the Channel 6 facility, 12 ASME nozzle data points were taken and 7 model data points were taken. In the wind tunnel, fan nozzle pressure ratio varied from 1.73 to 2.8, and fan to core total pressure ratio varied from 1.0 to 1.19. Core to fan total temperature ratio was 1.0. Test results include thrust coefficients, thrust vector angle, core and fan nozzle discharge coefficients, total pressure and temperature charging station profiles, and boat-tail static pressure distributions in the wind tunnel.

  18. Immediate effects of different types of stretching exercises on badminton jump smash.

    PubMed

    Jang, Hwi S; Kim, Daeho; Park, Jihong

    2018-01-01

    Since different types of stretching exercises may alter athletic performance, we compared the effects of three types of stretching exercises on badminton jump smash. Sixteen male collegiate badminton players performed one of three different stretching exercises in a counterbalanced order on different days. Static stretching had seven typical stretches, while dynamic stretching involved nine dynamic movements, and resistance dynamic stretching was performed with weighted vests and dumbbells. Before and after each stretching exercise, subjects performed 20 trials of jump smashes. Dependent measurements were the jump heights during jump smashes, velocities of jump-smashed shuttlecocks, and drop point of jump-smashed shuttlecocks. To test the effects of each stretching exercise, we performed mixed model ANOVAs and calculated between-time effect sizes (ES). Each stretching exercise improved the jump heights during jump smashes (type main effect: F(2,75)=1.19, P=0.31; static stretching: 22.1%, P<0.01, ES=0.98; dynamic stretching: 30.1%, P<0.01, ES=1.49; resistance dynamic stretching: 17.7%, P=0.03, ES=0.98) and velocities of jump-smashed shuttlecocks (type main effect: F(2,75)=2.18, P=0.12; static stretching: 5.7%, P=0.61, ES=0.39; dynamic stretching: 3.4%, P=0.94, ES=0.28; resistance dynamic stretching: 6%, P=0.50, ES=0.66). However, there were no differences among the stretching exercises for any measurement. The drop point of jump-smashed shuttlecocks did not change (interaction: F(2,75)=0.88, P=0.42). All stretching exercises improved badminton jump smash performance, but we could not determine the best protocol. Since badminton requires high-speed movement and explosive force, we suggest performing dynamic stretching or resistance dynamic stretching.

  19. Closed-form Static Analysis with Inertia Relief and Displacement-Dependent Loads Using a MSC/NASTRAN DMAP Alter

    NASA Technical Reports Server (NTRS)

    Barnett, Alan R.; Widrick, Timothy W.; Ludwiczak, Damian R.

    1995-01-01

    Solving for the displacements of free-free coupled systems acted upon by static loads is commonly performed throughout the aerospace industry. Many times, these problems are solved using static analysis with inertia relief. This solution technique allows for a free-free static analysis by balancing the applied loads with inertia loads generated by the applied loads. For some engineering applications, the displacements of the free-free coupled system induce additional static loads. Hence, the applied loads are equal to the original loads plus displacement-dependent loads. Solving for the final displacements of such systems is commonly performed using iterative solution techniques. Unfortunately, these techniques can be time-consuming and labor-intensive. Since the coupled system equations for free-free systems with displacement-dependent loads can be written in closed-form, it is advantageous to solve for the displacements in this manner. Implementing closed-form equations in static analysis with inertia relief is analogous to implementing transfer functions in dynamic analysis. Using a MSC/NASTRAN DMAP Alter, displacement-dependent loads have been included in static analysis with inertia relief. Such an Alter has been used successfully to solve efficiently a common aerospace problem typically solved using an iterative technique.

  20. Static internal performance of single-expansion-ramp nozzles with various combinations of internal geometric parameters

    NASA Technical Reports Server (NTRS)

    Re, R. J.; Leavitt, L. D.

    1984-01-01

    The effects of five geometric design parameters on the internal performance of single-expansion-ramp nozzles were investigated at nozzle pressure ratios up to 10 in the static-test facility of the Langley 16-Foot Transonic Tunnel. The geometric variables on the expansion-ramp surface of the upper flap consisted of ramp chordal angle, ramp length, and initial ramp angle. On the lower flap, the geometric variables consisted of flap angle and flap length. Both internal performance and static-pressure distributions on the centerlines of the upper and lower flaps were obtained for all 43 nozzle configurations tested.

  1. Space Shuttle Flight Support Motor no. 1 (FSM-1)

    NASA Technical Reports Server (NTRS)

    Hughes, Phil D.

    1990-01-01

    Space Shuttle Flight Support Motor No. 1 (FSM-1) was static test fired on 15 Aug. 1990 at the Thiokol Corporation Static Test Bay T-24. FSM-1 was a full-scale, full-duration static test fire of a redesigned solid rocket motor. FSM-1 was the first of seven flight support motors which will be static test fired. The Flight Support Motor program validates components, materials, and manufacturing processes. In addition, FSM-1 was the full-scale motor for qualification of Western Electrochemical Corporation ammonium perchlorate. This motor was subjected to all controls and documentation requirements CTP-0171, Revision A. Inspection and instrumentation data indicate that the FSM-1 static test firing was successful. The ambient temperature during the test was 87 F and the propellant mean bulk temperature was 82 F. Ballistics performance values were within the specified requirements. The overall performance of the FSM-1 components and test equipment was nominal.

  2. Comparison of Static and Dynamic Balance in Female Collegiate Soccer, Basketball, and Gymnastics Athletes

    PubMed Central

    Bressel, Eadric; Yonker, Joshua C; Kras, John; Heath, Edward M

    2007-01-01

    Context: How athletes from different sports perform on balance tests is not well understood. When prescribing balance exercises to athletes in different sports, it may be important to recognize performance variations. Objective: To compare static and dynamic balance among collegiate athletes competing or training in soccer, basketball, and gymnastics. Design: A quasi-experimental, between-groups design. Independent variables included limb (dominant and nondominant) and sport played. Setting: A university athletic training facility. Patients or Other Participants: Thirty-four female volunteers who competed in National Collegiate Athletic Association Division I soccer (n = 11), basketball (n = 11), or gymnastics (n = 12). Intervention(s): To assess static balance, participants performed 3 stance variations (double leg, single leg, and tandem leg) on 2 surfaces (stiff and compliant). For assessment of dynamic balance, participants performed multidirectional maximal single-leg reaches from a unilateral base of support. Main Outcome Measure(s): Errors from the Balance Error Scoring System and normalized leg reach distances from the Star Excursion Balance Test were used to assess static and dynamic balance, respectively. Results: Balance Error Scoring System error scores for the gymnastics group were 55% lower than for the basketball group (P = .01), and Star Excursion Balance Test scores were 7% higher in the soccer group than the basketball group (P = .04). Conclusions: Gymnasts and soccer players did not differ in terms of static and dynamic balance. In contrast, basketball players displayed inferior static balance compared with gymnasts and inferior dynamic balance compared with soccer players. PMID:17597942

  3. NPSS Multidisciplinary Integration and Analysis

    NASA Technical Reports Server (NTRS)

    Hall, Edward J.; Rasche, Joseph; Simons, Todd A.; Hoyniak, Daniel

    2006-01-01

    The objective of this task was to enhance the capability of the Numerical Propulsion System Simulation (NPSS) by expanding its reach into the high-fidelity multidisciplinary analysis area. This task investigated numerical techniques to convert between cold static to hot running geometry of compressor blades. Numerical calculations of blade deformations were iteratively done with high fidelity flow simulations together with high fidelity structural analysis of the compressor blade. The flow simulations were performed with the Advanced Ducted Propfan Analysis (ADPAC) code, while structural analyses were performed with the ANSYS code. High fidelity analyses were used to evaluate the effects on performance of: variations in tip clearance, uncertainty in manufacturing tolerance, variable inlet guide vane scheduling, and the effects of rotational speed on the hot running geometry of the compressor blades.

  4. The use and misuse of aircraft and missile RCS statistics

    NASA Astrophysics Data System (ADS)

    Bishop, Lee R.

    1991-07-01

    Both static and dynamic radar cross sections measurements are used for RCS predictions, but the static data are less complete than the dynamic. Integrated dynamics RCS data also have limitations for prediction radar detection performance. When raw static data are properly used, good first-order detection estimates are possible. The research to develop more-usable RCS statistics is reviewed, and windowing techniques for creating probability density functions from static RCS data are discussed.

  5. Development of Performance Dashboards in Healthcare Sector: Key Practical Issues.

    PubMed

    Ghazisaeidi, Marjan; Safdari, Reza; Torabi, Mashallah; Mirzaee, Mahboobeh; Farzi, Jebraeil; Goodini, Azadeh

    2015-10-01

    Static nature of performance reporting systems in health care sector has resulted in inconsistent, incomparable, time consuming, and static performance reports that are not able to transparently reflect a round picture of performance and effectively support healthcare managers' decision makings. So, the healthcare sector needs interactive performance management tools such as performance dashboards to measure, monitor, and manage performance more effectively. The aim of this article was to identify key issues that need to be addressed for developing high-quality performance dashboards in healthcare sector. A literature review was established to search electronic research databases, e-journals collections, and printed journals, books, dissertations, and theses for relevant articles. The search strategy interchangeably used the terms of "dashboard", "performance measurement system", and "executive information system" with the term of "design" combined with operator "AND". Search results (n=250) were adjusted for duplications, screened based on their abstract relevancy and full-text availability (n=147) and then assessed for eligibility (n=40). Eligible articles were included if they had explicitly focused on dashboards, performance measurement systems or executive information systems design. Finally, 28 relevant articles included in the study. Creating high-quality performance dashboards requires addressing both performance measurement and executive information systems design issues. Covering these two fields, identified contents were categorized to four main domains: KPIs development, Data Sources and data generation, Integration of dashboards to source systems, and Information presentation issues. This study implies the main steps to develop dashboards for the purpose of performance management. Performance dashboards developed on performance measurement and executive information systems principles and supported by proper back-end infrastructure will result in creation of dynamic reports that help healthcare managers to consistently measure the performance, continuously detect outliers, deeply analyze causes of poor performance, and effectively plan for the future.

  6. Novel deformable mirror design for possible wavefront correction in CO2 laser fusion system

    NASA Astrophysics Data System (ADS)

    Gunn, S. V.; Heinz, T. A.; Henderson, W. D.; Massie, N. A.; Viswanathan, V. K.

    1980-11-01

    Analysis at Los Alamos and elsewhere has resulted in the conclusion that deformable mirrors can substantially improve the optical performance of laser fusion systems, as the errors are mostly static or quasi-static with mainly low spatial frequencies across the aperture resulting in low order Seidel aberrations in the beam. A novel deformable mirror assembly (Fig. 1) has been fabricated with 19 actuators capable of surface deflection of ±20 microns. The mirror surface deflections are produced by a unique differential ball screw that acts as both a force and position actuator. The screw is driven by a stepper motor giving a surface positioning resolution of 0.025 micron. No holding voltage potential is required, and a piezoceramic element in series with each ball screw provides a ±1 micron amplitude high-frequency surface dither to aid the correction process. Mirror performance in terms of individual actuator influence function, cross-coupling, figure attainment, long-term surface stability as well as optical performance characteristics will be discussed.

  7. Human thermal responses during leg-only exercise in cold water.

    PubMed

    Golden, F S; Tipton, M J

    1987-10-01

    1. Exercise during immersion in cold water has been reported by several authors to accelerate the rate of fall of core temperature when compared with rates seen during static immersion. The nature of the exercise performed, however, has always been whole-body in nature. 2. In the present investigation fifteen subjects performed leg exercise throughout a 40 min head-out immersion in water at 15 degrees C. The responses obtained were compared with those seen when the subjects performed an identical static immersion. 3. Aural and rectal temperatures were found to fall by greater amounts during static immersion. 4. It is concluded that 'the type of exercise performed' should be included in the list of factors which affect core temperature during cold water immersion.

  8. Dynamic Warm-Up Protocols, With and Without a Weighted Vest, and Fitness Performance in High School Female Athletes

    PubMed Central

    Faigenbaum, Avery D; McFarland, James E; Schwerdtman, Jeff A; Ratamess, Nicholas A; Kang, Jie; Hoffman, Jay R

    2006-01-01

    Context: Recent authors have not found substantial evidence to support the use of static stretching for improving performance, so interest in dynamic warm-up procedures has risen. Our findings may improve the understanding of the acute effects of different types of pre-exercise protocols on performance and may help clinicians develop effective warm-up protocols for sports practice and competition. Objective: To examine the acute effects of 4 warm-up protocols with and without a weighted vest on anaerobic performance in female high school athletes. Design: Randomized, counterbalanced, repeated-measures design. Setting: High school fitness center. Patients or Other Participants: Eighteen healthy high school female athletes (age = 15.3 ± 1.2 years, height = 166.3 ± 9.1 cm, mass = 61.6 ± 10.4 kg). Intervention(s): After 5 minutes of jogging, subjects performed 4 randomly ordered warm-up protocols: (1) Five static stretches (2 × 30 seconds) (SS), (2) nine moderate-intensity to high-intensity dynamic exercises (DY), (3) the same 9 dynamic exercises performed with a vest weighted with 2% of body mass (DY2), and (4) the same 9 dynamic exercises performed with a vest weighted with 6% of body mass (DY6). Main Outcome Measure(s): Vertical jump, long jump, seated medicine ball toss, and 10-yard sprint. Results: Vertical jump performance was significantly greater after DY (41.3 ± 5.4 cm) and DY2 (42.1 ± 5.2 cm) compared with SS (37.1 ± 5.1 cm), and long jump performance was significantly greater after DY2 (180.5 ± 20.3 cm) compared with SS (160.4 ± 20.8 cm) ( P ≤ .05). No significant differences between trials were observed for the seated medicine ball toss or 10-yard sprint. Conclusions: A dynamic warm-up performed with a vest weighted with 2% of body mass may be the most effective warm-up protocol for enhancing jumping performance in high school female athletes. PMID:17273458

  9. Finite element modeling of ROPS in static testing and rear overturns.

    PubMed

    Harris, J R; Mucino, V H; Etherton, J R; Snyder, K A; Means, K H

    2000-08-01

    Even with the technological advances of the last several decades, agricultural production remains one of the most hazardous occupations in the United States. Death due to tractor rollover is a prime contributor to this hazard. Standards for rollover protective structures (ROPS) performance and certification have been developed by groups such as the Society of Automotive Engineers (SAE) and the American Society of Agricultural Engineers (ASAE) to combat these problems. The current ROPS certification standard, SAE J2194, requires either a dynamic or static testing sequence or both. Although some ROPS manufacturers perform both the dynamic and static phases of SAE J2194 testing, it is possible for a ROPS to be certified for field operation using static testing alone. This research compared ROPS deformation response from a simulated SAE J2194 static loading sequence to ROPS deformation response as a result of a simulated rearward tractor rollover. Finite element analysis techniques for plastic deformation were used to simulate both the static and dynamic rear rollover scenarios. Stress results from the rear rollover model were compared to results from simulated static testing per SAE J2194. Maximum stress values from simulated rear rollovers exceeded maximum stress values recorded during simulated static testing for half of the elements comprising the uprights. In the worst case, the static model underpredicts dynamic model results by approximately 7%. In the best case, the static model overpredicts dynamic model results by approximately 32%. These results suggest the need for additional experimental work to characterize ROPS stress levels during staged overturns and during testing according to the SAE standard.

  10. The effects of deuterium on static posture control

    NASA Technical Reports Server (NTRS)

    Layne, Charles S.

    1990-01-01

    A significant operational problem impacting upon the Space Shuttle program involves the astronaut's ability to safely egress from the Orbiter during an emergency situation. Following space flight, astronauts display significant movement problems. One variable which may contribute to increased movement ataxia is deuterium (D2O). Deuterium is present in low levels within the Orbiter's water supply but may accumulate to significant physiological levels during lengthy missions. Deuterium was linked to a number of negative physiological responses, including motion sickness, decreased metabolism, and slowing of neural conduction velocity. The effects of D2O on static postural control in response to a range of dosage levels were investigated. Nine sugjects were divided into three groups of three subjects each. The groups were divided into a low, medium, and a high D2O dosage group. The subjects static posture was assessed with the use of the EquiTest systems, a commercially available postural control evaluation system featuring movable force plates and a visual surround that can be servoed to the subject's sway. In addition to the force plate information, data about the degree of subject sway about the hips and shoulders was obtained. Additionally, surface electromyographic (EMG) data from the selected lower limb muscles were collected along with saliva samples used to determine the amount of deuterium enrichment following D2O ingestion. Two baseline testing sessions were performed using the EquiTest testing protocol prior to ingestion of the D2O. Thirty minutes after dosing, subjects again performed the tests. Two more post-dosing tests were run with an interest interval of one hour. Preliminary data anlaysis indicates that only subjects in the igh dose group displayed any significant static postural problems. Future analyses of the sway and EMG is expected to reveal significant variations in the subject's postural control strategy following D2O dosing. While functionally significant static postural problems were not commonly observed, subjects in both the medium and high dosage groups displayed significant, and in some cases, severe voluntary movement problems.

  11. Aurally aided visual search performance in a dynamic environment

    NASA Astrophysics Data System (ADS)

    McIntire, John P.; Havig, Paul R.; Watamaniuk, Scott N. J.; Gilkey, Robert H.

    2008-04-01

    Previous research has repeatedly shown that people can find a visual target significantly faster if spatial (3D) auditory displays direct attention to the corresponding spatial location. However, previous research has only examined searches for static (non-moving) targets in static visual environments. Since motion has been shown to affect visual acuity, auditory acuity, and visual search performance, it is important to characterize aurally-aided search performance in environments that contain dynamic (moving) stimuli. In the present study, visual search performance in both static and dynamic environments is investigated with and without 3D auditory cues. Eight participants searched for a single visual target hidden among 15 distracting stimuli. In the baseline audio condition, no auditory cues were provided. In the 3D audio condition, a virtual 3D sound cue originated from the same spatial location as the target. In the static search condition, the target and distractors did not move. In the dynamic search condition, all stimuli moved on various trajectories at 10 deg/s. The results showed a clear benefit of 3D audio that was present in both static and dynamic environments, suggesting that spatial auditory displays continue to be an attractive option for a variety of aircraft, motor vehicle, and command & control applications.

  12. Comparison of User Performance with Interactive and Static 3d Visualization - Pilot Study

    NASA Astrophysics Data System (ADS)

    Herman, L.; Stachoň, Z.

    2016-06-01

    Interactive 3D visualizations of spatial data are currently available and popular through various applications such as Google Earth, ArcScene, etc. Several scientific studies have focused on user performance with 3D visualization, but static perspective views are used as stimuli in most of the studies. The main objective of this paper is to try to identify potential differences in user performance with static perspective views and interactive visualizations. This research is an exploratory study. An experiment was designed as a between-subject study and a customized testing tool based on open web technologies was used for the experiment. The testing set consists of an initial questionnaire, a training task and four experimental tasks. Selection of the highest point and determination of visibility from the top of a mountain were used as the experimental tasks. Speed and accuracy of each task performance of participants were recorded. The movement and actions in the virtual environment were also recorded within the interactive variant. The results show that participants deal with the tasks faster when using static visualization. The average error rate was also higher in the static variant. The findings from this pilot study will be used for further testing, especially for formulating of hypotheses and designing of subsequent experiments.

  13. A nonlinear auxetic structural vibration damper with metal rubber particles

    NASA Astrophysics Data System (ADS)

    Ma, Yanhong; Scarpa, Fabrizio; Zhang, Dayi; Zhu, Bin; Chen, Lulu; Hong, Jie

    2013-08-01

    The work describes the mechanical performance of a metal rubber particles (MRP) damper design based on an auxetic (negative Poisson’s ratio) cellular configuration. The auxetic damper configuration is constituted by an anti-tetrachiral honeycomb, where the cylinders are filled with the MRP material. The MRP samples have been subjected to quasi-static loading to measure the stiffness and loss factor from the static hysteresis curve. A parametric experimental analysis has been carried out to investigate the effect of relative density and filling percentage on the static performance of the MRP, and to identify design guidelines for best use of MRP devices. An experimental assessment of the integrated auxetic-MRP damper concept has been provided through static and dynamic force response techniques.

  14. Novel mono-static arrangement of the ASDEX Upgrade high field side reflectometers compatible with electron cyclotron resonance heating stray radiation.

    PubMed

    Silva, A; Varela, P; Meneses, L; Manso, M

    2012-10-01

    The ASDEX Upgrade frequency modulated continuous wave broadband reflectometer system uses a mono-static antenna configuration with in-vessel hog-horns and 3 dB directional couplers. The operation of the new electron cyclotron resonance heating (ECRH) launcher and the start of collective Thomson scattering experiments caused several events where the fragile dummy loads inside the high field side directional couplers were damaged, due to excessive power resulting from the ECRH stray fields. In this paper, we present a non-conventional application of the existing three-port directional coupler that hardens the system to the ECRH stray fields and at the same time generates the necessary reference signal. Electromagnetic simulations and laboratory tests were performed to validate the proposed solution and are compared with the in-vessel calibration tests.

  15. Methodology in the assessment of complex performance : the effects of signal rate on monitoring a static process.

    DOT National Transportation Integrated Search

    1969-08-01

    This study concerned the rate of presentation of stimuli on a task involving the monitoring of a static process of the kind represented by aircraft warning light indicators. The task was performed concurrently with various combinations of tasks requi...

  16. Effects of Baseline Levels of Flexibility and Vertical Jump Ability on Performance Following Different Volumes of Static Stretching and Potentiating Exercises in Elite Gymnasts

    PubMed Central

    Donti, Olyvia; Tsolakis, Charilaos; Bogdanis, Gregory C.

    2014-01-01

    This study examined the effects of baseline flexibility and vertical jump ability on straight leg raise range of motion (ROM) and counter-movement jump performance (CMJ) following different volumes of stretching and potentiating exercises. ROM and CMJ were measured after two different warm-up protocols involving static stretching and potentiating exercises. Three groups of elite athletes (10 male, 14 female artistic gymnasts and 10 female rhythmic gymnasts) varying greatly in ROM and CMJ, performed two warm-up routines. One warm-up included short (15 s) static stretching followed by 5 tuck jumps, while the other included long static stretching (30 s) followed by 3x5 tuck jumps. ROM and CMJ were measured before, during and for 12 min after the two warm-up routines. Three-way ANOVA showed large differences between the three groups in baseline ROM and CMJ performance. A type of warm-up x time interaction was found for both ROM (p = 0.031) and CMJ (p = 0.016). However, all athletes, irrespective of group, responded in a similar fashion to the different warm-up protocols for both ROM and CMJ, as indicated from the lack of significant interactions for group (condition x group, time x group or condition x time x group). In the short warm-up protocol, ROM was not affected by stretching, while in the long warm-up protocol ROM increased by 5.9% ± 0.7% (p = 0.001) after stretching. Similarly, CMJ remained unchanged after the short warm-up protocol, but increased by 4.6 ± 0.9% (p = 0.012) 4 min after the long warm- up protocol, despite the increased ROM. It is concluded that the initial levels of flexibility and CMJ performance do not alter the responses of elite gymnasts to warm-up protocols differing in stretching and potentiating exercise volumes. Furthermore, 3 sets of 5 tuck jumps result in a relatively large increase in CMJ performance despite an increase in flexibility in these highly-trained athletes. Key Points The initial levels of flexibility and vertical jump ability have no effect on straight leg raise range of motion (ROM) and counter-movement jump performance (CMJ) of elite gymnasts following warm-up protocols differing in stretching and potentiating exercise volumes Stretching of the main leg muscle groups for only 15 s has no effect on ROM of elite gymnasts In these highly-trained athletes, one set of 5 tuck jumps during warm-up is not adequate to increase CMJ performance, while 3 sets of 5 tuck jumps result in a relatively large increase in CMJ performance (by 4.6% above baseline), despite a 5.9% increase in flexibility due to the 30 s stretching exercises PMID:24570613

  17. 33 CFR 183.580 - Static pressure test for fuel tanks.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Static pressure test for fuel... SECURITY (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Tests § 183.580 Static pressure test for fuel tanks. A fuel tank is tested by performing the following procedures in the following...

  18. 33 CFR 183.580 - Static pressure test for fuel tanks.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Static pressure test for fuel... SECURITY (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Tests § 183.580 Static pressure test for fuel tanks. A fuel tank is tested by performing the following procedures in the following...

  19. 33 CFR 183.580 - Static pressure test for fuel tanks.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Static pressure test for fuel... SECURITY (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Tests § 183.580 Static pressure test for fuel tanks. A fuel tank is tested by performing the following procedures in the following...

  20. 33 CFR 183.580 - Static pressure test for fuel tanks.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Static pressure test for fuel... SECURITY (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Tests § 183.580 Static pressure test for fuel tanks. A fuel tank is tested by performing the following procedures in the following...

  1. 33 CFR 183.580 - Static pressure test for fuel tanks.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Static pressure test for fuel... SECURITY (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Tests § 183.580 Static pressure test for fuel tanks. A fuel tank is tested by performing the following procedures in the following...

  2. Manx: Close air support aircraft preliminary design

    NASA Technical Reports Server (NTRS)

    Amy, Annie; Crone, David; Hendrickson, Heidi; Willis, Randy; Silva, Vince

    1991-01-01

    The Manx is a twin engine, twin tailed, single seat close air support design proposal for the 1991 Team Student Design Competition. It blends advanced technologies into a lightweight, high performance design with the following features: High sensitivity (rugged, easily maintained, with night/adverse weather capability); Highly maneuverable (negative static margin, forward swept wing, canard, and advanced avionics result in enhanced aircraft agility); and Highly versatile (design flexibility allows the Manx to contribute to a truly integrated ground team capable of rapid deployment from forward sites).

  3. Internal performance of a nonaxisymmetric nozzle with a rotating upper flap and a center-pivoted lower flap

    NASA Technical Reports Server (NTRS)

    Wing, David J.; Leavitt, Laurence D.; Re, Richard J.

    1993-01-01

    An investigation was conducted at wind-off conditions in the static-test facility of the Langley 16-Foot Transonic Tunnel to determine the internal performance characteristics of a single expansion-ramp nozzle with thrust-vectoring capability to 105 degrees. Thrust vectoring was accomplished by the downward rotation of an upper flap with adaptive capability for internal contouring and a corresponding rotation of a center-pivoted lower flap. The static internal performance of configurations with pitch thrust-vector angles of 0 degrees, 60 degrees, and 105 degrees each with two throat areas, was investigated. The nozzle pressure ratio was varied from 1.5 to approximately 8.0 (5.0 for the maximum throat area configurations). Results of this study indicated that the nozzle configuration of the present investigation, when vectored, provided excellent flow-turning capability with relatively high levels of internal performance. In all cases, the thrust vector angle was a function of the nozzle pressure ratio. This result is expected because the flow is bounded by a single expansion surface on both vectored- and unvectored-nozzle geometries.

  4. Relative net vertical impulse determines jumping performance.

    PubMed

    Kirby, Tyler J; McBride, Jeffrey M; Haines, Tracie L; Dayne, Andrea M

    2011-08-01

    The purpose of this investigation was to determine the relationship between relative net vertical impulse and jump height in a countermovement jump and static jump performed to varying squat depths. Ten college-aged males with 2 years of jumping experience participated in this investigation (age: 23.3 ± 1.5 years; height: 176.7 ± 4.5 cm; body mass: 84.4 ± 10.1 kg). Subjects performed a series of static jumps and countermovement jumps in a randomized fashion to a depth of 0.15, 0.30, 0.45, 0.60, and 0.75 m and a self-selected depth (static jump depth = 0.38 ± 0.08 m, countermovement jump depth = 0.49 ± 0.06 m). During the concentric phase of each jump, peak force, peak velocity, peak power, jump height, and net vertical impulse were recorded and analyzed. Net vertical impulse was divided by body mass to produce relative net vertical impulse. Increasing squat depth corresponded to a decrease in peak force and an increase in jump height and relative net vertical impulse for both static jump and countermovement jump. Across all depths, relative net vertical impulse was statistically significantly correlated to jump height in the static jump (r = .9337, p < .0001, power = 1.000) and countermovement jump (r = .925, p < .0001, power = 1.000). Across all depths, peak force was negatively correlated to jump height in the static jump (r = -0.3947, p = .0018, power = 0.8831) and countermovement jump (r = -0.4080, p = .0012, power = 0.9050). These results indicate that relative net vertical impulse can be used to assess vertical jump performance, regardless of initial squat depth, and that peak force may not be the best measure to assess vertical jump performance.

  5. The Cutting Edge of High-Temperature Composites

    NASA Technical Reports Server (NTRS)

    2006-01-01

    NASA s Ultra-Efficient Engine Technology (UEET) program was formed in 1999 at Glenn Research Center to manage an important national propulsion program for the Space Agency. The UEET program s focus is on developing innovative technologies to enable intelligent, environmentally friendly, and clean-burning turbine engines capable of reducing harmful emissions while maintaining high performance and increasing reliability. Seven technology projects exist under the program, with each project working towards specific goals to provide new technology for propulsion. One of these projects, Materials and Structures for High Performance, is concentrating on developing and demonstrating advanced high-temperature materials to enable high-performance, high-efficiency, and environmentally compatible propulsion systems. Materials include ceramic matrix composite (CMC) combustor liners and turbine vanes, disk alloys, turbine airfoil material systems, high-temperature polymer matrix composites, and lightweight materials for static engine structures.

  6. Static investigation of a two-dimensional convergent-divergent exhaust nozzle with multiaxis thrust-vectoring capability

    NASA Technical Reports Server (NTRS)

    Taylor, John G.

    1990-01-01

    An investigation was conducted in the Static Test Facility of the NASA Langley 16-Foot Transonic Tunnel to determine the internal performance of two-dimensional convergent-divergent nozzles designed to have simultaneous pitch and yaw thrust vectoring capability. This concept utilized divergent flap rotation of thrust vectoring in the pitch plane and deflection of flat yaw flaps hinged at the end of the sidewalls for yaw thrust vectoring. The hinge location of the yaw flaps was varied at four positions from the nozzle exit plane to the throat plane. The yaw flaps were designed to contain the flow laterally independent of power setting. In order to eliminate any physical interference between the yaw flap deflected into the exhaust stream and the divergent flaps, the downstream corners of both upper and lower divergent flaps were cut off to allow for up to 30 deg of yaw flap deflection. The impact of varying the nozzle pitch vector angle, throat area, yaw flap hinge location, yaw flap length, and yaw flap deflection angle on nozzle internal performance characteristics, was studied. High-pressure air was used to simulate jet exhaust at nozzle pressure ratios up to 7.0. Static results indicate that configurations with the yaw flap hinge located upstream of the exit plane provide relatively high levels of thrust vectoring efficiency without causing large losses in resultant thrust ratio. Therefore, these configurations represent a viable concept for providing simultaneous pitch and yaw thrust vectoring.

  7. Real-time 3-D ultrafast ultrasound quasi-static elastography in vivo

    PubMed Central

    Papadacci, Clement; Bunting, Ethan A.; Konofagou, Elisa E.

    2017-01-01

    Ultrasound elastography, a technique used to assess mechanical properties of soft tissue is of major interest in the detection of breast cancer as it is stiffer than the surroundings. Techniques such as ultrasound quasi-static elastography have been developed to assess the strain distribution in soft tissues in two dimensions using a quasi-static compression. However, tumors can exhibit very heterogeneous shape, a three dimensions approach would be then necessary to measure accurately the tumor volume and remove operator dependency. To ensure this issue, several 3-D quasi-static elastographic approaches have been proposed. However, all these approaches suffered from a long acquisition time to acquire 3-D volumes resulting in the impossibility to perform real-time and the creation of artifacts. The long acquisition time comes from both the use of focused ultrasound emissions and the fact that the volume was made from a stack of two dimensions images acquired by mechanically translating an ultrasonic array. Being able to acquire volume at high volume rates is thus crucial to perform real-time with a simple freehand compression and to avoid signal decorrelation coming from hand motions or natural motions such as the respiratory. In this study we developed for the first time, the 3-D ultrafast ultrasound quasi-static elastography method to estimate 3-D axial strain distribution in vivo in real-time. Acquisitions were performed with a 2-D matrix array probe of 256 elements (16-by-16 elements). 100 plane waves were emitted at a volume rate of 100 volumes/sec during a continuous motorized compression. 3-D B-mode volumes and 3-D B-mode cumulative axial strain volumes were estimated on a two-layers gelatin phantom with different stiffness, in a stiff inclusion embedded in a soft gelatin phantoms, in a soft inclusion embedded in a stiff gelatin phantom and in an ex vivo canine liver before and after a high focused ultrasound (HIFU) ablation. In each case, we were able to image in real-time and in entire volumes the axial strain distribution and were able to detect the differences between stiff and soft structures with a good sensitivity. In addition, we were able to detect the stiff lesion in the ex vivo canine liver after HIFU ablation. Finally, we demonstrated the in vivo feasibility of the method using freehand compression on the calf of a human volunteer and were able to retrieve 3-D axial strain volume in real-time depicting the differences in stiffness of the two muscles which compose the calf. The 3-D ultrafast ultrasound quasi-static elastography method could have a major clinical impact for the real-time detection in three dimensions of breast cancer in patients using a simple freehand scanning. PMID:27483021

  8. Overview of the 2nd Gen 3.7m HIAD Static Load Test

    NASA Technical Reports Server (NTRS)

    Swanson, G. T.; Kazemba, C. D.; Johnson, R. K.; Hughes, S. J.; Calomino, A. M.; Cheatwood, F. M.; Cassell, A. M.; Anderson, P.; Lowery, A.

    2015-01-01

    To support NASAs long term goal of landing humans on Mars, technologies which enable the landing of heavy payloads are being developed. Current entry, decent, and landing technologies are not practical for human class payloads due to geometric constraints dictated by current launch vehicle fairing limitations. Therefore, past and present technologies are now being explored to provide a mass and volume efficient solution to atmospheric entry, including Hypersonic Inflatable Aerodynamic Decelerators (HIADs). In October of 2014, a 3.7m HIAD inflatable structure with an integrated flexible thermal protection sys-tem (F-TPS) was subjected to a static load test series to verify the designs structural performance. The 3.7m HIAD structure was constructed in a 70 deg sphere-cone stacked-toroid configuration using eight inflatable tori, which were joined together using adhesives and high strength textile webbing to help distribute the loads throughout the inflatable structure. The inflatable structure was fabricated using 2nd generation structural materials that permit an increase in use temperature to 400 C+ as compared to the 250 C limitation of the 1st generation materials. In addition to the temperature benefit, these materials also offer a 40 reduction in structure mass. The 3.7m F-TPS was fabricated using high performance materials to protect the inflatable structure from heat loads that would be seen during atmospheric entry. The F-TPS was constructed of 2nd generation TPS materials increasing its heating capability from 35W sq cm to over 100W sq cm. This test article is the first stacked-torus HIAD to be fabricated and tested with a 70 deg sphere-cone. All previous stacked-torus HIADs have employed a 60o sphere-cone. To perform the static load test series, a custom test fixture was constructed. The fixture consisted of a structural tub rim with enough height to allow for dis-placement of the inflatable structure as loads were applied. The tub rim was attached to the floor to provide an airtight seal. The center body of the inflatable structure was attached to a pedestal mount as seen in Figure 1. Using an impermeable membrane seal draped over the test article, partial vacuum was pulled beneath the HIAD, resulting in a uniform static pressure load applied to the outer surface. During the test series an extensive amount of instrumentation was used to characterize deformed shape, shoulder deflection, strap loads, and cord loads as a function of structural configuration and applied static load. In this overview, the 3.7m HIAD static load test series will be discussed in detail, including the 3.7m HIAD inflatable structure and flexible TPS design, test setup and execution, and finally results and conclusions from the test series.

  9. Effects of a salsa dance training on balance and strength performance in older adults.

    PubMed

    Granacher, Urs; Muehlbauer, Thomas; Bridenbaugh, Stephanie A; Wolf, Madeleine; Roth, Ralf; Gschwind, Yves; Wolf, Irene; Mata, Rui; Kressig, Reto W

    2012-01-01

    Deficits in static and particularly dynamic postural control and force production have frequently been associated with an increased risk of falling in older adults. The objectives of this study were to investigate the effects of salsa dancing on measures of static/dynamic postural control and leg extensor power in seniors. Twenty-eight healthy older adults were randomly assigned to an intervention group (INT, n = 14, age 71.6 ± 5.3 years) to conduct an 8-week progressive salsa dancing programme or a control group (CON, n = 14, age 68.9 ± 4.7 years). Static postural control was measured during one-legged stance on a balance platform and dynamic postural control was obtained while walking on an instrumented walkway. Leg extensor power was assessed during a countermovement jump on a force plate. Programme compliance was excellent with participants of the INT group completing 92.5% of the dancing sessions. A tendency towards an improvement in the selected measures of static postural control was observed in the INT group as compared to the CON group. Significant group × test interactions were found for stride velocity, length and time. Post hoc analyses revealed significant increases in stride velocity and length, and concomitant decreases in stride time. However, salsa dancing did not have significant effects on various measures of gait variability and leg extensor power. Salsa proved to be a safe and feasible exercise programme for older adults accompanied with a high adherence rate. Age-related deficits in measures of static and particularly dynamic postural control can be mitigated by salsa dancing in older adults. High physical activity and fitness/mobility levels of our participants could be responsible for the nonsignificant findings in gait variability and leg extensor power. Copyright © 2012 S. Karger AG, Basel.

  10. Aqueous clay suspensions stabilized by alginate fluid gels for coal spontaneous combustion prevention and control.

    PubMed

    Qin, Botao; Ma, Dong; Li, Fanglei; Li, Yong

    2017-11-01

    We have developed aqueous clay suspensions stabilized by alginate fluid gels (AFG) for coal spontaneous combustion prevention and control. Specially, this study aimed to characterize the effect of AFG on the microstructure, static and dynamic stability, and coal fire inhibition performances of the prepared AFG-stabilized clay suspensions. Compared with aqueous clay suspensions, the AFG-stabilized clay suspensions manifest high static and dynamic stability, which can be ascribed to the formation of a robust three-dimensional gel network by AFG. The coal acceleration oxidation experimental results show that the prepared AFG-stabilized clay suspensions can improve the coal thermal stability and effectively inhibit the coal spontaneous oxidation process by increasing crossing point temperature (CPT) and reducing CO emission. The prepared low-cost and nontoxic AFG-stabilized clay suspensions, exhibiting excellent coal fire extinguishing performances, indicate great application potentials in coal spontaneous combustion prevention and control.

  11. Achieving Optimal Self-Adaptivity for Dynamic Tuning of Organic Semiconductors through Resonance Engineering.

    PubMed

    Tao, Ye; Xu, Lijia; Zhang, Zhen; Chen, Runfeng; Li, Huanhuan; Xu, Hui; Zheng, Chao; Huang, Wei

    2016-08-03

    Current static-state explorations of organic semiconductors for optimal material properties and device performance are hindered by limited insights into the dynamically changed molecular states and charge transport and energy transfer processes upon device operation. Here, we propose a simple yet successful strategy, resonance variation-based dynamic adaptation (RVDA), to realize optimized self-adaptive properties in donor-resonance-acceptor molecules by engineering the resonance variation for dynamic tuning of organic semiconductors. Organic light-emitting diodes hosted by these RVDA materials exhibit remarkably high performance, with external quantum efficiencies up to 21.7% and favorable device stability. Our approach, which supports simultaneous realization of dynamically adapted and selectively enhanced properties via resonance engineering, illustrates a feasible design map for the preparation of smart organic semiconductors capable of dynamic structure and property modulations, promoting the studies of organic electronics from static to dynamic.

  12. A domain-specific compiler for a parallel multiresolution adaptive numerical simulation environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rajbhandari, Samyam; Kim, Jinsung; Krishnamoorthy, Sriram

    This paper describes the design and implementation of a layered domain-specific compiler to support MADNESS---Multiresolution ADaptive Numerical Environment for Scientific Simulation. MADNESS is a high-level software environment for the solution of integral and differential equations in many dimensions, using adaptive and fast harmonic analysis methods with guaranteed precision. MADNESS uses k-d trees to represent spatial functions and implements operators like addition, multiplication, differentiation, and integration on the numerical representation of functions. The MADNESS runtime system provides global namespace support and a task-based execution model including futures. MADNESS is currently deployed on massively parallel supercomputers and has enabled many science advances.more » Due to the highly irregular and statically unpredictable structure of the k-d trees representing the spatial functions encountered in MADNESS applications, only purely runtime approaches to optimization have previously been implemented in the MADNESS framework. This paper describes a layered domain-specific compiler developed to address some performance bottlenecks in MADNESS. The newly developed static compile-time optimizations, in conjunction with the MADNESS runtime support, enable significant performance improvement for the MADNESS framework.« less

  13. SAPNEW: Parallel finite element code for thin shell structures on the Alliant FX-80

    NASA Astrophysics Data System (ADS)

    Kamat, Manohar P.; Watson, Brian C.

    1992-11-01

    The finite element method has proven to be an invaluable tool for analysis and design of complex, high performance systems, such as bladed-disk assemblies in aircraft turbofan engines. However, as the problem size increase, the computation time required by conventional computers can be prohibitively high. Parallel processing computers provide the means to overcome these computation time limits. This report summarizes the results of a research activity aimed at providing a finite element capability for analyzing turbomachinery bladed-disk assemblies in a vector/parallel processing environment. A special purpose code, named with the acronym SAPNEW, has been developed to perform static and eigen analysis of multi-degree-of-freedom blade models built-up from flat thin shell elements. SAPNEW provides a stand alone capability for static and eigen analysis on the Alliant FX/80, a parallel processing computer. A preprocessor, named with the acronym NTOS, has been developed to accept NASTRAN input decks and convert them to the SAPNEW format to make SAPNEW more readily used by researchers at NASA Lewis Research Center.

  14. Magnetic materials selection for static inverter and converter transformers

    NASA Technical Reports Server (NTRS)

    Mclyman, W. T.

    1973-01-01

    A program to study magnetic materials is described for use in spacecraft transformers used in static inverters, converters, and transformer-rectifier supplies. Different magnetic alloys best suited for high-frequency and high-efficiency applications were comparatively investigated together with an investigation of each alloy's inherent characteristics. The materials evaluated were the magnetic alloys: (1) 50% Ni, 50% Fe; (2) 79% Ni, 17% Fe, 4% Mo; (3) 48% Ni, 52% Fe; (4) 78% Ni, 17% Fe, 5% Mo; and (5) 3% Si, 97% Fe. Investigations led to the design of a transformer with a very low residual flux. Tests were performed to determine the dc and ac magnetic properties at 2400 Hz using square-wave excitation. These tests were performed on uncut cores, which were then cut for comparison of the gapped and ungapped magnetic properties. When the data of many transformers in many configurations were compiled the optimum transformer was found to be that with the lowest residual flux and a small amount of air gap in the magnetic material. The data obtained from these tests are described, and the potential uses for the materials are discussed.

  15. Effects of quadriceps strength after static and dynamic whole-body vibration exercise.

    PubMed

    Bush, Jill A; Blog, Gabriel L; Kang, Jie; Faigenbaum, Avery D; Ratamess, Nicholas A

    2015-05-01

    Numerous studies have shown performance benefits including whole-body vibration (WBV) as a training modality or an acute exercise protocol when used as a component of the resistance training program. Some studies have indicated that performing dynamic exercises as compared with static position exercises while exposed to WBV might be beneficial; however, evidence is lacking. Thus, the purpose of this study was to determine if an acute bout of dynamic versus static squats performed during WBV results in increase in quadriceps force production by means of dynamic isokinetic knee extension and flexion exercise. Nonresistance-trained healthy young men and women (N = 21) of 18-25 years participated in 4 protocols with 2-week rest in-between. Protocol 1 consisted of 5 sets of 10 dynamic squats without vibration; Protocol 2: 5 sets of 30-second static squats without vibration; Protocol 3: 5 sets of 10 dynamic squats with 30-Hz WBV for a total of 2.5 minutes; and Protocol 4: 5 sets of 30-second static squats with 30-Hz WBV for a total of 2.5 minutes. Prestrength tests (1 set of 4 repetitions at 100° · s(-1) for the knee extension exercise) was performed within 5 minutes of starting each protocol, and poststrength testing was performed within 1 minute of completing each protocol. Strength outcomes were analyzed by repeated measures analysis of variance with a significance level set at p ≤ 0.05. A significant decrease in strength was observed after dynamic and static squats without WBV (p = 0.002); an increase in strength after dynamic squats with WBV (p = 0.003); and a decrease in strength after static squats with WBV (p = 0.003). The inclusion of WBV to dynamic resistance exercise can be an added modality to increase strength. Whole-body vibration can have varied effects in altering muscle strength in untrained individuals according to the type of resistance training performed. As a dynamic squat with WBV seems to immediately potentiate neuromuscular functioning, the combination of dynamic exercises and WBV could be used as a potential warm-up procedure before resistance exercise.

  16. Static critical behavior of the q-states Potts model: High-resolution entropic study

    NASA Astrophysics Data System (ADS)

    Caparica, A. A.; Leão, Salviano A.; DaSilva, Claudio J.

    2015-11-01

    Here we report a precise computer simulation study of the static critical properties of the two-dimensional q-states Potts model using very accurate data obtained from a modified Wang-Landau (WL) scheme proposed by Caparica and Cunha-Netto (2012). This algorithm is an extension of the conventional WL sampling, but the authors changed the criterion to update the density of states during the random walk and established a new procedure to windup the simulation run. These few changes have allowed a more precise microcanonical averaging which is essential to a reliable finite-size scaling analysis. In this work we used this new technique to determine the static critical exponents β, γ, and ν, in an unambiguous fashion. The static critical exponents were determined as β = 0.10811(77) , γ = 1.4459(31) , and ν = 0.8197(17) , for the q = 3 case, and β = 0.0877(37) , γ = 1.3161(69) , and ν = 0.7076(10) , for the q = 4 Potts model. A comparison of the present results with conjectured values and with those obtained from other well established approaches strengthens this new way of performing WL simulations.

  17. Parametric study of a canard-configured transport using conceptual design optimization

    NASA Technical Reports Server (NTRS)

    Arbuckle, P. D.; Sliwa, S. M.

    1985-01-01

    Constrained-parameter optimization is used to perform optimal conceptual design of both canard and conventional configurations of a medium-range transport. A number of design constants and design constraints are systematically varied to compare the sensitivities of canard and conventional configurations to a variety of technology assumptions. Main-landing-gear location and canard surface high-lift performance are identified as critical design parameters for a statically stable, subsonic, canard-configured transport.

  18. Hybrid massively parallel fast sweeping method for static Hamilton-Jacobi equations

    NASA Astrophysics Data System (ADS)

    Detrixhe, Miles; Gibou, Frédéric

    2016-10-01

    The fast sweeping method is a popular algorithm for solving a variety of static Hamilton-Jacobi equations. Fast sweeping algorithms for parallel computing have been developed, but are severely limited. In this work, we present a multilevel, hybrid parallel algorithm that combines the desirable traits of two distinct parallel methods. The fine and coarse grained components of the algorithm take advantage of heterogeneous computer architecture common in high performance computing facilities. We present the algorithm and demonstrate its effectiveness on a set of example problems including optimal control, dynamic games, and seismic wave propagation. We give results for convergence, parallel scaling, and show state-of-the-art speedup values for the fast sweeping method.

  19. Static tests of the propulsion system. [Propfan Test Assessment program

    NASA Technical Reports Server (NTRS)

    Withers, C. C.; Bartel, H. W.; Turnberg, J. E.; Graber, E. J.

    1987-01-01

    Advanced, highly-loaded, high-speed propellers, called propfans, are promising to revolutionize the transport aircraft industry by offering a 15- to 30-percent fuel savings over the most advanced turbofans without sacrificing passenger comfort or violating community noise standards. NASA Lewis Research Center and industry have been working jointly to develop the needed propfan technology. The NASA-funded Propfan Test Assessment (PTA) Program represents a key element of this joint program. In PTA, Lockheed-Georgia, working in concert with Hamilton Standard, Rohr Industries, Gulfstream Aerospace, and Allison, is developing a propfan propulsion system which will be mounted on the left wing of a modified Gulfstream GII aircraft and flight tested to verify the in-flight characteristics of a 9-foot diameter, single-rotation propfan. The propfan, called SR-7L, was designed and fabricated by Hamilton Standard under a separate NASA contract. Prior to flight testing, the PTA propulsion system was static tested at the Rohr Brown Field facility. In this test, propulsion system operational capability was verified and data was obtained on propfan structural response, system acoustic characteristics, and system performance. This paper reports on the results of the static tests.

  20. Superelastic Ball Bearings: Materials and Design to Avoid Mounting and Dismounting Brinell Damage in an Inaccessible Press-Fit Application-. I ; Design Approach

    NASA Technical Reports Server (NTRS)

    Dellacorte, Christopher; Howard, S. Adam

    2015-01-01

    Ball bearings require proper fit and installation into machinery structures (onto shafts and into bearing housings) to ensure optimal performance. For some applications, both the inner and outer race must be mounted with an interference fit and care must be taken during assembly and disassembly to avoid placing heavy static loads between the balls and races otherwise Brinell dent type damage can occur. In this paper, a highly dent resistant superelastic alloy, 60NiTi, is considered for rolling element bearing applications that encounter excessive static axial loading during assembly or disassembly. A small (R8) ball bearing is designed for an application in which access to the bearing races to apply disassembly tools is precluded. First Principles analyses show that by careful selection of materials, raceway curvature and land geometry, a bearing can be designed that allows blind assembly and disassembly without incurring raceway damage due to ball denting. Though such blind assembly applications are uncommon, the availability of bearings with unusually high static load capability may enable more such applications with additional benefits, especially for miniature bearings.

  1. Static Mixer for Heat Transfer Enhancement for Mold Cooling Application

    NASA Astrophysics Data System (ADS)

    Becerra, Rodolfo; Barbosa, Raul; Lee, Kye-Hwan; Park, Younggil

    Injection molding is the process by which a material is melted in a barrel and then it is injected through a nozzle in the mold cavity. When it cools down, the material solidifies into the shape of the cavity. Typical injection mold has cooling channels to maintain constant mold temperature during injection molding process. Even and constant temperature throughout the mold are very critical for a part quality and productivity. Conformal cooling improves the quality and productivity of injection molding process through the implementation of cooling channels that ``conform'' to the shape of the molded part. Recent years, the use of conformal cooling increases with advance of 3D printing technology such as Selective Laser Melting (SLM). Although it maximizes cooling, material and dimension limitations make SLM methods highly expensive. An alternative is the addition of static mixers in the molds with integrated cooling channels. A static mixer is a motionless mixing device that enhances heat transfer by producing improved flow mixing in the pipeline. In this study, the performance of the cooling channels will be evaluated with and without static mixers, by measuring temperature, pressure drop, and flow rate. The following question is addressed: Can a static mixer effectively enhance heat transfer for mold cooling application processes? This will provide insight on the development of design methods and guidelines that can be used to increase cooling efficiency at a lower cost.

  2. Neuromuscular control of lumbar instability following static work of various loads.

    PubMed

    Le, Brook; Davidson, Bradley; Solomonow, Deborah; Zhou, Bing He; Lu, Yun; Patel, Vikas; Solomonow, Moshe

    2009-01-01

    Neuromuscular control of lumbar stability following exposure to prolonged static work, under low and high loads, was assessed in the in vivo feline model. Six sessions of 10 min work at 20N with 10 min between rest was compared to a group subjected to the same protocol but carrying high loads of 60N. Displacement and tension developed in the spine at the instant the multifidus muscles applied stabilizing contractions, and their amplitudes were obtained from their electromyogram (EMG). Significant (P < 0.001) laxity developed in the various viscoelastic tissues of the lumbar spine that did not recover during and up to 7 h of rest postwork. Simultaneously, there was a significant (P < 0.001) decrease in muscular activity in the 3-4 h immediately postwork under low load but only during the first hour in the high load group. After that period the musculature compensated for the laxity of the viscoelastic tissues by a significant (P < 0.001) increase in activity in the high-load group and a nonsignificant increase in the low group. It was concluded that during 1-3 h immediately poststatic work a significant decrease in the stabilizing function of viscoelastic tissues together with a significant decrease in muscular activity is present, and they render the spine unstable and exposed to high risk of injury. Performance of prolonged static work under low loads, while not harmful during the work, cannot be designated as a "no-risk" condition, as it may result in injury postwork.

  3. High-strain rate tensile characterization of graphite platelet reinforced vinyl ester based nanocomposites using split-Hopkinson pressure bar

    NASA Astrophysics Data System (ADS)

    Pramanik, Brahmananda

    The dynamic response of exfoliated graphite nanoplatelet (xGnP) reinforced and carboxyl terminated butadiene nitrile (CTBN) toughened vinyl ester based nanocomposites are characterized under both dynamic tensile and compressive loading. Dynamic direct tensile tests are performed applying the reverse impact Split Hopkinson Pressure Bar (SHPB) technique. The specimen geometry for tensile test is parametrically optimized by Finite Element Analysis (FEA) using ANSYS Mechanical APDLRTM. Uniform stress distribution within the specimen gage length has been verified using high-speed digital photography. The on-specimen strain gage installation is substituted by a non-contact Laser Occlusion Expansion Gage (LOEG) technique for infinitesimal dynamic tensile strain measurements. Due to very low transmitted pulse signal, an alternative approach based on incident pulse is applied for obtaining the stress-time history. Indirect tensile tests are also performed combining the conventional SHPB technique with Brazilian disk test method for evaluating cylindrical disk specimens. The cylindrical disk specimen is held snugly in between two concave end fixtures attached to the incident and transmission bars. Indirect tensile stress is estimated from the SHPB pulses, and diametrical transverse tensile strain is measured using LOEG. Failure diagnosis using high-speed digital photography validates the viability of utilizing this indirect test method for characterizing the tensile properties of the candidate vinyl ester based nanocomposite system. Also, quasi-static indirect tensile response agrees with previous investigations conducted using the traditional dog-bone specimen in quasi-static direct tensile tests. Investigation of both quasi-static and dynamic indirect tensile test responses show the strain rate effect on the tensile strength and energy absorbing capacity of the candidate materials. Finally, the conventional compressive SHPB tests are performed. It is observed that both strength and energy absorbing capacity of these candidate material systems are distinctively less under dynamic tension than under compressive loading. Nano-reinforcement appears to marginally improve these properties for pure vinyl ester under dynamic tension, although it is found to be detrimental under dynamic compression.

  4. FireFly: reconfigurable optical wireless networking data centers

    NASA Astrophysics Data System (ADS)

    Kavehrad, Mohsen; Deng, Peng; Gupta, H.; Longtin, J.; Das, S. R.; Sekar, V.

    2017-01-01

    We explore a novel, free-space optics based approach for building data center interconnects. Data centers (DCs) are a critical piece of today's networked applications in both private and public sectors. The key factors that have driven this trend are economies of scale, reduced management costs, better utilization of hardware via statistical multiplexing, and the ability to elastically scale applications in response to changing workload patterns. A robust DC network fabric is fundamental to the success of DCs and to ensure that the network does not become a bottleneck for high-performance applications. In this context, DC network design must satisfy several goals: high performance (e.g., high throughput and low latency), low equipment and management cost, robustness to dynamic traffic patterns, incremental expandability to add new servers or racks, and other practical concerns such as cabling complexity, and power and cooling costs. Current DC network architectures do not seem to provide a satisfactory solution, with respect to the above requirements. In particular, traditional static (wired) networks are either overprovisioned or oversubscribed. Recent works have tried to overcome the above limitations by augmenting a static (wired) "core" with some flexible links (RF-wireless or optical). These augmented architectures show promise, but offer only incremental improvement in performance. Specifically, RFwireless based augmented solutions also offer only limited performance improvement, due to inherent interference and range constraints of RF links. This paper explores an alternative design point—a fully flexible and all-wireless DC interrack network based on free-space optical (FSO) links. We call this FireFly as in; Free-space optical Inter-Rack nEtwork with high FLexibilitY. We will present our designs and tests using various configurations that can help the performance and reliability of the FSO links.

  5. Changes of lumbar posture and tissue loading during static trunk bending.

    PubMed

    Alessa, Faisal; Ning, Xiaopeng

    2018-02-01

    Static trunk bending is an occupational risk factor for lower back pain (LBP). When assessing relative short duration trunk bending tasks, existing studies mostly assumed unchanged spine biomechanical responses during task performance. The purpose of the current study was to assess the biomechanical changes of lumbar spine during the performance of relatively short duration, sustained trunk bending tasks. Fifteen participants performed 40-s static trunk bending tasks in two different trunk angles (30° or 60°) with two different hand load levels (0 or 6.8 kg). Results of the current study revealed significantly increased lumbar flexion and lumbar passive moment during the 40 s of trunk bending. Significantly reduced lumbar and abdominal muscle activities were also observed in most conditions. These findings suggest that, during the performance of short duration, static trunk bending tasks, a shift of loading from lumbar active tissues to passive tissues occurs naturally. This mechanism is beneficial in reducing the accumulation of lumbar muscle fatigue; however, lumbar passive tissue creep could be introduced due to prolonged or repetitive exposure. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Deep flaws in weldments of aluminum and titanium

    NASA Technical Reports Server (NTRS)

    Masters, J. N.; Engstrom, W. L.; Bixler, W. D.

    1974-01-01

    Surface flawed specimens of 2219-T87 and 6Al-4V STA titanium weldments were tested to determine static failure modes, failure strength, and fatigue flaw growth characteristics. Thicknesses selected for this study were purposely set at values where, for most test conditions, abrupt instability of the flaw at fracture would not be expected. Static tests for the aluminum weldments were performed at room, LN2 and LH2 temperatures. Titanium static tests for tests were performed at room and LH2 temperatures. Results of the static tests were used to plot curves relating initial flaw size to leakage- or failure-stresses (i.e. "failure" locus curves). Cyclic tests, for both materials, were then performed at room temperature, using initial flaws only slightly below the previously established failure locus for typical proof stress levels. Cyclic testing was performed on pairs of specimens, one with and one without a simulated proof test cycle. Comparisons were made then to determine the value and effect of proof testing as affected by the various variables of proof and operating stress, flaw shape, material thickness, and alloy.

  7. Instrumental concept and preliminary performances of SIFTI: static infrared fourier transform interferometer

    NASA Astrophysics Data System (ADS)

    Hébert, Philippe-Jean; Cansot, E.; Pierangelo, C.; Buil, C.; Bernard, F.; Loesel, J.; Trémas, T.; Perrin, L.; Courau, E.; Casteras, C.; Maussang, I.; Simeoni, D.

    2017-11-01

    The SIFTI (Static Infrared Fourier Transform Interferometer) instrument aims at supporting an important part in a mission for atmospheric pollution sounding from space, by providing high spectral resolution and high Signal to Noise Ratio spectra of the atmosphere. They will allow to resolve tropospheric profiles of ozone (03) and carbon monoxide (C0), especially down to the planetary boundary layer (PBL), an altitude region of very high interest, though poorly monitored to date, for air quality and pollution monitoring. The retrieved profile of ozone, resp. C0, will contain 5 to 7, resp. 2.5 to 4, independent pieces of information. The French space agency CNES (Centre National d'Etudes Spatiales) has proposed and is studying an instrument concept for SIFTI based on a static interferometer, where the needed optical path are generated by a pair of crossed staircase fixed mirrors (replacing the moving reflector of dynamic Fourier transform interferometers like IASI or MIPAS). With the SIFTI design, a very high spectral resolution ( 0.1 cm-1 apodised) is achieved in a very compact optical setup, allowing a large throughput, hence a high SNR. The measurements are performed in the 9.5 μm band for 03 and in the 4.6 μm band for C0. The science return of the sounder can be further increased if an "intelligent pointing" process is implemented. This consists in combining the TIR sounder with a companion TIR imager, providing information on the cloud coverage in the next observed scene. 0nboard, real-time analysis of the IR image is used to command the sounder staring mirror to cloud free areas, which will maximize the probability for probing down to the surface. After the first part of the phase A, the architecture of SIFTI was studied as a trade-off between performance and resource budget. We review the main architecture and functional choices, and their advantages. The preliminary instrument concept is then presented in its main aspects and in terms of main subsystem functions. The preliminary budgets of mass, volume, size and power are also evaluated. Eventually the science performances are estimated, at instrument level and at mission level, and are compared to the specifications. To finish, the ways forward are discussed.

  8. Putting Motion in Emotion: Do Dynamic Presentations Increase Preschooler's Recognition of Emotion?

    ERIC Educational Resources Information Center

    Nelson, Nicole L.; Russell, James A.

    2011-01-01

    In prior research, preschoolers were surprisingly poor at naming the emotion purportedly signaled by prototypical facial expressions--when shown as static images. To determine whether this poor performance is due to the use of static stimuli, rather than dynamic, we presented preschoolers (3-5 years) with facial expressions as either static images…

  9. Manycast routing, modulation level and spectrum assignment over elastic optical networks

    NASA Astrophysics Data System (ADS)

    Luo, Xiao; Zhao, Yang; Chen, Xue; Wang, Lei; Zhang, Min; Zhang, Jie; Ji, Yuefeng; Wang, Huitao; Wang, Taili

    2017-07-01

    Manycast is a point to multi-point transmission framework that requires a subset of destination nodes successfully reached. It is particularly applicable for dealing with large amounts of data simultaneously in bandwidth-hungry, dynamic and cloud-based applications. As rapid increasing of traffics in these applications, the elastic optical networks (EONs) may be relied on to achieve high throughput manycast. In terms of finer spectrum granularity, the EONs could reach flexible accessing to network spectrum and efficient providing exact spectrum resource to demands. In this paper, we focus on the manycast routing, modulation level and spectrum assignment (MA-RMLSA) problem in EONs. Both EONs planning with static manycast traffic and EONs provisioning with dynamic manycast traffic are investigated. An integer linear programming (ILP) model is formulated to derive MA-RMLSA problem in static manycast scenario. Then corresponding heuristic algorithm called manycast routing, modulation level and spectrum assignment genetic algorithm (MA-RMLSA-GA) is proposed to adapt for both static and dynamic manycast scenarios. The MA-RMLSA-GA optimizes MA-RMLSA problem in destination nodes selection, routing light-tree constitution, modulation level allocation and spectrum resource assignment jointly, to achieve an effective improvement in network performance. Simulation results reveal that MA-RMLSA strategies offered by MA-RMLSA-GA have slightly disparity from the optimal solutions provided by ILP model in static scenario. Moreover, the results demonstrate that MA-RMLSA-GA realizes a highly efficient MA-RMLSA strategy with the lowest blocking probability in dynamic scenario compared with benchmark algorithms.

  10. Aeroelastic optimization methodology for viscous and turbulent flows

    NASA Astrophysics Data System (ADS)

    Barcelos Junior, Manuel Nascimento Dias

    2007-12-01

    In recent years, the development of faster computers and parallel processing allowed the application of high-fidelity analysis methods to the aeroelastic design of aircraft. However, these methods are restricted to the final design verification, mainly due to the computational cost involved in iterative design processes. Therefore, this work is concerned with the creation of a robust and efficient aeroelastic optimization methodology for inviscid, viscous and turbulent flows by using high-fidelity analysis and sensitivity analysis techniques. Most of the research in aeroelastic optimization, for practical reasons, treat the aeroelastic system as a quasi-static inviscid problem. In this work, as a first step toward the creation of a more complete aeroelastic optimization methodology for realistic problems, an analytical sensitivity computation technique was developed and tested for quasi-static aeroelastic viscous and turbulent flow configurations. Viscous and turbulent effects are included by using an averaged discretization of the Navier-Stokes equations, coupled with an eddy viscosity turbulence model. For quasi-static aeroelastic problems, the traditional staggered solution strategy has unsatisfactory performance when applied to cases where there is a strong fluid-structure coupling. Consequently, this work also proposes a solution methodology for aeroelastic and sensitivity analyses of quasi-static problems, which is based on the fixed point of an iterative nonlinear block Gauss-Seidel scheme. The methodology can also be interpreted as the solution of the Schur complement of the aeroelastic and sensitivity analyses linearized systems of equations. The methodologies developed in this work are tested and verified by using realistic aeroelastic systems.

  11. In-Flight Pitot-Static Calibration

    NASA Technical Reports Server (NTRS)

    Foster, John V. (Inventor); Cunningham, Kevin (Inventor)

    2016-01-01

    A GPS-based pitot-static calibration system uses global output-error optimization. High data rate measurements of static and total pressure, ambient air conditions, and GPS-based ground speed measurements are used to compute pitot-static pressure errors over a range of airspeed. System identification methods rapidly compute optimal pressure error models with defined confidence intervals.

  12. Study on static and dynamic characteristics of moving magnet linear compressors

    NASA Astrophysics Data System (ADS)

    Chen, N.; Tang, Y. J.; Wu, Y. N.; Chen, X.; Xu, L.

    2007-09-01

    With the development of high-strength NdFeB magnetic material, moving magnet linear compressors have been gradually introduced in the fields of refrigeration and cryogenic engineering, especially in Stirling and pulse tube cryocoolers. This paper presents simulation and experimental investigations on the static and dynamic characteristics of a moving magnet linear motor and a moving magnet linear compressor. Both equivalent magnetic circuits and finite element approaches have been used to model the moving magnet linear motor. Subsequently, the force and equilibrium characteristics of the linear motor have been predicted and verified by detailed static experimental analyses. In combination with a harmonic analysis, experimental investigations were conducted on a prototype of a moving magnet linear compressor. A voltage-stroke relationship, the effect of charging pressure on the performance and dynamic frequency response characteristics are investigated. Finally, the method to identify optimal points of the linear compressor has been described, which is indispensable to the design and operation of moving magnet linear compressors.

  13. J-substitution algorithm in magnetic resonance electrical impedance tomography (MREIT): phantom experiments for static resistivity images.

    PubMed

    Khang, Hyun Soo; Lee, Byung Il; Oh, Suk Hoon; Woo, Eung Je; Lee, Soo Yeol; Cho, Min Hyoung; Kwon, Ohin; Yoon, Jeong Rock; Seo, Jin Keun

    2002-06-01

    Recently, a new static resistivity image reconstruction algorithm is proposed utilizing internal current density data obtained by magnetic resonance current density imaging technique. This new imaging method is called magnetic resonance electrical impedance tomography (MREIT). The derivation and performance of J-substitution algorithm in MREIT have been reported as a new accurate and high-resolution static impedance imaging technique via computer simulation methods. In this paper, we present experimental procedures, denoising techniques, and image reconstructions using a 0.3-tesla (T) experimental MREIT system and saline phantoms. MREIT using J-substitution algorithm effectively utilizes the internal current density information resolving the problem inherent in a conventional EIT, that is, the low sensitivity of boundary measurements to any changes of internal tissue resistivity values. Resistivity images of saline phantoms show an accuracy of 6.8%-47.2% and spatial resolution of 64 x 64. Both of them can be significantly improved by using an MRI system with a better signal-to-noise ratio.

  14. Statistical analysis of fires and explosions attributed to static electricity over the last 50 years in Japanese industry

    NASA Astrophysics Data System (ADS)

    Ohsawa, A.

    2011-06-01

    This paper presents a statistical analysis of 153 accidents attributable to static electricity in Japanese industry over the last 50 years. A more thorough understanding of their causes could help prevent similar incidents and identify hazards that could assist in the task of risk assessment. Most of the incidents occurred during operations performed by workers. In addition, more than 70% of the flammable atmospheres resulted from the presence of vapours. A noteworthy finding is that at least 70% of the ignitions were caused by isolated conductors including operators' bodies leading to spark discharges, which could have easily been prevented with earthing. These tendencies indicate that, when operators handle flammable liquids with any conductors, the ignition risk is significantly high. A serious lack of information regarding fundamental countermeasures for static electricity seems to be the main cause of such hazards. Only organised management, including education and risk communication, would prevent them.

  15. Radiographic signs of static carpal instability with distal end radius fractures: is current treatment adequate?

    PubMed

    Bunker, D L J; Pappas, G; Moradi, P; Dowd, M B

    2012-01-01

    Patients presenting with distal end radius fractures may have concomitant carpal instability due to disruption of the scapholunate ligament. This study examined the incidence of static radiographic signs of carpal instability in patients with distal radial fractures before and after fracture treatment. We performed a retrospective radiographic study of 141 patients presenting to Central Middlesex Hospital, London between January 2002-May 2004 with distal end radius fractures. We used abnormal scapholunate angle as the primary indicator of possible carpal dissociation. Abnormal scapholunate angles were noted in 39% of patients at presentation and 35% of patients after treatment with no statistically significant intra-patient variability. Persistent static radiographic signs of carpal instability are high in this subset of patients. The long-term morbidity of persistent wrist instability may be avoided by early radiological diagnosis with clinical correlation to identify carpal ligament injuries and initiate treatment that addresses both the bony and ligamentous components of the injury.

  16. Optimal placement of FACTS devices using optimization techniques: A review

    NASA Astrophysics Data System (ADS)

    Gaur, Dipesh; Mathew, Lini

    2018-03-01

    Modern power system is dealt with overloading problem especially transmission network which works on their maximum limit. Today’s power system network tends to become unstable and prone to collapse due to disturbances. Flexible AC Transmission system (FACTS) provides solution to problems like line overloading, voltage stability, losses, power flow etc. FACTS can play important role in improving static and dynamic performance of power system. FACTS devices need high initial investment. Therefore, FACTS location, type and their rating are vital and should be optimized to place in the network for maximum benefit. In this paper, different optimization methods like Particle Swarm Optimization (PSO), Genetic Algorithm (GA) etc. are discussed and compared for optimal location, type and rating of devices. FACTS devices such as Thyristor Controlled Series Compensator (TCSC), Static Var Compensator (SVC) and Static Synchronous Compensator (STATCOM) are considered here. Mentioned FACTS controllers effects on different IEEE bus network parameters like generation cost, active power loss, voltage stability etc. have been analyzed and compared among the devices.

  17. Design and Predictions for High-Altitude (Low Reynolds Number) Aerodynamic Flight Experiment

    NASA Technical Reports Server (NTRS)

    Greer, Donald; Harmory, Phil; Krake, Keith; Drela, Mark

    2000-01-01

    A sailplane being developed at NASA Dryden Flight Research Center will support a high-altitude flight experiment. The experiment will measure the performance parameters or an airfoil at high altitudes (70,000 - 100,000 ft), low Reynolds numbers (2 x 10(exp 5) - 7 x 10(exp 5)), and high subsonic Mach numbers (0.5 and 0.65). The airfoil section lift and drag are determined from pilot and static pressure measurements. The locations of the separation bubble, Tollmien-Schlichting boundary-layer instability frequencies, and vortex shedding are measured from a hot-film strip. The details of the planned flight experiment are presented as well as several predictions of the airfoil performance.

  18. Strategies for a better performance of RPL under mobility in wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Latib, Z. A.; Jamil, A.; Alduais, N. A. M.; Abdullah, J.; Audah, L. H. M.; Alias, R.

    2017-09-01

    A Wireless Sensor Network (WSN) is usually stationary, which the network comprises of static nodes. The increase demand for mobility in various applications such as environmental monitoring, medical, home automation, and military, raises the question how IPv6 Routing Protocol for Low-Power and Lossy Networks (RPL) would perform under these mobility applications. This paper aims to understand performance of RPL and come out with strategies for a better performance of RPL in mobility scenarios. Because of this, this paper evaluates the performance of the RPL protocol under three different scenarios: sink and sensor nodes are static, static sink and mobile sensor nodes, and sink and sensor nodes are mobile. The network scenarios are implemented in Cooja simulator. A WSN consists of 25 sensor nodes and one sink node is configured in the simulation environment. The simulation is varied over different packet rates and ContikiMAC's Clear Channel Assessment (CCA) rate. As the performance metric, RPL is evaluated in term of packet delivery ratio (PDR), power consumption and packet rates. The simulation results show RPL provides a poor PDR in the mobility scenarios when compared to the static scenario. In addition, RPL consumes more power and increases duty-cycle rate to support mobility when compared to the static scenario. Based on the findings, we suggest three strategies for a better performance of RPL in mobility scenarios. First, RPL should operates at a lower packet rates when implemented in the mobility scenarios. Second, RPL should be implemented with a higher duty-cycle rate. Lastly, the sink node should be positioned as much as possible in the center of the mobile network.

  19. Night Vision Laboratory Static Performance Model for Thermal Viewing Systems

    DTIC Science & Technology

    1975-04-01

    Research and Development Technical Report f ECOM-� • i’.__1’=• =•NIGHT VISION LABORATORY STATIC PERFORMANCE MODEL 1 S1=• : FOR THERMAL VIEWING...resolvable temperature Infrared imaging Minimum detectable temperature1.Detection and recognition performance Night visi,-)n Noise equivalent temperature...modulation transfer function (MTF). The noise charactcristics are specified by the noise equivalent temper- ature difference (NE AT), The next sections

  20. Quasi-Static Calibration Method of a High-g Accelerometer

    PubMed Central

    Wang, Yan; Fan, Jinbiao; Zu, Jing; Xu, Peng

    2017-01-01

    To solve the problem of resonance during quasi-static calibration of high-g accelerometers, we deduce the relationship between the minimum excitation pulse width and the resonant frequency of the calibrated accelerometer according to the second-order mathematical model of the accelerometer, and improve the quasi-static calibration theory. We establish a quasi-static calibration testing system, which uses a gas gun to generate high-g acceleration signals, and apply a laser interferometer to reproduce the impact acceleration. These signals are used to drive the calibrated accelerometer. By comparing the excitation acceleration signal and the output responses of the calibrated accelerometer to the excitation signals, the impact sensitivity of the calibrated accelerometer is obtained. As indicated by the calibration test results, this calibration system produces excitation acceleration signals with a pulse width of less than 1000 μs, and realize the quasi-static calibration of high-g accelerometers with a resonant frequency above 20 kHz when the calibration error was 3%. PMID:28230743

  1. Static internal performance of convergent single-expansion-ramp nozzles with various combinations of internal geometric parameters

    NASA Technical Reports Server (NTRS)

    Bare, E. Ann; Capone, Francis J.

    1989-01-01

    An investigation was conducted in the Static Test Facility of the Langley 16-Foot Transonic Tunnel to determine the effects of five geometric design parameters on the internal performance of convergent single expansion ramp nozzles. The effects of ramp chordal angle, initial ramp angle, flap angle, flap length, and ramp length were determined. All nozzles tested has a nominally constant throat area and aspect ratio. Static pressure distributions along the centerlines of the ramp and flap were also obtained for each configuration. Nozzle pressure ratio was varied up to 10.0 for all configurations.

  2. Static internal performance of a two-dimensional convergent-divergent nozzle with thrust vectoring

    NASA Technical Reports Server (NTRS)

    Bare, E. Ann; Reubush, David E.

    1987-01-01

    A parametric investigation of the static internal performance of multifunction two-dimensional convergent-divergent nozzles has been made in the static test facility of the Langley 16-Foot Transonic Tunnel. All nozzles had a constant throat area and aspect ratio. The effects of upper and lower flap angles, divergent flap length, throat approach angle, sidewall containment, and throat geometry were determined. All nozzles were tested at a thrust vector angle that varied from 5.60 tp 23.00 deg. The nozzle pressure ratio was varied up to 10 for all configurations.

  3. Practical use of high-speed cameras for research and development within the automotive industry: yesterday and today

    NASA Astrophysics Data System (ADS)

    Steinmetz, Klaus

    1995-05-01

    Within the automotive industry, especially for the development and improvement of safety systems, we find a lot of high accelerated motions, that can not be followed and consequently not be analyzed by human eye. For the vehicle safety tests at AUDI, which are performed as 'Crash Tests', 'Sled Tests' and 'Static Component Tests', 'Stalex', 'Hycam', and 'Locam' cameras are in use. Nowadays the automobile production is inconceivable without the use of high speed cameras.

  4. Off-Design Reynolds Number Effects for a Supersonic Transport

    NASA Technical Reports Server (NTRS)

    Owens, Lewis R.; Wahls, Richard A.; Rivers, S. Melissa

    2005-01-01

    A high Reynolds number wind tunnel test was conducted to assess Reynolds number effects on the aerodynamic performance characteristics of a realistic, second-generation supersonic transport concept. The tests included longitudinal studies at transonic and low-speed, high-lift conditions across a range of chord Reynolds numbers (8 million to 120 million). Results presented focus on Reynolds number and static aeroelastic sensitivities at Mach 0.30 and 0.90 for a configuration without a tail. Static aeroelastic effects, which mask Reynolds number effects, were observed. Reynolds number effects were generally small and the drag data followed established trends of skin friction as a function of Reynolds number. A more nose-down pitching moment was produced as Reynolds number increased because of an outward movement of the inboard leading-edge separation at constant angles of attack. This study extends the existing Reynolds number database for supersonic transports operating at off-design conditions.

  5. High-performance and power-efficient 2×2 optical switch on Silicon-on-Insulator.

    PubMed

    Han, Zheng; Moille, Grégory; Checoury, Xavier; Bourderionnet, Jérôme; Boucaud, Philippe; De Rossi, Alfredo; Combrié, Sylvain

    2015-09-21

    A compact (15µm × 15µm) and highly-optimized 2×2 optical switch is demonstrated on a CMOS-compatible photonic crystal technology. On-chip insertion loss are below 1 dB, static and dynamic contrast are 40 dB and >20 dB respectively. Owing to efficient thermo-optic design, the power consumption is below 3 mW while the switching time is 1 µs.

  6. A 16K-bit static IIL RAM with 25-ns access time

    NASA Astrophysics Data System (ADS)

    Inabe, Y.; Hayashi, T.; Kawarada, K.; Miwa, H.; Ogiue, K.

    1982-04-01

    A 16,384 x 1-bit RAM with 25-ns access time, 600-mW power dissipation, and 33 sq mm chip size has been developed. Excellent speed-power performance with high packing density has been achieved by an oxide isolation technology in conjunction with novel ECL circuit techniques and IIL flip-flop memory cells, 980 sq microns (35 x 28 microns) in cell size. Development results have shown that IIL flip-flop memory cell is a trump card for assuring achievement of a high-performance large-capacity bipolar RAM, in the above 16K-bit/chip area.

  7. Investigation of the jet-wake flow of a highly loaded centrifugal compressor impeller

    NASA Technical Reports Server (NTRS)

    Eckardt, D.

    1978-01-01

    Investigations, aimed at developing a better understanding of the complex flow field in high performance centrifugal compressors were performed. Newly developed measuring techniques for unsteady static and total pressures as well as flow directions, and a digital data analysis system for fluctuating signals were thoroughly tested. The loss-affected mixing process of the distorted impeller discharge flow was investigated in detail, in the absolute and relative system, at impeller tip speeds up to 380 m/s. A theoretical analysis proved good coincidence of the test results with the DEAN-SENOO theory, which was extended to compressible flows.

  8. Characterization of high-dose and high-energy implanted gate and source diode and analysis of lateral spreading of p gate profile in high voltage SiC static induction transistors

    NASA Astrophysics Data System (ADS)

    Onose, Hidekatsu; Kobayashi, Yutaka; Onuki, Jin

    2017-03-01

    The effect of the p gate dose on the characteristics of the gate-source diode in SiC static induction transistors (SIT) was investigated. It was found that a dose of 1.5 × 1014 cm-2 yields a pn junction breakdown voltage higher than 60 V and good forward characteristics. A normally on SiC SIT was fabricated and demonstrated. A blocking voltage higher than 2.0 kV at a gate-source voltage of -50 V and on-resistance of 70 mΩ cm2 were obtained. Device simulations were performed to investigate the effect of the lateral spreading. By comparing the measured I-V curves with simulation results, the lateral spreading factor was estimated to be about 0.5. The lateral spreading detrimentally affected the electrical properties of the SIT made using implantations at energies higher than 1 MeV.

  9. An automated high throughput tribometer for adhesion, wear, and friction measurements

    NASA Astrophysics Data System (ADS)

    Kalihari, Vivek; Timpe, Shannon J.; McCarty, Lyle; Ninke, Matthew; Whitehead, Jim

    2013-03-01

    Understanding the origin and correlation of different surface properties under a multitude of operating conditions is critical in tribology. Diverse tribological properties and a lack of a single instrument to measure all make it difficult to compare and correlate properties, particularly in light of the wide range of interfaces commonly investigated. In the current work, a novel automated tribometer has been designed and validated, providing a unique experimental platform capable of high throughput adhesion, wear, kinetic friction, and static friction measurements. The innovative design aspects are discussed that allow for a variety of probes, sample surfaces, and testing conditions. Critical components of the instrument and their design criteria are described along with examples of data collection schemes. A case study is presented with multiple surface measurements performed on a set of characteristic substrates. Adhesion, wear, kinetic friction, and static friction are analyzed and compared across surfaces, highlighting the comprehensive nature of the surface data that can be generated using the automated high throughput tribometer.

  10. Performance of Several Conical Convergent-Divergent Rocket-Type Exhaust Nozzles

    NASA Technical Reports Server (NTRS)

    Campbell, C. E.; Farley, J. M.

    1960-01-01

    An investigation was conducted to obtain nozzle performance data with relatively large-scale models at pressure ratios as high as 120. Conical convergent-divergent nozzles with divergence angles alpha of 15, 25, and 29 deg. were each tested at area ratios of approximately 10, 25, and 40. Heated air (1200 F) was supplied at the nozzle inlet at pressures up to 145 pounds per square inch absolute and was exhausted into quiescent air at pressures as low as 1.2 pounds per square inch absolute. Thrust ratios for all nozzle configurations are presented over the range of pressure ratios attainable and were extrapolated when possible to design pressure ratio and beyond. Design thrust ratios decreased with increasing nozzle divergence angle according to the trend predicted by the (1 + cos alpha)/2 parameter. Decreasing the nozzle divergence angle resulted in sizable increases in thrust ratio for a given surface-area ratio (nozzle weight), particularly at low nozzle pressure ratios. Correlations of the nozzle static pressure at separation and of the average static pressure downstream of separation with various nozzle parameters permitted the calculation of thrust in the separated-flow region from unseparated static-pressure distributions. Thrust ratios calculated by this method agreed with measured values within about 1 percent.

  11. Effects of Combining Running and Practical Duration Stretching on Proprioceptive Skills of National Sprinters.

    PubMed

    Romero-Franco, Natalia; Párraga-Montilla, Juan Antonio; Molina-Flores, Enrique M; Jiménez-Reyes, Pedro

    2018-06-01

    Romero-Franco, N, Párraga-Montilla, JA, Molina-Flores, EM, and Jiménez-Reyes, P. Effects of combining running and practical duration stretching on proprioceptive skills of national sprinters. J Strength Cond Res XX(X): 000-000, 2018-Practical duration stretching after aerobic activities is a recommended component of the first part of warm-up because of its effects on performance. However, its effects on proprioceptive skills are unknown. This study aimed to analyze the effects of running and practical duration static stretching (SS) and dynamic stretching (DS) on postural balance and the joint position sense (JPS) of national sprinters. Thirty-two national sprinters were randomly classified into a SS group (n = 11), DS group (n = 11), or control group (n = 10). Static stretching performed 5 minutes of running and short-duration (20 seconds) static stretches; DS performed 5 minutes of running and short-duration dynamic (20 seconds) stretches; and the control group performed 5 minutes of running. Before and after the intervention, unipedal static postural balance and knee JPS were evaluated. Static stretching exhibited a more centralized center of pressure in the medial-lateral plane for unipedal static postural balance in right-leg support after stretching (p = 0.005, d = 1.24), whereas DS showed values further from the center after stretching for the same unipedal support compared with baseline (p = 0.042, d = 0.49), and the control group remained stable (p > 0.05). Joint position sense did not show significant differences in any group (p > 0.05). In conclusion, combining running and practical duration SS may be beneficial for right-leg postural stabilization, whereas DS may be partly and slightly deleterious. Both SS and DS combined with running and running alone have neutral effects on knee JPS. Sports professionals should consider running and practical duration SS as part of the warm-up of sprinters to partly improve unipedal static postural balance.

  12. Accelerated fatigue durability of a high performance composite

    NASA Technical Reports Server (NTRS)

    Rotem, A.

    1982-01-01

    The fatigue behavior of multidirectional graphite-epoxy laminates was analyzed theoretically and experimentally in an effort to establish an accelerated testing methodology. Analysis of the failure mechanism in fatigue of the laminates led to the determination of the failure mode governing fracture. The nonlinear, cyclic-dependent shear modulus was used to calculate the changing stress field in the laminate during the fatigue loading. Fatigue tests were performed at three different temperatures: 25 C, 74 C, and 114 C. The prediction of the S-N curves was made based on the artificial static strength artificial static strength at a reference temperature and the fatigue functions associated with them. The prediction of an S-N curve at other temperatures was performed using shifting factors determined for the specific failure mode. For multidirectional laminates, different S-N curves at different temperatures could be predicted using these shifting factors. Different S-N curves at different temperatures occur only when the fatigue failure mode is matrix dominated. It was found that whenever the fatigue failure mode is fiber dominated, temperature, over the range investigated, had no influence on the fatigue life. These results permit the prediction of long-time, low temperature fatigue behavior from data obtained in short time, high temperature testing, for laminates governed by a matrix failure mode.

  13. The physical demands of elite English rugby union.

    PubMed

    Roberts, Simon P; Trewartha, Grant; Higgitt, Rob J; El-Abd, Joe; Stokes, Keith A

    2008-06-01

    The aim of this study was to assess the physical demands of elite English rugby union match-play. Player movements were captured by five distributed video cameras and then reconstructed on a two-dimensional plane representing the pitch. Movements based on speeds were categorized as standing, walking, jogging, and medium-intensity running (low-intensity activity), and high-intensity running, sprinting, and static exertion (scrummaging, rucking, mauling, and tackling) (high-intensity activity). Position groups were defined as forwards (tight and loose) and backs (inside and outside). Backs travelled more total distance than forwards (6127 m, s=724 vs. 5581 m, s=692; P<0.05) and greater distances in walking (2351 m, s=287 vs. 1928 m, s=2342; P<0.001) and high-intensity running (448 m, s=149 vs. 298 m, s=107; P<0.05). Forwards performed more high-intensity activity than backs (9:09 min:s, s=1:39 vs. 3:04 min:s, s=1:01; P<0.001), which was attributable to more time spent in static exertion (7:56 min:s, s=1:56 vs. 1:18 min:s, s=0:30; P<0.001), although backs spent more time in high-intensity running (0:52 min:s, s=0:19 vs. 1:19 min:s, s=0:26; P=0.004). Players travelled a greater distance in the first 10 min compared with 50-60 and 70-80 min, but there was no difference in the amount of high-intensity activity performed during consecutive 10-min periods during match-play. These results show the differing physical demands between forwards and backs with no evident deterioration in high-intensity activity performed during match-play.

  14. Temporal static stress drop variations due to injection activity at The Geysers geothermal field, California

    NASA Astrophysics Data System (ADS)

    Staszek, M.; Orlecka-Sikora, B.; Leptokaropoulos, K.; Kwiatek, G.; Martínez-Garzón, P.

    2017-07-01

    We use a high-quality data set from the NW part of The Geysers geothermal field to determine statistical significance of temporal static stress drop variations and their relation to injection rate changes. We use a group of 322 seismic events which occurred in the proximity of Prati-9 and Prati-29 injection wells to examine the influence of parameters such as moment magnitude, focal mechanism, hypocentral depth, and normalized hypocentral distances from open-hole sections of injection wells on static stress drop changes. Our results indicate that (1) static stress drop variations in time are statistically significant, (2) statistically significant static stress drop changes are inversely related to injection rate fluctuations. Therefore, it is highly expected that static stress drop of seismic events is influenced by pore pressure in underground fluid injection conditions and depends on the effective normal stress and strength of the medium.

  15. Effects of Static Stretching on Squat Performance in Division I Female Athletes

    PubMed Central

    HEISEY, CLARE F.; KINGSLEY, J. DEREK

    2016-01-01

    Static stretching was once recognized as a method of preparation for physical activity that would inhibit performance and increase risk of injury. However, a growing body of research suggests that static stretching may not have an inhibitory effect. Regardless, the data have not examined gender differences or the fatigue index (FI) and flexibility effects of static stretching on the back squat over multiple sets. Therefore, the purpose of this study was to examine the relationship between a static-stretch condition (SC) and control condition (CC) on flexibility and the FI of Division I female athletes during 4 sets of the back squat. Eighteen subjects (mean ± SD; age 20 ± 1 yrs; height 164.5 ± 14.6 cm; mass 74.1 ± 26.8 kg; waist circumference 73.2 ± 5.4 cm) participated in 3 testing days over the course of 3 weeks. Each subject’s 1RM back squat was assessed during the first day of testing and verified during the second. On the third testing day, subjects assigned to the SC held 3 lower-body stretches twice for 30 second intervals and those assigned to the CC rested during the corresponding 7 minutes and 50 second time period. The subjects also performed a fatiguing squat protocol consisting of 4 sets of maximum repetitions on the third day of testing. A significant (p=0.04) interaction was noted for flexibility. No significant interaction (p=0.41) was observed between the FI of the CC (41.8 ± 24.1%) or the SC (27.6 ± 45.2%). These results indicate that static stretching does not have a significant effect on multiple sets of the back squat. Therefore, coaches may allow their athletes to engage in static stretching prior to resistance exercise ad libitum. PMID:27766127

  16. Motion facilitates face perception across changes in viewpoint and expression in older adults.

    PubMed

    Maguinness, Corrina; Newell, Fiona N

    2014-12-01

    Faces are inherently dynamic stimuli. However, face perception in younger adults appears to be mediated by the ability to extract structural cues from static images and a benefit of motion is inconsistent. In contrast, static face processing is poorer and more image-dependent in older adults. We therefore compared the role of facial motion in younger and older adults to assess whether motion can enhance perception when static cues are insufficient. In our studies, older and younger adults learned faces presented in motion or in a sequence of static images, containing rigid (viewpoint) or nonrigid (expression) changes. Immediately following learning, participants matched a static test image to the learned face which varied by viewpoint (Experiment 1) or expression (Experiment 2) and was either learned or novel. First, we found an age effect with better face matching performance in younger than in older adults. However, we observed face matching performance improved in the older adult group, across changes in viewpoint and expression, when faces were learned in motion relative to static presentation. There was no benefit for facial (nonrigid) motion when the task involved matching inverted faces (Experiment 3), suggesting that the ability to use dynamic face information for the purpose of recognition reflects motion encoding which is specific to upright faces. Our results suggest that ageing may offer a unique insight into how dynamic cues support face processing, which may not be readily observed in younger adults' performance. (PsycINFO Database Record (c) 2014 APA, all rights reserved).

  17. The phase diagram of solid hydrogen at high pressure: A challenge for first principles calculations

    NASA Astrophysics Data System (ADS)

    Azadi, Sam; Foulkes, Matthew

    2015-03-01

    We present comprehensive results for the high-pressure phase diagram of solid hydrogen. We focus on the energetically most favorable molecular and atomic crystal structures. To obtain the ground-state static enthalpy and phase diagram, we use semi-local and hybrid density functional theory (DFT) as well as diffusion quantum Monte Carlo (DMC) methods. The closure of the band gap with increasing pressure is investigated utilizing quasi-particle many-body calculations within the GW approximation. The dynamical phase diagram is calculated by adding proton zero-point energies (ZPE) to static enthalpies. Density functional perturbation theory is employed to calculate the proton ZPE and the infra-red and Raman spectra. Our results clearly demonstrate the failure of DFT-based methods to provide an accurate static phase diagram, especially when comparing insulating and metallic phases. Our dynamical phase diagram obtained using fully many-body DMC calculations shows that the molecular-to-atomic phase transition happens at the experimentally accessible pressure of 374 GPa. We claim that going beyond mean-field schemes to obtain derivatives of the total energy and optimize crystal structures at the many-body level is crucial. This work was supported by the UK engineering and physics science research council under Grant EP/I030190/1, and made use of computing facilities provided by HECTOR, and by the Imperial College London high performance computing centre.

  18. Same score, different message: perceptions of offender risk depend on Static-99R risk communication format.

    PubMed

    Varela, Jorge G; Boccaccini, Marcus T; Cuervo, Veronica A; Murrie, Daniel C; Clark, John W

    2014-10-01

    The popular Static-99R allows evaluators to convey results in terms of risk category (e.g., low, moderate, high), relative risk (compared with other sexual offenders), or normative sample recidivism rate formats (e.g., 30% reoffended in 5 years). But we do not know whether judges and jurors draw similar conclusions about the same Static-99R score when findings are communicated using different formats. Community members reporting for jury duty (N = 211) read a tutorial on the Static-99R and a description of a sexual offender and his crimes. We varied his Static-99R score (1 or 6) and risk communication format (categorical, relative risk, or recidivism rate). Participants rated the high-scoring offender as higher risk than the low-scoring offender in the categorical communication condition, but not in the relative risk or recidivism rate conditions. Moreover, risk ratings of the high-scoring offender were notably higher in the categorical communication condition than the relative risk and recidivism rate conditions. Participants who read about a low Static-99R score tended to report that Static-99R results were unimportant and difficult to understand, especially when risk was communicated using categorical or relative risk formats. Overall, results suggest that laypersons are more receptive to risk results indicating high risk than low risk and more receptive to risk communication messages that provide an interpretative label (e.g., high risk) than those that provide statistical results. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  19. Concussion History and Time Since Concussion Do not Influence Static and Dynamic Balance in Collegiate Athletes.

    PubMed

    Merritt, Eric D; Brown, Cathleen N; Queen, Robin M; Simpson, Kathy J; Schmidt, Julianne D

    2017-11-01

    Dynamic balance deficits exist following a concussion, sometimes years after injury. However, clinicians lack practical tools for assessing dynamic balance. To determine if there are significant differences in static and dynamic balance performance between individuals with and without a history of concussion. Cross sectional. Clinical research laboratory. 45 collegiate student-athletes with a history of concussion (23 males, 22 females; age = 20.0 ± 1.4 y; height = 175.8 ± 11.6 cm; mass = 76.4 ± 19.2 kg) and 45 matched controls with no history of concussion (23 males, 22 females; age = 20.0 ± 1.3 y; height = 178.8 ± 13.2 cm; mass = 75.7 ± 18.2 kg). Participants completed a static (Balance Error Scoring System) and dynamic (Y Balance Test-Lower Quarter) balance assessment. A composite score was calculated from the mean normalized Y Balance Test-Lower Quarter reach distances. Firm, foam, and overall errors were counted during the Balance Error Scoring System by a single reliable rater. One-way ANOVAs were used to compare balance performance between groups. Pearson's correlations were performed to determine the relationship between the time since the most recent concussion and balance performance. A Bonferonni adjusted a priori α < 0.025 was used for all analyses. Static and dynamic balance performance did not significantly differ between groups. No significant correlation was found between the time since the most recent concussion and balance performance. Collegiate athletes with a history of concussion do not present with static or dynamic balance deficits when measured using clinical assessments. More research is needed to determine whether the Y Balance Test-Lower Quarter is sensitive to acute balance deficits following concussion.

  20. The acute effect of different stretching methods on sprint performance in taekwondo practitioners.

    PubMed

    Alemdaroğlu, Utku; Köklü, Yusuf; Koz, Mitat

    2017-09-01

    The purpose of this study was to compare the acute effects of different stretching types on sprint performance in taekwondo practitioners. Twelve male taekwondo practitioners performed stretching exercises using different types (ballistic, proprioceptive neuromuscular facilitation [PNF], static stretching) in a random order at three-day intervals; there was also a control condition involving no stretching exercises. The subjects performed 2 maximal 20-m sprints (with 10-m split times also recorded) with a recovery period of 1 minute immediately post stretching and at 5, 10, 15 and 20 minutes after stretching. They also performed these sprints before doing the stretching exercises. The study results showed that sprint times significantly increased after static stretching (10-m pre =1.84±0.07 s, 10-m post =1.89±0.08 s; 20-m pre =3.33±0.19 s, 20-m post= 3.38±0.2 s), PNF stretching (10-m pre =1.84±0.07 s, 10-m post =1.89±0.08 s; 20-m pre =3.33±0.19 s, 20-m post =3.38±0.20 s) and ballistic stretching (pre =1.84±0.08 s, post =1.86±0.07 s; 20-m pre =3.33±0.20 s, 20-m post =3.35±0.21 s) (P<0.05). In the static stretching condition, 10-m and 20-m sprint performance had fully returned to normal at 15 minutes after stretching. In the PNF stretching condition, 20-m sprint performance returned to normal levels at 15 minutes after stretching, while 10-m performance took 20 minutes to recover fully. In the ballistic stretching method, both 10-m and 20-m sprint performances had fully recovered at 5 minutes after stretching. It is therefore concluded that the acute effects of static, PNF and ballistic stretching may negatively affect sprint performance, although sprint performance is less affected after ballistic stretching than after the other stretching types. Therefore, it is not advisable to perform PNF or static stretching immediately before sprint performance.

  1. Cyclic tensile response of a pre-tensioned polyurethane

    NASA Astrophysics Data System (ADS)

    Nie, Yizhou; Liao, Hangjie; Chen, Weinong W.

    2018-05-01

    In the research reported in this paper, we subject a polyurethane to uniaxial tensile loading at a quasi-static strain rate, a high strain rate and a jumping strain rate where the specimen is under quasi-static pre-tension and is further subjected to a dynamic cyclic loading using a modified Kolsky tension bar. The results obtained at the quasi-static and high strain rate clearly show that the mechanical response of this material is significantly rate sensitive. The rate-jumping experimental results show that the response of the material behavior is consistent before jumping. After jumping the stress-strain response of the material does not jump to the corresponding high-rate curve. Rather it approaches the high-rate curve asymptotically. A non-linear hyper-viscoelastic (NLHV) model, after having been calibrated by monotonic quasi-static and high-rate experimental results, was found to be capable of describing the material tensile behavior under such rate jumping conditions.

  2. solveTruss v1.0: Static, global buckling and frequency analysis of 2D and 3D trusses with Mathematica

    NASA Astrophysics Data System (ADS)

    Ozbasaran, Hakan

    Trusses have an important place amongst engineering structures due to many advantages such as high structural efficiency, fast assembly and easy maintenance. Iterative truss design procedures, which require analysis of a large number of candidate structural systems such as size, shape and topology optimization with stochastic methods, mostly lead the engineer to establish a link between the development platform and external structural analysis software. By increasing number of structural analyses, this (probably slow-response) link may climb to the top of the list of performance issues. This paper introduces a software for static, global member buckling and frequency analysis of 2D and 3D trusses to overcome this problem for Mathematica users.

  3. Hybrid massively parallel fast sweeping method for static Hamilton–Jacobi equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Detrixhe, Miles, E-mail: mdetrixhe@engineering.ucsb.edu; University of California Santa Barbara, Santa Barbara, CA, 93106; Gibou, Frédéric, E-mail: fgibou@engineering.ucsb.edu

    The fast sweeping method is a popular algorithm for solving a variety of static Hamilton–Jacobi equations. Fast sweeping algorithms for parallel computing have been developed, but are severely limited. In this work, we present a multilevel, hybrid parallel algorithm that combines the desirable traits of two distinct parallel methods. The fine and coarse grained components of the algorithm take advantage of heterogeneous computer architecture common in high performance computing facilities. We present the algorithm and demonstrate its effectiveness on a set of example problems including optimal control, dynamic games, and seismic wave propagation. We give results for convergence, parallel scaling,more » and show state-of-the-art speedup values for the fast sweeping method.« less

  4. Nonlinear static and dynamic finite element analysis of an eccentrically loaded graphite-epoxy beam

    NASA Technical Reports Server (NTRS)

    Fasanella, Edwin L.; Jackson, Karen E.; Jones, Lisa E.

    1991-01-01

    The Dynamic Crash Analysis of Structures (DYCAT) and NIKE3D nonlinear finite element codes were used to model the static and implulsive response of an eccentrically loaded graphite-epoxy beam. A 48-ply unidirectional composite beam was tested under an eccentric axial compressive load until failure. This loading configuration was chosen to highlight the capabilities of two finite element codes for modeling a highly nonlinear, large deflection structural problem which has an exact solution. These codes are currently used to perform dynamic analyses of aircraft structures under impact loads to study crashworthiness and energy absorbing capabilities. Both beam and plate element models were developed to compare with the experimental data using the DYCAST and NIKE3D codes.

  5. Method for high resolution magnetic resonance analysis using magic angle technique

    DOEpatents

    Wind, Robert A.; Hu, Jian Zhi

    2003-11-25

    A method of performing a magnetic resonance analysis of a biological object that includes placing the biological object in a main magnetic field and in a radio frequency field, the main magnetic field having a static field direction; rotating the biological object at a rotational frequency of less than about 100 Hz around an axis positioned at an angle of about 54.degree.44' relative to the main magnetic static field direction; pulsing the radio frequency to provide a sequence that includes a magic angle turning pulse segment; and collecting data generated by the pulsed radio frequency. According to another embodiment, the radio frequency is pulsed to provide a sequence capable of producing a spectrum that is substantially free of spinning sideband peaks.

  6. Recombination of Hydrogen-Air Combustion Products in an Exhaust Nozzle

    NASA Technical Reports Server (NTRS)

    Lezberg, Erwin A.; Lancashire, Richard B.

    1961-01-01

    Thrust losses due to the inability of dissociated combustion gases to recombine in exhaust nozzles are of primary interest for evaluating the performance of hypersonic ramjets. Some results for the expansion of hydrogen-air combustion products are described. Combustion air was preheated up to 33000 R to simulate high-Mach-number flight conditions. Static-temperature measurements using the line reversal method and wall static pressures were used to indicate the state of the gas during expansion. Results indicated substantial departure from the shifting equilibrium curve beginning slightly downstream of the nozzle throat at stagnation pressures of 1.7 and 3.6 atmospheres. The results are compared with an approximate method for determining a freezing point using an overall rate equation for the oxidation of hydrogen.

  7. In-flight measurement of the National Oceanic and Atmospheric Administration (NOAA)-10 static Earth sensor error

    NASA Technical Reports Server (NTRS)

    Harvie, E.; Filla, O.; Baker, D.

    1993-01-01

    Analysis performed in the Goddard Space Flight Center (GSFC) Flight Dynamics Division (FDD) measures error in the static Earth sensor onboard the National Oceanic and Atmospheric Administration (NOAA)-10 spacecraft using flight data. Errors are computed as the difference between Earth sensor pitch and roll angle telemetry and reference pitch and roll attitude histories propagated by gyros. The flight data error determination illustrates the effect on horizon sensing of systemic variation in the Earth infrared (IR) horizon radiance with latitude and season, as well as the effect of anomalies in the global IR radiance. Results of the analysis provide a comparison between static Earth sensor flight performance and that of scanning Earth sensors studied previously in the GSFC/FDD. The results also provide a baseline for evaluating various models of the static Earth sensor. Representative days from the NOAA-10 mission indicate the extent of uniformity and consistency over time of the global IR horizon. A unique aspect of the NOAA-10 analysis is the correlation of flight data errors with independent radiometric measurements of stratospheric temperature. The determination of the NOAA-10 static Earth sensor error contributes to realistic performance expectations for missions to be equipped with similar sensors.

  8. Behavior of plywood and fiberglass steel composite tube structures subjected to impact loading

    NASA Astrophysics Data System (ADS)

    Armaghani, Seyamend Bilind

    Paratransit buses are custom built as the major vehicle manufacturer produces the custom built passenger cage installed on the chassis for the Paratransit bus. In order for these Paratransit bus members to be sufficient, they have to be evaluated for crashworthiness and energy absorption. This has prompted Florida Department of Transportation (FDOT) to fund research for the safety evaluation of Paratransit busses consisting of crash and safety analysis. There has been a large body of research done on steel subjected to static loads, but more research is needed for steel applied under dynamic loading and high speeds in order to improve crashworthiness in events such as rollovers and side impacts. Bare steel Hollow Structural Section (HSS) tubing are used a lot as structural members of Paratransit buses because of their lightness and progressive buckling under loading. The research will be conducted on quantifying the tubing's behavior under bending by conducting static three point bending and impact loading tests. In addition to the bare tubing, plywood and fiberglass composites are investigated because they are both strong and lightweight and their behavior under dynamic loading hasn't been quantified. As a result, the main purpose of this research is to quantify the differences between the dynamic and static behavior of plywood steel composite and fiberglass steel composite tubing and compare these findings with those of bare steel tubing. The differences will be quantified using detailed and thorough experiments that will examine the composites behavior under both static and dynamic loading. These tests will determine if there are any advantages of using the composite materials and thus allow for recommendations to be made to the FDOT with the goal of improving the safety of Paratransit busses. Tensile tests were conducted to determine the material properties of the tested specimens. Before the static and dynamic experiments are run to investigate the differences between static and dynamic behavior, Preliminary three point bending testing was conducted to determine the parameters for the final experiments. Static bending testing was conducted on the bare, plywood composite, and fiberglass composite steel tubing. The point of these experiments was to produce a Moment vs. Rotation plot to determine the specimens' maximum moments and their associated rotation, as that is when the steel buckles and fails. The dynamic three point bending experiments were conducted using the impact loading apparatus and had the same purpose as the static experiments. For both static and dynamic experiments, the performances of the different types of specimens were compared based upon their Moment vs. Rotation plots. This will determine the effect that the composite has on the rotation and maximum moment at which the tubing fails. After conducting these experiments, amplification factors were established for each specimen by comparing the maximum moment and their associated rotation between static and dynamic testing. lambda was calculated to quantify the ratio between the static and dynamic maximum moments. beta was used to quantify the ratio between the rotation needed to produce the maximum moment between static and dynamic events. A small amplification factor denotes that material performs well under impact loading and the material doesn't experience dramatic change in behavior during dynamic events. Amplification factors were compared between the bare, plywood, and fiberglass composite steel tubing in order to evaluate the performance of the composites. After comparing the amplification factors of the different types of tubing, recommendations can be made. Fiberglass and plywood composite were shown to be valuable because it decreased the effect of dynamic forces as beta was reduced by a factor of 2 in comparison to bare tubing. Based upon the amplification factors, it was recommended to use 14 gauge fiberglass composite tubing as Paratransit bus structural members because it was affected the least by dynamic loading.

  9. Noxious stimuli do not determine reflex cardiorespiratory effects in anesthetized rabbits.

    PubMed

    Raimondi, G; Legramante, J M; Iellamo, F; Frisardi, G; Cassarino, S; Peruzzi, G

    1996-12-01

    The main purpose of this study is to examine whether the stimulation of an exclusively pain-sensing receptive field (dental pulp) could determine cardiorespiratory effects in animals in which the cortical integration of the peripheral information is abolished by deep anesthesia. In 15 anesthetized (alpha-chloralose and urethan) rabbits, low (3-Hz)- and high-frequency (100-Hz) electrical dental pulp stimulation was performed. Because this stimulation caused dynamic and static reflex contractions of the digastric muscles leading to jaw opening jaw-opening reflex (JOR); an indirect sign of algoceptive fiber activation], experimentally induced direct dynamic and static contractions of the digastric muscle were also performed. The low- and high-frequency stimulation of the dental pulp determined cardiovascular [systolic arterial pressure (SAP): -21.7 +/- 4.6 and 10.8 +/- 4.7 mmHg, respectively] and respiratory [pulmonary ventilation (VE): 145.1 +/- 44.9 and 109.3 +/- 28.4 ml/min, respectively] reflex responses similar to those observed during experimentally induced dynamic (SAP: -17.5 +/- 4.2 mmHg; VE: 228.0 +/- 58.5 ml/min) and static (SAP: 5.8 +/- 1.5 mmHg; VE: 148.0 +/- 75.3 ml/min) muscular contractions. The elimination of digastric muscular contraction (JOR) obtained by muscular paralysis did away with the cardiovascular changes induced by dental pulp stimulation, the effectiveness of which in stimulating dental pulp receptors has been shown by recording trigeminal-evoked potentials in six additional rabbits. The main conclusion was that, in deeply anesthetized animals, an algesic stimulus is unable to determine cardiorespiratory effects, which appear to be exclusively linked to the stimulation of ergoreceptors induced by muscular contraction.

  10. Terapascal static pressure generation with ultrahigh yield strength nanodiamond.

    PubMed

    Dubrovinskaia, Natalia; Dubrovinsky, Leonid; Solopova, Natalia A; Abakumov, Artem; Turner, Stuart; Hanfland, Michael; Bykova, Elena; Bykov, Maxim; Prescher, Clemens; Prakapenka, Vitali B; Petitgirard, Sylvain; Chuvashova, Irina; Gasharova, Biliana; Mathis, Yves-Laurent; Ershov, Petr; Snigireva, Irina; Snigirev, Anatoly

    2016-07-01

    Studies of materials' properties at high and ultrahigh pressures lead to discoveries of unique physical and chemical phenomena and a deeper understanding of matter. In high-pressure research, an achievable static pressure limit is imposed by the strength of available strong materials and design of high-pressure devices. Using a high-pressure and high-temperature technique, we synthesized optically transparent microballs of bulk nanocrystalline diamond, which were found to have an exceptional yield strength (~460 GPa at a confining pressure of ~70 GPa) due to the unique microstructure of bulk nanocrystalline diamond. We used the nanodiamond balls in a double-stage diamond anvil cell high-pressure device that allowed us to generate static pressures beyond 1 TPa, as demonstrated by synchrotron x-ray diffraction. Outstanding mechanical properties (strain-dependent elasticity, very high hardness, and unprecedented yield strength) make the nanodiamond balls a unique device for ultrahigh static pressure generation. Structurally isotropic, homogeneous, and made of a low-Z material, they are promising in the field of x-ray optical applications.

  11. Terapascal static pressure generation with ultrahigh yield strength nanodiamond

    PubMed Central

    Dubrovinskaia, Natalia; Dubrovinsky, Leonid; Solopova, Natalia A.; Abakumov, Artem; Turner, Stuart; Hanfland, Michael; Bykova, Elena; Bykov, Maxim; Prescher, Clemens; Prakapenka, Vitali B.; Petitgirard, Sylvain; Chuvashova, Irina; Gasharova, Biliana; Mathis, Yves-Laurent; Ershov, Petr; Snigireva, Irina; Snigirev, Anatoly

    2016-01-01

    Studies of materials’ properties at high and ultrahigh pressures lead to discoveries of unique physical and chemical phenomena and a deeper understanding of matter. In high-pressure research, an achievable static pressure limit is imposed by the strength of available strong materials and design of high-pressure devices. Using a high-pressure and high-temperature technique, we synthesized optically transparent microballs of bulk nanocrystalline diamond, which were found to have an exceptional yield strength (~460 GPa at a confining pressure of ~70 GPa) due to the unique microstructure of bulk nanocrystalline diamond. We used the nanodiamond balls in a double-stage diamond anvil cell high-pressure device that allowed us to generate static pressures beyond 1 TPa, as demonstrated by synchrotron x-ray diffraction. Outstanding mechanical properties (strain-dependent elasticity, very high hardness, and unprecedented yield strength) make the nanodiamond balls a unique device for ultrahigh static pressure generation. Structurally isotropic, homogeneous, and made of a low-Z material, they are promising in the field of x-ray optical applications. PMID:27453944

  12. Effects of Static Stretching and Playing Soccer on Knee Laxity.

    PubMed

    Baumgart, Christian; Gokeler, Alli; Donath, Lars; Hoppe, Matthias W; Freiwald, Jürgen

    2015-11-01

    This study investigated exercise-induced effects of static stretching and playing soccer on anterior tibial translation (ATT) of the knee joint. Randomized controlled trial. University biomechanics laboratory. Thirty-one athletes were randomly assigned into a stretching (26.9 ± 6.2 years, 1.77 ± 0.09 m, 67.9 ± 10.7 kg) and a control group (27.9 ± 7.4 years, 1.75 ± 0.08 m, 72.0 ± 14.9 kg). Thirty-one amateur soccer players in an additional soccer group (25.1 ± 5.6 years, 1.74 ± 0.10 m, 71.8 ± 14.8 kg). All participants had no history of knee injury requiring surgery and any previous knee ligament or cartilage injury. The stretching group performed 4 different static stretching exercises with a duration of 2 × 20 seconds interspersed with breaks of 10 seconds. The soccer group completed a 90-minute soccer-specific training program. The control group did not perform any physical activity for approximately 30 minutes. Anterior tibial translation was measured with the KT-1000 knee arthrometer at forces of 67 N, 89 N, and maximal manual force (Max) before and after the intervention. There was a significant increase in ATT after static stretching and playing soccer at all applied forces. Maximal manual testing revealed a mean increase of ATT after static stretching of 2.1 ± 1.6 mm (P < 0.0005) and after playing soccer of 1.0 ± 1.5 mm (P = 0.001). The ATT increase after static stretching at 67 and 89 N is significantly higher than in controls. At maximum manual testing, significant differences were evident between all groups. Static stretching and playing soccer increase ATT and may consequently influence mechanical factors of the anterior cruciate ligament. The ATT increase after static stretching was greater than after playing soccer. The observed increase in ATT after static stretching and playing soccer may be associated with changes in kinesthetic perception and sensorimotor control, activation of muscles, joint stability, overall performance, and higher injury risk.

  13. Quasi-static evolution of coronal magnetic fields

    NASA Technical Reports Server (NTRS)

    Longcope, D. W.; Sudan, R. N.

    1992-01-01

    A formalism is developed to describe the purely quasi-static part of the evolution of a coronal loop driven by its footpoints. This is accomplished under assumptions of a long, thin loop. The quasi-static equations reveal the possibility for sudden 'loss of equilibrium' at which time the system evolves dynamically rather than quasi-statically. Such quasi-static crises produce high-frequency Alfven waves and, in conjunction with Alfven wave dissipation models, form a viable coronal heating mechanism. Furthermore, an approximate solution to the quasi-static equations by perturbation method verifies the development of small-scale spatial current structure.

  14. Slippery liquid-infused porous surface bio-inspired by pitcher plant for marine anti-biofouling application.

    PubMed

    Wang, Peng; Zhang, Dun; Lu, Zhou

    2015-12-01

    Marine biofouling, caused by the adhesion of microorganism, is a worldwide problem in marine systems. In this research work, slippery liquid-infused porous surface (SLIPS), inspired by Nepenthes pitcher plant, was constructed over aluminum for marine anti-biofouling application. The as-fabricated SLIPS was characterized with SEM, AFM, and contact angle meter. Its anti-biofouling performance was evaluated with settlement experiment of a typical marine biofouling organism Chlorella vulgaris in both static and dynamic conditions. The effect of solid substrate micro-structure on anti-biofouling property of SLIPS was studied. It was suggested that the micro-structure with low length scale and high degree of regularity should be considered for designing stable SLIPS with exceptional anti-biofouling property. The liquid-like property is proven to be the main contributor for the exceptional anti-biofouling performance of SLIPS in both static and dynamic conditions. The low roughness, which facilitates removing the settled C. vulgaris under shear force, is also a main contributor for the anti-biofouling performance of SLIPS in dynamic condition. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Indentation-flexure and low-velocity impact damage in graphite/epoxy laminates

    NASA Technical Reports Server (NTRS)

    Kwon, Young S.; Sankar, Bhavani V.

    1992-01-01

    Static indentation and low velocity impact tests were performed on quasi-isotropic and cross ply graphite/epoxy composite laminates. The load deflection relations in static tests and impact force history in the impact tests were recorded. The damage was assessed by using ultrasonic C-scanning and photomicrographic techniques. The static behavior of the laminates and damage progression during loading, unloading, and reloading were explained by a simple plate delamination model. A good correlation existed between the static and impact responses. It was found that results from a few static indentation-flexture tests can be used to predict the response and damage in composite laminates due to a class of low velocity impact events.

  16. Static and Dynamic Water Motion-Induced Instability in Oxide Thin-Film Transistors and Its Suppression by Using Low-k Fluoropolymer Passivation.

    PubMed

    Choi, Seungbeom; Jo, Jeong-Wan; Kim, Jaeyoung; Song, Seungho; Kim, Jaekyun; Park, Sung Kyu; Kim, Yong-Hoon

    2017-08-09

    Here, we report static and dynamic water motion-induced instability in indium-gallium-zinc-oxide (IGZO) thin-film transistors (TFTs) and its effective suppression with the use of a simple, solution-processed low-k (ε ∼ 1.9) fluoroplastic resin (FPR) passivation layer. The liquid-contact electrification effect, in which an undesirable drain current modulation is induced by a dynamic motion of a charged liquid such as water, can cause a significant instability in IGZO TFTs. It was found that by adopting a thin (∼44 nm) FPR passivation layer for IGZO TFTs, the current modulation induced by the water-contact electrification was greatly reduced in both off- and on-states of the device. In addition, the FPR-passivated IGZO TFTs exhibited an excellent stability to static water exposure (a threshold voltage shift of +0.8 V upon 3600 s of water soaking), which is attributed to the hydrophobicity of the FPR passivation layer. Here, we discuss the origin of the current instability caused by the liquid-contact electrification as well as various static and dynamic stability tests for IGZO TFTs. On the basis of our findings, we believe that the use of a thin, solution-processed FPR passivation layer is effective in suppressing the static and dynamic water motion-induced instabilities, which may enable the realization of high-performance and environment-stable oxide TFTs for emerging wearable and skin-like electronics.

  17. Reduction of Kinematic Short Baseline Multipath Effects Based on Multipath Hemispherical Map

    PubMed Central

    Cai, Miaomiao; Chen, Wen; Dong, Danan; Song, Le; Wang, Minghua; Wang, Zhiren; Zhou, Feng; Zheng, Zhengqi; Yu, Chao

    2016-01-01

    Multipath hemispherical map (MHM) is a kind of multipath mitigation approach that takes advantage of the spatial repeatability of the multipath effect under an unchanged environment. This approach is not only suitable for static environments, but also for some kinematic platforms, such as a moving ship and airplane, where the dominant multipath effects come from the platform itself and the multipath effects from the surrounding environment are considered minor or negligible. Previous studies have verified the feasibility of the MHM approach in static environments. In this study, we expanded the MHM approach to a kinematic shipborne environment. Both static and kinematic tests were carried out to demonstrate the feasibility of the MHM approach. The results indicate that, after MHM multipath mitigation, the root mean square (RMS) of baseline length deviations are reduced by 10.47% and 10.57%, and the RMS of residual values are reduced by 39.89% and 21.91% for the static and kinematic tests, respectively. Power spectrum analysis has shown that the MHM approach is more effective in mitigating multipath in low-frequency bands; the high-frequency multipath effects still exist, and are indistinguishable from observation noise. Taking the observation noise into account, the residual reductions increase to 41.68% and 24.51% in static and kinematic tests, respectively. To further improve the performance of MHM for kinematic platforms, we also analyzed the influence of spatial coverage and resolution on residual reduction. PMID:27754322

  18. Static anthropometric dimensions in a population of Iranian high school students: considering ethnic differences.

    PubMed

    Mehrparvar, Amir Houshang; Mirmohammadi, Seyyed Jalil; Hafezi, Rahmatollah; Mostaghaci, Mehrdad; Davari, Mohammad Hossein

    2015-05-01

    Anthropometric dimensions of the end users should be measured in order to create a basis for manufacturing of different products. This study was designed to measure some static anthropometric dimensions in Iranian high school students, considering ethnic differences. Nineteen static anthropometric dimensions of high school students were measured and compared among different Iranian ethnicities (Fars, Turk, Kurd, Lor, Baluch, and Arab) and different genders. In this study, 9,476 subjects (4,703 boys and 4,773 girls) ages 15 to 18 years in six ethnicities were assessed. The difference among ethnicities was statistically significant for all dimensions (p values < .001 for each dimension). This study showed statistically significant differences in 19 static anthropometric dimensions among high school students regarding gender, age, and ethnicity. © 2014, Human Factors and Ergonomics Society.

  19. Static internal performance characteristics of two thrust reverser concepts for axisymmetric nozzles

    NASA Technical Reports Server (NTRS)

    Leavitt, L. D.; Re, R. J.

    1982-01-01

    The statis performance of two axisymmetric nozzle thrust reverser concepts was investigated. A rotating vane thrust reverser represented a concept in which reversing is accomplished upstream of the nozzle throat, and a three door reverser concept provided reversing downstream of the nozzle throat. Nozzle pressure ratio was varied from 2.0 to approximately 6.0. The results of this investigation indicate that both the rotating vane and three door reverser concepts were effective static thrust spoilers with the landing approach nozzle geometry and were capable of providing at least a 50 percent reversal of static thrust when fully deployed with the ground roll nozzle geometry.

  20. Thermal stabilization of static single-mirror Fourier transform spectrometers

    NASA Astrophysics Data System (ADS)

    Schardt, Michael; Schwaller, Christian; Tremmel, Anton J.; Koch, Alexander W.

    2017-05-01

    Fourier transform spectroscopy has become a standard method for spectral analysis of infrared light. With this method, an interferogram is created by two beam interference which is subsequently Fourier-transformed. Most Fourier transform spectrometers used today provide the interferogram in the temporal domain. In contrast, static Fourier transform spectrometers generate interferograms in the spatial domain. One example of this type of spectrometer is the static single-mirror Fourier transform spectrometer which offers a high etendue in combination with a simple, miniaturized optics design. As no moving parts are required, it also features a high vibration resistance and high measurement rates. However, it is susceptible to temperature variations. In this paper, we therefore discuss the main sources for temperature-induced errors in static single-mirror Fourier transform spectrometers: changes in the refractive index of the optical components used, variations of the detector sensitivity, and thermal expansion of the housing. As these errors manifest themselves in temperature-dependent wavenumber shifts and intensity shifts, they prevent static single-mirror Fourier transform spectrometers from delivering long-term stable spectra. To eliminate these shifts, we additionally present a work concept for the thermal stabilization of the spectrometer. With this stabilization, static single-mirror Fourier transform spectrometers are made suitable for infrared process spectroscopy under harsh thermal environmental conditions. As the static single-mirror Fourier transform spectrometer uses the so-called source-doubling principle, many of the mentioned findings are transferable to other designs of static Fourier transform spectrometers based on the same principle.

  1. Static and fatigue tensile properties of cross-ply laminates containing vascules for self-healing applications

    NASA Astrophysics Data System (ADS)

    Luterbacher, R.; Trask, R. S.; Bond, I. P.

    2016-01-01

    The effect of including hollow channels (vascules) within cross-ply laminates on static tensile properties and fatigue performance is investigated. No change in mechanical properties or damage formation is observed when a single vascule is included in the 0/90 interface, representing 0.5% of the cross sectional area within the specimen. During tensile loading, matrix cracks develop in the 90° layers leading to a reduction of stiffness and strength (defined as the loss of linearity) and a healing agent is injected through the vascules in order to heal them and mitigate the caused degradation. Two different healing agents, a commercial low viscosity epoxy resin (RT151, Resintech) and a toughened epoxy blend (bespoke, in-house formulation) have been used to successfully recover stiffness under static loading conditions. The RT151 system recovered 75% of the initial failure strength, whereas the toughened epoxy blend achieved a recovery of 67%. Under fatigue conditions, post healing, a rapid decay of stiffness was observed as the healed damage re-opened within the first 2500 cycles. This was caused by the high fatigue loading intensity, which was near the static failure strength of the healing resin. However, the potential for ameliorating (via self-healing or autonomous repair) more diffuse transverse matrix damage via a vascular network has been shown.

  2. Prediction of acid mine drainage generation potential of various lithologies using static tests: Etili coal mine (NW Turkey) as a case study.

    PubMed

    Yucel, Deniz Sanliyuksel; Baba, Alper

    2016-08-01

    The Etili neighborhood in Can County (northwestern Turkey) has large reserves of coal and has been the site of many small- to medium-scale mining operations since the 1980s. Some of these have ceased working while others continue to operate. Once activities cease, the mining facilities and fields are usually abandoned without rehabilitation. The most significant environmental problem is acid mine drainage (AMD). This study was carried out to determine the acid generation potential of various lithological units in the Etili coal mine using static test methods. Seventeen samples were selected from areas with high acidic water concentrations: from different alteration zones belonging to volcanic rocks, from sedimentary rocks, and from coals and mine wastes. Static tests (paste pH, standard acid-base accounting, and net acid generation tests) were performed on these samples. The consistency of the static test results showed that oxidation of sulfide minerals, especially pyrite-which is widely found not only in the alteration zones of volcanic rocks but also in the coals and mine wastes-is the main factor controlling the generation of AMD in this mine. Lack of carbonate minerals in the region also increases the occurrence of AMD.

  3. Biomechanics of the incudo-malleolar-joint - Experimental investigations for quasi-static loads.

    PubMed

    Ihrle, S; Gerig, R; Dobrev, I; Röösli, C; Sim, J H; Huber, A M; Eiber, A

    2016-10-01

    Under large quasi-static loads, the incudo-malleolar joint (IMJ), connecting the malleus and the incus, is highly mobile. It can be classified as a mechanical filter decoupling large quasi-static motions while transferring small dynamic excitations. This is presumed to be due to the complex geometry of the joint inducing a spatial decoupling between the malleus and incus under large quasi-static loads. Spatial Laser Doppler Vibrometer (LDV) displacement measurements on isolated malleus-incus-complexes (MICs) were performed. With the malleus firmly attached to a probe holder, the incus was excited by applying quasi-static forces at different points. For each force application point the resulting displacement was measured subsequently at different points on the incus. The location of the force application point and the LDV measurement points were calculated in a post-processing step combining the position of the LDV points with geometric data of the MIC. The rigid body motion of the incus was then calculated from the multiple displacement measurements for each force application point. The contact regions of the articular surfaces for different load configurations were calculated by applying the reconstructed motion to the geometry model of the MIC and calculate the minimal distance of the articular surfaces. The reconstructed motion has a complex spatial characteristic and varies for different force application points. The motion changed with increasing load caused by the kinematic guidance of the articular surfaces of the joint. The IMJ permits a relative large rotation around the anterior-posterior axis through the joint when a force is applied at the lenticularis in lateral direction before impeding the motion. This is part of the decoupling of the malleus motion from the incus motion in case of large quasi-static loads. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. The relationship between infratentorial lesions, balance deficit and accidental falls in multiple sclerosis.

    PubMed

    Prosperini, Luca; Kouleridou, Anna; Petsas, Nikolaos; Leonardi, Laura; Tona, Francesca; Pantano, Patrizia; Pozzilli, Carlo

    2011-05-15

    The role of static posturography and magnetic resonance imaging (MRI) in identifying patients at high risk of falls was investigated. Relationships between static posturography measures and MRI metrics were also investigated. A total of 31 ambulatory MS patients (EDSS ranging from 2.0 to 5.0) with a predominant balance disorder were recruited. Each patient underwent a static posturography with a monoaxial platform and a conventional 1.5 T brain MRI scan. Measurements of T1-hypointense and T2-hyperintense lesion volumes (LVs), focusing on lesions selectively located at infratentorial levels, were performed by two operators unaware of clinical data. The self-reported number of falls in the previous 6 months was considered as the main outcome measure. Fourteen (45%) patients reported 1 or more falls over the past 6 months. When compared to non-faller patients, they had a higher EDSS score, poorer static standing balance, and greater brainstem and middle cerebellar peduncle (MCP) T2-LVs. A strength correlation between brainstem T2-LV and impaired static standing balance in an open eye condition was also found. In the multivariate analysis, the variables more strictly associated with recurrent falls were greater T2-LV at the MCP (beta: 6.2; p=0.01) and brainstem (beta: 5.8; p=0.001) levels, and a wider displacement of the body center of pressure in the closed eye condition (beta: 0.02; p=0.03). Our data suggests that the damage of specific infratentorial areas negatively affect the static standing balance and may predispose MS patients to accidental falls. These findings might contribute in selecting patients requiring a proper rehabilitation intervention program. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Acute Effect of Different Combined Stretching Methods on Acceleration and Speed in Soccer Players.

    PubMed

    Amiri-Khorasani, Mohammadtaghi; Calleja-Gonzalez, Julio; Mogharabi-Manzari, Mansooreh

    2016-04-01

    The purpose of this study was to investigate the acute effect of different stretching methods, during a warm-up, on the acceleration and speed of soccer players. The acceleration performance of 20 collegiate soccer players (body height: 177.25 ± 5.31 cm; body mass: 65.10 ± 5.62 kg; age: 16.85 ± 0.87 years; BMI: 20.70 ± 5.54; experience: 8.46 ± 1.49 years) was evaluated after different warm-up procedures, using 10 and 20 m tests. Subjects performed five types of a warm-up: static, dynamic, combined static + dynamic, combined dynamic + static, and no-stretching. Subjects were divided into five groups. Each group performed five different warm-up protocols in five non-consecutive days. The warm-up protocol used for each group was randomly assigned. The protocols consisted of 4 min jogging, a 1 min stretching program (except for the no-stretching protocol), and 2 min rest periods, followed by the 10 and 20 m sprint test, on the same day. The current findings showed significant differences in the 10 and 20 m tests after dynamic stretching compared with static, combined, and no-stretching protocols. There were also significant differences between the combined stretching compared with static and no-stretching protocols. We concluded that soccer players performed better with respect to acceleration and speed, after dynamic and combined stretching, as they were able to produce more force for a faster execution.

  6. Investigation of Gearbox Vibration Transmission Paths on Gear Condition Indicator Performance

    NASA Technical Reports Server (NTRS)

    Dempsey, Paula J.; Islam, AKM Anwarul; Feldman, Jason; Larsen, Chris

    2013-01-01

    Helicopter health monitoring systems use vibration signatures generated from damaged components to identify transmission faults. For damaged gears, these signatures relate to changes in dynamics due to the meshing of the damaged tooth. These signatures, referred to as condition indicators (CI), can perform differently when measured on different systems, such as a component test rig, or a full-scale transmission test stand, or an aircraft. These differences can result from dissimilarities in systems design and environment under dynamic operating conditions. The static structure can also filter the response between the vibration source and the accelerometer, when the accelerometer is installed on the housing. To assess the utility of static vibration transfer paths for predicting gear CI performance, measurements were taken on the NASA Glenn Spiral Bevel Gear Fatigue Test Rig. The vibration measurements were taken to determine the effect of torque, accelerometer location and gearbox design on accelerometer response. Measurements were taken at the housing and compared while impacting the gear set near mesh. These impacts were made at gear mesh to simulate gear meshing dynamics. Data measured on a helicopter gearbox installed in a static fixture were also compared to the test rig. The behavior of the structure under static conditions was also compared to CI values calculated under dynamic conditions. Results indicate that static vibration transfer path measurements can provide some insight into spiral bevel gear CI performance by identifying structural characteristics unique to each system that can affect specific CI response.

  7. JWST center of curvature test method and results

    NASA Astrophysics Data System (ADS)

    Saif, Babak; Chaney, David; Greenfield, Perry; Van Gorkom, Kyle; Brooks, Keira; Hack, Warren; Bluth, Marcel; Bluth, Josh; Sanders, James; Smith, Koby; Carey, Larkin; Chaung, Sze; Keski-Kuha, Ritva; Feinberg, Lee; Tournois, Severine; Smith, W. Scott; Kradinov, Vladimir

    2017-09-01

    The James Webb Space Telescope (JWST) recently saw the completion of the assembly process for the Optical Telescope Element and Integrated Science Instrument Module (OTIS). This integration effort was performed at Goddard Space Flight Center (GSFC) in Greenbelt, Maryland. In conjunction with this assembly process a series of vibration and acoustic tests were performed. To help assure the telescope's primary mirror was not adversely impacted by this environmental testing an optical center of curvature (CoC) test was performed to measure changes in the mirror's optical performance. The primary is a 6.5 meter diameter mirror consisting of 18 individual hexagonal segments. Each segment is an off-axis asphere. There are a total of three prescriptions repeated six times each. As part of the CoC test each segment was individually measured using a high-speed interferometer (HSI) designed and built specifically for this test. This interferometer is capable of characterizing both static and dynamic characteristics of the mirrors. The latter capability was used, with the aid of a vibration stinger applying a low-level input force, to measure the dynamic characteristic changes of the PM backplane structure. This paper describes the CoC test setup, an innovative alignment method, and both static and dynamic test results.

  8. High performance mode locking characteristics of single section quantum dash lasers.

    PubMed

    Rosales, Ricardo; Murdoch, S G; Watts, R T; Merghem, K; Martinez, Anthony; Lelarge, Francois; Accard, Alain; Barry, L P; Ramdane, Abderrahim

    2012-04-09

    Mode locking features of single section quantum dash based lasers are investigated. Particular interest is given to the static spectral phase profile determining the shape of the mode locked pulses. The phase profile dependence on cavity length and injection current is experimentally evaluated, demonstrating the possibility of efficiently using the wide spectral bandwidth exhibited by these quantum dash structures for the generation of high peak power sub-picosecond pulses with low radio frequency linewidths.

  9. Characterization of FBG sensor interrogation based on a FDML wavelength swept laser

    PubMed Central

    Jung, Eun Joo; Kim, Chang-Seok; Jeong, Myung Yung; Kim, Moon Ki; Jeon, Min Yong; Jung, Woonggyu; Chen, Zhongping

    2012-01-01

    In this study, we develop an ultra-fast fiber Bragg grating sensor system that is based on the Fourier domain mode-locked (FDML) swept laser. A FDML wavelength swept laser has many advantages compared to the conventional wavelength swept laser source, such as high-speed interrogation, narrow spectral sensitivity, and high phase stability. The newly developed FDML wavelength swept laser shows a superior performance of a high scan rate of 31.3 kHz and a broad scan range of over 70 nm simultaneously. The performance of the grating sensor interrogating system using a FDML wavelength swept laser is characterized in both static and dynamic strain responses. PMID:18852764

  10. Linear static structural and vibration analysis on high-performance computers

    NASA Technical Reports Server (NTRS)

    Baddourah, M. A.; Storaasli, O. O.; Bostic, S. W.

    1993-01-01

    Parallel computers offer the oppurtunity to significantly reduce the computation time necessary to analyze large-scale aerospace structures. This paper presents algorithms developed for and implemented on massively-parallel computers hereafter referred to as Scalable High-Performance Computers (SHPC), for the most computationally intensive tasks involved in structural analysis, namely, generation and assembly of system matrices, solution of systems of equations and calculation of the eigenvalues and eigenvectors. Results on SHPC are presented for large-scale structural problems (i.e. models for High-Speed Civil Transport). The goal of this research is to develop a new, efficient technique which extends structural analysis to SHPC and makes large-scale structural analyses tractable.

  11. High-Performance WSe2 Complementary Metal Oxide Semiconductor Technology and Integrated Circuits.

    PubMed

    Yu, Lili; Zubair, Ahmad; Santos, Elton J G; Zhang, Xu; Lin, Yuxuan; Zhang, Yuhao; Palacios, Tomás

    2015-08-12

    Because of their extraordinary structural and electrical properties, two-dimensional materials are currently being pursued for applications such as thin-film transistors and integrated circuit. One of the main challenges that still needs to be overcome for these applications is the fabrication of air-stable transistors with industry-compatible complementary metal oxide semiconductor (CMOS) technology. In this work, we experimentally demonstrate a novel high performance air-stable WSe2 CMOS technology with almost ideal voltage transfer characteristic, full logic swing and high noise margin with different supply voltages. More importantly, the inverter shows large voltage gain (∼38) and small static power (picowatts), paving the way for low power electronic system in 2D materials.

  12. The Relationship Between Maximum Unilateral Squat Strength and Balance in Young Adult Men and Women

    PubMed Central

    McCurdy, Kevin; Langford, George

    2006-01-01

    The purpose of this study was to determine the relationship between unilateral squat strength and measures of static balance to compare balance performance between the dominant and non-dominant leg. Seventeen apparently healthy men (mean mass 90.5 ± 20.9 kg and age 21.7 ± 1.8 yrs) and 25 women (mean mass 62.2 ± 14.5 kg and age 21.9 ± 1.3 yrs) completed the study. Weight bearing unilateral strength was measured with a 1RM modified unilateral squat on the dominant and non-dominant leg. The students completed the stork stand and wobble board tests to determine static balance on the dominant and non-dominant leg. Maximum time maintained in the stork stand position, on the ball of the foot with the uninvolved foot against the involved knee with hands on the hips, was recorded. Balance was measured with a 15 second wobble board test. No significant correlations were found between the measurements of unilateral balance and strength (r values ranged between -0.05 to 0.2) for the men and women. Time off balance was not significantly different between the subjects’ dominant (men 1.1 ± 0.4 s; women 0.3 ± 0.1 s) and non-dominant (men 0.9 ± 0.3 s; women 0.3 ± 0.1 s) leg for the wobble board. Similar results were found for the time balanced during the stork stand test on the dominant (men 26.4 ± 6.3 s; women 24.1 ± 5.6 s) and non-dominant (men 26.0 ± 5.7 s; women 21.3 ± 4.1 s) leg. The data indicate that static balance and strength is unrelated in young adult men and women and gains made in one variable after training may not be associated with a change in performance of the other variable. These results also suggest that differences in static balance performance between legs can not be determined by leg dominance. Similar research is needed to compare contralateral leg balance in populations who participate in work or sport activities requiring repetitive asymmetrical use. A better understanding of contralateral balance performance will help practitioners make evaluative decisions during the rehabilitation process. Key Points 1RM unilateral squat strength is unrelated to measures of unilateral static balance in young adult men and women Static balance is similar between the dominant and non-dominant leg in young adult men and women Side-to-side differences in balance warrant assessment and training to correct imbalances prior to participation in activities that present a high risk for injury. PMID:24260001

  13. Recording Visual Evoked Potentials and Auditory Evoked P300 at 9.4T Static Magnetic Field

    PubMed Central

    Hahn, David; Boers, Frank; Shah, N. Jon

    2013-01-01

    Simultaneous recording of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) has shown a number of advantages that make this multimodal technique superior to fMRI alone. The feasibility of recording EEG at ultra-high static magnetic field up to 9.4T was recently demonstrated and promises to be implemented soon in fMRI studies at ultra high magnetic fields. Recording visual evoked potentials are expected to be amongst the most simple for simultaneous EEG/fMRI at ultra-high magnetic field due to the easy assessment of the visual cortex. Auditory evoked P300 measurements are of interest since it is believed that they represent the earliest stage of cognitive processing. In this study, we investigate the feasibility of recording visual evoked potentials and auditory evoked P300 in a 9.4T static magnetic field. For this purpose, EEG data were recorded from 26 healthy volunteers inside a 9.4T MR scanner using a 32-channel MR compatible EEG system. Visual stimulation and auditory oddball paradigm were presented in order to elicit evoked related potentials (ERP). Recordings made outside the scanner were performed using the same stimuli and EEG system for comparison purposes. We were able to retrieve visual P100 and auditory P300 evoked potentials at 9.4T static magnetic field after correction of the ballistocardiogram artefact using independent component analysis. The latencies of the ERPs recorded at 9.4T were not different from those recorded at 0T. The amplitudes of ERPs were higher at 9.4T when compared to recordings at 0T. Nevertheless, it seems that the increased amplitudes of the ERPs are due to the effect of the ultra-high field on the EEG recording system rather than alteration in the intrinsic processes that generate the electrophysiological responses. PMID:23650538

  14. Recording visual evoked potentials and auditory evoked P300 at 9.4T static magnetic field.

    PubMed

    Arrubla, Jorge; Neuner, Irene; Hahn, David; Boers, Frank; Shah, N Jon

    2013-01-01

    Simultaneous recording of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) has shown a number of advantages that make this multimodal technique superior to fMRI alone. The feasibility of recording EEG at ultra-high static magnetic field up to 9.4 T was recently demonstrated and promises to be implemented soon in fMRI studies at ultra high magnetic fields. Recording visual evoked potentials are expected to be amongst the most simple for simultaneous EEG/fMRI at ultra-high magnetic field due to the easy assessment of the visual cortex. Auditory evoked P300 measurements are of interest since it is believed that they represent the earliest stage of cognitive processing. In this study, we investigate the feasibility of recording visual evoked potentials and auditory evoked P300 in a 9.4 T static magnetic field. For this purpose, EEG data were recorded from 26 healthy volunteers inside a 9.4 T MR scanner using a 32-channel MR compatible EEG system. Visual stimulation and auditory oddball paradigm were presented in order to elicit evoked related potentials (ERP). Recordings made outside the scanner were performed using the same stimuli and EEG system for comparison purposes. We were able to retrieve visual P100 and auditory P300 evoked potentials at 9.4 T static magnetic field after correction of the ballistocardiogram artefact using independent component analysis. The latencies of the ERPs recorded at 9.4 T were not different from those recorded at 0 T. The amplitudes of ERPs were higher at 9.4 T when compared to recordings at 0 T. Nevertheless, it seems that the increased amplitudes of the ERPs are due to the effect of the ultra-high field on the EEG recording system rather than alteration in the intrinsic processes that generate the electrophysiological responses.

  15. A Novel Sensor System for Measuring Wheel Loads of Vehicles on Highways

    PubMed Central

    Zhang, Wenbin; Suo, Chunguang; Wang, Qi

    2008-01-01

    With the development of the highway transportation and business trade, vehicle Weigh-In-Motion (WIM) technology has become a key technology for measuring traffic loads. In this paper a novel WIM system based on monitoring of pavement strain responses in rigid pavement was investigated. In this WIM system multiple low cost, light weight, small volume and high accuracy embedded concrete strain sensors were used as WIM sensors to measure rigid pavement strain responses. In order to verify the feasibility of the method, a system prototype based on multiple sensors was designed and deployed on a relatively busy freeway. Field calibration and tests were performed with known two-axle truck wheel loads and the measurement errors were calculated based on the static weights measured with a static weighbridge. This enables the weights of other vehicles to be calculated from the calibration constant. Calibration and test results for individual sensors or three-sensor fusions are both provided. Repeatability, sources of error, and weight accuracy are discussed. Successful results showed that the proposed method was feasible and proven to have a high accuracy. Furthermore, a sample mean approach using multiple fused individual sensors could provide better performance compared to individual sensors. PMID:27873952

  16. Real-Time GNSS-Based Attitude Determination in the Measurement Domain.

    PubMed

    Zhao, Lin; Li, Na; Li, Liang; Zhang, Yi; Cheng, Chun

    2017-02-05

    A multi-antenna-based GNSS receiver is capable of providing high-precision and drift-free attitude solution. Carrier phase measurements need be utilized to achieve high-precision attitude. The traditional attitude determination methods in the measurement domain and the position domain resolve the attitude and the ambiguity sequentially. The redundant measurements from multiple baselines have not been fully utilized to enhance the reliability of attitude determination. A multi-baseline-based attitude determination method in the measurement domain is proposed to estimate the attitude parameters and the ambiguity simultaneously. Meanwhile, the redundancy of attitude resolution has also been increased so that the reliability of ambiguity resolution and attitude determination can be enhanced. Moreover, in order to further improve the reliability of attitude determination, we propose a partial ambiguity resolution method based on the proposed attitude determination model. The static and kinematic experiments were conducted to verify the performance of the proposed method. When compared with the traditional attitude determination methods, the static experimental results show that the proposed method can improve the accuracy by at least 0.03° and enhance the continuity by 18%, at most. The kinematic result has shown that the proposed method can obtain an optimal balance between accuracy and reliability performance.

  17. Toward effectiveness and agility of network security situational awareness using moving target defense (MTD)

    NASA Astrophysics Data System (ADS)

    Ge, Linqiang; Yu, Wei; Shen, Dan; Chen, Genshe; Pham, Khanh; Blasch, Erik; Lu, Chao

    2014-06-01

    Most enterprise networks are built to operate in a static configuration (e.g., static software stacks, network configurations, and application deployments). Nonetheless, static systems make it easy for a cyber adversary to plan and launch successful attacks. To address static vulnerability, moving target defense (MTD) has been proposed to increase the difficulty for the adversary to launch successful attacks. In this paper, we first present a literature review of existing MTD techniques. We then propose a generic defense framework, which can provision an incentive-compatible MTD mechanism through dynamically migrating server locations. We also present a user-server mapping mechanism, which not only improves system resiliency, but also ensures network performance. We demonstrate a MTD with a multi-user network communication and our data shows that the proposed framework can effectively improve the resiliency and agility of the system while achieving good network timeliness and throughput performance.

  18. Enhancement and sign change of magnetic correlations in a driven quantum many-body system

    NASA Astrophysics Data System (ADS)

    Görg, Frederik; Messer, Michael; Sandholzer, Kilian; Jotzu, Gregor; Desbuquois, Rémi; Esslinger, Tilman

    2018-01-01

    Periodic driving can be used to control the properties of a many-body state coherently and to realize phases that are not accessible in static systems. For example, exposing materials to intense laser pulses makes it possible to induce metal-insulator transitions, to control magnetic order and to generate transient superconducting behaviour well above the static transition temperature. However, pinning down the mechanisms underlying these phenomena is often difficult because the response of a material to irradiation is governed by complex, many-body dynamics. For static systems, extensive calculations have been performed to explain phenomena such as high-temperature superconductivity. Theoretical analyses of driven many-body Hamiltonians are more challenging, but approaches have now been developed, motivated by recent observations. Here we report an experimental quantum simulation in a periodically modulated hexagonal lattice and show that antiferromagnetic correlations in a fermionic many-body system can be reduced, enhanced or even switched to ferromagnetic correlations (sign reversal). We demonstrate that the description of the many-body system using an effective Floquet-Hamiltonian with a renormalized tunnelling energy remains valid in the high-frequency regime by comparing the results to measurements in an equivalent static lattice. For near-resonant driving, the enhancement and sign reversal of correlations is explained by a microscopic model of the system in which the particle tunnelling and magnetic exchange energies can be controlled independently. In combination with the observed sufficiently long lifetimes of the correlations in this system, periodic driving thus provides an alternative way of investigating unconventional pairing in strongly correlated systems experimentally.

  19. Cardiovascular control during concomitant dynamic leg exercise and static arm exercise in humans

    PubMed Central

    Strange, S

    1999-01-01

    Skeletal muscle blood flow is thought to be determined by a balance between sympathetic vasoconstriction and metabolic vasodilatation. The purpose of this study was to assess the importance of high levels of sympathetic vasoconstrictor activity in control of blood flow to human skeletal muscle during dynamic exercise.Muscle sympathetic nerve activity to the exercising leg was increased by static or static ischaemic arm exercise added to on-going dynamic leg exercise. Ten subjects performed light (20 W) or moderate (40 W) dynamic knee extension for 6 min with one leg alone or concomitant with bilateral static handgrip at 20% of maximal voluntary contraction force with or without forearm muscle ischaemia or post-exercise forearm muscle ischaemia.Muscle sympathetic nerve activity was measured by microneurography (peroneal nerve) and leg muscle blood flow by a constant infusion thermodilution technique (femoral vein).Activation of an exercise pressor reflex from the arms, causing a 2- to 4-fold increase in muscle sympathetic nerve activity and a 15–32% increase in mean arterial blood pressure, did not affect blood flow to the dynamically exercising leg muscles at any level of leg exercise. Leg vascular conductance was reduced in line with the higher perfusion pressure.The results demonstrate that the vasoconstrictor effects of high levels of muscle sympathetic nerve activity does not affect blood flow to human skeletal muscle exercising at moderate intensities. One question remaining is whether the observed decrease in muscle vascular conductance is the result of sympathetic vasoconstriction or metabolic autoregulation of muscle blood flow. PMID:9831733

  20. Enhancement and sign change of magnetic correlations in a driven quantum many-body system.

    PubMed

    Görg, Frederik; Messer, Michael; Sandholzer, Kilian; Jotzu, Gregor; Desbuquois, Rémi; Esslinger, Tilman

    2018-01-24

    Periodic driving can be used to control the properties of a many-body state coherently and to realize phases that are not accessible in static systems. For example, exposing materials to intense laser pulses makes it possible to induce metal-insulator transitions, to control magnetic order and to generate transient superconducting behaviour well above the static transition temperature. However, pinning down the mechanisms underlying these phenomena is often difficult because the response of a material to irradiation is governed by complex, many-body dynamics. For static systems, extensive calculations have been performed to explain phenomena such as high-temperature superconductivity. Theoretical analyses of driven many-body Hamiltonians are more challenging, but approaches have now been developed, motivated by recent observations. Here we report an experimental quantum simulation in a periodically modulated hexagonal lattice and show that antiferromagnetic correlations in a fermionic many-body system can be reduced, enhanced or even switched to ferromagnetic correlations (sign reversal). We demonstrate that the description of the many-body system using an effective Floquet-Hamiltonian with a renormalized tunnelling energy remains valid in the high-frequency regime by comparing the results to measurements in an equivalent static lattice. For near-resonant driving, the enhancement and sign reversal of correlations is explained by a microscopic model of the system in which the particle tunnelling and magnetic exchange energies can be controlled independently. In combination with the observed sufficiently long lifetimes of the correlations in this system, periodic driving thus provides an alternative way of investigating unconventional pairing in strongly correlated systems experimentally.

  1. Development of Performance Dashboards in Healthcare Sector: Key Practical Issues

    PubMed Central

    Ghazisaeidi, Marjan; Safdari, Reza; Torabi, Mashallah; Mirzaee, Mahboobeh; Farzi, Jebraeil; Goodini, Azadeh

    2015-01-01

    Background: Static nature of performance reporting systems in health care sector has resulted in inconsistent, incomparable, time consuming, and static performance reports that are not able to transparently reflect a round picture of performance and effectively support healthcare managers’ decision makings. So, the healthcare sector needs interactive performance management tools such as performance dashboards to measure, monitor, and manage performance more effectively. The aim of this article was to identify key issues that need to be addressed for developing high-quality performance dashboards in healthcare sector. Methods: A literature review was established to search electronic research databases, e-journals collections, and printed journals, books, dissertations, and theses for relevant articles. The search strategy interchangeably used the terms of “dashboard”, “performance measurement system”, and “executive information system” with the term of “design” combined with operator “AND”. Search results (n=250) were adjusted for duplications, screened based on their abstract relevancy and full-text availability (n=147) and then assessed for eligibility (n=40). Eligible articles were included if they had explicitly focused on dashboards, performance measurement systems or executive information systems design. Finally, 28 relevant articles included in the study. Results: Creating high-quality performance dashboards requires addressing both performance measurement and executive information systems design issues. Covering these two fields, identified contents were categorized to four main domains: KPIs development, Data Sources and data generation, Integration of dashboards to source systems, and Information presentation issues. Conclusion: This study implies the main steps to develop dashboards for the purpose of performance management. Performance dashboards developed on performance measurement and executive information systems principles and supported by proper back-end infrastructure will result in creation of dynamic reports that help healthcare managers to consistently measure the performance, continuously detect outliers, deeply analyze causes of poor performance, and effectively plan for the future. PMID:26635442

  2. Altitude Investigation of Performance of Turbine-propeller Engine and Its Components

    NASA Technical Reports Server (NTRS)

    Wallner, Lewis E; Saari, Martin J

    1950-01-01

    An investigation was conducted on a turbine-propeller engine in the NACA Lewis altitude wind tunnel at altitudes from 5000 to 35,000 feet. The applicability of generalized parameters to turbine-propeller engine data, analyses of the compressor, the combustion chambers, and the turbine, and a study of the over-all engine performance are reported. Engine performance data obtained at sea-level static conditions could be used to predict static performance at altitudes up to 35,000 feet by use of the standard generalized parameters.

  3. Mathematical modelling of Bit-Level Architecture using Reciprocal Quantum Logic

    NASA Astrophysics Data System (ADS)

    Narendran, S.; Selvakumar, J.

    2018-04-01

    Efficiency of high-performance computing is on high demand with both speed and energy efficiency. Reciprocal Quantum Logic (RQL) is one of the technology which will produce high speed and zero static power dissipation. RQL uses AC power supply as input rather than DC input. RQL has three set of basic gates. Series of reciprocal transmission lines are placed in between each gate to avoid loss of power and to achieve high speed. Analytical model of Bit-Level Architecture are done through RQL. Major drawback of reciprocal Quantum Logic is area, because of lack in proper power supply. To achieve proper power supply we need to use splitters which will occupy large area. Distributed arithmetic uses vector- vector multiplication one is constant and other is signed variable and each word performs as a binary number, they rearranged and mixed to form distributed system. Distributed arithmetic is widely used in convolution and high performance computational devices.

  4. High performance Si nanowire field-effect-transistors based on a CMOS inverter with tunable threshold voltage.

    PubMed

    Van, Ngoc Huynh; Lee, Jae-Hyun; Sohn, Jung Inn; Cha, Seung Nam; Whang, Dongmok; Kim, Jong Min; Kang, Dae Joon

    2014-05-21

    We successfully fabricated nanowire-based complementary metal-oxide semiconductor (NWCMOS) inverter devices by utilizing n- and p-type Si nanowire field-effect-transistors (NWFETs) via a low-temperature fabrication processing technique. We demonstrate that NWCMOS inverter devices can be operated at less than 1 V, a significantly lower voltage than that of typical thin-film based complementary metal-oxide semiconductor (CMOS) inverter devices. This low-voltage operation was accomplished by controlling the threshold voltage of the n-type Si NWFETs through effective management of the nanowire (NW) doping concentration, while realizing high voltage gain (>10) and ultra-low static power dissipation (≤3 pW) for high-performance digital inverter devices. This result offers a viable means of fabricating high-performance, low-operation voltage, and high-density digital logic circuits using a low-temperature fabrication processing technique suitable for next-generation flexible electronics.

  5. Balance Performance Is Task Specific in Older Adults.

    PubMed

    Dunsky, Ayelet; Zeev, Aviva; Netz, Yael

    2017-01-01

    Balance ability among the elderly is a key component in the activities of daily living and is divided into two types: static and dynamic. For clinicians who wish to assess the risk of falling among their elderly patients, it is unclear if more than one type of balance test can be used to measure their balance impairment. In this study, we examined the association between static balance measures and two dynamic balance field tests. One hundred and twelve community-dwelling older adults (mean age 74.6) participated in the study. They underwent the Tetrax static postural assessment and then performed the Timed Up and Go (TUG) and the Functional Reach (FR) Test as dynamic balance tests. In general, low-moderate correlations were found between the two types of balance tests. For women, age and static balance parameters explained 28.1-40.4% of the variance of TUG scores and 14.6-24% of the variance of FR scores. For men, age and static balance parameters explained 9.5-31.2% of the variance of TUG scores and 23.9-41.7% of the variance of FR scores. Based on our findings, it is suggested that a combination of both static and dynamic tests be used for assessing postural balance ability.

  6. X-ray phase imaging-From static observation to dynamic observation-

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Momose, A.; Yashiro, W.; Olbinado, M. P.

    2012-07-31

    We are attempting to expand the technology of X-ray grating phase imaging/tomography to enable dynamic observation. X-ray phase imaging has been performed mainly for static cases, and this challenge is significant since properties of materials (and hopefully their functions) would be understood by observing their dynamics in addition to their structure, which is an inherent advantage of X-ray imaging. Our recent activities in combination with white synchrotron radiation for this purpose are described. Taking advantage of the fact that an X-ray grating interferometer functions with X-rays of a broad energy bandwidth (and therefore high flux), movies of differential phase imagesmore » and visibility images are obtained with a time resolution of a millisecond. The time resolution of X-ray phase tomography can therefore be a second. This study is performed as a part of a project to explore X-ray grating interferometry, and our other current activities are also briefly outlined.« less

  7. Simulated flight acoustic investigation of treated ejector effectiveness on advanced mechanical suppresors for high velocity jet noise reduction

    NASA Technical Reports Server (NTRS)

    Brausch, J. F.; Motsinger, R. E.; Hoerst, D. J.

    1986-01-01

    Ten scale-model nozzles were tested in an anechoic free-jet facility to evaluate the acoustic characteristics of a mechanically suppressed inverted-velocity-profile coannular nozzle with an accoustically treated ejector system. The nozzle system used was developed from aerodynamic flow lines evolved in a previous contract, defined to incorporate the restraints imposed by the aerodynamic performance requirements of an Advanced Supersonic Technology/Variable Cycle Engine system through all its mission phases. Accoustic data of 188 test points were obtained, 87 under static and 101 under simulated flight conditions. The tests investigated variables of hardwall ejector application to a coannular nozzle with 20-chute outer annular suppressor, ejector axial positioning, treatment application to ejector and plug surfaces, and treatment design. Laser velocimeter, shadowgraph photograph, aerodynamic static pressure, and temperature measurement were acquired on select models to yield diagnositc information regarding the flow field and aerodynamic performance characteristics of the nozzles.

  8. The effect of visuals on non-native English students' learning of the basic principles and laws of motion

    NASA Astrophysics Data System (ADS)

    Yang, Quan

    2001-10-01

    This study, involving 154 undergraduate college students in China, was conducted to determine whether the surface structure of visual graphics affect content learning when the learner was a non-native English speaker and learning took place in a non-English speaking environment. Instruction with concrete animated graphics resulted in significantly higher achievement, when compared to instruction with concrete static, abstract static, abstract animated graphics or text only without any graphical illustrations. It was also found, unexpectedly, the text-only instruction resulted in the second best achievement, significantly higher than instruction with concrete static, abstract static, and abstract animated graphics. In addition, there was a significant interaction with treatment and test item, which indicated that treatment effects on graphic-specific items differed from those on definitional items. Additional findings indicated that relation to graphics directly or indirectly from the text that students studied had little impact on their performance in the posttests. Further, 51% of the participants indicated that they relied on some graphical images to answer the test questions and 19% relied heavily on graphics when completing the tests. In conclusion, concrete graphics when combined with animation played a significant role in enhancing ESL student performance and enabled the students to achieve the best learning outcomes as compared to abstract animated, concrete static, and abstract static graphics. This result suggested a significant innovation in the design and development of ESL curriculum in computer-based instruction, which would enable ESL students to perform better and achieve the expected outcomes in content area learning.

  9. Animated graphics for comparing two risks: a cautionary tale.

    PubMed

    Zikmund-Fisher, Brian J; Witteman, Holly O; Fuhrel-Forbis, Andrea; Exe, Nicole L; Kahn, Valerie C; Dickson, Mark

    2012-07-25

    The increasing use of computer-administered risk communications affords the potential to replace static risk graphics with animations that use motion cues to reinforce key risk messages. Research on the use of animated graphics, however, has yielded mixed findings, and little research exists to identify the specific animations that might improve risk knowledge and patients' decision making. To test whether viewing animated forms of standard pictograph (icon array) risk graphics displaying risks of side effects would improve people's ability to select the treatment with the lowest risk profile, as compared with viewing static images of the same risks. A total of 4198 members of a demographically diverse Internet panel read a scenario about two hypothetical treatments for thyroid cancer. Each treatment was described as equally effective but varied in side effects (with one option slightly better than the other). Participants were randomly assigned to receive all risk information in 1 of 10 pictograph formats in a quasi-factorial design. We compared a control condition of static grouped icons with a static scattered icon display and with 8 Flash-based animated versions that incorporated different combinations of (1) building the risk 1 icon at a time, (2) having scattered risk icons settle into a group, or (3) having scattered risk icons shuffle themselves (either automatically or by user control). We assessed participants' ability to choose the better treatment (choice accuracy), their gist knowledge of side effects (knowledge accuracy), and their graph evaluation ratings, controlling for subjective numeracy and need for cognition. When compared against static grouped-icon arrays, no animations significantly improved any outcomes, and most showed significant performance degradations. However, participants who received animations of grouped icons in which at-risk icons appeared 1 at a time performed as well on all outcomes as the static grouped-icon control group. Displays with scattered icons (static or animated) performed particularly poorly unless they included the settle animation that allowed users to view event icons grouped. Many combinations of animation, especially those with scattered icons that shuffle randomly, appear to inhibit knowledge accuracy in this context. Static pictographs that group risk icons, however, perform very well on measures of knowledge and choice accuracy. These findings parallel recent evidence in other data communication contexts that less can be more-that is, that simpler, more focused information presentation can result in improved understanding. Decision aid designers and health educators should proceed with caution when considering the use of animated risk graphics to compare two risks, given that evidence-based, static risk graphics appear optimal.

  10. Some observations on loss of static strength due to fatigue cracks

    NASA Technical Reports Server (NTRS)

    Illg, Walter; Hardrath, Herbert F

    1955-01-01

    Static tensile tests were performed on simple notched specimens containing fatigue cracks. Four types of aluminum alloys were investigated: 2024-T3(formerly 24S-T3) and 7075-T6(formerly 75S-T6) in sheet form, and 2024-T4(formerly 24S-T4) and 7075-T6(formerly 75S-T6) in extruded form. The cracked specimens were tested statically under four conditions: unmodified and with reduced eccentricity of loading by three methods. Results of static tests on C-46 wings containing fatigue cracks are also reported.

  11. Methodology for determining elevon deflections to trim and maneuver the DAST vehicle with negative static margin

    NASA Technical Reports Server (NTRS)

    Perry, B., III

    1982-01-01

    The relationships between elevon deflection and static margin using elements from static and dynamic stability and control and from classical control theory are emphasized. Expressions are derived and presented for calculating elevon deflections required to trim the vehicle in lg straight-and-level flight and to perform specified longitudinal and lateral maneuvers. Applications of this methodology are made at several flight conditions for the ARW-2 wing. On the basis of these applications, it appears possible to trim and maneuver the vehicle with the existing elevons at -15% static margin.

  12. Amount of torque and duration of stretching affects correction of knee contracture in a rat model of spinal cord injury.

    PubMed

    Moriyama, Hideki; Tobimatsu, Yoshiko; Ozawa, Junya; Kito, Nobuhiro; Tanaka, Ryo

    2013-11-01

    Joint contractures are a common complication of many neurologic conditions, and stretching often is advocated to prevent and treat these contractures. However, the magnitude and duration of the stretching done in practice usually are guided by subjective clinical impressions. Using an established T8 spinal cord injury rat model of knee contracture, we sought to determine what combination of static or intermittent stretching, varied by magnitude (high or low) and duration (long or short), leads to the best (1) improvement in the limitation in ROM; (2) restoration of the muscular and articular factors leading to contractures; and (3) prevention and treatment of contracture-associated histologic alterations of joint capsule and articular cartilage. Using a rat animal model, the spinal cord was transected completely at the level of T8. The rats were randomly assigned to seven treatment groups (n = 4 per group), which were composed of static or intermittent stretching in combination with different amounts of applied torque magnitude and duration. We assessed the effect of stretching by measuring the ROM and evaluating the histologic alteration of the capsule and cartilage. Contractures improved in all treated groups except for the low-torque and short-duration static stretching conditions. High-torque stretching was effective against shortening of the synovial membrane and adhesions in the posterosuperior regions. Collagen Type II and VEGF in the cartilage were increased by stretching. High-torque and long-duration static stretching led to greater restoration of ROM than the other torque and duration treatment groups. Stretching was more effective in improving articular components of contractures compared with the muscular components. Stretching in this rat model prevented shortening and adhesion of the joint capsule, and affected biochemical composition, but did not change morphologic features of the cartilage. This animal study tends to support the ideas that static stretching can influence joint ROM and histologic qualities of joint tissues, and that the way stretching is performed influences its efficacy. However, further studies are warranted to determine if our findings are clinically applicable.

  13. Identifying performing and under performing graphic symbols for verbs and prepositions in animated and static formats: a research note.

    PubMed

    Schlosser, Ralf W; Shane, Howard; Sorce, James; Koul, Rajinder; Bloomfield, Emma

    2011-09-01

    The purpose of this study was to identify graphic symbols for verbs and prepositions that were performing and underperforming in static and animated formats in a recent experiment on the effects of animation on transparency, name agreement, and identification of graphic symbols. Variable-specific criteria were developed in order to define when a symbol is considered to be performing in terms of its transparency, name agreement, and identification accuracy. Additionally, across-variable heuristic criteria were developed that allowed classification of symbols into four categories: (a) performing exceptionally, (b) performing effectively, (c) performing adequately, and (d) performing inadequately. These criteria were applied to 24 symbols for verbs and 8 symbols for prepositions in both animated and static formats. Results indicated that the vast majority of the symbols performed adequately or better while a few did not. Potential reasons as to why some of the symbols may have underperformed are discussed. Where appropriate, implications for modifying existing symbols and future research are drawn. Although the fact that the heuristic criteria were developed post-hoc is discussed as a limitation, the benefits of the proposed categories bode well for future applications.

  14. An experimental study of static and oscillating rotor blade sections in reverse flow

    NASA Astrophysics Data System (ADS)

    Lind, Andrew Hume

    The rotorcraft community has a growing interest in the development of high-speed helicopters to replace outdated fleets. One barrier to the design of such helicopters is the lack of understanding of the aerodynamic behavior of retreating rotor blades in the reverse flow region. This work considers two fundamental models of this complex unsteady flow regime: static and oscillating (i.e., pitching) airfoils in reverse flow. Wind tunnel tests have been performed at the University of Maryland (UMD) and the United States Naval Academy (USNA). Four rotor blade sections are considered: two featuring a sharp geometric trailing edge (NACA 0012 and NACA 0024) and two featuring a blunt geometric trailing edge (ellipse and cambered ellipse). Static airfoil experiments were performed at angles of attack through 180 deg and Reynolds numbers up to one million, representative of the conditions found in the reverse flow region of a full-scale high-speed helicopter. Time-resolved velocity field measurements were used to identify three unsteady flow regimes: slender body vortex shedding, turbulent wake, and deep stall vortex shedding. Unsteady airloads were measured in these three regimes using unsteady pressure transducers. The magnitude of the unsteady airloads is high in the turbulent wake regime when the separated shear layer is close to the airfoil surface and in deep stall due to periodic vortex-induced flow. Oscillating airfoil experiments were performed on a NACA 0012 and cambered ellipse to investigate reverse flow dynamic stall characteristics by modeling cyclic pitching kinematics. The parameter space spanned three Reynolds numbers (165,000; 330,000; and 500,000), five reduced frequencies between 0.100 and 0.511, three mean pitch angles (5,10, and 15 deg), and two pitch amplitudes (5 deg and 10 deg). The sharp aerodynamic leading edge of the NACA 0012 airfoil forces flow separation resulting in deep dynamic stall. The number of associated vortex structures depends strongly on pitching kinematics. The cambered ellipse exhibits light reverse flow dynamic stall for a wide range of pitching kinematics. Deep dynamic stall over the cambered ellipse airfoil is observed for high mean pitch angles and pitch amplitudes. The detailed results and analysis in this work contributes to the development of a new generation of high-speed helicopters.

  15. An algorithm for selecting the most accurate protocol for contact angle measurement by drop shape analysis.

    PubMed

    Xu, Z N

    2014-12-01

    In this study, an error analysis is performed to study real water drop images and the corresponding numerically generated water drop profiles for three widely used static contact angle algorithms: the circle- and ellipse-fitting algorithms and the axisymmetric drop shape analysis-profile (ADSA-P) algorithm. The results demonstrate the accuracy of the numerically generated drop profiles based on the Laplace equation. A significant number of water drop profiles with different volumes, contact angles, and noise levels are generated, and the influences of the three factors on the accuracies of the three algorithms are systematically investigated. The results reveal that the above-mentioned three algorithms are complementary. In fact, the circle- and ellipse-fitting algorithms show low errors and are highly resistant to noise for water drops with small/medium volumes and contact angles, while for water drop with large volumes and contact angles just the ADSA-P algorithm can meet accuracy requirement. However, this algorithm introduces significant errors in the case of small volumes and contact angles because of its high sensitivity to noise. The critical water drop volumes of the circle- and ellipse-fitting algorithms corresponding to a certain contact angle error are obtained through a significant amount of computation. To improve the precision of the static contact angle measurement, a more accurate algorithm based on a combination of the three algorithms is proposed. Following a systematic investigation, the algorithm selection rule is described in detail, while maintaining the advantages of the three algorithms and overcoming their deficiencies. In general, static contact angles over the entire hydrophobicity range can be accurately evaluated using the proposed algorithm. The ease of erroneous judgment in static contact angle measurements is avoided. The proposed algorithm is validated by a static contact angle evaluation of real and numerically generated water drop images with different hydrophobicity values and volumes.

  16. Processing Deficits of Motion of Contrast-Modulated Gratings in Anisometropic Amblyopia

    PubMed Central

    Liu, Zhongjian; Hu, Xiaopeng; Yu, Yong-Qiang; Zhou, Yifeng

    2014-01-01

    Several studies have indicated substantial processing deficits for static second-order stimuli in amblyopia. However, less is known about the perception of second-order moving gratings. To investigate this issue, we measured the contrast sensitivity for second-order (contrast-modulated) moving gratings in seven anisometropic amblyopes and ten normal controls. The measurements were performed with non-equated carriers and a series of equated carriers. For comparison, the sensitivity for first-order motion and static second-order stimuli was also measured. Most of the amblyopic eyes (AEs) showed reduced sensitivity for second-order moving gratings relative to their non-amblyopic eyes (NAEs) and the dominant eyes (CEs) of normal control subjects, even when the detectability of the noise carriers was carefully controlled, suggesting substantial processing deficits of motion of contrast-modulated gratings in anisometropic amblyopia. In contrast, the non-amblyopic eyes of the anisometropic amblyopes were relatively spared. As a group, NAEs showed statistically comparable performance to CEs. We also found that contrast sensitivity for static second-order stimuli was strongly impaired in AEs and part of the NAEs of anisometropic amblyopes, consistent with previous studies. In addition, some amblyopes showed impaired performance in perception of static second-order stimuli but not in that of second-order moving gratings. These results may suggest a dissociation between the processing of static and moving second-order gratings in anisometropic amblyopia. PMID:25409477

  17. Static tensile and tensile creep testing of four boron nitride coated ceramic fibers at elevated temperatures

    NASA Technical Reports Server (NTRS)

    Coguill, Scott L.; Adams, Donald F.; Zimmerman, Richard S.

    1989-01-01

    Six types of uncoated ceramic fibers were static tensile and tensile creep tested at various elevated temperatures. Three types of boron nitride coated fibers were also tested. Room temperature static tensile tests were initially performed on all fibers, at gage lengths of 1, 2, and 4 inches, to determine the magnitude of end effects from the gripping system used. Tests at one elevated temperature, at gage lengths of 8 and 10 inches, were also conducted, to determine end effects at elevated temperatures. Fiber cross sectional shapes and areas were determined using scanning electron microscopy. Creep testing was typically performed for 4 hours, in an air atmosphere.

  18. Static internal performance including thrust vectoring and reversing of two-dimensional convergent-divergent nozzles

    NASA Technical Reports Server (NTRS)

    Re, R. J.; Leavitt, L. D.

    1984-01-01

    The effects of geometric design parameters on two dimensional convergent-divergent nozzles were investigated at nozzle pressure ratios up to 12 in the static test facility. Forward flight (dry and afterburning power settings), vectored-thrust (afterburning power setting), and reverse-thrust (dry power setting) nozzles were investigated. The nozzles had thrust vector angles from 0 deg to 20.26 deg, throat aspect ratios of 3.696 to 7.612, throat radii from sharp to 2.738 cm, expansion ratios from 1.089 to 1.797, and various sidewall lengths. The results indicate that unvectored two dimensional convergent-divergent nozzles have static internal performance comparable to axisymmetric nozzles with similar expansion ratios.

  19. Learning Enterprise Malware Triage from Automatic Dynamic Analysis

    DTIC Science & Technology

    2013-03-01

    Kolter and Maloof n-gram method, Dube’s malware target recognition (MaTR) static method performs significantly more accurately at the 95% confidence...from the static method as in Kolter and Maloof. The MIST approach with behavior sequences 9 allows researchers to tailor the level of analysis to the...citations, none publish work that implements it. Only Kolter and Maloof use nearly as long gram structures, although that research uses static grams rather

  20. Technology advancement of the static feed water electrolysis process

    NASA Technical Reports Server (NTRS)

    Jensen, F. C.; Schubert, F. H.

    1977-01-01

    Some results are presented of a research and development program to continue the development of a method to generate oxygen for crew metabolic consumption during extended manned space flights. The concept being pursued is that of static feed water electrolysis. Specific major results of the work included: (1) completion of a 30-day electrode test using a Life Systems, Inc.-developed high performance catalyst. During startup the cell voltages were as low as 1.38 V at current densities of 108 mA/sq cm (100 ASF) and temperatures of 355 K (180 F). At the end of 30 days of testing the cell voltages were still only 1.42 V at 108 mA/sq cm, (2) determination that the Static Feed Water Electrolysis Module does not release an aerosol of the cell electrolyte into the product gas streams after a break-in period of 24 hours following a new electrolyte charge, and (3) completion of a detailed design analysis of an electrochemical Oxygen Generation Subsystem at a three-man level (4.19 kg/day (9.24 lb/day) of oxygen).

  1. Application of 1-hydroxyethylidene-1, 1-diphosphonic acid in boiler water for industrial boilers.

    PubMed

    Zeng, Bin; Li, Mao-Dong; Zhu, Zhi-Ping; Zhao, Jun-Ming; Zhang, Hui

    2013-01-01

    The primary method used for boiler water treatment is the addition of chemicals to industrial boilers to prevent corrosion and scaling. The static scale inhibition method was used to evaluate the scale inhibition performance of 1-hydroxyethylidene-1, 1-diphosphonic acid (HEDP). Autoclave static experiments were used to study the corrosion inhibition properties of the main material for industrial boilers (20# carbon steel) with an HEDP additive in the industrial boiler water medium. The electrochemical behavior of HEDP on carbon steel corrosion control was investigated using electrochemical impedance spectroscopy and Tafel polarization techniques. Experimental results indicate that HEDP can have a good scale inhibition effect when added at a quantity of 5 to 7 mg/L at a test temperature of not more than 100 °C. To achieve a high scale inhibition rate, the HEDP dosage must be increased when the test temperature exceeds 100 °C. Electrochemical and autoclave static experimental results suggest that HEDP has a good corrosion inhibition effect on 20# carbon steel at a concentration of 25 mg/L. HEDP is an excellent water treatment agent.

  2. Influence of relative humidity and temperature on quantity of electric charge of static protective clothing used in petrochemical industry

    NASA Astrophysics Data System (ADS)

    Zhang, Yunpeng; Liu, Quanzhen; Liu, Baoquan; Li, Yipeng; Zhang, Tingting

    2013-03-01

    In this paper, the working principle of static protective clothing and its testing method of quantity of electric charge are introduced, and the influence of temperature and relative humidity on the quantity of electric charge (qe) of static protective clothing is studied by measuring qe of different clothing samples. The result shows that temperature and relative humidity can influence qe of static protective clothing to some extent and the influence of relative humidity is bigger than that of temperature. According to experimental results, the relationship of qe and relative humidity and temperature was analysed, and the safety boundary of quantity of electric charge is discussed. In order to reduce the occurrence of electrostatic accidents and ensure safe production and operation of petrochemical industry, some suggestions on choosing and using of static protective clothing are given for guaranteeing its static protective performance.

  3. Combined magnetic resonance imaging and ultrasound echography guidance for motion compensated HIFU interventions

    NASA Astrophysics Data System (ADS)

    Ries, Mario; de Senneville, Baudouin Denis; Regard, Yvan; Moonen, Chrit

    2012-11-01

    The objective of this study is to evaluate the feasibility to integrate ultrasound echography as an additional imaging modality for continuous target tracking, while performing simultaneously real-time MR- thermometry to guide a High Intensity Focused Ultrasound (HIFU) ablation. Experiments on a moving phantom were performed with MRI-guided HIFU during continuous ultrasound echography. Real-time US echography-based target tracking during MR-guided HIFU heating was performed with heated area dimensions similar to those obtained for a static target. The combination of both imaging modalities shows great potential for real-time beam steering and MR-thermometry.

  4. High-performance hybrid complementary logic inverter through monolithic integration of a MEMS switch and an oxide TFT.

    PubMed

    Song, Yong-Ha; Ahn, Sang-Joon Kenny; Kim, Min-Wu; Lee, Jeong-Oen; Hwang, Chi-Sun; Pi, Jae-Eun; Ko, Seung-Deok; Choi, Kwang-Wook; Park, Sang-Hee Ko; Yoon, Jun-Bo

    2015-03-25

    A hybrid complementary logic inverter consisting of a microelectromechanical system switch as a promising alternative for the p-type oxide thin film transistor (TFT) and an n-type oxide TFT is presented for ultralow power integrated circuits. These heterogeneous microdevices are monolithically integrated. The resulting logic device shows a distinctive voltage transfer characteristic curve, very low static leakage, zero-short circuit current, and exceedingly high voltage gain. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Open framework for management and processing of multi-modality and multidimensional imaging data for analysis and modelling muscular function

    NASA Astrophysics Data System (ADS)

    García Juan, David; Delattre, Bénédicte M. A.; Trombella, Sara; Lynch, Sean; Becker, Matthias; Choi, Hon Fai; Ratib, Osman

    2014-03-01

    Musculoskeletal disorders (MSD) are becoming a big healthcare economical burden in developed countries with aging population. Classical methods like biopsy or EMG used in clinical practice for muscle assessment are invasive and not accurately sufficient for measurement of impairments of muscular performance. Non-invasive imaging techniques can nowadays provide effective alternatives for static and dynamic assessment of muscle function. In this paper we present work aimed toward the development of a generic data structure for handling n-dimensional metabolic and anatomical data acquired from hybrid PET/MR scanners. Special static and dynamic protocols were developed for assessment of physical and functional images of individual muscles of the lower limb. In an initial stage of the project a manual segmentation of selected muscles was performed on high-resolution 3D static images and subsequently interpolated to full dynamic set of contours from selected 2D dynamic images across different levels of the leg. This results in a full set of 4D data of lower limb muscles at rest and during exercise. These data can further be extended to a 5D data by adding metabolic data obtained from PET images. Our data structure and corresponding image processing extension allows for better evaluation of large volumes of multidimensional imaging data that are acquired and processed to generate dynamic models of the moving lower limb and its muscular function.

  6. Limits to Open Class Performance?

    NASA Technical Reports Server (NTRS)

    Bowers, Albion H.

    2008-01-01

    This presentation discusses open or unlimited class aircraft performance limitations and design solutions. Limitations in this class of aircraft include slow climbing flight which requires low wing loading, high cruise speed which requires high wing loading, gains in induced or viscous drag alone which result in only half the gain overall and other structural problems (yaw inertia and spins, flutter and static loads integrity). Design solutions include introducing minimum induced drag for a given span (elliptical span load or winglets) and introducing minimum induced drag for a bell shaped span load. It is concluded that open class performance limits (under current rules and technologies) is very close to absolute limits, though some gains remain to be made from unexplored areas and new technologies.

  7. Commuter rail seat testing and analysis of facing seats

    DOT National Transportation Integrated Search

    2003-12-01

    Tests have been conducted on the Bombardier back-to-back commuter rail car seat in a facing-seat configuration to evaluate its performance under static and dynamic loading conditions. Quasi-static tests have been conducted to establish the load defle...

  8. Space shuttle Production Verification Motor 1 (PV-1) static fire

    NASA Technical Reports Server (NTRS)

    1989-01-01

    All inspection and instrumentation data indicate that the PV-1 static test firing conducted 18 Aug. 1988 was successful. With the exception of the intentionally flawed joints and static test modifications, PV-1 was flight configuration. Fail-safe flaws guaranteeing pressure to test the sealing capability of primary O-rings were included in the aft field joint, case-to-nozzle joint, and nozzle internal Joint 5. The test was conducted at ambient conditions, with the exception of the field joints and case/nozzle joints which were maintained at a minimum of 75 F. Ballistics performance values were within specification requirements. The PV-1 motor exhibited chamber pressure oscillations similar to previously tested Space Shuttle redesigned solid rocket motors, particularly QM-7. The first longitudinal mode oscillations experienced by PV-1 were the strongest ever measured in a Space Shuttle motor. Investigation into this observation is being conducted. Joint insulation performed as designed with no evidence of gas flow within unflawed forward field joints. The intentionally flawed center and aft case field joint insulation performance was excellent. There was no evidence of hot gas past the center field joint capture feature O-ring, the case-to-nozzle joint primary O-ring, or the aft field joint primary O-ring. O-ring seals and barriers with assured pressure at the flaws showed erosion and heat effect, but all sealed against passage of hot gases with the exception of the aft field joint capture feature O-ring. There was no evidence of erosion, heat effect, or blowby on any O-ring seals or barriers at the unflawed joints. Nozzle performance was nominal with typical erosion. Post-test examination revealed that the forward nose ring was of the old high performance motor design configuration with the 150-deg ply angle. All nozzle components remained intact for post-test evaluation. The thrust vector control system operated correctly. The water deluge system, CO2 quench, and other test equipment performed as planned during all required test operations.

  9. Dynamic Analysis of Spur Gear Transmissions (DANST). PC Version 3.00 User Manual

    NASA Technical Reports Server (NTRS)

    Oswald, Fred B.; Lin, Hsiang Hsi; Delgado, Irebert R.

    1996-01-01

    DANST is a FORTRAN computer program for static and dynamic analysis of spur gear systems. The program can be used for parametric studies to predict the static transmission error, dynamic load, tooth bending stress and other properties of spur gears as they are influenced by operating speed, torque, stiffness, damping, inertia, and tooth profile. DANST performs geometric modeling and dynamic analysis for low- or high-contact-ratio spur gears. DANST can simulate gear systems with contact ratios ranging from one to three. It was designed to be easy to use and it is extensively documented in several previous reports and by comments in the source code. This report describes installing and using a new PC version of DANST, covers input data requirements and presents examples.

  10. Compact plasma Pockels cell for TIL of SGIII laser facility

    NASA Astrophysics Data System (ADS)

    Zhang, Xiongjun; Wu, Dengsheng; Lin, Doughui; Yu, Haiwu; Zhang, Jun

    2008-01-01

    Compact plasma Pockel's cells (PPC) with 70mm aperture driven by one-pulse process have been constructed for technical integration line (TIL) of SGIII laser facility. The experimental results indicate that the working range of gas pressure is wide, and the delay of gas breakdown is steady. Measurements of the optical performance show static transmittance of 93.1%, static extinction ratio of 3900, and average switching efficiency of 99.7%. Eight compact PPCs are used for the second-stage integrating experiments of TIL. By using of parallel driving technology, one driver can work for four PPCs. An analyzer of optical switch is replaced with Brewster-angle Nd-glass slabs in amplifier. Two years application results show that the PPCs can effectively minimize the growth of parasitic-oscillation, and have a high reliability.

  11. Modeling the energy performance of event-driven wireless sensor network by using static sink and mobile sink.

    PubMed

    Chen, Jiehui; Salim, Mariam B; Matsumoto, Mitsuji

    2010-01-01

    Wireless Sensor Networks (WSNs) designed for mission-critical applications suffer from limited sensing capacities, particularly fast energy depletion. Regarding this, mobile sinks can be used to balance the energy consumption in WSNs, but the frequent location updates of the mobile sinks can lead to data collisions and rapid energy consumption for some specific sensors. This paper explores an optimal barrier coverage based sensor deployment for event driven WSNs where a dual-sink model was designed to evaluate the energy performance of not only static sensors, but Static Sink (SS) and Mobile Sinks (MSs) simultaneously, based on parameters such as sensor transmission range r and the velocity of the mobile sink v, etc. Moreover, a MS mobility model was developed to enable SS and MSs to effectively collaborate, while achieving spatiotemporal energy performance efficiency by using the knowledge of the cumulative density function (cdf), Poisson process and M/G/1 queue. The simulation results verified that the improved energy performance of the whole network was demonstrated clearly and our eDSA algorithm is more efficient than the static-sink model, reducing energy consumption approximately in half. Moreover, we demonstrate that our results are robust to realistic sensing models and also validate the correctness of our results through extensive simulations.

  12. Modeling the Energy Performance of Event-Driven Wireless Sensor Network by Using Static Sink and Mobile Sink

    PubMed Central

    Chen, Jiehui; Salim, Mariam B.; Matsumoto, Mitsuji

    2010-01-01

    Wireless Sensor Networks (WSNs) designed for mission-critical applications suffer from limited sensing capacities, particularly fast energy depletion. Regarding this, mobile sinks can be used to balance the energy consumption in WSNs, but the frequent location updates of the mobile sinks can lead to data collisions and rapid energy consumption for some specific sensors. This paper explores an optimal barrier coverage based sensor deployment for event driven WSNs where a dual-sink model was designed to evaluate the energy performance of not only static sensors, but Static Sink (SS) and Mobile Sinks (MSs) simultaneously, based on parameters such as sensor transmission range r and the velocity of the mobile sink v, etc. Moreover, a MS mobility model was developed to enable SS and MSs to effectively collaborate, while achieving spatiotemporal energy performance efficiency by using the knowledge of the cumulative density function (cdf), Poisson process and M/G/1 queue. The simulation results verified that the improved energy performance of the whole network was demonstrated clearly and our eDSA algorithm is more efficient than the static-sink model, reducing energy consumption approximately in half. Moreover, we demonstrate that our results are robust to realistic sensing models and also validate the correctness of our results through extensive simulations. PMID:22163503

  13. Static Performance of Six Innovative Thrust Reverser Concepts for Subsonic Transport Applications: Summary of the NASA Langley Innovative Thrust Reverser Test Program

    NASA Technical Reports Server (NTRS)

    Asbury, Scott C.; Yetter, Jeffrey A.

    2000-01-01

    The NASA Langley Configuration Aerodynamics Branch has conducted an experimental investigation to study the static performance of innovative thrust reverser concepts applicable to high-bypass-ratio turbofan engines. Testing was conducted on a conventional separate-flow exhaust system configuration, a conventional cascade thrust reverser configuration, and six innovative thrust reverser configurations. The innovative thrust reverser configurations consisted of a cascade thrust reverser with porous fan-duct blocker, a blockerless thrust reverser, two core-mounted target thrust reversers, a multi-door crocodile thrust reverser, and a wing-mounted thrust reverser. Each of the innovative thrust reverser concepts offer potential weight savings and/or design simplifications over a conventional cascade thrust reverser design. Testing was conducted in the Jet-Exit Test Facility at NASA Langley Research Center using a 7.9%-scale exhaust system model with a fan-to-core bypass ratio of approximately 9.0. All tests were conducted with no external flow and cold, high-pressure air was used to simulate core and fan exhaust flows. Results show that the innovative thrust reverser concepts achieved thrust reverser performance levels which, when taking into account the potential for system simplification and reduced weight, may make them competitive with, or potentially more cost effective than current state-of-the-art thrust reverser systems.

  14. Temperature stability of static and dynamic properties of 1.55 µm quantum dot lasers.

    PubMed

    Abdollahinia, A; Banyoudeh, S; Rippien, A; Schnabel, F; Eyal, O; Cestier, I; Kalifa, I; Mentovich, E; Eisenstein, G; Reithmaier, J P

    2018-03-05

    Static and dynamic properties of InP-based 1.55 µm quantum dot (QD) lasers were investigated. Due to the reduced size inhomogeneity and a high dot density of the newest generation of 1.55 µm QD gain materials, ridge waveguide lasers (RWG) exhibit improved temperature stability and record-high modulation characteristics. Detailed results are shown for the temperature dependence of static properties including threshold current, voltage-current characteristics, external differential efficiency and emission wavelength. Similarly, small and large signal modulations were found to have only minor dependences on temperature. Moreover, we show the impact of the active region design and the cavity length on the temperature stability. Measurements were performed in pulsed and continuous wave operation. High characteristic temperatures for the threshold current were obtained with T 0 values of 144 K (15 - 60 °C), 101 K (60 - 110 °C) and 70 K up to 180 °C for a 900-µm-long RWG laser comprising 8 QD layers. The slope efficiency in these lasers is nearly independent of temperature showing a T 1 value of more than 900 K up to 110 °C. Due to the high modal gain, lasers with a cavity length of 340 µm reached new record modulation bandwidths of 17.5 GHz at 20 °C and 9 GHz at 80 °C, respectively. These lasers were modulated at 26 GBit/s in the non-return to zero format at 80 °C and at 25 GBaud using a four-level pulse amplitude format at 21 °C.

  15. Experimental Investigation of a Morphing Nacelle Ducted Fan

    NASA Technical Reports Server (NTRS)

    Kondor, Shayne A.; Moore, Mark

    2005-01-01

    The application of Circulation Control to the nacelle of a shrouded fan is proposed as a means to enhance off-design performance of the shrouded fan. Typically, a fixed geometry shroud is efficient at a single operating condition. Modifying circulation about the fixed geometry is proposed as a means to virtually morph the shroud without moving surfaces. This approach will enhance off-design-point performance with minimal complexity, weight, and cost. Termed the Morphing Nacelle, this concept provides an attractive propulsion option for Vertical Take-off and Landing (VTOL) aircraft, such conceptual Personal Air Vehicle (PAV) configurations proposed by NASA. An experimental proof of concept investigation of the Morphing Nacelle is detailed in this paper. A powered model shrouded fan model was constructed with Circulation Control (CC) devices integrated in the inlet and exit of the nacelle. Both CC devices consisted of an annular jet slot directing a jet sheet tangent to a curved surface, generally described as a Coanda surface. The model shroud was tailored for axial flight, with a diffusing inlet, but was operated off-design condition as a static lifting fan. Thrust stand experiments were conducted to determine if the CC devices could effectively improve off-design performance of the shrouded fan. Additional tests were conducted to explore the effectiveness of the CC devices a means to reduce peak static pressure on the ground below a lifting fan. Experimental results showed that off-design static thrust performance of the model was improved when the CC devices were employed under certain conditions. The exhaust CC device alone, while effective in diffusing the fan exhaust and improving weight flow into shroud inlet, tended to diminish performance of the fan with increased CC jet momentum. The inlet CC device was effective at reattaching a normally stalled inlet flow condition, proving an effective means of enhancing performance. A more dramatic improvement in static thrust was obtained when the inlet and exit CC devices were operated in unison, but only over a limited range of CC jet momentum. Operating the nacelle inlet and exit CC devices together proved very effective in reducing peak ground plane static pressure, while maintaining static thrust. The Morphing Nacelle concept proved effective at enhancing off-design performance of the model; however, additional investigation is necessary to generalize the results.

  16. Load Fatigue Performance Evaluation on Two Internal Tapered Abutment-Implant Connection Implants Under Different Screw Tightening Torques.

    PubMed

    Jeng, Ming-Dih; Liu, Po-Yi; Kuo, Jia-Hum; Lin, Chun-Li

    2017-04-01

    This study evaluates the load fatigue performance of different abutment-implant connection implant types-retaining-screw (RS) and taper integrated screwed-in (TIS) types under 3 applied torque levels based on the screw elastic limit. Three torque levels-the recommended torque (25 Ncm), 10% less, and 10% more than the ratio of recommended torque to screw elastic limits of different implants were applied to the implants to perform static and dynamic testing according to the ISO 14801 method. Removal torque loss was calculated for each group after the endurance limitation was reached (passed 5 × 10 6 cycles) in the fatigue test. The static fracture resistance results showed that the fracture resistance in the TIS-type implant significantly increased (P < .05) when the abutment screw was inserted tightly. The dynamic testing results showed that the endurance limitations for the RS-type implant were 229 N, 197 N, and 224 N and those for the TIS-type implant were 322 N, 364 N, and 376 N when the screw insertion torques were applied from low to high. The corresponding significant (P < .05) removal torque losses for the TIS-type implant were 13.2%, 5.3%, and 2.6% but no significant difference was found for the RS-type implant. This study concluded that the static fracture resistance and dynamic endurance limitation of the TIS-type implant (1-piece solid abutment) increased when torque was applied more tightly on the screw. Less torque loss was also found when increasing the screw insertion torque.

  17. Design and Predictions for a High-Altitude (Low-Reynolds-Number) Aerodynamic Flight Experiment

    NASA Technical Reports Server (NTRS)

    Greer, Donald; Hamory, Phil; Krake, Keith; Drela, Mark

    1999-01-01

    A sailplane being developed at NASA Dryden Flight Research Center will support a high-altitude flight experiment. The experiment will measure the performance parameters of an airfoil at high altitudes (70,000 to 100,000 ft), low Reynolds numbers (200,000 to 700,000), and high subsonic Mach numbers (0.5 and 0.65). The airfoil section lift and drag are determined from pitot and static pressure measurements. The locations of the separation bubble, Tollmien-Schlichting boundary layer instability frequencies, and vortex shedding are measured from a hot-film strip. The details of the planned flight experiment are presented. Several predictions of the airfoil performance are also presented. Mark Drela from the Massachusetts Institute of Technology designed the APEX-16 airfoil, using the MSES code. Two-dimensional Navier-Stokes analyses were performed by Mahidhar Tatineni and Xiaolin Zhong from the University of California, Los Angeles, and by the authors at NASA Dryden.

  18. New Meanings of Thin-Skinned: The Contrasting Attentional Profiles of Typical 12-Month-Olds Who Show High, and Low, Stress Reactivity

    ERIC Educational Resources Information Center

    Wass, Sam V.; de Barbaro, Kaya; Clackson, Kaili; Leong, Victoria

    2018-01-01

    Previous research is inconsistent as to whether a more labile (faster-changing) autonomic system confers performance advantages, or disadvantages, in infants and children. To examine this, we presented a stimulus battery consisting of mixed static and dynamic viewing materials to a cohort of 63 typical 12-month-old infants. While viewing the…

  19. Single-transistor-clocked flip-flop

    DOEpatents

    Zhao, Peiyi; Darwish, Tarek; Bayoumi, Magdy

    2005-08-30

    The invention provides a low power, high performance flip-flop. The flip-flop uses only one clocked transistor. The single clocked transistor is shared by the first and second branches of the device. A pulse generator produces a clock pulse to trigger the flip-flop. In one preferred embodiment the device can be made as a static explicit pulsed flip-flop which employs only two clocked transistors.

  20. The effect of model resolution in predicting meteorological parameters used in fire danger rating.

    Treesearch

    Jeanne L. Hoadley; Ken Westrick; Sue A. Ferguson; Scott L. Goodrick; Larry Bradshaw; Paul Werth

    2004-01-01

    Previous studies of model performance at varying resolutions have focused on winter storms or isolated convective events. Little attention has been given to the static high pressure situations that may lead to severe wildfire outbreaks. This study focuses on such an event so as to evaluate the value of increased model resolution for prediction of fire danger. The...

  1. Effect of Microscopic Damage Events on Static and Ballistic Impact Strength of Triaxial Braid Composites

    NASA Technical Reports Server (NTRS)

    Littell, Justin D.; Binienda, Wieslaw K.; Arnold, William A.; Roberts, Gary d.; Goldberg, Robert K.

    2008-01-01

    In previous work, the ballistic impact resistance of triaxial braided carbon/epoxy composites made with large flat tows (12k and 24k) was examined by impacting 2 X2 X0.125" composite panels with gelatin projectiles. Several high strength, intermediate modulus carbon fibers were used in combination with both untoughened and toughened matrix materials. A wide range of penetration thresholds were measured for the various fiber/matrix combinations. However, there was no clear relationship between the penetration threshold and the properties of the constituents. During some of these experiments high speed cameras were used to view the failure process, and full-field strain measurements were made to determine the strain at the onset of failure. However, these experiments provided only limited insight into the microscopic failure processes responsible for the wide range of impact resistance observed. In order to investigate potential microscopic failure processes in more detail, quasi-static tests were performed in tension, compression, and shear. Full-field strain measurement techniques were used to identify local regions of high strain resulting from microscopic failures. Microscopic failure events near the specimen surface, such as splitting of fiber bundles in surface plies, were easily identified. Subsurface damage, such as fiber fracture or fiber bundle splitting, could be identified by its effect on in-plane surface strains. Subsurface delamination could be detected as an out-of-plane deflection at the surface. Using this data, failure criteria could be established at the fiber tow level for use in analysis. An analytical formulation was developed to allow the microscopic failure criteria to be used in place of macroscopic properties as input to simulations performed using the commercial explicit finite element code, LS-DYNA. The test methods developed to investigate microscopic failure will be presented along with methods for determining local failure criteria that can be used in analysis. Results of simulations performed using LS-DYNA will be presented to illustrate the capabilities and limitations for simulating failure during quasi-static deformation and during ballistic impact of large unit cell size triaxial braid composites.

  2. Estimation of static parameters based on dynamical and physical properties in limestone rocks

    NASA Astrophysics Data System (ADS)

    Ghafoori, Mohammad; Rastegarnia, Ahmad; Lashkaripour, Gholam Reza

    2018-01-01

    Due to the importance of uniaxial compressive strength (UCS), static Young's modulus (ES) and shear wave velocity, it is always worth to predict these parameters from empirical relations that suggested for other formations with same lithology. This paper studies the physical, mechanical and dynamical properties of limestone rocks using the results of laboratory tests which carried out on 60 the Jahrum and the Asmari formations core specimens. The core specimens were obtained from the Bazoft dam site, hydroelectric supply and double-curvature arch dam in Iran. The Dynamic Young's modulus (Ed) and dynamic Poisson ratio were calculated using the existing relations. Some empirical relations were presented to estimate uniaxial compressive strength, as well as static Young's modulus and shear wave velocity (Vs). Results showed the static parameters such as uniaxial compressive strength and static Young's modulus represented low correlation with water absorption. It is also found that the uniaxial compressive strength and static Young's modulus had high correlation with compressional wave velocity and dynamic Young's modulus, respectively. Dynamic Young's modulus was 5 times larger than static Young's modulus. Further, the dynamic Poisson ratio was 1.3 times larger than static Poisson ratio. The relationship between shear wave velocity (Vs) and compressional wave velocity (Vp) was power and positive with high correlation coefficient. Prediction of uniaxial compressive strength based on Vp was better than that based on Vs . Generally, both UCS and static Young's modulus (ES) had good correlation with Ed.

  3. Design and Implementation of High-Performance GIS Dynamic Objects Rendering Engine

    NASA Astrophysics Data System (ADS)

    Zhong, Y.; Wang, S.; Li, R.; Yun, W.; Song, G.

    2017-12-01

    Spatio-temporal dynamic visualization is more vivid than static visualization. It important to use dynamic visualization techniques to reveal the variation process and trend vividly and comprehensively for the geographical phenomenon. To deal with challenges caused by dynamic visualization of both 2D and 3D spatial dynamic targets, especially for different spatial data types require high-performance GIS dynamic objects rendering engine. The main approach for improving the rendering engine with vast dynamic targets relies on key technologies of high-performance GIS, including memory computing, parallel computing, GPU computing and high-performance algorisms. In this study, high-performance GIS dynamic objects rendering engine is designed and implemented for solving the problem based on hybrid accelerative techniques. The high-performance GIS rendering engine contains GPU computing, OpenGL technology, and high-performance algorism with the advantage of 64-bit memory computing. It processes 2D, 3D dynamic target data efficiently and runs smoothly with vast dynamic target data. The prototype system of high-performance GIS dynamic objects rendering engine is developed based SuperMap GIS iObjects. The experiments are designed for large-scale spatial data visualization, the results showed that the high-performance GIS dynamic objects rendering engine have the advantage of high performance. Rendering two-dimensional and three-dimensional dynamic objects achieve 20 times faster on GPU than on CPU.

  4. Subsonic Performance of Ejector Systems

    NASA Astrophysics Data System (ADS)

    Weil, Samuel

    Combined cycle engines combining scramjets with turbo jets or rockets can provide efficient hypersonic flight. Ejectors have the potential to increase the thrust and efficiency of combined cycle engines near static conditions. A computer code was developed to support the design of a small-scale, turbine-based combined cycle demonstrator with an ejector, built around a commercially available turbojet engine. This code was used to analyze the performance of an ejector system built around a micro-turbojet. With the use of a simple ejector, net thrust increases as large as 20% over the base engine were predicted. Additionally the specific fuel consumption was lowered by 10%. Increasing the secondary to primary area ratio of the ejector lead to significant improvements in static thrust, specific fuel consumption (SFC), and propulsive efficiency. Further ejector performance improvements can be achieved by using a diffuser. Ejector performance drops off rapidly with increasing Mach number. The ejector has lower thrust and higher SFC than the turbojet core at Mach numbers above 0.2. When the nozzle chokes a significant drop in ejector performance is seen. When a diffuser is used, higher Mach numbers lead to choking in the mixer and a shock in the nozzle causing a significant decrease in ejector performance. Evaluation of different turbo jets shows that ejector performance depends significantly on the properties of the turbojet. Static thrust and SFC improvements can be achieved with increasing ejector area for all engines, but size of increase and change in performance at higher Mach numbers depend heavily on the turbojet. The use of an ejector in a turbine based combined cycle configuration also increases performance at static conditions with a thrust increase of 5% and SFC decrease of 5% for the tested configuration.

  5. Acute Effects of Static vs. Ballistic Stretching on Strength and Muscular Fatigue Between Ballet Dancers and Resistance-Trained Women.

    PubMed

    Lima, Camila D; Brown, Lee E; Wong, Megan A; Leyva, Whitney D; Pinto, Ronei S; Cadore, Eduardo L; Ruas, Cassio V

    2016-11-01

    Lima, CD, Brown, LE, Wong, MA, Leyva, WD, Pinto, RS, Cadore, EL, and Ruas, CV. Acute effects of static vs. ballistic stretching on strength and muscular fatigue between ballet dancers and resistance-trained women. J Strength Cond Res 30(11): 3220-3227, 2016-Stretching is used to increase joint range of motion, but the acute effects can decrease muscle strength. However, this may depend on the population or mode of stretching. The purpose of this study was to compare the acute effects of static vs. ballistic stretching on strength and muscular fatigue between ballet dancers and resistance-trained women. Fifteen resistance-trained women (age 23.8 ± 1.80 years, mass 67.47 ± 7.77 kg, height 168.30 ± 5.53 cm) and 12 ballet dancers (age 22.8 ± 3.04 years, mass 58.67 ± 5.65 kg, height 168.00 ± 7.69 cm) performed 5 days of testing. The first day was control (no stretching), whereas the other 4 days were static or ballistic stretching in a counterbalanced order. Range of motion, strength, and fatigue tests were also performed. Both groups demonstrated a significant decrease in hamstrings strength after static (102.71 ± 2.67 N·m) and ballistic stretching (99.49 ± 2.61 N·m) compared with control (113.059 ± 3.25 N·m), with no changes in quadriceps strength. For fatigue, only ballet dancers demonstrated a decrease from control (71.79 ± 4.88%) to ballistic (65.65 ± 8.19%), but no difference with static (65.01 ± 12.29%). These findings suggest that stretching decreases hamstrings strength similarly in ballet dancers and resistance-trained women, with no differences between modes of stretching. However, ballistic stretching only decreased muscular fatigue in ballet dancers, but not in resistance-trained women. Therefore, no stretching should be performed before strength performance. However, ballistic stretching may decrease acute muscular fatigue in ballet dancers.

  6. Fatigue and shear behavior of HPC bulb tee girders : LTRC technical summary report.

    DOT National Transportation Integrated Search

    2008-04-01

    The objectives of the research were (1) to provide assurance that full size, deep prestressed concrete girders made with HPC would perform satisfactorily under flexural fatigue, static shear, and static flexural loading conditions; (2) to determine i...

  7. FEM Modeling of the Relationship between the High-Temperature Hardness and High-Temperature, Quasi-Static Compression Experiment.

    PubMed

    Zhang, Tao; Jiang, Feng; Yan, Lan; Xu, Xipeng

    2017-12-26

    The high-temperature hardness test has a wide range of applications, but lacks test standards. The purpose of this study is to develop a finite element method (FEM) model of the relationship between the high-temperature hardness and high-temperature, quasi-static compression experiment, which is a mature test technology with test standards. A high-temperature, quasi-static compression test and a high-temperature hardness test were carried out. The relationship between the high-temperature, quasi-static compression test results and the high-temperature hardness test results was built by the development of a high-temperature indentation finite element (FE) simulation. The simulated and experimental results of high-temperature hardness have been compared, verifying the accuracy of the high-temperature indentation FE simulation.The simulated results show that the high temperature hardness basically does not change with the change of load when the pile-up of material during indentation is ignored. The simulated and experimental results show that the decrease in hardness and thermal softening are consistent. The strain and stress of indentation were analyzed from the simulated contour. It was found that the strain increases with the increase of the test temperature, and the stress decreases with the increase of the test temperature.

  8. FEM Modeling of the Relationship between the High-Temperature Hardness and High-Temperature, Quasi-Static Compression Experiment

    PubMed Central

    Zhang, Tao; Jiang, Feng; Yan, Lan; Xu, Xipeng

    2017-01-01

    The high-temperature hardness test has a wide range of applications, but lacks test standards. The purpose of this study is to develop a finite element method (FEM) model of the relationship between the high-temperature hardness and high-temperature, quasi-static compression experiment, which is a mature test technology with test standards. A high-temperature, quasi-static compression test and a high-temperature hardness test were carried out. The relationship between the high-temperature, quasi-static compression test results and the high-temperature hardness test results was built by the development of a high-temperature indentation finite element (FE) simulation. The simulated and experimental results of high-temperature hardness have been compared, verifying the accuracy of the high-temperature indentation FE simulation.The simulated results show that the high temperature hardness basically does not change with the change of load when the pile-up of material during indentation is ignored. The simulated and experimental results show that the decrease in hardness and thermal softening are consistent. The strain and stress of indentation were analyzed from the simulated contour. It was found that the strain increases with the increase of the test temperature, and the stress decreases with the increase of the test temperature. PMID:29278398

  9. Radar cross section models for limited aspect angle windows

    NASA Astrophysics Data System (ADS)

    Robinson, Mark C.

    1992-12-01

    This thesis presents a method for building Radar Cross Section (RCS) models of aircraft based on static data taken from limited aspect angle windows. These models statistically characterize static RCS. This is done to show that a limited number of samples can be used to effectively characterize static aircraft RCS. The optimum models are determined by performing both a Kolmogorov and a Chi-Square goodness-of-fit test comparing the static RCS data with a variety of probability density functions (pdf) that are known to be effective at approximating the static RCS of aircraft. The optimum parameter estimator is also determined by the goodness of-fit tests if there is a difference in pdf parameters obtained by the Maximum Likelihood Estimator (MLE) and the Method of Moments (MoM) estimators.

  10. Physical Abilities and Military Task Performance: A Replication and Extension

    DTIC Science & Technology

    2009-06-09

    exertion lasted 3 s. Trapezius lift. Subject stood with feet at shoulder width grasping handles that were 38.5 cm apart to mimic the grip used in...maintained even with encouragement. Trapezius lift. The subject stood erect with his feet shoulder-width apart. He held a 20.9- kg load with his arms...static trunk extension; dynamic and static arm flexion; bench press, trapezius lift, leg extension; dynamic and static trunk flexion; right and left

  11. Static behaviour of 3x3 pile group in sand under lateral loading

    NASA Astrophysics Data System (ADS)

    SureshKumar, R.; BharathKumar, R.; MohanKumar, L.; Visuvasam, J.; Sairam, V.

    2017-11-01

    This paper presents the static lateral load behaviour of single pile in comparison with 3x3 pile group in sand. The piled raft system is modelled using PLAXIS3D. Parametric studies of varying length to diameter (L/D) and spacing of piles in a group and diameter of piles (S/D) have been performed. The behaviour of group piles in terms of static lateral load capacity and group efficiency has been discussed.

  12. Static and dynamic pressure measurements on a NACA 0012 airfoil in the Ames High Reynolds Number Facility

    NASA Technical Reports Server (NTRS)

    Mcdevitt, J. B.; Okuno, A. F.

    1985-01-01

    The supercritical flows at high subsonic speeds over a NACA 0012 airfoil were studied to acquire aerodynamic data suitable for evaluating numerical-flow codes. The measurements consisted primarily of static and dynamic pressures on the airfoil and test-channel walls. Shadowgraphs were also taken of the flow field near the airfoil. The tests were performed at free-stream Mach numbers from approximately 0.7 to 0.8, at angles of attack sufficient to include the onset of buffet, and at Reynolds numbers from 1 million to 14 million. A test action was designed specifically to obtain two-dimensional airfoil data with a minimum of wall interference effects. Boundary-layer suction panels were used to minimize sidewall interference effects. Flexible upper and lower walls allow test-channel area-ruling to nullify Mach number changes induced by the mass removal, to correct for longitudinal boundary-layer growth, and to provide contouring compatible with the streamlines of the model in free air.

  13. Electronic and software systems of an automated portable static mass spectrometer

    NASA Astrophysics Data System (ADS)

    Chichagov, Yu. V.; Bogdanov, A. A.; Lebedev, D. S.; Kogan, V. T.; Tubol'tsev, Yu. V.; Kozlenok, A. V.; Moroshkin, V. S.; Berezina, A. V.

    2017-01-01

    The electronic systems of a small high-sensitivity static mass spectrometer and software and hardware tools, which allow one to determine trace concentrations of gases and volatile compounds in air and water samples in real time, have been characterized. These systems and tools have been used to set up the device, control the process of measurement, synchronize this process with accompanying measurements, maintain reliable operation of the device, process the obtained results automatically, and visualize and store them. The developed software and hardware tools allow one to conduct continuous measurements for up to 100 h and provide an opportunity for personnel with no special training to perform maintenance on the device. The test results showed that mobile mass spectrometers for geophysical and medical research, which were fitted with these systems, had a determination limit for target compounds as low as several ppb(m) and a mass resolving power (depending on the current task) as high as 250.

  14. Measurement and Prediction of the Thermomechanical Response of Shape Memory Alloy Hybrid Composite Beams

    NASA Technical Reports Server (NTRS)

    Davis, Brian; Turner, Travis L.; Seelecke, Stefan

    2008-01-01

    An experimental and numerical investigation into the static and dynamic responses of shape memory alloy hybrid composite (SMAHC) beams is performed to provide quantitative validation of a recently commercialized numerical analysis/design tool for SMAHC structures. The SMAHC beam specimens consist of a composite matrix with embedded pre-strained SMA actuators, which act against the mechanical boundaries of the structure when thermally activated to adaptively stiffen the structure. Numerical results are produced from the numerical model as implemented into the commercial finite element code ABAQUS. A rigorous experimental investigation is undertaken to acquire high fidelity measurements including infrared thermography and projection moire interferometry for full-field temperature and displacement measurements, respectively. High fidelity numerical results are also obtained from the numerical model and include measured parameters, such as geometric imperfection and thermal load. Excellent agreement is achieved between the predicted and measured results of the static and dynamic thermomechanical response, thereby providing quantitative validation of the numerical tool.

  15. Design and Optimization of an Austenitic TRIP Steel for Blast and Fragment Protection

    NASA Astrophysics Data System (ADS)

    Feinberg, Zechariah Daniel

    In light of the pervasive nature of terrorist attacks, there is a pressing need for the design and optimization of next generation materials for blast and fragment protection applications. Sadhukhan used computational tools and a systems-based approach to design TRIP-120---a fully austenitic transformation-induced plasticity (TRIP) steel. Current work more completely evaluates the mechanical properties of the prototype, optimizes the processing for high performance in tension and shear, and builds models for more predictive power of the mechanical behavior and austenite stability. Under quasi-static and dynamic tension and shear, the design exhibits high strength and high uniform ductility as a result of a strain hardening effect that arises with martensitic transformation. Significantly more martensitic transformation occurred under quasi-static loading conditions (69% in tension and 52% in shear) compared to dynamic loading conditions (13% tension and 5% in shear). Nonetheless, significant transformation occurs at high-strain rates which increases strain hardening, delays the onset of necking instability, and increases total energy absorption under adiabatic conditions. Although TRIP-120 effectively utilizes a TRIP effect to delay necking instability, a common trend of abrupt failure with limited fracture ductility was observed in tension and shear at all strain rates. Further characterization of the structure of TRIP-120 showed that an undesired grain boundary cellular reaction (η phase formation) consumed the fine dispersion of the metastable gamma' phase and limited the fracture ductility. A warm working procedure was added to the processing of TRIP-120 in order to eliminate the grain boundary cellular reaction from the structure. By eliminating η formation at the grain boundaries, warm-worked TRIP-120 exhibits a drastic improvement in the mechanical properties in tension and shear. In quasi-static tension, the optimized warm-worked TRIP-120 with an Mssigma( u.t.) of -13°C has a yield strength of 180 ksi (1241 MPa), uniform ductility of 0.303, and fracture ductility of 0.95, which corresponds to a 48% increase in yield strength, a 43% increase in uniform ductility, and a 254% increase in fracture ductility relative to the designed processing of TRIP-120. The highest performing condition of warm-worked TRIP-120 in quasi-static shear with an Mssigma( sh) of 58°C exhibits a shear yield strength of 95.1 ksi (656 MPa), shear fracture strain of 144%, and energy dissipation density of 1099 MJ/m3, which corresponds to a shear yield strength increase of 61%, a shear fracture strain increase of 55%, and an energy dissipation density increase of 76%. A wide range of austenite stabilities can be achieved by altering the heat treatment times and temperatures, which significantly alters the mechanical properties. Although performance cannot be optimized for tension and shear simultaneously, different heat treatments can be applied to warm-worked TRIP-120 to achieve high performance in tension or shear. Parametric models calibrated with three-dimensional atom probe data played a crucial role in guiding the predictive process optimization of TRIP-120. Such models have been built to provide the predictive capability of inputting warm working and aging conditions and outputting the resulting structure, austenite stability, and mechanical properties. The predictive power of computational models has helped identify processing conditions that have improved the performance of TRIP-120 in tension and shear and can be applied to future designs that optimize for adiabatic conditions.

  16. A novel ToF-SIMS operation mode for sub 100 nm lateral resolution: Application and performance.

    PubMed

    Kubicek, Markus; Holzlechner, Gerald; Opitz, Alexander K; Larisegger, Silvia; Hutter, Herbert; Fleig, Jürgen

    2014-01-15

    A novel operation mode for time of flight-secondary ion mass spectrometry (ToF-SIMS) is described for a TOF.SIMS 5 instrument with a Bi-ion gun. It features sub 100 nm lateral resolution, adjustable primary ion currents and the possibility to measure with high lateral resolution as well as high mass resolution. The adjustment and performance of the novel operation mode are described and compared to established ToF-SIMS operation modes. Several examples of application featuring novel scientific results show the capabilities of the operation mode in terms of lateral resolution, accuracy of isotope analysis of oxygen, and combination of high lateral and mass resolution. The relationship between high lateral resolution and operation of SIMS in static mode is discussed.

  17. High-Speed, High-Temperature Finger Seal Test Results

    NASA Technical Reports Server (NTRS)

    Proctor, Margaret P.; Kumar, Arun; Delgado, Irebert R.

    2002-01-01

    Finger seals have significantly lower leakage rates than conventional labyrinth seals used in gas turbine engines and are expected to decrease specific fuel consumption by over 1 percent and to decrease direct operating cost by over 0.5 percent. Their compliant design accommodates shaft growth and motion due to thermal and dynamic loads with minimal wear. The cost to fabricate these finger seals is estimated to be about half the cost to fabricate brush seals. A finger seal has been tested in NASA's High Temperature, High Speed Turbine Seal Test Rig at operating conditions up to 1200 F, 1200 ft/s, and 75 psid. Static, performance and endurance test results are presented. While seal leakage and wear performance are acceptable, further design improvements are needed to reduce the seal power loss.

  18. A factorial design to identify process parameters affecting whole mechanically disrupted rat pancreata in a perfusion bioreactor.

    PubMed

    Sharp, Jamie; Spitters, Tim Wgm; Vermette, Patrick

    2018-03-01

    Few studies report whole pancreatic tissue culture, as it is a difficult task using traditional culture methods. Here, a factorial design was used to investigate the singular and combinational effects of flow, dissolved oxygen concentration (D.O.) and pulsation on whole mechanically disrupted rat pancreata in a perfusion bioreactor. Whole rat pancreata were cultured for 72 h under defined bioreactor process conditions. Secreted insulin was measured and histological (haematoxylin and eosin (H&E)) as well as immunofluorescent insulin staining were performed and quantified. The combination of flow and D.O. had the most significant effect on secreted insulin at 5 h and 24 h. The D.O. had the biggest effect on tissue histological quality, and pulsation had the biggest effect on the number of insulin-positive structures. Based on the factorial design analysis, bioreactor conditions using high flow, low D.O., and pulsation were selected to further study glucose-stimulated insulin secretion. Here, mechanically disrupted rat pancreata were cultured for 24 h under these bioreactor conditions and were then challenged with high glucose concentration for 6 h and high glucose + IBMX (an insulin secretagogue) for a further 6 h. These cultures secreted insulin in response to high glucose concentration in the first 6 h, however stimulated-insulin secretion was markedly weaker in response to high glucose concentration + IBMX thereafter. After this bioreactor culture period, higher tissue metabolic activity was found compared to that of non-bioreacted static controls. More insulin- and glucagon-positive structures, and extensive intact endothelial structures were observed compared to non-bioreacted static cultures. H&E staining revealed more intact tissue compared to static cultures. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 34:432-444, 2018. © 2017 American Institute of Chemical Engineers.

  19. Static aeroelastic analysis and tailoring of a single-element racing car wing

    NASA Astrophysics Data System (ADS)

    Sadd, Christopher James

    This thesis presents the research from an Engineering Doctorate research programme in collaboration with Reynard Motorsport Ltd, a manufacturer of racing cars. Racing car wing design has traditionally considered structures to be rigid. However, structures are never perfectly rigid and the interaction between aerodynamic loading and structural flexibility has a direct impact on aerodynamic performance. This interaction is often referred to as static aeroelasticity and the focus of this research has been the development of a computational static aeroelastic analysis method to improve the design of a single-element racing car wing. A static aeroelastic analysis method has been developed by coupling a Reynolds-Averaged Navier-Stokes CFD analysis method with a Finite Element structural analysis method using an iterative scheme. Development of this method has included assessment of CFD and Finite Element analysis methods and development of data transfer and mesh deflection methods. Experimental testing was also completed to further assess the computational analyses. The computational and experimental results show a good correlation and these studies have also shown that a Navier-Stokes static aeroelastic analysis of an isolated wing can be performed at an acceptable computational cost. The static aeroelastic analysis tool was used to assess methods of tailoring the structural flexibility of the wing to increase its aerodynamic performance. These tailoring methods were then used to produce two final wing designs to increase downforce and reduce drag respectively. At the average operating dynamic pressure of the racing car, the computational analysis predicts that the downforce-increasing wing has a downforce of C[1]=-1.377 in comparison to C[1]=-1.265 for the original wing. The computational analysis predicts that the drag-reducing wing has a drag of C[d]=0.115 in comparison to C[d]=0.143 for the original wing.

  20. Effects of static stretching on 1-mile uphill run performance.

    PubMed

    Lowery, Ryan P; Joy, Jordan M; Brown, Lee E; Oliveira de Souza, Eduardo; Wistocki, David R; Davis, Gregory S; Naimo, Marshall A; Zito, Gina A; Wilson, Jacob M

    2014-01-01

    It is previously demonstrated that static stretching was associated with a decrease in running economy and distance run during a 30-minute time trial in trained runners. Recently, the detrimental effects of static stretching on economy were found to be limited to the first few minutes of an endurance bout. However, economy remains to be studied for its direct effects on performance during shorter endurance events. The aim of this study was to investigate the effects of static stretching on 1-mile uphill run performance, electromyography (EMG), ground contact time (GCT), and flexibility. Ten trained male distance runners aged 24 ± 5 years with an average VO2max of 64.9 ± 6.5 mL·kg-1·min-1 were recruited. Subjects reported to the laboratory on 3 separate days interspersed by 72 hours. On day 1, anthropometrics and V[Combining Dot Above]O2max were determined on a motor-driven treadmill. On days 2 and 3, subjects performed a 5-minute treadmill warm-up and either performed a series of 6 lower-body stretches for three 30-second repetitions or sat still for 10 minutes. Time to complete a 1-mile run under stretching and nonstretching conditions took place in randomized order. For the performance run, subjects were instructed to run as fast as possible at a set incline of 5% until a distance of 1 mile was completed. Flexibility from the sit and reach test, EMG, GCT, and performance, determined by time to complete the 1-mile run, were recorded after each condition. Time to complete the run was significantly less (6:51 ± 0:28 minutes) in the nonstretching condition as compared with the stretching condition (7:04 ± 0:32 minutes). A significant condition-by-time interaction for muscle activation existed, with no change in the nonstretching condition (pre 91.3 ± 11.6 mV to post 92.2 ± 12.9 mV) but increased in the stretching condition (pre 91.0 ± 11.6 mV to post 105.3 ± 12.9 mV). A significant condition-by-time interaction for GCT was also present, with no changes in the nonstretching condition (pre 211.4 ± 20.8 ms to post 212.5 ± 21.7 ms) but increased in the stretching trial (pre 210.7 ± 19.6 ms to post 237.21 ± 22.4 ms). A significant condition-by-time interaction for flexibility was found, which was increased in the stretching condition (pre 33.1 ± 2 to post 38.8 ± 2) but unchanged in the nonstretching condition (pre 33.5 ± 2 to post 35.2 ± 2). Study findings indicate that static stretching decreases performance in short endurance bouts (∼8%) while increasing GCT and muscle activation. Coaches and athletes may be at risk for decreased performance after a static stretching bout. Therefore, static stretching should be avoided before a short endurance bout.

  1. Prophylactic stretching does not reduce cramp susceptibility.

    PubMed

    Miller, Kevin C; Harsen, James D; Long, Blaine C

    2018-03-01

    Some clinicians advocate stretching to prevent muscle cramps. It is unknown whether static or proprioceptive neuromuscular facilitation (PNF) stretching increases cramp threshold frequency (TF c ), a quantitative measure of cramp susceptibility. Fifteen individuals completed this randomized, counterbalanced, cross-over study. We measured passive hallux range of motion (ROM) and then performed 3 minutes of either static stretching, PNF stretching (hold-relax-with agonist contraction), or no stretching. ROM was reassessed and TF c was measured. PNF stretching increased hallux extension (pre-PNF 81 ± 11°, post-PNF 90 ± 10°; P < 0.05) but not hallux flexion (pre-PNF 40 ± 7°, post-PNF 40 ± 7°; P > 0.05). Static stretching increased hallux extension (pre-static 80 ± 11°, post-static 88 ± 9°; P < 0.05) but not hallux flexion (pre-static 38 ± 9°, post-static 39 ± 8°; P > 0.05). No ROM changes occurred with no stretching (P > 0.05). TF c was unaffected by stretching (no stretching 18 ± 7 Hz, PNF 16 ± 4 Hz, static 16 ± 5 Hz; P = 0.37). Static and PNF stretching increased hallux extension, but neither increased TF c . Acute stretching may not prevent muscle cramping. Muscle Nerve 57: 473-477, 2018. © 2017 Wiley Periodicals, Inc.

  2. The Influence of Forward Flight on Propeller Noise

    NASA Technical Reports Server (NTRS)

    Magliozzi, B.

    1977-01-01

    The effect of flight on blade surface pressures and propeller noise was reported. There were significant differences in blade surface pressures and far-field noise between static and flight conditions. The static data showed many high-intensity, tone-like peaks whereas the flight data was generally free from tones. The turbulence ingested by the propeller operating statically was dominated by long, thin eddies. In flight the scale of the turbulence was greately reduced from that observed statically.

  3. A Comparison of the Immediate Effects of Eccentric Training vs Static Stretch on Hamstring Flexibility in High School and College Athletes.

    PubMed

    Nelson, Russell T

    2006-05-01

    A pre-event static stretching program is often used to prepare an athlete for competition. Recent studies have suggested that static stretching may not be an effective method for stretching the muscle prior to competition. The intent of this study was to compare the immediate effect of static stretching, eccentric training, and no stretching/training on hamstring flexibility in high school and college athletes. Seventy-five athletes, with a mean age of 17.22 (+/- 1.30) were randomly assigned to one of three groups - thirty- second static stretch one time, an eccentric training protocol through a full range of motion, and a control group. All athletes had limited hamstring flexibility, defined as a 20° loss of knee extension measured with the femur held at 90° of hip flexion. A significant difference was indicated by follow up analysis between the control group (gain = -1.08°) and both the static stretch (gain = 5.05°) and the eccentric training group (gain = 9.48°). In addition, the gains in the eccentric training group were significantly greater than the static stretch group. The findings of this study reveal that one session of eccentrically training through a full range of motion improved hamstring flexibility better than the gains made by a static stretch group or a control group.

  4. A Comparison of the Immediate Effects of Eccentric Training vs Static Stretch on Hamstring Flexibility in High School and College Athletes

    PubMed Central

    2006-01-01

    Background A pre-event static stretching program is often used to prepare an athlete for competition. Recent studies have suggested that static stretching may not be an effective method for stretching the muscle prior to competition. Objective The intent of this study was to compare the immediate effect of static stretching, eccentric training, and no stretching/training on hamstring flexibility in high school and college athletes. Methods Seventy-five athletes, with a mean age of 17.22 (+/- 1.30) were randomly assigned to one of three groups - thirty- second static stretch one time, an eccentric training protocol through a full range of motion, and a control group. All athletes had limited hamstring flexibility, defined as a 20° loss of knee extension measured with the femur held at 90° of hip flexion. Results A significant difference was indicated by follow up analysis between the control group (gain = -1.08°) and both the static stretch (gain = 5.05°) and the eccentric training group (gain = 9.48°). In addition, the gains in the eccentric training group were significantly greater than the static stretch group. Discussion and Conclusion The findings of this study reveal that one session of eccentrically training through a full range of motion improved hamstring flexibility better than the gains made by a static stretch group or a control group. PMID:21522215

  5. First characterization of a static Fourier transform spectrometer

    NASA Astrophysics Data System (ADS)

    Lacan, A.; Bréon, F.-M.; Rosak, A.; Pierangelo, C.

    2017-11-01

    A new instrument concept for a Static Fourier Transform Spectrometer has been developed and characterized by CNES. This spectrometer is based on a Michelson interferometer concept, but a system of stepped mirrors generates all interference path differences simultaneously, without any moving parts. The instrument permits high spectral resolution measurements (≍0.1 cm-1) adapted to the sounding and the monitoring of atmospheric gases. Moreover, its overall dimensions are compatible with a micro satellite platform. The stepped mirrors are glued using a molecular bonding technique. An interference filter selects a waveband only a few nanometers wide. It limits the number of sampling points (and consequently the steps number) necessary to achieve the high resolution. The instrument concept can be optimized for the detection and the monitoring of various atmospheric constituents. CNES has developed a version whose measurements are centered on the CO2 absorption lines at 1573 nm (6357 cm-1). This model has a theoretical resolution of 40 pm (0.15 cm-1) within a 5 nm (22.5 cm-1) wide spectral window. It is aimed at the feasibility demonstration for atmospheric CO2 column measurements with a very demanding accuracy of better than 1%. Preliminary measurements indicate that, although high quality spectra are obtained, the theoretical performances are not yet achieved. We discuss the causes for the achieved performances and describe foreseen methods for their improvements.

  6. A microcomputer-based testing station for dynamic and static testing of protective relay systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, W.J.; Li, R.J.; Gu, J.C.

    1995-12-31

    Dynamic and static relay performance testing before installation in the field is a subject of great interest to utility relay engineers. The common practice in utility testing of new relays is to put the new unit to be tested in parallel with an existing functioning relay in the system, wait until an actual transient occurs and then observe and analyze the performance of new relay. It is impossible to have a thorough test of the protective relay system through this procedure. An equipment, Microcomputer-Based Testing Station (or PC-Based Testing Station), that can perform both static and dynamic testing of themore » relay is described in this paper. The Power System Simulation Laboratory at the University of Texas at Arlington is a scaled-down, three-phase, physical power system which correlates well with the important components for a real power system and is an ideal facility for the dynamic and static testing of protective relay systems. A brief introduction to the configuration of this laboratory is presented. Test results of several protective functions by using this laboratory illustrate the usefulness of this test set-up.« less

  7. A Novel Method for Proximity Detection of Moving Targets Using a Large-Scale Planar Capacitive Sensor System

    PubMed Central

    Ye, Yong; Deng, Jiahao; Shen, Sanmin; Hou, Zhuo; Liu, Yuting

    2016-01-01

    A novel method for proximity detection of moving targets (with high dielectric constants) using a large-scale (the size of each sensor is 31 cm × 19 cm) planar capacitive sensor system (PCSS) is proposed. The capacitive variation with distance is derived, and a pair of electrodes in a planar capacitive sensor unit (PCSU) with a spiral shape is found to have better performance on sensitivity distribution homogeneity and dynamic range than three other shapes (comb shape, rectangular shape, and circular shape). A driving excitation circuit with a Clapp oscillator is proposed, and a capacitance measuring circuit with sensitivity of 0.21 Vp−p/pF is designed. The results of static experiments and dynamic experiments demonstrate that the voltage curves of static experiments are similar to those of dynamic experiments; therefore, the static data can be used to simulate the dynamic curves. The dynamic range of proximity detection for three projectiles is up to 60 cm, and the results of the following static experiments show that the PCSU with four neighboring units has the highest sensitivity (the sensitivities of other units are at least 4% lower); when the attack angle decreases, the intensity of sensor signal increases. This proposed method leads to the design of a feasible moving target detector with simple structure and low cost, which can be applied in the interception system. PMID:27196905

  8. Speckle temporal stability in XAO coronagraphic images. II. Refine model for quasi-static speckle temporal evolution for VLT/SPHERE

    NASA Astrophysics Data System (ADS)

    Martinez, P.; Kasper, M.; Costille, A.; Sauvage, J. F.; Dohlen, K.; Puget, P.; Beuzit, J. L.

    2013-06-01

    Context. Observing sequences have shown that the major noise source limitation in high-contrast imaging is the presence of quasi-static speckles. The timescale on which quasi-static speckles evolve is determined by various factors, mechanical or thermal deformations, among others. Aims: Understanding these time-variable instrumental speckles and, especially, their interaction with other aberrations, referred to as the pinning effect, is paramount for the search for faint stellar companions. The temporal evolution of quasi-static speckles is, for instance, required for quantifying the gain expected when using angular differential imaging (ADI) and to determining the interval on which speckle nulling techniques must be carried out. Methods: Following an early analysis of a time series of adaptively corrected, coronagraphic images obtained in a laboratory condition with the high-order test bench (HOT) at ESO Headquarters, we confirm our results with new measurements carried out with the SPHERE instrument during its final test phase in Europe. The analysis of the residual speckle pattern in both direct and differential coronagraphic images enables the characterization of the temporal stability of quasi-static speckles. Data were obtained in a thermally actively controlled environment reproducing realistic conditions encountered at the telescope. Results: The temporal evolution of the quasi-static wavefront error exhibits a linear power law, which can be used to model quasi-static speckle evolution in the context of forthcoming high-contrast imaging instruments, with implications for instrumentation (design, observing strategies, data reduction). Such a model can be used for instance to derive the timescale on which non-common path aberrations must be sensed and corrected. We found in our data that quasi-static wavefront error increases with ~0.7 Å per minute.

  9. UNAVCO Real-Time GNSS Positioning: High-Precision Static and Kinematic Testing of the Next Generation GNSS network.

    NASA Astrophysics Data System (ADS)

    Berglund, H. T.; Hodgkinson, K. M.; Blume, F.; Mencin, D.; Phillips, D. A.; Meertens, C. M.; Mattioli, G. S.

    2014-12-01

    The GAGE Facility, managed by UNAVCO, operates a real-time GNSS (RT-GNSS) network of ~450 stations. The majority of the streaming stations are part of the EarthScope Plate Boundary Observatory (PBO). Following community input from a real-time GNSS data products and formats meeting hosted by UNAVCO in Spring of 2011, UNAVCO now provides real-time PPP positions, and network solutions where practical, for all available stations using Trimble's PIVOT RTX server software and TrackRT. The UNAVCO real-time system has the potential to enhance our understanding of earthquakes, seismic wave propagation, volcanic eruptions, magmatic intrusions, movement of ice, landslides, and the dynamics of the atmosphere. Beyond the ever increasing applications in science and engineering, RT-GNSS has the potential to provide early warning of hazards to emergency managers, utilities, other infrastructure managers, first responders and others. Upgrades to the network include eight Trimble NetR9 GNSS receivers with GLONASS and receiver-based RTX capabilities and sixteen new co-located MEMS based accelerometers. These new capabilities will allow integration of GNSS and strong motion data to produce broad-spectrum waveforms improving Earthquake Early Warning systems. Controlled outdoor kinematic and static experiments provide a useful method for evaluating and comparing real-time systems. UNAVCO has developed a portable low-cost antenna actuator to characterize the kinematic performance of receiver- and server-based real-time positioning algorithms and identify system limitations. We have performed tests using controlled 1-d antenna motions and will present comparisons between these and other post-processed kinematic algorithms including GIPSY-OASIS and TRACK. In addition to kinematic testing, long-term static testing of Trimble's RTX service is ongoing at UNAVCO and will be used to characterize the stability of the position time-series produced by RTX. In addition, with the goal of characterizing stability and improving software and higher level products based on real-time and high frequency GNSS time series, we present an overview of the UNAVCO RT-GPS system, a comparison of the UNAVCO generated real-time, static and community data products, and an overview of available common data sets.

  10. Versatile optical system for static and dynamic thermomagnetic recording using a scanning laser microscope

    NASA Astrophysics Data System (ADS)

    Clegg, Warwick W.; Jenkins, David F. L.; Helian, Na; Windmill, James; Windmill, Robert

    2001-12-01

    Scanning Laser Microscopes (SLM) have been used to characterise the magnetic domain properties of various magnetic and magneto-optical materials. The SLM in our laboratory has been designed to enable both static and dynamic read-write operations to be performed on stationary media. In a conventional (static) SLM, data bits are recorded thermo-magnetically by focusing a pulse of laser light onto the sample surface. If the laser beam has a Gaussian intensity distribution (TEM00) then so will the focused laser spot. The resultant temperature profile will largely mirror the intensity distribution of the focused spot, and in the region where the temperature is sufficiently high for switching to occur, in the presence of bias field, a circular data bit will be recorded. However, in a real magneto-optical drive the bits are written onto non-stationary media, and the resultant bit will be non-circular. A versatile optical system has been developed to facilitate both recording and imaging of data bits. To simulate the action of a Magneto-Optical drive, the laser is pulsed via an Acousto-Optic Modulator, whilst being scanned across the sample using a galvanometer mounted mirror, thus imitating a storage medium rotating above a MO head with high relative velocity between the beam and medium. Static recording is simply achieved by disabling the galvanometer scan mirror. Polar magneto-optic Kerr effect images are acquired using multiple-segment photo-detectors for diffraction-limited scanned spot detection, with either specimen scanning for highest resolution or beam scanning for near real-time image acquisition. Results will be presented to illustrate the systems capabilities.

  11. Dynamic and Quasi-Static Grade Crossing Collision Tests

    DOT National Transportation Integrated Search

    2009-03-02

    To support the development of a proposed rule [1], a fullscale : dynamic test and two full-scale quasi-static tests have : been performed on the posts of a state-of-the-art (SOA) end : frame. These tests were designed to evaluate the dynamic and : qu...

  12. Static pile load tests on driven piles into Intermediate-Geo Materials.

    DOT National Transportation Integrated Search

    2016-09-01

    The Wisconsin Department of Transportation (WisDOT) has concerns with both predicting pile lengths and pile capacities for H-piles driven into Intermediate-Geo Materials (IGM). The goal of the research was to perform 7 static axial load tests at 7 lo...

  13. Integrated analysis of large space systems

    NASA Technical Reports Server (NTRS)

    Young, J. P.

    1980-01-01

    Based on the belief that actual flight hardware development of large space systems will necessitate a formalized method of integrating the various engineering discipline analyses, an efficient highly user oriented software system capable of performing interdisciplinary design analyses with tolerable solution turnaround time is planned Specific analysis capability goals were set forth with initial emphasis given to sequential and quasi-static thermal/structural analysis and fully coupled structural/control system analysis. Subsequently, the IAC would be expanded to include a fully coupled thermal/structural/control system, electromagnetic radiation, and optical performance analyses.

  14. Effect of Hollow Sphere Size and Distribution on the Quasi-Static and High Strain Rate Compressive Properties of Al-A380-Al2O3 Syntactic Foams

    DTIC Science & Technology

    2012-01-01

    TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS( ES ) University Of Wisconsin,Milwaukee Materials Department,P.O. Box...784,Milwaukee,WI,53201 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS( ES ) 10. SPONSOR/MONITOR’S...diameter = 14.3 mm length = 12.7 mm). Testing was carried out using a SATEC Model 50Ud Universal Testing Machine at constant crosshead speed with an

  15. Penn State axial flow turbine facility: Performance and nozzle flow field

    NASA Technical Reports Server (NTRS)

    Lakshminarayana, B.; Zaccaria, M.; Itoh, S.

    1991-01-01

    The objective is to gain a thorough understanding of the flow field in a turbine stage including three-dimensional inviscid and viscid effects, unsteady flow field, rotor-stator interaction effects, unsteady blade pressures, shear stress, and velocity field in rotor passages. The performance of the turbine facility at the design condition is measured and compared with the design distribution. The data on the nozzle vane static pressure and wake characteristics are presented and interpreted. The wakes are found to be highly three-dimensional, with substantial radial inward velocity at most spanwise locations.

  16. Earthquake source parameters from GPS-measured static displacements with potential for real-time application

    NASA Astrophysics Data System (ADS)

    O'Toole, Thomas B.; Valentine, Andrew P.; Woodhouse, John H.

    2013-01-01

    We describe a method for determining an optimal centroid-moment tensor solution of an earthquake from a set of static displacements measured using a network of Global Positioning System receivers. Using static displacements observed after the 4 April 2010, MW 7.2 El Mayor-Cucapah, Mexico, earthquake, we perform an iterative inversion to obtain the source mechanism and location, which minimize the least-squares difference between data and synthetics. The efficiency of our algorithm for forward modeling static displacements in a layered elastic medium allows the inversion to be performed in real-time on a single processor without the need for precomputed libraries of excitation kernels; we present simulated real-time results for the El Mayor-Cucapah earthquake. The only a priori information that our inversion scheme needs is a crustal model and approximate source location, so the method proposed here may represent an improvement on existing early warning approaches that rely on foreknowledge of fault locations and geometries.

  17. Animation, audio, and spatial ability: Optimizing multimedia for scientific explanations

    NASA Astrophysics Data System (ADS)

    Koroghlanian, Carol May

    This study investigated the effects of audio, animation and spatial ability in a computer based instructional program for biology. The program presented instructional material via text or audio with lean text and included eight instructional sequences presented either via static illustrations or animations. High school students enrolled in a biology course were blocked by spatial ability and randomly assigned to one of four treatments (Text-Static Illustration Audio-Static Illustration, Text-Animation, Audio-Animation). The study examined the effects of instructional mode (Text vs. Audio), illustration mode (Static Illustration vs. Animation) and spatial ability (Low vs. High) on practice and posttest achievement, attitude and time. Results for practice achievement indicated that high spatial ability participants achieved more than low spatial ability participants. Similar results for posttest achievement and spatial ability were not found. Participants in the Static Illustration treatments achieved the same as participants in the Animation treatments on both the practice and posttest. Likewise, participants in the Text treatments achieved the same as participants in the Audio treatments on both the practice and posttest. In terms of attitude, participants responded favorably to the computer based instructional program. They found the program interesting, felt the static illustrations or animations made the explanations easier to understand and concentrated on learning the material. Furthermore, participants in the Animation treatments felt the information was easier to understand than participants in the Static Illustration treatments. However, no difference for any attitude item was found for participants in the Text as compared to those in the Audio treatments. Significant differences were found by Spatial Ability for three attitude items concerning concentration and interest. In all three items, the low spatial ability participants responded more positively than high spatial ability participants. In addition, low spatial ability participants reported greater mental effort than high spatial ability participants. Findings for time-in-program and time-in-instruction indicated that participants in the Animation treatments took significantly more time than participants in the Static Illustration treatments. No time differences of any type were found for participants in the Text versus Audio treatments. Implications for the design of multimedia instruction and topics for future research are included in the discussion.

  18. Selective Efficacy of Static and Dynamic Imagery in Different States of Physical Fatigue.

    PubMed

    Kanthack, Thiago Ferreira Dias; Guillot, Aymeric; Altimari, Leandro Ricardo; Nunez Nagy, Susana; Collet, Christian; Di Rienzo, Franck

    2016-01-01

    There is compelling evidence that motor imagery contributes to improved motor performance, and recent work showed that dynamic motor imagery (dMI) might provide additional benefits by comparison with traditional MI practice. However, the efficacy of motor imagery in different states of physical fatigue remains largely unknown, especially as imagery accuracy may be hampered by the physical fatigue states elicited by training. We investigated the effect of static motor imagery (sMI) and dMI on free-throw accuracy in 10 high-level basketball athletes, both in a non-fatigued state (Experiment 1) and immediately after an incremental running test completed until exhaustion (20 m shuttle run-test-Experiment 2). We collected perceived exhaustion and heart rate to quantify the subjective experience of fatigue and energy expenditure. We found that dMI brought better shooting performance than sMI, except when athletes were physically exhausted. These findings shed light on the conditions eliciting optimal use of sMI and dMI. In particular, considering that the current physical state affects body representation, performing dMI under fatigue may result in mismatches between actual and predicted body states.

  19. Testing of Piezo-Actuated Glass Micro-Membranes by Optical Low-Coherence Reflectometry.

    PubMed

    Merlo, Sabina; Poma, Paolo; Crisà, Eleonora; Faralli, Dino; Soldo, Marco

    2017-02-25

    In this work, we have applied optical low-coherence reflectometry (OLCR), implemented with infra-red light propagating in fiberoptic paths, to perform static and dynamic analyses on piezo-actuated glass micro-membranes. The actuator was fabricated by means of thin-film piezoelectric MEMS technology and was employed for modifying the micro-membrane curvature, in view of its application in micro-optic devices, such as variable focus micro-lenses. We are here showing that OLCR incorporating a near-infrared superluminescent light emitting diode as the read-out source is suitable for measuring various parameters such as the micro-membrane optical path-length, the membrane displacement as a function of the applied voltage (yielding the piezo-actuator hysteresis) as well as the resonance curve of the fundamental vibration mode. The use of an optical source with short coherence-time allows performing interferometric measurements without spurious resonance effects due to multiple parallel interfaces of highly planar slabs, furthermore selecting the plane/layer to be monitored. We demonstrate that the same compact and flexible setup can be successfully employed to perform spot optical measurements for static and dynamic characterization of piezo-MEMS in real time.

  20. Testing of Piezo-Actuated Glass Micro-Membranes by Optical Low-Coherence Reflectometry

    PubMed Central

    Merlo, Sabina; Poma, Paolo; Crisà, Eleonora; Faralli, Dino; Soldo, Marco

    2017-01-01

    In this work, we have applied optical low-coherence reflectometry (OLCR), implemented with infra-red light propagating in fiberoptic paths, to perform static and dynamic analyses on piezo-actuated glass micro-membranes. The actuator was fabricated by means of thin-film piezoelectric MEMS technology and was employed for modifying the micro-membrane curvature, in view of its application in micro-optic devices, such as variable focus micro-lenses. We are here showing that OLCR incorporating a near-infrared superluminescent light emitting diode as the read-out source is suitable for measuring various parameters such as the micro-membrane optical path-length, the membrane displacement as a function of the applied voltage (yielding the piezo-actuator hysteresis) as well as the resonance curve of the fundamental vibration mode. The use of an optical source with short coherence-time allows performing interferometric measurements without spurious resonance effects due to multiple parallel interfaces of highly planar slabs, furthermore selecting the plane/layer to be monitored. We demonstrate that the same compact and flexible setup can be successfully employed to perform spot optical measurements for static and dynamic characterization of piezo-MEMS in real time. PMID:28245603

  1. Does Field Reliability for Static-99 Scores Decrease as Scores Increase?

    PubMed Central

    Rice, Amanda K.; Boccaccini, Marcus T.; Harris, Paige B.; Hawes, Samuel W.

    2015-01-01

    This study examined the field reliability of Static-99 (Hanson & Thornton, 2000) scores among 21,983 sex offenders and focused on whether rater agreement decreased as scores increased. As expected, agreement was lowest for high-scoring offenders. Initial and most recent Static-99 scores were identical for only about 40% of offenders who had been assigned a score of 6 during their initial evaluations, but for more than 60% of offenders who had been assigned a score of 2 or lower. In addition, the size of the difference between scores increased as scores increased, with pairs of scores differing by 2 or more points for about 30% of offenders scoring in the high-risk range. Because evaluators and systems use high Static-99 scores to identify sexual offenders who may require intensive supervision or even postrelease civil commitment, it is important to recognize that there may be more measurement error for high scores than low scores and to consider adopting procedures for minimizing or accounting for measurement error. PMID:24932647

  2. High-precision ID-TIMS zircon U-Pb geochronology using new 1013 Ohm resistors

    NASA Astrophysics Data System (ADS)

    Von Quadt, A.; Buret, Y.; Large, S.; Peytcheva, I.; Trinquier, A.; Wotzlaw, J. F.

    2015-12-01

    Faraday cups equipped with high gain amplifiers provide a means to measure small ion beams in static mode without the limited linear range of ion counting systems. We tested the application of newly available 1013 Ohm resistors to ID-TIMS zircon U-Pb geochronology using a range of natural and synthetic reference materials. The TritonPlus-RPQ at the Institute of Geochemistry and Petrology, ETH Zurich, is equipped with five new 1013 Ohm resistors and one MasCom secondary electron multiplier, allowing to measure the 202-204-205-206-207-208Pb masses in static mode. U is measured subsequently as U-oxide (265-267-270UO2) during a second step, also in static Faraday mode. The gain calibration of the 1013 Ohm resistors was performed using the procedure of Trinquier (2014), with 144Nd-146Nd being measured using 1011 Ohm resistor and 142-143-145-148-150Nd being measured using 1013 Ohm resitors (Trinquier, 2014; Koornneef et al., 2014). Standard deviations of the noise in all five new 1013 Ohm resistors are lower than 5.0 x 10-6 over a 6 month period, with no shift occurring over this time interval. This new detector set-up was tested by analyzing natural zircon standard materials and synthetic U/Pb solutions (www.earthime.org), ranging in age from ~2 Ma to ~600 Ma. All natural zircon standards were chemically abraded (Mattinson, 2005) and all samples were spiked with the ET2535 tracer solution. U-Pb dates obtained using the static measurement routine are compared to measurements employing dynamic peak jumping routines on the MasCom multiplier. This study illustrates the benefits and current limitations of using high gain amplifiers to measure small ion beams for zircon U-Pb geochronology compared to conventional dynamic ion counting techniques. Mattinson, J.M. (2005) Chemical Geology 220:47-66; Trinquier, A. (2014) Application Note 30281; Koornneef, J. et al (2014) Analytica Chimica Acta 819:49-55.

  3. Space Shuttle Main Engine structural analysis and data reduction/evaluation. Volume 7: High pressure fuel turbo-pump third stage impeller analysis

    NASA Technical Reports Server (NTRS)

    Pool, Kirby V.

    1989-01-01

    This volume summarizes the analysis used to assess the structural life of the Space Shuttle Main Engine (SSME) High Pressure Fuel Turbo-Pump (HPFTP) Third Stage Impeller. This analysis was performed in three phases, all using the DIAL finite element code. The first phase was a static stress analysis to determine the mean (non-varying) stress and static margin of safety for the part. The loads involved were steady state pressure and centrifugal force due to spinning. The second phase of the analysis was a modal survey to determine the vibrational modes and natural frequencies of the impeller. The third phase was a dynamic response analysis to determine the alternating component of the stress due to time varying pressure impulses at the outlet (diffuser) side of the impeller. The results of the three phases of the analysis show that the Third Stage Impeller operates very near the upper limits of its capability at full power level (FPL) loading. The static loading alone creates stresses in some areas of the shroud which exceed the yield point of the material. Additional cyclic loading due to the dynamic force could lead to a significant reduction in the life of this part. The cyclic stresses determined in the dynamic response phase of this study are based on an assumption regarding the magnitude of the forcing function.

  4. Static electricity powered copper oxide nanowire microbicidal electroporation for water disinfection.

    PubMed

    Liu, Chong; Xie, Xing; Zhao, Wenting; Yao, Jie; Kong, Desheng; Boehm, Alexandria B; Cui, Yi

    2014-10-08

    Safe water scarcity occurs mostly in developing regions that also suffer from energy shortages and infrastructure deficiencies. Low-cost and energy-efficient water disinfection methods have the potential to make great impacts on people in these regions. At the present time, most water disinfection methods being promoted to households in developing countries are aqueous chemical-reaction-based or filtration-based. Incorporating nanomaterials into these existing disinfection methods could improve the performance; however, the high cost of material synthesis and recovery as well as fouling and slow treatment speed is still limiting their application. Here, we demonstrate a novel flow device that enables fast water disinfection using one-dimensional copper oxide nanowire (CuONW) assisted electroporation powered by static electricity. Electroporation relies on a strong electric field to break down microorganism membranes and only consumes a very small amount of energy. Static electricity as the power source can be generated by an individual person's motion in a facile and low-cost manner, which ensures its application anywhere in the world. The CuONWs used were synthesized through a scalable one-step air oxidation of low-cost copper mesh. With a single filtration, we achieved complete disinfection of bacteria and viruses in both raw tap and lake water with a high flow rate of 3000 L/(h·m(2)), equivalent to only 1 s of contact time. Copper leaching from the nanowire mesh was minimal.

  5. Chemical Durability Improvement and Static Fatigue of Glasses.

    DTIC Science & Technology

    1982-08-01

    Afl-Alla 837 RENSSELAER POLYIECmfJ!C INST TRtOY NY DEPT OF MATERIAL--ETC F/6 ii/ CHEMICAL DURABILITY IMPROVEMENT AND STATIC FATIGUE OF GLASSESW AUC2...82 M TOMOZAWA NOGGIN 7A-C-0315 UNC LASS IF IED N ENEEEEEE FINAL TECHNICAL REPORT For the period April 1, 1978 "u March 31, 198200 CHEMICAL DURABILITY...REPORT A PERIOD COVERED Chemical Durability Improvement and Static Final Technical Report Fatiue o GlasesApril 1, 1978"’,March 31, 1982 S. PERFORMING ORG

  6. Response, analysis, and design of pile groups subjected to static & dynamic lateral loads.

    DOT National Transportation Integrated Search

    2003-06-01

    Static and dynamic lateral load tests were performed on four full-scale pile groups driven at four different spacings. P-multipliers to account for group : interaction effects were back-calculated for each test. P-multipliers were found to be a funct...

  7. Static Evaluation of a NAVSTAR GPS (Magnavox Z-Set) Receiver - May-September 1979

    DOT National Transportation Integrated Search

    1980-05-01

    The report documents the results of the static testing of a NAVSTAR Global Positioning System (GPS) single channel sequential receiver (Magnavox Z-Set). These tests were performed at the Coast Guard District 11 office in Long Beach, CA from May to Se...

  8. A preliminary study of static and dynamic balance in sedentary obese young adults: the relationship between BMI, posture and postural balance.

    PubMed

    do Nascimento, J A; Silva, C C; Dos Santos, H H; de Almeida Ferreira, J J; de Andrade, P R

    2017-12-01

    The aim of this study was to evaluate the postural control of obese young adults with normal body mass index during different static (bipedic and unipedic support) and dynamic postural conditions (gait velocity and limits of stability) in order to compare the static and dynamic balance of these individuals. A cross-sectional quantitative study was carried out to evaluate static and dynamic balance in 25 sedentary individuals. The sample was divided into two groups, 10 in the normal-weight group (24.70 ± 3.89 years and 21.5 ± 1.66 kg m -2 ) and 15 in the obese group (26.80 ± 5.16 years and 35.66 ± 4.29 kg m -2 ). Postural evaluation was performed through visual inspection, and balance analyses were performed using the Timed Up & Go test (TUGT) and Balance System (Biodex). Descriptive analyses, Fisher's exact test and Mann Whitney U-tests were performed using the Statistical Package for Social Sciences (SPSS - 20.0, Armonk, NY) software. Most of the obese volunteers presented postural alterations, such as head protrusion (47.6%), hyperkyphosis (46.7%) and hyperlordosis (26.7%). Medial-lateral dynamic displacement, risk of falls and mean time to perform the limits of stability test and TUGT were higher for obese subjects (P < 0.05), while there were no significant differences between the groups (P > 0.05) for static balance tests for either bipedal or unipedal tasks. The disadvantage presented by the young obese subjects occurs in dynamic activities, representing worse balance and an increase in time needed to accomplish these activities. © 2017 World Obesity Federation.

  9. Aerodynamics of High-Lift Configuration Civil Aircraft Model in JAXA

    NASA Astrophysics Data System (ADS)

    Yokokawa, Yuzuru; Murayama, Mitsuhiro; Ito, Takeshi; Yamamoto, Kazuomi

    This paper presents basic aerodynamics and stall characteristics of the high-lift configuration aircraft model JSM (JAXA Standard Model). During research process of developing high-lift system design method, wind tunnel testing at JAXA 6.5m by 5.5m low-speed wind tunnel and Navier-Stokes computation on unstructured hybrid mesh were performed for a realistic configuration aircraft model equipped with high-lift devices, fuselage, nacelle-pylon, slat tracks and Flap Track Fairings (FTF), which was assumed 100 passenger class modern commercial transport aircraft. The testing and the computation aimed to understand flow physics and then to obtain some guidelines for designing a high performance high-lift system. As a result of the testing, Reynolds number effects within linear region and stall region were observed. Analysis of static pressure distribution and flow visualization gave the knowledge to understand the aerodynamic performance. CFD could capture the whole characteristics of basic aerodynamics and clarify flow mechanism which governs stall characteristics even for complicated geometry and its flow field. This collaborative work between wind tunnel testing and CFD is advantageous for improving or has improved the aerodynamic performance.

  10. Stability of the Einstein static universe in open cosmological models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Canonico, Rosangela; Parisi, Luca; INFN, Sezione di Napoli, GC di Salerno, Via Ponte Don Melillo, I-84081 Baronissi

    2010-09-15

    The stability properties of the Einstein static solution of general relativity are altered when corrective terms arising from modification of the underlying gravitational theory appear in the cosmological equations. In this paper the existence and stability of static solutions are considered in the framework of two recently proposed quantum gravity models. The previously known analysis of the Einstein static solutions in the semiclassical regime of loop quantum cosmology with modifications to the gravitational sector is extended to open cosmological models where a static neutrally stable solution is found. A similar analysis is also performed in the framework of Horava-Lifshitz gravitymore » under detailed balance and projectability conditions. In the case of open cosmological models the two solutions found can be either unstable or neutrally stable according to the admitted values of the parameters.« less

  11. Comparison of Quality and Output of Different Optimal Perimetric Testing Approaches in Children With Glaucoma.

    PubMed

    Patel, Dipesh E; Cumberland, Phillippa M; Walters, Bronwen C; Russell-Eggitt, Isabelle; Brookes, John; Papadopoulos, Maria; Khaw, Peng Tee; Viswanathan, Ananth C; Garway-Heath, David; Cortina-Borja, Mario; Rahi, Jugnoo S

    2018-02-01

    There is limited evidence to support the development of guidance for visual field testing in children with glaucoma. To compare different static and combined static/kinetic perimetry approaches in children with glaucoma. Cross-sectional, observational study recruiting children prospectively between May 2013 and June 2015 at 2 tertiary specialist pediatric ophthalmology centers in London, England (Moorfields Eye Hospital and Great Ormond Street Hospital). The study included 65 children aged 5 to 15 years with glaucoma (108 affected eyes). A comparison of test quality and outcomes for static and combined static/kinetic techniques, with respect to ability to quantify glaucomatous loss. Children performed perimetric assessments using Humphrey static (Swedish Interactive Thresholding Algorithm 24-2 FAST) and Octopus combined static tendency-oriented perimetry/kinetic perimetry (isopter V4e, III4e, or I4e) in a single sitting, using standardized clinical protocols, administered by a single examiner. Information was collected about test duration, completion, and quality (using automated reliability indices and our qualitative Examiner-Based Assessment of Reliability score). Perimetry outputs were scored using the Aulhorn and Karmeyer classification. One affected eye in 19 participants was retested with Swedish Interactive Thresholding Algorithm 24-2 FAST and 24-2 standard algorithms. Sixty-five children (33 girls [50.8%]), with a median age of 12 years (interquartile range, 9-14 years), were tested. Test quality (Examiner-Based Assessment of Reliability score) improved with increasing age for both Humphrey and Octopus strategies and were equivalent in children older than 10 years (McNemar test, χ2 = 0.33; P = .56), but better-quality tests with Humphrey perimetry were achieved in younger children (McNemar test, χ2 = 4.0; P = .05). Octopus and Humphrey static MD values worse than or equal to -6 dB showed disagreement (Bland-Altman, mean difference, -0.70; limit of agreement, -7.74 to 6.35) but were comparable when greater than this threshold (mean difference, -0.03; limit of agreement, -2.33 to 2.27). Visual field classification scores for static perimetry tests showed substantial agreement (linearly weighted κ, 0.79; 95% CI, 0.65-0.93), although 25 of 80 (31%) were graded with a more severe defect for Octopus static perimetry. Of the 7 severe cases of visual field loss (grade 5), 5 had lower kinetic than static classification scores. A simple static perimetry approach potentially yields high-quality results in children younger than 10 years. For children older than 10 years, without penalizing quality, the addition of kinetic perimetry enabled measurement of far-peripheral sensitivity, which is particularly useful in children with severe visual field restriction.

  12. Real-Time GNSS-Based Attitude Determination in the Measurement Domain

    PubMed Central

    Zhao, Lin; Li, Na; Li, Liang; Zhang, Yi; Cheng, Chun

    2017-01-01

    A multi-antenna-based GNSS receiver is capable of providing high-precision and drift-free attitude solution. Carrier phase measurements need be utilized to achieve high-precision attitude. The traditional attitude determination methods in the measurement domain and the position domain resolve the attitude and the ambiguity sequentially. The redundant measurements from multiple baselines have not been fully utilized to enhance the reliability of attitude determination. A multi-baseline-based attitude determination method in the measurement domain is proposed to estimate the attitude parameters and the ambiguity simultaneously. Meanwhile, the redundancy of attitude resolution has also been increased so that the reliability of ambiguity resolution and attitude determination can be enhanced. Moreover, in order to further improve the reliability of attitude determination, we propose a partial ambiguity resolution method based on the proposed attitude determination model. The static and kinematic experiments were conducted to verify the performance of the proposed method. When compared with the traditional attitude determination methods, the static experimental results show that the proposed method can improve the accuracy by at least 0.03° and enhance the continuity by 18%, at most. The kinematic result has shown that the proposed method can obtain an optimal balance between accuracy and reliability performance. PMID:28165434

  13. Development of stiffer and ductile glulam portal frame

    NASA Astrophysics Data System (ADS)

    Komatsu, Kohei

    2017-11-01

    Portal frame structures, which are constituted of straight glulam beams and columns connected semi-rigidly by steel insert gusset plate with a lot of drift pins, were the first successful glulam structures widely used in Japan. In addition to this connection system, the author invented also a new type of jointing devise for glulam structures named as "Lagscrewbolt" which had a full threaded portion at inner part to grip wooden member as well as another thread part at the end of shank to connect with other member. The initial type of "Lagscrewbolt" was successfully applied to a various types of glulam buildings which could be rapidly built-up on construction site. Its strength performance, however, was rather brittle therefore the improvement of the ductility was a crucial research subject. In order to give a sufficient ductility on the "Lagscrewbolted joint system", so-called "Slotted Bolted Connection" concept was adopted for making use of large energy dissipation characteristics due to high-tension bolted steel connection with slotted bolt holes. Static & dynamic performance of glulam portal frame specimens was evaluated by static cyclic loading test as well as shaking table test. Current latest form of the jointing system can show very high ductility as well as stable hysteretic cyclic loops by inserting brass-shim between steel-to-steel friction interfaces

  14. Computer simulation of a single pilot flying a modern high-performance helicopter

    NASA Technical Reports Server (NTRS)

    Zipf, Mark E.; Vogt, William G.; Mickle, Marlin H.; Hoelzeman, Ronald G.; Kai, Fei; Mihaloew, James R.

    1988-01-01

    Presented is a computer simulation of a human response pilot model able to execute operational flight maneuvers and vehicle stabilization of a modern high-performance helicopter. Low-order, single-variable, human response mechanisms, integrated to form a multivariable pilot structure, provide a comprehensive operational control over the vehicle. Evaluations of the integrated pilot were performed by direct insertion into a nonlinear, total-force simulation environment provided by NASA Lewis. Comparisons between the integrated pilot structure and single-variable pilot mechanisms are presented. Static and dynamically alterable configurations of the pilot structure are introduced to simulate pilot activities during vehicle maneuvers. These configurations, in conjunction with higher level, decision-making processes, are considered for use where guidance and navigational procedures, operational mode transfers, and resource sharing are required.

  15. Method for high resolution magnetic resonance analysis using magic angle technique

    DOEpatents

    Wind, Robert A.; Hu, Jian Zhi

    2003-12-30

    A method of performing a magnetic resonance analysis of a biological object that includes placing the object in a main magnetic field (that has a static field direction) and in a radio frequency field; rotating the object at a frequency of less than about 100 Hz around an axis positioned at an angle of about 54.degree.44' relative to the main magnetic static field direction; pulsing the radio frequency to provide a sequence that includes a phase-corrected magic angle turning pulse segment; and collecting data generated by the pulsed radio frequency. The object may be reoriented about the magic angle axis between three predetermined positions that are related to each other by 120.degree.. The main magnetic field may be rotated mechanically or electronically. Methods for magnetic resonance imaging of the object are also described.

  16. Method for high resolution magnetic resonance analysis using magic angle technique

    DOEpatents

    Wind, Robert A.; Hu, Jian Zhi

    2004-12-28

    A method of performing a magnetic resonance analysis of a biological object that includes placing the object in a main magnetic field (that has a static field direction) and in a radio frequency field; rotating the object at a frequency of less than about 100 Hz around an axis positioned at an angle of about 54.degree.44' relative to the main magnetic static field direction; pulsing the radio frequency to provide a sequence that includes a phase-corrected magic angle turning pulse segment; and collecting data generated by the pulsed radio frequency. The object may be reoriented about the magic angle axis between three predetermined positions that are related to each other by 120.degree.. The main magnetic field may be rotated mechanically or electronically. Methods for magnetic resonance imaging of the object are also described.

  17. A Robust Static Headspace GC-FID Method to Detect and Quantify Formaldehyde Impurity in Pharmaceutical Excipients

    PubMed Central

    Al-Khayat, Mohammad Ammar; Karabet, Francois; Al-Mardini, Mohammad Amer

    2018-01-01

    Formaldehyde is a highly reactive impurity that can be found in many pharmaceutical excipients. Trace levels of this impurity may affect drug product stability, safety, efficacy, and performance. A static headspace gas chromatographic method was developed and validated to determine formaldehyde in pharmaceutical excipients after an effective derivatization procedure using acidified ethanol. Diethoxymethane, the derivative of formaldehyde, was then directly analyzed by GC-FID. Despite the simplicity of the developed method, however, it is characterized by its specificity, accuracy, and precision. The limits of detection and quantification of formaldehyde in the samples were of 2.44 and 8.12 µg/g, respectively. This method is characterized by using simple and economic GC-FID technique instead of MS detection, and it is successfully used to analyze formaldehyde in commonly used pharmaceutical excipients. PMID:29686930

  18. Static and transient performance prediction for CFB boilers using a Bayesian-Gaussian Neural Network

    NASA Astrophysics Data System (ADS)

    Ye, Haiwen; Ni, Weidou

    1997-06-01

    A Bayesian-Gaussian Neural Network (BGNN) is put forward in this paper to predict the static and transient performance of Circulating Fluidized Bed (CFB) boilers. The advantages of this network over Back-Propagation Neural Networks (BPNNs), easier determination of topology, simpler and time saving in training process as well as self-organizing ability, make this network more practical in on-line performance prediction for complicated processes. Simulation shows that this network is comparable to the BPNNs in predicting the performance of CFB boilers. Good and practical on-line performance predictions are essential for operation guide and model predictive control of CFB boilers, which are under research by the authors.

  19. A static investigation of several STOVL exhaust system concepts

    NASA Technical Reports Server (NTRS)

    Romine, B. M., Jr.; Meyer, B. E.; Re, R. J.

    1989-01-01

    A static cold flow scale model test was performed in order to determine the internal performance characteristics of various STOVL exhaust systems. All of the concepts considered included a vectorable cruise nozzle and a separate vectorable vertical thrust ventral nozzle mounted on the tailpipe. The two ventral nozzle configurations tested featured vectorable constant thickness cascade vanes for area control and improved performance during transition and vertical lift flight. The best transition performance was achieved using a butterfly door type ventral nozzle and a pitch vectoring 2DCD or axisymmetric cruise nozzle. The clamshell blocker type of ventral nozzle had reduced transition performance due to the choking of the tailpipe flow upstream of the cruise nozzle.

  20. Static performance tests of a flight-type STOVL ejector

    NASA Technical Reports Server (NTRS)

    Barankiewicz, Wendy S.

    1991-01-01

    The design and development of thrust augmenting STOVL ejectors has typically been based on experimental iteration (i.e., trial and error). Static performance tests of a full scale vertical lift ejector were performed at primary flow temperatures up to 1560 R (1100 F). Flow visualization (smoke generators and yarn tufts) were used to view the inlet air flow, especially around the primary nozzle and end plates. Performance calculations are presented for ambient temperatures close to 480 R (20 F) and 535 R (75 F) which simulate seasonal aircraft operating conditions. Resulting thrust augmentation ratios are presented as functions of nozzle pressure ratio and temperature.

  1. Pheromone Static Routing Strategy for Complex Networks

    NASA Astrophysics Data System (ADS)

    Hu, Mao-Bin; Henry, Y. K. Lau; Ling, Xiang; Jiang, Rui

    2012-12-01

    We adopt the concept of using pheromones to generate a set of static paths that can reach the performance of global dynamic routing strategy [Phys. Rev. E 81 (2010) 016113]. The path generation method consists of two stages. In the first stage, a pheromone is dropped to the nodes by packets forwarded according to the global dynamic routing strategy. In the second stage, pheromone static paths are generated according to the pheromone density. The output paths can greatly improve traffic systems' overall capacity on different network structures, including scale-free networks, small-world networks and random graphs. Because the paths are static, the system needs much less computational resources than the global dynamic routing strategy.

  2. Ice skating promotes postural control in children.

    PubMed

    Keller, M; Röttger, K; Taube, W

    2014-12-01

    High fall rates causing injury and enormous financial costs are reported for children. However, only few studies investigated the effects of balance training in children and these studies did not find enhanced balance performance in postural (transfer) tests. Consequently, it was previously speculated that classical balance training might not be stimulating enough for children to adequately perform these exercises. Therefore, the aim of this study is to evaluate the influence of ice skating as an alternative form of balance training. Volunteers of an intervention (n = 17; INT: 13.1 ± 0.4 years) and a control group (n = 13; CON: 13.2 ± 0.3 years) were tested before and after training in static and dynamic postural transfer tests. INT participated in eight sessions of ice skating during education lessons, whereas CON participated in normal physical education. Enhanced balance performance was observed in INT but not in CON when tested on an unstable free-swinging platform (P < 0.05) or when performing a functional reach test (P < 0.001). This is the first study showing significantly enhanced balance performance after ice skating in children. More importantly, participating children improved static and dynamic balance control in postural tasks that were not part of the training. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Nondestructive Measurement of Dynamic Modulus for Cellulose Nanofibril Films

    Treesearch

    Yan Qing; Robert J. Ross; Zhiyong Cai; Yiqiang Wu

    2013-01-01

    Nondestructive evaluation of cellulose nanofibril (CNF) films was performed using cantilever beam vibration (CBV) and acoustic methods to measure dynamic modulus. Static modulus was tested using tensile tension method. Correlation analysis shows the data measured by CBV has little linear relationship with static modulus, possessing a correlation coefficient (R

  4. Static evaluation of a NAVSTAR Global Positioning System (GPS) (Magnavox Z-Set) receiver, May-September, 1979

    DOT National Transportation Integrated Search

    1980-05-01

    The report documents the results of the static testing of a NAVSTAR Global Positioning System (GPS) single channel sequential receiver (Magnavox Z-Set). These tests were performed at the Coast Guard District 11 office in Long Beach, CA from May to Se...

  5. Mass properties measurement system: Dynamics and statics measurements

    NASA Technical Reports Server (NTRS)

    Doty, Keith L.

    1993-01-01

    This report presents and interprets experimental data obtained from the Mass Properties Measurement System (MPMS). Statics measurements yield the center-of-gravity of an unknown mass and dynamics measurements yield its inertia matrix. Observations of the MPMS performance has lead us to specific design criteria and an understanding of MPMS limitations.

  6. A COMPARATIVE STUDY OF REAL-TIME AND STATIC ULTRASONOGRAPHY DIAGNOSES FOR THE INCIDENTAL DETECTION OF DIFFUSE THYROID DISEASE.

    PubMed

    Kim, Dong Wook

    2015-08-01

    The aim of this study was to compare the diagnostic accuracy of real-time and static ultrasonography (US) for the incidental detection of diffuse thyroid disease (DTD). In 118 consecutive patients, a single radiologist performed real-time US before thyroidectomy. For static US, the same radiologist retrospectively investigated the sonographic findings on a picture-archiving and communication system after 3 months. The diagnostic categories of both real-time and static US diagnoses were determined based on the number of abnormal findings, and the diagnostic indices were calculated by a receiver operating characteristic (ROC) curve analysis using the histopathologic results as the reference standard. Histopathologic results included normal thyroid (n = 77), Hashimoto thyroiditis (n = 11), non-Hashimoto lymphocytic thyroiditis (n = 29), and diffuse hyperplasia (n = 1). Normal thyroid and DTD showed significant differences in echogenicity, echotexture, glandular margin, and vascularity on both real-time and static US. There was a positive correlation between US categories and histopathologic results in both real-time and static US. The highest diagnostic indices were obtained when the cutoff criteria of real-time and static US diagnoses were chosen as indeterminate and suspicious for DTD, respectively. The ROC curve analysis showed that real-time US was superior to static US in diagnostic accuracy. Both real-time and static US may be helpful for the detection of incidental DTD, but real-time US is superior to static US for detecting incidental DTD.

  7. Damage and fracture in fabric-reinforced composites under quasi-static and dynamic bending

    NASA Astrophysics Data System (ADS)

    Ullah, H.; Harland, A. R.; Silberschmidt, V. V.

    2013-07-01

    Fabric-reinforced polymer composites used in sports products can be exposed to different in-service conditions such as large deformations caused by quasi-static and dynamic loading. Composite materials subjected to such bending loads can demonstrate various damage modes - matrix cracking, delamination and, ultimately, fabric fracture. Damage evolution in composites affects both their in-service properties and performance that can deteriorate with time. Such behaviour needs adequate means of analysis and investigation, the main approaches being experimental characterisation and non-destructive examination of internal damage in composite laminates. This research deals with a deformation behaviour and damage in carbon fabric-reinforced polymer (CFRP) laminates caused by quasi-static and dynamic bending. Experimental tests were carried out to characterise the behaviour of a CFRP material under large-deflection bending, first in quasi-static and then in dynamic conditions. Izod-type impact bending tests were performed on un-notched specimens of CFRP using a Resil impactor to assess the transient response and energy absorbing capability of the material. X-ray micro computed tomography (micro-CT) was used to analyse various damage modes in the tested specimens. X-ray tomographs revealed that through-thickness matrix cracking, inter-ply and intra-ply delamination such as tow debonding, and fabric fracture were the prominent damage modes both in quasi-static and dynamic test specimens. However, the inter-ply damage was localised at impact location in dynamically tested specimens, whereas in the quasi-static specimens, it spread almost over the entire interface.

  8. The impact of dynamic balance measures on walking performance in multiple sclerosis

    PubMed Central

    Fritz, Nora E.; Marasigan, Rhul Evans R.; Calabresi, Peter A.; Newsome, Scott D.; Zackowski, Kathleen M.

    2014-01-01

    Background Static posture imbalance and gait dysfunction are common in individuals with multiple sclerosis (MS). Although the impact of strength and static balance on walking has been examined, little is known about the impact of dynamic standing balance on walking in MS. Objective To determine the impact of dynamic balance, static balance, sensation, and strength measures to walking in individuals with MS. Methods 52 individuals with MS (27 females; 26 relapsing-remitting; mean age 45.6±10.3 years; median EDSS 3.5 (range 0-7) participated in testing for dynamic and static posturography (Kistler 9281 force plate), hip flexion, hip extension, and ankle dorsiflexion strength (Microfet2 hand-held dynamometer), sensation (Vibratron II) and walk velocity (Optotrak Motion Analysis System). Mann-Whitney tests, Spearman correlation coefficients, and forward stepwise multiple regression were used to assess statistical significance. Results All measures were significantly abnormal in MS subjects when compared to age and sex-matched norms (p<0.05 for all). Static balance (eyes open, feet together [EOFT]), anterior- posterior (AP) dynamic sway, and hip extension strength were strongly correlated with fast walking velocity (AP sway r=0.68; hip extension strength r=0.73; EOFT r=-0.40). Together, AP dynamic sway (ρr=0.71, p<0.001), hip extension strength (ρr=0.54, p<0.001), and EOFT static balance (ρr=-0.41, p=0.01) explained more than 70% of the variance in fast walking velocity (p<0.001). Conclusions These data suggest that AP dynamic sway impacts walking performance in MS. A combined evaluation of dynamic balance, static balance and strength may lead to a better understanding of walking mechanisms as well as the development of strategies to improve walking. PMID:24795162

  9. A Static Burst Test for Composite Flywheel Rotors

    NASA Astrophysics Data System (ADS)

    Hartl, Stefan; Schulz, Alexander; Sima, Harald; Koch, Thomas; Kaltenbacher, Manfred

    2016-06-01

    High efficient and safe flywheels are an interesting technology for decentralized energy storage. To ensure all safety aspects, a static test method for a controlled initiation of a burst event for composite flywheel rotors is presented with nearly the same stress distribution as in the dynamic case, rotating with maximum speed. In addition to failure prediction using different maximum stress criteria and a safety factor, a set of tensile and compressive tests is carried out to identify the parameters of the used carbon fiber reinforced plastics (CFRP) material. The static finite element (FE) simulation results of the flywheel static burst test (FSBT) compare well to the quasistatic FE-simulation results of the flywheel rotor using inertia loads. Furthermore, it is demonstrated that the presented method is a very good controllable and observable possibility to test a high speed flywheel energy storage system (FESS) rotor in a static way. Thereby, a much more expensive and dangerous dynamic spin up test with possible uncertainties can be substituted.

  10. Static power reduction for midpoint-terminated busses

    DOEpatents

    Coteus, Paul W [Yorktown Heights, NY; Takken, Todd [Brewster, NY

    2011-01-18

    A memory system is disclosed which is comprised of a memory controller and addressable memory devices such as DRAMs. The invention provides a programmable register to control the high vs. low drive state of each bit of a memory system address and control bus during periods of bus inactivity. In this way, termination voltage supply current can be minimized, while permitting selected bus bits to be driven to a required state. This minimizes termination power dissipation while not affecting memory system performance. The technique can be extended to work for other high-speed busses as well.

  11. Solid-propellant motors for high-incremental-velocity low-acceleration maneuvers in space

    NASA Technical Reports Server (NTRS)

    Shafer, J. I.

    1972-01-01

    The applicability of solid-propellant rockets into a regime of high-performance long-burning tasks beyond the capability of existing motors is discussed. Successful static test firings have demonstrated the feasibility of: (1) utilizing fully case-bonded end-burning propellant charges without mechanical stress relief; (2) using an all-carbon radiative nozzle markedly lighter than the flight-weight ablative nozzle it replaces, and (3) producing low spacecraft acceleration rates during the thrust transient through a controlled-flow igniter that promotes operation below the previous combustion limit.

  12. Real-time data reduction capabilities at the Langley 7 by 10 foot high speed tunnel

    NASA Technical Reports Server (NTRS)

    Fox, C. H., Jr.

    1980-01-01

    The 7 by 10 foot high speed tunnel performs a wide range of tests employing a variety of model installation methods. To support the reduction of static data from this facility, a generalized wind tunnel data reduction program had been developed for use on the Langley central computer complex. The capabilities of a version of this generalized program adapted for real time use on a dedicated on-site computer are discussed. The input specifications, instructions for the console operator, and full descriptions of the algorithms are included.

  13. Correlation between static radiographic measurements and intersegmental angular measurements during gait using a multisegment foot model.

    PubMed

    Lee, Dong Yeon; Seo, Sang Gyo; Kim, Eo Jin; Kim, Sung Ju; Lee, Kyoung Min; Farber, Daniel C; Chung, Chin Youb; Choi, In Ho

    2015-01-01

    Radiographic examination is a widely used evaluation method in the orthopedic clinic. However, conventional radiography alone does not reflect the dynamic changes between foot and ankle segments during gait. Multiple 3-dimensional multisegment foot models (3D MFMs) have been introduced to evaluate intersegmental motion of the foot. In this study, we evaluated the correlation between static radiographic indices and intersegmental foot motion indices. One hundred twenty-five females were tested. Static radiographs of full-leg and anteroposterior (AP) and lateral foot views were performed. For hindfoot evaluation, we measured the AP tibiotalar angle (TiTA), talar tilt (TT), calcaneal pitch, lateral tibiocalcaneal angle, and lateral talcocalcaneal angle. For the midfoot segment, naviculocuboid overlap and talonavicular coverage angle were calculated. AP and lateral talo-first metatarsal angles and metatarsal stacking angle (MSA) were measured to assess the forefoot. Hallux valgus angle (HVA) and hallux interphalangeal angle were measured. In gait analysis by 3D MFM, intersegmental angle (ISA) measurements of each segment (hallux, forefoot, hindfoot, arch) were recorded. ISAs at midstance phase were most highly correlated with radiography. Significant correlations were observed between ISA measurements using MFM and static radiographic measurements in the same segment. In the hindfoot, coronal plane ISA was correlated with AP TiTA (P < .001) and TT (P = .018). In the hallux, HVA was strongly correlated with transverse ISA of the hallux (P < .001). The segmental foot motion indices at midstance phase during gait measured by 3D MFM gait analysis were correlated with the conventional radiographic indices. The observed correlation between MFM measurements at midstance phase during gait and static radiographic measurements supports the fundamental basis for the use of MFM in analysis of dynamic motion of foot segment during gait. © The Author(s) 2014.

  14. Upper-surface-blowing flow-turning performance

    NASA Technical Reports Server (NTRS)

    Sleeman, W. C., Jr.; Phelps, A. E., III

    1976-01-01

    Jet exhaust flow-turning characteristics were determined for systematic variations in upper-surface blowing exhaust nozzles and trailing-edge flap configuration variables from experimental wind-off (static) flow studies. For conditions with parallel flow exhausting from the nozzle, jet height (as indicated by nozzle exit height) and flap radius were found to be the most important parameters relating to flow turning. Nonparallel flow from the nozzle, as obtained from an internal roof angle and/or side spread angle, had a large favorable effect on flow turning. Comparisons made between static turning results and wind tunnel aerodynamic studies of identical configurations indicated that static flow-turning results can be indicative of wind-on powered lift performance for both good and poor nozzle-flap combinations but, for marginal designs, can lead to overly optimistic assessment of powered lift potential.

  15. A Simplified Test for Blanching Susceptibility of Copper Alloys

    NASA Technical Reports Server (NTRS)

    Thomas-Ogbuji, Linus U.; Humphrey, Donald; Setlock, John

    2003-01-01

    GRCop-84 (Cu-8Cr-4Nb) is a dispersion-strengthened alloy developed for space-launch rocket engine applications, as a liner for the combustion chamber and nozzle ramp. Its main advantage over rival alloys, particularly NARloy-Z (Cu-Ag-Zr), the current liner alloy, is in high temperature mechanical properties. Further validation required that the two alloys be compared with respect to service performance and durability. This has been done, under conditions resembling those expected in reusable launch engine applications. GRCop-84 was found to have a superior resistance to static and cyclic oxidation up to approx. 700 C. In order to improve its performance above 700 C, Cu-Cr coatings have also been developed and evaluated. The major oxidative issue with Cu alloys is blanching, a mode of degradation induced by oxidation-reduction fluctuations in hydrogen-fueled engines. That fluctuation cannot be addressed with conventional static or cyclic oxidation testing. Hence, a further evaluation of the alloy substrates and Cu-Cr coating material necessitated our devising a test protocol that involves oxidaton-reduction cycles. This paper describes the test protocols used and the results obtained.

  16. Cardiorespiratory deconditioning with static and dynamic leg exercise during bed rest.

    PubMed

    Stremel, R W; Convertino, V A; Bernauer, E M; Greenleaf, J E

    1976-12-01

    Bed rest deconditioning was assessed in seven healthy men (19-22 yr) following three 14-day periods of controlled activity during recumbency by measuring submaximal and maximal oxygen uptake (VO2), ventilation (VE), heart rate, and plasma volume. Exercise regimens were performed in the supine position and included a) two 30-min periods daily of intermittent static exercise at 21% of maximal leg extension force, and b) two 30-min periods of dynamic bicycle ergometer exercise daily at 68% of VO2max. No prescribed exercise was performed during the third bed rest period. Compared with their respective pre-bed rest control values, VO2max decreased (P less than 0.05) under all exercise conditions; -12.3% with no exercise, -9.2% with dynamic exercise, but only -4.8% with static exercise. Maximal heart rate was increased by 3.3% to 4.9% (P less than 0.05) under the three exercise conditions, while plasma volume decreased (P less than 0.05) -15.1% with no exercise and -10.1% with static, but only -7.8% (NS) with dynamic exercise. Since neither the static nor dynamic exercise training regimes minimized the changes in all the variables studied, some combination of these two types of exercise may be necessary for maximum protection from the effects of the bed deconditioning.

  17. Thrust chamber life prediction. Volume 1: Mechanical and physical properties of high performance rocket nozzle materials

    NASA Technical Reports Server (NTRS)

    Esposito, J. J.; Zabora, R. F.

    1975-01-01

    Pertinent mechanical and physical properties of six high conductivity metals were determined. The metals included Amzirc, NARloy Z, oxygen free pure copper, electroformed copper, fine silver, and electroformed nickel. Selection of these materials was based on their possible use in high performance reusable rocket nozzles. The typical room temperature properties determined for each material included tensile ultimate strength, tensile yield strength, elongation, reduction of area, modulus of elasticity, Poisson's ratio, density, specific heat, thermal conductivity, and coefficient of thermal expansion. Typical static tensile stress-strain curves, cyclic stress-strain curves, and low-cycle fatigue life curves are shown. Properties versus temperature are presented in graphical form for temperatures from 27.6K (-410 F) to 810.9K (1000 F).

  18. Pressure distribution data from tests of 2.29-meter (7.5-ft.) span EET high-lift research model in Langley 4- by 7-meter tunnel

    NASA Technical Reports Server (NTRS)

    Morgan, H. L., Jr.

    1982-01-01

    A 2.29 m (7.5 ft.) span high-lift research model equipped with full-span leading-edge slat and part-span double-slotted trailing-edge flap was tested in the Langley 4- by 7-Meter Tunnel to determine the low speed performance characteristics of a representative high aspect ratio suprcritical wing. These tests were performed in support of the Energy Efficient Transport (EET) program which is one element of the Aircraft Energy Efficiency (ACEE) project. Static longitudinal forces and moments and chordwise pressure distributions at three spanwise stations were measured for cruise, climb, two take-off flap, and two landing flap wing configurations. The tabulated and plotted pressure distribution data is presented without analysis or discussion.

  19. Pressure distribution data from tests of 2.29 M (7.5 feet) span EET high-lift transport aircraft model in the Ames 12-foot pressure tunnel

    NASA Technical Reports Server (NTRS)

    Kjelgaard, S. O.; Morgan, H. L., Jr.

    1983-01-01

    A high-lift transport aircraft model equipped with full-span leading-edge slat and part-span double-slotted trailing-edge flap was tested in the Ames 12-ft pressure tunnel to determine the low-speed performance characteristics of a representative high-aspect-ratio supercritical wing. These tests were performed in support of the Energy Efficient Transport (EET) program which is one element of the Aircraft Energy Efficiency (ACEE) project. Static longitudinal forces and moments and chordwise pressure distributions at three spanwise stations were measured for cruise, climb, two take-off flap, and two landing flap wing configurations. The tabulated and plotted pressure distribution data is presented without analysis or discussion.

  20. AMTEC: High efficiency static conversion for space power

    NASA Technical Reports Server (NTRS)

    Bankston, C. P.; Shirbacheh, M.

    1986-01-01

    Future manned and unmanned space missions will require reliable, high efficiency energy conversion systems. For a manned Mars mission, power levels in the range of 10 to 100 kWe will be needed. The Alkali Metal Thermoelectric Converter (AMTEC) is a direct energy conversion technology with the potential to meet these needs. The AMTEC is a thermally regenerative electrochemical device that derives its operation from the sodium ion conducting properties of beta-alumina solid electrolyte (BASE). To date, an efficiency of 19%, area power density of 1 W/sq cm, and a lifetime of 10,000 hours at high temperature were demonstrated in laboratory devices. Systems studies show that projected AMTEC systems equal or surpass the performance of other static or dynamic systems in applications of 1 kWe-1 MWe. Thus, the laboratory experiments and applications studies conducted to date have shown that the AMTEC posseses great potential. In order to bring this technology to the stage where prototype units can be built and operated, several technical issues must be addressed. These include the need for long life, high power electrodes, minimization of radiative parasitic losses, and high temperature seals. In summary, the evidence shows that if AMTEC is developed, it can play a significant role in future space power applications.

  1. Compressive evaluation of homogeneous and graded epoxy-glass particulate composites.

    PubMed

    Seaglar, J; Rousseau, C-E

    2015-04-01

    The propagation of stress waves in epoxy-glass particulate composites and graded materials was studied experimentally. Materials tested in this study consisted of an epoxy matrix with various concentrations of spherical glass particles having a mean diameter of 42μm. Plate impact experiments were performed using a gas gun. Embedded within the specimens were manganin stress gauges used to record propagating compressive longitudinal stress waves through the material. High strain rate experiments using a Split Hopkinson Pressure Bar (SHPB) apparatus were also performed to evaluate the dynamic strength of the specimens, while quasi-static compression tests were undertaken to characterize their quasi-static behavior. Ultrasonic wave speed measurements were carried-out in order to obtain additional material properties and characterize the gradation in functionally graded materials (FGM). It was found that low volume fractions of particles are detrimental to the performance of the material under impact loading, while concentrations in the range of about 30 to 45% by volume exhibit characteristics of higher degrees of scattering. This suggests that materials in this latter range would be more effective in the thwarting of destructive shock waves than the homogeneous matrix material. Impact testing of FGM specimens suggests that impact loading on the stiff (high volume fraction) face results in much higher levels of scattering. Therefore, such materials would be effective for use in light weight armor or as shielding materials due to their effective attenuation of mechanical impulses. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Low-speed wind tunnel investigation of the static stability and control characteristics of an advanced turboprop configuration with the propellers placed over the tail. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Rhodes, Graham Scott

    1990-01-01

    An exploratory wind tunnel investigation was performed in the 30 x 60 foot wind tunnel to determine the low speed static stability and control characteristics into the deep stall regime of an advanced turboprop aircraft with the propellers located over the horizontal tail. By this arrangement, the horizontal tail could potentially provide acoustic shielding to reduce the high community noise caused by the propeller blades. The current configuration was a generic turboprop model equipped with 1 foot diameter single rotating eight bladed propellers that were designed for efficient cruise operation at a Mach number of 0.8. The data presented is static force data. The effects of power on the configuration characteristics were generally favorable. An arrangement with the propellers rotating with the outboard blades moving down was found to have significantly higher installed thrust than an arrangement with the propellers rotating with the inboard blades moving down. The primary unfavorable effect was a large pitch trim change which occurred with power, but the trim change could be minimized with a proper configuration design.

  3. Static-99R reporting practices in sexually violent predator cases: Does norm selection reflect adversarial allegiance?

    PubMed

    Chevalier, Caroline S; Boccaccini, Marcus T; Murrie, Daniel C; Varela, Jorge G

    2015-06-01

    We surveyed experts (N = 109) who conduct sexually violent predator (SVP) evaluations to obtain information about their Static-99R score reporting and interpretation practices. Although most evaluators reported providing at least 1 normative sample recidivism rate estimate, there were few other areas of consensus. Instead, reporting practices differed depending on the side for which evaluators typically performed evaluations. Defense evaluators were more likely to endorse reporting practices that convey the lowest possible level of risk (e.g., routine sample recidivism rates, 5-year recidivism rates) and the highest level of uncertainty (e.g., confidence intervals, classification accuracy), whereas prosecution evaluators were more likely to endorse practices suggesting the highest possible level of risk (e.g., high risk/need sample recidivism rates, 10-year recidivism rates). Reporting practices from state-agency evaluators tended to be more consistent with those of prosecution evaluators than defense evaluators, although state-agency evaluators were more likely than other evaluators to report that it was at least somewhat difficult to choose an appropriate normative comparison group. Overall, findings provide evidence for adversarial allegiance in Static-99R score reporting and interpretation practices. (c) 2015 APA, all rights reserved).

  4. Optimum structural design with static aeroelastic constraints

    NASA Technical Reports Server (NTRS)

    Bowman, Keith B; Grandhi, Ramana V.; Eastep, F. E.

    1989-01-01

    The static aeroelastic performance characteristics, divergence velocity, control effectiveness and lift effectiveness are considered in obtaining an optimum weight structure. A typical swept wing structure is used with upper and lower skins, spar and rib thicknesses, and spar cap and vertical post cross-sectional areas as the design parameters. Incompressible aerodynamic strip theory is used to derive the constraint formulations, and aerodynamic load matrices. A Sequential Unconstrained Minimization Technique (SUMT) algorithm is used to optimize the wing structure to meet the desired performance constraints.

  5. Static internal performance of an axisymmetric nozzle with multiaxis thrust-vectoring capability

    NASA Technical Reports Server (NTRS)

    Carson, George T., Jr.; Capone, Francis J.

    1991-01-01

    An investigation was conducted in the static test facility of the Langley 16 Foot Transonic Tunnel in order to determine the internal performance characteristics of a multiaxis thrust vectoring axisymmetric nozzle. Thrust vectoring for this nozzle was achieved by deflection of only the divergent section of this nozzle. The effects of nozzle power setting and divergent flap length were studied at nozzle deflection angles of 0 to 30 at nozzle pressure ratios up to 8.0.

  6. Cardiorespiratory deconditioning with static and dynamic leg exercise during bed rest

    NASA Technical Reports Server (NTRS)

    Stremel, R. W.; Convertino, V. A.; Bernauer, E. M.; Greenleaf, J. E.

    1976-01-01

    Results are presented for an experimental study designed to compare the effects of heavy static and dynamic exercise training during 14 days of bed rest on the cardiorespiratory responses to submaximal and maximal exercise performed by seven healthy men aged 19-22 yr. The parameters measured were submaximal and maximal oxygen uptake, minute ventilation, heart rate, and plasma volume. The results indicate that exercise alone during bed rest reduces but does not eliminate the reduction in maximal oxygen uptake. An additional positive hydrostatic effect is therefore necessary to restore maximal oxygen uptake to ambulatory control levels. The greater protective effect of static exercise on maximal oxygen uptake is probably due to a greater hydrostatic component from the isometric muscular contraction. Neither the static nor the dynamic exercise training regimes are found to minimize the changes in all the variables studied, thereby suggesting a combination of static and dynamic exercises.

  7. Experimental Investigation of the Mixing of Highly Swirling Flows

    DTIC Science & Technology

    1982-05-01

    inner stream has received an increasing amount of attention during recent years. The primary motivations for this have been the application to...2) wall Static Pressures (averaged over all subruns) and their locations PS4 (J) - Static pressure on 4" OD centerbody at location "J" (J = 1 to N(l...ZS4(J) - Axial location of static pressure PS4 (J) PS6(J) - Static pressure on inside wall of 6U tube at location "J" (J = 1 to N(2)) TH6(J) - Angular

  8. Comparison of 3-D Multi-Lag Cross-Correlation and Speckle Brightness Aberration Correction Algorithms on Static and Moving Targets

    PubMed Central

    Ivancevich, Nikolas M.; Dahl, Jeremy J.; Smith, Stephen W.

    2010-01-01

    Phase correction has the potential to increase the image quality of 3-D ultrasound, especially transcranial ultrasound. We implemented and compared 2 algorithms for aberration correction, multi-lag cross-correlation and speckle brightness, using static and moving targets. We corrected three 75-ns rms electronic aberrators with full-width at half-maximum (FWHM) auto-correlation lengths of 1.35, 2.7, and 5.4 mm. Cross-correlation proved the better algorithm at 2.7 and 5.4 mm correlation lengths (P < 0.05). Static cross-correlation performed better than moving-target cross-correlation at the 2.7 mm correlation length (P < 0.05). Finally, we compared the static and moving-target cross-correlation on a flow phantom with a skull casting aberrator. Using signal from static targets, the correction resulted in an average contrast increase of 22.2%, compared with 13.2% using signal from moving targets. The contrast-to-noise ratio (CNR) increased by 20.5% and 12.8% using static and moving targets, respectively. Doppler signal strength increased by 5.6% and 4.9% for the static and moving-targets methods, respectively. PMID:19942503

  9. Comparison of 3-D multi-lag cross- correlation and speckle brightness aberration correction algorithms on static and moving targets.

    PubMed

    Ivancevich, Nikolas M; Dahl, Jeremy J; Smith, Stephen W

    2009-10-01

    Phase correction has the potential to increase the image quality of 3-D ultrasound, especially transcranial ultrasound. We implemented and compared 2 algorithms for aberration correction, multi-lag cross-correlation and speckle brightness, using static and moving targets. We corrected three 75-ns rms electronic aberrators with full-width at half-maximum (FWHM) auto-correlation lengths of 1.35, 2.7, and 5.4 mm. Cross-correlation proved the better algorithm at 2.7 and 5.4 mm correlation lengths (P < 0.05). Static cross-correlation performed better than moving-target cross-correlation at the 2.7 mm correlation length (P < 0.05). Finally, we compared the static and moving-target cross-correlation on a flow phantom with a skull casting aberrator. Using signal from static targets, the correction resulted in an average contrast increase of 22.2%, compared with 13.2% using signal from moving targets. The contrast-to-noise ratio (CNR) increased by 20.5% and 12.8% using static and moving targets, respectively. Doppler signal strength increased by 5.6% and 4.9% for the static and moving-targets methods, respectively.

  10. THE RELATIONSHIP BETWEEN VARIOUS MODES OF SINGLE LEG POSTURAL CONTROL ASSESSMENT

    PubMed Central

    Schmitz, Randy

    2012-01-01

    Purpose/Background: While various techniques have been developed to assess the postural control system, little is known about the relationship between single leg static and functional balance. The purpose of the current study was to determine the relationship between the performance measures of several single leg postural stability tests. Methods: Forty six recreationally active college students (17 males, 29 females, 21±3 yrs, 173±10 cm) performed six single leg tests in a counterbalanced order: 1) Firm Surface-Eyes Open, 2) Firm Surface-Eyes Closed, 3) Multiaxial Surface-Eyes Open, 4) Multiaxial Surface-Eyes Closed, 5) Star Excursion Balance Test (posterior medial reach), 6) Single leg Hop-Stabilization Test. Bivariate correlations were conducted between the six outcome variables. Results: Mild to moderate correlations existed between the static tests. No significant correlations existed involving either of the functional tests. Conclusions: The results indicate that while performance of static balance tasks are mildly to moderately related, they appear to be unrelated to functional reaching or hopping movements, supporting the utilization of a battery of tests to determine overall postural control performance. Level of Evidence: 3b PMID:22666640

  11. Static test-stand performance of the YF-102 turbofan engine with several exhaust configurations for the Quiet Short-Haul Research Aircraft (QSRA)

    NASA Technical Reports Server (NTRS)

    Mcardle, J. G.; Homyak, L.; Moore, A. S.

    1979-01-01

    The performance of a YF-102 turbofan engine was measured in an outdoor test stand with a bellmouth inlet and seven exhaust-system configurations. The configurations consisted of three separate-flow systems of various fan and core nozzle sizes and four confluent-flow systems of various nozzle sizes and shapes. A computer program provided good estimates of the engine performance and of thrust at maximum rating for each exhaust configuration. The internal performance of two different-shaped core nozzles for confluent-flow configurations was determined to be satisfactory. Pressure and temperature surveys were made with a traversing probe in the exhaust-nozzle flow for some confluent-flow configurations. The survey data at the mixing plane, plus the measured flow rates, were used to calculate the static-pressure variation along the exhaust nozzle length. The computed pressures compared well with experimental wall static-pressure data. External-flow surveys were made, for some confluent-flow configurations, with a large fixed rake at various locations in the exhaust plume.

  12. Saturn Apollo Program

    NASA Image and Video Library

    1965-04-01

    S-IB-1, the first flight version of the Saturn IB launch vehicle's first stage (S-IB stage), undergoes a full-duration static firing in Saturn IB static test stand at the Marshall Space Flight Center (MSFC) on April 13, 1965. Developed by the MSFC and built by the Chrysler Corporation at the Michoud Assembly Facility (MAF) in New Orleans, Louisiana, the 90,000-pound booster utilized eight H-1 engines to produce a combined thrust of 1,600,000 pounds. Between April 1965 and July 1968, MSFC performed thirty-two static tests on twelve different S-IB stages.

  13. Structural Analysis Peer Review for the Static Display of the Orbiter Atlantis at the Kennedy Space Center Visitors Center

    NASA Technical Reports Server (NTRS)

    Minute, Stephen A.

    2013-01-01

    Mr. Christopher Miller with the Kennedy Space Center (KSC) NASA Safety & Mission Assurance (S&MA) office requested the NASA Engineering and Safety Center's (NESC) technical support on March 15, 2012, to review and make recommendations on the structural analysis being performed for the Orbiter Atlantis static display at the KSC Visitor Center. The principal focus of the assessment was to review the engineering firm's structural analysis for lifting and aligning the orbiter and its static display configuration

  14. Comparative analysis of low-back loading on chiropractors using various workstation table heights and performing various tasks.

    PubMed

    Lorme, Kenneth J; Naqvi, Syed A

    2003-01-01

    There is epidemiologic evidence that chiropractors are a high-risk group for low-back disorders. However, to date there are no known biomechanical studies to determine whether their workstations may be a contributing factor. To investigate whether chiropractors' workstation table height or the tasks they perform make them susceptible to low-back strain. As well as investigating low-back strain, a screening was performed to determine whether chiropractors' upper extremities were at risk for undue strain as workstation table height was varied. Experimental pilot study. A university ergonomic laboratory. An adjustable manipulation table was set at 3 different heights: 465 mm, 665 mm and 845 mm. Each of the 7 volunteer chiropractors were fitted with a triaxial electrogoniometer and were videotaped and photographed for analysis while performing spinal manipulation to the cervical, thoracic, and lumbar spine of a volunteer patient at each workstation table height. Two biomechanical models, one static and one dynamic, were used to record the dependent variables. A screening of various upper extremity variables was also performed with the static model. For the subjects under study, a significant difference was found for the variables maximum sagittal flexion, disk compression force, and ligament strain as table height was varied. For the lumbar and thoracic manipulation tasks, the medium table height (655 mm) was found to create the least low-back strain. For the cervical manipulation task, the high table height (845 mm) was found to be the least straining on the low-back. The low height table (465 mm) was the most straining for all tasks. Upper extremities were not significantly affected by changes to table height. Significant differences were found for the task performed for axial rotational velocity, disk compression force, ligament strain, maximum sagittal flexion, dominant (right) elbow moment, and dominant (right) shoulder moment variables. There was no significant interaction between table height and task performed. Workstation table height was found to have a significant effect on low-back load of subjects under study. The results of this study demonstrate an overall unacceptably high amount of sagittal flexion, ligament strain, and disk compression force on the chiropractor subjects in the tasks performed.

  15. High Fidelity Thermal Simulators for Non-Nuclear Testing: Analysis and Initial Results

    NASA Technical Reports Server (NTRS)

    Bragg-Sitton, Shannon M.; Dickens, Ricky; Dixon, David

    2007-01-01

    Non-nuclear testing can be a valuable tool in the development of a space nuclear power system, providing system characterization data and allowing one to work through various fabrication, assembly and integration issues without the cost and time associated with a full ground nuclear test. In a non-nuclear test bed, electric heaters are used to simulate the heat from nuclear fuel. Testing with non-optimized heater elements allows one to assess thermal, heat transfer, and stress related attributes of a given system, but fails to demonstrate the dynamic response that would be present in an integrated, fueled reactor system. High fidelity thermal simulators that match both the static and the dynamic fuel pin performance that would be observed in an operating, fueled nuclear reactor can vastly increase the value of non-nuclear test results. With optimized simulators, the integration of thermal hydraulic hardware tests with simulated neutronie response provides a bridge between electrically heated testing and fueled nuclear testing, providing a better assessment of system integration issues, characterization of integrated system response times and response characteristics, and assessment of potential design improvements' at a relatively small fiscal investment. Initial conceptual thermal simulator designs are determined by simple one-dimensional analysis at a single axial location and at steady state conditions; feasible concepts are then input into a detailed three-dimensional model for comparison to expected fuel pin performance. Static and dynamic fuel pin performance for a proposed reactor design is determined using SINDA/FLUINT thermal analysis software, and comparison is made between the expected nuclear performance and the performance of conceptual thermal simulator designs. Through a series of iterative analyses, a conceptual high fidelity design can developed. Test results presented in this paper correspond to a "first cut" simulator design for a potential liquid metal (NaK) cooled reactor design that could be applied for Lunar surface power. Proposed refinements to this simulator design are also presented.

  16. Investigation of Pneumatic Inlet and Diffuser Blowing on a Ducted Fan Propulsor in Static Thrust Operation

    NASA Technical Reports Server (NTRS)

    Kondor, Shayne; Englar, Robert J.; Lee, Warren J.

    2003-01-01

    Tilting ducted fans present a solution for the lifting and forward flight propulsion requirements of VTOL aircraft. However, the geometry of the duct enshrouding the propeller has great a effect on the efficiency of the fan in various flight modes. Shroud geometry controls the velocity and pressure at the face of the fan, while maintaining a finite loading out at the tips of the fan blades. A duct tailored for most efficient generation of static lifting thrust will generally suffer from performance deficiencies in forward flight. The converse is true as well, leaving the designer with a difficult trade affecting the overall performance and sizing of the aircraft. Ideally, the shroud of a vertical lifting fan features a generous bell mouth inlet promoting acceleration of flow into the face of the fan, and terminating in a converging nozzle at the exit. Flow entering the inlet is accelerated into the fan by the circulation about the shroud, resulting in an overall increase in thrust compared to an open propeller operating under the same conditions . The accelerating shroud design is often employed in lifting ducted fans to benefit from the thrust augmentation; however, such shroud designs produce significant drag penalties in axial flight, thus are unsuitable for efficient forward flight applications. Decelerating, or diffusing, duct designs are employed for higher speed forward flight configurations. The lower circulation on the shroud tends to decelerate the flow into the face of the fan, which is detrimental to static thrust development; however, net thrust is developed on the shroud while the benefits of finite blade loading are retained. With judicious shroud design for intended flight speeds, a net increase in efficiency can be obtained over an open propeller. In this experiment, conducted under contract to NASA LaRC (contract NAG-1-02093) circulation control is being applied to a mildly diffusing shroud design, intended for improved forward flight performance, to generate circulation in the sense of an accelerating duct design. The intent is to improve static thrust performance of a ducted fan tailored for high speed axial flight, while at the same time significantly reduce the pressure signature on the ground plane. Circulation control on the fan shroud is achieved by the Coanda effect.

  17. Comprehensive comparison of the levitation performance of bulk YBaCuO arrays above two different types of magnetic guideways

    NASA Astrophysics Data System (ADS)

    Deng, Zigang; Qian, Nan; Che, Tong; Jin, Liwei; Si, Shuaishuai; Zhang, Ya; Zheng, Jun

    2016-12-01

    The permanent magnet guideway (PMG) is an important part of high temperature superconducting (HTS) maglev systems. So far, two types of PMG, the normal PMG and Halbach-type PMG, are widely applied in present maglev transportation systems. In this paper, the levitation performance of high temperature superconductor bulks above the two PMGs was synthetically compared. Both static levitation performance and dynamic response characteristics were investigated. Benefiting from the reasonable magnetic field distribution, the Halbach-type PMG is able to gain larger levitation force, greater levitation force decay during the same relaxation time, bigger resonance frequency and dynamic stiffness for the bulk superconductor levitation unit compared with the normal PMG. Another finding is that the Halbach-type PMG is not sensitive to the levitation performance of the bulk levitation unit with different arrays. These results are helpful for the practical application of HTS maglev systems.

  18. Mechanical Properties of Ceramics for High Temperature Applications

    DTIC Science & Technology

    1976-12-01

    difficult so far. Also torsion creep tests have been performed /2 /, not considered in this figure. The data show a relatively consistent picture...mittent creep test. Corrosion effects are claimed to be operative during fatigue : The lifetime of a fa- tigue specimen, being controlled by the slow...of plot at extremely low rates of loading. The static fatigue limit on this type of plot is the strength below which there is no effect of loading

  19. Archer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Atzeni, Simone; Ahn, Dong; Gopalakrishnan, Ganesh

    2017-01-12

    Archer is built on top of the LLVM/Clang compilers that support OpenMP. It applies static and dynamic analysis techniques to detect data races in OpenMP programs generating a very low runtime and memory overhead. Static analyses identify data race free OpenMP regions and exclude them from runtime analysis, which is performed by ThreadSanitizer included in LLVM/Clang.

  20. Matching Voice and Face Identity from Static Images

    ERIC Educational Resources Information Center

    Mavica, Lauren W.; Barenholtz, Elan

    2013-01-01

    Previous research has suggested that people are unable to correctly choose which unfamiliar voice and static image of a face belong to the same person. Here, we present evidence that people can perform this task with greater than chance accuracy. In Experiment 1, participants saw photographs of two, same-gender models, while simultaneously…

  1. 40 CFR 60.274a - Monitoring of operations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... the equipment that is important to the performance of the total capture system (i.e., pressure sensors... this subpart shall check and record on a once-per-shift basis the furnace static pressure (if DEC system is in use, and a furnace static pressure gauge is installed according to paragraph (f) of this...

  2. Ceramic membrane ozonator for soluble organics removal from produced water

    NASA Astrophysics Data System (ADS)

    Siagian, U. W. R.; Dwipramana, A. S.; Perwira, S. B.; Khoiruddin; Wenten, I. G.

    2018-01-01

    In this work, the performance of ozonation for degradation of soluble organic compounds in produced water was investigated. Tubular ceramic membrane diffuser (with and without a static mixer in the lumen side) was used to facilitate contact between ozone and produced water. The ozonation was conducted at ozone flow rate of 8 L.min-1, ozone concentration of 0.4 ppm, original pH of the solution, and pressure of 1.2 bar, while the flow rates of the produced water were varied (192, 378 and 830 mL.min-1). It was found that the reduction of benzene, toluene, ethylbenzene, and xylene were 85%, 99%, 85%, and 95%, respectively. A lower liquid flow rate in a laminar state showed a better component reduction due to the longer contacting time between the liquid and the gas phase. The introduction of the static mixer in the lumen side of the membrane as a turbulence promoter provided a positive effect on the performance of the membrane diffuser. The twisted static mixer exhibited the better removal rate than the spiral static mixer.

  3. Structural characterization of a first-generation articulated-truss joint for space crane application

    NASA Technical Reports Server (NTRS)

    Sutter, Thomas R.; Wu, K. Chauncey; Riutort, Kevin T.; Laufer, Joseph B.; Phelps, James E.

    1992-01-01

    A first-generation space crane articulated-truss joint was statically and dynamically characterized in a configuration that approximated an operational environment. The articulated-truss joint was integrated into a test-bed for structural characterization. Static characterization was performed by applying known loads and measuring the corresponding deflections to obtain load-deflection curves. Dynamic characterization was performed using modal testing to experimentally determine the first six mode shapes, frequencies, and modal damping values. Static and dynamic characteristics were also determined for a reference truss that served as a characterization baseline. Load-deflection curves and experimental frequency response functions are presented for the reference truss and the articulated-truss joint mounted in the test-bed. The static and dynamic experimental results are compared with analytical predictions obtained from finite element analyses. Load-deflection response is also presented for one of the linear actuators used in the articulated-truss joint. Finally, an assessment is presented for the predictability of the truss hardware used in the reference truss and articulated-truss joint based upon hardware stiffness properties that were previously obtained during the Precision Segmented Reflector (PSR) Technology Development Program.

  4. Measurement of the static and dynamic coefficients of a cross-type parachute in subsonic flow

    NASA Technical Reports Server (NTRS)

    Shpund, Zalman; Levin, Daniel

    1991-01-01

    An experimental parametric investigation of the aerodynamic qualities of cross-type parachutes was performed in a subsonic wind tunnel, using a new experimental technique. This investigation included the measurement of the static and dynamic aerodynamic coefficients, utilizing the measuring apparatus modified specifically for this type of testing. It is shown that the static aerodynamic coefficients of several configurations are in good agreement with available data, and assisted in validating the experimental technique employed. Two configuration parameters were varied in the static tests, the cord length and the canopy aspect ratio, with both parameters having a similar effect on the drag measurement, i.e., any increase in either of them increased the effective blocking area, and therefore the axial force.

  5. Driver ASIC Environmental Testing and Performance Optimization for SpaceBased Active Mirrors

    NASA Astrophysics Data System (ADS)

    Mejia Prada, Camilo

    Direct imaging of Earth-like planets requires techniques for light suppression, such as coronagraphs or nulling interferometers, in which deformable mirrors (DM) are a principal component. On ground-based systems, DMs are used to correct for turbulence in the Earth’s atmosphere in addition to static aberrations in the optics. For space-based observations, DMs are used to correct for static and quasi- static aberrations in the optical train. State-of-the-art, high-actuator count deformable mirrors suffer from external heavy and bulky electronics in which electrical connections are made through thousands of wires. We are instead developing Application Specific Integrated Circuits (ASICs) capable of direct integration with the DM in a single small package. This integrated ASIC-DM is ideal for space missions, where it offers significant reduction in mass, power and complexity, and performance compatible with high-contrast observations of exoplanets. We have successfully prototyped and tested a 32x32 format Switch-Mode (SM) ASIC which consumes only 2mW static power (total, not per-actuator). A number of constraints were imposed on key parameters of this ASIC design, including sub-picoamp levels of leakage across turned-off switches and from switch-to-substrate, control resolution of 0.04 mV, satisfactory rise/fall times, and a near-zero on-chip crosstalk over a useful range of operating temperatures. This driver ASIC technology is currently at TRL 4. This Supporting Technology proposal will further develop the ASIC technology to TRL 5 by carrying on environmental tests and further optimizing performance, with the end goal of making ASICs suitable for space-based deployment. The effort will be led by JPL, which has considerable expertise with DMs used in highcontrast imaging systems for exoplanet missions and in adaptive optic systems, and in design of DM driver electronics. Microscale, which developed the prototype of the ASICDM, will continue its development. We propose a three-part program to advance the device maturity. The effort will cover (1) radiation hardness, (2) thermal-vacuum environment tests, and (3) parameter performance optimization. We expect to implement the results in an optimized ASIC design for NASA's space applications, expanding the current state-of-the-art into radiation-hardened electronics robust enough for a space environment. This effort will fill technology gaps listed in the Exoplanet Exploration Program Technology Plan 2017 : “The challenge is believed to not be the mosaicking of 48×48 devices or 32×32 devices (to reach 128×128) but rather dealing with the enormous number of interconnects and their electronics.”. After the close of this effort, continued ASIC development is of course planned, leading to further improvement in parameters.

  6. Mechanical performance of cervical intervertebral body fusion devices: A systematic analysis of data submitted to the Food and Drug Administration.

    PubMed

    Peck, Jonathan H; Sing, David C; Nagaraja, Srinidhi; Peck, Deepa G; Lotz, Jeffrey C; Dmitriev, Anton E

    2017-03-21

    Cervical intervertebral body fusion devices (IBFDs) are utilized to provide stability while fusion occurs in patients with cervical pathology. For a manufacturer to market a new cervical IBFD in the United States, substantial equivalence to a cervical IBFD previously cleared by FDA must be established through the 510(k) regulatory pathway. Mechanical performance data are typically provided as part of the 510(k) process for IBFDs. We reviewed all Traditional 510(k) submissions for cervical IBFDs deemed substantially equivalent and cleared for marketing from 2007 through 2014. To reduce sources of variability in test methods and results, analysis was restricted to cervical IBFD designs without integrated fixation, coatings, or expandable features. Mechanical testing reports were analyzed and results were aggregated for seven commonly performed tests (static and dynamic axial compression, compression-shear, and torsion testing per ASTM F2077, and subsidence testing per ASTM F2267), and percentile distributions of performance measurements were calculated. Eighty-three (83) submissions met the criteria for inclusion in this analysis. The median device yield strength was 10,117N for static axial compression, 3680N for static compression-shear, and 8.6Nm for static torsion. Median runout load was 2600N for dynamic axial compression, 1400N for dynamic compression-shear, and ±1.5Nm for dynamic torsion. In subsidence testing, median block stiffness (Kp) was 424N/mm. The mechanical performance data presented here will aid in the development of future cervical IBFDs by providing a means for comparison for design verification purposes. Published by Elsevier Ltd.

  7. No Effect of Muscle Stretching within a Full, Dynamic Warm-up on Athletic Performance.

    PubMed

    Blazevich, Anthony J; Gill, Nicholas D; Kvorning, Thue; Kay, Anthony D; Goh, Alvin G; Hilton, Bradley; Drinkwater, Eric J; Behm, David G

    2018-06-01

    This study aimed to examine the effects of static and dynamic stretching routines performed as part of a comprehensive warm-up on flexibility and sprint running, jumping, and change of direction tests in team sport athletes. A randomized, controlled, crossover study design with experimenter blinding was conducted. On separate days, 20 male team sport athletes completed a comprehensive warm-up routine. After a low-intensity warm-up, a 5-s static stretch (5S), a 30-s static stretch (30S; 3 × 10-s stretches), a 5-repetition (per muscle group) dynamic stretch (DYN), or a no-stretch (NS) protocol was completed; stretches were done on seven lower body and two upper body regions. This was followed by test-specific practice progressing to maximum intensity. A comprehensive test battery assessing intervention effect expectations as well as flexibility, vertical jump, sprint running, and change of direction outcomes was then completed in a random order. There were no effects of stretch condition on test performances. Before the study, 18/20 participants nominated DYN as the most likely to improve performance and 15/20 nominated NS as least likely. Immediately before testing, NS was rated less "effective" (4.0 ± 2.2 on a 10-point scale) than 5S, 30S, and DYN (5.3-6.4). Nonetheless, these ratings were not related to test performances. Participants felt they were more likely to perform well when stretching was performed as part of the warm-up, irrespective of stretch type. However, no effect of muscle stretching was observed on flexibility and physical function compared with no stretching. On the basis of the current evidence, the inclusion of short durations of either static or dynamic stretching is unlikely to affect sprint running, jumping, or change of direction performance when performed as part of a comprehensive physical preparation routine.

  8. Stretch-Induced Reductions in Throwing Performance Are Attenuated by Warm-up Before Exercise.

    PubMed

    Mascarin, Naryana C; Vancini, Rodrigo L; Lira, Claudio A B; Andrade, Marilia S

    2015-05-01

    Recent investigations have suggested that static stretching (SS) performed before exercise reduces muscular performance. However, it is yet unknown whether dynamic warm-up exercises performed together with SS may actually minimize the detrimental acute effects of stretching on muscular performance. This study aimed to assess the effects of static shoulder stretching exercises, dynamic warm-up exercises, or both together, on muscular performance evaluated by ball throwing. Twenty-one female handball players (age: 16.2 ± 1.0 years [range: 14-18 years], height: 167.0 ± 10.0 cm [range: 158-179 cm], and body mass: 63.3 ± 7.6 kg [range: 50.4-77.4 kg]) performed SS, dynamic warm-up exercises or both, targeting the muscles of the upper limbs. Thereafter, medicine ball throwing distance and handball ball throwing speed tests were performed. Static stretching performed before the medicine ball throwing test reduced performance when compared with the warm-up exercises (95% confidence interval [CI] = 0.02-0.17, p ≤ 0.05, effect size [ES] = 0.34). When a warm-up exercise routine was added to SS, the detrimental effects of SS were abolished (95% CI = -0.01 to 0.18, p > 0.05, ES = 0.31). The throwing speed was the same over the 3 conditions. In conclusion, warm-up exercises performed together with SS abolished the impairment in medicine ball throwing distance. We recommend that athletes perform warm-up exercises together with SS before activity to avoid detrimental effects on muscle strength.

  9. [Research progress on mechanical performance evaluation of artificial intervertebral disc].

    PubMed

    Li, Rui; Wang, Song; Liao, Zhenhua; Liu, Weiqiang

    2018-03-01

    The mechanical properties of artificial intervertebral disc (AID) are related to long-term reliability of prosthesis. There are three testing methods involved in the mechanical performance evaluation of AID based on different tools: the testing method using mechanical simulator, in vitro specimen testing method and finite element analysis method. In this study, the testing standard, testing equipment and materials of AID were firstly introduced. Then, the present status of AID static mechanical properties test (static axial compression, static axial compression-shear), dynamic mechanical properties test (dynamic axial compression, dynamic axial compression-shear), creep and stress relaxation test, device pushout test, core pushout test, subsidence test, etc. were focused on. The experimental techniques using in vitro specimen testing method and testing results of available artificial discs were summarized. The experimental methods and research status of finite element analysis were also summarized. Finally, the research trends of AID mechanical performance evaluation were forecasted. The simulator, load, dynamic cycle, motion mode, specimen and test standard would be important research fields in the future.

  10. Strain energy release rate as a function of temperature and preloading history utilizing the edge delamination fatique test method

    NASA Technical Reports Server (NTRS)

    Zimmerman, Richard S.; Adams, Donald F.

    1989-01-01

    Static laminate and tension-tension fatigue tests of IM7/8551-7 composite materials was performed. The Edge Delamination Test (EDT) was utilized to evaluate the temperature and preloading history effect on the critical strain energy release rate. Static and fatigue testing was performed at room temperature and 180 F (82 C). Three preloading schemes were used to precondition fatigue test specimens prior to performing the normal tension-tension fatigue EDT testing. Computer software was written to perform all fatigue testing while monitoring the dynamic modulus to detect the onset of delamination and record the test information for later retrieval and reduction.

  11. Influence of static habitat attributes on local and regional Rocky intertidal community structure

    USGS Publications Warehouse

    Konar, B.; Iken, K.; Coletti, H.; Monson, Daniel H.; Weitzman, Ben P.

    2016-01-01

    Rocky intertidal communities are structured by local environmental drivers, which can be dynamic, fluctuating on various temporal scales, or static and not greatly varying across years. We examined the role of six static drivers (distance to freshwater, tidewater glacial presence, wave exposure, fetch, beach slope, and substrate composition) on intertidal community structure across the northern Gulf of Alaska. We hypothesized that community structure is less similar at the local scale compared with the regional scale, coinciding with static drivers being less similar on smaller than larger scales. We also hypothesized that static attributes mainly drive local biological community structure. For this, we surveyed five to six sites in each of the six regions in the mid and low intertidal strata. Across regions, static attributes were not consistently different and only small clusters of sites had similar attributes. Additionally, intertidal communities were less similar on the site compared with the region level. These results suggest that these biological communities are not strongly influenced by the local static attributes measured in this study. An alternative explanation is that static attributes among our regions are not different enough to influence the biological communities. This lack of evidence for a strong static driver may be a result of our site selection, which targeted rocky sheltered communities. This suggests that this habitat may be ideal to examine the influence of dynamic drivers. We recommend that future analyses of dynamic attributes may best be performed after analyses have demonstrated that sites do not differ in static attributes.

  12. Profile of student critical thinking ability on static fluid concept

    NASA Astrophysics Data System (ADS)

    Sulasih; Suparmi, A.; Sarwanto

    2017-11-01

    Critical thinking ability is an important part of educational goals. It has higher complex processes, such as analyzing, synthesizing and evaluating, drawing conclusion and reflection. This study is aimed to know the critical thinking ability of students in learning static fluids of senior high school students. This research uses the descriptive method which its instruments based on the indicator of critical thinking ability developed according to Ennis. The population of this research is XIth grade science class Public Senior High School, SMA N 1, Sambungmacan, Sragen, Central Java. The static fluid teaching material is delivered using Problem Based Learning Model through class experiment. The results of this study shows that the average student of XIth science class have high critical thinking skills, particularly in the ability of providing simple explanation, build basic skill, and provide advanced explanation, but they do not have high enough in ability of drawing conclusion and strategic and tactical components of critical thinking ability in the study of static fluid teaching material. The average of students critical thinking ability is 72.94, with 27,94% of students are in a low category and 72,22% of students in the high category of critical thinking ability.

  13. ASDTIC: A feedback control innovation

    NASA Technical Reports Server (NTRS)

    Lalli, V. R.; Schoenfeld, A. D.

    1972-01-01

    The ASDTIC (Analog Signal to Discrete Time Interval Converter) control subsystem provides precise output control of high performance aerospace power supplies. The key to ASDTIC operation is that it stably controls output by sensing output energy change as well as output magnitude. The ASDTIC control subsystem and control module were developed to improve power supply performance during static and dynamic input voltage and output load variations, to reduce output voltage or current regulation due to component variations or aging, to maintain a stable feedback control with variations in the loop gain or loop time constants, and to standardize the feedback control subsystem for power conditioning equipment.

  14. Experimental evaluation of exhaust mixers for an Energy Efficient Engine

    NASA Technical Reports Server (NTRS)

    Kozlowski, H.; Kraft, G.

    1980-01-01

    Static scale model tests were conducted to evaluate exhaust system mixers for a high bypass ratio engine as part of the NASA sponsored Energy Efficient program. Gross thrust coefficients were measured for a series of mixer configurations which included variations in the number of mixer lobes, tailpipe length, mixer penetration, and length. All of these parameters have a significant impact on exhaust system performance. In addition, flow visualization pictures and pressure/temperature traverses were obtained for selected configurations. Parametric performance trends are discussed and the results considered relative to the Energy Efficient Engine program goals.

  15. ASDTIC - A feedback control innovation.

    NASA Technical Reports Server (NTRS)

    Lalli, V. R.; Schoenfeld, A. D.

    1972-01-01

    The ASDTIC (analog signal to discrete time interval converter) control subsystem provides precise output control of high performance aerospace power supplies. The key to ASDTIC operation is that it stably controls output by sensing output energy change as well as output magnitude. The ASDTIC control subsystem and control module were developed to improve power supply performance during static and dynamic input voltage and output load variations, to reduce output voltage or current regulation due to component variations or aging, to maintain a stable feedback control with variations in the loop gain or loop time constants, and to standardize the feedback control subsystem for power conditioning equipment.

  16. Electronic structure and defect properties of selenophosphate Pb2P2Se6 for γ-ray detection

    NASA Astrophysics Data System (ADS)

    Kontsevoi, Oleg Y.; Im, Jino; Wessels, Bruce W.; Kanatzidis, Mercouri G.; Freeman, Arthur J.

    Heavy metal chalco-phosphate Pb2P2Se6 has shown a significant promise as an X-ray and γ-ray detector material. To assess the fundamental physical properties important for its performance as detector, theoretical calculations were performed for the electronic structure, band gaps, electron and hole effective masses, and static dielectric constants. The calculations were based on first-principles density functional theory (DFT) and employ the highly precise full potential linearized augmented plane wave method and the projector augmented wave method and include nonlocal exchange-correlation functionals to overcome the band gap underestimation in DFT calculations. The calculations show that Pb2P2Se6 is an indirect band gap material with the calculated band gap of 2.0 eV, has small effective masses, which could result in a good carrier mobility-lifetime product μτ , and a very high static dielectric constant, which could lead to high mobility of carriers by screening of charged scattering centers. We further investigated a large set of native defects in Pb2P2Se6 to determine the optimal growth conditions for application as γ-ray detectors. The results suggest that the prevalent intrinsic defects are selenium vacancies, followed by lead vacancies, then phosphorus vacancies and antisite defects. The effect of various chemical environments on defect properties was examined and the optimal conditions for material synthesis were suggested. Supported by DHS (Grant No. 2014-DN-077-ARI086-01).

  17. Near DC force measurement using PVDF sensors

    NASA Astrophysics Data System (ADS)

    Ramanathan, Arun Kumar; Headings, Leon M.; Dapino, Marcelo J.

    2018-03-01

    There is a need for high-performance force sensors capable of operating at frequencies near DC while producing a minimal mass penalty. Example application areas include steering wheel sensors, powertrain torque sensors, robotic arms, and minimally invasive surgery. The beta crystallographic phase polyvinylidene fluoride (PVDF) films are suitable for this purpose owing to their large piezoelectric constant. Unlike conventional capacitive sensors, beta crystallographic phase PVDF films exhibit a broad linear range and can potentially be designed to operate without complex electronics or signal processing. A fundamental challenge that prevents the implementation of PVDF in certain high-performance applications is their inability to measure static signals, which results from their first-order electrical impedance. Charge readout algorithms have been implemented which address this issue only partially, as they often require integration of the output signal to obtain the applied force profile, resulting in signal drift and signal processing complexities. In this paper, we propose a straightforward real time drift compensation strategy that is applicable to high output impedance PVDF films. This strategy makes it possible to utilize long sample times with a minimal loss of accuracy; our measurements show that the static output remains within 5% of the original value during half-hour measurements. The sensitivity and full-scale range are shown to be determined by the feedback capacitance of the charge amplifier. A linear model of the PVDF sensor system is developed and validated against experimental measurements, along with benchmark tests against a commercial load cell.

  18. Resistance to forced airflow through layers of composting organic material.

    PubMed

    Teixeira, Denis Leocádio; de Matos, Antonio Teixeira; Melo, Evandro de Castro

    2015-02-01

    The objective of this study was to adjust equations to estimate the static pressure gradient of airflow through layers of organic residues submitted to two stages of biochemical degradation, and to evaluate the static pressure drop of airflow thought the material layer. Measurements of static pressure drop in the layers of sugarcane bagasse and coffee husks mixed with poultry litter on day 0 and after 30 days of composting were performed using a prototype with specific airflow rates ranging from 0.02 to 0.13 m(3) s(-1) m(-2). Static pressure gradient and specific airflow rate data were properly fit to the Shedd, Hukill & Ives and Ergun models, which may be used to predict the static pressure gradient of air to be blown through the organic residue layers. However, the Shedd model was that which best represented the phenomenon studied. The static pressure drop of airflow increased as a power of the material layer thickness and showed tendency for decreasing with the biochemical degradation time of the organic material. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Change detection technique for muscle tone during static stretching by continuous muscle viscoelasticity monitoring using wearable indentation tester.

    PubMed

    Okamura, Naomi; Kobayashi, Yo; Sugano, Shigeki; Fujie, Masakatsu G

    2017-07-01

    Static stretching is widely performed to decrease muscle tone as a part of rehabilitation protocols. Finding out the optimal duration of static stretching is important to minimize the time required for rehabilitation therapy and it would be helpful for maintaining the patient's motivation towards daily rehabilitation tasks. Several studies have been conducted for the evaluation of static stretching; however, the recommended duration of static stretching varies widely between 15-30 s in general, because the traditional methods for the assessment of muscle tone do not monitor the continuous change in the target muscle's state. We have developed a method to monitor the viscoelasticity of one muscle continuously during static stretching, using a wearable indentation tester. In this study, we investigated a suitable signal processing method to detect the time required to change the muscle tone, utilizing the data collected using a wearable indentation tester. By calculating a viscoelastic index with a certain time window, we confirmed that the stretching duration required to bring about a decrease in muscle tone could be obtained with an accuracy in the order of 1 s.

  20. Calculation of reinforced-concrete frame strength under a simultaneous static cross section load and a column lateral impact

    NASA Astrophysics Data System (ADS)

    Belov, Nikolay; Yugov, Nikolay; Kopanitsa, Dmitry; Kopanitsa, Georgy; Yugov, Alexey; Kaparulin, Sergey; Plyaskin, Andrey; Kalichkina, Anna; Ustinov, Artyom

    2016-01-01

    When designing buildings with reinforced concrete that are planned to resist dynamic loads it is necessary to calculate this structural behavior under operational static and emergency impact and blast loads. Calculations of the structures under shock-wave loads can be performed by solving dynamic equations that do not consider static loads. Due to this fact the calculation of reinforced concrete frame under a simultaneous static and dynamic load in full 3d settings becomes a very non trivial and resource consuming problem. This problem can be split into two tasks. The first one is a shock-wave problem that can be solved using software package RANET-3, which allows solving the problem using finite elements method adapted for dynamic task. This method calculates strain-stress state of the material and its dynamic destruction, which is considered as growth and consolidation of micro defects under loading. On the second step the results of the first step are taken as input parameters for quasi static calculation of simultaneous static and dynamic load using finite elements method in AMP Civil Engineering-11.

  1. High-performance iron oxide nanoparticles for magnetic particle imaging - guided hyperthermia (hMPI)

    NASA Astrophysics Data System (ADS)

    Bauer, Lisa M.; Situ, Shu F.; Griswold, Mark A.; Samia, Anna Cristina S.

    2016-06-01

    Magnetic particle imaging (MPI) is an emerging imaging modality that allows the direct and quantitative mapping of iron oxide nanoparticles. In MPI, the development of tailored iron oxide nanoparticle tracers is paramount to achieving high sensitivity and good spatial resolution. To date, most MPI tracers being developed for potential clinical applications are based on spherical undoped magnetite nanoparticles. For the first time, we report on the systematic investigation of the effects of changes in chemical composition and shape anisotropy on the MPI performance of iron oxide nanoparticle tracers. We observed a 2-fold enhancement in MPI signal through selective doping of magnetite nanoparticles with zinc. Moreover, we demonstrated focused magnetic hyperthermia heating by adapting the field gradient used in MPI. By saturating the iron oxide nanoparticles outside of a field free region (FFR) with an external static field, we can selectively heat a target region in our test sample. By comparing zinc-doped magnetite cubic nanoparticles with undoped spherical nanoparticles, we could show a 5-fold improvement in the specific absorption rate (SAR) in magnetic hyperthermia while providing good MPI signal, thereby demonstrating the potential for high-performance focused hyperthermia therapy through an MPI-guided approach (hMPI).Magnetic particle imaging (MPI) is an emerging imaging modality that allows the direct and quantitative mapping of iron oxide nanoparticles. In MPI, the development of tailored iron oxide nanoparticle tracers is paramount to achieving high sensitivity and good spatial resolution. To date, most MPI tracers being developed for potential clinical applications are based on spherical undoped magnetite nanoparticles. For the first time, we report on the systematic investigation of the effects of changes in chemical composition and shape anisotropy on the MPI performance of iron oxide nanoparticle tracers. We observed a 2-fold enhancement in MPI signal through selective doping of magnetite nanoparticles with zinc. Moreover, we demonstrated focused magnetic hyperthermia heating by adapting the field gradient used in MPI. By saturating the iron oxide nanoparticles outside of a field free region (FFR) with an external static field, we can selectively heat a target region in our test sample. By comparing zinc-doped magnetite cubic nanoparticles with undoped spherical nanoparticles, we could show a 5-fold improvement in the specific absorption rate (SAR) in magnetic hyperthermia while providing good MPI signal, thereby demonstrating the potential for high-performance focused hyperthermia therapy through an MPI-guided approach (hMPI). Electronic supplementary information (ESI) available: Detailed IONP synthetic methods, description of magnetic particle relaxometer set-up, TEM of reference IONP (Senior Scientific PrecisionMRX™ 25 nm oleic acid-coated nanoparticles), concentration dependent PSF of all IONP samples, PSF and SAR of Zn-Sph and Zn-Cube mixture sample, upper right quadrant of field-dependent hysteresis curve labelled with static field strengths, and the magnetic hyperthermia temperature profiles with and without the presence of external magnetic fields. See DOI: 10.1039/c6nr01877g

  2. Respiratory monitoring system based on the nasal pressure technique for the analysis of sleep breathing disorders: Reduction of static and dynamic errors, and comparisons with thermistors and pneumotachographs

    NASA Astrophysics Data System (ADS)

    Alves de Mesquita, Jayme; Lopes de Melo, Pedro

    2004-03-01

    Thermally sensitive devices—thermistors—have usually been used to monitor sleep-breathing disorders. However, because of their long time constant, these devices are not able to provide a good characterization of fast events, like hypopneas. Nasal pressure recording technique (NPR) has recently been suggested to quantify airflow during sleep. It is claimed that the short time constants of the devices used to implement this technique would allow an accurate analysis of fast abnormal respiratory events. However, these devices present errors associated with nonlinearities and acoustic resonance that could reduce the diagnostic value of the NPR. Moreover, in spite of the high scientific and clinical potential, there is no detailed description of a complete instrumentation system to implement this promising technique in sleep studies. In this context, the purpose of this work was twofold: (1) describe the development of a flexible NPR device and (2) evaluate the performance of this device when compared to pneumotachographs (PNTs) and thermistors. After the design details are described, the system static accuracy is evaluated by a comparative analysis with a PNT. This analysis revealed a significant reduction (p<0.001) of the static error when system nonlinearities were reduced. The dynamic performance of the NPR system was investigated by frequency response analysis and time constant evaluations and the results showed that the developed device response was as good as PNT and around 100 times faster (τ=5,3 ms) than thermistors (τ=512 ms). Experimental results obtained in simulated clinical conditions and in a patient are presented as examples, and confirmed the good features achieved in engineering tests. These results are in close agreement with physiological fundamentals, supplying substantial evidence that the improved dynamic and static characteristics of this device can contribute to a more accurate implementation of medical research projects and to improve the diagnoses of sleep-breathing disorders.

  3. Scaffolding for solving problem in static fluid: A case study

    NASA Astrophysics Data System (ADS)

    Koes-H, Supriyono; Muhardjito, Wijaya, Charisma P.

    2018-01-01

    Problem solving is one of the basic abilities that should be developed from learning physics. However, students still face difficulties in the process of non-routine problem-solving. Efforts are necessary to be taken in order to identify such difficulties and the solutions to solve them. An effort in the form of a diagnosis of students' performance in problem solving can be taken to identify their difficulties, and various instructional scaffolding supports can be utilized to eliminate the difficulties. This case study aimed to describe the students' difficulties in solving static fluid problems and the effort to overcome such difficulties through different scaffolding supports. The research subjects consisted of four 10-grade students of (Public Senior High School) SMAN 4 Malang selected by purposive sampling technique. The data of students' difficulties were collected via think-aloud protocol implemented on students' performance in solving non-routine static fluid problems. Subsequently, combined scaffolding supports were given to the students based on their particular difficulties. The research findings pointed out that there were several conceptual difficulties discovered from the students when solving static fluid problems, i.e. the use of buoyancy force formula, determination of all forces acting on a plane in a fluid, the resultant force on a plane in a fluid, and determination of a plane depth in a fluid. An effort that can be taken to overcome such conceptual difficulties is providing a combination of some appropriate scaffolding supports, namely question prompts with specific domains, simulation, and parallel modeling. The combination can solve students' lack of knowledge and improve their conceptual understanding, as well as help them to find solutions by linking the problems with their prior knowledge. According to the findings, teachers are suggested to diagnose the students' difficulties so that they can provide an appropriate combination of scaffolding to support their students in finding the solutions.

  4. Multi-oxide active layer deposition using Applied Materials Pivot array coater for high-mobility metal oxide TFT

    NASA Astrophysics Data System (ADS)

    Park, Hyun Chan; Scheer, Evelyn; Witting, Karin; Hanika, Markus; Bender, Marcus; Hsu, Hao Chien; Yim, Dong Kil

    2015-11-01

    By controlling a thin indium tin oxide (ITO), indium zinc oxide interface layer between gate insulator and indium gallium zinc oxide (IGZO), the thin-film transistor (TFT) performance can reach higher mobility as conventional IGZO as well as superior stability. For large-area display application, Applied Materials static PVD array coater (Applied Materials GmbH & Co. KG, Alzenau, Germany) using rotary targets has been developed to enable uniform thin layer deposition in display industry. Unique magnet motion parameter optimization in Pivot sputtering coater is shown to provide very uniform thin ITO layer to reach TFT performance with high mobility, not only on small scale, but also on Gen8.5 (2500 × 2200 mm glass size) production system.

  5. Structure of the enzymatically synthesized fructan inulin.

    PubMed

    Heyer, A G; Schroeer, B; Radosta, S; Wolff, D; Czapla, S; Springer, J

    1998-12-15

    Construction, purification and characterization of a fusion protein of maltose-binding protein of Escherichia coli and the fructosyltransferase of Streptococcus mutans is described. With the purified protein, in vitro synthesis of inulin was performed. The obtained polysaccharide was characterized by high-performance size-exclusion chromatography (HPSEC) and static light scattering (SLS) in dilute aqueous and dimethyl sulfoxide solution. For all samples very high molecular weights between 60 x 10(6) and 90 x 10(6) g/mol and a remarkable small polydispersity index of 1.1 have been determined. Small root-mean-square radii of gyration point to a compact conformation in dilute solution. No difference between native and enzymatically synthesized inulin was observed by X-ray powder diffraction and thermoanalysis of solid samples.

  6. Reading with peripheral vision: a comparison of reading dynamic scrolling and static text with a simulated central scotoma.

    PubMed

    Harvey, Hannah; Walker, Robin

    2014-05-01

    Horizontally scrolling text is, in theory, ideally suited to enhance viewing strategies recommended to improve reading performance under conditions of central vision loss such as macular disease, although it is largely unproven in this regard. This study investigated if the use of scrolling text produced an observable improvement in reading performed under conditions of eccentric viewing in an artificial scotoma paradigm. Participants (n=17) read scrolling and static text with a central artificial scotoma controlled by an eye-tracker. There was an improvement in measures of reading accuracy, and adherence to eccentric viewing strategies with scrolling, compared to static, text. These findings illustrate the potential benefits of scrolling text as a potential reading aid for those with central vision loss. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Feedback tracking control for dynamic morphing of piezocomposite actuated flexible wings

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoming; Zhou, Wenya; Wu, Zhigang

    2018-03-01

    Aerodynamic properties of flexible wings can be improved via shape morphing using piezocomposite materials. Dynamic shape control of flexible wings is investigated in this study by considering the interactions between structural dynamics, unsteady aerodynamics and piezo-actuations. A novel antisymmetric angle-ply bimorph configuration of piezocomposite actuators is presented to realize coupled bending-torsional shape control. The active aeroelastic model is derived using finite element method and Theodorsen unsteady aerodynamic loads. A time-varying linear quadratic Gaussian (LQG) tracking control system is designed to enhance aerodynamic lift with pre-defined trajectories. Proof-of-concept simulations of static and dynamic shape control are presented for a scaled high-aspect-ratio wing model. Vibrations of the wing and fluctuations in aerodynamic forces are caused by using the static voltages directly in dynamic shape control. The lift response has tracked the trajectories well with favorable dynamic morphing performance via feedback tracking control.

  8. Wide-Baseline Stereo-Based Obstacle Mapping for Unmanned Surface Vehicles

    PubMed Central

    Mou, Xiaozheng; Wang, Han

    2018-01-01

    This paper proposes a wide-baseline stereo-based static obstacle mapping approach for unmanned surface vehicles (USVs). The proposed approach eliminates the complicated calibration work and the bulky rig in our previous binocular stereo system, and raises the ranging ability from 500 to 1000 m with a even larger baseline obtained from the motion of USVs. Integrating a monocular camera with GPS and compass information in this proposed system, the world locations of the detected static obstacles are reconstructed while the USV is traveling, and an obstacle map is then built. To achieve more accurate and robust performance, multiple pairs of frames are leveraged to synthesize the final reconstruction results in a weighting model. Experimental results based on our own dataset demonstrate the high efficiency of our system. To the best of our knowledge, we are the first to address the task of wide-baseline stereo-based obstacle mapping in a maritime environment. PMID:29617293

  9. A revisit to high-rate mode-II fracture characterization of composites with Kolsky bar techniques.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Wei-Yang; Song, Bo; Jin, Huiqing

    2010-03-01

    Nowadays composite materials have been extensively utilized in many military and industrial applications. For example, the newest Boeing 787 uses 50% composite (mostly carbon fiber reinforced plastic) in production. However, the weak delamination strength of fiber reinforced composites, when subjected to external impact such as ballistic impact, has been always potential serious threats to the safety of passengers. Dynamic fracture toughness is a critical indicator of the performance from delamination in such impact events. Quasi-static experimental techniques for fracture toughness have been well developed. For example, end notched flexure (ENF) technique, which is illustrated in Fig. 1, has become amore » typical method to determined mode-II fracture toughness for composites under quasi-static loading conditions. However, dynamic fracture characterization of composites has been challenging. This has resulted in conflictive and confusing conclusions in regard to strain rate effects on fracture toughness of composites.« less

  10. Broadband interferometric characterisation of nano-positioning stages with sub-10 pm resolution

    NASA Astrophysics Data System (ADS)

    Li, Zhi; Brand, Uwe; Wolff, Helmut; Koenders, Ludger; Yacoot, Andrew; Puranto, Prabowo

    2017-06-01

    A traceable calibration setup for investigation of the quasi-static and the dynamic performance of nano-positioning stages is detailed, which utilizes a differential plane-mirror interferometer with double-pass configuration from the National Physical Laboratory (NPL). An NPL-developed FPGA-based interferometric data acquisition and decoding system has been used to enable traceable quasi-static calibration of nano-positioning stages with high resolution. A lockin based modulation technique is further introduced to quantitatively calibrate the dynamic response of moving stages with a bandwidth up to 100 kHz and picometer resolution. First experimental results have proven that the calibration setup can achieve under nearly open-air conditions a noise floor lower than 10 pm/sqrt(Hz). A pico-positioning stage, that is used for nanoindentation with indentation depths down to a few picometers, has been characterized with this calibration setup.

  11. Analytic double product integrals for all-frequency relighting.

    PubMed

    Wang, Rui; Pan, Minghao; Chen, Weifeng; Ren, Zhong; Zhou, Kun; Hua, Wei; Bao, Hujun

    2013-07-01

    This paper presents a new technique for real-time relighting of static scenes with all-frequency shadows from complex lighting and highly specular reflections from spatially varying BRDFs. The key idea is to depict the boundaries of visible regions using piecewise linear functions, and convert the shading computation into double product integrals—the integral of the product of lighting and BRDF on visible regions. By representing lighting and BRDF with spherical Gaussians and approximating their product using Legendre polynomials locally in visible regions, we show that such double product integrals can be evaluated in an analytic form. Given the precomputed visibility, our technique computes the visibility boundaries on the fly at each shading point, and performs the analytic integral to evaluate the shading color. The result is a real-time all-frequency relighting technique for static scenes with dynamic, spatially varying BRDFs, which can generate more accurate shadows than the state-of-the-art real-time PRT methods.

  12. Flight evaluation of the transonic stability and control characteristics of an airplane incorporating a supercritical wing

    NASA Technical Reports Server (NTRS)

    Matheny, N. W.; Gatlin, D. H.

    1978-01-01

    A TF-8A airplane was equipped with a transport type supercritical wing and fuselage fairings to evaluate predicted performance improvements for cruise at transonic speeds. A comparison of aerodynamic derivatives extracted from flight and wind tunnel data showed that static longitudinal stability, effective dihedral, and aileron effectiveness, were higher than predicted. The static directional stability derivative was slower than predicted. The airplane's handling qualities were acceptable with the stability augmentation system on. The unaugmented airplane exhibited some adverse lateral directional characteristics that involved low Dutch roll damping and low roll control power at high angles of attack and roll control power that was greater than satisfactory for transport aircraft at cruise conditions. Longitudinally, the aircraft exhibited a mild pitchup tendency. Leading edge vortex generators delayed the onset of flow separation, moving the pitchup point to a higher lift coefficient and reducing its severity.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myers, M.A.; LaSalvia, J.C.; Hoke, D.

    Combustion synthesis followed by densification was utilized in producing monolithic TiC and TiB2 materials, and TiC-Ni, TiB2-Ni, TiB2-Al2O3, and TiB2SiC ceramic composites. Static and dynamic densification equipments were developed with the loading applied immediately after the synthesis reaction was completed and the ceramic/composite was ductile. All the ceramics exhibited an equiaxed grain structure with alternating regions at high and low dislocation densities, indicating that recovery/recrystallization mechanisms are prevalent. The grain boundaries were, as far as could be established, devoid of impurities and second phases. Quasi-static and dynamic mechanical testing were performed and revealed that the materials exhibited strength levels comparablemore » to conventionally produced materials. Instrumented densification experiments were conducted and a temperature-dependent consitutive model was applied for plastic deformation of the porous combustion synthesis product.« less

  14. The impact of dynamic balance measures on walking performance in multiple sclerosis.

    PubMed

    Fritz, Nora E; Marasigan, Rhul Evans R; Calabresi, Peter A; Newsome, Scott D; Zackowski, Kathleen M

    2015-01-01

    Static posture imbalance and gait dysfunction are common in individuals with multiple sclerosis (MS). Although the impact of strength and static balance on walking has been examined, the impact of dynamic standing balance on walking in MS remains unclear. To determine the impact of dynamic balance, static balance, sensation, and strength measures on walking in individuals with MS. Fifty-two individuals with MS (27 women; 26 relapsing-remitting; mean age = 45.6 ± 10.3 years; median Expanded Disability Status Scale score = 3.5) participated in posturography testing (Kistler-9281 force plate), hip flexion, hip extension, ankle dorsiflexion strength (Microfet2 hand-held dynamometer), sensation (Vibratron II), and walk velocity (Optotrak Motion Analysis System). Analyses included, Mann-Whitney, Spearman correlation coefficients, and multiple regression. All measures were abnormal in individuals with MS when compared with norms (P < .05). Static balance (eyes open, feet together [EOFT]), anterior-posterior (AP) dynamic sway, and hip extension strength were strongly correlated with walking velocity (AP sway r = 0.68; hip extension strength r = 0.73; EOFT r = -0.40). Together, AP dynamic sway (ρr = 0.71; P < .001), hip extension strength (ρr = 0.54; P < .001), and EOFT static balance (ρr = -0.41; P = .01) explained more than 70% of the variance in walking velocity (P < .001). AP dynamic sway affects walking performance in MS. A combined evaluation of dynamic balance, static balance, and strength may lead to a better understanding of walking mechanisms and the development of strategies to improve walking. © The Author(s) 2014.

  15. Effect of static foot posture on the dynamic stiffness of foot joints during walking.

    PubMed

    Sanchis-Sales, E; Sancho-Bru, J L; Roda-Sales, A; Pascual-Huerta, J

    2018-05-01

    The static foot posture has been related to the development of lower limb injuries. This study aimed to investigate the dynamic stiffness of foot joints during gait in the sagittal plane to understand the role of the static foot posture in the development of injuries. Seventy healthy adult male subjects with different static postures, assessed by the Foot Posture Index (FPI) (30 normal, 20 highly pronated and 20 highly supinated), were recruited. Kinematic and kinetic data were recorded using an optical motion capture system and a pressure platform, and dynamic stiffness at the different stages of the stance was calculated from the slopes of the linear regression on the flexion moment-angle curves. The effect of foot type on dynamic stiffness and on ranges of motion and moments was analysed using ANOVAs and post-hoc tests, and linear correlation between dynamic stiffness and FPI was also tested. Highly pronated feet showed a significantly smaller range of motion at the ankle and metatarsophalangeal joints and also a larger range of moments at the metatarsophalangeal joint than highly supinated feet. Dynamic stiffness during propulsion was significantly greater at all foot joints for highly pronated feet, with positive significant correlations with the squared FPI. Highly supinated feet showed greater dynamic stiffness than normal feet, although to a lesser extent. Highly pronated feet during normal gait experienced the greatest decrease in the dorsiflexor moments during propulsion, normal feet being the most balanced regarding work generated and absorbed. Extreme static foot postures show greater dynamic stiffness during propulsion and greater absorbed work, which increases the risk of developing injuries. The data presented may be used when designing orthotics or prostheses, and also when planning surgery that modifies joint stiffness. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Novel parametric reduced order model for aeroengine blade dynamics

    NASA Astrophysics Data System (ADS)

    Yuan, Jie; Allegri, Giuliano; Scarpa, Fabrizio; Rajasekaran, Ramesh; Patsias, Sophoclis

    2015-10-01

    The work introduces a novel reduced order model (ROM) technique to describe the dynamic behavior of turbofan aeroengine blades. We introduce an equivalent 3D frame model to describe the coupled flexural/torsional mode shapes, with their relevant natural frequencies and associated modal masses. The frame configurations are identified through a structural identification approach based on a simulated annealing algorithm with stochastic tunneling. The cost functions are constituted by linear combinations of relative errors associated to the resonance frequencies, the individual modal assurance criteria (MAC), and on either overall static or modal masses. When static masses are considered the optimized 3D frame can represent the blade dynamic behavior with an 8% error on the MAC, a 1% error on the associated modal frequencies and a 1% error on the overall static mass. When using modal masses in the cost function the performance of the ROM is similar, but the overall error increases to 7%. The approach proposed in this paper is considerably more accurate than state-of-the-art blade ROMs based on traditional Timoshenko beams, and provides excellent accuracy at reduced computational time when compared against high fidelity FE models. A sensitivity analysis shows that the proposed model can adequately predict the global trends of the variations of the natural frequencies when lumped masses are used for mistuning analysis. The proposed ROM also follows extremely closely the sensitivity of the high fidelity finite element models when the material parameters are used in the sensitivity.

  17. Damage of Elastomeric Matrix Composites (EMC-rubbers) Under Static Loading Conditions: Experimental and Numerical Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ayari, F.; Supmeca/LISMMA-Paris, School of Mechanical and Manufacturing Engineering; Bayraktar, E.

    2011-01-17

    Elastomeric matrix composites (EMC-rubbers) are considered as isotropic hyper elastic incompressible materials under static loading conditions. As a rubber material element cannot be extended to an infinite stretch ratio, a damage mechanism at large strain is considered. The phenomenon of cavitation plays an important role in the damage of EMCs and influences the toughening mechanism of rubber-modified plastics. Indeed, cavitation in elastomers is thought to be initiated from flaws, which grow primarily due to a hydrostatic tensile stress and ahead of the crack; there will not only be a high stress perpendicular to the plane of the crack but alsomore » significant stress components in the other direction. However, there exists historically much discussion on the evolution of the cavitation in elastomers under monotonic and/or static solicitation. Mainly, cavitation instability occurs when the stress levels are sufficiently high so that the void expansion rate becomes infinitely large. Many research works have been performed to understand the effects of rubber cavitation on toughening of plastics. In fact, the cavitation phenomenon is not well known in detail. The most popular idea states that the cavitation is related to the existence of the gas bubbles trapped in the material during the production stage and the growing of the cavities would then be the result of the growing gas bubbles. Further, instable failure mechanism at the end of the cavitation is not well known too.« less

  18. Finite element analysis of high aspect ratio wind tunnel wing model: A parametric study

    NASA Astrophysics Data System (ADS)

    Rosly, N. A.; Harmin, M. Y.

    2017-12-01

    Procedure for designing the wind tunnel model of a high aspect ratio (HAR) wing containing geometric nonlinearities is described in this paper. The design process begins with identification of basic features of the HAR wing as well as its design constraints. This enables the design space to be narrowed down and consequently, brings ease of convergence towards the design solution. Parametric studies in terms of the spar thickness, the span length and the store diameter are performed using finite element analysis for both undeformed and deformed cases, which respectively demonstrate the linear and nonlinear conditions. Two main criteria are accounted for in the selection of the wing design: the static deflections due to gravitational loading should be within the allowable margin of the size of the wind tunnel test section and the flutter speed of the wing should be much below the maximum speed of the wind tunnel. The findings show that the wing experiences a stiffness hardening effect under the nonlinear static solution and the presence of the store enables significant reduction in linear flutter speed.

  19. Zero-static power radio-frequency switches based on MoS2 atomristors.

    PubMed

    Kim, Myungsoo; Ge, Ruijing; Wu, Xiaohan; Lan, Xing; Tice, Jesse; Lee, Jack C; Akinwande, Deji

    2018-06-28

    Recently, non-volatile resistance switching or memristor (equivalently, atomristor in atomic layers) effect was discovered in transitional metal dichalcogenides (TMD) vertical devices. Owing to the monolayer-thin transport and high crystalline quality, ON-state resistances below 10 Ω are achievable, making MoS 2 atomristors suitable as energy-efficient radio-frequency (RF) switches. MoS 2 RF switches afford zero-hold voltage, hence, zero-static power dissipation, overcoming the limitation of transistor and mechanical switches. Furthermore, MoS 2 switches are fully electronic and can be integrated on arbitrary substrates unlike phase-change RF switches. High-frequency results reveal that a key figure of merit, the cutoff frequency (f c ), is about 10 THz for sub-μm 2 switches with favorable scaling that can afford f c above 100 THz for nanoscale devices, exceeding the performance of contemporary switches that suffer from an area-invariant scaling. These results indicate a new electronic application of TMDs as non-volatile switches for communication platforms, including mobile systems, low-power internet-of-things, and THz beam steering.

  20. Aggregate Effect on the Concrete Cone Capacity of an Undercut Anchor under Quasi-Static Tensile Load

    PubMed Central

    Marcon, Marco; Ninčević, Krešimir; Boumakis, Ioannis; Czernuschka, Lisa-Marie

    2018-01-01

    In the last decades, fastening systems have become an essential part of the construction industry. Post-installed mechanical anchors are frequently used in concrete members to connect them with other load bearing structural members, or to attach appliances. Their performance is limited by the concrete related failure modes which are highly influenced by the concrete mix design. This paper aims at investigating the effect that different aggregates used in the concrete mix have on the capacity of an undercut anchor under tensile quasi-static loading. Three concrete batches were cast utilising three different aggregate types. For two concrete ages (28 and 70 days), anchor tensile capacity and concrete properties were obtained. Concrete compressive strength, fracture energy and elastic modulus are used to normalize and compare the undercut anchor concrete tensile capacity employing some of the most widely used prediction models. For a more insightful comparison, a statistical method that yields also scatter information is introduced. Finally, the height and shape of the concrete cones are compared by highly precise and objective photogrammetric means. PMID:29723972

  1. Aggregate Effect on the Concrete Cone Capacity of an Undercut Anchor under Quasi-Static Tensile Load.

    PubMed

    Marcon, Marco; Ninčević, Krešimir; Boumakis, Ioannis; Czernuschka, Lisa-Marie; Wan-Wendner, Roman

    2018-05-01

    In the last decades, fastening systems have become an essential part of the construction industry. Post-installed mechanical anchors are frequently used in concrete members to connect them with other load bearing structural members, or to attach appliances. Their performance is limited by the concrete related failure modes which are highly influenced by the concrete mix design. This paper aims at investigating the effect that different aggregates used in the concrete mix have on the capacity of an undercut anchor under tensile quasi-static loading. Three concrete batches were cast utilising three different aggregate types. For two concrete ages (28 and 70 days), anchor tensile capacity and concrete properties were obtained. Concrete compressive strength, fracture energy and elastic modulus are used to normalize and compare the undercut anchor concrete tensile capacity employing some of the most widely used prediction models. For a more insightful comparison, a statistical method that yields also scatter information is introduced. Finally, the height and shape of the concrete cones are compared by highly precise and objective photogrammetric means.

  2. Levitation of water and organic substances in high static magnetic fields

    NASA Astrophysics Data System (ADS)

    Beaugnon, E.; Tournier, R.

    1991-08-01

    The levitation of various diamagnetic liquid and solid substances such as water, ethanol, acetone, bismuth, antimony, graphite, wood and plastic has been achieved at room temperature in a strong inhomogeneous static magnetic field. These experiments were performed in the hybrid magnet at the Service National des Champs Intenses (CNRS, Grenoble). These findings show that high field superconducting magnets could be used to provide a contactless, low gravity environment for the elaboration of a wide range of materials. En utilisant les forts champs magnétiques produits par la bobine hybride du Service National des Champs Intenses (CNRS, Grenoble), nous avons obtenu àtempérature ambiante la lévitation de substances diamagnétiques solides ou liquides telles que l'eau, l'alcool, l'acétone, le bismuth, l'antimoine, le graphite, le bois et le plastique. Ces résultats montrent que les bobines supraconductrices peuvent être utilisées pour l'élaboration de nombreux matériaux en gravité réduite, sans contact avec un contenant.

  3. A foundational methodology for determining system static complexity using notional lunar oxygen production processes

    NASA Astrophysics Data System (ADS)

    Long, Nicholas James

    This thesis serves to develop a preliminary foundational methodology for evaluating the static complexity of future lunar oxygen production systems when extensive information is not yet available about the various systems under consideration. Evaluating static complexity, as part of a overall system complexity analysis, is an important consideration in ultimately selecting a process to be used in a lunar base. When system complexity is higher, there is generally an overall increase in risk which could impact the safety of astronauts and the economic performance of the mission. To evaluate static complexity in lunar oxygen production, static complexity is simplified and defined into its essential components. First, three essential dimensions of static complexity are investigated, including interconnective complexity, strength of connections, and complexity in variety. Then a set of methods is developed upon which to separately evaluate each dimension. Q-connectivity analysis is proposed as a means to evaluate interconnective complexity and strength of connections. The law of requisite variety originating from cybernetic theory is suggested to interpret complexity in variety. Secondly, a means to aggregate the results of each analysis is proposed to create holistic measurement for static complexity using the Single Multi-Attribute Ranking Technique (SMART). Each method of static complexity analysis and the aggregation technique is demonstrated using notional data for four lunar oxygen production processes.

  4. High Temperature Metallic Seal Development For Aero Propulsion and Gas Turbine Applications

    NASA Technical Reports Server (NTRS)

    More, Greg; Datta, Amit

    2006-01-01

    A viewgraph presentation on metallic high temperature static seal development at NASA for gas turbine applications is shown. The topics include: 1) High Temperature Static Seal Development; 2) Program Review; 3) Phase IV Innovative Seal with Blade Alloy Spring; 4) Spring Design; 5) Phase IV: Innovative Seal with Blade Alloy Spring; 6) PHase IV: Testing Results; 7) Seal Seating Load; 8) Spring Seal Manufacturing; and 9) Other Applications for HIgh Temperature Spring Design

  5. Finite element structural redesign by large admissible perturbations

    NASA Technical Reports Server (NTRS)

    Bernitsas, Michael M.; Beyko, E.; Rim, C. W.; Alzahabi, B.

    1991-01-01

    In structural redesign, two structural states are involved; the baseline (known) State S1 with unacceptable performance, and the objective (unknown) State S2 with given performance specifications. The difference between the two states in performance and design variables may be as high as 100 percent or more depending on the scale of the structure. A Perturbation Approach to Redesign (PAR) is presented to relate any two structural states S1 and S2 that are modeled by the same finite element model and represented by different values of the design variables. General perturbation equations are derived expressing implicitly the natural frequencies, dynamic modes, static deflections, static stresses, Euler buckling loads, and buckling modes of the objective S2 in terms of its performance specifications, and S1 data and Finite Element Analysis (FEA) results. Large Admissible Perturbation (LEAP) algorithms are implemented in code RESTRUCT to define the objective S2 incrementally without trial and error by postprocessing FEA results of S1 with no additional FEAs. Systematic numerical applications in redesign of a 10 element 48 degree of freedom (dof) beam, a 104 element 192 dof offshore tower, a 64 element 216 dof plate, and a 144 element 896 dof cylindrical shell show the accuracy, efficiency, and potential of PAR to find an objective state that may differ 100 percent from the baseline design.

  6. A Laboratory Model of a Hydrogen/Oxygen Engine for Combustion and Nozzle Studies

    NASA Technical Reports Server (NTRS)

    Morren, Sybil Huang; Myers, Roger M.; Benko, Stephen E.; Arrington, Lynn A.; Reed, Brian D.

    1993-01-01

    A small laboratory diagnostic thruster was developed to augment present low thrust chemical rocket optical and heat flux diagnostics at the NASA Lewis Research Center. The objective of this work was to evaluate approaches for the use of temperature and pressure sensors for the investigation of low thrust rocket flow fields. The nominal engine thrust was 110 N. Tests were performed at chamber pressures of about 255 kPa, 370 kPa, and 500 kPa with oxidizer to fuel mixture ratios between 4.0 and 8.0. Two gaseous hydrogen/gaseous oxygen injector designs were tested with 60 percent and 75 percent fuel film cooling. The thruster and instrumentation designs were proven to be effective via hot fire testing. The thruster diagnostics provided inner wall temperature and static pressure measurements which were compared to the thruster global performance data. For several operating conditions, the performance data exhibited unexpected trends which were correlated with changes in the axial wall temperature distribution. Azimuthal temperature distributions were found to be a function of operating conditions and hardware configuration. The static pressure profiles showed that no severe pressure gradients were present in the rocket. The results indicated that small differences in injector design can result in dramatically different thruster performance and wall temperature behavior, but that these injector effects may be overshadowed by operating at a high fuel film cooling rate.

  7. Static internal performance of a two-dimensional convergent nozzle with thrust-vectoring capability up to 60 deg

    NASA Technical Reports Server (NTRS)

    Leavitt, L. D.

    1985-01-01

    An investigation was conducted at wind-off conditions in the static-test facility of the Langley 16-Foot Transonic Tunnel to determine the internal performance characteristics of a two-dimensional convergent nozzle with a thrust-vectoring capability up to 60 deg. Vectoring was accomplished by a downward rotation of a hinged upper convergent flap and a corresponding rotation of a center-pivoted lower convergent flap. The effects of geometric thrust-vector angle and upper-rotating-flap geometry on internal nozzle performance characteristics were investigated. Nozzle pressure ratio was varied from 1.0 (jet off) to approximately 5.0.

  8. Chronic effect of static stretching on strength performance and basal serum IGF-1 levels.

    PubMed

    Borges Bastos, Carmen L; Miranda, Humberto; Vale, Rodrigo Gomes de Souza; Portal, Maria de Nazaré; Gomes, M Thiago; Novaes, Jefferson da Silva; Winchester, Jason B

    2013-09-01

    Improving the process of how physical performance is enhanced is one of the main topics evaluated by physiologists. This process often involves athletes and nonathletic populations. The purpose of this study was to assess the chronic response to 10 weeks of static stretching exercises carried out before and during a strength training program for 8 exercises on an 8 repetition maximum (8RM) test performance, and basal serum insulinlike growth factor (IGF-1) levels. Thirty recreationally trained volunteers were randomly assigned to 1 of 3 training groups: (a) SBST (performed a warm-up with a static stretching protocol before each strength training session); (b) SDST (before each training set, a static stretching exercise was performed); and (c) OST (entire session was performed without any type of stretching exercise). Strength and IGF-1 levels were collected at the beginning (pretest) and end (posttest) of the entire experimental procedure. All the exercises showed a significant increase in muscle strength for the OST group. However, the results revealed a significant increase in the muscle strength for only a few exercises in the SBST (LP, LE) and SDST (LP) experimental conditions. Significant statistical differences were found between SBST and SDST for all the exercises in the OST experimental condition. Furthermore, the IGF-1 expression showed no significant differences in the intragroup analysis. However, the OST group showed higher values (p < 0.05) in the posttest when compared with those of the other groups (increased significantly only in the OST experimental condition). It has been concluded that, although all the groups showed an increase in muscular strength, the strength training performed without any type of stretching exercise, regardless of whether the stretching is performed before or during the lifting session, can more effectively increase muscle strength and basal serum IGF-1 levels. It was concluded that strength training, with or without the use of stretching exercises, increased muscular strength in the studied groups, and can induce an increase in IGF-1 levels.

  9. A comparison of the lattice discrete particle method to the finite-element method and the K&C material model for simulating the static and dynamic response of concrete.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Jovanca J.; Bishop, Joseph E.

    2013-11-01

    This report summarizes the work performed by the graduate student Jovanca Smith during a summer internship in the summer of 2012 with the aid of mentor Joe Bishop. The projects were a two-part endeavor that focused on the use of the numerical model called the Lattice Discrete Particle Model (LDPM). The LDPM is a discrete meso-scale model currently used at Northwestern University and the ERDC to model the heterogeneous quasi-brittle material, concrete. In the first part of the project, LDPM was compared to the Karagozian and Case Concrete Model (K&C) used in Presto, an explicit dynamics finite-element code, developed atmore » Sandia National Laboratories. In order to make this comparison, a series of quasi-static numerical experiments were performed, namely unconfined uniaxial compression tests on four varied cube specimen sizes, three-point bending notched experiments on three proportional specimen sizes, and six triaxial compression tests on a cylindrical specimen. The second part of this project focused on the application of LDPM to simulate projectile perforation on an ultra high performance concrete called CORTUF. This application illustrates the strengths of LDPM over traditional continuum models.« less

  10. Intense cavitation at extreme static pressure.

    PubMed

    Pishchalnikov, Yuri A; Gutierrez, Joel; Dunbar, Wylene W; Philpott, Richard W

    2016-02-01

    Cavitation is usually performed at hydrostatic pressures at or near 0.1 MPa. Higher static pressure produces more intense cavitation, but requires an apparatus that can build high amplitude acoustic waves with rarefactions exceeding the cavitation threshold. The absence of such an apparatus has prevented the achievement of intense acoustic cavitation, hindering research and the development of new applications. Here we describe a new high-pressure spherical resonator system, as well as experimental and modeling results in water and liquid metal (gallium), for cavitation at hydrostatic pressures between 10 and 150 MPa. Our computational data, using HYADES plasma hydrodynamics code, show the formation of dense plasma that, under these conditions, reaches peak pressures of about three to four orders of magnitude greater than the hydrostatic pressure in the bulk liquid and temperatures in the range of 100,000 K. Passive cavitation detection (PCD) data validate both a linear increase in shock wave amplitude and the production of highly intense concentrations of mechanical energy in the collapsing bubbles. High-speed camera observations show the formation of bubble clusters from single bubbles. The increased shock wave amplitude produced by bubble clusters, measured using PCD and fiber optic probe hydrophone, was consistent with current understanding that bubble clusters enable amplification of energy produced. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. High accuracy heat capacity measurements through the lambda transition of helium with very high temperature resolution

    NASA Technical Reports Server (NTRS)

    Fairbanks, W. M.; Lipa, J. A.

    1984-01-01

    A measurement of the heat capacity singularity of helium at the lambda transition was performed with the aim of improving tests of the Renormalization Group (RG) predictions for the static thermodynamic behavior near the singularity. The goal was to approach as closely as possible to the lambda-point while making heat capacity measurements of high accuracy. To do this, a new temperature sensor capable of unprecedented resolution near the lambda-point, and two thermal control systems were used. A short description of the theoretical background and motivation is given. The initial apparatus and results are also described.

  12. Atomization, drop size, and penetration for cross-stream water injection at high-altitude reentry conditions with application to the RAM C-1 and C-3 flights

    NASA Technical Reports Server (NTRS)

    Gooderum, P. B.; Bushnell, D. M.

    1972-01-01

    Atomization, drop size, and penetration data are presented for cross stream water injection at conditions simulating high altitude reentry (low Weber number, high static temperature, high Knudsen number, and low static pressure). These results are applied to the RAM C-1 and C-3 flights. Two primary breakup modes are considered, vapor pressure or flashing and aerodynamic atomization. Results are given for breakup boundaries and mean drop size for each of these atomization mechanisms. Both standard and flight orifice geometries are investigated. The data were obtained in both a static environment and in conventional aerodynamic facilities at Mach numbers of 4.5 and 8. The high temperature aspects of reentry were simulated in a Mach 5.5 cyanogen-oxygen tunnel with total temperature of 4500 K.

  13. Oxidation behavior of TD-NiCr in a dynamic high temperature environment

    NASA Technical Reports Server (NTRS)

    Tenney, D. R.; Young, C. T.; Herring, H. W.

    1974-01-01

    The oxidation behavior of TD-NiCr has been studied in static and high-speed flowing air environments at 1100 and 1200 C. It has been found that the stable oxide morphologies formed on the specimens exposed to the static and dynamic environments were markedly different. The faceted crystal morphology characteristic of static oxidation was found to be unstable under high-temperature, high-speed flow conditions and was quickly replaced by a porous NiO 'mushroom' type structure. Also, it was found that the rate of formation of CrO3 from Cr2O3 was greatly enhanced by high gas velocity conditions. The stability of Cr2-O3 was found to be greatly improved by the presence of an outer NiO layer, even though the NiO layer was very porous. An oxidation model is proposed to explain the observed microstructures and overall oxidation behavior of TD-NiCr alloys.

  14. A Developmental Study of Static Postural Control and Superimposed Arm Movements in Normal and Slowly Developing Children.

    ERIC Educational Resources Information Center

    Fisher, Janet M.

    Selected electromyographic parameters underlying static postural control in 4, 6, and 8 year old normally and slowly developing children during performance of selected arm movements were studied. Developmental delays in balance control were assessed by the Cashin Test of Motor Development (1974) and/or the Williams Gross Motor Coordination Test…

  15. Static Balance: A Comparative Study of Primary Age Boys and Girls.

    ERIC Educational Resources Information Center

    DiNucci, James M.

    The ability to attain and maintain a body position or balance is considered important in learning and performing motor skills. Static balance is defined as balance in which the body maintains equilibrium for one position; dynamic balance is described as maintaining equilibrium while the body is in motion or changing from one balanced position to…

  16. 40 CFR 53.65 - Test procedure: Loading test.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... performing the test in § 53.62 (full wind tunnel test), § 53.63 (wind tunnel inlet aspiration test), or § 53... particle delivery system shall consist of a static chamber or a low velocity wind tunnel having a.... The mean velocity in the test section of the static chamber or wind tunnel shall not exceed 2 km/hr...

  17. Survey of Mathematics Teachers' Static and Transformational Performance and Perspectives for Teaching Similarity

    ERIC Educational Resources Information Center

    Cunningham, Robert F.; Rappa, Anthony

    2016-01-01

    Surveys were used to examine mathematics teachers (15) on their ability to solve similarity problems and on their likely implementation of lesson objectives for teaching similarity. All correctly solved a similarity problem requiring a traditional static perspective, but 7 out of 15 failed to correctly solve a problem that required a more…

  18. Effect of a trade between boattail angle and wedge size on the performance of a nonaxisymmetric wedge nozzle

    NASA Technical Reports Server (NTRS)

    Carson, George T., Jr.; Bare, E. Ann; Burley, James R., II

    1987-01-01

    An investigation was conducted in the Langley 16-Foot Transonic Tunnel to determine the effect of a boattail angle and wedge-size trade on the performance of nonaxisymmetric wedge nozzles installed on a generic twin-engine fighter aircraft model. Test data were obtained at static conditions and at Mach numbers from 0.60 to 1.25. Angle of attack was held constant at 0 deg. High-pressure air was used to simulate jet exhaust, and the nozzle pressure ratio was varied from 1.0 (jet off) to slightly over 15.0. For the configurations studied, the results indicate that wedge size can be reduced without affecting aeropropulsive performance.

  19. JT8D high pressure compressor performance improvement

    NASA Technical Reports Server (NTRS)

    Gaffin, W. O.

    1981-01-01

    An improved performance high pressure compressor with potential application to all models of the JT8D engine was designed. The concept consisted of a trenched abradable rubstrip which mates with the blade tips for each of the even rotor stages. This feature allows tip clearances to be set so blade tips run at or near the optimum radius relative to the flowpath wall, without the danger of damaging the blades during transients and maneuvers. The improved compressor demonstrated thrust specific fuel consumption and exhaust gas temperature improvements of 1.0 percent and at least 10 C over the takeoff and climb power range at sea level static conditions, compared to a bill-of-material high pressure compressor. Surge margin also improved 4 percentage points over the high power operating range. A thrust specific fuel consumption improvement of 0.7 percent at typical cruise conditions was calculated based on the sea level test results.

  20. When static media promote active learning: annotated illustrations versus narrated animations in multimedia instruction.

    PubMed

    Mayer, Richard E; Hegarty, Mary; Mayer, Sarah; Campbell, Julie

    2005-12-01

    In 4 experiments, students received a lesson consisting of computer-based animation and narration or a lesson consisting of paper-based static diagrams and text. The lessons used the same words and graphics in the paper-based and computer-based versions to explain the process of lightning formation (Experiment 1), how a toilet tank works (Experiment 2), how ocean waves work (Experiment 3), and how a car's braking system works (Experiment 4). On subsequent retention and transfer tests, the paper group performed significantly better than the computer group on 4 of 8 comparisons, and there was no significant difference on the rest. These results support the static media hypothesis, in which static illustrations with printed text reduce extraneous processing and promote germane processing as compared with narrated animations.

Top