Sample records for high performance structural

  1. A Theoretical Structure of High School Concert Band Performance

    ERIC Educational Resources Information Center

    Bergee, Martin J.

    2015-01-01

    This study used exploratory (EFA) and confirmatory factor analysis (CFA) to verify a theoretical structure for high school concert band performance and to test that structure for viability, generality, and invariance. A total of 101 university students enrolled in two different bands rated two high school band performances (a "first"…

  2. Three-dimensional structures of graphene/polyaniline hybrid films constructed by steamed water for high-performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Zhang, Liling; Huang, Da; Hu, Nantao; Yang, Chao; Li, Ming; Wei, Hao; Yang, Zhi; Su, Yanjie; Zhang, Yafei

    2017-02-01

    A novel three-dimensional (3D) structure of reduced graphene oxide/polyaniline (rGO/PANI) hybrid films has been demonstrated for high-performance supercapacitors. Steamed water in closed vessels with high pressure and moderately high temperature is applied to facilely construct this structure. The as-designed rGO/PANI hybrid films exhibit a highest gravimetric specific capacitance of 1182 F g-1 at 1 A g-1 in the three-electrode test. The assembled symmetric device based on this structure shows both a high capacitance of 808 F g-1 at 1 A g-1 and a high gravimetric energy density (28.06 Wh kg-1 at a power density of 0.25 kW kg-1). Above all, this novel 3D structure constructed by steamed water regulation techniques shows excellent capacitance performance and holds a great promise for high-performance energy storage applications.

  3. Comparison and Analysis of Steel Frame Based on High Strength Column and Normal Strength Column

    NASA Astrophysics Data System (ADS)

    Liu, Taiyu; An, Yuwei

    2018-01-01

    The anti-seismic performance of high strength steel has restricted its industrialization in civil buildings. In order to study the influence of high strength steel column on frame structure, three models are designed through MIDAS/GEN finite element software. By comparing the seismic performance and economic performance of the three models, the three different structures are comprehensively evaluated to provide some references for the development of high strength steel in steel structure.

  4. Critical Role of Monoclinic Polarization Rotation in High-Performance Perovskite Piezoelectric Materials.

    PubMed

    Liu, Hui; Chen, Jun; Fan, Longlong; Ren, Yang; Pan, Zhao; Lalitha, K V; Rödel, Jürgen; Xing, Xianran

    2017-07-07

    High-performance piezoelectric materials constantly attract interest for both technological applications and fundamental research. The understanding of the origin of the high-performance piezoelectric property remains a challenge mainly due to the lack of direct experimental evidence. We perform in situ high-energy x-ray diffraction combined with 2D geometry scattering technology to reveal the underlying mechanism for the perovskite-type lead-based high-performance piezoelectric materials. The direct structural evidence reveals that the electric-field-driven continuous polarization rotation within the monoclinic plane plays a critical role to achieve the giant piezoelectric response. An intrinsic relationship between the crystal structure and piezoelectric performance in perovskite ferroelectrics has been established: A strong tendency of electric-field-driven polarization rotation generates peak piezoelectric performance and vice versa. Furthermore, the monoclinic M_{A} structure is the key feature to superior piezoelectric properties as compared to other structures such as monoclinic M_{B}, rhombohedral, and tetragonal. A high piezoelectric response originates from intrinsic lattice strain, but little from extrinsic domain switching. The present results will facilitate designing high-performance perovskite piezoelectric materials by enhancing the intrinsic lattice contribution with easy and continuous polarization rotation.

  5. 75 FR 28667 - Market Structure Roundtable

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-21

    ... views of investors, issuers, exchanges, alternative trading systems, financial services firms, high... roundtable will focus on market structure performance, including the events of May 6, metrics for evaluating market structure performance, high frequency trading, and undisplayed liquidity. The roundtable...

  6. High performance hybrid magnetic structure for biotechnology applications

    DOEpatents

    Humphries, David E [El Cerrito, CA; Pollard, Martin J [El Cerrito, CA; Elkin, Christopher J [San Ramon, CA

    2009-02-03

    The present disclosure provides a high performance hybrid magnetic structure made from a combination of permanent magnets and ferromagnetic pole materials which are assembled in a predetermined array. The hybrid magnetic structure provides means for separation and other biotechnology applications involving holding, manipulation, or separation of magnetic or magnetizable molecular structures and targets. Also disclosed are further improvements to aspects of the hybrid magnetic structure, including additional elements and for adapting the use of the hybrid magnetic structure for use in biotechnology and high throughput processes.

  7. Reactor for tracking catalyst nanoparticles in liquid at high temperature under a high-pressure gas phase with X-ray absorption spectroscopy.

    PubMed

    Nguyen, Luan; Tao, Franklin Feng

    2018-02-01

    Structure of catalyst nanoparticles dispersed in liquid phase at high temperature under gas phase of reactant(s) at higher pressure (≥5 bars) is important for fundamental understanding of catalytic reactions performed on these catalyst nanoparticles. Most structural characterizations of a catalyst performing catalysis in liquid at high temperature under gas phase at high pressure were performed in an ex situ condition in terms of characterizations before or after catalysis since, from technical point of view, access to the catalyst nanoparticles during catalysis in liquid phase at high temperature under high pressure reactant gas is challenging. Here we designed a reactor which allows us to perform structural characterization using X-ray absorption spectroscopy including X-ray absorption near edge structure spectroscopy and extended X-ray absorption fine structure spectroscopy to study catalyst nanoparticles under harsh catalysis conditions in terms of liquid up to 350 °C under gas phase with a pressure up to 50 bars. This reactor remains nanoparticles of a catalyst homogeneously dispersed in liquid during catalysis and X-ray absorption spectroscopy characterization.

  8. Structure Design and Performance Tuning of Nanomaterials for Electrochemical Energy Conversion and Storage.

    PubMed

    Sheng, Tian; Xu, Yue-Feng; Jiang, Yan-Xia; Huang, Ling; Tian, Na; Zhou, Zhi-You; Broadwell, Ian; Sun, Shi-Gang

    2016-11-15

    The performance of nanomaterials in electrochemical energy conversion (fuel cells) and storage (secondary batteries) strongly depends on the nature of their surfaces. Designing the structure of electrode materials is the key approach to achieving better performance. Metal or metal oxide nanocrystals (NCs) with high-energy surfaces and open surface structures have attained significant attention in the past decade since such features possess intrinsically exceptional properties. However, they are thermodynamically metastable, resulting in a huge challenge in their shape-controlled synthesis. The tuning of material structure, design, and performance on the nanoscale for electrochemical energy conversion and storage has attracted extended attention over the past few years. In this Account, recent progress made in shape-controlled synthesis of nanomaterials with high-energy surfaces and open surface structures using both electrochemical methods and surfactant-based wet chemical route are reviewed. In fuel cells, the most important catalytic materials are Pt and Pd and their NCs with high-energy surfaces of convex or concave morphology. These exhibit remarkable activity toward electrooxidation of small organic molecules, such as formic acid, methanol, and ethanol and so on. In practical applications, the successful synthesis of Pt NCs with high-energy surfaces of small sizes (sub-10 nm) realized a superior high mass activity. The electrocatalytic performances have been further boosted by synergetic effects in bimetallic systems, either through surface decoration using foreign metal atoms or by alloying in which the high-index facet structure is preserved and the electronic structure of the NCs is altered. The intrinsic relationship of high electrocatalytic performance dependent on open structure and high-energy surface is also valid for (metal) oxide nanomaterials used in Li ion batteries (LIB). It is essential for the anode nanomaterials to have optimized structures to keep them more stable during the charge/discharge processes for reducing damaging volume expansion via intercalation and subsequent reduced battery lifetime. In the case of cathodes, tuning the surface structure of nanomaterials should be one of the most beneficial strategies to enhance the capacity and rate performance. In addition, metal oxides with unique defective structure of high catalytic activity and carbon materials of porous structure for facilitating fast Li + diffusion paths and efficiently trapping polysulfide are most important approached and employed in Li-O 2 battery and Li-S battery, respectively. In summary, significant progress has already been made in the electrocatalytic field, and likely emerging techniques based on NCs enclosed with high-energy surfaces and high-index facets could provide a promising platform to investigate the surface structure-catalytic functionality at nanoscale, thus shedding light on the rational design of practical catalysts with high activity, selectivity, and durability for energy conversion and storage.

  9. High performance hybrid magnetic structure for biotechnology applications

    DOEpatents

    Humphries, David E; Pollard, Martin J; Elkin, Christopher J

    2005-10-11

    The present disclosure provides a high performance hybrid magnetic structure made from a combination of permanent magnets and ferromagnetic pole materials which are assembled in a predetermined array. The hybrid magnetic structure provides means for separation and other biotechnology applications involving holding, manipulation, or separation of magnetizable molecular structures and targets. Also disclosed are: a method of assembling the hybrid magnetic plates, a high throughput protocol featuring the hybrid magnetic structure, and other embodiments of the ferromagnetic pole shape, attachment and adapter interfaces for adapting the use of the hybrid magnetic structure for use with liquid handling and other robots for use in high throughput processes.

  10. High performance hybrid magnetic structure for biotechnology applications

    DOEpatents

    Humphries, David E.; Pollard, Martin J.; Elkin, Christopher J.

    2006-12-12

    The present disclosure provides a high performance hybrid magnetic structure made from a combination of permanent magnets and ferromagnetic pole materials which are assembled in a predetermined array. The hybrid magnetic structure provides for separation and other biotechnology applications involving holding, manipulation, or separation of magnetic or magnetizable molecular structures and targets. Also disclosed are: a method of assembling the hybrid magnetic plates, a high throughput protocol featuring the hybrid magnetic structure, and other embodiments of the ferromagnetic pole shape, attachment and adapter interfaces for adapting the use of the hybrid magnetic structure for use with liquid handling and other robots for use in high throughput processes.

  11. Hierarchically structured MnO2 nanowires supported on hollow Ni dendrites for high-performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Sun, Zhipeng; Firdoz, Shaik; Ying-Xuan Yap, Esther; Li, Lan; Lu, Xianmao

    2013-05-01

    We report a hierarchical Ni@MnO2 structure consisting of MnO2 nanowires supported on hollow Ni dendrites for high-performance supercapacitors. The Ni@MnO2 structure, which was prepared via a facile electrodeposition method, is highly porous and appears like a forest of pine trees grown vertically on a substrate. At a MnO2 mass loading of 0.35 mg cm-2, the Ni@MnO2 electrode demonstrated a specific capacitance of 1125 F g-1 that is close to the theoretical value. In addition, a remarkable high-rate performance (766 F g-1 at a discharge current density of 100 A g-1) was achieved. Electrochemical tests in a two-electrode configuration for the Ni@MnO2 structure with a high MnO2 loading of 3.6 mg cm-2 showed a low equivalent series resistance (ESR) of 1 Ω and a high specific power of 72 kW kg-1. This superior performance can be attributed to the highly porous and hierarchical structure of Ni@MnO2 that favors rapid diffusion of an electrolyte, highly conductive pathway for electron transport, and efficient material utilization.We report a hierarchical Ni@MnO2 structure consisting of MnO2 nanowires supported on hollow Ni dendrites for high-performance supercapacitors. The Ni@MnO2 structure, which was prepared via a facile electrodeposition method, is highly porous and appears like a forest of pine trees grown vertically on a substrate. At a MnO2 mass loading of 0.35 mg cm-2, the Ni@MnO2 electrode demonstrated a specific capacitance of 1125 F g-1 that is close to the theoretical value. In addition, a remarkable high-rate performance (766 F g-1 at a discharge current density of 100 A g-1) was achieved. Electrochemical tests in a two-electrode configuration for the Ni@MnO2 structure with a high MnO2 loading of 3.6 mg cm-2 showed a low equivalent series resistance (ESR) of 1 Ω and a high specific power of 72 kW kg-1. This superior performance can be attributed to the highly porous and hierarchical structure of Ni@MnO2 that favors rapid diffusion of an electrolyte, highly conductive pathway for electron transport, and efficient material utilization. Electronic supplementary information (ESI) available: More TEM and SEM images, digital photo, XPS, and XRD of the samples. See DOI: 10.1039/c3nr00209h

  12. Automated Fabrication Technologies for High Performance Polymer Composites

    NASA Technical Reports Server (NTRS)

    Shuart , M. J.; Johnston, N. J.; Dexter, H. B.; Marchello, J. M.; Grenoble, R. W.

    1998-01-01

    New fabrication technologies are being exploited for building high graphite-fiber-reinforced composite structure. Stitched fiber preforms and resin film infusion have been successfully demonstrated for large, composite wing structures. Other automatic processes being developed include automated placement of tacky, drapable epoxy towpreg, automated heated head placement of consolidated ribbon/tape, and vacuum-assisted resin transfer molding. These methods have the potential to yield low cost high performance structures by fabricating composite structures to net shape out-of-autoclave.

  13. Performance of high performance concrete (HPC) in low pH and sulfate environment.

    DOT National Transportation Integrated Search

    2013-05-01

    The goal of this research is to determine the impact of low pH and sulfate environment on high-performance concrete (HPC) and if the current structural and materials specifications provide adequate protections for concrete structures to meet the 75-y...

  14. Three-dimensional skeleton networks of graphene wrapped polyaniline nanofibers: an excellent structure for high-performance flexible solid-state supercapacitors

    PubMed Central

    Hu, Nantao; Zhang, Liling; Yang, Chao; Zhao, Jian; Yang, Zhi; Wei, Hao; Liao, Hanbin; Feng, Zhenxing; Fisher, Adrian; Zhang, Yafei; Xu, Zhichuan J.

    2016-01-01

    Thin, robust, lightweight, and flexible supercapacitors (SCs) have aroused growing attentions nowadays due to the rapid development of flexible electronics. Graphene-polyaniline (PANI) hybrids are attractive candidates for high performance SCs. In order to utilize them in real devices, it is necessary to improve the capacitance and the structure stability of PANI. Here we report a hierarchical three-dimensional structure, in which all of PANI nanofibers (NFs) are tightly wrapped inside reduced graphene oxide (rGO) nanosheet skeletons, for high-performance flexible SCs. The as-fabricated film electrodes with this unique structure showed a highest gravimetric specific capacitance of 921 F/g and volumetric capacitance of 391 F/cm3. The assembled solid-state SCs gave a high specific capacitance of 211 F/g (1 A/g), a high area capacitance of 0.9 F/cm2, and a competitive volumetric capacitance of 25.6 F/cm3. The SCs also exhibited outstanding rate capability (~75% retention at 20 A/g) as well as excellent cycling stability (100% retention at 10 A/g for 2000 cycles). Additionally, no structural failure and loss of performance were observed under the bending state. This structure design paves a new avenue for engineering rGO/PANI or other similar hybrids for high performance flexible energy storage devices. PMID:26795067

  15. Three-dimensional skeleton networks of graphene wrapped polyaniline nanofibers: An excellent structure for high-performance flexible solid-state supercapacitors

    DOE PAGES

    Hu, Nantao; Zhang, Liling; Yang, Chao; ...

    2016-01-22

    Thin, robust, lightweight, and flexible supercapacitors (SCs) have aroused growing attentions nowadays due to the rapid development of flexible electronics. Graphene-polyaniline (PANI) hybrids are attractive candidates for high performance SCs. In order to utilize them in real devices, it is necessary to improve the capacitance and the structure stability of PANI. Here we report a hierarchical three-dimensional structure, in which all of PANI nanofibers (NFs) are tightly wrapped inside reduced graphene oxide (rGO) nanosheet skeletons, for high-performance flexible SCs. The as-fabricated film electrodes with this unique structure showed a highest gravimetric specific capacitance of 921 F/g and volumetric capacitance ofmore » 391 F/cm 3. The assembled solid-state SCs gave a high specific capacitance of 211 F/g (1 A/g), a high area capacitance of 0.9 F/cm 2, and a competitive volumetric capacitance of 25.6 F/cm 3. The SCs also exhibited outstanding rate capability (~75% retention at 20 A/g) as well as excellent cycling stability (100% retention at 10 A/g for 2000 cycles). Additionally, no structural failure and loss of performance were observed under the bending state. Lastly, this structure design paves a new avenue for engineering rGO/PANI or other similar hybrids for high performance flexible energy storage devices.« less

  16. Artificial semiconductor/insulator superlattice channel structure for high-performance oxide thin-film transistors

    PubMed Central

    Ahn, Cheol Hyoun; Senthil, Karuppanan; Cho, Hyung Koun; Lee, Sang Yeol

    2013-01-01

    High-performance thin-film transistors (TFTs) are the fundamental building blocks in realizing the potential applications of the next-generation displays. Atomically controlled superlattice structures are expected to induce advanced electric and optical performance due to two-dimensional electron gas system, resulting in high-electron mobility transistors. Here, we have utilized a semiconductor/insulator superlattice channel structure comprising of ZnO/Al2O3 layers to realize high-performance TFTs. The TFT with ZnO (5 nm)/Al2O3 (3.6 nm) superlattice channel structure exhibited high field effect mobility of 27.8 cm2/Vs, and threshold voltage shift of only < 0.5 V under positive/negative gate bias stress test during 2 hours. These properties showed extremely improved TFT performance, compared to ZnO TFTs. The enhanced field effect mobility and stability obtained for the superlattice TFT devices were explained on the basis of layer-by-layer growth mode, improved crystalline nature of the channel layers, and passivation effect of Al2O3 layers. PMID:24061388

  17. The use of synthetic blended fibers to reduce cracking risk in high performance concrete.

    DOT National Transportation Integrated Search

    2014-09-01

    Transportation departments have observed varying degrees of cracking in their concrete structures. Cracking of high performance reinforced concrete structures, in particular bridge decks, is of paramount concern to Pacific Northwest Departments of Tr...

  18. Development of shrinkage limits and testing protocols for ODOT high performance concrete.

    DOT National Transportation Integrated Search

    2013-12-01

    ODOT has observed varying degrees of cracking in their concrete structures. Cracking of high performance reinforced : concrete structures, in particular bridge decks, is of paramount concern to ODOT. Cracking at early ages (especially within : the fi...

  19. Quantitative description on structure-property relationships of Li-ion battery materials for high-throughput computations

    NASA Astrophysics Data System (ADS)

    Wang, Youwei; Zhang, Wenqing; Chen, Lidong; Shi, Siqi; Liu, Jianjun

    2017-12-01

    Li-ion batteries are a key technology for addressing the global challenge of clean renewable energy and environment pollution. Their contemporary applications, for portable electronic devices, electric vehicles, and large-scale power grids, stimulate the development of high-performance battery materials with high energy density, high power, good safety, and long lifetime. High-throughput calculations provide a practical strategy to discover new battery materials and optimize currently known material performances. Most cathode materials screened by the previous high-throughput calculations cannot meet the requirement of practical applications because only capacity, voltage and volume change of bulk were considered. It is important to include more structure-property relationships, such as point defects, surface and interface, doping and metal-mixture and nanosize effects, in high-throughput calculations. In this review, we established quantitative description of structure-property relationships in Li-ion battery materials by the intrinsic bulk parameters, which can be applied in future high-throughput calculations to screen Li-ion battery materials. Based on these parameterized structure-property relationships, a possible high-throughput computational screening flow path is proposed to obtain high-performance battery materials.

  20. Quantitative description on structure-property relationships of Li-ion battery materials for high-throughput computations.

    PubMed

    Wang, Youwei; Zhang, Wenqing; Chen, Lidong; Shi, Siqi; Liu, Jianjun

    2017-01-01

    Li-ion batteries are a key technology for addressing the global challenge of clean renewable energy and environment pollution. Their contemporary applications, for portable electronic devices, electric vehicles, and large-scale power grids, stimulate the development of high-performance battery materials with high energy density, high power, good safety, and long lifetime. High-throughput calculations provide a practical strategy to discover new battery materials and optimize currently known material performances. Most cathode materials screened by the previous high-throughput calculations cannot meet the requirement of practical applications because only capacity, voltage and volume change of bulk were considered. It is important to include more structure-property relationships, such as point defects, surface and interface, doping and metal-mixture and nanosize effects, in high-throughput calculations. In this review, we established quantitative description of structure-property relationships in Li-ion battery materials by the intrinsic bulk parameters, which can be applied in future high-throughput calculations to screen Li-ion battery materials. Based on these parameterized structure-property relationships, a possible high-throughput computational screening flow path is proposed to obtain high-performance battery materials.

  1. Performance of the first structure built with high performance concrete in Virginia.

    DOT National Transportation Integrated Search

    2001-08-01

    This study evaluated the preparation and placement operations, concrete properties, cost-effectiveness, and performance over 5 years of the first bridge containing high performance concrete built by the Virginia Department of Transportation. High per...

  2. Linear static structural and vibration analysis on high-performance computers

    NASA Technical Reports Server (NTRS)

    Baddourah, M. A.; Storaasli, O. O.; Bostic, S. W.

    1993-01-01

    Parallel computers offer the oppurtunity to significantly reduce the computation time necessary to analyze large-scale aerospace structures. This paper presents algorithms developed for and implemented on massively-parallel computers hereafter referred to as Scalable High-Performance Computers (SHPC), for the most computationally intensive tasks involved in structural analysis, namely, generation and assembly of system matrices, solution of systems of equations and calculation of the eigenvalues and eigenvectors. Results on SHPC are presented for large-scale structural problems (i.e. models for High-Speed Civil Transport). The goal of this research is to develop a new, efficient technique which extends structural analysis to SHPC and makes large-scale structural analyses tractable.

  3. Coaxial-cable structure composite cathode material with high sulfur loading for high performance lithium-sulfur batteries

    NASA Astrophysics Data System (ADS)

    Li, Qiang; Zhang, Zhian; Guo, Zaiping; Zhang, Kai; Lai, Yanqing; Li, Jie

    2015-01-01

    Hollow carbon nanofiber@nitrogen-doped porous carbon (HCNF@NPC) coaxial-cable structure composite, which is carbonized from HCNF@polydopamine, is prepared as an improved high conductive carbon matrix for encapsulating sulfur as a composite cathode material for lithium-sulfur batteries. The prepared HCNF@NPC-S composite with high sulfur content of approximately 80 wt% shows an obvious coaxial-cable structure with an NPC layer coating on the surface of the linear HCNFs along the length and sulfur homogeneously distributes in the coating layer. This material exhibits much better electrochemical performance than the HCNF-S composite, delivers initial discharge capacity of 982 mAh g-1 and maintains a high capacity retention rate of 63% after 200 cycles at a high current density of 837.5 mA g-1. The significantly enhanced electrochemical performance of the HCNF@NPC-S composite is attributed to the unique coaxial-cable structure, in which the linear HCNF core provides electronic conduction pathways and works as mechanical support, and the NPC shell with nitrogen-doped and porous structure can trap sulfur/polysulfides and provide Li+ conductive pathways.

  4. Processing bulk natural wood into a high-performance structural material.

    PubMed

    Song, Jianwei; Chen, Chaoji; Zhu, Shuze; Zhu, Mingwei; Dai, Jiaqi; Ray, Upamanyu; Li, Yiju; Kuang, Yudi; Li, Yongfeng; Quispe, Nelson; Yao, Yonggang; Gong, Amy; Leiste, Ulrich H; Bruck, Hugh A; Zhu, J Y; Vellore, Azhar; Li, Heng; Minus, Marilyn L; Jia, Zheng; Martini, Ashlie; Li, Teng; Hu, Liangbing

    2018-02-07

    Synthetic structural materials with exceptional mechanical performance suffer from either large weight and adverse environmental impact (for example, steels and alloys) or complex manufacturing processes and thus high cost (for example, polymer-based and biomimetic composites). Natural wood is a low-cost and abundant material and has been used for millennia as a structural material for building and furniture construction. However, the mechanical performance of natural wood (its strength and toughness) is unsatisfactory for many advanced engineering structures and applications. Pre-treatment with steam, heat, ammonia or cold rolling followed by densification has led to the enhanced mechanical performance of natural wood. However, the existing methods result in incomplete densification and lack dimensional stability, particularly in response to humid environments, and wood treated in these ways can expand and weaken. Here we report a simple and effective strategy to transform bulk natural wood directly into a high-performance structural material with a more than tenfold increase in strength, toughness and ballistic resistance and with greater dimensional stability. Our two-step process involves the partial removal of lignin and hemicellulose from the natural wood via a boiling process in an aqueous mixture of NaOH and Na 2 SO 3 followed by hot-pressing, leading to the total collapse of cell walls and the complete densification of the natural wood with highly aligned cellulose nanofibres. This strategy is shown to be universally effective for various species of wood. Our processed wood has a specific strength higher than that of most structural metals and alloys, making it a low-cost, high-performance, lightweight alternative.

  5. Processing bulk natural wood into a high-performance structural material

    NASA Astrophysics Data System (ADS)

    Song, Jianwei; Chen, Chaoji; Zhu, Shuze; Zhu, Mingwei; Dai, Jiaqi; Ray, Upamanyu; Li, Yiju; Kuang, Yudi; Li, Yongfeng; Quispe, Nelson; Yao, Yonggang; Gong, Amy; Leiste, Ulrich H.; Bruck, Hugh A.; Zhu, J. Y.; Vellore, Azhar; Li, Heng; Minus, Marilyn L.; Jia, Zheng; Martini, Ashlie; Li, Teng; Hu, Liangbing

    2018-02-01

    Synthetic structural materials with exceptional mechanical performance suffer from either large weight and adverse environmental impact (for example, steels and alloys) or complex manufacturing processes and thus high cost (for example, polymer-based and biomimetic composites). Natural wood is a low-cost and abundant material and has been used for millennia as a structural material for building and furniture construction. However, the mechanical performance of natural wood (its strength and toughness) is unsatisfactory for many advanced engineering structures and applications. Pre-treatment with steam, heat, ammonia or cold rolling followed by densification has led to the enhanced mechanical performance of natural wood. However, the existing methods result in incomplete densification and lack dimensional stability, particularly in response to humid environments, and wood treated in these ways can expand and weaken. Here we report a simple and effective strategy to transform bulk natural wood directly into a high-performance structural material with a more than tenfold increase in strength, toughness and ballistic resistance and with greater dimensional stability. Our two-step process involves the partial removal of lignin and hemicellulose from the natural wood via a boiling process in an aqueous mixture of NaOH and Na2SO3 followed by hot-pressing, leading to the total collapse of cell walls and the complete densification of the natural wood with highly aligned cellulose nanofibres. This strategy is shown to be universally effective for various species of wood. Our processed wood has a specific strength higher than that of most structural metals and alloys, making it a low-cost, high-performance, lightweight alternative.

  6. Ultra-broad polypyrrole (PPy) nano-ribbons seeded by racemic surfactants aggregates and their high-performance electromagnetic radiation elimination.

    PubMed

    Jiao, Yingzhi; Wu, Fan; Zhang, Kun; Sun, Mengxiao; Xie, Aming; Dong, Wei

    2017-08-04

    Ribbon-like nano-structures possess high aspect ratios, and thus have great potential in the development of high-performance microwave absorption (MA) materials that can effectively eliminate adverse electromagnetic radiation. However, these nano-structures have been scarcely constructed in the field of MA, because of the lack of efficient synthetic routes. Herein, we developed an efficient method to successfully construct polypyrrole (PPy) nano-ribbons using the self-assembly aggregates of a racemic surfactant as the seeds. The frequency range with a reflection loss value of lower than -10 dB reached 7.68 GHz in the frequency range of 10.32-18.00 GHz, and surpassed all the currently reported PPy nano-structures, as well as most other MA nano-materials. Through changing the amount of surfactant, both the nano-structures and MA performance can be effectively regulated. Furthermore, the reason behind the high-performance MA of PPy nano-ribbons has been deeply explored. It opens up the opportunity for the application of conducting polymer nano-ribbons as a lightweight and tunable high-performance MA material, especially in applications of special aircraft and flexible electronics.

  7. Ultra-broad polypyrrole (PPy) nano-ribbons seeded by racemic surfactants aggregates and their high-performance electromagnetic radiation elimination

    NASA Astrophysics Data System (ADS)

    Jiao, Yingzhi; Wu, Fan; Zhang, Kun; Sun, Mengxiao; Xie, Aming; Dong, Wei

    2017-08-01

    Ribbon-like nano-structures possess high aspect ratios, and thus have great potential in the development of high-performance microwave absorption (MA) materials that can effectively eliminate adverse electromagnetic radiation. However, these nano-structures have been scarcely constructed in the field of MA, because of the lack of efficient synthetic routes. Herein, we developed an efficient method to successfully construct polypyrrole (PPy) nano-ribbons using the self-assembly aggregates of a racemic surfactant as the seeds. The frequency range with a reflection loss value of lower than -10 dB reached 7.68 GHz in the frequency range of 10.32-18.00 GHz, and surpassed all the currently reported PPy nano-structures, as well as most other MA nano-materials. Through changing the amount of surfactant, both the nano-structures and MA performance can be effectively regulated. Furthermore, the reason behind the high-performance MA of PPy nano-ribbons has been deeply explored. It opens up the opportunity for the application of conducting polymer nano-ribbons as a lightweight and tunable high-performance MA material, especially in applications of special aircraft and flexible electronics.

  8. A high performance pMOSFET with two-step recessed SiGe-S/D structure for 32 nm node and beyond

    NASA Astrophysics Data System (ADS)

    Yasutake, Nobuaki; Azuma, Atsushi; Ishida, Tatsuya; Ohuchi, Kazuya; Aoki, Nobutoshi; Kusunoki, Naoki; Mori, Shinji; Mizushima, Ichiro; Morooka, Tetsu; Kawanaka, Shigeru; Toyoshima, Yoshiaki

    2007-11-01

    A novel SiGe-S/D structure for high performance pMOSFET called two-step recessed SiGe-source/drain (S/D) is developed with careful optimization of recessed SiGe-S/D structure. With this method, hole mobility, short channel effect and S/D resistance in pMOSFET are improved compared with conventional recessed SiGe-S/D structure. To enhance device performance such as drain current drivability, SiGe region has to be closer to channel region. Then, conventional deep SiGe-S/D region with carefully optimized shallow SiGe SDE region showed additional device performance improvement without SCE degradation. As a result, high performance 24 nm gate length pMOSFET was demonstrated with drive current of 451 μA/μm at ∣ Vdd∣ of 0.9 V and Ioff of 100 nA/μm (552 μA/μm at ∣ Vdd∣ of 1.0 V). Furthermore, by combining with Vdd scaling, we indicate the extendability of two-step recessed SiGe-S/D structure down to 15 nm node generation.

  9. A Review of Influence of Various Types of Structural Bracing to the Structural Performance of Buildings

    NASA Astrophysics Data System (ADS)

    Razak, S. M.; Kong, T. C.; Zainol, N. Z.; Adnan, A.; Azimi, M.

    2018-03-01

    Excessive lateral drift can contribute significantly towards crack formation, leading to structural damage. The structural damage will in turn reduce the capacity of the structure and weaken it from the intended design capacity. Generally, lateral drift is more pronounced in higher and longer structure, such as high rise buildings and bridges. A typical method employed to control lateral drift is structural bracing, which works by increasing stiffness and stability of structure. This paper reviews the influence of various types of structural bracing to structural performance of buildings. The history of structural bracing is visited and the differences between numerous structural bracing in term of suitability to different types of buildings and loading, mechanisms, technical details, advantages and limitations, and the overall effect on the structural behaviour and performance are dissected. Proper and efficient structural bracing is pertinent for each high rise building as this will lead towards safer, sustainable and more economical buildings, which are cheaper to maintain throughout the life of the buildings in the future.

  10. Structural Evolution of Li xNi yMn zCo 1-y-zO 2 Cathode Materials during High-Rate Charge and Discharge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hwang, Sooyeon; Jo, Eunmi; Chung, Kyung Yoon

    Ni-rich lithium transition metal oxides have received significant attention due to their high capacities and rate capabilities determined via theoretical calculations. Although the structural properties of these materials are strongly correlated with the electrochemical performance, their structural stability during the high-rate electrochemical reactions has not been fully evaluated yet. In this work, transmission electron microscopy is used to investigate the crystallographic and electronic structural modifications of Ni-based cathode materials at a high charge/discharge rate of 10 C. It is found that the high-rate electrochemical reactions induce structural inhomogeneity near the surface of Ni-rich cathode materials, which limits Li transport andmore » reduces their capacities. Furthermore, this study establishes a correlation between the high-rate electrochemical performance of the Ni-based materials and their structural evolution, which can provide profound insights for designing novel cathode materials having both high energy and power densities.« less

  11. Structural Evolution of Li xNi yMn zCo 1-y-zO 2 Cathode Materials during High-Rate Charge and Discharge

    DOE PAGES

    Hwang, Sooyeon; Jo, Eunmi; Chung, Kyung Yoon; ...

    2017-11-08

    Ni-rich lithium transition metal oxides have received significant attention due to their high capacities and rate capabilities determined via theoretical calculations. Although the structural properties of these materials are strongly correlated with the electrochemical performance, their structural stability during the high-rate electrochemical reactions has not been fully evaluated yet. In this work, transmission electron microscopy is used to investigate the crystallographic and electronic structural modifications of Ni-based cathode materials at a high charge/discharge rate of 10 C. It is found that the high-rate electrochemical reactions induce structural inhomogeneity near the surface of Ni-rich cathode materials, which limits Li transport andmore » reduces their capacities. Furthermore, this study establishes a correlation between the high-rate electrochemical performance of the Ni-based materials and their structural evolution, which can provide profound insights for designing novel cathode materials having both high energy and power densities.« less

  12. Surface-structured diffuser by iterative down-size molding with glass sintering technology.

    PubMed

    Lee, Xuan-Hao; Tsai, Jung-Lin; Ma, Shih-Hsin; Sun, Ching-Cherng

    2012-03-12

    In this paper, a down-size sintering scheme for making high-performance diffusers with micro structure to perform beam shaping is presented and demonstrated. By using down-size sintering method, a surface-structure film is designed and fabricated to verify the feasibility of the sintering technology, in which up to 1/8 dimension reduction has been achieved. Besides, a special impressing technology has been applied to fabricate diffuser film with various materials and the transmission efficiency is as high as 85% and above. By introducing the diffuser into possible lighting applications, the diffusers have been shown high performance in glare reduction, beam shaping and energy saving.

  13. Effect of working fluids on thermal performance of closed loop pulsating heat pipe

    NASA Astrophysics Data System (ADS)

    Kolková, Zuzana; Malcho, Milan

    2014-08-01

    Improving the performance of electrical components needs higher heat removal from these systems. One of the solutions available is to use a sealed heat pipe with a throbbing filling, where development meets the current requirements for intensification of heat removal and elimination of moving parts cooling systems. Heat pipes operate using phase change working fluid, and it is evaporation and condensation. They have a meandering shape and are characterized by high intensity of heat transfer, high durability and reliability. Advantage of these tubes is that it is not necessary to create the internal capillary structure for transporting liquid and they need any pump to the working fluid circulation. They have a simple structure, low cost, high performance, and they can be used for various structural applications. The choice of working fluid volume and performance affects thermal performance. Distilled water, ethanol and acetone were used in the performance ranges 0-80%.

  14. School-wide implementation of the elements of effective classroom instruction: Lessons from a high-performing, high-poverty urban school

    NASA Astrophysics Data System (ADS)

    Dyson, Hilarie

    2008-10-01

    The purpose of the study was to identify structures and systems implemented in a high-performing high-poverty urban school to promote high academic achievement among students of color. The researcher used a sociocultural theoretical framework to examine the influence of culture on the structures and systems that increased performance by African American and Hispanic students. Four research questions guided the study: (1) What are the trends and patterns of student performance among students of color? (2) What are the organizational structures and systems that are perceived to contribute to high student performance in high-poverty urban schools with high concentrations of students of color? (3) How are the organizational structures and systems implemented to support school-wide effective classroom instruction that promotes student learning? (4) How is the construct of race reflected in the school's structures and systems? Qualitative data were collected through interviews, observations, and artifact collection. A single case study method was employed and collected data were triangulated to capture and explore the rich details of the study. The study focused on a high-performing high-poverty urban elementary school located in southern California. The school population consisted of 99% students of color and 93% were economically disadvantaged. The school was selected for making significant and consistent growth in Academic Performance Index and Adequate Yearly Progress over a 3-year period. The school-wide structures and systems studied were (a) leadership, (b) school climate and culture, (c) standards-based instruction, (d) data-driven decision making, and (e) professional development. Four common themes emerged from the findings: (a) instructional leadership that focused on teaching and learning; (b) high expectations for all students; (c) school-wide focus on student achievement using standards, data, and culturally responsive teaching; and (d) positive relationships and interactions among students, teachers, parents, and community. Suggestion for future research include a deep examination of how and why culturally relevant pedagogy supports students of color, research on leadership and its impact on creating a positive school climate and culture to produce high student achievement by students of color, and the impact of early education programs on student achievement among poor students and students of color.

  15. An antisymmetric cell structure for high-performance zinc bromine flow battery

    NASA Astrophysics Data System (ADS)

    Kim, Yongbeom; Jeon, Joonhyeon

    2017-12-01

    Zinc-bromine flow batteries (ZBBs) remain a problem of designing a cell with high coulombic efficiency and stability. This problem is caused intrinsically by different phase transition in each side of the half-cells during charge-discharge process. This paper describes a ZBB with an antisymmetric cell structure, which uses anode and cathode with different surface morphologies, for high-discharge capacity and reliability. The structure of the antisymmetric ZBB cell contains a carbon-surface electrode and a carbon-volume electrode in zinc and bromine half cells, respectively. To demonstrate the effectiveness of this proposed ZBB cell structure, Cyclic Voltammetry measurement is performed on a graphite foil and a carbon felt which are used as the surface and electrodes. Charge and discharge cyclic operations are also carried out with symmetric and antisymmetric ZBB cells combined with the two electrode types. Experimental results show that the arrangement of antisymmetric cell structure in ZBB provides a solution to the high performance and durability.

  16. Demonstration and Validation of Two Coat High Performance Coating System for Steel Structures in Corrosive Environments

    DTIC Science & Technology

    2016-12-01

    System for Steel Structures in Corrosive Environments Final Report on Project F12-AR06 Co ns tr uc tio n En gi ne er in g R es ea rc h La bo ra...Prevention and Control Program ERDC/CERL TR-16-27 December 2016 Demonstration and Validation of Two-Coat High- Performance Coating System for Steel ...Performance Coating System for Steel Structures in Corrosive Environments” ERDC/CERL TR-16-27 ii Abstract Department of Defense (DoD) installations

  17. Multifunctional Sandwich‐Structured Electrolyte for High‐Performance Lithium–Sulfur Batteries

    PubMed Central

    Qu, Hongtao; Zhang, Jianjun; Du, Aobing; Chen, Bingbing; Chai, Jingchao; Xue, Nan; Wang, Longlong; Qiao, Lixin; Wang, Chen; Zang, Xiao; Yang, Jinfeng; Wang, Xiaogang

    2018-01-01

    Abstract Due to its high theoretical energy density (2600 Wh kg−1), low cost, and environmental benignity, the lithium–sulfur (Li‐S) battery is attracting strong interest among the various electrochemical energy storage systems. However, its practical application is seriously hampered by the so‐called shuttle effect of the highly soluble polysulfides. Herein, a novel design of multifunctional sandwich‐structured polymer electrolyte (polymer/cellulose nonwoven/nanocarbon) for high‐performance Li‐S batteries is demonstrated. It is verified that Li‐S battery with this sandwich‐structured polymer electrolyte delivers excellent cycling stability (only 0.039% capacity decay cycle−1 on average exceeding 1500 cycles at 0.5 C) and rate capability (with a reversible capacity of 594 mA h g−1 at 4 C). These electrochemical performances are attributed to the synergistic effect of each layer in this unique sandwich‐structured polymer electrolyte including steady lithium stripping/plating, strong polysulfide absorption ability, and increased redox reaction sites. More importantly, even with high sulfur loading of 4.9 mg cm−2, Li‐S battery with this sandwich‐structured polymer electrolyte can deliver high initial areal capacity of 5.1 mA h cm−2. This demonstrated strategy here may open up a new era of designing hierarchical structured polymer electrolytes for high‐performance Li‐S batteries. PMID:29593953

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Nantao; Zhang, Liling; Yang, Chao

    Thin, robust, lightweight, and flexible supercapacitors (SCs) have aroused growing attentions nowadays due to the rapid development of flexible electronics. Graphene-polyaniline (PANI) hybrids are attractive candidates for high performance SCs. In order to utilize them in real devices, it is necessary to improve the capacitance and the structure stability of PANI. Here we report a hierarchical three-dimensional structure, in which all of PANI nanofibers (NFs) are tightly wrapped inside reduced graphene oxide (rGO) nanosheet skeletons, for high-performance flexible SCs. The as-fabricated film electrodes with this unique structure showed a highest gravimetric specific capacitance of 921 F/g and volumetric capacitance ofmore » 391 F/cm 3. The assembled solid-state SCs gave a high specific capacitance of 211 F/g (1 A/g), a high area capacitance of 0.9 F/cm 2, and a competitive volumetric capacitance of 25.6 F/cm 3. The SCs also exhibited outstanding rate capability (~75% retention at 20 A/g) as well as excellent cycling stability (100% retention at 10 A/g for 2000 cycles). Additionally, no structural failure and loss of performance were observed under the bending state. Lastly, this structure design paves a new avenue for engineering rGO/PANI or other similar hybrids for high performance flexible energy storage devices.« less

  19. Optimum design of high speed prop rotors including the coupling of performance, aeroelastic stability and structures

    NASA Technical Reports Server (NTRS)

    Chattopadhyay, Aditi; Mccarthy, Thomas R.; Madden, John F., III

    1992-01-01

    An optimization procedure is developed for the design of high speed prop-rotors to be used in civil tiltrotor applications. The goal is to couple aerodynamic performance, aeroelastic stability, and structural design requirements inside a closed-loop optimization procedure. The objective is to minimize the gross weight and maximize the propulsive efficiency in high speed cruise. Constraints are imposed on the rotor aeroelastic stability in both hover and cruise and rotor figure of merit in hover. Both structural and aerodynamic design variables are used.

  20. Piezoelectric Actuator/Sensor Technology at Rockwell

    NASA Technical Reports Server (NTRS)

    Neurgaonkar, Ratnakar R.

    1996-01-01

    We describe the state-of-the art of piezoelectric materials based on perovskite and tungsten bronze families for sensor, actuator and smart structure applications. The microstructural defects in these materials have been eliminated to a large extent and the resulting materials exhibit exceedingly high performance for various applications. The performance of Rockwell actuators/sensors is at least 3 times better than commercially available products. These high performance actuators are being incorporated into various applications including, DOD, NASA and commercial. The multilayer actuator stacks fabricated from our piezoceramics are advantageous for sensing and high capacitance applications. In this presentation, we will describe the use of our high performance piezo-ceramics for actuators and sensors, including multilayer stacks and composite structures.

  1. A high-throughput exploration of magnetic materials by using structure predicting methods

    NASA Astrophysics Data System (ADS)

    Arapan, S.; Nieves, P.; Cuesta-López, S.

    2018-02-01

    We study the capability of a structure predicting method based on genetic/evolutionary algorithm for a high-throughput exploration of magnetic materials. We use the USPEX and VASP codes to predict stable and generate low-energy meta-stable structures for a set of representative magnetic structures comprising intermetallic alloys, oxides, interstitial compounds, and systems containing rare-earths elements, and for both types of ferromagnetic and antiferromagnetic ordering. We have modified the interface between USPEX and VASP codes to improve the performance of structural optimization as well as to perform calculations in a high-throughput manner. We show that exploring the structure phase space with a structure predicting technique reveals large sets of low-energy metastable structures, which not only improve currently exiting databases, but also may provide understanding and solutions to stabilize and synthesize magnetic materials suitable for permanent magnet applications.

  2. Controlled Growth of NiCo2O4 Nanorods and Ultrathin Nanosheets on Carbon Nanofibers for High-performance Supercapacitors

    PubMed Central

    Zhang, Genqiang; (David) Lou, Xiong Wen

    2013-01-01

    Two one-dimensional hierarchical hybrid nanostructures composed of NiCo2O4 nanorods and ultrathin nanosheets on carbon nanofibers (CNFs) are controllably synthesized through facile solution methods combined with a simple thermal treatment. The structure of NiCo2O4 can be easily controlled to be nanorods or nanosheets by using different additives in the synthesis. These two different nanostructures are evaluated as electrodes for high performance supercapacitors, in view of their apparent advantages, such as high electroactive surface area, ultrathin and porous features, robust mechanical strength, shorter ion and electron transport path. Their electrochemical performance is systematically studied, and both of these two hierarchical hybrid nanostructures exhibit high capacitance and excellent cycling stability. The remarkable electrochemical performance will undoubtedly make these hybrid structures attractive for high-performance supercapacitors with high power and energy densities. PMID:23503561

  3. An Integrative Research Review of the Relationship between Technology and Structure: A Meta-Analytic Synthesis

    DTIC Science & Technology

    1989-01-01

    great; a correlation of r = -.33 for the overall sample versus r = -.48 for the high performance group. Thus, even though the moderator effect of...studies, even without the performance moderator, is a comparison of equals. 125 The inability to test the moderating effect of organization performance ...structure research. rhe absence of performance data in studies of technology and structure makes it impossible to test the moderating effect of performance

  4. A new improved multicopter chassis structure tested on slope stability monitoring

    NASA Astrophysics Data System (ADS)

    Rossi, Guglielmo; Tanteri, Luca; Salvatici, Teresa; Scaduto, Gabriele; Tacconi Stefanelli, Carlo; Casagli, Nicola; Moretti, Sandro

    2017-04-01

    The multicopter has an increasing role in remote sensing and aerial photography. The piloting ease and the mechanical simplicity are the main reasons for drone diffusion as a hobby and for professional use. Usually multicopters have a "spider" structure with a central body and many radial arms that support the propulsion device. To improve the structure of the existing multicopter, the Department of Earth Sciences of Florence (DST) has developed and patented a new type of chassis structure that allows us to overcome some critical issues for scientific and heavy payload or long flight applications. The drone has an innovative perimetric chassis that fully supports flight dynamics. The new structure allows us to obtain high flight performance combined with low vibration transmission to the carried instruments. The new patented structure is implemented in two new prototypes of high performance drones completely developed by the Department of Earth Sciences of Florence: Saturn 2 and Saturn mini X-21. Saturn 2 is a high performance multi-role drone capable of carrying up to 14 kg of scientific instruments. Saturn Mini X-21 is a high performance drone, entirely 3D printed and specialized for digital and 3D rapid mapping. The Saturn mini X-21 was especially developed to obtain for the first time, by a drone, a 3D high resolution digital model for slope monitoring purposes of the Stromboli Sciara del Fuoco, a large inaccessible area that presents harsh flight conditions such as high persistent wind, rotors, volcanic ash and saltiness. The Saturn drones are mainly developed and tested, all around software and hardware, on slope stability monitoring. Four test cases are proposed, which were performed during the development and testing phase: a large area 3D survey (Scillato - Sicily), a harsh condition 3D survey (Stromboli -Sicily), a multitemporal 3D survey (Ricasoli - Tuscany) and the testing phase of measurement performed by onboard radar equipment.

  5. Meso-Decorated Switching-Knot Gels

    NASA Astrophysics Data System (ADS)

    Gong, Jin; Sawamura, Kensuke; Makino, Masato; Kabir, M. H.; Furukawa, Hidemitsu

    Gels are a new material having three-dimensional network structures of macromolecules. They possess excellent properties as swellability, high permeability and biocompatibility, and have been applied in various fields of daily life, food, medicine, architecture, and chemistry .In this study, we tried to prepare new multi-functional and high-strength gels by using Meso-Decoration (Meso-Deco), one new method of structure design at intermediate mesoscale. High-performance rigid-rod aromatic polymorphic crystals. The strengthening of gels can be realized by meso-decorating the gels' structure using high-performance polymorphic crystals. New gels with good mechanical properties, novel optical properties and thermal properties are expected to be developed.

  6. Phase-Separated Polyaniline/Graphene Composite Electrodes for High-Rate Electrochemical Supercapacitors.

    PubMed

    Wu, Jifeng; Zhang, Qin'e; Zhou, An'an; Huang, Zhifeng; Bai, Hua; Li, Lei

    2016-12-01

    Polyaniline/graphene hydrogel composites with a macroscopically phase-separated structure are prepared. The composites show high specific capacitance and excellent rate performance. Further investigation demonstrates that polyaniline inside the graphene hydrogel has low rate performance, thus a phase-separated structure, in which polyaniline is mainly outside the graphene hydrogel matrix, can enhance the rate performance of the composites. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Processing bulk natural wood into a high-performance structural material

    Treesearch

    Jianwei Song; Chaoji Chen; Shuze Zhu; Mingwei Zhu; Jiaqi Dai; Upamanyu Ray; Yiju Li; Yudi Kuang; Yongfeng Li; Nelson Quispe; Yonggang Yao; Amy Gong; Ulrich H. Leiste; Hugh A. Bruck; J. Y. Zhu; Azhar Vellore; Heng Li; Marilyn L. Minus; Zheng Jia; Ashlie Martini; Teng Li; Liangbing Hu

    2018-01-01

    Synthetic structural materials with exceptional mechanical performance suffer from either large weight and adverse environmental impact (for example, steels and alloys) or complex manufacturing processes and thus high cost (for example, polymer-based and biomimetic composites)1–8. Natural wood is a low-cost and abundant material and has been used...

  8. Composite Li metal anode with vertical graphene host for high performance Li-S batteries

    NASA Astrophysics Data System (ADS)

    Zhang, Y. J.; Liu, S. F.; Wang, X. L.; Zhong, Y.; Xia, X. H.; Wu, J. B.; Tu, J. P.

    2018-01-01

    Efficient and stable operation of a lithium metal anode has become the enabling factor for next-generation high energy density storage system. Here, vertical graphene (VG) arrays are used as the scaffold structure for high performance Li metal batteries. The melt infusion method is employed to encapsulate Li inside the VG scaffold structure, and the lithiophilic Si layer is coated onto the array surface by magnetron sputtering to assist this melt-infusion process. The porous scaffold structure can control the volume expansion and inhibit the formation of dendritic lithium significantly, leading to the excellent electrochemical performance of the Li composite anode. In addition, the Li-S full batteries with the composite anode display enhanced cycling reversibility.

  9. Examining gray matter structure associated with academic performance in a large sample of Chinese high school students.

    PubMed

    Wang, Song; Zhou, Ming; Chen, Taolin; Yang, Xun; Chen, Guangxiang; Wang, Meiyun; Gong, Qiyong

    2017-04-18

    Achievement in school is crucial for students to be able to pursue successful careers and lead happy lives in the future. Although many psychological attributes have been found to be associated with academic performance, the neural substrates of academic performance remain largely unknown. Here, we investigated the relationship between brain structure and academic performance in a large sample of high school students via structural magnetic resonance imaging (S-MRI) using voxel-based morphometry (VBM) approach. The whole-brain regression analyses showed that higher academic performance was related to greater regional gray matter density (rGMD) of the left dorsolateral prefrontal cortex (DLPFC), which is considered a neural center at the intersection of cognitive and non-cognitive functions. Furthermore, mediation analyses suggested that general intelligence partially mediated the impact of the left DLPFC density on academic performance. These results persisted even after adjusting for the effect of family socioeconomic status (SES). In short, our findings reveal a potential neuroanatomical marker for academic performance and highlight the role of general intelligence in explaining the relationship between brain structure and academic performance.

  10. Composite structural materials

    NASA Technical Reports Server (NTRS)

    Loewy, R. G.; Wiberley, S. E.

    1985-01-01

    Various topics relating to composite structural materials for use in aircraft structures are discussed. The mechanical properties of high performance carbon fibers, carbon fiber-epoxy interface bonds, composite fractures, residual stress in high modulus and high strength carbon fibers, fatigue in composite materials, and the mechanical properties of polymeric matrix composite laminates are among the topics discussed.

  11. Optimal design of high-speed loading spindle based on ABAQUS

    NASA Astrophysics Data System (ADS)

    Yang, Xudong; Dong, Yu; Ge, Qingkuan; Yang, Hai

    2017-12-01

    The three-dimensional model of high-speed loading spindle is established by using ABAQUS’s modeling module. A finite element analysis model of high-speed loading spindle was established by using spring element to simulate bearing boundary condition. The static and dynamic performance of the spindle structure with different specifications of the rectangular spline and the different diameter neck of axle are studied in depth, and the influence of different spindle span on the static and dynamic performance of the high-speed loading spindle is studied. Finally, the optimal structure of the high-speed loading spindle is obtained. The results provide a theoretical basis for improving the overall performance of the test-bed

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, Fang; Yao, Yuze; Wang, Haiyan

    Rational and precise control of the structure and dimension of electrode materials is an efficient way to improve their electrochemical performance. In this work, solvothermal or co-precipitation method is used to synthesize lithium-rich layered oxide materials of Li1.2Mn0.56Co0.12Ni0.12O2 (LLO) with various morphologies and structures, including microspheres, microrods, nanoplates, and irregular nanoparticles. These materials exhibit strong structure- dependent electrochemical properties. The porous hierarchical structured LLO microrods exhibit the best performance, delivering a discharge capacity of 264.6 mAh g(-1) at 0.5 C with over 91% retention after 100 cycles. At a high rate of 5 C, a high discharge capacity of 173.6more » mAh g(-1) can be achieved. This work reveals the relationship between the morphologies and electrochemical properties of LLO cathode materials, and provides a feasible approach to fabricating robust and high-performance electrode materials for lithium-ion batteries.« less

  13. Friction Stir Additive Manufacturing: Route to High Structural Performance

    NASA Astrophysics Data System (ADS)

    Palanivel, S.; Sidhar, H.; Mishra, R. S.

    2015-03-01

    Aerospace and automotive industries provide the next big opportunities for additive manufacturing. Currently, the additive industry is confronted with four major challenges that have been identified in this article. These challenges need to be addressed for the additive technologies to march into new frontiers and create additional markets. Specific potential success in the transportation sectors is dependent on the ability to manufacture complicated structures with high performance. Most of the techniques used for metal-based additive manufacturing are fusion based because of their ability to fulfill the computer-aided design to component vision. Although these techniques aid in fabrication of complex shapes, achieving high structural performance is a key problem due to the liquid-solid phase transformation. In this article, friction stir additive manufacturing (FSAM) is shown as a potential solid-state process for attaining high-performance lightweight alloys for simpler geometrical applications. To illustrate FSAM as a high-performance route, manufactured builds of Mg-4Y-3Nd and AA5083 are shown as examples. In the Mg-based alloy, an average hardness of 120 HV was achieved in the built structure and was significantly higher than that of the base material (97 HV). Similarly for the Al-based alloy, compared with the base hardness of 88 HV, the average built hardness was 104 HV. A potential application of FSAM is illustrated by taking an example of a simple stiffener assembly.

  14. Meso-decorated self-healing gels: network structure and properties

    NASA Astrophysics Data System (ADS)

    Gong, Jin; Sawamura, Kensuke; Igarashi, Susumu; Furukawa, Hidemitsu

    2013-04-01

    Gels are a new material having three-dimensional network structures of macromolecules. They possess excellent properties as swellability, high permeability and biocompatibility, and have been applied in various fields of daily life, food, medicine, architecture, and chemistry. In this study, we tried to prepare new multi-functional and high-strength gels by using Meso-Decoration (Meso-Deco), one new method of structure design at intermediate mesoscale. High-performance rigid-rod aromatic polymorphic crystals, and the functional groups of thermoreversible Diels-Alder reaction were introduced into soft gels as crosslinkable pendent chains. The functionalization and strengthening of gels can be realized by meso-decorating the gels' structure using high-performance polymorphic crystals and thermoreversible pendent chains. New gels with good mechanical properties, novel optical properties and thermal properties are expected to be developed.

  15. Review of Repair Materials for Fire-Damaged Reinforced Concrete Structures

    NASA Astrophysics Data System (ADS)

    Zahid, MZA Mohd; Abu Bakar, BH; Nazri, FM; Ahmad, MM; Muhamad, K.

    2018-03-01

    Reinforced concrete (RC) structures perform well during fire and may be repaired after the fire incident because their low heat conductivity prevents the loss or degradation of mechanical strength of the concrete core and internal reinforcing steel. When an RC structure is heated to more than 500 °C, mechanical properties such as compressive strength, stiffness, and tensile strength start to degrade and deformations occur. Although the fire-exposed RC structure shows no visible damage, its residual strength decreases compared with that in the pre-fire state. Upon thorough assessment, the fire-damaged RC structure can be repaired or strengthened, instead of subjecting to partial or total demolition followed by reconstruction. The structure can be repaired using several materials, such as carbon fiber-reinforced polymer, glass fiber-reinforced polymer, normal strength concrete, fiber-reinforced concrete, ferrocement, epoxy resin mortar, and high-performance concrete. Selecting an appropriate repair material that must be compatible with the substrate or base material is a vital step to ensure successful repair. This paper reviews existing repair materials and factors affecting their performance. Of the materials considered, ultra-high-performance fiber-reinforced concrete (UHPFRC) exhibits huge potential for repairing fire-damaged RC structures but lack of information available. Hence, further studies must be performed to assess the potential of UHPFRC in rehabilitating fire-damaged RC structures.

  16. Recent Niobium Developments for High Strength Steel Energy Applications

    NASA Astrophysics Data System (ADS)

    Jansto, Steven G.

    Niobium-containing high strength steel materials have been developed for oil and gas pipelines, offshore platforms, nuclear plants, boilers and alternative energy applications. Recent research and the commercialization of alternative energy applications such as windtower structural supports and power transmission gear components provide enhanced performance. Through the application of these Nb-bearing steels in demanding energy-related applications, the designer and end user experience improved toughness at low temperature, excellent fatigue resistance and fracture toughness and excellent weldability. These enhancements provide structural engineers the opportunity to further improve the structural design and performance. For example, through the adoption of these Nb-containing structural materials, several design-manufacturing companies are initiating new windtower designs operating at higher energy efficiency, lower cost, and improved overall material design performance.

  17. Toward Aerogel Electrodes of Superior Rate Performance in Supercapacitors through Engineered Hollow Nanoparticles of NiCo2O4.

    PubMed

    Li, Jianjiang; Chen, Shuai; Zhu, Xiaoyi; She, Xilin; Liu, Tongchao; Zhang, Huawei; Komarneni, Sridhar; Yang, Dongjiang; Yao, Xiangdong

    2017-12-01

    A biomass-templated pathway is developed for scalable synthesis of NiCo 2 O 4 @carbon aerogel electrodes for supercapacitors, where NiCo 2 O 4 hollow nanoparticles with an average outer diameter of 30-40 nm are conjoined by graphitic carbon forming a 3D aerogel structure. This kind of NiCo 2 O 4 aerogel structure shows large specific surface area (167.8 m 2 g -1 ), high specific capacitance (903.2 F g -1 at a current density of 1 A g -1 ), outstanding rate performance (96.2% capacity retention from 1 to 10 A g -1 ), and excellent cycling stability (nearly without capacitance loss after 3000 cycles at 10 A g -1 ). The unique structure of the 3D hollow aerogel synergistically contributes to the high performance. For instance, the 3D interconnected porous structure of the aerogel is beneficial for electrolyte ion diffusion and for shortening the electron transport pathways, and thus can improve the rate performance. The conductive carbon joint greatly enhances the specific capacity, and the hollow structure prohibits the volume changes during the charge-discharge process to significantly improve the cycling stability. This work represents a giant step toward the preparation of high-performance commercial supercapacitors.

  18. High-performance III-V MOSFET with nano-stacked high-k gate dielectric and 3D fin-shaped structure.

    PubMed

    Chen, Szu-Hung; Liao, Wen-Shiang; Yang, Hsin-Chia; Wang, Shea-Jue; Liaw, Yue-Gie; Wang, Hao; Gu, Haoshuang; Wang, Mu-Chun

    2012-08-01

    A three-dimensional (3D) fin-shaped field-effect transistor structure based on III-V metal-oxide-semiconductor field-effect transistor (MOSFET) fabrication has been demonstrated using a submicron GaAs fin as the high-mobility channel. The fin-shaped channel has a thickness-to-width ratio (TFin/WFin) equal to 1. The nano-stacked high-k Al2O3 dielectric was adopted as a gate insulator in forming a metal-oxide-semiconductor structure to suppress gate leakage. The 3D III-V MOSFET exhibits outstanding gate controllability and shows a high Ion/Ioff ratio > 105 and a low subthreshold swing of 80 mV/decade. Compared to a conventional Schottky gate metal-semiconductor field-effect transistor or planar III-V MOSFETs, the III-V MOSFET in this work exhibits a significant performance improvement and is promising for future development of high-performance n-channel devices based on III-V materials.

  19. High-performance III-V MOSFET with nano-stacked high-k gate dielectric and 3D fin-shaped structure

    PubMed Central

    2012-01-01

    A three-dimensional (3D) fin-shaped field-effect transistor structure based on III-V metal-oxide-semiconductor field-effect transistor (MOSFET) fabrication has been demonstrated using a submicron GaAs fin as the high-mobility channel. The fin-shaped channel has a thickness-to-width ratio (TFin/WFin) equal to 1. The nano-stacked high-k Al2O3 dielectric was adopted as a gate insulator in forming a metal-oxide-semiconductor structure to suppress gate leakage. The 3D III-V MOSFET exhibits outstanding gate controllability and shows a high Ion/Ioff ratio > 105 and a low subthreshold swing of 80 mV/decade. Compared to a conventional Schottky gate metal–semiconductor field-effect transistor or planar III-V MOSFETs, the III-V MOSFET in this work exhibits a significant performance improvement and is promising for future development of high-performance n-channel devices based on III-V materials. PMID:22853458

  20. Space Shuttle Main Engine structural analysis and data reduction/evaluation. Volume 3A: High pressure oxidizer turbo-pump preburner pump housing stress analysis report

    NASA Technical Reports Server (NTRS)

    Shannon, Robert V., Jr.

    1989-01-01

    The model generation and structural analysis performed for the High Pressure Oxidizer Turbopump (HPOTP) preburner pump volute housing located on the main pump end of the HPOTP in the space shuttle main engine are summarized. An ANSYS finite element model of the volute housing was built and executed. A static structural analysis was performed on the Engineering Analysis and Data System (EADS) Cray-XMP supercomputer

  1. CF60 Concrete Composition Design and Application on Fudiankou Xijiang Super Large Bridge

    NASA Astrophysics Data System (ADS)

    Qiu, Yi Mei; Wen, Sen Yuan; Chen, Jun Xiang

    2018-06-01

    Guangxi Wuzhou City Ring Road Fudiankou Xijiang super large bridge CF60 concrete is a new multi-phase composite high-performance concrete, this paper for the Fudiankou Xijiang bridge structure and characteristics of the project, in accordance with the principle of local materials and technical specification requirements, combined with the site conditions of CF60 engineering high performance concrete component materials, proportion and the technical performance, quantify the main physical and mechanical performance index. Analysis main influencing factors of the technical indicators, reasonable adjustment of concrete mix design parameters, and the use of technical means of admixture and multi-function composite admixture of concrete, obtain the optimal proportion of good work, process, mechanical properties stability and durability of engineering properties, recommend and verification of concrete mix; to explore the CF60 high performance concrete Soil in the Fudiankou Xijiang bridge application technology, detection and tracking the quality of concrete construction, concrete structure during the construction of the key technology and control points is proposed, evaluation of CF60 high performance concrete in the actual engineering application effect and benefit to ensure engineering quality of bridge structure and service life, and super long span bridge engineering construction to provide basis and reference.

  2. Structural performance of light-frame roof assemblies. I, Truss assemblies designed for high variability and wood failure

    Treesearch

    R.W. Wolfe; Monica McCarthy

    1989-01-01

    The first report of a three-part series that covers results of a full-scale roof assemblies research program. The focus of this report is the structural performance of truss assemblies comprising trusses with abnormally high stiffness variability and critical joint strength. Results discussed include properties of truss members and connections. individual truss...

  3. Research and Development of Rapid Design Systems for Aerospace Structure

    NASA Technical Reports Server (NTRS)

    Schaeffer, Harry G.

    1999-01-01

    This report describes the results of research activities associated with the development of rapid design systems for aerospace structures in support of the Intelligent Synthesis Environment (ISE). The specific subsystems investigated were the interface between model assembly and analysis; and, the high performance NASA GPS equation solver software system in the Windows NT environment on low cost high-performance PCs.

  4. Ultrathin nickel hydroxide on carbon coated 3D-porous copper structures for high performance supercapacitors.

    PubMed

    Kang, Kyeong-Nam; Kim, Ik-Hee; Ramadoss, Ananthakumar; Kim, Sun-I; Yoon, Jong-Chul; Jang, Ji-Hyun

    2018-01-03

    An ultrathin nickel hydroxide layer electrodeposited on a carbon-coated three-dimensional porous copper structure (3D-C/Cu) is suggested as an additive and binder-free conductive electrode with short electron path distances, large electrochemical active sites, and improved structural stability, for high performance supercapacitors. The 3D-porous copper structure (3D-Cu) provides high electrical conductivity and facilitates electron transport between the Ni(OH) 2 active materials and the current collector of the Ni-plate. A carbon coating was applied to the 3D-Cu to prevent the oxidation of Cu, without degrading the electron transport behavior of the 3D-Cu. The 3D-Ni(OH) 2 /C/Cu exhibited a high specific capacitance of 1860 F g -1 at 1 A g -1 , and good cycling performance, with an 86.5% capacitance retention after 10 000 cycles. When tested in a two-electrode system, an asymmetric supercapacitor exhibited an energy density of 147.9 W h kg -1 and a power density of 37.0 kW kg -1 . These results open a new area of ultrahigh-performance supercapacitors, supported by 3D-Cu electrodes.

  5. High-performance Supercapacitors Based on Electrochemical-induced Vertical-aligned Carbon Nanotubes and Polyaniline Nanocomposite Electrodes

    NASA Astrophysics Data System (ADS)

    Wu, Guan; Tan, Pengfeng; Wang, Dongxing; Li, Zhe; Peng, Lu; Hu, Ying; Wang, Caifeng; Zhu, Wei; Chen, Su; Chen, Wei

    2017-03-01

    Supercapacitors, which store electrical energy through reversible ion on the surface of conductive electrodes have gained enormous attention for variously portable energy storage devices. Since the capacitive performance is mainly determined by the structural and electrochemical properties of electrodes, the electrodes become more crucial to higher performance. However, due to the disordered microstructure and low electrochemical activity of electrode for ion tortuous migration and accumulation, the supercapacitors present relatively low capacitance and energy density. Here we report a high-performance supercapacitor based on polyaniline/vertical-aligned carbon nanotubes (PANI/VA-CNTs) nanocomposite electrodes where the vertical-aligned-structure is formed by the electrochemical-induction (0.75 V). The supercapacitor displays large specific capacitance of 403.3 F g-1, which is 6 times higher than disordered CNTs in HClO4 electrolyte. Additionally, the supercapacitor can also present high specific capacitance (314.6 F g-1), excellent cycling stability (90.2% retention after 3000 cycles at 4 A g-1) and high energy density (98.1 Wh kg-1) in EMIBF4 organic electrolyte. The key to high-performance lies in the vertical-aligned-structure providing direct path channel for ion faster diffusion and high electrochemical capacitance of polyaniline for ion more accommodation.

  6. High-performance Supercapacitors Based on Electrochemical-induced Vertical-aligned Carbon Nanotubes and Polyaniline Nanocomposite Electrodes.

    PubMed

    Wu, Guan; Tan, Pengfeng; Wang, Dongxing; Li, Zhe; Peng, Lu; Hu, Ying; Wang, Caifeng; Zhu, Wei; Chen, Su; Chen, Wei

    2017-03-08

    Supercapacitors, which store electrical energy through reversible ion on the surface of conductive electrodes have gained enormous attention for variously portable energy storage devices. Since the capacitive performance is mainly determined by the structural and electrochemical properties of electrodes, the electrodes become more crucial to higher performance. However, due to the disordered microstructure and low electrochemical activity of electrode for ion tortuous migration and accumulation, the supercapacitors present relatively low capacitance and energy density. Here we report a high-performance supercapacitor based on polyaniline/vertical-aligned carbon nanotubes (PANI/VA-CNTs) nanocomposite electrodes where the vertical-aligned-structure is formed by the electrochemical-induction (0.75 V). The supercapacitor displays large specific capacitance of 403.3 F g -1 , which is 6 times higher than disordered CNTs in HClO 4 electrolyte. Additionally, the supercapacitor can also present high specific capacitance (314.6 F g -1 ), excellent cycling stability (90.2% retention after 3000 cycles at 4 A g -1 ) and high energy density (98.1 Wh kg -1 ) in EMIBF 4 organic electrolyte. The key to high-performance lies in the vertical-aligned-structure providing direct path channel for ion faster diffusion and high electrochemical capacitance of polyaniline for ion more accommodation.

  7. High-performance Supercapacitors Based on Electrochemical-induced Vertical-aligned Carbon Nanotubes and Polyaniline Nanocomposite Electrodes

    PubMed Central

    Wu, Guan; Tan, Pengfeng; Wang, Dongxing; Li, Zhe; Peng, Lu; Hu, Ying; Wang, Caifeng; Zhu, Wei; Chen, Su; Chen, Wei

    2017-01-01

    Supercapacitors, which store electrical energy through reversible ion on the surface of conductive electrodes have gained enormous attention for variously portable energy storage devices. Since the capacitive performance is mainly determined by the structural and electrochemical properties of electrodes, the electrodes become more crucial to higher performance. However, due to the disordered microstructure and low electrochemical activity of electrode for ion tortuous migration and accumulation, the supercapacitors present relatively low capacitance and energy density. Here we report a high-performance supercapacitor based on polyaniline/vertical-aligned carbon nanotubes (PANI/VA-CNTs) nanocomposite electrodes where the vertical-aligned-structure is formed by the electrochemical-induction (0.75 V). The supercapacitor displays large specific capacitance of 403.3 F g−1, which is 6 times higher than disordered CNTs in HClO4 electrolyte. Additionally, the supercapacitor can also present high specific capacitance (314.6 F g−1), excellent cycling stability (90.2% retention after 3000 cycles at 4 A g−1) and high energy density (98.1 Wh kg−1) in EMIBF4 organic electrolyte. The key to high-performance lies in the vertical-aligned-structure providing direct path channel for ion faster diffusion and high electrochemical capacitance of polyaniline for ion more accommodation. PMID:28272474

  8. 3D hierarchical assembly of ultrathin MnO2 nanoflakes on silicon nanowires for high performance micro-supercapacitors in Li- doped ionic liquid

    PubMed Central

    Dubal, Deepak P.; Aradilla, David; Bidan, Gérard; Gentile, Pascal; Schubert, Thomas J.S.; Wimberg, Jan; Sadki, Saïd; Gomez-Romero, Pedro

    2015-01-01

    Building of hierarchical core-shell hetero-structures is currently the subject of intensive research in the electrochemical field owing to its potential for making improved electrodes for high-performance micro-supercapacitors. Here we report a novel architecture design of hierarchical MnO2@silicon nanowires (MnO2@SiNWs) hetero-structures directly supported onto silicon wafer coupled with Li-ion doped 1-Methyl-1-propylpyrrolidinium bis(trifluromethylsulfonyl)imide (PMPyrrBTA) ionic liquids as electrolyte for micro-supercapacitors. A unique 3D mesoporous MnO2@SiNWs in Li-ion doped IL electrolyte can be cycled reversibly across a voltage of 2.2 V and exhibits a high areal capacitance of 13 mFcm−2. The high conductivity of the SiNWs arrays combined with the large surface area of ultrathin MnO2 nanoflakes are responsible for the remarkable performance of these MnO2@SiNWs hetero-structures which exhibit high energy density and excellent cycling stability. This combination of hybrid electrode and hybrid electrolyte opens up a novel avenue to design electrode materials for high-performance micro-supercapacitors. PMID:25985388

  9. Masonry Infilling Effect On Seismic Vulnerability and Performance Level of High Ductility RC Frames

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghalehnovi, M.; Shahraki, H.

    2008-07-08

    In last years researchers preferred behavior-based design of structure to force-based one for designing and construction of the earthquake-resistance structures, this method is named performance based designing. The main goal of this method is designing of structure members for a certain performance or behavior. On the other hand in most of buildings, load bearing frames are infilled with masonry materials which leads to considerable changes in mechanical properties of frames. But usually infilling wall's effect has been ignored in nonlinear analysis of structures because of complication of the problem and lack of simple logical solution. As a result lateral stiffness,more » strength, ductility and performance of the structure will be computed with less accuracy. In this paper by use of Smooth hysteretic model for masonry infillings, some high ductile RC frames (4, 8 stories including 1, 2 and 3 spans) designed according to Iranian code are considered. They have been analyzed by nonlinear dynamic method in two states, with and without infilling. Then their performance has been determined with criteria of ATC 40 and compared with recommended performance in Iranian seismic code (standard No. 2800)« less

  10. High-performance ultraviolet photodetectors based on solution-grown ZnS nanobelts sandwiched between graphene layers

    PubMed Central

    Kim, Yeonho; Kim, Sang Jin; Cho, Sung-Pyo; Hong, Byung Hee; Jang, Du-Jeon

    2015-01-01

    Ultraviolet (UV) light photodetectors constructed from solely inorganic semiconductors still remain unsatisfactory because of their low electrical performances. To overcome this limitation, the hybridization is one of the key approaches that have been recently adopted to enhance the photocurrent. High-performance UV photodetectors showing stable on-off switching and excellent spectral selectivity have been fabricated based on the hybrid structure of solution-grown ZnS nanobelts and CVD-grown graphene. Sandwiched structures and multilayer stacking strategies have been applied to expand effective junction between graphene and photoactive ZnS nanobelts. A multiply sandwich-structured photodetector of graphene/ZnS has shown a photocurrent of 0.115 mA under illumination of 1.2 mWcm−2 in air at a bias of 1.0 V, which is higher 107 times than literature values. The multiple-sandwich structure of UV-light sensors with graphene having high conductivity, flexibility, and impermeability is suggested to be beneficial for the facile fabrication of UV photodetectors with extremely efficient performances. PMID:26197784

  11. Ultra-high performance fiber-reinforced concrete (UHPFRC) for infrastructure rehabilitation : volume 1 : evaluation of ultra high strength concrete (UHSC) in joints of bridge girders.

    DOT National Transportation Integrated Search

    2017-03-01

    Joints are often considered as the weak link in a structure and often deterioration of the structure initiates from the : joints. Joints transfer the stresses from super-structure to sub-structure and in this process are subjected to large : transfer...

  12. A Queue Simulation Tool for a High Performance Scientific Computing Center

    NASA Technical Reports Server (NTRS)

    Spear, Carrie; McGalliard, James

    2007-01-01

    The NASA Center for Computational Sciences (NCCS) at the Goddard Space Flight Center provides high performance highly parallel processors, mass storage, and supporting infrastructure to a community of computational Earth and space scientists. Long running (days) and highly parallel (hundreds of CPUs) jobs are common in the workload. NCCS management structures batch queues and allocates resources to optimize system use and prioritize workloads. NCCS technical staff use a locally developed discrete event simulation tool to model the impacts of evolving workloads, potential system upgrades, alternative queue structures and resource allocation policies.

  13. Cryogenically formed prestressed composite fiber-metal structures for O2/N2 high pressure gas tanks.

    NASA Technical Reports Server (NTRS)

    Gleich, D.

    1971-01-01

    Demonstration of high-structural-performance ARDEFORM cryoformed 301 stainless-steel glass-fiber-reinforced (GFR) vessels by room temperature tests of 13 1/2-in. diam spheres. Tests verified that the structural performance of ARDEFORM spherical GFR vessels not only exceeded that of all metal construction, but also bettered previous GFR experimental results by 50%. Achievement of essentially the full strength of fiberglass in a spherical wrap pattern was again verified. Significant weight advantages for this construction are projected for O2/N2 high-pressure gas tanks for Space Shuttle environmental control/life support system missions.

  14. Engineering High-Energy Interfacial Structures for High-Performance Oxygen-Involving Electrocatalysis.

    PubMed

    Guo, Chunxian; Zheng, Yao; Ran, Jingrun; Xie, Fangxi; Jaroniec, Mietek; Qiao, Shi-Zhang

    2017-07-10

    Engineering high-energy interfacial structures for high-performance electrocatalysis is achieved by chemical coupling of active CoO nanoclusters and high-index facet Mn 3 O 4 nano-octahedrons (hi-Mn 3 O 4 ). A thorough characterization, including synchrotron-based near edge X-ray absorption fine structure, reveals that strong interactions between both components promote the formation of high-energy interfacial Mn-O-Co species and high oxidation state CoO, from which electrons are drawn by Mn III -O present in hi-Mn 3 O 4 . The CoO/hi-Mn 3 O 4 demonstrates an excellent catalytic performance over the conventional metal oxide-based electrocatalysts, which is reflected by 1.2 times higher oxygen evolution reaction (OER) activity than that of Ru/C and a comparable oxygen reduction reaction (ORR) activity to that of Pt/C as well as a better stability than that of Ru/C (95 % vs. 81 % retained OER activity) and Pt/C (92 % vs. 78 % retained ORR activity after 10 h running) in alkaline electrolyte. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. High-temperature testing of high performance fiber reinforced concrete

    NASA Astrophysics Data System (ADS)

    Fořt, Jan; Vejmelková, Eva; Pavlíková, Milena; Trník, Anton; Čítek, David; Kolísko, Jiří; Černý, Robert; Pavlík, Zbyšek

    2016-06-01

    The effect of high-temperature exposure on properties of High Performance Fiber Reinforced Concrete (HPFRC) is researched in the paper. At first, reference measurements are done on HPFRC samples without high-temperature loading. Then, the HPFRC samples are exposed to the temperatures of 200, 400, 600, 800, and 1000 °C. For the temperature loaded samples, measurement of residual mechanical and basic physical properties is done. Linear thermal expansion coefficient as function of temperature is accessed on the basis of measured thermal strain data. Additionally, simultaneous difference scanning calorimetry (DSC) and thermogravimetry (TG) analysis is performed in order to observe and explain material changes at elevated temperature. It is found that the applied high temperature loading significantly increases material porosity due to the physical, chemical and combined damage of material inner structure, and negatively affects also the mechanical strength. Linear thermal expansion coefficient exhibits significant dependence on temperature and changes of material structure. The obtained data will find use as input material parameters for modelling the damage of HPFRC structures exposed to the fire and high temperature action.

  16. Asymmetric actuating structure generates negligible influence on the supporting base for high performance scanning probe microscopies

    NASA Astrophysics Data System (ADS)

    Yi Yan, Gang; Bin Liu, Yong; Hua Feng, Zhi

    2014-02-01

    An asymmetric actuating structure generating negligible influence on the supporting base for high performance scanning probe microscopies is proposed in this paper. The actuator structure consists of two piezostacks, one is used for actuating while the other is for counterbalancing. In contrast with balanced structure, the two piezostacks are installed at the same side of the supporting base. The effectiveness of the structure is proved by some experiments with the actuators fixed to the free end of a cantilever. Experimental results show that almost all of the vibration modes of the cantilever are suppressed effectively at a wide frequency range of 90 Hz-10 kHz.

  17. Nonlinear system identification of smart structures under high impact loads

    NASA Astrophysics Data System (ADS)

    Sarp Arsava, Kemal; Kim, Yeesock; El-Korchi, Tahar; Park, Hyo Seon

    2013-05-01

    The main purpose of this paper is to develop numerical models for the prediction and analysis of the highly nonlinear behavior of integrated structure control systems subjected to high impact loading. A time-delayed adaptive neuro-fuzzy inference system (TANFIS) is proposed for modeling of the complex nonlinear behavior of smart structures equipped with magnetorheological (MR) dampers under high impact forces. Experimental studies are performed to generate sets of input and output data for training and validation of the TANFIS models. The high impact load and current signals are used as the input disturbance and control signals while the displacement and acceleration responses from the structure-MR damper system are used as the output signals. The benchmark adaptive neuro-fuzzy inference system (ANFIS) is used as a baseline. Comparisons of the trained TANFIS models with experimental results demonstrate that the TANFIS modeling framework is an effective way to capture nonlinear behavior of integrated structure-MR damper systems under high impact loading. In addition, the performance of the TANFIS model is much better than that of ANFIS in both the training and the validation processes.

  18. The Cutting Edge of High-Temperature Composites

    NASA Technical Reports Server (NTRS)

    2006-01-01

    NASA s Ultra-Efficient Engine Technology (UEET) program was formed in 1999 at Glenn Research Center to manage an important national propulsion program for the Space Agency. The UEET program s focus is on developing innovative technologies to enable intelligent, environmentally friendly, and clean-burning turbine engines capable of reducing harmful emissions while maintaining high performance and increasing reliability. Seven technology projects exist under the program, with each project working towards specific goals to provide new technology for propulsion. One of these projects, Materials and Structures for High Performance, is concentrating on developing and demonstrating advanced high-temperature materials to enable high-performance, high-efficiency, and environmentally compatible propulsion systems. Materials include ceramic matrix composite (CMC) combustor liners and turbine vanes, disk alloys, turbine airfoil material systems, high-temperature polymer matrix composites, and lightweight materials for static engine structures.

  19. High transparent shape memory gel

    NASA Astrophysics Data System (ADS)

    Gong, Jin; Arai, Masanori; Kabir, M. H.; Makino, Masato; Furukawa, Hidemitsu

    2014-03-01

    Gels are a new material having three-dimensional network structures of macromolecules. They possess excellent properties as swellability, high permeability and biocompatibility, and have been applied in various fields of daily life, food, medicine, architecture, and chemistry. In this study, we tried to prepare new multi-functional and high-strength gels by using Meso-Decoration (Meso-Deco), one new method of structure design at intermediate mesoscale. High-performance rigid-rod aromatic polymorphic crystals, and the functional groups of thermoreversible Diels-Alder reaction were introduced into soft gels as crosslinkable pendent chains. The functionalization and strengthening of gels can be realized by meso-decorating the gels' structure using high-performance polymorphic crystals and thermoreversible pendent chains. New gels with good mechanical properties, novel optical properties and thermal properties are expected to be developed.

  20. Materials Challenges in Space Exploration

    NASA Technical Reports Server (NTRS)

    Bhat, Biliyar N.

    2005-01-01

    United States civil space program administered by National Aeronautics and Space Administration has a new strategic direction to explore the solar system. This new 'vision for space exploration' encompasses a broad range of human and robotic missions, including the Moon. Mars and destinations beyond. These missions require advanced systems and capabilities that will accelerate the development of many critical technologies, including advanced materials and structural concepts. Specifically, it is planned to develop high-performance materials for vehicle structures, propulsion systems, and space suits; structural concepts for modular assembly for space infrastructure: lightweight deployable and inflatable structures for large space systems and crew habitats; and highly integrated structural systems and advanced thermal management systems for reducing launch mass and volume. This paper will present several materials challenges in advanced space systems-high performance structural and thermal materials, space durable materials, radiation protection materials, and nano-structural materials. Finally, the paper will take a look at the possibility of utilizing materials in situ, i.e., processing materials on the surface of the Moon and Mars.

  1. Modification of Existing Prestressed Girder Cross-Sections for the Optimal Structural Use of Ultra-High Performance Concrete

    DOT National Transportation Integrated Search

    2008-10-22

    Ultra High Performance Concrete (UHPC) is a class of cementitious materials that share similar characteristics including very large compressive strengths, tensile strength greater than conventional concrete and high durability. The material consists ...

  2. High performance capacitors using nano-structure multilayer materials fabrication

    DOEpatents

    Barbee, Jr., Troy W.; Johnson, Gary W.; O'Brien, Dennis W.

    1995-01-01

    A high performance capacitor fabricated from nano-structure multilayer materials, such as by controlled, reactive sputtering, and having very high energy-density, high specific energy and high voltage breakdown. The multilayer capacitors, for example, may be fabricated in a "notepad" configuration composed of 200-300 alternating layers of conductive and dielectric materials so as to have a thickness of 1 mm, width of 200 mm, and length of 300 mm, with terminals at each end of the layers suitable for brazing, thereby guaranteeing low contact resistance and high durability. The "notepad" capacitors may be stacked in single or multiple rows (series-parallel banks) to increase the voltage and energy density.

  3. High performance capacitors using nano-structure multilayer materials fabrication

    DOEpatents

    Barbee, Jr., Troy W.; Johnson, Gary W.; O'Brien, Dennis W.

    1996-01-01

    A high performance capacitor fabricated from nano-structure multilayer materials, such as by controlled, reactive sputtering, and having very high energy-density, high specific energy and high voltage breakdown. The multilayer capacitors, for example, may be fabricated in a "notepad" configuration composed of 200-300 alternating layers of conductive and dielectric materials so as to have a thickness of 1 mm, width of 200 mm, and length of 300 mm, with terminals at each end of the layers suitable for brazing, thereby guaranteeing low contact resistance and high durability. The "notepad" capacitors may be stacked in single or multiple rows (series-parallel banks) to increase the voltage and energy density.

  4. 3D Structural Model of High-Performance Non-Fullerene Polymer Solar Cells as Revealed by High-Resolution AFM.

    PubMed

    Shi, Shaowei; Chen, Xiaofeng; Liu, Xubo; Wu, Xuefei; Liu, Feng; Zhang, Zhi-Guo; Li, Yongfang; Russell, Thomas P; Wang, Dong

    2017-07-26

    Rapid improvements in nonfullerene polymer solar cells (PSCs) have brought power conversion efficiencies to greater than 12%. To further improve device performance, a fundamental understanding of the correlations between structure and performance is essential. In this paper, based on a typical high-performance system consisting of J61(one donor-acceptor (D-A) copolymer of benzodithiophene and fluorine substituted benzotriazole) and ITIC (3,9-bis(2-methylene-(3-(1,1-dicyanomethylene)-indanone)-5,5,11,11-tetrakis(4-hexylphenyl)-dithieno[2,3-d:2',3'-d']-s-indaceno[1,2-b:5,6-b']-dithiophene), a 3D structural model is directly imaged by employing high-resolution atomic force microscopy (AFM). Hierarchical morphologies ranging from fiberlike crystallites, several nanometers in size, to a bicontinuous morphology, having domains tens of nanometers in size, are observed. A fibrillar interpenetrating networks of J61-rich domains embedded in a matrix comprised of a J61/ITIC is seen, reflecting the partial miscibility of J61 with ITIC. These hierarchical nanostructural characteristics are coupled to significantly enhanced exciton dissociation, and further contribute to photocurrent and final device performance.

  5. Porous hollow Co₃O₄ with rhombic dodecahedral structures for high-performance supercapacitors.

    PubMed

    Zhang, Yi-Zhou; Wang, Yang; Xie, Ye-Lei; Cheng, Tao; Lai, Wen-Yong; Pang, Huan; Huang, Wei

    2014-11-06

    Porous hollow Co₃O₄ with rhombic dodecahedral structures were prepared by the calcination of ZIF-67 ([Co(mim)2; mim = 2-methylimidazolate]) rhombic dodecahedral microcrystals. A supercapacitor was successfully constructed by adopting the resulting porous hollow Co₃O₄ rhombic dodecahedral structure as the electrode material, which showed a large specific capacitance of 1100 F g(-1) and retained more than 95.1% of the specific capacitance after 6000 continuous charge-discharge cycles. The excellent capacitive properties and stability mark the porous hollow Co₃O₄ with the rhombic dodecahedral structure as one of the most promising electrode materials for high-performance supercapacitors.

  6. Long-term bridge performance high priority bridge performance issues.

    DOT National Transportation Integrated Search

    2014-10-01

    Bridge performance is a multifaceted issue involving performance of materials and protective systems, : performance of individual components of the bridge, and performance of the structural system as a whole. The : Long-Term Bridge Performance (LTBP)...

  7. Academic Self-Handicapping and Achievement Goals: A Further Examination.

    PubMed

    Midgley, Carol; Urdan, Tim

    2001-01-01

    This study extends previous research on the relations among students' personal achievement goals, perceptions of the classroom goal structure, and reports of the use of self-handicapping strategies. Surveys, specific to the math domain, were given to 484 7th-grade students in nine middle schools. Personal performance-avoid goals positively predicted handicapping, whereas personal performance-approach goals did not. Personal task goals negatively predicted handicapping. Perceptions of a performance goal structure positively predicted handicapping, and perceptions of a task goal structure negatively predicted handicapping, independent of personal goals. Median splits used to examine multiple goal profiles revealed that students high in performance-avoid goals used handicapping more than did those low in performance-avoid goals regardless of the level of task goals. Students low in performance-avoid goals and high in task goals handicapped less than those low in both goals. Level of performance-approach goals had little effect on the relation between task goals and handicapping. Copyright 2001 Academic Press.

  8. Effects of Link Annotations on Search Performance in Layered and Unlayered Hierarchically Organized Information Spaces.

    ERIC Educational Resources Information Center

    Fraser, Landon; Locatis, Craig

    2001-01-01

    Investigated the effects of link annotations on high school user search performance in Web hypertext environments having deep (layered) and shallow link structures. Results confirmed previous research that shallow link structures are better than deep (layered) link structures, and also showed that annotations had virtually no effect on search…

  9. Shape control of Co3O4 micro-structures for high-performance gas sensor

    NASA Astrophysics Data System (ADS)

    Zhou, Qu; Zeng, Wen

    2018-01-01

    Recently, spinel cobalt oxide (Co3O4) structure has been widely investigated due to its excellent sensitivity towards various noxious gases and good response/recovery speed at low concentration. In this work, we designed and synthesized two kinds of different Co3O4 micro-structure (cube and octahedron) with a similar size. After fabricating them into gas sensors, we found that the crystal plane structure of Co3O4 has an important effect on its gas sensing performance. Furthermore, the {111} planes of Co3O4may be more sensitive than {100} planes to various testing gases. Co3O4 octahedrons micro-structure exhibits an excellent sensitivity (about 12.6), good response/recovery speed and cycling stability (no decline even after 2 days) under 50 ppm ethanol gases at working temperature of 200 °C. As such, thisCo3O4 octahedrons micro-structure is a promising candidate for a high-performance gas sensing material.

  10. SSME lifetime prediction and verification, integrating environments, structures, materials: The challenge

    NASA Technical Reports Server (NTRS)

    Ryan, R. S.; Salter, L. D.; Young, G. M., III; Munafo, P. M.

    1985-01-01

    The planned missions for the space shuttle dictated a unique and technology-extending rocket engine. The high specific impulse requirements in conjunction with a 55-mission lifetime, plus volume and weight constraints, produced unique structural design, manufacturing, and verification requirements. Operations from Earth to orbit produce severe dynamic environments, which couple with the extreme pressure and thermal environments associated with the high performance, creating large low cycle loads and high alternating stresses above endurance limit which result in high sensitivity to alternating stresses. Combining all of these effects resulted in the requirements for exotic materials, which are more susceptible to manufacturing problems, and the use of an all-welded structure. The challenge of integrating environments, dynamics, structures, and materials into a verified SSME structure is discussed. The verification program and developmental flight results are included. The first six shuttle flights had engine performance as predicted with no failures. The engine system has met the basic design challenges.

  11. First bridge structure with lightweight high-performance concrete beams and deck in Virginia.

    DOT National Transportation Integrated Search

    2005-01-01

    This study involved the construction and early performance of the first bridge in Virginia constructed with lightweight high-performance concrete (LWHPC) having a density of 120 lb/ft3 in the beams and deck. The design strength and permeability were ...

  12. Conjunction of Conducting Polymer Nanostructures with Macroporous Structured Graphene Thin Films for High-Performance Flexible Supercapacitors.

    PubMed

    Memon, Mushtaque A; Bai, Wei; Sun, Jinhua; Imran, Muhammad; Phulpoto, Shah Nawaz; Yan, Shouke; Huang, Yong; Geng, Jianxin

    2016-05-11

    Fabrication of hybridized structures is an effective strategy to promote the performances of graphene-based composites for energy storage/conversion applications. In this work, macroporous structured graphene thin films (MGTFs) are fabricated on various substrates including flexible graphene papers (GPs) through an ice-crystal-induced phase separation process. The MGTFs prepared on GPs (MGTF@GPs) are recognized with remarkable features such as interconnected macroporous configuration, sufficient exfoliation of the conductive RGO sheets, and good mechanical flexibility. As such, the flexible MGTF@GPs are demonstrated as a versatile conductive platform for depositing conducting polymers (CPs), e.g., polyaniline (PAn), polypyrrole, and polythiophene, through in situ electropolymerization. The contents of the CPs in the composite films are readily controlled by varying the electropolymerization time. Notably, electrodeposition of PAn leads to the formation of nanostructures of PAn nanofibers on the walls of the macroporous structured RGO framework (PAn@MGTF@GPs): thereafter, the PAn@MGTF@GPs display a unique structural feature that combine the nanostructures of PAn nanofibers and the macroporous structures of RGO sheets. Being used as binder-free electrodes for flexible supercapacitors, the PAn@MGTF@GPs exhibit excellent electrochemical performance, in particular a high areal specific capacity (538 mF cm(-2)), high cycling stability, and remarkable capacitive stability to deformation, due to the unique electrode structures.

  13. High-resolution charge carrier mobility mapping of heterogeneous organic semiconductors

    NASA Astrophysics Data System (ADS)

    Button, Steven W.; Mativetsky, Jeffrey M.

    2017-08-01

    Organic electronic device performance is contingent on charge transport across a heterogeneous landscape of structural features. Methods are therefore needed to unravel the effects of local structure on overall electrical performance. Using conductive atomic force microscopy, we construct high-resolution out-of-plane hole mobility maps from arrays of 5000 to 16 000 current-voltage curves. To demonstrate the efficacy of this non-invasive approach for quantifying and mapping local differences in electrical performance due to structural heterogeneities, we investigate two thin film test systems, one bearing a heterogeneous crystal structure [solvent vapor annealed 5,11-Bis(triethylsilylethynyl)anthradithiophene (TES-ADT)—a small molecule organic semiconductor] and one bearing a heterogeneous chemical composition [p-DTS(FBTTh2)2:PC71BM—a high-performance organic photovoltaic active layer]. TES-ADT shows nearly an order of magnitude difference in hole mobility between semicrystalline and crystalline areas, along with a distinct boundary between the two regions, while p-DTS(FBTTh2)2:PC71BM exhibits subtle local variations in hole mobility and a nanoscale domain structure with features below 10 nm in size. We also demonstrate mapping of the built-in potential, which plays a significant role in organic light emitting diode and organic solar cell operation.

  14. Novel Techniques for Seismic Performance of High Rise Structures in 21st Century: State-Of-The Art Review

    NASA Astrophysics Data System (ADS)

    Patil, R.; Naringe, A.; Kalyana Rama, J. S.

    2018-03-01

    Natural disasters like earthquakes are causing catastrophic failure for various structures in and around the world because of its unpredictable nature. Even in India, almost 80% of, India’s capital, Delhi’s buildings are not earthquake resistant. If at all there is a moderate earthquake in Delhi, millions of lives and huge of property will be lost. There are many places in India including four metropolitan cities, in which majority of high rise buildings are not earthquake resistant. It is important to account for damage caused by earthquakes, incorporating suitable resistant techniques for the safeguard of the people. The present study deals with highlighting the novel techniques adopted in the recent past to make the structures earthquake resistant. Performance based design is one such approach where in performance of structure is given the utmost importance unlike the existing standards. Lateral load resisting systems like chevron braces, knee braces in combination with aluminium shear links are found to reduce the impact of earthquake on the structures w.r.t its drift. It is also observed that the use of economical and feasible passive and active control vibration systems like dampers, isolation techniques led to revolutionary changes in the overall performance of high rise.

  15. Extrinsic pseudocapacitve Li-ion storage of SnS anode via lithiation-induced structural optimization on cycling

    NASA Astrophysics Data System (ADS)

    Lian, Qingwang; Zhou, Gang; Liu, Jiatu; Wu, Chen; Wei, Weifeng; Chen, Libao; Li, Chengchao

    2017-10-01

    Here, we report a new enhanced extrinsic pseudocapacitve Li-ion storage mechanism via lithiation-induced structural optimization strategy. The flower-like C@SnS and bulk SnS exhibit initial capacity decay and subsequent increase of capacity on cycling. After a long-term lithiation/delithiation process, flower-like C@SnS and bulk SnS exhibit improved rate performance and reversible capacity in comparison with those of initial state. Moreover, a high capacity of 530 mAh g-1 is still remained even after 1550 cycles at a high current density of 5.0 A g-1 for flower-like C@SnS after pre-lithiation of 350 cycles. According to the comprehensive analysis of structural evolution and electrochemical performance, it demonstrates that SnS electrodes experience crystal size reduction and further amorphization on cycling, which enhances the reversibility of conversion reaction for SnS, leading to increasing capacity. On the other hand, surface-dominated extrinsic pseudocapacitive contribution results in enhanced rate performance because electrodes expose a large fraction of Li+ sites on surface or near-surface region with structural optimization on cycling. This study reveals that extrinsic pseudocapacitance of SnS can be stimulated via lithiation-induced structural optimization, which gives rise to high-rate and long-lived performances.

  16. High performance sandwich structured Si thin film anodes with LiPON coating

    NASA Astrophysics Data System (ADS)

    Luo, Xinyi; Lang, Jialiang; Lv, Shasha; Li, Zhengcao

    2018-06-01

    The sandwich structured silicon thin film anodes with lithium phosphorus oxynitride (LiPON) coating are synthesized via the radio frequency magnetron sputtering method, whereas the thicknesses of both layers are in the nanometer range, i.e. between 50 and 200 nm. In this sandwich structure, the separator simultaneously functions as a flexible substrate, while the LiPON layer is regarded as a protective layer. This sandwich structure combines the advantages of flexible substrate, which can help silicon release the compressive stress, and the LiPON coating, which can provide a stable artificial solid-electrolyte interphase (SEI) film on the electrode. As a result, the silicon anodes are protected well, and the cells exhibit high reversible capacity, excellent cycling stability and good rate capability. All the results demonstrate that this sandwich structure can be a promising option for high performance Si thin film lithium ion batteries.

  17. High performance sandwich structured Si thin film anodes with LiPON coating

    NASA Astrophysics Data System (ADS)

    Luo, Xinyi; Lang, Jialiang; Lv, Shasha; Li, Zhengcao

    2018-04-01

    The sandwich structured silicon thin film anodes with lithium phosphorus oxynitride (LiPON) coating are synthesized via the radio frequency magnetron sputtering method, whereas the thicknesses of both layers are in the nanometer range, i.e. between 50 and 200 nm. In this sandwich structure, the separator simultaneously functions as a flexible substrate, while the LiPON layer is regarded as a protective layer. This sandwich structure combines the advantages of flexible substrate, which can help silicon release the compressive stress, and the LiPON coating, which can provide a stable artificial solidelectrolyte interphase (SEI) film on the electrode. As a result, the silicon anodes are protected well, and the cells exhibit high reversible capacity, excellent cycling stability and good rate capability. All the results demonstrate that this sandwich structure can be a promising option for high performance Si thin film lithium ion batteries.

  18. Design of high-performance cathode materials with single-phase pathway for sodium ion batteries: A study on P2-Nax(LiyMn1-y)O2 compounds

    NASA Astrophysics Data System (ADS)

    Yang, Lufeng; Li, Xiang; Ma, Xuetian; Xiong, Shan; Liu, Pan; Tang, Yuanzhi; Cheng, Shuang; Hu, Yan-Yan; Liu, Meilin; Chen, Hailong

    2018-03-01

    Sodium-ion batteries (SIBs) are an emerging electrochemical energy storage technology that has high promise for electrical grid level energy storage. High capacity, long cycle life, and low cost cathode materials are very much desired for the development of high performance SIB systems. Sodium manganese oxides with different compositions and crystal structures have attracted much attention because of their high capacity and low cost. Here we report our investigations into a group of promising lithium doped sodium manganese oxide cathode materials with exceptionally high initial capacity of ∼223 mAh g-1 and excellent capacity retentions, attributed primarily to the absence of phase transformation in a wide potential range of electrochemical cycling, as confirmed by in-operando X-ray diffraction (XRD), Rietveld refinement, and high-resolution 7Li solid-state NMR characterizations. The systematic study of structural evolution and the correlation with the electrochemical behavior of the doped cathode materials provides new insights into rational design of high-performance intercalation compounds by tailoring the composition and the crystal structure evolution in electrochemical cycling.

  19. Controllable synthesis of nickel bicarbonate nanocrystals with high homogeneity for a high-performance supercapacitor

    NASA Astrophysics Data System (ADS)

    Gu, Jianmin; Liu, Xin; Wang, Zhuang; Bian, Zhenpan; Jin, Cuihong; Sun, Xiao; Yin, Baipeng; Wu, Tianhui; Wang, Lin; Tang, Shoufeng; Wang, Hongchao; Gao, Faming

    2017-08-01

    The electrochemical performance of supercapacitors might be associated with the homogeneous structure of the electrode materials. However, the relationship between the degree of uniformity for the electrode materials and the electrochemical performance of the supercapacitor is not clear. Herein, we synthesize two types of nickel bicarbonate nanocrystals with different degrees of uniformity to investigate this relationship. As the electroactive material, the nickel bicarbonate nanocrystals with a homogeneous structure could provide a larger space and offer more exposed atoms for the electrochemical reaction than the nanocrystals with a heterogeneous structure. The homogeneous nickel bicarbonate nanocrystals exhibit better electrochemical performance and show excellent specific capacitance (1596 F g-1 at 2 A g-1 and 1260 F g-1 at 30 A g-1), which is approximately twice that of the heterogeneous nickel bicarbonate nanocrystals. The cycling stability for the homogeneity (˜80%) is higher than the inhomogeneity (˜61%) at a high current density of 5 A g-1.

  20. The Effects of Partnership Management on Supply Chain Cooperative Performance: A Case Study of High-Tech Industry

    NASA Astrophysics Data System (ADS)

    Wu, Mei-Ying; Chang, Yun-Ju; Weng, Yung-Chien

    2009-08-01

    With the structural change of global supply chains, the relationship between manufacturers and suppliers has transformed into a long-term partnership. Thus, this study aims to explore the partnership between manufacturers and suppliers in Taiwan's high-tech industry. Four constructs, including partner characteristic, partnership quality, partnership closeness, and cooperative performance, induced from previous literatures are used to construct the research framework and hypotheses. A questionnaire survey is then performed on executives and staffs involved in the high-tech industry. The proposed framework and hypotheses are empirically validated through confirmatory factory analysis and structural equation modeling. It is expected that the research findings can serve as a reference for Taiwan's high-tech industry on building partnerships.

  1. NPSS Multidisciplinary Integration and Analysis

    NASA Technical Reports Server (NTRS)

    Hall, Edward J.; Rasche, Joseph; Simons, Todd A.; Hoyniak, Daniel

    2006-01-01

    The objective of this task was to enhance the capability of the Numerical Propulsion System Simulation (NPSS) by expanding its reach into the high-fidelity multidisciplinary analysis area. This task investigated numerical techniques to convert between cold static to hot running geometry of compressor blades. Numerical calculations of blade deformations were iteratively done with high fidelity flow simulations together with high fidelity structural analysis of the compressor blade. The flow simulations were performed with the Advanced Ducted Propfan Analysis (ADPAC) code, while structural analyses were performed with the ANSYS code. High fidelity analyses were used to evaluate the effects on performance of: variations in tip clearance, uncertainty in manufacturing tolerance, variable inlet guide vane scheduling, and the effects of rotational speed on the hot running geometry of the compressor blades.

  2. Spatial Abilities of High-School Students in the Perception of Geologic Structures.

    ERIC Educational Resources Information Center

    Kali, Yael; Orion, Nir

    1996-01-01

    Characterizes specific spatial abilities required in geology studies through the examination of the performance of high school students in solving structural geology problems on the geologic spatial ability test (GeoSAT). Concludes that visual penetration ability and the ability to perceive the spatial configuration of the structure are…

  3. Design and manufacturing considerations for high-performance gimbals used for land, sea, air, and space

    NASA Astrophysics Data System (ADS)

    Sweeney, Mike; Redd, Lafe; Vettese, Tom; Myatt, Ray; Uchida, David; Sellers, Del

    2015-09-01

    High performance stabilized EO/IR surveillance and targeting systems are in demand for a wide variety of military, law enforcement, and commercial assets for land, sea, air, and space. Operating ranges, wavelengths, and angular resolution capabilities define the requirements for EO/IR optics and sensors, and line of sight stabilization. Many materials and design configurations are available for EO/IR pointing gimbals depending on trade-offs of size, weight, power (SWaP), performance, and cost. Space and high performance military aircraft applications are often driven toward expensive but exceptionally performing beryllium and aluminum beryllium components. Commercial applications often rely on aluminum and composite materials. Gimbal design considerations include achieving minimized mass and inertia simultaneous with demanding structural, thermal, optical, and scene stabilization requirements when operating in dynamic operational environments. Manufacturing considerations include precision lapping and honing of ball bearing interfaces, brazing, welding, and casting of complex aluminum and beryllium alloy structures, and molding of composite structures. Several notional and previously developed EO/IR gimbal platforms are profiled that exemplify applicable design and manufacturing technologies.

  4. Nano-Sized Structurally Disordered Metal Oxide Composite Aerogels as High-Power Anodes in Hybrid Supercapacitors.

    PubMed

    Huang, Haijian; Wang, Xing; Tervoort, Elena; Zeng, Guobo; Liu, Tian; Chen, Xi; Sologubenko, Alla; Niederberger, Markus

    2018-03-27

    A general method for preparing nano-sized metal oxide nanoparticles with highly disordered crystal structure and their processing into stable aqueous dispersions is presented. With these nanoparticles as building blocks, a series of nanoparticles@reduced graphene oxide (rGO) composite aerogels are fabricated and directly used as high-power anodes for lithium-ion hybrid supercapacitors (Li-HSCs). To clarify the effect of the degree of disorder, control samples of crystalline nanoparticles with similar particle size are prepared. The results indicate that the structurally disordered samples show a significantly enhanced electrochemical performance compared to the crystalline counterparts. In particular, structurally disordered Ni x Fe y O z @rGO delivers a capacity of 388 mAh g -1 at 5 A g -1 , which is 6 times that of the crystalline sample. Disordered Ni x Fe y O z @rGO is taken as an example to study the reasons for the enhanced performance. Compared with the crystalline sample, density functional theory calculations reveal a smaller volume expansion during Li + insertion for the structurally disordered Ni x Fe y O z nanoparticles, and they are found to exhibit larger pseudocapacitive effects. Combined with an activated carbon (AC) cathode, full-cell tests of the lithium-ion hybrid supercapacitors are performed, demonstrating that the structurally disordered metal oxide nanoparticles@rGO||AC hybrid systems deliver high energy and power densities within the voltage range of 1.0-4.0 V. These results indicate that structurally disordered nanomaterials might be interesting candidates for exploring high-power anodes for Li-HSCs.

  5. High performance railgun barrels for laboratory use

    NASA Astrophysics Data System (ADS)

    Bauer, David P.; Newman, Duane C.

    1993-01-01

    High performance low-cost, laboratory railgun barrels are now available, comprised of an inherently stiff containment structure which surrounds the bore components machined from 'off the-shelf' materials. The shape of the containment structure was selected to make the barrel inherently stiff. The structure consists of stainless steel laminations which do not compromise the electrical efficiency of the railgun. The modular design enhances the utility of the barrel, as it is easy to service between shots, and can be 're-cored' to produce different configurations and sizes using the same structure. We have produced barrels ranging from 15 mm to 90 mm square bore, a 30 mm round bore, and in lengths varying from 0.25 meters to 10 meters long. Successful tests with both plasma and solid metal armatures have demonstrated the versatility and performance of this design.

  6. Ferroelectric nanoparticle-embedded sponge structure triboelectric generators

    NASA Astrophysics Data System (ADS)

    Park, Daehoon; Shin, Sung-Ho; Yoon, Ick-Jae; Nah, Junghyo

    2018-05-01

    We report high-performance triboelectric nanogenerators (TENGs) employing ferroelectric nanoparticles (NPs) embedded in a sponge structure. The ferroelectric BaTiO3 NPs inside the sponge structure play an important role in increasing surface charge density by polarized spontaneous dipoles, enabling the packaging of TENGs even with a minimal separation gap. Since the friction surfaces are encapsulated in the packaged device structure, it suffers negligible performance degradation even at a high relative humidity of 80%. The TENGs also demonstrated excellent mechanical durability due to the elasticity and flexibility of the sponge structure. Consequently, the TENGs can reliably harvest energy even under harsh conditions. The approach introduced here is a simple, effective, and reliable way to fabricate compact and packaged TENGs for potential applications in wearable energy-harvesting devices.

  7. Ferroelectric nanoparticle-embedded sponge structure triboelectric generators.

    PubMed

    Park, Daehoon; Shin, Sung-Ho; Yoon, Ick-Jae; Nah, Junghyo

    2018-05-04

    We report high-performance triboelectric nanogenerators (TENGs) employing ferroelectric nanoparticles (NPs) embedded in a sponge structure. The ferroelectric BaTiO 3 NPs inside the sponge structure play an important role in increasing surface charge density by polarized spontaneous dipoles, enabling the packaging of TENGs even with a minimal separation gap. Since the friction surfaces are encapsulated in the packaged device structure, it suffers negligible performance degradation even at a high relative humidity of 80%. The TENGs also demonstrated excellent mechanical durability due to the elasticity and flexibility of the sponge structure. Consequently, the TENGs can reliably harvest energy even under harsh conditions. The approach introduced here is a simple, effective, and reliable way to fabricate compact and packaged TENGs for potential applications in wearable energy-harvesting devices.

  8. High Performance, Robust Control of Flexible Space Structures: MSFC Center Director's Discretionary Fund

    NASA Technical Reports Server (NTRS)

    Whorton, M. S.

    1998-01-01

    Many spacecraft systems have ambitious objectives that place stringent requirements on control systems. Achievable performance is often limited because of difficulty of obtaining accurate models for flexible space structures. To achieve sufficiently high performance to accomplish mission objectives may require the ability to refine the control design model based on closed-loop test data and tune the controller based on the refined model. A control system design procedure is developed based on mixed H2/H(infinity) optimization to synthesize a set of controllers explicitly trading between nominal performance and robust stability. A homotopy algorithm is presented which generates a trajectory of gains that may be implemented to determine maximum achievable performance for a given model error bound. Examples show that a better balance between robustness and performance is obtained using the mixed H2/H(infinity) design method than either H2 or mu-synthesis control design. A second contribution is a new procedure for closed-loop system identification which refines parameters of a control design model in a canonical realization. Examples demonstrate convergence of the parameter estimation and improved performance realized by using the refined model for controller redesign. These developments result in an effective mechanism for achieving high-performance control of flexible space structures.

  9. Tough, high performance, addition-type thermoplastic polymers

    NASA Technical Reports Server (NTRS)

    Pater, Ruth H. (Inventor)

    1992-01-01

    A tough, high performance polyimide is provided by reacting a triple bond conjugated with an aromatic ring in a bisethynyl compound with the active double bond in a compound containing a double bond activated toward the formation of a Diels-Adler type adduct, especially a bismaleimide, a biscitraconimide, or a benzoquinone, or mixtures thereof. Addition curing of this product produces a high linear polymeric structure and heat treating the highly linear polymeric structure produces a thermally stable aromatic addition-type thermoplastic polyimide, which finds utility in the preparation of molding compounds, adhesive compositions, and polymer matrix composites.

  10. Wood products research in the USA

    Treesearch

    Theodore Wegner

    2010-01-01

    Forest biomass conversion to biofuels and other value-added co-products; hyper-performance advanced composites custom tailored to end use requirements; advanced high performance wood-based structures; and nanomaterials and nano-enable high performance products from wood represent important research and development investment areas for the successful transformation of...

  11. Concurrent Probabilistic Simulation of High Temperature Composite Structural Response

    NASA Technical Reports Server (NTRS)

    Abdi, Frank

    1996-01-01

    A computational structural/material analysis and design tool which would meet industry's future demand for expedience and reduced cost is presented. This unique software 'GENOA' is dedicated to parallel and high speed analysis to perform probabilistic evaluation of high temperature composite response of aerospace systems. The development is based on detailed integration and modification of diverse fields of specialized analysis techniques and mathematical models to combine their latest innovative capabilities into a commercially viable software package. The technique is specifically designed to exploit the availability of processors to perform computationally intense probabilistic analysis assessing uncertainties in structural reliability analysis and composite micromechanics. The primary objectives which were achieved in performing the development were: (1) Utilization of the power of parallel processing and static/dynamic load balancing optimization to make the complex simulation of structure, material and processing of high temperature composite affordable; (2) Computational integration and synchronization of probabilistic mathematics, structural/material mechanics and parallel computing; (3) Implementation of an innovative multi-level domain decomposition technique to identify the inherent parallelism, and increasing convergence rates through high- and low-level processor assignment; (4) Creating the framework for Portable Paralleled architecture for the machine independent Multi Instruction Multi Data, (MIMD), Single Instruction Multi Data (SIMD), hybrid and distributed workstation type of computers; and (5) Market evaluation. The results of Phase-2 effort provides a good basis for continuation and warrants Phase-3 government, and industry partnership.

  12. Investigation of properties of high-performance fiber-reinforced concrete : very early strength, toughness, permeability, and fiber distribution : final report.

    DOT National Transportation Integrated Search

    2017-01-01

    Concrete cracking, high permeability, and leaking joints allow for intrusion of harmful solutions, resulting in concrete deterioration and corrosion of reinforcement in structures. The development of durable, high-performance concretes with limited c...

  13. Transformation of sludge Si to nano-Si/SiOx structure by oxygen inward diffusion as precursor for high performance anodes in lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Hua, Qiqi; Dai, Dongyang; Zhang, Chengzhi; Han, Fei; Lv, Tiezheng; Li, Xiaoshan; Wang, Shijie; Zhu, Rui; Liao, Haojie; Zhang, Shiguo

    2018-05-01

    Although several Si/C composite structures have been proposed for high-performance lithium-ion batteries (LIBs), they have still suffered from expensive and complex processes of nano-Si production. Herein, a simple, controllable oxygen inward diffusion was utilized to transform Si sludge obtained from the photovoltaic (PV) industry into the nano-Si/SiOx structure as a result of the high diffusion efficiency of O inside Si and high surface area of the sludge. After further process, a yolk/shell Si/C structure was obtained as an anode material for LIBs. This composite demonstrated an excellent cycling stability, with a high reversible capacity (˜ 1250 mAh/g for 500 cycles), by void space originally left by the SiOx accommodate inner Si expansion. We believe this is a rather simple way to convert the waste Si into a valuable nano-Si for LIB applications.

  14. Neutron reflecting supermirror structure

    DOEpatents

    Wood, J.L.

    1992-12-01

    An improved neutron reflecting supermirror structure comprising a plurality of stacked sets of bilayers of neutron reflecting materials. The improved neutron reflecting supermirror structure is adapted to provide extremely good performance at high incidence angles, i.e. up to four time the critical angle of standard neutron mirror structures. The reflection of neutrons striking the supermirror structure at a high critical angle provides enhanced neutron throughput, and hence more efficient and economical use of neutron sources. 2 figs.

  15. Neutron reflecting supermirror structure

    DOEpatents

    Wood, James L.

    1992-01-01

    An improved neutron reflecting supermirror structure comprising a plurality of stacked sets of bilayers of neutron reflecting materials. The improved neutron reflecting supermirror structure is adapted to provide extremely good performance at high incidence angles, i.e. up to four time the critical angle of standard neutron mirror structures. The reflection of neutrons striking the supermirror structure at a high critical angle provides enhanced neutron throughput, and hence more efficient and economical use of neutron sources.

  16. Mn-Based Cathode with Synergetic Layered-Tunnel Hybrid Structures and Their Enhanced Electrochemical Performance in Sodium Ion Batteries.

    PubMed

    Wu, Zhen-Guo; Li, Jun-Tao; Zhong, Yan-Jun; Guo, Xiao-Dong; Huang, Ling; Zhong, Ben-He; Agyeman, Daniel-Adjei; Lim, Jin-Myoung; Kim, Du-Ho; Cho, Maeng-Hyo; Kang, Yong-Mook

    2017-06-28

    A synergistic approach for advanced cathode materials is proposed. Sodium manganese oxide with a layered-tunnel hybrid structure was designed, synthesized, and subsequently investigated. The layered-tunnel hybrid structure provides fast Na ion diffusivity and high structural stability thanks to the tunnel phase, enabling high rate capability and greatly improved cycling stability compared to that of the pure P2 layered phase while retaining the high specific capacity of the P2 layered phase. The hybrid structure provided a decent discharge capacity of 133.4 mAh g -1 even at 8 C, which exceeds the reported best rate capability for Mn-based cathodes. It also displayed an impressive cycling stability, maintaining 83.3 mAh g -1 after 700 cycles at 10 C. Theoretical calculation and the potentiostatic intermittent titration technique (PITT) demonstrated that this hybrid structure helps enhance Na ion diffusivity during charge and discharge, attaining, as a result, an unprecendented electrochemical performance.

  17. Large-scale structural analysis: The structural analyst, the CSM Testbed and the NAS System

    NASA Technical Reports Server (NTRS)

    Knight, Norman F., Jr.; Mccleary, Susan L.; Macy, Steven C.; Aminpour, Mohammad A.

    1989-01-01

    The Computational Structural Mechanics (CSM) activity is developing advanced structural analysis and computational methods that exploit high-performance computers. Methods are developed in the framework of the CSM testbed software system and applied to representative complex structural analysis problems from the aerospace industry. An overview of the CSM testbed methods development environment is presented and some numerical methods developed on a CRAY-2 are described. Selected application studies performed on the NAS CRAY-2 are also summarized.

  18. Promising Thermoelectric Bulk Materials with 2D Structures.

    PubMed

    Zhou, Yiming; Zhao, Li-Dong

    2017-12-01

    Given that more than two thirds of all energy is lost, mostly as waste heat, in utilization processes worldwide, thermoelectric materials, which can directly convert waste heat to electricity, provide an alternative option for optimizing energy utilization processes. After the prediction that superlattices may show high thermoelectric performance, various methods based on quantum effects and superlattice theory have been adopted to analyze bulk materials, leading to the rapid development of thermoelectric materials. Bulk materials with two-dimensional (2D) structures show outstanding properties, and their high performance originates from both their low thermal conductivity and high Seebeck coefficient due to their strong anisotropic features. Here, the advantages of superlattices for enhancing the thermoelectric performance, the transport mechanism in bulk materials with 2D structures, and optimization methods are discussed. The phenomenological transport mechanism in these materials indicates that thermal conductivities are reduced in 2D materials with intrinsically short mean free paths. Recent progress in the transport mechanisms of Bi 2 Te 3 -, SnSe-, and BiCuSeO-based systems is summarized. Finally, possible research directions to enhance the thermoelectric performance of bulk materials with 2D structures are briefly considered. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Entropy as a Gene-Like Performance Indicator Promoting Thermoelectric Materials.

    PubMed

    Liu, Ruiheng; Chen, Hongyi; Zhao, Kunpeng; Qin, Yuting; Jiang, Binbin; Zhang, Tiansong; Sha, Gang; Shi, Xun; Uher, Ctirad; Zhang, Wenqing; Chen, Lidong

    2017-10-01

    High-throughput explorations of novel thermoelectric materials based on the Materials Genome Initiative paradigm only focus on digging into the structure-property space using nonglobal indicators to design materials with tunable electrical and thermal transport properties. As the genomic units, following the biogene tradition, such indicators include localized crystal structural blocks in real space or band degeneracy at certain points in reciprocal space. However, this nonglobal approach does not consider how real materials differentiate from others. Here, this study successfully develops a strategy of using entropy as the global gene-like performance indicator that shows how multicomponent thermoelectric materials with high entropy can be designed via a high-throughput screening method. Optimizing entropy works as an effective guide to greatly improve the thermoelectric performance through either a significantly depressed lattice thermal conductivity down to its theoretical minimum value and/or via enhancing the crystal structure symmetry to yield large Seebeck coefficients. The entropy engineering using multicomponent crystal structures or other possible techniques provides a new avenue for an improvement of the thermoelectric performance beyond the current methods and approaches. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Construction of hierarchical porous NiCo{sub 2}O{sub 4} films composed of nanowalls as cathode materials for high-performance supercapacitor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Qingyun, E-mail: hizhengqingyun@126.com; Zhang, Xiangyang; Shen, Youming

    Graphical abstract: Hydrothermal-synthesized NiCo{sub 2}O{sub 4} mesowall films exhibit porous structure and high capacity as well as good cycling life for supercapacitor application. - Highlights: • Hierarchical porous NiCo{sub 2}O{sub 4} nanowall films are prepared by a hydrothermal method. • NiCo{sub 2}O{sub 4} nanowall films show excellent electrochemical performance. • Hierarchical porous film structure is favorable for fast ion/electron transfer. - Abstract: Hierarchical porous NiCo{sub 2}O{sub 4} films composed of nanowalls on nickel foam are synthesized via a facile hydrothermal method. Besides the mesoporous walls, the NiCo{sub 2}O{sub 4} nanowalls are interconnected with each other to form hierarchical porous structure.more » These unique porous structured films possess a high specific surface area. The supercapacitor performance of the hierarchical porous NiCo{sub 2}O{sub 4} film is fully characterized. A high capacity of 130 mA h g{sup −1} is achieved at 2 A g{sup −1} with 97% capacity maintained after 2,000 cycles. Importantly, 75.6% of capacity is retained when the current density changes from 3 A g{sup −1} to 36 A g{sup −1}. The superior electrochemical performance is mainly due to the unique hierarchical porous structure with large surface area as well as shorter diffusion length for ion and charge transport.« less

  1. High performance EUV multilayer structures insensitive to capping layer optical parameters.

    PubMed

    Pelizzo, Maria Guglielmina; Suman, Michele; Monaco, Gianni; Nicolosi, Piergiorgio; Windt, David L

    2008-09-15

    We have designed and tested a-periodic multilayer structures containing protective capping layers in order to obtain improved stability with respect to any possible changes of the capping layer optical properties (due to oxidation and contamination, for example)-while simultaneously maximizing the EUV reflection efficiency for specific applications, and in particular for EUV lithography. Such coatings may be particularly useful in EUV lithographic apparatus, because they provide both high integrated photon flux and higher stability to the harsh operating environment, which can affect seriously the performance of the multilayer-coated projector system optics. In this work, an evolutive algorithm has been developed in order to design these a-periodic structures, which have been proven to have also the property of stable performance with respect to random layer thickness errors that might occur during coating deposition. Prototypes have been fabricated, and tested with EUV and X-ray reflectometry, and secondary electron spectroscopy. The experimental results clearly show improved performance of our new a-periodic coatings design compared with standard periodic multilayer structures.

  2. A nonlinear vibration isolator achieving high-static-low-dynamic stiffness and tunable anti-resonance frequency band

    NASA Astrophysics Data System (ADS)

    Sun, Xiuting; Jing, Xingjian

    2016-12-01

    This study investigates theoretically and experimentally a vibration isolator constructed by an n-layer Scissor-Like Structure (SLS), focusing on the analysis and design of nonlinear stiffness and damping characteristics for advantageous isolation performance in both orthogonal directions. With the mathematical modeling, the influence incurred by different structural parameters on system isolation performance is studied. It is shown that, (a) nonlinear high-static-low-dynamic stiffness and damping characteristics can be seen such that the system can achieve good isolation performance in both directions, (b) an anti-resonance frequency band exists due to the coupling effect between the linear and nonlinear stiffness in the two orthogonal directions within the structure, and (c) all these performances are designable with several structural parameters. The advantages of the proposed system are shown through comparisons with an existing quasi-zero-stiffness vibration isolator (QZS-VI) and a traditional mass-spring-damper vibration isolator (MSD-VI), and further validated by experimental results.

  3. High Performance Fortran for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Mehrotra, Piyush; Zima, Hans; Bushnell, Dennis M. (Technical Monitor)

    2000-01-01

    This paper focuses on the use of High Performance Fortran (HPF) for important classes of algorithms employed in aerospace applications. HPF is a set of Fortran extensions designed to provide users with a high-level interface for programming data parallel scientific applications, while delegating to the compiler/runtime system the task of generating explicitly parallel message-passing programs. We begin by providing a short overview of the HPF language. This is followed by a detailed discussion of the efficient use of HPF for applications involving multiple structured grids such as multiblock and adaptive mesh refinement (AMR) codes as well as unstructured grid codes. We focus on the data structures and computational structures used in these codes and on the high-level strategies that can be expressed in HPF to optimally exploit the parallelism in these algorithms.

  4. Fabrication of 3-D nanodimensioned electric double layer capacitor structures using block copolymer templates.

    PubMed

    Rasappa, Sozaraj; Borah, Dipu; Senthamaraikannan, Ramsankar; Faulkner, Colm C; Holmes, Justin D; Morris, Michael A

    2014-07-01

    The need for materials for high energy storage has led to very significant research in supercapacitor systems. These can exhibit electrical double layer phenomena and capacitances up to hundreds of F/g. Here, we demonstrate a new supercapacitor fabrication methodology based around the microphase separation of PS-b-PMMA which has been used to prepare copper nanoelectrodes of dimension -13 nm. These structures provide excellent capacitive performance with a maximum specific capacitance of -836 F/g for a current density of 8.06 A/g at a discharge current as high as 75 mA. The excellent performance is due to a high surface area: volume ratio. We suggest that this highly novel, easily fabricated structure might have a number of important applications.

  5. Unified transform architecture for AVC, AVS, VC-1 and HEVC high-performance codecs

    NASA Astrophysics Data System (ADS)

    Dias, Tiago; Roma, Nuno; Sousa, Leonel

    2014-12-01

    A unified architecture for fast and efficient computation of the set of two-dimensional (2-D) transforms adopted by the most recent state-of-the-art digital video standards is presented in this paper. Contrasting to other designs with similar functionality, the presented architecture is supported on a scalable, modular and completely configurable processing structure. This flexible structure not only allows to easily reconfigure the architecture to support different transform kernels, but it also permits its resizing to efficiently support transforms of different orders (e.g. order-4, order-8, order-16 and order-32). Consequently, not only is it highly suitable to realize high-performance multi-standard transform cores, but it also offers highly efficient implementations of specialized processing structures addressing only a reduced subset of transforms that are used by a specific video standard. The experimental results that were obtained by prototyping several configurations of this processing structure in a Xilinx Virtex-7 FPGA show the superior performance and hardware efficiency levels provided by the proposed unified architecture for the implementation of transform cores for the Advanced Video Coding (AVC), Audio Video coding Standard (AVS), VC-1 and High Efficiency Video Coding (HEVC) standards. In addition, such results also demonstrate the ability of this processing structure to realize multi-standard transform cores supporting all the standards mentioned above and that are capable of processing the 8k Ultra High Definition Television (UHDTV) video format (7,680 × 4,320 at 30 fps) in real time.

  6. Spine-like Nanostructured Carbon Interconnected by Graphene for High-performance Supercapacitors

    NASA Astrophysics Data System (ADS)

    Park, Sang-Hoon; Yoon, Seung-Beom; Kim, Hyun-Kyung; Han, Joong Tark; Park, Hae-Woong; Han, Joah; Yun, Seok-Min; Jeong, Han Gi; Roh, Kwang Chul; Kim, Kwang-Bum

    2014-08-01

    Recent studies on supercapacitors have focused on the development of hierarchical nanostructured carbons by combining two-dimensional graphene and other conductive sp2 carbons, which differ in dimensionality, to improve their electrochemical performance. Herein, we report a strategy for synthesizing a hierarchical graphene-based carbon material, which we shall refer to as spine-like nanostructured carbon, from a one-dimensional graphitic carbon nanofiber by controlling the local graphene/graphitic structure via an expanding process and a co-solvent exfoliation method. Spine-like nanostructured carbon has a unique hierarchical structure of partially exfoliated graphitic blocks interconnected by thin graphene sheets in the same manner as in the case of ligaments. Owing to the exposed graphene layers and interconnected sp2 carbon structure, this hierarchical nanostructured carbon possesses a large, electrochemically accessible surface area with high electrical conductivity and exhibits high electrochemical performance.

  7. Spine-like nanostructured carbon interconnected by graphene for high-performance supercapacitors.

    PubMed

    Park, Sang-Hoon; Yoon, Seung-Beom; Kim, Hyun-Kyung; Han, Joong Tark; Park, Hae-Woong; Han, Joah; Yun, Seok-Min; Jeong, Han Gi; Roh, Kwang Chul; Kim, Kwang-Bum

    2014-08-19

    Recent studies on supercapacitors have focused on the development of hierarchical nanostructured carbons by combining two-dimensional graphene and other conductive sp(2) carbons, which differ in dimensionality, to improve their electrochemical performance. Herein, we report a strategy for synthesizing a hierarchical graphene-based carbon material, which we shall refer to as spine-like nanostructured carbon, from a one-dimensional graphitic carbon nanofiber by controlling the local graphene/graphitic structure via an expanding process and a co-solvent exfoliation method. Spine-like nanostructured carbon has a unique hierarchical structure of partially exfoliated graphitic blocks interconnected by thin graphene sheets in the same manner as in the case of ligaments. Owing to the exposed graphene layers and interconnected sp(2) carbon structure, this hierarchical nanostructured carbon possesses a large, electrochemically accessible surface area with high electrical conductivity and exhibits high electrochemical performance.

  8. Spine-like Nanostructured Carbon Interconnected by Graphene for High-performance Supercapacitors

    PubMed Central

    Park, Sang-Hoon; Yoon, Seung-Beom; Kim, Hyun-Kyung; Han, Joong Tark; Park, Hae-Woong; Han, Joah; Yun, Seok-Min; Jeong, Han Gi; Roh, Kwang Chul; Kim, Kwang-Bum

    2014-01-01

    Recent studies on supercapacitors have focused on the development of hierarchical nanostructured carbons by combining two-dimensional graphene and other conductive sp2 carbons, which differ in dimensionality, to improve their electrochemical performance. Herein, we report a strategy for synthesizing a hierarchical graphene-based carbon material, which we shall refer to as spine-like nanostructured carbon, from a one-dimensional graphitic carbon nanofiber by controlling the local graphene/graphitic structure via an expanding process and a co-solvent exfoliation method. Spine-like nanostructured carbon has a unique hierarchical structure of partially exfoliated graphitic blocks interconnected by thin graphene sheets in the same manner as in the case of ligaments. Owing to the exposed graphene layers and interconnected sp2 carbon structure, this hierarchical nanostructured carbon possesses a large, electrochemically accessible surface area with high electrical conductivity and exhibits high electrochemical performance. PMID:25134517

  9. High performance capacitors using nano-structure multilayer materials fabrication

    DOEpatents

    Barbee, T.W. Jr.; Johnson, G.W.; O`Brien, D.W.

    1995-05-09

    A high performance capacitor is fabricated from nano-structure multilayer materials, such as by controlled, reactive sputtering, and having very high energy-density, high specific energy and high voltage breakdown. The multilayer capacitors, for example, may be fabricated in a ``notepad`` configuration composed of 200-300 alternating layers of conductive and dielectric materials so as to have a thickness of 1 mm, width of 200 mm, and length of 300 mm, with terminals at each end of the layers suitable for brazing, thereby guaranteeing low contact resistance and high durability. The notepad capacitors may be stacked in single or multiple rows (series-parallel banks) to increase the voltage and energy density. 5 figs.

  10. High performance capacitors using nano-structure multilayer materials fabrication

    DOEpatents

    Barbee, T.W. Jr.; Johnson, G.W.; O`Brien, D.W.

    1996-01-23

    A high performance capacitor is described which is fabricated from nano-structure multilayer materials, such as by controlled, reactive sputtering, and having very high energy-density, high specific energy and high voltage breakdown. The multilayer capacitors, for example, may be fabricated in a ``notepad`` configuration composed of 200--300 alternating layers of conductive and dielectric materials so as to have a thickness of 1 mm, width of 200 mm, and length of 300 mm, with terminals at each end of the layers suitable for brazing, thereby guaranteeing low contact resistance and high durability. The ``notepad`` capacitors may be stacked in single or multiple rows (series-parallel banks) to increase the voltage and energy density. 5 figs.

  11. Perfect narrow band absorber for sensing applications.

    PubMed

    Luo, Shiwen; Zhao, Jun; Zuo, Duluo; Wang, Xinbing

    2016-05-02

    We design and numerically investigate a perfect narrow band absorber based on a metal-metal-dielectric-metal structure which consists of periodic metallic nanoribbon arrays. The absorber presents an ultra narrow absorption band of 1.11 nm with a nearly perfect absorption of over 99.9% in the infrared region. For oblique incidence, the absorber shows an absorption more than 95% for a wide range of incident angles from 0 to 50°. Structure parameters to the influence of the performance are investigated. The structure shows high sensing performance with a high sensitivity of 1170 nm/RIU and a large figure of merit of 1054. The proposed structure has great potential as a biosensor.

  12. High performance hybrid silicon micropillar solar cell based on light trapping characteristics of Cu nanoparticles

    NASA Astrophysics Data System (ADS)

    Zhang, Yulong; Fan, Zhiqiang; Zhang, Weijia; Ma, Qiang; Jiang, Zhaoyi; Ma, Denghao

    2018-05-01

    High performance silicon combined structure (micropillar with Cu nanoparticles) solar cell has been synthesized from N-type silicon substrates based on the micropillar array. The combined structure solar cell exhibited higher short circuit current rather than the silicon miropillar solar cell, which the parameters of micropillar array are the same. Due to the Cu nanoparticles were decorated on the surface of silicon micropillar array, the photovoltaic properties of cells have been improved. In addition, the optimal efficiency of 11.5% was measured for the combined structure solar cell, which is better than the silicon micropillar cell.

  13. Simultaneous structural and environmental loading of an ultra-high performance concrete component

    DOT National Transportation Integrated Search

    2010-07-01

    Ultra-high performance concrete (UHPC) is an advanced cementitious composite material which tends to exhibit superior properties such as increased durability, strength, and long-term stability. This experimental investigation focused on the flexural ...

  14. Progress on high-performance rapid prototype aluminum mirrors

    NASA Astrophysics Data System (ADS)

    Woodard, Kenneth S.; Myrick, Bruce H.

    2017-05-01

    Near net shape parts can be produced using some very old processes (investment casting) and the relatively new direct metal laser sintering (DMLS) process. These processes have significant advantages for complex blank lightweighting and costs but are not inherently suited for producing high performance mirrors. The DMLS process can provide extremely complex lightweight structures but the high residual stresses left in the material results in unstable mirror figure retention. Although not to the extreme intricacy of DMLS, investment casting can also provide complex lightweight structures at considerably lower costs than DMLS and even conventional wrought mirror blanks but the less than 100% density for casting (and also DMLS) limits finishing quality. This paper will cover the progress that has been made to make both the DMLS and investment casting processes into viable near net shape blank options for high performance aluminum mirrors. Finish and figure results will be presented to show performance commensurate with existing conventional processes.

  15. High energy density of Li3-xNaxV2(PO4)3/C cathode material with high rate cycling performance for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Zuo, Zong-Lin; Deng, Jian-Qiu; Pan, Jin; Luo, Wen-Bin; Yao, Qing-Rong; Wang, Zhong-Min; Zhou, Huai-Ying; Liu, Hua-Kun

    2017-07-01

    A serials of micro-sized Li3-xNaxV2(PO4)3/C composite has been synthesized by sol-gel method, comprised of numerous primary nanocrystals. This structure can efficiently facilitate lithium-ion transport in secondary aggregated individual particles due to the short diffusion distance among primary nanocrystals, along with a high tap density. With the increasing of Na doping content, the structure evolution occurs in Li3-xNaxV2(PO4)3 from a single-phase structure to a two-phase structure. The appearance of rhombohedral phase can provide a larger free volume of the interstitial space, fastening ionic movement to offer an excellent high rate capability. Furthermore, Na doping can stabilize the rhombohedral structure of the V2(PO4)3 framework, leading to the remarkable cycling stability. Among all the composites, Li2.6Na0.4V2(PO4)3/C presents the best electrochemical performance with a high energy density of 478.8 Wh kg-1, delivering high initial discharge capacities of 121.6, 113.8 and 109.7 mAh g-1 at the rate of 5 C, 10 C and 20 C in a voltage range of 3.0 - 4.3 V, respectively. It also exhibit an excellent high rate cycling performance, with capacity retention of 85.9 %, 81.7 % and 76.5 % after 1000 cycles at the rate of 5 C, 10 C and 20 C in a voltage range of 3.0 - 4.3 V.

  16. High-Temperature Strain Sensing for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Piazza, Anthony; Richards, Lance W.; Hudson, Larry D.

    2008-01-01

    Thermal protection systems (TPS) and hot structures are utilizing advanced materials that operate at temperatures that exceed abilities to measure structural performance. Robust strain sensors that operate accurately and reliably beyond 1800 F are needed but do not exist. These shortcomings hinder the ability to validate analysis and modeling techniques and hinders the ability to optimize structural designs. This presentation examines high-temperature strain sensing for aerospace applications and, more specifically, seeks to provide strain data for validating finite element models and thermal-structural analyses. Efforts have been made to develop sensor attachment techniques for relevant structural materials at the small test specimen level and to perform laboratory tests to characterize sensor and generate corrections to apply to indicated strains. Areas highlighted in this presentation include sensors, sensor attachment techniques, laboratory evaluation/characterization of strain measurement, and sensor use in large-scale structures.

  17. Porous membrane with high curvature, three-dimensional heat-resistance skeleton: a new and practical separator candidate for high safety lithium ion battery

    NASA Astrophysics Data System (ADS)

    Shi, Junli; Xia, Yonggao; Yuan, Zhizhang; Hu, Huasheng; Li, Xianfeng; Zhang, Huamin; Liu, Zhaoping

    2015-02-01

    Separators with high reliability and security are in urgent demand for the advancement of high performance lithium ion batteries. Here, we present a new and practical porous membrane with three-dimension (3D) heat-resistant skeleton and high curvature pore structure as a promising separator candidate to facilitate advances in battery safety and performances beyond those obtained from the conventional separators. The unique material properties combining with the well-developed structural characteristics enable the 3D porous skeleton to own several favorable properties, including superior thermal stability, good wettability with liquid electrolyte, high ion conductivity and internal short-circuit protection function, etc. which give rise to acceptable battery performances. Considering the simply and cost-effective preparation process, the porous membrane is deemed to be an interesting direction for the future lithium ion battery separator.

  18. Porous membrane with high curvature, three-dimensional heat-resistance skeleton: a new and practical separator candidate for high safety lithium ion battery

    PubMed Central

    Shi, Junli; Xia, Yonggao; Yuan, Zhizhang; Hu, Huasheng; Li, Xianfeng; Zhang, Huamin; Liu, Zhaoping

    2015-01-01

    Separators with high reliability and security are in urgent demand for the advancement of high performance lithium ion batteries. Here, we present a new and practical porous membrane with three-dimension (3D) heat-resistant skeleton and high curvature pore structure as a promising separator candidate to facilitate advances in battery safety and performances beyond those obtained from the conventional separators. The unique material properties combining with the well-developed structural characteristics enable the 3D porous skeleton to own several favorable properties, including superior thermal stability, good wettability with liquid electrolyte, high ion conductivity and internal short-circuit protection function, etc. which give rise to acceptable battery performances. Considering the simply and cost-effective preparation process, the porous membrane is deemed to be an interesting direction for the future lithium ion battery separator. PMID:25653104

  19. Porous membrane with high curvature, three-dimensional heat-resistance skeleton: a new and practical separator candidate for high safety lithium ion battery.

    PubMed

    Shi, Junli; Xia, Yonggao; Yuan, Zhizhang; Hu, Huasheng; Li, Xianfeng; Zhang, Huamin; Liu, Zhaoping

    2015-02-05

    Separators with high reliability and security are in urgent demand for the advancement of high performance lithium ion batteries. Here, we present a new and practical porous membrane with three-dimension (3D) heat-resistant skeleton and high curvature pore structure as a promising separator candidate to facilitate advances in battery safety and performances beyond those obtained from the conventional separators. The unique material properties combining with the well-developed structural characteristics enable the 3D porous skeleton to own several favorable properties, including superior thermal stability, good wettability with liquid electrolyte, high ion conductivity and internal short-circuit protection function, etc. which give rise to acceptable battery performances. Considering the simply and cost-effective preparation process, the porous membrane is deemed to be an interesting direction for the future lithium ion battery separator.

  20. Overview of CMC Development Activities in NASA's Ultra-Efficient Engine Technology (UEET) Program

    NASA Technical Reports Server (NTRS)

    Brewer, Dave

    2001-01-01

    The primary objective of the UEET (Ultra-Efficient Engine Technology) Program is to address two of the most critical propulsion issues: performance/efficiency and reduced emissions. High performance, low emissions engine systems will lead to significant improvement in local air quality, minimum impact on ozone depletion and level to an overall reduction in aviation contribution to global warming. The Materials and Structures for High Performance project will develop and demonstrate advanced high temperature materials to enable high-performance, high efficiency, and environmentally compatible propulsion systems.

  1. Structural vibration passive control and economic analysis of a high-rise building in Beijing

    NASA Astrophysics Data System (ADS)

    Chen, Yongqi; Cao, Tiezhu; Ma, Liangzhe; Luo, Chaoying

    2009-12-01

    Performance analysis of the Pangu Plaza under earthquake and wind loads is described in this paper. The plaza is a 39-story steel high-rise building, 191 m high, located in Beijing close to the 2008 Olympic main stadium. It has both fluid viscous dampers (FVDs) and buckling restrained braces or unbonded brace (BRB or UBB) installed. A repeated iteration procedure in its design and analysis was adopted for optimization. Results from the seismic response analysis in the horizontal and vertical directions show that the FVDs are highly effective in reducing the response of both the main structure and the secondary system. A comparative analysis of structural seismic performance and economic impact was conducted using traditional methods, i.e., increased size of steel columns and beams and/or use of an increased number of seismic braces versus using FVD. Both the structural response and economic analysis show that using FVD to absorb seismic energy not only satisfies the Chinese seismic design code for a “rare” earthquake, but is also the most economical way to improve seismic performance both for one-time direct investment and long term maintenance.

  2. High performance pipelined multiplier with fast carry-save adder

    NASA Technical Reports Server (NTRS)

    Wu, Angus

    1990-01-01

    A high-performance pipelined multiplier is described. Its high performance results from the fast carry-save adder basic cell which has a simple structure and is suitable for the Gate Forest semi-custom environment. The carry-save adder computes the sum and carry within two gate delay. Results show that the proposed adder can operate at 200 MHz for a 2-micron CMOS process; better performance is expected in a Gate Forest realization.

  3. Electrodeposited Structurally Stable V2O5 Inverse Opal Networks as High Performance Thin Film Lithium Batteries.

    PubMed

    Armstrong, Eileen; McNulty, David; Geaney, Hugh; O'Dwyer, Colm

    2015-12-09

    High performance thin film lithium batteries using structurally stable electrodeposited V2O5 inverse opal (IO) networks as cathodes provide high capacity and outstanding cycling capability and also were demonstrated on transparent conducting oxide current collectors. The superior electrochemical performance of the inverse opal structures was evaluated through galvanostatic and potentiodynamic cycling, and the IO thin film battery offers increased capacity retention compared to micron-scale bulk particles from improved mechanical stability and electrical contact to stainless steel or transparent conducting current collectors from bottom-up electrodeposition growth. Li(+) is inserted into planar and IO structures at different potentials, and correlated to a preferential exposure of insertion sites of the IO network to the electrolyte. Additionally, potentiodynamic testing quantified the portion of the capacity stored as surface bound capacitive charge. Raman scattering and XRD characterization showed how the IO allows swelling into the pore volume rather than away from the current collector. V2O5 IO coin cells offer high initial capacities, but capacity fading can occur with limited electrolyte. Finally, we demonstrate that a V2O5 IO thin film battery prepared on a transparent conducting current collector with excess electrolyte exhibits high capacities (∼200 mAh g(-1)) and outstanding capacity retention and rate capability.

  4. Investigation of Methods for Selectively Reinforcing Aluminum and Aluminum-Lithium Materials

    NASA Technical Reports Server (NTRS)

    Bird, R. Keith; Alexa, Joel A.; Messick, Peter L.; Domack, Marcia S.; Wagner, John A.

    2013-01-01

    Several studies have indicated that selective reinforcement offers the potential to significantly improve the performance of metallic structures for aerospace applications. Applying high-strength, high-stiffness fibers to the high-stress regions of aluminum-based structures can increase the structural load-carrying capability and inhibit fatigue crack initiation and growth. This paper discusses an investigation into potential methods for applying reinforcing fibers onto the surface of aluminum and aluminum-lithium plate. Commercially-available alumina-fiber reinforced aluminum alloy tapes were used as the reinforcing material. Vacuum hot pressing was used to bond the reinforcing tape to aluminum alloy 2219 and aluminum-lithium alloy 2195 base plates. Static and cyclic three-point bend testing and metallurgical analysis were used to evaluate the enhancement of mechanical performance and the integrity of the bond between the tape and the base plate. The tests demonstrated an increase in specific bending stiffness. In addition, no issues with debonding of the reinforcing tape from the base plate during bend testing were observed. The increase in specific stiffness indicates that selectively-reinforced structures could be designed with the same performance capabilities as a conventional unreinforced structure but with lower mass.

  5. Social class and the STEM career pipeline an ethnographic investigation of opportunity structures in a high-poverty versus affluent high school

    NASA Astrophysics Data System (ADS)

    Nikischer, Andrea B.

    This research investigates science, technology, engineering and mathematics (STEM) high school opportunity structures, including student experiences with math and science course sequences and progress, college guidance and counseling, and STEM extracurricular activities (Weis and Eisenhart, 2009), specifically related to STEM fields and career and college choice, for top-performing math and science students. Differences in these structures and processes as they play out in two representative high schools that vary by social class and racial/ethnic makeup are examined. This comparative ethnography includes 36 school and classroom observations, 56 semi-structured individual interviews, and a review of relevant documents, all gathered during the focal students' junior year of high school. Three data chapters are presented, discussing three distinct, yet interconnected themes. In the first, I examine the ways in which chronic attendance problems and classroom distractions negatively impact math and science instruction time and lead to an instruction (time) deficit. In the second, I compare the math and science course and extra-curricular offerings at each school, and discuss the significant differences between sites regarding available STEM exposure and experience, also known as "STEM educational dose" (Wai, et al., 2010). In the third, I investigate available guidance counseling services and STEM and college-linking at each site. Perceived failures in the counseling services available are discussed. This dissertation is grounded in the literature on differences in academic achievement based on school setting, the nature/distribution of knowledge based on social class, and STEM opportunity structures. The concepts of "social capital" and "STEM capital" are engaged throughout. Ultimately, I argue through this dissertation that segregation by race, and most importantly social class, both between and within districts, damages the STEM pipeline for high-performing math and science students located in high-poverty, low-performing schools. I further argue that both federal and state accountability-based school reform efforts are failing to improve outcomes for students with proficiency and interest in STEM learning and STEM fields, and in fact, these reforms are harming top performing students and high school STEM opportunity structures. Recommendations for changes in policy and practice, and for further research, are provided.

  6. Improvement Noise Insulation Performance of Polycarbonate Pane using Sandwich Structure

    NASA Astrophysics Data System (ADS)

    Shen, Min; Nagamura, Kazuteru; Nakagawa, Noritoshi; Okamura, Masaharu

    Polycarbonate (PC) laminates offer the possibility of designing strong and light weight panes application in automobile. However, the noise insulation performance of PC pane is worse than glass pane because of its high rate of stiffness to low weight. In this work, a new ultra-thin(less than 10mm) sandwich pane is proposed to obtain high transmission loss(TL). The sandwich structure consists of two thin laminates plates of the same PC material and a thin lightweight damping core bonded between those plates. Then TL is predicted using decoupled equations representing symmetric and anti-symmetric motions for a sandwich PC pane. The effects of various structural and material parameters on noise insulation performance are investigated with numerical examples. Numerical results show that the shear rigidity has evident effect on coincidence frequency and proposed structure has better noise insulation properties than single layer PC pane of equivalent thickness.

  7. A novel high-performance high-frequency SOI MESFET by the damped electric field

    NASA Astrophysics Data System (ADS)

    Orouji, Ali A.; Khayatian, Ahmad; Keshavarzi, Parviz

    2016-06-01

    In this paper, we introduce a novel silicon-on-insulator (SOI) metal-semiconductor field-effect-transistor (MESFET) using the damped electric field (DEF). The proposed structure is geometrically symmetric and compatible with common SOI CMOS fabrication processes. It has two additional oxide regions under the side gates in order to improve DC and RF characteristics of the DEF structure due to changes in the electrical potential, the electrical field distributions, and rearrangement of the charge carriers. Improvement of device performance is investigated by two-dimensional and two-carrier simulation of fundamental parameters such as breakdown voltage (VBR), drain current (ID), output power density (Pmax), transconductance (gm), gate-drain and gate-source capacitances, cut-off frequency (fT), unilateral power gain (U), current gain (h21), maximum available gain (MAG), and minimum noise figure (Fmin). The results show that proposed structure operates with higher performances in comparison with the similar conventional SOI structure.

  8. Nanocrystal grain growth and device architectures for high-efficiency CdTe ink-based photovoltaics.

    PubMed

    Crisp, Ryan W; Panthani, Matthew G; Rance, William L; Duenow, Joel N; Parilla, Philip A; Callahan, Rebecca; Dabney, Matthew S; Berry, Joseph J; Talapin, Dmitri V; Luther, Joseph M

    2014-09-23

    We study the use of cadmium telluride (CdTe) nanocrystal colloids as a solution-processable "ink" for large-grain CdTe absorber layers in solar cells. The resulting grain structure and solar cell performance depend on the initial nanocrystal size, shape, and crystal structure. We find that inks of predominantly wurtzite tetrapod-shaped nanocrystals with arms ∼5.6 nm in diameter exhibit better device performance compared to inks composed of smaller tetrapods, irregular faceted nanocrystals, or spherical zincblende nanocrystals despite the fact that the final sintered film has a zincblende crystal structure. Five different working device architectures were investigated. The indium tin oxide (ITO)/CdTe/zinc oxide structure leads to our best performing device architecture (with efficiency >11%) compared to others including two structures with a cadmium sulfide (CdS) n-type layer typically used in high efficiency sublimation-grown CdTe solar cells. Moreover, devices without CdS have improved response at short wavelengths.

  9. Effects of Job Burnout and Emotional Labor on Objective Structured Clinical Examination Performance Among Interns and Residents in Taiwan.

    PubMed

    Wang, Chen-Yu; Chen, Jen-De; Wang, Chih-Hung; Wang, Jong-Yi; Tai, Chih-Jaan; Hsieh, Tsu-Yi; Chen, Der-Yuan

    2017-01-01

    Medical education faces challenges concerning job burnout and emotional labor among junior physicians, which poses a potential threat to the quality of medical care. Although studies have investigated job burnout and emotional labor among physicians, empirical research on the association between job burnout, emotional labor, and clinical performance is lacking. This study investigated the effects of job burnout and emotional labor on clinical performance by using the objective structured clinical examination (OSCE) scores of interns and residents. Specifically, this cross-sectional study utilized the Maslach Burnout Inventory and the Emotional Labor Questionnaire as measurement instruments. A total of 225 interns and residents in central Taiwan answered structured questionnaires before beginning their OSCE. The major statistical analysis method employed was logistic regression. After adjustment for covariates, first-year residents were less likely than other residents to obtain high OSCE scores. The odds of high OSCE performance among interns and residents with high interaction component scores in emotional labor were significantly higher than those with low interaction scores. A high score in the interaction dimension of emotional labor was associated with strong clinical performance. The findings suggest that interventions which motivate positive attitudes and increase interpersonal interaction skills among physicians should receive higher priority.

  10. Crack Monitoring Method for an FRP-Strengthened Steel Structure Based on an Antenna Sensor.

    PubMed

    Liu, Zhiping; Chen, Kai; Li, Zongchen; Jiang, Xiaoli

    2017-10-20

    Fiber-reinforced polymer (FRP) has been increasingly applied to steel structures for structural strengthening or crack repair, given its high strength-to-weight ratio and high stiffness-to-weight ratio. Cracks in steel structures are the dominant hidden threats to structural safety. However, it is difficult to monitor structural cracks under FRP coverage and there is little related research. In this paper, a crack monitoring method for an FRP-strengthened steel structure deploying a microstrip antenna sensor is presented. A theoretical model of the dual-substrate antenna sensor with FRP is established and the sensitivity of crack monitoring is studied. The effects of the weak conductivity of carbon fiber reinforced polymers (CFRPs) on the performance of crack monitoring are analyzed via contrast experiments. The effects of FRP thickness on the performance of the antenna sensor are studied. The influence of structural strain on crack detection coupling is studied through strain-crack coupling experiments. The results indicate that the antenna sensor can detect cracks in steel structures covered by FRP (including CFRP). FRP thickness affects the antenna sensor's performance significantly, while the effects of strain can be ignored. The results provide a new approach for crack monitoring of FRP-strengthened steel structures with extensive application prospects.

  11. Crack Monitoring Method for an FRP-Strengthened Steel Structure Based on an Antenna Sensor

    PubMed Central

    Liu, Zhiping; Li, Zongchen

    2017-01-01

    Fiber-reinforced polymer (FRP) has been increasingly applied to steel structures for structural strengthening or crack repair, given its high strength-to-weight ratio and high stiffness-to-weight ratio. Cracks in steel structures are the dominant hidden threats to structural safety. However, it is difficult to monitor structural cracks under FRP coverage and there is little related research. In this paper, a crack monitoring method for an FRP-strengthened steel structure deploying a microstrip antenna sensor is presented. A theoretical model of the dual-substrate antenna sensor with FRP is established and the sensitivity of crack monitoring is studied. The effects of the weak conductivity of carbon fiber reinforced polymers (CFRPs) on the performance of crack monitoring are analyzed via contrast experiments. The effects of FRP thickness on the performance of the antenna sensor are studied. The influence of structural strain on crack detection coupling is studied through strain–crack coupling experiments. The results indicate that the antenna sensor can detect cracks in steel structures covered by FRP (including CFRP). FRP thickness affects the antenna sensor’s performance significantly, while the effects of strain can be ignored. The results provide a new approach for crack monitoring of FRP-strengthened steel structures with extensive application prospects. PMID:29053614

  12. Study on Design of High Efficiency and Light Weight Composite Propeller Blade for a Regional Turboprop Aircraft

    NASA Astrophysics Data System (ADS)

    Kong, Changduk; Lee, Kyungsun

    2013-03-01

    In this study, aerodynamic and structural design of the composite propeller blade for a regional turboprop aircraft is performed. The thin and wide chord propeller blade of high speed turboprop aircraft should have proper strength and stiffness to carry various kinds of loads such as high aerodynamic bending and twisting moments and centrifugal forces. Therefore the skin-spar-foam sandwich structure using high strength and stiffness carbon/epoxy composite materials is used to improve the lightness. A specific design procedure is proposed in this work as follows; firstly the aerodynamic configuration design, which is acceptable for the design requirements, is carried out using the in-house code developed by authors, secondly the structure design loads are determined through the aerodynamic load case analysis, thirdly the spar flange and the skin are preliminarily sized by consideration of major bending moments and shear forces using both the netting rule and the rule of mixture, and finally, the stress analysis is performed to confirm the structural safety and stability using finite element analysis commercial code, MSC. NASTRAN/PATRAN. Furthermore the additional analysis is performed to confirm the structural safety due to bird strike impact on the blade during flight operation using a commercial code, ANSYS. To realize the proposed propeller design, the prototype blades are manufactured by the following procedure; the carbon/epoxy composite fabric prepregs are laid up for skin and spar on a mold using the hand lay-up method and consolidated with a proper temperature and vacuum in the oven. To finalize the structural design, the full-scale static structural test is performed under the simulated aerodynamic loads using 3 point loading method. From the experimental results, it is found that the designed blade has a good structural integrity, and the measured results agree well with the analytical results as well.

  13. Interactions Between Structure and Processing that Control Moisture Uptake in High-Performance Polycyanurates (Briefing Charts)

    DTIC Science & Technology

    2015-03-24

    distribution is unlimited.  . Interactions Between Structure and Processing that Control Moisture Uptake in High-Performance Polycyanurates Presenter: Dr...Edwards AFB, CA 4 California State University, Long Beach, CA 90840 2 Outline: Basic Studies of Moisture Uptake in Cyanate Ester Networks • Background...Motivation • SOTA Theories of Moisture Uptake in Thermosetting Networks • New Tools and New Discoveries • Unresolved Issues and Ways to Address Them

  14. Research and Process-Optimization on Mixed Crystal Caused Uneven-Performance of High-strength Structural Car Steel QStE500TM

    NASA Astrophysics Data System (ADS)

    Jian-wen, Li; Hong-yan, Liu

    Handan Iron and Steel production of high-strength structural car steel QStE500TM thin gauge products using Nb + Ti composite strengthening, with a small amount of Cr element to improve its hardenability, the process parameter control is inappropriate with Nb + Ti complex steel, it is easy to produce in the mixed crystal phenomenon, resulting in decreasing the toughness and uneven performance. In this paper, Gleeble 3500 thermal simulation testing machine for high-strength structural steel car QStE500TM product deformation austenite recrystallization behavior research, determined completely recrystallized, partial recrystallization and non-recrystallization region, provide theoretical basis and necessary data for reasonable controlled rolling process for production.

  15. Porous hollow Co3O4 with rhombic dodecahedral structures for high-performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Zhang, Yi-Zhou; Wang, Yang; Xie, Ye-Lei; Cheng, Tao; Lai, Wen-Yong; Pang, Huan; Huang, Wei

    2014-11-01

    Porous hollow Co3O4 with rhombic dodecahedral structures were prepared by the calcination of ZIF-67 ([Co(mim)2; mim = 2-methylimidazolate]) rhombic dodecahedral microcrystals. A supercapacitor was successfully constructed by adopting the resulting porous hollow Co3O4 rhombic dodecahedral structure as the electrode material, which showed a large specific capacitance of 1100 F g-1 and retained more than 95.1% of the specific capacitance after 6000 continuous charge-discharge cycles. The excellent capacitive properties and stability mark the porous hollow Co3O4 with the rhombic dodecahedral structure as one of the most promising electrode materials for high-performance supercapacitors.Porous hollow Co3O4 with rhombic dodecahedral structures were prepared by the calcination of ZIF-67 ([Co(mim)2; mim = 2-methylimidazolate]) rhombic dodecahedral microcrystals. A supercapacitor was successfully constructed by adopting the resulting porous hollow Co3O4 rhombic dodecahedral structure as the electrode material, which showed a large specific capacitance of 1100 F g-1 and retained more than 95.1% of the specific capacitance after 6000 continuous charge-discharge cycles. The excellent capacitive properties and stability mark the porous hollow Co3O4 with the rhombic dodecahedral structure as one of the most promising electrode materials for high-performance supercapacitors. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr04782f

  16. Effects of self-assembled monolayer structural order, surface homogeneity and surface energy on pentacene morphology and thin film transistor device performance.

    PubMed

    Hutchins, Daniel Orrin; Weidner, Tobias; Baio, Joe; Polishak, Brent; Acton, Orb; Cernetic, Nathan; Ma, Hong; Jen, Alex K-Y

    2013-01-04

    A systematic study of six phosphonic acid (PA) self-assembled monolayers (SAMs) with tailored molecular structures is performed to evaluate their effectiveness as dielectric modifying layers in organic field-effect transistors (OFETs) and determine the relationship between SAM structural order, surface homogeneity, and surface energy in dictating device performance. SAM structures and surface properties are examined by near edge X-ray absorption fine structure (NEXAFS) spectroscopy, contact angle goniometry, and atomic force microscopy (AFM). Top-contact pentacene OFET devices are fabricated on SAM modified Si with a thermally grown oxide layer as a dielectric. For less ordered methyl- and phenyl-terminated alkyl ~(CH 2 ) 12 PA SAMs of varying surface energies, pentacene OFETs show high charge carrier mobilities up to 4.1 cm 2 V -1 s -1 . It is hypothesized that for these SAMs, mitigation of molecular scale roughness and subsequent control of surface homogeneity allow for large pentacene grain growth leading to high performance pentacene OFET devices. PA SAMs that contain bulky terminal groups or are highly crystalline in nature do not allow for a homogenous surface at a molecular level and result in charge carrier mobilities of 1.3 cm 2 V -1 s -1 or less. For all molecules used in this study, no causal relationship between SAM surface energy and charge carrier mobility in pentacene FET devices is observed.

  17. Effects of self-assembled monolayer structural order, surface homogeneity and surface energy on pentacene morphology and thin film transistor device performance

    PubMed Central

    Hutchins, Daniel Orrin; Weidner, Tobias; Baio, Joe; Polishak, Brent; Acton, Orb; Cernetic, Nathan; Ma, Hong; Jen, Alex K.-Y.

    2013-01-01

    A systematic study of six phosphonic acid (PA) self-assembled monolayers (SAMs) with tailored molecular structures is performed to evaluate their effectiveness as dielectric modifying layers in organic field-effect transistors (OFETs) and determine the relationship between SAM structural order, surface homogeneity, and surface energy in dictating device performance. SAM structures and surface properties are examined by near edge X-ray absorption fine structure (NEXAFS) spectroscopy, contact angle goniometry, and atomic force microscopy (AFM). Top-contact pentacene OFET devices are fabricated on SAM modified Si with a thermally grown oxide layer as a dielectric. For less ordered methyl- and phenyl-terminated alkyl ~(CH2)12 PA SAMs of varying surface energies, pentacene OFETs show high charge carrier mobilities up to 4.1 cm2 V−1 s−1. It is hypothesized that for these SAMs, mitigation of molecular scale roughness and subsequent control of surface homogeneity allow for large pentacene grain growth leading to high performance pentacene OFET devices. PA SAMs that contain bulky terminal groups or are highly crystalline in nature do not allow for a homogenous surface at a molecular level and result in charge carrier mobilities of 1.3 cm2 V−1 s−1 or less. For all molecules used in this study, no causal relationship between SAM surface energy and charge carrier mobility in pentacene FET devices is observed. PMID:24086795

  18. Relation of Knowledge and Performance in Boys' Tennis: Age and Expertise.

    ERIC Educational Resources Information Center

    McPherson, Sue L.; Thomas, Jerry R.

    1989-01-01

    Examined 10- to 13-year-old boys' development of knowledge structure and sport performance in tennis by comparing skills and knowledge of experts and novices. Experts focused on higher concepts and exhibited greater decision-making ability because of their more highly developed knowledge structure. (SAK)

  19. Bone suppression technique for chest radiographs

    NASA Astrophysics Data System (ADS)

    Huo, Zhimin; Xu, Fan; Zhang, Jane; Zhao, Hui; Hobbs, Susan K.; Wandtke, John C.; Sykes, Anne-Marie; Paul, Narinder; Foos, David

    2014-03-01

    High-contrast bone structures are a major noise contributor in chest radiographic images. A signal of interest in a chest radiograph could be either partially or completely obscured or "overshadowed" by the highly contrasted bone structures in its surrounding. Thus, removing the bone structures, especially the posterior rib and clavicle structures, is highly desirable to increase the visibility of soft tissue density. We developed an innovative technology that offers a solution to suppress bone structures, including posterior ribs and clavicles, on conventional and portable chest X-ray images. The bone-suppression image processing technology includes five major steps: 1) lung segmentation, 2) rib and clavicle structure detection, 3) rib and clavicle edge detection, 4) rib and clavicle profile estimation, and 5) suppression based on the estimated profiles. The bone-suppression software outputs an image with both the rib and clavicle structures suppressed. The rib suppression performance was evaluated on 491 images. On average, 83.06% (±6.59%) of the rib structures on a standard chest image were suppressed based on the comparison of computer-identified rib areas against hand-drawn rib areas, which is equivalent to about an average of one rib that is still visible on a rib-suppressed image based on a visual assessment. Reader studies were performed to evaluate reader performance in detecting lung nodules and pneumothoraces with and without a bone-suppression companion view. Results from reader studies indicated that the bone-suppression technology significantly improved radiologists' performance in the detection of CT-confirmed possible nodules and pneumothoraces on chest radiographs. The results also showed that radiologists were more confident in making diagnoses regarding the presence or absence of an abnormality after rib-suppressed companion views were presented

  20. Student performance in and perceptions of a high structure undergraduate human anatomy course.

    PubMed

    Shaffer, Justin F

    2016-11-01

    Human anatomy has usually been taught in a didactic fashion in colleges and universities. However, recent calls from United States governmental agencies have called for the transformation of undergraduate life sciences education to include active learning in the classroom. In addition, high structure courses have been shown to increase student engagement both in and out of the classroom and to improve student performance. Due to these reform efforts and the evidence on the benefits of these student-centered pedagogies, the goal of this study was to develop and assess a high structure college undergraduate human anatomy course with a lecture and laboratory component. The course was taught using a systems anatomy approach that required students to read the textbook and complete assignments before class, actively participate in class, and complete review quizzes after class. Results showed that teaching with high structure methods did not negatively affect any student groups (based on gender, ethnicity, or major) as measured by performance on lecture examinations and laboratory practical examinations. Students reported that reading the textbook and working with anatomical models were the most important towards helping them learn the course material and students' confidence in achieving the course goals significantly increased at the end of the course. The successful development and implementation of this course suggests that it is possible to teach human anatomy using active learning and high structure. Future studies can now be conducted to determine the contributions of specific course components to student success in high structure human anatomy courses. Anat Sci Educ 9: 516-528. © 2016 American Association of Anatomists. © 2016 American Association of Anatomists.

  1. A F-doped tree-like nanofiber structural poly-m-phenyleneisophthalamide separator for high-performance lithium-sulfur batteries

    NASA Astrophysics Data System (ADS)

    Deng, Nanping; Wang, Yan; Yan, Jing; Ju, Jingge; Li, Zongjie; Fan, Lanlan; Zhao, Huijuan; Kang, Weimin; Cheng, Bowen

    2017-09-01

    In this study, F-doped tree-like nanofiber structural poly-m-phenyleneisophthalamide (PMIA) membranes are prepared via one-step electrospinning approach and their application performance as separators for lithium-sulfur batteries are discussed. The F-doped PMIA membrane can be regarded as matrix to form gel polymer electrolyte. The F doping endows the PMIA membranes with extraordinary high electrolyte uptake, excellent ability of preserving the liquid electrolyte and forceful chemisorption to polysulfides. And the tree-like structure effectively blocks polysulfides by the physical confinement. The lithium-sulfur cell with the F-doped PMIA separator exhibits high first-cycle discharge capacity of 1222.5 mAh g-1 and excellent cycling stability with good capacity retention of 745.7 mAh g-1 and coulombic efficiency of 97.97% after 800 cycles. The remarkable performance can be ascribed to the suppressed shuttle effects through both the physical trapping of polysulfides by the gel polymer electrolyte based on matrix with F-doped PMIA membrane and the tree-like structure in a working cell.

  2. Bulk sensitive hard x-ray photoemission electron microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patt, M., E-mail: m.patt@fz-juelich.de; Wiemann, C.; Weber, N.

    Hard x-ray photoelectron spectroscopy (HAXPES) has now matured into a well-established technique as a bulk sensitive probe of the electronic structure due to the larger escape depth of the highly energetic electrons. In order to enable HAXPES studies with high lateral resolution, we have set up a dedicated energy-filtered hard x-ray photoemission electron microscope (HAXPEEM) working with electron kinetic energies up to 10 keV. It is based on the NanoESCA design and also preserves the performance of the instrument in the low and medium energy range. In this way, spectromicroscopy can be performed from threshold to hard x-ray photoemission. Themore » high potential of the HAXPEEM approach for the investigation of buried layers and structures has been shown already on a layered and structured SrTiO{sub 3} sample. Here, we present results of experiments with test structures to elaborate the imaging and spectroscopic performance of the instrument and show the capabilities of the method to image bulk properties. Additionally, we introduce a method to determine the effective attenuation length of photoelectrons in a direct photoemission experiment.« less

  3. High-Temperature Modal Survey of a Hot-Structure Control Surface

    NASA Technical Reports Server (NTRS)

    Spivey, Natalie D.

    2011-01-01

    Ground vibration tests are routinely conducted for supporting flutter analysis for subsonic and supersonic vehicles; however, for hypersonic vehicles, thermoelastic vibration testing techniques are neither well established nor routinely performed. New high-temperature material systems, fabrication technologies and high-temperature sensors expand the opportunities to develop advanced techniques for performing ground vibration tests at elevated temperatures. When high-temperature materials, which increase in stiffness when heated, are incorporated into a hot-structure that contains metallic components that decrease in stiffness when heated, the interaction between those materials can affect the hypersonic flutter analysis. A high-temperature modal survey will expand the research database for hypersonics and improve the understanding of this dual-material interaction. This report discusses the vibration testing of the carbon-silicon carbide Ruddervator Subcomponent Test Article, which is a truncated version of a full-scale hot-structure control surface. Two series of room-temperature modal test configurations were performed in order to define the modal characteristics of the test article during the elevated-temperature modal survey: one with the test article suspended from a bungee cord (free-free) and the second with it mounted on the strongback (fixed boundary). Testing was performed in the NASA Dryden Flight Research Center Flight Loads Laboratory Large Nitrogen Test Chamber.

  4. Verification of the Seismic Performance of a Rigidly Connected Modular System Depending on the Shape and Size of the Ceiling Bracket.

    PubMed

    Lee, Seungjae; Park, Jaeseong; Kwak, Euishin; Shon, Sudeok; Kang, Changhoon; Choi, Hosoon

    2017-03-06

    Modular systems have been mostly researched in relatively low-rise structures but, lately, their applications to mid- to high-rise structures began to be reviewed, and research interest in new modularization subjects has increased. The application of modular systems to mid- to high-rise structures requires the structural stability of the frame and connections that consist of units, and the evaluation of the stiffness of structures that are combined in units. However, the combination of general units causes loss of the cross-section of columns or beams, resulting in low seismic performance and hindering installation works in the field. In addition, the evaluation of a frame considering such a cross-sectional loss is not easy. Therefore, it is necessary to develop a joint that is stable and easy to install. In the study, a rigidly connected modular system was proposed as a moment-resisting frame for a unit modular system, and their joints were developed and their performances were compared. The proposed system changed the ceiling beam into a bracket type to fasten bolts. It can be merged with other seismic force-resisting systems. To verify the seismic performance of the proposed system, a cyclic loading test was conducted, and the rigidly connected joint performance and integrated behavior at the joint of modular units were investigated. From the experimental results, the maximum resisting force of the proposed connection exceeded the theoretical parameters, indicating that a rigid joint structural performance could be secured.

  5. Stiff, light, strong and ductile: nano-structured High Modulus Steel.

    PubMed

    Springer, H; Baron, C; Szczepaniak, A; Uhlenwinkel, V; Raabe, D

    2017-06-05

    Structural material development for lightweight applications aims at improving the key parameters strength, stiffness and ductility at low density, but these properties are typically mutually exclusive. Here we present how we overcome this trade-off with a new class of nano-structured steel - TiB 2 composites synthesised in-situ via bulk metallurgical spray-forming. Owing to the nano-sized dispersion of the TiB 2 particles of extreme stiffness and low density - obtained by the in-situ formation with rapid solidification kinetics - the new material has the mechanical performance of advanced high strength steels, and a 25% higher stiffness/density ratio than any of the currently used high strength steels, aluminium, magnesium and titanium alloys. This renders this High Modulus Steel the first density-reduced, high stiffness, high strength and yet ductile material which can be produced on an industrial scale. Also ideally suited for 3D printing technology, this material addresses all key requirements for high performance and cost effective lightweight design.

  6. Trends in aerospace structures

    NASA Technical Reports Server (NTRS)

    Card, M. F.

    1978-01-01

    Recent developments indicate that there may soon be a revolution in aerospace structures. Increases in allowable operational stress levels, utilization of high-strength, high-toughness materials, and new structural concepts will highlight this advancement. Improved titanium and aluminum alloys and high-modulus, high-strength advanced composites, with higher specific properties than aluminum and high-strength nickel alloys, are expected to be the principal materials. Significant advances in computer technology will cause major changes in the preliminary design cycle and permit solutions of otherwise too-complex interactive structural problems and thus the development of vehicles and components of higher performance. The energy crisis will have an impact on material costs and choices and will spur the development of more weight-efficient structures. There will also be significant spinoffs of aerospace structures technology, particularly in composites and design/analysis software.

  7. Carbon materials-functionalized tin dioxide nanoparticles toward robust, high-performance nitrogen dioxide gas sensor.

    PubMed

    Zhang, Rui; Liu, Xiupeng; Zhou, Tingting; Wang, Lili; Zhang, Tong

    2018-08-15

    Carbon (C) materials, which process excellent electrical conductivity and high carrier mobility, are promising sensing materials as active units for gas sensors. However, structural agglomeration caused by chemical processes results in a small resistance change and low sensing response. To address the above issues, structure-derived carbon-coated tin dioxide (SnO 2 ) nanoparticles having distinct core-shell morphology with a 3D net-like structure and highly uniform size are prepared by careful synthesis and fine structural design. The optimum carbon-coated SnO 2 nanoparticles (SnO 2 /C)-based gas sensor exhibits a low working temperature, excellent selectivity and fast response-recovery properties. In addition, the SnO 2 /C-based gas sensor can maintain a sensitivity to nitrogen dioxide (NO 2 ) of 3 after being cycled 4 times at 140 °C for, suggesting its good long-term stability. The structural integrity, good synergistic properties, and high gas-sensing performance of SnO 2 /C render it a promising sensing material for advanced gas sensors. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Finite element analysis of ultra-high performance concrete : modeling structural performance of an AASHTO type II girder and a 2nd generation pi-girder

    DOT National Transportation Integrated Search

    2010-10-01

    Ultra-high performance concrete (UHPC) is an advanced cementitious composite material which has been developed in recent decades. When compared to more conventional cement-based concrete materials, UHPC tends to exhibit superior properties such as in...

  9. Building Honeycomb-Like Hollow Microsphere Architecture in a Bubble Template Reaction for High-Performance Lithium-Rich Layered Oxide Cathode Materials.

    PubMed

    Chen, Zhaoyong; Yan, Xiaoyan; Xu, Ming; Cao, Kaifeng; Zhu, Huali; Li, Lingjun; Duan, Junfei

    2017-09-13

    In the family of high-performance cathode materials for lithium-ion batteries, lithium-rich layered oxides come out in front because of a high reversible capacity exceeding 250 mAh g -1 . However, the long-term energy retention and high energy densities for lithium-rich layered oxide cathode materials require a stable structure with large surface areas. Here we propose a "bubble template" reaction to build "honeycomb-like" hollow microsphere architecture for a Li 1.2 Mn 0.52 Ni 0.2 Co 0.08 O 2 cathode material. Our material is designed with ca. 8-μm-sized secondary particles with hollow and highly exposed porous structures that promise a large flexible volume to achieve superior structure stability and high rate capability. Our preliminary electrochemical experiments show a high capacity of 287 mAh g -1 at 0.1 C and a capacity retention of 96% after 100 cycles at 1.0 C. Furthermore, the rate capability is superior without any other modifications, reaching 197 mAh g -1 at 3.0 C with a capacity retention of 94% after 100 cycles. This approach may shed light on a new material engineering for high-performance cathode materials.

  10. Toward Aerogel Electrodes of Superior Rate Performance in Supercapacitors through Engineered Hollow Nanoparticles of NiCo2O4

    PubMed Central

    Li, Jianjiang; Chen, Shuai; Zhu, Xiaoyi; She, Xilin; Liu, Tongchao; Zhang, Huawei; Komarneni, Sridhar

    2017-01-01

    Abstract A biomass‐templated pathway is developed for scalable synthesis of NiCo2O4@carbon aerogel electrodes for supercapacitors, where NiCo2O4 hollow nanoparticles with an average outer diameter of 30–40 nm are conjoined by graphitic carbon forming a 3D aerogel structure. This kind of NiCo2O4 aerogel structure shows large specific surface area (167.8 m2 g−1), high specific capacitance (903.2 F g−1 at a current density of 1 A g−1), outstanding rate performance (96.2% capacity retention from 1 to 10 A g−1), and excellent cycling stability (nearly without capacitance loss after 3000 cycles at 10 A g−1). The unique structure of the 3D hollow aerogel synergistically contributes to the high performance. For instance, the 3D interconnected porous structure of the aerogel is beneficial for electrolyte ion diffusion and for shortening the electron transport pathways, and thus can improve the rate performance. The conductive carbon joint greatly enhances the specific capacity, and the hollow structure prohibits the volume changes during the charge–discharge process to significantly improve the cycling stability. This work represents a giant step toward the preparation of high‐performance commercial supercapacitors. PMID:29270344

  11. Manufacture and performance of full size structural flakeboards from Douglas-fir forest residues

    Treesearch

    J. Dobbin McNatt

    1978-01-01

    The Forest Products Laboratory manufactured and assessed the performance of 4- by 8-foot structural flakeboard panels from Douglas-fir forest residues after target performance goals were developed. The 42 pcf, three- layer boards were 1/2 inch thick with high quality disk cut flakes for the faces and lower quality flakes processed through a ring flaker in the core....

  12. Co-Percolating Graphene-Wrapped Silver Nanowire Network for High Performance, Highly Stable, Transparent Conducting Electrodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Ruiyi; Das, Suprem R; Jeong, Changwook

    Transparent conducting electrodes (TCEs) require high transparency and low sheet resistance for applications in photovoltaics, photodetectors, flat panel displays, touch screen devices, and imagers. Indium tin oxide (ITO), or other transparent conductive oxides, have been used, and provide a baseline sheet resistance (RS) vs. transparency (T) relationship. Several alternative material systems have been investigated. The development of high-performance hybrid structures provides a route towards robust, scalable and low-cost approaches for realizing high-performance TCE.

  13. Probabilistic design of fibre concrete structures

    NASA Astrophysics Data System (ADS)

    Pukl, R.; Novák, D.; Sajdlová, T.; Lehký, D.; Červenka, J.; Červenka, V.

    2017-09-01

    Advanced computer simulation is recently well-established methodology for evaluation of resistance of concrete engineering structures. The nonlinear finite element analysis enables to realistically predict structural damage, peak load, failure, post-peak response, development of cracks in concrete, yielding of reinforcement, concrete crushing or shear failure. The nonlinear material models can cover various types of concrete and reinforced concrete: ordinary concrete, plain or reinforced, without or with prestressing, fibre concrete, (ultra) high performance concrete, lightweight concrete, etc. Advanced material models taking into account fibre concrete properties such as shape of tensile softening branch, high toughness and ductility are described in the paper. Since the variability of the fibre concrete material properties is rather high, the probabilistic analysis seems to be the most appropriate format for structural design and evaluation of structural performance, reliability and safety. The presented combination of the nonlinear analysis with advanced probabilistic methods allows evaluation of structural safety characterized by failure probability or by reliability index respectively. Authors offer a methodology and computer tools for realistic safety assessment of concrete structures; the utilized approach is based on randomization of the nonlinear finite element analysis of the structural model. Uncertainty of the material properties or their randomness obtained from material tests are accounted in the random distribution. Furthermore, degradation of the reinforced concrete materials such as carbonation of concrete, corrosion of reinforcement, etc. can be accounted in order to analyze life-cycle structural performance and to enable prediction of the structural reliability and safety in time development. The results can serve as a rational basis for design of fibre concrete engineering structures based on advanced nonlinear computer analysis. The presented methodology is illustrated on results from two probabilistic studies with different types of concrete structures related to practical applications and made from various materials (with the parameters obtained from real material tests).

  14. High performance felt-metal-wick heat pipe for solar receivers

    NASA Astrophysics Data System (ADS)

    Andraka, Charles E.; Moss, Timothy A.; Baturkin, Volodymyr; Zaripov, Vladlen; Nishchyk, Oleksandr

    2016-05-01

    Sodium heat pipes have been identified as a potentially effective heat transport approach for CSP systems that require near-isothermal input to power cycles or storage, such as dish Stirling and highly recuperated reheat-cycle supercritical CO2 turbines. Heat pipes offer high heat flux capabilities, leading to small receivers, as well as low exergetic losses through isothermal coupling with the engine. Sandia developed a felt metal wick approach in the 1990's, and demonstrated very high performance1. However, multiple durability issues arose, primarily the structural collapse of the wick at temperature over short time periods. NTUU developed several methods of improving robustness of the wick2, but the resulting wick had limited performance capabilities. For application to CSP systems, the wick structures must retain high heat pipe performance with robustness for long term operation. In this paper we present our findings in developing an optimal balance between performance and ruggedness, including operation of a laboratory-scale heat pipe for over 5500 hours so far. Application of heat pipes to dish-Stirling systems has been shown to increase performance as much as 20%3, and application to supercritical CO2 systems has been proposed.

  15. Low cost, high performance processing of single particle cryo-electron microscopy data in the cloud.

    PubMed

    Cianfrocco, Michael A; Leschziner, Andres E

    2015-05-08

    The advent of a new generation of electron microscopes and direct electron detectors has realized the potential of single particle cryo-electron microscopy (cryo-EM) as a technique to generate high-resolution structures. Calculating these structures requires high performance computing clusters, a resource that may be limiting to many likely cryo-EM users. To address this limitation and facilitate the spread of cryo-EM, we developed a publicly available 'off-the-shelf' computing environment on Amazon's elastic cloud computing infrastructure. This environment provides users with single particle cryo-EM software packages and the ability to create computing clusters with 16-480+ CPUs. We tested our computing environment using a publicly available 80S yeast ribosome dataset and estimate that laboratories could determine high-resolution cryo-EM structures for $50 to $1500 per structure within a timeframe comparable to local clusters. Our analysis shows that Amazon's cloud computing environment may offer a viable computing environment for cryo-EM.

  16. Computer simulation of a single pilot flying a modern high-performance helicopter

    NASA Technical Reports Server (NTRS)

    Zipf, Mark E.; Vogt, William G.; Mickle, Marlin H.; Hoelzeman, Ronald G.; Kai, Fei; Mihaloew, James R.

    1988-01-01

    Presented is a computer simulation of a human response pilot model able to execute operational flight maneuvers and vehicle stabilization of a modern high-performance helicopter. Low-order, single-variable, human response mechanisms, integrated to form a multivariable pilot structure, provide a comprehensive operational control over the vehicle. Evaluations of the integrated pilot were performed by direct insertion into a nonlinear, total-force simulation environment provided by NASA Lewis. Comparisons between the integrated pilot structure and single-variable pilot mechanisms are presented. Static and dynamically alterable configurations of the pilot structure are introduced to simulate pilot activities during vehicle maneuvers. These configurations, in conjunction with higher level, decision-making processes, are considered for use where guidance and navigational procedures, operational mode transfers, and resource sharing are required.

  17. Insights into the structural effects of layered cathode materials for high voltage sodium-ion batteries

    DOE PAGES

    Xu, Gui -Liang; Amine, Rachid; Xu, Yue -Feng; ...

    2017-06-08

    Cathode materials are critical to the energy density, power density and safety of sodium-ion batteries (SIBs). Herein, we performed a comprehensive study to elucidate and exemplify the interplay mechanism between phase structures, interfacial microstrain and electrochemical properties of layered-structured Na xNi 1/3Co 1/3Mn 1/3O 2 cathode materials for high voltage SIBs. The electrochemical test results showed that Na xNi 1/3Co 1/3Mn 1/3O 2 with an intergrowth P2/O3/O1 structure demonstrates better electrochemical performance and better thermal stability than Na xNi 1/3Co 1/3Mn 1/3O 2 with P2/O3 binary-phase integration and Na xNi 1/3Co 1/3Mn 1/3O 2 where only the P phase ismore » dominant. This result is caused by the distinct interfacial microstrain development during the synthesis and cycling of the P2/O3/O1 phase. In operando high energy X-ray diffraction further revealed that the intergrowth P2/O1/O3 cathode can inhibit the irreversible P2–O2 phase transformation and simultaneously improve the structure stability of the O3 and O1 phases during cycling. Here, we believe that interfacial microstrain can serve as an indispensable bridge to guide future design and synthesis of high performance SIB cathode materials and other high energy battery materials.« less

  18. Multifunctional composites for energy storage

    NASA Astrophysics Data System (ADS)

    Shuvo, Mohammad Arif I.; Karim, Hasanul; Rajib, Md; Delfin, Diego; Lin, Yirong

    2014-03-01

    Electrochemical super-capacitors have become one of the most important topics in both academia and industry as novel energy storage devices because of their high power density, long life cycles, and high charge/discharge efficiency. Recently, there has been an increasing interest in the development of multifunctional structural energy storage devices such as structural super-capacitors for applications in aerospace, automobiles and portable electronics. These multifunctional structural super-capacitors provide lighter structures combining energy storage and load bearing functionalities. Due to their superior materials properties, carbon fiber composites have been widely used in structural applications for aerospace and automotive industries. Besides, carbon fiber has good electrical conductivity which will provide lower equivalent series resistance; therefore, it can be an excellent candidate for structural energy storage applications. Hence, this paper is focused on performing a pilot study for using nanowire/carbon fiber hybrids as building materials for structural energy storage materials; aiming at enhancing the charge/discharge rate and energy density. This hybrid material combines the high specific surface area of carbon fiber and pseudo-capacitive effect of metal oxide nanowires which were grown hydrothermally in an aligned fashion on carbon fibers. The aligned nanowire array could provide a higher specific surface area that leads to high electrode-electrolyte contact area and fast ion diffusion rates. Scanning Electron Microscopy (SEM) and XRay Diffraction (XRD) measurements were used for the initial characterization of this nanowire/carbon fiber hybrid material system. Electrochemical testing has been performed using a potentio-galvanostat. The results show that gold sputtered nanowire hybrid carbon fiber provides 65.9% better performance than bare carbon fiber cloth as super-capacitor.

  19. Behavior of high-performance concrete in structural applications.

    DOT National Transportation Integrated Search

    2007-10-01

    High Performance Concrete (HPC) with improved properties has been developed by obtaining the maximum density of the matrix. Mathematical models developed by J.E. Funk and D.R. Dinger, are used to determine the particle size distribution to achieve th...

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Fei; Gao, Jie; Luk, Ting S.

    Subwavelength structural color filtering and printing technologies employing plasmonic nanostructures have recently been recognized as an important and beneficial complement to the traditional colorant-based pigmentation. However, the color saturation, brightness and incident angle tolerance of structural color printing need to be improved to meet the application requirement. Here we demonstrate a structural color printing method based on plasmonic metasurfaces of perfect light absorption to improve color performances such as saturation and brightness. Thin-layer perfect absorbers with periodic hole arrays are designed at visible frequencies and the absorption peaks are tuned by simply adjusting the hole size and periodicity. Near perfectmore » light absorption with high quality factors are obtained to realize high-resolution, angle-insensitive plasmonic color printing with high color saturation and brightness. Moreover, the fabricated metasurfaces can be protected with a protective coating for ambient use without degrading performances. The demonstrated structural color printing platform offers great potential for applications ranging from security marking to information storage.« less

  1. On Adding Structure to Unstructured Overlay Networks

    NASA Astrophysics Data System (ADS)

    Leitão, João; Carvalho, Nuno A.; Pereira, José; Oliveira, Rui; Rodrigues, Luís

    Unstructured peer-to-peer overlay networks are very resilient to churn and topology changes, while requiring little maintenance cost. Therefore, they are an infrastructure to build highly scalable large-scale services in dynamic networks. Typically, the overlay topology is defined by a peer sampling service that aims at maintaining, in each process, a random partial view of peers in the system. The resulting random unstructured topology is suboptimal when a specific performance metric is considered. On the other hand, structured approaches (for instance, a spanning tree) may optimize a given target performance metric but are highly fragile. In fact, the cost for maintaining structures with strong constraints may easily become prohibitive in highly dynamic networks. This chapter discusses different techniques that aim at combining the advantages of unstructured and structured networks. Namely we focus on two distinct approaches, one based on optimizing the overlay and another based on optimizing the gossip mechanism itself.

  2. Sodium effects on mechanical performance and consideration in high temperature structural design for advanced reactors

    NASA Astrophysics Data System (ADS)

    Natesan, K.; Li, Meimei; Chopra, O. K.; Majumdar, S.

    2009-07-01

    Sodium environmental effects are key limiting factors in the high temperature structural design of advanced sodium-cooled reactors. A guideline is needed to incorporate environmental effects in the ASME design rules to improve the performance reliability over long operating times. This paper summarizes the influence of sodium exposure on mechanical performance of selected austenitic stainless and ferritic/martensitic steels. Focus is on Type 316SS and mod.9Cr-1Mo. The sodium effects were evaluated by comparing the mechanical properties data in air and sodium. Carburization and decarburization were found to be the key factors that determine the tensile and creep properties of the steels. A beneficial effect of sodium exposure on fatigue life was observed under fully reversed cyclic loading in both austenitic stainless steels and ferritic/martensitic steels. However, when hold time was applied during cyclic loading, the fatigue life was significantly reduced. Based on the mechanical performance of the steels in sodium, consideration of sodium effects in high temperature structural design of advanced fast reactors is discussed.

  3. Structural color printing based on plasmonic metasurfaces of perfect light absorption

    PubMed Central

    Cheng, Fei; Gao, Jie; Luk, Ting S.; Yang, Xiaodong

    2015-01-01

    Subwavelength structural color filtering and printing technologies employing plasmonic nanostructures have recently been recognized as an important and beneficial complement to the traditional colorant-based pigmentation. However, the color saturation, brightness and incident angle tolerance of structural color printing need to be improved to meet the application requirement. Here we demonstrate a structural color printing method based on plasmonic metasurfaces of perfect light absorption to improve color performances such as saturation and brightness. Thin-layer perfect absorbers with periodic hole arrays are designed at visible frequencies and the absorption peaks are tuned by simply adjusting the hole size and periodicity. Near perfect light absorption with high quality factors are obtained to realize high-resolution, angle-insensitive plasmonic color printing with high color saturation and brightness. Moreover, the fabricated metasurfaces can be protected with a protective coating for ambient use without degrading performances. The demonstrated structural color printing platform offers great potential for applications ranging from security marking to information storage. PMID:26047486

  4. Structural color printing based on plasmonic metasurfaces of perfect light absorption

    DOE PAGES

    Cheng, Fei; Gao, Jie; Luk, Ting S.; ...

    2015-06-05

    Subwavelength structural color filtering and printing technologies employing plasmonic nanostructures have recently been recognized as an important and beneficial complement to the traditional colorant-based pigmentation. However, the color saturation, brightness and incident angle tolerance of structural color printing need to be improved to meet the application requirement. Here we demonstrate a structural color printing method based on plasmonic metasurfaces of perfect light absorption to improve color performances such as saturation and brightness. Thin-layer perfect absorbers with periodic hole arrays are designed at visible frequencies and the absorption peaks are tuned by simply adjusting the hole size and periodicity. Near perfectmore » light absorption with high quality factors are obtained to realize high-resolution, angle-insensitive plasmonic color printing with high color saturation and brightness. Moreover, the fabricated metasurfaces can be protected with a protective coating for ambient use without degrading performances. The demonstrated structural color printing platform offers great potential for applications ranging from security marking to information storage.« less

  5. High Performance Semantic Factoring of Giga-Scale Semantic Graph Databases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joslyn, Cliff A.; Adolf, Robert D.; Al-Saffar, Sinan

    2010-10-04

    As semantic graph database technology grows to address components ranging from extant large triple stores to SPARQL endpoints over SQL-structured relational databases, it will become increasingly important to be able to bring high performance computational resources to bear on their analysis, interpretation, and visualization, especially with respect to their innate semantic structure. Our research group built a novel high performance hybrid system comprising computational capability for semantic graph database processing utilizing the large multithreaded architecture of the Cray XMT platform, conventional clusters, and large data stores. In this paper we describe that architecture, and present the results of our deployingmore » that for the analysis of the Billion Triple dataset with respect to its semantic factors.« less

  6. A template-free solvent-mediated synthesis of high surface area boron nitride nanosheets for aerobic oxidative desulfurization.

    PubMed

    Wu, Peiwen; Zhu, Wenshuai; Chao, Yanhong; Zhang, Jinshui; Zhang, Pengfei; Zhu, Huiyuan; Li, Changfeng; Chen, Zhigang; Li, Huaming; Dai, Sheng

    2016-01-04

    Hexagonal boron nitride nanosheets (h-BNNs) with rather high specific surface area (SSA) are important two-dimensional layer-structured materials. Here, a solvent-mediated synthesis of h-BNNs revealed a template-free lattice plane control strategy that induced high SSA nanoporous structured h-BNNs with outstanding aerobic oxidative desulfurization performance.

  7. Evaluation of the High-Heel Roof-to-Wall Connection with Extended OSB Wall Sheathing

    Treesearch

    Andrew DeRenzis; Vladimir Kochkin; Xiping Wang

    2013-01-01

    A recently completed testing project conducted to evaluate optimized structural roof-to-wall attachment solutions demonstrated the effectiveness of wood structural panels in restraining high-heel trusses against rotation. This study was designed to further evaluate the performance of OSB wall sheathing panels extended over the high-heel truss in resisting combined...

  8. High temperature braided rope seals for static sealing applications

    NASA Technical Reports Server (NTRS)

    Adams, Michael L.; Olsen, Andrew; Darolia, Ram; Steinetz, Bruce M.; Bartolotta, Paul A.

    1996-01-01

    Achieving efficiency and performance goals of advanced aircraft and industrial systems are leading designers to implement high temperature materials such as ceramics and intermetallics. Generally these advanced materials are applied selectively in the highest temperature sections of the engine system including the combustor and high pressure turbine, amongst others. Thermal strains that result in attaching the low expansion-rate components to high expansion rate superalloy structures can cause significant life reduction in the components. Seals are being designed to both seal and to serve as compliant mounts allowing for relative thermal growths between high temperature but brittle primary structures and the surrounding support structures. Designers require high temperature, low-leakage, compliant seals to mitigate thermal stresses and control parasitic and cooling airflow between structures. NASA is developing high temperature braided rope seals in a variety of configurations to help solve these problems. This paper will describe the types of seals being developed, describe unique test techniques used to assess seal performance, and present leakage flow data under representative pressure, temperature and scrubbing conditions. Feasibility of the braided rope seals for both an industrial tube seal and a turbine vane seal application is also demonstrated.

  9. Processing and Material Characterization of Continuous Basalt Fiber Reinforced Ceramic Matrix Composites Using Polymer Derived Ceramics.

    NASA Technical Reports Server (NTRS)

    Cox, Sarah B.

    2014-01-01

    The need for high performance vehicles in the aerospace industry requires materials which can withstand high loads and high temperatures. New developments in launch pads and infrastructure must also be made to handle this intense environment with lightweight, reusable, structural materials. By using more functional materials, better performance can be seen in the launch environment, and launch vehicle designs which have not been previously used can be considered. The development of high temperature structural composite materials has been very limited due to the high cost of the materials and the processing needed. Polymer matrix composites can be used for temperatures up to 260C. Ceramics can take much higher temperatures, but they are difficult to produce and form in bulk volumes. Polymer Derived Ceramics (PDCs) begin as a polymer matrix, allowing a shape to be formed and cured and then to be pyrolized in order to obtain a ceramic with the associated thermal and mechanical properties. The use of basalt in structural and high temperature applications has been under development for over 50 years, yet there has been little published research on the incorporation of basalt fibers as a reinforcement in the composites. In this study, continuous basalt fiber reinforced PDCs have been fabricated and tested for the applicability of this composite system as a high temperature structural composite material. The oxyacetylene torch testing and three point bend testing have been performed on test panels and the test results are presented.

  10. Evaluation of capillary reinforced composites

    NASA Technical Reports Server (NTRS)

    Cahill, J. E.; Halase, J. F.; South, W. K.; Stoffer, L. J.

    1985-01-01

    Anti-icing of the inlet of jet engines is generally performed with high pressure heated air that is directed forward from the compressor through a series of pipes to various manifolds located near the structures to be anti-iced. From these manifolds, the air is directed to all flowpath surfaces that may be susceptible to ice formation. There the anti-icing function may be performed by either heat conduction or film heating. Unfortunately, the prospect of utilizing lighweight, high strength composites for inlet structures of jet engines has been frustrated by the low transverse thermal conductivity of such materials. It was the objective of this program to develop an advanced materials and design concept for anti-icing composite structures. The concept that was evaluated used capillary glass tubes embedded on the surface of a composite structure with heated air ducted through the tubes. An analytical computer program was developed to predict the anti-icing performance of such tubes and a test program was conducted to demonstrate actual performance of this system. Test data and analytical code results were in excellent agreement. Both indicate feasibility of using capillary tubes for surface heating as a means for composite engine structures to combat ice accumulation.

  11. Dendrites are dispensable for basic motoneuron function but essential for fine tuning of behavior.

    PubMed

    Ryglewski, Stefanie; Kadas, Dimitrios; Hutchinson, Katie; Schuetzler, Natalie; Vonhoff, Fernando; Duch, Carsten

    2014-12-16

    Dendrites are highly complex 3D structures that define neuronal morphology and connectivity and are the predominant sites for synaptic input. Defects in dendritic structure are highly consistent correlates of brain diseases. However, the precise consequences of dendritic structure defects for neuronal function and behavioral performance remain unknown. Here we probe dendritic function by using genetic tools to selectively abolish dendrites in identified Drosophila wing motoneurons without affecting other neuronal properties. We find that these motoneuron dendrites are unexpectedly dispensable for synaptic targeting, qualitatively normal neuronal activity patterns during behavior, and basic behavioral performance. However, significant performance deficits in sophisticated motor behaviors, such as flight altitude control and switching between discrete courtship song elements, scale with the degree of dendritic defect. To our knowledge, our observations provide the first direct evidence that complex dendrite architecture is critically required for fine-tuning and adaptability within robust, evolutionarily constrained behavioral programs that are vital for mating success and survival. We speculate that the observed scaling of performance deficits with the degree of structural defect is consistent with gradual increases in intellectual disability during continuously advancing structural deficiencies in progressive neurological disorders.

  12. Second-harmonic generation microscopy of tooth

    NASA Astrophysics Data System (ADS)

    Kao, Fu-Jen; Wang, Yung-Shun; Huang, Mao-Kuo; Huang, Sheng-Lung; Cheng, Ping C.

    2000-07-01

    In this study, we have developed a high performance microscopic system to perform second-harmonic (SH)imaging on a tooth. The high sensitivity of the system allows an acquisition rate of 300 seconds/frame with a resolution at 512x512 pixels. The surface SH signal generated from the tooth is also carefully verified through micro-spectroscopy, polarization rotation, and wavelength tuning. In this way, we can ensure the authenticity of the signal. The enamel that encapsulates the dentine is known to possess highly ordered structures. The anisotrophy of the structure is revealed in the microscopic SH images of the tooth sample.

  13. Novel structure design of composite proton exchange membranes with continuous and through-membrane proton-conducting channels

    NASA Astrophysics Data System (ADS)

    Wang, Hang; Tang, Chenxiao; Zhuang, Xupin; Cheng, Bowen; Wang, Wei; Kang, Weimin; Li, Hongjun

    2017-10-01

    The primary goal of this study is to develop a high-performanced proton exchange membrane with the characteristics of through-membrane and continuous solution blown nanofibers as proton-conducting channels. The curled sulfonated phenolphthalein poly (ether sulfone) and poly (vinylidene fluoride) nanofibers were separately fabricated through the solution blowing process which is a new nanofiber fabricating method with high productivity, then they were fabricated into a sandwich-structured mat. Then this sandwich-structured mat was hot-pressed to form the designed structure using different melting temperatures of the two polymers by melting and making poly (vinylidene fluoride) flow into the phenolphthalein poly (ether sulfone) nanofiber mat. The characteristics of the composite membrane, such as morphology and performance of the membrane, were investigated. The characterization results proved the successful preparation of the membrane structure. Performance results showed that the novel structured membrane with through-membrane nanofibers significantly improved water swelling and methanol permeability, though its conductivity is lower than that of Nafion, the cell performance showed comparable results. Therefore, the novel structure design can be considered as a promising method for preparing of proton exchange membranes.

  14. Comprehensive design of omnidirectional high-performance perovskite solar cells

    PubMed Central

    Zhang, Yutao; Xuan, Yimin

    2016-01-01

    The comprehensive design approach is established with coupled optical-electrical simulation for perovskite-based solar cell, which emerged as one of the most promising competitors to silicon solar cell for its low-cost fabrication and high PCE. The selection of structured surface, effect of geometry parameters, incident angle-dependence and polarization-sensitivity are considered in the simulation. The optical modeling is performed via the finite-difference time-domain method whilst the electrical properties are obtained by solving the coupled nonlinear equations of Poisson, continuity, and drift-diffusion equations. The optical and electrical performances of five different structured surfaces are compared to select a best structured surface for perovskite solar cell. The effects of the geometry parameters on the optical and electrical properties of the perovskite cell are analyzed. The results indicate that the light harvesting is obviously enhanced by the structured surface. The electrical performance can be remarkably improved due to the enhanced light harvesting of the designed best structured surface. The angle-dependence for s- and p-polarizations is investigated. The structured surface exhibits omnidirectional behavior and favorable polarization-insensitive feature within a wide incident angle range. Such a comprehensive design approach can highlight the potential of perovskite cell for power conversion in the full daylight. PMID:27405419

  15. Comprehensive design of omnidirectional high-performance perovskite solar cells.

    PubMed

    Zhang, Yutao; Xuan, Yimin

    2016-07-13

    The comprehensive design approach is established with coupled optical-electrical simulation for perovskite-based solar cell, which emerged as one of the most promising competitors to silicon solar cell for its low-cost fabrication and high PCE. The selection of structured surface, effect of geometry parameters, incident angle-dependence and polarization-sensitivity are considered in the simulation. The optical modeling is performed via the finite-difference time-domain method whilst the electrical properties are obtained by solving the coupled nonlinear equations of Poisson, continuity, and drift-diffusion equations. The optical and electrical performances of five different structured surfaces are compared to select a best structured surface for perovskite solar cell. The effects of the geometry parameters on the optical and electrical properties of the perovskite cell are analyzed. The results indicate that the light harvesting is obviously enhanced by the structured surface. The electrical performance can be remarkably improved due to the enhanced light harvesting of the designed best structured surface. The angle-dependence for s- and p-polarizations is investigated. The structured surface exhibits omnidirectional behavior and favorable polarization-insensitive feature within a wide incident angle range. Such a comprehensive design approach can highlight the potential of perovskite cell for power conversion in the full daylight.

  16. An efficient 3-dim FFT for plane wave electronic structure calculations on massively parallel machines composed of multiprocessor nodes

    NASA Astrophysics Data System (ADS)

    Goedecker, Stefan; Boulet, Mireille; Deutsch, Thierry

    2003-08-01

    Three-dimensional Fast Fourier Transforms (FFTs) are the main computational task in plane wave electronic structure calculations. Obtaining a high performance on a large numbers of processors is non-trivial on the latest generation of parallel computers that consist of nodes made up of a shared memory multiprocessors. A non-dogmatic method for obtaining high performance for such 3-dim FFTs in a combined MPI/OpenMP programming paradigm will be presented. Exploiting the peculiarities of plane wave electronic structure calculations, speedups of up to 160 and speeds of up to 130 Gflops were obtained on 256 processors.

  17. Workplace Literacy: Its Role in High Performance Organizations. ERIC Digest No. 158.

    ERIC Educational Resources Information Center

    Imel, Susan

    In a high performance work organization (HPWO), employee basic skills are just one of many components. HPWOs feature the following: they have flatter organizational structures, have work done by teams of highly skilled workers, and have a focus on quality, customer service, and continuous improvement. The collaborative approach to workplace…

  18. Nano-engineering of three-dimensional core/shell nanotube arrays for high performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Grote, Fabian; Wen, Liaoyong; Lei, Yong

    2014-06-01

    Large-scale arrays of core/shell nanostructures are highly desirable to enhance the performance of supercapacitors. Here we demonstrate an innovative template-based fabrication technique with high structural controllability, which is capable of synthesizing well-ordered three-dimensional arrays of SnO2/MnO2 core/shell nanotubes for electrochemical energy storage in supercapacitor applications. The SnO2 core is fabricated by atomic layer deposition and provides a highly electrical conductive matrix. Subsequently a thin MnO2 shell is coated by electrochemical deposition onto the SnO2 core, which guarantees a short ion diffusion length within the shell. The core/shell structure shows an excellent electrochemical performance with a high specific capacitance of 910 F g-1 at 1 A g-1 and a good rate capability of remaining 217 F g-1 at 50 A g-1. These results shall pave the way to realize aqueous based asymmetric supercapacitors with high specific power and high specific energy.

  19. Interphase Thermomechanical Reliability and Optimization for High-Performance Ti Metal Laminates

    DTIC Science & Technology

    2011-12-19

    Thermomechanical Reliability and Optimization for High-Performance Ti FA9550-08-l-0015 Metal Laminates Sb. GRANT NUMBER Program Manager: Dr Joycelyn Harrison...OSR-VA-TR-2012-0202 12. DISTRIBUTION/AVAILABILITY STATEMENT A 13. SUPPLEMENTARY NOTES 14. ABSTRACT Hybrid laminated composites such as titanium...graphite (TiGr) laminates are an emerging class of structural materials with the potential to enable a new generation of efficient, high-performance

  20. High-Achieving High School Students and Not so High-Achieving College Students: A Look at Lack of Self-Control, Academic Ability, and Performance in College

    ERIC Educational Resources Information Center

    Honken, Nora B.; Ralston, Patricia A. S.

    2013-01-01

    This study investigated the relationship among lack of self-control, academic ability, and academic performance for a cohort of freshman engineering students who were, with a few exceptions, extremely high achievers in high school. Structural equation modeling analysis led to the conclusion that lack of self-control in high school, as measured by…

  1. HPLC-Orbitrap analysis for identification of organic molecules in complex material

    NASA Astrophysics Data System (ADS)

    Gautier, T.; Schmitz-Afonso, I.; Carrasco, N.; Touboul, D.; Szopa, C.; Buch, A.; Pernot, P.

    2015-10-01

    We performed High Performance Liquid Chromatography (HPLC) coupled to Orbitrap High Resolution Mass Spectrometry (OHR MS) analysis of Titan's tholins. This analysis allowed us to determine the exact composition and structure of some of the major components of tholins.

  2. Development, characterization and applications of a non proprietary ultra high performance concrete for highway bridges : final report.

    DOT National Transportation Integrated Search

    2016-03-14

    Ultra-high performance concrete (UHPC) is a new class of cementitious materials that have : exceptional mechanical and durability characteristics. UHPC is commercially available. : However, its cost for construction of highway structures is prohibiti...

  3. Optimal design of high damping force engine mount featuring MR valve structure with both annular and radial flow paths

    NASA Astrophysics Data System (ADS)

    Nguyen, Q. H.; Choi, S. B.; Lee, Y. S.; Han, M. S.

    2013-11-01

    This paper focuses on the optimal design of a compact and high damping force engine mount featuring magnetorheological fluid (MRF). In the mount, a MR valve structure with both annular and radial flows is employed to generate a high damping force. First, the configuration and working principle of the proposed MR mount is introduced. The MRF flows in the mount are then analyzed and the governing equations of the MR mount are derived based on the Bingham plastic behavior of the MRF. An optimal design of the MR mount is then performed to find the optimal structure of the MR valve to generate a maximum damping force with certain design constraints. In addition, the gap size of MRF ducts is empirically chosen considering the ‘lockup’ problem of the mount at high frequency. Performance of the optimized MR mount is then evaluated based on finite element analysis and discussions on performance results of the optimized MR mount are given. The effectiveness of the proposed MR engine mount is demonstrated via computer simulation by presenting damping force and power consumption.

  4. Large-area high-performance SERS substrates with deep controllable sub-10-nm gap structure fabricated by depositing Au film on the cicada wing

    NASA Astrophysics Data System (ADS)

    Jiwei, Qi; Yudong, Li; Ming, Yang; Qiang, Wu; Zongqiang, Chen; Wudeng, Wang; Wenqiang, Lu; Xuanyi, Yu; Jingjun, Xu; Qian, Sun

    2013-10-01

    Noble metal nanogap structure supports strong surface-enhanced Raman scattering (SERS) which can be used to detect single molecules. However, the lack of reproducible fabrication techniques with nanometer-level control over the gap size has limited practical applications. In this letter, by depositing the Au film onto the cicada wing, we engineer the ordered array of nanopillar structures on the wing to form large-area high-performance SERS substrates. Through the control of the thickness of the Au film deposited onto the cicada wing, the gap sizes between neighboring nanopillars are fine defined. SERS substrates with sub-10-nm gap sizes are obtained, which have the highest average Raman enhancement factor (EF) larger than 2 × 108, about 40 times as large as that of commercial Klarite® substrates. The cicada wings used as templates are natural and environment-friendly. The depositing method is low cost and high throughput so that our large-area high-performance SERS substrates have great advantage for chemical/biological sensing applications.

  5. A Novel Layered Sedimentary Rocks Structure of the Oxygen-Enriched Carbon for Ultrahigh-Rate-Performance Supercapacitors.

    PubMed

    Zhang, Lin-Lin; Li, Huan-Huan; Shi, Yan-Hong; Fan, Chao-Ying; Wu, Xing-Long; Wang, Hai-Feng; Sun, Hai-Zhu; Zhang, Jing-Ping

    2016-02-17

    In this paper, gelatin as a natural biomass was selected to successfully prepare an oxygen-enriched carbon with layered sedimentary rocks structure, which exhibited ultrahigh-rate performance and excellent cycling stability as supercapacitors. The specific capacitance reached 272.6 F g(-1) at 1 A g(-1) and still retained 197.0 F g(-1) even at 100 A g(-1) (with high capacitance retention of 72.3%). The outstanding electrochemical performance resulted from the special layered structure with large surface area (827.8 m(2) g(-1)) and high content of oxygen (16.215 wt %), which effectively realized the synergistic effects of the electrical double-layer capacitance and pseudocapacitance. Moreover, it delivered an energy density of 25.3 Wh kg(-1) even with a high power density of 34.7 kW kg(-1) and ultralong cycling stability (with no capacitance decay even over 10,000 cycles at 2 A g(-1)) in a symmetric supercapacitor, which are highly desirable for their practical application in energy storage devices and conversion.

  6. Ceramic automotive Stirling engine study

    NASA Technical Reports Server (NTRS)

    Musikant, S.; Chiu, W.; Darooka, D.; Mullings, D. M.; Johnson, C. A.

    1985-01-01

    A conceptual design study for a Ceramic Automotive Stirling Engine (CASE) is performed. Year 1990 structural ceramic technology is assumed. Structural and performance analyses of the conceptual design are performed as well as a manufacturing and cost analysis. The general conclusions from this study are that such an engine would be 10-26% more efficient over its performance map than the current metal Automotive Stirling Reference Engine (ASRE). Cost of such a ceramic engine is likely to be somewhat higher than that of the ASRE but engine cost is very sensitive to the ultimate cost of the high purity, ceramic powder raw materials required to fabricate high performance parts. When the design study is projected to the year 2000 technology, substantinal net efficiency improvements, on the order of 25 to 46% over the ASRE, are computed.

  7. Structural and psychological empowerment climates, performance, and the moderating role of shared felt accountability: a managerial perspective.

    PubMed

    Wallace, J Craig; Johnson, Paul D; Mathe, Kimberly; Paul, Jeff

    2011-07-01

    The authors proposed and tested a model in which data were collected from managers (n = 539) at 116 corporate-owned quick service restaurants to assess the structural and psychological empowerment process as moderated by shared-felt accountability on indices of performance from a managerial perspective. The authors found that empowering leadership climate positively relates to psychological empowerment climate. In turn, psychological empowerment climate relates to performance only under conditions of high-felt accountability; it does not relate to performance under conditions of low-felt accountability. Overall, the present results indicate that the quick-service restaurant managers, who feel more empowered, operate restaurants that perform better than managers who feel less empowered, but only when those empowered managers also feel a high sense of accountability.

  8. Cellulose Tailored Anatase TiO2 Nanospindles in Three-Dimensional Graphene Composites for High-Performance Supercapacitors.

    PubMed

    Ding, Yangbin; Bai, Wei; Sun, Jinhua; Wu, Yu; Memon, Mushtaque A; Wang, Chao; Liu, Chengbin; Huang, Yong; Geng, Jianxin

    2016-05-18

    The morphologies of transition metal oxides have decisive impact on the performance of their applications. Here, we report a new and facile strategy for in situ preparation of anatase TiO2 nanospindles in three-dimensional reduced graphene oxide (RGO) structure (3D TiO2@RGO) using cellulose as both an intermediate agent eliminating the negative effect of graphene oxide (GO) on the growth of TiO2 crystals and as a structure-directing agent for the shape-controlled synthesis of TiO2 crystals. High-resolution transmission electron microscopy and X-ray diffractometer analysis indicated that the spindle shape of TiO2 crystals was formed through the restriction of the growth of high energy {010} facets due to preferential adsorption of cellulose on these facets. Because of the 3D structure of the composite, the large aspect ratio of the TiO2 nanospindles, and the exposed high-energy {010} facets of the TiO2 crystals, the 3D TiO2@RGO(Ce 1.7) exhibited excellent capacitive performance as an electrode material for supercapacitors, with a high specific capacitance (ca. 397 F g(-1)), a high energy density (55.7 Wh kg(-1)), and a high power density (1327 W kg(-1)) on the basis of the masses of RGO and TiO2. These levels of capacitive performance far exceed those of previously reported TiO2-based composites.

  9. KF-loaded mesoporous Mg-Fe bi-metal oxides: high performance transesterification catalysts for biodiesel production.

    PubMed

    Tao, Guiju; Hua, Zile; Gao, Zhe; Zhu, Yan; Zhu, Yan; Chen, Yu; Shu, Zhu; Zhang, Lingxia; Shi, Jianlin

    2013-09-21

    Using newly developed mesoporous Mg-Fe bi-metal oxides as supports, a novel kind of high performance transesterification catalysts for biodiesel production has been synthesized. More importantly, the impregnation solvent was for the first time found to substantially affect the structures and catalytic performances of the resultant transesterification catalysts.

  10. Total systems design analysis of high performance structures

    NASA Technical Reports Server (NTRS)

    Verderaime, V.

    1993-01-01

    Designer-control parameters were identified at interdiscipline interfaces to optimize structural systems performance and downstream development and operations with reliability and least life-cycle cost. Interface tasks and iterations are tracked through a matrix of performance disciplines integration versus manufacturing, verification, and operations interactions for a total system design analysis. Performance integration tasks include shapes, sizes, environments, and materials. Integrity integrating tasks are reliability and recurring structural costs. Significant interface designer control parameters were noted as shapes, dimensions, probability range factors, and cost. Structural failure concept is presented, and first-order reliability and deterministic methods, benefits, and limitations are discussed. A deterministic reliability technique combining benefits of both is proposed for static structures which is also timely and economically verifiable. Though launch vehicle environments were primarily considered, the system design process is applicable to any surface system using its own unique filed environments.

  11. Mesoporous coaxial titanium nitride-vanadium nitride fibers of core-shell structures for high-performance supercapacitors.

    PubMed

    Zhou, Xinhong; Shang, Chaoqun; Gu, Lin; Dong, Shanmu; Chen, Xiao; Han, Pengxian; Li, Lanfeng; Yao, Jianhua; Liu, Zhihong; Xu, Hongxia; Zhu, Yuwei; Cui, Guanglei

    2011-08-01

    In this study, titanium nitride-vanadium nitride fibers of core-shell structures were prepared by the coaxial electrospinning, and subsequently annealed in the ammonia for supercapacitor applications. These core-shell (TiN-VN) fibers incorporated mesoporous structure into high electronic conducting transition nitride hybrids, which combined higher specific capacitance of VN and better rate capability of TiN. These hybrids exhibited higher specific capacitance (2 mV s(-1), 247.5 F g(-1)) and better rate capability (50 mV s(-1), 160.8 F g(-1)), which promise a good candidate for high-performance supercapacitors. It was also revealed by electrochemical impedance spectroscopy (EIS) and X-ray photoelectron spectroscopy (XPS) characterization that the minor capacitance fade originated from the surface oxidation of VN and TiN.

  12. Design and experimentally measure a high performance metamaterial filter

    NASA Astrophysics Data System (ADS)

    Xu, Ya-wen; Xu, Jing-cheng

    2018-03-01

    Metamaterial filter is a kind of expecting optoelectronic device. In this paper, a metal/dielectric/metal (M/D/M) structure metamaterial filter is simulated and measured. Simulated results indicate that the perfect impedance matching condition between the metamaterial filter and the free space leads to the transmission band. Measured results show that the proposed metamaterial filter achieves high performance transmission on TM and TE polarization directions. Moreover, the high transmission rate is also can be obtained when the incident angle reaches to 45°. Further measured results show that the transmission band can be expanded through optimizing structural parameters. The central frequency of the transmission band is also can be adjusted through optimizing structural parameters. The physical mechanism behind the central frequency shifted is solved through establishing an equivalent resonant circuit model.

  13. Robust Damage-Mitigating Control of Aircraft for High Performance and Structural Durability

    NASA Technical Reports Server (NTRS)

    Caplin, Jeffrey; Ray, Asok; Joshi, Suresh M.

    1999-01-01

    This paper presents the concept and a design methodology for robust damage-mitigating control (DMC) of aircraft. The goal of DMC is to simultaneously achieve high performance and structural durability. The controller design procedure involves consideration of damage at critical points of the structure, as well as the performance requirements of the aircraft. An aeroelastic model of the wings has been formulated and is incorporated into a nonlinear rigid-body model of aircraft flight-dynamics. Robust damage-mitigating controllers are then designed using the H(infinity)-based structured singular value (mu) synthesis method based on a linearized model of the aircraft. In addition to penalizing the error between the ideal performance and the actual performance of the aircraft, frequency-dependent weights are placed on the strain amplitude at the root of each wing. Using each controller in turn, the control system is put through an identical sequence of maneuvers, and the resulting (varying amplitude cyclic) stress profiles are analyzed using a fatigue crack growth model that incorporates the effects of stress overload. Comparisons are made to determine the impact of different weights on the resulting fatigue crack damage in the wings. The results of simulation experiments show significant savings in fatigue life of the wings while retaining the dynamic performance of the aircraft.

  14. Biomimetic membranes and methods of making biomimetic membranes

    DOEpatents

    Rempe, Susan; Brinker, Jeffrey C.; Rogers, David Michael; Jiang, Ying-Bing; Yang, Shaorong

    2016-11-08

    The present disclosure is directed to biomimetic membranes and methods of manufacturing such membranes that include structural features that mimic the structures of cellular membrane channels and produce membrane designs capable of high selectivity and high permeability or adsorptivity. The membrane structure, material and chemistry can be selected to perform liquid separations, gas separation and capture, ion transport and adsorption for a variety of applications.

  15. Empowerment and performance of managers and subordinates in elderly care: A longitudinal and multilevel study.

    PubMed

    Hagerman, Heidi; Högberg, Hans; Skytt, Bernice; Wadensten, Barbro; Engström, Maria

    2017-11-01

    To investigate relationships between first-line managers' ratings of structural and psychological empowerment, and the subordinates' ratings of structural empowerment, as well as their ratings of the managers' leadership-management performance. Work situations in elderly care are complex. To date, few studies have used a longitudinal, correlational and multilevel design to study the working life of subordinates and managers. In five Swedish municipalities, questionnaires were answered twice during 2010-12 by 56 first-line managers and 769 subordinates working in nursing homes or home-help services. First-line managers' empowerment at Time 1 partially predicted subordinate's structural empowerment and ratings of their managers' leadership-management performance at Time 2. Changes over time partially revealed that the more access managers had to structural empowerment, i.e. increase over time, the higher the ratings were for structural empowerment and managerial leadership-management performance among subordinates. Findings strengthen research and theoretical suggestions linking first-line managers' structural empowerment to their subordinates' structural empowerment and ratings of their manager's leadership-management performance. Managers with high access to structural empowerment are more likely to provide subordinates access to structural empowerment. © 2017 The Authors. Journal of Nursing Management Published by John Wiley & Sons Ltd.

  16. Preparation and performance of broadband antireflective sub-wavelength structures on Ge substrate

    NASA Astrophysics Data System (ADS)

    Shen, Xiang-Wei; Liu, Zheng-Tang; Li, Yang-Ping; Lu, Hong-Cheng; Xu, Qi-Yuan; Liu, Wen-Ting

    2009-01-01

    Sub-wavelength structures (SWS) were prepared on Ge substrates through photolithography and reactive ion etching (RIE) technology for broadband antireflective purposes in the long wave infrared (LWIR) waveband of 8-12 μm. Topography of the etched patterns was observed using high resolution optical microscope and atomic force microscope (AFM). Infrared transmission performance of the SWS was investigated by Fourier transform infrared (FTIR) spectrometer. Results show that the etched patterns were of high uniformity and fidelity, the SWS exhibited a good broadband antireflective performance with the increment of the average transmittance which is over 8-12 μm up to 8%.

  17. An analysis for high speed propeller-nacelle aerodynamic performance prediction. Volume 2: User's manual

    NASA Technical Reports Server (NTRS)

    Egolf, T. Alan; Anderson, Olof L.; Edwards, David E.; Landgrebe, Anton J.

    1988-01-01

    A user's manual for the computer program developed for the prediction of propeller-nacelle aerodynamic performance reported in, An Analysis for High Speed Propeller-Nacelle Aerodynamic Performance Prediction: Volume 1 -- Theory and Application, is presented. The manual describes the computer program mode of operation requirements, input structure, input data requirements and the program output. In addition, it provides the user with documentation of the internal program structure and the software used in the computer program as it relates to the theory presented in Volume 1. Sample input data setups are provided along with selected printout of the program output for one of the sample setups.

  18. Mechanical Testing of IN718 Lattice Block Structures

    NASA Technical Reports Server (NTRS)

    Krause, David L.; Whittenberger, John D.; Kantzos, Pete T.; Hebsur, Mohan G.

    2002-01-01

    Lattice block construction produces a flat, structurally rigid panel composed of thin ligaments of material arranged in a three-dimensional triangulated truss-like structure. Low-cost methods of producing cast metallic lattice block panels are now available that greatly expand opportunities for using this unique material system in today's high-performance structures. Additional advances are being made in NASA's Ultra Efficient Engine Technology (UEET) program to extend the lattice block concept to superalloy materials. Advantages offered by this combination include high strength, light weight, high stiffness, and elevated temperature capabilities. Recently under UEET, the nickel-based superalloy Inconel 718 (IN718) was investment cast into lattice block panels with great success. To evaluate casting quality and lattice block architecture merit, individual ligaments, and structural subelement specimens were extracted from the panels. Tensile tests, structural compression, and bending strength tests were performed on these specimens. Fatigue testing was also completed for several bend test specimens. This paper first presents metallurgical and optical microscopy analysis of the castings. This is followed by mechanical test results for the tensile ligament tests and the subelement compression and bending strength tests, as well as for the fatigue tests that were performed. These tests generally showed comparable properties to base IN718 with the same heat treatment, and they underscored the benefits offered by lattice block materials. These benefits might be extended with improved architecture such as face sheets.

  19. Evaluation of Joint Performance on High Nitrogen Stainless Steel Which is Expected to Have Higher Allergy Resistance

    NASA Astrophysics Data System (ADS)

    Nakano, Kouichi

    Austenitic stainless steel, which includes nickel for stabilizing austenitic structure, is used for various purposes, for example, for structural material, corrosion-resistant material, biomaterial etc. Nickel is set as one of the rare metals and economizing on nickel as the natural resources is required. On the other hand, nickel is one of the metals that cause metallic allergy frequently. Therefore, high nitrogen stainless steel, where nitrogen stabilizes austenitic structure instead of nickel, has been developed in Japan and some of the foreign countries for the above reason. When high nitrogen stainless steel is fused and bonded, dissolved nitrogen is released to the atmospheric area, and some of the material properties will change. In this study, we bonded high nitrogen stainless steel by stud welding process, which is able to bond at short time, and we evaluate joint performance. We have got some interesting results from the other tests and examinations.

  20. High-performance equation solvers and their impact on finite element analysis

    NASA Technical Reports Server (NTRS)

    Poole, Eugene L.; Knight, Norman F., Jr.; Davis, D. Dale, Jr.

    1990-01-01

    The role of equation solvers in modern structural analysis software is described. Direct and iterative equation solvers which exploit vectorization on modern high-performance computer systems are described and compared. The direct solvers are two Cholesky factorization methods. The first method utilizes a novel variable-band data storage format to achieve very high computation rates and the second method uses a sparse data storage format designed to reduce the number of operations. The iterative solvers are preconditioned conjugate gradient methods. Two different preconditioners are included; the first uses a diagonal matrix storage scheme to achieve high computation rates and the second requires a sparse data storage scheme and converges to the solution in fewer iterations that the first. The impact of using all of the equation solvers in a common structural analysis software system is demonstrated by solving several representative structural analysis problems.

  1. High-performance equation solvers and their impact on finite element analysis

    NASA Technical Reports Server (NTRS)

    Poole, Eugene L.; Knight, Norman F., Jr.; Davis, D. D., Jr.

    1992-01-01

    The role of equation solvers in modern structural analysis software is described. Direct and iterative equation solvers which exploit vectorization on modern high-performance computer systems are described and compared. The direct solvers are two Cholesky factorization methods. The first method utilizes a novel variable-band data storage format to achieve very high computation rates and the second method uses a sparse data storage format designed to reduce the number od operations. The iterative solvers are preconditioned conjugate gradient methods. Two different preconditioners are included; the first uses a diagonal matrix storage scheme to achieve high computation rates and the second requires a sparse data storage scheme and converges to the solution in fewer iterations that the first. The impact of using all of the equation solvers in a common structural analysis software system is demonstrated by solving several representative structural analysis problems.

  2. A High-Performing Sulfur-Tolerant and Redox-Stable Layered Perovskite Anode for Direct Hydrocarbon Solid Oxide Fuel Cells

    PubMed Central

    Ding, Hanping; Tao, Zetian; Liu, Shun; Zhang, Jiujun

    2015-01-01

    Development of alternative ceramic oxide anode materials is a key step for direct hydrocarbon solid oxide fuel cells (SOFCs). Several lanthanide based layered perovskite-structured oxides demonstrate outstanding oxygen diffusion rate, favorable electronic conductivity, and good oxygen surface exchange kinetics, owing to A-site ordered structure in which lanthanide and alkali-earth ions occupy alternate (001) layers and oxygen vacancies are mainly located in [LnOx] planes. Here we report a nickel-free cation deficient layered perovskite, (PrBa)0.95(Fe0.9Mo0.1)2O5 + δ (PBFM), for SOFC anode, and this anode shows an outstanding performance with high resistance against both carbon build-up and sulfur poisoning in hydrocarbon fuels. At 800 °C, the layered PBFM showed high electrical conductivity of 59.2 S cm−1 in 5% H2 and peak power densities of 1.72 and 0.54 W cm−2 using H2 and CH4 as fuel, respectively. The cell exhibits a very stable performance under a constant current load of 1.0 A cm−2. To our best knowledge, this is the highest performance of ceramic anodes operated in methane. In addition, the anode is structurally stable at various fuel and temperature conditions, suggesting that it is a feasible material candidate for high-performing SOFC anode. PMID:26648509

  3. A High-Performing Sulfur-Tolerant and Redox-Stable Layered Perovskite Anode for Direct Hydrocarbon Solid Oxide Fuel Cells

    NASA Astrophysics Data System (ADS)

    Ding, Hanping; Tao, Zetian; Liu, Shun; Zhang, Jiujun

    2015-12-01

    Development of alternative ceramic oxide anode materials is a key step for direct hydrocarbon solid oxide fuel cells (SOFCs). Several lanthanide based layered perovskite-structured oxides demonstrate outstanding oxygen diffusion rate, favorable electronic conductivity, and good oxygen surface exchange kinetics, owing to A-site ordered structure in which lanthanide and alkali-earth ions occupy alternate (001) layers and oxygen vacancies are mainly located in [LnOx] planes. Here we report a nickel-free cation deficient layered perovskite, (PrBa)0.95(Fe0.9Mo0.1)2O5 + δ (PBFM), for SOFC anode, and this anode shows an outstanding performance with high resistance against both carbon build-up and sulfur poisoning in hydrocarbon fuels. At 800 °C, the layered PBFM showed high electrical conductivity of 59.2 S cm-1 in 5% H2 and peak power densities of 1.72 and 0.54 W cm-2 using H2 and CH4 as fuel, respectively. The cell exhibits a very stable performance under a constant current load of 1.0 A cm-2. To our best knowledge, this is the highest performance of ceramic anodes operated in methane. In addition, the anode is structurally stable at various fuel and temperature conditions, suggesting that it is a feasible material candidate for high-performing SOFC anode.

  4. A High-Performing Sulfur-Tolerant and Redox-Stable Layered Perovskite Anode for Direct Hydrocarbon Solid Oxide Fuel Cells.

    PubMed

    Ding, Hanping; Tao, Zetian; Liu, Shun; Zhang, Jiujun

    2015-12-09

    Development of alternative ceramic oxide anode materials is a key step for direct hydrocarbon solid oxide fuel cells (SOFCs). Several lanthanide based layered perovskite-structured oxides demonstrate outstanding oxygen diffusion rate, favorable electronic conductivity, and good oxygen surface exchange kinetics, owing to A-site ordered structure in which lanthanide and alkali-earth ions occupy alternate (001) layers and oxygen vacancies are mainly located in [LnOx] planes. Here we report a nickel-free cation deficient layered perovskite, (PrBa)0.95(Fe0.9Mo0.1)2O5 + δ (PBFM), for SOFC anode, and this anode shows an outstanding performance with high resistance against both carbon build-up and sulfur poisoning in hydrocarbon fuels. At 800 °C, the layered PBFM showed high electrical conductivity of 59.2 S cm(-1) in 5% H2 and peak power densities of 1.72 and 0.54 W cm(-2) using H2 and CH4 as fuel, respectively. The cell exhibits a very stable performance under a constant current load of 1.0 A cm(-2). To our best knowledge, this is the highest performance of ceramic anodes operated in methane. In addition, the anode is structurally stable at various fuel and temperature conditions, suggesting that it is a feasible material candidate for high-performing SOFC anode.

  5. Investigation of High-k Dielectrics and Metal Gate Electrodes for Non-volatile Memory Applications

    NASA Astrophysics Data System (ADS)

    Jayanti, Srikant

    Due to the increasing demand of non-volatile flash memories in the portable electronics, the device structures need to be scaled down drastically. However, the scalability of traditional floating gate structures beyond 20 nm NAND flash technology node is uncertain. In this regard, the use of metal gates and high-k dielectrics as the gate and interpoly dielectrics respectively, seem to be promising substitutes in order to continue the flash scaling beyond 20nm. Furthermore, research of novel memory structures to overcome the scaling challenges need to be explored. Through this work, the use of high-k dielectrics as IPDs in a memory structure has been studied. For this purpose, IPD process optimization and barrier engineering were explored to determine and improve the memory performance. Specifically, the concept of high-k / low-k barrier engineering was studied in corroboration with simulations. In addition, a novel memory structure comprising a continuous metal floating gate was investigated in combination with high-k blocking oxides. Integration of thin metal FGs and high-k dielectrics into a dual floating gate memory structure to result in both volatile and non-volatile modes of operation has been demonstrated, for plausible application in future unified memory architectures. The electrical characterization was performed on simple MIS/MIM and memory capacitors, fabricated through CMOS compatible processes. Various analytical characterization techniques were done to gain more insight into the material behavior of the layers in the device structure. In the first part of this study, interfacial engineering was investigated by exploring La2O3 as SiO2 scavenging layer. Through the silicate formation, the consumption of low-k SiO2 was controlled and resulted in a significant improvement in dielectric leakage. The performance improvement was also gauged through memory capacitors. In the second part of the study, a novel memory structure consisting of continuous metal FG in the form of PVD TaN was investigated along with high-k blocking dielectric. The material properties of TaN metal and high-k / low-k dielectric engineering were systematically studied. And the resulting memory structures exhibit excellent memory characteristics and scalability of the metal FG down to ˜1nm, which is promising in order to reduce the unwanted FG-FG interferences. In the later part of the study, the thermal stability of the combined stack was examined and various approaches to improve the stability and understand the cause of instability were explored. The performance of the high-k IPD metal FG memory structure was observed to degrade with higher annealing conditions and the deteriorated behavior was attributed to the leakage instability of the high-k /TaN capacitor. While the degradation is pronounced in both MIM and MIS capacitors, a higher leakage increment was seen in MIM, which was attributed to the higher degree of dielectric crystallization. In an attempt to improve the thermal stability, the trade-off in using amorphous interlayers to reduce the enhanced dielectric crystallization on metal was highlighted. Also, the effect of oxygen vacancies and grain growth on the dielectric leakage was studied through a multi-deposition-multi-anneal technique. Multi step deposition and annealing in a more electronegative ambient was observed to have a positive impact on the dielectric performance.

  6. InGaN-based thin film solar cells: Epitaxy, structural design, and photovoltaic properties

    NASA Astrophysics Data System (ADS)

    Sang, Liwen; Liao, Meiyong; Koide, Yasuo; Sumiya, Masatomo

    2015-03-01

    InxGa1-xN, with the tunable direct bandgaps from ultraviolet to near infrared region, offers a promising candidate for the high-efficiency next-generation thin-film photovoltaic applications. Although the adoption of thick InGaN film as the active region is desirable to obtain efficient light absorption and carrier collection compared to InGaN/GaN quantum wells structure, the understanding on the effect from structural design is still unclear due to the poor-quality InGaN films with thickness and difficulty of p-type doping. In this paper, we comprehensively investigate the effects from film epitaxy, doping, and device structural design on the performances of the InGaN-based solar cells. The high-quality InGaN thick film is obtained on AlN/sapphire template, and p-In0.08Ga0.92N is achieved with a high hole concentration of more than 1018 cm-3. The dependence of the photovoltaic performances on different structures, such as active regions and p-type regions is analyzed with respect to the carrier transport mechanism in the dark and under illumination. The strategy of improving the p-i interface by using a super-thin AlN interlayer is provided, which successfully enhances the performance of the solar cells.

  7. Automatic differentiation for design sensitivity analysis of structural systems using multiple processors

    NASA Technical Reports Server (NTRS)

    Nguyen, Duc T.; Storaasli, Olaf O.; Qin, Jiangning; Qamar, Ramzi

    1994-01-01

    An automatic differentiation tool (ADIFOR) is incorporated into a finite element based structural analysis program for shape and non-shape design sensitivity analysis of structural systems. The entire analysis and sensitivity procedures are parallelized and vectorized for high performance computation. Small scale examples to verify the accuracy of the proposed program and a medium scale example to demonstrate the parallel vector performance on multiple CRAY C90 processors are included.

  8. Application of high performance concrete in the pavement system : structural response of high performance concrete pavements.

    DOT National Transportation Integrated Search

    2002-03-01

    Rigid pavements make up a significant percentage of highway systems in the United States and abroad. Concrete pavements provide an economical and durable solution for highway systems, because the pavements last longer and require less maintenance. Re...

  9. Converting biomass waste into microporous carbon with simultaneously high surface area and carbon purity as advanced electrochemical energy storage materials

    NASA Astrophysics Data System (ADS)

    Sun, Fei; Wang, Lijie; Peng, Yiting; Gao, Jihui; Pi, Xinxin; Qu, Zhibin; Zhao, Guangbo; Qin, Yukun

    2018-04-01

    Developing carbon materials featuring both high accessible surface area and high structure stability are desirable to boost the performance of constructed electrochemical electrodes and devices. Herein, we report a new type of microporous carbon (MPC) derived from biomass waste based on a simple high-temperature chemical activation procedure. The optimized MPC-900 possesses microporous structure, high surface area, partially graphitic structure, and particularly low impurity content, which are critical features for enhancing carbon-based electrochemical process. The constructed MPC-900 symmetric supercapacitor exhibits high performances in commercial organic electrolyte such as widened voltage window up to 3 V and thereby high energy/power densities (50.95 Wh kg-1 at 0.44 kW kg-1; 25.3 Wh kg-1 at 21.5 kW kg-1). Furthermore, a simple melt infiltration method has been employed to enclose SnO2 nanocrystals onto the carbon matrix of MPC-900 as a high-performance lithium storage material. The obtained SnO2-MPC composite with ultrafine SnO2 nanocrystals delivers high capacities (1115 mAh g-1 at 0.2 A g-1; 402 mAh g-1 at 10 A g-1) and high-rate cycling lifespan of over 2000 cycles. This work not only develops a microporous carbon with high carbon purity and high surface area, but also provides a general platform for combining electrochemically active materials.

  10. A template-free solvent-mediated synthesis of high surface area boron nitride nanosheets for aerobic oxidative desulfurization

    DOE PAGES

    Wu, Peiwen; Zhu, Wenshuai; Chao, Yanhong; ...

    2015-10-16

    Hexagonal boron nitride nanosheets (h-BNNs) with rather high specific surface area (SSA) are important two-dimensional layer-structured materials. Here in this study, a solvent-mediated synthesis of h-BNNs revealed a template-free lattice plane control strategy that induced high SSA nanoporous structured h-BNNs with outstanding aerobic oxidative desulfurization performance.

  11. Three-dimensional nitrogen doped holey reduced graphene oxide framework as metal-free counter electrodes for high performance dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Yu, Mei; Zhang, Jindan; Li, Songmei; Meng, Yanbing; Liu, Jianhua

    2016-03-01

    Three-dimensional nitrogen doped holey reduced graphene oxide framework (NHGF) with hierarchical porosity structure was developed as high-performance metal-free counter electrodes (CEs) for dye-sensitized solar cells (DSSCs). With plenty of exposed active sites, efficient electron and ion transport pathways as well as a high surface hydrophilicity, NHGF-CE exhibits good electrocatalytic performances for I- /I3- redox couple and a low charge transfer resistance (Rct). The Rct of NHGF-CE is 1.46 Ω cm2, which is much lower than that of Pt-CE (4.02 Ω cm2). The DSSC with NHGF-CE reaches a power conversion efficiency of 5.56% and a fill factor of 65.5%, while those of the DSSC with Pt-CE are only 5.45% and 62.3%, respectively. The achievement of the highly efficient 3D structure presents a potential way to fabricate low-cost and metal-free counter electrodes with excellent performance.

  12. Graphitic carbon nitride nanosheet electrode-based high-performance ionic actuator

    PubMed Central

    Wu, Guan; Hu, Ying; Liu, Yang; Zhao, Jingjing; Chen, Xueli; Whoehling, Vincent; Plesse, Cédric; Nguyen, Giao T. M.; Vidal, Frédéric; Chen, Wei

    2015-01-01

    Ionic actuators have attracted attention due to their remarkably large strain under low-voltage stimulation. Because actuation performance is mainly dominated by the electrochemical and electromechanical processes of the electrode layer, the electrode material and structure are crucial. Here, we report a graphitic carbon nitride nanosheet electrode-based ionic actuator that displays high electrochemical activity and electromechanical conversion abilities, including large specific capacitance (259.4 F g−1) with ionic liquid as the electrolyte, fast actuation response (0.5±0.03% in 300 ms), large electromechanical strain (0.93±0.03%) and high actuation stability (100,000 cycles) under 3 V. The key to the high performance lies in the hierarchical pore structure with dominant size <2 nm, optimal pyridinic nitrogen active sites (6.78%) and effective conductivity (382 S m−1) of the electrode. Our study represents an important step towards artificial muscle technology in which heteroatom modulation in electrodes plays an important role in promoting electrochemical actuation performance. PMID:26028354

  13. Automatic Information Processing and High Performance Skills: Individual Differences and Mechanisms of Performance Improvement in Search-Detection and Complex Task

    DTIC Science & Technology

    1992-09-01

    abilities is fit along with the autoregressive process. Initially, the influences on search performance of within-group age and sex were included as control...Results: PerformanceLAbility Structure Measurement Model: Ability Structure The correlations between all the ability measures, age, and sex are...subsequent analyses for young adults. Age and sex were included as control variables. There was an age range of 15 years; this range is sufficiently large that

  14. Porous Structure Design of Polymeric Membranes for Gas Separation

    DOE PAGES

    Zhang, Jinshui; Schott, Jennifer Ann; Mahurin, Shannon Mark; ...

    2017-04-04

    High-performance polymeric membranes for gas separation are of interest for molecular-level separations in industrial-scale chemical, energy and environmental processes. To overcome the inherent trade-off relationship between permeability and selectivity, the creation of permanent microporosity in polymeric matrices is highly desirable because the porous structures can provide a high fractional free volume to facilitate gas transport through the dense layer. In this feature article, recent developments in the formation of porous polymeric membranes and potential strategies for pore structure design are reviewed.

  15. Spatially-Resolved Characterization Techniques to Investigate Impact Damage in Ultra-High Performance Concretes

    DTIC Science & Technology

    2013-04-01

    Concretes G eo te ch n ic al a n d S tr u ct u re s La b or at or y Robert D. Moser, Paul G. Allison, and Mei Q. Chandler April 2013 Approved...Impact Damage in Ultra-High Performance Concretes Robert D. Moser, Paul G. Allison, and Mei Q. Chandler Geotechnical and Structures Laboratory US...Portland Cement concrete (OPC) and Ultra-High Performance Concretes (UHPCs) under high-strain impact and penetration loads at lower length scales

  16. Verification of the Seismic Performance of a Rigidly Connected Modular System Depending on the Shape and Size of the Ceiling Bracket

    PubMed Central

    Lee, Seungjae; Park, Jaeseong; Kwak, Euishin; Shon, Sudeok; Kang, Changhoon; Choi, Hosoon

    2017-01-01

    Modular systems have been mostly researched in relatively low-rise structures but, lately, their applications to mid- to high-rise structures began to be reviewed, and research interest in new modularization subjects has increased. The application of modular systems to mid- to high-rise structures requires the structural stability of the frame and connections that consist of units, and the evaluation of the stiffness of structures that are combined in units. However, the combination of general units causes loss of the cross-section of columns or beams, resulting in low seismic performance and hindering installation works in the field. In addition, the evaluation of a frame considering such a cross-sectional loss is not easy. Therefore, it is necessary to develop a joint that is stable and easy to install. In the study, a rigidly connected modular system was proposed as a moment-resisting frame for a unit modular system, and their joints were developed and their performances were compared. The proposed system changed the ceiling beam into a bracket type to fasten bolts. It can be merged with other seismic force-resisting systems. To verify the seismic performance of the proposed system, a cyclic loading test was conducted, and the rigidly connected joint performance and integrated behavior at the joint of modular units were investigated. From the experimental results, the maximum resisting force of the proposed connection exceeded the theoretical parameters, indicating that a rigid joint structural performance could be secured. PMID:28772622

  17. Numerical analysis of high-power broad-area laser diode with improved heat sinking structure using epitaxial liftoff technique

    NASA Astrophysics Data System (ADS)

    Kim, Younghyun; Sung, Yunsu; Yang, Jung-Tack; Choi, Woo-Young

    2018-02-01

    The characteristics of high-power broad-area laser diodes with the improved heat sinking structure are numerically analyzed by a technology computer-aided design based self-consistent electro-thermal-optical simulation. The high-power laser diodes consist of a separate confinement heterostructure of a compressively strained InGaAsP quantum well and GaInP optical cavity layers, and a 100-μm-wide rib and a 2000-μm long cavity. In order to overcome the performance deteriorations of high-power laser diodes caused by self-heating such as thermal rollover and thermal blooming, we propose the high-power broad-area laser diode with improved heat-sinking structure, which another effective heat-sinking path toward the substrate side is added by removing a bulk substrate. It is possible to obtain by removing a 400-μm-thick GaAs substrate with an AlAs sacrificial layer utilizing well-known epitaxial liftoff techniques. In this study, we present the performance improvement of the high-power laser diode with the heat-sinking structure by suppressing thermal effects. It is found that the lateral far-field angle as well as quantum well temperature is expected to be improved by the proposed heat-sinking structure which is required for high beam quality and optical output power, respectively.

  18. The improvement of thermal characteristics of autoclave aerated concrete for energy efficient high-rise buildings application

    NASA Astrophysics Data System (ADS)

    Khavanov, Pavel; Fomina, Ekaterina; Kozhukhova, Natalia

    2018-03-01

    Nowadays, the problem of energy saving is very relevant. One of the ways to reduction energy consumption in construction materials production and construction of civil and industrial high-rise buildings is the application of claddings with heat-insulating performance. The concept of energy efficiency of high-rise buildings is closely related to environmental aspect and sustainability of applied construction materials; reducing service costs; energy saving and microclimate comfortability. A complexity of architectural and structural design as well as aesthetic characteristics of construction materials are also should be considered. The high interest focused on materials with combined properties. This work is oriented on the study of energy efficiency of buildings by improving heat-insulation and strength performance of autoclave aerated concrete. The applied method of sulfate activation of lime allows monitoring phase and structure formation in aerated concrete. The optimal mix design of aerated concrete with the compressive strength up to 8.5 MPa and decreased density up to 760 kg/m3 was proposed. Analysis of structure at macro-and microscale was performed as well as the criteria of an optimal porosity formation was considered a number, size, shape of pore and density of interior partition. SEM analysis and BET method were performed in this research work. The research results demonstrated the correlation between structure and vapor permeability resistance, also it was found that the increase of strength can lead to reduction of thermal conductivity.

  19. Controllable fabrication of urchin-like Co3O4 hollow spheres for high-performance supercapacitors and lithium-ion batteries.

    PubMed

    Chen, Fashen; Liu, Xiaohe; Zhang, Zhian; Zhang, Ning; Pan, Anqiang; Liang, Shuquan; Ma, Renzhi

    2016-09-27

    Urchin-like cobalt oxide (Co 3 O 4 ) hollow spheres can be successfully prepared by thermal decomposition of cobalt carbonate hydroxide hydrate (Co(CO 3 ) 0.5 (OH)·0.11H 2 O) obtained by template-assisted hydrothermal synthesis. The morphology, crystal structure evolution and thermal decomposition behaviors of the as-prepared products have been carefully investigated. A plausible formation mechanism of the urchin-like Co 3 O 4 hollow spheres in the presence of hexadecyl trimethyl ammonium bromide (CTAB) as the surfactant template is proposed. The urchin-like Co 3 O 4 hollow spheres are further constructed as electrode materials for high-performance supercapacitors with a high specific capacitance of 460 F g -1 at a current density of 4 A g -1 and excellent cycling stability. Furthermore, as anode materials for lithium-ion batteries (LIBs), superior lithium storage performance of 1342.2 mA h g -1 (0.1 C) and 1122.7 mA h g -1 (0.2 C) can also be achieved. The excellent performances can be ascribed to the unique hierarchical urchin-like hollow structure of the electrode materials, which offers a large specific surface area, short electron and ion diffusion paths and high permeability while being directly in contact with the electrolyte. Moreover, the hollow structure with sufficient internal void spaces can self-accommodate volume change during electrochemical reactions, which improves the structural stability and integrity.

  20. Dimensional stability performance of a CFRP sandwich optical bench for microsatellite payload

    NASA Astrophysics Data System (ADS)

    Desnoyers, N.; Goyette, P.; Leduc, B.; Boucher, M.-A.

    2017-09-01

    Microsatellite market requires high performance while minimizing mass, volume and cost. Telescopes are specifically targeted by these trade-offs. One of these is to use the optomechanical structure of the telescope to mount electronic devices that may dissipate heat. However, such approach may be problematic in terms of distortions due to the presence of high thermal gradients throughout the telescope structure. To prevent thermal distortions, Carbon Fiber Reinforced Polymer (CFRP) technology can be used for the optomechanical telescope material structure. CFRP is typically about 100 times less sensitive to thermal gradients and its coefficient of thermal expansion (CTE) is about 200 to 600 times lower than standard aluminum alloys according to inhouse measurements. Unfortunately, designing with CFRP material is not as straightforward as with metallic materials. There are many parameters to consider in order to reach the desired dimensional stability under thermal, moisture and vibration exposures. Designing optomechanical structures using CFRP involves many challenges such as interfacing with optics and sometimes dealing with high CTE mounting interface structures like aluminum spacecraft buses. INO has designed a CFRP sandwich telescope structure to demonstrate the achievable performances of such technology. Critical parameters have been optimized to maximize the dimensional stability while meeting the stringent environmental requirements that microsatellite payloads have to comply with. The telescope structure has been tested in vacuum from -40°C to +50°C and has shown a good fit with finite element analysis predictions.

  1. A High-Performance Cellular Automaton Model of Tumor Growth with Dynamically Growing Domains

    PubMed Central

    Poleszczuk, Jan; Enderling, Heiko

    2014-01-01

    Tumor growth from a single transformed cancer cell up to a clinically apparent mass spans many spatial and temporal orders of magnitude. Implementation of cellular automata simulations of such tumor growth can be straightforward but computing performance often counterbalances simplicity. Computationally convenient simulation times can be achieved by choosing appropriate data structures, memory and cell handling as well as domain setup. We propose a cellular automaton model of tumor growth with a domain that expands dynamically as the tumor population increases. We discuss memory access, data structures and implementation techniques that yield high-performance multi-scale Monte Carlo simulations of tumor growth. We discuss tumor properties that favor the proposed high-performance design and present simulation results of the tumor growth model. We estimate to which parameters the model is the most sensitive, and show that tumor volume depends on a number of parameters in a non-monotonic manner. PMID:25346862

  2. Examining the validity of AHRQ's patient safety indicators (PSIs): is variation in PSI composite score related to hospital organizational factors?

    PubMed

    Shin, Marlena H; Sullivan, Jennifer L; Rosen, Amy K; Solomon, Jeffrey L; Dunn, Edward J; Shimada, Stephanie L; Hayes, Jennifer; Rivard, Peter E

    2014-12-01

    Increasing use of Agency for Healthcare Research and Quality's Patient Safety Indicators (PSIs) for hospital performance measurement intensifies the need to critically assess their validity. Our study examined the extent to which variation in PSI composite score is related to differences in hospital organizational structures or processes (i.e., criterion validity). In site visits to three Veterans Health Administration hospitals with high and three with low PSI composite scores ("low performers" and "high performers," respectively), we interviewed a cross-section of hospital staff. We then coded interview transcripts for evidence in 13 safety-related domains and assessed variation across high and low performers. Evidence of leadership and coordination of work/communication (organizational process domains) was predominantly favorable for high performers only. Evidence in the other domains was either mixed, or there were insufficient data to rate the domains. While we found some evidence of criterion validity, the extent to which variation in PSI rates is related to differences in hospitals' organizational structures/processes needs further study. © The Author(s) 2014.

  3. Hierarchical Co-based Porous Layered Double Hydroxide Arrays Derived via Alkali Etching for High-performance Supercapacitors

    NASA Astrophysics Data System (ADS)

    Abushrenta, Nasser; Wu, Xiaochao; Wang, Junnan; Liu, Junfeng; Sun, Xiaoming

    2015-08-01

    Hierarchical nanoarchitecture and porous structure can both provide advantages for improving the electrochemical performance in energy storage electrodes. Here we report a novel strategy to synthesize new electrode materials, hierarchical Co-based porous layered double hydroxide (PLDH) arrays derived via alkali etching from Co(OH)2@CoAl LDH nanoarrays. This structure not only has the benefits of hierarchical nanoarrays including short ion diffusion path and good charge transport, but also possesses a large contact surface area owing to its porous structure which lead to a high specific capacitance (23.75 F cm-2 or 1734 F g-1 at 5 mA cm-2) and excellent cycling performance (over 85% after 5000 cycles). The enhanced electrode material is a promising candidate for supercapacitors in future application.

  4. Hierarchical Co-based Porous Layered Double Hydroxide Arrays Derived via Alkali Etching for High-performance Supercapacitors

    PubMed Central

    Abushrenta, Nasser; Wu, Xiaochao; Wang, Junnan; Liu, Junfeng; Sun, Xiaoming

    2015-01-01

    Hierarchical nanoarchitecture and porous structure can both provide advantages for improving the electrochemical performance in energy storage electrodes. Here we report a novel strategy to synthesize new electrode materials, hierarchical Co-based porous layered double hydroxide (PLDH) arrays derived via alkali etching from Co(OH)2@CoAl LDH nanoarrays. This structure not only has the benefits of hierarchical nanoarrays including short ion diffusion path and good charge transport, but also possesses a large contact surface area owing to its porous structure which lead to a high specific capacitance (23.75 F cm−2 or 1734 F g−1 at 5 mA cm−2) and excellent cycling performance (over 85% after 5000 cycles). The enhanced electrode material is a promising candidate for supercapacitors in future application. PMID:26278334

  5. Fabrication of highly ordered polyaniline nanocone on pristine graphene for high-performance supercapacitor electrodes

    NASA Astrophysics Data System (ADS)

    Song, Ningning; Wang, Wucong; Wu, Yue; Xiao, Ding; Zhao, Yaping

    2018-04-01

    The hybrids of pristine graphene with polyaniline were synthesized by in situ polymerizations for making a high-performance supercapacitor. The formed high-ordered PANI nanocones were vertically aligned on the graphene sheets. The length of the PANI nanocones increased with the concentration of aniline monomer. The specific capacitance of the hybrids electrode in the three-electrode system was measured as high as 481 F/g at a current density of 0.1 A/g, and its stability remained 87% after constant charge-discharge 10000 cycles at a current density of 1 A/g. This outstanding performance is attributed to the coupling effects of the pristine graphene and the hierarchical structure of the PANI possessing high specific surface area. The unique structure of the PANI provided more charge transmission pathways and fast charge-transfer speed of electrons to the pristine graphene because of its large specific area exposed to the electrolyte. The hybrid is expected to have potential applications in supercapacitor electrodes.

  6. Beads-Milling of Waste Si Sawdust into High-Performance Nanoflakes for Lithium-Ion Batteries

    NASA Astrophysics Data System (ADS)

    Kasukabe, Takatoshi; Nishihara, Hirotomo; Kimura, Katsuya; Matsumoto, Taketoshi; Kobayashi, Hikaru; Okai, Makoto; Kyotani, Takashi

    2017-02-01

    Nowadays, ca. 176,640 tons/year of silicon (Si) (>4N) is manufactured for Si wafers used for semiconductor industry. The production of the highly pure Si wafers inevitably includes very high-temperature steps at 1400-2000 °C, which is energy-consuming and environmentally unfriendly. Inefficiently, ca. 45-55% of such costly Si is lost simply as sawdust in the cutting process. In this work, we develop a cost-effective way to recycle Si sawdust as a high-performance anode material for lithium-ion batteries. By a beads-milling process, nanoflakes with extremely small thickness (15-17 nm) and large diameter (0.2-1 μm) are obtained. The nanoflake framework is transformed into a high-performance porous structure, named wrinkled structure, through a self-organization induced by lithiation/delithiation cycling. Under capacity restriction up to 1200 mAh g-1, the best sample can retain the constant capacity over 800 cycles with a reasonably high coulombic efficiency (98-99.8%).

  7. Organic Micro/Nanoscale Lasers.

    PubMed

    Zhang, Wei; Yao, Jiannian; Zhao, Yong Sheng

    2016-09-20

    Micro/nanoscale lasers that can deliver intense coherent light signals at (sub)wavelength scale have recently captured broad research interest because of their potential applications ranging from on-chip information processing to high-throughput sensing. Organic molecular materials are a promising kind of ideal platform to construct high-performance microlasers, mainly because of their superiority in abundant excited-state processes with large active cross sections for high gain emissions and flexibly assembled structures for high-quality microcavities. In recent years, ever-increasing efforts have been dedicated to developing such organic microlasers toward low threshold, multicolor output, broadband tunability, and easy integration. Therefore, it is increasingly important to summarize this research field and give deep insight into the structure-property relationships of organic microlasers to accelerate the future development. In this Account, we will review the recent advances in organic miniaturized lasers, with an emphasis on tunable laser performances based on the tailorable microcavity structures and controlled excited-state gain processes of organic materials toward integrated photonic applications. Organic π-conjugated molecules with weak intermolecular interactions readily assemble into regular nanostructures that can serve as high-quality optical microcavities for the strong confinement of photons. On the basis of rational material design, a series of optical microcavities with different structures have been controllably synthesized. These microcavity nanostructures can be endowed with effective four-level dynamic gain processes, such as excited-state intramolecular charge transfer, excited-state intramolecular proton transfer, and excimer processes, that exhibit large dipole optical transitions for strongly active gain behaviors. By tailoring these excited-state processes with molecular/crystal engineering and external stimuli, people have effectively modulated the performances of organic micro/nanolasers. Furthermore, by means of controlled assembly and tunable laser performances, efficient outcoupling of microlasers has been successfully achieved in various organic hybrid microstructures, showing considerable potential for the integrated photonic applications. This Account starts by presenting an overview of the research evolution of organic microlasers in terms of microcavity resonators and energy-level gain. Then a series of strategies to tailor the microcavity structures and excited-state dynamics of organic nanomaterials for the modulation of lasing performances are highlighted. In the following part, we introduce the construction and advanced photonic functionalities of organic-microlaser-based hybrid structures and their applications in integrated nanophotonics. Finally, we provide our outlook on the current challenges as well as the future development of organic microlasers. It is anticipated that this Account will provide inspiration for the development of miniaturized lasers with desired performances by tailoring of excited-state processes and microcavity structures toward integrated photonic applications.

  8. High-Performance Thermoelectric Semiconductors

    NASA Technical Reports Server (NTRS)

    Fleurial, Jean-Pierre; Caillat, Thierry; Borshchevsky, Alexander

    1994-01-01

    Figures of merit almost double current state-of-art thermoelectric materials. IrSb3 is semiconductor found to exhibit exceptional thermoelectric properties. CoSb3 and RhSb3 have same skutterudite crystallographic structure as IrSb3, and exhibit exceptional transport properties expected to contribute to high thermoelectric performance. These three compounds form solid solutions. Combination of properties offers potential for development of new high-performance thermoelectric materials for more efficient thermoelectric power generators, coolers, and detectors.

  9. Hierarchical NiCo2 O4 nanosheets grown on Ni nanofoam as high-performance electrodes for supercapacitors.

    PubMed

    Gao, Guoxin; Wu, Hao Bin; Ding, Shujiang; Liu, Li-Min; Lou, Xiong Wen David

    2015-02-18

    A high-performance electrode for supercapacitors is designed and synthesized by growing electroactive NiCo2 O4 nanosheets on conductive Ni nanofoam. Because of the structural advantages, the as-prepared Ni@NiCo2 O4 hybrid nanostructure exhibits significantly improved electrochemical performance with high capacitance, excellent rate capability, and good cycling stability. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. High-Performance Substrates for SERS Detection via Microphotonic Photopolymer Characterization and Coating With Functionalized Hydrogels

    DTIC Science & Technology

    2006-11-26

    with controlled micro and nanostructure for highly selective, high sensitivity assays. The process was modeled and a procedure for fabricating SERS...small volumes with controlled micro and nanostructure for highly selective, high sensitivity assays. We proved the feasibility of the technique and...films templated by colloidal crystals. The control over the film structure allowed optimizing their performance for potential sensor applications. The

  11. Hot-embossing replication of self-centering optical fiber alignment structures prototyped by deep proton writing

    NASA Astrophysics Data System (ADS)

    Ebraert, Evert; Wissmann, Markus; Guttmann, Markus; Kolew, Alexander; Worgull, Matthias; Barié, Nicole; Schneider, Marc; Hofmann, Andreas; Beri, Stefano; Watté, Jan; Thienpont, Hugo; Van Erps, Jürgen

    2016-07-01

    This paper presents the hot-embossing replication of self-centering fiber alignment structures for high-precision, single-mode optical fiber connectors. To this end, a metal mold insert was fabricated by electroforming a polymer prototype patterned by means of deep proton writing (DPW). To achieve through-hole structures, we developed a postembossing process step to remove the residual layer inherently present in hot-embossed structures. The geometrical characteristics of the hot-embossed replicas are compared, before and after removal of the residual layer, with the DPW prototypes. Initial measurements on the optical performance of the replicas are performed. The successful replication of these components paves the way toward low-cost mass replication of DPW-fabricated prototypes in a variety of high-tech plastics.

  12. Cloud object store for checkpoints of high performance computing applications using decoupling middleware

    DOEpatents

    Bent, John M.; Faibish, Sorin; Grider, Gary

    2016-04-19

    Cloud object storage is enabled for checkpoints of high performance computing applications using a middleware process. A plurality of files, such as checkpoint files, generated by a plurality of processes in a parallel computing system are stored by obtaining said plurality of files from said parallel computing system; converting said plurality of files to objects using a log structured file system middleware process; and providing said objects for storage in a cloud object storage system. The plurality of processes may run, for example, on a plurality of compute nodes. The log structured file system middleware process may be embodied, for example, as a Parallel Log-Structured File System (PLFS). The log structured file system middleware process optionally executes on a burst buffer node.

  13. Atomic Layer Deposition of Nickel on ZnO Nanowire Arrays for High-Performance Supercapacitors.

    PubMed

    Ren, Qing-Hua; Zhang, Yan; Lu, Hong-Liang; Wang, Yong-Ping; Liu, Wen-Jun; Ji, Xin-Ming; Devi, Anjana; Jiang, An-Quan; Zhang, David Wei

    2018-01-10

    A novel hybrid core-shell structure of ZnO nanowires (NWs)/Ni as a pseudocapacitor electrode was successfully fabricated by atomic layer deposition of a nickel shell, and its capacitive performance was systemically investigated. Transmission electron microscopy and X-ray photoelectron spectroscopy results indicated that the NiO was formed at the interface between ZnO and Ni where the Ni was oxidized by ZnO during the ALD of the Ni layer. Electrochemical measurement results revealed that the Ti/ZnO NWs/Ni (1500 cycles) electrode with a 30 nm thick Ni-NiO shell layer had the best supercapacitor properties including ultrahigh specific capacitance (∼2440 F g -1 ), good rate capability (80.5%) under high current charge-discharge conditions, and a relatively better cycling stability (86.7% of the initial value remained after 750 cycles at 10 A g -1 ). These attractive capacitive behaviors are mainly attributed to the unique core-shell structure and the combined effect of ZnO NW arrays as short charge transfer pathways for ion diffusion and electron transfer as well as conductive Ni serving as channel for the fast electron transport to Ti substrate. This high-performance Ti/ZnO NWs/Ni hybrid structure is expected to be one of a promising electrodes for high-performance supercapacitor applications.

  14. Panoscopic approach for high-performance Te-doped skutterudite

    DOE PAGES

    Liang, Tao; Su, Xianli; Yan, Yonggao; ...

    2017-02-24

    One-step plasma-activated sintering (OS-PAS) fabrication of single-phase high-performance CoSb 3-based skutterudite thermoelectric material with a hierarchical structure on a time scale of a few minutes is first reported here. The formation mechanism of the CoSb 3 phase and the effects of the current and pressure fields on the phase transformation and microstructure evolution are studied in the one-step PAS process. The application of the panoscopic approach to this system and its effect on the transport properties are investigated. The results show that the hierarchical structure forms during the formation of the skutterudite phase under the effects of both current andmore » sintering pressure. The samples fabricated by the OS-PAS technique have defined hierarchical structures, which scatter phonons more intensely over a broader range of frequencies and significantly reduce the lattice thermal conductivity. High-performance bulk Te-doped skutterudite with the maximum ZT of 1.1 at 820 K for the composition CoSb 2.875Te 0.125 was obtained. Such high ZT values rival those obtained from single filled skutterudites. As a result, this newly developed OS-PAS technique enhances the thermoelectric performance, dramatically shortens the synthesis period and provides a facile method for obtaining hierarchical thermoelectric materials on a large scale.« less

  15. Effect of dope solution temperature on the membrane structure and membrane distillation performance

    NASA Astrophysics Data System (ADS)

    Nawi, N. I. M.; Bilad, M. R.; Nordin, N. A. H. M.

    2018-04-01

    Membrane distillation (MD) is a non-isothermal process applicable to purify water using hydrophobic membrane. Membrane in MD is hydrophobic, permeable to water vapor but repels liquid water. MD membrane is expected to pose high flux, high fouling and scaling resistances and most importantly high wetting resistance. This study develops flat-sheet polyvinylidene fluoride (PVDF) membrane by exploring both liquid-liquid and liquid-solid phase inversion technique largely to improve its wetting resistance and flux performance. We hypothesize that temperature of dope solution play roles in solid-liquid separation during membrane formation and an optimum balance between liquid-liquid and liquid-solid (crystallization) separation leads to highly performance PVDF membrane. Findings obtained from differential scanning calorimeter test show that increasing dope solution temperature reduces degree of PVDF crystallinity and suppresses formation of crystalline structure. The morphological images of the resulting membranes show that at elevated dope solution temperature (40, 60, 80 and 100°C), the spherulite-like structures are formed across the thickness of membranes ascribed from due to different type of crystals. The performance of direct-contact MD shows that the obtained flux of the optimum dope temperature (60°C) of 10.8 L/m2h is comparable to commercial PTFE-based MD membrane.

  16. High performance semantic factoring of giga-scale semantic graph databases.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    al-Saffar, Sinan; Adolf, Bob; Haglin, David

    2010-10-01

    As semantic graph database technology grows to address components ranging from extant large triple stores to SPARQL endpoints over SQL-structured relational databases, it will become increasingly important to be able to bring high performance computational resources to bear on their analysis, interpretation, and visualization, especially with respect to their innate semantic structure. Our research group built a novel high performance hybrid system comprising computational capability for semantic graph database processing utilizing the large multithreaded architecture of the Cray XMT platform, conventional clusters, and large data stores. In this paper we describe that architecture, and present the results of our deployingmore » that for the analysis of the Billion Triple dataset with respect to its semantic factors, including basic properties, connected components, namespace interaction, and typed paths.« less

  17. Realization of Both High-Performance and Enhanced Durability of Fuel Cells: Pt-Exoskeleton Structure Electrocatalysts.

    PubMed

    Kim, Ok-Hee; Cho, Yoon-Hwan; Jeon, Tae-Yeol; Kim, Jung Won; Cho, Yong-Hun; Sung, Yung-Eun

    2015-07-01

    Core-shell structure nanoparticles have been the subject of many studies over the past few years and continue to be studied as electrocatalysts for fuel cells. Therefore, many excellent core-shell catalysts have been fabricated, but few studies have reported the real application of these catalysts in a practical device actual application. In this paper, we demonstrate the use of platinum (Pt)-exoskeleton structure nanoparticles as cathode catalysts with high stability and remarkable Pt mass activity and report the outstanding performance of these materials when used in membrane-electrode assemblies (MEAs) within a polymer electrolyte membrane fuel cell. The stability and degradation characteristics of these materials were also investigated in single cells in an accelerated degradation test using load cycling, which is similar to the drive cycle of a polymer electrolyte membrane fuel cell used in vehicles. The MEAs with Pt-exoskeleton structure catalysts showed enhanced performance throughout the single cell test and exhibited improved degradation ability that differed from that of a commercial Pt/C catalyst.

  18. Arc Jet Screening Tests Of Phase 1 Orbiter Tile Repair Materials and Uncoated RSI High Temperature Emittance Measurements

    NASA Technical Reports Server (NTRS)

    DelPapa, Steven V.

    2005-01-01

    Arc jet tests of candidate tile repair materials and baseline Orbiter uncoated reusable surface insulation (RSI) were performed in the Johnson Space Center's (JSC) Atmospheric Reentry Materials and Structures Evaluation Facility (ARMSEF) from June 23, 2003, through August 19, 2003. These tests were performed to screen candidate tile repair materials by verifying the high temperature performance and determining the thermal stability. In addition, tests to determine the surface emissivity at high temperatures and the geometric shrinkage of bare RSI were performed. In addition, tests were performed to determine the surface emissivity at high temperatures and the geometric shrinkage of uncoated RSI.

  19. High performance and durability of order-structured cathode catalyst layer based on TiO2@PANI core-shell nanowire arrays

    NASA Astrophysics Data System (ADS)

    Chen, Ming; Wang, Meng; Yang, Zhaoyi; Wang, Xindong

    2017-06-01

    In this paper, an order-structured cathode catalyst layer consisting of Pt-TiO2@PANI core-shell nanowire arrays that in situ grown on commercial gas diffusion layer (GDL) are prepared and applied to membrane electrode assembly (MEA) of proton exchange membrane fuel cell (PEMFC). In order to prepare the TiO2@PANI core-shell nanowire arrays with suitable porosity and prominent conductivity, the morphologies of the TiO2 nanoarray and electrochemical polymerization process of aniline are schematically investigated. The MEA with order-structured cathode catalyst layer is assembled in the single cell to evaluate the electrochemical performance and durability of PEMFC. As a result, the PEMFC with order-structured cathode catalyst layer shows higher peak power density (773.54 mW cm-2) than conventional PEMFC (699.30 mW cm-2). Electrochemically active surface area (ECSA) and charge transfer impedance (Rct) are measured before and after accelerated degradation test (ADT), and the corresponding experimental results indicate the novel cathode structure exhibits a better stability with respect to conventional cathode. The enhanced electrochemical performance and durability toward PEMFC can be ascribed to the order-structured cathode nanoarray structure with high specific surface area increases the utilization of catalyst and reduces the tortuosity of transport pathways, and the synergistic effect between TiO2@PANI support and Pt nanoparticles promotes the high efficiency of electrochemical reaction and improves the stability of catalyst. This research provides a facile and controllable method to prepare order-structured membrane electrode with lower Pt loading for PEMFC in the future.

  20. Fabrication of high-performance supercapacitors based on transversely oriented carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Markoulidis, F.; Lei, C.; Lekakou, C.

    2013-04-01

    High-performance supercapacitors with organic electrolyte 1 M TEABF4 (tetraethyl ammonium tetrafluoroborate) in PC (propylene carbonate) were fabricated and tested, based on multiwall carbon nanotubes (MWNTs) deposited by electrophoresis on three types of alternative substrates: aluminium foil, ITO (indium tin oxide) coated PET (polyethylene terephthalate) film and PET film. In all cases, SEM (scanning electron microscopy) and STEM (scanning transmission electron microscopy) micrographs demonstrated that protruding, transversely oriented MWNT structures were formed, which should increase the transverse conductivity of these MWNT electrodes. The best supercapacitor cell of MWNT electrodes deposited on aluminium foil displayed good transverse orientation of the MWNT structures as well as an in-plane MWNT network at the feet of the protruding structures, which ensured good in-plane conductivity. Capacitor cells with MWNT electrodes deposited either on ITO-coated PET film or on PET film demonstrated lower but still very good performance due to the high density of transversely oriented MWNT structures (good transverse conductivity) but some in-plane inhomogeneities. Capacitor cells with drop-printed MWNTs on aluminium foil, without any transverse orientation, had 16-30 times lower specific capacitance and 5-40 times lower power density than the capacitor cells with the electrophoretically deposited MWNT electrodes.

  1. Parallel-vector solution of large-scale structural analysis problems on supercomputers

    NASA Technical Reports Server (NTRS)

    Storaasli, Olaf O.; Nguyen, Duc T.; Agarwal, Tarun K.

    1989-01-01

    A direct linear equation solution method based on the Choleski factorization procedure is presented which exploits both parallel and vector features of supercomputers. The new equation solver is described, and its performance is evaluated by solving structural analysis problems on three high-performance computers. The method has been implemented using Force, a generic parallel FORTRAN language.

  2. Predictors of Academic Self-Handicapping and Achievement: Examining Achievement Goals, Classroom Goal Structures, and Culture

    ERIC Educational Resources Information Center

    Urdan, Tim

    2004-01-01

    The purposes of this study were to examine the predictors and achievement consequences of academic self-handicapping and to explore cultural variations in the pursuit and effects of performance goals and perceived classroom performance goal structures. Data were collected in 2 consecutive academic years from a diverse sample of high school…

  3. Viewing or Visualising Which Concept Map Strategy Works Best on Problem-Solving Performance?

    ERIC Educational Resources Information Center

    Lee, Youngmin; Nelson, David W.

    2005-01-01

    The purpose of this study was to investigate the effects of two types of maps (generative vs. completed) and the amount of prior knowledge (high vs. low) on well-structured and ill-structured problem-solving performance. Forty-four undergraduates who were registered in an introductory instructional technology course participated in the study.…

  4. Application of high performance concrete in the pavement system : structural response of high performance concrete pavement : executive summary.

    DOT National Transportation Integrated Search

    2002-01-01

    Rigid pavements make up a significant percentage of highway systems in the United States and abroad. Concrete pavements provide an economical and durable solution for highway systems, because the pavements last longer and require less maintenance. Re...

  5. Hierarchical core-shell structure of ZnO nanorod@NiO/MoO₂ composite nanosheet arrays for high-performance supercapacitors.

    PubMed

    Hou, Sucheng; Zhang, Guanhua; Zeng, Wei; Zhu, Jian; Gong, Feilong; Li, Feng; Duan, Huigao

    2014-08-27

    A hierarchical core-shell structure of ZnO nanorod@NiO/MoO2 composite nanosheet arrays on nickel foam substrate for high-performance supercapacitors was constructed by a two-step solution-based method involving two hydrothermal processes followed by a calcination treatment. Compared to one composed of pure NiO/MoO2 composite nanosheets, the hierarchical core-shell structure electrode displays better pseudocapacitive behaviors in 2 M KOH, including high areal specific capacitance values of 1.18 F cm(-2) at 5 mA cm(-2) and 0.6 F cm(-2) at 30 mA cm(-2) as well as relatively good rate capability at high current densities. Furthermore, it also shows remarkable cycle stability, remaining at 91.7% of the initial value even after 4000 cycles at a current density of 10 mA cm(-2). The enhanced pseudocapacitive behaviors are mainly due to the unique hierarchical core-shell structure and the synergistic effect of combining ZnO nanorod arrays and NiO/MoO2 composite nanosheets. This novel hierarchical core-shell structure shows promise for use in next-generation supercapacitors.

  6. Photonics and plasmonics go viral: self-assembly of hierarchical metamaterials

    DOE PAGES

    Wen, Amy M.; Podgornik, Rudolf; Strangi, Giuseppe; ...

    2015-03-05

    Sizing and shaping of mesoscale architectures with nanoscale features is a key opportunity to produce the next generation of higher-performing products and at the same time unveil completely new phenomena. This review article discusses recent advances in the design of novel photonic and plasmonic structures using a biology-inspired design. The proteinaceous capsids from viruses have long been discovered as platform technologies enabling unique applications in nanotechnology, materials, bioengineering, and medicine. In the context of materials applications, the highly organized structures formed by viral capsid proteins provide a 3D scaffold for the precise placement of plasmon and gain materials. Based onmore » their highly symmetrical structures, virus-based nanoparticles have a high propensity to self-assemble into higher-order crystalline structures, yielding hierarchical hybrid materials. Recent advances in the field have led to the development of virus-based light harvesting systems, plasmonic structures for application in high-performance metamaterials, binary nanoparticle lattices, and liquid crystalline arrays for sensing or display technologies. In conclusion, there is still much that could be explored in this area, and we foresee that this is only the beginning of great technological advances in virus-based materials for plasmonics and photonics applications.« less

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wen, Amy M.; Podgornik, Rudolf; Strangi, Giuseppe

    Sizing and shaping of mesoscale architectures with nanoscale features is a key opportunity to produce the next generation of higher-performing products and at the same time unveil completely new phenomena. This review article discusses recent advances in the design of novel photonic and plasmonic structures using a biology-inspired design. The proteinaceous capsids from viruses have long been discovered as platform technologies enabling unique applications in nanotechnology, materials, bioengineering, and medicine. In the context of materials applications, the highly organized structures formed by viral capsid proteins provide a 3D scaffold for the precise placement of plasmon and gain materials. Based onmore » their highly symmetrical structures, virus-based nanoparticles have a high propensity to self-assemble into higher-order crystalline structures, yielding hierarchical hybrid materials. Recent advances in the field have led to the development of virus-based light harvesting systems, plasmonic structures for application in high-performance metamaterials, binary nanoparticle lattices, and liquid crystalline arrays for sensing or display technologies. In conclusion, there is still much that could be explored in this area, and we foresee that this is only the beginning of great technological advances in virus-based materials for plasmonics and photonics applications.« less

  8. High-performance lithium-ion battery and symmetric supercapacitors based on FeCo₂O₄ nanoflakes electrodes.

    PubMed

    Mohamed, Saad Gomaa; Chen, Chih-Jung; Chen, Chih Kai; Hu, Shu-Fen; Liu, Ru-Shi

    2014-12-24

    A successive preparation of FeCo2O4 nanoflakes arrays on nickel foam substrates is achieved by a simple hydrothermal synthesis method. After 170 cycles, a high capacity of 905 mAh g(-1) at 200 mA g(-1) current density and very good rate capabilities are obtained for lithium-ion battery because of the 2D porous structures of the nanoflakes arrays. The distinctive structural features provide the battery with excellent electrochemical performance. The symmetric supercapacitor on nonaqueous electrolyte demonstrates high specific capacitance of 433 F g(-1) at 0.1 A g(-1) and 16.7 F g(-1) at high scan rate of 5 V s(-1) and excellent cyclic performance of 2500 cycles of charge-discharge cycling at 2 A g(-1) current density, revealing excellent long-term cyclability of the electrode even under rapid charge-discharge conditions.

  9. High-performance mesoporous LiFePO₄ from Baker's yeast.

    PubMed

    Zhang, Xudong; Zhang, Xueguang; He, Wen; Sun, Caiyun; Ma, Jingyun; Yuan, Junling; Du, Xiaoyong

    2013-03-01

    Based on the biomineralization assembly concept, a simple and inexpensive biomimetic sol-gel method is found to synthesize high-performance mesoporous LiFePO(4) (HPM-LFP). The key step of this approach is to apply Baker's yeast cells as both a structural template and a biocarbon source. The formation mechanism of ordered hierarchical mesoporous network structure is revealed by characterizing its morphology and microstructure. The HPM-LFP exhibits outstanding electrochemical performances. The HPM-LFP has a high discharge capacity (about 153 mAh g(-1) at a 0.1 C rate), only 2% capacity loss from the initial value after 100 cycles at a current density of 0.1 C. This simple and potentially universal design strategy is currently being pursued in the synthesis of an ideal cathode-active material for high power applications. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Highly efficient coupler for dielectric slot waveguides and hybrid plasmonic waveguides

    NASA Astrophysics Data System (ADS)

    Yu, Jiyao; Ohtera, Yasuo; Yamada, Hirohito

    2018-05-01

    A compact, highly efficient optical coupler for dielectric slot waveguides and hybrid plasmonic waveguides based on transition layers (air slot grooves) was investigated. The power-coupling efficiency of 75% for the direct coupling case increased to 90% following the insertion of an intermediate section. By performing time-averaged Poynting vector analysis, we successfully separated the factors of transmission, reflection, and radiation at the coupler interface. We found that the insertion of optimal air grooves into the coupler structure contributed to the improvement of coupling performance. The proposed compact structure is characterized by a high transmission efficiency, low reflection, small length, and broad-band spectrum response.

  11. Image enhancement for on-site X-ray nondestructive inspection of reinforced concrete structures.

    PubMed

    Pei, Cuixiang; Wu, Wenjing; Ueaska, Mitsuru

    2016-11-22

    The use of portable and high-energy X-ray system can provide a very promising approach for on-site nondestructive inspection of inner steel reinforcement of concrete structures. However, the noise properties and contrast of the radiographic images for thick concrete structures do often not meet the demands. To enhance the images, we present a simple and effective method for noise reduction based on a combined curvelet-wavelet transform and local contrast enhancement based on neighborhood operation. To investigate the performance of this method for our X-ray system, we have performed several experiments with using simulated and experimental data. With comparing to other traditional methods, it shows that the proposed image enhancement method has a better performance and can significantly improve the inspection performance for reinforced concrete structures.

  12. Crystal Structure and Superconductivity of PH 3 at High Pressures

    DOE PAGES

    Liu, Hanyu; Li, Yinwei; Gao, Guoying; ...

    2016-01-20

    Here, we performed systematic structure search on solid PH 3 at high pressures using particle swarm optimization method. Furthermore, at 100-200 GPa, the search led to two structures consisting of P-P bonds that different from these predicted for H 2S. Phonon and electron-phonon calculations indicate both structures are dynamically stable and superconductive. Particularly, the estimated critical temperature for the monoclinic (C2/m) phase of 83 K at 200 GPa is in excellent agreement with a recent experimental report.

  13. Hydrothermal performance of catalyst supports

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elam, Jeffrey W.; Marshall, Christopher L.; Libera, Joseph A.

    A high surface area catalyst with a mesoporous support structure and a thin conformal coating over the surface of the support structure. The high surface area catalyst support is adapted for carrying out a reaction in a reaction environment where the thin conformal coating protects the support structure within the reaction environment. In various embodiments, the support structure is a mesoporous silica catalytic support and the thin conformal coating comprises a layer of metal oxide resistant to the reaction environment which may be a hydrothermal environment.

  14. Feasibility of remotely manipulated welding in space. A step in the development of novel joining technologies

    NASA Technical Reports Server (NTRS)

    Masubuchi, K.; Agapakis, J. E.; Debiccari, A.; Vonalt, C.

    1983-01-01

    In order to establish permanent human presence in space technologies of constructing and repairing space stations and other space structures must be developed. Most construction jobs are performed on earth and the fabricated modules will then be delivered to space by the Space Shuttle. Only limited final assembly jobs, which are primarily mechanical fastening, will be performed on site in space. Such fabrication plans, however, limit the designs of these structures, because each module must fit inside the transport vehicle and must withstand launching stresses which are considerably high. Large-scale utilization of space necessitates more extensive construction work on site. Furthermore, continuous operations of space stations and other structures require maintenance and repairs of structural components as well as of tools and equipment on these space structures. Metal joining technologies, and especially high-quality welding, in space need developing.

  15. CSM Testbed Development and Large-Scale Structural Applications

    NASA Technical Reports Server (NTRS)

    Knight, Norman F., Jr.; Gillian, R. E.; Mccleary, Susan L.; Lotts, C. G.; Poole, E. L.; Overman, A. L.; Macy, S. C.

    1989-01-01

    A research activity called Computational Structural Mechanics (CSM) conducted at the NASA Langley Research Center is described. This activity is developing advanced structural analysis and computational methods that exploit high-performance computers. Methods are developed in the framework of the CSM Testbed software system and applied to representative complex structural analysis problems from the aerospace industry. An overview of the CSM Testbed methods development environment is presented and some new numerical methods developed on a CRAY-2 are described. Selected application studies performed on the NAS CRAY-2 are also summarized.

  16. Instructional design in a chemistry laboratory course: The impact of structure and aptitudes on performance and attitudes

    NASA Astrophysics Data System (ADS)

    Kozma, Robert B.

    Elements of instructional design such as explicitly stated objectives, reviews, examples, questions, and feedback were incorporated into the laboratory manual and instruction for a unit on kinetics in a college laboratory course. This treatment (high structure) was given to five sections of students (N = 109), while a laboratory manual and instructions that emphasized informational content without the use of these design strategies (low structure) was given to another five sections (N = 108) taught by the same instructors. The students receiving the additional structure scored significantly higher on a quiz, took less time to solve a set of laboratory problems, and felt more satisfied with the instruction provided. There were no differences between groups in their comfort with the knowledge acquired. There were no interactions with performance outcomes, but several occurred for attitudes, treatments, and personality measures. The more conforming the students, the more satisfied they were with the instruction in the high-structured group and the less they liked it in the low-structured group. The more motivated the students, the more they liked the instruction in the high-structure treatment, and even more in the low-structure group. There was also a complex interaction among treatment, anxiety, ability, and treatment satisfaction.

  17. A qualitative inquiry into the effects of visualization on high school chemistry students' learning process of molecular structure

    NASA Astrophysics Data System (ADS)

    Deratzou, Susan

    This research studies the process of high school chemistry students visualizing chemical structures and its role in learning chemical bonding and molecular structure. Minimal research exists with high school chemistry students and more research is necessary (Gabel & Sherwood, 1980; Seddon & Moore, 1986; Seddon, Tariq, & Dos Santos Veiga, 1984). Using visualization tests (Ekstrom, French, Harman, & Dermen, 1990a), a learning style inventory (Brown & Cooper, 1999), and observations through a case study design, this study found visual learners performed better, but needed more practice and training. Statistically, all five pre- and post-test visualization test comparisons were highly significant in the two-tailed t-test (p > .01). The research findings are: (1) Students who tested high in the Visual (Language and/or Numerical) and Tactile Learning Styles (and Social Learning) had an advantage. Students who learned the chemistry concepts more effectively were better at visualizing structures and using molecular models to enhance their knowledge. (2) Students showed improvement in learning after visualization practice. Training in visualization would improve students' visualization abilities and provide them with a way to think about these concepts. (3) Conceptualization of concepts indicated that visualizing ability was critical and that it could be acquired. Support for this finding was provided by pre- and post-Visualization Test data with a highly significant t-test. (4) Various molecular animation programs and websites were found to be effective. (5) Visualization and modeling of structures encompassed both two- and three-dimensional space. The Visualization Test findings suggested that the students performed better with basic rotation of structures as compared to two- and three-dimensional objects. (6) Data from observations suggest that teaching style was an important factor in student learning of molecular structure. (7) Students did learn the chemistry concepts. Based on the Visualization Test results, which showed that most of the students performed better on the post-test, the visualization experience and the abstract nature of the content allowed them to transfer some of their chemical understanding and practice to non-chemical structures. Finally, implications for teaching of chemistry, students learning chemistry, curriculum, and research for the field of chemical education were discussed.

  18. Understanding the Size-Dependent Sodium Storage Properties of Na2C6O6-Based Organic Electrodes for Sodium-Ion Batteries.

    PubMed

    Wang, Yaqun; Ding, Yu; Pan, Lijia; Shi, Ye; Yue, Zhuanghao; Shi, Yi; Yu, Guihua

    2016-05-11

    Organic electroactive materials represent a new generation of sustainable energy storage technology due to their unique features including environmental benignity, material sustainability, and highly tailorable properties. Here a carbonyl-based organic salt Na2C6O6, sodium rhodizonate (SR) dibasic, is systematically investigated for high-performance sodium-ion batteries. A combination of structural control, electrochemical analysis, and computational simulation show that rational morphological control can lead to significantly improved sodium storage performance. A facile antisolvent method was developed to synthesize microbulk, microrod, and nanorod structured SRs, which exhibit strong size-dependent sodium ion storage properties. The SR nanorod exhibited the best performance to deliver a reversible capacity of ∼190 mA h g(-1) at 0.1 C with over 90% retention after 100 cycles. At a high rate of 10 C, 50% of the capacity can be obtained due to enhanced reaction kinetics, and such high electrochemical activity maintains even at 80 °C. These results demonstrate a generic design route toward high-performance organic-based electrode materials for beyond Li-ion batteries. Using such a biomass-derived organic electrode material enables access to sustainable energy storage devices with low cost, high electrochemical performance and thermal stability.

  19. Direct synthesis of platelet graphitic-nanofibres as a highly porous counter-electrode in dye-sensitized solar cells.

    PubMed

    Hsieh, Chien-Kuo; Tsai, Ming-Chi; Yen, Ming-Yu; Su, Ching-Yuan; Chen, Kuei-Fu; Ma, Chen-Chi M; Chen, Fu-Rong; Tsai, Chuen-Horng

    2012-03-28

    We synthesized platelet graphitic-nanofibres (GNFs) directly onto FTO glass and applied this forest of platelet GNFs as a highly porous structural counter-electrode in dye-sensitized solar cells (DSSCs). We investigated the electrochemical properties of counter-electrodes made from the highly porous structural GNFs and the photoconversion performance of the cells made with these electrodes.

  20. Student Performance in and Perceptions of a High Structure Undergraduate Human Anatomy Course

    ERIC Educational Resources Information Center

    Shaffer, Justin F.

    2016-01-01

    Human anatomy has usually been taught in a didactic fashion in colleges and universities. However, recent calls from United States governmental agencies have called for the transformation of undergraduate life sciences education to include active learning in the classroom. In addition, high structure courses have been shown to increase student…

  1. Turbocharged molecular discovery of OLED emitters: from high-throughput quantum simulation to highly efficient TADF devices

    NASA Astrophysics Data System (ADS)

    Gómez-Bombarelli, Rafael; Aguilera-Iparraguirre, Jorge; Hirzel, Timothy D.; Ha, Dong-Gwang; Einzinger, Markus; Wu, Tony; Baldo, Marc A.; Aspuru-Guzik, Alán.

    2016-09-01

    Discovering new OLED emitters requires many experiments to synthesize candidates and test performance in devices. Large scale computer simulation can greatly speed this search process but the problem remains challenging enough that brute force application of massive computing power is not enough to successfully identify novel structures. We report a successful High Throughput Virtual Screening study that leveraged a range of methods to optimize the search process. The generation of candidate structures was constrained to contain combinatorial explosion. Simulations were tuned to the specific problem and calibrated with experimental results. Experimentalists and theorists actively collaborated such that experimental feedback was regularly utilized to update and shape the computational search. Supervised machine learning methods prioritized candidate structures prior to quantum chemistry simulation to prevent wasting compute on likely poor performers. With this combination of techniques, each multiplying the strength of the search, this effort managed to navigate an area of molecular space and identify hundreds of promising OLED candidate structures. An experimentally validated selection of this set shows emitters with external quantum efficiencies as high as 22%.

  2. Low cost, high performance processing of single particle cryo-electron microscopy data in the cloud

    PubMed Central

    Cianfrocco, Michael A; Leschziner, Andres E

    2015-01-01

    The advent of a new generation of electron microscopes and direct electron detectors has realized the potential of single particle cryo-electron microscopy (cryo-EM) as a technique to generate high-resolution structures. Calculating these structures requires high performance computing clusters, a resource that may be limiting to many likely cryo-EM users. To address this limitation and facilitate the spread of cryo-EM, we developed a publicly available ‘off-the-shelf’ computing environment on Amazon's elastic cloud computing infrastructure. This environment provides users with single particle cryo-EM software packages and the ability to create computing clusters with 16–480+ CPUs. We tested our computing environment using a publicly available 80S yeast ribosome dataset and estimate that laboratories could determine high-resolution cryo-EM structures for $50 to $1500 per structure within a timeframe comparable to local clusters. Our analysis shows that Amazon's cloud computing environment may offer a viable computing environment for cryo-EM. DOI: http://dx.doi.org/10.7554/eLife.06664.001 PMID:25955969

  3. Printable Fabrication of Nanocoral-Structured Electrodes for High-Performance Flexible and Planar Supercapacitor with Artistic Design.

    PubMed

    Lin, Yuanjing; Gao, Yuan; Fan, Zhiyong

    2017-11-01

    Planar supercapacitors with high flexibility, desirable operation safety, and high performance are considered as attractive candidates to serve as energy-storage devices for portable and wearable electronics. Here, a scalable and printable technique is adopted to construct novel and unique hierarchical nanocoral structures as the interdigitated electrodes on flexible substrates. The as-fabricated flexible all-solid-state planar supercapacitors with nanocoral structures achieve areal capacitance up to 52.9 mF cm -2 , which is 2.5 times that of devices without nanocoral structures, and this figure-of-merit is among the highest in the literature for the same category of devices. More interestingly, due to utilization of the inkjet-printing technique, excellent versatility on electrode-pattern artistic design is achieved. Particularly, working supercapacitors with artistically designed patterns are demonstrated. Meanwhile, the high scalability of such a printable method is also demonstrated by fabrication of large-sized artistic supercapacitors serving as energy-storage devices in a wearable self-powered system as a proof of concept. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Thermal-distortion analysis of an antenna strongback for geostationary high-frequency microwave applications

    NASA Technical Reports Server (NTRS)

    Farmer, Jeffrey T.; Wahls, Deborah M.; Wright, Robert L.

    1990-01-01

    The global change technology initiative calls for a geostationary platform for Earth science monitoring. One of the major science instruments is the high frequency microwave sounder (HFMS) which uses a large diameter, high resolution, high frequency microwave antenna. This antenna's size and required accuracy dictates the need for a segmented reflector. On-orbit disturbances may be a significant factor in its design. A study was performed to examine the effects of the geosynchronous thermal environment on the performance of the strongback structure for a proposed antenna concept for this application. The study included definition of the strongback and a corresponding numerical model to be used in the thermal and structural analyses definition of the thermal environment, determination of structural element temperature throughout potential orbits, estimation of resulting thermal distortions, and assessment of the structure's capability to meet surface accuracy requirements. Analyses show that shadows produced by the antenna reflector surface play a major role in increasing thermal distortions. Through customization of surface coating and element expansion characteristics, the segmented reflector concept can meet the tight surface accuracy requirements.

  5. Atomic Scale Analysis of the Enhanced Electro- and Photo-Catalytic Activity in High-Index Faceted Porous NiO Nanowires

    NASA Astrophysics Data System (ADS)

    Shen, Meng; Han, Ali; Wang, Xijun; Ro, Yun Goo; Kargar, Alireza; Lin, Yue; Guo, Hua; Du, Pingwu; Jiang, Jun; Zhang, Jingyu; Dayeh, Shadi A.; Xiang, Bin

    2015-02-01

    Catalysts play a significant role in clean renewable hydrogen fuel generation through water splitting reaction as the surface of most semiconductors proper for water splitting has poor performance for hydrogen gas evolution. The catalytic performance strongly depends on the atomic arrangement at the surface, which necessitates the correlation of the surface structure to the catalytic activity in well-controlled catalyst surfaces. Herein, we report a novel catalytic performance of simple-synthesized porous NiO nanowires (NWs) as catalyst/co-catalyst for the hydrogen evolution reaction (HER). The correlation of catalytic activity and atomic/surface structure is investigated by detailed high resolution transmission electron microscopy (HRTEM) exhibiting a strong dependence of NiO NW photo- and electrocatalytic HER performance on the density of exposed high-index-facet (HIF) atoms, which corroborates with theoretical calculations. Significantly, the optimized porous NiO NWs offer long-term electrocatalytic stability of over one day and 45 times higher photocatalytic hydrogen production compared to commercial NiO nanoparticles. Our results open new perspectives in the search for the development of structurally stable and chemically active semiconductor-based catalysts for cost-effective and efficient hydrogen fuel production at large scale.

  6. High pressure transport and structural studies on Nb 3Ga superconductor

    DOE PAGES

    Mkrtcheyan, Vahe; Kumar, Ravhi; Baker, Jason; ...

    2014-11-24

    We investigated the crystal structure of A-15 superconductor Nb 3Ga with a critical temperature T c = 16.5 K by high pressure x-ray diffraction (HPXRD) using synchrotron x-rays and a diamond anvil cell under Ne pressure medium. Furthermore, the high pressure structural results indicate that Nb 3Ga is stable up to 41 GPa. The P-V plot shows an anomaly around 15 GPa even though there are no pressure induced structural transitions are observed. High pressure resistance measurements were performed up to 0.5 GPa to understand the variation of T c under pressure. Finally, our results show a positive pressure effectmore » on T c.« less

  7. Imaging Carbon Nanotubes in High Performance Polymer Composites via Magnetic Force Microscope

    NASA Technical Reports Server (NTRS)

    Lillehei, Peter T.; Park, Cheol; Rouse, Jason H.; Siochi, Emilie J.; Bushnell, Dennis M. (Technical Monitor)

    2002-01-01

    Application of carbon nanotubes as reinforcement in structural composites is dependent on the efficient dispersion of the nanotubes in a high performance polymer matrix. The characterization of such dispersion is limited by the lack of available tools to visualize the quality of the matrix/carbon nanotube interaction. The work reported herein demonstrates the use of magnetic force microscopy (MFM) as a promising technique for characterizing the dispersion of nanotubes in a high performance polymer matrix.

  8. Thermomechanical In Situ Monitoring of Bi2Te3 Thin Film and Its Relationship with Microstructure and Thermoelectric Performances

    NASA Astrophysics Data System (ADS)

    Jeong, Min-Woo; Na, Sekwon; Shin, Haishan; Park, Hong-Bum; Lee, Hoo-Jeong; Joo, Young-Chang

    2018-07-01

    Performance enhancement has been studied for thin-film thermoelectric materials for small-scale energy applications. The microstructural evolution of bismuth telluride (Bi2Te3) was investigated with respect to performance enhancement via in situ thermomechanical analysis due to the post-annealing process. The thermomechanical behavior of Bi2Te3 changes gradually at approximately 200 °C with the formation of a quintuple-layer structure, which was confirmed by X-ray diffraction, transmission electron microscopy and Raman spectroscopy. It was found that highly oriented (006), (0015) was formed with a quintuple-layer structure parallel to the substrate, and the E g 2 Raman vibration mode of Bi2Te3 significantly increased after forming the layer structure with decreased defects. Therefore, the slope of the stress curve was affected by the longer atomic distance of the van der Waals bonds with the formation of (00 l) oriented layered-structure grain. The decreased number of defects in the layer structure affects the electrical and thermal properties of the Bi2Te3 thin film. Due to the microstructural evolution, the power factor of Bi2Te3 was enhanced by approximately 14.8 times by the quintuple-layer structure of Bi2Te3 formed during the annealing process, which contributed to a better understanding of the performance enhancement via post-annealing and to research on other highly oriented layer structure materials.

  9. Thermomechanical In Situ Monitoring of Bi2Te3 Thin Film and Its Relationship with Microstructure and Thermoelectric Performances

    NASA Astrophysics Data System (ADS)

    Jeong, Min-Woo; Na, Sekwon; Shin, Haishan; Park, Hong-Bum; Lee, Hoo-Jeong; Joo, Young-Chang

    2018-04-01

    Performance enhancement has been studied for thin-film thermoelectric materials for small-scale energy applications. The microstructural evolution of bismuth telluride (Bi2Te3) was investigated with respect to performance enhancement via in situ thermomechanical analysis due to the post-annealing process. The thermomechanical behavior of Bi2Te3 changes gradually at approximately 200 °C with the formation of a quintuple-layer structure, which was confirmed by X-ray diffraction, transmission electron microscopy and Raman spectroscopy. It was found that highly oriented (006), (0015) was formed with a quintuple-layer structure parallel to the substrate, and the Eg 2Raman vibration mode of Bi2Te3 significantly increased after forming the layer structure with decreased defects. Therefore, the slope of the stress curve was affected by the longer atomic distance of the van der Waals bonds with the formation of (00l) oriented layered-structure grain. The decreased number of defects in the layer structure affects the electrical and thermal properties of the Bi2Te3 thin film. Due to the microstructural evolution, the power factor of Bi2Te3 was enhanced by approximately 14.8 times by the quintuple-layer structure of Bi2Te3 formed during the annealing process, which contributed to a better understanding of the performance enhancement via post-annealing and to research on other highly oriented layer structure materials.

  10. Crystal Structure and Superconductivity of PH 3 at High Pressures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Hanyu; Li, Yinwei; Gao, Guoying

    2016-02-04

    We have performed a systematic structure search on solid PH3 at high pressures using the particle swarm optimization method. At 100–200 GPa, the search led to two structures which along with others have P–P bonds. These structures are structurally and chemically distinct from those predicted for the high-pressure superconducting H2S phase, which has a different topology (i.e., does not contain S–S bonds). Phonon and electron–phonon coupling calculations indicate that both structures are dynamically stable and superconducting. The pressure dependence and critical temperature for the monoclinic (C2/m) phase of 83 K at 200 GPa are in excellent agreement with a recentmore » experimental report.« less

  11. Multi-threaded Sparse Matrix Sparse Matrix Multiplication for Many-Core and GPU Architectures.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deveci, Mehmet; Trott, Christian Robert; Rajamanickam, Sivasankaran

    Sparse Matrix-Matrix multiplication is a key kernel that has applications in several domains such as scientific computing and graph analysis. Several algorithms have been studied in the past for this foundational kernel. In this paper, we develop parallel algorithms for sparse matrix- matrix multiplication with a focus on performance portability across different high performance computing architectures. The performance of these algorithms depend on the data structures used in them. We compare different types of accumulators in these algorithms and demonstrate the performance difference between these data structures. Furthermore, we develop a meta-algorithm, kkSpGEMM, to choose the right algorithm and datamore » structure based on the characteristics of the problem. We show performance comparisons on three architectures and demonstrate the need for the community to develop two phase sparse matrix-matrix multiplication implementations for efficient reuse of the data structures involved.« less

  12. Multi-threaded Sparse Matrix-Matrix Multiplication for Many-Core and GPU Architectures.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deveci, Mehmet; Rajamanickam, Sivasankaran; Trott, Christian Robert

    Sparse Matrix-Matrix multiplication is a key kernel that has applications in several domains such as scienti c computing and graph analysis. Several algorithms have been studied in the past for this foundational kernel. In this paper, we develop parallel algorithms for sparse matrix-matrix multiplication with a focus on performance portability across different high performance computing architectures. The performance of these algorithms depend on the data structures used in them. We compare different types of accumulators in these algorithms and demonstrate the performance difference between these data structures. Furthermore, we develop a meta-algorithm, kkSpGEMM, to choose the right algorithm and datamore » structure based on the characteristics of the problem. We show performance comparisons on three architectures and demonstrate the need for the community to develop two phase sparse matrix-matrix multiplication implementations for efficient reuse of the data structures involved.« less

  13. Effect of the structure distortion on the high photocatalytic performance of C60/g-C3N4 composite

    NASA Astrophysics Data System (ADS)

    Ma, Xiaojuan; Li, Xinru; Li, Mengmeng; Ma, Xiangchao; Yu, Lin; Dai, Ying

    2017-08-01

    C60/g-C3N4 composite was reported experimentally to be of high photocatalytic activity in degrading organics. To investigate the underlying mechanism of high photocatalytic performance, the structural and electronic properties of g-C3N4 monolayers with adsorbing and removing fullerene C60 are studied by means of density functional theory calculations. After 25 possible configurations examination, it is found that C60 prefers to stay upon the ;junction nitrogen; with the carbon atom of fullerene being nearest to monolayers. Correspondingly, a type-I band alignment appears. Our results further demonstrate that the adsorption of C60 can lead to an irreversible structure distortion for g-C3N4 from flat to wrinkle, which plays a crucial role in improving photocatalytic performance other than the separation of carriers at interface due to the formation of type-II heterojunctions as previous report. Compared to flat one, the light absorption of wrinkled structure shows augmented, the valence band maximum shifts towards lower position along with a stronger photo-oxidation capability. Interestingly, the results indicate that the energy, light absorption and band edge all have a particular relationship with wrinkle degree. The work presented here can be helpful to understand the mechanism behind the better photocatalytic performance for C60 modified g-C3N4.

  14. Development of concrete mix proportions for minimizing/eliminating shrinkage cracks in slabs and high performance grouts : final report.

    DOT National Transportation Integrated Search

    2017-02-01

    The two focus areas of this research address longstanding problems of (1) cracking of concrete slabs due to creep and shrinkage and (2) high performance compositions for grouting and joining precast concrete structural elements. Cracking of bridge de...

  15. A life detection problem in a High Arctic microbial community

    NASA Astrophysics Data System (ADS)

    Rogers, J. D.; Perreault, N. N.; Niederberger, T. D.; Lichten, C.; Whyte, L. G.; Nadeau, J. L.

    2010-03-01

    Fluorescent labeling of bacterial cell walls, DNA, and metabolic processes demonstrates high (potentially single molecule) sensitivity, is non-invasive, and in some cases can differentiate strains and species. Robust microscopes such as the custom instruments presented here can provide good image quality in the field and are potentially suitable for flight. However, ambiguous or false-positive results with bacterial stains can occur and can create difficulties in interpretation even on Earth. We present a "real" life detection problem in a sample of biofilms taken from the Canadian High Arctic. The samples consisted of numerous small sulfur-oxidizing bacteria and larger structures resembling fungi or diatoms. The identity of these latter structures remained ambiguous until electron microscopy and X-ray spectroscopy were performed, indicating that they were unusual sulfur minerals probably precipitated by the bacterial communities. While such mineral structures may possibly serve as biosignatures after the cells have disappeared, it is important that they not be mistaken for cells themselves. It is also possible that unusual mineral structures will be performed under extraterrestrial conditions, so great care is needed to differentiate cell structures from minerals.

  16. 3.5 GHz longitudinal leaky surface acoustic wave resonator using a multilayered waveguide structure for high acoustic energy confinement

    NASA Astrophysics Data System (ADS)

    Kimura, Tetsuya; Kishimoto, Yutaka; Omura, Masashi; Hashimoto, Ken-ya

    2018-07-01

    In this paper, the use of a structure comprising a thin LiNbO3 plate and a multilayered acoustic mirror composed of SiO2 and Pt for high-performance longitudinal leaky surface acoustic wave (LLSAW) device is proposed. The mirror is expected to offer a much higher reflectivity than that composed of SiO2 and AlN, which the authors proposed previously. The field distribution of these structures is calculated by using a finite element method. It is shown that the acoustic wave energy of the proposed structure is well confined in the vicinity of the top surface, and that leakage to the substrate is reduced. A one-port resonator is fabricated on the structure and its performance characteristics are evaluated. Owing to a high phase velocity of 6,035 m/s, which is about 1.5 times higher than that of conventional SAWs, a large impedance ratio of 71 dB was achieved at 3.5 GHz in addition to a large fractional bandwidth of 9.5%.

  17. A novel method for preparing pomegranate-structured FePO{sub 4}/C composite materials as cathode for lithium-ion batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hao, Guan-nan; State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029; Zhang, Hao, E-mail: dr.h.zhang@hotmail.com

    2012-12-15

    Graphical abstract: Display Omitted Highlights: ► We designed and synthesized a pomegranate-structured FePO{sub 4}/C composite. ► We used a combination of electrospinning and solid-state reaction for preparation. ► We showed how the performance of pomegranate-structured FePO{sub 4} is highly enhanced. -- Abstract: A pomegranate-structured FePO{sub 4}/C composite was synthesized via a combination of electrospinning and high temperature reaction using micron-level FePO{sub 4} and polyacrylonitrile (PAN). Systematic studies on synthesis, modification, and characterization of FePO{sub 4}/C composites were conducted. The FePO{sub 4}/C composites delivered a specific discharge capacity of 109 mAh g{sup −1} at 0.2 C and 39 mAh g{sup −1}more » at 10 C, which were comparable with the reported nanometer-level FePO{sub 4}. We demonstrated that the three-dimensional net-like structure covered by porous carbon layers could highly enhance the electrochemical performance of FePO{sub 4}.« less

  18. Highly-Parallel, Highly-Compact Computing Structures Implemented in Nanotechnology

    NASA Technical Reports Server (NTRS)

    Crawley, D. G.; Duff, M. J. B.; Fountain, T. J.; Moffat, C. D.; Tomlinson, C. D.

    1995-01-01

    In this paper, we describe work in which we are evaluating how the evolving properties of nano-electronic devices could best be utilized in highly parallel computing structures. Because of their combination of high performance, low power, and extreme compactness, such structures would have obvious applications in spaceborne environments, both for general mission control and for on-board data analysis. However, the anticipated properties of nano-devices mean that the optimum architecture for such systems is by no means certain. Candidates include single instruction multiple datastream (SIMD) arrays, neural networks, and multiple instruction multiple datastream (MIMD) assemblies.

  19. Simulation of Impact Phenomena on the Composite Structures Containing Ceramic Plates and High Entropy Alloys

    NASA Astrophysics Data System (ADS)

    Geantă, V.; Cherecheș, T.; Lixandru, P.; Voiculescu, I.; Ștefănoiu, R.; Dragnea, D.; Zecheru, T.; Matache, L.

    2017-06-01

    Due to excellent mechanical properties, high entropy alloys from the system AlxCrFeCoNi can be used successfully to create composite structures containing both metallic and ceramic plates, which resists at dynamic load during high speeds impact (like projectiles, explosion). The paper presents four different composite structures made from a combination of metallic materials and ceramics plates: duralumin-ceramics, duralumin-ceramics-HEA, HEA-ceramics-HEA, HEA-ceramics-duralumin. Numerical simulation of impact behavior of the composite structures was performed by virtual methods, taking into account the mechanical properties of both materials. The best results were obtained using composite structures HEA-ceramics-HEA, HEA-ceramics-duralumin.

  20. Validation of a unique concept for a low-cost, lightweight space-deployable antenna structure

    NASA Technical Reports Server (NTRS)

    Freeland, R. E.; Bilyeu, G. D.; Veal, G. R.

    1993-01-01

    An experiment conducted in the framework of a NASA In-Space Technology Experiments Program based on a concept of inflatable deployable structures is described. The concept utilizes very low inflation pressure to maintain the required geometry on orbit and gravity-induced deflection of the structure precludes any meaningful ground-based demonstrations of functions performance. The experiment is aimed at validating and characterizing the mechanical functional performance of a 14-m-diameter inflatable deployable reflector antenna structure in the orbital operational environment. Results of the experiment are expected to significantly reduce the user risk associated with using large space-deployable antennas by demonstrating the functional performance of a concept that meets the criteria for low-cost, lightweight, and highly reliable space-deployable structures.

  1. Structural modeling and optimization of a joined-wing configuration of a High-Altitude Long-Endurance (HALE) aircraft

    NASA Astrophysics Data System (ADS)

    Kaloyanova, Valentina B.

    Recent research trends have indicated an interest in High-Altitude, Long-Endurance (HALE) aircraft as a low-cost alternative to certain space missions, such as telecommunication relay, environmental sensing and military reconnaissance. HALE missions require a light vehicle flying at low speed in the stratosphere at altitudes of 60,000-80,000 ft, with a continuous loiter time of up to several days. To provide high lift and low drag at these high altitudes, where the air density is low, the wing area should be increased, i.e., high-aspect-ratio wings are necessary. Due to its large span and lightweight, the wing structure is very flexible. To reduce the structural deformation, and increase the total lift in a long-spanned wing, a sensorcraft model with a joined-wing configuration, proposed by AFRL, is employed. The joined-wing encompasses a forward wing, which is swept back with a positive dihedral angle, and connected with an aft wing, which is swept forward. The joined-wing design combines structural strength, high aerodynamic performance and efficiency. As a first step to study the joined-wing structural behavior an 1-D approximation model is developed. The 1-D approximation is a simple structural model created using ANSYS BEAM4 elements to present a possible approach for the aerodynamics-structure coupling. The pressure loads from the aerodynamic analysis are integrated numerically to obtain the resultant aerodynamic forces and moments (spanwise lift and pitching moment distributions, acting at the aerodynamic center). These are applied on the 1-D structural model. A linear static analysis is performed under this equivalent load, and the deformed shape of the 1-D model is used to obtain the deformed shape of the actual 3-D joined wing, i.e. deformed aerodynamic surface grid. To date in the existing studies, only simplified structural models have been examined. In the present work, in addition to the simple 1-D beam model, a semi-monocoque structural model is developed. All stringers, skin panels, ribs and spars are represented by appropriate elements in a finite-element model. Also, the model accounts for the fuel weight and sensorcraft antennae housed within the wings. Linear and nonlinear static analyses under the aerodynamic load are performed. The stress distribution in the wing as well as deformation is explored. Starting with a structural model with uniform mass distribution, a design optimization is performed to achieve a fully stressed design. As the joined-wing structure is prone to buckling, after the design optimization is complete linear and nonlinear bucking analyses are performed to study the global joined-wing structural instability, the load magnitude at which it is expected to occur, and the buckling mode. The buckled shape of the aft wing (which is subjected to compression) is found to resemble that of a fixed-pinned column. The linear buckling analysis overestimates the buckling load. However, even the nonlinear buckling analysis results in a load factor higher than 3, i.e. the wing structure is buckling safe under its current loading conditions. As the region of the joint has a very complicated geometry that has adverse effects in the flow and stress behavior an independent, more finely meshed model (submodel) of the joint region is generated and analyzed. A detailed discussion of the stress distribution obtained in the joint region via the submodeling technique is presented in this study as well. It is found out that compared to its structural response, the joint adverse effects are much more pronounced in its aerodynamic response, so it is suggested for future studies the geometry of the joint to be optimized based on its aerodynamic performance. As this design and analysis study is aimed towards developing a realistic structural representation of the innovative joined-wing configuration, in addition to the "global", or upper-level optimization, a local level design optimization is performed as well. At the lower (local) level detailed models of wing structural panels are used to compute more complex failure modes and to design the details that are not included in the upper (global) level model. Proper coordination between local skin-stringer panel models and the global joined-wing model prevents inconsistency between the upper- (global) and lower- (local) level design models. (Abstract shortened by UMI.)

  2. Static test induced loads verification beyond elastic limit

    NASA Technical Reports Server (NTRS)

    Verderaime, V.; Harrington, F.

    1996-01-01

    Increasing demands for reliable and least-cost high-performance aerostructures are pressing design analyses, materials, and manufacturing processes to new and narrowly experienced performance and verification technologies. This study assessed the adequacy of current experimental verification of the traditional binding ultimate safety factor which covers rare events in which no statistical design data exist. Because large high-performance structures are inherently very flexible, boundary rotations and deflections under externally applied loads approaching fracture may distort their transmission and unknowingly accept submarginal structures or prematurely fracturing reliable ones. A technique was developed, using measured strains from back-to-back surface mounted gauges, to analyze, define, and monitor induced moments and plane forces through progressive material changes from total-elastic to total-inelastic zones within the structural element cross section. Deviations from specified test loads are identified by the consecutively changing ratios of moment-to-axial load.

  3. Static test induced loads verification beyond elastic limit

    NASA Technical Reports Server (NTRS)

    Verderaime, V.; Harrington, F.

    1996-01-01

    Increasing demands for reliable and least-cost high performance aerostructures are pressing design analyses, materials, and manufacturing processes to new and narrowly experienced performance and verification technologies. This study assessed the adequacy of current experimental verification of the traditional binding ultimate safety factor which covers rare events in which no statistical design data exist. Because large, high-performance structures are inherently very flexible, boundary rotations and deflections under externally applied loads approaching fracture may distort their transmission and unknowingly accept submarginal structures or prematurely fracturing reliable ones. A technique was developed, using measured strains from back-to-back surface mounted gauges, to analyze, define, and monitor induced moments and plane forces through progressive material changes from total-elastic to total inelastic zones within the structural element cross section. Deviations from specified test loads are identified by the consecutively changing ratios of moment-to-axial load.

  4. Performance Validation Approach for the GTX Air-Breathing Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Trefny, Charles J.; Roche, Joseph M.

    2002-01-01

    The primary objective of the GTX effort is to determine whether or not air-breathing propulsion can enable a launch vehicle to achieve orbit in a single stage. Structural weight, vehicle aerodynamics, and propulsion performance must be accurately known over the entire flight trajectory in order to make a credible assessment. Structural, aerodynamic, and propulsion parameters are strongly interdependent, which necessitates a system approach to design, evaluation, and optimization of a single-stage-to-orbit concept. The GTX reference vehicle serves this purpose, by allowing design, development, and validation of components and subsystems in a system context. The reference vehicle configuration (including propulsion) was carefully chosen so as to provide high potential for structural and volumetric efficiency, and to allow the high specific impulse of air-breathing propulsion cycles to be exploited. Minor evolution of the configuration has occurred as analytical and experimental results have become available. With this development process comes increasing validation of the weight and performance levels used in system performance determination. This paper presents an overview of the GTX reference vehicle and the approach to its performance validation. Subscale test rigs and numerical studies used to develop and validate component performance levels and unit structural weights are outlined. The sensitivity of the equivalent, effective specific impulse to key propulsion component efficiencies is presented. The role of flight demonstration in development and validation is discussed.

  5. Multidisciplinary Design Optimization of A Highly Flexible Aeroservoelastic Wing

    NASA Astrophysics Data System (ADS)

    Haghighat, Sohrab

    A multidisciplinary design optimization framework is developed that integrates control system design with aerostructural design for a highly-deformable wing. The objective of this framework is to surpass the existing aircraft endurance limits through the use of an active load alleviation system designed concurrently with the rest of the aircraft. The novelty of this work is two fold. First, a unified dynamics framework is developed to represent the full six-degree-of-freedom rigid-body along with the structural dynamics. It allows for an integrated control design to account for both manoeuvrability (flying quality) and aeroelasticity criteria simultaneously. Secondly, by synthesizing the aircraft control system along with the structural sizing and aerodynamic shape design, the final design has the potential to exploit synergies among the three disciplines and yield higher performing aircraft. A co-rotational structural framework featuring Euler--Bernoulli beam elements is developed to capture the wing's nonlinear deformations under the effect of aerodynamic and inertial loadings. In this work, a three-dimensional aerodynamic panel code, capable of calculating both steady and unsteady loadings is used. Two different control methods, a model predictive controller (MPC) and a 2-DOF mixed-norm robust controller, are considered in this work to control a highly flexible aircraft. Both control techniques offer unique advantages that make them promising for controlling a highly flexible aircraft. The control system works towards executing time-dependent manoeuvres along with performing gust/manoeuvre load alleviation. The developed framework is investigated for demonstration in two design cases: one in which the control system simply worked towards achieving or maintaining a target altitude, and another where the control system is also performing load alleviation. The use of the active load alleviation system results in a significant improvement in the aircraft performance relative to the optimum result without load alleviation. The results show that the inclusion of control system discipline along with other disciplines at early stages of aircraft design improves aircraft performance. It is also shown that structural stresses due to gust excitations can be better controlled by the use of active structural control systems which can improve the fatigue life of the structure.

  6. Design and Performance of Property Gradient Ternary Nitride Coating Based on Process Control.

    PubMed

    Yan, Pei; Chen, Kaijie; Wang, Yubin; Zhou, Han; Peng, Zeyu; Jiao, Li; Wang, Xibin

    2018-05-09

    Surface coating is an effective approach to improve cutting tool performance, and multiple or gradient coating structures have become a common development strategy. However, composition mutations at the interfaces decrease the performance of multi-layered coatings. The key mitigation technique has been to reduce the interface effect at the boundaries. This study proposes a structure design method for property-component gradient coatings based on process control. The method produces coatings with high internal cohesion and high external hardness, which could reduce the composition and performance mutations at the interface. A ZrTiN property gradient ternary nitride coating was deposited on cemented carbide by multi-arc ion plating with separated Ti and Zr targets. The mechanical properties, friction behaviors, and cutting performances were systematically investigated, compared with a single-layer coating. The results indicated that the gradient coating had better friction and wear performance with lower wear rate and higher resistance to peeling off during sliding friction. The gradient coating had better wear and damage resistance in cutting processes, with lower machined surface roughness Ra. Gradient-structured coatings could effectively inhibit micro crack initiation and growth under alternating force and temperature load. This method could be extended to similar ternary nitride coatings.

  7. Temperature dependence of Ni3S2 nanostructures with high electrochemical performance

    NASA Astrophysics Data System (ADS)

    Wang, Y. L.; Wei, X. Q.; Li, M. B.; Hou, P. Y.; Xu, X. J.

    2018-04-01

    Different Ni3S2 nanostructures have been successfully synthesized at different temperatures by a facile and efficient solvothermal method. The Ni3S2 nanostructures with three-dimensional (3D) nanosheets array and silkworm eggs-like morphologies were obtained by adjusting the reaction temperature. A large number of 3D nanosheets are interconnected to form an open network structure with porous of Ni3S2 at 180 °C, and electrochemical tests showed that the special structure exhibited the outstanding specific capacitance (1357 F g -1 at 1 A g-1) and excellent cycling stability (maintained 91% after 3000 cycles). In comparison, the performance of Ni3S2 silkworm eggs-like structure is not very perfect. This may be due to the fact that the 3D nanosheets with porous structure can improve the electrochemical performance by shortening effectively the diffusion path of electrolyte ions and increasing the active sites during charging and discharging. Among them, the reaction temperature is the main factor to control the formation of the 3D nanosheets array. These results indicated the Ni3S2 nanosheets promising applications as high-performance supercapacitor electrode materials.

  8. Experiments in structural dynamics and control using a grid

    NASA Technical Reports Server (NTRS)

    Montgomery, R. C.

    1985-01-01

    Future spacecraft are being conceived that are highly flexible and of extreme size. The two features of flexibility and size pose new problems in control system design. Since large scale structures are not testable in ground based facilities, the decision on component placement must be made prior to full-scale tests on the spacecraft. Control law research is directed at solving problems of inadequate modelling knowledge prior to operation required to achieve peak performance. Another crucial problem addressed is accommodating failures in systems with smart components that are physically distributed on highly flexible structures. Parameter adaptive control is a method of promise that provides on-orbit tuning of the control system to improve performance by upgrading the mathematical model of the spacecraft during operation. Two specific questions are answered in this work. They are: What limits does on-line parameter identification with realistic sensors and actuators place on the ultimate achievable performance of a system in the highly flexible environment? Also, how well must the mathematical model used in on-board analytic redundancy be known and what are the reasonable expectations for advanced redundancy management schemes in the highly flexible and distributed component environment?

  9. The effect of high pressure torsion on structural refinement and mechanical properties of an austenitic stainless steel.

    PubMed

    Krawczynska, Agnieszka Teresa; Lewandowska, Malgorzata; Pippan, Reinhard; Kurzydlowski, Krzysztof Jan

    2013-05-01

    In the present study, the high pressure torsion (HPT) was used to refine the grain structure down to the nanometer scale in an austenitic stainless steel. The principles of HPT lay on torsional deformation under simultaneous high pressure of the specimen, which results in substantial reduction in the grain size. Disks of the 316LVM austenitic stainless steel of 10 mm in diameter were subjected to equivalent strains epsilon of 32 at RT and 450 degrees C under the pressure of 4 GPa. Furthermore, two-stage HPT processes, i.e., deformation at room temperature followed by deformation at 450 degrees C, were performed. The resulting microstructures were investigated in TEM observations. The mechanical properties were measured in terms of the microhardness and in tensile tests. HPT performed at two-stage conditions (firstly at RT next at 450 degrees C) gives similar values of microhardness to the ones obtained after deforming only at 450 degrees C but performed to higher values of the overall equivalent strain epsilon. The effect of high pressure torsion on structural refinement and mechanical properties of an austenitic stainless steel was evaluated.

  10. Cloud object store for archive storage of high performance computing data using decoupling middleware

    DOEpatents

    Bent, John M.; Faibish, Sorin; Grider, Gary

    2015-06-30

    Cloud object storage is enabled for archived data, such as checkpoints and results, of high performance computing applications using a middleware process. A plurality of archived files, such as checkpoint files and results, generated by a plurality of processes in a parallel computing system are stored by obtaining the plurality of archived files from the parallel computing system; converting the plurality of archived files to objects using a log structured file system middleware process; and providing the objects for storage in a cloud object storage system. The plurality of processes may run, for example, on a plurality of compute nodes. The log structured file system middleware process may be embodied, for example, as a Parallel Log-Structured File System (PLFS). The log structured file system middleware process optionally executes on a burst buffer node.

  11. Advances in Perovskite Solar Cells

    PubMed Central

    Zuo, Chuantian; Bolink, Henk J.; Han, Hongwei; Huang, Jinsong

    2016-01-01

    Organolead halide perovskite materials possess a combination of remarkable optoelectronic properties, such as steep optical absorption edge and high absorption coefficients, long charge carrier diffusion lengths and lifetimes. Taken together with the ability for low temperature preparation, also from solution, perovskite‐based devices, especially photovoltaic (PV) cells have been studied intensively, with remarkable progress in performance, over the past few years. The combination of high efficiency, low cost and additional (non‐PV) applications provides great potential for commercialization. Performance and applications of perovskite solar cells often correlate with their device structures. Many innovative device structures were developed, aiming at large‐scale fabrication, reducing fabrication cost, enhancing the power conversion efficiency and thus broadening potential future applications. This review summarizes typical structures of perovskite solar cells and comments on novel device structures. The applications of perovskite solar cells are discussed. PMID:27812475

  12. Facile Synthesis of V₂O₅ Hollow Spheres as Advanced Cathodes for High-Performance Lithium-Ion Batteries.

    PubMed

    Zhang, Xingyuan; Wang, Jian-Gan; Liu, Huanyan; Liu, Hongzhen; Wei, Bingqing

    2017-01-18

    Three-dimensional V₂O₅ hollow structures have been prepared through a simple synthesis strategy combining solvothermal treatment and a subsequent thermal annealing. The V₂O₅ materials are composed of microspheres 2-3 μm in diameter and with a distinct hollow interior. The as-synthesized V₂O₅ hollow microspheres, when evaluated as a cathode material for lithium-ion batteries, can deliver a specific capacity as high as 273 mAh·g -1 at 0.2 C. Benefiting from the hollow structures that afford fast electrolyte transport and volume accommodation, the V₂O₅ cathode also exhibits a superior rate capability and excellent cycling stability. The good Li-ion storage performance demonstrates the great potential of this unique V₂O₅ hollow material as a high-performance cathode for lithium-ion batteries.

  13. Refractive index engineering of high performance coupler for compact photonic integrated circuits

    NASA Astrophysics Data System (ADS)

    Liu, Lu; Zhou, Zhiping

    2017-04-01

    High performance couplers are highly desired in many applications, but the design is limited by nearly unchangeable material refractive index. To tackle this issue, refractive index engineering method is investigated, which can be realized by subwavelength grating. Subwavelength gratings are periodical structures with pitches small enough to locally synthesize the refractive index of photonic waveguides, which allows direct control of optical profile as well as easier fabrication process. This review provides an introduction to the basics of subwavelength structures and pay special attention to the design strategies of some representative examples of subwavelength grating devices, including: edge couplers, fiber-chip grating couplers, directional couplers and multimode interference couplers. Benefited from the subwavelength grating which can engineer the refractive index as well as birefringence and dispersion, these devices show better performance when compared to their conventional counterparts.

  14. Highly effective cystic fibrosis clinical research teams: critical success factors.

    PubMed

    Retsch-Bogart, George Z; Van Dalfsen, Jill M; Marshall, Bruce C; George, Cynthia; Pilewski, Joseph M; Nelson, Eugene C; Goss, Christopher H; Ramsey, Bonnie W

    2014-08-01

    Bringing new therapies to patients with rare diseases depends in part on optimizing clinical trial conduct through efficient study start-up processes and rapid enrollment. Suboptimal execution of clinical trials in academic medical centers not only results in high cost to institutions and sponsors, but also delays the availability of new therapies. Addressing the factors that contribute to poor outcomes requires novel, systematic approaches tailored to the institution and disease under study. To use clinical trial performance metrics data analysis to select high-performing cystic fibrosis (CF) clinical research teams and then identify factors contributing to their success. Mixed-methods research, including semi-structured qualitative interviews of high-performing research teams. CF research teams at nine clinical centers from the CF Foundation Therapeutics Development Network. Survey of site characteristics, direct observation of team meetings and facilities, and semi-structured interviews with clinical research team members and institutional program managers and leaders in clinical research. Critical success factors noted at all nine high-performing centers were: 1) strong leadership, 2) established and effective communication within the research team and with the clinical care team, and 3) adequate staff. Other frequent characteristics included a mature culture of research, customer service orientation in interactions with study participants, shared efficient processes, continuous process improvement activities, and a businesslike approach to clinical research. Clinical research metrics allowed identification of high-performing clinical research teams. Site visits identified several critical factors leading to highly successful teams that may help other clinical research teams improve clinical trial performance.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Gui -Liang; Amine, Rachid; Xu, Yue -Feng

    Cathode materials are critical to the energy density, power density and safety of sodium-ion batteries (SIBs). Herein, we performed a comprehensive study to elucidate and exemplify the interplay mechanism between phase structures, interfacial microstrain and electrochemical properties of layered-structured Na xNi 1/3Co 1/3Mn 1/3O 2 cathode materials for high voltage SIBs. The electrochemical test results showed that Na xNi 1/3Co 1/3Mn 1/3O 2 with an intergrowth P2/O3/O1 structure demonstrates better electrochemical performance and better thermal stability than Na xNi 1/3Co 1/3Mn 1/3O 2 with P2/O3 binary-phase integration and Na xNi 1/3Co 1/3Mn 1/3O 2 where only the P phase ismore » dominant. This result is caused by the distinct interfacial microstrain development during the synthesis and cycling of the P2/O3/O1 phase. In operando high energy X-ray diffraction further revealed that the intergrowth P2/O1/O3 cathode can inhibit the irreversible P2–O2 phase transformation and simultaneously improve the structure stability of the O3 and O1 phases during cycling. Here, we believe that interfacial microstrain can serve as an indispensable bridge to guide future design and synthesis of high performance SIB cathode materials and other high energy battery materials.« less

  16. Military engine computational structures technology

    NASA Technical Reports Server (NTRS)

    Thomson, Daniel E.

    1992-01-01

    Integrated High Performance Turbine Engine Technology Initiative (IHPTET) goals require a strong analytical base. Effective analysis of composite materials is critical to life analysis and structural optimization. Accurate life prediction for all material systems is critical. User friendly systems are also desirable. Post processing of results is very important. The IHPTET goal is to double turbine engine propulsion capability by the year 2003. Fifty percent of the goal will come from advanced materials and structures, the other 50 percent will come from increasing performance. Computer programs are listed.

  17. Physical insight into the simultaneous optimization of structure and control

    NASA Technical Reports Server (NTRS)

    Jacques, Robert N.; Miller, David W.

    1993-01-01

    Recent trends in spacecraft design which yield larger structures with more stringent performance requirements place many flexible modes of the structure within the bandwidth of active controllers. The resulting complications to the spacecraft design make it highly desirable to understand the impact of structural changes on an optimally controlled structure. This work uses low structural models with optimal H(sub 2) and H(sub infinity) controllers to develop some basic insight into this problem. This insight concentrates on several basic approaches to improving controlled performance and how these approaches interact in determining the optimal designs. A numerical example is presented to demonstrate how this insight can be generalized to more complex problems.

  18. High-speed prediction of crystal structures for organic molecules

    NASA Astrophysics Data System (ADS)

    Obata, Shigeaki; Goto, Hitoshi

    2015-02-01

    We developed a master-worker type parallel algorithm for allocating tasks of crystal structure optimizations to distributed compute nodes, in order to improve a performance of simulations for crystal structure predictions. The performance experiments were demonstrated on TUT-ADSIM supercomputer system (HITACHI HA8000-tc/HT210). The experimental results show that our parallel algorithm could achieve speed-ups of 214 and 179 times using 256 processor cores on crystal structure optimizations in predictions of crystal structures for 3-aza-bicyclo(3.3.1)nonane-2,4-dione and 2-diazo-3,5-cyclohexadiene-1-one, respectively. We expect that this parallel algorithm is always possible to reduce computational costs of any crystal structure predictions.

  19. Ceramic Borehole Seals for Nuclear Waste Disposal Applications

    NASA Astrophysics Data System (ADS)

    Lowry, B.; Coates, K.; Wohletz, K.; Dunn, S.; Patera, E.; Duguid, A.; Arnold, B.; Zyvoloski, G.; Groven, L.; Kuramyssova, K.

    2015-12-01

    Sealing plugs are critical features of the deep borehole system design. They serve as structural platforms to bear the weight of the backfill column, and as seals through their low fluid permeability and bond to the borehole or casing wall. High hydrostatic and lithostatic pressures, high mineral content water, and elevated temperature due to the waste packages and geothermal gradient challenge the long term performance of seal materials. Deep borehole nuclear waste disposal faces the added requirement of assuring performance for thousands of years in large boreholes, requiring very long term chemical and physical stability. A high performance plug system is being developed which capitalizes on the energy of solid phase reactions to form a ceramic plug in-situ. Thermites are a family of self-oxidized metal/oxide reactions with very high energy content and the ability to react under water. When combined with engineered additives the product exhibits attractive structural, sealing, and corrosion properties. In the initial phase of this research, exploratory and scaled tests demonstrated formulations that achieved controlled, fine grained, homogeneous, net shape plugs composed predominantly of ceramic material. Laboratory experiments produced plug cores with confined fluid permeability as low as 100 mDarcy, compressive strength as high as 70 MPa (three times the strength of conventional well cement), with the inherent corrosion resistance and service temperature of ceramic matrices. Numerical thermal and thermal/structural analyses predicted the in-situ thermal performance of the reacted plugs, showing that they cooled to ambient temperature (and design strength) within 24 to 48 hours. The current development effort is refining the reactant formulations to achieve desired performance characteristics, developing the system design and emplacement processes to be compatible with conventional well service practices, and understanding the thermal, fluid, and structural effects the plug will have on surrounding media. This paper will report on the state of the development effort and plans for a field demonstration in early 2016 in a cased well with traditional plug seal and strength measurements.

  20. Mission Statements, Physical Space, and Strategy in Higher Education

    ERIC Educational Resources Information Center

    Fugazzotto, Sam J.

    2009-01-01

    The effectiveness of higher education institutions has bases in institutional structures and cultures. However, structure and culture represent abstract concepts while institutions realize high performance in practice. Given their salience in higher education, mission statements and campus space bring structure and culture into the realm of…

  1. High Temperature Unfolding and Low Temperature Refolding Pathway of Chymotrypsin Inhibitor 2 Using Molecular Dynamics Simulation

    NASA Astrophysics Data System (ADS)

    Malau, N. D.; Sumaryada, T.

    2016-01-01

    The mechanism that explains the unfolding/refolding process of the protein is still a major problem that has not been fully understood. In this paper we present our study on the unfolding and refolding pathway of Chymotrypsin Inhibitor 2 (CI2) protein through a molecular dynamics simulation technique. The high temperature unfolding simulation were performed at 500 K for 35 ns. While the low temperature refolding simulation performed at 200 K for 35 ns. The unfolding and refolding pathway of protein were analysed by looking at the dynamics of root mean squared deviation (RMSD) and secondary structure profiles. The signatures of unfolding were observed from significant increase of RMSD within the time span of 10 ns to 35 ns. For the refolding process, the initial structure was prepared from the structure of unfolding protein at t=15 ns and T=500 K. Analysis have shown that some of the secondary structures of CI2 protein that have been damaged at high temperature can be refolded back to its initial structure at low temperature simulation. Our results suggest that most of α-helix structure of CI2 protein can be refolded back to its initial state, while only half beta-sheet structure can be reformed.

  2. Creep and drying shrinkage of high performance concrete for the skyway structures of the new San Francisco-Oakland Bay Bridge and cement paste.

    DOT National Transportation Integrated Search

    2011-04-01

    The objective of this study was to determine the influence of admixtures on long term drying shrinkage and creep of high : strength concrete (HSC). Creep and shrinkage of the mix utilized in segments of the Skyway Structure of the San : Francisco-Oak...

  3. Creep and drying shrinkage of high performance concrete for the skyway structures of the new San Francisco-Oakland Bay Bridge and cement paste

    DOT National Transportation Integrated Search

    2011-03-01

    The objective of this study was to determine the influence of admixtures on long term drying shrinkage and creep of high : strength concrete (HSC). Creep and shrinkage of the mix utilized in segments of the Skyway Structure of the San : Francisco-Oak...

  4. Space Shuttle Main Engine structural analysis and data reduction/evaluation. Volume 4: High pressure fuel turbo-pump inlet housing analysis

    NASA Technical Reports Server (NTRS)

    Pool, Kirby V.

    1989-01-01

    The analysis performed on the Space Shuttle Main Engine (SSME) High Pressure Fuel Turbopump (HPFTP) inlet housings is summarized. Three DIAL finite element models were build to aid in assessing the structural life of the welds and fillets at the vanes. Complete results are given.

  5. Self-Substitution and the Temperature Effects on the Electrochemical Performance in the High Voltage Cathode System LiMn 1.5+xNi 0.5-xO 4 (x = 0.1)

    DOE PAGES

    Xu, Yun; Zhao, Mingyang; Khalid, Syed; ...

    2017-05-09

    The high voltage cathode material, LiMn 1.6Ni 0.4O 4, was prepared by a polymer-assisted method. The novelty of this paper is the substitution of Ni with Mn, which already exists in the crystal structure instead of other isovalent metal ion dopants which would result in capacity loss. The electrochemical performance testing including stability and rate capability was evaluated. The temperature was found to impose a change on the valence and structure of the cathode materials. Specifically, manganese tends to be reduced at a high temperature of 800 °C and leads to structural changes. The manganese substituted LiMn 1.5Ni 0.5O 4more » (LMN) has proved to be a good candidate material for Li-ion battery cathodes displaying good rate capability and capacity retention. Finally, the cathode materials processed at 550 °C showed a stable performance with negligible capacity loss for 400 cycles.« less

  6. Controllable synthesis of CuS hollow microflowers hierarchical structures for asymmetric supercapacitors

    NASA Astrophysics Data System (ADS)

    Liu, Yanxia; Zhou, Zhaoxiao; Zhang, Shengping; Luo, Wenhao; Zhang, Guofeng

    2018-06-01

    One of the major challenges of high-performance asymmetric supercapacitors is engineering electrode materials with high capacitance and good cycling stability. Hence, we have successfully prepared different CuS hierarchical structures including CuS tubular structures (T-CuS), CuS hollow microspheres (S-CuS) and CuS hollow microflowers (H-CuS) by adjusting the solvents, all of which are investigated as electrode materials for supercapacitors. Among them, the H-CuS electrode exhibits the best electrochemical performance involving a high capacitance of 536.7 F g-1 at a current density of 8 A g-1 and excellent cycling stability with 83.6% capacitance retention for 20,000 continuous cycles at a current density of 5 A g-1. In addition, an asymmetric supercapacitor has assembled with H-CuS as positive electrode and activated carbon (AC) as negative electrode, which exhibits a desirable energy density of 15.97 W h kg-1 when the power density is 185.4 W kg-1. These desirable electrochemical performances powerfully demonstrate that the H-CuS electrode has promising potential for applications in energy storage fields.

  7. Hybrid morphology dependence of CdTe:CdSe bulk-heterojunction solar cells

    PubMed Central

    2014-01-01

    A nanocrystal thin-film solar cell operating on an exciton splitting pattern requires a highly efficient separation of electron-hole pairs and transportation of separated charges. A hybrid bulk-heterojunction (HBH) nanostructure providing a large contact area and interpenetrated charge channels is favorable to an inorganic nanocrystal solar cell with high performance. For this freshly appeared structure, here in this work, we have firstly explored the influence of hybrid morphology on the photovoltaic performance of CdTe:CdSe bulk-heterojunction solar cells with variation in CdSe nanoparticle morphology. Quantum dot (QD) or nanotetrapod (NT)-shaped CdSe nanocrystals have been employed together with CdTe NTs to construct different hybrid structures. The solar cells with the two different hybrid active layers show obvious difference in photovoltaic performance. The hybrid structure with densely packed and continuously interpenetrated two phases generates superior morphological and electrical properties for more efficient inorganic bulk-heterojunction solar cells, which could be readily realized in the NTs:QDs hybrid. This proved strategy is applicable and promising in designing other highly efficient inorganic hybrid solar cells. PMID:25386107

  8. Nanoscale surface modification of Li-rich layered oxides for high-capacity cathodes in Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Lan, Xiwei; Xin, Yue; Wang, Libin; Hu, Xianluo

    2018-03-01

    Li-rich layered oxides (LLOs) have been developed as a high-capacity cathode material for Li-ion batteries, but the structural complexity and unique initial charging behavior lead to several problems including large initial capacity loss, capacity and voltage fading, poor cyclability, and inferior rate capability. Since the surface conditions are critical to electrochemical performance and the drawbacks, nanoscale surface modification for improving LLO's properties is a general strategy. This review mainly summarizes the surface modification of LLOs and classifies them into three types of surface pre-treatment, surface gradient doping, and surface coating. Surface pre-treatment usually introduces removal of Li2O for lower irreversible capacity while surface doping is aimed to stabilize the structure during electrochemical cycling. Surface coating layers with different properties, protective layers to suppress the interface side reaction, coating layers related to structural transformation, and electronic/ionic conductive layers for better rate capability, can avoid the shortcomings of LLOs. In addition to surface modification for performance enhancement, other strategies can also be investigated to achieve high-performance LLO-based cathode materials.

  9. Hybrid morphology dependence of CdTe:CdSe bulk-heterojunction solar cells.

    PubMed

    Tan, Furui; Qu, Shengchun; Zhang, Weifeng; Wang, Zhanguo

    2014-01-01

    A nanocrystal thin-film solar cell operating on an exciton splitting pattern requires a highly efficient separation of electron-hole pairs and transportation of separated charges. A hybrid bulk-heterojunction (HBH) nanostructure providing a large contact area and interpenetrated charge channels is favorable to an inorganic nanocrystal solar cell with high performance. For this freshly appeared structure, here in this work, we have firstly explored the influence of hybrid morphology on the photovoltaic performance of CdTe:CdSe bulk-heterojunction solar cells with variation in CdSe nanoparticle morphology. Quantum dot (QD) or nanotetrapod (NT)-shaped CdSe nanocrystals have been employed together with CdTe NTs to construct different hybrid structures. The solar cells with the two different hybrid active layers show obvious difference in photovoltaic performance. The hybrid structure with densely packed and continuously interpenetrated two phases generates superior morphological and electrical properties for more efficient inorganic bulk-heterojunction solar cells, which could be readily realized in the NTs:QDs hybrid. This proved strategy is applicable and promising in designing other highly efficient inorganic hybrid solar cells.

  10. Renewing functionalized graphene as electrodes for high-performance supercapacitors.

    PubMed

    Fang, Yan; Luo, Bin; Jia, Yuying; Li, Xianglong; Wang, Bin; Song, Qi; Kang, Feiyu; Zhi, Linjie

    2012-12-11

    An acid-assisted ultrarapid thermal strategy is developed for constructing specifically functionalized graphene. The electrochemical performance of functionalized graphene can be boosted via elaborate coupling between the pseudocapacitance and the electronic double layer capacitance through rationally tailoring the structure of graphene sheets. This presents an opportunity for developing further high-performance graphene-based electrodes to bridge the performance gap between traditional capacitors and batteries. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. High-Temperature Modal Survey of a Hot-Structure Control Surface

    NASA Technical Reports Server (NTRS)

    Spivey, Natalie Dawn

    2010-01-01

    Ground vibration tests or modal surveys are routinely conducted for supporting flutter analysis for subsonic and supersonic vehicles; however, for hypersonic vehicle applications, thermoelastic vibration testing techniques are not well established and are not routinely performed for supporting hypersonic flutter analysis. New high-temperature material systems, fabrication technologies and high-temperature sensors expand the opportunities to develop advanced techniques for performing ground vibration tests at elevated temperatures. High-temperature materials have the unique property of increasing in stiffness when heated. When these materials are incorporated into a hot-structure, which includes metallic components that decrease in stiffness with increasing temperature, the interaction between the two materials systems needs to be understood because that interaction could ultimately affect the hypersonic flutter analysis. Performing a high-temperature modal survey will expand the research database for hypersonics and will help build upon the understanding of the dual material interaction. This paper will discuss the vibration testing of the Carbon-Silicon Carbide Ruddervator Subcomponent Test Article which is a truncated version of the full-scale X-37 hot-structure control surface. In order to define the modal characteristics of the test article during the elevated-temperature modal survey, two series of room-temperature modal test configurations had to be performed. The room-temperature test series included one with the test article suspended from a bungee cord (free-free) and the second with it mounted on the strongback (fixed boundary condition) in NASA Dryden's Flight Loads Lab large nitrogen test chamber.

  12. Double-layer interlaced nested multi-ring array metallic mesh for high-performance transparent electromagnetic interference shielding.

    PubMed

    Wang, Heyan; Lu, Zhengang; Liu, Yeshu; Tan, Jiubin; Ma, Limin; Lin, Shen

    2017-04-15

    We report a nested multi-ring array metallic mesh (NMA-MM) that shows a highly uniform diffraction pattern theoretically and experimentally. Then a high-performance transparent electromagnetic interference (EMI) shielding structure is constituted by the double-layer interlaced NMA-MMs separated by transparent quartz-glass substrate. Experimental results show that double-layer interlaced NMA-MM structure exhibits a shielding effectiveness (SE) of over 27 dB in the Ku-band, with a maximal SE of 37 dB at 12 GHz, normalized optical transmittance of 90%, and minimal image quality degradation due to the interlaced arrangement. It thus shows great potential for practical applications in transparent EMI shielding devices.

  13. Integrated narrowband optical filter based on embedded subwavelength resonant grating structures

    DOEpatents

    Grann, Eric B.; Sitter, Jr., David N.

    2000-01-01

    A resonant grating structure in a waveguide and methods of tuning the performance of the grating structure are described. An apparatus includes a waveguide; and a subwavelength resonant grating structure embedded in the waveguide. The systems and methods provide advantages including narrowband filtering capabilities, minimal sideband reflections, spatial control, high packing density, and tunability.

  14. Creating Organizational Structures to Facilitate Collegial Interaction among Teachers: Evidence from a High-Performing Urban Midwestern US District

    ERIC Educational Resources Information Center

    Ford, Timothy G.; Youngs, Peter A.

    2018-01-01

    Emerging from concerns about "contrived collegiality" in schools is also the recognition that breaking existing patterns of collegial interaction (or lack thereof) might necessitate some level of leader-initiated (or otherwise organizational) intervention. This paper presents the case of Middleville, a high-performing Midwestern US…

  15. "I've Got Swag": Simone Performs Critical Literacy in a High-School English Classroom

    ERIC Educational Resources Information Center

    Johnson, Elisabeth

    2011-01-01

    Drawing on multimodal, post-structural, and critical theory, the author examines a high-school English classroom exchange about editing a student publication. Analysing a young woman's embodied identity performances, the author illustrates how Simone, a tenth-grader, employed, adjusted, and coupled modes of communication like speech, laughter,…

  16. Performance-Based Task Assessment of Higher-Order Proficiencies in Redesigned STEM High Schools

    ERIC Educational Resources Information Center

    Ernst, Jeremy V.; Glennie, Elizabeth; Li, Songze

    2017-01-01

    This study explored student abilities in applying conceptual knowledge when presented with structured performance tasks. Specifically, the study gauged proficiency in higher-order applications of students enrolled in earth and environmental science or biology. The student sample was drawn from a Redesigned STEM high school model where a tested…

  17. Light-induced lattice expansion leads to high-efficiency perovskite solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsai, Hsinhan; Asadpour, Reza; Blancon, Jean-Christophe

    Hybrid-perovskite based high-performance optoelectronic devices and clues from their operation has led to the realization that light-induced structural dynamics play a vital role on their physical properties, device performance and stability. Here, we report that continuous light illumination leads to a uniform lattice expansion in hybrid perovskite thin-films, which is critical for obtaining high-efficiency photovoltaic devices. Correlated, in-situ structural and device characterizations reveal that light-induced lattice expansion significantly benefits the performances of a mixed-cation pure-halide planar device, boosting the power conversion efficiency from 18.5% to 20.5%. This is a direct consequence of the relaxation of local lattice strains during latticemore » expansion, which results in the reduction of the energetic barriers at the perovskite/contact interfaces in devices, thus improving the open circuit voltage and fill factor. The light-induced lattice expansion stabilizes these high-efficiency photovoltaic devices under continuous operation of full-spectrum 1-Sun illumination for over 1500 hours. One Sentence Summary: Light-induced lattice expansion improves crystallinity, relaxes lattice strain, which enhances photovoltaic performance in hybrid perovskite device.« less

  18. Structural characterization of UHPC waffle bridge deck and connections : [tech transfer summary].

    DOT National Transportation Integrated Search

    2014-07-01

    Contribute to design an innovative and durable precast deck alternative : using ultra-high performance concrete (UHPC) for accelerated bridge : construction : Evaluate the structural characteristics of the UHPC waffle deck, : critical connect...

  19. Transient Structures and Possible Limits of Data Recording in Phase-Change Materials.

    PubMed

    Hu, Jianbo; Vanacore, Giovanni M; Yang, Zhe; Miao, Xiangshui; Zewail, Ahmed H

    2015-07-28

    Phase-change materials (PCMs) represent the leading candidates for universal data storage devices, which exploit the large difference in the physical properties of their transitional lattice structures. On a nanoscale, it is fundamental to determine their performance, which is ultimately controlled by the speed limit of transformation among the different structures involved. Here, we report observation with atomic-scale resolution of transient structures of nanofilms of crystalline germanium telluride, a prototypical PCM, using ultrafast electron crystallography. A nonthermal transformation from the initial rhombohedral phase to the cubic structure was found to occur in 12 ps. On a much longer time scale, hundreds of picoseconds, equilibrium heating of the nanofilm is reached, driving the system toward amorphization, provided that high excitation energy is invoked. These results elucidate the elementary steps defining the structural pathway in the transformation of crystalline-to-amorphous phase transitions and describe the essential atomic motions involved when driven by an ultrafast excitation. The establishment of the time scales of the different transient structures, as reported here, permits determination of the possible limit of performance, which is crucial for high-speed recording applications of PCMs.

  20. Restructuring High-Poverty Elementary Schools for Success: A Description of the Hi-Perform School Design

    ERIC Educational Resources Information Center

    Pogrow, Stanley

    2006-01-01

    In this second of a two-part series, the author outlines the basic structure of the kind of school that will help the children of poverty gain ground and so reduce the learning gap. In an attempt to establish far more effective high-poverty schools, the author proposes one approach, which is the Hi-Perform School redesign for high-poverty…

  1. Multidimensional MnO2 nanohair-decorated hybrid multichannel carbon nanofiber as an electrode material for high-performance supercapacitors.

    PubMed

    Jun, Jaemoon; Lee, Jun Seop; Shin, Dong Hoon; Kim, Sung Gun; Jang, Jyongsik

    2015-10-14

    One-dimensional (1D)-structured nanomaterials represent one of the most attractive candidates for energy-storage systems due to their contribution to design simplicity, fast charge-transportation network, and their allowance for more accessible ion diffusion. In particular, 1D-structured nanomaterials with a highly complex inner-pore configuration enhance functionality by taking advantage of both the hollow and 1D structures. In this study, we report a MnO2 nanohair-decorated, hybrid multichannel carbon nanofiber (Mn_MCNF) fabricated via single-nozzle co-electrospinning of two immiscible polymer solutions, followed by carbonization and redox reactions. With improved ion accessibility, the optimized Mn_MCNF sample (Mn_MCNF_60 corresponding to a reaction duration time of 60 min for optimal MnO2 nanohair growth) exhibited a high specific capacitance of 855 F g(-1) and excellent cycling performance with ∼87.3% capacitance retention over 5000 cycles.

  2. Band Structures and Transport Properties of High-Performance Half-Heusler Thermoelectric Materials by First Principles.

    PubMed

    Fang, Teng; Zhao, Xinbing; Zhu, Tiejun

    2018-05-19

    Half-Heusler (HH) compounds, with a valence electron count of 8 or 18, have gained popularity as promising high-temperature thermoelectric (TE) materials due to their excellent electrical properties, robust mechanical capabilities, and good high-temperature thermal stability. With the help of first-principles calculations, great progress has been made in half-Heusler thermoelectric materials. In this review, we summarize some representative theoretical work on band structures and transport properties of HH compounds. We introduce how basic band-structure calculations are used to investigate the atomic disorder in n-type M NiSb ( M = Ti, Zr, Hf) compounds and guide the band engineering to enhance TE performance in p-type Fe R Sb ( R = V, Nb) based systems. The calculations on electrical transport properties, especially the scattering time, and lattice thermal conductivities are also demonstrated. The outlook for future research directions of first-principles calculations on HH TE materials is also discussed.

  3. Synthesis of homogeneous CaMoO4 microspheres with nanopits for high-capacity anode material in Li-ion battery

    NASA Astrophysics Data System (ADS)

    You, Jiangfeng; Xin, Ling; Yu, Xiao; Zhou, Xiang; Liu, Yong

    2018-03-01

    Homogeneous CaMoO4 microspheres with interesting nanopit morphology were prepared by a simple one-step hydrothermal method. These microspheres had a very promising alternative structure for application in Li-ion batteries (LIBs), because they combined the advantages of both the primary nanosized and secondary microsized structures. The nanopits distributed on CaMoO4 material can accommodate volume change, increase their contacting surface and wetting property with electrolyte, and improve wetting contact between CaMoO4 material and electrolyte, leading to enhanced cycling stability and electrochemical performance. Meanwhile, the robust microsphere structure can both prevent aggregation and provide high tap density. When used as an anode in LIBs, the electrodes delivered a high discharge capacity of 434 mAh/g after 50 charge-discharge cycles at a current density of 200 mA/g, showing good cycling performance.

  4. Band Structures and Transport Properties of High-Performance Half-Heusler Thermoelectric Materials by First Principles

    PubMed Central

    Fang, Teng; Zhao, Xinbing

    2018-01-01

    Half-Heusler (HH) compounds, with a valence electron count of 8 or 18, have gained popularity as promising high-temperature thermoelectric (TE) materials due to their excellent electrical properties, robust mechanical capabilities, and good high-temperature thermal stability. With the help of first-principles calculations, great progress has been made in half-Heusler thermoelectric materials. In this review, we summarize some representative theoretical work on band structures and transport properties of HH compounds. We introduce how basic band-structure calculations are used to investigate the atomic disorder in n-type MNiSb (M = Ti, Zr, Hf) compounds and guide the band engineering to enhance TE performance in p-type FeRSb (R = V, Nb) based systems. The calculations on electrical transport properties, especially the scattering time, and lattice thermal conductivities are also demonstrated. The outlook for future research directions of first-principles calculations on HH TE materials is also discussed. PMID:29783759

  5. Performance Assessment of Two Whole-Lake Acoustic Positional Telemetry Systems - Is Reality Mining of Free-Ranging Aquatic Animals Technologically Possible?

    PubMed Central

    Baktoft, Henrik; Zajicek, Petr; Klefoth, Thomas; Svendsen, Jon C.; Jacobsen, Lene; Pedersen, Martin Wæver; March Morla, David; Skov, Christian; Nakayama, Shinnosuke; Arlinghaus, Robert

    2015-01-01

    Acoustic positional telemetry systems (APTs) represent a novel approach to study the behaviour of free ranging aquatic animals in the wild at unprecedented detail. System manufactures promise remarkably high temporal and spatial resolution. However, the performance of APTs has rarely been rigorously tested at the level of entire ecosystems. Moreover, the effect of habitat structure on system performance has only been poorly documented. Two APTs were deployed to cover two small lakes and a series of standardized stationary tests were conducted to assess system performance. Furthermore, a number of tow tests were conducted to simulate moving fish. Based on these data, we quantified system performance in terms of data yield, accuracy and precision as a function of structural complexity in relation to vegetation. Mean data yield of the two systems was 40 % (Lake1) and 60 % (Lake2). Average system accuracy (acc) and precision (prec) were Lake1: acc = 3.1 m, prec = 1.1 m; Lake2: acc = 1.0 m, prec = 0.2 m. System performance was negatively affected by structural complexity, i.e., open water habitats yielded far better performance than structurally complex vegetated habitats. Post-processing greatly improved data quality, and sub-meter accuracy and precision were, on average, regularly achieved in Lake2 but remained the exception in the larger and structurally more complex Lake1. Moving transmitters were tracked well by both systems. Whereas overestimation of moved distance is inevitable for stationary transmitters due to accumulation of small tracking errors, moving transmitters can result in both over- and underestimation of distances depending on circumstances. Both deployed APTs were capable of providing high resolution positional data at the scale of entire lakes and are suitable systems to mine the reality of free ranging fish in their natural environment. This opens important opportunities to advance several fields of study such as movement ecology and animal social networks in the wild. It is recommended that thorough performance tests are conducted in any study utilizing APTs. The APTs tested here appear best suited for studies in structurally simple ecosystems or for studying pelagic species. In such situations, the data quality provided by the APTs is exceptionally high. PMID:26000459

  6. Internally resonating lattices for bandgap generation and low-frequency vibration control

    NASA Astrophysics Data System (ADS)

    Baravelli, Emanuele; Ruzzene, Massimo

    2013-12-01

    The paper reports on a structural concept for high stiffness and high damping performance. A stiff external frame and an internal resonating lattice are combined in a beam-like assembly which is characterized by high frequency bandgaps and tuned vibration attenuation at low frequencies. The resonating lattice consists of an elastomeric material arranged according to a chiral topology which is designed to resonate at selected frequencies. The concept achieves high damping performance by combining the frequency-selective properties of internally resonating structures, with the energy dissipation characteristics of their constituent material. The flexible ligaments, the circular nodes and the non-central interactions of the chiral topology lead to dynamic deformation patterns which are beneficial to energy dissipation. Furthermore, tuning and grading of the elements of the lattice allows for tailoring of the resonating properties so that vibration attenuation is obtained over desired frequency ranges. Numerical and experimental results demonstrate the tuning flexibility of this concept and suggest its potential application for load-carrying structural members parts of vibration and shock prone systems.

  7. Hierarchically ordered mesoporous Co3O4 materials for high performance Li-ion batteries.

    PubMed

    Sun, Shijiao; Zhao, Xiangyu; Yang, Meng; Wu, Linlin; Wen, Zhaoyin; Shen, Xiaodong

    2016-01-19

    Highly ordered mesoporous Co3O4 materials have been prepared via a nanocasting route with three-dimensional KIT-6 and two-dimensional SBA-15 ordered mesoporous silicas as templates and Co(NO3)2 · 6H2O as precursor. Through changing the hydrothermal treating temperature of the silica template, ordered mesoporous Co3O4 materials with hierarchical structures have been developed. The larger pores around 10 nm provide an efficient transport for Li ions, while the smaller pores between 3-5 nm offer large electrochemically active areas. Electrochemical impedance analysis proves that the hierarchical structure contributes to a lower charge transfer resistance in the mesoporous Co3O4 electrode than the mono-sized structure. High reversible capacities around 1141 mAh g(-1) of the hierarchically mesoporous Co3O4 materials are obtained, implying their potential applications for high performance Li-ion batteries.

  8. Metal segregation in hierarchically structured cathode materials for high-energy lithium batteries

    DOE PAGES

    Lin, Feng; Xin, Huolin L.; Nordlund, Dennis; ...

    2016-01-11

    Controlling surface and interfacial properties of battery materials is key to improving performance in rechargeable Li-ion devices. Surface reconstruction from a layered to a rock salt structure in metal oxide cathode materials is commonly observed and results in poor high-voltage cycling performance, impeding attempts to improve energy density. Hierarchically structured LiNi 0.4Mn 0.4Co 0.2O 2 (NMC-442) spherical powders, made by spray pyrolysis, exhibit local elemental distribution gradients that deviate from the global NMC-442 composition; specifically, they are Ni-rich and Mn-poor at particle surfaces. These materials demonstrate improved Coulombic efficiencies, discharge capacities, and high-voltage capacity retention in lithium half-cell configurations. Themore » subject powders show superior resistance against surface reconstruction due to the tailored surface chemistry, compared to conventional NMC-442 materials. This paves the way towards the development of a new generation of robust and stable high-energy NMC cathodes for Li-ion batteries.« less

  9. New strategy to promote conversion efficiency using high-index nanostructures in thin-film solar cells

    PubMed Central

    Wang, DongLin; Su, Gang

    2014-01-01

    Nano-scaled metallic or dielectric structures may provide various ways to trap light into thin-film solar cells for improving the conversion efficiency. In most schemes, the textured active layers are involved into light trapping structures that can provide perfect optical benefits but also bring undesirable degradation of electrical performance. Here we propose a novel approach to design high-performance thin-film solar cells. In our strategy, a flat active layer is adopted for avoiding electrical degradation, and an optimization algorithm is applied to seek for an optimized light trapping structure for the best optical benefit. As an example, we show that the efficiency of a flat a-Si:H thin-film solar cell can be promoted close to the certified highest value. It is also pointed out that, by choosing appropriate dielectric materials with high refractive index (>3) and high transmissivity in wavelength region of 350 nm–800 nm, the conversion efficiency of solar cells can be further enhanced. PMID:25418477

  10. Biomass Waste Inspired Highly Porous Carbon for High Performance Lithium/Sulfur Batteries

    PubMed Central

    Zhao, Yan; Ren, Jun; Tan, Taizhe; Babaa, Moulay-Rachid; Bakenov, Zhumabay; Liu, Ning; Zhang, Yongguang

    2017-01-01

    The synthesis of highly porous carbon (HPC) materials from poplar catkin by KOH chemical activation and hydrothermal carbonization as a conductive additive to a lithium-sulfur cathode is reported. Elemental sulfur was composited with as-prepared HPC through a melt diffusion method to form a S/HPC nanocomposite. Structure and morphology characterization revealed a hierarchically sponge-like structure of HPC with high pore volume (0.62 cm3∙g−1) and large specific surface area (1261.7 m2∙g−1). When tested in Li/S batteries, the resulting compound demonstrated excellent cycling stability, delivering a second-specific capacity of 1154 mAh∙g−1 as well as presenting 74% retention of value after 100 cycles at 0.1 C. Therefore, the porous structure of HPC plays an important role in enhancing electrochemical properties, which provides conditions for effective charge transfer and effective trapping of soluble polysulfide intermediates, and remarkably improves the electrochemical performance of S/HPC composite cathodes. PMID:28878149

  11. Synthesis of cage-like LiFePO4/C microspheres for high performance lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Deng, Honggui; Jin, Shuangling; Zhan, Liang; Wang, Yanli; Qiao, Wenming; Ling, Licheng

    2012-12-01

    Cage-like LiFePO4 microspheres are synthesized by a solvothermal reaction-calcination process, using Fe(NO3)3·9H2O as iron source and ethylene glycol/water as co-solvent medium. The microsphere is the assembly of LiFePO4 nanoparticles with an open porous structure, thus the carbon coating can be easily introduced on the surface of the nanoparticles by the chemical vapor deposition of C2H4 during calcination process. When used as the cathode materials for the lithium-ion batteries, the resultant cage-like LiFePO4/C microsphere shows high capacity and good cycle stability (160 mAh g-1 at 0.1 C over 300 cycles), as well as good rate capability (120 mAh g-1 at 10 C). The desirable electrochemical performance can be attributed to high rate of ionic/electronic conduction and the high structural stability arising from the interconnected open pores, carbon-coated nanoparticles and microsized structure.

  12. GAIA payload module mechanical development

    NASA Astrophysics Data System (ADS)

    Touzeau, S.; Sein, E.; Lebranchu, C.

    2017-11-01

    Gaia is the European Space Agency's cornerstone mission for global space astrometry. Its goal is to make the largest, most precise three-dimensional map of our Galaxy by surveying an unprecedented number of stars. This paper gives an overview of the mechanical system engineering and verification of the payload module. This development includes several technical challenges. First of all, the very high stability performance as required for the mission is a key driver for the design, which incurs a high degree of stability. This is achieved through the extensive use of Silicon Carbide (Boostec® SiC) for both structures and mirrors, a high mechanical and thermal decoupling between payload and service modules, and the use of high-performance engineering tools. Compliance of payload mass and volume with launcher capability is another key challenge, as well as the development and manufacturing of the 3.2-meter diameter toroidal primary structure. The spacecraft mechanical verification follows an innovative approach, with direct testing on the flight model, without any dedicated structural model.

  13. A Systematic Approach for Obtaining Performance on Matrix-Like Operations

    NASA Astrophysics Data System (ADS)

    Veras, Richard Michael

    Scientific Computation provides a critical role in the scientific process because it allows us ask complex queries and test predictions that would otherwise be unfeasible to perform experimentally. Because of its power, Scientific Computing has helped drive advances in many fields ranging from Engineering and Physics to Biology and Sociology to Economics and Drug Development and even to Machine Learning and Artificial Intelligence. Common among these domains is the desire for timely computational results, thus a considerable amount of human expert effort is spent towards obtaining performance for these scientific codes. However, this is no easy task because each of these domains present their own unique set of challenges to software developers, such as domain specific operations, structurally complex data and ever-growing datasets. Compounding these problems are the myriads of constantly changing, complex and unique hardware platforms that an expert must target. Unfortunately, an expert is typically forced to reproduce their effort across multiple problem domains and hardware platforms. In this thesis, we demonstrate the automatic generation of expert level high-performance scientific codes for Dense Linear Algebra (DLA), Structured Mesh (Stencil), Sparse Linear Algebra and Graph Analytic. In particular, this thesis seeks to address the issue of obtaining performance on many complex platforms for a certain class of matrix-like operations that span across many scientific, engineering and social fields. We do this by automating a method used for obtaining high performance in DLA and extending it to structured, sparse and scale-free domains. We argue that it is through the use of the underlying structure found in the data from these domains that enables this process. Thus, obtaining performance for most operations does not occur in isolation of the data being operated on, but instead depends significantly on the structure of the data.

  14. A high-throughput approach to profile RNA structure.

    PubMed

    Delli Ponti, Riccardo; Marti, Stefanie; Armaos, Alexandros; Tartaglia, Gian Gaetano

    2017-03-17

    Here we introduce the Computational Recognition of Secondary Structure (CROSS) method to calculate the structural profile of an RNA sequence (single- or double-stranded state) at single-nucleotide resolution and without sequence length restrictions. We trained CROSS using data from high-throughput experiments such as Selective 2΄-Hydroxyl Acylation analyzed by Primer Extension (SHAPE; Mouse and HIV transcriptomes) and Parallel Analysis of RNA Structure (PARS; Human and Yeast transcriptomes) as well as high-quality NMR/X-ray structures (PDB database). The algorithm uses primary structure information alone to predict experimental structural profiles with >80% accuracy, showing high performances on large RNAs such as Xist (17 900 nucleotides; Area Under the ROC Curve AUC of 0.75 on dimethyl sulfate (DMS) experiments). We integrated CROSS in thermodynamics-based methods to predict secondary structure and observed an increase in their predictive power by up to 30%. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  15. High performance carbon nanotube-Si core-shell wires with a rationally structured core for lithium ion battery anodes.

    PubMed

    Fan, Yu; Zhang, Qing; Lu, Congxiang; Xiao, Qizhen; Wang, Xinghui; Tay, Beng Kang

    2013-02-21

    Core-shell Si nanowires are very promising anode materials. Here, we synthesize vertically aligned carbon nanotubes (CNTs) with relatively large diameters and large inter-wire spacing as core wires and demonstrate a CNT-Si core-shell wire composite as a lithium ion battery (LIB) anode. Owing to the rationally engineered core structure, the composite shows good capacity retention and rate performance. The excellent performance is superior to most core-shell nanowires previously reported.

  16. High renewable content sandwich structures based on flax-basalt hybrids and biobased epoxy polymers

    NASA Astrophysics Data System (ADS)

    Colomina, S.; Boronat, T.; Fenollar, O.; Sánchez-Nacher, L.; Balart, R.

    2014-05-01

    In the last years, a growing interest in the development of high environmental efficiency materials has been detected and this situation is more accentuated in the field of polymers and polymer composites. In this work, green composite sandwich structures with high renewable content have been developed with core cork materials. The base resin for composites was a biobased epoxy resin derived from epoxidized vegetable oils. Hybrid basalt-flax fabrics have been used as reinforcements for composites and the influence of the stacking sequence has been evaluated in order to optimize the appropriate laminate structure for the sandwich bases. Core cork materials with different thickness have been used to evaluate performance of sandwich structures thus leading to high renewable content composite sandwich structures. Results show that position of basalt fabrics plays a key role in flexural fracture of sandwich structures due to differences in stiffness between flax and basalt fibers.

  17. Fibrous hybrid of graphene and sulfur nanocrystals for high-performance lithium-sulfur batteries.

    PubMed

    Zhou, Guangmin; Yin, Li-Chang; Wang, Da-Wei; Li, Lu; Pei, Songfeng; Gentle, Ian Ross; Li, Feng; Cheng, Hui-Ming

    2013-06-25

    Graphene-sulfur (G-S) hybrid materials with sulfur nanocrystals anchored on interconnected fibrous graphene are obtained by a facile one-pot strategy using a sulfur/carbon disulfide/alcohol mixed solution. The reduction of graphene oxide and the formation/binding of sulfur nanocrystals were integrated. The G-S hybrids exhibit a highly porous network structure constructed by fibrous graphene, many electrically conducting pathways, and easily tunable sulfur content, which can be cut and pressed into pellets to be directly used as lithium-sulfur battery cathodes without using a metal current-collector, binder, and conductive additive. The porous network and sulfur nanocrystals enable rapid ion transport and short Li(+) diffusion distance, the interconnected fibrous graphene provides highly conductive electron transport pathways, and the oxygen-containing (mainly hydroxyl/epoxide) groups show strong binding with polysulfides, preventing their dissolution into the electrolyte based on first-principles calculations. As a result, the G-S hybrids show a high capacity, an excellent high-rate performance, and a long life over 100 cycles. These results demonstrate the great potential of this unique hybrid structure as cathodes for high-performance lithium-sulfur batteries.

  18. Tailoring Anisotropic Li-Ion Transport Tunnels on Orthogonally Arranged Li-Rich Layered Oxide Nanoplates Toward High-Performance Li-Ion Batteries.

    PubMed

    Xu, Ming; Fei, Linfeng; Zhang, Weibing; Li, Tao; Lu, Wei; Zhang, Nian; Lai, Yanqing; Zhang, Zhian; Fang, Jing; Zhang, Kai; Li, Jie; Huang, Haitao

    2017-03-08

    High-performance Li-rich layered oxide (LRLO) cathode material is appealing for next-generation Li-ion batteries owing to its high specific capacity (>300 mAh g -1 ). Despite intense studies in the past decade, the low initial Coulombic efficiency and unsatisfactory cycling stability of LRLO still remain as great challenges for its practical applications. Here, we report a rational design of the orthogonally arranged {010}-oriented LRLO nanoplates with built-in anisotropic Li + ion transport tunnels. Such a novel structure enables fast Li + ion intercalation and deintercalation kinetics and enhances structural stability of LRLO. Theoretical calculations and experimental characterizations demonstrate the successful synthesis of target cathode material that delivers an initial discharge capacity as high as 303 mAh g -1 with an initial Coulombic efficiency of 93%. After 200 cycles at 1.0 C rate, an excellent capacity retention of 92% can be attained. Our method reported here opens a door to the development of high-performance Ni-Co-Mn-based cathode materials for high-energy density Li-ion batteries.

  19. Beads-Milling of Waste Si Sawdust into High-Performance Nanoflakes for Lithium-Ion Batteries

    PubMed Central

    Kasukabe, Takatoshi; Nishihara, Hirotomo; Kimura, Katsuya; Matsumoto, Taketoshi; Kobayashi, Hikaru; Okai, Makoto; Kyotani, Takashi

    2017-01-01

    Nowadays, ca. 176,640 tons/year of silicon (Si) (>4N) is manufactured for Si wafers used for semiconductor industry. The production of the highly pure Si wafers inevitably includes very high-temperature steps at 1400–2000 °C, which is energy-consuming and environmentally unfriendly. Inefficiently, ca. 45–55% of such costly Si is lost simply as sawdust in the cutting process. In this work, we develop a cost-effective way to recycle Si sawdust as a high-performance anode material for lithium-ion batteries. By a beads-milling process, nanoflakes with extremely small thickness (15–17 nm) and large diameter (0.2–1 μm) are obtained. The nanoflake framework is transformed into a high-performance porous structure, named wrinkled structure, through a self-organization induced by lithiation/delithiation cycling. Under capacity restriction up to 1200 mAh g−1, the best sample can retain the constant capacity over 800 cycles with a reasonably high coulombic efficiency (98–99.8%). PMID:28218271

  20. Development of low-cost high-performance multispectral camera system at Banpil

    NASA Astrophysics Data System (ADS)

    Oduor, Patrick; Mizuno, Genki; Olah, Robert; Dutta, Achyut K.

    2014-05-01

    Banpil Photonics (Banpil) has developed a low-cost high-performance multispectral camera system for Visible to Short- Wave Infrared (VIS-SWIR) imaging for the most demanding high-sensitivity and high-speed military, commercial and industrial applications. The 640x512 pixel InGaAs uncooled camera system is designed to provide a compact, smallform factor to within a cubic inch, high sensitivity needing less than 100 electrons, high dynamic range exceeding 190 dB, high-frame rates greater than 1000 frames per second (FPS) at full resolution, and low power consumption below 1W. This is practically all the feature benefits highly desirable in military imaging applications to expand deployment to every warfighter, while also maintaining a low-cost structure demanded for scaling into commercial markets. This paper describes Banpil's development of the camera system including the features of the image sensor with an innovation integrating advanced digital electronics functionality, which has made the confluence of high-performance capabilities on the same imaging platform practical at low cost. It discusses the strategies employed including innovations of the key components (e.g. focal plane array (FPA) and Read-Out Integrated Circuitry (ROIC)) within our control while maintaining a fabless model, and strategic collaboration with partners to attain additional cost reductions on optics, electronics, and packaging. We highlight the challenges and potential opportunities for further cost reductions to achieve a goal of a sub-$1000 uncooled high-performance camera system. Finally, a brief overview of emerging military, commercial and industrial applications that will benefit from this high performance imaging system and their forecast cost structure is presented.

  1. Brain structural changes following adaptive cognitive training assessed by Tensor-Based Morphometry (TBM)

    PubMed Central

    Colom, Roberto; Hua, Xue; Martínez, Kenia; Burgaleta, Miguel; Román, Francisco J.; Gunter, Jeffrey L.; Carmona, Susanna; Jaeggi, Susanne M.; Thompson, Paul M.

    2016-01-01

    Tensor-Based Morphometry (TBM) allows the automatic mapping of brain changes across time building 3D deformation maps. This technique has been applied for tracking brain degeneration in Alzheimer's and other neurodegenerative diseases with high sensitivity and reliability. Here we applied TBM to quantify changes in brain structure after completing a challenging adaptive cognitive training program based on the n-back task. Twenty-six young women completed twenty-four training sessions across twelve weeks and they showed, on average, large cognitive improvements. High-resolution MRI scans were obtained before and after training. The computed longitudinal deformation maps were analyzed for answering three questions: (a) Are there differential brain structural changes in the training group as compared with a matched control group? (b) Are these changes related to performance differences in the training program? (c) Are standardized changes in a set of psychological factors (fluid and crystallized intelligence, working memory, and attention control) measured before and after training, related to structural changes in the brain? Results showed (a) greater structural changes for the training group in the temporal lobe, (b) a negative correlation between these changes and performance across training sessions (the greater the structural change, the lower the cognitive performance improvements), and (c) negligible effects regarding the psychological factors measured before and after training. PMID:27477628

  2. Structures performance, benefit, cost-study

    NASA Technical Reports Server (NTRS)

    Woike, O. G.; Salemme, C.; Stearns, E.; Oritz, P.; Roberts, M. L.; Baughman, J. L.; Johnston, R. P.; Demel, H. F.; Stabrylla, R. G.; Coffinberry, G. A.

    1981-01-01

    New technology concepts and structural analysis development needs which could lead to improved life cycle cost for future high-bypass turbofans were studied. The NASA-GE energy efficient engine technology is used as a base to assess the concept benefits. Recommended programs are identified for attaining these generic structural and other beneficial technologies.

  3. Nitrogen-doped 3D flower-like carbon materials derived from polyimide as high-performance anode materials for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Wu, Qiong; Liu, Jiaqi; Yuan, Chenpei; Li, Qiang; Wang, Heng-guo

    2017-12-01

    Nitrogen-doped 3D flower-like carbon materials (NFCs) have been fabricated using a simple and effective strategy, namely, the hierarchical assembly of polyimide (PI) and subsequent thermal treatment. The effect of pyrolysis temperature on the structural evolution process of PI is also investigated systematically. When evaluated as anode materials for lithium ion batteries (LIBs), the as-obtained NFCs, especially NFCs-550, exhibit good electrochemical performance, including a high reversible capacity (1488.1 mAh g-1 at 0.05 A g-1), excellent rate performance (287.6 mAh g-1 at 2 A g-1), and good cycling stability (645 mAh g-1 with 96% retention after 300 cycles at 0.1 A g-1). The good electrochemical performance is attributed to the synergistic effect between 3D flower-like nanostructure and high nitrogen content. This approach may provide some inspiration to construct a series of heteroatom doped and hierarchical structured carbon materials using polymers for LIBs.

  4. Structural invariance of multiple intelligences, based on the level of execution.

    PubMed

    Almeida, Leandro S; Prieto, María Dolores; Ferreira, Arístides; Ferrando, Mercedes; Ferrandiz, Carmen; Bermejo, Rosario; Hernández, Daniel

    2011-11-01

    The independence of multiple intelligences (MI) of Gardner's theory has been debated since its conception. This article examines whether the one- factor structure of the MI theory tested in previous studies is invariant for low and high ability students. Two hundred ninety-four children (aged 5 to 7) participated in this study. A set of Gardner's Multiple Intelligence assessment tasks based on the Spectrum Project was used. To analyze the invariance of a general dimension of intelligence, the different models of behaviours were studied in samples of participants with different performance on the Spectrum Project tasks with Multi-Group Confirmatory Factor Analysis (MGCFA). Results suggest an absence of structural invariance in Gardner's tasks. Exploratory analyses suggest a three-factor structure for individuals with higher performance levels and a two-factor structure for individuals with lower performance levels.

  5. Controllable synthesis of layered Co-Ni hydroxide hierarchical structures for high-performance hybrid supercapacitors

    NASA Astrophysics Data System (ADS)

    Yuan, Peng; Zhang, Ning; Zhang, Dan; Liu, Tao; Chen, Limiao; Ma, Renzhi; Qiu, Guanzhou; Liu, Xiaohe

    2016-01-01

    A facile solvothermal method is developed for synthesizing layered Co-Ni hydroxide hierarchical structures by using hexamethylenetetramine (HMT) as alkaline reagent. The electrochemical measurements reveal that the specific capacitances of layered bimetallic (Co-Ni) hydroxides are generally superior to those of layered monometallic (Co, Ni) hydroxides. The as-prepared Co0.5Ni0.5 hydroxide hierarchical structures possesses the highest specific capacitance of 1767 F g-1 at a galvanic current density of 1 A g-1 and an outstanding specific capacitance retention of 87% after 1000 cycles. In comparison with the dispersed nanosheets of Co-Ni hydroxide, layered hydroxide hierarchical structures show much superior electrochemical performance. This study provides a promising method to construct hierarchical structures with controllable transition-metal compositions for enhancing the electrochemical performance in hybrid supercapacitors.

  6. Different proportions of C/KCu7S4 hybrid structure for high-performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Dai, Shuge; Xi, Yi; Hu, Chenguo; Yue, Xule; Cheng, Lu; Wang, Guo

    2014-10-01

    KCu7S4 has the channel structure and minor resistance. Its double larger channels ensure that the ions can well exchange with other's, at the same time, can shorten the ionic diffusion path and improve the ionic and electronic transport. So KCu7S4 shows good electrochemical property. The paper reports a novel and high performance supercapacitor based on hybrid carbon particles and KCu7S4 (C/KCu7S4) electrode. For the hybrid structure with different proportions of C and KCu7S4, the C/KCu7S4 (1:10) hybrid supercapacitor shows preferable electrochemical performance and large specific capacitance (469 mF cm-2) at high charge-discharge rate (2 mA), still retaining ∼95% of the capacitance over 5000 cycles by charge-discharge process at a fixed current of 10 mA. Three supercapacitor units in series can light 50 light-emitting diodes (LEDs) for 2.5 min, 10 LEDs for 4 min, one LED for 5.5 min. The much-increased capacity, rate capability, and cycling stability may be attributed to the superionic conductive KCu7S4 nanowires and C/KCu7S4 hybrid structure, which improve ionic and electronic transport, enhance the kinetics of redox reactions through the electrode system.

  7. Mapping Structure-Composition-Property Relationships in V- and Fe-Doped LiMnPO4 Cathodes for Lithium-Ion Batteries.

    PubMed

    Johnson, Ian D; Loveridge, Melanie; Bhagat, Rohit; Darr, Jawwad A

    2016-11-14

    A series of LiMn 1-x-y Fe x V y PO 4 (LMFVP) nanomaterials have been synthesized using a pilot-scale continuous hydrothermal synthesis process (CHFS) and evaluated as high voltage cathodes in Li-ion batteries at a production rate of 0.25 kg h -1 . The rapid synthesis and screening approach has allowed the specific capacity of the high Mn content olivines to be optimized, particularly at high discharge rates. Consistent and gradual changes in the structure and performance are observed across the compositional region under investigation; the doping of Fe at 20 at% (with respect to Mn) into lithium manganese phosphate, rather than V or indeed codoping of Fe and V, gives the best balance of high capacity and high rate performance.

  8. Pseudocapacitive organic catechol derivative-functionalized three-dimensional graphene aerogel hybrid electrodes for high-performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Choi, Jaewon; Yang, MinHo; Kim, Sung-Kon

    2017-11-01

    Bio-inspired and environmentally friendly chemical functionalization is a successful way to a new class of hybrid electrode materials for applications in energy storage. Quinone (Q)-hydroquinone (QH2) couples, a prototypical example of organic redox systems, provide fast and reversible proton-coupled electron-transfer reactions which lead to increased capacity. To achieve high capacitance and rate performance, constructing three-dimensional (3D) continuous porous structure is highly desirable. Here we report the hybrid electrodes (GA-C) consisting of 3D graphene aerogel (GA) functionalized with organic redox-active material, catechol derivative, for application to high-performance supercapacitors. The catechol derivative is adsorbed on the surface of GA through non-covalent interactions and promotes fast and reversible Q/QH2 faradaic reactions, providing large specific capacitance of 188 F g-1 at a current of 1 A g-1 and a specific energy of ∼25 Wh kg-1 at a specific power of ∼18,000 W kg-1. 3D continuous porous structure of GA electrode facilitates ion and electron transports, resulting in high rate performance (∼140 F g-1 at a current of 10 A g-1).

  9. Advanced composite structural concepts and materials technologies for primary aircraft structures: Advanced material concepts

    NASA Technical Reports Server (NTRS)

    Lau, Kreisler S. Y.; Landis, Abraham L.; Chow, Andrea W.; Hamlin, Richard D.

    1993-01-01

    To achieve acceptable performance and long-term durability at elevated temperatures (350 to 600 F) for high-speed transport systems, further improvements of the high-performance matrix materials will be necessary to achieve very long-term (60,000-120,000 service hours) retention of mechanical properties and damage tolerance. This report emphasizes isoimide modification as a complementary technique to semi-interpenetrating polymer networks (SIPN's) to achieve greater processibility, better curing dynamics, and possibly enhanced thermo-mechanical properties in composites. A key result is the demonstration of enhanced processibility of isoimide-modified linear and thermo-setting polyimide systems.

  10. Thermal/structural analysis of a transpiration cooled nozzle

    NASA Technical Reports Server (NTRS)

    Gregory, Peyton B.; Thompson, Jon E.; Babcock, Dale A.; Gray, Carl E., Jr.; Mouring, Chris A.

    1992-01-01

    The 8-foot High Temperature Tunnel (HTT) at LaRC is a combustion driven, high enthalpy blow down wind tunnel. In Mar. 1991, during check out of the transpiration cooled nozzle, pieces of platelets were found in the tunnel test section. It was determined that incorrect tolerancing between the platelets and the housing was the primary cause of the platelet failure. An analysis was performed to determine the tolerance layout between the platelets and the housing to meet the structural and performance criteria under a range of thermal, pressure, and bolt preload conditions. Three recommendations resulted as a product of this analysis.

  11. Biological and functional relevance of CASP predictions.

    PubMed

    Liu, Tianyun; Ish-Shalom, Shirbi; Torng, Wen; Lafita, Aleix; Bock, Christian; Mort, Matthew; Cooper, David N; Bliven, Spencer; Capitani, Guido; Mooney, Sean D; Altman, Russ B

    2018-03-01

    Our goal is to answer the question: compared with experimental structures, how useful are predicted models for functional annotation? We assessed the functional utility of predicted models by comparing the performances of a suite of methods for functional characterization on the predictions and the experimental structures. We identified 28 sites in 25 protein targets to perform functional assessment. These 28 sites included nine sites with known ligand binding (holo-sites), nine sites that are expected or suggested by experimental authors for small molecule binding (apo-sites), and Ten sites containing important motifs, loops, or key residues with important disease-associated mutations. We evaluated the utility of the predictions by comparing their microenvironments to the experimental structures. Overall structural quality correlates with functional utility. However, the best-ranked predictions (global) may not have the best functional quality (local). Our assessment provides an ability to discriminate between predictions with high structural quality. When assessing ligand-binding sites, most prediction methods have higher performance on apo-sites than holo-sites. Some servers show consistently high performance for certain types of functional sites. Finally, many functional sites are associated with protein-protein interaction. We also analyzed biologically relevant features from the protein assemblies of two targets where the active site spanned the protein-protein interface. For the assembly targets, we find that the features in the models are mainly determined by the choice of template. © 2017 The Authors Proteins: Structure, Function and Bioinformatics Published by Wiley Periodicals, Inc.

  12. High-Performance One-Body Core/Shell Nanowire Supercapacitor Enabled by Conformal Growth of Capacitive 2D WS2 Layers.

    PubMed

    Choudhary, Nitin; Li, Chao; Chung, Hee-Suk; Moore, Julian; Thomas, Jayan; Jung, Yeonwoong

    2016-12-27

    Two-dimensional (2D) transition-metal dichalcogenides (TMDs) have emerged as promising capacitive materials for supercapacitor devices owing to their intrinsically layered structure and large surface areas. Hierarchically integrating 2D TMDs with other functional nanomaterials has recently been pursued to improve electrochemical performances; however, it often suffers from limited cyclic stabilities and capacitance losses due to the poor structural integrity at the interfaces of randomly assembled materials. Here, we report high-performance core/shell nanowire supercapacitors based on an array of one-dimensional (1D) nanowires seamlessly integrated with conformal 2D TMD layers. The 1D and 2D supercapacitor components possess "one-body" geometry with atomically sharp and structurally robust core/shell interfaces, as they were spontaneously converted from identical metal current collectors via sequential oxidation/sulfurization. These hybrid supercapacitors outperform previously developed any stand-alone 2D TMD-based supercapacitors; particularly, exhibiting an exceptional charge-discharge retention over 30,000 cycles owing to their structural robustness, suggesting great potential for unconventional energy storage technologies.

  13. Performance Dependences of Multiplication Layer Thickness for InP/InGaAs Avalanche Photodiodes Based on Time Domain Modeling

    NASA Technical Reports Server (NTRS)

    Xiao, Yegao; Bhat, Ishwara; Abedin, M. Nurul

    2005-01-01

    InP/InGaAs avalanche photodiodes (APDs) are being widely utilized in optical receivers for modern long haul and high bit-rate optical fiber communication systems. The separate absorption, grading, charge, and multiplication (SAGCM) structure is an important design consideration for APDs with high performance characteristics. Time domain modeling techniques have been previously developed to provide better understanding and optimize design issues by saving time and cost for the APD research and development. In this work, performance dependences on multiplication layer thickness have been investigated by time domain modeling. These performance characteristics include breakdown field and breakdown voltage, multiplication gain, excess noise factor, frequency response and bandwidth etc. The simulations are performed versus various multiplication layer thicknesses with certain fixed values for the areal charge sheet density whereas the values for the other structure and material parameters are kept unchanged. The frequency response is obtained from the impulse response by fast Fourier transformation. The modeling results are presented and discussed, and design considerations, especially for high speed operation at 10 Gbit/s, are further analyzed.

  14. Flower-like NiO structures: Controlled hydrothermal synthesis and electrochemical characteristic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chai, Hui; Chen, Xuan; Key Laboratory of Advanced Functional Materials, Institute of Applied Chemistry, Xinjiang University, Urumqi 830046, Xinjiang

    Graphical abstract: Flower-like porous NiO was obtained via thermal decomposition of the precursor prepared by a hydrothermal process using hexamethylenetetramine and polyethylene glycol as hydrolysis-controlling agent and surfactant, respectively. The morphology and microstructure of as-synthesized NiO were characterized by X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results of electrochemical measurements demonstrated that the flower-like porous NiO has high capacity (340 F g{sup −1}) with excellent cycling performance as electrode materials of electrochemical capacitors (ECs), which may be attributed to the unique microstrcture of NiO. Data analyses indicated that NiO with novel porousmore » structure attractive for practical and large-scale applications in electrochemical capacitors. Display Omitted Highlights: ► Synthesis and characterization of NiO with novel porous structure is presented in this work. ► The electrochemical performance of product was examined. ► NiO with excellent performance as electrode materials may be due to the unique microstrcture. ► NiO with novel porous structure attractive for practical with high capacity (340 F g{sup −1}). -- Abstract: Flower-like porous NiO was obtained by thermal decomposition of the precursor prepared by a hydrothermal process with hexamethylenetetramine and polyethylene glycol as hydrolysis-controlling agent and surfactant, respectively. The morphology and microstructure of as-synthesized NiO were characterized by X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The resulting structures of NiO exhibited porous like petal building blocks. The electrochemical measurements’ results demonstrated that flower-like porous NiO has high capacity (340 F g{sup −1}) with excellent cycling performance as electrode materials for electrochemical capacitors, which may be attributed to the unique structure of NiO. The results indicated that NiO with novel porous structure has been attractive for practical and large-scale applications in electrochemical capacitors.« less

  15. Variational study on the vibrational level structure and vibrational level mixing of highly vibrationally excited S₀ D₂CO.

    PubMed

    Rashev, Svetoslav; Moule, David C; Rashev, Vladimir

    2012-11-01

    We perform converged high precision variational calculations to determine the frequencies of a large number of vibrational levels in S(0) D(2)CO, extending from low to very high excess vibrational energies. For the calculations we use our specific vibrational method (recently employed for studies on H(2)CO), consisting of a combination of a search/selection algorithm and a Lanczos iteration procedure. Using the same method we perform large scale converged calculations on the vibrational level spectral structure and fragmentation at selected highly excited overtone states, up to excess vibrational energies of ∼17,000 cm(-1), in order to study the characteristics of intramolecular vibrational redistribution (IVR), vibrational level density and mode selectivity. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Design of Life Extending Controls Using Nonlinear Parameter Optimization

    NASA Technical Reports Server (NTRS)

    Lorenzo, Carl F.; Holmes, Michael S.; Ray, Asok

    1998-01-01

    This report presents the conceptual development of a life extending control system where the objective is to achieve high performance and structural durability of the plant. A life extending controller is designed for a reusable rocket engine via damage mitigation in both the fuel and oxidizer turbines while achieving high performance for transient responses of the combustion chamber pressure and the O2/H2 mixture ratio. This design approach makes use of a combination of linear and nonlinear controller synthesis techniques and also allows adaptation of the life extending controller module to augment a conventional performance controller of a rocket engine. The nonlinear aspect of the design is achieved using nonlinear parameter optimization of a prescribed control structure.

  17. High-performance tin oxide-nitrogen doped graphene aerogel hybrids as anode materials for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Tan, Chunhui; Cao, Jing; Khattak, Abdul Muqsit; Cai, Feipeng; Jiang, Bo; Yang, Gai; Hu, Suqin

    2014-12-01

    Tin dioxide nanoparticles on nitrogen doped graphene aerogel (SnO2-NGA) hybrid are synthesized by one-step hydrothermal method and successfully applied in lithium-ion batteries as a free-standing anode. The electrochemical performance of SnO2-NGA hybrid is investigated by galvanostatic charge-discharge cycling, rate capability test, cyclic voltammetry and electrochemical impedance spectroscopy. It is found that the SnO2-NGA hybrid with freestanding spongy-like structure exhibit remarkable lithium storage capacity (1100 mAh g-1 after 100 cycles), good cycling stability and high rate capability. The outstanding performance is attributed to the uniform SnO2 nanoparticles, unique spongy-like structure and N doping defect for Li+ diffusion.

  18. Methanesulfonic acid-assisted synthesis of N/S co-doped hierarchically porous carbon for high performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Huo, Silu; Liu, Mingquan; Wu, Linlin; Liu, Mingjie; Xu, Min; Ni, Wei; Yan, Yi-Ming

    2018-05-01

    Nitrogen and sulfur co-doped carbons are considered as electrode materials for high performance supercapacitors, while their further development is still limited by complicated synthesis procedure, unsatisfied structure and low energy density. Developing a simple synthetic strategy to obtain rationally structured carbon materials and high supercapacitor performance is remaining a grand challenge. Herein, we describe the synthesis of nitrogen and sulfur co-doped hierarchical porous carbons as high performance supercapacitors electrode by a methanesulfonic acid-assisted one-step carbonization and activation of the freeze-dried precursors mixture. The as-prepared carbon material not only exhibits ideally hierarchical pores, but also realizes uniform nitrogen and sulfur co-doping. In 6.0 M KOH electrolyte, the material can achieve a high specific capacitance of 272 F g-1 at 1.0 A g-1 and a promising rate performance retaining 172 F g-1 even at 100 A g-1. Moreover, a fabricated symmetric supercapacitor based on as-prepared nitrogen and sulfur co-doped hierarchical porous carbon delivers high energy densities of 12.4 W h kg-1 and 8.0 W h kg-1 in 6.0 M KOH liquid and KOH/PVA solid-state electrolytes, respectively. This work presents a simple and effective methanesulfonic acid-assisted approach for mass production of heteroatomic doping hierarchical porous carbons for future energy storage applications.

  19. A Near-Zero Refractive Index Meta-Surface Structure for Antenna Performance Improvement.

    PubMed

    Ullah, Mohammad Habib; Islam, Mohammad Tariqul; Faruque, Mohammad Rashed Iqbal

    2013-11-06

    A new meta-surface structure (MSS) with a near-zero refractive index (NZRI) is proposed to enhance the performance of a square loop antenna array. The main challenge to improve the antenna performance is increment of the overall antenna volume that is mitigated by assimilating the planar NZRI MSS at the back of the antenna structure. The proposed NZRI MSS-loaded CPW-fed (Co-Planar Waveguide) four-element array antenna is designed on ceramic-bioplastic-ceramic sandwich substrate using high-frequency structure simulator (HFSS), a finite-element-method-based simulation tool. The gain and directivity of the antenna are significantly enhanced by incorporating the NZRI MSS with a 7 × 6 set of elements at the back of the antenna structure. Measurement results show that the maximum gains of the antenna increased from 6.21 dBi to 8.25 dBi, from 6.52 dBi to 9.05 dBi and from 10.54 dBi to 12.15 dBi in the first, second and third bands, respectively. The effect of the slot configuration in the ground plane on the reflection coefficient of the antenna was analyzed and optimized. The overall performance makes the proposed antenna appropriate for UHFFM (Ultra High Frequency Frequency Modulation) telemetry-based space applications as well as mobile satellite, microwave radiometry and radio astronomy applications.

  20. A Near-Zero Refractive Index Meta-Surface Structure for Antenna Performance Improvement

    PubMed Central

    Ullah, Mohammad Habib; Islam, Mohammad Tariqul; Faruque, Mohammad Rashed Iqbal

    2013-01-01

    A new meta-surface structure (MSS) with a near-zero refractive index (NZRI) is proposed to enhance the performance of a square loop antenna array. The main challenge to improve the antenna performance is increment of the overall antenna volume that is mitigated by assimilating the planar NZRI MSS at the back of the antenna structure. The proposed NZRI MSS-loaded CPW-fed (Co-Planar Waveguide) four-element array antenna is designed on ceramic-bioplastic-ceramic sandwich substrate using high-frequency structure simulator (HFSS), a finite-element-method-based simulation tool. The gain and directivity of the antenna are significantly enhanced by incorporating the NZRI MSS with a 7 × 6 set of elements at the back of the antenna structure. Measurement results show that the maximum gains of the antenna increased from 6.21 dBi to 8.25 dBi, from 6.52 dBi to 9.05 dBi and from 10.54 dBi to 12.15 dBi in the first, second and third bands, respectively. The effect of the slot configuration in the ground plane on the reflection coefficient of the antenna was analyzed and optimized. The overall performance makes the proposed antenna appropriate for UHFFM (Ultra High Frequency Frequency Modulation) telemetry-based space applications as well as mobile satellite, microwave radiometry and radio astronomy applications. PMID:28788376

  1. Biological and functional relevance of CASP predictions

    PubMed Central

    Liu, Tianyun; Ish‐Shalom, Shirbi; Torng, Wen; Lafita, Aleix; Bock, Christian; Mort, Matthew; Cooper, David N; Bliven, Spencer; Capitani, Guido; Mooney, Sean D.

    2017-01-01

    Abstract Our goal is to answer the question: compared with experimental structures, how useful are predicted models for functional annotation? We assessed the functional utility of predicted models by comparing the performances of a suite of methods for functional characterization on the predictions and the experimental structures. We identified 28 sites in 25 protein targets to perform functional assessment. These 28 sites included nine sites with known ligand binding (holo‐sites), nine sites that are expected or suggested by experimental authors for small molecule binding (apo‐sites), and Ten sites containing important motifs, loops, or key residues with important disease‐associated mutations. We evaluated the utility of the predictions by comparing their microenvironments to the experimental structures. Overall structural quality correlates with functional utility. However, the best‐ranked predictions (global) may not have the best functional quality (local). Our assessment provides an ability to discriminate between predictions with high structural quality. When assessing ligand‐binding sites, most prediction methods have higher performance on apo‐sites than holo‐sites. Some servers show consistently high performance for certain types of functional sites. Finally, many functional sites are associated with protein‐protein interaction. We also analyzed biologically relevant features from the protein assemblies of two targets where the active site spanned the protein‐protein interface. For the assembly targets, we find that the features in the models are mainly determined by the choice of template. PMID:28975675

  2. Reduction of Simulation Times for High-Q Structures using the Resonance Equation

    DOE PAGES

    Hall, Thomas Wesley; Bandaru, Prabhakar R.; Rees, Daniel Earl

    2015-11-17

    Simulating steady state performance of high quality factor (Q) resonant RF structures is computationally difficult for structures with sizes on the order of more than a few wavelengths because of the long times (on the order of ~ 0.1 ms) required to achieve steady state in comparison with maximum time step that can be used in the simulation (typically, on the order of ~ 1 ps). This paper presents analytical and computational approaches that can be used to accelerate the simulation of the steady state performance of such structures. The basis of the proposed approach is the utilization of amore » larger amplitude signal at the beginning to achieve steady state earlier relative to the nominal input signal. Finally, the methodology for finding the necessary input signal is then discussed in detail, and the validity of the approach is evaluated.« less

  3. A Particle Swarm Optimization-Based Approach with Local Search for Predicting Protein Folding.

    PubMed

    Yang, Cheng-Hong; Lin, Yu-Shiun; Chuang, Li-Yeh; Chang, Hsueh-Wei

    2017-10-01

    The hydrophobic-polar (HP) model is commonly used for predicting protein folding structures and hydrophobic interactions. This study developed a particle swarm optimization (PSO)-based algorithm combined with local search algorithms; specifically, the high exploration PSO (HEPSO) algorithm (which can execute global search processes) was combined with three local search algorithms (hill-climbing algorithm, greedy algorithm, and Tabu table), yielding the proposed HE-L-PSO algorithm. By using 20 known protein structures, we evaluated the performance of the HE-L-PSO algorithm in predicting protein folding in the HP model. The proposed HE-L-PSO algorithm exhibited favorable performance in predicting both short and long amino acid sequences with high reproducibility and stability, compared with seven reported algorithms. The HE-L-PSO algorithm yielded optimal solutions for all predicted protein folding structures. All HE-L-PSO-predicted protein folding structures possessed a hydrophobic core that is similar to normal protein folding.

  4. An integrated framework for high level design of high performance signal processing circuits on FPGAs

    NASA Astrophysics Data System (ADS)

    Benkrid, K.; Belkacemi, S.; Sukhsawas, S.

    2005-06-01

    This paper proposes an integrated framework for the high level design of high performance signal processing algorithms' implementations on FPGAs. The framework emerged from a constant need to rapidly implement increasingly complicated algorithms on FPGAs while maintaining the high performance needed in many real time digital signal processing applications. This is particularly important for application developers who often rely on iterative and interactive development methodologies. The central idea behind the proposed framework is to dynamically integrate high performance structural hardware description languages with higher level hardware languages in other to help satisfy the dual requirement of high level design and high performance implementation. The paper illustrates this by integrating two environments: Celoxica's Handel-C language, and HIDE, a structural hardware environment developed at the Queen's University of Belfast. On the one hand, Handel-C has been proven to be very useful in the rapid design and prototyping of FPGA circuits, especially control intensive ones. On the other hand, HIDE, has been used extensively, and successfully, in the generation of highly optimised parameterisable FPGA cores. In this paper, this is illustrated in the construction of a scalable and fully parameterisable core for image algebra's five core neighbourhood operations, where fully floorplanned efficient FPGA configurations, in the form of EDIF netlists, are generated automatically for instances of the core. In the proposed combined framework, highly optimised data paths are invoked dynamically from within Handel-C, and are synthesized using HIDE. Although the idea might seem simple prima facie, it could have serious implications on the design of future generations of hardware description languages.

  5. An efficient synthesis strategy for metal-organic frameworks: Dry-gel synthesis of MOF-74 framework with high yield and improved performance

    DOE PAGES

    Das, Atanu Kumar; Vemuri, Rama Sesha; Kutnyakov, Igor; ...

    2016-06-16

    Here, vapor-assisted dry-gel synthesis of MOF-74 structure, specifically NiMOF-74 from its synthetic precursors, was conducted with high yield and improved performance showing promise for gas (CO 2) and water adsorption applications. Unlike conventional synthesis, which takes 72 h, this kinetic study showed that NiMOF-74 forms within 12 h under dry-gel conditions with similar performance characteristics and exhibits the best performance characteristics after 48 h of heating.

  6. Multidimensional MnO2 nanohair-decorated hybrid multichannel carbon nanofiber as an electrode material for high-performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Jun, Jaemoon; Lee, Jun Seop; Shin, Dong Hoon; Kim, Sung Gun; Jang, Jyongsik

    2015-09-01

    One-dimensional (1D)-structured nanomaterials represent one of the most attractive candidates for energy-storage systems due to their contribution to design simplicity, fast charge-transportation network, and their allowance for more accessible ion diffusion. In particular, 1D-structured nanomaterials with a highly complex inner-pore configuration enhance functionality by taking advantage of both the hollow and 1D structures. In this study, we report a MnO2 nanohair-decorated, hybrid multichannel carbon nanofiber (Mn_MCNF) fabricated via single-nozzle co-electrospinning of two immiscible polymer solutions, followed by carbonization and redox reactions. With improved ion accessibility, the optimized Mn_MCNF sample (Mn_MCNF_60 corresponding to a reaction duration time of 60 min for optimal MnO2 nanohair growth) exhibited a high specific capacitance of 855 F g-1 and excellent cycling performance with ~87.3% capacitance retention over 5000 cycles.One-dimensional (1D)-structured nanomaterials represent one of the most attractive candidates for energy-storage systems due to their contribution to design simplicity, fast charge-transportation network, and their allowance for more accessible ion diffusion. In particular, 1D-structured nanomaterials with a highly complex inner-pore configuration enhance functionality by taking advantage of both the hollow and 1D structures. In this study, we report a MnO2 nanohair-decorated, hybrid multichannel carbon nanofiber (Mn_MCNF) fabricated via single-nozzle co-electrospinning of two immiscible polymer solutions, followed by carbonization and redox reactions. With improved ion accessibility, the optimized Mn_MCNF sample (Mn_MCNF_60 corresponding to a reaction duration time of 60 min for optimal MnO2 nanohair growth) exhibited a high specific capacitance of 855 F g-1 and excellent cycling performance with ~87.3% capacitance retention over 5000 cycles. Electronic supplementary information (ESI) available: Experimental data includes optical images, TGA, magnified pore distribution curves and supercapacitor device of the MCNF and Mn_MCNF. See DOI: 10.1039/C5NR03616J

  7. Advances In High Temperature (Viscoelastoplastic) Material Modeling for Thermal Structural Analysis

    NASA Technical Reports Server (NTRS)

    Arnold, Steven M.; Saleeb, Atef F.

    2005-01-01

    Typical High Temperature Applications High Temperature Applications Demand High Performance Materials: 1) Complex Thermomechanical Loading; 2) Complex Material response requires Time-Dependent/Hereditary Models: Viscoelastic/Viscoplastic; and 3) Comprehensive Characterization (Tensile, Creep, Relaxation) for a variety of material systems.

  8. Evaluation of Graphite Fiber/Polyimide PMCs from Hot Melt vs Solution Prepreg

    NASA Technical Reports Server (NTRS)

    Shin, E. Eugene; Sutter, James K.; Eakin, Howard; Inghram, Linda; McCorkle, Linda; Scheiman, Dan; Papadopoulos, Demetrios; Thesken, John; Fink, Jeffrey E.

    2002-01-01

    Carbon fiber reinforced high temperature polymer matrix composites (PMC) have been extensively investigated as potential weight reduction replacements of various metallic components in next generation high performance propulsion rocket engines. The initial phase involves development of comprehensive composite material-process-structure-design-property-in-service performance correlations and database, especially for a high stiffness facesheet of various sandwich structures. Overview of the program plan, technical approaches and current multi-team efforts will be presented. During composite fabrication, it was found that the two large volume commercial prepregging methods (hot-melt vs. solution) resulted in considerably different composite cure behavior. Details of the process-induced physical and chemical modifications in the prepregs, their effects on composite processing, and systematic cure cycle optimization studies will be discussed. The combined effects of prepregging method and cure cycle modification on composite properties and isothermal aging performance were also evaluated.

  9. Structural Polymer-Based Carbon Nanotube Composite Fibers: Understanding the Processing–Structure–Performance Relationship

    PubMed Central

    Song, Kenan; Zhang, Yiying; Meng, Jiangsha; Green, Emily C.; Tajaddod, Navid; Li, Heng; Minus, Marilyn L.

    2013-01-01

    Among the many potential applications of carbon nanotubes (CNT), its usage to strengthen polymers has been paid considerable attention due to the exceptional stiffness, excellent strength, and the low density of CNT. This has provided numerous opportunities for the invention of new material systems for applications requiring high strength and high modulus. Precise control over processing factors, including preserving intact CNT structure, uniform dispersion of CNT within the polymer matrix, effective filler–matrix interfacial interactions, and alignment/orientation of polymer chains/CNT, contribute to the composite fibers’ superior properties. For this reason, fabrication methods play an important role in determining the composite fibers’ microstructure and ultimate mechanical behavior. The current state-of-the-art polymer/CNT high-performance composite fibers, especially in regards to processing–structure–performance, are reviewed in this contribution. Future needs for material by design approaches for processing these nano-composite systems are also discussed. PMID:28809290

  10. Effects of (Oxy-)Fluorination on Various High-Performance Yarns.

    PubMed

    Kruppke, Iris; Bartusch, Matthias; Hickmann, Rico; Hund, Rolf-Dieter; Cherif, Chokri

    2016-08-26

    In this work, typical high-performance yarns are oxy-fluorinated, such as carbon fibers, ultra-high-molecular-weight polyethylene, poly(p-phenylene sulfide) and poly(p-phenylene terephthalamide). The focus is on the property changes of the fiber surface, especially the wetting behavior, structure and chemical composition. Therefore, contact angle, XPS and tensile strength measurements are performed on treated and untreated fibers, while SEM is utilized to evaluate the surface structure. Different results for the fiber materials are observed. While polyethylene exhibits a relevant impact on both surface and bulk properties, polyphenylene terephthalamide and polyphenylene sulfide are only affected slightly by (oxy-)fluorination. The wetting of carbon fiber needs higher treatment intensities, but in contrast to the organic fibers, even its textile-physical properties are enhanced by the treatment. Based on these findings, the capability of (oxy-)fluorination to improve the adhesion of textiles in fiber-reinforced composite materials can be derived.

  11. Evaluation of Graphite Fiber/Polyimide PMCs from Hot Melt versus Solution Prepreg

    NASA Technical Reports Server (NTRS)

    Shin, Eugene E.; Sutter, James K.; Eakin, Howard; Inghram, Linda; McCorkle, Linda; Scheiman, Dan; Papadopoulos, Demetrios; Thesken, John; Fink, Jeffrey E.; Gray, Hugh R. (Technical Monitor)

    2002-01-01

    Carbon fiber reinforced high temperature polymer matrix composites (PMC) have been extensively investigated as potential weight reduction replacements of various metallic components in next generation high performance propulsion rocket engines. The initial phase involves development of comprehensive composite material-process-structure-design-property in-service performance correlations and database, especially for a high stiffness facesheet of various sandwich structures. Overview of the program plan, technical approaches and current multi-team efforts will be presented. During composite fabrication, it was found that the two large volume commercial prepregging methods (hot-melt vs. solution) resulted in considerably different composite cure behavior. Details of the process-induced physical and chemical modifications in the prepregs, their effects on composite processing, and systematic cure cycle optimization studies will be discussed. The combined effects of prepregging method and cure cycle modification on composite properties and isothermal aging performance were also evaluated.

  12. Structured Innovation of High-Performance Wave Energy Converter Technology: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weber, Jochem W.; Laird, Daniel

    Wave energy converter (WEC) technology development has not yet delivered the desired commercial maturity nor, and more importantly, the techno-economic performance. The reasons for this have been recognized and fundamental requirements for successful WEC technology development have been identified. This paper describes a multi-year project pursued in collaboration by the National Renewable Energy Laboratory and Sandia National Laboratories to innovate and develop new WEC technology. It specifies the project strategy, shows how this differs from the state-of-the-art approach and presents some early project results. Based on the specification of fundamental functional requirements of WEC technology, structured innovation and systemic problemmore » solving methodologies are applied to invent and identify new WEC technology concepts. Using Technology Performance Levels (TPL) as an assessment metric of the techno-economic performance potential, high performance technology concepts are identified and selected for further development. System performance is numerically modelled and optimized and key performance aspects are empirically validated. The project deliverables are WEC technology specifications of high techno-economic performance technologies of TPL 7 or higher at TRL 3 with some key technology challenges investigated at higher TRL. These wave energy converter technology specifications will be made available to industry for further, full development and commercialisation (TRL 4 - TRL 9).« less

  13. Advanced Graphene-Based Binder-Free Electrodes for High-Performance Energy Storage.

    PubMed

    Ji, Junyi; Li, Yang; Peng, Wenchao; Zhang, Guoliang; Zhang, Fengbao; Fan, Xiaobin

    2015-09-23

    The increasing demand for energy has triggered tremendous research effort for the development of high-performance and durable energy-storage devices. Advanced graphene-based electrodes with high electrical conductivity and ion accessibility can exhibit superior electrochemical performance in energy-storage devices. Among them, binder-free configurations can enhance the electron conductivity of the electrode, which leads to a higher capacity by avoiding the addition of non-conductive and inactive binders. Graphene, a 2D material, can be fabricated into a porous and flexible structure with an interconnected conductive network. Such a conductive structure is favorable for both electron and ion transport to the entire electrode surface. In this review, the main processes used to prepare binder-free graphene-based hybrids with high porosity and well-designed electron conductive networks are summarized. Then, the applications of free-standing binder-free graphene-based electrodes in energy-storage devices are discussed. Future research aspects with regard to overcoming the technological bottlenecks are also proposed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Surface engineering of hierarchical platinum-cobalt nanowires for efficient electrocatalysis

    DOE PAGES

    Bu, Lingzheng; Guo, Shaojun; Zhang, Xu; ...

    2016-06-29

    Despite intense research in past decades, the lack of high-performance catalysts for fuel cell reactions remains a challenge in realizing fuel cell technologies for transportation applications. Here we report a facile strategy for synthesizing hierarchical platinum-cobalt nanowires with high-index, platinum-rich facets and ordered intermetallic structure. These structural features enable unprecedented performance for the oxygen reduction and alcohol oxidation reactions. The specific/mass activities of the platinum-cobalt nanowires for oxygen reduction reaction are 39.6/33.7 times higher than commercial Pt/C catalyst, respectively. Density functional theory simulations reveal that the active threefold hollow sites on the platinum-rich high-index facets provide an additional factor inmore » enhancing oxygen reduction reaction activities. The nanowires are stable in the electrochemical conditions and also thermally stable. Furthermore, this work may represent a key step towards scalable production of high performance platinum-based nanowires for applications in catalysis and energy conversion.« less

  15. Room temperature negative differential resistance in terahertz quantum cascade laser structures

    DOE PAGES

    Albo, Asaf; Hu, Qing; Reno, John L.

    2016-08-24

    The mechanisms that limit the temperature performance of GaAs/Al 0.15GaAs-based terahertz quantum cascade lasers (THz-QCLs) have been identified as thermally activated LO-phonon scattering and leakage of charge carriers into the continuum. Consequently, the combination of highly diagonal optical transition and higher barriers should significantly reduce the adverse effects of both mechanisms and lead to improved temperature performance. Here, we study the temperature performance of highly diagonal THz-QCLs with high barriers. Our analysis uncovers an additional leakage channel which is the thermal excitation of carriers into bounded higher energy levels, rather than the escape into the continuum. Based on this understanding,more » we have designed a structure with an increased intersubband spacing between the upper lasing level and excited states in a highly diagonal THz-QCL, which exhibits negative differential resistance even at room temperature. Furthermore, this result is a strong evidence for the effective suppression of the aforementioned leakage channel.« less

  16. Hierarchically Porous Carbon Materials for CO 2 Capture: The Role of Pore Structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Estevez, Luis; Barpaga, Dushyant; Zheng, Jian

    2018-01-17

    With advances in porous carbon synthesis techniques, hierarchically porous carbon (HPC) materials are being utilized as relatively new porous carbon sorbents for CO2 capture applications. These HPC materials were used as a platform to prepare samples with differing textural properties and morphologies to elucidate structure-property relationships. It was found that high microporous content, rather than overall surface area was of primary importance for predicting good CO2 capture performance. Two HPC materials were analyzed, each with near identical high surface area (~2700 m2/g) and colossally high pore volume (~10 cm3/g), but with different microporous content and pore size distributions, which ledmore » to dramatically different CO2 capture performance. Overall, large pore volumes obtained from distinct mesopores were found to significantly impact adsorption performance. From these results, an optimized HPC material was synthesized that achieved a high CO2 capacity of ~3.7 mmol/g at 25°C and 1 bar.« less

  17. Joint Optics Structures Experiment (JOSE)

    NASA Technical Reports Server (NTRS)

    Founds, David

    1987-01-01

    The objectives of the JOSE program is to develop, demonstrate, and evaluate active vibration suppression techniques for Directed Energy Weapons (DEW). DEW system performance is highly influenced by the line-of-sight (LOS) stability and in some cases by the wave front quality. The missions envisioned for DEW systems by the Strategic Defense Initiative require LOS stability and wave front quality to be significantly improved over any current demonstrated capability. The Active Control of Space Structures (ACOSS) program led to the development of a number of promising structural control techniques. DEW structures are vastly more complex than any structures controlled to date. They will be subject to disturbances with significantly higher magnitudes and wider bandwidths, while holding higher tolerances on allowable motions and deformations. Meeting the performance requirements of the JOSE program requires upgrading the ACOSS techniques to meet new more stringent requirements, the development of requisite sensors and acturators, improved control processors, highly accurate system identification methods, and the integration of hardware and methodologies into a successful demonstration.

  18. Group III-arsenide-nitride long wavelength laser diodes

    NASA Astrophysics Data System (ADS)

    Coldren, Christopher W.

    Semiconductor laser diodes transmitting data over silica optical fiber form the backbone of modern day communications systems, enabling terabit per second data transmission over hundreds to thousands of kilometers of distance. The wavelength of emission of the transmission semiconductor laser diode is a critical parameter that determines the performance of the communications system. In high performance fiber optic communications systems, lasers emitting at 1300nm and 1550nm are used because of the low loss and distortion properties of the fiber in these spectral windows. The available lasers today that operate in these fiber optic transmission windows suffer from high cost and poor performance under the typical environmental conditions and require costly and unreliable cooling systems. This dissertation presents work that demonstrates that it is possible to make lasers devices with 1300nm laser emission that are compatible with low cost and operation under extreme operating conditions. The key enabling technology developed is a novel semiconductor material based structure. A group III-Arsenide-Nitride quantum well structure was developed that can be grown expitaxially on GaAs substrates. The properties of this group III-Arsenide-Nitride structure allowed high performance edge emitting and vertical cavity surface emitting lasers to be fabricated which exhibited low threshold currents and low sensitivity to operating temperature.

  19. Rational Design of Porous Covalent Triazine-Based Framework Composites as Advanced Organic Lithium-Ion Battery Cathodes.

    PubMed

    Yuan, Ruoxin; Kang, Wenbin; Zhang, Chuhong

    2018-06-02

    In an effort to explore the use of organic high-performance lithium ion battery cathodes as an alternative to resolve the current bottleneck hampering the development of their inorganic counterparts, a rational strategy focusing on the optimal composition of covalent triazine-based frameworks (CTFs) with carbon-based materials of varied dimensionalities is delineated. Two-dimensional reduced graphene oxide (rGO) with a compatible structural conformation with the layered CTF is the most suitable scaffold for the tailored mesopores in the polymeric framework, providing outstanding energy storage ability. Through facile ionothermal synthesis and structure engineering, the obtained CTF-rGO composite possesses a high specific surface area of 1357.27 m²/g, and when used as a lithium ion battery cathode it delivers a large capacity of 235 mAh/g in 80 cycles at 0.1 A/g along with a stable capacity of 127 mAh/g over 2500 cycles at 5 A/g. The composite with modified pore structure shows drastically improved performance compared to a pristine CTF, especially at large discharge currents. The CTF-rGO composite with excellent capacity, stability, and rate performance shows great promise as an emerging high-performance cathode that could revolutionize the conventional lithium-ion battery industry.

  20. Dual Cavitating Hydrofoil Structures for Multi-Speed Applications.

    DTIC Science & Technology

    A hydrofoil structures for efficient operation over a wide speed range from subcavitating to supercavitating operation is provided. The...dualcavitating hydrofoil overcomes cavitation problems associated with high speed operation of prior art subcavitating hydrofoils by providing a supercavitating ...profile shape in the lower surface to achieve a supercavitating condition at high speeds and overcomes performance related problems associated with low

  1. High pressure effects on allergen food proteins.

    PubMed

    Somkuti, Judit; Smeller, László

    2013-12-15

    There are several proteins, which can cause allergic reaction if they are inhaled or ingested. Our everyday food can also contain such proteins. Food allergy is an IgE-mediated immune disorder, a growing health problem of great public concern. High pressure is known to affect the structure of proteins; typically few hundred MPa pressure can lead to denaturation. That is why several trials have been performed to alter the structure of the allergen proteins by high pressure, in order to reduce its allergenicity. Studies have been performed both on simple protein solutions and on complex food systems. Here we review those allergens which have been investigated under or after high pressure treatment by methods capable of detecting changes in the secondary and tertiary structure of the proteins. We focus on those allergenic proteins, whose structural changes were investigated by spectroscopic methods under pressure in correlation with the observed allergenicity (IgE binding) changes. According to this criterion we selected the following allergen proteins: Mal d 1 and Mal d 3 (apple), Bos d 5 (milk), Dau c 1 (carrot), Gal d 2 (egg), Ara h 2 and Ara h 6 (peanut), and Gad m 1 (cod). Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Performance and non-destructive evaluation methods of airborne radome and stealth structures

    NASA Astrophysics Data System (ADS)

    Panwar, Ravi; Ryul Lee, Jung

    2018-06-01

    In the past few years, great effort has been devoted to the fabrication of highly efficient, broadband radome and stealth (R&S) structures for distinct control, guidance, surveillance and communication applications for airborne platforms. The evaluation of non-planar aircraft R&S structures in terms of their electromagnetic performance and structural damage is still a very challenging task. In this article, distinct measurement techniques are discussed for the electromagnetic performance and non-destructive evaluation (NDE) of R&S structures. This paper deals with an overview of the transmission line method and free space measurement based microwave measurement techniques for the electromagnetic performance evaluation of R&S structures. In addition, various conventional as well as advanced methods, such as millimetre and terahertz wave based imaging techniques with great potential for NDE of load bearing R&S structures, are also discussed in detail. A glimpse of in situ NDE techniques with corresponding experimental setup for R&S structures is also presented. The basic concepts, measurement ranges and their instrumentation, measurement method of different R&S structures and some miscellaneous topics are discussed in detail. Some of the challenges and issues pertaining to the measurement of curved R&S structures are also presented. This study also lists various mathematical models and analytical techniques for the electromagnetic performance evaluation and NDE of R&S structures. The research directions described in this study may be of interest to the scientific community in the aerospace sectors.

  3. Prediction of brain-computer interface aptitude from individual brain structure.

    PubMed

    Halder, S; Varkuti, B; Bogdan, M; Kübler, A; Rosenstiel, W; Sitaram, R; Birbaumer, N

    2013-01-01

    Brain-computer interface (BCI) provide a non-muscular communication channel for patients with impairments of the motor system. A significant number of BCI users is unable to obtain voluntary control of a BCI-system in proper time. This makes methods that can be used to determine the aptitude of a user necessary. We hypothesized that integrity and connectivity of involved white matter connections may serve as a predictor of individual BCI-performance. Therefore, we analyzed structural data from anatomical scans and DTI of motor imagery BCI-users differentiated into high and low BCI-aptitude groups based on their overall performance. Using a machine learning classification method we identified discriminating structural brain trait features and correlated the best features with a continuous measure of individual BCI-performance. Prediction of the aptitude group of each participant was possible with near perfect accuracy (one error). Tissue volumetric analysis yielded only poor classification results. In contrast, the structural integrity and myelination quality of deep white matter structures such as the Corpus Callosum, Cingulum, and Superior Fronto-Occipital Fascicle were positively correlated with individual BCI-performance. This confirms that structural brain traits contribute to individual performance in BCI use.

  4. Prediction of brain-computer interface aptitude from individual brain structure

    PubMed Central

    Halder, S.; Varkuti, B.; Bogdan, M.; Kübler, A.; Rosenstiel, W.; Sitaram, R.; Birbaumer, N.

    2013-01-01

    Objective: Brain-computer interface (BCI) provide a non-muscular communication channel for patients with impairments of the motor system. A significant number of BCI users is unable to obtain voluntary control of a BCI-system in proper time. This makes methods that can be used to determine the aptitude of a user necessary. Methods: We hypothesized that integrity and connectivity of involved white matter connections may serve as a predictor of individual BCI-performance. Therefore, we analyzed structural data from anatomical scans and DTI of motor imagery BCI-users differentiated into high and low BCI-aptitude groups based on their overall performance. Results: Using a machine learning classification method we identified discriminating structural brain trait features and correlated the best features with a continuous measure of individual BCI-performance. Prediction of the aptitude group of each participant was possible with near perfect accuracy (one error). Conclusions: Tissue volumetric analysis yielded only poor classification results. In contrast, the structural integrity and myelination quality of deep white matter structures such as the Corpus Callosum, Cingulum, and Superior Fronto-Occipital Fascicle were positively correlated with individual BCI-performance. Significance: This confirms that structural brain traits contribute to individual performance in BCI use. PMID:23565083

  5. Research on Submarine Pipeline Steel with High Performance

    NASA Astrophysics Data System (ADS)

    Ren, Yi; Liu, Wenyue; Zhang, Shuai; Wang, Shuang; Gao, Hong

    Submarine pipeline steel has largely uniform elongation, low yield ratio and good balance between high strength and high plasticity because of the microstructure with dual phase. In this work, the microstructure and properties of the submarine pipeline steel are studied. The results show that the matrix structure is consisted of ferrite, bainite and martensite -austenite islands. The structure has a tight relationship with the thermal-mechanical controlled process. Fine dual phase shows good plasticity and low yield ratio, which can support the good balance between high strength and high plasticity.

  6. Rad-Hard Structured ASIC Body of Knowledge

    NASA Technical Reports Server (NTRS)

    Heidecker, Jason

    2013-01-01

    Structured Application-Specific Integrated Circuit (ASIC) technology is a platform between traditional ASICs and Field-Programmable Gate Arrays (FPGA). The motivation behind structured ASICs is to combine the low nonrecurring engineering costs (NRE) costs of FPGAs with the high performance of ASICs. This report provides an overview of the structured ASIC platforms that are radiation-hardened and intended for space application

  7. Lattice Boltzmann Methods for Fluid Structure Interaction

    DTIC Science & Technology

    2012-09-01

    MONTEREY, CALIFORNIA DISSERTATION LATTICE BOLTZMANN METHODS FOR FLUID STRUCTURE INTERACTION by Stuart R. Blair September 2012 Dissertation Supervisor...200 words) The use of lattice Boltzmann methods (LBM) for fluid flow and its coupling with finite element method (FEM) structural models for fluid... structure interaction (FSI) is investigated. A body of high performance LBM software that exploits graphic processing unit (GPU) and multiprocessor

  8. Evidence from EXAFS for Different Ta/Ti Site Occupancy in High Critical Current Density Nb3Sn Superconductor Wires.

    PubMed

    Heald, Steve M; Tarantini, Chiara; Lee, Peter J; Brown, Michael D; Sung, ZuHawn; Ghosh, Arup K; Larbalestier, David C

    2018-03-19

    To meet critical current density, J c , targets for the Future Circular Collider (FCC), the planned replacement for the Large Hadron Collider (LHC), the high field performance of Nb 3 Sn must be improved, but champion J c values have remained static for the last 10 years. Making the A15 phase stoichiometric and enhancing the upper critical field H c2 by Ti or Ta dopants are the standard strategies for enhancing high field performance but detailed recent studies show that even the best modern wires have broad composition ranges. To assess whether further improvement might be possible, we employed Extended X-ray Absorption Fine Structure (EXAFS) to determine the lattice site location of dopants in modern high-performance Nb 3 Sn strands with J c values amongst the best so far achieved. Although Ti and Ta primarily occupy the Nb sites in the A15 structure, we also find significant Ta occupancy on the Sn site. These findings indicate that the best performing Ti-doped stand is strongly sub-stoichiometric in Sn and that antisite disorder likely explains its high average H c2 behavior. These new results suggest an important role for dopant and antisite disorder in minimizing superconducting property distributions and maximizing high field J c properties.

  9. Design Optimization and Fabrication of a Novel Structural SOI Piezoresistive Pressure Sensor with High Accuracy

    PubMed Central

    Li, Chuang; Cordovilla, Francisco; Jagdheesh, R.

    2018-01-01

    This paper presents a novel structural piezoresistive pressure sensor with four-grooved membrane combined with rood beam to measure low pressure. In this investigation, the design, optimization, fabrication, and measurements of the sensor are involved. By analyzing the stress distribution and deflection of sensitive elements using finite element method, a novel structure featuring high concentrated stress profile (HCSP) and locally stiffened membrane (LSM) is built. Curve fittings of the mechanical stress and deflection based on FEM simulation results are performed to establish the relationship between mechanical performance and structure dimension. A combination of FEM and curve fitting method is carried out to determine the structural dimensions. The optimized sensor chip is fabricated on a SOI wafer by traditional MEMS bulk-micromachining and anodic bonding technology. When the applied pressure is 1 psi, the sensor achieves a sensitivity of 30.9 mV/V/psi, a pressure nonlinearity of 0.21% FSS and an accuracy of 0.30%, and thereby the contradiction between sensitivity and linearity is alleviated. In terms of size, accuracy and high temperature characteristic, the proposed sensor is a proper choice for measuring pressure of less than 1 psi. PMID:29393916

  10. Evaluating the personality structure of semi-captive Asian elephants living in their natural habitat

    PubMed Central

    Adams, Mark J.; Mar, Khyne U; Lahdenperä, Mirkka

    2018-01-01

    Data on personality for long-lived, highly social wild mammals with high cognitive abilities are rare. We investigated the personality structure of Asian elephants (Elephas maximus) by using a large sample of semi-captive timber elephants in Myanmar. Data were collected during 2014–2017 using questionnaires, for which elephant riders (mahouts) rated 28 behavioural adjectives of elephants. Repeated questionnaires were obtained for each elephant from several raters whenever possible, resulting in 690 ratings of 150 female and 107 male elephants. We started by performing a confirmatory factor analysis to compare the fit of our data to a previously published captive elephant personality structure. Owing to a poor fit of this model to our data, we proceeded by performing explanatory factor analysis to determine the personality structure in our study population. This model suggested that personality in these elephants was manifested as three factors that we labelled as Attentiveness, Sociability and Aggressiveness. This structure did not differ between the sexes. These results provide the basis for future research on the link between personality and reproductive success in this endangered species and more generally, help to resolve the selective pressures on personalities in long-lived, highly social species. PMID:29515900

  11. Identify High-Quality Protein Structural Models by Enhanced K-Means.

    PubMed

    Wu, Hongjie; Li, Haiou; Jiang, Min; Chen, Cheng; Lv, Qiang; Wu, Chuang

    2017-01-01

    Background. One critical issue in protein three-dimensional structure prediction using either ab initio or comparative modeling involves identification of high-quality protein structural models from generated decoys. Currently, clustering algorithms are widely used to identify near-native models; however, their performance is dependent upon different conformational decoys, and, for some algorithms, the accuracy declines when the decoy population increases. Results. Here, we proposed two enhanced K -means clustering algorithms capable of robustly identifying high-quality protein structural models. The first one employs the clustering algorithm SPICKER to determine the initial centroids for basic K -means clustering ( SK -means), whereas the other employs squared distance to optimize the initial centroids ( K -means++). Our results showed that SK -means and K -means++ were more robust as compared with SPICKER alone, detecting 33 (59%) and 42 (75%) of 56 targets, respectively, with template modeling scores better than or equal to those of SPICKER. Conclusions. We observed that the classic K -means algorithm showed a similar performance to that of SPICKER, which is a widely used algorithm for protein-structure identification. Both SK -means and K -means++ demonstrated substantial improvements relative to results from SPICKER and classical K -means.

  12. Identify High-Quality Protein Structural Models by Enhanced K-Means

    PubMed Central

    Li, Haiou; Chen, Cheng; Lv, Qiang; Wu, Chuang

    2017-01-01

    Background. One critical issue in protein three-dimensional structure prediction using either ab initio or comparative modeling involves identification of high-quality protein structural models from generated decoys. Currently, clustering algorithms are widely used to identify near-native models; however, their performance is dependent upon different conformational decoys, and, for some algorithms, the accuracy declines when the decoy population increases. Results. Here, we proposed two enhanced K-means clustering algorithms capable of robustly identifying high-quality protein structural models. The first one employs the clustering algorithm SPICKER to determine the initial centroids for basic K-means clustering (SK-means), whereas the other employs squared distance to optimize the initial centroids (K-means++). Our results showed that SK-means and K-means++ were more robust as compared with SPICKER alone, detecting 33 (59%) and 42 (75%) of 56 targets, respectively, with template modeling scores better than or equal to those of SPICKER. Conclusions. We observed that the classic K-means algorithm showed a similar performance to that of SPICKER, which is a widely used algorithm for protein-structure identification. Both SK-means and K-means++ demonstrated substantial improvements relative to results from SPICKER and classical K-means. PMID:28421198

  13. Structural and low temperature transport properties of Fe2B and FeB systems at high pressure

    NASA Astrophysics Data System (ADS)

    Kumar, P. Anand; Satya, A. T.; Reddy, P. V. Sreenivasa; Sekar, M.; Kanchana, V.; Vaitheeswaran, G.; Mani, Awadhesh; Kalavathi, S.; Shekar, N. V. Chandra

    2017-10-01

    The evolution of crystal structure and the ground state properties of Fe2B and FeB have been studied by performing high pressure X-ray diffraction up to a pressure of ∼24 GPa and temperature dependent (4.2-300 K range) high-pressure resistivity measurements up to ∼ 2 GPa. While a pressure induced reversible structural phase transition from tetragonal to orthorhombic structure is observed at ∼6.3 GPa in Fe2B, FeB has been found to be stable in its orthorhombic phase up to the pressure of 24 GPa. In the case of Fe2B, both parent and daughter phases coexist beyond the transition pressure. The bulk modulus of FeB and Fe2B (tetragonal) have been found to be 248 GPa and 235 GPa respectively. First principle electronic structure calculations have been performed using the present experimental inputs and the calculated ground state properties agree quite well with the major findings of the experiments. Debye temperature extracted from the analysis of low temperature resistivity data is observed to decrease with pressure indicating softening of phonons in both the systems.

  14. Ultra-high resolution, polarization sensitive transversal optical coherence tomography for structural analysis and strain mapping

    NASA Astrophysics Data System (ADS)

    Wiesauer, Karin; Pircher, Michael; Goetzinger, Erich; Hitzenberger, Christoph K.; Engelke, Rainer; Ahrens, Gisela; Pfeiffer, Karl; Ostrzinski, Ute; Gruetzner, Gabi; Oster, Reinhold; Stifter, David

    2006-02-01

    Optical coherence tomography (OCT) is a contactless and non-invasive technique nearly exclusively applied for bio-medical imaging of tissues. Besides the internal structure, additionally strains within the sample can be mapped when OCT is performed in a polarization sensitive (PS) way. In this work, we demonstrate the benefits of PS-OCT imaging for non-biological applications. We have developed the OCT technique beyond the state-of-the-art: based on transversal ultra-high resolution (UHR-)OCT, where an axial resolution below 2 μm within materials is obtained using a femtosecond laser as light source, we have modified the setup for polarization sensitive measurements (transversal UHR-PS-OCT). We perform structural analysis and strain mapping for different types of samples: for a highly strained elastomer specimen we demonstrate the necessity of UHR-imaging. Furthermore, we investigate epoxy waveguide structures, photoresist moulds for the fabrication of micro-electromechanical parts (MEMS), and the glass-fibre composite outer shell of helicopter rotor blades where cracks are present. For these examples, transversal scanning UHR-PS-OCT is shown to provide important information about the structural properties and the strain distribution within the samples.

  15. Characterizing ceramics and the interfacial adhesion to resin: I - The relationship of microstructure, composition, properties and fractography.

    PubMed

    Della Bona, Alvaro

    2005-03-01

    The appeal of ceramics as structural dental materials is based on their light weight, high hardness values, chemical inertness, and anticipated unique tribological characteristics. A major goal of current ceramic research and development is to produce tough, strong ceramics that can provide reliable performance in dental applications. Quantifying microstructural parameters is important to develop structure/property relationships. Quantitative microstructural analysis provides an association among the constitution, physical properties, and structural characteristics of materials. Structural reliability of dental ceramics is a major factor in the clinical success of ceramic restorations. Complex stress distributions are present in most practical conditions and strength data alone cannot be directly extrapolated to predict structural performance.

  16. A case study for a digital seabed database: Bohai Sea engineering geology database

    NASA Astrophysics Data System (ADS)

    Tianyun, Su; Shikui, Zhai; Baohua, Liu; Ruicai, Liang; Yanpeng, Zheng; Yong, Wang

    2006-07-01

    This paper discusses the designing plan of ORACLE-based Bohai Sea engineering geology database structure from requisition analysis, conceptual structure analysis, logical structure analysis, physical structure analysis and security designing. In the study, we used the object-oriented Unified Modeling Language (UML) to model the conceptual structure of the database and used the powerful function of data management which the object-oriented and relational database ORACLE provides to organize and manage the storage space and improve its security performance. By this means, the database can provide rapid and highly effective performance in data storage, maintenance and query to satisfy the application requisition of the Bohai Sea Oilfield Paradigm Area Information System.

  17. Design of high reliability organizations in health care.

    PubMed

    Carroll, J S; Rudolph, J W

    2006-12-01

    To improve safety performance, many healthcare organizations have sought to emulate high reliability organizations from industries such as nuclear power, chemical processing, and military operations. We outline high reliability design principles for healthcare organizations including both the formal structures and the informal practices that complement those structures. A stage model of organizational structures and practices, moving from local autonomy to formal controls to open inquiry to deep self-understanding, is used to illustrate typical challenges and design possibilities at each stage. We suggest how organizations can use the concepts and examples presented to increase their capacity to self-design for safety and reliability.

  18. Selected Topics on the Synthesis, Properties and Applications of Multiwalled Carbon Nanotubes

    PubMed Central

    Stoner, B.R.; Brown, B.; Glass, J.T.

    2014-01-01

    Summary In summary, MWCNTs have been examined for a variety of electronic applications due to their unique structure and chemistry. Electrodes for field emission, energy and sensor applications hold particular interest. MWCNTs provide a very high surface area, relatively easy methods of surface modification, controllable and high concentration of reactive surface sites, and high specific capacitance. Combining MWCNTs with graphene structures, oxide and metal nanoparticles and certain polymers extends their performance and functionality. Such hybrid structures have been produced in situ during CNT growth and in two-step processes. Excellent progress on understanding the mechanisms of CNT growth has enabled numerous growth methods to all yield MWCNT structures in a variety of morphologies. PMID:24910503

  19. Team dynamics in isolated, confined environments - Saturation divers and high altitude climbers

    NASA Technical Reports Server (NTRS)

    Kanki, Barbara G.; Gregorich, Steven E.

    1992-01-01

    The effects of leadership dynamics and social organization factors on team performance under conditions of high altitude climbing and deep sea diving are studied. Teams of two to four members that know each other well and have a relaxed informal team structure with much sharing of responsibilities are found to do better than military teams with more than four members who do not know each other well and have a formal team structure with highly specialized rules. Professionally guided teams with more than four members, a formally defined team structure, and clearly designated role assignments did better than 'club' teams of more than four members with a fairly informal team structure and little role specialization.

  20. Analogical Transfer: Are There Performance Differences among High-Ability Students?

    ERIC Educational Resources Information Center

    McVey, Mary D.

    This study investigated the role of problem structure and metacognitive control in the analogical transfer of performance of 40 13- and 14-year-old gifted and highly gifted math students. Average and above average 16-, 17-, and 18-year-olds served as comparison groups. Students were given three algebra problems with solutions, followed by two…

  1. Space Shuttle Main Engine structural analysis and data reduction/evaluation. Volume 3B: High pressure fuel turbo-pump preburner pump bearing assembly analysis

    NASA Technical Reports Server (NTRS)

    Power, Gloria B.; Violett, Rebeca S.

    1989-01-01

    The analysis performed on the High Pressure Oxidizer Turbopump (HPOTP) preburner pump bearing assembly located on the Space Shuttle Main Engine (SSME) is summarized. An ANSYS finite element model for the inlet assembly was built and executed. Thermal and static analyses were performed.

  2. The Design and Optimization of a Highly Sensitive and Overload-Resistant Piezoresistive Pressure Sensor

    PubMed Central

    Meng, Xiawei; Zhao, Yulong

    2016-01-01

    A piezoresistive pressure sensor with a beam-membrane-dual-island structure is developed for micro-pressure monitoring in the field of aviation, which requires great sensitivity and overload resistance capacity. The design, fabrication, and test of the sensor are presented in this paper. By analyzing the stress distribution of sensitive elements using the finite element method, a novel structure incorporating sensitive beams with a traditional bossed diaphragm is built up. The proposed structure proved to be advantageous in terms of high sensitivity and high overload resistance compared with the conventional bossed diaphragm and flat diaphragm structures. Curve fittings of surface stress and deflection based on ANSYS simulation results are performed to establish the sensor equations. Fabricated on an n-type single crystal silicon wafer, the sensor chips are wire-bonded to a printed circuit board (PCB) and packaged for experiments. The static and dynamic characteristics are tested and discussed. Experimental results show that the sensor has a sensitivity as high as 17.339 μV/V/Pa in the range of 500 Pa at room temperature, and a high overload resistance of 200 times overpressure. Due to the excellent performance, the sensor can be applied in measuring micro-pressure lower than 500 Pa. PMID:27005627

  3. High-performance liquid chromatography of oligoguanylates at high pH

    NASA Technical Reports Server (NTRS)

    Stribling, R.; Deamer, D. (Principal Investigator)

    1991-01-01

    Because of the stable self-structures formed by oligomers of guanosine, standard high-performance liquid chromatography techniques for oligonucleotide fractionation are not applicable. Previously, oligoguanylate separations have been carried out at pH 12 using RPC-5 as the packing material. While RPC-5 provides excellent separations, there are several limitations, including the lack of a commercially available source. This report describes a new anion-exchange high-performance liquid chromatography method using HEMA-IEC BIO Q, which successfully separates different forms of the guanosine monomer as well as longer oligoguanylates. The reproducibility and stability at high pH suggests a versatile role for this material.

  4. Digital Morphing Wing: Active Wing Shaping Concept Using Composite Lattice-Based Cellular Structures.

    PubMed

    Jenett, Benjamin; Calisch, Sam; Cellucci, Daniel; Cramer, Nick; Gershenfeld, Neil; Swei, Sean; Cheung, Kenneth C

    2017-03-01

    We describe an approach for the discrete and reversible assembly of tunable and actively deformable structures using modular building block parts for robotic applications. The primary technical challenge addressed by this work is the use of this method to design and fabricate low density, highly compliant robotic structures with spatially tuned stiffness. This approach offers a number of potential advantages over more conventional methods for constructing compliant robots. The discrete assembly reduces manufacturing complexity, as relatively simple parts can be batch-produced and joined to make complex structures. Global mechanical properties can be tuned based on sub-part ordering and geometry, because local stiffness and density can be independently set to a wide range of values and varied spatially. The structure's intrinsic modularity can significantly simplify analysis and simulation. Simple analytical models for the behavior of each building block type can be calibrated with empirical testing and synthesized into a highly accurate and computationally efficient model of the full compliant system. As a case study, we describe a modular and reversibly assembled wing that performs continuous span-wise twist deformation. It exhibits high performance aerodynamic characteristics, is lightweight and simple to fabricate and repair. The wing is constructed from discrete lattice elements, wherein the geometric and mechanical attributes of the building blocks determine the global mechanical properties of the wing. We describe the mechanical design and structural performance of the digital morphing wing, including their relationship to wind tunnel tests that suggest the ability to increase roll efficiency compared to a conventional rigid aileron system. We focus here on describing the approach to design, modeling, and construction as a generalizable approach for robotics that require very lightweight, tunable, and actively deformable structures.

  5. Digital Morphing Wing: Active Wing Shaping Concept Using Composite Lattice-Based Cellular Structures

    PubMed Central

    Jenett, Benjamin; Calisch, Sam; Cellucci, Daniel; Cramer, Nick; Gershenfeld, Neil; Swei, Sean

    2017-01-01

    Abstract We describe an approach for the discrete and reversible assembly of tunable and actively deformable structures using modular building block parts for robotic applications. The primary technical challenge addressed by this work is the use of this method to design and fabricate low density, highly compliant robotic structures with spatially tuned stiffness. This approach offers a number of potential advantages over more conventional methods for constructing compliant robots. The discrete assembly reduces manufacturing complexity, as relatively simple parts can be batch-produced and joined to make complex structures. Global mechanical properties can be tuned based on sub-part ordering and geometry, because local stiffness and density can be independently set to a wide range of values and varied spatially. The structure's intrinsic modularity can significantly simplify analysis and simulation. Simple analytical models for the behavior of each building block type can be calibrated with empirical testing and synthesized into a highly accurate and computationally efficient model of the full compliant system. As a case study, we describe a modular and reversibly assembled wing that performs continuous span-wise twist deformation. It exhibits high performance aerodynamic characteristics, is lightweight and simple to fabricate and repair. The wing is constructed from discrete lattice elements, wherein the geometric and mechanical attributes of the building blocks determine the global mechanical properties of the wing. We describe the mechanical design and structural performance of the digital morphing wing, including their relationship to wind tunnel tests that suggest the ability to increase roll efficiency compared to a conventional rigid aileron system. We focus here on describing the approach to design, modeling, and construction as a generalizable approach for robotics that require very lightweight, tunable, and actively deformable structures. PMID:28289574

  6. Structural Dynamics Analysis and Research for FEA Modeling Method of a Light High Resolution CCD Camera

    NASA Astrophysics Data System (ADS)

    Sun, Jiwen; Wei, Ling; Fu, Danying

    2002-01-01

    resolution and wide swath. In order to assure its high optical precision smoothly passing the rigorous dynamic load of launch, it should be of high structural rigidity. Therefore, a careful study of the dynamic features of the camera structure should be performed. Pro/E. An interference examination is performed on the precise CAD model of the camera for mending the structural design. for the first time in China, and the analysis of structural dynamic of the camera is accomplished by applying the structural analysis code PATRAN and NASTRAN. The main research programs include: 1) the comparative calculation of modes analysis of the critical structure of the camera is achieved by using 4 nodes and 10 nodes tetrahedral elements respectively, so as to confirm the most reasonable general model; 2) through the modes analysis of the camera from several cases, the inherent frequencies and modes are obtained and further the rationality of the structural design of the camera is proved; 3) the static analysis of the camera under self gravity and overloads is completed and the relevant deformation and stress distributions are gained; 4) the response calculation of sine vibration of the camera is completed and the corresponding response curve and maximum acceleration response with corresponding frequencies are obtained. software technique is accurate and efficient. sensitivity, the dynamic design and engineering optimization of the critical structure of the camera are discussed. fundamental technology in design of forecoming space optical instruments.

  7. Aluminum plasmonic metamaterials for structural color printing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Fei; Gao, Jie; Stan, Liliana

    2015-01-01

    We report a structural color printing platform based on aluminum plasmonic metamaterials supporting near perfect light absorption and narrow-band spectral response tunable across the visible spectrum to realize high-resolution, angle-insensitive color printing with high color purity and saturation. Additionally, the fabricated metamaterials can be protected by a transparent polymer thin layer for ambient use with further improved color performance. The demonstrated structural color printing with aluminum plasmonic metamaterials offers great potential for relevant applications such as security marking and information storage.

  8. Aluminum plasmonic metamaterials for structural color printing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Fei; Gao, Jie; Stan, Liliana

    2015-05-26

    We report a structural color printing platform based on aluminum plasmonic metamaterials supporting near perfect light absorption and narrow-band spectral response tunable across the visible spectrum to realize high-resolution, angle-insensitive color printing with high color purity and saturation. Additionally, the fabricated metamaterials can be protected by a transparent polymer thin layer for ambient use with further improved color performance. The demonstrated structural color printing with aluminum plasmonic metamaterials offers great potential for relevant applications such as security marking and information storage.

  9. Analysis of the Seismic Performance of Isolated Buildings according to Life-Cycle Cost

    PubMed Central

    Dang, Yu; Han, Jian-ping; Li, Yong-tao

    2015-01-01

    This paper proposes an indicator of seismic performance based on life-cycle cost of a building. It is expressed as a ratio of lifetime damage loss to life-cycle cost and determines the seismic performance of isolated buildings. Major factors are considered, including uncertainty in hazard demand and structural capacity, initial costs, and expected loss during earthquakes. Thus, a high indicator value indicates poor building seismic performance. Moreover, random vibration analysis is conducted to measure structural reliability and evaluate the expected loss and life-cycle cost of isolated buildings. The expected loss of an actual, seven-story isolated hospital building is only 37% of that of a fixed-base building. Furthermore, the indicator of the structural seismic performance of the isolated building is much lower in value than that of the structural seismic performance of the fixed-base building. Therefore, isolated buildings are safer and less risky than fixed-base buildings. The indicator based on life-cycle cost assists owners and engineers in making investment decisions in consideration of structural design, construction, and expected loss. It also helps optimize the balance between building reliability and building investment. PMID:25653677

  10. Analysis of the seismic performance of isolated buildings according to life-cycle cost.

    PubMed

    Dang, Yu; Han, Jian-Ping; Li, Yong-Tao

    2015-01-01

    This paper proposes an indicator of seismic performance based on life-cycle cost of a building. It is expressed as a ratio of lifetime damage loss to life-cycle cost and determines the seismic performance of isolated buildings. Major factors are considered, including uncertainty in hazard demand and structural capacity, initial costs, and expected loss during earthquakes. Thus, a high indicator value indicates poor building seismic performance. Moreover, random vibration analysis is conducted to measure structural reliability and evaluate the expected loss and life-cycle cost of isolated buildings. The expected loss of an actual, seven-story isolated hospital building is only 37% of that of a fixed-base building. Furthermore, the indicator of the structural seismic performance of the isolated building is much lower in value than that of the structural seismic performance of the fixed-base building. Therefore, isolated buildings are safer and less risky than fixed-base buildings. The indicator based on life-cycle cost assists owners and engineers in making investment decisions in consideration of structural design, construction, and expected loss. It also helps optimize the balance between building reliability and building investment.

  11. Uncertainty aggregation and reduction in structure-material performance prediction

    NASA Astrophysics Data System (ADS)

    Hu, Zhen; Mahadevan, Sankaran; Ao, Dan

    2018-02-01

    An uncertainty aggregation and reduction framework is presented for structure-material performance prediction. Different types of uncertainty sources, structural analysis model, and material performance prediction model are connected through a Bayesian network for systematic uncertainty aggregation analysis. To reduce the uncertainty in the computational structure-material performance prediction model, Bayesian updating using experimental observation data is investigated based on the Bayesian network. It is observed that the Bayesian updating results will have large error if the model cannot accurately represent the actual physics, and that this error will be propagated to the predicted performance distribution. To address this issue, this paper proposes a novel uncertainty reduction method by integrating Bayesian calibration with model validation adaptively. The observation domain of the quantity of interest is first discretized into multiple segments. An adaptive algorithm is then developed to perform model validation and Bayesian updating over these observation segments sequentially. Only information from observation segments where the model prediction is highly reliable is used for Bayesian updating; this is found to increase the effectiveness and efficiency of uncertainty reduction. A composite rotorcraft hub component fatigue life prediction model, which combines a finite element structural analysis model and a material damage model, is used to demonstrate the proposed method.

  12. Reading Comprehension Performance of Adolescents with Learning Disabilities.

    ERIC Educational Resources Information Center

    Snider, Vicki E.

    1989-01-01

    The study found that instructing 13 learning-disabled junior high students in the necessary prior knowledge (information and vocabulary concepts) led to superior reading comprehension performance. Textually explicit text structure also improved reading comprehension. (DB)

  13. Characterization of scintillator-based detectors for few-ten-keV high-spatial-resolution x-ray imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larsson, Jakob C., E-mail: jakob.larsson@biox.kth.se; Lundström, Ulf; Hertz, Hans M.

    2016-06-15

    Purpose: High-spatial-resolution x-ray imaging in the few-ten-keV range is becoming increasingly important in several applications, such as small-animal imaging and phase-contrast imaging. The detector properties critically influence the quality of such imaging. Here the authors present a quantitative comparison of scintillator-based detectors for this energy range and at high spatial frequencies. Methods: The authors determine the modulation transfer function, noise power spectrum (NPS), and detective quantum efficiency for Gadox, needle CsI, and structured CsI scintillators of different thicknesses and at different photon energies. An extended analysis of the NPS allows for direct measurements of the scintillator effective absorption efficiency andmore » effective light yield as well as providing an alternative method to assess the underlying factors behind the detector properties. Results: There is a substantial difference in performance between the scintillators depending on the imaging task but in general, the CsI based scintillators perform better than the Gadox scintillators. At low energies (16 keV), a thin needle CsI scintillator has the best performance at all frequencies. At higher energies (28–38 keV), the thicker needle CsI scintillators and the structured CsI scintillator all have very good performance. The needle CsI scintillators have higher absorption efficiencies but the structured CsI scintillator has higher resolution. Conclusions: The choice of scintillator is greatly dependent on the imaging task. The presented comparison and methodology will assist the imaging scientist in optimizing their high-resolution few-ten-keV imaging system for best performance.« less

  14. Characterization of scintillator-based detectors for few-ten-keV high-spatial-resolution x-ray imaging.

    PubMed

    Larsson, Jakob C; Lundström, Ulf; Hertz, Hans M

    2016-06-01

    High-spatial-resolution x-ray imaging in the few-ten-keV range is becoming increasingly important in several applications, such as small-animal imaging and phase-contrast imaging. The detector properties critically influence the quality of such imaging. Here the authors present a quantitative comparison of scintillator-based detectors for this energy range and at high spatial frequencies. The authors determine the modulation transfer function, noise power spectrum (NPS), and detective quantum efficiency for Gadox, needle CsI, and structured CsI scintillators of different thicknesses and at different photon energies. An extended analysis of the NPS allows for direct measurements of the scintillator effective absorption efficiency and effective light yield as well as providing an alternative method to assess the underlying factors behind the detector properties. There is a substantial difference in performance between the scintillators depending on the imaging task but in general, the CsI based scintillators perform better than the Gadox scintillators. At low energies (16 keV), a thin needle CsI scintillator has the best performance at all frequencies. At higher energies (28-38 keV), the thicker needle CsI scintillators and the structured CsI scintillator all have very good performance. The needle CsI scintillators have higher absorption efficiencies but the structured CsI scintillator has higher resolution. The choice of scintillator is greatly dependent on the imaging task. The presented comparison and methodology will assist the imaging scientist in optimizing their high-resolution few-ten-keV imaging system for best performance.

  15. Evaluating Multi-Input/Multi-Output Digital Control Systems

    NASA Technical Reports Server (NTRS)

    Pototzky, Anthony S.; Wieseman, Carol D.; Hoadley, Sherwood T.; Mukhopadhyay, Vivek

    1994-01-01

    Controller-performance-evaluation (CPE) methodology for multi-input/multi-output (MIMO) digital control systems developed. Procedures identify potentially destabilizing controllers and confirm satisfactory performance of stabilizing ones. Methodology generic and used in many types of multi-loop digital-controller applications, including digital flight-control systems, digitally controlled spacecraft structures, and actively controlled wind-tunnel models. Also applicable to other complex, highly dynamic digital controllers, such as those in high-performance robot systems.

  16. Integrated analysis of large space systems

    NASA Technical Reports Server (NTRS)

    Young, J. P.

    1980-01-01

    Based on the belief that actual flight hardware development of large space systems will necessitate a formalized method of integrating the various engineering discipline analyses, an efficient highly user oriented software system capable of performing interdisciplinary design analyses with tolerable solution turnaround time is planned Specific analysis capability goals were set forth with initial emphasis given to sequential and quasi-static thermal/structural analysis and fully coupled structural/control system analysis. Subsequently, the IAC would be expanded to include a fully coupled thermal/structural/control system, electromagnetic radiation, and optical performance analyses.

  17. Damage-mitigating control of aircraft for high performance and life extension

    NASA Astrophysics Data System (ADS)

    Caplin, Jeffrey

    1998-12-01

    A methodology is proposed for the synthesis of a Damage-Mitigating Control System for a high-performance fighter aircraft. The design of such a controller involves consideration of damage to critical points of the structure, as well as the performance requirements of the aircraft. This research is interdisciplinary, and brings existing knowledge in the fields of unsteady aerodynamics, structural dynamics, fracture mechanics, and control theory together to formulate a new approach towards aircraft flight controller design. A flexible wing model is formulated using the Finite Element Method, and the important mode shapes and natural frequencies are identified. The Doublet Lattice Method is employed to develop an unsteady flow model for computation of the unsteady aerodynamic loads acting on the wing due to rigid-body maneuvers and structural deformation. These two models are subsequently incorporated into a pre-existing nonlinear rigid-body aircraft flight-dynamic model. A family of robust Damage-Mitigating Controllers is designed using the Hinfinity-optimization and mu-synthesis method. In addition to weighting the error between the ideal performance and the actual performance of the aircraft, weights are also placed on the strain amplitude at the root of each wing. The results show significant savings in fatigue life of the wings while retaining the dynamic performance of the aircraft.

  18. Neutron reflecting supermirror structure

    DOEpatents

    Wood, James L.

    1992-01-01

    An improved neutron reflecting supermirror structure comprising a plurality of stacked sets of bilayers of neutron reflecting materials. The improved neutron reflecting supermirror structure is adapted to provide extremely good performance at high incidence angles, i.e. up to four time the critical angle of standard neutron mirror structures. The reflection of neutrons striking the supermirror structure at a high critical angle provides enhanced neutron throughput, and hence more efficient and economical use of neutron sources. One layer of each set of bilayers consist of titanium, and the second layer of each set of bilayers consist of an alloy of nickel with carbon interstitially present in the nickel alloy.

  19. Structural capabilities in small and medium-sized patient-centered medical homes.

    PubMed

    Alidina, Shehnaz; Schneider, Eric C; Singer, Sara J; Rosenthal, Meredith B

    2014-07-01

    1) Evaluate structural capabilities associated with the patient-centered medical home (PCMH) model in PCMH pilots in Colorado, Ohio, and Rhode Island; 2) evaluate changes in capabilities over 2 years in the Rhode Island pilot; and 3) evaluate facilitators and barriers to the adoption of capabilities. We assessed structural capabilities in the 30 pilot practices using a cross-sectional study design and examined changes over 2 years in 5 Rhode Island practices using a pre/post design. We used National Committee for Quality Assurance's Physician Practice Connections-Patient-Centered Medical Home (PPC/PCMH) accreditation survey data to measure capabilities. We stratified by high and low performance based on total score and by practice size. We analyzed change from baseline to 24 months for the Rhode Island practices. We analyzed qualitative data from interviews with practice leaders to identify facilitators and barriers to building capabilities. On average, practices scored 73 points (out of 100 points) for structural capabilities. High and low performers differed most on electronic prescribing, patient self-management, and care-management standards. Rhode Island practices averaged 42 points at baseline, and reached 90 points by the end of year 2. Some of the key facilitators that emerged were payment incentives, "transformation coaches," learning collaboratives, and data availability supporting performance management and quality improvement. Barriers to improvement included the extent of transformation required, technology shortcomings, slow cultural change, change fatigue, and lack of broader payment reform. For these early adopters, prevalence of structural capabilities was high, and performance was substantially improved for practices with initially lower capabilities. We conclude that building capabilities requires payment reform, attention to implementation, and cultural change.

  20. Development of High Performance Grouts for Bonded Post-tensioned Structures

    DOT National Transportation Integrated Search

    1999-10-01

    The use of post-tensioning in bridges can provide durability and structural benefits to the system while expediting the construction process. When post-tensioning is combined with precast elements, traffic interference can be greatly reduced through ...

  1. Accelerating large-scale protein structure alignments with graphics processing units

    PubMed Central

    2012-01-01

    Background Large-scale protein structure alignment, an indispensable tool to structural bioinformatics, poses a tremendous challenge on computational resources. To ensure structure alignment accuracy and efficiency, efforts have been made to parallelize traditional alignment algorithms in grid environments. However, these solutions are costly and of limited accessibility. Others trade alignment quality for speedup by using high-level characteristics of structure fragments for structure comparisons. Findings We present ppsAlign, a parallel protein structure Alignment framework designed and optimized to exploit the parallelism of Graphics Processing Units (GPUs). As a general-purpose GPU platform, ppsAlign could take many concurrent methods, such as TM-align and Fr-TM-align, into the parallelized algorithm design. We evaluated ppsAlign on an NVIDIA Tesla C2050 GPU card, and compared it with existing software solutions running on an AMD dual-core CPU. We observed a 36-fold speedup over TM-align, a 65-fold speedup over Fr-TM-align, and a 40-fold speedup over MAMMOTH. Conclusions ppsAlign is a high-performance protein structure alignment tool designed to tackle the computational complexity issues from protein structural data. The solution presented in this paper allows large-scale structure comparisons to be performed using massive parallel computing power of GPU. PMID:22357132

  2. Pseudocapacitive performance of electrodeposited porous Co3O4 film on electrophoretically modified graphite electrodes with carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Kazazi, Mahdi; Sedighi, Ali Reza; Mokhtari, Mohammad Amin

    2018-05-01

    A facile and efficient two-step procedure was developed for the fabrication of a high-performance and binder-free cobalt oxide-carbon nanotubes (CO/CNT) pseudocapacitive electrode. First, CNTs were deposited on the surface of a chemically activated graphite sheet by cathodic electrophoretic deposition technique from their ethanolic suspension. In the next step, a thin film of cobalt oxide was electrodeposited on the CNTs coated graphite substrate by a galvanostatic method, followed by a thermal treatment in air. The structure and morphology of the prepared cobaltite electrode with and without CNT interlayer were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and nitrogen adsorption-desorption measurement. The results indicated that Co3O4 nanoparticles were uniformly attached on the surface of CNTs, to form a porous-structured CO/CNT composite electrode with a high specific surface area of 144.9 m2 g-1. Owing to the superior electrical conductivity of CNTs, high surface area and open porous structure, and improved integrity of the electrode structure, the composite electrode delivered a high areal capacitance of 4.96F cm-2 at a current density of 2 mA cm-2, a superior rate performance (64.7% capacitance retention from 2 mA cm-2 to 50 mA cm-2), as well as excellent cycling stability (91.8% capacitance retention after 2000 cycles), which are higher than those of the pure cobaltite electrode.

  3. Mo-doped SnO2 mesoporous hollow structured spheres as anode materials for high-performance lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Wang, Xuekun; Li, Zhaoqiang; Zhang, Zhiwei; Li, Qun; Guo, Enyan; Wang, Chengxiang; Yin, Longwei

    2015-02-01

    We designed a facile infiltration route to synthesize mesoporous hollow structured Mo doped SnO2 using silica spheres as templates. It is observed that Mo is uniformly incorporated into SnO2 lattice in the form of Mo6+. The as-prepared mesoporous Mo-doped SnO2 LIBs anodes exhibit a significantly improved electrochemical performance with good cycling stability, high specific capacity and high rate capability. The mesoporous hollow Mo-doped SnO2 sample with 14 at% Mo doping content displays a specific capacity of 801 mA h g-1 after 60 cycles at a current density of 100 mA g-1, about 1.66 times higher than that of the pure SnO2 hollow sample. In addition, even if the current density is as high as 1600 mA g-1 after 60 cycles, it could still retain a stable specific capacity of 530 mA h g-1, exhibiting an extraordinary rate capability. The greatly improved electrochemical performance of the Mo-doped mesoporous hollow SnO2 sample could be attributed to the following factors. The large surface area and hollow structure can significantly enhance structural integrity by acting as mechanical buffer, effectively alleviating the volume changes generated during the lithiation/delithiation process. The incorporation of Mo into the lattice of SnO2 improves charge transfer kinetics and results in a faster Li+ diffusion rate during the charge-discharge process.

  4. United3D: a protein model quality assessment program that uses two consensus based methods.

    PubMed

    Terashi, Genki; Oosawa, Makoto; Nakamura, Yuuki; Kanou, Kazuhiko; Takeda-Shitaka, Mayuko

    2012-01-01

    In protein structure prediction, such as template-based modeling and free modeling (ab initio modeling), the step that assesses the quality of protein models is very important. We have developed a model quality assessment (QA) program United3D that uses an optimized clustering method and a simple Cα atom contact-based potential. United3D automatically estimates the quality scores (Qscore) of predicted protein models that are highly correlated with the actual quality (GDT_TS). The performance of United3D was tested in the ninth Critical Assessment of protein Structure Prediction (CASP9) experiment. In CASP9, United3D showed the lowest average loss of GDT_TS (5.3) among the QA methods participated in CASP9. This result indicates that the performance of United3D to identify the high quality models from the models predicted by CASP9 servers on 116 targets was best among the QA methods that were tested in CASP9. United3D also produced high average Pearson correlation coefficients (0.93) and acceptable Kendall rank correlation coefficients (0.68) between the Qscore and GDT_TS. This performance was competitive with the other top ranked QA methods that were tested in CASP9. These results indicate that United3D is a useful tool for selecting high quality models from many candidate model structures provided by various modeling methods. United3D will improve the accuracy of protein structure prediction.

  5. A Generic Mesh Data Structure with Parallel Applications

    ERIC Educational Resources Information Center

    Cochran, William Kenneth, Jr.

    2009-01-01

    High performance, massively-parallel multi-physics simulations are built on efficient mesh data structures. Most data structures are designed from the bottom up, focusing on the implementation of linear algebra routines. In this thesis, we explore a top-down approach to design, evaluating the various needs of many aspects of simulation, not just…

  6. Multidisciplinary Analysis of a Hypersonic Engine

    NASA Technical Reports Server (NTRS)

    Suresh, Ambady; Stewart, Mark

    2003-01-01

    The objective is to develop high fidelity tools that can influence ISTAR design In particular, tools for coupling Fluid-Thermal-Structural simulations RBCC/TBCC designers carefully balance aerodynamic, thermal, weight, & structural considerations; consistent multidisciplinary solutions reveal details (at modest cost) At Scram mode design point, simulations give details of inlet & combustor performance, thermal loads, structural deflections.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Enyuan; Wang, Xuelong; Yu, Xiqian

    The rechargeable lithium-ion battery (LIB) is the most promising energy storage system to power electric vehicles with high energy density and long cycling life. However, in order to meet customers’ demands for fast charging, the power performances of current LIBs need to be improved. From the cathode aspect, layer-structured cathode materials are widely used in today’s market and will continue to play important roles in the near future. The high rate capability of layered cathode materials during charging and discharging is critical to the power performance of the whole cell and the thermal stability is closely related to the safetymore » issues. Therefore, the in-depth understanding of structural changes of layered cathode materials during high rate charging/discharging and the thermal stability during heating are essential in developing new materials and improving current materials. Since structural changes take place from the atomic level to the whole electrode level, combination of characterization techniques covering multilength scales is quite important. Finally, in many cases, this means using comprehensive tools involving diffraction, spectroscopy, and imaging to differentiate the surface from the bulk and to obtain structural/chemical information with different levels of spatial resolution.« less

  8. Phosphor chessboard packaging for white LEDs in high efficiency and high color performance

    NASA Astrophysics Data System (ADS)

    Nguyen, Quang-Khoi; Chang, Yu-Yu; Lu, Chun-Yan; Yang, Tsung-Hsun; Chung, Te-Yuan; Sun, Ching-Cherng

    2016-09-01

    We performed the simulation of white LEDs packaging with different chessboard structures of white light converting phosphor layer covered on GaN die chip. Three different types of chessboard structures are called type 1, type 2 and type 3, respectively. The result of investigation according to the phosphor thickness show the increasing of thickness of phosphor layer are, the decreasing of output blue light power are. Meanwhile, the changes of yellow light are neglect. Type 3 shows highest packaging efficiency of 74.3 % compares with packaging efficiency of type 2 and type 1 (72.5 % and 71.3 %, respectively). Type 3 also shows the most effect of forward light. Attention that the type 3 chessboard structure gets packaging efficiency of 74.3 % at color temperature of daylight as well as high saving of phosphor amount. The color temperatures of three types of chessboard structure are higher than 5000 K, so they are suitable for lighting purpose. The angular correlate color temperature deviation (ACCTD) of type 1, type 2 and type 3 are 6500K, 11500K and 17000K, respectively.

  9. Ultra-high-performance core–shell structured Ru@Pt/C catalyst prepared by a facile pulse electrochemical deposition method

    DOE PAGES

    Chen, Dan; Li, Yuexia; Liao, Shijun; ...

    2015-08-03

    Core–shell structured catalysts, made by placing either a monolayer or a thin layer of a noble metal on relatively cheap core-metal nanoparticles, are fascinating and promising fuel cell catalysts due to their high utilization of noble metals. Here, we report our development of a core–shell structured catalyst, Ru@Pt/C, generated by a novel and facile pulse electrochemical deposition (PED) approach. We demonstrate that compared with a commercial Pt/C catalyst, this novel catalyst achieves over four times higher mass activity towards the anodic oxidation of methanol, and 3.6 times higher mass activity towards the cathodic reduction of oxygen. Importantly, we find thatmore » the intrinsic activity of Pt in this Ru@Pt/C catalyst is doubled due to the formation of the core–shell structure. The catalyst also shows superior stability: even after 2000 scans, it still retains up to 90% of the peak current. As a result, our findings demonstrate that this novel PED approach is a promising method for preparing high-performance core–shell catalysts for fuel cell applications.« less

  10. Prediction of the retention of s-triazines in reversed-phase high-performance liquid chromatography under linear gradient-elution conditions.

    PubMed

    D'Archivio, Angelo Antonio; Maggi, Maria Anna; Ruggieri, Fabrizio

    2014-08-01

    In this paper, a multilayer artificial neural network is used to model simultaneously the effect of solute structure and eluent concentration profile on the retention of s-triazines in reversed-phase high-performance liquid chromatography under linear gradient elution. The retention data of 24 triazines, including common herbicides and their metabolites, are collected under 13 different elution modes, covering the following experimental domain: starting acetonitrile volume fraction ranging between 40 and 60% and gradient slope ranging between 0 and 1% acetonitrile/min. The gradient parameters together with five selected molecular descriptors, identified by quantitative structure-retention relationship modelling applied to individual separation conditions, are the network inputs. Predictive performance of this model is evaluated on six external triazines and four unseen separation conditions. For comparison, retention of triazines is modelled by both quantitative structure-retention relationships and response surface methodology, which describe separately the effect of molecular structure and gradient parameters on the retention. Although applied to a wider variable domain, the network provides a performance comparable to that of the above "local" models and retention times of triazines are modelled with accuracy generally better than 7%. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Co-Percolating Graphene-Wrapped Silver Nanowire Network for High Performance, Highly Stable, Transparent Conducting Electrodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Ruiyi; Das, Suprem R.; Jeong, Changwook

    Transparent conducting electrodes (TCEs) require high transparency and low sheet resistance for applications in photovoltaics, photodetectors, flat panel displays, touch screen devices and imagers. Indium tin oxide (ITO), or other transparent conductive oxides, have typically been used, and provide a baseline sheet resistance (RS) vs. transparency (T) relationship. However, ITO is relatively expensive (due to limited abundance of Indium), brittle, unstable, and inflexible; moreover, ITO transparency drops rapidly for wavelengths above 1000 nm. Motivated by a need for transparent conductors with comparable (or better) RS at a given T, as well as flexible structures, several alternative material systems have beenmore » investigated. Single-layer graphene (SLG) or few-layer graphene provide sufficiently high transparency (≈97% per layer) to be a potential replacement for ITO. However, large-area synthesis approaches, including chemical vapor deposition (CVD), typically yield films with relatively high sheet resistance due to small grain sizes and high-resistance grain boundaries (HGBs). In this paper, we report a hybrid structure employing a CVD SLG film and a network of silver nanowires (AgNWs): RS as low as 22 Ω/ (stabilized to 13 Ω/ after 4 months) have been observed at high transparency (88% at λ = 550 nm) in hybrid structures employing relatively low-cost commercial graphene with a starting RS of 770 Ω/. This sheet resistance is superior to typical reported values for ITO, comparable to the best reported TCEs employing graphene and/or random nanowire networks, and the film properties exhibit impressive stability under mechanical pressure, mechanical bending and over time. The design is inspired by the theory of a co-percolating network where conduction bottlenecks of a 2D film (e.g., SLG, MoS2) are circumvented by a 1D network (e.g., AgNWs, CNTs) and vice versa. The development of these high-performance hybrid structures provides a route towards robust, scalable and low-cost approaches for realizing high-performance TCE.« less

  12. Norm-Optimal ILC Applied to a High-Speed Rack Feeder

    NASA Astrophysics Data System (ADS)

    Schindele, Dominik; Aschemann, Harald; Ritzke, Jöran

    2010-09-01

    Rack feeders as automated conveying systems for high bay rackings are of high practical importance. To shorten the transport times by using trajectories with increased kinematic values accompanying control measures for a reduction of the excited structural vibrations are necessary. In this contribution, the model-based design of a norm-optimal iterative learning control structure is presented. The rack feeder is modelled as an elastic multibody system. For the mathematical description of the bending deflections a Ritz ansatz is introduced. The tracking control design is performed separately for both axes using decentralised state space representations. Both the achievable performance and the resulting tracking accuracy of the proposed control concept are shown by measurement results from the experimental set-up.

  13. A Theory for the Roll-Ratchet Phenomenon in High Performance Aircraft

    NASA Technical Reports Server (NTRS)

    Hess, Ronald A.

    1997-01-01

    Roll-ratchet refers to a high frequency oscillation which can occur in pilot-in-the-loop control of roll attitude in high performance aircraft. The frequencies of oscillation are typically well beyond those associated with the more familiar pilot-induced oscillation. A structural model of the human pilot which has been employed to provide a unified theory for aircraft handling qualities and pilot-induced oscillations is employed here to provide a theory for the existence of roll-ratchet. It is hypothesized and demonstrated using the structural model that the pilot's inappropriate use of vestibular acceleration feedback can cause this phenomenon, a possibility which has been discussed previously by other researchers. The possible influence of biodynamic feedback on roll ratchet is also discussed.

  14. Visual search for object categories is predicted by the representational architecture of high-level visual cortex

    PubMed Central

    Alvarez, George A.; Nakayama, Ken; Konkle, Talia

    2016-01-01

    Visual search is a ubiquitous visual behavior, and efficient search is essential for survival. Different cognitive models have explained the speed and accuracy of search based either on the dynamics of attention or on similarity of item representations. Here, we examined the extent to which performance on a visual search task can be predicted from the stable representational architecture of the visual system, independent of attentional dynamics. Participants performed a visual search task with 28 conditions reflecting different pairs of categories (e.g., searching for a face among cars, body among hammers, etc.). The time it took participants to find the target item varied as a function of category combination. In a separate group of participants, we measured the neural responses to these object categories when items were presented in isolation. Using representational similarity analysis, we then examined whether the similarity of neural responses across different subdivisions of the visual system had the requisite structure needed to predict visual search performance. Overall, we found strong brain/behavior correlations across most of the higher-level visual system, including both the ventral and dorsal pathways when considering both macroscale sectors as well as smaller mesoscale regions. These results suggest that visual search for real-world object categories is well predicted by the stable, task-independent architecture of the visual system. NEW & NOTEWORTHY Here, we ask which neural regions have neural response patterns that correlate with behavioral performance in a visual processing task. We found that the representational structure across all of high-level visual cortex has the requisite structure to predict behavior. Furthermore, when directly comparing different neural regions, we found that they all had highly similar category-level representational structures. These results point to a ubiquitous and uniform representational structure in high-level visual cortex underlying visual object processing. PMID:27832600

  15. Hierarchically structured Co₃O₄@Pt@MnO₂ nanowire arrays for high-performance supercapacitors.

    PubMed

    Xia, Hui; Zhu, Dongdong; Luo, Zhentao; Yu, Yue; Shi, Xiaoqin; Yuan, Guoliang; Xie, Jianping

    2013-10-17

    Here we proposed a novel architectural design of a ternary MnO2-based electrode - a hierarchical Co3O4@Pt@MnO2 core-shell-shell structure, where the complemental features of the three key components (a well-defined Co3O4 nanowire array on the conductive Ti substrate, an ultrathin layer of small Pt nanoparticles, and a thin layer of MnO2 nanoflakes) are strategically combined into a single entity to synergize and construct a high-performance electrode for supercapacitors. Owing to the high conductivity of the well-defined Co3O4 nanowire arrays, in which the conductivity was further enhanced by a thin metal (Pt) coating layer, in combination with the large surface area provided by the small MnO2 nanoflakes, the as-fabricated Co3O4@Pt@MnO2 nanowire arrays have exhibited high specific capacitances, good rate capability, and excellent cycling stability. The architectural design demonstrated in this study provides a new approach to fabricate high-performance MnO2-based nanowire arrays for constructing next-generation supercapacitors.

  16. Hierarchically Structured Co3O4@Pt@MnO2 Nanowire Arrays for High-Performance Supercapacitors

    NASA Astrophysics Data System (ADS)

    Xia, Hui; Zhu, Dongdong; Luo, Zhentao; Yu, Yue; Shi, Xiaoqin; Yuan, Guoliang; Xie, Jianping

    2013-10-01

    Here we proposed a novel architectural design of a ternary MnO2-based electrode - a hierarchical Co3O4@Pt@MnO2 core-shell-shell structure, where the complemental features of the three key components (a well-defined Co3O4 nanowire array on the conductive Ti substrate, an ultrathin layer of small Pt nanoparticles, and a thin layer of MnO2 nanoflakes) are strategically combined into a single entity to synergize and construct a high-performance electrode for supercapacitors. Owing to the high conductivity of the well-defined Co3O4 nanowire arrays, in which the conductivity was further enhanced by a thin metal (Pt) coating layer, in combination with the large surface area provided by the small MnO2 nanoflakes, the as-fabricated Co3O4@Pt@MnO2 nanowire arrays have exhibited high specific capacitances, good rate capability, and excellent cycling stability. The architectural design demonstrated in this study provides a new approach to fabricate high-performance MnO2-based nanowire arrays for constructing next-generation supercapacitors.

  17. Hydrogen-Treated Rutile TiO2 Shell in Graphite-Core Structure as a Negative Electrode for High-Performance Vanadium Redox Flow Batteries.

    PubMed

    Vázquez-Galván, Javier; Flox, Cristina; Fàbrega, Cristian; Ventosa, Edgar; Parra, Andres; Andreu, Teresa; Morante, Joan Ramón

    2017-05-09

    Hydrogen-treated TiO 2 as an electrocatalyst has shown to boost the capacity of high-performance all-vanadium redox flow batteries (VRFBs) as a simple and eco-friendly strategy. The graphite felt-based GF@TiO 2 :H electrode is able to inhibit the hydrogen evolution reaction (HER), which is a critical barrier for operating at high rate for long-term cycling in VRFBs. Significant improvements in charge/discharge and electron-transfer processes for the V 3+ /V 2+ reaction on the surface of reduced TiO 2 were achieved as a consequence of the formation of oxygen functional groups and oxygen vacancies in the lattice structure. Key performance indicators of VRFB have been improved, such as high capability rates and electrolyte-utilization ratios (82 % at 200 mA cm -2 ). Additionally, high coulombic efficiencies (ca. 100 % up to the 96th cycle, afterwards >97 %) were obtained, demonstrating the feasibility of achieving long-term stability. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Rational Design of High-Performance Wide-Bandgap (≈2 eV) Polymer Semiconductors as Electron Donors in Organic Photovoltaics Exhibiting High Open Circuit Voltages (≈1 V).

    PubMed

    Chochos, Christos L; Katsouras, Athanasios; Gasparini, Nicola; Koulogiannis, Chrysanthos; Ameri, Tayebeh; Brabec, Christoph J; Avgeropoulos, Apostolos

    2017-01-01

    Systematic optimization of the chemical structure of wide-bandgap (≈2.0 eV) "donor-acceptor" copolymers consisting of indacenodithiophene or indacenodithieno[3,2-b]thiophene as the electron-rich unit and thieno[3,4-c]pyrrole-4,6-dione as the electron-deficient moiety in terms of alkyl side chain engineering and distance of the electron-rich and electron-deficient monomers within the repeat unit of the polymer chain results in high-performance electron donor materials for organic photovoltaics. Specifically, preliminary results demonstrate extremely high open circuit voltages (V oc s) of ≈1.0 V, reasonable short circuit current density (J sc ) of around 11 mA cm -2 , and moderate fill factors resulting in efficiencies close to 6%. All the devices are fabricated in an inverted architecture with the photoactive layer processed by doctor blade equipment, showing the compatibility with roll-to-roll large-scale manufacturing processes. From the correlation of the chemical structure-optoelectronic properties-photovoltaic performance, a rational guide toward further optimization of the chemical structure in this family of copolymers, has been achieved. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Rational design of hierarchical ZnO@Carbon nanoflower for high performance lithium ion battery anodes

    NASA Astrophysics Data System (ADS)

    liu, Huichao; Shi, Ludi; Li, Dongzhi; Yu, Jiali; Zhang, Han-Ming; Ullah, Shahid; Yang, Bo; Li, Cuihua; Zhu, Caizhen; Xu, Jian

    2018-05-01

    The rational structure design and strong interfacial bonding are crucially desired for high performance zinc oxide (ZnO)/carbon composite electrodes. In this context, micro-nano secondary structure design and strong dopamine coating strategies are adopted for the fabrication of flower-like ZnO/carbon (ZnO@C nanoflowers) composite electrodes. The results show the ZnO@C nanoflowers (2-6 μm) are assembled by hierarchical ZnO nanosheets (∼27 nm) and continuous carbon framework. The micro-nano secondary architecture can facilitate the penetration of electrolyte, shorten lithium ions diffusion length, and hinder the aggregation of the nanosheets. Moreover, the strong chemical interaction between ZnO and coating carbon layer via C-Zn bond improves structure stability as well as the electronic conductivity. As a synergistic result, when evaluated as lithium ion batteries (LIBs) anode, the ZnO@C nanoflower electrodes show high reversible capacity of ca. 1200 mA h g-1 at 0.1 A g-1 after 80 cycles. As well as good long-cycling stability (638 and 420 mA h g-1 at 1 and 5 A g-1 after 500 cycles, respectively) and excellent rate capability. Therefore, this rational design of ZnO@C nanoflowers electrode is a promising anode for high-performance LIBs.

  20. Fabrication of Conductive Macroporous Structures Through Nano-phase Separation Method

    NASA Astrophysics Data System (ADS)

    Kim, Soohyun; Lee, Hyunjung

    2018-03-01

    Thermoelectric power generation performance is characterized on the basis of the figure of merit, which tends to be high in thermoelectric materials with high electrical conductivity and low thermal conductivity. Porous structures cause phonon scattering, which decreases thermal conductivity. In this study, we fabricated porous structures for thermoelectric devices via nano-phase separation of silica particles from a polyacrylonitrile (PAN) matrix via a sol-gel process. The porosity was determined by control of silica particle size with various the mixing ratio of tetraethylorthosilicate as the precursor of silica particles to PAN. High electrical conductivity was maintained by subsequent carbonization of the PAN matrix in spited of a high porosity. As the results, the conductive porous structures having porosity from 13.9 to 83.3 (%) was successfully fabricated, keeping their electrical conductivities.

  1. Porous Fe2O3 Nanoframeworks Encapsulated within Three-Dimensional Graphene as High-Performance Flexible Anode for Lithium-Ion Battery.

    PubMed

    Jiang, Tiancai; Bu, Fanxing; Feng, Xiaoxiang; Shakir, Imran; Hao, Guolin; Xu, Yuxi

    2017-05-23

    Integrating nanoscale porous metal oxides into three-dimensional graphene (3DG) with encapsulated structure is a promising route but remains challenging to develop high-performance electrodes for lithium-ion battery. Herein, we design 3DG/metal organic framework composite by an excessive metal-ion-induced combination and spatially confined Ostwald ripening strategy, which can be transformed into 3DG/Fe 2 O 3 aerogel with porous Fe 2 O 3 nanoframeworks well encapsulated within graphene. The hierarchical structure offers highly interpenetrated porous conductive network and intimate contact between graphene and porous Fe 2 O 3 as well as abundant stress buffer nanospace for effective charge transport and robust structural stability during electrochemical processes. The obtained free-standing 3DG/Fe 2 O 3 aerogel was directly used as highly flexible anode upon mechanical pressing for lithium-ion battery and showed an ultrahigh capacity of 1129 mAh/g at 0.2 A/g after 130 cycles and outstanding cycling stability with a capacity retention of 98% after 1200 cycles at 5 A/g, which is the best results that have been reported so far. This study offers a promising route to greatly enhance the electrochemical properties of metal oxides and provides suggestive insights for developing high-performance electrode materials for electrochemical energy storage.

  2. Performance evaluation of setback buildings with open ground storey on plain and sloping ground under earthquake loadings and mitigation of failure

    NASA Astrophysics Data System (ADS)

    Ghosh, Rahul; Debbarma, Rama

    2017-06-01

    Setback structures are highly vulnerable during earthquakes due to its vertical geometrical and mass irregularity, but the vulnerability becomes higher if the structures also have stiffness irregularity in elevation. The risk factor of such structure may increase, if the structure rests on sloping ground. In this paper, an attempt has been made to evaluate the seismic performance of setback structures resting on plain ground as well as in the slope of a hill, with soft storey configuration. The analysis has been performed in three individual methods, equivalent static force method, response spectrum method and time history method and extreme responses have been recorded for open ground storeyed setback building. To mitigate this soft storey effect and the extreme responses, three individual mitigation techniques have been adopted and the best solution among these three techniques is presented.

  3. Viscous damped space structure for reduced jitter

    NASA Technical Reports Server (NTRS)

    Wilson, James F.; Davis, L. Porter

    1987-01-01

    A technique to provide modal vibration damping in high performance space structures was developed which uses less than one once of incompressible fluid. Up to 50 percent damping can be achieved which can reduce the settling times of the lowest structural mode by as much as 50 to 1. This concept allows the designers to reduce the weight of the structure while improving its dynamic performance. Damping by this technique is purely viscous and has been shown by test to be linear over 5 orders of input magnitude. Amplitudes as low as 0.2 microinch were demonstrated. Damping in the system is independent of stiffness and relatively insensitive to temperature.

  4. A simple extension to the CMASA method for the prediction of catalytic residues in the presence of single point mutations.

    PubMed

    Flores, David I; Sotelo-Mundo, Rogerio R; Brizuela, Carlos A

    2014-01-01

    The automatic identification of catalytic residues still remains an important challenge in structural bioinformatics. Sequence-based methods are good alternatives when the query shares a high percentage of identity with a well-annotated enzyme. However, when the homology is not apparent, which occurs with many structures from the structural genome initiative, structural information should be exploited. A local structural comparison is preferred to a global structural comparison when predicting functional residues. CMASA is a recently proposed method for predicting catalytic residues based on a local structure comparison. The method achieves high accuracy and a high value for the Matthews correlation coefficient. However, point substitutions or a lack of relevant data strongly affect the performance of the method. In the present study, we propose a simple extension to the CMASA method to overcome this difficulty. Extensive computational experiments are shown as proof of concept instances, as well as for a few real cases. The results show that the extension performs well when the catalytic site contains mutated residues or when some residues are missing. The proposed modification could correctly predict the catalytic residues of a mutant thymidylate synthase, 1EVF. It also successfully predicted the catalytic residues for 3HRC despite the lack of information for a relevant side chain atom in the PDB file.

  5. Enhanced lithium storage performance of hierarchical CuO nanomaterials with surface fractal characteristics

    NASA Astrophysics Data System (ADS)

    Li, Ang; He, Renyue; Bian, Zhuo; Song, Huaihe; Chen, Xiaohong; Zhou, Jisheng

    2018-06-01

    Self-assembled hierarchical CuO nanostructures with fractal structures were prepared by a mild method and exhibited excellent lithium storage properties, certain of which even demonstrated a high reversible capacity of 827 mAh g-1 at a rate of 0.1 C. An interesting phenomenon was observed that the electrochemical performance varies along with the structure complexity, and the products with higher surface factal dimensions exhibited larger capability and better cyclability. Structural and electrochemical analysis methods were used to explore the lithiation kinetics of the samples and the reasons for the outstanding electrochemical performances related to the complexities of hierarchical nanostructures and the irregularities of surface and mass distribution.

  6. Effects on automatic attention due to exposure to pictures of emotional faces while performing Chinese word judgment tasks.

    PubMed

    Junhong, Huang; Renlai, Zhou; Senqi, Hu

    2013-01-01

    Two experiments were conducted to investigate the automatic processing of emotional facial expressions while performing low or high demand cognitive tasks under unattended conditions. In Experiment 1, 35 subjects performed low (judging the structure of Chinese words) and high (judging the tone of Chinese words) cognitive load tasks while exposed to unattended pictures of fearful, neutral, or happy faces. The results revealed that the reaction time was slower and the performance accuracy was higher while performing the low cognitive load task than while performing the high cognitive load task. Exposure to fearful faces resulted in significantly longer reaction times and lower accuracy than exposure to neutral faces on the low cognitive load task. In Experiment 2, 26 subjects performed the same word judgment tasks and their brain event-related potentials (ERPs) were measured for a period of 800 ms after the onset of the task stimulus. The amplitudes of the early component of ERP around 176 ms (P2) elicited by unattended fearful faces over frontal-central-parietal recording sites was significantly larger than those elicited by unattended neutral faces while performing the word structure judgment task. Together, the findings of the two experiments indicated that unattended fearful faces captured significantly more attention resources than unattended neutral faces on a low cognitive load task, but not on a high cognitive load task. It was concluded that fearful faces could automatically capture attention if residues of attention resources were available under the unattended condition.

  7. Effects on Automatic Attention Due to Exposure to Pictures of Emotional Faces while Performing Chinese Word Judgment Tasks

    PubMed Central

    Junhong, Huang; Renlai, Zhou; Senqi, Hu

    2013-01-01

    Two experiments were conducted to investigate the automatic processing of emotional facial expressions while performing low or high demand cognitive tasks under unattended conditions. In Experiment 1, 35 subjects performed low (judging the structure of Chinese words) and high (judging the tone of Chinese words) cognitive load tasks while exposed to unattended pictures of fearful, neutral, or happy faces. The results revealed that the reaction time was slower and the performance accuracy was higher while performing the low cognitive load task than while performing the high cognitive load task. Exposure to fearful faces resulted in significantly longer reaction times and lower accuracy than exposure to neutral faces on the low cognitive load task. In Experiment 2, 26 subjects performed the same word judgment tasks and their brain event-related potentials (ERPs) were measured for a period of 800 ms after the onset of the task stimulus. The amplitudes of the early component of ERP around 176 ms (P2) elicited by unattended fearful faces over frontal-central-parietal recording sites was significantly larger than those elicited by unattended neutral faces while performing the word structure judgment task. Together, the findings of the two experiments indicated that unattended fearful faces captured significantly more attention resources than unattended neutral faces on a low cognitive load task, but not on a high cognitive load task. It was concluded that fearful faces could automatically capture attention if residues of attention resources were available under the unattended condition. PMID:24124486

  8. Elevated Temperature Crack Growth Behavior in HSCT Structural Materials

    NASA Technical Reports Server (NTRS)

    Saxena, Ashok

    1998-01-01

    Structures in super-sonic aircraft are subjected to conditions of high temperature and cyclic and sustained loading for extended periods of time. The durability of structures fabricated from aluminum and certain titanium alloys in such demanding conditions is of primary concern to the designers and manufacturers of futuristic transport aircraft. Accordingly, the major goal of this project was to evaluate the performance and durability of high temperature aluminum and titanium alloys for use in high speed civil transport (HSCT) structures. Additional goals were to develop time-dependent fracture mechanics methodology and test methods for characterizing and predicting elevated temperature crack growth behavior in creep-brittle materials such as ones being considered for use in HSCT structures and to explore accelerated methods of simulating microstructural degradation during service and measuring degraded properties in these materials.

  9. Inner structural vibration isolation method for a single control moment gyroscope

    NASA Astrophysics Data System (ADS)

    Zhang, Jingrui; Guo, Zixi; Zhang, Yao; Tang, Liang; Guan, Xin

    2016-01-01

    Assembling and manufacturing errors of control moment gyros (CMG) often generate high frequency vibrations which are detrimental to spacecrafts with high precision pointing requirement. In this paper, some design methods of vibration isolation between CMG and spacecraft is dealt with. As a first step, the dynamic model of the CMG with and without supporting isolation structures is studied and analyzed. Subsequently, the frequency domain analysis of CMG with isolation system is performed and the effectiveness of the designed system is ascertained. Based on the above studies, an adaptive design suitable with appropriate design parameters are carried out. A numerical analysis is also performed to understand the effectiveness of the system and the comparison made. The simulation results clearly indicate that when the ideal isolation structure was implemented in the spacecraft, the vibrations generated by the rotor were found to be greatly reduced, while the capacity of the output torque was not lost, which means that the isolation system will not affect the performance of attitude control.

  10. Laser surface melting of 10 wt% Mo alloyed hardfacing Stellite 12 plasma transferred arc deposits: Structural evolution and high temperature wear performance

    NASA Astrophysics Data System (ADS)

    Dilawary, Shaikh Asad Ali; Motallebzadeh, Amir; Afzal, Muhammad; Atar, Erdem; Cimenoglu, Huseyin

    2018-05-01

    Laser surface melting (LSM) process has been applied on the plasma transferred arc (PTA) deposited Stellite 12 and 10 wt% Mo alloyed Stellite 12 in this study. Following the LSM process, structural and mechanical property comparison of the LSM'ed surfaces has been made. Hardness of the LSM'ed surfaces was measured as 549 HV and 623 HV for the Stellite 12 and Stellite 12 + 10 wt% Mo deposits, respectively. Despite their different hardness and structural features, the LSM'ed surfaces exhibited similar tribological performance at room temperature (RT), where fatigue wear mechanism operates. However, the wear at 500 °C promotes tribo-oxide layer formation whose composition depended on the alloying with Mo. Thus, addition of 10 wt% Mo into Stellite 12 PTA deposit has remarkably enhanced the high temperature wear performance of the LSM'ed surface as a result of participation of complex oxide (CoMoO4) in tribo-oxide layer.

  11. Silicone-Based Triboelectric Nanogenerator for Water Wave Energy Harvesting.

    PubMed

    Xiao, Tian Xiao; Jiang, Tao; Zhu, Jian Xiong; Liang, Xi; Xu, Liang; Shao, Jia Jia; Zhang, Chun Lei; Wang, Jie; Wang, Zhong Lin

    2018-01-31

    Triboelectric nanogenerator (TENG) has been proven to be efficient for harvesting water wave energy, which is one of the most promising renewable energy sources. In this work, a TENG with a silicone rubber/carbon black composite electrode was designed for converting the water wave energy into electricity. The silicone-based electrode with a soft texture provides a better contact with the dielectric film. Furthermore, a spring structure is introduced to transform low-frequency water wave motions into high-frequency vibrations. They together improve the output performance and efficiency of TENG. The output performances of TENGs are further enhanced by optimizing the triboelectric material pair and tribo-surface area. A spring-assisted TENG device with the segmented silicone rubber-based electrode structure was sealed into a waterproof box, which delivers a maximum power density of 2.40 W m -3 , as triggered by the water waves. The present work provides a new strategy for fabricating high-performance TENG devices by coupling flexible electrodes and spring structure for harvesting water wave energy.

  12. Highly Efficient and Fully Solution-Processed Inverted Light-Emitting Diodes with Charge Control Interlayers.

    PubMed

    Fu, Yan; Jiang, Wei; Kim, Daekyoung; Lee, Woosuk; Chae, Heeyeop

    2018-05-23

    In this work, we developed a charge control sandwich structure around QD layers for the inverted QLEDs, the performance of which is shown to exceed that of the conventional QLEDs in terms of the external quantum efficiency (EQE) and the current efficiency (CE). The QD light-emitting layer (EML) is sandwiched with two ultrathin interfacial layers: one is a poly(9-vinlycarbazole) (PVK) layer to prevent excess electrons, and the other is a polyethylenimine ethoxylated (PEIE) layer to reduce the hole injection barrier. The sandwich structure resolves the imbalance between injected holes and electrons and brings the level of balanced charge carriers to a maximum. We demonstrated the highly improved performance of 89.8 cd/A of current efficiency, 22.4% of external quantum efficiency, and 72 814 cd m -2 of maximum brightness with the solution-processed inverted QLED. This sandwich structure (PVK/QD/PEIE), as a framework, can be applied to various QLED devices for enhancing performance.

  13. Development of the SSTL-300-S1 Composite Imager Barrel Structure

    NASA Astrophysics Data System (ADS)

    Hamar, Chris; Wood, Trevor; Alsami, Sami; Hallett, Ben

    2014-06-01

    The SSTL-300-S1 is the latest in the family of highly capable SSTL-300 platforms, providing high resolution imagery with all the existing mission performance of the heritage platform. In developing the product, SSTL has had to undertake the development of a composite imager barrel assembly, which forms the payload instrument's primary structure. Working to a nominal schedule of 24 months from requirements definition to structural qualification, the barrel's development philosophy has had to carefully balance the interdependent optical, structural and programmatic requirements. This paper provides a brief summary description of that development.

  14. Advances in Hot-Structure Development

    NASA Technical Reports Server (NTRS)

    Rivers, H. Kevin; Glass, David E.

    2006-01-01

    The National Aeronautics and Space Administration has actively participated in the development of hot structures technology for application to hypersonic flight systems. Hot structures have been developed for vehicles including the X-43A, X-37, and the Space Shuttle. These trans-atmospheric and atmospheric entry flight systems that incorporate hot-structures technology are lighter weight and require less maintenance than those that incorporate parasitic, thermal-protection materials that attach to warm or cool substructure. The development of hot structures requires a thorough understanding of material performance in an extreme environment, boundary conditions and load interactions, structural joint performance, and thermal and mechanical performance of integrated structural systems that operate at temperatures ranging from 1500 C to 3000 C, depending on the application. This paper will present recent advances in the development of hot structures, including development of environmentally durable, high temperature leading edges and control surfaces, integrated thermal protection systems, and repair technologies. The X-43A Mach-10 vehicle utilized carbon/carbon (C/C) leading edges on the nose, horizontal control surface, and vertical tail. The nose and vertical and horizontal tail leading edges were fabricated out of a 3:1 biased, high thermal conductivity C/C. The leading edges were coated with a three-layer coating comprised of a SiC conversion of the C/C, followed by a CVD layer of SiC, followed by a thin CVD layer of HfC. Work has also been performed on the development of an integrated structure and was focused on both hot and warm (insulated) structures and integrated fuselage/tank/TPS systems. The objective was to develop integrated multifunctional airframe structures that eliminate fragile external thermal-protection systems and incorporate the insulating function within the structure. The approach taken to achieve this goal was to develop candidate hypersonic airframe concepts, including structural arrangement, load paths, thermal-structural wall design, thermal accommodation features, and integration of major components, optimize thermalstructural configurations, and validate concepts through a building block test program and generate data to improve and validate analytical and design tools.

  15. Pressure induced structural transitions in CuSbS 2 and CuSbSe 2 thermoelectric compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, Jason; Kumar, Ravhi S.; Sneed, Daniel

    Here, we investigate the structural behavior of CuSbS 2 and CuSbSe 2 thermoelectric materials under high pressure conditions up to 80 GPa using angle dispersive X-ray diffraction in a diamond anvil cell (DAC). We also perform high pressure Raman spectroscopy measurements up to 16 GPa. We observed a pressure-induced structural transformation from the ambient orthorhombic structure with space group Pnma to a triclinic type structure with space group P1 beginning around 8 GPa in both samples and completing at 13 GPa and 10 GPa in CuSbS 2 and CuSbSe 2, respectively. High pressure Raman experiments complement the transitions observed bymore » high pressure X-ray diffraction (HPXRD). Finally, the transitions were found to be reversible on releasing the pressure to ambient in the DAC. The bulk modulus and compressibility of these materials are further discussed.« less

  16. Pressure induced structural transitions in CuSbS 2 and CuSbSe 2 thermoelectric compounds

    DOE PAGES

    Baker, Jason; Kumar, Ravhi S.; Sneed, Daniel; ...

    2015-04-27

    Here, we investigate the structural behavior of CuSbS 2 and CuSbSe 2 thermoelectric materials under high pressure conditions up to 80 GPa using angle dispersive X-ray diffraction in a diamond anvil cell (DAC). We also perform high pressure Raman spectroscopy measurements up to 16 GPa. We observed a pressure-induced structural transformation from the ambient orthorhombic structure with space group Pnma to a triclinic type structure with space group P1 beginning around 8 GPa in both samples and completing at 13 GPa and 10 GPa in CuSbS 2 and CuSbSe 2, respectively. High pressure Raman experiments complement the transitions observed bymore » high pressure X-ray diffraction (HPXRD). Finally, the transitions were found to be reversible on releasing the pressure to ambient in the DAC. The bulk modulus and compressibility of these materials are further discussed.« less

  17. Lattice-cell orientation disorder in complex spinel oxides

    DOE PAGES

    Chen, Yan; Cheng, Yongqiang; Li, Juchuan; ...

    2016-11-07

    Transition metal (TM) substitution has been widely applied to change complex oxides crystal structures to create high energy density electrodes materials in high performance rechargeable lithium-ion batteries. The complex local structure in the oxides imparted by the TM arrangement often impacts their electrochemical behaviors by influencing the diffusion and intercalation of lithium. Here, a major discrepancy is demonstrated between the global and local structures of the promising high energy density and high voltage LiNi 0.5Mn 1.5O 4 spinel cathode material that contradicts the existing structural models. A new single-phase lattice-cell orientation disorder model is proposed as the mechanism for themore » local ordering that explains how the inhomogeneous local distortions and the coherent connection give rise to the global structure in the complex oxide. As a result, the single-phase model is consistent with the electrochemical behavior observation of the materials.« less

  18. SEMICONDUCTOR INTEGRATED CIRCUITS: A quasi-3-dimensional simulation method for a high-voltage level-shifting circuit structure

    NASA Astrophysics Data System (ADS)

    Jizhi, Liu; Xingbi, Chen

    2009-12-01

    A new quasi-three-dimensional (quasi-3D) numeric simulation method for a high-voltage level-shifting circuit structure is proposed. The performances of the 3D structure are analyzed by combining some 2D device structures; the 2D devices are in two planes perpendicular to each other and to the surface of the semiconductor. In comparison with Davinci, the full 3D device simulation tool, the quasi-3D simulation method can give results for the potential and current distribution of the 3D high-voltage level-shifting circuit structure with appropriate accuracy and the total CPU time for simulation is significantly reduced. The quasi-3D simulation technique can be used in many cases with advantages such as saving computing time, making no demands on the high-end computer terminals, and being easy to operate.

  19. Seamless growth of a supramolecular carpet

    PubMed Central

    Kim, Ju-Hyung; Ribierre, Jean-Charles; Yang, Yu Seok; Adachi, Chihaya; Kawai, Maki; Jung, Jaehoon; Fukushima, Takanori; Kim, Yousoo

    2016-01-01

    Organic/metal interfaces play crucial roles in the formation of intermolecular networks on metal surfaces and the performance of organic devices. Although their purity and uniformity have profound effects on the operation of organic devices, the formation of organic thin films with high interfacial uniformity on metal surfaces has suffered from the intrinsic limitation of molecular ordering imposed by irregular surface structures. Here we demonstrate a supramolecular carpet with widely uniform interfacial structure and high adaptability on a metal surface via a one-step process. The high uniformity is achieved with well-balanced interfacial interactions and site-specific molecular rearrangements, even on a pre-annealed amorphous gold surface. Co-existing electronic structures show selective availability corresponding to the energy region and the local position of the system. These findings provide not only a deeper insight into organic thin films with high structural integrity, but also a new way to tailor interfacial geometric and electronic structures. PMID:26839053

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Yan; Cheng, Yongqiang; Li, Juchuan

    Transition metal (TM) substitution has been widely applied to change complex oxides crystal structures to create high energy density electrodes materials in high performance rechargeable lithium-ion batteries. The complex local structure in the oxides imparted by the TM arrangement often impacts their electrochemical behaviors by influencing the diffusion and intercalation of lithium. Here, a major discrepancy is demonstrated between the global and local structures of the promising high energy density and high voltage LiNi 0.5Mn 1.5O 4 spinel cathode material that contradicts the existing structural models. A new single-phase lattice-cell orientation disorder model is proposed as the mechanism for themore » local ordering that explains how the inhomogeneous local distortions and the coherent connection give rise to the global structure in the complex oxide. As a result, the single-phase model is consistent with the electrochemical behavior observation of the materials.« less

  1. Nanotechnology-Based Performance Improvements For Portland Cement Concrete - Phase I

    DOT National Transportation Integrated Search

    2012-08-16

    A fundamental understanding of the nano-structure of Portland cement concrete (PCC) is the key to realizing significant breakthroughs regarding high performance and susta : (MBTC 2095/3004) using molecular dynamics (MD) provided new understanding of ...

  2. Organic content influences sediment microbial fuel cell performance and community structure.

    PubMed

    Zhao, Qing; Li, Ruying; Ji, Min; Ren, Zhiyong Jason

    2016-11-01

    This study constructed sediment microbial fuel cells (SMFCs) with different organic loadings without the amendment of external substrates, and it investigated how such variation affects electricity generation and microbial community structure. Results found sediment characteristics significantly influenced SMFC performance and appropriate organic content is important to maintain stable power outputs. SMFCs with loss of ignition (LOI) of 5% showed the most reliable performance in this study, while high organic content (LOI 10-16%) led to higher but very unstable voltage output because of biogas accumulation and worm activities. SMFCs with low organic content (1-3%) showed low power output. Different bacterial communities were found in SMFCs shown various power generation performance even those with similar organic contents. Thermodesulfovibrionaceae was found closely related to the system startup and Desulfobulbaceae showed great abundance in SMFCs with high power production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Ni foam supported quasi-core-shell structure of ultrathin Ti3C2 nanosheets through electrostatic layer-by-layer self-assembly as high rate-performance electrodes of supercapacitors

    NASA Astrophysics Data System (ADS)

    Tian, Yapeng; Yang, Chenhui; Que, Wenxiu; He, Yucheng; Liu, Xiaobin; Luo, Yangyang; Yin, Xingtian; Kong, Ling Bing

    2017-11-01

    Supercapacitor, as an important energy storage device, is a critical component for next generation electric power system, due to its high power density and long cycle life. In this study, a novel electrode material with quasi-core-shell structure, consisting of negatively charged few layer Ti3C2 nanosheets (FL-Ti3C2) and positively charged polyethyleneimine as building blocks, has been prepared by using an electrostatic layer-by-layer self-assembly method, with highly conductive Ni foam to be used as the skeleton. The unique quasi-core-shell structured ultrathin Ti3C2 nanosheets provide an excellent electron channel, ion transport channel and large effective contact area, thus leading to a great improvement in electrochemical performance of the material. The specific capacitance of the binder-free FL-Ti3C2@Ni foam electrodes reaches 370 F g-1 at the scan rate of 2 mV s-1 and a specific capacitance of 117 F g-1 is obtained even at the scan rate of 1000 mV s-1 in the electrolyte of Li2SO4, indicating a high rate performance. In addition, this electrode shows a long-term cyclic stability with a loss of only 13.7% after 10,000 circles. Furthermore, quantitative analysis has been conducted to ensure the relationship between the capacitive contribution and the rate performance of the as-fabricated electrode.

  4. Operational modal analysis of a high-rise multi-function building with dampers by a Bayesian approach

    NASA Astrophysics Data System (ADS)

    Ni, Yanchun; Lu, Xilin; Lu, Wensheng

    2017-03-01

    The field non-destructive vibration test plays an important role in the area of structural health monitoring. It assists in monitoring the health status and reducing the risk caused by the poor performance of structures. As the most economic field test among the various vibration tests, the ambient vibration test is the most popular and is widely used to assess the physical condition of a structure under operational service. Based on the ambient vibration data, modal identification can help provide significant previous study for model updating and damage detection during the service life of a structure. It has been proved that modal identification works well in the investigation of the dynamic performance of different kinds of structures. In this paper, the objective structure is a high-rise multi-function office building. The whole building is composed of seven three-story structural units. Each unit comprises one complete floor and two L shaped floors to form large spaces along the vertical direction. There are 56 viscous dampers installed in the building to improve the energy dissipation capacity. Due to the special feature of the structure, field vibration tests and further modal identification were performed to investigate its dynamic performance. Twenty-nine setups were designed to cover all the degrees of freedom of interest. About two years later, another field test was carried out to measure the building for 48 h to investigate the performance variance and the distribution of the modal parameters. A Fast Bayesian FFT method was employed to perform the modal identification. This Bayesian method not only provides the most probable values of the modal parameters but also assesses the associated posterior uncertainty analytically, which is especially relevant in field vibration tests arising due to measurement noise, sensor alignment error, modelling error, etc. A shaking table test was also implemented including cases with and without dampers, which assists in investigating the effect of dampers. The modal parameters obtained from different tests were investigated separately and then compared with each other.

  5. Progress in performance enhancement methods for capacitive silicon resonators

    NASA Astrophysics Data System (ADS)

    Van Toan, Nguyen; Ono, Takahito

    2017-11-01

    In this paper, we review the progress in recent studies on the performance enhancement methods for capacitive silicon resonators. We provide information on various fabrication technologies and design considerations that can be employed to improve the performance of capacitive silicon resonators, including low motional resistance, small insertion loss, and high quality factor (Q). This paper contains an overview of device structures and working principles, fabrication technologies consisting of hermetic packaging, deep reactive-ion etching and neutral beam etching, and design considerations including mechanically coupled, movable electrode structures and piezoresistive heat engines.

  6. Does Structure of Content Delivery or Degree of Professional Development Support Matter for Student Reading Growth in High-Poverty Settings?

    ERIC Educational Resources Information Center

    Amendum, Steven J.; Fitzgerald, Jill

    2013-01-01

    We addressed whether the degree of structure of reading content delivery to the children or degree of professional development support for the teachers was related to kindergarten through second-grade students' 2-year reading growth in high-poverty, low-performing schools. There were four categories of data sources: (a) classroom,…

  7. High temperature arc-track resistant aerospace insulation

    NASA Technical Reports Server (NTRS)

    Dorogy, William

    1994-01-01

    The topics are presented in viewgraph form and include the following: high temperature aerospace insulation; Foster-Miller approach to develop a 300 C rated, arc-track resistant aerospace insulation; advantages and disadvantages of key structural features; summary goals and achievements of the phase 1 program; performance goals for selected materials; materials under evaluation; molecular structures of candidate polymers; candidate polymer properties; film properties; and a detailed program plan.

  8. Molecular dynamics study of silicon carbide properties under external dynamic loading

    NASA Astrophysics Data System (ADS)

    Utkin, A. V.; Fomin, V. M.

    2017-10-01

    In this study, molecular dynamic simulations of high-velocity impact of a spherical 3C-SiC cluster, with a wide range of velocities (from 100 to 2600 m/s) and with a rigid wall, were performed. The analysis of the final structure shows that no structural phase transformation occurred in the material, despite the high pressure during the collision process.

  9. Improving Fatigue Performance of AHSS Welds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Zhili; Yu, Xinghua; Erdman, III, Donald L.

    Reported herein is technical progress on a U.S. Department of Energy CRADA project with industry cost-share aimed at developing the technical basis and demonstrate the viability of innovative in-situ weld residual stresses mitigation technology that can substantially improve the weld fatigue performance and durability of auto-body structures. The developed technology would be costeffective and practical in high-volume vehicle production environment. Enhancing weld fatigue performance would address a critical technology gap that impedes the widespread use of advanced high-strength steels (AHSS) and other lightweight materials for auto body structure light-weighting. This means that the automotive industry can take full advantage ofmore » the AHSS in strength, durability and crashworthiness without the concern of the relatively weak weld fatigue performance. The project comprises both technological innovations in weld residual stress mitigation and due-diligence residual stress measurement and fatigue performance evaluation. Two approaches were investigated. The first one was the use of low temperature phase transformation (LTPT) weld filler wire, and the second focused on novel thermo-mechanical stress management technique. Both technical approaches have resulted in considerable improvement in fatigue lives of welded joints made of high-strength steels. Synchrotron diffraction measurement confirmed the reduction of high tensile weld residual stresses by the two weld residual stress mitigation techniques.« less

  10. High-Resolution NMR Reveals Secondary Structure and Folding of Amino Acid Transporter from Outer Chloroplast Membrane

    PubMed Central

    Zook, James D.; Molugu, Trivikram R.; Jacobsen, Neil E.; Lin, Guangxin; Soll, Jürgen; Cherry, Brian R.; Brown, Michael F.; Fromme, Petra

    2013-01-01

    Solving high-resolution structures for membrane proteins continues to be a daunting challenge in the structural biology community. In this study we report our high-resolution NMR results for a transmembrane protein, outer envelope protein of molar mass 16 kDa (OEP16), an amino acid transporter from the outer membrane of chloroplasts. Three-dimensional, high-resolution NMR experiments on the 13C, 15N, 2H-triply-labeled protein were used to assign protein backbone resonances and to obtain secondary structure information. The results yield over 95% assignment of N, HN, CO, Cα, and Cβ chemical shifts, which is essential for obtaining a high resolution structure from NMR data. Chemical shift analysis from the assignment data reveals experimental evidence for the first time on the location of the secondary structure elements on a per residue basis. In addition T 1Z and T2 relaxation experiments were performed in order to better understand the protein dynamics. Arginine titration experiments yield an insight into the amino acid residues responsible for protein transporter function. The results provide the necessary basis for high-resolution structural determination of this important plant membrane protein. PMID:24205117

  11. Construction Guide to Next-Generation High-Performance Walls in Climate Zones 3-5 - Part 1: 2x6 Walls

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kochkin, V.; Wiehagen, J.

    2017-08-31

    Part 1 of this Construction Guide to High-Performance Walls in Climate Zones 3-5 provides time-proven, practical, and cost-effective strategies for constructing durable, energy-efficient walls. It addresses walls constructed with 2x6 wood frame studs, wood structural panel (WSP) exterior sheathing, and a cladding system installed over WSP sheathing in low-rise residential buildings up to three stories high.

  12. Construction Guide to Next-Generation High-Performance Walls in Climate Zones 3-5 - Part 1: 2x6 Walls

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kochkin, V.; Wiehagen, J.

    Part 1 of this Construction Guide to High-Performance Walls in Climate Zones 3-5 provides time-proven, practical, and cost-effective strategies for constructing durable, energy-efficient walls. It addresses walls constructed with 2x6 wood frame studs, wood structural panel (WSP) exterior sheathing, and a cladding system installed over WSP sheathing in low-rise residential buildings up to three stories high.

  13. Defining Administrative Tasks, Evaluating Performance, and Developing Skills.

    ERIC Educational Resources Information Center

    Herman, Janice L.; Herman, Jerry J.

    1995-01-01

    To ensure high performance, administrators should develop an articulated structure and process systems approach that identifies the critical success factors (CSFs) of performance for each position; appropriate indicators and scales; and a personal-improvement plan based on last year's evaluation. Once CSFs are identified and written into the…

  14. VI-G, Sec. 661, P.L. 91-230. Final Performance Report.

    ERIC Educational Resources Information Center

    1976

    Presented is the final performance report of the CSDC model which is designed to provide services for learning disabled high school students. Sections cover the following program aspects: organizational structure, inservice sessions, identification of students, materials and equipment, evaluation of student performance, evaluation of the model,…

  15. Investigating the structure preserving encryption of high efficiency video coding (HEVC)

    NASA Astrophysics Data System (ADS)

    Shahid, Zafar; Puech, William

    2013-02-01

    This paper presents a novel method for the real-time protection of new emerging High Efficiency Video Coding (HEVC) standard. Structure preserving selective encryption is being performed in CABAC entropy coding module of HEVC, which is significantly different from CABAC entropy coding of H.264/AVC. In CABAC of HEVC, exponential Golomb coding is replaced by truncated Rice (TR) up to a specific value for binarization of transform coefficients. Selective encryption is performed using AES cipher in cipher feedback mode on a plaintext of binstrings in a context aware manner. The encrypted bitstream has exactly the same bit-rate and is format complaint. Experimental evaluation and security analysis of the proposed algorithm is performed on several benchmark video sequences containing different combinations of motion, texture and objects.

  16. Teamwork in high-risk environments analogous to space

    NASA Technical Reports Server (NTRS)

    Kanki, Barbara G.

    1990-01-01

    Mountaineering expeditions combine a number of factors which make them potentially good analogs to the planetary exploration facet of long-duration space missions. A study of mountain climbing teams was conducted in order to evaluate the usefulness of the environment as a space analog and to specifically identify the factors and issues surrounding teamwork and 'successful' team performance in two mountaineering environments. This paper focuses on social/organizational factors, including team size and structure, leadership styles and authority structure which were found in the sample of 22 climb teams (122 individuals). The second major issue discussed is the construction of a valid performance measure in this high-risk environment.

  17. In-Plane Channel-Structured Catalyst Layer for Polymer Electrolyte Membrane Fuel Cells.

    PubMed

    Lee, Dong-Hyun; Jo, Wonhee; Yuk, Seongmin; Choi, Jaeho; Choi, Sungyu; Doo, Gisu; Lee, Dong Wook; Kim, Hee-Tak

    2018-02-07

    In this study, we present a novel catalyst layer (CL) with in-plane flow channels to enhance the mass transports in polymer electrolyte membrane fuel cells. The CL with in-plane channels on its surface is fabricated by coating a CL slurry onto a surface-treated substrate with the inverse line pattern and transferring the dried CL from the substrate to a membrane. The membrane electrode assembly with the in-plane channel-patterned CL has superior power performances in high current densities compared with an unpatterned, flat CL, demonstrating a significant enhancement of the mass-transport property by the in-plane channels carved in the CL. The performance gain is more pronounced when the channel direction is perpendicular to the flow field direction, indicating that the in-plane channels increase the utilization of the CL under the rib area. An oxygen-transport resistance analysis shows that both molecular and Knudsen diffusion can be facilitated with the introduction of the in-plane channels. The direct CL patterning technique provides a platform for the fabrication of advanced CL structures with a high structural fidelity and design flexibility and a rational guideline for designing high-performance CLs.

  18. Hybrid Organic-Inorganic Perovskite Photodetectors.

    PubMed

    Tian, Wei; Zhou, Huanping; Li, Liang

    2017-11-01

    Hybrid organic-inorganic perovskite materials garner enormous attention for a wide range of optoelectronic devices. Due to their attractive optical and electrical properties including high optical absorption coefficient, high carrier mobility, and long carrier diffusion length, perovskites have opened up a great opportunity for high performance photodetectors. This review aims to give a comprehensive summary of the significant results on perovskite-based photodetectors, focusing on the relationship among the perovskite structures, device configurations, and photodetecting performances. An introduction of recent progress in various perovskite structure-based photodetectors is provided. The emphasis is placed on the correlation between the perovskite structure and the device performance. Next, recent developments of bandgap-tunable perovskite and hybrid photodetectors built from perovskite heterostructures are highlighted. Then, effective approaches to enhance the stability of perovskite photodetector are presented, followed by the introduction of flexible and self-powered perovskite photodetectors. Finally, a summary of the previous results is given, and the major challenges that need to be addressed in the future are outlined. A comprehensive summary of the research status on perovskite photodetectors is hoped to push forward the development of this field. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Three-dimensional sandwich-structured NiMn2O4@reduced graphene oxide nanocomposites for highly reversible Li-ion battery anodes

    NASA Astrophysics Data System (ADS)

    Huang, Jiarui; Wang, Wei; Lin, Xirong; Gu, Cuiping; Liu, Jinyun

    2018-02-01

    A sandwich-structured NiMn2O4@reduced graphene oxide (NiMn2O4@rGO) nanocomposite consisting of ultrathin NiMn2O4 sheets uniformly anchored on both sides of a three-dimensional (3D) porous rGO is presented. The NiMn2O4@rGO nanocomposites prepared through a dipping process combining with a hydrothermal method show a good electrochemical performance including a high reversible capability of 1384 mAh g-1 at 1000 mA g-1 over 1620 cycles, and an superior rate performance. Thus, a full cell consisting of a commercial LiCoO2 cathode and the NiMn2O4@rGO anode delivers a stable capacity of about 1046 mAh g-1 (anode basis) after cycling at 50 mA g-1 for 60 times. It is demonstrated that the 3D porous composite structure accommodates the volume change during the Li+ insertion/extraction process and facilitates the rapid transport of ions and electrons. The high performance would enable the presented NiMn2O4@rGO nanocomposite a promising anode candidate for practical applications in Li-ion batteries.

  20. Micromachined evaporators for AMTEC cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Izenson, M.G.; Crowley, C.J.

    1996-12-31

    To achieve high cell efficiency and reliability, the capillary pumping system for Alkali Metal Thermal to Electric Conversion (AMTEC) must have three key characteristics: (1) very small pores to achieve a high capillary pumping head, (2) high permeability for the flow of liquid sodium to minimize internal losses, and (3) be made from a material that is exceptionally stable at high temperatures in a sodium environment. The authors have developed micromachining techniques to manufacture high performance evaporators for AMTEC cells. The evaporators have been fabricated from stainless steel, molybdenum, and a niobium alloy (Nb-1Zr). The regular, micromachined structure leads tomore » very high capillary pumping head with high permeability for liquid flow. Data from tests performed with common fluids at room temperature characterize the capillary pumping head and permeability of these structures. Three micromachined evaporators have been built into AMTEC cells and operated at temperatures up to 1,100 K. Results from these tests confirm the excellent pumping capabilities of the micromachined evaporators.« less

Top