Sample records for high ph environments

  1. Assessment of the suitability of Durafet-based sensors for pH measurement in dynamic estuarine environments

    NASA Astrophysics Data System (ADS)

    Gonski, Stephen F.; Cai, Wei-Jun; Ullman, William J.; Joesoef, Andrew; Main, Christopher R.; Pettay, D. Tye; Martz, Todd R.

    2018-01-01

    The suitability of the Honeywell Durafet to the measurement of pH in productive, high-fouling, and highly-turbid estuarine environments was investigated at the confluence of the Murderkill Estuary and Delaware Bay (Delaware, USA). Three different flow configurations of the SeapHOx sensor equipped with a Honeywell Durafet and its integrated internal (Ag/AgCl reference electrode containing a 4.5 M KCl gel liquid junction) and external (solid-state chloride ion selective electrode, Cl-ISE) reference electrodes were deployed for four periods between April 2015 and September 2016. In this environment, the Honeywell Durafet proved capable of making high-resolution and high-frequency pH measurements on the total scale between pH 6.8 and 8.4. Natural pH fluctuations of >1 pH unit were routinely captured over a range of timescales. The sensor pH collected between May and August 2016 using the most refined SeapHOx configuration exhibited good agreement with multiple sets of independently measured reference pH values. When deployed in conjunction with rigorous discrete sampling and calibration schemes, the sensor pH had a root-mean squared error ranging between 0.011 and 0.036 pH units across a wide range of salinity relative to both pHT calculated from measured dissolved inorganic carbon and total alkalinity and pHNBS measured with a glass electrode corrected to pHT at in situ conditions. The present work demonstrates the viability of the Honeywell Durafet to the measurement of pH to within the weather-level precision defined by the Global Ocean Acidification Observing Network (GOA-ON, ≤ 0.02 pH units) as a part of future estuarine CO2 chemistry studies undertaken in dynamic environments.

  2. Adaptation of the white shrimp Litopenaeus vannamei to gradual changes to a low-pH environment.

    PubMed

    Han, Si-Yin; Wang, Bao-Jie; Liu, Mei; Wang, Meng-Qiang; Jiang, Ke-Yong; Liu, Xin-Wei; Wang, Lei

    2018-03-01

    pH variation could cause a stress response in euryhaline penaeids, we evaluated the mortality, growth performance, osmoregulation gene expression, digestive enzyme activity, histology, and resistance against Vibrio parahemolyticus of white shrimp Litopenaeus vannamei reared under conditions of gradual changes to a low-pH environment (gradual-low pH, 6.65-8.20) or a high-pH environment (gradual-high pH, 8.20-9.81) versus a normal pH environment (8.14-8.31) during a 28-d experiment. Consequently, under gradual-high pH, the cumulative mortality rate (CMR) rose with time until 39.9% on days 28; the weight gain percentage (WGP) and length gain percentage (LGP) decreased continuously. However, under gradual-low pH, the CMR of shrimp stabilized at 6.67% during 7-28 d; the WGP and LGP decreased first and then returned to normal. These results indicated that L. vannamei displayed a moderate tolerance to gradual-low pH, compared with gradual-high pH. Under gradual-low pH, the Na + /K + -ATPase, cytoplasmic carbonic anydrase (CAc), and glycosyl-phosphatidylinositol-linked carbonic anhydrase (CAg) transcripts of shrimp increased continuously or then back to normal; the amylase, lipase, and trypsin activities decreased first and then returned to normal or increased; the hepatopancreases and midguts showed histopathological lesions first and then got remission. Thus, the major adaptation mechanism of shrimp to gradual-low pH might be its high osmoregulation ability, which made shrimp achieve a new, balanced steady-state, then promoted longer intestinal villi and recuperative hepatopancreases of shrimp with enhanced digestive enzyme activities to increase nutrient absorption after long-term exposure. Meanwhile, the enhanced resistance against V. parahemolyticus under gradual-low pH would probably inhibit disease outbreak in the shrimp farming. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Performance of high performance concrete (HPC) in low pH and sulfate environment.

    DOT National Transportation Integrated Search

    2013-05-01

    The goal of this research is to determine the impact of low pH and sulfate environment on high-performance concrete (HPC) and if the current structural and materials specifications provide adequate protections for concrete structures to meet the 75-y...

  4. A novel acidic pH fluorescent probe based on a benzothiazole derivative

    NASA Astrophysics Data System (ADS)

    Ma, Qiujuan; Li, Xian; Feng, Suxiang; Liang, Beibei; Zhou, Tiqiang; Xu, Min; Ma, Zhuoyi

    2017-04-01

    A novel acidic pH fluorescent probe 1 based on a benzothiazole derivative has been designed, synthesized and developed. The linear response range covers the acidic pH range from 3.44 to 6.46, which is valuable for pH researches in acidic environment. The evaluated pKa value of the probe 1 is 4.23. The fluorescence enhancement of the studied probe 1 with an increase in hydrogen ions concentration is based on the hindering of enhanced photo-induced electron transfer (PET) process. Moreover, the pH sensor possesses a highly selective response to H+ in the presence of metal ions, anions and other bioactive small molecules which would be interfere with its fluorescent pH response. Furthermore, the probe 1 responds to acidic pH with short response time that was less than 1 min. The probe 1 has been successfully applied to confocal fluorescence imaging in live HeLa cells and can selectively stain lysosomes. All of such good properties prove it can be used to monitoring pH fluctuations in acidic environment with high sensitivity, pH dependence and short response time.

  5. High-resolution ocean pH dynamics in four subtropical Atlantic benthic habitats

    NASA Astrophysics Data System (ADS)

    Hernández, C. A.; Clemente, S.; Sangil, C.; Hernández, J. C.

    2015-12-01

    Oscillations of ocean pH are largely unknown in coastal environments and ocean acidification studies often do not account for natural variability yet most of what is known about marine species and populations is found out via studies conducted in near shore environments. Most experiments designed to make predictions about future climate change scenarios are carried out in coastal environments with no research that takes into account the natural pH variability. In order to fill this knowledge gap and to provide reliable measures of pH oscillation, seawater pH was measured over time using moored pH sensors in four contrasting phytocenoses typical of the north Atlantic subtropical region. Each phytocenosis was characterized by its predominant engineer species: (1) Cystoseira abies-marina, (2) a mix of gelidiales and geniculate corallines, (3) Lobophora variegata, and (4) encrusting corallines. The autonomous pH measuring systems consisted of a pH sensor; a data logger and a battery encased in a waterproof container and allowed the acquisition of high-resolution continuous pH data at each of the study sites. The pH variation observed ranged by between 0.09 and 0.24 pHNBS units. A clear daily variation in seawater pH was detected at all the studied sites (0.04-0.12 pHNBS units). Significant differences in daily pH oscillations were also observed between phytocenoses, which shows that macroalgal communities influence the seawater pH in benthic habitats. Natural oscillations in pH must be taken into account in future ocean acidification studies to put findings in perspective and for any ecological recommendations to be realistic.

  6. Plasmonic gold nanostar for biomedical sensing

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Yuan, Hsiangkuo; Fales, Andrew M.; Vo-Dinh, Tuan

    2014-03-01

    Cancer has become one of most significant death reasons and causes approximately 7.9 million human deaths worldwide each year. The challenge to detect cancer at an early stage makes cancer-related biomarkers sensing attract more and more research interest and efforts. Surface-enhanced Raman scattering (SERS) provides a promising method for various biomarkers (DNA, RNA, protein, et al.) detection due to its high sensitivity, specificity and capability for multiple analytes detection. Raman spectroscopy is a non-destructive photon-scattering technique, which provides molecule-specific information on molecular vibrational energy levels. SERS takes advantage of plasmonic effects and can enhance Raman signal up to 1015 at "hot spots". Due to its excellent sensitivity, SERS has been capable of achieving single-molecule detection limit. Local pH environment has been identified to be a potential biomarker for cancer diagnosis since solid cancer contains highly acidic environments. A near-infrared (NIR) SERS nanoprobe based on gold nanostars for pH sensing is developed for future cancer detection. Near-infrared (NIR) light is more suitable for in vivo applications because of its low attenuation rate and tissue auto fluorescence. SERS spectrum of pH reporter under various pH environments is monitored and used for pH sensing. Furthermore, density functional theory (DFT) calculation is performed to investigate Raman spectra changes with pH at the molecular level. The study demonstrates that SERS is a sensitive tool to monitor minor molecular structural changes due to local pH environment for cancer detection.

  7. A comparative study on oxidative stress response in the hepatopancreas and midgut of the white shrimp Litopenaeus vannamei under gradual changes to low or high pH environment.

    PubMed

    Han, Si-Yin; Wang, Meng-Qiang; Wang, Bao-Jie; Liu, Mei; Jiang, Ke-Yong; Wang, Lei

    2018-05-01

    White shrimp Litopenaeus vannamei were reared under conditions of gradual changes to a low pH (gradual-low pH, 6.65-8.20) or a high pH (gradual-high pH, 8.20-9.81) versus a normal pH environment (8.14-8.31) during a 28-day period. Survival of shrimp, and ROS production, antioxidant responses and oxidative damage in the hepatopancreas and midgut were investigated. Consequently, shrimp enhanced MnSOD, GPx, and Hsp70 transcripts as early defense mechanism in the hepatopancreas and midgut to scavenge excessive ROS during short-term (≤ 7 days) gradual-low and high pH stress. Meanwhile, the hepatopancreas was more sensitive to ROS than midgut because of earlier ROS production increase, antioxidant response and oxidative damage. Then, suppressed antioxidant response in the hepatopancreas and midgut of shrimp suggested a loss of antioxidant regulatory capacity caused by aggravated oxidative damage after long-term (≥ 14 days) gradual-high pH stress, leading to continuous death. However, enhanced GPx, GST, and Hsp70 transcripts in the hepatopancreas and midgut might be long-term(≥ 14 days) antioxidant adaptation mechanism of shrimp to gradual-low pH stress, which could prevent further ROS perturbation and weaken oxidative damage to achieve a new immune homeostasis, contributing to stable survival rate. Therefore, we have a few insights that it is necessary to protect hepatopancreas for controlling shrimp death under gradual-high pH stress. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Stress corrosion cracking properties of 15-5PH steel

    NASA Technical Reports Server (NTRS)

    Rosa, Ferdinand

    1993-01-01

    Unexpected occurrence of failures, due to stress corrosion cracking (SCC) of structural components, indicate a need for improved characterization of materials and more advanced analytical procedures for reliably predicting structures performance. Accordingly, the purpose of this study was to determine the stress corrosion susceptibility of 15-5PH steel over a wide range of applied strain rates in a highly corrosive environment. The selected environment for this investigation was a highly acidified sodium chloride (NaCl) aqueous solution. The selected alloy for the study was a 15-5PH steel in the H900 condition. The slow strain rate technique was selected to test the metals specimens.

  9. Fate and transport of some selected PhACs in a river receiving a high load of treated sewage

    NASA Astrophysics Data System (ADS)

    Bendz, D.; Ginn, T. R.; Paxeus, N.

    2003-04-01

    Pharmaceutical active compounds (PhACs) have lately been acknowledged to constitute a risk for humans and for the terrestrial and aquatic environment. Human and veterinary applications are the main sources of PhACs in the environment and the major pathway are excretion and discharge to the environment. Sewage treatment plants (STPs) play a crucial role for the introduction of the human PhACs in the environment through its removal efficiency and by separating these compounds into two exposure pathways associated with the aquatic and the solid (sludge) phase, respectively. Actually, STPs are recognized as being the main point discharge sources of human PhACs to the aquatic environment. In this study the fate and transport of a selected human PhACs belonging to different therapeutic classes (NSAIDs- non-steroidal antiinflamatory drugs, lipid regulators, antiepileptics, antibiotics and &beta-blockers) are investigated in a small river in the very south of Sweden receiving a high load of treated wastewater. In addition to the PhACs, triclosan (commonly used biocide) was included in this study. Water samples were taken of incoming and outgoing wastewater from the treatment plant, at the effluent in the river, and along the river up to 8 kilometers downstream were the river flows into the sea. After enrichment by solid-phase extraction the compounds were analyzed using GC-MS (methylated derivatives) or LC-MS/MS. In addition to the target compounds a screening analysis of the extracts revealed the presence of other wastewater related pollutants (caffeine, flame retardants, antioxidants). Several of the investigated substances demonstrate a surprising persistence in the aquatic environment. This emphasizes the need for a broader view on the concept of persistence by taking into account the recharge/loading rate in addition to removal mechanisms; transformation, volatility and physical sequestration by solids and the influence of different environmental media (Soil organic matter, mineralogy, macroscopic physical properties etc) in various hydrological systems.

  10. [Association of the pH change of vaginal environment in bacterial vaginosis with presence of Enterococcus faecalis in vagina].

    PubMed

    Jahić, Mahira; Nurkić, Mahmud; Fatusić, Zlatan

    2006-01-01

    Normal pH value of vagina from 3.8 to 4.2 has regulatory and protectors mechanisms of vaginal environment. The change in the pH value indicates to presence of disbalance in the ecosystem of vaginal environment. The value of pH above 4.0 is indicator of the decreased number of lactobacillus bacteria and the increased number of other microorganisms in the vaginal environment. This situation is present in the case of developing of bacterial vaginosis. One of the bacteria which is often isolated from vaginal swabs is Enterococcus faecalis. Aims of this study are to examine presence o f Enterococcus faecalis in vagina in healthy women and womenwith signs of bacterial vaginosis, the most often present signs in patients with bacterial vaginosis and isolated Enterococcus faecalis from vaginal swabs, and to determine whether the change of the pH value of vaginal environment could be indicator for bacterial vaginosis associated with Enterococcus faecalis. In this study there were included 90 patients. To all patients there were done: gynecological survey, determined pH of vaginal environment and color of vaginal secret, amino odor test, and taken vaginal swabs for microbiological examination. Enterococcus faecalis was found in the patients with pH 4.0 in 24.05 % cases, but in the patients with signs of bacterial vaginosis it was found in 52.78 %. Positive findings of Enterococcus faecalis was the most often associated with presence of all tree signs of bacterial vaginosis (pH>4.0, changed color of vaginal secret and positive amino odor test) it is in 60.78 6% cases. With two signs of bacterial vaginosis (pH>4.0, changed color of vaginal secret) Enterococcus faecalis was present in 60 % cases. The only presence of change in the pH>4.0 was associated with Enterococcus faecalis in 52.78 %. This study showed that pH change of vaginal environment was associated with Enterococcus faecalis in bacterial vaginosis in high percentage but it can not be used as the sure sign of presence of Enterococcus faecalis in vaginal discharge. Therefore it is necessary to make microbiology examination vaginal discharge.

  11. Physiological and genomic features of highly alkaliphilic hydrogen-utilizing Betaproteobacteria from a continental serpentinizing site

    PubMed Central

    Suzuki, Shino; Kuenen, J. Gijs; Schipper, Kira; van der Velde, Suzanne; Ishii, Shun’ichi; Wu, Angela; Sorokin, Dimitry Y.; Tenney, Aaron; Meng, XianYing; Morrill, Penny L.; Kamagata, Yoichi; Muyzer, Gerard; Nealson, Kenneth H.

    2014-01-01

    Serpentinization, or the aqueous alteration of ultramafic rocks, results in challenging environments for life in continental sites due to the combination of extremely high pH, low salinity and lack of obvious electron acceptors and carbon sources. Nevertheless, certain Betaproteobacteria have been frequently observed in such environments. Here we describe physiological and genomic features of three related Betaproteobacterial strains isolated from highly alkaline (pH 11.6) serpentinizing springs at The Cedars, California. All three strains are obligate alkaliphiles with an optimum for growth at pH 11 and are capable of autotrophic growth with hydrogen, calcium carbonate and oxygen. The three strains exhibit differences, however, regarding the utilization of organic carbon and electron acceptors. Their global distribution and physiological, genomic and transcriptomic characteristics indicate that the strains are adapted to the alkaline and calcium-rich environments represented by the terrestrial serpentinizing ecosystems. We propose placing these strains in a new genus ‘Serpentinomonas’. PMID:24845058

  12. Physiological and genomic features of highly alkaliphilic hydrogen-utilizing Betaproteobacteria from a continental serpentinizing site.

    PubMed

    Suzuki, Shino; Kuenen, J Gijs; Schipper, Kira; van der Velde, Suzanne; Ishii, Shun'ichi; Wu, Angela; Sorokin, Dimitry Y; Tenney, Aaron; Meng, XianYing; Morrill, Penny L; Kamagata, Yoichi; Muyzer, Gerard; Nealson, Kenneth H

    2014-05-21

    Serpentinization, or the aqueous alteration of ultramafic rocks, results in challenging environments for life in continental sites due to the combination of extremely high pH, low salinity and lack of obvious electron acceptors and carbon sources. Nevertheless, certain Betaproteobacteria have been frequently observed in such environments. Here we describe physiological and genomic features of three related Betaproteobacterial strains isolated from highly alkaline (pH 11.6) serpentinizing springs at The Cedars, California. All three strains are obligate alkaliphiles with an optimum for growth at pH 11 and are capable of autotrophic growth with hydrogen, calcium carbonate and oxygen. The three strains exhibit differences, however, regarding the utilization of organic carbon and electron acceptors. Their global distribution and physiological, genomic and transcriptomic characteristics indicate that the strains are adapted to the alkaline and calcium-rich environments represented by the terrestrial serpentinizing ecosystems. We propose placing these strains in a new genus 'Serpentinomonas'.

  13. Proton Transport and pH Control in Fungi.

    PubMed

    Kane, Patricia M

    2016-01-01

    Despite diverse and changing extracellular environments, fungi maintain a relatively constant cytosolic pH and numerous organelles of distinct lumenal pH. Key players in fungal pH control are V-ATPases and the P-type proton pump Pma1. These two proton pumps act in concert with a large array of other transporters and are highly regulated. The activities of Pma1 and the V-ATPase are coordinated under some conditions, suggesting that pH in the cytosol and organelles is not controlled independently. Genomic studies, particularly in the highly tractable S. cerevisiae, are beginning to provide a systems-level view of pH control, including transcriptional responses to acid or alkaline ambient pH and definition of the full set of regulators required to maintain pH homeostasis. Genetically encoded pH sensors have provided new insights into localized mechanisms of pH control, as well as highlighting the dynamic nature of pH responses to the extracellular environment. Recent studies indicate that cellular pH plays a genuine signaling role that connects nutrient availability and growth rate through a number of mechanisms. Many of the pH control mechanisms found in S. cerevisiae are shared with other fungi, with adaptations for their individual physiological contexts. Fungi deploy certain proton transport and pH control mechanisms not shared with other eukaryotes; these regulators of cellular pH are potential antifungal targets. This review describes current and emerging knowledge proton transport and pH control mechanisms in S. cerevisiae and briefly discusses how these mechanisms vary among fungi.

  14. Proton Transport and pH Control in Fungi

    PubMed Central

    Kane, Patricia M.

    2018-01-01

    Despite diverse and changing extracellular environments, fungi maintain a relatively constant cytosolic pH and numerous organelles of distinct lumenal pH. Key players in fungal pH control are V-ATPases and the P-type proton pump Pma1. These two proton pumps act in concert with a large array of other transporters and are highly regulated. The activities of Pma1 and the V-ATPaseare coordinated under some conditions, suggesting that pH in the cytosol and organelles is not controlled independently. Genomic studies, particularly in the highly tractable S. cerevisiae, are beginning to provide a systems-level view of pH control, including transcriptional responses to acid or alkaline ambient pH and definition of the full set of regulators required to maintain pH homeostasis. Genetically encoded pH sensors have provided new insights into localized mechanisms of pH control, as well as highlighting the dynamic nature of pH responses to the extracellular environment. Recent studies indicate that cellular pH plays a genuine signaling role that connects nutrient availability and growth rate through a number of mechanisms. Many of the pH control mechanisms found in S. cerevisiae are shared with other fungi, with adaptations for their individual physiological contexts. Fungi deploy certain proton transport and pH control mechanisms not shared with other eukaryotes; these regulators of cellular pH are potential antifungal targets. This re view describes current and emerging knowledge proton transport and pH control mechanisms in S. cerevisiae and briefly discusses how these mechanisms vary among fungi. PMID:26721270

  15. Mechanical behavior of precipitation hardenable steels exposed to highly corrosive environment

    NASA Technical Reports Server (NTRS)

    Rosa, Ferdinand

    1994-01-01

    Unexpected occurrences of failures, due to stress corrosion cracking (SCC) of structural components, indicate a need for improved characterization of materials and more advanced analytical procedures for reliably predicting structures performance. Accordingly, the purpose of this study was to determine the stress corrosion susceptibility of 15 - 5 PH steel over a wide range of applied strain rates in a highly corrosive environment. The selected environment for this investigation was a 3.5 percent NaCl aqueous solution. The material selected for the study was 15 - 5 PH steel in the H 900 condition. The Slow Strain Rate technique was used to test the metallic specimens.

  16. Characterization of 17-4 PH stainless steel foam for biomedical applications in simulated body fluid and artificial saliva environments.

    PubMed

    Mutlu, Ilven; Oktay, Enver

    2013-04-01

    Highly porous 17-4 PH stainless steel foam for biomedical applications was produced by space holder technique. Metal release and weight loss from 17-4 PH stainless steel foams was investigated in simulated body fluid and artificial saliva environments by static immersion tests. Inductively coupled plasma-mass spectrometer was employed to measure the concentrations of various metal ions released from the 17-4 PH stainless steel foams into simulated body fluids and artificial saliva. Effect of immersion time and pH value on metal release and weight loss in simulated body fluid and artificial saliva were determined. Pore morphology, pore size and mechanical properties of the 17-4 PH stainless steel foams were close to human cancellous bone. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Microbiology of Ultrabasic Groundwaters of the Coast Range Ophiolite, California

    NASA Astrophysics Data System (ADS)

    Schrenk, M. O.; Brazelton, W. J.; Twing, K. I.; Kubo, M.; Cardace, D.; Hoehler, T. M.; McCollom, T. M.

    2013-12-01

    Upon exposure to water, ultramafic rocks characteristic of the Earth's mantle undergo a process known as serpentinization. These water-rock reactions lead to highly reducing conditions and some of the highest pH values reported in nature. In contrast to alkaline soda lakes, actively serpentinizing environments exposed on land are commonly associated with low salinity freshwaters, imparting unique challenges upon their resident microbial communities. These environments are especially prevalent along continental margins, and cover extensive portions of the west coast of North America. Most studies of serpentinizing environments have focused upon springs that emanate from fractures in the subsurface. Here, we present microbiological data from a series of groundwater wells associated with active serpentinization in the California Coast Range, an ophiolite complex near Lower Lake, California. Waters from ultrabasic wells had lower microbial cell concentrations and diversity than were found in moderate pH wells in the same area. Bacteria consistently made up a higher proportion of the microbial communities compared to Archaea as determined by qPCR. High pH wells were dominated by taxa within the Betaproteobacteria and Clostridia, whereas moderate pH wells predominantly contained common soil taxa related to Gammaproteobacteria and Bacilli. Multivariate statistical analyses incorporating key environmental parameters supported these observations and also highlighted correlations between the high-pH taxa and the abundance of hydrogen and methane gas. Similarly, colony forming units of alkaliphilic microorganisms were consistently 1-2 orders of magnitude higher in the ultrabasic wells and were taxonomically distinct from the moderate pH groundwaters. Together, these results show that distinct populations inhabit subsurface environments associated with active serpentinization, consistent with previous observations, and suggest that Betaproteobacteria and Clostridia probably play significant roles in the microbiology of these ecosystems. The low diversity microbial communities of serpentinizing subsurface habitats are likely sustained by the high hydrogen and methane fluxes that emanate from such systems and further investigations will directly test their roles in mediating biogeochemical cycles in these environments.

  18. Effects of anatomy and diet on gastrointestinal pH in rodents.

    PubMed

    Kohl, Kevin D; Stengel, Ashley; Samuni-Blank, Michal; Dearing, M Denise

    2013-04-01

    The pH of the gastrointestinal tract can have profound influences on digestive processes. Rodents exhibit wide variation in both stomach morphology and dietary strategies, both of which may influence gut pH. Various rodent species have evolved bilocular (or semi-segmented) stomachs that may allow for more microbial growth compared to unilocular (single-chambered) stomachs. Additionally, herbivory has evolved multiple times in rodents. The high dietary fiber typical of an herbivorous diet is known to induce secretion of bicarbonate in the gut. We predicted that stomach segmentation might facilitate the separation of contents in the proximal chamber from that of the gastric stomach, facilitating a chemical environment suitable to microbial growth. To investigate the effect of stomach anatomy and diet on gut pH, several species of rodent with varying stomach morphology were fed either a high or low-fiber diet for 7 days, and pH of the proximal stomach, gastric stomach, small intestine, and cecum were measured. We discovered that rodents with bilocular stomach anatomy maintained a larger pH gradient between the proximal and gastric stomach compartments, and were able to achieve a lower absolute gastric pH compared to those with unilocular stomachs. Dietary fiber increased the pH of the small intestine, but not in any other gut regions. The stomach pH data supports the century old hypothesis that bilocular stomach anatomy creates an environment in the proximal stomach that is suitable for microbial growth. Additionally, the alkaline small intestinal pH on a high fiber diet may enhance digestion. Copyright © 2013 Wiley Periodicals, Inc.

  19. Light-Immune pH Sensor with SiC-Based Electrolyte-Insulator-Semiconductor Structure

    NASA Astrophysics Data System (ADS)

    Lin, Yi-Ting; Huang, Chien-Shiang; Chow, Lee; Lan, Jyun-Ming; Yang, Chia-Ming; Chang, Liann-Be; Lai, Chao-Sung

    2013-12-01

    An electrolyte-insulator-semiconductor (EIS) structure with high-band-gap semiconductor of silicon carbide is demonstrated as a pH sensor in this report. Two different sensing membranes, i.e., gadolinium oxide (Gd2O3) and hafnium oxide (HfO2), were investigated. The HfO2 film deposited by atomic layer deposition (ALD) at low temperature shows high pH sensing properties with a sensitivity of 52.35 mV/pH and a low signal of 4.95 mV due to light interference. The EIS structures with silicon carbide can provide better visible light immunity due to its high band gap that allows pH detection in an outdoor environment without degradation of pH sensitivity.

  20. Performance of high performance concrete (HPC) in low pH and sulfate environment : [technical summary].

    DOT National Transportation Integrated Search

    2013-01-01

    High-performance concrete (HPC) refers to any concrete formulation with enhanced characteristics, compared to normal concrete. One might think this refers to strength, but in Florida, the HPC standard emphasizes withstanding aggressive environments, ...

  1. Effects of root medium pH on root water transport and apoplastic pH in red-osier dogwood (Cornus sericea) and paper birch (Betula papyrifera) seedlings.

    PubMed

    Zhang, W; Zwiazek, J J

    2016-11-01

    Soil pH is a major factor affecting plant growth. Plant responses to pH conditions widely vary between different species of plants. However, the exact mechanisms of high pH tolerance of plants are largely unknown. In the present study, we compared the pH responses of paper birch (Betula papyrifera) seedlings, a relatively sensitive species to high soil pH, with red-osier dogwood (Cornus sericea), reported to be relatively tolerant of high pH conditions. We examined the hypotheses that tolerance of plants to high root zone pH is linked to effective control of root apoplastic pH to facilitate nutrient and water transport processes In the study, we exposed paper birch and red-osier dogwood seedlings for six weeks to pH 5, 7 and 9 under controlled-environment conditions in hydroponic culture. Then, we measured biomass, gas exchange, root hydraulic conductivity, ferric chelate reductase (FCR) activity, xylem sap pH and the relative abundance of major elements in leaf protoplasts and apoplasts. The study sheds new light on the rarely studied high pH tolerance mechanisms in plants. We found that compared with paper birch, red-osier dogwood showed greater growth, higher gas exchange, and maintained higher root hydraulic conductivity as well as lower xylem sap pH under high pH conditions. The results suggest that the relatively high pH tolerance of dogwood is associated with greater water uptake ability and maintenance of low apoplastic pH. These traits may have a significant impact on the uptake of Fe and Mn by leaf cells. © 2016 German Botanical Society and The Royal Botanical Society of the Netherlands.

  2. High pH-Sensitive TRPA1 Activation in Odontoblasts Regulates Mineralization.

    PubMed

    Kimura, M; Sase, T; Higashikawa, A; Sato, M; Sato, T; Tazaki, M; Shibukawa, Y

    2016-08-01

    Calcium hydroxide and mineral trioxide aggregate are widely used for indirect and direct pulp capping and root canal filling. Their dissociation into Ca(2+) and OH(-) in dental pulp creates an alkaline environment, which activates reparative/reactionary dentinogenesis. However, the mechanisms by which odontoblasts detect the pH of the extracellular environment remain unclear. We examined the alkali-sensitive intracellular Ca(2+) signaling pathway in rat odontoblasts. In the presence or absence of extracellular Ca(2+), application of alkaline solution increased intracellular Ca(2+) concentration, or [Ca(2+)]i Alkaline solution-induced [Ca(2+)]i increases depended on extracellular pH (8.5 to 10.5) in both the absence and the presence of extracellular Ca(2+) The amplitude was smaller in the absence than in the presence of extracellular Ca(2+) Each increase in [Ca(2+)]i, activated by pH 7.5, 8.5, or 9.5, depended on extracellular Ca(2+) concentration; the equilibrium binding constant for extracellular Ca(2+) concentration decreased as extracellular pH increased (1.04 mM at pH 7.5 to 0.11 mM at pH 9.5). Repeated applications of alkaline solution did not have a desensitizing effect on alkali-induced [Ca(2+)]i increases and inward currents. In the presence of extracellular Ca(2+), alkaline solution-induced [Ca(2+)]i increases were suppressed by application of an antagonist of transient receptor potential ankyrin subfamily member 1 (TRPA1) channels. Ca(2+) exclusion efficiency during alkaline solution-induced [Ca(2+)]i increases was reduced by a Na(+)-Ca(2+) exchanger antagonist. Alizarin red and von Kossa staining revealed increased mineralization levels under repeated high pH stimulation, whereas the TRPA1 antagonist strongly reduced this effect. These findings indicate that alkaline stimuli-such as the alkaline environment inside dental pulp treated with calcium hydroxide or mineral trioxide aggregate-activate Ca(2+) mobilization via Ca(2+) influx mediated by TRPA1 channels and intracellular Ca(2+) release in odontoblasts. High pH-sensing mechanisms in odontoblasts are important for activating dentinogenesis induced by an alkaline environment. © International & American Associations for Dental Research 2016.

  3. Ecogeochemistry of the subsurface food web at pH 0-2.5 in Iron Mountain, California, U.S.A.

    USGS Publications Warehouse

    Robbins, E.I.; Rodgers, T.M.; Alpers, Charles N.; Nordstrom, D. Kirk

    2000-01-01

    Pyrite oxidation in the underground mining environment of Iron Mountain, California, has created the most acidic pH values ever reported in aquatic systems. Sulfate values as high as 120 000 mg l-1 and iron as high as 27 600 mg l-1 have been measured in the mine water, which also carries abundant other dissolved metals including Al, Zn, Cu, Cd, Mn, Sb and Pb. Extreme acidity and high metal concentrations apparently do not preclude the presence of an underground acidophilic food web, which has developed with bacterial biomass at the base and heliozoans as top predators. Slimes, oil-like films, flexible and inflexible stalactites, sediments, water and precipitates were found to have distinctive communities. A variety of filamentous and non-filamentous bacteria grew in slimes in water having pH values < 1.0. Fungal hyphae colonize stalactites dripping pH 1.0 water; they may help to form these drip structures. Motile hypotrichous ciliates and bdelloid rotifers are particularly abundant in slimes having a pH of 1.5. Holdfasts of the iron bacterium Leptothrix discophora attach to biofilms covering pools of standing water having a pH of 2.5 in the mine. The mine is not a closed environment - people, forced air flow and massive flushing during high intensity rainfall provide intermittent contact between the surface and underground habitats, so the mine ecosystem probably is not a restricted one.

  4. Ecogeochemistry of the subsurface food web at pH 0–2.5 in Iron Mountain, California, U.S.A.

    USGS Publications Warehouse

    Robbins, Eleanora I.; Rodgers , Teresa M.; Alpers, Charles N.; Nordstrom, D. Kirk

    2000-01-01

    Pyrite oxidation in the underground mining environment of Iron Mountain, California, has created the most acidic pH values ever reported in aquatic systems. Sulfate values as high as 120 000 mg l−1 and iron as high as 27 600 mg l−1 have been measured in the mine water, which also carries abundant other dissolved metals including Al, Zn, Cu, Cd, Mn, Sb and Pb. Extreme acidity and high metal concentrations apparently do not preclude the presence of an underground acidophilic food web, which has developed with bacterial biomass at the base and heliozoans as top predators. Slimes, oil-like films, flexible and inflexible stalactites, sediments, water and precipitates were found to have distinctive communities. A variety of filamentous and non-filamentous bacteria grew in slimes in water having pH values <1.0. Fungal hyphae colonize stalactites dripping pH 1.0 water; they may help to form these drip structures. Motile hypotrichous ciliates and bdelloid rotifers are particularly abundant in slimes having a pH of 1.5. Holdfasts of the iron bacterium Leptothrix discophora attach to biofilms covering pools of standing water having a pH of 2.5 in the mine. The mine is not a closed environment – people, forced air flow and massive flushing during high intensity rainfall provide intermittent contact between the surface and underground habitats, so the mine ecosystem probably is not a restricted one.

  5. Sulfide stress corrosion study of a super martensitic stainless steel in H2S sour environments: Metallic sulfides formation and hydrogen embrittlement

    NASA Astrophysics Data System (ADS)

    Monnot, Martin; Nogueira, Ricardo P.; Roche, Virginie; Berthomé, Grégory; Chauveau, Eric; Estevez, Rafael; Mantel, Marc

    2017-02-01

    Thanks to their high corrosion resistance, super martensitic stainless steels are commonly used in the oil and gas industry, particularly in sour environments. Some grades are however susceptible to undergo hydrogen and mechanically-assisted corrosion processes in the presence of H2S, depending on the pH. The martensitic stainless steel EN 1.4418 grade exhibits a clear protective passive behavior with no sulfide stress corrosion cracking when exposed to sour environments of pH ≥ 4, but undergoes a steep decrease in its corrosion resistance at lower pH conditions. The present paper investigated this abrupt loss of corrosion resistance with electrochemical measurements as well as different physicochemical characterization techniques. Results indicated that below pH 4.0 the metal surface is covered by a thick (ca 40 μm) porous and defect-full sulfide-rich corrosion products layer shown to be straightforwardly related to the onset of hydrogen and sulfide mechanically-assisted corrosion phenomena.

  6. Biological mechanisms supporting adaptation to ocean acidification in coastal ecosystems

    NASA Astrophysics Data System (ADS)

    Hendriks, Iris E.; Duarte, Carlos M.; Olsen, Ylva S.; Steckbauer, Alexandra; Ramajo, Laura; Moore, Tommy S.; Trotter, Julie A.; McCulloch, Malcolm

    2015-01-01

    The direct influence of anthropogenic CO2 might play a limited role in pH regulation in coastal ecosystems as pH regulation in these areas can be complex. They experience large variability across a broad range of spatial and temporal scales, with complex external and internal drivers. Organisms influence pH at a patch scale, where community metabolic effects and hydrodynamic processes interact to produce broad ranges in pH, (˜0.3-0.5 pH units) over daily cycles and spatial scales (mm to m) particularly in shallow vegetated habitats and coral reefs where both respiration and photosynthetic activity are intense. Biological interactions at the ecosystem scale, linked to patchiness in habitat landscapes and seasonal changes in metabolic processes and temperature lead to changes of about 0.3-0.5 pH units throughout a year. Furthermore, on the scale of individual organisms, small-scale processes including changes at the Diffusive Boundary Layer (DBL), interactions with symbionts, and changes to the specific calcification environment, induce additional changes in excess of 0.5 pH units. In these highly variable pH environments calcifying organisms have developed the capacity to alter the pH of their calcifying environment, or specifically within critical tissues where calcification occurs, thus achieving a homeostasis. This capacity to control the conditions for calcification at the organism scale may therefore buffer the full impacts of ocean acidification on an organism scale, although this might be at a cost to the individual. Furthermore, in some areas, calcifiers may potentially benefit from changes to ambient seawater pH, where photosynthetic organisms drawdown CO2.

  7. Identification of Mn(II)-oxidizing bacteria from a low-pH contaminated former uranium mine.

    PubMed

    Akob, Denise M; Bohu, Tsing; Beyer, Andrea; Schäffner, Franziska; Händel, Matthias; Johnson, Carol A; Merten, Dirk; Büchel, Georg; Totsche, Kai Uwe; Küsel, Kirsten

    2014-08-01

    Biological Mn oxidation is responsible for producing highly reactive and abundant Mn oxide phases in the environment that can mitigate metal contamination. However, little is known about Mn oxidation in low-pH environments, where metal contamination often is a problem as the result of mining activities. We isolated two Mn(II)-oxidizing bacteria (MOB) at pH 5.5 (Duganella isolate AB_14 and Albidiferax isolate TB-2) and nine strains at pH 7 from a former uranium mining site. Isolate TB-2 may contribute to Mn oxidation in the acidic Mn-rich subsoil, as a closely related clone represented 16% of the total community. All isolates oxidized Mn over a small pH range, and isolates from low-pH samples only oxidized Mn below pH 6. Two strains with different pH optima differed in their Fe requirements for Mn oxidation, suggesting that Mn oxidation by the strain found at neutral pH was linked to Fe oxidation. Isolates tolerated Ni, Cu, and Cd and produced Mn oxides with similarities to todorokite and birnessite, with the latter being present in subsurface layers where metal enrichment was associated with Mn oxides. This demonstrates that MOB can be involved in the formation of biogenic Mn oxides in both moderately acidic and neutral pH environments. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  8. Identification of Mn(II)-Oxidizing Bacteria from a Low-pH Contaminated Former Uranium Mine

    PubMed Central

    Bohu, Tsing; Beyer, Andrea; Schäffner, Franziska; Händel, Matthias; Johnson, Carol A.; Merten, Dirk; Büchel, Georg; Totsche, Kai Uwe; Küsel, Kirsten

    2014-01-01

    Biological Mn oxidation is responsible for producing highly reactive and abundant Mn oxide phases in the environment that can mitigate metal contamination. However, little is known about Mn oxidation in low-pH environments, where metal contamination often is a problem as the result of mining activities. We isolated two Mn(II)-oxidizing bacteria (MOB) at pH 5.5 (Duganella isolate AB_14 and Albidiferax isolate TB-2) and nine strains at pH 7 from a former uranium mining site. Isolate TB-2 may contribute to Mn oxidation in the acidic Mn-rich subsoil, as a closely related clone represented 16% of the total community. All isolates oxidized Mn over a small pH range, and isolates from low-pH samples only oxidized Mn below pH 6. Two strains with different pH optima differed in their Fe requirements for Mn oxidation, suggesting that Mn oxidation by the strain found at neutral pH was linked to Fe oxidation. Isolates tolerated Ni, Cu, and Cd and produced Mn oxides with similarities to todorokite and birnessite, with the latter being present in subsurface layers where metal enrichment was associated with Mn oxides. This demonstrates that MOB can be involved in the formation of biogenic Mn oxides in both moderately acidic and neutral pH environments. PMID:24928873

  9. Identification of Mn(II)-oxidizing bacteria from a low-pH contaminated former uranium mine

    USGS Publications Warehouse

    Akob, Denise M.; Bohu, Tsing; Beyer, Andrea; Schäffner, Franziska; Händel, Matthias; Johnson, Carol A.; Merten, Dirk; Büchel, Georg; Totsche, Kai Uwe; Küsel, Kirsten

    2014-01-01

    Biological Mn oxidation is responsible for producing highly reactive and abundant Mn oxide phases in the environment that can mitigate metal contamination. However, little is known about Mn oxidation in low-pH environments, where metal contamination often is a problem as the result of mining activities. We isolated two Mn(II)-oxidizing bacteria (MOB) at pH 5.5 (Duganella isolate AB_14 and Albidiferax isolate TB-2) and nine strains at pH 7 from a former uranium mining site. Isolate TB-2 may contribute to Mn oxidation in the acidic Mn-rich subsoil, as a closely related clone represented 16% of the total community. All isolates oxidized Mn over a small pH range, and isolates from low-pH samples only oxidized Mn below pH 6. Two strains with different pH optima differed in their Fe requirements for Mn oxidation, suggesting that Mn oxidation by the strain found at neutral pH was linked to Fe oxidation. Isolates tolerated Ni, Cu, and Cd and produced Mn oxides with similarities to todorokite and birnessite, with the latter being present in subsurface layers where metal enrichment was associated with Mn oxides. This demonstrates that MOB can be involved in the formation of biogenic Mn oxides in both moderately acidic and neutral pH environments.

  10. Treatment of Alkaline Cr(VI)-Contaminated Leachate with an Alkaliphilic Metal-Reducing Bacterium.

    PubMed

    Watts, Mathew P; Khijniak, Tatiana V; Boothman, Christopher; Lloyd, Jonathan R

    2015-08-15

    Chromium in its toxic Cr(VI) valence state is a common contaminant particularly associated with alkaline environments. A well-publicized case of this occurred in Glasgow, United Kingdom, where poorly controlled disposal of a cementitious industrial by-product, chromite ore processing residue (COPR), has resulted in extensive contamination by Cr(VI)-contaminated alkaline leachates. In the search for viable bioremediation treatments for Cr(VI), a variety of bacteria that are capable of reduction of the toxic and highly soluble Cr(VI) to the relatively nontoxic and less mobile Cr(III) oxidation state, predominantly under circumneutral pH conditions, have been isolated. Recently, however, alkaliphilic bacteria that have the potential to reduce Cr(VI) under alkaline conditions have been identified. This study focuses on the application of a metal-reducing bacterium to the remediation of alkaline Cr(VI)-contaminated leachates from COPR. This bacterium, belonging to the Halomonas genus, was found to exhibit growth concomitant to Cr(VI) reduction under alkaline conditions (pH 10). Bacterial cells were able to rapidly remove high concentrations of aqueous Cr(VI) (2.5 mM) under anaerobic conditions, up to a starting pH of 11. Cr(VI) reduction rates were controlled by pH, with slower removal observed at pH 11, compared to pH 10, while no removal was observed at pH 12. The reduction of aqueous Cr(VI) resulted in the precipitation of Cr(III) biominerals, which were characterized using transmission electron microscopy and energy-dispersive X-ray analysis (TEM-EDX) and X-ray photoelectron spectroscopy (XPS). The effectiveness of this haloalkaliphilic bacterium for Cr(VI) reduction at high pH suggests potential for its use as an in situ treatment of COPR and other alkaline Cr(VI)-contaminated environments. Copyright © 2015, Watts et al.

  11. Online PH measurement technique in seawater desalination

    NASA Astrophysics Data System (ADS)

    Wang, Haibo; Wu, Kaihua; Hu, Shaopeng

    2009-11-01

    The measurement technology of pH is essential in seawater desalination. Glass electrode is the main pH sensor in seawater desalination. Because the internal impedance of glass electrode is high and the signal of pH sensor is easy to be disturbed, a signal processing circuit with high input impedance was designed. Because of high salinity of seawater and the characteristic of glass electrode, ultrasonic cleaning technology was used to online clean pH sensor. Temperature compensation was also designed to reduce the measurement error caused by variety of environment temperature. Additionally, the potential drift of pH sensor was analyzed and an automatic calibration method was proposed. In order to online monitor the variety of pH in seawater desalination, three operating modes were designed. The three modes are online monitoring mode, ultrasonic cleaning mode and auto-calibration mode. The current pH in seawater desalination was measured and displayed in online monitoring mode. The cleaning process of pH sensor was done in ultrasonic cleaning mode. The calibration of pH sensor was finished in auto-calibration mode. The result of experiments showed that the measurement technology of pH could meet the technical requirements for desalination. The glass electrode could be promptly and online cleaned and its service life was lengthened greatly.

  12. The ecology and diversity of microbial eukaryotes in geothermal springs.

    PubMed

    Oliverio, Angela M; Power, Jean F; Washburne, Alex; Cary, S Craig; Stott, Matthew B; Fierer, Noah

    2018-04-16

    Decades of research into the Bacteria and Archaea living in geothermal spring ecosystems have yielded great insight into the diversity of life and organismal adaptations to extreme environmental conditions. Surprisingly, while microbial eukaryotes (protists) are also ubiquitous in many environments, their diversity across geothermal springs has mostly been ignored. We used high-throughput sequencing to illuminate the diversity and structure of microbial eukaryotic communities found in 160 geothermal springs with broad ranges in temperature and pH across the Taupō Volcanic Zone in New Zealand. Protistan communities were moderately predictable in composition and varied most strongly across gradients in pH and temperature. Moreover, this variation mirrored patterns observed for bacterial and archaeal communities across the same spring samples, highlighting that there are similar ecological constraints across the tree of life. While extreme pH values were associated with declining protist diversity, high temperature springs harbored substantial amounts of protist diversity. Although protists are often overlooked in geothermal springs and other extreme environments, our results indicate that such environments can host distinct and diverse protistan communities.

  13. The pH and pCO2 dependence of sulfate reduction in shallow-sea hydrothermal CO2 – venting sediments (Milos Island, Greece)

    PubMed Central

    Bayraktarov, Elisa; Price, Roy E.; Ferdelman, Timothy G.; Finster, Kai

    2013-01-01

    Microbial sulfate reduction (SR) is a dominant process of organic matter mineralization in sulfate-rich anoxic environments at neutral pH. Recent studies have demonstrated SR in low pH environments, but investigations on the microbial activity at variable pH and CO2 partial pressure are still lacking. In this study, the effect of pH and pCO2 on microbial activity was investigated by incubation experiments with radioactive 35S targeting SR in sediments from the shallow-sea hydrothermal vent system of Milos, Greece, where pH is naturally decreased by CO2 release. Sediments differed in their physicochemical characteristics with distance from the main site of fluid discharge. Adjacent to the vent site (T ~40–75°C, pH ~5), maximal sulfate reduction rates (SRR) were observed between pH 5 and 6. SR in hydrothermally influenced sediments decreased at neutral pH. Sediments unaffected by hydrothermal venting (T ~26°C, pH ~8) expressed the highest SRR between pH 6 and 7. Further experiments investigating the effect of pCO2 on SR revealed a steep decrease in activity when the partial pressure increased from 2 to 3 bar. Findings suggest that sulfate reducing microbial communities associated with hydrothermal vent system are adapted to low pH and high CO2, while communities at control sites required a higher pH for optimal activity. PMID:23658555

  14. The pH and pCO2 dependence of sulfate reduction in shallow-sea hydrothermal CO2 - venting sediments (Milos Island, Greece).

    PubMed

    Bayraktarov, Elisa; Price, Roy E; Ferdelman, Timothy G; Finster, Kai

    2013-01-01

    Microbial sulfate reduction (SR) is a dominant process of organic matter mineralization in sulfate-rich anoxic environments at neutral pH. Recent studies have demonstrated SR in low pH environments, but investigations on the microbial activity at variable pH and CO2 partial pressure are still lacking. In this study, the effect of pH and pCO2 on microbial activity was investigated by incubation experiments with radioactive (35)S targeting SR in sediments from the shallow-sea hydrothermal vent system of Milos, Greece, where pH is naturally decreased by CO2 release. Sediments differed in their physicochemical characteristics with distance from the main site of fluid discharge. Adjacent to the vent site (T ~40-75°C, pH ~5), maximal sulfate reduction rates (SRR) were observed between pH 5 and 6. SR in hydrothermally influenced sediments decreased at neutral pH. Sediments unaffected by hydrothermal venting (T ~26°C, pH ~8) expressed the highest SRR between pH 6 and 7. Further experiments investigating the effect of pCO2 on SR revealed a steep decrease in activity when the partial pressure increased from 2 to 3 bar. Findings suggest that sulfate reducing microbial communities associated with hydrothermal vent system are adapted to low pH and high CO2, while communities at control sites required a higher pH for optimal activity.

  15. [Study of pretreatment on microfiltration of huanglian jiedu decoction with ceramic membranes based on solution environment regulation theory].

    PubMed

    Li, Bo; Zhang, Lian-Jun; Guo, Li-Wei; Fu, Ting-Ming; Zhu, Hua-Xu

    2014-01-01

    To optimize the pretreatment of Huanglian Jiedu decoction before ceramic membranes and verify the effect of different pretreatments in multiple model system existed in Chinese herb aqueous extract. The solution environment of Huanglian Jiedu decoction was adjusted by different pretreatments. The flux of microfiltration, transmittance of the ingredients and removal rate of common polymers were as indicators to study the effect of different solution environment It was found that flocculation had higher stable permeate flux, followed by vacuuming filtration and adjusting pH to 9. The removal rate of common polymers was comparatively high. The removal rate of protein was slightly lower than the simulated solution. The transmittance of index components were higher when adjust pH and flocculation. Membrane blocking resistance was the major factor in membrane fouling. Based on the above indicators, the effect of flocculation was comparatively significant, followed by adjusting pH to 9.

  16. Quantitative imaging of rhizosphere pH and CO2 dynamics with planar optodes.

    PubMed

    Blossfeld, Stephan; Schreiber, Christina Maria; Liebsch, Gregor; Kuhn, Arnd Jürgen; Hinsinger, Philippe

    2013-07-01

    Live imaging methods have become extremely important for the exploration of biological processes. In particular, non-invasive measurement techniques are key to unravelling organism-environment interactions in close-to-natural set-ups, e.g. in the highly heterogeneous and difficult-to-probe environment of plant roots: the rhizosphere. pH and CO2 concentration are the main drivers of rhizosphere processes. Being able to monitor these parameters at high spatio-temporal resolution is of utmost importance for relevant interpretation of the underlying processes, especially in the complex environment of non-sterile plant-soil systems. This study introduces the application of easy-to-use planar optode systems in different set-ups to quantify plant root-soil interactions. pH- and recently developed CO2-sensors were applied to rhizobox systems to investigate roots with different functional traits, highlighting the potential of these tools. Continuous and highly resolved real-time measurements were made of the pH dynamics around Triticum turgidum durum (durum wheat) roots, Cicer arietinum (chickpea) roots and nodules, and CO2 dynamics in the rhizosphere of Viminaria juncea. Wheat root tips acidified slightly, while their root hair zone alkalized their rhizosphere by more than 1 pH unit and the effect of irrigation on soil pH could be visualized as well. Chickpea roots and nodules acidified the surrounding soil during N2 fixation and showed diurnal changes in acidification activity. A growing root of V. juncea exhibited a large zone of influence (mm) on soil CO2 content and therefore on its biogeochemical surrounding, all contributing to the extreme complexity of the root-soil interactions. This technique provides a unique tool for future root research applications and overcomes limitations of previous systems by creating quantitative maps without, for example, interpolation and time delays between single data points.

  17. pH-responsive nanoparticle assembly from peptide amphiphiles for tumor targeting drug delivery.

    PubMed

    Chang, Cong; Liang, Peiqing; Chen, Linlin; Liu, Junfeng; Chen, Shihong; Zheng, Guohua; Quan, Changyun

    2017-09-01

    In this paper, the peptide amphiphiles (PA) which consists of RGDSEEEEEEEEEEK as pH-sensitive segment and stearic acid as hydrophobic segment named RGDS-E 10 -Lys(C 18 ) was successfully synthesized. TEM images showed that uniformly dispersed nanoparticles could be formed by PA molecules in pH 7.4 medium, however, disintegrated in pH 5.0 medium. Circular dichroism (CD) spectrum indicated that polypeptide adopted a random-coil conformation in neutral medium (pH 7.4). The CD signal was significantly attenuate for decreased solubility of PA in medium with pH 5.0. As expected, the prepared RGDS-E 10 -Lys(C 18 ) assembly showed high pH-sensitive property which demonstrated a much more rapid drug release from micelles in tumor tissue (acidic environment) than in physiological environment (neutral environment). After DOX-loaded micelles incubated with tumor cells, the cytotoxicity of the micelles against Hela cells was increased obviously, indicating the great potential of micelles developed here as promising vehicle for targeted pH-responsive drug delivery.

  18. Paclitaxel-Loaded pH-Sensitive Liposome: New Insights on Structural and Physicochemical Characterization.

    PubMed

    Monteiro, Liziane O F; Malachias, Ângelo; Pound-Lana, Gwenaelle; Magalhães-Paniago, Rogério; Mosqueira, Vanessa C F; Oliveira, Mônica C; de Barros, André Luís B; Leite, Elaine A

    2018-05-22

    A long-circulating and pH-sensitive liposome containing paclitaxel (SpHL-PTX) was recently developed by our group. Once in an acidic environment, for example, tumors, these liposomes undergo destabilization, releasing the encapsulated drug. In this way, the aim of this study was to evaluate the molecular and supramolecular interactions between the lipid bilayer and PTX in similar biological environment conditions. High-sensitivity analyses of SpHL-PTX structures were obtained by the small-angle X-ray scattering technique combined with other techniques such as dynamic light scattering, asymmetric flow field-flow fractionation, transmission electron microscopy, and high-performance liquid chromatography. The results showed that PTX incorporation in the liposomal bilayer clearly leads to changes in supramolecular organization of dioleoylphosphatidylethanolamine (DOPE) molecules, inducing the formation of more ordered structures. Changes in supramolecular organization were observed at lower pH, indicating that pH sensitivity was preserved even in the presence of fetal bovine serum proteins. Furthermore, morphological and physicochemical characterization of SpHL-PTX evidenced the formation of nanosized dispersion suitable for intravenous administration. In conclusion, a stable nanosized dispersion of PTX was obtained at pH 7.4 with suitable parameters for intravenous administration. At lower pH conditions, the pH sensitivity of the system was clearly evidenced by changes in the supramolecular organization of DOPE molecules, which is crucial for the delivery of PTX into the cytoplasm of the targeted cells. In this way, the results obtained by different techniques confirm the feasibility of SpHL as a promising tool to PTX delivery in acidic environments, such as tumors.

  19. High Ph, Ammonia Toxicity, and the Search for Life on the Jovian Planets

    NASA Technical Reports Server (NTRS)

    Deal, P. H.; Souza, K. A.; Mack, H. M.

    1975-01-01

    The effects of pH and ammonia concentration were studied separately, where possible, on a variety of organisms, including some isolated from natural environments of high pH and/or ammonia concentration. Escherichia coli and Bacillus subtilis are both extremely sensitive to ammonia. An aerobic organism (growth up to pH 11.4) from an alkaline spring is more resistant, but exhibits a toxic response to ammonia at a pH much lower than its maximum for growth. The greatest ammonia resistance has been found in an unidentified organism growing at near neutral pH. Even in this case, however, urvival at ammonia concentrations reasonably expected on the Jovian planets is measured in hours. This is two to three orders of magnitude longer than for E. coli. Results support the tentative conclusion that contamination of the Jovian planets with terrestrial organisms that can grow is unlikely. However, the range of toxic response noted, coupled with the observation that terrestrial life has not been exposed to high ammonia concentrations for millions of years, suggests that adaptation to greater ammonia tolerance may be possible.

  20. Alkaline Hypersaline Lakes as Analogs for Ancient Microbial Habitats on Mars

    NASA Technical Reports Server (NTRS)

    McDonald, G. D.; Tsapin, A. I.; Storrie-Lombardi, M. C.; Nealson, K. H.; Brinton, K. L. F.; Sun, H.; Venkateswaren, K.; Tsapin, I.; Melack, J.; Jellison, R.

    1999-01-01

    As the climate of ancient Mars became colder and drier with time, open bodies of water would have entered a regime in which evaporation exceeded input from precipitation or runoff. This would have resulted in increases in salinity and perhaps pH. The last open water on Mars was most likely found in alkaline hypersaline lakes, and these lakes would have been the last surface aquatic habitats for life on Mars. It follows, then, that the biomarkers most likely to be found in ancient sedimentary basins on Mars are those left by organisms adapted to high salt and high pH environments. We have begun to investigate the nature of biological diversity and adaptation to these environments, and the potential for biomarker preservation in them, using Mono Lake as a terrestrial analog environment. Additional information is contained in the original extended abstract.

  1. A Novel Soluble Peptide with pH-Responsive Membrane Insertion.

    PubMed

    Nguyen, Vanessa P; Alves, Daiane S; Scott, Haden L; Davis, Forrest L; Barrera, Francisco N

    2015-11-03

    Several diseases, such as cancer, are characterized by acidification of the extracellular environment. Acidosis can be employed as a target to specifically direct therapies to the diseased tissue. We have used first principles to design an acidity-triggered rational membrane (ATRAM) peptide with high solubility in solution that is able to interact with lipid membranes in a pH-dependent fashion. Biophysical studies show that the ATRAM peptide binds to the surface of lipid membranes at pH 8.0. However, acidification leads to the peptide inserting into the lipid bilayer as a transmembrane α-helix. The insertion of ATRAM into membranes occurs at a moderately acidic pH (with a pK of 6.5), similar to the extracellular pH found in solid tumors. Studies with human cell lines showed a highly efficient pH-dependent membrane targeting, without causing toxicity. Here we show that it is possible to rationally design a soluble peptide that selectively targets cell membranes in acidic environments.

  2. Interactions between Silicon Oxide Nanoparticles (SONPs) and U(VI) Contaminations: Effects of pH, Temperature and Natural Organic Matters

    PubMed Central

    Wu, Hanyu; Li, Ping; Pan, Duoqiang; Yin, Zhuoxin; Fan, Qiaohui; Wu, Wangsuo

    2016-01-01

    The interactions between contaminations of U(VI) and silicon oxide nanoparticles (SONPs), both of which have been widely used in modern industry and induced serious environmental challenge due to their high mobility, bioavailability, and toxicity, were studied under different environmental conditions such as pH, temperature, and natural organic matters (NOMs) by using both batch and spectroscopic approaches. The results showed that the accumulation process, i.e., sorption, of U(VI) on SONPs was strongly dependent on pH and ionic strength, demonstrating that possible outer- and/or inner-sphere complexes were controlling the sorption process of U(VI) on SONPs in the observed pH range. Humic acid (HA), one dominated component of NOMs, bounded SONPs can enhance U(VI) sorption below pH~4.5, whereas restrain at high pH range. The reversible sorption of U(VI) on SONPs possibly indicated that the outer-sphere complexes were prevalent at pH 5. However, an irreversible interaction of U(VI) was observed in the presence of HA (Fig 1). It was mainly due to the ternary SONPs-HA-U(VI) complexes (Type A Complexes). After SONPs adsorbed U(VI), the particle size in suspension was apparently increased from ~240 nm to ~350 nm. These results showed that toxicity of both SONPs and U(VI) will decrease to some extent after the interaction in the environment. These findings are key for providing useful information on the possible mutual interactions among different contaminants in the environment. PMID:26930197

  3. Instrument development and field application of the in situ pH Calibrator at the Ocean Observatory

    NASA Astrophysics Data System (ADS)

    Tan, C.; Ding, K.; Seyfried, W. E.

    2012-12-01

    A novel, self-calibrating instrument for in-situ measurement of pH in deep sea environments up to 4000 m has recently been developed. The device utilizes a compact fluid delivery system to perform measurement and two-point calibration of the solid state pH sensor array (Ir|IrOx| Ag|AgCl), which is sealed in a flow cell to enhance response time. The fluid delivery system is composed of a metering pump and valves, which periodically deliver seawater samples into the flow cell to perform measurements. Similarly, pH buffer solutions can be delivered into the flow cell to calibrate the electrodes under operational conditions. Sensor signals are acquired and processed by a high resolution (0.25 mV) datalogger circuit with a size of 114 mm×31 mm×25 mm. Eight input channels are available: two high impedance sensor input channels, two low impedance sensor input channel, two thermocouple input channels and two thermistor input channels. These eight channels provide adequate measurement flexibility to enhance applications in deep sea environments. The two high impedance channels of the datalogger are especially designed with the input impedance of 1016 Ω for YSZ (yittria-stabilized zirconia) ceramic electrodes characterized by the extremely low input bias current and high resistance. Field tests have been performed in 2008 by ROV at the depth up to 3200 m. Using the continuous power supply and TCP/IP network capability of the Monterey Accelerated Research System (MARS) ocean observatory, the so-called "pH Calibrator" has the capability of long term operation up to six months. In the observatory mode, the electronics are configured with DC-DC power converter modules and Ethernet to serial module to gain access to the science port of seafloor junction box. The pH Calibrator will be deployed at the ocean observatory in October and the in situ data will be on line on the internet. The pH Calibrator presents real time pH data at high pressures and variable temperatures, while the in situ calibration capability enhances the accuracy of electrochemical measurements of seawater pH, fulfilling the need for long term objectives for marine studies.

  4. Biogenic platinum and palladium nanoparticles as new catalysts for the removal of pharmaceutical compounds.

    PubMed

    Martins, Mónica; Mourato, Cláudia; Sanches, Sandra; Noronha, João Paulo; Crespo, M T Barreto; Pereira, Inês A C

    2017-01-01

    Pharmaceutical products (PhP) are one of the most alarming emergent pollutants in the environment. Therefore, it is of extreme importance to investigate efficient PhP removal processes. Biologic synthesis of platinum nanoparticles (Bio-Pt) has been reported, but their catalytic activity was never investigated. In this work, we explored the potential of cell-supported platinum (Bio-Pt) and palladium (Bio-Pd) nanoparticles synthesized with Desulfovibrio vulgaris as biocatalysts for removal of four PhP: ciprofloxacin, sulfamethoxazole, ibuprofen and 17β-estradiol. The catalytic activity of the biological nanoparticles was compared with the PhP removal efficiency of D. vulgaris whole-cells. In contrast with Bio-Pd, Bio-Pt has a high catalytic activity in PhP removal, with 94, 85 and 70% removal of 17β-estradiol, sulfamethoxazole and ciprofloxacin, respectively. In addition, the estrogenic activity of 17β-estradiol was strongly reduced after the reaction with Bio-Pt, showing that this biocatalyst produces less toxic effluents. Bio-Pt or Bio-Pd did not act on ibuprofen, but this could be completely removed by D. vulgaris whole-cells, demonstrating that sulfate-reducing bacteria are among the microorganisms capable of biotransformation of ibuprofen in anaerobic environments. This study demonstrates for the first time that Bio-Pt has a high catalytic activity, and is a promising catalyst to be used in water treatment processes for the removal of antibiotics and endocrine disrupting compounds, the most problematic PhP. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Microbial fuel cell as power supply for implantable medical devices: a novel configuration design for simulating colonic environment.

    PubMed

    Dong, Kun; Jia, Boyang; Yu, Chaoling; Dong, Wenbo; Du, Fangzhou; Liu, Hong

    2013-03-15

    This study focused on providing power for implantable medical devices (IMDs) using a microbial fuel cell (MFC) implanted in human transverse colon. Considering the condition of colonic environment, a continuous-flow single-chamber MFC without membrane was set up. The performance of the MFC was investigated. The power output of 1.6 mW under the steady state was not rich enough for some high energy-consuming IMDs. Moreover, the parameters of the simulated colonic environment, such as pH and ORP value, varied along with the time. Hence, a new MFC configuration was developed. In this novel model, pH transducers were placed in cathodic and anodic areas, so as to regulate the reactor operation timely via external intervention. And two ORP transducers were inserted next to the pH transducers, for monitoring and adjusting the MFC operation efficiently. Besides, colonic haustra were designed in order to increase the difference between cathodic and anodic areas. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Stress corrosion cracking evaluation of martensitic precipitation hardening stainless steels

    NASA Technical Reports Server (NTRS)

    Humphries, T. S.; Nelson, E. E.

    1980-01-01

    The resistance of the martensitic precipitation hardening stainless steels PH13-8Mo, 15-5PH, and 17-4PH to stress corrosion cracking was investigated. Round tensile and c-ring type specimens taken from several heats of the three alloys were stressed up to 100 percent of their yield strengths and exposed to alternate immersion in salt water, to salt spray, and to a seacoast environment. The results indicate that 15-5PH is highly resistant to stress corrosion cracking in conditions H1000 and H1050 and is moderately resistant in condition H900. The stress corrosion cracking resistance of PH13-8Mo and 17-4PH stainless steels in conditions H1000 and H1050 was sensitive to mill heats and ranged from low to high among the several heats included in the tests. Based on a comparison with data from seacoast environmental tests, it is apparent that alternate immersion in 3.5 percent salt water is not a suitable medium for accelerated stress corrosion testing of these pH stainless steels.

  7. Ammonium stability and nitrogen isotope fractionations for NH4+-NH3(aq)-NH3(gas) systems at 20-70 °C and pH of 2-13: Applications to habitability and nitrogen cycling in low-temperature hydrothermal systems

    NASA Astrophysics Data System (ADS)

    Li, Long; Lollar, Barbara Sherwood; Li, Hong; Wortmann, Ulrich G.; Lacrampe-Couloume, Georges

    2012-05-01

    Ammonium/ammonia is an essential nutrient and energy source to support life in oceanic and terrestrial hydrothermal systems. Thus the stability of ammonium is crucial to determine the habitability or ecological structure in hydrothermal environments, but still not well understood. To date, the lack of constraints on nitrogen isotope fractionations between ammonium and ammonia has limited the application of nitrogen isotopes to trace (bio)geochemical processes in such environments. In this study, we carried out laboratory experiments to (1) examine the stability of ammonium in an ammonium sulfate solution under temperature conditions from 20 to 70 °C and pH from 2.1 to 12.6 and (2) determine nitrogen isotope fractionation between ammonium and ammonia. Our experimental results show that ammonium is stable under the experimental temperatures when pH is less than 6. In experiments with starting pH greater than 8, significant ammonium was lost as a result of dissociation of ammonium and degassing of ammonia product. Nitrogen concentrations in the fluids decreased by more than 50% in the first two hours, indicating extremely fast effusion rates of ammonia. This implies that ammonium at high pH fluids (e.g., Lost City Hydrothermal Vents, Oman ophiolite hyperalkaline springs) may not be stable. Habitable environments may be more favorable at the leading edge of a pH gradient toward more acidic conditions, where the fluid can efficiently trap any ammonia transferred from a high pH vent. Although modeling shows that high temperature, low pH hydrothermal vents (e.g., Rainbow hydrothermal vent) may have the capability to retain ammonium, their high temperatures may limit habitability. The habitable zone associated with such a hydrothermal vent is likely at the lower front of a temperature gradient. In contrast, modeling of ammonium in deep terrestrial systems, suggests that saline fracture waters in crystalline rocks such as described in the Canadian Shield and in the Witwatersrand Basin, South Africa may also provide habitable environments for life. The nitrogen isotope results of remaining ammonium from the partial dissociation experiments fit well with a batch equilibrium model, indicating equilibrium nitrogen isotope fractionations have been reached between ammonium and its dissociation product aqueous ammonia. Modeling yielded nitrogen isotope fractionations between ammonium and aqueous ammonia were 45.4‰ at 23 °C, 37.7‰ at 50 °C, and 33.5‰ at 70 °C, respectively. A relationship between nitrogen equilibrium isotope fractionation and temperature is determined for the experimental temperature range as: 103·lnα(aq)=25.94×{103}/{T}-42.25 Integrated with three previous theoretical estimates on nitrogen isotope equilibrium fractionations between ammonium and gaseous ammonia, we achieved three possible temperature-dependent nitrogen isotope equilibrium fractionation between aqueous ammonia and gaseous ammonia:

  8. Characterization of pH dependent Mn(II) oxidation strategies and formation of a bixbyite-like phase by Mesorhizobium australicum T-G1

    USGS Publications Warehouse

    Bohu, Tsing; Santelli, Cara M; Akob, Denise M.; Neu, Thomas R; Ciobota, Valerian; Rösch, Petra; Popp, Jürgen; Nietzsche, Sándor; Küsel, Kirsten

    2015-01-01

    Despite the ubiquity of Mn oxides in natural environments, there are only a few observations of biological Mn(II) oxidation at pH < 6. The lack of low pH Mn-oxidizing bacteria (MOB) isolates limits our understanding of how pH influences biological Mn(II) oxidation in extreme environments. Here, we report that a novel MOB isolate, Mesorhizobium australicum strain T-G1, isolated from an acidic and metalliferous uranium mining area, can oxidize Mn(II) at both acidic and neutral pH using different enzymatic pathways. X-ray diffraction, Raman spectroscopy, and scanning electron microscopy with energy dispersive X-ray spectroscopy revealed that T-G1 initiated bixbyite-like Mn oxide formation at pH 5.5 which coincided with multi-copper oxidase expression from early exponential phase to late stationary phase. In contrast, reactive oxygen species (ROS), particularly superoxide, appeared to be more important for T-G1 mediated Mn(II) oxidation at neutral pH. ROS was produced in parallel with the occurrence of Mn(II) oxidation at pH 7.2 from early stationary phase. Solid phase Mn oxides did not precipitate, which is consistent with the presence of a high amount of H2O2 and lower activity of catalase in the liquid culture at pH 7.2. Our results show that M. australicum T-G1, an acid tolerant MOB, can initiate Mn(II) oxidation by varying its oxidation mechanisms depending on the pH and may play an important role in low pH manganese biogeochemical cycling.

  9. Characterization of pH dependent Mn(II) oxidation strategies and formation of a bixbyite-like phase by Mesorhizobium australicum T-G1.

    PubMed

    Bohu, Tsing; Santelli, Cara M; Akob, Denise M; Neu, Thomas R; Ciobota, Valerian; Rösch, Petra; Popp, Jürgen; Nietzsche, Sándor; Küsel, Kirsten

    2015-01-01

    Despite the ubiquity of Mn oxides in natural environments, there are only a few observations of biological Mn(II) oxidation at pH < 6. The lack of low pH Mn-oxidizing bacteria (MOB) isolates limits our understanding of how pH influences biological Mn(II) oxidation in extreme environments. Here, we report that a novel MOB isolate, Mesorhizobium australicum strain T-G1, isolated from an acidic and metalliferous uranium mining area, can oxidize Mn(II) at both acidic and neutral pH using different enzymatic pathways. X-ray diffraction, Raman spectroscopy, and scanning electron microscopy with energy dispersive X-ray spectroscopy revealed that T-G1 initiated bixbyite-like Mn oxide formation at pH 5.5 which coincided with multi-copper oxidase expression from early exponential phase to late stationary phase. In contrast, reactive oxygen species (ROS), particularly superoxide, appeared to be more important for T-G1 mediated Mn(II) oxidation at neutral pH. ROS was produced in parallel with the occurrence of Mn(II) oxidation at pH 7.2 from early stationary phase. Solid phase Mn oxides did not precipitate, which is consistent with the presence of a high amount of H2O2 and lower activity of catalase in the liquid culture at pH 7.2. Our results show that M. australicum T-G1, an acid tolerant MOB, can initiate Mn(II) oxidation by varying its oxidation mechanisms depending on the pH and may play an important role in low pH manganese biogeochemical cycling.

  10. Did Life Emerge in Thermo-Acidic Conditions?

    NASA Astrophysics Data System (ADS)

    Holmes, D. S.

    2017-12-01

    There is widespread, but not unanimous, agreement that life emerged in hot conditions by exploiting redox and pH disequilibria found on early earth. Although there are several hypotheses to explain the postulated pH disequilibria, few of these consider that life evolved at very low pH (<4). Such environments are thought to be hostile to life and certainly a poor area to search for clues for the abiotic to biotic transition and the early evolution of energetic pathways. However, low pH environments offer some remarkable opportunities for early biological evolution. This presentation will evaluate the pros and cons of the hypothesis that the early evolution of life occurred in thermo-acidic conditions. Such environments are thought to have been abundant on early earth and were probably rich in hydrogen and soluble metals including iron and sulfur that could have served as sources and sinks of electrons. Extant thermo-acidophiles thrive in such conditions. Low pH environments are rich in protons that are the major drivers of energy conservation by coupling to phosphorylation in virtually all organisms on earth; this may be a "biochemical fossil" reflecting the use of protons (low pH) in primitive energy conservation. It has also been proposed that acidic conditions favored the evolution of an RNA world with expanded catalytic activities. On the other hand, the idea that life emerged in thermo-acidic conditions can be challenged because of the proposed difficulties of folding and stabilizing proteins simultaneously exposed to high temperature and low pH. In addition, although thermo-acidophiles root to the base of the phylogenetic tree of life, consistent with the proposition that they evolved early, yet there are problems of interpretation of their subsequent evolution that cloud this simplistic phylogenetic view. We propose solutions to these problems and hypothesize that life evolved in thermo-acidic conditions.

  11. Metagenomes from High-Temperature Chemotrophic Systems Reveal Geochemical Controls on Microbial Community Structure and Function

    PubMed Central

    Inskeep, William P.; Rusch, Douglas B.; Jay, Zackary J.; Herrgard, Markus J.; Kozubal, Mark A.; Richardson, Toby H.; Macur, Richard E.; Hamamura, Natsuko; Jennings, Ryan deM.; Fouke, Bruce W.; Reysenbach, Anna-Louise; Roberto, Frank; Young, Mark; Schwartz, Ariel; Boyd, Eric S.; Badger, Jonathan H.; Mathur, Eric J.; Ortmann, Alice C.; Bateson, Mary; Geesey, Gill; Frazier, Marvin

    2010-01-01

    The Yellowstone caldera contains the most numerous and diverse geothermal systems on Earth, yielding an extensive array of unique high-temperature environments that host a variety of deeply-rooted and understudied Archaea, Bacteria and Eukarya. The combination of extreme temperature and chemical conditions encountered in geothermal environments often results in considerably less microbial diversity than other terrestrial habitats and offers a tremendous opportunity for studying the structure and function of indigenous microbial communities and for establishing linkages between putative metabolisms and element cycling. Metagenome sequence (14–15,000 Sanger reads per site) was obtained for five high-temperature (>65°C) chemotrophic microbial communities sampled from geothermal springs (or pools) in Yellowstone National Park (YNP) that exhibit a wide range in geochemistry including pH, dissolved sulfide, dissolved oxygen and ferrous iron. Metagenome data revealed significant differences in the predominant phyla associated with each of these geochemical environments. Novel members of the Sulfolobales are dominant in low pH environments, while other Crenarchaeota including distantly-related Thermoproteales and Desulfurococcales populations dominate in suboxic sulfidic sediments. Several novel archaeal groups are well represented in an acidic (pH 3) Fe-oxyhydroxide mat, where a higher O2 influx is accompanied with an increase in archaeal diversity. The presence or absence of genes and pathways important in S oxidation-reduction, H2-oxidation, and aerobic respiration (terminal oxidation) provide insight regarding the metabolic strategies of indigenous organisms present in geothermal systems. Multiple-pathway and protein-specific functional analysis of metagenome sequence data corroborated results from phylogenetic analyses and clearly demonstrate major differences in metabolic potential across sites. The distribution of functional genes involved in electron transport is consistent with the hypothesis that geochemical parameters (e.g., pH, sulfide, Fe, O2) control microbial community structure and function in YNP geothermal springs. PMID:20333304

  12. Bacterial diversity in a nonsaline alkaline environment: heterotrophic aerobic populations.

    PubMed

    Tiago, Igor; Chung, Ana Paula; Veríssimo, António

    2004-12-01

    Heterotrophic populations were isolated and characterized from an alkaline groundwater environment generated by active serpentinization, which results in a Ca(OH)2-enriched, extremely diluted groundwater with pH 11.4. One hundred eighty-five strains were isolated in different media at different pH values during two sampling periods. To assess the degree of diversity present in the environment and to select representative strains for further characterization of the populations, we screened the isolates by using random amplified polymorphic DNA-PCR profiles and grouped them based on similarities determined by fatty acid methyl ester analysis. Phenotypic characterization, determinations of G+C content, phylogenetic analyses by direct sequencing of 16S rRNA genes, and determinations of pH tolerance were performed with the selected isolates. Although 38 different populations were identified and characterized, the vast majority of the isolates were gram positive with high G+C contents and were affiliated with three distinct groups, namely, strains closely related to the species Dietzia natrolimnae (32% of the isolates), to Frigoribacterium/Clavibacter lineages (29% of the isolates), and to the type strain of Microbacterium kitamiense (20% of the isolates). Other isolates were phylogenetically related to strains of the genera Agrococcus, Leifsonia, Kytococcus, Janibacter, Kocuria, Rothia, Nesterenkonia, Citrococcus, Micrococcus, Actinomyces, Rhodococcus, Bacillus, and Staphylococcus. Only five isolates were gram negative: one was related to the Sphingobacteria lineage and the other four were related to the alpha-Proteobacteria lineage. Despite the pH of the environment, the vast majority of the populations were alkali tolerant, and only two strains were able to grow at pH 11.

  13. Surface modification of melamine sponges for pH-responsive oil absorption and desorption

    NASA Astrophysics Data System (ADS)

    Lei, Zhiwen; Zhang, Guangzhao; Deng, Yonghong; Wang, Chaoyang

    2017-09-01

    Inspired by the development of smart oil/water separation materials, a pH responsive melamine sponge has been obtained by grafting poly (4-vinylpyridine) on the skeleton surface through atom transfer radical polymerization. Through scanning electron microscopy and x-ray photoelectron spectroscopy, the successful grafting of poly (4-vinylprridine) onto the melamine sponge has been confirmed. When contacting with different pH water droplets in air, the as-prepared product shows excellent switchable wettability between super-hydrophilicity (0°) and highly hydrophobicity (135°). Meanwhile, this responsive sponge also exhibits super-hydrophilic/oleophobic property underwater at pH = 1.0, and highly hydrophobic/super-oleophilic property in neutral solution at pH = 7.0. Furthermore, the excellent responsiveness is remained after five cycle water contact angle tests between two different pH stages at pH 1.0 and 7.0. The modified melamine sponges could not only absorb the oil from the oily water at pH = 7.0, but also quickly release the absorbed oil underwater at pH = 1.0 without leaving any residues and hurting the environment nearly, showing a good potential in controlled oil/water separation and oil recovery.

  14. A newly high alkaline lipase: an ideal choice for application in detergent formulations

    PubMed Central

    2011-01-01

    Background Bacterial lipases received much attention for their substrate specificity and their ability to function in extreme environments (pH, temperature...). Many staphylococci produced lipases which were released into the culture medium. Reports of thermostable lipases from Staphylococcus sp. and active in alkaline conditions are not previously described. Results A newly soil-isolated Staphylococcus sp. strain ESW secretes an induced lipase in the culture medium. The effects of temperature, pH and various components in a detergent on the activity and stability of Staphylococcus sp. lipase (SL1) were studied in a preliminary evaluation for use in detergent formulation solutions. The enzyme was highly active over a wide range of pH from 9.0 to 13.0, with an optimum at pH 12.0. The relative activity at pH 13.0 was about 60% of that obtained at pH 12.0. It exhibited maximal activity at 60°C. This novel lipase, showed extreme stability towards non-ionic and anionic surfactants after pre-incubation for 1 h at 40°C, and relative stability towards oxidizing agents. Additionally, the crude enzyme showed excellent stability and compatibility with various commercial solid and liquid detergents. Conclusions These properties added to the high activity in high alkaline pH make this novel lipase an ideal choice for application in detergent formulations. PMID:22123072

  15. Metal resistance or tolerance? Acidophiles confront high metal loads via both abiotic and biotic mechanisms.

    PubMed

    Dopson, Mark; Ossandon, Francisco J; Lövgren, Lars; Holmes, David S

    2014-01-01

    All metals are toxic at high concentrations and consequently their intracellular concentrations must be regulated. Extremely acidophilic microorganisms have an optimum growth of pH <3 and proliferate in natural and anthropogenic low pH environments. Some acidophiles are involved in the catalysis of sulfide mineral dissolution, resulting in high concentrations of metals in solution. Acidophiles are often described as highly metal resistant via mechanisms such as multiple and/or more efficient active resistance systems than are present in neutrophiles. However, this is not the case for all acidophiles and we contend that their growth in high metal concentrations is partially due to an intrinsic tolerance as a consequence of the environment in which they live. In this perspective, we highlight metal tolerance via complexation of free metals by sulfate ions and passive tolerance to metal influx via an internal positive cytoplasmic transmembrane potential. These tolerance mechanisms have been largely ignored in past studies of acidophile growth in the presence of metals and should be taken into account.

  16. A Triple-Fluorophore-Labeled Nucleic Acid pH Nanosensor to Investigate Non-viral Gene Delivery.

    PubMed

    Wilson, David R; Routkevitch, Denis; Rui, Yuan; Mosenia, Arman; Wahlin, Karl J; Quinones-Hinojosa, Alfredo; Zack, Donald J; Green, Jordan J

    2017-07-05

    There is a need for new tools to better quantify intracellular delivery barriers in high-throughput and high-content ways. Here, we synthesized a triple-fluorophore-labeled nucleic acid pH nanosensor for measuring intracellular pH of exogenous DNA at specific time points in a high-throughput manner by flow cytometry following non-viral transfection. By including two pH-sensitive fluorophores and one pH-insensitive fluorophore in the nanosensor, detection of pH was possible over the full physiological range. We further assessed possible correlation between intracellular pH of delivered DNA, cellular uptake of DNA, and DNA reporter gene expression at 24 hr post-transfection for poly-L-lysine and branched polyethylenimine polyplex nanoparticles. While successful transfection was shown to clearly depend on median cellular pH of delivered DNA at the cell population level, surprisingly, on an individual cell basis, there was no significant correlation between intracellular pH and transfection efficacy. To our knowledge, this is the first reported instance of high-throughput single-cell analysis between cellular uptake of DNA, intracellular pH of delivered DNA, and gene expression of the delivered DNA. Using the nanosensor, we demonstrate that the ability of polymeric nanoparticles to avoid an acidic environment is necessary, but not sufficient, for successful transfection. Copyright © 2017 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.

  17. Acidification and γ-aminobutyric acid independently alter kairomone-induced behaviour

    PubMed Central

    Cohen, Jonathan H.

    2016-01-01

    Exposure to high pCO2 or low pH alters sensation and behaviour in many marine animals. We show that crab larvae lose their ability to detect and/or process predator kairomones after exposure to low pH over a time scale relevant to diel pH cycles in coastal environments. Previous work suggests that acidification affects sensation and behaviour through altered neural function, specifically the action of γ-aminobutyric acid (GABA), because a GABA antagonist, gabazine, restores the original behaviour. Here, however, gabazine resulted in a loss of kairomone detection/processing, regardless of pH. Our results also suggest that GABAergic signalling is necessary for kairomone identification in these larvae. Hence, the mechanism for the observed pH effect varies from the original GABA hypothesis. Furthermore, we suggest that this pH effect is adaptive under diel-cycling pH. PMID:27703697

  18. Sensitive SERS-pH sensing in biological media using metal carbonyl functionalized planar substrates.

    PubMed

    Kong, Kien Voon; Dinish, U S; Lau, Weber Kam On; Olivo, Malini

    2014-04-15

    Conventional nanoparticle based Surface enhanced Raman scattering (SERS) technique for pH sensing often fails due to the aggregation of particles when detecting in acidic medium or biosamples having high ionic strength. Here, We develop SERS based pH sensing using a novel Raman reporter, arene chromium tricarbonyl linked aminothiophenol (Cr(CO)3-ATP), functionalized onto a nano-roughened planar substrates coated with gold. Unlike the SERS spectrum of the ATP molecule that dominates in the 400-1700 cm(-1) region, which is highly interfered by bio-molecules signals, metal carbonyl-ATP (Cr(CO)3)-ATP) offers the advantage of monitoring the pH dependent strong CO stretching vibrations in the mid-IR (1800-2200 cm(-1)) range. Raman signal of the CO stretching vibrations at ~1820 cm(-1) has strong dependency on the pH value of the environment, where its peak undergo noticeable shift as the pH of the medium is varied from 3.0 to 9.0. The sensor showed better sensitivity in the acidic range of the pH. We also demonstrate the pH sensing in a urine sample, which has high ionic strength and our data closely correlate to the value obtained from conventional sensor. In future, this study may lead to a sensitive chip based pH sensing platform in bio-fluids for the early diagnosis of diseases. © 2013 Published by Elsevier B.V.

  19. Sensor emplacement testing at Poker Flat, Alaska

    NASA Astrophysics Data System (ADS)

    Reusch, A.; Beaudoin, B. C.; Anderson, K. E.; Azevedo, S.; Carothers, L.; Love, M.; Miller, P. E.; Parker, T.; Pfeifer, M.; Slad, G.; Thomas, D.; Aderhold, K.

    2013-12-01

    PASSCAL provides equipment and support for temporary seismic projects. Speed and efficiency of deployments are essential. A revised emplacement technique of putting broadband sensors directly into soil (aka direct burial) is being tested. The first phase (fall 2011 to spring 2013) comparing data quality and sensor stability between the direct burial and the traditional 1 m deep temporary PASSCAL-style vault in a wet and noisy site near San Antonio, NM is complete. Results suggest there is little or no difference in sensor performance in the relatively high-noise environment of this initial test. The second phase was started in November 2012 with the goal of making the same comparison, but at Poker Flat, Alaska, in a low-noise, high-signal, cold and wet environment, alongside a Transportable Array (TA) deployment to be used as a performance control. This location is in an accessible and secure area with very low site noise. In addition to benefiting future worldwide PASSCAL deployments, the Poker Flat experiment serves a secondary purpose of testing modifications necessary to successfully deploy and recover broadband stations in a cold environment with the limited logistics anticipated for remote Flexible Array (FA) and PASSCAL Program deployments in Alaska. Developing emplacement techniques that maintain high data quality and data return while minimizing logistics is critical to enable principle investigators to effectively and efficiently co-locate within the future TA Alaska footprint. Three Nanometrics sensors were installed in November 2012 in power-augered holes 76 cm in depth: a Trillium Compact Posthole (PH) and two Trillium 120PH units (one standard PH and one enhanced PHQ). The installations took less than 8 hours in -30°C conditions with 4 hours of usable daylight. The Compact PH and the 120PHQ are delivering data in realtime, while the 120PH is testing standalone power and data collection systems. Preliminary results compare favorably to each other as well as the nearby Trillium 240 in a traditional TA surface vault and a 120PH in a 5 m machine-drilled borehole. This summer, two Trillium 120PA sensors were installed at a depth of 54 cm in traditional PASSCAL-style vaults, adjacent to the Trillium Compact PH, Trillium 120PH and 120PHQ emplacements. Analysis of the data collected from these five sensors will include the use of probability density functions of power spectral density to examine temporal trends in noise, signal-to-noise ratios for local, regional, and teleseismic earthquakes, and coherence of both noise and earthquake signal recordings to compare the data quality of direct burial versus temporary PASSCAL-style vaults sensor emplacements.

  20. Characterization of pH dependent Mn(II) oxidation strategies and formation of a bixbyite-like phase by Mesorhizobium australicum T-G1

    PubMed Central

    Bohu, Tsing; Santelli, Cara M.; Akob, Denise M.; Neu, Thomas R.; Ciobota, Valerian; Rösch, Petra; Popp, Jürgen; Nietzsche, Sándor; Küsel, Kirsten

    2015-01-01

    Despite the ubiquity of Mn oxides in natural environments, there are only a few observations of biological Mn(II) oxidation at pH < 6. The lack of low pH Mn-oxidizing bacteria (MOB) isolates limits our understanding of how pH influences biological Mn(II) oxidation in extreme environments. Here, we report that a novel MOB isolate, Mesorhizobium australicum strain T-G1, isolated from an acidic and metalliferous uranium mining area, can oxidize Mn(II) at both acidic and neutral pH using different enzymatic pathways. X-ray diffraction, Raman spectroscopy, and scanning electron microscopy with energy dispersive X-ray spectroscopy revealed that T-G1 initiated bixbyite-like Mn oxide formation at pH 5.5 which coincided with multi-copper oxidase expression from early exponential phase to late stationary phase. In contrast, reactive oxygen species (ROS), particularly superoxide, appeared to be more important for T-G1 mediated Mn(II) oxidation at neutral pH. ROS was produced in parallel with the occurrence of Mn(II) oxidation at pH 7.2 from early stationary phase. Solid phase Mn oxides did not precipitate, which is consistent with the presence of a high amount of H2O2 and lower activity of catalase in the liquid culture at pH 7.2. Our results show that M. australicum T-G1, an acid tolerant MOB, can initiate Mn(II) oxidation by varying its oxidation mechanisms depending on the pH and may play an important role in low pH manganese biogeochemical cycling. PMID:26236307

  1. 40 CFR 439.4 - General limitation or standard for pH.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 31 2012-07-01 2012-07-01 false General limitation or standard for pH. 439.4 Section 439.4 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT... General limitation or standard for pH. The pH must remain within the range 6.0 to 9.0 in any discharge...

  2. 40 CFR 439.4 - General limitation or standard for pH.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 30 2014-07-01 2014-07-01 false General limitation or standard for pH. 439.4 Section 439.4 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT... General limitation or standard for pH. The pH must remain within the range 6.0 to 9.0 in any discharge...

  3. 40 CFR 439.4 - General limitation or standard for pH.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 31 2013-07-01 2013-07-01 false General limitation or standard for pH. 439.4 Section 439.4 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT... General limitation or standard for pH. The pH must remain within the range 6.0 to 9.0 in any discharge...

  4. Microbial diversity of extreme habitats in human homes.

    PubMed

    Savage, Amy M; Hills, Justin; Driscoll, Katherine; Fergus, Daniel J; Grunden, Amy M; Dunn, Robert R

    2016-01-01

    High-throughput sequencing techniques have opened up the world of microbial diversity to scientists, and a flurry of studies in the most remote and extreme habitats on earth have begun to elucidate the key roles of microbes in ecosystems with extreme conditions. These same environmental extremes can also be found closer to humans, even in our homes. Here, we used high-throughput sequencing techniques to assess bacterial and archaeal diversity in the extreme environments inside human homes (e.g., dishwashers, hot water heaters, washing machine bleach reservoirs, etc.). We focused on habitats in the home with extreme temperature, pH, and chemical environmental conditions. We found a lower diversity of microbes in these extreme home environments compared to less extreme habitats in the home. However, we were nonetheless able to detect sequences from a relatively diverse array of bacteria and archaea. Habitats with extreme temperatures alone appeared to be able to support a greater diversity of microbes than habitats with extreme pH or extreme chemical environments alone. Microbial diversity was lowest when habitats had both extreme temperature and one of these other extremes. In habitats with both extreme temperatures and extreme pH, taxa with known associations with extreme conditions dominated. Our findings highlight the importance of examining interactive effects of multiple environmental extremes on microbial communities. Inasmuch as taxa from extreme environments can be both beneficial and harmful to humans, our findings also suggest future work to understand both the threats and opportunities posed by the life in these habitats.

  5. Sorption of copper, zinc and cobalt by oat and oat products.

    PubMed

    Górecka, Danuta; Stachowiak, Jadwiga

    2002-04-01

    We determined copper, zinc and cobalt sorption by oat and its products under variable pH conditions as well as the content of neutral dietary fiber (NDF) and its fractional composition. Adsorbents in a model sorption system were: oat, dehulled oat, oats bran and oats flakes. Three various buffers (pH 1.8, 6.6 and 8.7) were used as dispersing solutions. Results collected during this study indicate that copper, zinc and cobalt sorption is significantly affected by the type of cereal raw material. Zinc and copper ions are subjected to higher sorption than cobalt ions. Examined metal ions were subjected to high sorption under conditions corresponding to the duodenum environment (pH 8.7), regardless of the kind of adsorbent. A little lower sorption capacity is observed under conditions close to the neutral environment, while the lowest one is found in environment reflecting conditions of stomach juice (pH 1.8). Zinc ions are bound intensively by dehulled oat, while oats flakes bound mostly copper and cobalt, independently on environmental conditions. Contents of dietary fiber in oat, dehulled oat, oat bran and oat flakes were: 40.1, 19.3, 20.3 and 14.3%, respectively. The dominating fraction in all oat products was the fraction of hemicelluloses. The content of remaining fractions varies in dependence on the product.

  6. What Is Life? What Was Life? What Will Life Be?

    NASA Astrophysics Data System (ADS)

    Deamer, D.

    Our laboratory is exploring self-assembly processes and polymerization reactions of organic compounds in natural geothermal environments and related laboratory simulations. Although the physical environment that fostered primitive cellular life is still largely unconstrained, we can be reasonably confident that liquid water was required, together with a source of organic compounds and energy to drive polymerization reactions. There must also have been a process by which the compounds were sufficiently concentrated to undergo physical and chemical interactions. In earlier work we observed that macromolecules such as nucleic acids and proteins are readily encapsulated in membranous boundaries during wet-dry cycles such as those that would occur at the edges of geothermal springs or tide pools. The resulting structures are referred to as protocells, in that they exhibit certain properties of living cells and are models of the kinds of encapsulated macromolecular systems that would have led toward the first forms of cellular life. However, the assembly of protocells is markedly inhibited by conditions associated with extreme environments: High temperature, high salt concentrations, and low pH ranges. From a biophysical perspective, it follows that the most plausible planetary environment for the origin of cellular life would be an aqueous phase at moderate temperature ranges and low ionic strength, having a pH value near neutrality and divalent cations at submillimolar concentrations. This suggestion is in marked contrast to the view that life most likely began in a geothermal or marine environment, perhaps even the extreme environment of a hydrothermal vent. A more plausible site for the origin of cellular life would be fresh water pools maintained by rain falling on volcanic land masses resembling present-day Hawaii and Iceland. After the first cellular life was able to establish itself in a relatively benign environment, it would rapidly begin to adapt through Darwinian selection to more rigorous environments, including the extreme temperatures, salt concentrations and pH ranges that we now associate with the limits of life on the Earth.

  7. Plant Habitat (PH)

    NASA Technical Reports Server (NTRS)

    Onate, Bryan

    2016-01-01

    The International Space Station (ISS) will soon have a platform for conducting fundamental research of Large Plants. Plant Habitat (PH) is designed to be a fully controllable environment for high-quality plant physiological research. PH will control light quality, level, and timing, temperature, CO2, relative humidity, and irrigation, while scrubbing ethylene. Additional capabilities include leaf temperature and root zone moisture and oxygen sensing. The light cap will have red (630 nm), blue (450 nm), green (525 nm), far red (730 nm) and broad spectrum white LEDs. There will be several internal cameras (visible and IR) to monitor and record plant growth and operations.

  8. 40 CFR 439.4 - General limitation or standard for pH.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 30 2011-07-01 2011-07-01 false General limitation or standard for pH. 439.4 Section 439.4 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT... limitation or standard for pH. The pH must remain within the range 6.0 to 9.0 in any discharge subject to BPT...

  9. Microencapsulation of Clostridium difficile specific bacteriophages using microfluidic glass capillary devices for colon delivery using pH triggered release

    PubMed Central

    Vinner, Gurinder K.; Vladisavljević, Goran T.; Clokie, Martha R. J.

    2017-01-01

    The prevalence of pathogenic bacteria acquiring multidrug antibiotic resistance is a global health threat to mankind. This has motivated a renewed interest in developing alternatives to conventional antibiotics including bacteriophages (viruses) as therapeutic agents. The bacterium Clostridium difficile causes colon infection and is particularly difficult to treat with existing antibiotics; phage therapy may offer a viable alternative. The punitive environment within the gastrointestinal tract can inactivate orally delivered phages. C. difficile specific bacteriophage, myovirus CDKM9 was encapsulated in a pH responsive polymer (Eudragit® S100 with and without alginate) using a flow focussing glass microcapillary device. Highly monodispersed core-shell microparticles containing phages trapped within the particle core were produced by in situ polymer curing using 4-aminobenzoic acid dissolved in the oil phase. The size of the generated microparticles could be precisely controlled in the range 80 μm to 160 μm through design of the microfluidic device geometry and by varying flow rates of the dispersed and continuous phase. In contrast to free ‘naked’ phages, those encapsulated within the microparticles could withstand a 3 h exposure to simulated gastric fluid at pH 2 and then underwent a subsequent pH triggered burst release at pH 7. The significance of our research is in demonstrating that C. difficile specific phage can be formulated and encapsulated in highly uniform pH responsive microparticles using a microfluidic system. The microparticles were shown to afford significant protection to the encapsulated phage upon prolonged exposure to an acid solution mimicking the human stomach environment. Phage encapsulation and subsequent release kinetics revealed that the microparticles prepared using Eudragit® S100 formulations possess pH responsive characteristics with phage release triggered in an intestinal pH range suitable for therapeutic purposes. The results reported here provide proof-of-concept data supporting the suitability of our approach for colon targeted delivery of phages for therapeutic purposes. PMID:29023522

  10. Real-Time and High-Fidelity Simulation Environment for Autonomous Ground Vehicle Dynamics

    DTIC Science & Technology

    2013-08-01

    Propulsion Laboratory California Institute of Technology Paramsothy Jayakumar , Ph.D. U.S. Army TARDEC Jim Overholt, Ph.D. U.S. Air Force...NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Paramsothy Jayakumar ; Jim Overholt; Calvin Kuo; Abhi Jain; Havard Grip 5d. PROJECT...Dynamics, Cameron, et al. UNCLASSIFIED Page 10 of 11 REFERENCES [1] P. Jayakumar , W. Smith, B. A. Ross, R. Jategoankar and K. Konarzewski

  11. Acid-base physiology response to ocean acidification of two ecologically and economically important holothuroids from contrasting habitats, Holothuria scabra and Holothuria parva.

    PubMed

    Collard, Marie; Eeckhaut, Igor; Dehairs, Frank; Dubois, Philippe

    2014-12-01

    Sea cucumbers are dominant invertebrates in several ecosystems such as coral reefs, seagrass meadows and mangroves. As bioturbators, they have an important ecological role in making available calcium carbonate and nutrients to the rest of the community. However, due to their commercial value, they face overexploitation in the natural environment. On top of that, occurring ocean acidification could impact these organisms, considered sensitive as echinoderms are osmoconformers, high-magnesium calcite producers and have a low metabolism. As a first investigation of the impact of ocean acidification on sea cucumbers, we tested the impact of short-term (6 to 12 days) exposure to ocean acidification (seawater pH 7.7 and 7.4) on two sea cucumbers collected in SW Madagascar, Holothuria scabra, a high commercial value species living in the seagrass meadows, and H. parva, inhabiting the mangroves. The former lives in a habitat with moderate fluctuations of seawater chemistry (driven by day-night differences) while the second lives in a highly variable intertidal environment. In both species, pH of the coelomic fluid was significantly negatively affected by reduced seawater pH, with a pronounced extracellular acidosis in individuals maintained at pH 7.7 and 7.4. This acidosis was due to an increased dissolved inorganic carbon content and pCO2 of the coelomic fluid, indicating a limited diffusion of the CO2 towards the external medium. However, respiration and ammonium excretion rates were not affected. No evidence of accumulation of bicarbonate was observed to buffer the coelomic fluid pH. If this acidosis stays uncompensated for when facing long-term exposure, other processes could be affected in both species, eventually leading to impacts on their ecological role.

  12. Zr/ZrO2 sensors for in situ measurement of pH in high-temperature and -pressure aqueous solutions.

    PubMed

    Zhang, R H; Zhang, X T; Hu, S M

    2008-04-15

    The aim of this study is to develop new pH sensors that can be used to test and monitor hydrogen ion activity in hydrothermal conditions. A Zr/ZrO2 oxidation electrode is fabricated for in situ pH measurement of high-temperature aqueous solutions. This sensor responds rapidly and precisely to pH over a wide range of temperature and pressure. The Zr/ZrO2 electrode was made by oxidizing zirconium metal wire with Na2CO3 melt, which produced a thin film of ZrO2 on its surface. Thus, an oxidation-reduction electrode was produced. The Zr/ZrO2 electrode has a good electrochemical stability over a wide range of pH in high-temperature aqueous solutions when used with a Ag/AgCl reference electrode. Measurements of the Zr/ZrO2 sensor potential against a Ag/AgCl reference electrode is shown to vary linearly with pH between temperatures 20 and 200 degrees C. The slope of the potential versus pH at high temperature is slightly below the theoretical value indicated by the Nernst equation; such deviation is attributed to the fact that the sensor is not strictly at equilibrium with the solution to be tested in a short period of time. The Zr/ZrO2 sensor can be calibrated over the conditions that exist in the natural deep-seawater. Our studies showed that the Zr/ZrO2 electrode is a suitable pH sensor for the hydrothermal systems at midocean ridge or other geothermal systems with the high-temperature environment. Yttria-stabilized zirconia sensors have also been used to investigate the pH of hydrothermal fluids in hot springs vents at midocean ridge. These sensors, however, are not sensitive below 200 degrees C. Zr/ZrO2 sensors have wider temperature range and can be severed as good alternative sensors for measuring the pH of hydrothermal fluids.

  13. Probing effects of pH change on dynamic response of Claudin-2 mediated adhesion using single molecule force spectroscopy.

    PubMed

    Lim, Tong Seng; Vedula, Sri Ram Krishna; Hui, Shi; Kausalya, P Jaya; Hunziker, Walter; Lim, Chwee Teck

    2008-08-15

    Claudins belong to a large family of transmembrane proteins that localize at tight junctions (TJs) where they play a central role in regulating paracellular transport of solutes and nutrients across epithelial monolayers. Their ability to regulate the paracellular pathway is highly influenced by changes in extracellular pH. However, the effect of changes in pH on the strength and kinetics of claudin mediated adhesion is poorly understood. Using atomic force microscopy, we characterized the kinetic properties of homophilic trans-interactions between full length recombinant GST tagged Claudin-2 (Cldn2) under different pH conditions. In measurements covering three orders of magnitude change in force loading rate of 10(2)-10(4) pN/s, the Cldn2/Cldn2 force spectrum (i.e., unbinding force versus loading rate) revealed a fast and a slow loading regime that characterized a steep inner activation barrier and a wide outer activation barrier throughout pH range of 4.5-8. Comparing to the neutral condition (pH 6.9), differences in the inner energy barriers for the dissociation of Cldn2/Cldn2 mediated interactions at acidic and alkaline environments were found to be <0.65 k(B)T, which is much lower than the outer dissociation energy barrier (>1.37 k(B)T). The relatively stable interaction of Cldn2/Cldn2 in neutral environment suggests that electrostatic interactions may contribute to the overall adhesion strength of Cldn2 interactions. Our results provide an insight into the changes in the inter-molecular forces and adhesion kinetics of Cldn2 mediated interactions in acidic, neutral and alkaline environments.

  14. Characterization of an Invertase with pH Tolerance and Truncation of Its N-Terminal to Shift Optimum Activity toward Neutral pH

    PubMed Central

    Wang, Zilong; Lu, Jian; Wei, Yutuo; Huang, Ribo

    2013-01-01

    Most invertases identified to date have optimal activity at acidic pH, and are intolerant to neutral or alkaline environments. Here, an acid invertase named uninv2 is described. Uninv2 contained 586 amino acids, with a 100 amino acids N-terminal domain, a catalytic domain and a C-terminal domain. With sucrose as the substrate, uninv2 activity was optimal at pH 4.5 and at 45°C. Removal of N-terminal domain of uninv2 has shifted the optimum pH to 6.0 while retaining its optimum temperaure at 45°C. Both uninv2 and the truncated enzyme retained highly stable at neutral pH at 37°C, and they were stable at their optimum pH at 4°C for as long as 30 days. These characteristics make them far superior to invertase from Saccharomyces cerevisiae, which is mostly used as industrial enzyme. PMID:23638032

  15. Characterization of an invertase with pH tolerance and truncation of its N-terminal to shift optimum activity toward neutral pH.

    PubMed

    Du, Liqin; Pang, Hao; Wang, Zilong; Lu, Jian; Wei, Yutuo; Huang, Ribo

    2013-01-01

    Most invertases identified to date have optimal activity at acidic pH, and are intolerant to neutral or alkaline environments. Here, an acid invertase named uninv2 is described. Uninv2 contained 586 amino acids, with a 100 amino acids N-terminal domain, a catalytic domain and a C-terminal domain. With sucrose as the substrate, uninv2 activity was optimal at pH 4.5 and at 45°C. Removal of N-terminal domain of uninv2 has shifted the optimum pH to 6.0 while retaining its optimum temperaure at 45°C. Both uninv2 and the truncated enzyme retained highly stable at neutral pH at 37°C, and they were stable at their optimum pH at 4°C for as long as 30 days. These characteristics make them far superior to invertase from Saccharomyces cerevisiae, which is mostly used as industrial enzyme.

  16. Draft Genome Sequences of Two Protease-Producing Strains of Arsukibacterium, Isolated from Two Cold and Alkaline Environments

    PubMed Central

    Lylloff, Jeanette E.; Hansen, Lea B. S.; Jepsen, Morten; Hallin, Peter F.; Sørensen, Søren J.; Glaring, Mikkel A.

    2015-01-01

    Arsukibacterium ikkense GCM72T and a close relative, Arsukibacterium sp. MJ3, were isolated from two cold and alkaline environments as producers of extracellular proteolytic enzymes active at high pH and low temperature. This report describes the two draft genome sequences, which may serve as sources of future industrial enzymes. PMID:26044431

  17. Effect of Antimicrobial and Physical Treatments on Growth of Multispecies Staphylococcal Biofilms

    PubMed Central

    Payne, David E.; Ma, Tianhui Maria; VanEpps, J. Scott; Boles, Blaise R.; Younger, John G.

    2017-01-01

    ABSTRACT The prevalence and structure of Staphylococcus aureus and Staphylococcus epidermidis within multispecies biofilms were found to depend sensitively on physical environment and antibiotic dosage. Although these species commonly infect similar sites, such as orthopedic implants, little is known about their behavior in multispecies communities, particularly in response to treatment. This research establishes that S. aureus is much more prevalent than S. epidermidis when simultaneously seeded and grown under unstressed conditions (pH 7, 37°C) in both laboratory and clinical strains. In multispecies communities, S. epidermidis is capable of growing a more confluent biofilm when the addition of S. aureus is delayed 4 to 6 h during 18 h of growth. Different vancomycin dosages generate various behaviors: S. epidermidis is more prevalent at a dose of 1.0 μg/ml vancomycin, but reduced growth of both species occurs at 1.9 μg/ml vancomycin. This variability is consistent with the different MICs of S. aureus and S. epidermidis. Growth at higher temperature (45°C) results in an environment where S. aureus forms porous biofilms. This porosity allows S. epidermidis to colonize more of the surface, resulting in detectable S. epidermidis biomass. Variations in pH result in increased prevalence of S. epidermidis at low pH (pH 5 and 6), while S. aureus remains dominant at high pH (pH 8 and 9). This work establishes the structural variability of multispecies staphylococcal biofilms as they undergo physical and antimicrobial treatments. It provides a basis for understanding the structure of these communities at infection sites and how treatments disrupt their multispecies behaviors. IMPORTANCE Staphylococcus aureus and Staphylococcus epidermidis are two species of bacteria that are commonly responsible for biofilm infections on medical devices. Biofilms are structured communities of bacteria surrounded by polysaccharides, proteins, and DNA; bacteria are more resistant to antimicrobials as part of a biofilm than as individual cells. This work investigates the structure and prevalence of these two organisms when grown together in multispecies biofilms and shows shifts in the behavior of the polymicrobial community when grown in various concentrations of vancomycin (an antibiotic commonly used to treat staphylococcal infections), in a high-temperature environment (a condition previously shown to lead to cell disruption and death), and at low and high pH (a change that has been previously shown to soften the mechanical properties of staphylococcal biofilms). These shifts in community structure demonstrate the effect such treatments may have on multispecies staphylococcal infections. PMID:28411222

  18. Effect of Antimicrobial and Physical Treatments on Growth of Multispecies Staphylococcal Biofilms.

    PubMed

    Stewart, Elizabeth J; Payne, David E; Ma, Tianhui Maria; VanEpps, J Scott; Boles, Blaise R; Younger, John G; Solomon, Michael J

    2017-06-15

    The prevalence and structure of Staphylococcus aureus and Staphylococcus epidermidis within multispecies biofilms were found to depend sensitively on physical environment and antibiotic dosage. Although these species commonly infect similar sites, such as orthopedic implants, little is known about their behavior in multispecies communities, particularly in response to treatment. This research establishes that S. aureus is much more prevalent than S. epidermidis when simultaneously seeded and grown under unstressed conditions (pH 7, 37°C) in both laboratory and clinical strains. In multispecies communities, S. epidermidis is capable of growing a more confluent biofilm when the addition of S. aureus is delayed 4 to 6 h during 18 h of growth. Different vancomycin dosages generate various behaviors: S. epidermidis is more prevalent at a dose of 1.0 μg/ml vancomycin, but reduced growth of both species occurs at 1.9 μg/ml vancomycin. This variability is consistent with the different MICs of S. aureus and S. epidermidis Growth at higher temperature (45°C) results in an environment where S. aureus forms porous biofilms. This porosity allows S. epidermidis to colonize more of the surface, resulting in detectable S. epidermidis biomass. Variations in pH result in increased prevalence of S. epidermidis at low pH (pH 5 and 6), while S. aureus remains dominant at high pH (pH 8 and 9). This work establishes the structural variability of multispecies staphylococcal biofilms as they undergo physical and antimicrobial treatments. It provides a basis for understanding the structure of these communities at infection sites and how treatments disrupt their multispecies behaviors. IMPORTANCE Staphylococcus aureus and Staphylococcus epidermidis are two species of bacteria that are commonly responsible for biofilm infections on medical devices. Biofilms are structured communities of bacteria surrounded by polysaccharides, proteins, and DNA; bacteria are more resistant to antimicrobials as part of a biofilm than as individual cells. This work investigates the structure and prevalence of these two organisms when grown together in multispecies biofilms and shows shifts in the behavior of the polymicrobial community when grown in various concentrations of vancomycin (an antibiotic commonly used to treat staphylococcal infections), in a high-temperature environment (a condition previously shown to lead to cell disruption and death), and at low and high pH (a change that has been previously shown to soften the mechanical properties of staphylococcal biofilms). These shifts in community structure demonstrate the effect such treatments may have on multispecies staphylococcal infections. Copyright © 2017 American Society for Microbiology.

  19. Effects of Siderophores on Metal Adsorption to Kaolinite

    NASA Astrophysics Data System (ADS)

    Hepinstall, S. E.; Maurice, P. A.; Miller, M. J.

    2003-12-01

    Siderophores are metal-complexing ligands with high affinities for Fe(III), produced by many microorganisms in Fe-deficient environments. Siderophores can also form strong complexes with other metals such as Pb and Cd; hence, siderophores may play an important role in controlling metal mobility in porous media. This study compared the effects of siderophores desferrioxamine-B (DFO-B), desferrioxamine-D (DFO-D1), desferrioxamine-E (DFO-E), as well as siderophore-like ligand acetohydroxamic acid (aHA) on Pb and Cd adsorption to kaolinite (KGa-1b) at pH 4.5 to 9, in 0.1 M NaClO4, at 22 \\deg C, in the dark. At pH > 6.5 all of the siderophores plus aHA, inhibited Pb adsorption, with inhibition increasing in the order aHA < DFO-D1 < DFO-B < DFO-E. At lower pH, all four ligands slightly enhanced Pb adsorption. These ligands also inhibited Cd adsorption at high pH, but had little or no effect at low pH. These results suggest that siderophore effects on metal mobility through porous media are likely to be complex and variable with pH.

  20. Effects of pH and cationic and nonionic surfactants on the adsorption of pharmaceuticals to a natural aquifer material.

    PubMed

    Hari, Ajai C; Paruchuri, Rajiv A; Sabatini, David A; Kibbey, Tohren C G

    2005-04-15

    A wide range of pharmaceutical compounds have been identified in the environment, and their presence is a topic of growing concern, both for human and ecological health. Adsorption to aquifer materials and sediments is an important factor influencing the fate and transport of pharmaceutical compounds in the environment. Surfactants and other amphiphiles are known to influence the adsorption of many compounds and may be present in the environment from wastewaters or other sources. The work described here examines the adsorption of four pharmaceutical compounds, acetaminophen, carbamazepine, nalidixic acid, and norfloxacin, in the presence of a natural aquifer material. Adsorption was studied as a function of pH and in the presence and absence of two surfactants, cetylpyridinium chloride (CPC), a cationic surfactant, and Tergitol NP9, an ethoxylated nonionic surfactant. In the absence of surfactants, results indicate a 1-2 orders of magnitude variation in adsorption affinity with changing pH for each of the two quinolone pharmaceuticals (nalidixic acid and norfloxacin) but no measurable adsorption for carbamazepine or acetaminophen. In the presence of surfactants, adsorption of acetaminophen and carbamazepine was enhanced to extents consistent with compound hydrophobicity, while adsorption of nalidixic acid and norfloxacin was not. At high pH values, the anionic species of nalidixic acid exhibited enhanced adsorption in the presence of the cationic surfactant, CPC.

  1. Effect of the regional environment on the skin properties and the early wrinkles in young Chinese women.

    PubMed

    Kim, E J; Han, J Y; Lee, H K; He, Q Q; Cho, J C; Wei, L; Wang, X; Li, L; Wei, L; Liang, H; Gao, X; Kim, B J; Nam, G W

    2014-11-01

    There are ethnic differences in the skin characteristics, also the skin is susceptible to be influenced by the external environment such as UV radiation and the climates. It can be shown that the skin in same race or twins varies by the environment. This study was designed to investigate the skin characteristics and the early wrinkles of young Chinese women from four different regions, and to identify the correlation among the wrinkles, the other skin characteristics, and environmental conditions. A total of 441 healthy Chinese women aged between 20 and 35 years participated in the study: 110 from Beijing, 110 from Shanghai, 111 from Wuhan, and 110 from Guangzhou. The skin hydration, sebum contents, TEWL, pH, elasticity, and wrinkles were measured on the crow's feet area. There were regional differences in the skin characteristics and the wrinkles. Beijing women had dry skin and more wrinkles, but Guangzhou women had high sebum contents, low pH, and less wrinkles (P < 0.01). Shanghai women's TEWL and Wuhan's women's skin elasticity were higher compared with that of women from other regions. The wrinkles' form (area, depth, and length) was different from region to region. Beijing women's wrinkles were deep and large, but Guangzhou women's wrinkles were shallow and small. The skin physical parameters that influenced the wrinkles were low sebum content and hydration, high TEWL, and pH (P < 0.05). In the Chinese women aged 20-35 years, the skin was influenced by the climates, so they had regionally a different skin. The skin hydration, sebum contents, TEWL, and pH can affect the early wrinkle formation than skin elasticity. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Strong Ion Regulatory Abilities Enable the Crab Xenograpsus testudinatus to Inhabit Highly Acidified Marine Vent Systems

    PubMed Central

    Hu, Marian Y.; Guh, Ying-Jey; Shao, Yi-Ta; Kuan, Pou-Long; Chen, Guan-Lin; Lee, Jay-Ron; Jeng, Ming-Shiou; Tseng, Yung-Che

    2016-01-01

    Hydrothermal vent organisms have evolved physiological adaptations to cope with extreme abiotic conditions including temperature and pH. To date, acid-base regulatory abilities of vent organisms are poorly investigated, although this physiological feature is essential for survival in low pH environments. We report the acid-base regulatory mechanisms of a hydrothermal vent crab, Xenograpsus testudinatus, endemic to highly acidic shallow-water vent habitats with average environment pH-values ranging between 5.4 and 6.6. Within a few hours, X. testudinatus restores extracellular pH (pHe) in response to environmental acidification of pH 6.5 (1.78 kPa pCO2) accompanied by an increase in blood HCO3- levels from 8.8 ± 0.3 to 31 ± 6 mM. Branchial Na+/K+-ATPase (NKA) and V-type H+-ATPase (VHA), the major ion pumps involved in branchial acid-base regulation, showed dynamic increases in response to acidified conditions on the mRNA, protein and activity level. Immunohistochemical analyses demonstrate the presence of NKA in basolateral membranes, whereas the VHA is predominantly localized in cytoplasmic vesicles of branchial epithelial- and pillar-cells. X. testudinatus is closely related to other strong osmo-regulating brachyurans, which is also reflected in the phylogeny of the NKA. Accordingly, our results suggest that the evolution of strong ion regulatory abilities in brachyuran crabs that allowed the occupation of ecological niches in euryhaline, freshwater, and terrestrial habitats are probably also linked to substantial acid-base regulatory abilities. This physiological trait allowed X. testudinatus to successfully inhabit one of the world's most acidic marine environments. PMID:26869933

  3. Removal of endocrine disruptors and non-steroidal anti-inflammatory drugs through wastewater chlorination: the effect of pH, total suspended solids and humic acids and identification of degradation by-products.

    PubMed

    Noutsopoulos, Constantinos; Koumaki, Elena; Mamais, Daniel; Nika, Maria-Christina; Bletsou, Anna A; Thomaidis, Nikolaos S

    2015-01-01

    Endocrine disrupting chemicals (EDCs) and non-steroidal anti-inflammatory drugs (NSAIDs) are two groups of emerging pollutants the significance of which rests on their persistent detection in the aquatic environment and their possible adverse effects. Wastewater treatment plants are one of the major ways for transporting such chemicals in the aquatic environment. Chlorination is usually the last stage of treatment before wastewater being disposed to the aquatic environment. This work focuses on the evaluation of the effect of chlorine dose and specific wastewater characteristics (pH, total suspended solids and humic acids) on the removal of target EDCs and NSAIDs through chlorination. Another objective of this study is the identification of chlorination by-products of specific EDCs and NSAIDs and their dependence on contact time. Based on the results it is concluded that the effect of chlorine dose and humic acids concentration on the degradation of target compounds during chlorination is minimal. On the contrary, pH is a critical parameter which highly affects process performance. Moreover, it is concluded that not only the free available chlorine species, but also the properties of EDCs and NSAIDs under different pH conditions can affect chlorination process performance. The effect of TSS on the degradation of the target compounds during chlorination is more profound for chemicals with high Kow values and therefore higher affinity to partition to the particulate phase (i.e. nonylphenols, triclosan). Several degradation by-products were identified through chlorination of nonylphenol, bisphenol A and diclofenac. The dependence of these by-products on chlorination contact time is also demonstrated. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. RTEMIS: Real-time Tumoroid and Environment Monitoring Using Impedance Spectroscopy and pH Sensing

    NASA Astrophysics Data System (ADS)

    Alexander, Frank A., Jr.

    This research utilizes Electrical Impedance Spectroscopy, a technique classically used for electrochemical analysis and material characterization, as the basis for a non-destructive, label-free assay platform for three dimensional (3D) cellular spheroids. In this work, a linear array of microelectrodes is optimized to rapidly respond to changes located within a 3D multicellular model. In addition, this technique is coupled with an on chip micro-pH sensor for monitoring the environment around the cells. Finally, the responses of both impedance and pH are correlated with physical changes within the cellular model. The impedance analysis system realized through this work provides a foundation for the development of high-throughput drug screening systems that utilize multiple parallel sensing modalities including pH and impedance sensing in order to quickly assess the efficacy of specific drug candidates. The slow development of new drugs is mainly attributed to poor predictability of current chemosensitivity and resistivity assays, as well as genetic differences between the animal models used for tests and humans. In addition, monolayer cultures used in early experimentation are fundamentally different from the complex structure of organs in vivo. This requires the study of smaller 3D models (spheroids) that more efficiently replicate the conditions within the body. The main objective of this research was to develop a microfluidic system on a chip that is capable of deducing viability and morphology of 3D tumor spheroids by monitoring both the impedance of the cellular model and the pH of their local environment. This would provide a fast and reliable method for screening pharmaceutical compounds in a high-throughput system.

  5. Stress-Corrosion Cracking in Martensitic PH Stainless Steels

    NASA Technical Reports Server (NTRS)

    Humphries, T.; Nelson, E.

    1984-01-01

    Precipitation-hardening alloys evaluated in marine environment tests. Report describes marine-environment stress-corrosion cracking (SCC) tests of three martensitic precipitation hardening (PH) stainless-steel alloys.

  6. Comparative Analysis of the Conformation, Aggregation, Interaction, and Fibril Morphologies of Human α-, β-, and γ-Synuclein Proteins.

    PubMed

    Jain, Manish Kumar; Singh, Priyanka; Roy, Sneha; Bhat, Rajiv

    2018-06-13

    The human synuclein (syn) family is comprised of α-, β-, and γ-syn proteins. α-syn has the highest propensity for aggregation, and its aggregated forms accumulate in Lewy bodies (LB) and Lewy neurites, which are involved in Parkinson's disease (PD). β- and γ-syn are absent in LB, and their exact role is still enigmatic. β-syn does not form aggregates under physiological conditions (pH 7.4), while γ-syn is associated with neural and non-neural diseases like breast cancer. Because of their similar regional distribution in the brain, natively unfolded structure, and high degree of sequence homology, studying the effect of the environment on their conformation, interactions, fibrillation, and fibril morphologies has become important. Our studies show that high temperatures, low pH values, and high concentrations increase the rate of fibrillation of α- and γ-syn, while β-syn forms fibrils only at low pH. Fibril morphologies are strongly dependent on the immediate environment of the proteins. The high molar ratio of β-syn inhibits the fibrillation in α- and γ-syn. However, preformed seed fibrils of β- and γ-syn do not affect fibrillation of α-syn. Surface plasmon resonance data show that interactions between α- and β-syn, β- and γ-syn, and α- and γ-syn are weak to moderate in nature and can be physiologically significant in counteracting several adverse conditions in the cells that trigger their aggregation. These studies could be helpful in understanding collective human synuclein behavior in various protein environments and in the modulation of the homeostasis between β-syn and healthy versus corrupt α- and γ-syn that can potentially affect PD pathology.

  7. Effects of pH on nitrogen transformations in media-based aquaponics.

    PubMed

    Zou, Yina; Hu, Zhen; Zhang, Jian; Xie, Huijun; Guimbaud, Christophe; Fang, Yingke

    2016-06-01

    To investigate the effects of pH on performance and nitrogen transformations in aquaponics, media-based aquaponics operated at pH 6.0, 7.5 and 9.0 were systematically examined and compared in this study. Results showed that nitrogen utilization efficiency (NUE) reached its maximum of 50.9% at pH 6.0, followed by 47.3% at pH 7.5 and 44.7% at pH 9.0. Concentrations of nitrogen compounds (i.e., TAN, NO2(-)-N and NO3(-)-N) in three pH systems were all under tolerable levels. pH had significant effect on N2O emission and N2O conversion ratio decreased from 2.0% to 0.6% when pH increased from 6.0 to 9.0, mainly because acid environment would inhibit denitrifiers and lead to higher N2O emission. 75.2-78.5% of N2O emission from aquaponics was attributed to denitrification. In general, aquaponics was suggested to maintain pH at 6.0 for high NUE, and further investigations on N2O mitigation strategy are needed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Label-free silicon nanodots featured ratiometric fluorescent aptasensor for lysosomal imaging and pH measurement.

    PubMed

    Zhang, Yanan; Guo, Shan; Cheng, Shibo; Ji, Xinghu; He, Zhike

    2017-08-15

    The homeostasis of lysosomal pH is crucial in cell physiology. Developing small fluorescent nanosensors for lysosome imaging and ratiometric measurement of pH is highly demanded yet challenging. Herein, a pH-sensitive fluorescein tagged aptamer AS1411 has been utilized to covalently modify the label-free fluorescent silicon nanodots via a crosslinker for construction of a ratiometric pH biosensor. The established aptasensor exhibits the advantages of ultrasmall size, hypotoxicity, excellent pH reversibility and good photostability, which favors its application in an intracellular environment. Using human breast MCF-7 cancer cells and MCF-10A normal cells as the model, this aptasensor shows cell specificity for cancer cells and displays a wide pH response range of 4.5-8.0 in living cells. The results demonstrate that the pH of MCF-7 cells is 5.1, which is the expected value for acidic organelles. Lysosome imaging and accurate measurement of pH in MCF-7 cells have been successfully conducted based on this nanosensor via fluorescent microscopy and flow cytometry. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. pH sensitive quantum dot-anthraquinone nanoconjugates

    NASA Astrophysics Data System (ADS)

    Ruedas-Rama, Maria Jose; Hall, Elizabeth A. H.

    2014-05-01

    Semiconductor quantum dots (QDs) have been shown to be highly sensitive to electron or charge transfer processes, which may alter their optical properties. This feature can be exploited for different sensing applications. Here, we demonstrate that QD-anthraquinone conjugates can function as electron transfer-based pH nanosensors. The attachment of the anthraquinones on the surface of QDs results in the reduction of electron hole recombination, and therefore a quenching of the photoluminescence intensity. For some anthraquinone derivatives tested, the quenching mechanism is simply caused by an electron transfer process from QDs to the anthraquinone, functioning as an electron acceptor. For others, electron transfer and energy transfer (FRET) processes were found. A detailed analysis of the quenching processes for CdSe/ZnS QD of two different sizes is presented. The photoluminescence quenching phenomenon of QDs is consistent with the pH sensitive anthraquinone redox chemistry. The resultant family of pH nanosensors shows pKa ranging ˜5-8, being ideal for applications of pH determination in physiological samples like blood or serum, for intracellular pH determination, and for more acidic cellular compartments such as endosomes and lysosomes. The nanosensors showed high selectivity towards many metal cations, including the most physiologically important cations which exist at high concentration in living cells. The reversibility of the proposed systems was also demonstrated. The nanosensors were applied in the determination of pH in samples mimicking the intracellular environment. Finally, the possibility of incorporating a reference QD to achieve quantitative ratiometric measurements was investigated.

  10. Acidophilic denitrifiers dominate the N2O production in a 100-year-old tea orchard soil.

    PubMed

    Huang, Ying; Long, Xi-En; Chapman, Stephen J; Yao, Huaiying

    2015-03-01

    Aerobic denitrification is the main process for high N2O production in acid tea field soil. However, the biological mechanisms for the high emission are not fully understood. In this study, we examined N2O emission and denitrifier communities in 100-year-old tea soils with four pH levels (3.71, 5.11, 6.19, and 7.41) and four nitrate concentration (0, 50, 200, and 1000 mg kg(-1) of NO3 (-)-N) addition. Results showed the highest N2O emission (10.1 mg kg(-1) over 21 days) from the soil at pH 3.71 with 1000 mg kg(-1) NO3 (-) addition. The N2O reduction and denitrification enzyme activity in the acid soils (pH <7.0) were significantly higher than that of soils at pH 7.41. Moreover, TRF 78 of nirS and TRF 187 of nosZ dominated in soils of pH 3.71, suggesting an important role of acidophilic denitrifiers in N2O production and reduction. CCA analysis also showed a negative correlation between the dominant denitrifier ecotypes (nirS TRF 78, nosZ TRF 187) and soil pH. The representative sequences were identical to those of cultivated denitrifiers from acidic soils via phylogenetic tree analysis. Our results showed that the acidophilic denitrifier adaptation to the acid environment results in high N2O emission in this highly acidic tea soil.

  11. [Advances in the effects of pH value of micro-environment on wound healing].

    PubMed

    Tian, Ruirui; Li, Na; Wei, Li

    2016-04-01

    Wound healing is a complex regeneration process, which is affected by lots of endogenous and exogenous factors. Researches have confirmed that acid environment could prevent wound infection and accelerate wound healing by inhibiting bacteria proliferation, promoting oxygen release, affecting keratinocyte proliferation and migration, etc. In this article, we review the literature to identify the potential relationship between the pH value of wound micro-environment and the progress of wound healing, and summarize the clinical application of variation of pH value of micro-environment in wound healing, thereby to provide new treatment strategy for wound healing.

  12. Coral Reef Education and Australian High School Students

    ERIC Educational Resources Information Center

    Stepath, Carl M.

    2004-01-01

    Educational programs that focus on humans and their relationship to coral reefs are becoming necessary, as reef structures along the Queensland coast come under mounting ecological pressure. This paper reports on a PhD research project which investigated marine education and learning with high school students in coral reef environments along the…

  13. The pH-dependent assembly of Chaplin E from Streptomyces coelicolor.

    PubMed

    Dokouhaki, Mina; Hung, Andrew; Day, Li; Gras, Sally L

    2017-05-01

    Chaplin E, is one of five self-assembling peptides secreted by Streptomyces coelicolor that assist aerial growth by lowering the surface tension of water. Although the surface activity of a mixture of chaplin peptides has observed to depend on pH, it is unclear how the solvent environment (i.e. pH) influences the structure, assembly and subsequent functionality of these individual peptides. In this study, the conformation and fibril forming propensity of the Chaplin E peptide was assessed as a function of pH using a combination of experimental measurements and molecular dynamics simulations. At an acidic pH of 3.0, Chaplin E retained a random coil structure, whereas at the isoelectric point of 6.7 or a basic pH of 10.0, Chaplin E rapidly formed amyloid fibrils rich in β-sheet structure with high efficiency (>93%). Molecular dynamics simulations indicate the persistence of greater α-helical content at the N-terminus at high pH; this is likely partly due to the lack of electrostatic repulsion between residues His6 and Lys10. Since fibril formation was observed at high but not at low pH, we propose that the presence of an N-terminal α-helix in the monomeric form of Chaplin E is required for aggregation and conversion to β-amyloid fibrils. The pH sensitivity of Chaplin E peptide structure provides a route to control peptide assembly and may be important for the physiological function of this peptide, as a surface active agent in the transition from vegetative to aerial growth and could assist Streptomyces coelicolor in response to environmental fluctuations in pH. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. The Limits of Life in the Deep Subsurface - Implications for the Origin of Life

    NASA Astrophysics Data System (ADS)

    Baross, John

    2013-06-01

    There are very few environments on Earth where life is absent. Microbial life has proliferated into habitats that span nearly every imaginable physico-chemical variable. Only the availability of liquid water and temperature are known to prevent the growth of organisms. The other extreme physical and chemical variables, such as pH, pressure, high concentrations of solutes, damaging radiation, and toxic metals, are life-prohibiting factors for most organisms but not for all. The deep subsurface environments span all of the extreme conditions encountered by life including habitat conditions not yet explored, such as those that combine high temperature, high and low pH and extreme pressures. Some of the ``extremophile'' microorganisms inhabiting the deep subsurface environments have been shown to be among the most ``ancient'' of extant life. Their genomes and physiologies have led to a broader understanding of the geological settings of early life, the most ancient energy pathways, and the importance of water/rock interactions and tectonics in the origin and early evolution of life. The case can now be made that deep subsurface environments contributed to life's origin and provided the habitat(s) for the earliest microbial communities. However, there is much more to be done to further our understanding on the role of moderate to high pressures and temperatures on the chemical and biochemical ``steps'' leading to life, and on the evolution and physiology of both ancient and present-day subsurface microbial communities.

  15. Inorganic species distribution and microbial diversity within high Arctic cryptoendolithic habitats.

    PubMed

    Omelon, Christopher R; Pollard, Wayne H; Ferris, F Grant

    2007-11-01

    Cryptoendolithic habitats in the Canadian high Arctic are associated with a variety of microbial community assemblages, including cyanobacteria, algae, and fungi. These habitats were analyzed for the presence of metal ions by sequential extraction and evaluated for relationships between these and the various microorganisms found at each site using multivariate statistical methods. Cyanobacteria-dominated communities exist under higher pH conditions with elevated concentrations of calcium and magnesium, whereas communities dominated by fungi and algae are characterized by lower pH conditions and higher concentrations of iron, aluminum, and silicon in the overlying surfaces. These results suggest that the activity of the dominant microorganisms controls the pH of the surrounding environment, which in turn dictates rates of weathering or the possibility for surface crust formation, both ultimately deciding the structure of microbial diversity for each cryptoendolithic habitat.

  16. Electrochemical Induced Calcium Phosphate Precipitation: Importance of Local pH

    PubMed Central

    2017-01-01

    Phosphorus (P) is an essential nutrient for living organisms and cannot be replaced or substituted. In this paper, we present a simple yet efficient membrane free electrochemical system for P removal and recovery as calcium phosphate (CaP). This method relies on in situ formation of hydroxide ions by electro mediated water reduction at a titanium cathode surface. The in situ raised pH at the cathode provides a local environment where CaP will become highly supersaturated. Therefore, homogeneous and heterogeneous nucleation of CaP occurs near and at the cathode surface. Because of the local high pH, the P removal behavior is not sensitive to bulk solution pH and therefore, efficient P removal was observed in three studied bulk solutions with pH of 4.0 (56.1%), 8.2 (57.4%), and 10.0 (48.4%) after 24 h of reaction time. While P removal efficiencies are not generally affected by bulk solution pH, the chemical-physical properties of CaP solids collected on the cathode are still related to bulk solution pH, as confirmed by structure characterizations. High initial solution pH promotes the formation of more crystalline products with relatively high Ca/P molar ratio. The Ca/P molar ratio increases from 1.30 (pH 4.0) to 1.38 (pH 8.2) and further increases to 1.55 (pH 10.0). The formation of CaP precipitates was a typical crystallization process, with an amorphous phase formed at the initial stage which then transforms to the most stable crystal phase, hydroxyapatite, which is inferred from the increased Ca/P molar ratio from 1.38 (day 1) to the theoretical 1.76 (day 11) and by the formation of needle-like crystals. Finally, we demonstrated the efficiency of this system for real wastewater. This, together with the fact that the electrochemical method can work at low bulk pH, without dosing chemicals and a need for a separation process, highlights the potential application of the electrochemical method for P removal and recovery. PMID:28872838

  17. Genome Sequence of Sphingomonas sp. S17, Isolated from an Alkaline, Hyperarsenic, and Hypersaline Volcano-Associated Lake at High Altitude in the Argentinean Puna ▿

    PubMed Central

    Farias, Maria Eugenia; Revale, Santiago; Mancini, Estefania; Ordoñez, Omar; Turjanski, Adrian; Cortez, Néstor; Vazquez, Martin P.

    2011-01-01

    The high-altitude Andean lakes (HAAL) in the Argentinean Puna-high Andes region represent an almost unexplored ecosystem exposed to extreme conditions (high UV irradiation, hypersalinity, drastic temperature changes, desiccation, and high pH). Here we present the first genome sequence, a Sphingomonas sp., isolated from this extreme environment. PMID:21602338

  18. The effect of pH on cell viability, cell migration, cell proliferation, wound closure, and wound reepithelialization: In vitro and in vivo study.

    PubMed

    Kruse, Carla R; Singh, Mansher; Targosinski, Stefan; Sinha, Indranil; Sørensen, Jens A; Eriksson, Elof; Nuutila, Kristo

    2017-04-01

    Wound microenvironment plays a major role in the process of wound healing. It contains various external and internal factors that participate in wound pathophysiology. The pH is an important factor that influences wound healing by changing throughout the healing process. Several previous studies have investigated the role of pH in relation to pathogens but studies concentrating on the effects of pH on wound healing itself are inconclusive. The purpose of this study was to comprehensively and in a controlled fashion investigate the effect of pH on wound healing by studying its effect on human primary keratinocyte and fibroblast function in vitro and on wound healing in vivo. In vitro, primary human keratinocytes and fibroblasts were cultured in different levels of pH (5.5-12.5) and the effect on cell viability, proliferation, and migration was studied. A rat full-thickness wound model was used to investigate the effect of pH (5.5-9.5) on wound healing in vivo. The effect of pH on inflammation was monitored by measuring IL-1 α concentrations from wounds and cell cultures exposed to different pH environments. Our results showed that both skin cell types tolerated wide range of pH very well. They further demonstrated that both acidic and alkaline environments decelerated cell migration in comparison to neutral environments and interestingly alkaline conditions significantly enhanced cell proliferation. Results from the in vivo experiments indicated that a prolonged, strongly acidic wound environment prevents both wound closure and reepithelialization while a prolonged alkaline environment did not have any negative impact on wound closure or reepithelialization. Separately, both in vitro and in vivo studies showed that prolonged acidic conditions significantly increased the expression of IL-1 α in fibroblast cultures and in wound fluid, whereas prolonged alkaline conditions did not result in elevated amounts of IL-1 α. © 2017 by the Wound Healing Society.

  19. pH feedback and phenotypic diversity within bacterial functional groups of the human gut.

    PubMed

    Kettle, Helen; Donnelly, Ruairi; Flint, Harry J; Marion, Glenn

    2014-02-07

    Microbial diversity in the human colon is very high with apparently large functional redundancy such that within each bacterial functional group there are many coexisting strains. Modelling this mathematically is problematic since strains within a functional group are often competing for the same limited number of resources and therefore competitive exclusion theory predicts a loss of diversity over time. Here we investigate, through computer simulation, a fluctuation dependent mechanism for the promotion of diversity. A variable pH environment caused by acidic by-products of bacterial growth on a fluctuating substrate coupled with small differences in acid tolerance between strains promotes diversity under both equilibrium and far-from-equilibrium conditions. Under equilibrium conditions pH fluctuations and relative nonlinearity in pH limitation among strains combine to prevent complete competitive exclusion. Under far-from-equilibrium conditions, loss of diversity through extinctions is made more difficult because pH cycling leads to fluctuations in the competitive ranking of strains, thereby helping to equalise fitness. We assume a trade-off between acid tolerance and maximum growth rate so that our microbial system consists of strains ranging from specialists to generalists. By altering the magnitude of the effect of the system on its pH environment (e.g. the buffering capacity of the colon) and the pattern of incoming resource we explore the conditions that promote diversity. © 2013 Elsevier Ltd. Published by Elsevier Ltd. All rights reserved.

  20. International guidelines for the in vivo assessment of skin properties in non-clinical settings: part 1. pH

    PubMed Central

    Stefaniak, Aleksandr B; du Plessis, Johan; John, Swen M; Eloff, Fritz; Agner, Tove; Chou, Tzu-Chieh; Nixon, Rosemary; Steiner, Markus F C; Kudla, Irena; Holness, D Linn

    2013-01-01

    Background Skin surface pH is known to influence the dissolution and partitioning of chemicals and may influence exposures that lead to skin diseases. Non-clinical environments (e.g. workplaces) are highly variable, thereby presenting unique measurement challenges that are not typically encountered in clinical settings. Hence, guidelines are needed for consistent measurement of skin surface pH in environments that are difficult to control. Methods An expert workshop was convened at the 5th International Conference on Occupational and Environmental Exposure of Skin to Chemicals to review available data on factors that could influence the determination of skin surface pH in non-clinical settings with emphasis on the workplace as a worst case scenario. Results The key elements of the guidelines are: (i) minimize, to the extent feasible, the influences of relevant endogenous (anatomical position, skin health, time of day), exogenous (hand washing, barrier creams, soaps and detergents, occlusion), environmental (seasonality), and measurement (atmospheric conditions) factors; (ii) report pH measurements results as a difference or percent change (not absolute values) using a measure of central tendency and variability; and (iii) report notable deviations from these guidelines and other relevant factors that may influence measurements. Conclusion Guidelines on the measurement and reporting of skin surface pH in non-clinical settings should promote consistency in data reporting, facilitate inter-comparison of study results, and aid in understanding and preventing occupational skin diseases. PMID:23279097

  1. Phylogenetic relationships and taxonomic position of Chlorella-like isolates from low pH environments (pH < 3.0)

    PubMed Central

    Huss, Volker AR; Ciniglia, Claudia; Cennamo, Paola; Cozzolino, Salvatore; Pinto, Gabriele; Pollio, Antonino

    2002-01-01

    Background Little is known about phytoplankton communities inhabiting low pH environments such as volcanic and geothermal sites or acidic waters. Only specialised organisms are able to tolerate such extreme conditions. There is, thus, low species diversity. We have characterised the previously isolated acid tolerant Chlorella-like microalgae Viridiella fridericiana and Chlorella protothecoides var. acidicola by microscopical and biomolecular methods in order to assess their phylogenetic relationships. Results Both isolates belong to the trebouxiophycean lineage of chlorophytes. 18S and ITS1 sequence data clearly confirm that Viridiella fridericiana constitutes a new genus apart from the morphologically similar and likewise acid tolerant microalga Chlorella saccharophila. Chlorella protothecoides var. acidicola on the other hand is not a variety of Chlorella protothecoides but falls within a heterogeneous cluster consisting of Nannochloris, "Chlorella" spec. Yanaqocha, and Koliella, and is most closely related to algae which were also isolated from extreme environments. Conclusions The distribution of acid tolerant strains in the 18S rRNA tree shows that acquisition of acid tolerance was unlikely a monophyletic event in green microalgae. We propose that different strains have independently adapted to extreme environments. Some of them have spread worldwide and were able to colonise other extreme habitats. Considering the problems of successfully isolating acid tolerant strains, acidic soils could represent an unsuspected source of biological diversity with high potential for biotechnological utilisations. PMID:12194702

  2. Effect of pH on molecular constitution and distribution of hemoglobin in living erythrocyte.

    PubMed

    Wu, Yue; Huang, Yao-Xiong; Kang, Li-Li; Wu, Zheng-Jie; Luo, Man

    2010-04-01

    The molecular constitution of in situ hemoglobin (Hb) and their distribution in living erythrocyte were investigated versus pH using the technique of confocal Raman microscopy. Both Raman point spectra and line mapping measurements were performed on living erythrocytes in suspensions with pH values from 4.82 to 9.70. It was found that the Hb inside a living erythrocyte would dissociate into monomer/dimer when the cells are in low and high pH environments. In contrast to the homogeneous distribution of the Hbs in the cells in neutral suspension, there are more Hbs distributing around the cell membrane or binding to the membrane as pH increases. While in low pH, as the cell become spherical, most of the Hbs distribute to the central part of the cell. In summary, our investigation suggests that the variation of the external pH not only brings changes in the morphology and membrane structure of an erythrocyte, but also affects the constitution and distribution of its intracellular Hbs, thereby the flexibility of the cell membrane and the oxygenation ability of the Hb.

  3. Life under Multiple Extreme Conditions: Diversity and Physiology of the Halophilic Alkalithermophiles

    PubMed Central

    Wiegel, Juergen

    2012-01-01

    Around the world, there are numerous alkaline, hypersaline environments that are heated either geothermally or through intense solar radiation. It was once thought that such harsh environments were inhospitable and incapable of supporting a variety of life. However, numerous culture-dependent and -independent studies revealed the presence of an extensive diversity of aerobic and anaerobic bacteria and archaea that survive and grow under these multiple harsh conditions. This diversity includes the halophilic alkalithermophiles, a novel group of polyextremophiles that require for growth and proliferation the multiple extremes of high salinity, alkaline pH, and elevated temperature. Life under these conditions undoubtedly involves the development of unique physiological characteristics, phenotypic properties, and adaptive mechanisms that enable control of membrane permeability, control of intracellular osmotic balance, and stability of the cell wall, intracellular proteins, and other cellular constituents. This minireview highlights the ecology and growth characteristics of the extremely halophilic alkalithermophiles that have been isolated thus far. Biochemical, metabolic, and physiological properties of the extremely halophilic alkalithermophiles are described, and their roles in resistance to the combined stressors of high salinity, alkaline pH, and high temperature are discussed. The isolation of halophilic alkalithermophiles broadens the physicochemical boundaries for life and extends the boundaries for the combinations of the maximum salinity, pH, and temperature that can support microbial growth. PMID:22492435

  4. Influence of environmental pH on G2-phase arrest caused by ionizing radiation.

    PubMed

    Park, Heon Joo; Lee, Sang Hwa; Chung, HyunSook; Rhee, Yun Hee; Lim, Byung Uk; Ha, Sung Whan; Griffin, Robert J; Lee, Hyung Sik; Song, Chang Won; Choi, Eun Kyung

    2003-01-01

    We investigated the effects of an acidic environment on the G2/M-phase arrest, apoptosis, clonogenic death, and changes in cyclin B1-CDC2 kinase activity caused by a 4-Gy irradiation in RKO.C human colorectal cancer cells in vitro. The time to reach peak G2/M-phase arrest after irradiation was delayed in pH 6.6 medium compared to that in pH 7.5 medium. Furthermore, the radiation-induced G2/M-phase arrest decayed more slowly in pH 6.6 medium than in pH 7.5 medium. Finally, there was less radiation-induced apoptosis and clonogenic cell death in pH 6.6 medium than in pH 7.5 medium. It appeared that the prolongation of G2-phase arrest after irradiation in the acidic environment allowed for greater repair of radiation-induced DNA damage, thereby decreasing the radiation-induced cell death. The prolongation of G2-phase arrest after irradiation in the acidic pH environment appeared to be related at least in part to a prolongation of the phosphorylation of CDC2, which inhibited cyclin B1-CDC2 kinase activity.

  5. The influence of pH on the leaching behaviour of inorganic components from municipal solid waste APC residues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quina, Margarida J.; Bordado, Joao C.M.; Quinta-Ferreira, Rosa M.

    2009-09-15

    The influence of pH on the leaching behaviour of air pollution control (APC) residues produced in municipal solid waste incineration (MSWI) is addressed in this study. The residue is considered hazardous waste, and in accordance with their chemical properties, the leaching of contaminants into the environment is the main concern. Several leaching tests can be used for research studies or regulatory purposes, where a wide variety of conditions may be tested. Our work deals mainly with the leaching behaviour of toxic heavy metals (Pb, Cd, Zn, Cr, Ni, Cu) and inorganics associated with soluble salts (Na, K, Ca, Cl). Themore » main goal is to obtain an overview of the leachability of APC residues produced in a Portuguese MSWI process. Among the different variables that may have influence on the leaching behaviour, pH of the leachant solution is the most important one, and was evaluated through pH static tests. The acid neutralization capacity (ANC) of the residue was also determined, which is in the range of 6.2-6.8 meq g{sup -1} (for pH = 7) and 10.1-11.6 meq g{sup -1} (for pH = 4). The analysis of the leaching behaviour is particularly important when the leaching is solubility controlled. The amphoteric behaviour of some elements was observed, namely for Pb and Zn, which is characterized through high solubilization at low and high pH and moderate or low solubility at neutral or moderate high pH. The solubility curves for Pb, Cd, Zn, Cr, Ni and Cu as a function of pH were obtained, which are very useful for predicting the leaching behaviour in different scenarios. The solubility of K and Na reveals to be nearly independent of the solution pH and the released amount is mainly availability-controlled. Moreover, the pH static test showed that Cl{sup -} is the most pH-independent species. The APC residue turns out to be a hazardous waste because of the high leaching of lead and chloride. On the other hand, leaching of elements like cadmium, nickel and copper is limited by the high pH of the residue, and as long as the waste keeps its ANC, the risk of mobilization of these elements is low.« less

  6. Biocorrosion properties of antibacterial Ti-10Cu sintered alloy in several simulated biological solutions.

    PubMed

    Liu, Cong; Zhang, Erlin

    2015-03-01

    Ti-10Cu sintered alloy has shown strong antibacterial properties against S. aureus and E. coli and good cell biocompatibility, which displays potential application in dental application. The corrosion behaviors of the alloy in five different simulated biological solutions have been investigated by electrochemical technology, surface observation, roughness measurement and immersion test. Five different simulated solutions were chosen to simulate oral condition, oral condition with F(-) ion, human body fluids with different pH values and blood system. It has been shown that Ti-10Cu alloy exhibits high corrosion rate in Saliva pH 3.5 solution and Saliva pH 6.8 + 0.2F solution but low corrosion rate in Hank's, Tyrode's and Saliva pH 6.8 solutions. The corrosion rate of Ti-10Cu alloy was in a order of Hank's, Tyrode's, Saliva pH 6.8, Saliva-pH 3.5 and Saliva pH 6.8 + 0.2F from slow to fast. All results indicated acid and F(-) containing conditions prompt the corrosion reaction of Ti-Cu alloy. It was suggested that the Cu ion release in the biological environments, especially in the acid and F(-) containing condition would lead to high antibacterial properties without any cell toxicity, displaying wide potential application of this alloy.

  7. Effect of acidity upon attrition-corrosion of human dental enamel.

    PubMed

    Wu, Yun-Qi; Arsecularatne, Joseph A; Hoffman, Mark

    2015-04-01

    Attrition-corrosion is a synthesized human enamel wear process combined mechanical effects (attrition) with corrosion. With the rising consumption of acidic food and beverages, attrition-corrosion is becoming increasingly common. Yet, research is limited and the underlying mechanism remains unclear. In this study, in vitro wear loss of human enamel was investigated and the attrition-corrosion process and wear mechanism were elucidated by the analysis of the wear scar and its subsurface using focused ion beam (FIB) sectioning and scanning electron microscopy (SEM). Human enamel flat-surface samples were prepared with enamel cusps as the wear antagonists. Reciprocating wear testing was undertaken under load of 5N at the speed of 66 cycle/min for 2250 cycles with lubricants including citric acid (at pH 3.2 and 5.5), acetic acid (at pH 3.2 and 5.5) and distilled water. All lubricants were used at 37°C. Similar human enamel flat-surface samples were also exposed to the same solutions as a control group. The substance loss of enamel during wear can be linked to the corrosion potential of a lubricant used. Using a lubricant with very low corrosion potential (such as distilled water), the wear mechanism was dominated by delamination with high wear loss. Conversely, the wear mechanism changed to shaving of the softened layer with less material loss in an environment with medium corrosion potential such as citric acid at pH 3.2 and 5.5 and acetic acid at pH 5.5. However, a highly corrosive environment (e.g., acetic acid at pH 3.2) caused the greatest loss of substance during wear. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Controls on the pH of hyper-saline lakes - A lesson from the Dead Sea

    NASA Astrophysics Data System (ADS)

    Golan, Rotem; Gavrieli, Ittai; Ganor, Jiwchar; Lazar, Boaz

    2016-01-01

    The pH of aqueous environments is determined by the dominant buffer systems of the water, defined operationally as total alkalinity (TA). The major buffer systems in the modern ocean are carbonic and boric acids of which the species bicarbonate, carbonate and borate make up about 77%, 19% and 4% of the TA, respectively. During the course of seawater evaporation (e.g. lagoons) the residual brine loses considerable portion of the dissolved inorganic carbon (DIC) and carbonate alkalinity (CA) already at the early stages of evaporation. DIC and CA decrease due to massive precipitation of CaCO3, while total boron (TB) increases conservatively, turning borate to the dominant alkalinity species in marine derived brines. In the present work we assess the apparent dissociation constant value of boric acid (KB‧) in saline and hypersaline waters, using the Dead Sea (DS) as a case study. We explain the DS low pH (∼6.3) and the effect of the boric and carbonic acid pK‧-s on the behavior of the brine's buffer system, including the pH increase that results from brine dilution. The KB‧ in DS was estimated from TB, TA, DIC and pH data measured in this study and early empirical data on artificial DS brines containing just carbonic acid. The KB‧ value was corroborated by Pitzer ion interaction model calculations using PHREEQC thermodynamic code applied to the chemical composition of the DS. Our results show that KB‧ increases considerably with the brine's ionic strength, reaching in the DS to a factor of 100 higher than in ;mean; seawater. Based on theoretical calculations and analyses of other natural brines it is suggested that brines' composition is a major factor in determining the KB‧ value and in turn the pH of such brines. We show that the higher the proportion of divalent cations in the brine the higher the dissociation constants of the weak acids (presumably due to formation of complexes). The low pH of the Dead Sea is accordingly explained by its extremely high ionic strength (TDS = 348 g/L) and the dominance of the divalent cation, Mg2+. Other natural hyper-saline brines with high concentration of divalent cations such as Kunteyi Lake in China and Don-Juan Pond in Antarctica follow the same general pattern. In contrast, the high pH of soda lakes results not only from their high TA but also by the dominance of the monovalent cation, Na+. Our study emphasizes the strong control of brine composition on pKB‧ and pH. These factors should be taken into consideration when reconstructing past and present environmental evaporitic environments.

  9. How Helicobacter pylori urease may affect external pH and influence growth and motility in the mucus environment: evidence from in-vitro studies.

    PubMed

    Sidebotham, Ramon L; Worku, Mulugeta L; Karim, Q Najma; Dhir, Nirmal K; Baron, J Hugh

    2003-04-01

    Survival of Helicobacter pylori is dependent upon urease in the cytoplasm and at the bacterial surface. We have sought to clarify how alkaline ammonium salts, released from urea by this enzyme, might alter mucus pH and so affect growth and motility of the bacterium in the gastric mucus environment. Experiments were conducted in vitro to determine how the growth and motility of H. pylori are affected by changes in external pH, and how the bacterium, by hydrolysing urea, alters the pH of the bicarbonate buffer that occurs at the gastric mucosal surface. These data were fitted into experimental models that describe how pH varies within the mucus layer in the acid-secreting stomach. H. pylori was motile between pH 5 and 8, with optimal motility at pH 5. It grew between pH 6 and 8, with optimal growth at pH 6. The bacterium had urease activity between pH 2.7 and 7.4, as evidenced by pH rises in bicarbonate-buffered solutions of urea. Changes in buffer pH were dependent upon initial pH and urea concentration, with the greatest rate of pH change occurring at pH 3. Modelling experiments utilizing these data indicated that (1) in the absence of urease, H. pylori growth and motility in the mucus layer would be restricted severely by low mucus pH in the acid-secreting stomach, and (2) urease will sometimes inhibit H. pylori growth and motility in the mucus layer by elevating the pH of the mucus environment above pH 8. Urease is essential to the growth and motility of H. pylori in the mucus layer in the acid-secreting stomach, but, paradoxically, sometimes it might suppress colonization by raising the mucus pH above 8. This latter effect may protect the bacteria from the adverse consequences of overpopulation.

  10. The Adsorption of Cd(II) on Manganese Oxide Investigated by Batch and Modeling Techniques.

    PubMed

    Huang, Xiaoming; Chen, Tianhu; Zou, Xuehua; Zhu, Mulan; Chen, Dong; Pan, Min

    2017-09-28

    Manganese (Mn) oxide is a ubiquitous metal oxide in sub-environments. The adsorption of Cd(II) on Mn oxide as function of adsorption time, pH, ionic strength, temperature, and initial Cd(II) concentration was investigated by batch techniques. The adsorption kinetics showed that the adsorption of Cd(II) on Mn oxide can be satisfactorily simulated by pseudo-second-order kinetic model with high correlation coefficients (R² > 0.999). The adsorption of Cd(II) on Mn oxide significantly decreased with increasing ionic strength at pH < 5.0, whereas Cd(II) adsorption was independent of ionic strength at pH > 6.0, which indicated that outer-sphere and inner-sphere surface complexation dominated the adsorption of Cd(II) on Mn oxide at pH < 5.0 and pH > 6.0, respectively. The maximum adsorption capacity of Mn oxide for Cd(II) calculated from Langmuir model was 104.17 mg/g at pH 6.0 and 298 K. The thermodynamic parameters showed that the adsorption of Cd(II) on Mn oxide was an endothermic and spontaneous process. According to the results of surface complexation modeling, the adsorption of Cd(II) on Mn oxide can be satisfactorily simulated by ion exchange sites (X₂Cd) at low pH and inner-sphere surface complexation sites (SOCd⁺ and (SO)₂CdOH - species) at high pH conditions. The finding presented herein plays an important role in understanding the fate and transport of heavy metals at the water-mineral interface.

  11. Accessible reactive surface area and abiotic redox reactivity of iron oxyhydroxides in acidic brines

    NASA Astrophysics Data System (ADS)

    Strehlau, Jennifer H.; Toner, Brandy M.; Arnold, William A.; Penn, R. Lee

    2017-01-01

    The reactivity of iron oxyhydroxide nanoparticles in low pH and high ionic strength solutions was quantified to assess abiotic contributions to oxidation-reduction chemistry in acidic brine environments, such as mine groundwater seepage, lakes in Western Australia, and acid mine drainage settings, which are of global interest for their environmental impacts and unique geomicrobiology. Factors expected to influence accessible and reactive surface area, including Fe(II) adsorption and aggregate size, were measured as a function of pH and CaCl2 concentration and related to the kinetics of redox reactions in aqueous suspensions of synthetic goethite (α-FeOOH), akaganeite (β-FeOOH), and ferrihydrite (Fe10O14(OH)2) nanoparticles. Aqueous conditions and iron oxyhydroxides were chosen based on characterization of natural iron-rich mine microbial mats located in Soudan Underground Mine State Park, Minnesota, USA. Quinone species were used as redox sensors because they are well-defined probes and are present in natural organic matter. Fe(II) adsorption to the iron oxyhydroxide mineral surfaces from aqueous solution was measurable only at pH values above 4 and either decreased or was not affected by CaCl2 concentration. Concentrations at or above 0.020 M CaCl2 in acetate buffer (pH 4.5) induced particle aggregation. Assessment of Fe(II) adsorption and particle aggregation in acidic brine suggested that accessible reactive surface area may be limited in acidic brines. This was supported by observations of decreasing benzoquinone reduction rate by adsorbed Fe(II) at high CaCl2 concentration. In contrast, the hydroquinone oxidation rate increased at high CaCl2 concentrations, which may be due to suppressed adsorption of Fe(II) generated by the reaction. Results suggest that iron geochemical cycling in acidic brine environments will be substantially different than for iron oxyhydroxides in low-saline waters with circumneutral pH. These findings have implications for acidic brine lakes and acid mine drainage locations that contain precipitated iron oxyhydroxides.

  12. pH homeostasis during coral calcification in a free ocean CO2 enrichment (FOCE) experiment, Heron Island reef flat, Great Barrier Reef

    PubMed Central

    Georgiou, Lucy; Falter, James; Trotter, Julie; Kline, David I.; Holcomb, Michael; Dove, Sophie G.; Hoegh-Guldberg, Ove; McCulloch, Malcolm

    2015-01-01

    Geochemical analyses (δ11B and Sr/Ca) are reported for the coral Porites cylindrica grown within a free ocean carbon enrichment (FOCE) experiment, conducted on the Heron Island reef flat (Great Barrier Reef) for a 6-mo period from June to early December 2010. The FOCE experiment was designed to simulate the effects of CO2-driven acidification predicted to occur by the end of this century (scenario RCP4.5) while simultaneously maintaining the exposure of corals to natural variations in their environment under in situ conditions. Analyses of skeletal growth (measured from extension rates and skeletal density) showed no systematic differences between low-pH FOCE treatments (ΔpH = ∼−0.05 to −0.25 units below ambient) and present day controls (ΔpH = 0) for calcification rates or the pH of the calcifying fluid (pHcf); the latter was derived from boron isotopic compositions (δ11B) of the coral skeleton. Furthermore, individual nubbins exhibited near constant δ11B compositions along their primary apical growth axes (±0.02 pHcf units) regardless of the season or treatment. Thus, under the highly dynamic conditions of the Heron Island reef flat, P. cylindrica up-regulated the pH of its calcifying fluid (pHcf ∼8.4–8.6), with each nubbin having near-constant pHcf values independent of the large natural seasonal fluctuations of the reef flat waters (pH ∼7.7 to ∼8.3) or the superimposed FOCE treatments. This newly discovered phenomenon of pH homeostasis during calcification indicates that coral living in highly dynamic environments exert strong physiological controls on the carbonate chemistry of their calcifying fluid, implying a high degree of resilience to ocean acidification within the investigated ranges. PMID:26438833

  13. pH homeostasis during coral calcification in a free ocean CO2 enrichment (FOCE) experiment, Heron Island reef flat, Great Barrier Reef.

    PubMed

    Georgiou, Lucy; Falter, James; Trotter, Julie; Kline, David I; Holcomb, Michael; Dove, Sophie G; Hoegh-Guldberg, Ove; McCulloch, Malcolm

    2015-10-27

    Geochemical analyses (δ(11)B and Sr/Ca) are reported for the coral Porites cylindrica grown within a free ocean carbon enrichment (FOCE) experiment, conducted on the Heron Island reef flat (Great Barrier Reef) for a 6-mo period from June to early December 2010. The FOCE experiment was designed to simulate the effects of CO2-driven acidification predicted to occur by the end of this century (scenario RCP4.5) while simultaneously maintaining the exposure of corals to natural variations in their environment under in situ conditions. Analyses of skeletal growth (measured from extension rates and skeletal density) showed no systematic differences between low-pH FOCE treatments (ΔpH = ∼-0.05 to -0.25 units below ambient) and present day controls (ΔpH = 0) for calcification rates or the pH of the calcifying fluid (pHcf); the latter was derived from boron isotopic compositions (δ(11)B) of the coral skeleton. Furthermore, individual nubbins exhibited near constant δ(11)B compositions along their primary apical growth axes (±0.02 pHcf units) regardless of the season or treatment. Thus, under the highly dynamic conditions of the Heron Island reef flat, P. cylindrica up-regulated the pH of its calcifying fluid (pHcf ∼8.4-8.6), with each nubbin having near-constant pHcf values independent of the large natural seasonal fluctuations of the reef flat waters (pH ∼7.7 to ∼8.3) or the superimposed FOCE treatments. This newly discovered phenomenon of pH homeostasis during calcification indicates that coral living in highly dynamic environments exert strong physiological controls on the carbonate chemistry of their calcifying fluid, implying a high degree of resilience to ocean acidification within the investigated ranges.

  14. Traits Explaining Durum Wheat (Triticum turgidum L. spp. Durum) Yield in Dry Chilean Mediterranean Environments

    PubMed Central

    González-Ribot, Gerlitt; Opazo, Marcela; Silva, Paola; Acevedo, Edmundo

    2017-01-01

    Yield under water stress (YS) is used as the main criterion in the selection of wheat varieties for dry Mediterranean environments. It has been proposed that selection of genotypes using YS assisted by morphological and physiological traits associated with YS is more efficient in selecting high yielding genotypes for dry environments. A study was carried out at the Antumapu Experiment Station of the University of Chile, located in Santiago, Chile (33° 40′S and 70° 38′ W). The objective was to evaluate the extent to which morpho physiological traits could explain YS. For this purpose, grain yield and yield components of 185 durum wheat genotypes from ICARDA (International Center for Agricultural Research in the Dry Areas) and INIA (Chilean National Institute for Agricultural Research) were evaluated along with seed size and weight, days to heading (DH), glaucousness (GLAU), plant height (PH) and 13C discrimination (Δ). The design was an α-lattice with two replications, the genotypes were grown in two different water conditions (high and low irrigation) during two seasons (2011-2012/2012-2013). Grain weight (GW) was the only yield component with high H associated with YS, but it was not associated with yield under high irrigation (YI). The combination of YI with DH+GLAU+PH+Δ+GW obtained in LI environments explained a greater fraction of YS (38%) across years; these traits had lower genotype x environment interaction than YS, they also explained a higher proportion of yield under drought than YI. None of the traits studied could replace YS in selections for grain yield. It is concluded that these traits could aid in the selection of durum wheat subject to water stress, particularly in early generations. PMID:29104578

  15. Metabolic Response of Dungeness Crab Larvae Exposed to Elevated CO2 and Hypoxia

    NASA Astrophysics Data System (ADS)

    Nichols, Z.; Busch, S.; McElhany, P.

    2015-12-01

    Ocean acidification (OA) and deoxygenation, both resulting from rising atmospheric CO2 levels, are lowering the pH and oxygen levels of global oceans. Assessing the impacts of OA and deoxygenation on harvested species is crucial for guiding resource management with the aim of maintaining healthy and sustainable populations. The Dungeness crab, Cancer magister, is an important species ecologically and economically for the US West Coast. Crabs transition through four main stages: zoea, megalopa, juvenile, and adult. Each stage results in a different morphology and behavior, and as a result, is exposed to various environmental parameters, such as pH and dissolved oxygen (DO). The first two stages exhibit diel vertical migration while the final stages are benthic. Our study focused on the megalopae stage and their metabolic response to OA and hypoxia. We exposed wild-caught megalopae to a pH x DO cross, producing treatment waters with combinations of low or high pH and O2, all maintained at 12˚C. Closed-chamber respirometry was used to compare standard metabolic rates in a common garden setting with high pH/high DO conditions. We predict that the megalopae exposed to the low pH/high DO treatment will have a higher metabolic rate than those exposed to the high pH/high DO treatment. This may be a result of homeostatic processes increasing to return the megalopae's internal pH back to equilibrium. We predict that the high pH/low DO treatment will cause a decrease in metabolism when compared to the high pH/high DO treatment due to the megalopae conserving oxygen in a limiting environment. If results support our hypothesis, they would suggest that OA and hypoxia affects Dungeness crabs in sublethal ways.

  16. Enhanced membrane disruption and antibiotic action against pathogenic bacteria by designed histidine-rich peptides at acidic pH.

    PubMed

    Mason, A James; Gasnier, Claire; Kichler, Antoine; Prévost, Gilles; Aunis, Dominique; Metz-Boutigue, Marie-Hélène; Bechinger, Burkhard

    2006-10-01

    The histidine-rich amphipathic cationic peptide LAH4 has antibiotic and DNA delivery capabilities. Here, we explore the interaction of peptides from this family with model membranes as monitored by solid-state (2)H nuclear magnetic resonance and their antibiotic activities against a range of bacteria. At neutral pH, the membrane disruption is weak, but at acidic pH, the peptides strongly disturb the anionic lipid component of bacterial membranes and cause bacterial lysis. The peptides are effective antibiotics at both pH 7.2 and pH 5.5, although the antibacterial activity is strongly affected by the change in pH. At neutral pH, the LAH peptides were active against both methicillin-resistant and -sensitive Staphylococcus aureus strains but ineffective against Pseudomonas aeruginosa. In contrast, the LAH peptides were highly active against P. aeruginosa in an acidic environment, as is found in the epithelial-lining fluid of cystic fibrosis patients. Our results show that modest antibiotic activity of histidine-rich peptides can be dramatically enhanced by inducing membrane disruption, in this case by lowering the pH, and that histidine-rich peptides have potential as future antibiotic agents.

  17. Meet EPA Scientist Dermont Bouchard, Ph.D.

    EPA Pesticide Factsheets

    EPA Scientist Dermont Bouchard, Ph.D., is working to better understand how tiny nanomaterials might be released into the environment. His research helps regulators and other decision-makers lower risks and better protect human health and the environment

  18. Flexible high-temperature pH probe

    DOEpatents

    Bielawski, John C.; Outwater, John O.; Halbfinger, George P.

    2003-04-22

    A flexible pH probe device is provided for use in hot water and other high temperature environments up to about 590.degree. F. The pH probe includes a flexible, inert tubular probe member, an oxygen anion conducting, solid state electrolyte plug located at the distal end of the tubular member, oxide powder disposed at the distal end of the tubular member; a metal wire extending along the tubular member and having a distal end in contact with the oxide powder so as to form therewith an internal reference electrode; and a compression fitting forming a pressure boundary seal around a portion of the tubular member remote from the distal end thereof. Preferably, the tubular member is made of polytetrafluoroethylene, and the solid state electrolyte plug is made of stabilized zirconia. The flexibility of the probe member enables placement of the electrode into the area of interest, including around corners, into confined areas and the like.

  19. Feasible metabolisms in high pH springs of the Philippines

    PubMed Central

    Cardace, Dawn; Meyer-Dombard, D'Arcy R.; Woycheese, Kristin M.; Arcilla, Carlo A.

    2015-01-01

    A field campaign targeting high pH, H2-, and CH4-emitting serpentinite-associated springs in the Zambales and Palawan Ophiolites of the Philippines was conducted in 2012-2013, and enabled description of several springs sourced in altered pillow basalts, gabbros, and peridotites. We combine field observations of pH, temperature, conductivity, dissolved oxygen, and oxidation-reduction potential with analyses of major ions, dissolved inorganic carbon, dissolved organic carbon, and dissolved gas phases in order to model the activities of selected phases important to microbial metabolism, and to rank feasible metabolic reactions based on energy yield. We document changing geochemical inventories in these springs between sampling years, and examine how the environment supports or prevents the function of certain microbial metabolisms. In all, this geochemistry-based assessment of feasible metabolisms indicates methane cycling, hydrogen oxidation, some iron and sulfur metabolisms, and ammonia oxidation are feasible reactions in this continental site of serpentinization. PMID:25713561

  20. Feasible metabolisms in high pH springs of the Philippines.

    PubMed

    Cardace, Dawn; Meyer-Dombard, D'Arcy R; Woycheese, Kristin M; Arcilla, Carlo A

    2015-01-01

    A field campaign targeting high pH, H2-, and CH4-emitting serpentinite-associated springs in the Zambales and Palawan Ophiolites of the Philippines was conducted in 2012-2013, and enabled description of several springs sourced in altered pillow basalts, gabbros, and peridotites. We combine field observations of pH, temperature, conductivity, dissolved oxygen, and oxidation-reduction potential with analyses of major ions, dissolved inorganic carbon, dissolved organic carbon, and dissolved gas phases in order to model the activities of selected phases important to microbial metabolism, and to rank feasible metabolic reactions based on energy yield. We document changing geochemical inventories in these springs between sampling years, and examine how the environment supports or prevents the function of certain microbial metabolisms. In all, this geochemistry-based assessment of feasible metabolisms indicates methane cycling, hydrogen oxidation, some iron and sulfur metabolisms, and ammonia oxidation are feasible reactions in this continental site of serpentinization.

  1. Shotgun proteomics reveals physiological response to ocean acidification in Crassostrea gigas.

    PubMed

    Timmins-Schiffman, Emma; Coffey, William D; Hua, Wilber; Nunn, Brook L; Dickinson, Gary H; Roberts, Steven B

    2014-11-03

    Ocean acidification as a result of increased anthropogenic CO2 emissions is occurring in marine and estuarine environments worldwide. The coastal ocean experiences additional daily and seasonal fluctuations in pH that can be lower than projected end-of-century open ocean pH reductions. In order to assess the impact of ocean acidification on marine invertebrates, Pacific oysters (Crassostrea gigas) were exposed to one of four different p CO2 levels for four weeks: 400 μatm (pH 8.0), 800 μatm (pH 7.7), 1000 μatm (pH 7.6), or 2800 μatm (pH 7.3). At the end of the four week exposure period, oysters in all four p CO2 environments deposited new shell, but growth rate was not different among the treatments. However, micromechanical properties of the new shell were compromised by elevated p CO2. Elevated p CO2 affected neither whole body fatty acid composition, nor glycogen content, nor mortality rate associated with acute heat shock. Shotgun proteomics revealed that several physiological pathways were significantly affected by ocean acidification, including antioxidant response, carbohydrate metabolism, and transcription and translation. Additionally, the proteomic response to a second stress differed with p CO2, with numerous processes significantly affected by mechanical stimulation at high versus low p CO2 (all proteomics data are available in the ProteomeXchange under the identifier PXD000835). Oyster physiology is significantly altered by exposure to elevated p CO2, indicating changes in energy resource use. This is especially apparent in the assessment of the effects of p CO2 on the proteomic response to a second stress. The altered stress response illustrates that ocean acidification may impact how oysters respond to other changes in their environment. These data contribute to an integrative view of the effects of ocean acidification on oysters as well as physiological trade-offs during environmental stress.

  2. Locally driven interannual variability of near-surface pH and ΩA in the Strait of Georgia

    NASA Astrophysics Data System (ADS)

    Moore-Maley, Ben L.; Allen, Susan E.; Ianson, Debby

    2016-03-01

    Declines in mean ocean pH and aragonite saturation state (ΩA) driven by anthropogenic CO2 emissions have raised concerns regarding the trends of pH and ΩA in estuaries. Low pH and ΩA can be harmful to a variety of marine organisms, especially those with calcium carbonate shells, and so may threaten the productive ecosystems and commercial fisheries found in many estuarine environments. The Strait of Georgia is a large, temperate, productive estuarine system with numerous wild and aquaculture shellfish and finfish populations. We determine the seasonality and variability of near-surface pH and ΩA in the Strait using a one-dimensional, biophysical, mixing layer model. We further evaluate the sensitivity of these quantities to local wind, freshwater, and cloud forcing by running the model over a wide range of scenarios using 12 years of observations. Near-surface pH and ΩA demonstrate strong seasonal cycles characterized by low pH, aragonite-undersaturated waters in winter and high pH, aragonite-supersaturated waters in summer. The aragonite saturation horizon generally lies at ˜20 m depth except in winter and during strong Fraser River freshets when it shoals to the surface. Periods of strong interannual variability in pH and aragonite saturation horizon depth arise in spring and summer. We determine that at different times of year, each of wind speed, freshwater flux, and cloud fraction are the dominant drivers of this variability. These results establish the mechanisms behind the emerging observations of highly variable near-surface carbonate chemistry in the Strait.

  3. Cellulose-dependent expression and antibacterial characteristics of surfactin from Bacillus subtilis HH2 isolated from the giant panda

    PubMed Central

    Zhong, Zhijun; Su, Huaiyi; Li, Jin; Li, Haozhou; Feng, Fan; Lan, Jingchao; Zhang, Zhihe; Fu, Hualin; Hu, Yanchun; Cao, Suizhong; Chen, Weigang; Deng, Jiabo; Yu, Jianqiu; Zhang, Wenping

    2018-01-01

    Surfactin secreted by Bacillus subtilis can confer strong, diverse antipathogenic effects, thereby benefitting the host. Carbon source is an important factor for surfactin production. However, the mechanism that bacteria utilize cellulose, the most abundant substance in the intestines of herbivores, to produce surfactin remains unclear. Here, we used B. subtilis HH2, isolated from the feces of a giant panda, as a model to determine changes in surfactin expression in the presence of different concentrations of cellulose by quantitative polymerase chain reaction and high-performance liquid chromatography. We further investigated the antimicrobial effects of surfactin against three common intestinal pathogens (Escherichia coli, Staphylococcus aureus, and Salmonella enterica) and its resistance to high temperature (60–121°C), pH (1–12), trypsin (100–300 μg/mL, pH 8), and pepsin (100–300 μg/mL, pH 2). The results showed that the surfactin expressed lowest in bacteria cultured in the presence of 1% glucose medium as the carbon source, whereas increased in an appropriate cellulose concentration (0.67% glucose and 0.33% cellulose). The surfactin could inhibit E. coli and Staphylococcus aureus, but did not affect efficiently for Salmonella enterica. The antibacterial ability of surfactin did not differ according to temperature (60–100°C), pH (2–11), trypsin (100–300 μg/mL), and pepsin (100–300 μg/mL; P > 0.05), but decreased significantly at extreme environments (121°C, pH 1 or 12; P < 0.05) compared with that in the control group (37°C, pH = 7, without any protease). In conclusion, our findings indicated that B. subtilis HH2 could increase surfactin expression in an appropriate cellulose environment and thus provide benefits to improve the intestinal health of herbivores. PMID:29385201

  4. Cellulose-dependent expression and antibacterial characteristics of surfactin from Bacillus subtilis HH2 isolated from the giant panda.

    PubMed

    Zhou, Ziyao; Liu, Furui; Zhang, Xinyue; Zhou, Xiaoxiao; Zhong, Zhijun; Su, Huaiyi; Li, Jin; Li, Haozhou; Feng, Fan; Lan, Jingchao; Zhang, Zhihe; Fu, Hualin; Hu, Yanchun; Cao, Suizhong; Chen, Weigang; Deng, Jiabo; Yu, Jianqiu; Zhang, Wenping; Peng, Guangneng

    2018-01-01

    Surfactin secreted by Bacillus subtilis can confer strong, diverse antipathogenic effects, thereby benefitting the host. Carbon source is an important factor for surfactin production. However, the mechanism that bacteria utilize cellulose, the most abundant substance in the intestines of herbivores, to produce surfactin remains unclear. Here, we used B. subtilis HH2, isolated from the feces of a giant panda, as a model to determine changes in surfactin expression in the presence of different concentrations of cellulose by quantitative polymerase chain reaction and high-performance liquid chromatography. We further investigated the antimicrobial effects of surfactin against three common intestinal pathogens (Escherichia coli, Staphylococcus aureus, and Salmonella enterica) and its resistance to high temperature (60-121°C), pH (1-12), trypsin (100-300 μg/mL, pH 8), and pepsin (100-300 μg/mL, pH 2). The results showed that the surfactin expressed lowest in bacteria cultured in the presence of 1% glucose medium as the carbon source, whereas increased in an appropriate cellulose concentration (0.67% glucose and 0.33% cellulose). The surfactin could inhibit E. coli and Staphylococcus aureus, but did not affect efficiently for Salmonella enterica. The antibacterial ability of surfactin did not differ according to temperature (60-100°C), pH (2-11), trypsin (100-300 μg/mL), and pepsin (100-300 μg/mL; P > 0.05), but decreased significantly at extreme environments (121°C, pH 1 or 12; P < 0.05) compared with that in the control group (37°C, pH = 7, without any protease). In conclusion, our findings indicated that B. subtilis HH2 could increase surfactin expression in an appropriate cellulose environment and thus provide benefits to improve the intestinal health of herbivores.

  5. Adsorption of sulfamethoxazole by magnetic biochar: Effects of pH, ionic strength, natural organic matter and 17α-ethinylestradiol.

    PubMed

    Reguyal, Febelyn; Sarmah, Ajit K

    2018-07-01

    Recent studies have shown the widespread occurrence of pharmaceuticals in the aquatic environment leading to increasing global concern on their potential adverse effects in the environment and public health. In this study, we evaluated the use of magnetic biochar derived from pine sawdust, one of New Zealand's major wood wastes, to remove an emerging contaminant, sulfamethoxazole (SMX), at different pH, ionic strength, natural organic matter (NOM) and a competing compound, 17α-ethinylestradiol (EE2). In single-solute system, the sorption of SMX onto magnetic biochar was found to be highly pH-dependent and slightly increased with increase in ionic strength. However, the effects of pH, ionic strength and NOM were relatively insignificant compared to the sorption inhibition caused by EE2 in binary-solute system. Both SMX and EE2 sorption onto the highly carbonised biochar in magnetic biochar were postulated to be due to the π-π electron donor acceptor and hydrophobic interaction. EE2 is more hydrophobic than SMX. Hence, strong competition between these compounds was identified where EE2 markedly inhibited the sorption of SMX onto magnetic biochar in all artificial environmental conditions studied. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Jellyfish (Cyanea nozakii) decomposition and its potential influence on marine environments studied via simulation experiments.

    PubMed

    Qu, Chang-Feng; Song, Jin-Ming; Li, Ning; Li, Xue-Gang; Yuan, Hua-Mao; Duan, Li-Qin; Ma, Qing-Xia

    2015-08-15

    A growing body of evidence suggests that the jellyfish population in Chinese seas is increasing, and decomposition of jellyfish strongly influences the marine ecosystem. This study investigated the change in water quality during Cyanea nozakii decomposition using simulation experiments. The results demonstrated that the amount of dissolved nutrients released by jellyfish was greater than the amount of particulate nutrients. NH4(+) was predominant in the dissolved matter, whereas the particulate matter was dominated by organic nitrogen and inorganic phosphorus. The high N/P ratios demonstrated that jellyfish decomposition may result in high nitrogen loads. The inorganic nutrients released by C. nozakii decomposition were important for primary production. Jellyfish decomposition caused decreases in the pH and oxygen consumption associated with acidification and hypoxia or anoxia; however, sediments partially mitigated the changes in the pH and oxygen. These results imply that jellyfish decomposition can result in potentially detrimental effects on marine environments. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Oxygenic photosynthesis as a protection mechanism for cyanobacteria against iron-encrustation in environments with high Fe2+ concentrations

    PubMed Central

    Ionescu, Danny; Buchmann, Bettina; Heim, Christine; Häusler, Stefan; de Beer, Dirk; Polerecky, Lubos

    2014-01-01

    If O2 is available at circumneutral pH, Fe2+ is rapidly oxidized to Fe3+, which precipitates as FeO(OH). Neutrophilic iron oxidizing bacteria have evolved mechanisms to prevent self-encrustation in iron. Hitherto, no mechanism has been proposed for cyanobacteria from Fe2+-rich environments; these produce O2 but are seldom found encrusted in iron. We used two sets of illuminated reactors connected to two groundwater aquifers with different Fe2+ concentrations (0.9 μM vs. 26 μM) in the Äspö Hard Rock Laboratory (HRL), Sweden. Cyanobacterial biofilms developed in all reactors and were phylogenetically different between the reactors. Unexpectedly, cyanobacteria growing in the Fe2+-poor reactors were encrusted in iron, whereas those in the Fe2+-rich reactors were not. In-situ microsensor measurements showed that O2 concentrations and pH near the surface of the cyanobacterial biofilms from the Fe2+-rich reactors were much higher than in the overlying water. This was not the case for the biofilms growing at low Fe2+ concentrations. Measurements with enrichment cultures showed that cyanobacteria from the Fe2+-rich environment increased their photosynthesis with increasing Fe2+ concentrations, whereas those from the low Fe2+ environment were inhibited at Fe2+ > 5 μM. Modeling based on in-situ O2 and pH profiles showed that cyanobacteria from the Fe2+-rich reactor were not exposed to significant Fe2+ concentrations. We propose that, due to limited mass transfer, high photosynthetic activity in Fe2+-rich environments forms a protective zone where Fe2+ precipitates abiotically at a non-lethal distance from the cyanobacteria. This mechanism sheds new light on the possible role of cyanobacteria in precipitation of banded iron formations. PMID:25228899

  8. Safe and efficient pH sensitive tumor targeting modified liposomes with minimal cytotoxicity.

    PubMed

    Wang, Lilin; Geng, Di; Su, Haijia

    2014-11-01

    Incorporating the pH-sensitivity of octylamine grafted poly aspartic acid (PASP) with the biocompatibility of liposomes, a novel pH sensitive drug delivery system, octylamine-graft-PASP (PASP-g-C8) modified liposomes (OPLPs), was obtained. Since hydrophobic chains have been grafted into PASP backbones, the octylamine chain could act as the "anchor" to implant onto liposomes. The structure of PASP-g-C8, involving long-chain and hydrophobic anchors can significantly enhance the stability of the drug carrier. The shortcoming of single PASP chain modified liposomes (PLPs), that cannot sustain a slow and controlled release especially in a physiological pH solution (resembling normal tissues of pH 7.4) is thus overcome. Drug release experiments were carried out and the result showed that OPLPs sustained a slow and steady release in comparison with PLPs in the physiological pH 7.4 environment. However, OPLPs can provide a fast release in subacid environment (pH 5.0 of resembled tumor tissues). The results of diameter analysis and zeta potential demonstrated that OPLPs presented a larger diameter and higher electronegativity. Furthermore, in the "chain-anchor" structure of PASP-g-C8, the degree of substitution (DS) of the "anchor" is a remarkable factor to alter the pH-sensitivity of OPLPs. The in vitro tumor inhibition and cell toxicity studies revealed that tumor cells treated with OPLPs survived only 35.0% after 48 h whereas normal cells survived 100% in the same condition. The pH sensitive OPLPs are promising tumor targeting drug delivery with high tumor inhibition and insignificant cytotoxicity. Copyright © 2014. Published by Elsevier B.V.

  9. Local pH Monitoring of Small Cluster of Cells using a Fiber-Optic Dual-Core Micro-Probe.

    PubMed

    Chen, Sisi; Yang, Qingbo; Xiao, Hai; Shi, Honglan; Ma, Yinfa

    2017-03-31

    Biological studies of tissues and cells have enabled numerous discoveries, but these studies still bear potential risks of invalidation because of cell heterogeneity. Through high-accuracy techniques, recent studies have demonstrated that discrepancies do exist between the results from low-number-cell studies and cell-population-based results. Thus the urgent need to re-evaluate key principles on limited number of cells has been provoked. In this study, a novel designed dual-core fiber-optic pH micro-probe was fabricated and demonstrated for niche environment pH sensing with high spatial resolution. An organic-modified silicate (OrMoSils) sol-gel thin layer was functionalized by entrapping a pH indicator, 2', 7'-Bis (2-carbonylethyl)-5(6)-carboxyfluorescein (BCECF), on a ~70 μm sized probe tip. Good linear correlation between fluorescence ratio of I 560 nm /I 640 nm and intercellular pH values was obtained within a biological-relevant pH range from 6.20 to 7.92 (R 2 = 0.9834), and with a pH resolution of 0.035 ± 0.005 pH units. The probe's horizontal spatial resolution was demonstrated to be less than 2mm. Moreover, the probe was evaluated by measuring the localized extracellular pH changes of cultured human lung cancer cells (A549) when exposed to titanium dioxide nanoparticles (TiO 2 NPs). Results showed that the probe has superior capability for fast, local, and continual monitoring of a small cluster of cells, which provides researchers a fast and accurate technique to conduct local pH measurements for cell heterogeneity-related studies.

  10. The acid test of fluoride: how pH modulates toxicity.

    PubMed

    Sharma, Ramaswamy; Tsuchiya, Masahiro; Skobe, Ziedonis; Tannous, Bakhos A; Bartlett, John D

    2010-05-28

    It is not known why the ameloblasts responsible for dental enamel formation are uniquely sensitive to fluoride (F(-)). Herein, we present a novel theory with supporting data to show that the low pH environment of maturating stage ameloblasts enhances their sensitivity to a given dose of F(-). Enamel formation is initiated in a neutral pH environment (secretory stage); however, the pH can fall to below 6.0 as most of the mineral precipitates (maturation stage). Low pH can facilitate entry of F(-) into cells. Here, we asked if F(-) was more toxic at low pH, as measured by increased cell stress and decreased cell function. Treatment of ameloblast-derived LS8 cells with F(-) at low pH reduced the threshold dose of F(-) required to phosphorylate stress-related proteins, PERK, eIF2alpha, JNK and c-jun. To assess protein secretion, LS8 cells were stably transduced with a secreted reporter, Gaussia luciferase, and secretion was quantified as a function of F(-) dose and pH. Luciferase secretion significantly decreased within 2 hr of F(-) treatment at low pH versus neutral pH, indicating increased functional toxicity. Rats given 100 ppm F(-) in their drinking water exhibited increased stress-mediated phosphorylation of eIF2alpha in maturation stage ameloblasts (pH<6.0) as compared to secretory stage ameloblasts (pH approximately 7.2). Intriguingly, F(-)-treated rats demonstrated a striking decrease in transcripts expressed during the maturation stage of enamel development (Klk4 and Amtn). In contrast, the expression of secretory stage genes, AmelX, Ambn, Enam and Mmp20, was unaffected. The low pH environment of maturation stage ameloblasts facilitates the uptake of F(-), causing increased cell stress that compromises ameloblast function, resulting in dental fluorosis.

  11. Glutamic acid leaching of synthetic covellite - A model system combining experimental data and geochemical modeling.

    PubMed

    Barthen, R; Karimzadeh, L; Gründig, M; Grenzer, J; Lippold, H; Franke, K; Lippmann-Pipke, J

    2018-04-01

    For Kupferschiefer mining established pyrometallurgical and acidic bioleaching methods face numerous problems. This is due to the finely grained and dispersed distribution of the copper minerals, the complex mineralogy, comparably low copper content, and the possibly high carbonate and organic content in this ore. Leaching at neutral pH seemed worth a try: At neutral pH the abundant carbonates do not need to be dissolved and therewith would not consume excessive amounts of provided acids. Certainly, copper solubility at neutral pH is reduced compared to an acidic environment; however, if copper complexing ligands would be supplied abundantly, copper contents in the mobile phase could easily reach the required economic level. We set up a model system to study the effect of parameters such as pH, microorganisms, microbial metabolites, and organic ligands on covellite leaching to get a better understanding of the processes in copper leaching at pH ≥ 6. With this model system we could show that glutamic acid and the microbial siderophore desferrioxamine B promote covellite dissolution. Both experimental and modeling data showed that pH is an important parameter in covellite dissolution. An increase of pH from 6 to 9 could elevate copper extraction in the presence of glutamic acid by a factor of five. These results have implications for both development of a biotechnological process regarding metal extraction from Kupferschiefer, and for the interaction of bacterial metabolites with the lithosphere and potential mobilization of heavy metals in alkaline environments. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Effects of physiological environments on the hydration behavior of mineral trioxide aggregate.

    PubMed

    Lee, Yuan-Ling; Lee, Bor-Shiunn; Lin, Feng-Huei; Yun Lin, Ava; Lan, Wan-Hong; Lin, Chun-Pin

    2004-02-01

    Utilizing scanning electron microscope, X-ray diffraction (XRD) and microhardness tests, we evaluated how various physiological environments affect the hydration behavior and physical properties of mineral trioxide aggregate (MTA). We found that the microstructure of hydrated MTA consists of cubic and needle-like crystals. The former comprised the principal structure of MTA, whereas the later were less prominent and formed in the inter-grain spaces between the cubic crystals. MTA samples were hydrated in distilled water, normal saline, pH 7, and pH 5. However, no needle-like crystals were observed in the pH 5 specimens, and erosion of the cubic crystal surfaces was noted. XRD indicated a peak corresponding to Portlandite, a hydration product of MTA, and the peak decreased noticeably in the pH 5 group. The pH 5 specimens' microhardness was also significantly weaker compared to the other three groups (p<0.0001). These findings suggest that physiological environmental effects on MTA formation are determined, in part, by environmental pH and the presence of ions. In particular, an acidic environment of pH 5 adversely affects both the physical properties and the hydration behavior of MTA.

  13. Expansion of mesenchymal stem cells under atmospheric carbon dioxide.

    PubMed

    Brodsky, Arthur Nathan; Zhang, Jing; Visconti, Richard P; Harcum, Sarah W

    2013-01-01

    Stem cells are needed for an increasing number of scientific applications, including both fundamental research and clinical disease treatment. To meet this rising demand, improved expansion methods to generate high quantities of high quality stem cells must be developed. Unfortunately, the bicarbonate buffering system - which relies upon an elevated CO2 environment - typically used to maintain pH in stem cell cultures introduces several unnecessary limitations in bioreactor systems. In addition to artificially high dissolved CO2 levels negatively affecting cell growth, but more importantly, the need to sparge CO2 into the system complicates the ability to control culture parameters. This control is especially important for stem cells, whose behavior and phenotype is highly sensitive to changes in culture conditions such as dissolved oxygen and pH. As a first step, this study developed a buffer to support expansion of mesenchymal stem cells (MSC) under an atmospheric CO2 environment in static cultures. MSC expanded under atmospheric CO2 with this buffer achieved equivalent growth rates without adaptation compared to those grown in standard conditions and also maintained a stem cell phenotype, self-renewal properties, and the ability to differentiate into multiple lineages after expansion. © 2013 American Institute of Chemical Engineers.

  14. Sorption mechanisms of metals to graphene oxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Showalter, Allison R.; Duster, Thomas A.; Szymanowski, Jennifer E. S.

    2016-05-01

    Environmental toxic metal contamination remediation and prevention is an ongoing issue. Graphene oxide is highly sorptive for many heavy metals over a wide pH range under different ionic strength conditions. We present x-ray absorption fine structure (XAFS) spectroscopy results investigating the binding environment of Pb(II), Cd(II) and U(VI) ions onto multi-layered graphene oxide (MLGO). Analysis indicates that the dominant sorption mechanism of Pb to MLGO changes as a function of pH, with increasing inner sphere contribution as pH increases. In contrast, the sorption mechanism of Cd to MLGO remains constant under the studied pH range. This adsorption mechanism is anmore » electrostatic attraction between the hydrated Cd+2 ion and the MLGO surface. The U(VI), present as the uranyl ion, changes only subtly as a function of pH and is bound to the surface via an inner sphere bond. Knowledge of the binding mechanism for each metal is necessary to help in optimizing environmental remediation or prevention in filtration systems.« less

  15. Leaching Characteristics of Calcium and Strontium from Phosphogypsum Under Acid Rain.

    PubMed

    Wang, Mei; Luo, Houqiao; Chen, Yong; Yang, Jinyan

    2018-02-01

    Phosphogypsum (PG) stored close to phosphorus chemical plants has caused worldwide environmental problems. Column leaching experiments were conducted to evaluate Ca and Sr leaching from PG under simulated acid rain at pH levels typical for rain in the study region (Shifang, China). High concentrations of Ca and Sr in leachates in the first five leaching events could pollute the soil and groundwater around the PG. Leachates pH was lower than and had no correlation with simulated rain pH. No correlations between simulated rain pH and cumulative Ca and Sr content in leachates were noted. Around 2.0%-2.2% of Ca and 0.5%-0.6% of Sr were leached out from PG by the simulated summer rainfall in Shifang. Electrical conductivity values, Ca and Sr concentrations at bottom sections of PG columns were higher than those of top sections, while pH values showed a reverse trend. More precautions should be taken to protect the environment around PG stacks.

  16. Informing geobiology through GIS site suitability analysis: locating springs in mantle units of ophiolites

    NASA Astrophysics Data System (ADS)

    Bowman, A.; Cardace, D.; August, P.

    2012-12-01

    Springs sourced in the mantle units of ophiolites serve as windows to the deep biosphere, and thus hold promise in elucidating survival strategies of extremophiles, and may also inform discourse on the origin of life on Earth. Understanding how organisms can survive in extreme environments provides clues to how microbial life responds to gradients in pH, temperature, and oxidation-reduction potential. Spring locations associated with serpentinites have traditionally been located using a variety of field techniques. The aqueous alteration of ultramafic rocks to serpentinites is accompanied by the production of very unusual formation fluids, accessed by drilling into subsurface flow regimes or by sampling at related surface springs. The chemical properties of these springs are unique to water associated with actively serpentinizing rocks; they reflect a reducing subsurface environment reacting at low temperatures producing high pH, Ca-rich formation fluids with high dissolved hydrogen and methane. This study applies GIS site suitability analysis to locate high pH springs upwelling from Coast Range Ophiolite serpentinites in Northern California. We used available geospatial data (e.g., geologic maps, topography, fault locations, known spring locations, etc.) and ArcGIS software to predict new spring localities. Important variables in the suitability model were: (a) bedrock geology (i.e., unit boundaries and contacts for peridotite, serpentinite, possibly pyroxenite, or chromite), (b) fault locations, (c) regional data for groundwater characteristics such as pH, Ca2+, and Mg2+, and (d) slope-aspect ratio. The GIS model derived from these geological and environmental data sets predicts the latitude/longitude points for novel and known high pH springs sourced in serpentinite outcrops in California. Field work confirms the success of the model, and map output can be merged with published environmental microbiology data (e.g., occurrence of hydrogen-oxidizers) to showcase patterns in microbial community structure. Discrepancies between predicted and actual spring locations are then used to tune GIS suitability analysis, re-running the model with corrected geo-referenced data. This presentation highlights a powerful GIS-based technique for accelerating field exploration in this area of ongoing research.

  17. Nanosensor aided photoacoustic measurement of pH in vivo

    NASA Astrophysics Data System (ADS)

    Ray, Aniruddha; Yoon, Hyung Ki; Kopelman, Raoul; Wang, Xueding

    2013-03-01

    pH plays a critical role in many aspects of cell and tissues physiology. Lower pH is also a typical characteristic of arthritic joints and tumor tissues. These pH anomalies are also exploited in different drug delivery mechanisms. Here we present, a new method of pH sensing in vivo using spectroscopic photoacoustic measurements facilitated by pH sensitive nanosensors. The nanosensors consist of Seminaphtharhodafluor (SNARF), a pH sensitive dye, encapsulated in a specially designed polyacrylamide hydrogel matrix with a hydrophobic core. The photoacoustic intensity ratio between the excitation wavelengths of 585nm and 565nm increases in the pH range from 6.0 to 8.0 and is used to determine the pH of the local environment. These nanosensors are biodegradable, biocompatible, have a long plasma lifetime and can be targeted to any type of cells or tissues by surface modification using proper targeting moieties. The encapsulation of the dye prevents the interaction of the dye with proteins in plasma and also reduces the dye degradation. The SNARF dye in its free form loses 90% of its absorbance in presence of albumin, a protein found in abundance in plasma, and this has severely limited its adaptation to in vivo environments. In comparison, the SNARF nanosensors lose only 16% of their absorbance in the same environment. We employ these nanosensors to demonstrate the feasibility of pH sensing in vivo through photoacoustic measurements on a rat joint model.

  18. Synthesis and sensor activity of a PET-based 1,8-naphthalimide Probe for Zn(2+) and pH determination.

    PubMed

    Dimov, Stefan M; Georgiev, Nikolai I; Asiri, Abdullah M; Bojinov, Vladimir B

    2014-11-01

    A novel blue-emitting 1,8-naphthalimide fluorophore designed as a molecular PET-based probe for determination of pH and detection of transition metal ions in the environment was successfully synthesized. Novel compound was configured on the "fluorophore-spacer-receptor" format. Due to the tertiary amine receptor the novel system showed "off-on" switching properties under the transition from alkaline to acid media (FE = 3.2) and in the presence of Zn(2+) ions (FE = 2.5). The results obtained illustrate the high potential of the synthesized blue-emitting 1,8-naphthalimide fluorophore as an efficient pH chemosensing material and a selective probe for Zn(2+) ions.

  19. Photosynthetically Driven Cycles Produce Extreme pCO2Variability in a Large Eelgrass Meadow and Readily Measured Proxies Can Be Used to Estimate These Changes

    NASA Astrophysics Data System (ADS)

    Love, B. A.; O'Brien, C.; Bohlmann, H.

    2016-02-01

    Declining ocean pH has spurred research into the effects of marine carbonate chemistry on a variety of organisms, but less work has focused on the potential role of organisms in changing local carbonate chemistry. It has been suggested that photosynthetic activity of macrophytes in coastal areas can decrease pCO2, increase pH, and may provide areas of refuge for organisms sensitive to ocean acidification. To assess the effect of a large eelgrass meadow on water chemistry, discreet samples were collected hourly over several 24 hour cycles in Padilla Bay, Washington. Calculated pCO2 ranged from less than 100 ppm to greater than 700 ppm, often over the course of only a few hours. Aragonite saturation, DIC and pH were also highly variable. In -situ sensors, including a YSI glass electrode, a custom built DuraFET sensor and a SeaFET sensor were co-deployed to provide a high frequency record of water chemistry over several months. These data, (discrete samples and sensors) were used to develop a model that estimates pCO2 for the summer season based on readily measured parameters. Tidal height, photosynthetically active radiation and pH can predict pCO2 reasonably well in this environment. We compare the data from the 3 pH sensors and analyze the quality of data and predictions based on each one. A simple theoretical model shows that the large observed and modeled changes in pCO2 and pH (up to 800 ppm CO2 or 1 pH unit per day) match the magnitude of changes expected based on experimentally derived photosynthetic rates, measured light and water depth and that CO2 fluxes from gas exchange are expected to be small compared to photosynthetic fluxes in this environment. This study illustrates how eelgrass meadows do have the potential to create favorable carbonate chemistry, and demonstrates both the temporally variable nature of that effect and the possibility of better understanding when and how long it occurs through relatively simple modeling of the system.

  20. Signs of adaptation to local pH conditions across an environmental mosaic in the California Current Ecosystem.

    PubMed

    Pespeni, M H; Chan, F; Menge, B A; Palumbi, S R

    2013-11-01

    Little is known about the potential for rapid evolution in natural populations in response to the high rate of contemporary climatic change. Organisms that have evolved in environments that experience high variability across space and time are of particular interest as they may harbor genetic variation that can facilitate evolutionary response to changing conditions. Here we review what is known about genetic capacity for adaptation in the purple sea urchin, Strongylocentrotus purpuratus, a species that has evolved in the upwelling ecosystem of the Northeast Pacific Ocean. We also present new results testing for adaptation to local pH conditions in six populations from Oregon to southern California. We integrate data on 19,493 genetic polymorphisms with data on local pH conditions. We find correlations between allele frequency and rank average time spent at pH <7.8 in 318 single-nucleotide polymorphisms in 275 genes. Two of the genes most correlated with local pH are a protein associated with the cytoskeleton and a proton pump, with functional roles in maintenance of cell volume and with internal regulation of pH, respectively. Across all loci tested, high correlations with local pH were concentrated in genes related to transport of ions, biomineralization, lipid metabolism, and cell-cell adhesion, functional pathways important for maintaining homeostasis at low pH. We identify a set of seven genes as top candidates for rapid evolutionary response to acidification of the ocean. In these genes, the putative low-pH-adapted allele, based on allele frequencies in natural populations, rapidly increases in frequency in purple sea urchin larvae raised at low pH. We also found that populations from localities with high pH show a greater change in allele frequency toward putative low-pH-adapted alleles under experimental acidification, compared with low-pH populations, suggesting that both natural and artificial selection favor the same alleles for response to low pH. These results illustrate that purple sea urchins may be adapted to local pH and suggest that this species may possess the genetic capacity for rapid evolution in response to acidification. This adaptive capacity likely comes from standing genetic variation maintained in nature by balancing selection across the spatial and temporal environmental mosaic that characterizes the California Current Ecosystem.

  1. Developing Scholarly Communities as Learning Environments for Doctoral Students

    ERIC Educational Resources Information Center

    Pyhalto, Kirsi; Stubb, Jenni; Lonka, Kirsti

    2009-01-01

    The quality of PhD training can be conceived of as being dependent on the learning environment provided by the scholarly community. Our paper explores PhD students' ideas about themselves as a part of this community, and their perceptions of their learning environment in the context of the University of Helsinki, Finland. The study is a part of a…

  2. The Structure-Dependent Electric Release and Enhanced Oxidation of Drug in Graphene Oxide-Based Nanocarrier Loaded with Anticancer Herbal Drug Berberine.

    PubMed

    Yu, Danni; Ruan, Pan; Meng, Ziyuan; Zhou, Jianping

    2015-08-01

    The aim of the current investigation is to explore graphene oxide (GO) special electric and electrochemical properties in modulating and tuning drug delivery in tumor special environment of electrophysiology. The electric-sensitive drug release and redox behavior of GO-bearing berberine (Ber) was studied. Drug release in cell potential was applied in a designed electrode system: tumor environment was simulated at pH 6.2 with 0.1 V pulse voltage, whereas the normal was at pH 7.4 with 0.2 V. Quite different from the pH-depended profile, the electricity-triggered behavior indicated a high correlation with the carriers' structure: GO-based nanocomposite showed a burst release on its special "skin effect," whereas the PEGylated ones released slowly owing to the electroviscous effect of polymer. Cyclic voltammetry was used to investigate the redox behaviors of colloid PEGylated GO toward absorbed Ber in pH 5.8 and 7.2 solutions. After drug loading, the oxidation of Ber was enhanced in a neutral environment, whereas the enhancement of PEG-GO was in an acidic one, which means a possible increased susceptibility of their biotransformation in vivo. The studies designed in this work may help to establish a kind of carrier system for the sensitive delivery and metabolic regulation of drugs according to the different electrophysiological environment in tumor therapy. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  3. pH-dependent phytoavailability and speciation of tungsten (W) in soil affecting growth and N nutrition of soy (Glycine max)

    NASA Astrophysics Data System (ADS)

    Oburger, Eva; Vergara Cid, Carolina; Preiner, Julian; Hu, Junjian; Hann, Stephan; Wanek, Wolfgang; Richter, Andreas

    2017-04-01

    Tungsten (W) is an economically important transition metal that finds a broad scope of applications ranging from household appliances to high-end technology goods. However, in the past decades, increasing industrial and military use of W-based products (particularly ammunition, as well as drilling, milling and cutting tools) opened new pathways of W into natural systems and raise the need for a better understanding of the behavior of W in the environment. Soils play an important role in controlling the bioavailability of pollutants and their entry into the food web via plant uptake as they serve as filter and buffer systems. However, compared to other trace metals, knowledge about the fate of W in the plant-soil environment is rather sketchy. The chemical alikeness of W and molybdenum (Mo) suggests not only similar, typical anionic behaviour in soil but also a potential negative effect of W on important plant physiological processes that require Mo. We examined how soil pH dependent solubility and W speciation affected biomass production, W and nutrient uptake by soy (Glycine max cv Primus) and the activity of molybdoenzymes involved in N assimilation (nitrate reductase) and symbiotic N2 fixation (nitrogenase). Increased solubility of mainly monomeric W in high pH soils resulted in increased W plant uptake, demonstrating a greater risk of entry of W into the food web in alkaline soils. Symbiotic nitrogen fixation was able to compensate for reduced nitrate reductase activity until W soil solution concentrations became too phytotoxic, indicating a more efficient detoxification/compartmentalization mechanism in nodules than in soy leaves. The increasing presence of polymeric W species observed in low pH soils spiked with high W concentrations resulted in decreased W uptake but simultaneously had an overall negative effect on nutrient assimilation and plant growth, suggesting a greater phytotoxicity of W polymers. Our results demonstrate the importance of soil pH for the toxicological behaviour of W in the plant-soil environment, which has been completely ignored in the past.

  4. Proteomics Analysis of the Adhesion Activity of Lactobacillus acidophilus ATCC 4356 Upon Growth in an Intestine-Like pH Environment.

    PubMed

    Wu, Zhen; Wang, Gang; Wang, Wenwen; Pan, Daodong; Peng, Liuyang; Lian, Liwei

    2018-03-01

    Many health effects of Lactobacillus acidophilus are desirable among these the adhesion ability is vital to enhance the possibility of colonization and stabilization associated with the gut mucosal barrier. In this study, the growth characteristics and the adhesion activity of L. acidophilus in the intestine-like pH environment (pH 7.5) are identified. The number of bacteria adhering to the HT-29 cells is found with a gradual increase trend (pH 5.5-7.5). This also leads to the morphological changes of L. acidophilus after exposure to different pH environments. Furthermore, with the help of the isobaric tags for relative and absolute quantification (iTRAQ) proteomic analysis, 207 proteins are detected differentially expressed at pH of 7.5. The use of GO analysis and KEGG analysis indicates three essential pathways related to the cell envelope peptide-glycan biosynthesis, carbohydrate metabolism, and amino acid metabolism are obviously changed. Adhesion related surface protein fmtB and PrtP are upregulated in pH 7.5 group. While the moonlight proteins like pyruvate kinase, which binds specifically to the mucin layer and inhibits the adhesive activity of L. acidophilus, is found downregulated. These results could be useful to understand the adhesion mechanism of L. acidophilus adapting for the gut mucosal barrier in the intestinal environment. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Biogeochemical Cycles of Carbon and Sulfur on Early Earth (and on Mars?)

    NASA Technical Reports Server (NTRS)

    DesMarais, D. J.

    2004-01-01

    The physical and chemical interactions between the atmosphere, hydrosphere, geosphere and biosphere can be examined for elements such as carbon (C) and sulfur (S) that have played central roles for both life and the environment. The compounds of C are highly important, not only as organic matter, but also as atmospheric greenhouse gases, pH buffers in seawater, oxidation-reduction buffers virtually everywhere, and key magmatic constituents affecting plutonism and volcanism. S assumes important roles as an oxidation-reduction partner with C and Fe in biological systems, as a key constituent in magmas and volcanic gases, and as a major influence upon pH in certain environments. These multiple roles of C and S interact across a network of elemental reservoirs interconnected by physical, chemical and biological processes. These networks are termed biogeochemical C and S cycles.

  6. The Adsorption of Cd(II) on Manganese Oxide Investigated by Batch and Modeling Techniques

    PubMed Central

    Huang, Xiaoming; Chen, Tianhu; Zou, Xuehua; Zhu, Mulan; Chen, Dong

    2017-01-01

    Manganese (Mn) oxide is a ubiquitous metal oxide in sub-environments. The adsorption of Cd(II) on Mn oxide as function of adsorption time, pH, ionic strength, temperature, and initial Cd(II) concentration was investigated by batch techniques. The adsorption kinetics showed that the adsorption of Cd(II) on Mn oxide can be satisfactorily simulated by pseudo-second-order kinetic model with high correlation coefficients (R2 > 0.999). The adsorption of Cd(II) on Mn oxide significantly decreased with increasing ionic strength at pH < 5.0, whereas Cd(II) adsorption was independent of ionic strength at pH > 6.0, which indicated that outer-sphere and inner-sphere surface complexation dominated the adsorption of Cd(II) on Mn oxide at pH < 5.0 and pH > 6.0, respectively. The maximum adsorption capacity of Mn oxide for Cd(II) calculated from Langmuir model was 104.17 mg/g at pH 6.0 and 298 K. The thermodynamic parameters showed that the adsorption of Cd(II) on Mn oxide was an endothermic and spontaneous process. According to the results of surface complexation modeling, the adsorption of Cd(II) on Mn oxide can be satisfactorily simulated by ion exchange sites (X2Cd) at low pH and inner-sphere surface complexation sites (SOCd+ and (SO)2CdOH− species) at high pH conditions. The finding presented herein plays an important role in understanding the fate and transport of heavy metals at the water–mineral interface. PMID:28956849

  7. Engineering of acidic O/W emulsions with pectin.

    PubMed

    Alba, K; Sagis, L M C; Kontogiorgos, V

    2016-09-01

    Pectins with distinct molecular design were isolated by aqueous extraction at pH 2.0 or 6.0 and were examined in terms of their formation and stabilisation capacity of model n-alkane-in-water emulsions at acidic pH (pH 2.0). The properties and stability of the resulting emulsions were examined by means of droplet size distribution analysis, Lifshitz-Slyozov-Wagner modelling, bulk rheology, interfacial composition analysis, large-amplitude oscillatory surface dilatational rheology, electrokinetic analysis and fluorescence microscopy. Both pectin preparations were able to emulsify alkanes in water but exhibited distinct ageing characteristics. Emulsions prepared using pectin isolated at pH 6.0 were remarkably stable with respect to droplet growth after thirty days of ageing, while those prepared with pectin isolated at pH 2.0 destabilised rapidly. Examination of chemical composition of interfacial layers indicated multi-layered adsorption of pectins at the oil-water interface. The higher long-term stability of emulsions prepared with pectin isolated at high pH is attributed to mechanically stronger interfaces, the highly branched nature and the low hydrodynamic volume of the chains that result in effective steric stabilisation whereas acetyl and methyl contents do not contribute to the long-term stability. The present work shows that it is possible by tailoring the fine structure of pectin to engineer emulsions that operate in acidic environments. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Functionalized Sugarcane Bagasse for U(VI) Adsorption from Acid and Alkaline Conditions.

    PubMed

    Su, Shouzheng; Liu, Qi; Liu, Jingyuan; Zhang, Hongsen; Li, Rumin; Jing, Xiaoyan; Wang, Jun

    2018-01-15

    The highly efficient removal of uranium from mine tailings effluent, radioactive wastewater and enrichment from seawater is of great significance for the development of nuclear industry. In this work, we prepared an efficient U(VI) adsorbent by EDTA modified sugarcane bagasse (MESB) with a simple process. The prepared adsorbent preserves high adsorptive capacity for UO 2 2+ (pH 3.0) and uranyl complexes, such as UO 2 (OH) + , (UO 2 ) 2 (OH) 2 2+ and (UO 2 ) 3 (OH) 5 + (pH 4.0 and pH 5.0) and good repeatability in acidic environment. The maximum adsorption capacity for U(VI) at pH 3.0, 4.0 and 5.0 is 578.0, 925.9 and 1394.1 mg/g and the adsorption capacity loss is only 7% after five cycles. With the pH from 3.0 to 5.0, the inhibitive effects of Na + and K + decreased but increased of Mg 2+ and Ca 2+ . MESB also exhibits good adsorption for [UO 2 (CO 3 ) 3 ] 4- at pH 8.3 from 10 mg/L to 3.3 μg/L. Moreover, MESB could effectively extract U(VI) from simulated seawater in the presence of other metals ions. This work provided a general and efficient uranyl enriched material for nuclear industry.

  9. Hemolysis and cytotoxicity mechanisms of biodegradable magnesium and its alloys.

    PubMed

    Zhen, Zhen; Liu, Xiaoli; Huang, Tao; Xi, TingFei; Zheng, Yufeng

    2015-01-01

    Good hemocompatibility and cell compatibility are essential requirements for coronary stents, especially for biodegradable magnesium alloy stents, which could change the in situ environment after implanted. In this work, the effects of magnesium ion concentration and pH value on the hemolysis and cytotoxicity have been evaluated. Solution with different Mg(2+) concentration gradients and pH values of normal saline and cell culture media DMEM adjusted by MgCl2 and NaOH respectively were tested for the hemolysis and cell viability. Results show that even when the concentration of Mg(2+) reaches 1000 μg/mL, it has little destructive effect on erythrocyte, and the high pH value over 11 caused by the degradation is the real reason for the high hemolysis ratio. Low concentrations of Mg(2+) (<100 μg/mL) cause no cytotoxicity to L929 cells, of which the cell viability is above 80%, while high concentrations of Mg(2+) (>300 μg/mL) could induce obvious death of the L929 cells. The pH of the extract plays a synergetic effect on cytotoxicity, due to the buffer action of the cell culture medium. To validate this conclusion, commercial pure Mg using normal saline and PBS as extract was tested with the measurement of pH and Mg(2+) concentration. Pure Mg leads to a higher hemolysis ratio in normal saline (47.76%) than in buffered solution (4.38%) with different pH values and low concentration of Mg(2+). The Mg extract culture media caused no cytotoxicity, with pH=8.44 and 47.80 μg/mL Mg(2+). It is suggested that buffered solution and dynamic condition should be adopted in the hemolysis evaluation. Copyright © 2014. Published by Elsevier B.V.

  10. Electrode effects on temporal changes in electrolyte pH and redox potential for water treatment

    PubMed Central

    Ciblak, Ali; Mao, Xuhui; Padilla, Ingrid; Vesper, Dorothy; Alshawabkeh, Iyad; Alshawabkeh, Akram N.

    2012-01-01

    The performance of electrochemical remediation methods could be optimized by controlling the physicochemical conditions of the electrochemical redox system. The effects of anode type (reactive or inert), current density and electrolyte composition on the temporal changes in pH and redox potential of the electrolyte were evaluated in divided and mixed electrolytes. Two types of electrodes were used: iron as a reactive electrode and mixed metal oxide coated titanium (MMO) as an inert electrode. Electric currents of 15, 30, 45 and 60 mA (37.5 mA L−1, 75 mA L−1, 112.5 mA L−1 and 150 mA L−1) were applied. Solutions of NaCl, Na2SO4 and NaHCO3 were selected to mimic different wastewater or groundwater composition. Iron anodes resulted in highly reducing electrolyte conditions compared to inert anodes. Electrolyte pH was dependent on electrode type, electrolyte composition and current density. The pH of mixed-electrolyte was stable when MMO electrodes were used. When iron electrodes were used, the pH of electrolyte with relatively low current density (37.5 mA L−1) did not show significant changes but the pH increased sharply for relatively high current density (150 mA L−1). Sulfate solution showed more basic and relatively more reducing electrolyte condition compared to bicarbonate and chloride solution. The study shows that a highly reducing environment could be achieved using iron anodes in divided or mixed electrolytes and the pH and redox potential could be optimized by using appropriate current and polarity reversal. PMID:22416866

  11. Abiotic versus biotic drivers of ocean pH variation under fast sea ice in McMurdo Sound, Antarctica.

    PubMed

    Matson, Paul G; Washburn, Libe; Martz, Todd R; Hofmann, Gretchen E

    2014-01-01

    Ocean acidification is expected to have a major effect on the marine carbonate system over the next century, particularly in high latitude seas. Less appreciated is natural environmental variation within these systems, particularly in terms of pH, and how this natural variation may inform laboratory experiments. In this study, we deployed sensor-equipped moorings at 20 m depths at three locations in McMurdo Sound, comprising deep (bottom depth>200 m: Hut Point Peninsula) and shallow environments (bottom depth ∼25 m: Cape Evans and New Harbor). Our sensors recorded high-frequency variation in pH (Hut Point and Cape Evans only), tide (Cape Evans and New Harbor), and water mass properties (temperature and salinity) during spring and early summer 2011. These collective observations showed that (1) pH differed spatially both in terms of mean pH (Cape Evans: 8.009±0.015; Hut Point: 8.020±0.007) and range of pH (Cape Evans: 0.090; Hut Point: 0.036), and (2) pH was not related to the mixing of two water masses, suggesting that the observed pH variation is likely not driven by this abiotic process. Given the large daily fluctuation in pH at Cape Evans, we developed a simple mechanistic model to explore the potential for biotic processes--in this case algal photosynthesis--to increase pH by fixing carbon from the water column. For this model, we incorporated published photosynthetic parameters for the three dominant algal functional groups found at Cape Evans (benthic fleshy red macroalgae, crustose coralline algae, and sea ice algal communities) to estimate oxygen produced/carbon fixed from the water column underneath fast sea ice and the resulting pH change. These results suggest that biotic processes may be a primary driver of pH variation observed under fast sea ice at Cape Evans and potentially at other shallow sites in McMurdo Sound.

  12. Abiotic versus Biotic Drivers of Ocean pH Variation under Fast Sea Ice in McMurdo Sound, Antarctica

    PubMed Central

    Matson, Paul G.; Washburn, Libe; Martz, Todd R.; Hofmann, Gretchen E.

    2014-01-01

    Ocean acidification is expected to have a major effect on the marine carbonate system over the next century, particularly in high latitude seas. Less appreciated is natural environmental variation within these systems, particularly in terms of pH, and how this natural variation may inform laboratory experiments. In this study, we deployed sensor-equipped moorings at 20 m depths at three locations in McMurdo Sound, comprising deep (bottom depth>200 m: Hut Point Peninsula) and shallow environments (bottom depth ∼25 m: Cape Evans and New Harbor). Our sensors recorded high-frequency variation in pH (Hut Point and Cape Evans only), tide (Cape Evans and New Harbor), and water mass properties (temperature and salinity) during spring and early summer 2011. These collective observations showed that (1) pH differed spatially both in terms of mean pH (Cape Evans: 8.009±0.015; Hut Point: 8.020±0.007) and range of pH (Cape Evans: 0.090; Hut Point: 0.036), and (2) pH was not related to the mixing of two water masses, suggesting that the observed pH variation is likely not driven by this abiotic process. Given the large daily fluctuation in pH at Cape Evans, we developed a simple mechanistic model to explore the potential for biotic processes – in this case algal photosynthesis – to increase pH by fixing carbon from the water column. For this model, we incorporated published photosynthetic parameters for the three dominant algal functional groups found at Cape Evans (benthic fleshy red macroalgae, crustose coralline algae, and sea ice algal communities) to estimate oxygen produced/carbon fixed from the water column underneath fast sea ice and the resulting pH change. These results suggest that biotic processes may be a primary driver of pH variation observed under fast sea ice at Cape Evans and potentially at other shallow sites in McMurdo Sound. PMID:25221950

  13. Resistant starch alters gut microbiome and metabolomics profiles concurrent with amelioration of chronic kidney disease in rats

    USDA-ARS?s Scientific Manuscript database

    Patients and animals with chronic kidney disease (CKD) exhibit profound alterations in the gut environment including shifts in microbial composition, increased fecal pH, and increased blood levels of gut microbe-derived metabolites (xeno-metabolites). The fermentable dietary fiber—high amylose maize...

  14. The Source Book of Marine Sciences.

    ERIC Educational Resources Information Center

    Beakley, John C.; And Others

    Included is a teachers resource collection of 42 marine science activities for high school students. Both the biological and the physical factors of the marine environment are investigated, including the study of tides, local currents, microscope measuring, beaches, turbidity, sea water solids, pH, and salinity, marine bacteriology, microbiology,…

  15. Environmental pH-controlled loading and release of protein on mesoporous hydroxyapatite nanoparticles for bone tissue engineering.

    PubMed

    Zhang, Ning; Gao, Tianlin; Wang, Yu; Wang, Zongliang; Zhang, Peibiao; Liu, Jianguo

    2015-01-01

    To explore the controlled delivery of protein drugs in micro-environment established by osteoblasts or osteoclasts, the loading/release properties of bovine serum albumin (BSA) depending on pH environment were assessed. The adsorption amounts over mesoporous hydroxyapatite (MHA) or hydroxyapatite (HA) decreased as the pH increased, negatively correlating with zeta-potential values. The adsorption behavior over MHA fits well with the Freundlich and Langmuir models at different pHs. The results suggest that the adsorbed amount of protein on MHA or HA depended on the pH of protein solution. MHA adsorbed BSA at basic pH (MHApH 8.4) exhibited a different release kinetics compared with those in acid and neutral environments (MHApH 4.7 and MHApH 7.4), indicating that the release of protein could be regulated by environmental pH at which MHAs adsorb protein. MHApH 8.4 showed a sustained release for 6h before a gradual release when immersing in acidic environment, which is 2h longer than that in neutral environment. This suggests that MHApH 8.4 showed a more sustained release in acidic environment, which can be established by osteoclasts. The variation of adsorption strength between protein and MHA may be responsible for these behaviors. Our findings may be very useful for the development of MHA applications on both bone repair and protein delivery. Copyright © 2014. Published by Elsevier B.V.

  16. Mechanistic study of lead desorption during the leaching process of ion-absorbed rare earths: pH effect and the column experiment

    NASA Astrophysics Data System (ADS)

    Xue, Q.; Tang, J., Sr.; Chen, H.

    2017-12-01

    High concentrations of ammonium sulfate, often used in the in-situ mining process, can result in a decrease of pH in the environment and dissolution of rare earth metals. Ammonium sulfate can also cause desorption of toxic heavy metals, leading to environmental and human health implications. In this study, the desorption behavior and fraction changes of lead in the ion-absorbed rare earth ore were studied using batch desorption experiments and column leaching tests. Results from batch desorption experiments showed that the desorption process of lead included fast and slow stages, and followed an Elovich model well. The desorption rate and the proportion of lead content in the solution to the total lead in the soil were observed to increase with a decrease in the initial pH of the ammonium sulfate solution. The lead in soil included an acid extractable fraction, reducible fraction, oxidizable fraction, and a residual fraction, with the predominant fractions being the reducible and acid extractable fractions. 96% of the extractable fraction in soil were desorbed into solution at pH=3.0, and the content of the reducible fraction was observed to initially increase (when pH>4.0) and then decrease (when pH<4.0) with a decrease in pH. Column leaching tests indicated that the content of lead in the different fractions of soil followed the trend of reducible fraction > oxidizable fraction > acid extractable fraction > residual fraction after the simulating leaching mining process. The change in pH was also found to have a larger influence on the acid extractable and reducible fractions than the other two fractions. The proportion of the extractable fraction being leached was ca. 86%, and the reducible fraction was enriched along the migration direction of the leaching liquid. These results suggest that certain lead fractions may desorb again and contaminate the environment via acid rain, which provides significant information for environmental assessment and remediation after mining process.

  17. pH landscapes in a novel five-species model of early dental biofilm.

    PubMed

    Schlafer, Sebastian; Raarup, Merete K; Meyer, Rikke L; Sutherland, Duncan S; Dige, Irene; Nyengaard, Jens R; Nyvad, Bente

    2011-01-01

    Despite continued preventive efforts, dental caries remains the most common disease of man. Organic acids produced by microorganisms in dental plaque play a crucial role for the development of carious lesions. During early stages of the pathogenetic process, repeated pH drops induce changes in microbial composition and favour the establishment of an increasingly acidogenic and aciduric microflora. The complex structure of dental biofilms, allowing for a multitude of different ecological environments in close proximity, remains largely unexplored. In this study, we designed a laboratory biofilm model that mimics the bacterial community present during early acidogenic stages of the caries process. We then performed a time-resolved microscopic analysis of the extracellular pH landscape at the interface between bacterial biofilm and underlying substrate. Strains of Streptococcus oralis, Streptococcus sanguinis, Streptococcus mitis, Streptococcus downei and Actinomyces naeslundii were employed in the model. Biofilms were grown in flow channels that allowed for direct microscopic analysis of the biofilms in situ. The architecture and composition of the biofilms were analysed using fluorescence in situ hybridization and confocal laser scanning microscopy. Both biofilm structure and composition were highly reproducible and showed similarity to in-vivo-grown dental plaque. We employed the pH-sensitive ratiometric probe C-SNARF-4 to perform real-time microscopic analyses of the biofilm pH in response to salivary solutions containing glucose. Anaerobic glycolysis in the model biofilms created a mildly acidic environment. Decrease in pH in different areas of the biofilms varied, and distinct extracellular pH-microenvironments were conserved over several hours. The designed biofilm model represents a promising tool to determine the effect of potential therapeutic agents on biofilm growth, composition and extracellular pH. Ratiometric pH analysis using C-SNARF-4 gives detailed insight into the pH landscape of living biofilms and contributes to our general understanding of metabolic processes in in-vivo-grown bacterial biofilms.

  18. Applied PhD Research in a Work-Based Environment: An Activity Theory-Based Analysis

    ERIC Educational Resources Information Center

    Granata, S. N.; Dochy, F.

    2016-01-01

    Activity theory is used to compare PhD undertaken at university, that is, academic PhD, with PhD performed in collaboration with industry, that is, semi-industrial PhD. The research is divided into a literature review and a case study. Semi-industrial and academic PhD are modelled as activity systems, and differences are highlighted in terms of…

  19. Biogeochemistry of the sulfur oxidizer Thiomicrospira thermophila

    NASA Astrophysics Data System (ADS)

    Houghton, J.; Fike, D. A.; Wills, E.; Foustoukos, D.

    2013-12-01

    Near-seafloor hydrothermal environments such as diffuse flow venting or subsurface mixing are characterized by rapidly changing conditions and steep chemical and thermal gradients. Microorganisms living in these environments can take advantage of these changes by switching among metabolic pathways rather than specializing. We present reaction stoichiometry and rates for T. thermophila grown in a closed system both at ambient and elevated pressure (50 bars) that demonstrate substantial metabolic flexibility, shifting between up to 5 different sulfur cycling reactions over a 24 hour period. Based on the stoichiometry between S2O3 consumed and SO4 produced, three reactions are sulfur oxidation and two are disproportionation, which has not previously been demonstrated for Thiomicrospira strains. Reactants include S2O3, elemental S (both polymeric S chains and S8 rings), HS-, and O2, while products include polymeric elemental S, SO4, HS-, and polysulfides. The presence of μmolal concentrations of HS- has been confirmed during the time series only when stoichiometry predicts disproportionation. Production of HS- in the presence of elemental S results in abiotic conversion to polysulfides, keeping the sulfide concentrations low in solution. The transition from oxidation to disproportionation appears to be triggered by a depletion in dissolved oxygen and the rate of reaction is a second order function of S2O3 and O2 concentrations. Growth was tested at conditions spanning their pH tolerance (5.0 - 8.0) using a citrate buffer (pH 5.0), unbuffered media (initial pH 7.0), and Tris buffer (pH 8.0). The highest rates are observed at pH 8.0 with rates decreasing as a function of pH. The lowest rate occurs at pH 5.0 and exhibits pseudo-first order behavior over a 24 hour period, likely due to a long lag and very slow growth. Repeat injections after the culture is acclimated to the experimental conditions result in very high pseudo-first order rates due to rapid consumption of all available thiosulfate prior to oxygen depletion. Results from high-pressure closed system experiments (at 50 bars, buffered at pH 5.0) exhibit comparable rates to the corresponding ambient pressure condition. Future work will address the effect of dissolved O2 on sulfur disproportionation using continuous culturing of T. thermophila at deep-sea pressure conditions (>200 bar).

  20. Penguins significantly increased phosphine formation and phosphorus contribution in maritime Antarctic soils.

    PubMed

    Zhu, Renbin; Wang, Qing; Ding, Wei; Wang, Can; Hou, Lijun; Ma, Dawei

    2014-11-14

    Most studies on phosphorus cycle in the natural environment focused on phosphates, with limited data available for the reduced phosphine (PH3). In this paper, matrix-bound phosphine (MBP), gaseous phosphine fluxes and phosphorus fractions in the soils were investigated from a penguin colony, a seal colony and the adjacent animal-lacking tundra and background sites. The MBP levels (mean 200.3 ng kg(-1)) in penguin colony soils were much higher than those in seal colony soils, animal-lacking tundra soils and the background soils. Field PH3 flux observation and laboratory incubation experiments confirmed that penguin colony soils produced much higher PH3 emissions than seal colony soils and animal-lacking tundra soils. Overall high MBP levels and PH3 emissions were modulated by soil biogeochemical processes associated with penguin activities: sufficient supply of the nutrients phosphorus, nitrogen, and organic carbon from penguin guano, high soil bacterial abundance and phosphatase activity. It was proposed that organic or inorganic phosphorus compounds from penguin guano or seal excreta could be reduced to PH3 in the Antarctic soils through the bacterial activity. Our results indicated that penguin activity significantly increased soil phosphine formation and phosphorus contribution, thus played an important role in phosphorus cycle in terrestrial ecosystems of maritime Antarctica.

  1. Penguins significantly increased phosphine formation and phosphorus contribution in maritime Antarctic soils

    PubMed Central

    Zhu, Renbin; Wang, Qing; Ding, Wei; Wang, Can; Hou, Lijun; Ma, Dawei

    2014-01-01

    Most studies on phosphorus cycle in the natural environment focused on phosphates, with limited data available for the reduced phosphine (PH3). In this paper, matrix-bound phosphine (MBP), gaseous phosphine fluxes and phosphorus fractions in the soils were investigated from a penguin colony, a seal colony and the adjacent animal-lacking tundra and background sites. The MBP levels (mean 200.3 ng kg−1) in penguin colony soils were much higher than those in seal colony soils, animal-lacking tundra soils and the background soils. Field PH3 flux observation and laboratory incubation experiments confirmed that penguin colony soils produced much higher PH3 emissions than seal colony soils and animal-lacking tundra soils. Overall high MBP levels and PH3 emissions were modulated by soil biogeochemical processes associated with penguin activities: sufficient supply of the nutrients phosphorus, nitrogen, and organic carbon from penguin guano, high soil bacterial abundance and phosphatase activity. It was proposed that organic or inorganic phosphorus compounds from penguin guano or seal excreta could be reduced to PH3 in the Antarctic soils through the bacterial activity. Our results indicated that penguin activity significantly increased soil phosphine formation and phosphorus contribution, thus played an important role in phosphorus cycle in terrestrial ecosystems of maritime Antarctica. PMID:25394572

  2. Effects of acidifying ocean conditions on growth and survival of two life stages of the blue crab, Callinectes sapidus.

    NASA Astrophysics Data System (ADS)

    Giltz, S.; Taylor, C.

    2016-02-01

    Blue crabs, Callinectes sapidus, begin their larval phase offshore and circulate for approximately 30 days before settling near shore. As crabs transition to the juvenile stage, they move into coastal or estuarine environments characterized by lower salinity. Presently the average pH of the ocean is 8.1, 30% down from the beginning of the industrial revolution and is forecasted to drop to 7.8 by 2100. Decreasing pH causes dissolution of calcium carbonate shells, but the overall effects on crustaceans, such as blue crabs, are unknown. This study investigated the effect of a lower pH environment on the growth, survival, carapace hardness and molt frequency of larval and juvenile blue crabs in the Northern Gulf of Mexico. Larval crabs showed delayed growth under low pH (7.8) conditions compared to crabs in a control (present day) pH (8.1) environment. Population crashes (complete mortality) were experienced in 55% of the low pH aquaria but not in any of the control aquaria, suggesting that acidification poses a mortality risk. Under low pH conditions the intermolt duration decreased in juveniles, but the body length and weight did not differ from crabs raised in the control pH. Larvae (in tanks that did not crash) and juveniles did not experience increased mortality from a lower pH, but there do appear to be sublethal effects on growth and molting that differ between life history stages.

  3. Mapping Microbial Populations Relative to Sites of Ongoing Serpentinization: Results from the Tablelands Ophiolite Complex, Canada

    NASA Astrophysics Data System (ADS)

    Schrenk, M. O.; Brazelton, W. J.; Woodruff, Q.; Szponar, N.; Morrill, P. L.

    2010-12-01

    The aqueous alteration of ultramafic rocks (serpentinization) has been suggested to be a favorable process for the habitability of astrobodies in our solar system including subsurface environments of Mars and Europa. Serpentinization produces copious quantities of hydrogen and small organic molecules, and leads to highly reducing, highly alkaline conditions (up to pH 12) and a lack of dissolved inorganic carbon, which both stimulates and challenges microbial activities. Several environments on Earth provide insight into the relationships between serpentinization and microbial life including slow-spreading mid-ocean ridges, subduction zones, and ophiolite materials emplaced along continental margins. The Tablelands, an ophiolite in western Newfoundland, Canada provides an opportunity to carefully document and map the relationships between geochemical energy, microbial growth, and physiology. Alkaline fluids at the Tablelands originate from 500-million year old oceanic crust and accumulate in shallow pools or seep from beneath serpentinized talus. Fluids, rocks, and gases were collected from the Tablelands during a series of field excursions in 2009 and 2010, and geochemical, microscopic, molecular, and cultivation-based approaches were used to study the serpentinite microbial ecosystem. These samples provide an opportunity to generate a comprehensive map of microbial communities and their activities in space and time. Data indicate that a low but detectable stock of microorganisms inhabit high pH pools associated with end-member serpentinite fluids. Enrichment cultures yielded brightly pigmented colonies related to Alphaproteobacteria, presumably carrying out anoxygenic photosynthesis, and Firmicutes, presumably catalyzing the fermentation of organic matter. Culture-independent analyses of SSU rRNA using T-RFLP indicated low diversity communities of Firmicutes and Archaea in standing alkaline pools, communities of Beta- and Gammaproteobacteria at high pH seeps, and assemblages consisting of diverse taxa at neutral pH background sites. Terrestrial serpentinite-hosted microbial ecosystems with their accessibility, their low phylogenetic diversity, and limited range of energetic resources provide an excellent opportunity to explore the interplay between geochemical energy and life and to elucidate the native serpentinite subsurface biosphere. From the perspective of Mars exploration, studies of serpentinite ecosystems provide the opportunity to pinpoint the organisms and physiological adaptations specifically associated with serpentinization and to directly measure their geochemical impacts. Both of these results will inform modeling and life detection efforts of the Martian subsurface environment.

  4. Probing pH difference between micellar solution and nanoscale water within common black film by fluorescent dye

    NASA Astrophysics Data System (ADS)

    Fu, Jingni; Zhang, Luning

    2018-03-01

    The protonation/deprotonation equilibrium of a fluorescent pH probe (carboxy-seminaphthorhodafluor-1, SNARF-1) within the nanoscale water layer confined in common black films (CBFs) has been studied. We find that SNARF-1 molecules feel a more acidic environment in CBFs than when they are in the bulk micellar solution, using the base/acid peak area ratio of the dye to indicate its microenvironment pH. Three surfactants are used to study the dependence of the pH drop versus charge: cationic (cetyltrimethylammonium bromide, CTAB), anionic (sodium dodecylsulphate, SDS) and nonionic (Triton X-100) species. The decrease of CBFs pH versus the pH of the micellar solution is the following: ΔpH ≈ 1.5 for CTAB (pH: 7.0-9.0), ΔpH ≈ 0.8 for SDS, and ΔpH ≈ 0.4 for Triton X-100. With the addition of electrolyte in CBFs, we observe large decrease the amplitude of the pH anomaly, thus suggesting an electrostatic origin of the pH change at nanoscale environment.

  5. Long-term evolution of highly alkaline steel slag drainage waters.

    PubMed

    Riley, Alex L; Mayes, William M

    2015-07-01

    The disposal of slag generated by the steel industry can have negative consequences upon the surrounding aquatic environment by the generation of high pH waters, leaching of potentially problematic trace metals, and rapid rates of calcite precipitation which smother benthic habitats. A 36-year dataset was collated from the long-term ambient monitoring of physicochemical parameters and elemental concentrations of samples from two steel slag leachate-affected watercourses in northern England. Waters were typified by elevated pH (>10), high alkalinity, and were rich in dissolved metals (e.g. calcium (Ca), aluminium (Al), and zinc (Zn)). Long-term trend analysis was performed upon pH, alkalinity, and Ca concentration which, in addition to Ca flux calculations, were used to highlight the longevity of pollution arising as a result of the dumping and subsequent leaching of steel slags. Declines in calcium and alkalinity have been modest over the monitoring period and not accompanied by significant declines in water pH. If the monotonic trends of decline in alkalinity and calcium continue in the largest of the receiving streams, it will be in the region of 50-80 years before calcite precipitation would be expected to be close to baseline levels, where ecological impacts would be negligible.

  6. Communities that thrive in extreme conditions captured from a freshwater lake.

    PubMed

    Low-Décarie, Etienne; Fussmann, Gregor F; Dumbrell, Alex J; Bell, Graham

    2016-09-01

    Organisms that can grow in extreme conditions would be expected to be confined to extreme environments. However, we were able to capture highly productive communities of algae and bacteria capable of growing in acidic (pH 2), basic (pH 12) and saline (40 ppt) conditions from an ordinary freshwater lake. Microbial communities may thus include taxa that are highly productive in conditions that are far outside the range of conditions experienced in their host ecosystem. The organisms we captured were not obligate extremophiles, but were capable of growing in both extreme and benign conditions. The ability to grow in extreme conditions may thus be a common functional attribute in microbial communities. © 2016 The Author(s).

  7. 40 CFR 401.17 - pH Effluent limitations under continuous monitoring.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 30 2012-07-01 2012-07-01 false pH Effluent limitations under... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS GENERAL PROVISIONS § 401.17 pH Effluent limitations under continuous monitoring. (a) Where a permittee continuously measures the pH of wastewater pursuant to a...

  8. 40 CFR 401.17 - pH Effluent limitations under continuous monitoring.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 30 2013-07-01 2012-07-01 true pH Effluent limitations under... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS GENERAL PROVISIONS § 401.17 pH Effluent limitations under continuous monitoring. (a) Where a permittee continuously measures the pH of wastewater pursuant to a...

  9. 40 CFR 432.3 - General limitation or standard for pH.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false General limitation or standard for pH... standard for pH. Any discharge subject to BPT, BCT, or NSPS limitations or standards in this part must remain within the pH range of 6 to 9. ...

  10. 40 CFR 434.62 - Alternate effluent limitation for pH.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 30 2014-07-01 2014-07-01 false Alternate effluent limitation for pH... SOURCE PERFORMANCE STANDARDS Miscellaneous Provisions § 434.62 Alternate effluent limitation for pH... comply with the otherwise applicable manganese limitations, the permit issuer may allow the pH level in...

  11. 40 CFR 432.3 - General limitation or standard for pH.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 30 2011-07-01 2011-07-01 false General limitation or standard for pH... standard for pH. Any discharge subject to BPT, BCT, or NSPS limitations or standards in this part must remain within the pH range of 6 to 9. ...

  12. 40 CFR 434.62 - Alternate effluent limitation for pH.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 31 2012-07-01 2012-07-01 false Alternate effluent limitation for pH... SOURCE PERFORMANCE STANDARDS Miscellaneous Provisions § 434.62 Alternate effluent limitation for pH... comply with the otherwise applicable manganese limitations, the permit issuer may allow the pH level in...

  13. 40 CFR 434.62 - Alternate effluent limitation for pH.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 31 2013-07-01 2013-07-01 false Alternate effluent limitation for pH... SOURCE PERFORMANCE STANDARDS Miscellaneous Provisions § 434.62 Alternate effluent limitation for pH... comply with the otherwise applicable manganese limitations, the permit issuer may allow the pH level in...

  14. 40 CFR 401.17 - pH Effluent limitations under continuous monitoring.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 29 2014-07-01 2012-07-01 true pH Effluent limitations under... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS GENERAL PROVISIONS § 401.17 pH Effluent limitations under continuous monitoring. (a) Where a permittee continuously measures the pH of wastewater pursuant to a...

  15. 40 CFR 401.17 - pH Effluent limitations under continuous monitoring.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 29 2011-07-01 2009-07-01 true pH Effluent limitations under... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS GENERAL PROVISIONS § 401.17 pH Effluent limitations under continuous monitoring. (a) Where a permittee continuously measures the pH of wastewater pursuant to a...

  16. 40 CFR 401.17 - pH Effluent limitations under continuous monitoring.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 28 2010-07-01 2010-07-01 true pH Effluent limitations under... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS GENERAL PROVISIONS § 401.17 pH Effluent limitations under continuous monitoring. (a) Where a permittee continuously measures the pH of wastewater pursuant to a...

  17. PhD Students' Work Conditions and Study Environment in University- and Industry-Based PhD Programmes

    ERIC Educational Resources Information Center

    Kolmos, A.; Kofoed, L. B.; Du, X. Y.

    2008-01-01

    During the last 10 years, new models of funding and training PhD students have been established in Denmark in order to integrate industry into the entire PhD education. Several programmes have been conducted where it is possible to co-finance PhD scholarships or to become an employee as an industrial PhD in a company. An important question is what…

  18. Immobilization of Chlamydomonas reinhardtii CLH1 on APTES-Coated Magnetic Iron Oxide Nanoparticles and Its Potential in the Production of Chlorophyll Derivatives.

    PubMed

    Yen, Chih-Chung; Chuang, Yao-Chen; Ko, Chia-Yun; Chen, Long-Fang O; Chen, Sheau-Shyang; Lin, Chia-Jung; Chou, Yi-Li; Shaw, Jei-Fu

    2016-07-26

    Recombinant Chlamydomonas reinhardtii chlorophyllase 1 (CrCLH1) that could catalyze chlorophyll hydrolysis to chlorophyllide and phytol in vitro was successfully expressed in Escherichia coli. The recombinant CrCLH1 was immobilized through covalent binding with a cubic (3-aminopropyl) triethoxysilane (APTES) coating on magnetic iron oxide nanoparticles (MIONPs), which led to markedly improved enzyme performance and decreased biocatalyst costs for potential industrial application. The immobilized enzyme exhibited a high immobilization yield (98.99 ± 0.91 mg/g of gel) and a chlorophyllase assay confirmed that the immobilized recombinant CrCLH1 retained enzymatic activity (722.3 ± 50.3 U/g of gel). Biochemical analysis of the immobilized enzyme, compared with the free enzyme, showed higher optimal pH and pH stability for chlorophyll-a hydrolysis in an acidic environment (pH 3-5). In addition, compared with the free enzyme, the immobilized enzyme showed higher activity in chlorophyll-a hydrolysis in a high temperature environment (50-60 °C). Moreover, the immobilized enzyme retained a residual activity of more than 64% of its initial enzyme activity after 14 cycles in a repeated-batch operation. Therefore, APTES-coated MIONP-immobilized recombinant CrCLH1 can be repeatedly used to lower costs and is potentially useful for the industrial production of chlorophyll derivatives.

  19. A study of organic acid production in contrasts between two phosphate solubilizing fungi: Penicillium oxalicum and Aspergillus niger

    NASA Astrophysics Data System (ADS)

    Li, Zhen; Bai, Tongshuo; Dai, Letian; Wang, Fuwei; Tao, Jinjin; Meng, Shiting; Hu, Yunxiao; Wang, Shimei; Hu, Shuijin

    2016-04-01

    Phosphate solubilizing fungi (PSF) have huge potentials in enhancing release of phosphorus from fertilizer. Two PSF (NJDL-03 and NJDL-12) were isolated and identified as Penicillium oxalicum and Aspergillus niger respectively in this study. The quantification and identification of organic acids were performed by HPLC. Total concentrations of organic acids secreted by NJDL-03 and NJDL-12 are ~4000 and ~10,000 mg/L with pH values of 3.6 and 2.4 respectively after five-days culture. Oxalic acid dominates acidity in the medium due to its high concentration and high acidity constant. The two fungi were also cultured for five days with the initial pH values of the medium varied from 6.5 to 1.5. The biomass reached the maximum when the initial pH values are 4.5 for NJDL-03 and 2.5 for NJDL-12. The organic acids for NJDL-12 reach the maximum at the initial pH = 5.5. However, the acids by NJDL-03 continue to decrease and proliferation of the fungus terminates at pH = 2.5. The citric acid production increases significantly for NJDL-12 at acidic environment, whereas formic and oxalic acids decrease sharply for both two fungi. This study shows that NJDL-12 has higher ability in acid production and has stronger adaptability to acidic environment than NJDL-03.

  20. Genomic and exoproteomic analyses of cold- and alkaline-adapted bacteria reveal an abundance of secreted subtilisin-like proteases.

    PubMed

    Lylloff, Jeanette E; Hansen, Lea B S; Jepsen, Morten; Sanggaard, Kristian W; Vester, Jan K; Enghild, Jan J; Sørensen, Søren J; Stougaard, Peter; Glaring, Mikkel A

    2016-03-01

    Proteases active at low temperature or high pH are used in many commercial applications, including the detergent, food and feed industries, and bacteria specifically adapted to these conditions are a potential source of novel proteases. Environments combining these two extremes are very rare, but offer the promise of proteases ideally suited to work at both high pH and low temperature. In this report, bacteria from two cold and alkaline environments, the ikaite columns in Greenland and alkaline ponds in the McMurdo Dry Valley region, Antarctica, were screened for extracellular protease activity. Two isolates, Arsukibacterium ikkense from Greenland and a related strain, Arsukibacterium sp. MJ3, from Antarctica, were further characterized with respect to protease production. Genome sequencing identified a range of potential extracellular proteases including a number of putative secreted subtilisins. An extensive liquid chromatography-tandem mass spectrometry analysis of proteins secreted by A. ikkense identified six subtilisin-like proteases as abundant components of the exoproteome in addition to other peptidases potentially involved in complete degradation of extracellular protein. Screening of Arsukibacterium genome libraries in Escherichia coli identified two orthologous secreted subtilisins active at pH 10 and 20 °C, which were also present in the A. ikkense exoproteome. Recombinant production of both proteases confirmed the observed activity. © 2016 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  1. 40 CFR 420.07 - Effluent limitations guidelines and standards for pH.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 28 2010-07-01 2010-07-01 true Effluent limitations guidelines and standards for pH. 420.07 Section 420.07 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS IRON AND STEEL MANUFACTURING POINT SOURCE CATEGORY General Provisions...

  2. 40 CFR 439.4 - General limitation or standard for pH.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false General limitation or standard for pH. 439.4 Section 439.4 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS PHARMACEUTICAL MANUFACTURING POINT SOURCE CATEGORY General § 439.4 General...

  3. Development of Embryonic Market Squid, Doryteuthis opalescens, under Chronic Exposure to Low Environmental pH and [O2].

    PubMed

    Navarro, Michael O; Kwan, Garfield T; Batalov, Olga; Choi, Chelsea Y; Pierce, N Tessa; Levin, Lisa A

    2016-01-01

    The market squid, Doryteuthis opalescens, is an important forage species for the inshore ecosystems of the California Current System. Due to increased upwelling and expansion of the oxygen minimum zone in the California Current Ecosystem, the inshore environment is expected to experience lower pH and [O2] conditions in the future, potentially impacting the development of seafloor-attached encapsulated embryos. To understand the consequences of this co-occurring environmental pH and [O2] stress for D. opalescens encapsulated embryos, we performed two laboratory experiments. In Experiment 1, embryo capsules were chronically exposed to a treatment of higher (normal) pH (7.93) and [O2] (242 μM) or a treatment of low pH (7.57) and [O2] (80 μM), characteristic of upwelling events and/or La Niña conditions. The low pH and low [O2] treatment extended embryo development duration by 5-7 days; embryos remained at less developed stages more often and had 54.7% smaller statolith area at a given embryo size. Importantly, the embryos that did develop to mature embryonic stages grew to sizes that were similar (non-distinct) to those exposed to the high pH and high [O2] treatment. In Experiment 2, we exposed encapsulated embryos to a single stressor, low pH (7.56) or low [O2] (85 μM), to understand the importance of environmental pH and [O2] rising and falling together for squid embryogenesis. Embryos in the low pH only treatment had smaller yolk reserves and bigger statoliths compared to those in low [O2] only treatment. These results suggest that D. opalescens developmental duration and statolith size are impacted by exposure to environmental [O2] and pH (pCO2) and provide insight into embryo resilience to these effects.

  4. Development of Embryonic Market Squid, Doryteuthis opalescens, under Chronic Exposure to Low Environmental pH and [O2

    PubMed Central

    Navarro, Michael O.; Kwan, Garfield T.; Batalov, Olga; Choi, Chelsea Y.; Pierce, N. Tessa; Levin, Lisa A.

    2016-01-01

    The market squid, Doryteuthis opalescens, is an important forage species for the inshore ecosystems of the California Current System. Due to increased upwelling and expansion of the oxygen minimum zone in the California Current Ecosystem, the inshore environment is expected to experience lower pH and [O2] conditions in the future, potentially impacting the development of seafloor-attached encapsulated embryos. To understand the consequences of this co-occurring environmental pH and [O2] stress for D. opalescens encapsulated embryos, we performed two laboratory experiments. In Experiment 1, embryo capsules were chronically exposed to a treatment of higher (normal) pH (7.93) and [O2] (242 μM) or a treatment of low pH (7.57) and [O2] (80 μM), characteristic of upwelling events and/or La Niña conditions. The low pH and low [O2] treatment extended embryo development duration by 5–7 days; embryos remained at less developed stages more often and had 54.7% smaller statolith area at a given embryo size. Importantly, the embryos that did develop to mature embryonic stages grew to sizes that were similar (non-distinct) to those exposed to the high pH and high [O2] treatment. In Experiment 2, we exposed encapsulated embryos to a single stressor, low pH (7.56) or low [O2] (85 μM), to understand the importance of environmental pH and [O2] rising and falling together for squid embryogenesis. Embryos in the low pH only treatment had smaller yolk reserves and bigger statoliths compared to those in low [O2] only treatment. These results suggest that D. opalescens developmental duration and statolith size are impacted by exposure to environmental [O2] and pH (pCO2) and provide insight into embryo resilience to these effects. PMID:27936085

  5. Insights into Interfacial Changes and Photoelectrochemical Stability of In(x)Ga(1-x)N (0001) Photoanode Surfaces in Liquid Environments.

    PubMed

    Caccamo, Lorenzo; Cocco, Giulio; Martín, Gemma; Zhou, Hao; Fundling, Sönke; Gad, Alaaeldin; Mohajerani, Matin Sadat; Abdelfatah, Mahmoud; Estradé, Sonia; Peiró, Francesca; Dziony, Wanja; Bremers, Heiko; Hangleiter, Andreas; Mayrhofer, Leonhard; Lilienkamp, Gerhard; Moseler, Michael; Daum, Winfried; Waag, Andreas

    2016-03-01

    The long-term stability of InGaN photoanodes in liquid environments is an essential requirement for their use in photoelectrochemistry. In this paper, we investigate the relationships between the compositional changes at the surface of n-type In(x)Ga(1-x)N (x ∼ 0.10) and its photoelectrochemical stability in phosphate buffer solutions with pH 7.4 and 11.3. Surface analyses reveal that InGaN undergoes oxidation under photoelectrochemical operation conditions (i.e., under solar light illumination and constant bias of 0.5 VRHE), forming a thin amorphous oxide layer having a pH-dependent chemical composition. We found that the formed oxide is mainly composed of Ga-O bonds at pH 7.4, whereas at pH 11.3 the In-O bonds are dominant. The photoelectrical properties of InGaN photoanodes are intimately related to the chemical composition of their surface oxides. For instance, after the formation of the oxide layer (mainly Ga-O bonds) at pH 7.4, no photocurrent flow was observed, whereas the oxide layer (mainly In-O bonds) at pH 11.3 contributes to enhance the photocurrent, possibly because of its reported high photocatalytic activity. Once a critical oxide thickness was reached, especially at pH 7.4, no significant changes in the photoelectrical properties were observed for the rest of the test duration. This study provides new insights into the oxidation processes occurring at the InGaN/liquid interface, which can be exploited to improve InGaN stability and enhance photoanode performance for biosensing and water-splitting applications.

  6. In situ spectroscopic evidence for neptunium(V)-carbonate inner-sphere and outer-sphere ternary surface complexes on hematite surfaces.

    PubMed

    Arai, Yuji; Moran, P B; Honeyman, B D; Davis, J A

    2007-06-01

    Np(V) surface speciation on hematite surfaces at pH 7-9 under pC2 = 10(-3.45) atm was investigated using X-ray absorption spectroscopy (XAS). In situ XAS analyses suggest that bis-carbonato inner-sphere and tris-carbonato outer-sphere ternary surface species coexist at the hematite-water interface at pH 7-8.8, and the fraction of outer-sphere species gradually increases from 27 to 54% with increasing pH from 7 to 8.8. The results suggest that the heretofore unknown Np(V)-carbonato ternary surface species may be important in predicting the fate and transport of Np(V) in the subsurface environment down gradient of high-level nuclear waste respositories.

  7. Precipitation of CaCO3 due to the Uptake of CO2 in Aqueous Solutions - Mechanisms and Rates

    NASA Astrophysics Data System (ADS)

    Dietzel, M.; Purgstaller, B.; Rinder, T.; Niedermayr, A.

    2012-12-01

    In natural and man-made environments the exchange of CO2 between aqueous solutions and the atmosphere frequently induces precipitation of CaCO3 polymorphs. Liberation of gaseous CO2 is well known to induce carbonate formation and extensively studied. In contrast significant gaps of knowledge exist with respect to the combined CO2 uptake and CaCO3 formation, although it is known to be highly valid for many natural and man-made surroundings causing e.g. travertine and scaling in analogy to CO2 liberation. Recently CO2 uptake is also discussed for biomineralization issues and debated for CO2 sequestration by using alkaline residue materials. In the present study CO2 uptake and CaCO3 precipitation mechanisms and rates were experimentally studied by diffusion of CO2 through a polyethylene membrane from an inner to an outer solution containing carbonic acid and CaCl2 (10 mM), respectively. The pH of the outer solution was kept constant between 8.3 and 11.5 by pH stat. technique (25°C). At a critical Ion Activity Product (IAP) CaCO3 is formed in the outer solution. The NaOH titration curve and Ca2+ concentrations reflect CO2 uptake and CaCO3 precipitation rates. To discover the impact of a drift in pH due to CO2 uptake on CaCO3 precipitation hydrogeochemical modeling was applied. XRD, (micro)Raman pattern and SEM imaging reveal the formation of calcite and vaterite at pH 8.3 and 9, whereas at pH > 10 vaterite is additionally formed. However at a given pH the formation of individual CaCO3 polymorphs strongly depends on the CO2 uptake rate (adjusted by membrane thickness), which controls carbonate accumulation in the solution. At elevated pH of the outer solution the uptake rate of CO2 is significantly higher and less time for nucleation of CaCO3 is required compared to lower pH. Surprisingly at the total experimental time of ≈ 20 h the amount of precipitated CaCO3 is similar for all experiments. This can be explained by significant higher CaCO3 precipitation rates at low versus high pH if once a critical IAP is reached. If a drift in pH is permitted the internal Pco2 value can be used as a reliable proxy to evaluate whether uptake of CO2 results in an increase or decrease of IAP with a threshold value of 10-6.15 atm at 25°C (pH ≈ 11). The obtained relationships for CaCO3 formation through CO2 uptake are discussed for selected alkaline environments.

  8. Effects of inclusion levels of banana (Musa spp.) peelings on feed degradability and rumen environment of cattle fed basal elephant grass.

    PubMed

    Nambi-Kasozi, Justine; Sabiiti, Elly Nyambobo; Bareeba, Felix Budara; Sporndly, Eva; Kabi, Fred

    2016-04-01

    The effect of feeding varying banana peeling (BP) levels on rumen environment and feed degradation characteristics was evaluated using three rumen fistulated steers in four treatments. The steers were fed BP at 0, 20, 40, and 60% levels of the daily ration with basal elephant grass (EG) to constitute four diets. Maize bran, cotton seed cake, and Gliricidia sepium were offered to make the diets iso-nitrogenous. The nylon bag technique was used to measure BP and EG dry matter (DM), crude protein (CP), and neutral detergent fiber (NDF) degradabilities at 0, 6, 12, 24, 48, 72, 96, and 120 h. Rumen fluid samples were collected to determine pH and volatile fatty acid (VFA) concentrations. Effective DM, CP, and NDF degradabilities of BP ranged between 574 and 807, 629-802, and 527-689 g/kg, respectively, being lower at higher BP levels. Elephant grass degradability behaved similarly with relatively high effective CP degradability (548-569 g/kg) but low effective DM and NDF degradability (381-403 and 336-373 g/kg, respectively). Rumen pH and VFA reduced with increasing BP in the diets. Rumen pH dropped to 5.8 and 5.9 at the 40 and 60% BP feeding levels, respectively. Banana peelings were better degraded than EG but higher BP levels negatively affected feed degradability and rumen environment.

  9. Diatom community and palaeoenvironmental properties of Karacaören diatomite deposits (Nevşehir, Central Anatolia, Turkey)

    NASA Astrophysics Data System (ADS)

    Yıldız, Ayşegül; Gürel, Ali; Dursun, Yusuf Gökhan

    2017-10-01

    The diatom community and palaeoenvironmental properties of volcano genetic diatomite deposits that outcrop in the Karacaören (Nevşehir) area are described. Two stratigraphic sections were measured in the study area. One of these sections was measured in Quaternary lake units (K1), and the other in lacustrine sediments of the late Miocene-Pliocene Ürgüp Formation's Bayramhacılı Member (K2). According to stratigraphic and chemical characteristics of the sections, two distinct paleogeographic domains were determined in the study area. One of these, the shallow lacustrine to fluvial area (Quaternary) which is represented by an alternating sequence of diatomite, silt/mud, and tuffite. The other was the deeper lacustrine stage (late Miocene) which is represented by diatomites with some interbedded mud facies, chert and volcanics. From the diatomite samples of these sections, twenty-five species of 10 different diatom genera were identified. When evaluated together, the ecological properties and the distribution of numerical values of the determined diatom genera and species, showed that the study area's diatomite was generally deposited in shallow, high temperature, nutrient-rich water, where nitrogen and phosphorus were abundant and which was an alkaline (pH > 7) freshwater lake environment. Over time the pH value of the environment decreased (pH < 7), and the environment became acidic.

  10. Fabrication of a Porous Fiber Cladding Material Using Microsphere Templating for Improved Response Time with Fiber Optic Sensor Arrays

    PubMed Central

    Henning, Paul E.; Rigo, M. Veronica; Geissinger, Peter

    2012-01-01

    A highly porous optical-fiber cladding was developed for evanescent-wave fiber sensors, which contains sensor molecules, maintains guiding conditions in the optical fiber, and is suitable for sensing in aqueous environments. To make the cladding material (a poly(ethylene) glycol diacrylate (PEGDA) polymer) highly porous, a microsphere templating strategy was employed. The resulting pore network increases transport of the target analyte to the sensor molecules located in the cladding, which improves the sensor response time. This was demonstrated using fluorescein-based pH sensor molecules, which were covalently attached to the cladding material. Scanning electron microscopy was used to examine the structure of the templated polymer and the large network of interconnected pores. Fluorescence measurements showed a tenfold improvement in the response time for the templated polymer and a reliable pH response over a pH range of five to nine with an estimated accuracy of 0.08 pH units. PMID:22654644

  11. Prospects for Fungal Bioremediation of Acidic Radioactive Waste Sites: Characterization and Genome Sequence of Rhodotorula taiwanensis MD1149.

    PubMed

    Tkavc, Rok; Matrosova, Vera Y; Grichenko, Olga E; Gostinčar, Cene; Volpe, Robert P; Klimenkova, Polina; Gaidamakova, Elena K; Zhou, Carol E; Stewart, Benjamin J; Lyman, Mathew G; Malfatti, Stephanie A; Rubinfeld, Bonnee; Courtot, Melanie; Singh, Jatinder; Dalgard, Clifton L; Hamilton, Theron; Frey, Kenneth G; Gunde-Cimerman, Nina; Dugan, Lawrence; Daly, Michael J

    2017-01-01

    Highly concentrated radionuclide waste produced during the Cold War era is stored at US Department of Energy (DOE) production sites. This radioactive waste was often highly acidic and mixed with heavy metals, and has been leaking into the environment since the 1950s. Because of the danger and expense of cleanup of such radioactive sites by physicochemical processes, in situ bioremediation methods are being developed for cleanup of contaminated ground and groundwater. To date, the most developed microbial treatment proposed for high-level radioactive sites employs the radiation-resistant bacterium Deinococcus radiodurans . However, the use of Deinococcus spp. and other bacteria is limited by their sensitivity to low pH. We report the characterization of 27 diverse environmental yeasts for their resistance to ionizing radiation (chronic and acute), heavy metals, pH minima, temperature maxima and optima, and their ability to form biofilms. Remarkably, many yeasts are extremely resistant to ionizing radiation and heavy metals. They also excrete carboxylic acids and are exceptionally tolerant to low pH. A special focus is placed on Rhodotorula taiwanensis MD1149, which was the most resistant to acid and gamma radiation. MD1149 is capable of growing under 66 Gy/h at pH 2.3 and in the presence of high concentrations of mercury and chromium compounds, and forming biofilms under high-level chronic radiation and low pH. We present the whole genome sequence and annotation of R. taiwanensis strain MD1149, with a comparison to other Rhodotorula species. This survey elevates yeasts to the frontier of biology's most radiation-resistant representatives, presenting a strong rationale for a role of fungi in bioremediation of acidic radioactive waste sites.

  12. Prospects for Fungal Bioremediation of Acidic Radioactive Waste Sites: Characterization and Genome Sequence of Rhodotorula taiwanensis MD1149

    PubMed Central

    Tkavc, Rok; Matrosova, Vera Y.; Grichenko, Olga E.; Gostinčar, Cene; Volpe, Robert P.; Klimenkova, Polina; Gaidamakova, Elena K.; Zhou, Carol E.; Stewart, Benjamin J.; Lyman, Mathew G.; Malfatti, Stephanie A.; Rubinfeld, Bonnee; Courtot, Melanie; Singh, Jatinder; Dalgard, Clifton L.; Hamilton, Theron; Frey, Kenneth G.; Gunde-Cimerman, Nina; Dugan, Lawrence; Daly, Michael J.

    2018-01-01

    Highly concentrated radionuclide waste produced during the Cold War era is stored at US Department of Energy (DOE) production sites. This radioactive waste was often highly acidic and mixed with heavy metals, and has been leaking into the environment since the 1950s. Because of the danger and expense of cleanup of such radioactive sites by physicochemical processes, in situ bioremediation methods are being developed for cleanup of contaminated ground and groundwater. To date, the most developed microbial treatment proposed for high-level radioactive sites employs the radiation-resistant bacterium Deinococcus radiodurans. However, the use of Deinococcus spp. and other bacteria is limited by their sensitivity to low pH. We report the characterization of 27 diverse environmental yeasts for their resistance to ionizing radiation (chronic and acute), heavy metals, pH minima, temperature maxima and optima, and their ability to form biofilms. Remarkably, many yeasts are extremely resistant to ionizing radiation and heavy metals. They also excrete carboxylic acids and are exceptionally tolerant to low pH. A special focus is placed on Rhodotorula taiwanensis MD1149, which was the most resistant to acid and gamma radiation. MD1149 is capable of growing under 66 Gy/h at pH 2.3 and in the presence of high concentrations of mercury and chromium compounds, and forming biofilms under high-level chronic radiation and low pH. We present the whole genome sequence and annotation of R. taiwanensis strain MD1149, with a comparison to other Rhodotorula species. This survey elevates yeasts to the frontier of biology's most radiation-resistant representatives, presenting a strong rationale for a role of fungi in bioremediation of acidic radioactive waste sites. PMID:29375494

  13. Long period grating-based fiber-optic PH sensor for ocean monitoring

    NASA Astrophysics Data System (ADS)

    Wang, Ke; Klimov, Denis; Kolber, Zbigniew

    2007-09-01

    A fiber-optic PH sensor is developed based-on the long period grating (LPG). The LPG is fabricated by using CO II laser with a point-by-point technique. Then the grating portion is coated with PH sensitive hydrogel. The hydrogel, made of PVA/PAA, swells its volume in response to the PH change in the surrounding environment and results in a change in the refractive index. As a result, the LPG can response to the refractive index change in the coating by shifting its wavelength. Therefore, change in refractive index can be measured by tracking the wavelength shift using an optical spectrum analyzer (OSA). In this research, the LPG is dip-coated by the hydrogel. A chemostat is designed to simulate the marine environment. The PH in the chemostat is varied by controlling the CO II concentration in the sea water. A PH resolution 0.046/nm using the OSA has been obtained. This sensor is designed to monitor the sea water PH change in a long term basis.

  14. Postdoctoral Fellow | Center for Cancer Research

    Cancer.gov

    A post-doctoral fellowship is currently available for productive, highly-motivated, and energetic individuals in the Inflammation and Tumorigenesis Section of Dr. Yinling Hu at the NCI-Frederick campus.  A dynamic research environment and outstanding resources are available for enthusiastic individuals.  Requirements include a Ph.D., M.D., or equivalent degree and experience

  15. Sulfadimethoxine and sulfaguanidine: their sorption potential on natural soils.

    PubMed

    Białk-Bielińska, Anna; Maszkowska, Joanna; Mrozik, Wojciech; Bielawska, Agata; Kołodziejska, Marta; Palavinskas, Richard; Stepnowski, Piotr; Kumirska, Jolanta

    2012-03-01

    Sulfonamides (SAs) are one of the oldest groups of veterinary chemotherapeutic agents. As these compounds are not completely metabolized in animals, a high proportion of the native form is excreted in feces and urine. They are therefore released either directly to the environment in aquacultures and by grazing animals, or indirectly during the application of manure or slurry. Once released into the environment, SAs become distributed among various environmental compartments and may be transported to surface or ground waters. The physicochemical properties of SAs, dosage and nature of the matrix are the factors mainly responsible for their distribution in the natural environment. Although these rather polar compounds have been in use for over half a century, knowledge of their fate and behavior in soil ecosystems is still limited. Therefore, in this work we have determined the sorption potential of sulfadimethoxine and sulfaguanidine on various natural soils. The influence on sorption of external factors, such as ionic strength and pH, were also determined. The sorption coefficients (K(d)) obtained for the sulfonamides investigated were quite low (from 0.20 to 381.17 mL g(-1) for sulfadimethoxine and from 0.39 to 35.09 mL g(-1) for sulfaguanidine), which indicated that these substances are highly mobile and have the potential to run off into surface waters and/or infiltrate ground water. Moreover, the sorption of these pharmaceuticals was found to be influenced by OC, soil solution pH and ionic strength, with higher K(d) values for soils of higher OC and lower K(d) values with increasing pH and ionic strength. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Effects of natural current pH variability on the sea urchin Paracentrotus lividus larvae development and settlement.

    PubMed

    García, Eliseba; Clemente, Sabrina; Hernández, José Carlos

    2018-08-01

    One of the most important environmental factors controlling the distribution, physiology, morphology and behaviour of marine invertebrates is ocean pH. In the last decade, the effects of decreasing ocean pH as a result of climate change processes (i.e. ocean acidification) on marine organisms have been target of much research. However, the effects of natural pH variability in the species' niche have been largely neglected. Marine coastal habitats are characterized by a high environmental variability and, in some cases, organisms are already coping with pH values predicted by the end of the century. It is thought that because of adaptation or acclimation to natural environmental variability, intertidal species may have some resilience to future changes. In this study, we explored the sensitivities of the sea urchin Paracentrotus lividus during its larvae development and settlement undergoing two different daily pH frequencies (12 h fluctuation from 7.7 to 8.1 units of pH, and constant pH treatment of 8.1 units of pH) that have been currently recorded in the sampling region (Canary Islands). Results showed that, despite larvae development was slightly enhanced by moderated fluctuating pH regimes, P. lividus larva was able to develop normally in both, fluctuating and constant, pH environments. Results of the settlement experiment showed very clear patterns since postlarvae settlement was only successful when a covering of algae was added, regardless of the pH fluctuation applied. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. The Role of Tetraether Lipid Composition in the Adaptation of Thermophilic Archaea to Acidity

    PubMed Central

    Boyd, Eric S.; Hamilton, Trinity L.; Wang, Jinxiang; He, Liu; Zhang, Chuanlun L.

    2013-01-01

    Diether and tetraether lipids are fundamental components of the archaeal cell membrane. Archaea adjust the degree of tetraether lipid cyclization in order to maintain functional membranes and cellular homeostasis when confronted with pH and/or thermal stress. Thus, the ability to adjust tetraether lipid composition likely represents a critical phenotypic trait that enabled archaeal diversification into environments characterized by extremes in pH and/or temperature. Here we assess the relationship between geochemical variation, core- and polar-isoprenoid glycerol dibiphytanyl glycerol tetraether (C-iGDGT and P-iGDGT, respectively) lipid composition, and archaeal 16S rRNA gene diversity and abundance in 27 geothermal springs in Yellowstone National Park, Wyoming. The composition and abundance of C-iGDGT and P-iGDGT lipids recovered from geothermal ecosystems were distinct from surrounding soils, indicating that they are synthesized endogenously. With the exception of GDGT-0 (no cyclopentyl rings), the abundances of individual C-iGDGT and P-iGDGT lipids were significantly correlated. The abundance of a number of individual tetraether lipids varied positively with the relative abundance of individual 16S rRNA gene sequences, most notably crenarchaeol in both the core and polar GDGT fraction and sequences closely affiliated with Candidatus Nitrosocaldus yellowstonii. This finding supports the proposal that crenarchaeol is a biomarker for nitrifying archaea. Variation in the degree of cyclization of C- and P-iGDGT lipids recovered from geothermal mats and sediments could best be explained by variation in spring pH, with lipids from acidic environments tending to have, on average, more internal cyclic rings than those from higher pH ecosystems. Likewise, variation in the phylogenetic composition of archaeal 16S rRNA genes could best be explained by spring pH. In turn, the phylogenetic similarity of archaeal 16S rRNA genes was significantly correlated with the similarity in the composition of C- and P-iGDGT lipids. Taken together, these data suggest that the ability to adjust the composition of GDGT lipid membranes played a central role in the diversification of archaea into or out of environments characterized by extremes of low pH and high temperature. PMID:23565112

  18. Anions adsorption onto nanoparticles: effects on colloid stability and mobility in the environment

    NASA Astrophysics Data System (ADS)

    Missana, Tiziana; Benedicto, Ana; Mayordomo, Natalia; Alonso, Ursula

    2013-04-01

    Nanoparticles and colloids can enhance the contaminant transport in groundwater, if the contaminant is irreversibly adsorbed onto their surface; additionally colloids must be stable and mobile under the chemical conditions of the environment of interest. Colloid stability and mobility are factors directly related to the chemistry of the water, which determines the charge and size of the particles, but these colloidal properties can also be affected by the contaminant adsorption. This last point, which is potentially very relevant on the overall colloid-driven transport, is scarcely investigated. The evaluation of the stability of a colloidal system is generally carried out by measuring the aggregation kinetic after the change of a specific chemical condition, mainly pH or ionic strength of the aqueous solution. The effect of anion adsorption onto the stability of colloidal systems is mostly neglected. Parameters of the nanoparticles,as the point of zero charge (pH PCZ) or the isoelectric point (pH IEP) are determined with "inert" electrolytes and this might not be representative of their real behavior in natural systems. In this work, the effects of the Se(IV) (selenite) adsorption on alumina (Al2O3) nanoparticles have been analyzed. Selenite adsorption was studied in a wide range of pH (2-12) and ionic strengths (0.0005 - 0.1 M in NaClO4) and the effect of the adsorption on the main properties of the colloids (size and charge) were analyzed. Se adsorption on Al2O3 is almost independent of the ionic strength and decreases with increasing pH; sorption data were successfully fit by surface complexation modeling. Selenite adsorption (at medium-high surface occupancies) clearly affected the stability of Al2O3 colloids, with a clear shift of the isoelectric point towards more acid pH and enhancing colloid aggregation when the ionic strength increases. Considering the obtained results, the effect of anions in the chemical composition of natural water, frequently not accounted for in stability studies, will be discussed, as well as their implications on possible colloid-driven selenite transport in the environment.

  19. Interaction of melanin with proteins--the importance of an acidic intramelanosomal pH.

    PubMed

    Mani, I; Sharma, V; Tamboli, I; Raman, G

    2001-06-01

    Melanin is a highly irregular heteropolymer consisting of monomeric units derived from the enzymatic oxidation of the amino acid tyrosine. The process of melanin formation takes place in specialized acidic organelles (melanosomes) in melanocytes. The process of melanin polymerization requires an alkaline pH in vitro, and therefore, the purpose of an acidic environment in vivo remains a mystery. It is known that melanin is always bound to protein in vivo. It is also seen that polymerization in vitro at an acidic pH necessarily requires the presence of proteins. The effect of various model proteins on melanin synthesis and their interaction with melanin was studied. It was seen that many proteins could increase melanin synthesis at an acidic pH, and that different proteins resulted in the formation of different states of melanin, i.e., a precipitate or a soluble, protein-bound form. We also present evidence to show that soluble protein-bound melanin is present in vivo (in B16 cells as well as in B16 melanoma tissue). An acidic pH appeared to be necessary to ensure the formation of a uniform, very high molecular weight melano-protein complex. The interaction between melanin and proteins appears to be largely charge-dependent as evidenced by zeta potential measurements, and this interaction is also increased in an acidic pH. Thus, it appears that an acidic intramelanosomal pH is essential to ensure maximum interaction between protein and melanin, and also to ensure that all the melanin formed is protein-bound.

  20. Targeting diseased tissues by pHLIP insertion at low cell surface pH.

    PubMed

    Andreev, Oleg A; Engelman, Donald M; Reshetnyak, Yana K

    2014-01-01

    The discovery of the pH Low Insertion Peptides (pHLIPs®) provides an opportunity to develop imaging and drug delivery agents targeting extracellular acidity. Extracellular acidity is associated with many pathological states, such as those in cancer, ischemic stroke, neurotrauma, infection, lacerations, and others. The metabolism of cells in injured or diseased tissues often results in the acidification of the extracellular environment, so acidosis might be useful as a general marker for the imaging and treatment of diseased states if an effective targeting method can be developed. The molecular mechanism of a pHLIP peptide is based on pH-dependent membrane-associated folding. pHLIPs, being moderately hydrophobic peptides, have high affinities for cellular membranes at normal pH, but fold and insert across membranes at low pH, allowing them to sense pH at the surfaces of cells in diseased tissues, where it is the lowest. Here we discuss the main principles of pHLIP interactions with membrane lipid bilayers at neutral and low pHs, the possibility of tuning the folding and insertion pH by peptide sequence variation, and potential applications of pHLIPs for imaging, therapy and image-guided interventions.

  1. Cell Membrane Fatty Acid Composition of Chryseobacterium frigidisoli PB4T, Isolated from Antarctic Glacier Forefield Soils, in Response to Changing Temperature and pH Conditions

    PubMed Central

    Bajerski, Felizitas; Wagner, Dirk; Mangelsdorf, Kai

    2017-01-01

    Microorganisms in Antarctic glacier forefields are directly exposed to the hostile environment of their habitat characterized by extremely low temperatures and changing geochemical conditions. To survive under those stress conditions microorganisms adapt, among others, their cell membrane fatty acid inventory. However, only little is known about the adaptation potential of microorganisms from Antarctic soil environments. In this study, we examined the adaptation of the cell membrane polar lipid fatty acid inventory of Chryseobacterium frigidisoli PB4T in response to changing temperature (0°C to 20°C) and pH (5.5 to 8.5) regimes, because this new strain isolated from an Antarctic glacier forefield showed specific adaptation mechanisms during its detailed physiological characterization. Flavobacteriaceae including Chryseobacterium species occur frequently in extreme habitats such as ice-free oases in Antarctica. C. frigidisoli shows a complex restructuring of membrane derived fatty acids in response to different stress levels. Thus, from 20°C to 10°C a change from less iso-C15:0 to more iso-C17:1ω7 is observed. Below 10°C temperature adaptation is regulated by a constant increase of anteiso-FAs and decrease of iso-FAs. An anteiso- and bis-unsaturated fatty acid, anteiso-heptadeca-9,13-dienoic acid, shows a continuous increase with decreasing cultivation temperatures underlining the particular importance of this fatty acid for temperature adaptation in C. frigidisoli. Concerning adaptation to changing pH conditions, most of the dominant fatty acids reveal constant relative proportions around neutral pH (pH 6–8). Strong variations are mainly observed at the pH extremes (pH 5.5 and 8.5). At high pH short chain saturated iso- and anteiso-FAs increase while longer chain unsaturated iso- and anteiso-FAs decrease. At low pH the opposite trend is observed. The study shows a complex interplay of different membrane components and provides, therefore, deep insights into adaptation strategies of microorganisms from extreme habitats to changing environmental conditions. PMID:28469614

  2. Protein-silver nanoparticle interactions to colloidal stability in acidic environments.

    PubMed

    Tai, Jui-Ting; Lai, Chao-Shun; Ho, Hsin-Chia; Yeh, Yu-Shan; Wang, Hsiao-Fang; Ho, Rong-Ming; Tsai, De-Hao

    2014-11-04

    We report a kinetic study of Ag nanoparticles (AgNPs) under acidic environments (i.e., pH 2.3 to pH ≈7) and systematically investigate the impact of protein interactions [i.e., bovine serum albumin (BSA) as representative] to the colloidal stability of AgNPs. Electrospray-differential mobility analysis (ES-DMA) was used to characterize the particle size distributions and the number concentrations of AgNPs. Transmission electron microscopy was employed orthogonally to provide visualization of AgNPs. For unconjugated AgNPs, the extent of aggregation, or the average particle size, was shown to be increased significantly with an increase of acidity, where a partial coalescence was found between the primary particles of unconjugated AgNP clusters. Aggregation rate constant, kD, was also shown to be proportional to acidity, following a correlation of log(kD) = -1.627(pH)-9.3715. Using ES-DMA, we observe BSA had a strong binding affinity (equilibrium binding constant, ≈ 1.1 × 10(6) L/mol) to the surface of AgNPs, with an estimated maximum molecular surface density of ≈0.012 nm(-2). BSA-functionalized AgNPs exhibited highly-improved colloidal stability compared to the unconjugated AgNPs under acidic environments, where both the acid-induced interfacial dissolution and the particle aggregation became negligible. Results confirm a complex mechanism of colloidal stability of AgNPs: the aggregation process was shown to be dominant, and the formation of BSA corona on AgNPs suppressed both particle aggregation and interfacial dissolution of AgNP samples under acidic environments.

  3. 40 CFR 434.62 - Alternate effluent limitation for pH.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Alternate effluent limitation for pH... PERFORMANCE STANDARDS Miscellaneous Provisions § 434.62 Alternate effluent limitation for pH. Where the... otherwise applicable manganese limitations, the permit issuer may allow the pH level in the final effluent...

  4. 40 CFR 432.3 - General limitation or standard for pH.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 30 2014-07-01 2014-07-01 false General limitation or standard for pH... limitation or standard for pH. Any discharge subject to BPT, BCT, or NSPS limitations or standards in this part must remain within the pH range of 6 to 9. ...

  5. 40 CFR 434.62 - Alternate effluent limitation for pH.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 30 2011-07-01 2011-07-01 false Alternate effluent limitation for pH... PERFORMANCE STANDARDS Miscellaneous Provisions § 434.62 Alternate effluent limitation for pH. Where the... otherwise applicable manganese limitations, the permit issuer may allow the pH level in the final effluent...

  6. 40 CFR 432.3 - General limitation or standard for pH.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 31 2013-07-01 2013-07-01 false General limitation or standard for pH... limitation or standard for pH. Any discharge subject to BPT, BCT, or NSPS limitations or standards in this part must remain within the pH range of 6 to 9. ...

  7. 40 CFR 432.3 - General limitation or standard for pH.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 31 2012-07-01 2012-07-01 false General limitation or standard for pH... limitation or standard for pH. Any discharge subject to BPT, BCT, or NSPS limitations or standards in this part must remain within the pH range of 6 to 9. ...

  8. A mathematical model for the generation and control of a pH gradient in an immobilized enzyme system involving acid generation.

    PubMed

    Chen, G; Fournier, R L; Varanasi, S

    1998-02-20

    An optimal pH control technique has been developed for multistep enzymatic synthesis reactions where the optimal pH differs by several units for each step. This technique separates an acidic environment from a basic environment by the hydrolysis of urea within a thin layer of immobilized urease. With this technique, a two-step enzymatic reaction can take place simultaneously, in proximity to each other, and at their respective optimal pH. Because a reaction system involving an acid generation represents a more challenging test of this pH control technique, a number of factors that affect the generation of such a pH gradient are considered in this study. The mathematical model proposed is based on several simplifying assumptions and represents a first attempt to provide an analysis of this complex problem. The results show that, by choosing appropriate parameters, the pH control technique still can generate the desired pH gradient even if there is an acid-generating reaction in the system. Copyright 1998 John Wiley & Sons, Inc.

  9. Coral calcification in a changing World and the interactive dynamics of pH and DIC upregulation.

    PubMed

    McCulloch, Malcolm T; D'Olivo, Juan Pablo; Falter, James; Holcomb, Michael; Trotter, Julie A

    2017-05-30

    Coral calcification is dependent on the mutualistic partnership between endosymbiotic zooxanthellae and the coral host. Here, using newly developed geochemical proxies (δ 11 B and B/Ca), we show that Porites corals from natural reef environments exhibit a close (r 2 ∼0.9) antithetic relationship between dissolved inorganic carbon (DIC) and pH of the corals' calcifying fluid (cf). The highest DIC cf (∼ × 3.2 seawater) is found during summer, consistent with thermal/light enhancement of metabolically (zooxanthellae) derived carbon, while the highest pH cf (∼8.5) occurs in winter during periods of low DIC cf (∼ × 2 seawater). These opposing changes in DIC cf and pH cf are shown to maintain oversaturated but stable levels of carbonate saturation (Ω cf ∼ × 5 seawater), the key parameter controlling coral calcification. These findings are in marked contrast to artificial experiments and show that pH cf upregulation occurs largely independent of changes in seawater carbonate chemistry, and hence ocean acidification, but is highly vulnerable to thermally induced stress from global warming.

  10. Atomic view of the histidine environment stabilizing higher-pH conformations of pH-dependent proteins

    PubMed Central

    Valéry, Céline; Deville-Foillard, Stéphanie; Lefebvre, Christelle; Taberner, Nuria; Legrand, Pierre; Meneau, Florian; Meriadec, Cristelle; Delvaux, Camille; Bizien, Thomas; Kasotakis, Emmanouil; Lopez-Iglesias, Carmen; Gall, Andrew; Bressanelli, Stéphane; Le Du, Marie-Hélène; Paternostre, Maïté; Artzner, Franck

    2015-01-01

    External stimuli are powerful tools that naturally control protein assemblies and functions. For example, during viral entry and exit changes in pH are known to trigger large protein conformational changes. However, the molecular features stabilizing the higher pH structures remain unclear. Here we elucidate the conformational change of a self-assembling peptide that forms either small or large nanotubes dependent on the pH. The sub-angstrom high-pH peptide structure reveals a globular conformation stabilized through a strong histidine-serine H-bond and a tight histidine-aromatic packing. Lowering the pH induces histidine protonation, disrupts these interactions and triggers a large change to an extended β-sheet-based conformation. Re-visiting available structures of proteins with pH-dependent conformations reveals both histidine-containing aromatic pockets and histidine-serine proximity as key motifs in higher pH structures. The mechanism discovered in this study may thus be generally used by pH-dependent proteins and opens new prospects in the field of nanomaterials. PMID:26190377

  11. ⁵¹V NMR Crystallography of Vanadium Chloroperoxidase and Its Directed Evolution P395D/L241V/T343A Mutant: Protonation Environments of the Active Site.

    PubMed

    Gupta, Rupal; Hou, Guangjin; Renirie, Rokus; Wever, Ron; Polenova, Tatyana

    2015-04-29

    Vanadium-dependent haloperoxidases (VHPOs) perform two-electron oxidation of halides using hydrogen peroxide. Their mechanism, including the factors determining the substrate specificity and the pH-dependence of the catalytic rates, is poorly understood. The vanadate cofactor in the active site of VHPOs contains "spectroscopically silent" V(V), which does not change oxidation state during the reaction. We employed an NMR crystallography approach based on (51)V magic angle spinning NMR spectroscopy and Density Functional Theory, to gain insights into the structure and coordination environment of the cofactor in the resting state of vanadium-dependent chloroperoxidases (VCPO). The cofactor environments in the wild-type VCPO and its P395D/L241V/T343A mutant exhibiting 5-100-fold improved catalytic activity are examined at various pH values. Optimal sensitivity attained due to the fast MAS probe technologies enabled the assignment of the location and number of protons on the vanadate as a function of pH. The vanadate cofactor changes its protonation from quadruply protonated at pH 6.3 to triply protonated at pH 7.3 to doubly protonated at pH 8.3. In contrast, in the mutant, the vanadate protonation is the same at pH 5.0 and 8.3, and the cofactor is doubly protonated. This methodology to identify the distinct protonation environments of the cofactor, which are also pH-dependent, could help explain the different reactivities of the wild-type and mutant VCPO and their pH-dependence. This study demonstrates that (51)V-based NMR crystallography can be used to derive the detailed coordination environments of vanadium centers in large biological molecules.

  12. 40 CFR 420.07 - Effluent limitations guidelines and standards for pH.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... standards for pH. 420.07 Section 420.07 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... § 420.07 Effluent limitations guidelines and standards for pH. (a) The pH level in process wastewaters subject to a subpart within this part shall be within the range of 6.0 to 9.0. (b) The pH level shall be...

  13. 40 CFR 420.07 - Effluent limitations guidelines and standards for pH.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... standards for pH. 420.07 Section 420.07 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... § 420.07 Effluent limitations guidelines and standards for pH. (a) The pH level in process wastewaters subject to a subpart within this part shall be within the range of 6.0 to 9.0. (b) The pH level shall be...

  14. 40 CFR 420.07 - Effluent limitations guidelines and standards for pH.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... standards for pH. 420.07 Section 420.07 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... § 420.07 Effluent limitations guidelines and standards for pH. (a) The pH level in process wastewaters subject to a subpart within this part shall be within the range of 6.0 to 9.0. (b) The pH level shall be...

  15. 40 CFR 420.07 - Effluent limitations guidelines and standards for pH.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... standards for pH. 420.07 Section 420.07 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... § 420.07 Effluent limitations guidelines and standards for pH. (a) The pH level in process wastewaters subject to a subpart within this part shall be within the range of 6.0 to 9.0. (b) The pH level shall be...

  16. Corrosion in low dielectric constant Si-O based thin films: Buffer concentration effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeng, F. W.; Lane, M. W., E-mail: mlane@ehc.edu; Gates, S. M.

    2014-05-15

    Organosilicate glass (OSG) is often used as an interlayer dielectric (ILD) in high performance integrated circuits. OSG is a brittle material and prone to stress-corrosion cracking reminiscent of that observed in bulk glasses. Of particular concern are chemical-mechanical planarization techniques and wet cleans involving solvents commonly encountered in microelectronics fabrication where the organosilicate film is exposed to aqueous environments. Previous work has focused on the effect of pH, surfactant, and peroxide concentration on the subcritical crack growth of these films. However, little or no attention has focused on the effect of the conjugate acid/base concentration in a buffer. Accordingly, thismore » work examines the “strength” of the buffer solution in both acidic and basic environments. The concentration of the buffer components is varied keeping the ratio of acid/base and therefore pH constant. In addition, the pH was varied by altering the acid/base ratio to ascertain any additional effect of pH. Corrosion tests were conducted with double-cantilever beam fracture mechanics specimens and fracture paths were verified with ATR-FTIR. Shifts in the threshold fracture energy, the lowest energy required for bond rupture in the given environment, G{sub TH}, were found to shift to lower values as the concentration of the base in the buffer increased. This effect was found to be much larger than the effect of the hydroxide ion concentration in unbuffered solutions. The results are rationalized in terms of the salient chemical bond breaking process occurring at the crack tip and modeled in terms of the chemical potential of the reactive species.« less

  17. Signaling alkaline pH stress in the yeast Saccharomyces cerevisiae through the Wsc1 cell surface sensor and the Slt2 MAPK pathway.

    PubMed

    Serrano, Raquel; Martín, Humberto; Casamayor, Antonio; Ariño, Joaquín

    2006-12-29

    Alkalinization of the external environment represents a stress situation for Saccharomyces cerevisiae. Adaptation to this circumstance involves the activation of diverse response mechanisms, the components of which are still largely unknown. We show here that mutation of members of the cell integrity Pkc1/Slt2 MAPK module, as well as upstream and downstream elements of the system, confers sensitivity to alkali. Alkalinization resulted in fast and transient activation of the Slt2 MAPK, which depended on the integrity of the kinase module and was largely abolished by sorbitol. Lack of Wsc1, removal of specific extracellular and intracellular domains, or substitution of Tyr(303) in this putative membrane stress sensor rendered cells sensitive to alkali and considerably decreased alkali-induced Slt2 activation. In contrast, constitutive activation of Slt2 by the bck1-20 allele increased pH tolerance in the wsc1 mutant. DNA microarray analysis revealed that several genes encoding cell wall proteins, such as GSC2/FKS2, DFG5, SKT5, and CRH1, were induced, at least in part, by high pH in an Slt2-dependent manner. We observed that dfg5, skt5, and particularly dfg5 skt5 cells were alkali-sensitive. Therefore, our results show that an alkaline environment imposes a stress condition on the yeast cell wall. We propose that the Slt2-mediated MAPK pathway plays an important role in the adaptive response to this insult and that Wsc1 participates as an essential cell-surface pH sensor. Moreover, these results provide a new example of the complexity of the response of budding yeast to the alkalinization of the environment.

  18. Effect of housing environment on laying hen meat quality: Assessing Pectoralis major pH, colour and tenderness in three strains of 80-81 week-old layers housed in conventional and furnished cages.

    PubMed

    Frizzell, K M; Lynch, E; Rathgeber, B M; Dixon, W T; Putman, C T; Jendral, M J

    2017-02-01

    1. Meat quality is affected by factors such as stress, genetic strain and activity and is determined in part by measures of pH, colour and tenderness. In conventional laying hen cages (CC), lack of physical space and inability to perform highly motivated behaviours leads to stress and inactivity. Furnished cages (FCs) permit expression of highly motivated behaviours, but typically house larger group sizes than CC, thereby contributing to social stress. The objective of this study was to evaluate the effects of CC and FC laying hen housing environments and strain differences on meat quality of 80-81-week-old birds. 2. Pectoralis major meat quality was assessed for two flocks of Shaver White (SH), Lohmann Lite (LL) and Lohmann Brown (LB) hens housed in either 5-hen CC or 40-hen FC. Between 80 and 81 weeks, muscle samples were collected from randomly selected hens and analysed for muscle pH, colour and shear force (SF) using established methods. 3. In both flocks, the combined treatment body weights (BWs) were higher for CC than FC hens and the combined strain BWs were higher for LB than LL and SH hens. Flock 1 LB had lower initial and ultimate pH than SH and LL, and greater pH decline than SH. Muscle redness (a*) was higher for CC SH than FC SH in both flocks. Muscle a* was higher for LL than SH and LB in Flock 1, and higher than SH in Flock 2. Housing differences in muscle SF were absent. In CC, SF was higher for SH than LL and LB in Flock 1, and higher than LB in Flock 2. 4. Lack of housing differences suggests that environmental stressors present in both housing systems similarly affected meat quality. Strain differences for muscle pH, a* and SF indicate increased stress experienced by SH and LL hens. The absence of Flock 2 strain differences is consistent with the cannibalism outbreak that occurred in this flock and most severely impacted LB hens.

  19. pH-Dependent Bioavailability, Speciation, and Phytotoxicity of Tungsten (W) in Soil Affect Growth and Molybdoenzyme Activity of Nodulated Soybeans

    PubMed Central

    2018-01-01

    Increasing use of tungsten (W)-based products opened new pathways for W into environmental systems. Due to its chemical alikeness with molybdenum (Mo), W is expected to behave similarly to its “twin element”, Mo; however, our knowledge of the behavior of W in the plant–soil environment remains inadequate. The aim of this study was to investigate plant growth as well as W and nutrient uptake depending on soil chemical properties such as soil pH and texture. Soybean (Glycine max cv. Primus) was grown on two acidic soils differing in soil texture that were either kept at their natural soil pH (pH of 4.5–5) or limed (pH of ≥7) and amended with increasing concentrations of metallic W (control and 500 and 5000 mg kg–1). In addition, the activity of molybdoenzymes involved in N assimilation (nitrate reductase) and symbiotic N2 fixation (nitrogenase) was also investigated. Our results showed that the risk of W entering the food web was significantly greater in high-pH soils due to increased solubility of mainly monomeric W. The effect of soil texture on W solubility and phytoavailability was less pronounced compared to soil pH. Particularly at intermediate W additions (W 500 mg kg–1), symbiotic nitrogen fixation was able to compensate for reduced leaf nitrate reductase activity. When W soil solution concentrations became too toxic (W 5000 mg kg–1), nodulation was more strongly inhibited than nitrogenase activity in the few nodules formed, suggesting a more-efficient detoxification and compartmentalization mechanism in nodules than in soybean leaves. The increasing presence of polymeric W species observed in low-pH soils spiked with high W concentrations resulted in decreased W uptake. Simultaneously, polymeric W species had an overall negative effect on nutrient assimilation and plant growth, suggesting a greater phytotoxicity of W polymers. Our study demonstrates the importance of accounting for soil pH in risk assessment studies of W in the plant–soil environment, something that has been completely neglected in the past. PMID:29701969

  20. pH-Dependent Bioavailability, Speciation, and Phytotoxicity of Tungsten (W) in Soil Affect Growth and Molybdoenzyme Activity of Nodulated Soybeans.

    PubMed

    Oburger, Eva; Vergara Cid, Carolina; Preiner, Julian; Hu, Junjian; Hann, Stephan; Wanek, Wolfgang; Richter, Andreas

    2018-06-05

    Increasing use of tungsten (W)-based products opened new pathways for W into environmental systems. Due to its chemical alikeness with molybdenum (Mo), W is expected to behave similarly to its "twin element", Mo; however, our knowledge of the behavior of W in the plant-soil environment remains inadequate. The aim of this study was to investigate plant growth as well as W and nutrient uptake depending on soil chemical properties such as soil pH and texture. Soybean ( Glycine max cv. Primus) was grown on two acidic soils differing in soil texture that were either kept at their natural soil pH (pH of 4.5-5) or limed (pH of ≥7) and amended with increasing concentrations of metallic W (control and 500 and 5000 mg kg -1 ). In addition, the activity of molybdoenzymes involved in N assimilation (nitrate reductase) and symbiotic N 2 fixation (nitrogenase) was also investigated. Our results showed that the risk of W entering the food web was significantly greater in high-pH soils due to increased solubility of mainly monomeric W. The effect of soil texture on W solubility and phytoavailability was less pronounced compared to soil pH. Particularly at intermediate W additions (W 500 mg kg -1 ), symbiotic nitrogen fixation was able to compensate for reduced leaf nitrate reductase activity. When W soil solution concentrations became too toxic (W 5000 mg kg -1 ), nodulation was more strongly inhibited than nitrogenase activity in the few nodules formed, suggesting a more-efficient detoxification and compartmentalization mechanism in nodules than in soybean leaves. The increasing presence of polymeric W species observed in low-pH soils spiked with high W concentrations resulted in decreased W uptake. Simultaneously, polymeric W species had an overall negative effect on nutrient assimilation and plant growth, suggesting a greater phytotoxicity of W polymers. Our study demonstrates the importance of accounting for soil pH in risk assessment studies of W in the plant-soil environment, something that has been completely neglected in the past.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Casella, Amanda J.; Hylden, Laura R.; Campbell, Emily L.

    Knowledge of real-time solution properties and composition is a necessity for any spent nuclear fuel reprocessing method. Metal-ligand speciation in aqueous solutions derived from the dissolved commercial spent fuel is highly dependent upon the acid concentration/pH, which influences extraction efficiency and the resulting speciation in the organic phase. Spectroscopic process monitoring capabilities, incorporated in a counter current centrifugal contactor bank, provide a pathway for on-line real-time measurement of solution pH. The spectroscopic techniques are process-friendly and can be easily configured for on-line applications, while classic potentiometric pH measurements require frequent calibration/maintenance and have poor long-term stability in aggressive chemical andmore » radiation environments. Our research is focused on developing a general method for on-line determination of pH of aqueous solutions through chemometric analysis of Raman spectra. Interpretive quantitative models have been developed and validated under the range of chemical composition and pH using a lactic acid/lactate buffer system. The developed model was applied to spectra obtained on-line during solvent extractions performed in a centrifugal contactor bank. The model predicted the pH within 11% for pH > 2, thus demonstrating that this technique could provide the capability of monitoring pH on-line in applications such as nuclear fuel reprocessing.« less

  2. Projected pH reductions by 2100 might put deep North Atlantic biodiversity at risk

    NASA Astrophysics Data System (ADS)

    Gehlen, M.; Séférian, R.; Jones, D. O. B.; Roy, T.; Roth, R.; Barry, J.; Bopp, L.; Doney, S. C.; Dunne, J. P.; Heinze, C.; Joos, F.; Orr, J. C.; Resplandy, L.; Segschneider, J.; Tjiputra, J.

    2014-06-01

    This study aims at evaluating the potential for impacts of ocean acidification on North Atlantic deep-sea ecosystems in response to IPCC AR5 Representative Concentration Pathways (RCP). Deep-sea biota is likely highly vulnerable to changes in seawater chemistry and sensitive to moderate excursions in pH. Here we show, from seven fully-coupled Earth system models, that for three out of four RCPs over 17% of the seafloor area below 500 m depth in the North Atlantic sector will experience pH reductions exceeding -0.2 units by 2100. Increased stratification in response to climate change partially alleviates the impact of ocean acidification on deep benthic environment. We report major potential consequences of pH reductions for deep-sea biodiversity hotspots, such as seamounts and canyons. By 2100 and under the high CO2 scenario RCP8.5 pH reductions exceeding -0.2, (respectively -0.3) units are projected in close to 23% (~ 15%) of North Atlantic deep-sea canyons and ~ 8% (3%) of seamounts - including seamounts proposed as sites of marine protected areas. The spatial pattern of impacts reflects the depth of the pH perturbation and does not scale linearly with atmospheric CO2 concentration. Impacts may cause negative changes of the same magnitude or exceeding the current target of 10% of preservation of marine biomes set by the convention on biological diversity implying that ocean acidification may offset benefits from conservation/management strategies relying on the regulation of resource exploitation.

  3. Sulfide oxidation and distribution of metals near abandoned copper mines in coastal environments, Prince William Sound, Alaska, USA

    USGS Publications Warehouse

    Koski, R.A.; Munk, L.; Foster, A.L.; Shanks, Wayne C.; Stillings, L.L.

    2008-01-01

    The oxidation of sulfide-rich rocks, mostly leftover debris from Cu mining in the early 20th century, is contributing to metal contamination of local coastal environments in Prince William Sound, Alaska. Analyses of sulfide, water, sediment, precipitate and biological samples from the Beatson, Ellamar, and Threeman mine sites show that acidic surface waters generated from sulfide weathering are pathways for redistribution of environmentally important elements into and beyond the intertidal zone at each site. Volcanogenic massive sulfide deposits composed of pyrrhotite and (or) pyrite + chalcopyrite + sphalerite with subordinate galena, arsenopyrite, and cobaltite represent potent sources of Cu, Zn, Pb, As, Co, Cd, and Hg. The resistance to oxidation among the major sulfides increases in the order pyrrhotite ??? sphalerite < chalcopyrite ??? pyrite; thus, pyrrhotite-rich rocks are typically more oxidized than those dominated by pyrite. The pervasive alteration of pyrrhotite begins with rim replacement by marcasite followed by replacement of the core by sulfur, Fe sulfate, and Fe-Al sulfate. The oxidation of chalcopyrite and pyrite involves an encroachment by colloform Fe oxyhydroxides at grain margins and along crosscutting cracks that gradually consumes the entire grain. The complete oxidation of sulfide-rich samples results in a porous aggregate of goethite, lepidocrocite and amorphous Fe-oxyhydroxide enclosing hydrothermal and sedimentary silicates. An inverse correlation between pH and metal concentrations is evident in water data from all three sites. Among all waters sampled, pore waters from Ellamar beach gravels have the lowest pH (???3) and highest concentrations of base metals (to ???25,000 ??g/L), which result from oxidation of abundant sulfide-rich debris in the sediment. High levels of dissolved Hg (to 4100 ng/L) in the pore waters probably result from oxidation of sphalerite-rich rocks. The low-pH and high concentrations of dissolved Fe, Al, and SO4 are conducive to precipitation of interstitial jarosite in the intertidal gravels. Although pore waters from the intertidal zone at the Threeman mine site have circumneutral pH values, small amounts of dissolved Fe2+ in the pore waters are oxidized during mixing with seawater, resulting in precipitation of Fe-oxyhydroxide flocs along the beach-seawater interface. At the Beatson site, surface waters funneled through the underground mine workings and discharged across the waste dumps have near-neutral pH (6.7-7.3) and a relatively small base-metal load; however, these streams probably play a role in the physical transport of metalliferous particulates into intertidal and offshore areas during storm events. Somewhat more acidic fluids, to pH 5.3, occur in stagnant seeps and small streams emerging from the Beatson waste dumps. Amorphous Fe precipitates in stagnant waters at Beatson have high Cu (5.2 wt%) and Zn (2.3 wt%) concentrations that probably reflect adsorption onto the extremely high surface area of colloidal particles. Conversely, crystalline precipitates composed of ferrihydrite and schwertmannite that formed in the active flow of small streams have lower metal contents, which are attributed to their smaller surface area and, therefore, fewer reactive sorption sites. Seeps containing precipitates with high metal contents may contribute contaminants to the marine environment during storm-induced periods of high runoff. Preliminary chemical data for mussels (Mytilus edulis) collected from Beatson, Ellamar, and Threeman indicate that bioaccumulation of base metals is occurring in the marine environment at all three sites.

  4. Adsorption and Reduction of Hexavalent Chromium on the Surface of Vivianite at Acidic Environment

    NASA Astrophysics Data System (ADS)

    HA, S.; Hyun, S. P.; Lee, W.

    2016-12-01

    Due to the rapid increase of chemical use in industrial activities, acid spills have frequently occurred in Korea. The acid spill causes soil and water acidification and additional problems such as heavy metal leaching from the soil. Hexavalent chromium (Cr(VI)) is relatively mobile in the environment and toxic and mutagenic. Monoclinic octa-hydrated ferrous phosphate, vivianite, is one of commonly found iron-bearing soil minerals occurring in phosphorous-enriched reducing environments. We have investigated reductive sorption of Cr(VI) on the vivianite surfaces using batch experimental tests under diverse groundwater conditions. Cr(VI) (5 mg/L) was added in 6.5 g/L vivianite suspension buffered at pH 5, 7, and 9, using 0.05 M HEPES or tris buffer solution, to check the effect of pH on the reductive sorption of Cr(VI) on the vivianite surface. The aqueous Cr(VI) removal was fastest at pH 5, followed by pH 7, and pH 9. The effect of ionic strength on the removal kinetics of Cr(VI) was negligible. It could be subsequently removed via sorption and reduction on the surface of vivianite of which reactive chemical species could be aqueous Fe(II), iron oxides, and metavivianite. Adsorption test was conducted using the same amount of Cr(III) to check the selectivity of chromium species on the vivianite surface for the reductive adsorption. Through Cr extraction test, amount of strong-bound Cr to vivianite is similar for Cr(III) and Cr(VI) injection but amount of weak-bound Cr is bigger for Cr(VI) injection. Reaction mechanism for the sorption and reductive transformation of Cr(VI) to Cr(III) species at reactive sites of vivianite surface are discussed based on surface complexation modeling and K-edge Fe X-ray absorption near edge structure (XANES) results. Since vivianite is reacted with Cr(VI), two smooth peaks of absorption edge changed to one sharp peak. Pre-edge that contains 1s-3d transition information tends to show high peak when reaction time is increased and pH is low. This fact indicated that the Fe(II) is oxidized to Fe(III) at the surface of viviante and this phenomena is optimized at pH 5 and longer elapsed time.

  5. Determination of Surface Charge of Titanium Dioxide (Anatase) at High Ionic Strength

    NASA Astrophysics Data System (ADS)

    Schoonen, M. A.; Strongin, D. R.

    2014-12-01

    Charge development on mineral surfaces is an important control on the fate of minor and trace elements in a wide range of environments, including in possible radioactive waste repositories. Formation waters have often a high ionic strength. In this study, we determined the zeta potential (ζ) of anatase in potassium chloride solutions with concentrations up to 3M (25°C). The zeta potential is the potential at the hydrodynamic shear plane. In this study, we made use of the electro-acoustic effect. This effect is based on the development of a measureable potential/current when the electrical double layer outside the shearplane is separated from a charged particle through rapid oscillation induced by a sound wave. The advantage of this type of measurement is that the particles are not subjected to a high electric field (common to typical zeta potential measurements), which leads to electrode reactions and a shift of solution pH. Measurements were collected by subtracting the ion vibration current (IVI) due to the presence of potassium and chloride ions from the CVI. The correction is necessary for measurements in solutions with I > 0.25 M. This subtraction was done at each of the measurement conditions by centrifuging the slurrly, measuring the IVI of the supernatant, reconstituting the slurry, and then measuring CVI of the slurry. Subtraction of IVI at each condition is critical because IVI changes with pH and accounts for most of raw signal. The results show that the anatase isoelectric point shifts from a pH ~6.5 to a value of ~4.5 at 1M KCl. At ionic strength in excess of 1 M KCl, the surface appears to be slightly negatively charged accross the pH range accessible by this technique (pH 2.5-10). The loss of an isoelectric point suggests that KCl is no longer an indifferent electrolyte at 1 M KCl and higher. The results are in disagreement with earlier measurements in which anatase was shown to have a positive charge at high ionic strength across the pH scale. The difference between the current and earlier work is likely a result of the IVI correction. While anatase is unlikely to be of importance in a waste environment, the work provides a method to determine charge on more relevant mineral surfaces. This can then lead to a better representation of the fate for radionuclides in the subsurface.

  6. Comparative Metagenomics of Eight Geographically Remote Terrestrial Hot Springs.

    PubMed

    Menzel, Peter; Gudbergsdóttir, Sóley Ruth; Rike, Anne Gunn; Lin, Lianbing; Zhang, Qi; Contursi, Patrizia; Moracci, Marco; Kristjansson, Jakob K; Bolduc, Benjamin; Gavrilov, Sergey; Ravin, Nikolai; Mardanov, Andrey; Bonch-Osmolovskaya, Elizaveta; Young, Mark; Krogh, Anders; Peng, Xu

    2015-08-01

    Hot springs are natural habitats for thermophilic Archaea and Bacteria. In this paper, we present the metagenomic analysis of eight globally distributed terrestrial hot springs from China, Iceland, Italy, Russia, and the USA with a temperature range between 61 and 92 (∘)C and pH between 1.8 and 7. A comparison of the biodiversity and community composition generally showed a decrease in biodiversity with increasing temperature and decreasing pH. Another important factor shaping microbial diversity of the studied sites was the abundance of organic substrates. Several species of the Crenarchaeal order Thermoprotei were detected, whereas no single bacterial species was found in all samples, suggesting a better adaptation of certain archaeal species to different thermophilic environments. Two hot springs show high abundance of Acidithiobacillus, supporting the idea of a true thermophilic Acidithiobacillus species that can thrive in hyperthermophilic environments. Depending on the sample, up to 58 % of sequencing reads could not be assigned to a known phylum, reinforcing the fact that a large number of microorganisms in nature, including those thriving in hot environments remain to be isolated and characterized.

  7. Contemporaneous deposition of phyllosilicates and sulfates: Using Australian acidic saline lake deposits to describe geochemical variability on Mars

    USGS Publications Warehouse

    Baldridge, A.M.; Hook, S.J.; Crowley, J.K.; Marion, G.M.; Kargel, J.S.; Michalski, J.L.; Thomson, B.J.; de Souza, Filho C.R.; Bridges, N.T.; Brown, A.J.

    2009-01-01

    Studies of the origin of the Martian sulfate and phyllosilicate deposits have led to the hypothesis that there was a marked, global-scale change in the Mars environment from circum-neutral pH aqueous alteration in the Noachian to an acidic evaporitic system in the late Noachian to Hesperian. However, terrestrial studies suggest that two different geochemical systems need not be invoked to explain such geochemical variation.Western Australian acidic playa lakes have large pH differences separated vertically and laterally by only a few tens of meters, demonstrating how highly variable chemistries can coexist over short distances in natural environments. We suggest diverse and variable Martian aqueous environments where the coetaneous formation of phyllosilicates and sulfates at the Australian sites are analogs for regions where phyllosilicates and sulfates coexist on Mars. In these systems, Fe and alkali earth phyllosilicates represent deep facies associated with upwelling neutral to alkaline groundwater, whereas aluminous phyllosilicates and sulfates represent near-surface evaporitic facies formed from more acidic brines. Copyright 2009 by the American Geophysical Union.

  8. The Acid Test of Fluoride: How pH Modulates Toxicity

    PubMed Central

    Sharma, Ramaswamy; Tsuchiya, Masahiro; Skobe, Ziedonis; Tannous, Bakhos A.; Bartlett, John D.

    2010-01-01

    Background It is not known why the ameloblasts responsible for dental enamel formation are uniquely sensitive to fluoride (F−). Herein, we present a novel theory with supporting data to show that the low pH environment of maturating stage ameloblasts enhances their sensitivity to a given dose of F−. Enamel formation is initiated in a neutral pH environment (secretory stage); however, the pH can fall to below 6.0 as most of the mineral precipitates (maturation stage). Low pH can facilitate entry of F− into cells. Here, we asked if F− was more toxic at low pH, as measured by increased cell stress and decreased cell function. Methodology/Principal Findings Treatment of ameloblast-derived LS8 cells with F− at low pH reduced the threshold dose of F− required to phosphorylate stress-related proteins, PERK, eIF2α, JNK and c-jun. To assess protein secretion, LS8 cells were stably transduced with a secreted reporter, Gaussia luciferase, and secretion was quantified as a function of F− dose and pH. Luciferase secretion significantly decreased within 2 hr of F− treatment at low pH versus neutral pH, indicating increased functional toxicity. Rats given 100 ppm F− in their drinking water exhibited increased stress-mediated phosphorylation of eIF2α in maturation stage ameloblasts (pH<6.0) as compared to secretory stage ameloblasts (pH∼7.2). Intriguingly, F−-treated rats demonstrated a striking decrease in transcripts expressed during the maturation stage of enamel development (Klk4 and Amtn). In contrast, the expression of secretory stage genes, AmelX, Ambn, Enam and Mmp20, was unaffected. Conclusions The low pH environment of maturation stage ameloblasts facilitates the uptake of F−, causing increased cell stress that compromises ameloblast function, resulting in dental fluorosis. PMID:20531944

  9. Physical stability of R-(+)-Limonene emulsions stabilized by Ulva fasciata algae polysaccharide.

    PubMed

    Shao, Ping; Ma, Huiling; Qiu, Qiang; Jing, Weiping

    2016-11-01

    The physical stability of R-(+)-Limonene emulsions stabilized by Ulva fasciata polysaccharide (UFP) was investigated in this study. Emulsion physical stability was evaluated under different polysaccharide concentrations (1%-5%, wt/wt) and pH values (3.0-11.0). The stability of R-(+)-Limonene emulsions was demonstrated by droplet size distribution, rheological properties, zeta potential and visual phase separation. R-(+)-Limonene emulsions displayed monomodal droplet size distributions, high absolute values of zeta potential and good storage stability when 3% (wt/wt) UFP was used. The rheological properties and stability of R-(+)-Limonene emulsions appeared to be dependent on polysaccharide concentration. The emulsion stability was impacted by pH. Higher zeta potential (-52.6mV) and smaller mean droplet diameter (2.45μm) were achieved in neutral liquid environment (pH 7.0). Extreme acidity caused the flocculation of emulsions, which was manifested as phase separation, while emulsions were quite stable in an alkaline environment. Through comparing the stabilities of emulsions stabilized by different emulsifiers (i.e. UFP, GA and Gelatin), the result suggested that UFP was the best emulsifying agent among them. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Pourbaix Diagrams at Elevated Temperatures A Study of Zinc and Tin

    NASA Astrophysics Data System (ADS)

    Palazhchenko, Olga

    Metals in industrial settings such as power plants are often subjected to high temperature and pressure aqueous environments, where failure to control corrosion compromises worker and environment safety. For instance, zircaloy (1.2-1.7 wt.% Sn) fuel rods are exposed to aqueous 250-310 °C coolant in CANDU reactors. The Pourbaix (EH-pH) diagram is a plot of electrochemical potential versus pH, which shows the domains of various metal species and by inference, corrosion susceptibility. Elevated temperature data for tin +II and tin +IV species were obtained using solid-aqueous phase equilibria with the respective oxides, in a batch vessel with in-situ pH measurement. Solubilities, determined via spectroscopic techniques, were used to calculate equilibrium constants and the Gibbs energies of Sn complexes for E-pH diagram construction. The SnOH3+ and Sn(OH )-5 species were incorporated, for the first time, into the 298.15 K and 358.15 K diagrams, with novel Go values determined at 358.15 K. Key words: Pourbaix diagrams, EH-pH, elevated temperatures, solubility, equilibrium, metal oxides, hydrolysis, redox potential, pH, thermochemical data, tin, zinc, zircaloy, corrosion, passivity.

  11. Effect of culture condition on the growth, biochemical composition and EPA production of alkaliphilic Nitzschia plea isolated in the Southeast of China.

    PubMed

    Zhang, Dongmei; Wen, Shumei; Wu, Xia; Cong, Wei

    2018-06-01

    To overcome the contamination in open pond, microalgal strain selection should focus on species with tolerability to extreme environments. In this study, a native alkaliphilic algae, diatom Nitzschia plea was obtained in Southeast of China, which could tolerate high concentration of NaHCO 3 (0.15 mol/L) and high pH (> 10). The effects of initial pH, light intensity and temperature on cell growth, biochemical composition and fatty acid profile of N. plea were investigated. Results indicated its specific growth rate could reach 1.2 day -1 , lipid content was in the range 14.6-30.2% of dry weight, eicosapntemacnioc acid (EPA, C20:5) accounted for around 15% of total fatty acids. Alkalic condition benefited for both cell growth and EPA synthesis. Appropriately increasing light intensity and temperature could improve cell growth rate and lipid synthesis, although the proportion of EPA in total fatty acids decreased slightly. The optimal culture condition (pH 9.00, temperature 35.0 °C, light intensity 158.6 µmol/m 2 s) was suggested for maximum yield of EPA based on the response surface model. The overall biomass productivity and EPA productivity were 0.301 g/L/day and 7.43 mg/L/day, respectively. In conclusion, alkalic environment was helpful for the steady operation of open pond cultivation of N. plea with the characteristics of fast growth rate and high EPA content, which exhibited its commercial value.

  12. Rapid releases of metal salts and nutrients following the deposition of volcanic ash into aqueous environments

    NASA Astrophysics Data System (ADS)

    Jones, Morgan T.; Gislason, Sigurður R.

    2008-08-01

    Deposition of volcanic ash into aqueous environments leads to dissolution of adsorbed metal salts and aerosols, increasing the bioavailability of key nutrients. Volcanogenic fertilization events could increase marine primary productivity, leading to a drawdown of atmospheric CO 2. Here we conduct flow-through experiments on unhydrated volcanic ash samples from a variety of locations and sources, measuring the concentrations and fluxes of elements into de-ionized water and two contrasting ocean surface waters. Comparisons of element fluxes show that dissolution of adsorbed surface salts and aerosols dominates over glass dissolution, even in sustained low pH conditions. These surface ash-leachates appear unstable, decaying in situ even if kept unhydrated. Volcanic ash from recent eruptions is shown to have a large fertilization potential in both fresh and saline water. Fluorine concentrations are integral to bulk dissolution rates and samples with high F concentrations display elevated fluxes of some nutrients, particularly Fe, Si, and P. Bio-limiting micronutrients are released in large quantities, suggesting that subsequent biological growth will be limited by macronutrient availability. Importantly, acidification of surface waters and high fluxes of toxic elements highlights the potential of volcanic ash-leachates to poison aqueous environments. In particular, large pH changes can cause undersaturation of CaCO 3 polymorphs, damaging populations of calcifying organisms. Deposition of volcanic ash can both fertilize and/or poison aqueous environments, causing significant changes to surface water chemistry and biogeochemical cycles.

  13. Ligand Accessibility and Bioactivity of a Hormone-Dendrimer Conjugate Depend on pH and pH History

    PubMed Central

    Kim, Sung Hoon; Madak-Erdogan, Zeynep; Bae, Sung Chul; Carlson, Kathryn E.; Mayne, Christopher G.; Granick, Steve; Katzenellenbogen, Benita S.; Katzenellenbogen, John A.

    2016-01-01

    Estrogen conjugates with a polyamidoamine (PAMAM) dendrimer have shown remarkably selective regulation of the non-genomic actions of estrogens in target cells. In response to pH changes, however, these estrogen-dendrimer conjugates (EDCs) display a major morphological transition that alters the accessibility of the estrogen ligands that compromises the bioactivity of the EDC. A sharp break in dynamic behavior near pH 7 occurs for three different ligands on the surface of a PAMAM-G6 dendrimer: a fluorophore (tetramethylrhodamine, TMR) and two estrogens (17α-ethynylestradiol and diphenolic acid). Collisional quenching and time-resolved fluorescence anisotropy experiments with TMR-PAMAM reveal high ligand shielding above pH 7 and low shielding below pH 7. Furthermore, when pH was cycled from 8.5 (conditions of ligand-PAMAM conjugation) to 4.5 (e.g., endosome/lysosome) and through 6.5 (e.g., hypoxic environment) back to pH 8.5, the 17α-ethynylestradiol and diphenolic acid PAMAM conjugates experience a dramatic, irreversible loss in cell stimulatory activity; dynamic NMR studies indicate that the hormonal ligands had become occluded within the more hydrophobic core of the PAMAM dendrimer. Thus, the active state of these estrogen-dendrimer conjugates appears to be metastable. This pH-dependent irreversible masking of activity is of considerable relevance to the design of drug conjugates with amine-bearing PAMAM dendrimers. PMID:26186415

  14. Eukaryotic Organisms in Extreme Acidic Environments, the Río Tinto Case

    NASA Astrophysics Data System (ADS)

    Angeles Aguilera, Angeles

    2013-07-01

    A major issue in microbial ecology is to identify the limits of life for growth and survival, and to understand the molecular mechanisms that define these limits. Thus, interest in the biodiversity and ecology of extreme environments has grown in recent years for several reasons. Some are basic and revolve around the idea that extreme environments are believed to reflect early Earth conditions. Others are related to the biotechnological potential of extremophiles. In this regard, the study of extremely acidic environments has become increasingly important since environmental acidity is often caused by microbial activity. Highly acidic environments are relatively scarce worldwide and are generally associated with volcanic activity or mining operations. For most acidic environments, low pH facilitates metal solubility, and therefore acidic waters tend to have high concentrations of heavy metals. However, highly acidic environments are usually inhabited by acidophilic and acidotolerant eukaryotic microorganisms such as algae, amoebas, ciliates, heliozoan and rotifers, not to mention filamentous fungi and yeasts. Here, we review the general trends concerning the diversity and ecophysiology of eukaryotic acidophilic microorganims, as well as summarize our latest results on this topic in one of the largest extreme acidic rivers, Río Tinto (SW, Spain).

  15. Biocompatible click chemistry enabled compartment-specific pH measurement inside E. coli.

    PubMed

    Yang, Maiyun; Jalloh, Abubakar S; Wei, Wei; Zhao, Jing; Wu, Peng; Chen, Peng R

    2014-09-19

    Bioorthogonal reactions, especially the Cu(I)-catalysed azide-alkyne cycloaddition, have revolutionized our ability to label and manipulate biomolecules under living conditions. The cytotoxicity of Cu(I) ions, however, has hindered the application of this reaction in the internal space of living cells. By systematically surveying a panel of Cu(I)-stabilizing ligands in promoting protein labelling within the cytoplasm of Escherichia coli, we identify a highly efficient and biocompatible catalyst for intracellular modification of proteins by azide-alkyne cycloaddition. This reaction permits us to conjugate an environment-sensitive fluorophore site specifically onto HdeA, an acid-stress chaperone that adopts pH-dependent conformational changes, in both the periplasm and cytoplasm of E. coli. The resulting protein-fluorophore hybrid pH indicators enable compartment-specific pH measurement to determine the pH gradient across the E. coli cytoplasmic membrane. This construct also allows the measurement of E. coli transmembrane potential, and the determination of the proton motive force across its inner membrane under normal and acid-stress conditions.

  16. Non-invasive technique to measure biogeochemical parameters (pH and O2) in a microenvironment: Design and applications

    NASA Astrophysics Data System (ADS)

    Li, Biting; Seliman, Ayman; Pales, Ashley; Liang, Weizhen; Sams, Allison; Darnault, Christophe; Devol, Timothy

    2017-04-01

    The primary objectives of this research are to do the pH and O2 sensor foils calibration and then to test them in applications. Potentially, this project can be utilized to monitor the fate and transport of radionuclides in porous media. The information for physical and chemical parameters (e.g. pH and O2) is crucial to know when determining contaminants' behavior and transport in the environment. As a non-invasive method, optical imaging technique using a DSLR camera could capture data on the foil when it fluoresces, and gives a high temporal and spatial resolution during the experimental period. The calibration procedures were done in cuvettes in a row. The preliminary experiments could measure pH value in the range from 4.5 to 7.5, and O2 concentration from 0 mg/L to 20.74 mg/L. Applications of sensor foils have involved nano zero valent and acid rain experiments in order to obtain a gradient of parameter changes.

  17. Tumor cell membrane-targeting pH-dependent electron donor-acceptor fluorescence systems with low background signals.

    PubMed

    Han, Liang; Liu, Mingming; Ye, Deyong; Zhang, Ning; Lim, Ed; Lu, Jing; Jiang, Chen

    2014-03-01

    Minimizing the background signal is crucial for developing tumor-imaging techniques with sufficient specificity and sensitivity. Here we use pH difference between healthy tissues and tumor and tumor targeting delivery to achieve this goal. We synthesize fluorophore-dopamine conjugate as pH-dependent electron donor-acceptor fluorescence system. Fluorophores are highly sensitive to electron-transfer processes, which can alter their optical properties. The intrinsic redox properties of dopamine are oxidation of hydroquinone to quinone at basic pH and reduction of quinone to hydroquinone at acidic pH. Quinone can accept electron then quench fluorescence. We design tumor cell membrane-targeting carrier for delivery. We demonstrate quenched fluorophore-quinone can be specially transferred to tumor extracellular environment and tumor-accumulated fluorophore can be activated by acidic pH. These tumor-targeting pH-dependent electron donor-acceptor fluorescence systems may offer new opportunity for developing tumor-imaging techniques. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Proceedings of the Annual Conference (28th) of the Military Testing Association Held in New London, Connecticut on 3-7 November 1986

    DTIC Science & Technology

    1986-11-07

    performance. Second, an environmental model, which contained the five work environment constructs was used to predict the separate performance measures to...Sc.D., D.E. Roberts, Ph.D., and A. Cymerman, Ph.D. US Army Research Institute Environmental Medicine Natick, MA 01 760-5007 Stressful environments ... environments , and 6) available in alternate forms for repeated assessment. This paper summarizes six cognitive performance studies with environmental

  19. Influence of acidic pH on keratinocyte function and re-epithelialisation of human in vitro wounds.

    PubMed

    Lönnqvist, Susanna; Emanuelsson, Peter; Kratz, Gunnar

    2015-01-01

    Chronic wounds are one of the greatest challenges for the healthcare system. Today, a plethora of dressings are used in the treatment of these wounds, each with specific influence on the wound environment. Due to differences in the permeability of the dressings the use will result in differences in the pH balance in the wound bed. However, little is known about how changes in the pH in the wound environment affect the different phases of the healing process. The aim of the present study was to investigate the effects of acidic pH on the regeneration phase by studying keratinocyte function in vitro and re-epithelialisation in an in vitro model of human skin. In vitro assays showed reduced viability and migration rates in human keratinocytes when pH was lowered. Real time PCR revealed differential expression of genes related to wound healing and environmental impairment. Tissue culture showed no re-epithelialisation of wounds subjected to pH 5.0 and moderate re-epithelialisation at pH 6.0, compared to controls at pH 7.4. The results indicate that lowering pH down to pH 5.0 in wounds is counterproductive in aspect of keratinocyte function which is crucial for successful wound healing.

  20. Regulation of H+ Extrusion and Cytoplasmic pH in Maize Root Tips Acclimated to a Low-Oxygen Environment.

    PubMed

    Xia, J. H.; Roberts, JKM.

    1996-05-01

    We tested the hypothesis that H+ extrusion contributes to cytoplasmic pH regulation and tolerance of anoxia in maize (Zea mays) root tips. We studied root tips of whole seedlings that were acclimated to a low-oxygen environment by pretreatment in 3% (v/v) O2. Acclimated root tips characteristically regulate cytoplasmic pH near neutrality and survive prolonged anoxia, whereas nonacclimated tips undergo severe cytoplasmic acidosis and die much more quickly. We show that the plasma membrane H+-ATPase can operate under anoxia and that net H+ extrusion increases when cytoplasmic pH falls. However, at an external pH near 6.0, H+ extrusion contributes little to cytoplasmic pH regulation. At more acidic external pH values, net H+ flux into root tips increases dramatically, leading to a decrease in cytoplasmic pH and reduced tolerance of anoxia. We present evidence that, under these conditions, H+ pumps are activated to partly offset acidosis due to H+ influx and, thereby, contribute to cytoplasmic pH regulation and tolerance of anoxia. The regulation of H+ extrusion under anoxia is discussed with respect to the acclimation response and mechanisms of intracellular pH regulation in aerobic plant cells.

  1. Simple graphene chemiresistors as pH sensors: fabrication and characterization

    NASA Astrophysics Data System (ADS)

    Lei, Nan; Li, Pengfei; Xue, Wei; Xu, Jie

    2011-10-01

    We report the fabrication and characterization of a simple gate-free graphene device as a pH sensor. The graphene sheets are made by mechanical exfoliation. Platinum contact electrodes are fabricated with a mask-free process using a focused ion beam and then expanded by silver paint. Annealing is used to improve the electrical contact. The experiment on the fabricated graphene device shows that the resistance of the device decreases linearly with increasing pH values (in the range of 4-10) in the surrounding liquid environment. The resolution achieved in our experiments is approximately 0.3 pH in alkali environment. The sensitivity of the device is calculated as approximately 2 kΩ pH-1. The simple configuration, miniaturized size and integration ability make graphene-based sensors promising candidates for future micro/nano applications.

  2. Dual-Modal Colorimetric/Fluorescence Molecular Probe for Ratiometric Sensing of pH and Its Application.

    PubMed

    Wu, Luling; Li, Xiaolin; Huang, Chusen; Jia, Nengqin

    2016-08-16

    As traditional pH meters cannot work well for minute regions (such as subcellular organelles) and in harsh media, molecular pH-sensitive devices for monitoring pH changes in diverse local heterogeneous environments are urgently needed. Here, we report a new dual-modal colorimetric/fluorescence merocyanine-based molecular probe (CPH) for ratiometric sensing of pH. Compared with previously reported pH probes, CPH bearing the benzyl group at the nitrogen position of the indolium group and the phenol, which is used as the acceptor for proton, could respond to pH changes immediately through both the ratiometric fluorescence signal readout and naked-eye colorimetric observation. The sensing process was highly stable and reversible. Most importantly, the suitable pKa value (6.44) allows CPH to presumably accumulate in lysosomes and become a lysosome-target fluorescent probe. By using CPH, the intralysosomal pH fluctuation stimulated by antimalaria drug chloroquine was successfully tracked in live cells through the ratiometric fluorescence images. Additionally, CPH could be immobilized on test papers, which exhibited a rapid and reversible colorimetric response to acid/base vapor through the naked-eye colorimetric analysis. This proof-of-concept study presents the potential application of CPH as a molecular tool for monitoring intralysosomal pH fluctuation in live cells, as well as paves the way for developing the economic, reusable, and fast-response optical pH meters for colorimetric sensing acid/base vapor with direct naked-eye observation.

  3. Single-Dose Electrospun Nanoparticles-in-Nanofibers Wound Dressings with Enhanced Epithelialization, Collagen Deposition, and Granulation Properties.

    PubMed

    Ali, Isra H; Khalil, Islam A; El-Sherbiny, Ibrahim M

    2016-06-15

    Phenytoin (Ph), an antiepileptic drug, was reported to exhibit high wound healing activity. However, its limited solubility, bioavailability, and inefficient distribution during topical administration limit its use. Therefore, this study aims to develop new single-dose electrospun nanoparticles-in-nanofibers (NPs-in-NFs) wound dressings that allow a well-controlled release of Ph. These NPs-in-NFs systems are based on enhanced chitosan (CS)/poly(ethylene oxide) (PEO) electrospun nanofibers (NFs) incorporating optimized Ph-loaded nanocarriers. First, a study was conducted to investigate Ph loading efficiency into polymeric nanocarriers of different types; pluronic nanomicelles and poly(lactic-co-glycolic) acids nanoparticles (PLGA NPs). The drug release profile from the nanocarriers was further optimized via lecithin coating. Second, different electrospinning parameters were manipulated to fabricate beads-free homogeneous NFs with optimized polymer ratios. Plain and Ph-loaded nanocarriers were characterized using Fourier transform infrared (FTIR), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), dynamic light scattering (DLS), and scanning electron microscopy (SEM). Both entrapment efficiency of Ph (EE%) and its release profile in phosphate buffer saline (PBS; pH 5.5), simulating the wound environment, were studied. Biodegradability, swelling, vapor permeability, and porosity of the developed Ph-loaded NPs-in-NFs wound dressings were investigated. Morphology of the NPs-in-NFs was also studied using SEM and confocal laser microscopy (CLSM). Besides, the release profiles of Ph from the optimized NPs-in-NFs were assessed. The newly developed wound dressings were evaluated in vitro for their cytotoxicity using human fibroblasts and in vivo using a wound healing mice model. Nanocarriers with particle size ranging from 100 to 180 nm were successfully prepared. All nanocarriers attained a high drug entrapment efficiency exceeding 94% and showed promising sustained release profiles compared to free Ph. Results also demonstrated that NFs incorporating the optimized lecithin-coated Ph-loaded PLGA NPs could be the most promising candidate for efficient wound healing. These NPs-in-NFs systems conferred a well-controlled and sustained release of Ph over 9 days. Moreover, they showed the best re-epithelization and healing quality during the in vivo study with minimal inflammatory and necrotic cells formation.

  4. Iodine retention during evaporative volume reduction

    DOEpatents

    Godbee, H.W.; Cathers, G.I.; Blanco, R.E.

    1975-11-18

    An improved method for retaining radioactive iodine in aqueous waste solutions during volume reduction is disclosed. The method applies to evaporative volume reduction processes whereby the decontaminated (evaporated) water can be returned safely to the environment. The method generally comprises isotopically diluting the waste solution with a nonradioactive iodide and maintaining the solution at a high pH during evaporation.

  5. The Effects of Alkaline pH on Microleakage of Mineral Trioxide Aggregate and Calcium Enriched Mixture Apical Plugs.

    PubMed

    Mirhadi, Hossein; Moazzami, Fariborz; Rangani Jahromi, Saeed; Safarzade, Sareh

    2016-03-01

    Alkaline pH can affect the physical and chemical properties and sealing ability of apical plug material. Calcium hydroxide is used as an intracanal medication to complete disinfection of root canals. It raises the pH of environment to alkaline value. The aim of this in vitro study was to evaluate and compare the effect of alkaline pH on the sealing ability of calcium-enriched mixture (CEM) cement and mineral trioxide aggregate (MTA) apical plugs. Seventy single-rooted human maxillary anterior teeth were randomly divided to two experimental groups for Angelus MTA and CEM cement (n=30) and two control groups (n=5). Each group was divided into two subgroups of 15 for neutral and alkaline pH, and 1 negative and 1 positive control groups of 5. The root canals were cleaned and shaped by using ProTaper rotary system (Dentsply Maillefer; Ballaigues, Switzerland) and the terminal 3mm of the roots were resected. Then, MTA and CEM cement were condensed in apical region with 3mm thickness. The samples were exposed to two environments with different pH values of 13 and 7.4. The leakage was assessed by using the fluid filtration technique at 1, 7, 14, 30 days intervals. Data were analyzed by the repeated measures MANOVA. There was no statistically significant difference in the rate of microleakage between neutral and alkaline pH of CEM cement and MTA (p> 0.05). The sealing ability of MTA in an alkaline pH of 13 was significantly less than CEM cement in this pH (p< 0.05). An environment with alkaline pH had no adverse effect on the sealing ability of MTA and CEM cement used as apical plugs. CEM cement had better sealing ability in alkaline pH.

  6. Alkaline Response of a Halotolerant Alkaliphilic Halomonas Strain and Functional Diversity of Its Na+(K+)/H+ Antiporters*

    PubMed Central

    Cheng, Bin; Meng, Yiwei; Cui, Yanbing; Li, Chunfang; Tao, Fei; Yin, Huijia; Yang, Chunyu; Xu, Ping

    2016-01-01

    Halomonas sp. Y2 is a halotolerant alkaliphilic strain from Na+-rich pulp mill wastewater with high alkalinity (pH >11.0). Transcriptome analysis of this isolate revealed this strain may use various transport systems for pH homeostasis. In particular, the genes encoding four putative Na+/H+ antiporters were differentially expressed upon acidic or alkaline conditions. Further evidence, from heterologous expression and mutant studies, suggested that Halomonas sp. Y2 employs its Na+/H+ antiporters in a labor division way to deal with saline and alkaline environments. Ha-NhaD2 displayed robust Na+(Li+) resistance and high transport activities in Escherichia coli; a ΔHa-nhaD2 mutant exhibited growth inhibition at high Na+(Li+) concentrations at pH values of 6.2, 8.0, and 10.0, suggesting its physiological role in osmotic homeostasis. In contrast, Ha-NhaD1 showed much weaker activities in ion exporting and pH homeostasis. Ha-Mrp displayed a combination of properties similar to those of Mrp transporters from some Bacillus alkaliphiles and neutrophiles. This conferred obvious Na+(Li+, K+) resistance in E. coli-deficient strains, as those ion transport spectra of some neutrophil Mrp antiporters. Conversely, similar to the Bacillus alkaliphiles, Ha-Mrp showed central roles in the pH homeostasis of Halomonas sp. Y2. An Ha-mrp-disrupted mutant was seriously inhibited by high concentrations of Na+(Li+, K+) but only under alkaline conditions. Ha-NhaP was determined to be a K+/H+ antiporter and shown to confer strong K+ resistance both at acidic and alkaline stresses. PMID:27777302

  7. CO2-induced pH reduction increases physiological toxicity of nano-TiO2 in the mussel Mytilus coruscus

    PubMed Central

    Hu, Menghong; Lin, Daohui; Shang, Yueyong; Hu, Yi; Lu, Weiqun; Huang, Xizhi; Ning, Ke; Chen, Yimin; Wang, Youji

    2017-01-01

    The increasing usage of nanoparticles has caused their considerable release into the aquatic environment. Meanwhile, anthropogenic CO2 emissions have caused a reduction of seawater pH. However, their combined effects on marine species have not been experimentally evaluated. This study estimated the physiological toxicity of nano-TiO2 in the mussel Mytilus coruscus under high pCO2 (2500–2600 μatm). We found that respiration rate (RR), food absorption efficiency (AE), clearance rate (CR), scope for growth (SFG) and O:N ratio were significantly reduced by nano-TiO2, whereas faecal organic weight rate and ammonia excretion rate (ER) were increased under nano-TiO2 conditions. High pCO2 exerted lower effects on CR, RR, ER and O:N ratio than nano-TiO2. Despite this, significant interactions of CO2-induced pH change and nano-TiO2 were found in RR, ER and O:N ratio. PCA showed close relationships among most test parameters, i.e., RR, CR, AE, SFG and O:N ratio. The normal physiological responses were strongly correlated to a positive SFG with normal pH and no/low nano-TiO2 conditions. Our results indicate that physiological functions of M. coruscus are more severely impaired by the combination of nano-TiO2 and high pCO2. PMID:28054631

  8. CO2-induced pH reduction increases physiological toxicity of nano-TiO2 in the mussel Mytilus coruscus

    NASA Astrophysics Data System (ADS)

    Hu, Menghong; Lin, Daohui; Shang, Yueyong; Hu, Yi; Lu, Weiqun; Huang, Xizhi; Ning, Ke; Chen, Yimin; Wang, Youji

    2017-01-01

    The increasing usage of nanoparticles has caused their considerable release into the aquatic environment. Meanwhile, anthropogenic CO2 emissions have caused a reduction of seawater pH. However, their combined effects on marine species have not been experimentally evaluated. This study estimated the physiological toxicity of nano-TiO2 in the mussel Mytilus coruscus under high pCO2 (2500-2600 μatm). We found that respiration rate (RR), food absorption efficiency (AE), clearance rate (CR), scope for growth (SFG) and O:N ratio were significantly reduced by nano-TiO2, whereas faecal organic weight rate and ammonia excretion rate (ER) were increased under nano-TiO2 conditions. High pCO2 exerted lower effects on CR, RR, ER and O:N ratio than nano-TiO2. Despite this, significant interactions of CO2-induced pH change and nano-TiO2 were found in RR, ER and O:N ratio. PCA showed close relationships among most test parameters, i.e., RR, CR, AE, SFG and O:N ratio. The normal physiological responses were strongly correlated to a positive SFG with normal pH and no/low nano-TiO2 conditions. Our results indicate that physiological functions of M. coruscus are more severely impaired by the combination of nano-TiO2 and high pCO2.

  9. Stabilized Alumina/Ethanol Colloidal Dispersion for Seeding High Temperature Air Flows

    NASA Technical Reports Server (NTRS)

    Wernet, Judith H.; Wernet, Mark P.

    1994-01-01

    Seeding air flows with particles to enable measurements of gas velocities via laser anemometry and/or particle image velocimetry techniques can be quite exasperating. The seeding requirements are compounded when high temperature environments are encountered and special care must be used in selecting a refractory seed material. The pH stabilization techniques commonly employed in ceramic processing are used to obtain stable dispersions for generating aerosols of refractory seed material. By adding submicron alumina particles to a preadjusted pH solution of ethanol, a stable dispersion is obtained which when atomized produces a high quality aerosol. Commercial grade alumina powder is used with a moderate size distribution. The technique is not limited to alumina/ethanol and is also demonstrated with an alumina/H2O system. Other ceramic powders in various polar solvents could also be used once the point of zero charge (pH(sub pzc)) of the powder in the solvent has been determined.

  10. Resveratrol-induced apoptosis is enhanced in low pH environments associated with cancer.

    PubMed

    Shamim, Uzma; Hanif, Sarmad; Albanyan, Abdulmajeed; Beck, Frances W J; Bao, Bin; Wang, Zhiwei; Banerjee, Sanjeev; Sarkar, Fazlul H; Mohammad, Ramzi M; Hadi, Sheikh M; Azmi, Asfar S

    2012-04-01

    Many critical factors such as hypoxia, nutrient deficiency, activation of glycolytic pathway/Warburg effect contribute to the observed low pH in tumors compared to normal tissue. Studies suggest that such tumor specific acidic environment can be exploited for the development of therapeutic strategies against cancer. Independent observations show reduction in pH of mammalian cells undergoing internucleosomal DNA fragmentation and apoptosis. As such, our group has extensively demonstrated that anticancer mechanisms of different plant polyphenols involve mobilization of endogenous copper and consequent internucleosomal DNA breakage. Copper is redox active metal, an essential component of chromatin and is sensitive to subtle pH changes in its microenvironment. Here we explored whether, acidic pH promotes growth inhibition, apoptosis, and DNA damaging capacity of chemopreventive agent resveratrol. Our results reveal that growth inhibition and internucleosomal DNA fragmentation induced apoptosis in Capan-2 and Panc-28 pancreatic cancer cell lines (and not in normal HPDE cells) by resveratrol is enhanced at lower pH. Using comet assay, we further demonstrate that DNA breakage by resveratrol is enhanced with acidification. Membrane permeable copper specific chelator neocuproine (and not iron chelator orthophenanthroline) abrogated growth inhibition and apoptosis by resveratrol. Western blot results show enhanced activation of DNA laddering marker H2.aX by resveratrol at acidic pH that was reversed by neocuproine and not by orthophenanthroline. Our findings provide irrevocable proof that low pH environment can be turned into tumor weakness and assist in eradication of cancer cells by resveratrol. Copyright © 2011 Wiley Periodicals, Inc.

  11. Biobased, Internally pH-Sensitive Materials: Immobilized Yellow Fluorescent Protein as an Optical Sensor for Spatiotemporal Mapping of pH Inside Porous Matrices.

    PubMed

    Consolati, Tanja; Bolivar, Juan M; Petrasek, Zdenek; Berenguer, Jose; Hidalgo, Aurelio; Guisán, Jose M; Nidetzky, Bernd

    2018-02-28

    The pH is fundamental to biological function and its measurement therefore crucial across all biosciences. Unlike homogenous bulk solution, solids often feature internal pH gradients due to partition effects and confined biochemical reactions. Thus, a full spatiotemporal mapping for pH characterization in solid materials with biological systems embedded in them is essential. In here, therefore, a fully biocompatible methodology for real-time optical sensing of pH within porous materials is presented. A genetically encoded ratiometric pH sensor, the enhanced superfolder yellow fluorescent protein (sYFP), is used to functionalize the internal surface of different materials, including natural and synthetic organic polymers as well as silica frameworks. By using controlled, tailor-made immobilization, sYFP is homogenously distributed within these materials and so enables, via self-referenced imaging analysis, pH measurements in high accuracy and with useful spatiotemporal resolution. Evolution of internal pH is monitored in consequence of a proton-releasing enzymatic reaction, the hydrolysis of penicillin by a penicillin acylase, taking place in solution or confined to the solid surface of the porous matrix. Unlike optochemical pH sensors, which often interfere with biological function, labeling with sYFP enables pH sensing without altering the immobilized enzyme's properties in any of the materials used. Fast response of sYFP to pH change permits evaluation of biochemical kinetics within the solid materials. Thus, pH sensing based on immobilized sYFP represents a broadly applicable technique to the study of biology confined to the internally heterogeneous environment of solid matrices.

  12. Transcription of the pst Operon of Clostridium acetobutylicum Is Dependent on Phosphate Concentration and pH

    PubMed Central

    Fischer, Ralf-Jörg; Oehmcke, Sonja; Meyer, Uta; Mix, Maren; Schwarz, Katrin; Fiedler, Tomas; Bahl, Hubert

    2006-01-01

    The pst operon of Clostridium acetobutylicum ATCC 824 comprises five genes, pstS, pstC, pstA, pstB, and phoU, and shows a gene architecture identical to that of Escherichia coli. Deduced proteins are predicted to represent a high-affinity phosphate-specific ABC (ATP-binding cassette) transport system (Pst) and a protein homologous to PhoU, a negative phosphate regulon regulator. We analyzed the expression patterns of the pst operon in Pi-limited chemostat cultures during acid production at pH 5.8 or solvent production at pH 4.5 and in response to Pi pulses. Specific mRNA transcripts were found only when external Pi concentrations had dropped below 0.2 mM. Two specific transcripts were detected, a 4.7-kb polycistronic mRNA spanning the whole operon and a quantitatively dominating 1.2-kb mRNA representing the first gene, pstS. The mRNA levels clearly differed depending on the external pH. The amounts of the full-length mRNA detected were about two times higher at pH 5.8 than at pH 4.5. The level of pstS mRNA increased by a factor of at least 8 at pH 5.8 compared to pH 4.5 results. Primer extension experiments revealed only one putative transcription start point 80 nucleotides upstream of pstS. Thus, additional regulatory sites are proposed in the promoter region, integrating two different extracellular signals, namely, depletion of inorganic phosphate and the pH of the environment. After phosphate pulses were applied to a phosphate-limited chemostat we observed faster phosphate consumption at pH 5.8 than at pH 4.5, although higher optical densities were recorded at pH 4.5. PMID:16855236

  13. Production of isoprene, one of the high-density fuel precursors, from peanut hull using the high-efficient lignin-removal pretreatment method.

    PubMed

    Wang, Sumeng; Wang, Zhaobao; Wang, Yongchao; Nie, Qingjuan; Yi, Xiaohua; Ge, Wei; Yang, Jianming; Xian, Mo

    2017-01-01

    Isoprene as the feedstock can be used to produce renewable energy fuels, providing an alternative to replace the rapidly depleting fossil fuels. However, traditional method for isoprene production could not meet the demands for low-energy consumption and environment-friendliness. Moreover, most of the previous studies focused on biofuel production out of lignocellulosic materials such as wood, rice straw, corn cob, while few studies concentrated on biofuel production using peanut hull (PH). As is known, China is the largest peanut producer in the globe with an extremely considerable amount of PH to be produced each year. Therefore, a novel, renewable, and environment-friendly pretreatment strategy to increase the enzymatic hydrolysis efficiency of cellulose and reduce the inhibitors generation was developed to convert PH into isoprene. The optimal pretreatment conditions were 100 °C, 60 min, 10% (w/v) solid loading with a 2:8 volume ratio of phosphoric acid and of hydrogen peroxide. In comparison with the raw PH, the hemicellulose and lignin were reduced to 85.0 and 98.0%, respectively. The cellulose-glucose conversion of pretreated PH reached up to 95.0% in contrast to that of the raw PH (19.1%). Only three kinds of inhibitors including formic acid, levulinic acid, and a little furfural were formed during the pretreatment process, whose concentrations were too low to inhibit the isoprene yield for Escherichia coli fermentation. Moreover, compared with the isoprene yield of pure glucose fermentation (298 ± 9 mg/L), 249 ± 6.7 and 294 ± 8.3 mg/L of isoprene were produced using the pretreated PH as the carbon source by the engineered strain via separate hydrolysis and fermentation and simultaneous saccharification and fermentation (SSF) methods, respectively. The isoprene production via SSF had a 9.8% glucose-isoprene conversion which was equivalent to 98.8% of isoprene production via the pure glucose fermentation. The optimized phosphoric acid/hydrogen peroxide combination pretreatment approach was proved effective to remove lignin and hemicellulose from lignocellulosic materials. Meanwhile, the pretreated PH could be converted into isoprene efficiently in the engineered Escherichia coli . It is concluded that this novel strategy of isoprene production using lignocellulosic materials pretreated by phosphoric acid/hydrogen peroxide is a promising alternative to isoprene production using traditional way which can fully utilize non-renewable fossil sources.

  14. RESPONSES OF CELLS TO pH CHANGES IN THE MEDIUM

    PubMed Central

    Taylor, A. Cecil

    1962-01-01

    Studies were made with time-lapse motion pictures of the reactions of cells in culture to changes in their environment. The concentrations of H+, HCO3 -and CO2 in the medium were altered in such a way that each, in turn, could be maintained constant while the others were varied. Observations were made on the shape of the cells, their activity, and their relation to the substratum. Characteristic reversible changes in the cells were observed whenever environmental pH was altered. Elevation of the pH accelerated cell movements and caused contraction of the cytoplasm, while lowering of the pH retarded and eventually stopped all cell activity, causing apparent gelation of the protoplasm. These responses did not occur when HCO3 - and CO2 were varied without changing the pH. It is suggested that local pH changes in the micro-environment of a cell's surface may be a significant factor in controlling cell behavior in culture and in vivo. PMID:13993539

  15. Comparative mobility of sulfonamides and bromide tracer in three soils

    USGS Publications Warehouse

    Kurwadkar, S.T.; Adams, C.D.; Meyer, M.T.; Kolpin, D.W.

    2011-01-01

    In animal agriculture, sulfonamides are one of the routinely used groups of antimicrobials for therapeutic and sub-therapeutic purposes. It is observed that, the animals when administered the antimicrobials, often do not completely metabolize them; and excrete the partially metabolized forms into the environment. Due to the continued use of antimicrobials and disposal of untreated waste, widespread occurrence of partially metabolized antimicrobials in aquatic and terrestrial environments has been reported in various scientific journals. In this research, the mobility of two sulfonamides - sulfamethazine (SMN), sulfathiazole (STZ) and a conservative bromide tracer was investigated in three soils collected from regions in the United States with large number of concentrated animal-feed operations. Results of a series of column studies indicate that the mobility of these two sulfonamides was dependent on pH, soil charge density, and contact time. At low pH and high charge density, substantial retention of sulfonamides was observed in all three soils investigated, due to the increased fraction of cationic and neutral forms of the sulfonamides. Conversely, enhanced mobility was observed at high pH, where the sulfonamides are predominantly in the anionic form. The results indicate that when both SMN and STZ are predominantly in anionic forms, their mobility approximates the mobility of a conservative bromide tracer. This observation is consistent for the mobility of both SMN and STZ individually, and also in the presence of several other antimicrobials in all three soils investigated. Higher contact time indicates lower mobility due to increased interaction with soil material. ?? 2011.

  16. Sustainable nutrients recovery and recycling by optimizing the chemical addition sequence for struvite precipitation from raw swine slurries.

    PubMed

    Taddeo, Raffaele; Kolppo, Kari; Lepistö, Raghida

    2016-09-15

    Livestock farming contributes heavily to nitrogen (N) and phosphorus (P) flows into the environment, a major cause of eutrophication of coastal and freshwater systems. Furthermore, the growing demand for N-P fertilizers is increasing the emission of anthropogenic reactive N into the atmosphere and the depletion of the current P reserves. Therefore, it is essential to minimize the anthropogenic impact on the environment and recycle the wasted N-P for agricultural reuse. This study focused on enhancing struvite (MgNH4PO4*6H2O) precipitation from raw swine slurries in batch and laboratory-scale reactors. Different chemical addition sequences were evaluated, and the best removal efficiency (E%) was obtained when the chemicals were mixed before the precipitation process. Struvite was detected at a pH as low as 6 (E%N-P∼50%), and high E%N-P was found at pH 7-9.5 (80-95%). Furthermore, air stripping was used in place of NaOH to adjust pH, returning the same efficiency as if only alkali had been used. XRD and FE-SEM analysis of the precipitate showed that the recovered struvite was of high purity with orthorhombic crystalline structure and only trace amounts of impurities from matrix organics, co-precipitation products (CaO and amorphous calcium-phosphates), and residuals of added chemicals (MgO). Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. A study of organic acid production in contrasts between two phosphate solubilizing fungi: Penicillium oxalicum and Aspergillus niger

    PubMed Central

    Li, Zhen; Bai, Tongshuo; Dai, Letian; Wang, Fuwei; Tao, Jinjin; Meng, Shiting; Hu, Yunxiao; Wang, Shimei; Hu, Shuijin

    2016-01-01

    Phosphate solubilizing fungi (PSF) have huge potentials in enhancing release of phosphorus from fertilizer. Two PSF (NJDL-03 and NJDL-12) were isolated and identified as Penicillium oxalicum and Aspergillus niger respectively in this study. The quantification and identification of organic acids were performed by HPLC. Total concentrations of organic acids secreted by NJDL-03 and NJDL-12 are ~4000 and ~10,000 mg/L with pH values of 3.6 and 2.4 respectively after five-days culture. Oxalic acid dominates acidity in the medium due to its high concentration and high acidity constant. The two fungi were also cultured for five days with the initial pH values of the medium varied from 6.5 to 1.5. The biomass reached the maximum when the initial pH values are 4.5 for NJDL-03 and 2.5 for NJDL-12. The organic acids for NJDL-12 reach the maximum at the initial pH = 5.5. However, the acids by NJDL-03 continue to decrease and proliferation of the fungus terminates at pH = 2.5. The citric acid production increases significantly for NJDL-12 at acidic environment, whereas formic and oxalic acids decrease sharply for both two fungi. This study shows that NJDL-12 has higher ability in acid production and has stronger adaptability to acidic environment than NJDL-03. PMID:27126606

  18. Ocean acidification at high latitudes: potential effects on functioning of the Antarctic bivalve Laternula elliptica.

    PubMed

    Cummings, Vonda; Hewitt, Judi; Van Rooyen, Anthony; Currie, Kim; Beard, Samuel; Thrush, Simon; Norkko, Joanna; Barr, Neill; Heath, Philip; Halliday, N Jane; Sedcole, Richard; Gomez, Antony; McGraw, Christina; Metcalf, Victoria

    2011-01-05

    Ocean acidification is a well recognised threat to marine ecosystems. High latitude regions are predicted to be particularly affected due to cold waters and naturally low carbonate saturation levels. This is of concern for organisms utilising calcium carbonate (CaCO(3)) to generate shells or skeletons. Studies of potential effects of future levels of pCO(2) on high latitude calcifiers are at present limited, and there is little understanding of their potential to acclimate to these changes. We describe a laboratory experiment to compare physiological and metabolic responses of a key benthic bivalve, Laternula elliptica, at pCO(2) levels of their natural environment (430 µatm, pH 7.99; based on field measurements) with those predicted for 2100 (735 µatm, pH 7.78) and glacial levels (187 µatm, pH 8.32). Adult L. elliptica basal metabolism (oxygen consumption rates) and heat shock protein HSP70 gene expression levels increased in response both to lowering and elevation of pH. Expression of chitin synthase (CHS), a key enzyme involved in synthesis of bivalve shells, was significantly up-regulated in individuals at pH 7.78, indicating L. elliptica were working harder to calcify in seawater undersaturated in aragonite (Ω(Ar) = 0.71), the CaCO(3) polymorph of which their shells are comprised. The different response variables were influenced by pH in differing ways, highlighting the importance of assessing a variety of factors to determine the likely impact of pH change. In combination, the results indicate a negative effect of ocean acidification on whole-organism functioning of L. elliptica over relatively short terms (weeks-months) that may be energetically difficult to maintain over longer time periods. Importantly, however, the observed changes in L. elliptica CHS gene expression provides evidence for biological control over the shell formation process, which may enable some degree of adaptation or acclimation to future ocean acidification scenarios.

  19. A gold nanocluster-based fluorescent probe for simultaneous pH and temperature sensing and its application to cellular imaging and logic gates

    NASA Astrophysics Data System (ADS)

    Wu, Yun-Tse; Shanmugam, Chandirasekar; Tseng, Wei-Bin; Hiseh, Ming-Mu; Tseng, Wei-Lung

    2016-05-01

    Metal nanocluster-based nanomaterials for the simultaneous determination of temperature and pH variations in micro-environments are still a challenge. In this study, we develop a dual-emission fluorescent probe consisting of bovine serum albumin-stabilized gold nanoclusters (BSA-AuNCs) and fluorescein-5-isothiocyanate (FITC) as temperature- and pH-responsive fluorescence signals. Under single wavelength excitation the FITC/BSA-AuNCs exhibited well-separated dual emission bands at 525 and 670 nm. When FITC was used as a reference fluorophore, FITC/BSA-AuNCs showed a good linear response over the temperature range 1-71 °C and offered temperature-independent spectral shifts, temperature accuracy, activation energy, and reusability. The possible mechanism for high temperature-induced fluorescence quenching of FITC/BSA-AuNCs could be attributed to a weakening of the Au-S bond, thereby lowering the charge transfer from BSA to AuNCs. Additionally, the pH- and temperature-responsive properties of FITC/BSA-AuNCs allow simultaneous temperature sensing from 21 to 41 °C (at intervals of 5 °C) and pH from 6.0 to 8.0 (at intervals of 0.5 pH unit), facilitating the construction of two-input AND logic gates. Three-input AND logic gates were also designed using temperature, pH, and trypsin as inputs. The practicality of using FITC/BSA-AuNCs to determine the temperature and pH changes in HeLa cells is also validated.Metal nanocluster-based nanomaterials for the simultaneous determination of temperature and pH variations in micro-environments are still a challenge. In this study, we develop a dual-emission fluorescent probe consisting of bovine serum albumin-stabilized gold nanoclusters (BSA-AuNCs) and fluorescein-5-isothiocyanate (FITC) as temperature- and pH-responsive fluorescence signals. Under single wavelength excitation the FITC/BSA-AuNCs exhibited well-separated dual emission bands at 525 and 670 nm. When FITC was used as a reference fluorophore, FITC/BSA-AuNCs showed a good linear response over the temperature range 1-71 °C and offered temperature-independent spectral shifts, temperature accuracy, activation energy, and reusability. The possible mechanism for high temperature-induced fluorescence quenching of FITC/BSA-AuNCs could be attributed to a weakening of the Au-S bond, thereby lowering the charge transfer from BSA to AuNCs. Additionally, the pH- and temperature-responsive properties of FITC/BSA-AuNCs allow simultaneous temperature sensing from 21 to 41 °C (at intervals of 5 °C) and pH from 6.0 to 8.0 (at intervals of 0.5 pH unit), facilitating the construction of two-input AND logic gates. Three-input AND logic gates were also designed using temperature, pH, and trypsin as inputs. The practicality of using FITC/BSA-AuNCs to determine the temperature and pH changes in HeLa cells is also validated. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr02341j

  20. Computational Solutions for Today’s Navy: New Methods are Being Employed to Meet the Navy’s Changing Software-Development Environment

    DTIC Science & Technology

    2008-03-01

    software- development environment. ▶ Frank W. Bentrem, Ph.D., John T. Sample, Ph.D., and Michael M. Harris he Naval Research Labor - atory (NRL) is the...sonars (Through-the-Sensor technology), supercomputer generated numer- ical models, and historical/ clima - tological databases. It uses a vari- ety of

  1. Layer-by-layer carbon nanotube bio-templates for in situ monitoring of the metabolic activity of nitrifying bacteria

    NASA Astrophysics Data System (ADS)

    Loh, Kenneth J.; Guest, Jeremy S.; Ho, Genevieve; Lynch, Jerome P.; Love, Nancy G.

    2009-03-01

    Despite the wide variety of effective disinfection and wastewater treatment techniques for removing organic and inorganic wastes, pollutants such as nitrogen remain in wastewater effluents. If left untreated, these nitrogenous wastes can adversely impact the environment by promoting the overgrowth of aquatic plants, depleting dissolved oxygen, and causing eutrophication. Although nitrification/denitrification processes are employed during advanced wastewater treatment, effective and efficient operation of these facilities require information of the pH, dissolved oxygen content, among many other parameters, of the wastewater effluent. In this preliminary study, a biocompatible CNT-based nanocomposite is proposed and validated for monitoring the biological metabolic activity of nitrifying bacteria in wastewater effluent environments (i.e., to monitor the nitrification process). Using carbon nanotubes and a pH-sensitive conductive polymer (i.e., poly(aniline) emeraldine base), a layer-by-layer fabrication technique is employed to fabricate a novel thin film pH sensor that changes its electrical properties in response to variations in ambient pH environments. Laboratory studies are conducted to evaluate the proposed nanocomposite's biocompatibility with wastewater effluent environments and its pH sensing performance.

  2. Electrochemical and in-situ Surface-Enhanced Raman Spectroscopic (SERS) study of passive films formed on low-carbon steel in highly alkaline environments

    NASA Astrophysics Data System (ADS)

    Mancio, Mauricio

    In reinforced concrete, a passive layer forms because of the alkaline conditions in the pores of the cement paste, where large concentrations of hydroxides create a solution with pH typically between 12 and 14. The corrosion resistance of the material depends on the characteristics and integrity of the passive film; however, currently very limited information is available about the passive films formed on carbon steel under such conditions. This work presents an electrochemical and in-situ Surface-Enhanced Raman Spectroscopic (SERS) study of passive films formed on low-carbon steel in highly alkaline environments. More specifically, the study focuses on the characterization of the films formed on ASTM A36 steel reinforcing bar exposed to aqueous solutions that aim to reproduce the chemistry of the environment typically found within the cement paste. Electrochemical techniques such as cyclic potentiodynamic polarization curves, galvanostatic cathodic polarization and linear polarization resistance were employed, in addition to in-situ Surface Enhanced Raman Spectroscopy (SERS). The experimental setup was built in a way that SERS experiments could be performed simultaneously with potentiodynamic polarization curves, enabling a detailed analysis of the formation and reduction of the surface films as a function of applied potential. Three solutions with different pH levels were used for the polarization and SERS experiments, namely 0.55M KOH + 0.16M NaOH ([OH-]=0.71), 0.08M KOH + 0.02M NaOH ([OH-]=0.10) and 0.008M KOH + 0.002M NaOH ([OH-]=0.01). Additional NaOH solutions in which the pH was varied from 13 to 9 and the ionic strength from 10 -5 to 10-1 were prepared for a pilot study using linear polarization resistance. Results show that the features observed in the cyclic potentiodynamic polarization curves correlated well with the potential arrests observed in the GCP plots as well as with the changes observed in the SERS spectra, providing valuable information about the formation of passive films on carbon steel in each of the environments studied in this research. Although there are key differences among the films formed in the different solutions tested---particularly regarding their thickness and protectiveness---once the film-formation processes had been completed, generally the films were characterized by an inner layer of Fe(II) and an outer layer of Fe(III). A Fe(OH)2-like species appears consistently as dominating the inner Fe(II) layer, while the outer typically composed mostly by gamma-Fe2O3 and/or gamma-FeOOH. Film thickness varied from about 22 nm to 266 nm depending on the pH of the solution, and decreased as pH was reduced.

  3. The pH Game.

    ERIC Educational Resources Information Center

    Chemecology, 1996

    1996-01-01

    Describes a game that can be used to teach students about the acidity of liquids and substances around their school and enable them to understand what pH levels tell us about the environment. Students collect samples and measure the pH of water, soil, plants, and other natural material. (DDR)

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pirojsirikul, Teerapong; Götz, Andreas W.; Weare, John

    Green Fluorescent Protein (GFP) is a widely used fluorescent biomarker for the study of biological systems. Our investigation is focused on providing a reliable theoretical description of the GFP chromophore, the photochemical properties of which can be influenced through both the surrounding protein environment and pH levels. In this work we are specifically addressing the effect of an aqueous solvation environment , where a number of experimental measurements have been performed. Our approach is based on a combined quantum mechanics molecular mechanics (QM/MM) methodology, which incorporates high level coupled cluster theory for the analysis of excited states. It also presentsmore » the first application of the newly developed NWChem/AMBER QM/MM interface. Using a systematic approach, which involves comparison of gas phase and aqueous results for different protonation states and conformations, we have resolved existing uncertainties regarding theoretical interpretation of the experimental data. We observe that the impact of aqueous environment on charged states generally results in blue shifts, but the magnitude of the effect is sensitive to charge state and conformation and can be rationalized based on charge movement into the area of higher/lower external electrostatic potentials. At neutral pH levels the experimentally observed absorption signal is most likely coming from the phenol protonated form. Our results also show that the high level coupled description is essential for proper description of excited states of GFP.« less

  5. Sorption and degradation of selected pharmaceuticals in representative soils of the Czech Republic

    NASA Astrophysics Data System (ADS)

    Kodesova, Radka; Kocarek, Martin; Klement, Ales; Golovko, Oksana; Grabic, Roman; Fer, Miroslav; Nikodem, Antonin; Jaksik, Ondrej

    2015-04-01

    Knowledge of contaminant behavior (e.g. its sorption onto soil particle, degradation etc.) is essential when assessing contaminant migration in soil and groundwater environment. This study was focused on evaluating sorption isotherms and half-lives for 7 pharmaceuticals (clarithromycin, trimethoprim, metoprolol, atenolol, clindamycin, carbamazepine, sulfamethoxazole) on 13 soils of different soil properties. Sorption of ionizable compounds was highly affected by soil pH. The sorption coefficient of sulfamethoxazole was negatively correlated to soil pH and thus positively related to hydrolytic acidity and exchangeable acidity. Sorption coefficients for clindamycin and clarithromycin were positively related to soil pH and thus negatively related to hydrolytic acidity and exchangeable acidity and positively related to base cation saturation. Sorption coefficients for the remaining pharmaceuticals (trimethoprim, metoprolol, atenolol, and carbamazepine) were also positively correlated with the base cation saturation and cation exchange capacity. Degradation rates in some degree reflected sorption of studied pharmaceuticals on soil particles and increased with decreasing sorption. The highest mobility in studied soils was observed for sulfamethoxazole, but this pharmaceutical was relatively quickly degraded. The second highest mobility was found for carbamazepine, which mostly did not noticeably degrade during our experiments. Thus this pharmaceutical has the highest potential to migrate in water environment. The lowest mobility was observed for clarithromycin. However, this pharmaceutical due to its stability may be retained in an environment for a long time. Acknowledgement: The authors acknowledge the financial support of the Czech Science Foundation (Project No. 13-12477S, Transport of pharmaceuticals in soils). References: Kodesova, R., Grabic, R., Kocarek, M., Klement, A., Golovko, O., Fer, M., Nikodem, A., Jaksik, O., Pharmaceuticals' sorptions relative to properties of thirteen different soils. Science of the Total Environment 511 (2015) 435-443.

  6. Carbonate-based Janus micromotors moving in ultra-light acidic environment generated by HeLa cells in situ

    NASA Astrophysics Data System (ADS)

    Guix, Maria; Meyer, Anne K.; Koch, Britta; Schmidt, Oliver G.

    2016-02-01

    Novel approaches to develop naturally-induced drug delivery in tumor environments in a deterministic and controlled manner have become of growing interest in recent years. Different polymeric-based microstructures and other biocompatible substances have been studied taking advantage of lactic acidosis phenomena in tumor cells, which decrease the tumor extracellular pH down to 6.8. Micromotors have recently demonstrated a high performance in living systems, revealing autonomous movement in the acidic environment of the stomach or moving inside living cells by using acoustic waves, opening the doors for implementation of such smart microengines into living entities. The need to develop biocompatible motors which are driven by natural fuel sources inherently created in biological systems has thus become of crucial importance. As a proof of principle, we here demonstrate calcium carbonate Janus particles moving in extremely light acidic environments (pH 6.5), whose motion is induced in conditioned acidic medium generated by HeLa cells in situ. Our system not only obviates the need for an external fuel, but also presents a selective activation of the micromotors which promotes their motion and consequent dissolution in presence of a quickly propagating cell source (i.e. tumor cells), therefore inspiring new micromotor configurations for potential drug delivery systems.

  7. Carbonate-based Janus micromotors moving in ultra-light acidic environment generated by HeLa cells in situ

    PubMed Central

    Guix, Maria; Meyer, Anne K.; Koch, Britta; Schmidt, Oliver G.

    2016-01-01

    Novel approaches to develop naturally-induced drug delivery in tumor environments in a deterministic and controlled manner have become of growing interest in recent years. Different polymeric-based microstructures and other biocompatible substances have been studied taking advantage of lactic acidosis phenomena in tumor cells, which decrease the tumor extracellular pH down to 6.8. Micromotors have recently demonstrated a high performance in living systems, revealing autonomous movement in the acidic environment of the stomach or moving inside living cells by using acoustic waves, opening the doors for implementation of such smart microengines into living entities. The need to develop biocompatible motors which are driven by natural fuel sources inherently created in biological systems has thus become of crucial importance. As a proof of principle, we here demonstrate calcium carbonate Janus particles moving in extremely light acidic environments (pH 6.5), whose motion is induced in conditioned acidic medium generated by HeLa cells in situ. Our system not only obviates the need for an external fuel, but also presents a selective activation of the micromotors which promotes their motion and consequent dissolution in presence of a quickly propagating cell source (i.e. tumor cells), therefore inspiring new micromotor configurations for potential drug delivery systems. PMID:26905939

  8. Bio-precipitation of uranium by two bacterial isolates recovered from extreme environments as estimated by potentiometric titration, TEM and X-ray absorption spectroscopic analyses.

    PubMed

    Merroun, Mohamed L; Nedelkova, Marta; Ojeda, Jesus J; Reitz, Thomas; Fernández, Margarita López; Arias, José M; Romero-González, María; Selenska-Pobell, Sonja

    2011-12-15

    This work describes the mechanisms of uranium biomineralization at acidic conditions by Bacillus sphaericus JG-7B and Sphingomonas sp. S15-S1 both recovered from extreme environments. The U-bacterial interaction experiments were performed at low pH values (2.0-4.5) where the uranium aqueous speciation is dominated by highly mobile uranyl ions. X-ray absorption spectroscopy (XAS) showed that the cells of the studied strains precipitated uranium at pH 3.0 and 4.5 as a uranium phosphate mineral phase belonging to the meta-autunite group. Transmission electron microscopic (TEM) analyses showed strain-specific localization of the uranium precipitates. In the case of B. sphaericus JG-7B, the U(VI) precipitate was bound to the cell wall. Whereas for Sphingomonas sp. S15-S1, the U(VI) precipitates were observed both on the cell surface and intracellularly. The observed U(VI) biomineralization was associated with the activity of indigenous acid phosphatase detected at these pH values in the absence of an organic phosphate substrate. The biomineralization of uranium was not observed at pH 2.0, and U(VI) formed complexes with organophosphate ligands from the cells. This study increases the number of bacterial strains that have been demonstrated to precipitate uranium phosphates at acidic conditions via the activity of acid phosphatase. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Understanding and Mitigating Reservoir Compaction: an Experimental Study on Sand Aggregates

    NASA Astrophysics Data System (ADS)

    Schimmel, M.; Hangx, S.; Spiers, C. J.

    2016-12-01

    Fossil fuels continue to provide a source for energy, fuels for transport and chemicals for everyday items. However, adverse effects of decades of hydrocarbons production are increasingly impacting society and the environment. Production-driven reduction in reservoir pore pressure leads to a poro-elastic response of the reservoir, and in many occasions to time-dependent compaction (creep) of the reservoir. In turn, reservoir compaction may lead to surface subsidence and could potentially result in induced (micro)seismicity. To predict and mitigate the impact of fluid extraction, we need to understand production-driven reservoir compaction in highly porous siliciclastic rocks and explore potential mitigation strategies, for example, by using compaction-inhibiting injection fluids. As a first step, we investigate the effect of chemical environment on the compaction behaviour of sand aggregates, comparable to poorly consolidated, highly porous sandstones. The sand samples consist of loose aggregates of Beaujean quartz sand, sieved into a grainsize fraction of 180-212 µm. Uniaxial compaction experiments are performed at an axial stress of 35 MPa and temperature of 80°C, mimicking conditions of reservoirs buried at three kilometres depth. The chemical environment during creep is either vacuum-dry or CO2-dry, or fluid-saturated, with fluids consisting of distilled water, acid solution (CO2-saturated water), alkaline solution (pH 9), aluminium solution (pH 3) and solution with surfactants (i.e., AMP). Preliminary results show that compaction of quartz sand aggregates is promoted in a wet environment compared to a dry environment. It is inferred that deformation is controlled by subcritical crack growth when dry and stress corrosion cracking when wet, both resulting in grain failure and subsequent grain rearrangement. Fluids inhibiting these processes, have the potential to inhibit aggregate compaction.

  10. Projected pH reductions by 2100 might put deep North Atlantic biodiversity at risk

    NASA Astrophysics Data System (ADS)

    Gehlen, M.; Séférian, R.; Jones, D. O. B.; Roy, T.; Roth, R.; Barry, J.; Bopp, L.; Doney, S. C.; Dunne, J. P.; Heinze, C.; Joos, F.; Orr, J. C.; Resplandy, L.; Segschneider, J.; Tjiputra, J.

    2014-12-01

    This study aims to evaluate the potential for impacts of ocean acidification on North Atlantic deep-sea ecosystems in response to IPCC AR5 Representative Concentration Pathways (RCPs). Deep-sea biota is likely highly vulnerable to changes in seawater chemistry and sensitive to moderate excursions in pH. Here we show, from seven fully coupled Earth system models, that for three out of four RCPs over 17% of the seafloor area below 500 m depth in the North Atlantic sector will experience pH reductions exceeding -0.2 units by 2100. Increased stratification in response to climate change partially alleviates the impact of ocean acidification on deep benthic environments. We report on major pH reductions over the deep North Atlantic seafloor (depth >500 m) and at important deep-sea features, such as seamounts and canyons. By 2100, and under the high CO2 scenario RCP8.5, pH reductions exceeding -0.2 (-0.3) units are projected in close to 23% (~15%) of North Atlantic deep-sea canyons and ~8% (3%) of seamounts - including seamounts proposed as sites of marine protected areas. The spatial pattern of impacts reflects the depth of the pH perturbation and does not scale linearly with atmospheric CO2 concentration. Impacts may cause negative changes of the same magnitude or exceeding the current target of 10% of preservation of marine biomes set by the convention on biological diversity, implying that ocean acidification may offset benefits from conservation/management strategies relying on the regulation of resource exploitation.

  11. Life at acidic pH imposes an increased energetic cost for a eukaryotic acidophile.

    PubMed

    Messerli, Mark A; Amaral-Zettler, Linda A; Zettler, Erik; Jung, Sung-Kwon; Smith, Peter J S; Sogin, Mitchell L

    2005-07-01

    Organisms growing in acidic environments, pH<3, would be expected to possess fundamentally different molecular structures and physiological controls in comparison with similar species restricted to neutral pH. We begin to investigate this premise by determining the magnitude of the transmembrane electrochemical H+ gradient in an acidophilic Chlamydomonas sp. (ATCC PRA-125) isolated from the Rio Tinto, a heavy metal laden, acidic river (pH 1.7-2.5). This acidophile grows most rapidly at pH 2 but is capable of growth over a wide pH range (1.5-7.0), while Chlamydomonas reinhardtii is restricted to growth at pH>or=3 with optimal growth between pH 5.5 and 8.5. With the fluorescent H+ indicator, 2',7'-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein (BCECF), we show that the acidophilic Chlamydomonas maintains an average cytosolic pH of 6.6 in culture medium at both pH 2 and pH 7 while Chlamydomonas reinhardtii maintains an average cytosolic pH of 7.1 in pH 7 culture medium. The transmembrane electric potential difference of Chlamydomonas sp., measured using intracellular electrodes at both pH 2 and 7, is close to 0 mV, a rare value for plants, animals and protists. The 40,000-fold difference in [H+] could be the result of either active or passive mechanisms. Evidence for active maintenance was detected by monitoring the rate of ATP consumption. At the peak, cells consume about 7% more ATP per second in medium at pH 2 than at pH 7. This increased rate of consumption is sufficient to account for removal of H+ entering the cytosol across a membrane with relatively high permeability to H+ (7x10(-8) cm s-1). Our results indicate that the small increase in the rate of ATP consumption can account for maintenance of the transmembrane H+ gradient without the imposition of cell surface H+ barriers.

  12. Acid-inducible proton influx currents in the plasma membrane of murine osteoclast-like cells.

    PubMed

    Kuno, Miyuki; Li, Guangshuai; Moriura, Yoshie; Hino, Yoshiko; Kawawaki, Junko; Sakai, Hiromu

    2016-05-01

    Acidification of the resorption pits, which is essential for dissolving bone, is produced by secretion of protons through vacuolar H(+)-ATPases in the plasma membrane of bone-resorbing cells, osteoclasts. Consequently, osteoclasts face highly acidic extracellular environments, where the pH gradient across the plasma membrane could generate a force driving protons into the cells. Proton influx mechanisms during the acid exposure are largely unknown, however. In this study, we investigated extracellular-acid-inducible proton influx currents in osteoclast-like cells derived from a macrophage cell line (RAW264). Decreasing extracellular pH to <5.5 induced non-ohmic inward currents. The reversal potentials depended on the pH gradients across the membrane and were independent of concentrations of Na(+), Cl(-), and HCO3 (-), suggesting that they were carried largely by protons. The acid-inducible proton influx currents were not inhibited by amiloride, a widely used blocker for cation channels/transporters, or by 4,4'-diisothiocyanato-2,2'-stilbenesulfonate(DIDS) which blocks anion channels/transporters. Additionally, the currents were not significantly affected by V-ATPase inhibitors, bafilomycin A1 and N,N'-dicyclohexylcarbodiimide. Extracellular Ca(2+) (10 mM) did not affect the currents, but 1 mM ZnCl2 decreased the currents partially. The intracellular pH in the vicinity of the plasma membrane was dropped by the acid-inducible H(+) influx currents, which caused overshoot of the voltage-gated H(+) channels after removal of acids. The H(+) influx currents were smaller in undifferentiated, mononuclear RAW cells and were negligible in COS7 cells. These data suggest that the acid-inducible H(+) influx (H(+) leak) pathway may be an additional mechanism modifying the pH environments of osteoclasts upon exposure to strong acids.

  13. The biokarst system and its carbon sinks in response to pH changes: A simulation experiment with microalgae

    NASA Astrophysics Data System (ADS)

    Xie, Tengxiang; Wu, Yanyou

    2017-03-01

    This study aims to explore the changes in a microalgal biokarst system as a potential carbon sink system in response to pH changes. The bidirectional isotope labeling method and mass balance calculation were adopted in a simulated biokarst environment with a series of set pH conditions and three microalgal species. Three key processes of the microalgal biokarst system, including calcite dissolution, CaCO3 reprecipitation, and inorganic carbon assimilation by microalgae, were completely quantitatively described. The combined effects of chemical dissolution and species-specific biodissolution caused a decrease in overall dissolution rate when the pH increased from 7 to 9. CaCO3 reprecipitation and the utilization of dissolved inorganic carbon originating from calcite dissolution decreased when the pH increased from 7 to 9. The three processes exhibited different effects in changing the CO2 atmosphere. The amount of photosynthetic carbon sink was larger at high pH values than at low pH values. However, the CO2 sequestration related to the biokarst process (biokarst carbon sink) increased with decreasing pH. Overall, the total amount of sequestered CO2 produced by the biokarst system (CaCO3-CO2-microalgae) shows a minimum at a specific pH then increases with decreasing pH. Therefore, various processes and carbon sinks in the biokarst system are sensitive to pH changes, and biokarst processes play an important negative feedback role in the release of CO2 by acidification. The results also suggest that the carbon sink associated with carbonate weathering cannot be neglected when considering the global carbon cycle on the scale of thousands of years (<3 ka).

  14. Increased tolerance of Vibrio cholerae O1 to temperature, pH, or drying associated with colonization of shrimp carapaces.

    PubMed

    Castro-Rosas, J; Escartín, E F

    2005-07-15

    External surfaces of samples of shrimp carapace were inoculated with Vibrio cholerae and stored at 22 degrees C for 1 h in a moist environment to facilitate their adhesion, or for 24 h to permit their colonization of the material. Colonizing cells showed a higher resistance to the effects of high temperatures, low pH, and desiccation conditions than adherent cells. Periods of 10, 5, and 3 min and 0 s were required to inactivate the pathogen when attached cells were exposed to 50, 60, 65, or 70 degrees C. The corresponding times for colonizing cells were 30, 15, 10, and 1 min. At pH 2.5 numbers of attached V. cholerae were reduced by >5 log after 16 min, whereas the reduction of colonizing cells was only 2.8 log. The survival times of the microorganism on dried carapaces stored at 5 and 22 degrees C were, respectively, 60 and 10 min for adherent cells, and 12 and 4 h for colonizing cells. The increased resistance to the effects of high temperatures, low pH, and desiccation of V. cholerae O1 colonizing shrimp carapaces may have significant implications for food safety and the epidemiology of cholera.

  15. Effect of Humic Acid on the Removal of Chromium(VI) and the Production of Solids in Iron Electrocoagulation.

    PubMed

    Pan, Chao; Troyer, Lyndsay D; Liao, Peng; Catalano, Jeffrey G; Li, Wenlu; Giammar, Daniel E

    2017-06-06

    Iron-based electrocoagulation can be highly effective for Cr(VI) removal from water supplies. However, the presence of humic acid (HA) inhibited the rate of Cr(VI) removal in electrocoagulation, with the greatest decreases in Cr(VI) removal rate at higher pH. This inhibition was probably due to the formation of Fe(II) complexes with HA that are more rapidly oxidized than uncomplexed Fe(II) by dissolved oxygen, making less Fe(II) available for reduction of Cr(VI). Close association of Fe(III), Cr(III), and HA in the solid products formed during electrocoagulation influenced the fate of both Cr(III) and HA. At pH 8, the solid products were colloids (1-200 nm) with Cr(III) and HA concentrations in the filtered fraction being quite high, while at pH 6 these concentrations were low due to aggregation of small particles. X-ray diffraction and X-ray absorption fine structure spectroscopy indicated that the iron oxides produced were a mixture of lepidocrocite and ferrihydrite, with the proportion of ferrihydrite increasing in the presence of HA. Cr(VI) was completely reduced to Cr(III) in electrocoagulation, and the coordination environment of the Cr(III) in the solids was similar regardless of the humic acid loading, pH, and dissolved oxygen level.

  16. On the Versatility of Rheoreversible, Stimuli-responsive Hydraulic-Fracturing Fluids for Enhanced Geothermal Systems: Effect of Reservoir pH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fernandez, Carlos A.; Shao, Hongbo; Bonneville, Alain

    Abstract The primary challenge for the feasibility of enhanced geothermal systems (EGS) is to cost-effectively create high-permeability reservoirs inside deep crystalline bedrock. Although fracturing fluids are commonly used for oil/gas, standard fracturing methods are not developed or proven for EGS temperatures and pressures. Furthermore, the environmental impacts of currently used fracturing methods are only recently being determined. These authors recently reported an environmentally benign, CO2-activated, rheoreversible fracturing fluid that enhances permeability through fracturing due to in situ volume expansion and gel formation. The potential of this novel fracturing fluid is evaluated in this work towards its application at geothermal sitesmore » under different pH conditions. Laboratory-scale fracturing experiments using Coso Geothermal rock cores under different pH environments were performed followed by X-ray microtomography characterization. The results demonstrate that CO2-reactive aqueous solutions of environmentally amenable polyallylamine (PAA) consistently and reproducibly creates/propagates fracture networks through highly impermeable crystalline rock from Coso EGS sites at considerably lower effective stress as compared to conventional fracturing fluids. In addition, permeability was significantly enhanced in a wide range of formation-water pH values. This effective, and environmentally-friendly fracturing fluid technology represents a potential alternative to conventional fracturing fluids.« less

  17. In vitro simulation of fretting-corrosion in hip implant modular junctions: The influence of pH.

    PubMed

    Royhman, Dmitry; Patel, Megha; Jacobs, Joshua J; Wimmer, Markus A; Hallab, Nadim J; Mathew, Mathew T

    2018-02-01

    The fretting-corrosion behavior of mixed metal contacts is affected by various mechanical and electrochemical parameters. Crevice conditions at the junction and patient-specific pathologies can affect the pH of the prosthetic environment. The main objective of this study is to understand the effect of pH variation at the stem/head junction of the hip implant under fretting corrosion exposure. We hypothesized that pH will have a significant influence on the fretting-corrosion behavior hip implant modular junctions. A custom-made setup was used to evaluate the fretting corrosion behavior of hip implant modular junctions. A Newborn calf serum solution (30 g/L protein content) was used to simulate the synovial fluid environment. A sinusoidal fretting motion, with a displacement amplitude of +50 µm, was applied to the Ti alloy rod. The effects of pathology driven, periprosthetic pH variation were simulated at four different pH levels (3.0, 4.5, 6.0 and 7.6). Electrochemical and mechanical properties were evaluated before, during, and after the applied fretting motion. The impedance of the system was increased in response to the fretting motion. The hysteresis tangential load/displacement behavior was not affected by pH level. The worn surfaces of CoCrMo pins exhibited the presence of tribolayer or organic deposits, in the pH 4.5 group, which may explain the lower drop in potential and mass loss observed in that group. Mechanically dominated wear mechanisms, namely, adhesive wear was shown in the pH 7.6 group, which may account for a higher potential drop and metal content loss. This study suggests that the fretting-corrosion mechanisms in hip implant are affected by the pH levels of the surrounding environment and patient-specific factors. Copyright © 2017. Published by Elsevier Ltd.

  18. Ligand accessibility and bioactivity of a hormone–dendrimer conjugate depend on pH and pH history

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Sung Hoon; Madak-Erdogan, Zeynep; Bae, Sung Chul

    Estrogen conjugates with a polyamidoamine (PAMAM) dendrimer have shown remarkably selective regulation of the nongenomic actions of estrogens in target cells in this paper. In response to pH changes, however, these estrogen–dendrimer conjugates (EDCs) display a major morphological transition that alters the accessibility of the estrogen ligands that compromises the bioactivity of the EDC. A sharp break in dynamic behavior near pH 7 occurs for three different ligands on the surface of a PAMAM-G6 dendrimer: a fluorophore (tetramethylrhodamine [TMR]) and two estrogens (17α-ethynylestradiol and diphenolic acid). Collisional quenching and time-resolved fluorescence anisotropy experiments with TMR–PAMAM revealed high ligand shielding abovemore » pH 7 and low shielding below pH 7. Furthermore, when the pH was cycled from 8.5 (conditions of ligand–PAMAM conjugation) to 4.5 (e.g., endosome/lysosome) and through 6.5 (e.g., hypoxic environment) back to pH 8.5, the 17α-ethynylestradiol– and diphenolic acid–PAMAM conjugates experienced a dramatic, irreversible loss in cell stimulatory activity; dynamic NMR studies indicated that the hormonal ligands had become occluded within the more hydrophobic core of the PAMAM dendrimer. Thus, the active state of these estrogen–dendrimer conjugates appears to be metastable. Finally, this pH-dependent irreversible masking of activity is of considerable relevance to the design of drug conjugates with amine-bearing PAMAM dendrimers.« less

  19. Ligand accessibility and bioactivity of a hormone–dendrimer conjugate depend on pH and pH history

    DOE PAGES

    Kim, Sung Hoon; Madak-Erdogan, Zeynep; Bae, Sung Chul; ...

    2015-07-17

    Estrogen conjugates with a polyamidoamine (PAMAM) dendrimer have shown remarkably selective regulation of the nongenomic actions of estrogens in target cells in this paper. In response to pH changes, however, these estrogen–dendrimer conjugates (EDCs) display a major morphological transition that alters the accessibility of the estrogen ligands that compromises the bioactivity of the EDC. A sharp break in dynamic behavior near pH 7 occurs for three different ligands on the surface of a PAMAM-G6 dendrimer: a fluorophore (tetramethylrhodamine [TMR]) and two estrogens (17α-ethynylestradiol and diphenolic acid). Collisional quenching and time-resolved fluorescence anisotropy experiments with TMR–PAMAM revealed high ligand shielding abovemore » pH 7 and low shielding below pH 7. Furthermore, when the pH was cycled from 8.5 (conditions of ligand–PAMAM conjugation) to 4.5 (e.g., endosome/lysosome) and through 6.5 (e.g., hypoxic environment) back to pH 8.5, the 17α-ethynylestradiol– and diphenolic acid–PAMAM conjugates experienced a dramatic, irreversible loss in cell stimulatory activity; dynamic NMR studies indicated that the hormonal ligands had become occluded within the more hydrophobic core of the PAMAM dendrimer. Thus, the active state of these estrogen–dendrimer conjugates appears to be metastable. Finally, this pH-dependent irreversible masking of activity is of considerable relevance to the design of drug conjugates with amine-bearing PAMAM dendrimers.« less

  20. Nanoparticle assembled microcapsules for application as pH and ammonia sensor.

    PubMed

    Amali, Arlin Jose; Awwad, Nour H; Rana, Rohit Kumar; Patra, Digambara

    2011-12-05

    The encapsulation of molecular probes in a suitable nanostructured matrix can be exploited to alter their optical properties and robustness for fabricating efficient chemical sensors. Despite high sensitivity, simplicity, selectivity and cost effectiveness, the photo-destruction and photo-bleaching are the serious concerns while utilizing molecular probes. Herein we demonstrate that hydroxy pyrene trisulfonate (HPTS), a pH sensitive molecular probe, when encapsulated in a microcapsule structure prepared via the assembly of silica nanoparticles mediated by poly-L-lysine and trisodium citrate, provides a robust sensing material for pH sensing under the physiological conditions. The temporal evolution under continuous irradiation indicates that the fluorophore inside the silica microcapsule is extraordinarily photostable. The fluorescence intensity alternation at dual excitation facilitates for a ratiometic sensing of the pH, however, the fluorescence lifetime is insensitive to hydrogen ion concentration. The sensing scheme is found to be robust, fast and simple for the measurement of pH in the range 5.8-8.0, and can be successfully applied for the determination of ammonia in the concentration range 0-1.2 mM, which is important for aquatic life and the environment. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Controlling effective aspect ratio and packing of clay with pH for improved gas barrier in nanobrick wall thin films.

    PubMed

    Hagen, David A; Saucier, Lauren; Grunlan, Jaime C

    2014-12-24

    Polymer-clay thin films constructed via layer-by-layer (LbL) assembly, with a nanobrick wall structure (i.e., clay nanoplatelets as bricks surrounded by a polyelectrolyte mortar), are known to exhibit a high oxygen barrier. Further barrier improvement can be achieved by lowering the pH of the clay suspension in the polyethylenimine (PEI) and montmorillonite (MMT) system. In this case, the charge of the deposited PEI layer is increased in the clay suspension environment, which causes more clay to be deposited. At pH 4, MMT platelets deposit with near perfect ordering, observed with transmission electron microscopy, enabling a 5× improvement in the gas barrier for a 10 PEI/MMT bilayer thin film (85 nm) relative to the same film made with pH 10 MMT. This improved gas barrier approaches that achieved with much higher aspect ratio vermiculite clay. In essence, lower pH is generating a higher effective aspect ratio for MMT due to greater induced surface charge in the PEI layers, which causes heavier clay deposition. These flexible, transparent nanocoatings have a wide range of possible applications, from food and electronics packaging to pressurized bladders.

  2. Microsphere morphology tuning and photo-luminescence properties of monoclinic Y2WO6

    NASA Astrophysics Data System (ADS)

    Gao, Hong; Bai, Yulong; Zhang, Junying; Tang, Zilong

    2015-04-01

    Effects of the solution pH value and reaction time on the precursor morphology and photoluminescence properties are investigated for hydrothermally prepared monoclinic Y2WO6 phosphors. In the near-neutral environment, sodium dodecyl benzene sulfonate (SDBS) surfactant forms small microspheres micelles as template to synthesize microspherical precursor. H+ ions concentration affects the arrangement of negative ionic surfactant SDBS. As a result, jujube-liked and popcorn-like loose microspheres formed at low pH value. When the pH value is 5.2 and the hydrothermal reaction time reaches 24 h, respectively, the strongest luminescent intensity can be obtained. Under this condition, the precursor presented regular microsphere with diameter of 4.0 μm. After high-temperature heat treatment, the obtained phosphor particles still exhibit microsphere-like shape. Therefore, we provide an effective method to tune the morphology of Y2WO6 phosphors and study the relationship between morphology and luminescent performance.

  3. Preparation of pH-sensitive zwitterionic nano micelles and drug controlled release for enhancing cellular uptake.

    PubMed

    Wu, Luyan; Ni, Caihua; Zhang, Liping; Shi, Gang

    2016-01-01

    Zwitterionic copolymers have exhibited high resistance to nonspecific protein adsorption and have wide applications in drug delivery systems. Herein, a pH-responsive poly(Lysine-alt-N,N'-bis(acryloyl) diaminohexane) was synthesized through the Michael addition polymerization between N, N'-bis(acryloyl) diaminohexane and lysine. Subsequently, nano micelles (NMs) were formed by self-assembly of the copolymer in an aqueous solution. The NMs showed a slightly negative charge in blood environment, but a positively charged surface in extracellular pH of tumor. This feature could be used to enhance permeability and retention effect, and reinforce tumor cell uptake. Vitro release studies revealed that the release of DOX from the DOX-loaded NMs was evidently faster at pH 5.0 than at pH 7.4. MTT assays revealed that NMs were nontoxic. Thus, these smart NMs were feasible candidates and could be potentially used in cancer chemotherapy.

  4. An optimized procedure for preconcentration, determination and on-line recovery of palladium using highly selective diphenyldiketone-monothiosemicarbazone modified silica gel.

    PubMed

    Sharma, R K; Pandey, Amit; Gulati, Shikha; Adholeya, Alok

    2012-03-30

    A novel, highly selective, efficient and reusable chelating resin, diphenyldiketone-monothiosemicarbazone modified silica gel, was prepared and applied for the on-line separation and preconcentration of Pd(II) ions in catalytic converter and spiked tap water samples. Several parameters like effect of pH, sample volume, flow rate, type of eluent, and influence of various ionic interferences, etc. were evaluated for effective adsorption of palladium at trace levels. The resin was found to be highly selective for Pd(II) ions in the pH range 4-5 with a very high sorption capacity of 0.73 mmol/g and preconcentration factor of 335. The present environment friendly procedure has also been applied for large-scale extraction by employing the use of newly designed reactor in which on-line separation and preconcentration of Pd can be carried out easily and efficiently in short duration of time. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. [Isolation and characterization of a new glyphosate-resistant strain from extremely polluted environment].

    PubMed

    Sh, Jiying; Jin, Dan; Lu, Wei; Zhang, Xiaoyu; Zhang, Chao; Li, Liang; Ma, Ruiqiang; Xiao, Lei; Wang, Yiding; Lin, Min

    2008-06-01

    To isolate and characterize a glyphosate-resistant strain from extremely polluted environment. A glyphosate-resistant strain was isolated from extremely polluted soil taking glyphosate as the selection pressure. Its glyphosate resistance, growth optimal pH and antibiotic sensitivity were detected. Its morphology, cultural characteristics, physiological and biochemical properties, chemotaxonomy and 16S rDNA sequences were studied. Based on these results, the strain was identified according to the ninth edition of Bergey's manual of determinative bacteriology. The isolate was named SL06500. It could grow in M9 minimal medium containing up to 500 mmol/L glyphosate. The cell growth optimal pH of SL06500 was 4.0. It was resistant to ampicillin, kanamycin, tetracycline and chloromycetin. The 16S rDNA of SL06500 was amplified by PCR and sequenced. Compared with the published nucleotide sequence of 16S rDNA in NCBI (National Center for Biotechnology Information), SL06500 showed high identity with Achromobacter and Alcaligenes. Based on morphological, physiological and biochemical characteristics, the strain was identified as Alcaligenes xylosoxidans subsp.xylosoxidans SL06500 according to the ninth edition of Bergey's manual of determinative bacteriology. Strain SL06500 is worthy to be studied because of its high glyphosate resistance.

  6. Differences in STEM doctoral publication by ethnicity, gender and academic field at a large public research university.

    PubMed

    Mendoza-Denton, Rodolfo; Patt, Colette; Fisher, Aaron; Eppig, Andrew; Young, Ira; Smith, Andrew; Richards, Mark A

    2017-01-01

    Two independent surveys of PhD students in STEM fields at the University of California, Berkeley, indicate that underrepresented minorities (URMs) publish at significantly lower rates than non-URM males, placing the former at a significant disadvantage as they compete for postdoctoral and faculty positions. Differences as a function of gender reveal a similar, though less consistent, pattern. A conspicuous exception is Berkeley's College of Chemistry, where publication rates are tightly clustered as a function of ethnicity and gender, and where PhD students experience a highly structured program that includes early and systematic involvement in research, as well as clear expectations for publishing. Social science research supports the hypothesis that this more structured environment hastens the successful induction of diverse groups into the high-performance STEM academic track.

  7. Differences in STEM doctoral publication by ethnicity, gender and academic field at a large public research university

    PubMed Central

    Patt, Colette; Fisher, Aaron; Eppig, Andrew; Young, Ira; Smith, Andrew; Richards, Mark A.

    2017-01-01

    Two independent surveys of PhD students in STEM fields at the University of California, Berkeley, indicate that underrepresented minorities (URMs) publish at significantly lower rates than non-URM males, placing the former at a significant disadvantage as they compete for postdoctoral and faculty positions. Differences as a function of gender reveal a similar, though less consistent, pattern. A conspicuous exception is Berkeley’s College of Chemistry, where publication rates are tightly clustered as a function of ethnicity and gender, and where PhD students experience a highly structured program that includes early and systematic involvement in research, as well as clear expectations for publishing. Social science research supports the hypothesis that this more structured environment hastens the successful induction of diverse groups into the high-performance STEM academic track. PMID:28380061

  8. Lactobacilli Dominance and Vaginal pH: Why Is the Human Vaginal Microbiome Unique?

    PubMed

    Miller, Elizabeth A; Beasley, DeAnna E; Dunn, Robert R; Archie, Elizabeth A

    2016-01-01

    The human vaginal microbiome is dominated by bacteria from the genus Lactobacillus , which create an acidic environment thought to protect women against sexually transmitted pathogens and opportunistic infections. Strikingly, lactobacilli dominance appears to be unique to humans; while the relative abundance of lactobacilli in the human vagina is typically >70%, in other mammals lactobacilli rarely comprise more than 1% of vaginal microbiota. Several hypotheses have been proposed to explain humans' unique vaginal microbiota, including humans' distinct reproductive physiology, high risk of STDs, and high risk of microbial complications linked to pregnancy and birth. Here, we test these hypotheses using comparative data on vaginal pH and the relative abundance of lactobacilli in 26 mammalian species and 50 studies ( N = 21 mammals for pH and 14 mammals for lactobacilli relative abundance). We found that non-human mammals, like humans, exhibit the lowest vaginal pH during the period of highest estrogen. However, the vaginal pH of non-human mammals is never as low as is typical for humans (median vaginal pH in humans = 4.5; range of pH across all 21 non-human mammals = 5.4-7.8). Contrary to disease and obstetric risk hypotheses, we found no significant relationship between vaginal pH or lactobacilli relative abundance and multiple metrics of STD or birth injury risk ( P -values ranged from 0.13 to 0.99). Given the lack of evidence for these hypotheses, we discuss two alternative explanations: the common function hypothesis and a novel hypothesis related to the diet of agricultural humans. Specifically, with regard to diet we propose that high levels of starch in human diets have led to increased levels of glycogen in the vaginal tract, which, in turn, promotes the proliferation of lactobacilli. If true, human diet may have paved the way for a novel, protective microbiome in human vaginal tracts. Overall, our results highlight the need for continuing research on non-human vaginal microbial communities and the importance of investigating both the physiological mechanisms and the broad evolutionary processes underlying human lactobacilli dominance.

  9. Lactobacilli Dominance and Vaginal pH: Why Is the Human Vaginal Microbiome Unique?

    PubMed Central

    Miller, Elizabeth A.; Beasley, DeAnna E.; Dunn, Robert R.; Archie, Elizabeth A.

    2016-01-01

    The human vaginal microbiome is dominated by bacteria from the genus Lactobacillus, which create an acidic environment thought to protect women against sexually transmitted pathogens and opportunistic infections. Strikingly, lactobacilli dominance appears to be unique to humans; while the relative abundance of lactobacilli in the human vagina is typically >70%, in other mammals lactobacilli rarely comprise more than 1% of vaginal microbiota. Several hypotheses have been proposed to explain humans' unique vaginal microbiota, including humans' distinct reproductive physiology, high risk of STDs, and high risk of microbial complications linked to pregnancy and birth. Here, we test these hypotheses using comparative data on vaginal pH and the relative abundance of lactobacilli in 26 mammalian species and 50 studies (N = 21 mammals for pH and 14 mammals for lactobacilli relative abundance). We found that non-human mammals, like humans, exhibit the lowest vaginal pH during the period of highest estrogen. However, the vaginal pH of non-human mammals is never as low as is typical for humans (median vaginal pH in humans = 4.5; range of pH across all 21 non-human mammals = 5.4–7.8). Contrary to disease and obstetric risk hypotheses, we found no significant relationship between vaginal pH or lactobacilli relative abundance and multiple metrics of STD or birth injury risk (P-values ranged from 0.13 to 0.99). Given the lack of evidence for these hypotheses, we discuss two alternative explanations: the common function hypothesis and a novel hypothesis related to the diet of agricultural humans. Specifically, with regard to diet we propose that high levels of starch in human diets have led to increased levels of glycogen in the vaginal tract, which, in turn, promotes the proliferation of lactobacilli. If true, human diet may have paved the way for a novel, protective microbiome in human vaginal tracts. Overall, our results highlight the need for continuing research on non-human vaginal microbial communities and the importance of investigating both the physiological mechanisms and the broad evolutionary processes underlying human lactobacilli dominance. PMID:28008325

  10. Different mechanisms for acid weathering of crystalline basalt vs. basaltic glass and implications for detection on Mars

    NASA Astrophysics Data System (ADS)

    Horgan, B. H. N.; Smith, R.; Christensen, P. R.; Cloutis, E.

    2016-12-01

    Silica-rich acid leached rinds and coatings occur in volcanic environments on Earth and have been identified using orbital spectroscopy on Mars, but their development is poorly understood. We simulated long-term open-system acid weathering in a laboratory by repeatedly submerging and rinsing crystalline and glassy basalts in pH 1 and 3 acidic solutions for 220 days. Visible/near-infrared (VNIR; 0.3-2.5 μm) and thermal-infrared (TIR; 5-50 μm) spectra of the samples were compared to their microscopic properties from scanning electron microscopy (SEM). While previous studies have shown that exposure to moderately low pH ( 3) solutions can produce mineral precipitates, we find that there is very little spectral or microphysical effect on the underlying parent material. In contrast, materials exposed to very low pH ( 1) solutions were visibly altered in SEM images, and contained regions enriched in amorphous silica. These samples exhibited clear silica VNIR and TIR spectral signatures that increased in intensity with their glass content. In addition, glass exposed to low pH solutions often exhibited blue and concave up VNIR slopes. SEM indicates that these spectral differences correspond to different modes of alteration. In glass, low pH alteration occurs only at the surface and produces a silica-enriched rind. In more crystalline samples, alteration penetrates the interior to cause dissolution and replacement by silica. Thus, along with the pH of the aqueous environment, the crystallinity of a rock can greatly affect the way and the degree to which it is weathered. Because alteration is restricted to the surface of glassy materials, bulk glass is more stable than crystalline basalt under long-term acidic leaching. Leached glasses are consistent with OMEGA and TES spectra of the martian northern lowlands, and may contribute to the high-silica phases detected globally in TES Surface Type 2. Thus, both glass-rich deposits and acidic weathering may have been widespread on Mars.

  11. Transcriptomic responses to ocean acidification in larval sea urchins from a naturally variable pH environment.

    PubMed

    Evans, Tyler G; Chan, Francis; Menge, Bruce A; Hofmann, Gretchen E

    2013-03-01

    Some marine ecosystems already experience natural declines in pH approximating those predicted with future anthropogenic ocean acidification (OA), the decline in seawater pH caused by the absorption of atmospheric CO2 . The molecular mechanisms that allow organisms to inhabit these low pH environments, particularly those building calcium carbonate skeletons, are unknown. Also uncertain is whether an enhanced capacity to cope with present day pH variation will confer resistance to future OA. To address these issues, we monitored natural pH dynamics within an intertidal habitat in the Northeast Pacific, demonstrating that upwelling exposes resident species to pH regimes not predicted to occur elsewhere until 2100. Next, we cultured the progeny of adult purple sea urchins (Strongylocentrotus purpuratus) collected from this region in CO2 -acidified seawater representing present day and near future ocean scenarios and monitored gene expression using transcriptomics. We hypothesized that persistent exposure to upwelling during evolutionary history will have selected for increased pH tolerance in this population and that their transcriptomic response to low pH seawater would provide insight into mechanisms underlying pH tolerance in a calcifying species. Resulting expression patterns revealed two important trends. Firstly, S. purpuratus larvae may alter the bioavailability of calcium and adjust skeletogenic pathways to sustain calcification in a low pH ocean. Secondly, larvae use different strategies for coping with different magnitudes of pH stress: initiating a robust transcriptional response to present day pH regimes but a muted response to near future conditions. Thus, an enhanced capacity to cope with present day pH variation may not translate into success in future oceans. © 2013 Blackwell Publishing Ltd.

  12. Design of a Water Environment Monitoring System Based on Wireless Sensor Networks

    PubMed Central

    Jiang, Peng; Xia, Hongbo; He, Zhiye; Wang, Zheming

    2009-01-01

    A water environmental monitoring system based on a wireless sensor network is proposed. It consists of three parts: data monitoring nodes, data base station and remote monitoring center. This system is suitable for the complex and large-scale water environment monitoring, such as for reservoirs, lakes, rivers, swamps, and shallow or deep groundwaters. This paper is devoted to the explanation and illustration for our new water environment monitoring system design. The system had successfully accomplished the online auto-monitoring of the water temperature and pH value environment of an artificial lake. The system's measurement capacity ranges from 0 to 80 °C for water temperature, with an accuracy of ±0.5 °C; from 0 to 14 on pH value, with an accuracy of ±0.05 pH units. Sensors applicable to different water quality scenarios should be installed at the nodes to meet the monitoring demands for a variety of water environments and to obtain different parameters. The monitoring system thus promises broad applicability prospects. PMID:22454592

  13. Hydrogeochemical prospecting for porphyry copper deposits in the tropical-marine climate of Puerto Rico

    USGS Publications Warehouse

    Miller, W.R.; Ficklin, W.H.; Learned, R.E.

    1982-01-01

    A hydrogeochemical survey utilizing waters from streams and springs was conducted in the area of two known porphyry copper deposits in the tropical-marine climate of westcentral Puerto Rico. The most important pathfinder for regional hydrogeochemical surveys is sulfate which reflects the associated pyrite mineralization. Because of increased mobility due to intense chemical weathering and the low pH environment, dissolved copper can also be used as a pathfinder for regional surveys and has the advantage of distinguishing barren pyrite from pyrite associated with copper mineralization. For follow-up surveys, the most important pathfinders are copper, sulfate, pH, zinc, and fluoride. High concentrations of dissolved copper and moderate concentrations of sulfate is a diagnostic indication of nearby sources of copper minerals. An understanding of the geochemical processes taking place in the streambeds and the weathering environment, such as the precipitation of secondary copper minerals, contributes to the interpretation of the geochemical data and the selection of the most favorable areas for further exploration. ?? 1982.

  14. Application of AMDS mortar as a treatment agent for arsenic in subsurface environment

    NASA Astrophysics Data System (ADS)

    Choi, J.; Lee, H.; Choi, U. K.; Yang, I. J.

    2014-12-01

    Among the treatment technologies available for As in soil and groundwater, adsorption or precipitation using acid mine drainage (AMD) sludge has become a promised technique because of high efficiency, inexpensiveness and simple to handling. The adsorbents were prepared by addition of Cement, Joomoonjin sand, fly ash, and Ca(OH)2 to air dry AMD sludge. In this work, the adsorption of As (III) and As (V) on AMDS mortar has been studied as a function of kinetic, pH, and initial arsenic concentration. Results of batch study showed that 75-90% of both As (III) and As (V) were removed at pH 7. Arsenic adsorption capacities were the highest at neutral pH condition and the adsorption equilibrium time reached in 7 days using AMDS mortar. Additionally, the adsorption kinetic process is expressed well by pseudo-second-order model. The adsorption capacities of AMDS mortar for As(III) and As(V) were found 19.04 and 30.75 mg g-1, respectively. The results of As (III) adsorption isotherms were fitted well to the Freundlich model. Moreover, As (V) adsorption isotherms were fitted well to the Langmuir model rather than Freundlich model. Based on experimental results in this study, we could conclude that AMDS mortar can be effectively used for arsenic removal agent from subsurface environment.

  15. Sub-micron opto-chemical probes for studying living neurons

    NASA Astrophysics Data System (ADS)

    Hossein-Zadeh, M.; Delgado, J.; Schweizer, F.; Lieberman, R.

    2017-02-01

    We have fabricated sub-micron opto-chemical probes for pH, oxygen and calcium monitoring and demonstrated their application in intracellular and extracellular monitoring of neurons (cortical neuronal cultures and acute hippocampal slices). Using these probes, we have measured extracellular pH in the stratum radiatum of the CA1 region of mouse hippocampus upon stimulation of presynaptic Schaffer collateral axons. Synaptic transmission was monitored using standard electrophysiological techniques. We find that the local pH transiently changes in response to synaptic stimulation. In addition, the geometry of the functionalized region on the probe combined with high sensitivity imaging enables simultaneous monitoring of spatially adjacent but distinct compartments. As proof of concept we impaled cultured neurons with the probe measured calcium and pH inside as well as directly outside of neurons as we changed the pH and calcium concentration in the physiological solution in the perfusion chamber. As such these probes can be used to study the impact of the environment on both cellular and extra-cellular space. Additionally as the chemical properties of the surrounding medium can be controlled and monitored with high precision, these probes enable differential measurement of the target parameter referenced to a stable bath. This approach eliminates the uncertainties associated with non-chemical fluctuations in the fluorescent emission and result in a self-calibrated opto-chemical probe. We have also demonstrated multifunctional probes that are capable of measuring up to three parameters in the extracellular space in brain slices.

  16. Risk screening of pharmaceutical compounds in Romanian aquatic environment.

    PubMed

    Gheorghe, Stefania; Petre, Jana; Lucaciu, Irina; Stoica, Catalina; Nita-Lazar, Mihai

    2016-06-01

    The aquatic environment is under increased pressure by pharmaceutically active compounds (PhACs) due to anthropogenic activities. In spite of being found at very low concentrations (ng/L to μg/L) in the environment, PhACs represent a real danger to aquatic ecosystems due to their bioaccumulation and long-term effects. In this study, the presence in the aquatic environment of six non-steroidal anti-inflammatory drugs (ibuprofen, diclofenac, acetaminophen, naproxen, indomethacin, and ketoprofen), caffeine, and carbamazepine were monitored. Moreover, their aquatic risk and ecotoxicity by three biological models were evaluated. The monitoring studies performed in Romania showed that all studied PhACs were naturally present at concentrations >0.01 μg/L, pointing out the necessity to perform further toxicity tests for environmental risk assessment. The toxicity studies were carried out on aquatic organisms or bacteria and they indicated, for most of the tested PhACs, an insignificant or low toxicity effects: lethal concentrations (LC50) on fish Cyprinus carpio ranged from 42.60 mg/L to more than 100 mg/L; effective concentrations (EC50) on planktonic crustacean Daphnia magna ranged from 11.02 mg/L to more than 100 mg/L; inhibitory concentrations (IC50)/microbial toxic concentrations (MTC) on Vibrio fischeri and other bacterial strains ranged from 7.02 mg/L to more than 100 mg/L. The PhAC aquatic risk was assessed by using the ratio between measured environmental concentration (MEC) and predicted no effect concentration (PNEC) calculated for each type of organism. The average of quotient risks (RQs) revealed that the presence of these compounds in Romania's aquatic environment induced a lower or moderate aquatic risk.

  17. pH Responsive Microcapsules for Corrosion Control

    NASA Technical Reports Server (NTRS)

    Calle, Luz Marina; Li, Wenyan; Muehlberg, Aaron; Boraas, Samuel; Webster, Dean; JohnstonGelling, Victoria; Croll, Stuart; Taylor, S Ray; Contu, Francesco

    2008-01-01

    The best coatings for corrosion protection provide not only barriers to the environment, but also a controlled release of a corrosion inhibitor, as demanded by the presence of corrosion or mechanical damage. NASA has developed pH sensitive microcapsules (patent pending) that can release their core contents when corrosion starts. The objectives of the research presented here were to encapsulate non-toxic corrosion inhibitors, to incorporate the encapsulated inhibitors into paint formulations, and to test the ability of the paints to control corrosion. Results showed that the encapsulated corrosion inhibitors, specifically Ce(NO3)3 , are effective to control corrosion over long periods of time when incorporated at relatively high pigment volume concentrations into a paint formulation.

  18. ISFET-based sensor signal processor chip design for environment monitoring applications

    NASA Astrophysics Data System (ADS)

    Chung, Wen-Yaw; Yang, Chung-Huang; Wang, Ming-Ga

    2004-12-01

    In recent years Ion-Sensitive Field Effect Transistor (ISFET) based transducers create valuable applications in physiological data acquisition and environment monitoring. This paper presents a mixed-mode ASIC design for potentiometric ISFET-based bio-chemical sensor applications including H+ sensing and hand-held pH meter. For battery power consideration, the proposed system consists of low voltage (3V) analog front-end readout circuits and digital processor has been developed and fabricated in a 0.5mm double-poly double-metal CMOS technology. To assure that the correct pH value can be measured, the two-point calibration circuitry based on the response of standard pH4 and pH7 buffer solution has been implemented by using algorithmic state machine hardware algorithms. The measurement accuracy of the chip is 10 bits and the measured range between pH 2 to pH 12 compared to ideal values is within the accuracy of 0.1pH. For homeland environmental applications, the system provide rapid, easy to use, and cost-effective on-site testing on the quality of water, such as drinking water, ground water and river water. The processor has a potential usage in battery-operated and portable devices in environmental monitoring applications compared to commercial hand-held pH meter.

  19. Distribution of ether lipids and composition of the archaeal community in terrestrial geothermal springs: impact of environmental variables.

    PubMed

    Xie, Wei; Zhang, Chuanlun L; Wang, Jinxiang; Chen, Yufei; Zhu, Yuanqing; de la Torre, José R; Dong, Hailiang; Hartnett, Hilairy E; Hedlund, Brian P; Klotz, Martin G

    2015-05-01

    Archaea can respond to changes in the environment by altering the composition of their membrane lipids, for example, by modification of the abundance and composition of glycerol dialkyl glycerol tetraethers (GDGTs). Here, we investigated the abundance and proportions of polar GDGTs (P-GDGTs) and core GDGTs (C-GDGTs) sampled in different seasons from Tengchong hot springs (Yunnan, China), which encompassed a pH range of 2.5-10.1 and a temperature range of 43.7-93.6°C. The phylogenetic composition of the archaeal community (reanalysed from published work) divided the Archaea in spring sediment samples into three major groups that corresponded with spring pH: acidic, circumneutral and alkaline. Cluster analysis showed correlation between spring pH and the composition of P- and C-GDGTs and archaeal 16S rRNA genes, indicating an intimate link between resident Archaea and the distribution of P- and C-GDGTs in Tengchong hot springs. The distribution of GDGTs in Tengchong springs was also significantly affected by temperature; however, the relationship was weaker than with pH. Analysis of published datasets including samples from Tibet, Yellowstone and the US Great Basin hot springs revealed a similar relationship between pH and GDGT content. Specifically, low pH springs had higher concentrations of GDGTs with high numbers of cyclopentyl rings than neutral and alkaline springs, which is consistent with the predominance of high cyclopentyl ring-characterized Sulfolobales and Thermoplasmatales present in some of the low pH springs. Our study suggests that the resident Archaea in these hot springs are acclimated if not adapted to low pH by their genetic capacity to effect the packing density of their membranes by increasing cyclopentyl rings in GDGTs at the rank of community. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  20. Comparison of the vaginal environment in rhesus and cynomolgus macaques pre- and post-lactobacillus colonization.

    PubMed

    Daggett, Gregory J; Zhao, Chunxia; Connor-Stroud, Fawn; Oviedo-Moreno, Patricia; Moon, Hojin; Cho, Michael W; Moench, Thomas; Anderson, Deborah J; Villinger, Francois

    2017-10-01

    Rhesus and cynomologus macaques are valuable animal models for the study of human immunodeficiency virus (HIV) prevention strategies. However, for such studies focused on the vaginal route of infection, differences in vaginal environment may have deterministic impact on the outcome of such prevention, providing the rationale for this study. We tested the vaginal environment of rhesus and cynomolgus macaques longitudinally to characterize the normal microflora based on Nugent scores and pH. This evaluation was extended after colonization of the vaginal space with Lactobacilli in an effort to recreate NHP models representing the healthy human vaginal environment. Nugent scores and pH differed significantly between species, although data from both species were suggestive of stable bacterial vaginosis. Colonization with Lactobacilli was successful in both species leading to lower Nugent score and pH, although rhesus macaques appeared better able to sustain Lactobacillus spp over time. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Effect of Ocean Acidification and pH Fluctuations on the Growth and Development of Coralline Algal Recruits, and an Associated Benthic Algal Assemblage

    PubMed Central

    Roleda, Michael Y.; Cornwall, Christopher E.; Feng, Yuanyuan; McGraw, Christina M.; Smith, Abigail M.; Hurd, Catriona L.

    2015-01-01

    Coralline algae are susceptible to the changes in the seawater carbonate system associated with ocean acidification (OA). However, the coastal environments in which corallines grow are subject to large daily pH fluctuations which may affect their responses to OA. Here, we followed the growth and development of the juvenile coralline alga Arthrocardia corymbosa, which had recruited into experimental conditions during a prior experiment, using a novel OA laboratory culture system to simulate the pH fluctuations observed within a kelp forest. Microscopic life history stages are considered more susceptible to environmental stress than adult stages; we compared the responses of newly recruited A. corymbosa to static and fluctuating seawater pH with those of their field-collected parents. Recruits were cultivated for 16 weeks under static pH 8.05 and 7.65, representing ambient and 4× preindustrial pCO2 concentrations, respectively, and two fluctuating pH treatments of daily x~ = 8.05 (daytime pH = 8.45, night-time pH = 7.65) and daily x~ = 7.65 (daytime pH = 8.05, night-time pH = 7.25). Positive growth rates of new recruits were recorded in all treatments, and were highest under static pH 8.05 and lowest under fluctuating pH 7.65. This pattern was similar to the adults’ response, except that adults had zero growth under fluctuating pH 7.65. The % dry weight of MgCO3 in calcite of the juveniles was reduced from 10% at pH 8.05 to 8% at pH 7.65, but there was no effect of pH fluctuation. A wide range of fleshy macroalgae and at least 6 species of benthic diatoms recruited across all experimental treatments, from cryptic spores associated with the adult A. corymbosa. There was no effect of experimental treatment on the growth of the benthic diatoms. On the community level, pH-sensitive species may survive lower pH in the presence of diatoms and fleshy macroalgae, whose high metabolic activity may raise the pH of the local microhabitat. PMID:26469945

  2. Effect of Ocean Acidification and pH Fluctuations on the Growth and Development of Coralline Algal Recruits, and an Associated Benthic Algal Assemblage.

    PubMed

    Roleda, Michael Y; Cornwall, Christopher E; Feng, Yuanyuan; McGraw, Christina M; Smith, Abigail M; Hurd, Catriona L

    2015-01-01

    Coralline algae are susceptible to the changes in the seawater carbonate system associated with ocean acidification (OA). However, the coastal environments in which corallines grow are subject to large daily pH fluctuations which may affect their responses to OA. Here, we followed the growth and development of the juvenile coralline alga Arthrocardia corymbosa, which had recruited into experimental conditions during a prior experiment, using a novel OA laboratory culture system to simulate the pH fluctuations observed within a kelp forest. Microscopic life history stages are considered more susceptible to environmental stress than adult stages; we compared the responses of newly recruited A. corymbosa to static and fluctuating seawater pH with those of their field-collected parents. Recruits were cultivated for 16 weeks under static pH 8.05 and 7.65, representing ambient and 4× preindustrial pCO2 concentrations, respectively, and two fluctuating pH treatments of daily [Formula: see text] (daytime pH = 8.45, night-time pH = 7.65) and daily [Formula: see text] (daytime pH = 8.05, night-time pH = 7.25). Positive growth rates of new recruits were recorded in all treatments, and were highest under static pH 8.05 and lowest under fluctuating pH 7.65. This pattern was similar to the adults' response, except that adults had zero growth under fluctuating pH 7.65. The % dry weight of MgCO3 in calcite of the juveniles was reduced from 10% at pH 8.05 to 8% at pH 7.65, but there was no effect of pH fluctuation. A wide range of fleshy macroalgae and at least 6 species of benthic diatoms recruited across all experimental treatments, from cryptic spores associated with the adult A. corymbosa. There was no effect of experimental treatment on the growth of the benthic diatoms. On the community level, pH-sensitive species may survive lower pH in the presence of diatoms and fleshy macroalgae, whose high metabolic activity may raise the pH of the local microhabitat.

  3. In Vivo Model to Test Implanted Biosensors for Blood pH

    NASA Technical Reports Server (NTRS)

    Arnaud, Sara B.; Somps, Chris J.; Madou, Marc; Hines, John; Wade, Charles E. (Technical Monitor)

    1997-01-01

    Biosensors for monitoring physiologic data continuously through telemetry are available for heart rate, respiration, and temperature but not for blood pH or ions affected by hydrogen ion concentration. A telemetric biosensor for monitoring blood pH on-line could be used to identify and manage problems in fluid and electrolyte metabolism, cardiac and respiratory function during space flight and the acid-base status of patients without the need for venipuncture in patients on Earth. Critical to the development of biosensors is a method for evaluating their performance after implantation. Mature rats, prepared with jugular, cannulas for repeated blood samples, were exposed to a gas mixture containing high levels of carbon dioxide (7%) in a closed environment to induce mild respiratory acidosis. Serial blood gas and pH measurements in venous blood were compared with electrical responses from sensors implanted in the subcutaneous tissue. Animals became slightly tachypneic after exposure to excess CO2, but remained alert and active. After 5 minutes, basal blood pH decreased from 7.404 +/- 0.013 to 7.289 +/- 0.010 (p less than 0.001)and PC02 increased from 45 +/- 6 to 65 +/- 4 mm. Hg (p les than 0.001). Thereafter pH and blood gas parameters remained stable. Implanted sensors showed a decrease in millivolts (mV) which paralleled the change in pH and averaged 5-6 mV per 0.1 unit pH. Implanted sensors remained sensitive to modest changes in tissue pH for one week. A system for inducing acidosis in rats was developed to test the in vivo performance of pH biosensors. The system provides a method which is sensitive, rapid and reproducible in the same and different animals with full recovery, for testing the performance of sensors implanted in subcutaneous tissues.

  4. Fluctuating seawater pH/pCO2 regimes are more energetically expensive than static pH/pCO2 levels in the mussel Mytilus edulis.

    PubMed

    Mangan, Stephanie; Urbina, Mauricio A; Findlay, Helen S; Wilson, Rod W; Lewis, Ceri

    2017-10-25

    Ocean acidification (OA) studies typically use stable open-ocean pH or CO 2 values. However, species living within dynamic coastal environments can naturally experience wide fluctuations in abiotic factors, suggesting their responses to stable pH conditions may not be reflective of either present or near-future conditions. Here we investigate the physiological responses of the mussel Mytilus edulis to variable seawater pH conditions over short- (6 h) and medium-term (2 weeks) exposures under both current and near-future OA scenarios. Mussel haemolymph pH closely mirrored that of seawater pH over short-term changes of 1 pH unit with acidosis or recovery accordingly, highlighting a limited capacity for acid-base regulation. After 2 weeks, mussels under variable pH conditions had significantly higher metabolic rates, antioxidant enzyme activities and lipid peroxidation than those exposed to static pH under both current and near-future OA scenarios. Static near-future pH conditions induced significant acid-base disturbances and lipid peroxidation compared with the static present-day conditions but did not affect the metabolic rate. These results clearly demonstrate that living in naturally variable environments is energetically more expensive than living in static seawater conditions, which has consequences for how we extrapolate future OA responses in coastal species. © 2017 The Authors.

  5. The effect of environmental pH on polymeric transfection efficiency.

    PubMed

    Kang, Han Chang; Samsonova, Olga; Kang, Sun-Woong; Bae, You Han

    2012-02-01

    Although polymers, polyplexes, and cells are exposed to various extracellular and intracellular pH environments during polyplex preparation and polymeric transfection, the impact of environmental pH on polymeric transfection has not yet been investigated. This study aims to understand the influence of environmental pH on polymeric transfection by modulating the pH of the transfection medium or the culture medium. Changes in the extracellular pH affected polymeric transfection by way of complex factors such as pH-induced changes in polymer characteristics (e.g., proton buffering capacity and ionization), polyplex characteristics (e.g., size, surface charge, and decomplexation), and cellular characteristics (e.g., cellular uptake, cell cycle phases, and intracellular pH environment). Notably, acidic medium delayed endocytosis, endosomal acidification, cytosolic release, and decomplexation of polyplexes, thereby negatively affecting gene expression. However, acidic medium inhibited mitosis and reduced dilution of gene expression, resulting in increased transfection efficiency. Compared to pH 7.4 medium, acidic transfection medium reduced gene expression 1.6-7.7-fold whereas acidic culture medium enhanced transfection efficiency 2.1-2.6-fold. Polymeric transfection was affected more by the culture medium than by the transfection medium. Understanding the effects of extracellular pH during polymeric transfection may stimulate new strategies for determining effective and safe polymeric gene carriers. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Effect of micro-environment modification and polymer type on the in-vitro dissolution behavior and in-vivo performance of amorphous solid dispersions.

    PubMed

    Sun, Weiwei; Pan, Baoliang

    2017-06-15

    This study investigates the effects of micro-environment modification and polymer type on the in-vitro dissolution behavior and in-vivo performance of micro-environment pH modifying solid dispersions (pH M -SD) for the poorly water-soluble model drug Toltrazuril (TOL). Various pH M -SDs were prepared using Ca(OH) 2 as a pH-modifier in hydrophilic polymers, including polyethylene glycol 6000 (PEG6000), polyvinylpyrrolidone k30 (PVPk30) and hydroxypropyl methylcellulose (HPMC). Based on the results of physicochemical characterizations and in-vitro dissolution testing, the representative ternary (Ca(OH) 2 :TOL:PEG6000/HPMC/PVPk30=1:8:24, w/w/w) and binary (TOL:PVPk30=1:3, w/w) solid dispersions were selected and optimized to perform in-vivo pharmacokinetic study. The micro-environment pH modification improved the in-vitro water-solubility and in-vivo bioavailability of parent drug TOL. Furthermore, the addition of alkalizers not only enhanced the release and absorption of prototype drug, but also promoted the generation of active metabolites, including toltrazuril sulfoxide (TOLSO) and toltrazuril sulfone (TOLSO 2 ). The in-vitro dissolution profiles and in-vivo absorption, distribution and metabolism behaviors of the pH M -SDs varied with polymer type. Moreover, in-vivo bioavailability of three active pharmaceutical ingredients increased with an increase in in-vitro dissolution rates of the drug from the pH M -SDs prepared with various polymers. Therefore, a non-sink in-vitro dissolution method can be used to predict the in-vivo performance of pH M -SDs formulated with various polymers with trend consistency. In-vitro and in-vivo screening procedures revealed that the pH M -SD composed of Ca(OH) 2 , TOL and PVPk30 at a weight ratio of 1:8:24, of which the safety was adequately proved via histopathological examination, may be a promising candidate for providing better clinical outcomes. Copyright © 2017. Published by Elsevier B.V.

  7. A New Look at Factors Affecting Microbial Silicification: Effects of Microbe to Solution Ratio, Al and Fe on Silica Accumulation on B. subtilis Surfaces

    NASA Astrophysics Data System (ADS)

    Tenesch, A. C.; Hinman, N. W.; Blank, C. E.

    2006-12-01

    In this investigation, we aim to constrain the geochemical conditions that favor siliceous microfossil formation. This work will provide a framework for assessing the biogenic origin of putative microfossils in siliceous hydrothermal deposits on early Earth, and potentially, on Mars. Previous work on silicification of microbial cells has been done under unnatural conditions or when cells were physiological stressed. Here, we attempt to reduce the amount reduce the amount of physiological stress on the organisms and to better emulate the natural environment. Silicification experiments involving the gram-positive bacterium, Bacillus subtilis, have been conducted under different experimental conditions to provide insight into the processes that affect silicification of microorganisms. Experiments were conducted with silica stock solution at an initial pH of 8, and with and without added Al and Fe, in two different experimental designs. The first experimental design represented a silica-limited environment in which the ratio of exponentially growing culture (O.D.600 = 0.2) to silica-rich stock solution was very high (1:1 v/v). Silica concentrations declined likely due to nucleation and precipitation mediated by microbial surfaces, and the pH dropped from 8.0 to 6.5. The presence of Fe and Al resulted in lower dissolved silica concentrations, suggesting additional effects of these ions on nucleation and precipitation. The second experimental design used a lower ratio of exponentially growing culture (O.D.600 = .2) to silica-rich stock solution (0.004:1 v/v) resulting in a stable concentration of silica, which was also accompanied by a slight decline in pH. This latter design is more similar to the cell:silica ratios found in natural environments. B. subtilis cells were examined using scanning electron microscopy (SEM) accompanied by energy dispersive spectrometry (EDS). Cells exhibited silica crystallites under SEM and yet continued to undergo cell division in an environment of limited resources. Silicification in the low-ratio experiments appeared to be more efficient as cells were more encrusted with Si than cells in the high-ratio experiments. Further, sporulation was more efficient in the low-ratio experiments.

  8. Fractionation and leachability of heavy metals from aged and recent Zn metallurgical leach residues from the Três Marias zinc plant (Minas Gerais, Brazil).

    PubMed

    Sethurajan, Manivannan; Huguenot, David; Lens, Piet N L; Horn, Heinrich A; Figueiredo, Luiz H A; van Hullebusch, Eric D

    2016-04-01

    Various mineral processing operations to produce pure metals from mineral ores generate sludges, residues, and other unwanted by-products/wastes. As a general practice, these wastes are either stored in a reservoir or disposed in the surrounding of mining/smelting areas, which might cause adverse environmental impacts. Therefore, it is important to understand the various characteristics like heavy metal leaching features and potential toxicity of these metallurgical wastes. In this study, zinc plant leach residues (ZLRs) were collected from a currently operating Zn metallurgical industry located in Minas Gerais (Brazil) and investigated for their potential toxicity, fractionation, and leachability. Three different ZLR samples (ZLR1, ZLR2, and ZLR3) were collected, based on their age of production and deposition. They mainly consisted of Fe (6-11.5 %), Zn (2.5 to 5.0 %), and Pb (1.5 to 2.5 %) and minor concentrations of Al, Cd, Cu, and Mn, depending on the sample age. Toxicity Characteristic Leaching Procedure (TCLP) results revealed that these wastes are hazardous for the environment. Accelerated Community Bureau of Reference (BCR) sequential extraction clearly showed that potentially toxic heavy metals such as Cd, Cu, Pb, and Zn can be released into the environment in high quantities under mild acidic conditions. The results of the liquid-solid partitioning as a function of pH showed that pH plays an important role in the leachability of metals from these residues. At low pH (pH 2.5), high concentrations of metals can be leached: 67, 25, and 7 % of Zn can be leached from leach residues ZLR1, ZLR2, and ZLR3, respectively. The release of metals decreased with increasing pH. Geochemical modeling of the pH-dependent leaching was also performed to determine which geochemical process controls the leachability/solubility of the heavy metals. This study showed that the studied ZLRs contain significant concentrations of non-residual extractable fractions of Zn and can be seen as a potential secondary resource for Zn.

  9. Biocompatible click chemistry enabled compartment-specific pH measurement inside E. coli

    PubMed Central

    Yang, Maiyun; Jalloh, Abubakar S.; Wei, Wei

    2014-01-01

    Bioorthogonal reactions, especially the Cu(I)-catalyzed azide-alkyne cycloaddition, have revolutionized our ability to label and manipulate biomolecules under living conditions. The cytotoxicity of Cu(I) ions, however, has hindered the application of this reaction in the internal space of living cells. By systematically surveying a panel of Cu(I)-stabilizing ligands in promoting protein labeling within the cytoplasm of E. coli, here we identify a highly efficient and biocompatible catalyst for intracellular modification of proteins by azide-alkyne cycloaddition. This reaction permits us to conjugate an environment-sensitive fluorophore site-specifically onto HdeA, an acid-stress chaperone that adopts pH-dependent conformational changes, in both the periplasm and cytoplasm of E. coli. The resulting protein-fluorophore hybrid pH indicators enable compartment-specific pH measurement to determine the pH gradient across the E. coli cytoplasmic membrane. This construct also allows the measurement of E. coli transmembrane potential, and the determination of the proton motive force across its inner membrane under normal and acid-stress conditions. PMID:25236616

  10. Diatom Assemblages on Lacustrine Sediments from the Tropical Andes, Southern Peru: Modern Analogs for Ancient Environments

    NASA Astrophysics Data System (ADS)

    Tapia, P. M.; Vargas, J.; Beal, S. A.; Stroup, J. S.; Kelly, M. A.

    2012-12-01

    Diatom analysis of surface sediments from 17 high-altitude lakes (~3,100-5,000 m asl) in the Cuzco area, Peru, reveals several potential environmental settings that have been observed in biostratigraphy records from lakes in the tropical Andes. The sedimentation rates in several lakes from this area range between 1 and 1.6 mm yr-1 during the late Quaternary, thus we assume our surface samples represent conditions spanning from 6 to 10 years for the top 1cm. Physical and chemical analysis show a high variability in water depth (0.5-12.3 m), pH (7.5-9.7), temperature (4.6-16.5 °C) and conductivity (5.6-3205 μS cm -1), as well as cationic (Na+, K+, Mg2+, Ca2+, Al3+, Mn3+, Fe3+) and anionic (F-, Cl-, Br-, SO42-) composition. Most of the lakes were oligotrophic (PO43-and NO32- below limit of detection) with the exception of nitrite. Principle Component Analysis suggests that the sites follows a strong gradient in conductivity + anions & cations (Axis 1, explaining 51.61 % of variance), and pH + water depth (Axis 2, 17.36 %). Diatoms are quite abundant (108-1010 valves g dry sed-1) in these samples, indicating oligotrophic to mesotrophic conditions and fresh to brackish waters, sometimes forming almost monospecific associations. Applications of these assemblages may be found in the Lake Junin, Central Peruvian Andes. The high abundance (92%) of the pennate diatom Denticula elegans from Site PLS-9 is similar at the Junin Biozone JU-3 that covers most of the Holocene. This species prospers in shallow (1.3-m), high conductivity (3205 μS cm-1) and alkaline (pH 9.39) waters with high values in Ca, Mg and sulfate. Similarly, the dominance (95%) of the centric diatom Discotella stelligera at Site PLS-8 resemble Biozone JU-2, ~17,000 cal yr BP, with deeper (10.9 m), lower conductivity (48.8 μS cm-1) and slightly-alkaline (pH 7.82) waters, with at least 2 orders of magnitude lower in chemical parameters than Site PLS-9. These findings encourage the survey of additional modern environments in order to calibrate biogeochemical proxies for paleoclimate reconstructions.

  11. Leaching characteristics of selected South African fly ashes: Effect of pH on the release of major and trace species

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gitari, W.M.; Fatoba, O.O.; Petrik, L.F.

    2009-07-01

    Fly ash samples from two South African coal-fired power stations were subjected to different leaching tests under alkaline and acidic conditions in an attempt to assess the effect of pH on the leachability of species from the fly ashes and also assess the potential impact of the fly ashes disposal on groundwater and the receiving environment. To achieve this, German Standard leaching (DIN-S4) and Acid Neutralization Capacity (ANC) tests were employed. Ca, Mg, Na, K and SO{sub 4} were significantly leached into solution under the two leaching conditions with the total amounts in ANC leachates higher than that of DIN-S4.more » This indicates that a large fraction of the soluble salts in unweathered fly ash are easily leached. These species represents the fraction that can be flushed off initially from the surface of ash particles on contacting the ash with water. The amounts of toxic trace elements such as As, Se, Cd, Cr and Pb leached out of the fly ashes when in contact with de-mineralized water (DIN-S4 test) were low and below the Target Water Quality Range (TWQR) of South Africa. This is explained by their low concentrations in the fly ashes and their solubility dependence on the pH of the leaching solution. However the amounts of some minor elements such as B, Mn, Fe, As and Se leached out at lower pH ranging between 10 to 4 (ANC test) were slightly higher than the TWQR, an indication that the pH of the leaching solution plays a significant role on the leaching of species in fly ash. The high concentrations of the toxic elements released from the fly ashes at lower pH gives an indication that the disposal of the fly ash could have adverse effects on the receiving environment if the pH of the solution contacting the ashes is not properly monitored.« less

  12. Mechanistic study of lead desorption during the leaching process of ion-absorbed rare earths: pH effect and the column experiment.

    PubMed

    Tang, Jie; Xue, Qiang; Chen, Honghan; Li, Wenting

    2017-05-01

    High concentrations of ammonium sulfate, often used in the in situ mining process, can result in a decrease of pH in the environment and dissolution of rare earth metals. Ammonium sulfate can also cause desorption of toxic heavy metals, leading to environmental and human health implications. In this study, the desorption behavior and fraction changes of lead in the ion-absorbed rare earth ore were studied using batch desorption experiments and column leaching tests. Results from batch desorption experiments showed that the desorption process of lead included fast and slow stages and followed an Elovich model well. The desorption rate and the proportion of lead content in the solution to the total lead in the soil were observed to increase with a decrease in the initial pH of the ammonium sulfate solution. The lead in soil included an acid-extractable fraction, reducible fraction, oxidizable fraction, and a residual fraction, with the predominant fractions being the reducible and acid-extractable fractions. Ninety-six percent of the extractable fraction in soil was desorbed into solution at pH = 3.0, and the content of the reducible fraction was observed to initially increase (when pH >4.0) and then decrease (when pH <4.0) with a decrease in pH. Column leaching tests indicated that the content of lead in the different fractions of soil followed the trend of reducible fraction > oxidizable fraction > acid-extractable fraction > residual fraction after the simulating leaching mining process. The change in pH was also found to have a larger influence on the acid-extractable and reducible fractions than the other two fractions. The proportion of the extractable fraction being leached was ca. 86%, and the reducible fraction was enriched along the migration direction of the leaching liquid. These results suggest that certain lead fractions may desorb again and contaminate the environment via acid rain, which provides significant information for environmental assessment and remediation after mining process. Graphical abstract ᅟ.

  13. Evaluation of the diffusion coefficient for controlled release of oxytetracycline from alginate/chitosan/poly(ethylene glycol) microbeads in simulated gastrointestinal environments.

    PubMed

    Cruz, Maria C Pinto; Ravagnani, Sergio P; Brogna, Fabio M S; Campana, Sérgio P; Triviño, Galo Cardenas; Lisboa, Antonio C Luz; Mei, Lucia H Innocentini

    2004-12-01

    Diffusion studies of OTC (oxytetracycline) entrapped in microbeads of calcium alginate, calcium alginate coacervated with chitosan (of high, medium and low viscosity) and calcium alginate coacervated with chitosan of low viscosity, covered with PEG [poly(ethylene glycol) of molecular mass 2, 4.6 and 10 kDa, were carried out at 37+/-0.5 degrees C, in pH 7.4 and pH 1.2 buffer solutions - conditions similar to those found in the gastrointestinal system. The diffusion coefficient, or diffusivity (D), of OTC was calculated by equations provided by Crank [(1975) Mathematics in Diffusion, p. 85, Clarendon Press, Oxford] for diffusion, which follows Fick's [(1855) Ann. Physik (Leipzig) 170, 59] second law, considering the diffusion from the inner parts to the surface of the microbeads. The least-squares and the Newton-Raphson [Carnahan, Luther and Wilkes (1969) Applied Numerical Methods, p. 319, John Wiley & Sons, New York] methods were used to obtain the diffusion coefficients. The microbead swelling at pH 7.4 and OTC diffusion is classically Fickian, suggesting that the OTC transport, in this case, is controlled by the exchange rates of free water and relaxation of calcium alginate chains. In case of acid media, it was observed that the phenomenon did not follow Fick's law, owing, probably, to the high solubility of the OTC in this environment. It was possible to modulate the release rate of OTC in several types of microbeads. The presence of cracks formed during the process of drying the microbeads was observed by scanning electron microscopy.

  14. Energetics of Amino Acid Synthesis in Alkaline Hydrothermal Environments

    NASA Astrophysics Data System (ADS)

    Kitadai, Norio

    2015-12-01

    Alkaline hydrothermal systems have received considerable attention as candidates for the origin and evolution of life on the primitive Earth. Nevertheless, sufficient information has not yet been obtained for the thermodynamic properties of amino acids, which are necessary components for life, at high temperatures and alkaline pH. These properties were estimated using experimental high-temperature volume and heat capacity data reported in the literature for several amino acids, together with correlation algorithms and the revised Helgeson-Kirkham-Flowers (HKF) equations of state. This approach enabled determination of a complete set of the standard molal thermodynamic data and the revised HKF parameters for the 20 protein amino acids in their zwitterionic and ionization states. The obtained dataset was then used to evaluate the energetics of amino acid syntheses from simple inorganic precursors (CO2, H2, NH3 and H2S) in a simulated alkaline hydrothermal system on the Hadean Earth. Results show that mixing between CO2-rich seawater and the H2-rich hydrothermal fluid can produce energetically favorable conditions for amino acid syntheses, particularly in the lower-temperature region of such systems. Together with data related to the pH and temperature dependences of the energetics of amino acid polymerizations presented in earlier reports, these results suggest the following. Hadean alkaline hydrothermal settings, where steep pH and temperature gradients may have existed between cool, slightly acidic Hadean ocean water and hot, alkaline hydrothermal fluids at the vent-ocean interface, may be energetically the most suitable environment for the synthesis and polymerization of amino acids.

  15. Energetics of Amino Acid Synthesis in Alkaline Hydrothermal Environments.

    PubMed

    Kitadai, Norio

    2015-12-01

    Alkaline hydrothermal systems have received considerable attention as candidates for the origin and evolution of life on the primitive Earth. Nevertheless, sufficient information has not yet been obtained for the thermodynamic properties of amino acids, which are necessary components for life, at high temperatures and alkaline pH. These properties were estimated using experimental high-temperature volume and heat capacity data reported in the literature for several amino acids, together with correlation algorithms and the revised Helgeson-Kirkham-Flowers (HKF) equations of state. This approach enabled determination of a complete set of the standard molal thermodynamic data and the revised HKF parameters for the 20 protein amino acids in their zwitterionic and ionization states. The obtained dataset was then used to evaluate the energetics of amino acid syntheses from simple inorganic precursors (CO2, H2, NH3 and H2S) in a simulated alkaline hydrothermal system on the Hadean Earth. Results show that mixing between CO2-rich seawater and the H2-rich hydrothermal fluid can produce energetically favorable conditions for amino acid syntheses, particularly in the lower-temperature region of such systems. Together with data related to the pH and temperature dependences of the energetics of amino acid polymerizations presented in earlier reports, these results suggest the following. Hadean alkaline hydrothermal settings, where steep pH and temperature gradients may have existed between cool, slightly acidic Hadean ocean water and hot, alkaline hydrothermal fluids at the vent-ocean interface, may be energetically the most suitable environment for the synthesis and polymerization of amino acids.

  16. Modeling hot spring chemistries with applications to martian silica formation

    NASA Astrophysics Data System (ADS)

    Marion, G. M.; Catling, D. C.; Crowley, J. K.; Kargel, J. S.

    2011-04-01

    Many recent studies have implicated hydrothermal systems as the origin of martian minerals across a wide range of martian sites. Particular support for hydrothermal systems include silica (SiO 2) deposits, in some cases >90% silica, in the Gusev Crater region, especially in the Columbia Hills and at Home Plate. We have developed a model called CHEMCHAU that can be used up to 100 °C to simulate hot springs associated with hydrothermal systems. The model was partially derived from FREZCHEM, which is a colder temperature model parameterized for broad ranges of temperature (<-70 to 25 °C), pressure (1-1000 bars), and chemical composition. We demonstrate the validity of Pitzer parameters, volumetric parameters, and equilibrium constants in the CHEMCHAU model for the Na-K-Mg-Ca-H-Cl-ClO 4-SO 4-OH-HCO 3-CO 3-CO 2-O 2-CH 4-Si-H 2O system up to 100 °C and apply the model to hot springs and silica deposits. A theoretical simulation of silica and calcite equilibrium shows how calcite is least soluble with high pH and high temperatures, while silica behaves oppositely. Such influences imply that differences in temperature and pH on Mars could lead to very distinct mineral assemblages. Using measured solution chemistries of Yellowstone hot springs and Icelandic hot springs, we simulate salts formed during the evaporation of two low pH cases (high and low temperatures) and a high temperature, alkaline (high pH) sodic water. Simulation of an acid-sulfate case leads to precipitation of Fe and Al minerals along with silica. Consistency with martian mineral assemblages suggests that hot, acidic sulfate solutions are plausibility progenitors of minerals in the past on Mars. In the alkaline pH (8.45) simulation, formation of silica at high temperatures (355 K) led to precipitation of anhydrous minerals (CaSO 4, Na 2SO 4) that was also the case for the high temperature (353 K) low pH case where anhydrous minerals (NaCl, CaSO 4) also precipitated. Thus we predict that secondary minerals associated with massive silica deposits are plausible indicators on Mars of precipitation environments and aqueous chemistry. Theoretical model calculations are in reasonable agreement with independent experimental silica concentrations, which strengthens the validity of the new CHEMCHAU model.

  17. Modeling hot spring chemistries with applications to martian silica formation

    USGS Publications Warehouse

    Marion, G.M.; Catling, D.C.; Crowley, J.K.; Kargel, J.S.

    2011-01-01

    Many recent studies have implicated hydrothermal systems as the origin of martian minerals across a wide range of martian sites. Particular support for hydrothermal systems include silica (SiO2) deposits, in some cases >90% silica, in the Gusev Crater region, especially in the Columbia Hills and at Home Plate. We have developed a model called CHEMCHAU that can be used up to 100??C to simulate hot springs associated with hydrothermal systems. The model was partially derived from FREZCHEM, which is a colder temperature model parameterized for broad ranges of temperature (<-70 to 25??C), pressure (1-1000 bars), and chemical composition. We demonstrate the validity of Pitzer parameters, volumetric parameters, and equilibrium constants in the CHEMCHAU model for the Na-K-Mg-Ca-H-Cl-ClO4-SO4-OH-HCO3-CO3-CO2-O2-CH4-Si-H2O system up to 100??C and apply the model to hot springs and silica deposits.A theoretical simulation of silica and calcite equilibrium shows how calcite is least soluble with high pH and high temperatures, while silica behaves oppositely. Such influences imply that differences in temperature and pH on Mars could lead to very distinct mineral assemblages. Using measured solution chemistries of Yellowstone hot springs and Icelandic hot springs, we simulate salts formed during the evaporation of two low pH cases (high and low temperatures) and a high temperature, alkaline (high pH) sodic water. Simulation of an acid-sulfate case leads to precipitation of Fe and Al minerals along with silica. Consistency with martian mineral assemblages suggests that hot, acidic sulfate solutions are plausibility progenitors of minerals in the past on Mars. In the alkaline pH (8.45) simulation, formation of silica at high temperatures (355K) led to precipitation of anhydrous minerals (CaSO4, Na2SO4) that was also the case for the high temperature (353K) low pH case where anhydrous minerals (NaCl, CaSO4) also precipitated. Thus we predict that secondary minerals associated with massive silica deposits are plausible indicators on Mars of precipitation environments and aqueous chemistry. Theoretical model calculations are in reasonable agreement with independent experimental silica concentrations, which strengthens the validity of the new CHEMCHAU model. ?? 2011 Elsevier Inc.

  18. Structural differences between native Hen egg white lysozyme and its fibrils under different environmental conditions

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Susmita; Ghosh, Sudeshna; Dasgupta, Swagata; Roy, Anushree

    2013-10-01

    The difference in molecular structure of native HEWL and its fibrils, grown at a pH value near physiological pH 7.4 and at a pH value just above the pI, 10.7 in presence and absence of Cu(II) ions, is discussed. We focus on differences between the molecular structure of the native protein and fibrils using principal component analysis of their Raman spectra. The overlap areas of the scores of each species are used to quantify the difference in the structure of the native HEWL and fibrils in different environments. The overall molecular structures are significantly different for fibrils grown at two pH values. However, in presence of Cu(II) ions, the fibrils have similarities in their molecular structures at these pH environments. Spectral variation within each species, as obtained from the standard deviations of the scores in PCA plots, reveals the variability in the structure within a particular species.

  19. TMC-1 mediates alkaline sensation in C. elegans through nociceptive neurons

    PubMed Central

    Wang, Xiang; Li, Guang; Liu, Jie; Liu, Jianfeng; Xu, X.Z. Shawn

    2016-01-01

    Noxious pH triggers pungent taste and nocifensive behavior. While the mechanisms underlying acidic pH sensation has been extensively characterized, little is known about how animals sense alkaline pH in the environment. TMC genes encode a family of evolutionarily conserved membrane proteins, whose functions are largely unknown. Here, we characterize C. elegans TMC-1 which was suggested to form a Na+-sensitive channel mediating salt chemosensation. Interestingly, we find that TMC-1 is required for worms to avoid noxious alkaline environment. Alkaline pH evokes an inward current in nociceptive neurons, which is primarily mediated by TMC-1 and to a lesser extent by the TRP channel OSM-9. However, unlike OSM-9 which is sensitive to both acidic and alkaline pH, TMC-1 is only required for alkali-activated current, revealing a specificity for alkaline sensation. Ectopic expression of TMC-1 confers alkaline sensitivity to alkali-insensitive cells. Our results identify an unexpected role for TMCs in alkaline sensation and nociception. PMID:27321925

  20. Lead forms in urban turfgrass and forest soils as related to organic matter content and pH

    Treesearch

    Ian D. Yesilonis; Bruce R. James; Richard V. Pouyat; Bahram Momen

    2008-01-01

    Soil pH may influence speciation and extractability of Pb, depending on type of vegetation in urban soil environments. We investigated the relationship between soil pH and Pb extractability at forest and turf grass sites in Baltimore, Maryland. Our two hypotheses were: (1) due to lower pH values in forest soils, more Pb will be in exchangeable forms in forested than in...

  1. Meet EPA Chemist Linda Sheldon, Ph.D.

    EPA Pesticide Factsheets

    Environmental chemist Linda Sheldon, Ph.D, is the Associate Director for Human Heath in the National Exposure Research Laboratory. She studies environmental exposure, particularly focusing on children's environments and their contact with chemicals.

  2. Microbial communities of Hyper saline Lake Salda and Acigol, SW Turkey and Their effects on Biogeochemical cycles

    NASA Astrophysics Data System (ADS)

    Balci, N.; Karaguler, N. G.; Ece, I.; Romanek, C.

    2009-12-01

    The modern lakes Acigol and Salda, located in the “Lake District” of SW of Turkey, are known for the precipitation of sodium, magnesium, and potassium salts, and Mg-rich carbonate, respectively. As an analogue to extraterrestrial environments, these lakes provide opportunities to study microbe-mineral interactions in extreme environments, and in turn to better understand biogeochemical conditions in such environments. Lake Salda is an evaporatic alkaline lake (pH: 9) that covers an area of about 45 km2 in a partially serpentinized ophiolitic rocks. Water samples collected from the surface contain c. 295 mg/L Mg and c. 190 mg/L Na at a pH of 9.1, while the stream entering the lake (pH range 7-9.5) had values of 55 mg/L and 3 mg/L, respectively, indicating significant Na enrichment relative to Mg in the lake. Microbiological analyses of sediment samples from the stream and the lake indicate a diverse microbial community. Lake Acigol is a perennial lake with a maximum salinity of about 200 g/L and covers an area of 55-60 km2 . Water samples were taken from the lake and ponds around the lake in addition to sediment samples. The water chemistry revealed relatively high Na and SO4 concentrations both in the lake (30 gr/L, 33.36 gr/L), and the ponds (100 mg/L, 123 mg/L). The mineralogical analyses of sediments showed gypsum, halite, carbonate (aragonite, huntite) precipitation in the lake and ponds. The geochemical and microbiological data from both lakes suggest that the metabolic activity of microorganisms (cyanobacteria, sulfate reducing bacteria) significantly affect the surrounding microenvironment, overcoming the common kinetic inhibitors to carbonate mineral precipitation by raising the pH and Mg- and HCO3-ion concentration, and by reducing sulfate ion concentration of the waters. We are currently undertaking laboratory experiments to elucidate biological influences on the precipitation of carbonate minerals under field conditions.

  3. pH-Dependent Solution Structure and Activity of a Reduced Form of the Host-Defense Peptide Myticin C (Myt C) from the Mussel Mytilus galloprovincialis

    PubMed Central

    Martinez-Lopez, Alicia; Encinar, Jose Antonio; Medina-Gali, Regla Maria; Balseiro, Pablo; Garcia-Valtanen, Pablo; Figueras, Antonio; Novoa, Beatriz; Estepa, Amparo

    2013-01-01

    Myticin C (Myt C) is a highly variable host-defense peptide (HDP) associated to the immune response in the mediterranean mussel (Mytilus galloprovincialis), which has shown to be active across species due to its strong antiviral activity against a fish rhabdovirus found in fish cells overexpressing this HDP. However, the potential antimicrobial properties of any synthetic analogue of Myt C has not yet been analysed. Thus, in this work we have synthesised the sequence of the mature peptide of Myt C variant c and analysed the structure activity relationships of its reduced (non-oxidized) form (red-MytCc). In contrast to results previously reported for oxidized isoforms of mussel myticins, red-MytCc was not active against bacteria at physiological pH and showed a moderate antiviral activity against the viral haemorrhagic septicaemia (VHS) rhabdovirus. However, its chemotactic properties remained active. Structure/function studies in neutral and acid environments by means of infrared spectroscopy indicated that the structure of red-MytCc is pH dependent, with acid media increasing its alpha-helical content. Furthermore, red-MytCc was able to efficiently aggregate artificial phospholipid membranes at low pH, as well as to inhibit the Escherichia coli growth, suggesting that this activity is attributable to its more structured form in an acidic environment. All together, these results highlight the dynamic and environmentally sensitive behavior of red-Myt C in solution, and provide important insights into Myt C structure/activity relationships and the requirements to exert its antimicrobial/immunomodulatory activities. On the other hand, the pH-dependent direct antimicrobial activity of Myt C suggests that this HDP may be a suitable template for the development of antimicrobial agents that would function selectively in specific pH environments, which are sorely needed in this “antibiotic-resistance era”. PMID:23880927

  4. Quantification of the Sensitivity of Mycobacterium avium subsp paratuberculosis and Salmonella enterica subsp enterica to Low pH and High Organic Acids using Propidium Monoazide and Quantitative PCR

    USDA-ARS?s Scientific Manuscript database

    Mycobacterium avium subsp paratuberculosis (Map) and Salmonella enterica subsp enterica (S. enterica) are two pathogens that are a concern to food and animal safety due to their ability to withstand harsh conditions encountered in the natural environment and within the host during pathogenesis. Acid...

  5. Accelerated killing of cancer cells using a multifunctional single-walled carbon nanotube-based system for targeted drug delivery in combination with photothermal therapy.

    PubMed

    Jeyamohan, Prashanti; Hasumura, Takashi; Nagaoka, Yutaka; Yoshida, Yasuhiko; Maekawa, Toru; Kumar, D Sakthi

    2013-01-01

    The photothermal effect of single-walled carbon nanotubes (SWCNTs) in combination with the anticancer drug doxorubicin (DOX) for targeting and accelerated destruction of breast cancer cells is demonstrated in this paper. A targeted drug-delivery system was developed for selective killing of breast cancer cells with polyethylene glycol biofunctionalized and DOX-loaded SWCNTs conjugated with folic acid. In our work, in vitro drug-release studies showed that the drug (DOX) binds at physiological pH (pH 7.4) and is released only at a lower pH, ie, lysosomal pH (pH 4.0), which is the characteristic pH of the tumor environment. A sustained release of DOX from the SWCNTs was observed for a period of 3 days. SWCNTs have strong optical absorbance in the near-infrared (NIR) region. In this special spectral window, biological systems are highly transparent. Our study reports that under laser irradiation at 800 nm, SWCNTs exhibited strong light-heat transfer characteristics. These optical properties of SWCNTs open the way for selective photothermal ablation in cancer therapy. It was also observed that internalization and uptake of folate-conjugated NTs into cancer cells was achieved by a receptor-mediated endocytosis mechanism. Results of the in vitro experiments show that laser was effective in destroying the cancer cells, while sparing the normal cells. When the above laser effect was combined with DOX-conjugated SWCNTs, we found enhanced and accelerated killing of breast cancer cells. Thus, this nanodrug-delivery system, consisting of laser, drug, and SWCNTs, looks to be a promising selective modality with high treatment efficacy and low side effects for cancer therapy.

  6. Adsorption of Cu(II) to Bacillus subtilis: A pH-dependent EXAFS and thermodynamic modelling study

    NASA Astrophysics Data System (ADS)

    Moon, Ellen M.; Peacock, Caroline L.

    2011-11-01

    Bacteria are very efficient sorbents of trace metals, and their abundance in a wide variety of natural aqueous systems means biosorption plays an important role in the biogeochemical cycling of many elements. We measured the adsorption of Cu(II) to Bacillus subtilis as a function of pH and surface loading. Adsorption edge and XAS experiments were performed at high bacteria-to-metal ratio, analogous to Cu uptake in natural geologic and aqueous environments. We report significant Cu adsorption to B. subtilis across the entire pH range studied (pH ˜2-7), with adsorption increasing with pH to a maximum at pH ˜6. We determine directly for the first time that Cu adsorbs to B. subtilis as a (CuO 5H n) n-8 monodentate, inner-sphere surface complex involving carboxyl surface functional groups. This Cu-carboxyl complex is able to account for the observed Cu adsorption across the entire pH range studied. Having determined the molecular adsorption mechanism of Cu to B. subtilis, we have developed a new thermodynamic surface complexation model for Cu adsorption that is informed by and consistent with EXAFS results. We model the surface electrostatics using the 1p K basic Stern approximation. We fit our adsorption data to the formation of a monodentate, inner-sphere tbnd RCOOCu + surface complex. In agreement with previous studies, this work indicates that in order to accurately predict the fate and mobility of Cu in complex biogeochemical systems, we must incorporate the formation of Cu-bacteria surface complexes in reactive transport models. To this end, this work recommends log K tbnd RCOOCu + = 7.13 for geologic and aqueous systems with generally high B. subtilis-to-metal ratio.

  7. STXM/C 1s-NEXAFS study of Eu(III) and Uranyl humic acid aggregates at different pH

    NASA Astrophysics Data System (ADS)

    Plaschke, M.; Rothe, J.; Denecke, M. A.; Geckeis, H.

    2010-04-01

    Humic acids (HA) are chemically heterogeneous and structurally ill-defined biopolymers which are able to bind traces of actinides or lanthanides. Due to their dimensions in the colloidal size range they may affect transport of these elements in aquatic systems. Eu(III)- and UO22+-HA aggregates have been investigated by Scanning Transmission X-ray Microscopy (STXM) and C 1s-NEXAFS under systematic variation of pH. In the Eu(III)- and UO22+-HA systems aggregate morphologies at near neutral pH were similar to those observed in previous studies: optically dense zones (high absorption at the carbon K-edge) are embedded in a matrix of less dense material. C 1s-NEXAFS signatures observed in the different zones, i.e., the intensity of the characteristic complexation feature previously experimentally described and recently theoretically characterized, strongly depends on sample pH. In the alkaline regime (pH 9) with added carbonate, co-precipitation of Eu(III)-carbonate (or ternary carbonate/(oxo)hydroxide complexes) with the Eu(III)-HA majority fraction is observed but Eu(III) binding to HA over carbonate in the dense zones seems to be favoured. The UO22+-HA system exhibits in alkaline solution more compact morphologies combined with a strong metal ion complexation effect in the NEXAFS. Eu(III) and UO22+ polyacrylic acid (PAA) aggregates used as HA model systems show similar spectral trends; these aggregates exhibit highly branched morphologies without segregation into zones with different NEXAFS signatures. The chemical environment such as pH or the type of metal cation strongly influences both HA aggregate morphologies and NEXAFS spectral signatures. These can, in turn, be used as indicators of the strength of lanthanide or actinide ion bound HA interaction.

  8. High temperature hydrothermal vent fluids in Yellowstone Lake: Observations and insights from in-situ pH and redox measurements

    NASA Astrophysics Data System (ADS)

    Tan, Chunyang; Cino, Christie D.; Ding, Kang; Seyfried, William E.

    2017-09-01

    ROV investigation of hydrothermal fluids issuing from vents on the floor of Yellowstone lake revealed temperatures in excess of 170 °C - the highest temperature yet reported for vent fluids within Yellowstone National Park (YNP). The study site is east of Stevenson Island at depth of approximately 100-125 m. In-situ pH and redox measurements of vent fluids were made using solid state sensors designed to sustain the elevated temperatures and pressures. YSZ membrane electrode with Ag/Ag2O internal element and internal pressure balanced Ag/AgCl reference electrode were used to measure pH, while a platinum electrode provided redox constraints. Lab verification of the pH sensor confirmed excellent agreement with Nernst law predictions, especially at temperatures in excess of 120 °C. In-situ pH values of between 4.2 and 4.5 were measured for the vent fluids at temperatures of 120 to 150 °C. The slightly acidic vent fluids are likely caused by CO2 enrichment in association with magmatic degassing effects that occur throughout YNP. This is consistent with results of simple model calculations and direct observation of CO2 bubbles in the immediate vicinity of the lake floor vents. Simultaneous redox measurements indicated moderate to highly reducing conditions (- 0.2 to - 0.3 V). As typical of measurements of this kind, internal and external redox disequilibria likely preclude unambiguous determination of redox controlling reactions. Redox disequilibria, however, can be expected to drive microbial metabolism and diversity in the near vent environment. Thus, the combination of in-situ pH and redox sensor deployments may ultimately provide the requisite framework to better understand the microbiology of the newly discovered hot vents on Yellowstone lake floor.

  9. Adsorption of sulfamethoxazole and sulfapyridine antibiotics in high organic content soils.

    PubMed

    Chen, Kuen-Lin; Liu, Li-Chun; Chen, Wan-Ru

    2017-12-01

    Many antibiotics, including sulfonamides, are being frequently detected in soil and groundwater. Livestock waste is an important source of antibiotic pollution, and sulfonamides may be present along with organic-rich substances. This study aims to investigate the sorption reaction of two sulfonamides, sulfamethoxazole (SMZ) and sulfapyridine (SPY) in two organic-rich sorbents: a commercial peat soil (38.41% carbon content) and a composted manure (24.33% carbon content). Batch reactions were conducted to evaluate the impacts of pH (4.5-9.5) and background ions (0.001 M-0.1 M CaCl 2 ) on their sorption. Both linear partitioning and Freundlich sorption isotherms fit the reaction well. The n values of Freundlich isotherm were close to 1 in most conditions suggesting that the hydrophobic partition is the major adsorption mechanism. In terms of SMZ, K d declined with increases in the pH. SPY has a pyridine group that is responsible for adsorption at high pH values, and thus, no significant trend between K d and pH was observed. At high pH ranges, SPY sorption deviated significantly from linear partitioning. The results suggested the sorption mechanism of these two sulfonamide antibiotics tended to be hydrophobic partitioning under most of the experimental conditions, especially at pH values lower than their corresponding pK a2. The fluorescence excitation emission matrix and dissolved organic carbon leaching test suggested composted manure has higher fulvic acid organics and that peat soil has higher humus-like organics. Small organic molecules showed stronger affinity toward sulfonamide antibiotics and cause the composted manure to exhibit higher sorption capacity. Overall, this study suggests that the chemical structure and properties of sulfonamides antibiotics and the type of organic matter in soils will greatly influence the fate and transport of these contaminants into the environment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Metabolically active microbial communities in marine sediment under high-CO2 and low-pH extremes

    PubMed Central

    Yanagawa, Katsunori; Morono, Yuki; de Beer, Dirk; Haeckel, Matthias; Sunamura, Michinari; Futagami, Taiki; Hoshino, Tatsuhiko; Terada, Takeshi; Nakamura, Ko-ichi; Urabe, Tetsuro; Rehder, Gregor; Boetius, Antje; Inagaki, Fumio

    2013-01-01

    Sediment-hosting hydrothermal systems in the Okinawa Trough maintain a large amount of liquid, supercritical and hydrate phases of CO2 in the seabed. The emission of CO2 may critically impact the geochemical, geophysical and ecological characteristics of the deep-sea sedimentary environment. So far it remains unclear whether microbial communities that have been detected in such high-CO2 and low-pH habitats are metabolically active, and if so, what the biogeochemical and ecological consequences for the environment are. In this study, RNA-based molecular approaches and radioactive tracer-based respiration rate assays were combined to study the density, diversity and metabolic activity of microbial communities in CO2-seep sediment at the Yonaguni Knoll IV hydrothermal field of the southern Okinawa Trough. In general, the number of microbes decreased sharply with increasing sediment depth and CO2 concentration. Phylogenetic analyses of community structure using reverse-transcribed 16S ribosomal RNA showed that the active microbial community became less diverse with increasing sediment depth and CO2 concentration, indicating that microbial activity and community structure are sensitive to CO2 venting. Analyses of RNA-based pyrosequences and catalyzed reporter deposition-fluorescence in situ hybridization data revealed that members of the SEEP-SRB2 group within the Deltaproteobacteria and anaerobic methanotrophic archaea (ANME-2a and -2c) were confined to the top seafloor, and active archaea were not detected in deeper sediments (13–30 cm in depth) characterized by high CO2. Measurement of the potential sulfate reduction rate at pH conditions of 3–9 with and without methane in the headspace indicated that acidophilic sulfate reduction possibly occurs in the presence of methane, even at very low pH of 3. These results suggest that some members of the anaerobic methanotrophs and sulfate reducers can adapt to the CO2-seep sedimentary environment; however, CO2 and pH in the deep-sea sediment were found to severely impact the activity and structure of the microbial community. PMID:23096400

  11. Can Surface Seeps Elucidate Carbon Cycling in Terrestrial Subsurface Ecosystems in Ophiolite-hosted Serpentinizing Fluids?

    NASA Astrophysics Data System (ADS)

    Meyer-Dombard, D. R.; Cardace, D.; Woycheese, K. M.; Vallalar, B.; Arcilla, C. A.

    2017-12-01

    Serpentinization in ophiolite-hosted regimes produces highly reduced, high pH fluids that are often characterized as having copious H2 and CH4 gas, little/no inorganic carbon, and limited electron acceptors. Subsurface microbial biomes shift as deeply-sourced fluids reach the oxygenated surface environment, where organisms capable of metabolizing O2 thrive (Woycheese et al., 2015). The relationship, connection, and communication between surface expressions (such as fluid seeps) and the subsurface biosphere is still largely unexplored. Our work in the Zambales and Palawan ophiolites (Philippines) defines surface habitats with geochemistry, targeted culturing efforts, and community analysis (Cardace et al., 2015; Woycheese et al., 2015). Fluids in the spring sources are largely `typical' and fall in the pH range of 9-11.5 with measurable gas escaping from the subsurface (H2 and CH4 > 10uM, CO2 > 1 mM; Cardace et al., 2015). Outflow channels extend from the source pools. These surface data encourage prediction of the subsurface metabolic landscape. To understand how carbon cycling in the subsurface and surface environments might be related, we focus on community analysis, culturing, and the geochemical context of the ecosystem. Shotgun metagenomic analyses indicate carbon cycling is reliant on methanogenesis, acetogenesis, sulfate reduction, and H2 and CH4 oxidation. Methyl coenzyme M reductase, and formylmethanofuran dehydrogenase were detected, and relative abundance increased near the near-anoxic spring source. In this tropical climate, cellulose is also a likely carbon source, possibly even in the subsurface. Enrichment cultures [pH 8-12] and strains [pH 8-10] from Zambales springs show degradation of cellulose and production of cellulase. DIC, DOC, and 13C of solid substrates show mixed autotrophic/heterotrophic activity. Results indicate a metabolically flexible surface community, and suggest details about carbon cycling in the subsurface.

  12. A gold nanocluster-based fluorescent probe for simultaneous pH and temperature sensing and its application to cellular imaging and logic gates.

    PubMed

    Wu, Yun-Tse; Shanmugam, Chandirasekar; Tseng, Wei-Bin; Hiseh, Ming-Mu; Tseng, Wei-Lung

    2016-06-07

    Metal nanocluster-based nanomaterials for the simultaneous determination of temperature and pH variations in micro-environments are still a challenge. In this study, we develop a dual-emission fluorescent probe consisting of bovine serum albumin-stabilized gold nanoclusters (BSA-AuNCs) and fluorescein-5-isothiocyanate (FITC) as temperature- and pH-responsive fluorescence signals. Under single wavelength excitation the FITC/BSA-AuNCs exhibited well-separated dual emission bands at 525 and 670 nm. When FITC was used as a reference fluorophore, FITC/BSA-AuNCs showed a good linear response over the temperature range 1-71 °C and offered temperature-independent spectral shifts, temperature accuracy, activation energy, and reusability. The possible mechanism for high temperature-induced fluorescence quenching of FITC/BSA-AuNCs could be attributed to a weakening of the Au-S bond, thereby lowering the charge transfer from BSA to AuNCs. Additionally, the pH- and temperature-responsive properties of FITC/BSA-AuNCs allow simultaneous temperature sensing from 21 to 41 °C (at intervals of 5 °C) and pH from 6.0 to 8.0 (at intervals of 0.5 pH unit), facilitating the construction of two-input AND logic gates. Three-input AND logic gates were also designed using temperature, pH, and trypsin as inputs. The practicality of using FITC/BSA-AuNCs to determine the temperature and pH changes in HeLa cells is also validated.

  13. Teaching Plant-Soil Relationships with Color Images of Rhizosphere pH.

    ERIC Educational Resources Information Center

    Heckman, J. R.; Strick, J. E.

    1996-01-01

    Presents a laboratory exercise that uses a simple imaging technique to illustrate the profound effects that living roots exert on the pH of the surrounding soil environment. Achieves visually stimulating results that can be used to reinforce lectures on rhizosphere pH, nutrient availability, plant tolerance of soil acidity, microbial activity, and…

  14. Digital Doctorates? An Exploratory Study of PhD Candidates' Use of Online Tools

    ERIC Educational Resources Information Center

    Dowling, Robyn; Wilson, Michael

    2017-01-01

    Online environments are transforming learning, including doctoral education. Yet the ways in which the PhD experience is shaped and transformed through these digital modes of engagement is seldom addressed, and not systematically understood. In this article, we explore PhD students' perceptions and use of digital tools. Drawing on the results of…

  15. Alkaline pH enhances farnesol production by Saccharomyces cerevisiae.

    PubMed

    Muramatsu, Masayoshi; Ohto, Chikara; Obata, Shusei; Sakuradani, Eiji; Shimizu, Sakayu

    2009-07-01

    External environments affect prenyl alcohol production by squalene synthetase-deficient mutant Saccharomyces cerevisiae ATCC 64031. Cultivation of the yeast in medium with an initial pH ranging from 7.0 to 8.0 increased the amount of secreted farnesol (FOH). In contrast, acidic medium with a pH below 4.0 increased the intracellular FOH and its isomer nerolidol. These effects of alkaline pH were also observed on constant pH cultivation in a jar fermenter. On cultivation for 133 h, the FOH production reached 102.8 mg/l.

  16. Microbes in mercury-enriched geothermal springs in western North America.

    PubMed

    Geesey, Gill G; Barkay, Tamar; King, Sue

    2016-11-01

    Because geothermal environments contain mercury (Hg) from natural sources, microorganisms that evolved in these systems have likely adapted to this element. Knowledge of the interactions between microorganisms and Hg in geothermal systems may assist in understanding the long-term evolution of microbial adaptation to Hg with relevance to other environments where Hg is introduced from anthropogenic sources. A number of microbiological studies with supporting geochemistry have been conducted in geothermal systems across western North America. Approximately 1 in 5 study sites include measurements of Hg. Of all prokaryotic taxa reported across sites with microbiological and accompanying physicochemical data, 42% have been detected at sites in which Hg was measured. Genes specifying Hg reduction and detoxification by microorganisms were detected in a number of hot springs across the region. Archaeal-like sequences, representing two crenarchaeal orders and one order each of the Euryarchaeota and Thaumarchaeota, dominated in metagenomes' MerA (the mercuric reductase protein) inventories, while bacterial homologs were mostly found in one deeply sequenced metagenome. MerA homologs were more frequently found in metagenomes of microbial communities in acidic springs than in circumneutral or high pH geothermal systems, possibly reflecting higher bioavailability of Hg under acidic conditions. MerA homologs were found in hot springs prokaryotic isolates affiliated with Bacteria and Archaea taxa. Acidic sites with high Hg concentrations contain more of Archaea than Bacteria taxa, while the reverse appears to be the case in circumneutral and high pH sites with high Hg concentrations. However, MerA was detected in only a small fraction of the Archaea and Bacteria taxa inhabiting sites containing Hg. Nevertheless, the presence of MerA homologs and their distribution patterns in systems, in which Hg has yet to be measured, demonstrates the potential for detoxification by Hg reduction in these geothermal systems, particularly the low pH springs that are dominated by Archaea. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Effect of humic acid on nickel(II) sorption to Ca-montmorillonite by batch and EXAFS techniques study.

    PubMed

    Hu, Jun; Tan, Xiaoli; Ren, Xuemei; Wang, Xiangke

    2012-09-21

    The influence of humic acid (HA) on Ni(II) sorption to Ca-montmorillonite was examined by using a combination of batch sorption experiments and extended X-ray absorption fine structure (EXAFS) spectroscopy technique. The sorption of Ni(II) on HA-montmorillonite hybrids is strongly dependent on pH and temperature. At low pH, the sorption of Ni(II) is mainly dominated by Ni-HA-montmorillonite and outer-sphere surface complexation. The EXAFS results indicate that the first coordination shell of Ni(II) consists of ∼6 O atoms at the interatomic distances of ∼2.04 Å in an octahedral structure. At high pH, binary Ni-montmorillonite surface complexation is the dominant sorption mechanism. EXAFS analysis indicates the formation of mononuclear complexes located at the edges of Ca-montmorillonite platelets at pH 7.5, while a Ni-Al layered double hydroxide (LDH) phase at the Ca-montmorillonite surface formed with pH 8.5. At pH 10.0, the dissolved HA-Ni(II) complexation inhibits the precipitation of Ni hydroxide, and Ni-Al LDH phase forms. The rise of temperature increases the sorption capacity of Ni(II), and promotes Ni-Al LDH phase formation and the growth of crystallites. The results are important to evaluate the physicochemical behavior of Ni(II) in the natural environment.

  18. In situ sensor technology for simultaneous spectrophotometric measurements of seawater total dissolved inorganic carbon and pH.

    PubMed

    Wang, Zhaohui Aleck; Sonnichsen, Frederick N; Bradley, Albert M; Hoering, Katherine A; Lanagan, Thomas M; Chu, Sophie N; Hammar, Terence R; Camilli, Richard

    2015-04-07

    A new, in situ sensing system, Channelized Optical System (CHANOS), was recently developed to make high-resolution, simultaneous measurements of total dissolved inorganic carbon (DIC) and pH in seawater. Measurements made by this single, compact sensor can fully characterize the marine carbonate system. The system has a modular design to accommodate two independent, but similar measurement channels for DIC and pH. Both are based on spectrophotometric detection of hydrogen ion concentrations. The pH channel uses a flow-through, sample-indicator mixing design to achieve near instantaneous measurements. The DIC channel adapts a recently developed spectrophotometric method to achieve flow-through CO2 equilibration between an acidified sample and an indicator solution with a response time of only ∼ 90 s. During laboratory and in situ testing, CHANOS achieved a precision of ±0.0010 and ± 2.5 μmol kg(-1) for pH and DIC, respectively. In situ comparison tests indicated that the accuracies of the pH and DIC channels over a three-week time-series deployment were ± 0.0024 and ± 4.1 μmol kg(-1), respectively. This study demonstrates that CHANOS can make in situ, climatology-quality measurements by measuring two desirable CO2 parameters, and is capable of resolving the CO2 system in dynamic marine environments.

  19. Influence of pH on the transport of silver nanoparticles in saturated porous media: laboratory experiments and modeling

    NASA Astrophysics Data System (ADS)

    Flory, Jason; Kanel, Sushil R.; Racz, LeeAnn; Impellitteri, Christopher A.; Silva, Rendahandi G.; Goltz, Mark N.

    2013-03-01

    Given the ubiquity of silver nanoparticles (AgNPs) and their potential for toxic effects on both humans and the environment, it is important to understand their environmental fate and transport. The purpose of this study is to gain information on the transport properties of commercial AgNP suspensions in a glass bead-packed column under saturated flow conditions at different solution pH levels. Commercial AgNPs were characterized using high-resolution transmission electron microscopy, dynamic light scattering, X-ray photoelectron spectroscopy, ultraviolet visible spectroscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis, and X-ray diffraction. Transport data were collected at different pH levels (4, 6.5, 9, and 11) at fixed ionic strength. Capture of AgNPs increased as the pH of the solution increased from 4 to 6.5. Further increase in pH to 9 and 11 decreased the attachment of AgNPs to the glass beads. AgNP concentration versus time breakthrough data were simulated using an advection-dispersion model incorporating both irreversible and reversible attachment. In particular, a reversible attachment model is required to simulate breakthrough curve tailing at near neutral pH, when attachment is most significant. The laboratory and modeling study reveals that for natural groundwaters, AgNP transport in porous media may be retarded due to capture; but ultimately, most of the mass may be slowly released over time.

  20. Monodispersed calcium carbonate nanoparticles modulate local pH and inhibit tumor growth in vivo

    NASA Astrophysics Data System (ADS)

    Som, Avik; Raliya, Ramesh; Tian, Limei; Akers, Walter; Ippolito, Joseph E.; Singamaneni, Srikanth; Biswas, Pratim; Achilefu, Samuel

    2016-06-01

    The acidic extracellular environment of tumors potentiates their aggressiveness and metastasis, but few methods exist to selectively modulate the extracellular pH (pHe) environment of tumors. Transient flushing of biological systems with alkaline fluids or proton pump inhibitors is impractical and nonselective. Here we report a nanoparticles-based strategy to intentionally modulate the pHe in tumors. Biochemical simulations indicate that the dissolution of calcium carbonate nanoparticles (nano-CaCO3) in vivo increases pH asymptotically to 7.4. We developed two independent facile methods to synthesize monodisperse non-doped vaterite nano-CaCO3 with distinct size range between 20 and 300 nm. Using murine models of cancer, we demonstrate that the selective accumulation of nano-CaCO3 in tumors increases tumor pH over time. The associated induction of tumor growth stasis is putatively interpreted as a pHe increase. This study establishes an approach to prepare nano-CaCO3 over a wide particle size range, a formulation that stabilizes the nanomaterials in aqueous solutions, and a pH-sensitive nano-platform capable of modulating the acidic environment of cancer for potential therapeutic benefits.The acidic extracellular environment of tumors potentiates their aggressiveness and metastasis, but few methods exist to selectively modulate the extracellular pH (pHe) environment of tumors. Transient flushing of biological systems with alkaline fluids or proton pump inhibitors is impractical and nonselective. Here we report a nanoparticles-based strategy to intentionally modulate the pHe in tumors. Biochemical simulations indicate that the dissolution of calcium carbonate nanoparticles (nano-CaCO3) in vivo increases pH asymptotically to 7.4. We developed two independent facile methods to synthesize monodisperse non-doped vaterite nano-CaCO3 with distinct size range between 20 and 300 nm. Using murine models of cancer, we demonstrate that the selective accumulation of nano-CaCO3 in tumors increases tumor pH over time. The associated induction of tumor growth stasis is putatively interpreted as a pHe increase. This study establishes an approach to prepare nano-CaCO3 over a wide particle size range, a formulation that stabilizes the nanomaterials in aqueous solutions, and a pH-sensitive nano-platform capable of modulating the acidic environment of cancer for potential therapeutic benefits. Electronic supplementary information (ESI) available: Summary of experiments, theoretical schema of effect, synthesis schema, X-Ray diffraction results, TEM of effects of different solvents on particles in various solvents. See DOI: 10.1039/c5nr06162h

  1. Avoidance of stress corrosion susceptibility in high strength aluminum alloys by control of grain boundary and matrix microstructure

    NASA Technical Reports Server (NTRS)

    Adler, P.; Deiasi, R.

    1974-01-01

    The relation of microstructure to the mechanical strength and stress corrosion resistance of highest strength and overaged tempers of BAR and 7050 aluminum alloys was investigated. Comparison is made with previously studied 7075 aluminum alloy. Optical microscopy, transmission electron microscopy, and differential scanning calorimetry were used to characterize the grain morphology, matrix microstructure, and grain boundary microstructure of these tempers. Grain boundary interparticle spacing was significant to stress corrosion crack propagation for all three alloys; increasing interparticle spacing led to increased resistance to crack propagation. In addition, the fire grain size in Bar and 7050 appears to enhance crack propagation. The highest strength temper of 7050 has a comparatively high resistance to crack initiation. Overall stress corrosion behavior is dependent on environment pH, and evaluation over a range of pH is recommended.

  2. Diversity and food web structure of nematode communities under high soil salinity and alkaline pH.

    PubMed

    Salamún, Peter; Kucanová, Eva; Brázová, Tímea; Miklisová, Dana; Renčo, Marek; Hanzelová, Vladimíra

    2014-10-01

    A long-term and intensive magnesium (Mg) ore processing in Slovenské Magnezitové Závody a.s. in Jelšava has resulted in a high Mg content and alkaline pH of the soil environment, noticeable mainly in the close vicinity of the smelter. Nematode communities strongly reacted to the contamination mostly by a decrease in abundance of the sensitive groups. Nematodes from c-p 1 group and bacterivores, tolerant to pollution played a significant role in establishing the dominance at all sites. With increasing distance from the pollution source, the nematode communities were more structured and complex, with an increase in proportion of sensitive c-p 4 and 5 nematodes, composed mainly of carnivores and omnivores. Various ecological indices (e.g. MI2-5, SI, H') indicated similar improvement of farther soil ecosystems.

  3. Meet EPA Scientist Michael Nye, Ph.D.

    EPA Pesticide Factsheets

    Michael Nye, Ph.D., is a social scientist who studies natural risk, socio-demographic change and sustainable behavior. Prior to joining EPA, he worked for the UK Environment Agency in flood risk management and emergency preparedness

  4. Transfer of Oleic Acid between Albumin and Phospholipid Vesicles

    NASA Astrophysics Data System (ADS)

    Hamilton, James A.; Cistola, David P.

    1986-01-01

    The net transfer of oleic acid between egg phosphatidylcholine unilamellar vesicles and bovine serum albumin has been monitored by 13C NMR spectroscopy and 90% isotopically substituted [1-13C]oleic acid. The carboxyl chemical shifts of oleic acid bound to albumin were different from those for oleic acid in phospholipid vesicles. Therefore, in mixtures of donor particles (vesicles or albumin with oleic acid) and acceptor particles (fatty acid-free albumin or vesicles), the equilibrium distribution of oleic acid was determined from chemical shift and peak intensity data without separation of donor and acceptor particles. In a system containing equal masses of albumin and phospholipid and a stoichiometry of 4-5 mol of oleic acid per mol of albumin, the oleic acid distribution was pH dependent, with >= 80% of the oleic acid associated with albumin at pH 7.4; association was >= 90% at pH 8.0. Decreasing the pH below 7.4 markedly decreased the proportion of fatty acid bound to albumin; at pH 5.4, <= 10% of the oleic acid was bound to albumin and >90% was associated with vesicles. The distribution was reversible with pH and was independent of whether vesicles or albumin acted as a donor. These data suggest that pH may strongly influence the partitioning of fatty acid between cellular membranes and albumin. The 13C NMR method is also advantageous because it provides information about the structural environments of oleic acid bound to albumin or phospholipid, the ionization state of oleic acid in each environment, and the structural integrity of the vesicles. In addition, minimum and maximum limits for the exchange rates of oleic acid among different environments were obtained from the NMR data.

  5. Soil pH effects on the interactions between dissolved zinc, non-nano- and nano-ZnO with soil bacterial communities.

    PubMed

    Read, Daniel S; Matzke, Marianne; Gweon, Hyun S; Newbold, Lindsay K; Heggelund, Laura; Ortiz, Maria Diez; Lahive, Elma; Spurgeon, David; Svendsen, Claus

    2016-03-01

    Zinc oxide nanoparticles (ZnO NPs) are used in an array of products and processes, ranging from personal care products to antifouling paints, textiles, food additives, antibacterial agents and environmental remediation processes. Soils are an environment likely to be exposed to manmade nanoparticles due to the practice of applying sewage sludge as a fertiliser or as an organic soil improver. However, understanding on the interactions between soil properties, nanoparticles and the organisms that live within soil is lacking, especially with regards to soil bacterial communities. We studied the effects of nanoparticulate, non-nanoparticulate and ionic zinc (in the form of zinc chloride) on the composition of bacterial communities in soil with a modified pH range (from pH 4.5 to pH 7.2). We observed strong pH-dependent effects on the interaction between bacterial communities and all forms of zinc, with the largest changes in bacterial community composition occurring in soils with low and medium pH levels (pH 4.8 and 5.9). The high pH soil (pH 7.2) was less susceptible to the effects of zinc exposure. At the highest doses of zinc (2500 mg/kg dw soil), both nano and non-nano particulate zinc applications elicited a similar response in the soil bacterial community, and this differed significantly to the ionic zinc salt treatment. The results highlight the importance of considering soil pH in nanotoxicology studies, although further work is needed to determine the exact mechanisms controlling the toxicity and fate and interactions of nanoparticles with soil microbial communities.

  6. Novel silica surface charge density mediated control of the optical properties of embedded optically active materials and its application for fiber optic pH sensing at elevated temperatures.

    PubMed

    Wang, Congjun; Ohodnicki, Paul R; Su, Xin; Keller, Murphy; Brown, Thomas D; Baltrus, John P

    2015-02-14

    Silica and silica incorporated nanocomposite materials have been extensively studied for a wide range of applications. Here we demonstrate an intriguing optical effect of silica that, depending on the solution pH, amplifies or attenuates the optical absorption of a variety of embedded optically active materials with very distinct properties, such as plasmonic Au nanoparticles, non-plasmonic Pt nanoparticles, and the organic dye rhodamine B (not a pH indicator), coated on an optical fiber. Interestingly, the observed optical response to varying pH appears to follow the surface charge density of the silica matrix for all the three different optically active materials. To the best of our knowledge, this optical effect has not been previously reported and it appears universal in that it is likely that any optically active material can be incorporated into the silica matrix to respond to solution pH or surface charge density variations. A direct application of this effect is for optical pH sensing which has very attractive features that can enable minimally invasive, remote, real time and continuous distributed pH monitoring. Particularly, as demonstrated here, using highly stable metal nanoparticles embedded in an inorganic silica matrix can significantly improve the capability of pH sensing in extremely harsh environments which is of increasing importance for applications in unconventional oil and gas resource recovery, carbon sequestration, water quality monitoring, etc. Our approach opens a pathway towards possible future development of robust optical pH sensors for the most demanding environmental conditions. The newly discovered optical effect of silica also offers the potential for control of the optical properties of optically active materials for a range of other potential applications such as electrochromic devices.

  7. Corrosion fatigue of high strength fastener materials in seawater

    NASA Technical Reports Server (NTRS)

    Tipton, D. G.

    1983-01-01

    Environmental effects which significantly reduce the fatigue life of metals are discussed. Corrosion fatigue is a major concern in the engineering application of high strength fasteners in marine environments. The corrosion fatigue failure of an AISI 41L4O high strength steel blade to hub attachment bolt at the MOD-OA 200 kW wind turbine generator was investigated. The reduction of fatigue strength of AISI 41L4O in marine environments and to obtain similar corrosion fatigue data for candidate replacement materials was studied. The AISI 4140, PH 13-8Mo stainless steel, alloy 718 and alloy MP-35N were tested in axial fatigue at a frequency of 20 Hz in dry air and natural seawater. The fatigue data are fitted by regression equations to allow determination of fatigue strength for a given number of cycles to failure.

  8. Corrosion fatigue of high strength fastener materials in seawater

    NASA Astrophysics Data System (ADS)

    Tipton, D. G.

    1983-12-01

    Environmental effects which significantly reduce the fatigue life of metals are discussed. Corrosion fatigue is a major concern in the engineering application of high strength fasteners in marine environments. The corrosion fatigue failure of an AISI 41L4O high strength steel blade to hub attachment bolt at the MOD-OA 200 kW wind turbine generator was investigated. The reduction of fatigue strength of AISI 41L4O in marine environments and to obtain similar corrosion fatigue data for candidate replacement materials was studied. The AISI 4140, PH 13-8Mo stainless steel, alloy 718 and alloy MP-35N were tested in axial fatigue at a frequency of 20 Hz in dry air and natural seawater. The fatigue data are fitted by regression equations to allow determination of fatigue strength for a given number of cycles to failure.

  9. Searching for Clues to the Processes and Conditions of Past Martian Environments: The Roles of Episodic Solutions, Analog Sites and Fe-O(-H) Phases

    NASA Astrophysics Data System (ADS)

    King, P. L.; De Deckker, P.

    2012-12-01

    On Mars, limited solutions (water/brine) were likely present episodically. Gradients in solution abundance may have caused salt precipitation and re-solution, brine reflux, pH gradients, and cycling of anions and cations; we provide an example of such processes in a playa lake. We propose that on Mars, the limited, episodic solutions, pH and abundant Fe-O(-H) phases are significant factors in salt precipitation and in promoting adsorption/desorption of anions and cations. FACTORS LEADING TO EPISODIC SOLUTIONS: Episodic movement of solutions may be driven by punctuated processes that 1) remove surface materials (e.g., impact and sedimentary mass wasting and deflation); 2) add surface materials (e.g., impact, volcanic and sedimentary processes); and 3) increase temperature and/or decrease atmospheric pressure (e.g., seasons, diurnal cycles, variation in obliquity). Removal and addition of surface materials results in topographic gradients that change pressure gradients of any potential groundwater, films, or buried ground ice. For example, episodic fluid flow and salt precipitation/re-solution may occur at topographic discontinuities like craters/basins, channel walls, mounds and dunes. Such areas provide the opportunity to sample multiple fluid sources (with different pH, Eh and total dissolved solids, TDS) and they may be the foci of subsurface solution flow and surface transport. EARTH ANALOG: Interplay of the three processes above is seen in Lake Tyrrell (playa), western Victoria, Australia (McCumber, P, 1991 http://vro.dpi.vic.gov.au). During wetter periods, springs from the regional groundwater (low pH, oxidized, mod-high TDS) mix with lake waters and saline 'reflux' brines (mod. pH, reduced, high TDS) at the lake edge at the base of higher ground. The Br/Cl of the reflux brines indicates mineral re-solution. Gypsum and Fe-O(-H) phases precipitate near the lake edge. During hot, dry climate episodes the lake precipitates gypsum and carbonate, efflorescent salts are common, and these salts may form eolian dunes with fine particles. We may expect similar processes and mineral and chemical gradients in craters/basins on Mars like Gale Crater, the site of the Mars Science Laboratory mission. ROLE OF Fe-O(-H) PHASES: Nanophase Fe-O(-H)-phases are abundant on Mars and their precipitation results in an Fe-poor solution and salts (like Lake Tyrrell). Fe-O(-H) phases precipitate most readily at near-neutral pH; however, the high Fe of Mars' surface allows for pH>1. Nanophase Fe-O(-H)-phases have surface species that promote adsorption; which may be important in dry conditions like Mars. If we take goethite (FeO(OH)), the surface species and aqueous ions in solution are Fe3+ (pH<~2); Fe(OH)2+ (pH~2-3.5); Fe(OH)2+ (pH~3.5-~8); and FeOH4- (pH>~8). Other Fe-O(-H) phases have slightly different pH limits. Thus, at pH<~8, Fe-O(-H) surfaces sequester anions in surface complexes or in Fe-bearing salts (e.g. Fe3+-phosphate and sulfates, especially at pH<4). PO43- species have high adsorption affinity, followed by SO42-, Cl-(O) and Br-(O) species. At pH>~8, adsorption and exchange of cations are likely. These chemical variations may provide us with clues of the past pH on Mars.

  10. Development of pH Sensitive Nanoparticles for Intestinal Drug Delivery Using Chemically Modified Guar Gum Co-Polymer.

    PubMed

    Varma, Vegesna Naga Sravan Kumar; Shivakumar, Hosakote Gurumalappa; Balamuralidhara, Veerna; Navya, Manne; Hani, Umme

    2016-01-01

    The aim of the research work was to chemically modify guargum (GG) as a pH sensitive co-polymer and formulating intestinal targeting ESO nanoparticles (NPs) using the synthesized co-polymer. Poly acrylamide-grafted-guar gum (PAAm-g-GG) co-polymer was synthesized by free radical polymerization. Chemical modification of PAAm-g-GG by alkaline hydrolysis results in formation of a pH-sensitive co-polymer. The effect of GG and acryl amide (AAm) on grafting was studied. Esomeprazole magnesium (ESO) loaded pH sensitive NPs were prepared by nano-emulsification polymer crosslinking method and characterized. Sixteen formulations were prepared and the concentration of process variables wasvaried to obtain nanoparticles of 200-600 nm. The NPs were found to be homogenous in size distribution. The encapsulation efficiency and drug loading ranged from 33.2% to 50.1% and 12.2% to 17.2% respectively. Particle size, encapsulation efficiency and drug loading increasedalong with co-polymer concentration. In-vitro release studies at pH 1.2 for 2 h, followed by pH 6.8 showed that environment pH significantly affected the drug release. SEM has shown that NPsare spherical with smooth surface. The pH sensitive PAAm-g-GGNPs resisted the initial release of the drug from the drug loaded NPs in acidic pH and delayed the release process to a longer period in alkaline environment.

  11. Development of pH Sensitive Nanoparticles for Intestinal Drug Delivery Using Chemically Modified Guar Gum Co-Polymer

    PubMed Central

    Varma, Vegesna Naga Sravan Kumar; Shivakumar, Hosakote Gurumalappa; Balamuralidhara, Veerna; Navya, Manne; Hani, Umme

    2016-01-01

    The aim of the research work was to chemically modify guargum (GG) as a pH sensitive co-polymer and formulating intestinal targeting ESO nanoparticles (NPs) using the synthesized co-polymer. Poly acrylamide-grafted-guar gum (PAAm-g-GG) co-polymer was synthesized by free radical polymerization. Chemical modification of PAAm-g-GG by alkaline hydrolysis results in formation of a pH-sensitive co-polymer. The effect of GG and acryl amide (AAm) on grafting was studied. Esomeprazole magnesium (ESO) loaded pH sensitive NPs were prepared by nano-emulsification polymer crosslinking method and characterized. Sixteen formulations were prepared and the concentration of process variables wasvaried to obtain nanoparticles of 200-600 nm. The NPs were found to be homogenous in size distribution. The encapsulation efficiency and drug loading ranged from 33.2% to 50.1% and 12.2% to 17.2% respectively. Particle size, encapsulation efficiency and drug loading increasedalong with co-polymer concentration. In-vitro release studies at pH 1.2 for 2 h, followed by pH 6.8 showed that environment pH significantly affected the drug release. SEM has shown that NPsare spherical with smooth surface. The pH sensitive PAAm-g-GGNPs resisted the initial release of the drug from the drug loaded NPs in acidic pH and delayed the release process to a longer period in alkaline environment. PMID:27610149

  12. Effect of pH on Semiconducting Property of Passive Film Formed on Ultra-High-Strength Corrosion-Resistant Steel in Sulfuric Acid Solution

    NASA Astrophysics Data System (ADS)

    Sun, Min; Xiao, Kui; Dong, Chaofang; Li, Xiaogang; Zhong, Ping

    2013-10-01

    Because Cr9Ni5MoCo14 is a new ultra-high-strength corrosion-resistant steel, it is important to study its corrosion behavior in sulfuric acid solution, which is used to simulate the aggressive environment. The effect of pH on the electrochemical and semiconducting properties of passive films formed on ultra-high-strength corrosion-resistant steel in sulfuric acid solution was investigated by means of the potentiodynamic polarization technique, electrochemical impedance spectroscopy (EIS), Mott-Schottky analysis, and X-ray photoelectron spectroscopy (XPS). The results indicated that Cr9Ni5MoCo14 steel showed a passive state in acid solutions. The corrosion behavior of this Cr9Ni5MoCo14 alloy was influenced by the passive film formed on the surface, including thickness, stability, and partitioning of elements of the passive film. The passive current density decreases with increasing pH, and the corrosion resistance was enhanced by the increasing thickness and depletion of the defects within the passive film. Moreover, an enrichment of chromium (primarily the oxides of Cr) and depletion of iron in the passive film led to improved corrosion resistance. These results can provide a theoretical basis for use of this alloy and further development of ultra-high-strength corrosion-resistant steel in today's society.

  13. Pedogenic formation of montmorillonite from a 2:1-2:2 intergrade clay mineral

    USGS Publications Warehouse

    Malcolm, R.L.; Nettleton, W.D.; McCracken, R.J.

    1968-01-01

    Montmorillonite was found to be the dominant clay mineral in surface horizons of certain soils of the North Carolina Coastal Plain whereas a 2:1-2:2 intergrade clay mineral was dominant in subjacent horizons. In all soils where this clay mineral sequence was found, the surface horizon was low in pH (below 4⋅5) and high in organic matter content. In contrast, data from studies of other soils of this region (Weed and Nelson, 1962) show that: (1) montmorillonite occurs infrequently; (2) maximum accumulation of the 2:1-2:2 intergrade normally occurs in the surface horizon and decreases with depth in the profile; (3) organic matter contents are low; and (4) pH values are only moderately acid (pH 5-6).It is theorized that the montmorillonite in the surface horizon of the soils studied originated by pedogenic weathering of the 2:1-2:2 intergrade clay mineral. The combined effects of low pH (below 4⋅5) and high organic matter content in surface horizons are believed to be the agents responsible for this mineral transformation. The protonation and solubilization (reverse of hydrolysis) of Al-polymers in the interlayer of expansible clay minerals will occur at or below pH 4⋅5 depending on the charge and steric effects of the interlayer. A low pH alone may cause this solubilization and thus mineral transformation, but in the soils studied the organic matter is believed to facilitate and accelerage the transformation. The intermediates of organic matter decomposition provide an acid environment, a source of protons, and a source of watersoluble mobile organic substances (principally fulvic acids) which have the ability to complex the solubilized aluminum and move it down the profile. This continuous removal of solubilized aluminum would provide for a favorable gradient for aluminum solubilization.The drainage class or position in a catena is believed to be less important than the chemical factors in formation of montmorillonite from 2:1-2:2 intergrade, because montmorillonite is present in all drainage classes if the surface horizon is low in pH and high in organic matter.

  14. Nitric oxide reactivity of [2Fe-2S] clusters leading to H2S generation.

    PubMed

    Tran, Camly T; Williard, Paul G; Kim, Eunsuk

    2014-08-27

    The crosstalk between two biologically important signaling molecules, nitric oxide (NO) and hydrogen sulfide (H2S), proceeds via elusive mechanism(s). Herein we report the formation of H2S by the action of NO on synthetic [2Fe-2S] clusters when the reaction environment is capable of providing a formal H(•) (e(-)/H(+)). Nitrosylation of (NEt4)2[Fe2S2(SPh)4] (1) in the presence of PhSH or (t)Bu3PhOH results in the formation of (NEt4)[Fe(NO)2(SPh)2] (2) and H2S with the concomitant generation of PhSSPh or (t)Bu3PhO(•). The amount of H2S generated is dependent on the electronic environment of the [2Fe-2S] cluster as well as the type of H(•) donor. Employment of clusters with electron-donating groups or H(•) donors from thiols leads to a larger amount of H2S evolution. The 1/NO reaction in the presence of PhSH exhibits biphasic decay kinetics with no deuterium kinetic isotope effect upon PhSD substitution. However, the rates of decay increase significantly with the use of 4-MeO-PhSH or 4-Me-PhSH in place of PhSH. These results provide the first chemical evidence to suggest that [Fe-S] clusters are likely to be a site for the crosstalk between NO and H2S in biology.

  15. Sea water acidification affects osmotic swelling, regulatory volume decrease and discharge in nematocytes of the jellyfish Pelagia noctiluca.

    PubMed

    Morabito, Rossana; Marino, Angela; Lauf, Peter K; Adragna, Norma C; La Spada, Giuseppa

    2013-01-01

    Increased acidification/PCO2 of sea water is a threat to the environment and affects the homeostasis of marine animals. In this study, the effect of sea water pH changes on the osmotic phase (OP), regulatory volume decrease (RVD) and discharge of the jellyfish Pelagia noctiluca (Cnidaria, Scyphozoa) nematocytes, collected from the Strait of Messina (Italy), was assessed. Isolated nematocytes, suspended in artificial sea water (ASW) with pH 7.65, 6.5 and 4.5, were exposed to hyposmotic ASW of the same pH values and their osmotic response and RVD measured optically in a special flow through chamber. Nematocyte discharge was analyzed in situ in ASW at all three pH values. At normal pH (7.65), nematocytes subjected to hyposmotic shock first expanded osmotically and then regulated their cell volume within 15 min. Exposure to hyposmotic ASW pH 6.5 and 4.5 compromised the OP and reduced or totally abrogated the ensuing RVD, respectively. Acidic pH also significantly reduced the nematocyte discharge response. Data indicate that the homeostasis and function of Cnidarians may be altered by environmental changes such as sea water acidification, thereby validating their use as novel bioindicators for the quality of the marine environment. © 2014 S. Karger AG, Basel.

  16. Illumina sequencing-based analyses of bacterial communities during short-chain fatty-acid production from food waste and sewage sludge fermentation at different pH values.

    PubMed

    Cheng, Weixiao; Chen, Hong; Yan, ShuHai; Su, Jianqiang

    2014-09-01

    Short-chain fatty acids (SCFAs) can be produced by primary and waste activated sludge anaerobic fermentation. The yield and product spectrum distribution of SCFAs can be significantly affected by different initial pH values. However, most studies have focused on the physical and chemical aspects of SCFA production by waste activated sludge fermentation at different pH values. Information on the bacterial community structures during acidogenic fermentation is limited. In this study, comparisons of the bacterial communities during the co-substrate fermentation of food wastes and sewage sludge at different pH values were performed using the barcoded Illumina paired-end sequencing method. The results showed that different pH environments harbored a characteristic bacterial community, including sequences related to Lactobacillus, Prevotella, Mitsuokella, Treponema, Clostridium, and Ureibacillus. The most abundant bacterial operational taxonomic units in the different pH environments were those related to carbohydrate-degrading bacteria, which are associated with constituents of co-substrate fermentation. Further analyses showed that during organic matter fermentation, a core microbiota composed of Firmicutes, Proteobacteria, and Bacteroidetes existed. Comparison analyses revealed that the bacterial community during fermentation was significantly affected by the pH, and that the diverse product distribution was related to the shift in bacterial communities.

  17. Unusual Fluorescent Responses of Morpholine-functionalized Fluorescent Probes to pH via Manipulation of BODIPY’s HOMO and LUMO Energy Orbitals for Intracellular pH Detection

    PubMed Central

    Zhang, Jingtuo; Yang, Mu; Mazi, Wafa; Adhikari, Kapil; Fang, Mingxi; Xie, Fei; Valenzano, Loredana; Tiwari, Ashutosh; Luo, Fen-Tair; Liu, Haiying

    2016-01-01

    Three uncommon morpholine-based fluorescent probes (A, B and C) for pH were prepared by introducing morpholine residues to BODIPY dyes at 4,4’- and 2,6-positions, respectively. In contrast to morpholine-based fluorescent probes for pH reported in literature, these fluorescent probes display high fluorescence in a basic condition while they exhibit very weak fluorescence in an acidic condition. The theoretical calculation confirmed that morpholine is unable to function as either an electron donor or an electron acceptor to quench the BODIPY fluorescence in the neutral and basic condition via photo-induced electron transfer (PET) mechanism because the LUMO energy of morpholine is higher than those of the BODIPY dyes while its HOMO energy is lower than those of the BODIPY dyes. However, the protonation of tertiary amines of the morpholine residues in an acidic environment leads to fluorescence quenching of the BODIPY dyes via d-PET mechanism. The fluorescence quenching is because the protonation effectively decreases the LUMO energy which locates between the HOMO and LUMO energies of the BODIPY dyes. Fluorescent probe C with deep-red emission has been successfully used to detect pH changes in mammalian cells. PMID:27547822

  18. Relationship between Cariogenic Bacteria and pH of Dental Plaque at Margin of Fixed Prostheses

    PubMed Central

    Tanaka, Junko; Mukai, Norio; Tanaka, Muto; Tanaka, Masahiro

    2012-01-01

    Objective. The purpose of this study was to investigate whether teeth that have undergone prosthetic restoration are under conditions that promote caries recurrence. Methods. The subjects were 20 dentate adults with both a healthy tooth and an affected tooth entirely covered with a complete cast crown in the molar regions of the same arch. The pH was measured in plaque adhering to the margin of the tooth covered with a complete cast crown and adhering to the cervicobuccal area of the natural tooth. In addition, the numbers of cariogenic bacteria (mutans streptococci and lactobacilli) were measured employing the saliva test. The relationships between the number of cariogenic bacteria and plaque pH of the natural tooth and between the number of cariogenic bacteria and plaque pH of the tooth covered with a complete cast crown were investigated. Results. The plaque pH of the tooth covered with a complete cast crown decreased as the numbers of SM and LB increased. The natural tooth were also influenced by the number of SM. Conclusion. Secondary caries are likely to develop from the marginal region of the crown in the oral cavity with a high caries risk unless a preventive program is prepared and the oral environment is improved following the program. PMID:22287964

  19. Pyrearinus termitilluminans larval click beetle luciferase: active site properties, structure and function relationships and comparison with other beetle luciferases.

    PubMed

    Silva Neto, A J; Scorsato, V; Arnoldi, F G C; Viviani, V R

    2009-12-01

    Several beetle luciferases have been cloned and sequenced. However, most studies on structure and function relationships and bioanalytical applications were done with firefly luciferases, which are pH sensitive. Several years ago we cloned Pyrearinus termitilluminans larval click beetle luciferase, which displays the most blue-shifted bioluminescence among beetle luciferases and is pH insensitive. This enzyme was expressed in E. coli, purified, and its properties investigated. This luciferase shows slower luminescence kinetics, K(M) values comparable to other beetle luciferases and high catalytic constant. Fluorescence studies with 8-anilino-1-naphtalene-sulfonic acid (1,8-ANS) and modeling studies suggest that the luciferin binding site of this luciferase is very hydrophobic, supporting the solvent and orientation polarizability effects as determining mechanisms for bioluminescence colors. Although pH insensitive in the range between pH 6-8, at pH 10 this luciferase displays a remarkable red-shift and broadening of the bioluminescence spectrum. Modeling studies suggest that the residue C312 may play an important role in bioluminescence color modulation. Compared to other beetle luciferases, Pyrearinus termitilluminans luciferase also displays higher thermostability and sustained luminescence in a bacterial cell environment, which makes this luciferase particularly suitable for in vivo cell analysis and bioimaging.

  20. Fine particle pH and gas-particle phase partitioning of inorganic species in Pasadena, California, during the 2010 CalNex campaign

    NASA Astrophysics Data System (ADS)

    Guo, Hongyu; Liu, Jiumeng; Froyd, Karl D.; Roberts, James M.; Veres, Patrick R.; Hayes, Patrick L.; Jimenez, Jose L.; Nenes, Athanasios; Weber, Rodney J.

    2017-05-01

    pH is a fundamental aerosol property that affects ambient particle concentration and composition, linking pH to all aerosol environmental impacts. Here, PM1 and PM2. 5 pH are calculated based on data from measurements during the California Research at the Nexus of Air Quality and Climate Change (CalNex) study from 15 May to 15 June 2010 in Pasadena, CA. Particle pH and water were predicted with the ISORROPIA-II thermodynamic model and validated by comparing predicted to measured gas-particle partitioning of inorganic nitrate, ammonium, and chloride. The study mean ± standard deviation PM1 pH was 1.9 ± 0.5 for the SO42--NO3--NH4+-HNO3-NH3 system. For PM2. 5, internal mixing of sea salt components (SO42--NO3--NH4+-Na+-Cl--K+-HNO3-NH3-HCl system) raised the bulk pH to 2.7 ± 0.3 and improved predicted nitric acid partitioning with PM2. 5 components. The results show little effect of sea salt on PM1 pH, but significant effects on PM2. 5 pH. A mean PM1 pH of 1.9 at Pasadena was approximately one unit higher than what we have reported in the southeastern US, despite similar temperature, relative humidity, and sulfate ranges, and is due to higher total nitrate concentrations (nitric acid plus nitrate) relative to sulfate, a situation where particle water is affected by semi-volatile nitrate concentrations. Under these conditions nitric acid partitioning can further promote nitrate formation by increasing aerosol water, which raises pH by dilution, further increasing nitric acid partitioning and resulting in a significant increase in fine particle nitrate and pH. This study provides insights into the complex interactions between particle pH and nitrate in a summertime coastal environment and a contrast to recently reported pH in the eastern US in summer and winter and the eastern Mediterranean. All studies have consistently found highly acidic PM1 with pH generally below 3.

  1. pH dependent unfolding characteristics of DLC8 dimer: Residue level details from NMR.

    PubMed

    Mohan, P M Krishna; Hosur, Ramakrishna V

    2008-11-01

    Environment dependence of folding and unfolding of a protein is central to its function. In the same vein, knowledge of pH dependence of stability and folding/unfolding is crucial for many biophysical equilibrium and kinetic studies designed to understand protein folding mechanisms. In the present study we investigated the guanidine induced unfolding transition of dynein light chain protein (DLC8), a cargo adaptor of the dynein complex in the pH range 7-10. It is observed that while the protein remains a dimer in the entire pH range, its stability is somewhat reduced at alkaline pH. Global unfolding features monitored using fluorescence spectroscopy revealed that the unfolding transition of DLC8 at pH 7 is best described by a three-state model, whereas, that at pH 10 is best described by a two-state model. Chemical shift perturbations due to pH change provided insights into the corresponding residue level structural perturbations in the DLC8 dimer. Likewise, backbone (15)N relaxation measurements threw light on the corresponding motional changes in the dimeric protein. These observations have been rationalized on the basis of expected changes with increasing pH in the protonation states of the titratable residues on the structure of the protein. These, in turn provide an explanation for the change from three-state to two-state guanidine induced unfolding transition as the pH is increased from 7 to 10. All these results exemplify and highlight the role of environment vis-à-vis the sequence and structure of a given protein in dictating its folding/unfolding characteristics.

  2. Meet EPA Biologist Mitch Kostich, Ph.D.

    EPA Pesticide Factsheets

    EPA biologist, Mitch Kostich, Ph.D., conducts research to identify risks from exposures to chemical contaminants in water. His research uses technologies to prioritize contaminants in the environment based on the potential risks they pose to life

  3. Rumen morphometrics and the effect of digesta pH and volume on volatile fatty acid absorption.

    PubMed

    Melo, L Q; Costa, S F; Lopes, F; Guerreiro, M C; Armentano, L E; Pereira, M N

    2013-04-01

    The effects of rumen digesta volume and pH on VFA absorption and its relation to rumen wall morphology were evaluated. Nine rumen cannulated cows formed 3 groups based on desired variation in rumen morphology: The High group was formed by Holsteins yielding 25.9 kg milk/d and fed on a high-grain total mixed ration (TMR); the Medium group by Holstein-Zebu crossbreds yielding 12.3 kg milk/d and fed on corn silage, tropical pasture, and a commercial concentrate; and the Dry group by nonlactating grazing Jerseys fed exclusively on tropical pasture. Within each group, a sequence of 3 ruminal conditions was induced on each cow in 3 × 3 Latin Squares, with 7-d periods: high digesta volume and high pH (HVHP), low volume and high pH (LVHP), and low volume and low pH (LVLP). Rumen mucosa was biopsied on the first day of Period 1. Ruminal morphometric variables evaluated were mitotic index, absorptive surface and papillae number per square centimeter of wall, area per papillae, papillae area as a percentage of absorptive surface, and epithelium, keratinized layer, and nonkeratinized layer thickness. There was marked variation in rumen morphology among the groups of cows. Grazing Jerseys had decreased rumen wall absorptive surface area and basal cells mitotic index, and increased thickness of the epithelium and of the keratin layer compared with cows receiving concentrates. Mean rumen pH throughout the 4 h sampling period was: 6.78 for HVHP, 7.08 for LVHP, and 5.90 for LVLP (P < 0.01). The capacity of the rumen wall to absorb VFA was estimated by the Valerate/CrEDTA technique. The fractional exponential decay rate for the ratio of valeric acid to Cr (k Val/Cr) was determined by rumen digesta sampling at 20-min intervals during 4 h, after the mixing of markers and the return of the evacuated ruminal content. The k Val/Cr values for treatments HVHP, LVHP, and LVLP were, respectively: 19.6, 23.9, and 35.0 %/h (SEM = 2.01; P = 0.21 for contrast HVHP vs. LVHP and P < 0.01 for contrast LVHP vs. LVLP). The k Val/Cr was faster under low pH, but decreasing digesta volume under high pH did not elicit such a response. The correlation between the absorptive surface area per square centimeter of rumen wall and the mean of the 3 k Val/Cr values of each cow was 0.90 (P < 0.01). Cows capable of maintaining a less-acidic rumen environment had greater inflow of water into the digestive cavity, had a more developed rumen mucosa, and were more efficient VFA absorbers.

  4. Gentlemen We Are Out of Money...Now We Have to Think - Prioritization of Objectives in a Resource Constrained Environment

    DTIC Science & Technology

    2012-02-15

    Additionally I would like to thank Dr. Greg Parnell, Ph.D., MAJ Melanie Vinton, COL William Sorrells, COL Simon Goerger, Ph.D., COL Chris Hill, Ph.D., and... Klein , J. Orasanu, R. Calderwood, & C. E. Zsambok (Eds.), Decision Making in Action: Models and Methods (pp. 327-345). Norwood, NJ: Ablex Publishers

  5. Stability and Transport of Cerium Oxide Nanoparticles in Aqueous Environment: Effect of pH, Ionic Strength, and Organic Matter.

    EPA Science Inventory

    This study investigated the stability and transport of CeO2 NPs under the influence of pH, natural/manmade organic matter, and electrolyte (NaCl) concentrations. In column test, effluent concentration of CeO2 NPs was close to the influent at pH 10, while most NPs deposited on san...

  6. Surface-enhanced Raman spectroscopy study on the structure changes of 4-Mercaptophenylboronic Acid under different pH conditions

    NASA Astrophysics Data System (ADS)

    Su, Hongyang; Wang, Yue; Yu, Zhi; Liu, Yawen; Zhang, Xiaolei; Wang, Xiaolei; Sui, Huimin; Sun, Chengbin; Zhao, Bing

    2017-10-01

    4-Mercaptophenylboronic Acid (4-MPBA) plays pivotal role in various fields. The orientation and existing form of the 4-MPBA strongly depend on the pH value of the media. The general aim of this work is to obtain information about the structure changes of 4-MPBA absorbed on Ag nanoparticles in different pH environment. Surface-enhanced Raman spectroscopy (SERS) technique is a simple and rapid method to study adsorption phenomena at molecule level. The investigation is done by means of SERS. In order to interpret the experimental information, a series of SERS spectra is carried out. The relative intensities of the totally symmetric (a1 mode) and non-totally symmetric (b2 mode) bands in the SERS spectra of 4-MPBA change depend on the environmental pH values, which is a manifestation of charge transfer (CT) processes. The degree of charge transfer increases with the pH value of the media changing from acidity to alkalinity. The structure changes of MPBA had been carried out in different pH environment. We envision that this approach will be of great significance in related fields of 4-MPBA-involved detection.

  7. Desorption of biocides from renders modified with acrylate and silicone.

    PubMed

    Styszko, Katarzyna; Bollmann, Ulla E; Wangler, Timothy P; Bester, Kai

    2014-01-01

    Biocides are used in the building industry to prevent algal, bacterial and fungal growth on polymericrenders and thus to protect buildings. However, these biocides are leached into the environment. To better understand this leaching, the sorption/desorption of biocides in polymeric renders was assessed. In this study the desorption constants of cybutryn, carbendazim, iodocarb, isoproturon, diuron, dichloro-N-octylisothiazolinone and tebuconazole towards acrylate and silicone based renders were assessed at different pH values. At pH 9.5 (porewater) the constants for an acrylate based render varied between 8 (isoproturon) and 9634 (iodocarb) and 3750 (dichloro-N-octylisothiazolinone), respectively. The values changed drastically with pH value. The results for the silicone based renders were in a similar range and usually the compounds with high sorption constants for one polymer also had high values for the other polymer. Comparison of the octanol water partitioning constants (Kow) with the render/water partitioning constants (Kd) revealed similarities, but no strong correlation. Adding higher amounts of polymer to the render material changed the equilibria for dichloro-N-octylisothiazolinone, tebuconazole, cybutryn, carbendazim but not for isoproturon and diuron. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Rapid removal of bisphenol A on highly ordered mesoporous carbon.

    PubMed

    Sui, Qian; Huang, Jun; Liu, Yousong; Chang, Xiaofeng; Ji, Guangbin; Deng, Shubo; Xie, Tao; Yu, Gang

    2011-01-01

    Bisphenol A (BPA) is of global concern due to its disruption of endocrine systems and ubiquity in the aquatic environment. It is important, therefore, that efforts are made to remove it from the aqueous phase. A novel adsorbent, mesoporous carbon CMK-3, prepared from hexagonal SBA-15 mesoporous silica was studied for BPA removal from aqueous phase, and compared with conventional powdered activated carbon (PAC). Characterization of CMK-3 by transmission electron microscopy (TEM), X-ray diffraction, and nitrogen adsorption indicated that prepared CMK-3 had an ordered mesoporous structure with a high specific surface area of 920 m2/g and a pore-size of about 4.9 nm. The adsorption of BPA on CMK-3 followed a pseudo second-order kinetic model. The kinetic constant was 0.00049 g/(mg x min), much higher than the adsorption of BPA on PAC. The adsorption isotherm fitted slightly better with the Freundlich model than the Langmuir model, and adsorption capacity decreased as temperature increased from 10 to 40 degrees C. No significant influence of pH on adsorption was observed at pH 3 to 9; however, adsorption capacity decreased dramatically from pH 9 to 13.

  9. Geochemical Constraints on the Distribution and Function of Thermoproteales Populations in Yellowstone National Park

    NASA Astrophysics Data System (ADS)

    Jay, Z.; Rusch, D.; Romine, M.; Beam, J.; Inskeep, W.

    2014-12-01

    Metagenome surveys in Yellowstone National Park (YNP) indicate that members of the order Thermoproteales (phylum Crenarchaeota) are abundant in high-temperature (> 70 °C) geothermal systems. The goals of this study were to compare Thermoproteales sequences from different geothermal environments across YNP, and determine the variation in metabolic potential associated with their distribution. Thermoproteales sequence assemblies (> 0.5 Mbases) were curated from 10 habitats ranging in pH from 3 - 9 (with or without dissolved sulfide). The distribution of specific Thermoproteales is constrained by pH: Vulcanisaeta-like sequences are the most abundant Thermoproteales at pH < 6, Caldivirga-like sequences more important from pH 4 - 6, and Thermoproteus-like sequences abundant from ~ pH 5 - 7, and at pH > 7, Pyrobaculum­-like sequences are nearly the only Thermoproteales present. Thermoproteales populations are generally found in hypoxic systems where reduced forms of S and As often limit concentrations of dissolved oxygen. These environmental conditions are correlated with the presence or absence of system-defined respiratory complexes including different terminal oxidases (e.g., aa3 or bd), numerous DMSO-molybdopterins, and dissimilatory sulfate reductases. Metabolic reconstruction of different genera revealed similar pathways for the degradation of carbohydrates, amino acids, and lipids across sites. Only the Thermoproteus and Pyrobaculum populations contained the three marker genes for the dicarboxylate/4-hyhdroxybutyrate cycle, which is responsible for the fixation of inorganic carbon. Most Thermoproteales populations have the metabolic capacity to synthesize their requirements for vitamins, cofactors, amino acids, and/or nucleotides. Our results indicate that Thermoproteales populations are important members of high-temperature microbial communities across a wide pH range, are responsible for the degradation of organic carbon, and may also serve as a source of metabolites required by other community members. Thermoproteales genera are abundant thermophiles in many hypoxic (and especially sulfidic) systems; however, the presence of introns in the 16S rRNA gene of many Thermoproteales often precludes accurate abundance estimates using universal primers.

  10. pH-Dependent silica nanoparticle dissolution and cargo release.

    PubMed

    Giovaninni, Giorgia; Moore, Colin J; Hall, Andrew J; Byrne, Hugh J; Gubala, Vladimir

    2018-05-16

    The dissolution of microporous silica nanoparticles (NP) in aqueous environments of different biologically relevant pH was studied in order to assess their potential as drug delivery vehicles. Silica NPs, loaded with fluorescein, were prepared using different organosilane precursors (tetraethoxysilane, ethyl triethoxysilane or a 1:1 molar ratio of both) and NP dissolution was evaluated in aqueous conditions at pH 4, pH 6 and pH 7.4. These conditions correspond to the acidity of the intracellular environment (late endosome, early endosome, cytosol respectively) and gastrointestinal tract ('fed' stomach, duodenum and jejunum respectively). All NPs degraded at pH 6 and pH 7.4, while no dissolution was observed at pH 4. NP dissolution could be clearly visualised as mesoporous hollows and surface defects using electron microscopy, and was supported by UV-vis, fluorimetry and DLS data. The dissolution profiles of the NPs are particularly suited to the requirements of oral drug delivery, whereby NPs must resist degradation in the harsh acidic conditions of the stomach (pH 4), but dissolve and release their cargo in the small intestine (pH 6-7.4). Particle cores made solely of ethyl triethoxysilane exhibited a 'burst release' of encapsulated fluorescein at pH 6 and pH 7.4, whereas NPs synthesised with tetraethoxysilane released fluorescein in a more sustained fashion. Thus, by varying the organosilane precursor used in NP formation, it is possible to modify particle dissolution rates and tune the release profile of encapsulated fluorescein. The flexible synthesis afforded by silica NPs to achieve pH-responsive dissolution therefore makes this class of nanomaterial an adaptable platform that may be well suited to oral delivery applications. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. An in vitro assessment of the effect of load and pH on wear between opposing enamel and dentine surfaces.

    PubMed

    Ranjitkar, Sarbin; Kaidonis, John A; Townsend, Grant C; Vu, Anh M; Richards, Lindsay C

    2008-11-01

    Previous in vitro studies have described the wear characteristics of specimens in which enamel has been opposed to enamel and dentine opposed to dentine. The aim of this study was to assess the characteristics of wear between specimens in which enamel was opposed to dentine at loads simulating attrition and at pH values simulating different erosive environments. It was hypothesized that enamel would wear more slowly than dentine under all conditions. Opposing enamel and dentine specimens from 57 human third molar teeth were worn in electromechanical machines with various loads (32, 62 and 100 N) and lubricants (pH 1.2, 3.0 and 6.1). Tooth wear was quantified by measuring reduction in dentine volume over time using a 3D profilometer. Qualitative assessment was also carried out using scanning electron microscopy. Dentine wear increased with increasing load, and dentine wear was faster at pH 1.2 than at pH 3.0 or 6.1 for all loads tested. Interestingly, enamel wore more rapidly than dentine at pH 1.2 under all loads. At pH values of 3.0 and 6.1, enamel wear rates were not measurably different from zero and they were less than wear rates for opposing dentine specimens at all loads. Micrographic assessment showed extensive surface destruction of dentine wear facets due to erosion at pH 1.2. Dentine wear facets were smoother at pH 3.0 that at pH 6.1. When enamel wears against dentine in an acidic environment enamel will wear more rapidly at very low pH, while under less acid conditions dentine will wear faster than enamel.

  12. Oxidation Behavior of Carbon Steel: Effect of Formation Temperature and pH of the Environment

    NASA Astrophysics Data System (ADS)

    Dubey, Vivekanand; Kain, Vivekanand

    2017-11-01

    The nature of surface oxide formed on carbon steel piping used in nuclear power plants affects flow-accelerated corrosion. In this investigation, carbon steel specimens were oxidized in an autoclave using demineralized water at various temperatures (150-300 °C) and at pH levels (neutral, 9.5). At low temperatures (< 240 °C), weight loss of specimens due to dissolution of iron in water occurred to a greater extent than weight gain due to oxide formation. With the increase in temperature, the extent of iron dissolution reduced and weight gain due to oxide formation increased. A similar trend was observed with the increase in pH as was observed with the increase in temperature. XRD and Raman spectroscopy confirmed the formation of magnetite. The oxide film formed by precipitation process was negligible at temperatures from 150 to 240 °C compared to that at higher temperatures (> 240 °C) as confirmed by scanning electron microscopy. Electrochemical impedance measurement followed by Mott-Schottky analysis indicated an increase in defect density with exposure duration at 150 °C at neutral pH but a low and stable defect density in alkaline environment. The defect density of the oxide formed at neutral pH at 150-300 °C was always higher than that formed in alkaline environment as reported in the literature.

  13. The influence of pH on the in vitro permeation of rhodium through human skin.

    PubMed

    Jansen Van Rensburg, Sané; Franken, Anja; Du Plessis, Jeanetta; Du Plessis, Johannes Lodewykus

    2017-06-01

    Workers in precious metals refineries are at risk of exposure to salt compounds of the platinum group metals through inhalation, as well as through the skin. Rhodium salt permeation through the skin has previously been proven using rhodium trichloride (RhCl 3 ) dissolved in synthetic sweat at a pH of 6.5. However, the skin surface pH of refinery workers may be lower than 6.5. The aim of this study was to investigate the influence of pH 6.5 and 4.5 on the in vitro permeation of rhodium through intact Caucasian skin using Franz diffusion cells. A concentration of 0.3 mg mL -1 rhodium was used and analyses were performed using inductively coupled plasma mass spectrometry and inductively coupled plasma optical emission spectrometry. Results indicated a cumulative increase in permeation over 24 h. Rhodium permeation after 12 h was significantly greater at pH 4.5 (1.56 ± 0.24 ng cm -2 ) than at 6.5 (0.85 ± 0.13 ng cm -2 ; p = 0.02). At both pH levels, there was a highly significant difference ( p < 0.01) between the mass of rhodium remaining in the skin (1428.68 ± 224.67 ng cm -2 at pH 4.5 and 1029.90 ± 115.96 ng cm -2 at pH 6.5) and the mass that diffused through (0.88 ± 0.17 ng cm -2 at pH 4.5 and 0.62 ± 0.10 ng cm -2 at pH 6.5). From these findings, it is evident that an acidic working environment or low skin surface pH may enhance permeation of rhodium salts, contributing to sensitization and adverse health effects.

  14. Prognostic Modeling of Valve Degradation within Power Stations

    DTIC Science & Technology

    2014-10-02

    from the University of Strathclyde in 2013. His PhD focuses on condition monitoring and prognostics for tidal turbines , in collaboration with Andritz...Hydro Hammerfest, a leading tidal turbine manufacturer. Victoria M. Catterson is a Lecturer within the Institute for Energy and Environment at the...based method. Case study data is generated through simulation of valves within a 400MW Combined Cycle Gas Turbine power station. High fidelity

  15. High-fluoride groundwater.

    PubMed

    Rao, N Subba

    2011-05-01

    Fluoride (F(-)) is essential for normal bone growth, but its higher concentration in the drinking water poses great health problems and fluorosis is common in many parts of India. The present paper deals with the aim of establishment of facts of the chemical characteristics responsible for the higher concentration of F(-) in the groundwater, after understanding the chemical behavior of F(-) in relation to pH, total alkalinity (TA), total hardness (TH), carbonate hardness (CH), non-carbonate hardness (NCH), and excess alkalinity (EA) in the groundwater observed from the known areas of endemic fluorosis zones of Andhra Pradesh that have abundant sources of F(-)-bearing minerals of the Precambrians. The chemical data of the groundwater shows that the pH increases with increase F(-); the concentration of TH is more than the concentration of TA at low F(-) groundwater, the resulting water is represented by NCH; the TH has less concentration compared to TA at high F(-) groundwater, causing the water that is characterized by EA; and the water of both low and high concentrations of F(-) has CH. As a result, the F(-) has a positive relation with pH and TA, and a negative relation with TH. The operating mechanism derived from these observations is that the F(-) is released from the source into the groundwater by geochemical reactions and that the groundwater in its flowpath is subjected to evapotranspiration due to the influence of dry climate, which accelerates a precipitation of CaCO(3) and a reduction of TH, and thereby a dissolution of F(-). Furthermore, the EA in the water activates the alkalinity in the areas of alkaline soils, leading to enrichment of F(-). Therefore, the alkaline condition, with high pH and EA, and low TH, is a more conducive environment for the higher concentration of F(-) in the groundwater.

  16. High-k dielectric Al2O3 nanowire and nanoplate field effect sensors for improved pH sensing

    PubMed Central

    Reddy, Bobby; Dorvel, Brian R.; Go, Jonghyun; Nair, Pradeep R.; Elibol, Oguz H.; Credo, Grace M.; Daniels, Jonathan S.; Chow, Edmond K. C.; Su, Xing; Varma, Madoo; Alam, Muhammad A.

    2011-01-01

    Over the last decade, field-effect transistors (FETs) with nanoscale dimensions have emerged as possible label-free biological and chemical sensors capable of highly sensitive detection of various entities and processes. While significant progress has been made towards improving their sensitivity, much is yet to be explored in the study of various critical parameters, such as the choice of a sensing dielectric, the choice of applied front and back gate biases, the design of the device dimensions, and many others. In this work, we present a process to fabricate nanowire and nanoplate FETs with Al2O3 gate dielectrics and we compare these devices with FETs with SiO2 gate dielectrics. The use of a high-k dielectric such as Al2O3 allows for the physical thickness of the gate dielectric to be thicker without losing sensitivity to charge, which then reduces leakage currents and results in devices that are highly robust in fluid. This optimized process results in devices stable for up to 8 h in fluidic environments. Using pH sensing as a benchmark, we show the importance of optimizing the device bias, particularly the back gate bias which modulates the effective channel thickness. We also demonstrate that devices with Al2O3 gate dielectrics exhibit superior sensitivity to pH when compared to devices with SiO2 gate dielectrics. Finally, we show that when the effective electrical silicon channel thickness is on the order of the Debye length, device response to pH is virtually independent of device width. These silicon FET sensors could become integral components of future silicon based Lab on Chip systems. PMID:21203849

  17. Flow-through lipid nanotube arrays for structure-function studies of membrane proteins by solid-state NMR spectroscopy.

    PubMed

    Chekmenev, Eduard Y; Gor'kov, Peter L; Cross, Timothy A; Alaouie, Ali M; Smirnov, Alex I

    2006-10-15

    A novel method for studying membrane proteins in a native lipid bilayer environment by solid-state NMR spectroscopy is described and tested. Anodic aluminum oxide (AAO) substrates with flow-through 175 nm wide and 60-mum-long nanopores were employed to form macroscopically aligned peptide-containing lipid bilayers that are fluid and highly hydrated. We demonstrate that the surfaces of both leaflets of such bilayers are fully accessible to aqueous solutes. Thus, high hydration levels as well as pH and desirable ion and/or drug concentrations could be easily maintained and modified as desired in a series of experiments with the same sample. The method allows for membrane protein NMR experiments in a broad pH range that could be extended to as low as 1 and as high as 12 units for a period of up to a few hours and temperatures as high as 70 degrees C without losing the lipid alignment or bilayers from the nanopores. We demonstrate the utility of this method by a solid-state 19.6 T (17)O NMR study of reversible binding effects of mono- and divalent ions on the chemical shift properties of the Leu(10) carbonyl oxygen of transmembrane pore-forming peptide gramicidin A (gA). We further compare the (17)O shifts induced by binding metal ions to the binding of protons in the pH range from 1 to 12 and find a significant difference. This unexpected result points to a difference in mechanisms for ion and proton conduction by the gA pore. We believe that a large number of solid-state NMR-based studies, including structure-function, drug screening, proton exchange, pH, and other titration experiments, will benefit significantly from the method described here.

  18. Role of the Group 2 Mrp sodium/proton antiporter in rapid response to high alkaline shock in the alkaline- and salt-tolerant Dietzia sp. DQ12-45-1b.

    PubMed

    Fang, Hui; Qin, Xiao-Yu; Zhang, Kai-Duan; Nie, Yong; Wu, Xiao-Lei

    2018-04-01

    The six- and seven-subunit Na + /H + antiporters (Mrp) are widely distributed in bacteria. They are reported to be integral for pH homeostasis in alkaliphilic bacteria when adapting to high pH environments. In this study, operons encoding for the six-subunit Na + /H + antiporters were found in the genomes of all studied Dietzia strains, which have different alkaline-resistant abilities. Disruption of the operon in the strain Dietzia sp. DQ12-45-1b which leads to declined growth in presence of hypersaline and alkaline conditions suggested that the six-subunit Na + /H + antiporter played an important role in hypersaline and alkaline resistance. Although the complexes DqMrp from DQ12-45-1b (strain with high alkaline resistance) and DaMrp from D. alimentaria 72 T (strain with low alkaline resistance) displayed Na + (Li + )/H + antiport activities, they functioned optimally at different pH levels (9.0 for DQ12-45-1b and 8.0 for 72 T ). While both antiporters functioned properly to protect Escherichia coli cells from salt shock, only the DqMrp-containing strain survived the high alkaline shock. Furthermore, real-time PCR results showed that the expression of mrpA and mrpD induced only immediately after DQ12-45-1b cells were subjected to the alkaline shock. These results suggested that the expression of DqMrp might be induced by a pH gradient across the cell membrane, and DqMrp mainly functioned at an early stage to respond to the alkaline shock.

  19. Identifying Potential Mechanisms Enabling Acidophily in the Ammonia-Oxidizing Archaeon “Candidatus Nitrosotalea devanaterra”

    PubMed Central

    Sayavedra-Soto, Luis A.; Gallois, Nicolas; Schouten, Stefan; Stein, Lisa Y.; Prosser, James I.; Nicol, Graeme W.

    2016-01-01

    Ammonia oxidation is the first and rate-limiting step in nitrification and is dominated by two distinct groups of microorganisms in soil: ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB). AOA are often more abundant than AOB and dominate activity in acid soils. The mechanism of ammonia oxidation under acidic conditions has been a long-standing paradox. While high rates of ammonia oxidation are frequently measured in acid soils, cultivated ammonia oxidizers grew only at near-neutral pH when grown in standard laboratory culture. Although a number of mechanisms have been demonstrated to enable neutrophilic AOB growth at low pH in the laboratory, these have not been demonstrated in soil, and the recent cultivation of the obligately acidophilic ammonia oxidizer “Candidatus Nitrosotalea devanaterra” provides a more parsimonious explanation for the observed high rates of activity. Analysis of the sequenced genome, transcriptional activity, and lipid content of “Ca. Nitrosotalea devanaterra” reveals that previously proposed mechanisms used by AOB for growth at low pH are not essential for archaeal ammonia oxidation in acidic environments. Instead, the genome indicates that “Ca. Nitrosotalea devanaterra” contains genes encoding both a predicted high-affinity substrate acquisition system and potential pH homeostasis mechanisms absent in neutrophilic AOA. Analysis of mRNA revealed that candidate genes encoding the proposed homeostasis mechanisms were all expressed during acidophilic growth, and lipid profiling by high-performance liquid chromatography–mass spectrometry (HPLC-MS) demonstrated that the membrane lipids of “Ca. Nitrosotalea devanaterra” were not dominated by crenarchaeol, as found in neutrophilic AOA. This study for the first time describes a genome of an obligately acidophilic ammonia oxidizer and identifies potential mechanisms enabling this unique phenotype for future biochemical characterization. PMID:26896134

  20. Identifying Potential Mechanisms Enabling Acidophily in the Ammonia-Oxidizing Archaeon "Candidatus Nitrosotalea devanaterra".

    PubMed

    Lehtovirta-Morley, Laura E; Sayavedra-Soto, Luis A; Gallois, Nicolas; Schouten, Stefan; Stein, Lisa Y; Prosser, James I; Nicol, Graeme W

    2016-05-01

    Ammonia oxidation is the first and rate-limiting step in nitrification and is dominated by two distinct groups of microorganisms in soil: ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB). AOA are often more abundant than AOB and dominate activity in acid soils. The mechanism of ammonia oxidation under acidic conditions has been a long-standing paradox. While high rates of ammonia oxidation are frequently measured in acid soils, cultivated ammonia oxidizers grew only at near-neutral pH when grown in standard laboratory culture. Although a number of mechanisms have been demonstrated to enable neutrophilic AOB growth at low pH in the laboratory, these have not been demonstrated in soil, and the recent cultivation of the obligately acidophilic ammonia oxidizer "Candidatus Nitrosotalea devanaterra" provides a more parsimonious explanation for the observed high rates of activity. Analysis of the sequenced genome, transcriptional activity, and lipid content of "Ca Nitrosotalea devanaterra" reveals that previously proposed mechanisms used by AOB for growth at low pH are not essential for archaeal ammonia oxidation in acidic environments. Instead, the genome indicates that "Ca Nitrosotalea devanaterra" contains genes encoding both a predicted high-affinity substrate acquisition system and potential pH homeostasis mechanisms absent in neutrophilic AOA. Analysis of mRNA revealed that candidate genes encoding the proposed homeostasis mechanisms were all expressed during acidophilic growth, and lipid profiling by high-performance liquid chromatography-mass spectrometry (HPLC-MS) demonstrated that the membrane lipids of "Ca Nitrosotalea devanaterra" were not dominated by crenarchaeol, as found in neutrophilic AOA. This study for the first time describes a genome of an obligately acidophilic ammonia oxidizer and identifies potential mechanisms enabling this unique phenotype for future biochemical characterization. Copyright © 2016 Lehtovirta-Morley et al.

  1. Development of Hybrid pH sensor for long-term seawater pH monitoring.

    NASA Astrophysics Data System (ADS)

    Nakano, Y.; Egashira, T.; Miwa, T.; Kimoto, H.

    2016-02-01

    We have been developing the in situ pH sensor (Hybrid pH sensor: HpHS) for the long-term seawater pH monitoring. We are planning to provide the HpHS for researchers and environmental consultants for observation of the CCS (Carbon dioxide Capture and Storage) monitoring system, the coastal environment monitoring system (e.g. Blue Carbon) and ocean acidification. The HpHS has two types of pH sensors (i.e. potentiometric pH sensor and spectrophotometric pH sensor). The spectrophotometric pH sensor can measure pH correctly and stably, however it needs large power consumption and a lot of reagents in a long period of observation. The pH sensor used m-cresol purple (mCP) as an indicator of pH (Clayton and Byrne, 1993 and Liu et al., 2011). We can choose both coefficients before deployment. On the other hand, although the potentiometric pH sensor is low power consumption and high-speed response (within 10 seconds), drifts in the pH of the potentiometric measurements may possibly occur for a long-term observation. The HpHS can measure in situ pH correctly and stably combining advantage of both pH sensors. The HpHS consists of an aluminum pressure housing with optical cell (main unit) and an aluminum silicon-oil filled, pressure-compensated vessel containing pumps and valves (diaphragm pump and valve unit) and pressure-compensated reagents bags (pH indicator, pure water and Tris buffer or certified reference material: CRM) with an ability to resist water pressure to 3000m depth. The main unit holds system control boards, pump drivers, data storage (micro SD card), LED right source, photodiode, optical cell and pressure proof windows. The HpHS also has an aluminum pressure housing that holds a rechargeable lithium-ion battery or a lithium battery for the power supply (DC 24 V). The HpHS is correcting the value of the potentiometric pH sensor (measuring frequently) by the value of the spectrophotometric pH sensor (measuring less frequently). It is possible to calibrate in situ with Tris buffer or CRM on the spectrophotometric pH sensor. Therefore, the drifts in the value of potentiometric pH measurements can be compensated using the pH value obtained from the spectrophotometric pH measurements. Thereby, the sensor can measure accurately the value of pH over a long period of time with low power consumption.

  2. Enzymatic Digestion of Chronic Wasting Disease Prions Bound to Soil

    PubMed Central

    SAUNDERS, SAMUEL E.; BARTZ, JASON C.; VERCAUTEREN, KURT C.; BARTELT-HUNT, SHANNON L.

    2010-01-01

    Chronic wasting disease (CWD) and sheep scrapie can be transmitted via indirect environmental routes, and it is known that soil can serve as a reservoir of prion infectivity. Given the strong interaction between the prion protein (PrP) and soil, we hypothesized that binding to soil enhances prion resistance to enzymatic digestion, thereby facilitating prion longevity in the environment and providing protection from host degradation. We characterized the performance of a commercially available subtilisin enzyme, the Prionzyme, to degrade soil-bound and unbound CWD and HY TME PrP as a function of pH, temperature, and treatment time. The subtilisin enzyme effectively degraded PrP adsorbed to a wide range of soils and soil minerals below the limits of detection. Signal loss occurred rapidly at high pH (12.5) and within 7 d under conditions representative of the natural environment (pH 7.4, 22°C). We observed no apparent difference in enzyme effectiveness between bound and unbound CWD PrP. Our results show that although adsorbed prions do retain relative resistance to enzymatic digestion compared with other brain homogenate proteins, they can be effectively degraded when bound to soil. Our results also suggest a topical application of a subtilisin enzyme solution may be an effective decontamination method to limit disease transmission via environmental ‘hot spots’ of prion infectivity. PMID:20450190

  3. A pH-Sensing Optode for Mapping Spatiotemporal Gradients in 3D Paper-Based Cell Cultures.

    PubMed

    Kenney, Rachael M; Boyce, Matthew W; Whitman, Nathan A; Kromhout, Brenden P; Lockett, Matthew R

    2018-02-06

    Paper-based cultures are an emerging platform for preparing 3D tissue-like structures. Chemical gradients can be imposed upon these cultures, generating microenvironments similar to those found in poorly vascularized tumors. There is increasing evidence that the tumor microenvironment is responsible for promoting drug resistance and increased invasiveness. Acidosis, or the acidification of the extracellular space, is particularly important in promoting these aggressive cancer phenotypes. To better understand how cells respond to acidosis there is a need for 3D culture platforms that not only model relevant disease states but also contain sensors capable of quantifying small molecules in the extracellular environment. In this work, we describe pH-sensing optodes that are capable of generating high spatial and temporal resolution maps of pH gradients in paper-based cultures. This sensor was fabricated by suspending microparticles containing pH-sensitive (fluorescein) and pH-insensitive (diphenylanthracene) dyes in a polyurethane hydrogel, which was then coated onto a transparent film. The pH-sensing films have a fast response time, are reversible, stable in long-term culture environments, have minimal photobleaching, and are not cytotoxic. These films have a pK a of 7.61 ± 0.04 and are sensitive in the pH range corresponding to normal and tumorigenic tissues. With these optodes, we measured the spatiotemporal evolution of pH gradients in paper-based tumor models.

  4. Bromeliad Selection by Two Salamander Species in a Harsh Environment

    PubMed Central

    Ruano-Fajardo, Gustavo; Rovito, Sean M.; Ladle, Richard J.

    2014-01-01

    Bromeliad phytotelmata are frequently used by several Neotropical amphibian taxa, possibly due to their high humidity, microclimatic stability, and role as a refuge from predators. Indeed, the ability of phytotelmata to buffer against adverse environmental conditions may be instrumental in allowing some amphibian species to survive during periods of environmental change or to colonize sub-optimal habitats. Association between bromeliad traits and salamanders has not been studied at a fine scale, despite the intimate association of many salamander species with bromeliads. Here, we identify microhabitat characteristics of epiphytic bromeliads used by two species of the Bolitoglossa morio group (B. morio and B. pacaya) in forest disturbed by volcanic activity in Guatemala. Specifically, we measured multiple variables for bromeliads (height and position in tree, phytotelma water temperature and pH, canopy cover, phytotelma size, leaf size, and tree diameter at breast height), as well as salamander size. We employed a DNA barcoding approach to identify salamanders. We found that B. morio and B. pacaya occurred in microsympatry in bromeliads and that phytotelmata size and temperature of bromeliad microhabitat were the most important factors associated with the presence of salamanders. Moreover, phytotelmata with higher pH contained larger salamanders, suggesting that larger salamanders or aggregated individuals might modify pH. These results show that bromeliad selection is nonrandom with respect to microhabitat characteristics, and provide insight into the relationship between salamanders and this unique arboreal environment. PMID:24892414

  5. Aqua de Ney, California, a spring of unique chemical character

    USGS Publications Warehouse

    Feth, J.H.; Rogers, S.M.; Roberson, C.E.

    1961-01-01

    The chemistry of water of Aqua de Ney, a cold spring of unusual character located in Siskiyou County, Calif., has been re-examined as part of a study of the relation of water chemistry to rock environment. The water has a pH of 11??6 and a silica content of 4000 parts per million (p.p.m.), the highest values known to occur in natural ground waters. The rocks exposed nearby consist of two volcanic sequences, one predominantly basaltic in composition, the other highly siliceous. Neither these rocks nor the sedimentary and igneous rocks presumed to underlie the area at depth seem to offer explanation of the unusual mineralization which includes 240 p.p.m. of boron, 1000 p.p.m. of sulphide (as H2S), and 148 p.p.m. of ammonia nitrogen (as NH4) in a water that is predominantly sodium chloride and sodium carbonate in character. By analogy, it is assumed that water from Aqua de Ney is the product of an initial mixture of connate sea water with a calcium magnesium sulphate water. It is postulated that ion exchange has increased the content of sodium and reduced that of calcium and magnesium, and that sulphate reduction has brought about the high alkalinity, high pH, and high content of sulphide. The large silica value is explained as the result of solution of silica by water having the high pH observed. ?? 1961.

  6. Biophysical Characterization of a Thermoalkaliphilic Molecular Motor with a High Stepping Torque Gives Insight into Evolutionary ATP Synthase Adaptation*

    PubMed Central

    McMillan, Duncan G. G.; Watanabe, Rikiya; Ueno, Hiroshi; Cook, Gregory M.; Noji, Hiroyuki

    2016-01-01

    F1F0 ATP synthases are bidirectional molecular motors that translocate protons across the cell membrane by either synthesizing or hydrolyzing ATP. Alkaliphile ATP synthases are highly adapted, performing oxidative phosphorylation at high pH against an inverted pH gradient (acidin/alkalineout). Unlike mesophilic ATP synthases, alkaliphilic enzymes have tightly regulated ATP hydrolysis activity, which can be relieved in the presence of lauryldimethylamine oxide. Here, we characterized the rotary dynamics of the Caldalkalibacillus thermarum TA2.A1 F1 ATPase (TA2F1) with two forms of single molecule analysis, a magnetic bead duplex and a gold nanoparticle. TA2F1 rotated in a counterclockwise direction in both systems, adhering to Michaelis-Menten kinetics with a maximum rotation rate (Vmax) of 112.4 revolutions/s. TA2F1 displayed 120° unitary steps coupled with ATP hydrolysis. Torque measurements revealed the highest torque (52.4 piconewtons) derived from an F1 molecule using fluctuation theorem. The implications of high torque in terms of extreme environment adaptation are discussed. PMID:27624936

  7. Molecular aspects of bacterial pH sensing and homeostasis

    PubMed Central

    Krulwich, Terry A.; Sachs, George; Padan, Etana

    2011-01-01

    Diverse mechanisms for pH-sensing and cytoplasmic pH homeostasis enable most bacteria to tolerate or grow at external pH values that are outside the cytoplasmic pH range they must maintain for growth. The most extreme cases are exemplified by the extremophiles that inhabit environments whose pH is below 3 or above 11. Here we describe how recent insights into the structure and function of key molecules and their regulators reveal novel strategies of bacterial pH-homeostasis. These insights may help us better target certain pathogens and better harness the capacities of environmental bacteria. PMID:21464825

  8. Macrophyte growth in a pilot-scale constructed wetland for industrial wastewater treatment.

    PubMed

    Hadad, H R; Maine, M A; Bonetto, C A

    2006-06-01

    A pilot-scale wetland was constructed to assess the feasibility of treating the wastewater from a tool industry in Santo Tomé, Santa Fe, Argentina. The wastewater had high conductivity and pH, and contained Cr, Ni and Zn. This paper describes the growth of vegetation in the experimental wetland and the nutrient and metal removal. The wetland was 6 x 3 x 0.4 m. Water discharge was 1000 l d(-1) and residence time was 7d. After the wetland was rendered impermeable, macrophytes from Middle Paraná River floodplain were transplanted. Influent and effluent quality was analyzed every 15 d. TP, Cr, Ni and Zn concentrations in leaves, roots and sediment (inlet and outlet) were measured monthly. Cover and biomass of predominant species were estimated. Also, greenhouse experiments were carried out to measure the effects of conductivity and pH on floating species. The variables measured in the influent were significantly higher than those in the effluent, except for HCO(3)(-) and NH(4)(+). TP and metal concentrations in sediment at the inlet were significantly higher than those at the outlet. Conductivity and pH of the incoming wastewater were toxic for the floating species. Typha domingensis displaced the other species and reached positive relative cover rate and biomass greater than those at the undisturbed natural environment. T. domingensis proved to be highly efficient for the treatment of wastewater. For that reason, it is the advisable species for the treatment of wastewater of high conductivity and pH enriched with metals, characteristic of many industrial processes.

  9. Phototrophs in high-iron-concentration microbial mats: physiological ecology of phototrophs in an iron-depositing hot spring

    NASA Technical Reports Server (NTRS)

    Pierson, B. K.; Parenteau, M. N.; Griffin, B. M.

    1999-01-01

    At Chocolate Pots Hot Springs in Yellowstone National Park the source waters have a pH near neutral, contain high concentrations of reduced iron, and lack sulfide. An iron formation that is associated with cyanobacterial mats is actively deposited. The uptake of [(14)C]bicarbonate was used to assess the impact of ferrous iron on photosynthesis in this environment. Photoautotrophy in some of the mats was stimulated by ferrous iron (1.0 mM). Microelectrodes were used to determine the impact of photosynthetic activity on the oxygen content and the pH in the mat and sediment microenvironments. Photosynthesis increased the oxygen concentration to 200% of air saturation levels in the top millimeter of the mats. The oxygen concentration decreased with depth and in the dark. Light-dependent increases in pH were observed. The penetration of light in the mats and in the sediments was determined. Visible radiation was rapidly attenuated in the top 2 mm of the iron-rich mats. Near-infrared radiation penetrated deeper. Iron was totally oxidized in the top few millimeters, but reduced iron was detected at greater depths. By increasing the pH and the oxygen concentration in the surface sediments, the cyanobacteria could potentially increase the rate of iron oxidation in situ. This high-iron-content hot spring provides a suitable model for studying the interactions of microbial photosynthesis and iron deposition and the role of photosynthesis in microbial iron cycling. This model may help clarify the potential role of photosynthesis in the deposition of Precambrian banded iron formations.

  10. Biodegradation of aniline in an alkaline environment by a novel strain of the halophilic bacterium, Dietzia natronolimnaea JQ-AN.

    PubMed

    Jin, Qiong; Hu, Zhongce; Jin, Zanfang; Qiu, Lequan; Zhong, Weihong; Pan, Zhiyan

    2012-08-01

    Dietzia natronolimnaea JQ-AN was isolated from industrial wastewater containing aniline. Under aerobic conditions, the JQ-AN strain degraded 87% of the aniline in a 300 mg L(-1) aniline solution after 120 h of shake flask incubation in a medium containing sodium acetate. This strain had an unusually high salinity tolerance in minimal medium (0-6% NaCl, w/v). The optimal pH for microbial growth and aniline biodegradation was pH 8.0. Two liters of simulated aniline wastewater was created in a reactor at pH 8.0 and 3% NaCl (w/v), and biodegradation of aniline was tested over 7 days at 30 °C. For the initial concentrations of 100, 300, and 500 mg L(-1), 100%, 80.5% and 72% of the aniline was degraded, respectively. Strain JQ-AN may use an ortho-cleavage pathway for dissimilation of the catechol intermediate. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Effects of seawater mixing on the mobility of trace elements in acid phosphogypsum leachates.

    PubMed

    Papaslioti, Evgenia-Maria; Pérez-López, Rafael; Parviainen, Annika; Sarmiento, Aguasanta M; Nieto, José M; Marchesi, Claudio; Delgado-Huertas, Antonio; Garrido, Carlos J

    2018-02-01

    This research reports the effects of pH increase on contaminant mobility in phosphogypsum leachates by seawater mixing, as occurs with dumpings on marine environments. Acid leachates from a phosphogypsum stack located in the Estuary of Huelva (Spain) were mixed with seawater to achieve gradually pH7. Concentrations of Al, Fe, Cr, Pb and U in mixed solutions significantly decreased with increasing pH by sorption and/or precipitation processes. Nevertheless, this study provides insight into the high contribution of the phosphogypsum stack to the release of other toxic elements (Co, Ni, Cu, Zn, As, Cd and Sb) to the coastal areas, as 80-100% of their initial concentrations behaved conservatively in mixing solutions with no participation in sorption processes. Stable isotopes ruled out connexion between different phosphogypsum-related wastewaters and unveiled possible weathering inputs of estuarine waters to the stack. The urgency of adopting effective restoration measures in the study area is also stressed. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Extreme intrafamilial variability of Saudi brothers with primary hyperoxaluria type 1.

    PubMed

    Alfadhel, Majid; Alhasan, Khalid A; Alotaibi, Mohammed; Al Fakeeh, Khalid

    2012-01-01

    Primary hyperoxaluria type 1 (PH1) is characterized by progressive renal insufficiency culminating in end-stage renal disease, and a wide range of clinical features related to systemic oxalosis in different organs. It is caused by autosomal recessive deficiency of alanine:glyoxylate aminotransferase due to a defect in AGXT gene. Two brothers (one 6 months old; the other 2 years old) presented with acute renal failure and urinary tract infection respectively. PH1 was confirmed by high urinary oxalate level, demonstration of oxalate crystals in bone biopsy, and pathogenic homozygous known AGXT gene mutation. Despite the same genetic background, same sex, and shared environment, the outcome of the two siblings differs widely. While one of them died earlier with end-stage renal disease and multiorgan failure caused by systemic oxalosis, the older brother is pyridoxine responsive with normal development and renal function. Clinicians should be aware of extreme intrafamilial variability of PH1 and international registries are needed to characterize the genotype-phenotype correlation in such disorder.

  13. Influence of pH, competing ions, and salinity on the sorption of strontium and cobalt onto biogenic hydroxyapatite

    PubMed Central

    Handley-Sidhu, Stephanie; Mullan, Thomas K.; Grail, Quentin; Albadarneh, Malek; Ohnuki, Toshihiko; Macaskie, Lynne E.

    2016-01-01

    Anthropogenic radionuclides contaminate a range of environments as a result of nuclear activities, for example, leakage from waste storage tanks/ponds (e.g. Hanford, USA or Sellafield sites, UK) or as a result of large scale nuclear accidents (e.g. Chernobyl, Ukraine or Fukushima, Japan). One of the most widely applied remediation techniques for contaminated waters is the use of sorbent materials (e.g. zeolites and apatites). However, a key problem at nuclear contaminated sites is the remediation of radionuclides from complex chemical environments. In this study, biogenic hydroxyapatite (BHAP) produced by Serratia sp. bacteria was investigated for its potential to remediate surrogate radionuclides (Sr2+ and Co2+) from environmentally relevant waters by varying pH, salinity and the type and concentration of cations present. The sorption capacity of the BHAP for both Sr2+ and Co2+ was higher than for a synthetically produced hydroxyapatite (HAP) in the solutions tested. BHAP also compared favorably against a natural zeolite (as used in industrial decontamination) for Sr2+ and Co2+ uptake from saline waters. Results confirm that hydroxyapatite minerals of high surface area and amorphous calcium phosphate content, typical for biogenic sources, are suitable restoration or reactive barrier materials for the remediation of complex contaminated environments or wastewaters. PMID:26988070

  14. Influence of pH, competing ions, and salinity on the sorption of strontium and cobalt onto biogenic hydroxyapatite

    NASA Astrophysics Data System (ADS)

    Handley-Sidhu, Stephanie; Mullan, Thomas K.; Grail, Quentin; Albadarneh, Malek; Ohnuki, Toshihiko; Macaskie, Lynne E.

    2016-03-01

    Anthropogenic radionuclides contaminate a range of environments as a result of nuclear activities, for example, leakage from waste storage tanks/ponds (e.g. Hanford, USA or Sellafield sites, UK) or as a result of large scale nuclear accidents (e.g. Chernobyl, Ukraine or Fukushima, Japan). One of the most widely applied remediation techniques for contaminated waters is the use of sorbent materials (e.g. zeolites and apatites). However, a key problem at nuclear contaminated sites is the remediation of radionuclides from complex chemical environments. In this study, biogenic hydroxyapatite (BHAP) produced by Serratia sp. bacteria was investigated for its potential to remediate surrogate radionuclides (Sr2+ and Co2+) from environmentally relevant waters by varying pH, salinity and the type and concentration of cations present. The sorption capacity of the BHAP for both Sr2+ and Co2+ was higher than for a synthetically produced hydroxyapatite (HAP) in the solutions tested. BHAP also compared favorably against a natural zeolite (as used in industrial decontamination) for Sr2+ and Co2+ uptake from saline waters. Results confirm that hydroxyapatite minerals of high surface area and amorphous calcium phosphate content, typical for biogenic sources, are suitable restoration or reactive barrier materials for the remediation of complex contaminated environments or wastewaters.

  15. pH-controlled doxorubicin anticancer loading and release from carbon nanotube noncovalently modified by chitosan: MD simulations.

    PubMed

    Rungnim, Chompoonut; Rungrotmongkol, Thanyada; Poo-Arporn, Rungtiva P

    2016-11-01

    In the present study, we describe here the pH condition activating doxorubicin (DOX) anticancer drugs loading and release over single-wall carbon nanotube (SWNT) non-covalently wrapped with chitosan (CS). The possibility of drug displacement on DOX/CS/SWNT nanocarrier was investigated using molecular dynamics simulations. The drug loading and release were monitored via displacement analysis and binding energy calculations. The simulated results clearly showed that the drugs well interacted with the CS/SWNT at physiological pH (pH 7.4), where CS was in the deprotonated form. Contrastingly, in weakly acidic environments (pH 5.0-6.5) which is a pH characteristics of certain cancer environments, the protonated CS became loosen wrapped around the SWNT and triggered drugs release as a result of charge-charge repulsion between CS and drug molecules. The obtained data fulfil the understanding at atomic level of drug loading and release controlled by pH-sensitive polymer, which might be useful for further cancer therapy researches. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Stress Corrosion Cracking of Annealed and Cold Worked Titanium Grade 7 and Alloy 22 in 110 C Concentrated Salt Environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    P. Andresen

    2000-11-08

    Stress corrosion crack growth studies have been performed on annealed and cold worked Titanium Grade 7 and Alloy 22 in 110 C, aerated, concentrated, high pH salt environments characteristic of concentrated ground water. Following a very careful transition from fatigue precracking conditions to SCC conditions, the long term behavior under very stable conditions was monitored using reversing dc potential drop. Titanium Grade 7 exhibited continuous crack growth under both near-static and complete static loading conditions. Alloy 22 exhibited similar growth rates, but was less prone to maintain stable crack growth as conditions approached fully static loading.

  17. Influence of Postbuild Microstructure on the Electrochemical Behavior of Additively Manufactured 17-4 PH Stainless Steel

    NASA Astrophysics Data System (ADS)

    Stoudt, M. R.; Ricker, R. E.; Lass, E. A.; Levine, L. E.

    2017-03-01

    The additive manufacturing build process produces a segregated microstructure with significant variations in composition and phases that are uncommon in traditional wrought materials. As such, the relationship between the postbuild microstructure and the corrosion resistance is not well understood. Stainless steel alloy 17-4 precipitation hardened (SS17-4PH) is an industrially relevant alloy for applications requiring high strength and good corrosion resistance. A series of potentiodynamic scans conducted in a deaerated 0.5-mol/L NaCl solution evaluated the influence of these microstructural differences on the pitting behavior of SS17-4. The pitting potentials were found to be higher in the samples of additively processed material than in the samples of the alloy in wrought form. This indicates that the additively processed material is more resistant to localized corrosion and pitting in this environment than is the wrought alloy. The results also suggest that after homogenization, the additively produced SS17-4 could be more resistant to pitting than the wrought SS17-4 is in an actual service environment.

  18. The Influence of Post-Build Microstructure on the Electrochemical Behavior of Additively Manufactured 17-4 PH Stainless Steel.

    PubMed

    Stoudt, M R; Ricker, R E; Lass, E A; Levine, L E

    2017-03-01

    The additive manufacturing (AM) build process produces a segregated microstructure with significant variations in composition and phases that are uncommon in traditional wrought materials. As such, the relationship between the post-build microstructure and the corrosion resistance is not well understood. Stainless steel alloy 17-4PH is an industrially-relevant alloy for applications requiring high-strength and good corrosion resistance. A series of potentiodynamic scans conducted in a deaerated 0.5 mol/L NaCl solution evaluated the influence of these microstructural differences on the pitting behavior of SS17-4. The pitting potentials were found to be higher in the samples of additively-processed material than in samples of the alloy in wrought form. This indicates that the additively-processed material is more resistant to localized corrosion and pitting in this environment than the wrought alloy. The results also suggest that after homogenization, the additively-produced SS17-4 could be more resistant to pitting than wrought SS17-4 in an actual service environment.

  19. The Influence of Post-Build Microstructure on the Electrochemical Behavior of Additively Manufactured 17-4 PH Stainless Steel

    PubMed Central

    Stoudt, M. R.; Ricker, R. E.; Lass, E. A.; Levine, L. E.

    2017-01-01

    The additive manufacturing (AM) build process produces a segregated microstructure with significant variations in composition and phases that are uncommon in traditional wrought materials. As such, the relationship between the post-build microstructure and the corrosion resistance is not well understood. Stainless steel alloy 17-4PH is an industrially-relevant alloy for applications requiring high-strength and good corrosion resistance. A series of potentiodynamic scans conducted in a deaerated 0.5 mol/L NaCl solution evaluated the influence of these microstructural differences on the pitting behavior of SS17-4. The pitting potentials were found to be higher in the samples of additively-processed material than in samples of the alloy in wrought form. This indicates that the additively-processed material is more resistant to localized corrosion and pitting in this environment than the wrought alloy. The results also suggest that after homogenization, the additively-produced SS17-4 could be more resistant to pitting than wrought SS17-4 in an actual service environment. PMID:28757787

  20. Mutation of the NADH Oxidase Gene (nox) Reveals an Overlap of the Oxygen- and Acid-Mediated Stress Responses in Streptococcus mutans

    PubMed Central

    Derr, Adam M.; Faustoferri, Roberta C.; Betzenhauser, Matthew J.; Gonzalez, Kaisha; Marquis, Robert E.

    2012-01-01

    NADH oxidase (Nox) is a flavin-containing enzyme used by Streptococcus mutans to reduce dissolved oxygen encountered during growth in the oral cavity. In this study, we characterized the role of the NADH oxidase in the oxidative and acid stress responses of S. mutans. A nox-defective mutant strain of S. mutans and its parental strain, the genomic type strain UA159, were exposed to various oxygen concentrations at pH values of 5 and 7 to better understand the adaptive mechanisms used by the organism to withstand environmental pressures. With the loss of nox, the activities of oxygen stress response enzymes such as superoxide dismutase and glutathione oxidoreductase were elevated compared to those in controls, resulting in a greater adaptation to oxygen stress. In contrast, the loss of nox led to a decreased ability to grow in a low-pH environment despite an increased resistance to severe acid challenge. Analysis of the membrane fatty acid composition revealed that for both the nox mutant and UA159 parent strain, growth in an oxygen-rich environment resulted in high proportions of unsaturated membrane fatty acids, independent of external pH. The data indicate that S. mutans membrane fatty acid composition is responsive to oxidative stress, as well as changes in environmental pH, as previously reported (E. M. Fozo and R. G. Quivey, Jr., Appl. Environ. Microbiol. 70:929–936, 2004). The heightened ability of the nox strain to survive acidic and oxidative environmental stress suggests a multifaceted response system that is partially dependent on oxygen metabolites. PMID:22179247

  1. Diblock Terpolymers Are Tunable and pH Responsive Vehicles To Increase Hydrophobic Drug Solubility for Oral Administration.

    PubMed

    Tale, Swapnil; Purchel, Anatolii A; Dalsin, Molly C; Reineke, Theresa M

    2017-11-06

    Synthetic polymers offer tunable platforms to create new oral drug delivery vehicles (excipients) to increase solubility, supersaturation maintenance, and bioavailability of poorly aqueous soluble pharmaceutical candidates. Five well-defined diblock terpolymers were synthesized via reversible addition-fragmentation chain transfer polymerization (RAFT) and consist of a first block of either poly(ethylene-alt-propylene) (PEP), poly(N-isopropylacrylamide) (PNIPAm), or poly(N,N-diethylaminoethyl methacrylate) (PDEAEMA) and a second hydrophilic block consisting of a gradient copolymer of N,N-dimethylacrylamide (DMA) and 2-methacrylamidotrehalose (MAT). This family of diblock terpolymers offers hydrophobic, hydrophilic, or H-bonding functionalities to serve as noncovalent sites of drug binding. Drug-polymer spray dried dispersions (SDDs) were created with a model drug, probucol, and characterized by differential scanning calorimetry (DSC). These studies revealed that probucol crystallinity decreased with increasing H-bonding sites available in the polymer. The PNIPAm-b-P(DMA-grad-MAT) systems revealed the best performance at pH 6.5, where immediate probucol release and effective maintenance of 100% supersaturation was found, which is important for facilitating drug solubility in more neutral conditions (intestinal environment). However, the PDEAEMA-b-P(DMA-grad-MAT) system revealed poor probucol dissolution at pH 6.5 and 5.1. Alternatively, at an acidic pH of 3.1, a rapid and high dissolution profile and effective supersaturation maintenance of up to 90% of the drug was found, which could be useful for triggering drug release in acidic environments (stomach). The PEP-b-P(DMA-grad-MAT) system showed poor performance (only ∼20% of drug solubility at pH 6.5), which was attributed to the low solubility of the polymers in the dissolution media. This work demonstrates the utility of diblock terpolymers as a potential new excipient platform to optimize design parameters for triggered release and solubilizing hydrophobic drug candidates for oral delivery.

  2. Meiofaunal Richness in Highly Acidic Hot Springs in Unzen-Amakusa National Park, Japan, Including the First Rediscovery Attempt for Mesotardigrada.

    PubMed

    Suzuki, Atsushi C; Kagoshima, Hiroshi; Chilton, Glen; Grothman, Gary T; Johansson, Carl; Tsujimoto, Megumu

    2017-02-01

    Extreme environments sometimes support surprisingly high meiofaunal diversity. We sampled runoff from the acidic hot springs of Unzen, Japan. This is the type locality of Thermozodium esakii Rahm, 1937, the only tardigrade in the class Mesotardigrada, which remains contentious in the absence of corroboration or supporting specimens. Our sampling revealed at least three species of arthropods, four rotifers, and five nematodes living in the hot (ca. 40°C) and acidic (ca. pH 2.5) water, but no tardigrades.

  3. CdSe/ZnS quantum dots conjugated with a fluorescein derivative: a FRET-based pH sensor for physiological alkaline conditions.

    PubMed

    Kurabayashi, Tomokazu; Funaki, Nayuta; Fukuda, Takeshi; Akiyama, Shinnosuke; Suzuki, Miho

    2014-01-01

    Dual pH-dependent fluorescence peaks from a semiconductor quantum dot (QD) and a pH-dependent fluorescent dye can be measured by irradiating with a single wavelength light, and the pH can be estimated from the ratio of the fluorescent intensity of the two peaks. In this work, ratiometric pH sensing was achieved in an aqueous environment by a fluorescent CdSe/ZnS QD appended with a pH-sensitive organic dye, based on fluorescence resonance energy transfer (FRET). By functionalizing the CdSe/ZnS QD with 5-(and 6)-carboxynaphthofluorescein succinimidyl ester as a pH-dependent fluorescent dye, we succeeded in fabricating sensitive nanocomplexes with a linear response to a broad range of physiological pH levels (7.5-9.5) when excited at 450 nm. We found that a purification process is important for increasing the high-fluorescence intensity ratio of a ratiometric fluorescence pH-sensor, and the fluorescence intensity ratio was improved up to 1.0 at pH 8.0 after the purification process to remove unreacted CdSe/ZnS QDs even though the fluorescence of the dye could not be observed without the purification process. The fluorescence intensity ratio corresponds to the fluorescence intensity of the dye, and this fluorescent dye exhibited pH-dependent fluorescence intensity changes. These facts indicate that the fluorescence intensity ratio linearly increased with increasing pH value of the buffer solution containing the QD and the dye. The FRET efficiencies changed from 0.3 (pH 7.5) to 6.2 (pH 9.5).

  4. XANES and EXAFS investigation of uranium incorporation on nZVI in the presence of phosphate.

    PubMed

    Qiu, Muqing; Wang, Min; Zhao, Qingzhou; Hu, Baowei; Zhu, Yuling

    2018-06-01

    Effect of phosphate on the reduction of U(VI) on nZVI was determined by batch, XPS, XANES and EXAFS techniques. The batch experiments showed that nZVI was quite effective for the removal of uranium under the anaerobic conditions, whereas the addition of phosphate enhanced uranium removal over wide pH range. At low pH, the reduction of U(VI) to U(IV) significantly decreased with increasing phosphate concentration by XPS and XANES analysis. According to EXAFS analysis, the occurrence of UU shell at 10 mg/L phosphate and pH 4.0 was similar to that of U (IV) O 2 (s), whereas the UP and UFe shells were observed at 50 mg/L phosphate, revealing that reductive co-precipitate (U (IV) O 2 (s)) and precipitation of uranyl-phosphate were observed at low and high phosphate, respectively. The findings are crucial for the prediction of the effect of phosphate on the speciation and binding of uranium by nZVI at low pH, which is significant in controlling the mobility of U(VI) in contaminated environments. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Biosorption of clofibric acid and carbamazepine in aqueous solution by agricultural waste rice straw.

    PubMed

    Liu, Zhanguang; Zhou, Xuefei; Chen, Xiaohua; Dai, Chaomeng; Zhang, Juan; Zhang, Yalei

    2013-12-01

    Due to their widespread use, clofibric acid (CA) and carbamazepine (CBZ) have been frequently detected simultaneously at relatively high concentrations in aquatic environments. In this study, agricultural waste rice straw was employed as a potentially low-cost, effective and easy-to-operate biosorbent (RSB) to remove CA and CBZ. The adsorption of both pharmaceuticals followed pseudo second-order kinetics, and intraparticle diffusion was an important rate-limiting step. The adsorption isotherms of both drugs were fit well with Freundlich model. The adsorption of CA onto RSB was exothermic and was more likely to be dominated by physical processes, while the adsorption of CBZ was endothermic. Solution pH was determined to be the most important factor for CA adsorption, such that the adsorption capacity of CA onto RSB increased with the decline of solution pH. In the lower range of solution pH below 3.1, the CA removal efficiency was enhanced with the increase of biosorbent dosage. The CBZ removal efficiency was enhanced with the increase of RSB dosage without pH control. The maximum adsorption capacities were 126.3 mg/g for CA and 40.0 mg/g for CBZ.

  6. Enhanced Activity and Acid pH Stability of Prussian Blue-type Oxygen Evolution Electrocatalysts Processed by Chemical Etching.

    PubMed

    Han, Lijuan; Tang, Pengyi; Reyes-Carmona, Álvaro; Rodríguez-García, Bárbara; Torréns, Mabel; Morante, Joan Ramon; Arbiol, Jordi; Galan-Mascaros, Jose Ramon

    2016-12-14

    The development of upscalable oxygen evolving electrocatalysts from earth-abundant metals able to operate in neutral or acidic environments and low overpotentials remains a fundamental challenge for the realization of artificial photosynthesis. In this study, we report a highly active phase of heterobimetallic cyanide-bridged electrocatalysts able to promote water oxidation under neutral, basic (pH < 13), and acidic conditions (pH > 1). Cobalt-iron Prussian blue-type thin films, formed by chemical etching of Co(OH) 1.0 (CO 3 ) 0.5 ·nH 2 O nanocrystals, yield a dramatic enhancement of the catalytic performance toward oxygen production, when compared with previous reports for analogous materials. Electrochemical, spectroscopic, and structural studies confirm the excellent performance, stability, and corrosion resistance, even when compared with state-of-the-art metal oxide catalysts under moderate overpotentials and in a remarkably large pH range, including acid media where most cost-effective water oxidation catalysts are not useful. The origin of the superior electrocatalytic activity toward water oxidation appears to be in the optimized interfacial matching between catalyst and electrode surface obtained through this fabrication method.

  7. Temperature and pH effect on reduction of graphene oxides in aqueous solution

    NASA Astrophysics Data System (ADS)

    Tai, Guoan; Zeng, Tian; Li, Hongxiang; Liu, Jinsong; Kong, Jizhou; Lv, Fuyong

    2014-09-01

    Reduced graphene oxides (RGOs) have usually been obtained by hydrazine reduction, but hydrazine-related compounds are corrosive, highly flammable and very hazardous, and the obtained RGOs heavily aggregated. Here we investigated extensively the effect of temperature and pH value on the structure of RGOs in hydrothermal environments without any reducing agents. The attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectra showed that reduction rate of GOs remarkably increased with the temperature from 100 to 180 °C and with pH value from 3 to 10. Field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) exhibited the structural transition of the RGOs. Energy-dispersive x-ray analysis (EDX) showed the reduction degree of the RGO samples quantitatively. The results demonstrate that the GOs can be reduced controllably by a hydrothermal reduction process at pH value of 10 at 140 °C, and the large-scale RGOs are cut into small nanosheets with size from several to a few tens of nanometers with increasing temperature and duration. This study provides a feasible approach to controllably reduce GO with different nanostructures such as porous structures and quantum dots for applications in optoelectronics and biomedicals.

  8. pH and temperature dual-sensitive liposome gel based on novel cleavable mPEG-Hz-CHEMS polymeric vaginal delivery system

    PubMed Central

    Chen, Daquan; Sun, Kaoxiang; Mu, Hongjie; Tang, Mingtan; Liang, Rongcai; Wang, Aiping; Zhou, Shasha; Sun, Haijun; Zhao, Feng; Yao, Jianwen; Liu, Wanhui

    2012-01-01

    Background In this study, a pH and temperature dual-sensitive liposome gel based on a novel cleavable hydrazone-based pH-sensitive methoxy polyethylene glycol 2000-hydrazone-cholesteryl hemisuccinate (mPEG-Hz-CHEMS) polymer was used for vaginal administration. Methods The pH-sensitive, cleavable mPEG-Hz-CHEMS was designed as a modified pH-sensitive liposome that would selectively degrade under locally acidic vaginal conditions. The novel pH-sensitive liposome was engineered to form a thermogel at body temperature and to degrade in an acidic environment. Results A dual-sensitive liposome gel with a high encapsulation efficiency of arctigenin was formed and improved the solubility of arctigenin characterized by Fourier transform infrared spectroscopy and differential scanning calorimetry. The dual-sensitive liposome gel with a sol-gel transition at body temperature was degraded in a pH-dependent manner, and was stable for a long period of time at neutral and basic pH, but cleavable under acidic conditions (pH 5.0). Arctigenin encapsulated in a dual-sensitive liposome gel was more stable and less toxic than arctigenin loaded into pH-sensitive liposomes. In vitro drug release results indicated that dual-sensitive liposome gels showed constant release of arctigenin over 3 days, but showed sustained release of arctigenin in buffers at pH 7.4 and pH 9.0. Conclusion This research has shed some light on a pH and temperature dual-sensitive liposome gel using a cleavable mPEG-Hz-CHEMS polymer for vaginal delivery. PMID:22679372

  9. Effects of pH and cation adsorption on colloidal stability of graphene oxide in aquatic environments

    NASA Astrophysics Data System (ADS)

    Terracciano, Amalia

    The presented doctoral research aims to improve the current understanding of the chemistry of Graphene Oxide Nanoparticles (GONPs) in common water systems. The widespread demand and future use of this nanomaterial in a broad range of different applications (i.e. biomedical, electronic, environmental) will certainly lead to its release in the environment with consequent exposure of ecosystems to graphene oxide (GO) toxicity. The described scenario demand a careful investigation and deep understanding of the environmental behavior and fate of GONPs, especially in water systems. Therefore this study focused on the investigation the effects of pH some of the most common water electrolytes (monovalent and divalent) and on GO colloidal stability. The interactions between the selected ions and the GO functional groups was also studied. The mobility of GO in porous media was first studied through filtrations tests that determine influence of ionic strength (IS) and solution composition on GO mobility. The GONPs showed to be completely retained in the porous media in presence of 3.5 mM of CaCl2 and in tap water while no retention was found for 10 mM of NaCl solution. The results indicated significant impact of divalent cations on the mobility of GO. Serial experiments were performed to quantify the adsorption of several cations (Na+, Ca2+ and Ba2+) on GO. The divalent cations showed to be strongly adsorbed on the GO surface with increasing pH and cation concentrations, while no significant sodium adsorption was detected. Raman spectroscopy and XPS analysis also showed strong differences in the typical spectra of GO, before and after adsorption of Ca2+ and Ba2+ which suggest chemical bond formation with the GO functional groups. The aggregation regime and the colloidal stability of the GO suspension in presence of selected electrolytes (Na+, Mg2+, Ca2+ and Ba2+) as function of pH was also extensively studied. The zeta potential, which is index of the stability of a colloidal suspension, was found to became more negative for GO in NaCl solutions for solution pH from 4 to 10 which is due to increased deprotonation of carboxyl (-COOH) and hydroxyl (-COH) groups on GO. Values of the zeta potential higher than +/-30 indicated increase stability of the colloidal suspension; however in presence of Ca2+ in solution, the zeta potential of GONPs become less negative (>-10 mV) with formation of aggregates which can be attributed to increased Ca2+ adsorption, especially at high pH. The increase adsorption will neutralize the negative surface charge to reduce electrostatic repulsion and promote aggregation. The same trend was found in presence of Ba2+ in solution. The critical coagulation concentration (CCC) of GO also showed to be strongly affected by Ca2+ and pH. The CCC value of GO remained at about 48 mM NaCl with increasing pH from 4.4 to 7 while it dramatically decreased from about 1.7 to 0.3 mM in CaCl2 solution with increasing pH. The results of this study suggest that pH and divalent cations, especially Ca2+ could significantly affect the colloidal stability of GONPs and therefore influence their mobility in the environment. Moreover the interactions between Ca2+ and Ba2+ and the GO nanosheets showed to be particularly strong which suggest inner-sphere complexation formation. The findings obtained from this doctoral research will contribute in improving the understanding of the fate and transport of the GONPs in aquatic environments and to develop more suitable models to predict its behavior.

  10. Mechanisms of arsenic-containing pyrite oxidation by aqueous arsenate under anoxic conditions

    NASA Astrophysics Data System (ADS)

    Qiu, Guohong; Gao, Tianyu; Hong, Jun; Tan, Wenfeng; Liu, Fan; Zheng, Lirong

    2017-11-01

    Adsorption and redox reactions occur between arsenic-containing pyrite and arsenate, which affect the migration and conversion of arsenic in soils and waters. However, the influence of arsenic incorporated in pyrite on the interaction processes is still enigmatic. In this work, arsenic-containing pyrites were hydrothermally synthesized with composition similar to naturally surface-oxidized pyrites in supergene environments. The effects of arsenic incorporation on the chemical composition and physicochemical properties were analyzed, and the interaction mechanism between arsenic-containing pyrites and aqueous arsenate was also studied within pH 3.0-11.0. Arsenic-containing pyrites with the arsenic contents of 0 (Apy0), 4.4 (Apy5) and 9.9 wt.% (Apy10) were produced in hydrothermal systems. As(III) and As(-I) respectively substituted Fe(II) and S2(-II) in the pyrite, and their relative contents respectively reached 76.6% and 17.2% in Apy5, and 91.0% and 8.0% in Apy10. Arsenic substitution resulted in a high content of Fe(III) in the form of Fe(III)sbnd S and a decrease in pyrite crystallinity. During the redox processes of arsenic-containing pyrites and arsenate, elemental S0, SO42- and goethite were formed as the main products with the adsorption of As(III,V), and As(III) was released due to the collapse of the crystal structure of pyrite and the oxidation of As(-I). Different redox mechanisms were achieved with pH increasing from 3.0 to 11.0 in the reaction system. At pH 3.0-6.0, Fe(III) contributed much to the oxidation of arsenic-containing pyrites, and arsenate and released As(III) were adsorbed on the surface of solid products. At pH 7.0-11.0, aqueous arsenate worked as the major oxidant, and its oxidation capacity increased with increasing pH. When the pH was increased from 3.0 to 7.0 and 11.0, the release ratio of incorporated arsenic from Apy10 particles increased from 34.1% to 45.0% and 56.8%, respectively. The present study facilitates a better understanding about the interaction mechanisms between arsenic-containing pyrite and arsenate in supergene environments.

  11. Optimization of buffer injection for the effective bioremediation of chlorinated solvents in aquifers

    NASA Astrophysics Data System (ADS)

    Brovelli, A.; Robinson, C.; Barry, A.; Kouznetsova, I.; Gerhard, J.

    2008-12-01

    Various techniques have been proposed to enhance biologically-mediated reductive dechlorination of chlorinated solvents in the subsurface, including the addition of fermentable organic substrate for the generation of H2 as an electron donor. One rate-limiting factor for enhanced dechlorination is the pore fluid pH. Organic acids and H+ ions accumulate in dechlorination zones, generating unfavorable conditions for microbial activity (pH < 6.5). The pH variation is a nonlinear function of the amount of reduced chlorinated solvents, and is affected by the organic material fermented, the chemical composition of the pore fluid and the soil's buffering capacity. Consequently, in some cases enhanced remediation schemes rely on buffer injection (e.g., bicarbonate) to alleviate this problem, particularly in the presence of solvent nonaqueous phase liquid (NAPL) source zones. However, the amount of buffer required - particularly in complex, evolving biogeochemical environments - is not well understood. To investigate this question, this work builds upon a geochemical numerical model (Robinson et al., Science of the Total Environment, submitted), which computes the amount of additional buffer required to maintain the pH at a level suitable for bacterial activity for batch systems. The batch model was coupled to a groundwater flow/solute transport/chemical reaction simulator to permit buffer optimization computations within the context of flowing systems exhibiting heterogeneous hydraulic, physical and chemical properties. A suite of simulations was conducted in which buffer optimization was examined within the bounds of the minimum concentration necessary to sustain a pH favorable to microbial activity and the maximum concentration to avoid excessively high pH values (also not suitable to bacterial activity) and mineral precipitation (e.g., calcite, which may lead to pore-clogging). These simulations include an examination of the sensitivity of this buffer concentration range to aquifer heterogeneity and groundwater velocity. This work is part of SABRE (Source Area BioREmediation), a collaborative international research project that aims to evaluate and improve enhanced bioremediation of chlorinated solvent source zones. In this context, numerical simulations are supporting the upscaling of the technique, including identifying the most appropriate buffer injection strategies for field applications

  12. Release of Hexavalent Chromium by Ash and Soils in Wildfire-Impacted Areas

    USGS Publications Warehouse

    Wolf, Ruth E.; Morman, Suzette A.; Plumlee, Geoffrey S.; Hageman, Philip L.; Adams, Monique

    2008-01-01

    The highly oxidizing environment of a wildfire has the potential to convert any chromium present in the soil or in residential or industrial debris to its more toxic form, hexavalent chromium, a known carcinogen. In addition, the highly basic conditions resulting from the combustion of wood and wood products could result in the stabilization of any aqueous hexavalent chromium formed. Samples were collected from the October 2007 wildfires in Southern California and subjected to an array of test procedures to evaluate the potential effects of fire-impacted soils and ashes on human and environmental health. Soil and ash samples were leached using de-ionized water to simulate conditions resulting from rainfall on fire-impacted areas. The resulting leachates were of high pH (10-13) and many, particularly those of ash from burned residential areas, contained elevated total chromium as much as 33 micrograms per liter. Samples were also leached using a near-neutral pH simulated lung fluid to model potential chemical interactions of inhaled particles with fluids lining the respiratory tract. High Performance Liquid Chromatography coupled to Inductively Coupled Plasma Mass Spectrometry was used to separate and detect individual species (for example, Cr+3, Cr+6, As+3, As+5, Se+4, and Se+6). These procedures were used to determine the form of the chromium present in the de-ionized water and simulated lung fluid leachates. The results show that in the de-ionized water leachate, all of the chromium present is in the form of Cr+6, and the resulting high pH tends to stabilize Cr+6 from reduction to Cr+3. Analysis of the simulated lung fluid leachates indicates that the predominant form of chromium present in the near-neutral pH of lung fluid would be Cr+6, which is of concern due to the high possibility of inhalation of the small ash and soil particulates, particularly by fire or restoration crews.

  13. TPC2 is a novel NAADP-sensitive Ca2+ release channel, operating as a dual sensor of luminal pH and Ca2+.

    PubMed

    Pitt, Samantha J; Funnell, Tim M; Sitsapesan, Mano; Venturi, Elisa; Rietdorf, Katja; Ruas, Margarida; Ganesan, A; Gosain, Rajendra; Churchill, Grant C; Zhu, Michael X; Parrington, John; Galione, Antony; Sitsapesan, Rebecca

    2010-11-05

    Nicotinic acid adenine dinucleotide phosphate (NAADP) is a molecule capable of initiating the release of intracellular Ca(2+) required for many essential cellular processes. Recent evidence links two-pore channels (TPCs) with NAADP-induced release of Ca(2+) from lysosome-like acidic organelles; however, there has been no direct demonstration that TPCs can act as NAADP-sensitive Ca(2+) release channels. Controversial evidence also proposes ryanodine receptors as the primary target of NAADP. We show that TPC2, the major lysosomal targeted isoform, is a cation channel with selectivity for Ca(2+) that will enable it to act as a Ca(2+) release channel in the cellular environment. NAADP opens TPC2 channels in a concentration-dependent manner, binding to high affinity activation and low affinity inhibition sites. At the core of this process is the luminal environment of the channel. The sensitivity of TPC2 to NAADP is steeply dependent on the luminal [Ca(2+)] allowing extremely low levels of NAADP to open the channel. In parallel, luminal pH controls NAADP affinity for TPC2 by switching from reversible activation of TPC2 at low pH to irreversible activation at neutral pH. Further evidence earmarking TPCs as the likely pathway for NAADP-induced intracellular Ca(2+) release is obtained from the use of Ned-19, the selective blocker of cellular NAADP-induced Ca(2+) release. Ned-19 antagonizes NAADP-activation of TPC2 in a non-competitive manner at 1 μM but potentiates NAADP activation at nanomolar concentrations. This single-channel study provides a long awaited molecular basis for the peculiar mechanistic features of NAADP signaling and a framework for understanding how NAADP can mediate key physiological events.

  14. Impact of water chemistry on surface charge and aggregation of polystyrene microspheres suspensions.

    PubMed

    Lu, Songhua; Zhu, Kairuo; Song, Wencheng; Song, Gang; Chen, Diyun; Hayat, Tasawar; Alharbi, Njud S; Chen, Changlun; Sun, Yubing

    2018-07-15

    The discharge of microplastics into aquatic environment poses the potential threat to the hydrocoles and human health. The fate and transport of microplastics in aqueous solutions are significantly influenced by water chemistry. In this study, the effect of water chemistry (i.e., pH, foreign salts and humic acid) on the surface charge and aggregation of polystyrene microsphere in aqueous solutions was conducted by batch, zeta potentials, hydrodynamic diameters, FT-IR and XPS analysis. Compared to Na + and K + , the lower negative zeta potentials and larger hydrodynamic diameters of polystyrene microspheres after introduction of Mg 2+ were observed within a wide range of pH (2.0-11.0) and ionic strength (IS, 0.01-500mmol/L). No effect of Cl - , HCO 3 - and SO 4 2- on the zeta potentials and hydrodynamic diameters of polystyrene microspheres was observed at low IS concentrations (<5mmol/L), whereas the zeta potentials and hydrodynamic diameters of polystyrene microspheres after addition of SO 4 2- were higher than that of Cl - and HCO 3 - at high IS concentrations (>10mmol/L). The zeta potentials of polystyrene microspheres after HA addition were decreased at pH2.0-11.0, whereas the lower hydrodynamic diameters were observed at pH<4.0. According to FT-IR and XPS analysis, the change in surface properties of polystyrene microspheres after addition of hydrated Mg 2+ and HA was attributed to surface electrostatic and/or steric repulsions. These investigations are crucial for understanding the effect of water chemistry on colloidal stability of microplastics in aquatic environment. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Cytotoxicity and hemolytic activity of jellyfish Nemopilema nomurai (Scyphozoa: Rhizostomeae) venom.

    PubMed

    Kang, Changkeun; Munawir, Al; Cha, Mijin; Sohn, Eun-Tae; Lee, Hyunkyoung; Kim, Jong-Shu; Yoon, Won Duk; Lim, Donghyun; Kim, Euikyung

    2009-07-01

    The recent bloom of a giant jellyfish Nemopilema nomurai has caused a danger to sea bathers and fishery damages in the waters of China, Korea, and Japan. The present study investigated the cytotoxic and hemolytic activities of crude venom extract of N. nomurai using a number of in vitro assays. The jellyfish venom showed a much higher cytotoxic activity in H9C2 heart myoblast than in C2C12 skeletal myoblast (LC(50)=2 microg/mL vs. 12 microg/mL, respectively), suggesting its possible in vivo selective toxicity on cardiac tissue. This result is consistent with our previous finding that cardiovascular function is a target of the venom. In order to determine the stability of N. nomurai venom, its cytotoxicity was examined under the various temperature and pH conditions. The activity was relatively well retained at low environmental temperature (or=60 degrees C). In pH stability test, the venom has abruptly lost its activity at low pH environment (pH

  16. Determination of Cu Environments in the Cyanobacterium Anabaena flos-aquae by X-Ray Absorption Spectroscopy

    PubMed Central

    Kretschmer, X. C.; Meitzner, G.; Gardea-Torresdey, J. L.; Webb, R.

    2004-01-01

    Whole cells and peptidoglycan isolated from cell walls of the cyanobacterium Anabaena flos-aquae were lyophilized and used at pH 2 and pH 5 in Cu(II) binding studies. X-ray absorption spectra measured at the Cu K-edge were used to determine the oxidation states and chemical environments of Cu species in the whole-cell and peptidoglycan samples. In the whole-cell samples, most of the Cu retained at both pH values was coordinated by phosphate ligands. The whole-cell fractions contained significant concentrations of Cu(I) as well as Cu(II). An X-ray absorption near-edge spectrum analysis suggested that Cu(I) was coordinated by amine and thiol ligands. An analysis of the peptidoglycan fractions found that more Cu was adsorbed by the peptidoglycan fraction prepared at pH 5, due to increased chelation by amine and carboxyl ligands. The peptidoglycan fractions, also referred to as the cell wall fractions, contained little or no Cu(I). The Cu loading level was 30 times higher in the cell wall sample prepared at pH 5 than in the sample prepared at pH 2. Amine and bidentate carboxyl ligands had similar relative levels of importance in cell wall peptidoglycan samples prepared at both pH values, but phosphate coordination was insignificant. PMID:14766554

  17. pH triggered in vivo photothermal therapy and fluorescence nanoplatform of cancer based on responsive polymer-indocyanine green integrated reduced graphene oxide.

    PubMed

    Sharker, Shazid Md; Lee, Jung Eun; Kim, Sung Han; Jeong, Ji Hoon; In, Insik; Lee, Haeshin; Park, Sung Young

    2015-08-01

    We have synthesized a pH-dependent, NIR-sensitive, reduced graphene oxide (rGO) hybrid nano-composite via electrostatic interaction with indocyanine green (ICG) which is designed not only to destroy localized cancer cells but also be minimally invasive to surrounding normal cells. The near-infrared (NIR) irradiated hybrid nano-composites showed pH dependent photo-thermal heat generation capability from pH 5.0 to 7.4 due to the pH response relief and quenching effects of poly(2-dimethyl amino ethyl methacrylate) [poly(PDMAEMA)] with ICG on a single rGO sheet. This pH-triggered relief and quenching mechanism regulated in vitro photo-thermolysis as the pH changed from 5.0 to 7.4. The in vitro cellular uptake and confocal laser scan microscopic (CLSM) images at different pH values show promise for environment sensitive bio-imaging. The NIR-absorbing hybrid nanomaterials showed a remarkably improved in vitro cancer cell targeted photothermal destruction compared to free ICG. Upon local NIR irradiation, these hybrid nano-composites-treated tumors showed necrotic, shrunken, ablation of malignant cells and totally healed after 18 days treatment. Our finding regarding the acidic pH stimulus of cancer cellular environment has proven to be a wining platform for the fight against cancer. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. A pH-induced conformational switch in a tyrosine kinase inhibitor identified by electronic spectroscopy and quantum chemical calculations.

    PubMed

    Khattab, Muhammad; Wang, Feng; Clayton, Andrew H A

    2017-11-24

    Tyrosine kinase inhibitors (TKIs) are a major class of drug utilised in the clinic. During transit to their cognate kinases, TKIs will encounter different pH environments that could have a major influence on TKI structure. To address this, we report UV-Vis spectroscopic and computational studies of the TKI, AG1478, as a function of pH. The electronic absorption spectrum of AG1478 shifted by 10 nm (from 342 nm to 332 nm) from acid to neutral pH and split into two peaks (at 334 nm and 345 nm) in highly alkaline conditions. From these transitions, the pKa value was calculated as 5.58 ± 0.01. To compute structures and spectra, time-dependent density functional theory (TD-DFT) calculations were performed along with conductor-like polarizable continuum model (CPCM) to account for implicit solvent effect. On the basis of the theoretical spectra, we could assign the AG1478 experimental spectrum at acidic pH to a mixture of two twisted conformers (71% AG1478 protonated at quinazolyl nitrogen N(1) and 29% AG1478 protonated at quinazolyl nitrogen N(3)) and at neutral pH to the neutral planar conformer. The AG1478 absorption spectrum (pH 13.3) was fitted to a mixture of neutral (70%) and NH-deprotonated species (30%). These studies reveal a pH-induced conformational transition in a TKI.

  19. The long-term effect of uranium and pH on the community composition of an artificial consortium.

    PubMed

    Brzoska, Ryann M; Bollmann, Annette

    2016-01-01

    In the environment, microorganisms are living in diverse communities, which are impacted by the prevailing environmental conditions. Here, we present a study investigating the effect of low pH and elevated uranium concentration on the dynamics of an artificial microbial consortium. The members (Caulobacter sp. OR37, Asinibacterium sp. OR53, Ralstonia sp. OR214 and Rhodanobacter sp. OR444) were isolated from a uranium contaminated and acidic subsurface sediment. In pure culture, Ralstonia sp. OR214 had the highest growth rate at neutral and low pH and only Caulobacter sp. OR37 and Asinibacterium sp. OR53 grew in the presence uranium. The four strains were mixed in equal ratios, incubated at neutral and low pH and in the presence uranium and transferred to fresh medium once per week for 30 weeks. After 30 weeks, Ralstonia sp. OR214 was dominant at low and neutral pH and Caulobacter sp. OR37 and Asinibacterium sp. OR53 were dominant in the presence of uranium. After 12 weeks, the cultures were also transferred to new conditions to access the response of the consortia to changing conditions. The transfers showed an irreversible effect of uranium, but not of low pH on the consortia. Overall, the strains initially tolerant to the respective conditions persisted over time in high abundances in the consortia. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. Multimodal chemo-magnetic control of self-propelling microbots

    NASA Astrophysics Data System (ADS)

    Singh, Amit Kumar; Dey, Krishna Kanti; Chattopadhyay, Arun; Mandal, Tapas Kumar; Bandyopadhyay, Dipankar

    2014-01-01

    We report a controlled migration of an iron nanoparticle (FeNP) coated polymer micromotor. The otherwise diffusive motion of the motor was meticulously directed through an in situ pH-gradient and an external magnetic field. The self-propulsion owing to the asymmetric catalytic decomposition of peroxide fuel was directed through a pH gradient imposed across the motor-surface, while the magnetic field induced an external control on the movement and the speed of the motor. Interestingly, the sole influence of the pH gradient could move the motor as high as ~25 body lengths per second, which was further magnified by the external assistance from the magnetic field. Applying a magnetic field against the pH directed motion helped in the quantitative experimental estimation of the force-field required to arrest the chemotactic migration. The influence of the coupled internal and external fields could halt, steer or reverse the direction the motor inside a microchannel, rotate the motor around a target, and deliver the motor to a cluster of cells. This study showcases a multimodal chemical-magnetic field regulated migration of micro-machines for sensing, transport, and delivery inside a fluidic environment.We report a controlled migration of an iron nanoparticle (FeNP) coated polymer micromotor. The otherwise diffusive motion of the motor was meticulously directed through an in situ pH-gradient and an external magnetic field. The self-propulsion owing to the asymmetric catalytic decomposition of peroxide fuel was directed through a pH gradient imposed across the motor-surface, while the magnetic field induced an external control on the movement and the speed of the motor. Interestingly, the sole influence of the pH gradient could move the motor as high as ~25 body lengths per second, which was further magnified by the external assistance from the magnetic field. Applying a magnetic field against the pH directed motion helped in the quantitative experimental estimation of the force-field required to arrest the chemotactic migration. The influence of the coupled internal and external fields could halt, steer or reverse the direction the motor inside a microchannel, rotate the motor around a target, and deliver the motor to a cluster of cells. This study showcases a multimodal chemical-magnetic field regulated migration of micro-machines for sensing, transport, and delivery inside a fluidic environment. Electronic supplementary information (ESI) available: Scanning electron microscopy, transmission electron microscopy, X-ray diffraction pattern, vibrating sample magnetometry (VSM) hysteresis loop of freshly prepared FeNP coated micromotor and movies of micromotor motion. See DOI: 10.1039/c3nr05294j

  1. Management of pharmaceutical substances in the environment: Lithuanian case study.

    PubMed

    Baranauskaitė-Fedorova, Inga; Dvarionienė, Jolanta; Nikiforov, Vladimir A

    2016-09-01

    Investigation on the sources, discharges and related risks for the environment of the pharmaceutical substance (PhS) diclofenac (DCF) was performed in Lithuania, a country of the Baltic Sea region, for the first time. The investigation only refers to DCF as a PhS for human use; emissions from animal husbandry were not considered. In the first stage of the research, the main sources and pathways of DCF via substance flow analysis were identified within the country. During the second stage, DCF flows along the wastewater treatment plants (WWTPs) in two different cities were measured in order to assess the current levels of pharmaceutical residues in the environment. Furthermore, environmental risk assessment was carried out by taking into account the parameters of consumption data and elimination rate in WWTPs. Then, the assessment of different technical and managerial removal approaches was accomplished in an environmental management model of wastewater containing PhS, based on the framework of environmental systems theory.

  2. The Biological Deep Sea Hydrothermal Vent as a Model to Study Carbon Dioxide Capturing Enzymes

    PubMed Central

    Minic, Zoran; Thongbam, Premila D.

    2011-01-01

    Deep sea hydrothermal vents are located along the mid-ocean ridge system, near volcanically active areas, where tectonic plates are moving away from each other. Sea water penetrates the fissures of the volcanic bed and is heated by magma. This heated sea water rises to the surface dissolving large amounts of minerals which provide a source of energy and nutrients to chemoautotrophic organisms. Although this environment is characterized by extreme conditions (high temperature, high pressure, chemical toxicity, acidic pH and absence of photosynthesis) a diversity of microorganisms and many animal species are specially adapted to this hostile environment. These organisms have developed a very efficient metabolism for the assimilation of inorganic CO2 from the external environment. In order to develop technology for the capture of carbon dioxide to reduce greenhouse gases in the atmosphere, enzymes involved in CO2 fixation and assimilation might be very useful. This review describes some current research concerning CO2 fixation and assimilation in the deep sea environment and possible biotechnological application of enzymes for carbon dioxide capture. PMID:21673885

  3. The biological deep sea hydrothermal vent as a model to study carbon dioxide capturing enzymes.

    PubMed

    Minic, Zoran; Thongbam, Premila D

    2011-01-01

    Deep sea hydrothermal vents are located along the mid-ocean ridge system, near volcanically active areas, where tectonic plates are moving away from each other. Sea water penetrates the fissures of the volcanic bed and is heated by magma. This heated sea water rises to the surface dissolving large amounts of minerals which provide a source of energy and nutrients to chemoautotrophic organisms. Although this environment is characterized by extreme conditions (high temperature, high pressure, chemical toxicity, acidic pH and absence of photosynthesis) a diversity of microorganisms and many animal species are specially adapted to this hostile environment. These organisms have developed a very efficient metabolism for the assimilation of inorganic CO₂ from the external environment. In order to develop technology for the capture of carbon dioxide to reduce greenhouse gases in the atmosphere, enzymes involved in CO₂ fixation and assimilation might be very useful. This review describes some current research concerning CO₂ fixation and assimilation in the deep sea environment and possible biotechnological application of enzymes for carbon dioxide capture.

  4. In vivo pH monitoring using boron doped diamond microelectrode and silver needles: Application to stomach disorder diagnosis

    NASA Astrophysics Data System (ADS)

    Fierro, Stéphane; Seishima, Ryo; Nagano, Osamu; Saya, Hideyuki; Einaga, Yasuaki

    2013-11-01

    This study presents the in vivo electrochemical monitoring of pH using boron doped diamond (BDD) microelectrode and silver needles for potential application in medical diagnosis. Accurate calibration curve for pH determination were obtained through in vitro electrochemical measurements. The increase induced in stomach pH by treatment with pantoprazole was used to demonstrate that it is possible to monitor the pH in vivo using the simple and noninvasive system proposed herein. Using the results of the in vivo and in vitro experiments, a quantitative analysis of the increase in stomach pH is also presented. It is proposed that the catheter-free pH monitoring system presented in this study could be potentially employed in any biological environment.

  5. In vivo pH monitoring using boron doped diamond microelectrode and silver needles: application to stomach disorder diagnosis.

    PubMed

    Fierro, Stéphane; Seishima, Ryo; Nagano, Osamu; Saya, Hideyuki; Einaga, Yasuaki

    2013-11-19

    This study presents the in vivo electrochemical monitoring of pH using boron doped diamond (BDD) microelectrode and silver needles for potential application in medical diagnosis. Accurate calibration curve for pH determination were obtained through in vitro electrochemical measurements. The increase induced in stomach pH by treatment with pantoprazole was used to demonstrate that it is possible to monitor the pH in vivo using the simple and noninvasive system proposed herein. Using the results of the in vivo and in vitro experiments, a quantitative analysis of the increase in stomach pH is also presented. It is proposed that the catheter-free pH monitoring system presented in this study could be potentially employed in any biological environment.

  6. Biocidal Efficacy of a Flocculating Emergency Water Purification Tablet

    DTIC Science & Technology

    1994-07-01

    size filters (Millipore, Bedford, Mass.). A 2-g waters were challenged with 107 Giardia muris cysts per liter portion of the recovered floc was...of Giardia muris cyst inactivation by lower microbial counts. Although CF tablets will remove some 1chlorine. Appl. Environ. Microbiol. 5O-1 15-1117...removed poliovirus type I from water at low temperatures genie dye as measures of Giardia muris cyst inactivation by ozone. even at high pH

  7. The Role of Soil Amendment on Tropical Post Tin Mining Area in Bangka Island Indonesia for Dignified and Sustainable Environment and Life

    NASA Astrophysics Data System (ADS)

    Agus, C.; Wulandari, D.; Primananda, E.; Hendryan, A.; Harianja, V.

    2017-08-01

    Openly tropical tin mining in Bangka Island Indonesia expose heavy metal that had been buried became a part of our environment and life. This has become a major cause of land degradation and severe local-global environmental damages. This study aims to accelerate reconsolidation of degraded ecosystems on the former tin mine land, to increase land productivity and dignified environment through appropriate rehabilitation technology on marginal land that is inexpensive, environmentally friendly and sustainable. This study is a part of a roadmap research activities on the rehabilitation of degraded land in tropical ecosystem, that consist of (a) characterization of degraded tin mining lands through the determination of chemistry, physics, biology and mineral soil properties, (b) introducing multi-function pioneers plant for acceleration of peak pioneer plant in the reestablishment of degraded tin mining ecosystem (c) management of natural soil amendment (volcanic ash, organic waste materials and legume cover crop as a material for soil amelioration to increase land productivity, (d) role of biotechnology through the application of local bio-fertilizer (mycorrhizae, phosphate soluble bacteria, rhizobium). Soil from post tropical tin mining acid soil (pH 4.97) that dominated by sand particles (88%) with very low cation exchange capacity, very low nutrient contents (available and total-N, P, K, Ca, Mg) and high toxicity of Zn, Cu, B, Cd and Ti, but still have low toxicity of Al, Fe, Mn, Mo, Pb, As. Soil amendment of biogas and volcanic ash could improve soil quality by increasing of better pH, high available-P and cation exchange capacity and maintained their low toxicity. The growth (high, diameter, biomass, top-root ratio) of exotic pioneer plant of Kemiri sunan (Reutealis trisperma) increased in the better soil quality that caused by application of proper soil amendment. The grand concept and appropriate technology for rehabilitation of degraded tin-mining land ecosystems in tropical regions which are the lungs of the world have a high contribution for development of our dignified and sustainable environment and life.

  8. Human Factors Issues in Aircraft Maintenance and Inspection

    DTIC Science & Technology

    1989-10-01

    Unaided, Colin G. Drury , Ph.D .......................................... A-65 Vigilance and Inspection Performance, Earl L. Wiener, Ph.D .... A-72 Human...effective in the various environments in which they will be used. We also take into account cost of equipment to the airlines and training requirements...Inspection and Review A- 64 The Human Operator as an Inspector: Aided and Unaided Colin G. Drury , Ph.D. Professor of Industrial Engineering SUNY, Buffalo

  9. pH-responsiveness of multilayered films and membranes made of polysaccharides

    PubMed Central

    Silva, Joana M.; Caridade, Sofia G.; Costa, Rui R.; Alves, Natália M.; Groth, Thomas; Picart, Catherine; Reis, Rui L.; Mano, João F.

    2016-01-01

    We investigated the pH-dependent properties of multilayered films made of chitosan (CHI) and alginate (ALG) and focused on their post-assembly response to different pH environments using quartz crystal microbalance with dissipation monitoring (QCM-D), swelling studies, zeta potential measurements and dynamic mechanical analysis (DMA). In an acidic environment, the multilayers presented lower dissipation values and, consequently, higher moduli when compared with the values obtained for the pH used during the assembly (5.5). When the multilayers were exposed to alkaline environments the opposite behavior occurred. These results were further corroborated with the ability of this multilayered system to exhibit a reversible swelling-deswelling behavior within the pH range from 3 to 9. The changes of the physicochemical properties of the multilayer system were gradual and different from the ones of individual solubilized polyelectrolytes. This behavior is related to electrostatic interactions between the ionizable groups combined with hydrogen-bonding and hydrophobic interactions. Beyond the pH range of 3-9 the multilayers were stabilized by genipin cross-linking. The multilayered films also became more rigid while preserving the pH-responsiveness conferred by the ionizable moieties of the polyelectrolytes. This work demonstrates the versatility and feasibility of LbL methodology to generate inherently pH stimuli-responsive nanostructured films. Surface functionalization using pH-repsonsiveness endows abilities for several biomedical applications such as drug delivery, diagnostics, microfluidics, biosensing or biomimetic implantable membranes. PMID:26421873

  10. Orange pectin mediated growth and stability of aqueous gold and silver nanocolloids

    NASA Astrophysics Data System (ADS)

    Nigoghossian, Karina; dos Santos, Molíria V.; Barud, Hernane S.; da Silva, Robson R.; Rocha, Lucas A.; Caiut, José M. A.; de Assunção, Rosana M. N.; Spanhel, Lubomir; Poulain, Marcel; Messaddeq, Younes; Ribeiro, Sidney J. L.

    2015-06-01

    The role of orange based pectin in the nucleation and growth of silver and gold nanoparticles is addressed. Pectin is a complex polysaccharide found in fruits such as oranges, lemons, passion fruits or apples. It displays smooth and hairy chain regions containing hydroxyl-, ester-, carboxylate- and eventually amine groups that can act as surface ligands interacting under various pH conditions more or less efficiently with growing nanometals. Here, a high methoxy pectin (>50% esterified) was used as a stabilizer/reducing agent in the preparation of gold, silver and silver-gold nanoparticles. Commercial pectin (CP) and pectin extracted from orange bagasse (OP) were used. Optionally, trisodium citrate or oxalic acid we used to reduce AgNO3 and HAuCl4 in aqueous environment. Characterization methods included UV-vis absorption spectroscopy, transmission electron microscopy, electron diffraction and energy-dispersive X-ray spectroscopy. The results show that under different pH conditions, pectin and reducing agents allow producing various nanostructures shapes (triangles, spheres, rods, octahedrons and decahedrons) often with high polydispersity and sizes ranging between 5 nm and 30 nm. In addition, depending on Ag/Au-ratio and pH, the surface plasmon bands can be continuously shifted between 410 nm and 600 nm. Finally, pectin seems to be a highly efficient stabilizer of the colloidal systems that show a remarkable stability and unchanged optical spectral response even after five years.

  11. Dissolved organic carbon from the upper Rio Negro protects zebrafish (Danio rerio) against ionoregulatory disturbances caused by low pH exposure

    PubMed Central

    Duarte, Rafael M.; Smith, D. Scott; Val, Adalberto L.; Wood, Chris M.

    2016-01-01

    The so-called “blackwaters” of the Amazonian Rio Negro are rich in highly coloured dissolved organic carbon (DOC), but ion-poor and very acidic, conditions that would cause fatal ionoregulatory failure in most fish. However these blackwaters support 8% of the world’s ichthyofauna. We tested the hypothesis that native DOC provides protection against ionoregulatory dysfunction in this extreme environment. DOCs were isolated by reverse-osmosis from two Rio Negro sites. Physico-chemical characterization clearly indicated a terrigenous origin, with a high proportion of hydroxyl and phenolic sites, high chemical reactivity to protons, and unusual proteinaceous fluorescence. When tested using zebrafish (a model organism), Rio Negro DOC provided almost perfect protection against ionoregulatory disturbances associated with acute exposure to pH 4.0 in ion-poor water. DOC reduced diffusive losses of Na+ and Cl−, and promoted a remarkable stimulation of Na+ uptake that otherwise would have been completely inhibited. Additionally, prior acclimation to DOC at neutral pH reduced rates of branchial Na+ turnover, and provided similar protection against acid-induced ionoregulatory disturbances, even if the DOC was no longer present. These results reinforce the important roles that DOC molecules can play in the regulation of gill functions in freshwater fish, particularly in ion-poor, acidic blackwaters. PMID:26853589

  12. Block ionomer complexes of PEG-block-poly(4-vinylbenzylphosphonate) and cationic surfactants as highly stable, pH responsive drug delivery system.

    PubMed

    Kamimura, Masao; Kim, Jong Oh; Kabanov, Alexander V; Bronich, Tatiana K; Nagasaki, Yukio

    2012-06-28

    A new family of block ionomer complexes (BIC) formed by poly(ethylene glycol)-block-poly(4-vinylbenzylphosphonate) (PEG-b-PVBP) and various cationic surfactants was prepared and characterized. These complexes spontaneously self-assembled in aqueous solutions into particles with average size of 40-60nm and remained soluble over the entire range of the compositions of the mixtures including stoichiometric electroneutral complexes. Solution behavior and physicochemical properties of such BIC were very sensitive to the structure of cationic surfactants. Furthermore, such complexation was used for incorporation of cationic anti-cancer drug, doxorubicin (DOX), into the core of BIC with high loading capacity and efficiency. The DOX/PEG-b-PVBP BIC also displayed high stability against dilution, changes in ionic strength. Furthermore, DOX release at the extracellular pH of DOX/PEG-b-PVBP BIC was slow. It was greatly increased at the acidic pH mimicking the endosomal/lysosomal environment. Confocal fluorescence microscopy using live MCF-7 breast cancer cells suggested that DOX/PEG-b-PVBP BICs are transported to lysosomes. Subsequently, the drugs are released and exert cytotoxic effect killing these cancer cells. These findings indicate that the obtained complexes can be attractive candidates for delivery of cationic drugs to tumors. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Enciso, Marta, E-mail: m.enciso@latrobe.edu.au; Schütte, Christof, E-mail: schuette@zib.de; Zuse Institute Berlin, Berlin

    We employ a recently developed coarse-grained model for peptides and proteins where the effect of pH is automatically included. We explore the effect of pH in the aggregation process of the amyloidogenic peptide KTVIIE and two related sequences, using three different pH environments. Simulations using large systems (24 peptides chains per box) allow us to describe the formation of realistic peptide aggregates. We evaluate the thermodynamic and kinetic implications of changes in sequence and pH upon peptide aggregation, and we discuss how a minimalistic coarse-grained model can account for these details.

  14. Controlled environment crop production - Hydroponic vs. lunar regolith

    NASA Technical Reports Server (NTRS)

    Bugbee, Bruce G.; Salisbury, Frank B.

    1989-01-01

    The potential of controlled environment crop production in a lunar colony is discussed. Findings on the effects of optimal root-zone and aerial environments derived as part of the NASA CELSS project at Utah State are presented. The concept of growing wheat in optimal environment is discussed. It is suggested that genetic engineering might produce the ideal wheat cultivar for CELSS (about 100 mm in height with fewer leaves). The Utah State University hydroponic system is outlined and diagrams of the system and plant container construction are provided. Ratio of plant mass to solution mass, minimum root-zone volume, maintenance, and pH control are discussed. A comparison of liquid hydrophonic systems and lunar regoliths as substrates for plant growth is provided. The physiological processes that are affected by the root-zone environment are discussed including carbon partitioning, nutrient availability, nutrient absorption zones, root-zone oxygen, plant water potential, root-produced hormones, and rhizosphere pH control.

  15. Macro-/micro-environment-sensitive chemosensing and biological imaging.

    PubMed

    Yang, Zhigang; Cao, Jianfang; He, Yanxia; Yang, Jung Ho; Kim, Taeyoung; Peng, Xiaojun; Kim, Jong Seung

    2014-07-07

    Environment-related parameters, including viscosity, polarity, temperature, hypoxia, and pH, play pivotal roles in controlling the physical or chemical behaviors of local molecules. In particular, in a biological environment, such factors predominantly determine the biological properties of the local environment or reflect corresponding status alterations. Abnormal changes in these factors would cause cellular malfunction or become a hallmark of the occurrence of severe diseases. Therefore, in recent years, they have increasingly attracted research interest from the fields of chemistry and biological chemistry. With the emergence of fluorescence sensing and imaging technology, several fluorescent chemosensors have been designed to respond to such parameters and to further map their distributions and variations in vitro/in vivo. In this work, we have reviewed a number of various environment-responsive chemosensors related to fluorescent recognition of viscosity, polarity, temperature, hypoxia, and pH that have been reported thus far.

  16. Genesis of Cr(VI) in Sri Lankan soils and its adsorptive removal by calcined gibbsite

    NASA Astrophysics Data System (ADS)

    Rajapaksha, A. U.; Wijesundara, D. M.; Vithanage, M. S.; Ok, Y. S.

    2012-12-01

    Hexavalent chromium is highly toxic to biota and considered as a priority pollutant. Industrial sources of Cr(VI) include leather tanning, plating, electroplating, anodizing baths, rinse waters, etc. In addition, weathering of ultramafic rocks rich in chromium, such as serpentine, is known to Cr(VI) sources into natural water. The Cr(III) is the most stable in the environment, however, conversion of Cr(III) into Cr(VI) occurs in soil due to presence of naturally occurring minerals such as manganese dioxides. We investigated the amount of Cr(VI) recorded from the soils from anthropogenically and naturally contaminated soils (serpentine soils) in Sri Lanka and the removal efficacy of Cr(VI) by calcined gibbsite (Al oxides). The effect of pH on Cr(VI) adsorption was determined by adjusting the pH in the range of 4-10. In the experiments, the adsorbent concentration was kept at 1 g/l of solution containing 10 mg/l Cr(VI) at 25 0C. Total chromium recorded were around 11,000 mg kg-1 and 6,000 mg kg-1 for serpentine soil and tannery waste-contaminated soil, respectively. Although total Cr was high in the contaminated soils, Cr(VI) concentration was only about 28 mg kg-1 and 210 mg kg-1 in the serpentine and tannery soils, respectively. The calcined gibbsite has maximum adsorption of 85 % around pH 4 and adsorption generally decreased with increase of pH.

  17. Microbial Diversity in Extreme Marine Habitats and Their Biomolecules

    PubMed Central

    Poli, Annarita; Finore, Ilaria; Romano, Ida; Gioiello, Alessia; Lama, Licia; Nicolaus, Barbara

    2017-01-01

    Extreme marine environments have been the subject of many studies and scientific publications. For many years, these environmental niches, which are characterized by high or low temperatures, high-pressure, low pH, high salt concentrations and also two or more extreme parameters in combination, have been thought to be incompatible to any life forms. Thanks to new technologies such as metagenomics, it is now possible to detect life in most extreme environments. Starting from the discovery of deep sea hydrothermal vents up to the study of marine biodiversity, new microorganisms have been identified, and their potential uses in several applied fields have been outlined. Thermophile, halophile, alkalophile, psychrophile, piezophile and polyextremophile microorganisms have been isolated from these marine environments; they proliferate thanks to adaptation strategies involving diverse cellular metabolic mechanisms. Therefore, a vast number of new biomolecules such as enzymes, polymers and osmolytes from the inhabitant microbial community of the sea have been studied, and there is a growing interest in the potential returns of several industrial production processes concerning the pharmaceutical, medical, environmental and food fields. PMID:28509857

  18. [Effects of intercropping Chinese onion cultivars of different allelopathic potential on cucumber growth and soil micro-environment].

    PubMed

    Yang, Yang; Wu, Feng-zhi

    2011-10-01

    A pot experiment was conducted to study the effects of intercropping various Chinese onion cultivars of different allelopathic potential on the cucumber growth and rhizospheric soil environment. When intercropped with high allelopathic Chinese onion cultivars, the EC value and peroxidase activity of cucumber rhizospheric soil decreased, while the pH value, invertase and catalase activities, and bacterial community diversity increased. The cloning and sequencing results indicated that most DGGE bands amplified from cucumber rhizospheric soil samples showed a high homology to uncultured bacterial species. The common bands were affiliated with Actinobacteria and Proteobacteria, and the differential bacteria bands were affiliated with Proteobacteria and Anaerolineaceae. Rhodospirillales and Acidobacteria were only found in the cucumber rhizospheric soil intercropped with low allelopathic Chinese onion cultivars. Correlation analysis showed that there were significant positive correlations between rhizospheric soil urease activity and cucumber seedlings height, total dry biomass, leaf area, and DGGE band number. It was suggested that intercropping high allelopathic Chinese onion cultivars could establish a good rhizospheric soil micro-environment for cucumber growth, and promote the growth of cucumber seedlings markedly.

  19. Effects of controlled gas environments in microbial enhancement of plant protein recovery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mudgett, R.E.; Bajracharya, R.

    Controlled gas environments were maintained by a novel aeration system in solid substrate fermentations for enhanced protein recovery from pressed alfalfa residues. High O/sub 2/ pressures stimulated biomass and enzyme production by an Aspergillus species, isolated from alfalfa, which produced cellulase and pectinase activities in growth-associated metabolism. High CO/sub 2/ pressures also stimulated enzyme production, but had less effect on biomass production, as established from the dissimilation of plant solids. Cellulase and pectinase activities were generally related to protein recoveries. Recoveries were greater than or equal to 50% higher than those obtained by mechanical extraction, with maximum recoveries of greatermore » than or equal to 70% of crude protein contents. Protein not recovered at high cellulase and pectinase activities were believed to be in structurally bound forms not amenable to recovery by nonproteolytic enzymes. Buffering at pH 8 and autoclaving of residues prior to fermentation had little effect on protein recoveries. Controlled gas environments are seen to offer an interesting potential for optimizing industrial fermentation processes for the production of microbial enzymes.« less

  20. Protein gels and emulsions from mixtures of Cape hake and pea proteins.

    PubMed

    Tomé, Ana Sofia; Pires, Carla; Batista, Irineu; Sousa, Isabel; Raymundo, Anabela

    2015-01-01

    Portioning of frozen fish generates by-products such as fish 'sawdust' and cut-offs which can be further processed into protein concentrates and isolates. The objective of the present work was to produce gels and emulsions using recovered Cape hake protein powder (HPP). In previous works, the structures of the gels produced by HPP were found to be strong, with a high rubbery character. In this work, the addition of commercial pea proteins (PPC) to HPP gels and emulsions was studied. Physical properties of gels and emulsions prepared with different proportions of mixtures of PPC and HPP were evaluated. In general, gels and emulsions showed high values for whiteness and, as expected, the higher content of HPP in the protein mixtures led to higher firmness values of the gels. The gel network was rapidly formed upon heating due to the fish protein macromolecules and further reinforced by the pea protein macromolecules when cooled to 5 °C. Both visco-elastic parameters, storage and loss moduli, of the produced gels increased with the HPP proportion in the protein mixtures, corresponding to more structured systems. For the emulsions, two different pH environments were studied: 3.8 and 7.0. At neutral pH a synergy was found between the vegetable and fish protein, which is not so strong when pH is lowered to 3.8, near the isoelectric point of pea proteins (pI = 4.5). This evidence was supported by the results from the texture measurements, viscosity and visco-elastic parameters. Gels made from Cape hake proteins showed a softer texture and were less rubbery with the addition of pea proteins. Emulsions stabilised by these mixtures showed slightly different behaviour when produced at pH 7.0 or pH 3.8. © 2014 Society of Chemical Industry.

  1. Optimization and performance evaluation for nutrient removal from palm oil mill effluent wastewater using microalgae

    NASA Astrophysics Data System (ADS)

    Ibrahim, Raheek I.; Wong, Z. H.; Mohammad, A. W.

    2015-04-01

    Palm oil mill effluent (POME) wastewater was produced in huge amounts in Malaysia, and if it discharged into the environment, it causes a serious problem regarding its high content of nutrients. This study was devoted to POME wastewater treatment with microalgae. The main objective was to find the optimum conditions (retention time, and pH) in the microalgae treatment of POME wastewater considering retention time as a most important parameter in algae treatment, since after the optimum conditions there is a diverse effect of time and pH and so, the process becomes costly. According to our knowledge, there is no existing study optimized the retention time and pH with % removal of nutrients (ammonia nitrogen NH3-N, and orthophosphorous PO43-) for microalgae treatment of POME wastewater. In order to achieve with optimization, a central composite rotatable design with a second order polynomial model was used, regression coefficients and goodness of fit results in removal percentages of nutrients (NH3-N, and PO43-) were estimated.WinQSB technique was used to optimize the surface response objective functionfor the developed model. Also experiments were done to validate the model results.The optimum conditions were found to be 18 day retention time for ammonia nitrogen, and pH of 9.22, while for orthophosphorous, 15 days were indicated as the optimum retention time with a pH value of 9.2.

  2. Application of Optical Imaging Techniques for Quantification of pH and O2 Dynamicsin Porous Media

    NASA Astrophysics Data System (ADS)

    Li, B.; Seliman, A. F.; Pales, A. R.; Liang, W.; Sams, A.; Darnault, C. J. G.; DeVol, T. A.

    2016-12-01

    Understanding the spatial and temporal distribution of physical and chemical parameters (e.g. pH, O2) is imperative to characterize the behavior of contaminants in a natural environment. The objectives of this research are to calibrate pH and O2 sensor foils, to develop a dual pH/O2 sensor foil, and to apply them into flow and transport experiments, in order to understand the physical and chemical parameters that control contaminant fate and transport in an unsaturated sandy porous medium. In addition, demonstration of a sensor foil that quantifies aqueous uranium concentration will be presented. Optical imaging techniques will be conducted with 2D tanks to investigate the influence of microbial exudates and plant roots on pH and O2 parameters and radionuclides transport. As a non-invasive method, the optical imaging technique utilizes optical chemical sensor films and either a digital camera or a spectrometer to capture the changes with high temporal and spatial resolutions. Sensor foils are made for different parameters by applying dyes to generate favorable fluorescence that is proportional to the parameter of interest. Preliminary results suggested that this method could detect pH ranging from 4.5 to 7.5. The result from uranium foil test with different concentrations in the range of 2 to 8 ppm indicated that a higher concentration of uranium resulted in a greater color intensity.

  3. Subunit interactions in horse spleen apoferritin. Dissociation by extremes of pH

    PubMed Central

    Crichton, Robert R.; Bryce, Charles F. A.

    1973-01-01

    1. The dissociation of horse spleen apoferritin as a function of pH was analysed by sedimentation-velocity techniques. The oligomer is stable in the range pH2.8–10.6. Between pH2.8 and 1.6 and 10.6 and 13.0 both oligomer and subunits can be detected. At pH values between 1.6 and 1.0 the subunit is the only species observed, although below pH1.0 aggregation of the subunits to a particle sedimenting much faster than the oligomer occurs. 2. When apoferritin is first dissociated into subunits at low pH values and then dialysed into buffers of pH1.5–5.0, the subunit reassociates to oligomer in the pH range 3.1–4.3. 3. U.v.-difference spectroscopy was used to study conformational changes occurring during the dissociation process. The difference spectrum in acid can be accounted for by the transfer of four to five tyrosine residues/subunit from the interior of the protein into the solvent. This process is reversed on reassociation, but shows the same hysteresis as found by sedimentation techniques. The difference spectrum in alkali is more complex, but is consistent with the deprotonation of tyrosine residues, which appear to have rather high pK values. 4. In addition to the involvement of tyrosine residues in the conformational change at low pH values, spectral evidence is presented that one tryptophan residue/subunit also changes its environment before dissociation and subsequent to reassociation. 5. Analysis of the dissociation and reassociation of apoferritin at low pH values suggests that this is a co-operative process involving protonation and deprotonation of at least two carboxyl functions of rather low intrinsic pK. The dissociation at alkaline pH values does not appear to be co-operative. 6. Of the five tyrosine residues/subunit only one can be nitrated with tetranitromethane. Guanidination of lysine residues results in the modification of seven out of a total of nine residues/subunit. Nine out of the ten arginine residues/subunit react with cyclohexanedione. PMID:4737425

  4. Acid environments affect biofilm formation and gene expression in isolates of Salmonella enterica Typhimurium DT104.

    PubMed

    O'Leary, Denis; McCabe, Evonne M; McCusker, Matthew P; Martins, Marta; Fanning, Séamus; Duffy, Geraldine

    2015-08-03

    The aim of this study was to examine the survival and potential virulence of biofilm-forming Salmonella Typhimurium DT104 under mild acid conditions. Salmonella Typhimurium DT104 employs an acid tolerance response (ATR) allowing it to adapt to acidic environments. The threat that these acid adapted cells pose to food safety could be enhanced if they also produce biofilms in acidic conditions. The cells were acid-adapted by culturing them in 1% glucose and their ability to form biofilms on stainless steel and on the surface of Luria Bertani (LB) broth at pH7 and pH5 was examined. Plate counts were performed to examine cell survival. RNA was isolated from cells to examine changes in the expression of genes associated with virulence, invasion, biofilm formation and global gene regulation in response to acid stress. Of the 4 isolates that were examined only one (1481) that produced a rigid biofilm in LB broth at pH7 also formed this same structure at pH5. This indicated that the lactic acid severely impeded the biofilm producing capabilities of the other isolates examined under these conditions. Isolate 1481 also had higher expression of genes associated with virulence (hilA) and invasion (invA) with a 24.34-fold and 13.68-fold increase in relative gene expression respectively at pH5 compared to pH7. Although genes associated with biofilm formation had increased expression in response to acid stress for all the isolates this only resulted in the formation of a biofilm by isolate 1481. This suggests that in addition to the range of genes associated with biofilm production at neutral pH, there are genes whose protein products specifically aid in biofilm production in acidic environments. Furthermore, it highlights the potential for the use of lactic acid for the inhibition of Salmonella biofilms. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Effects of Ocean Acidification and Flow on Oxygen and pH Conditions of Developing Squid (Doryteuthis pealeii) Egg Cases

    NASA Astrophysics Data System (ADS)

    Panyi, A.; Long, M. H.; Mooney, T. A.

    2016-02-01

    While young animals found future cohorts and populations, these early life stages are often particularly susceptible to conditions of the local environment in which they develop. The oxygen and pH of this critical developmental environment is likely impacted by the nearby physical conditions and the animals own respirations. Yet, in nearly all cases, this microenvironment is unknown, limiting our understanding of animal tolerances to current and future OA and hypoxic conditions. This study investigated the oxygen and pH environment adjacent to and within the egg cases of a keystone species, the longfin squid, Doryteuthis pealeii, under ambient and elevated CO2 (400 and 2200 ppm), and across differing water flow rates (0, 1, and 10 cm/s) using microprobes. Under both CO2 treatments, oxygen and pH in the egg case centers dropped dramatically across development to levels generally considered metabolically stressful even for adults. In the ambient CO2 trial, oxygen concentrations reached a minimum of 4.351 µmol/L, and pH reached a minimum of 7.36. In the elevated CO2 trial, oxygen concentrations reached a minimum of 9.910 µmol/L, and pH reached a minimum of 6.79. Flow appeared to alleviate these conditions, with highest O2 concentrations in the egg cases exposed to 10 cm/s flow in both CO2 trials, across all age classes measured. Surprisingly, all tested egg cases successfully hatched, demonstrating that developing D. pealeii embryos have a strong tolerance for low oxygen and pH, but there were more unsuccessful embryos counted in the 0 and 1 cm/s flow conditions. Further climate change could place young, keystone squid outside of their physiological limits, but water flow may play a key role in mitigating developmental stress to egg case bound embryos by increasing available oxygen.

  6. Biophysical feedbacks mediate carbonate chemistry in coastal ecosystems across spatiotemporal gradients.

    PubMed

    Silbiger, Nyssa J; Sorte, Cascade J B

    2018-01-15

    Ocean acidification (OA) projections are primarily based on open ocean environments, despite the ecological importance of coastal systems in which carbonate dynamics are fundamentally different. Using temperate tide pools as a natural laboratory, we quantified the relative contribution of community composition, ecosystem metabolism, and physical attributes to spatiotemporal variability in carbonate chemistry. We found that biological processes were the primary drivers of local pH conditions. Specifically, non-encrusting producer-dominated systems had the highest and most variable pH environments and the highest production rates, patterns that were consistent across sites spanning 11° of latitude and encompassing multiple gradients of natural variability. Furthermore, we demonstrated a biophysical feedback loop in which net community production increased pH, leading to higher net ecosystem calcification. Extreme spatiotemporal variability in pH is, thus, both impacting and driven by biological processes, indicating that shifts in community composition and ecosystem metabolism are poised to locally buffer or intensify the effects of OA.

  7. Vesicular perylene dye nanocapsules as supramolecular fluorescent pH sensor systems.

    PubMed

    Zhang, Xin; Rehm, Stefanie; Safont-Sempere, Marina M; Würthner, Frank

    2009-11-01

    Water-soluble, self-assembled nanocapsules composed of a functional bilayer membrane and enclosed guest molecules can provide smart (that is, condition responsive) sensors for a variety of purposes. Owing to their outstanding optical and redox properties, perylene bisimide chromophores are interesting building blocks for a functional bilayer membrane in a water environment. Here, we report water-soluble perylene bisimide vesicles loaded with bispyrene-based energy donors in their aqueous interior. These loaded vesicles are stabilized by in situ photopolymerization to give nanocapsules that are stable over the entire aqueous pH range. On the basis of pH-tunable spectral overlap of donors and acceptors, the donor-loaded polymerized vesicles display pH-dependent fluorescence resonance energy transfer from the encapsulated donors to the bilayer dye membrane, providing ultrasensitive pH information on their aqueous environment with fluorescence colour changes covering the whole visible light range. At pH 9.0, quite exceptional white fluorescence could be observed for such water-soluble donor-loaded perylene vesicles.

  8. Plenty to eat, nothing to breathe: challenges to life in serpentinite habitats (Invited)

    NASA Astrophysics Data System (ADS)

    Brazelton, W. J.; Twing, K. I.; Crespo-Medina, M.; Lang, S. Q.; Schrenk, M. O.

    2013-12-01

    When tectonic uplift exposes ultramafic rocks from the Earth's mantle to water from the surface, iron minerals are oxidized and release hydrogen gas (H2) in a set of geochemical reactions known collectively as serpentinization. The generation of high concentrations of H2 can also lead to abiotic synthesis of organic molecules, thereby providing an exothermic, abundant source of electron donors and organic carbon. The major biological challenges of serpentinization-influenced habitats appear to be the extremely high pH (typically pH 9-12), the associated lack of inorganic carbon, and the lack of electron acceptors due to the highly reducing conditions (1). These challenges are apparently overcome by the prolific archaeal and bacterial biofilms associated with the carbonate chimneys at the Lost City hydrothermal field. Cell densities exceed 109 cells per gram of chimney material (2). Phylogenetic, metagenomic, and experimental evidence indicate that the communities are supported by the copious quantities of H2, CH4, and sulphur fluxing from the chimneys, but the metabolic pathways and associated thermodynamic factors are still unclear (3). In particular, the oxidants that microbes couple with H2, CH4, and sulphur at Lost City remain a matter of speculation. The mystery of the oxidants has also featured in our recent explorations of continental sites of serpentinization. In strong contrast to the Lost City chimneys, these continental fluids tend to contain very little biomass (fewer than 102 cells per mL in the most extreme cases). Presumably, the anoxic, pH 12 fluids enriched in H2 and CH4 are flowing from subsurface habitats where there must be a surplus of reductants and carbon (4). Given the extremely reducing, anoxic conditions, though, oxidants are likely to be very limited in these environments. The ';oxidant limitation' hypothesis is particularly intriguing because of its counter-intuitive nature: to our knowledge, no other habitats on Earth have a surplus of reducants and a lack of oxidants. Other limitations must also be considered, including the extremely high pH and the possible lack of nitrogen, phosphorus, and trace metals. Comparisons of the bacterial communities at Lost City and continental serpentinite springs have highlighted the dynamic nature of the Lost City chimneys, where highly reducing hydrothermal fluids mix with oxidizing seawater (1,5). Consequently, a truly subsurface microbial community below Lost City remains to be detected and will require future sampling efforts to focus on the collection of high-quality, end-member hydrothermal fluids. References 1. Schrenk MO, Brazelton WJ, Lang SQ. 2013. Rev. Mineral. Geochem. 75:575-606. 2. Schrenk MO, Kelley DS, Bolton SA, Baross JA. 2004. Environ. Microbiol. 6:1086-1095. 3. Brazelton WJ, Mehta MP, Kelley DS, Baross JA. 2011. mBio2:4. doi:10.1128/mBio.00127-11. 4. Szponar, N., W.J. Brazelton, M.O. Schrenk, D.M. Bower, A. Steele, P.L. Morrill. 2013. Icarus. 224: 286-296. 5. Brazelton WJ, Schrenk MO, Kelley DS, Baross JA. 2006. Appl. Environ. Microbiol. 72:6257-6270.

  9. Extracellular pH Modulates Neuroendocrine Prostate Cancer Cell Metabolism and Susceptibility to the Mitochondrial Inhibitor Niclosamide

    PubMed Central

    Ippolito, Joseph E.; Brandenburg, Matthew W.; Ge, Xia; Crowley, Jan R.; Kirmess, Kristopher M.; Som, Avik; D’Avignon, D. Andre; Arbeit, Jeffrey M.; Achilefu, Samuel; Yarasheski, Kevin E.; Milbrandt, Jeffrey

    2016-01-01

    Neuroendocrine prostate cancer is a lethal variant of prostate cancer that is associated with castrate-resistant growth, metastasis, and mortality. The tumor environment of neuroendocrine prostate cancer is heterogeneous and characterized by hypoxia, necrosis, and numerous mitoses. Although acidic extracellular pH has been implicated in aggressive cancer features including metastasis and therapeutic resistance, its role in neuroendocrine prostate cancer physiology and metabolism has not yet been explored. We used the well-characterized PNEC cell line as a model to establish the effects of extracellular pH (pH 6.5, 7.4, and 8.5) on neuroendocrine prostate cancer cell metabolism. We discovered that alkalinization of extracellular pH converted cellular metabolism to a nutrient consumption-dependent state that was susceptible to glucose deprivation, glutamine deprivation, and 2-deoxyglucose (2-DG) mediated inhibition of glycolysis. Conversely, acidic pH shifted cellular metabolism toward an oxidative phosphorylation (OXPHOS)-dependent state that was susceptible to OXPHOS inhibition. Based upon this mechanistic knowledge of pH-dependent metabolism, we identified that the FDA-approved anti-helminthic niclosamide depolarized mitochondrial potential and depleted ATP levels in PNEC cells whose effects were enhanced in acidic pH. To further establish relevance of these findings, we tested the effects of extracellular pH on susceptibility to nutrient deprivation and OXPHOS inhibition in a cohort of castrate-resistant prostate cancer cell lines C4-2B, PC-3, and PC-3M. We discovered similar pH-dependent toxicity profiles among all cell lines with these treatments. These findings underscore a potential importance to acidic extracellular pH in the modulation of cell metabolism in tumors and development of an emerging paradigm that exploits the synergy of environment and therapeutic efficacy in cancer. PMID:27438712

  10. Effects of chemical elements in the trophic levels of natural salt marshes.

    PubMed

    Kamiński, Piotr; Barczak, Tadeusz; Bennewicz, Janina; Jerzak, Leszek; Bogdzińska, Maria; Aleksandrowicz, Oleg; Koim-Puchowska, Beata; Szady-Grad, Małgorzata; Klawe, Jacek J; Woźniak, Alina

    2016-06-01

    The relationships between the bioaccumulation of Na, K, Ca, Mg, Fe, Zn, Cu, Mn, Co, Cd, and Pb, acidity (pH), salinity (Ec), and organic matter content within trophic levels (water-soil-plants-invertebrates) were studied in saline environments in Poland. Environments included sodium manufactures, wastes utilization areas, dumping grounds, and agriculture cultivation, where disturbed Ca, Mg, and Fe exist and the impact of Cd and Pb is high. We found Zn, Cu, Mn, Co, and Cd accumulation in the leaves of plants and in invertebrates. Our aim was to determine the selectivity exhibited by soil for nutrients and heavy metals and to estimate whether it is important in elucidating how these metals are available for plant/animal uptake in addition to their mobility and stability within soils. We examined four ecological plant groups: trees, shrubs, minor green plants, and water macrophytes. Among invertebrates, we sampled breastplates Malacostraca, small arachnids Arachnida, diplopods Diplopoda, small insects Insecta, and snails Gastropoda. A higher level of chemical elements was found in saline polluted areas (sodium manufactures and anthropogenic sites). Soil acidity and salinity determined the bioaccumulation of free radicals in the trophic levels measured. A pH decrease caused Zn and Cd to increase in sodium manufactures and an increase in Ca, Zn, Cu, Cd, and Pb in the anthropogenic sites. pH increase also caused Na, Mg, and Fe to increase in sodium manufactures and an increase in Na, Fe, Mn, and Co in the anthropogenic sites. There was a significant correlation between these chemical elements and Ec in soils. We found significant relationships between pH and Ec, which were positive in saline areas of sodium manufactures and negative in the anthropogenic and control sites. These dependencies testify that the measurement of the selectivity of cations and their fluctuation in soils provide essential information on the affinity and binding strength in these environments. The chemical elements accumulated in soils and plants; however, further flow is selective and variable. The selectivity exhibited by soil systems for nutrients and heavy metals is important in elucidating how these metals become available for plant/animal uptake and also their mobility and stability in soils.

  11. Microbial Fe(III) Oxide Reduction in Chocolate Pots Hot Springs, Yellowstone National Park

    NASA Astrophysics Data System (ADS)

    Fortney, N. W.; Roden, E. E.; Boyd, E. S.; Converse, B. J.

    2014-12-01

    Previous work on dissimilatory iron reduction (DIR) in Yellowstone National Park (YNP) has focused on high temperature, low pH environments where soluble Fe(III) is utilized as an electron acceptor for respiration. Much less attention has been paid to DIR in lower temperature, circumneutral pH environments, where solid phase Fe(III) oxides are the dominant forms of Fe(III). This study explored the potential for DIR in the warm (ca. 40-50°C), circumneutral pH Chocolate Pots hot springs (CP) in YNP. Most probable number (MPN) enumerations and enrichment culture studies confirmed the presence of endogenous microbial communities that reduced native CP Fe(III) oxides. Enrichment cultures demonstrated sustained DIR coupled to acetate and lactate oxidation through repeated transfers over ca. 450 days. Pyrosequencing of 16S rRNA genes indicated that the dominant organisms in the enrichments were closely affiliated with the well known Fe(III) reducer Geobacter metallireducens. Additional taxa included relatives of sulfate reducing bacterial genera Desulfohalobium and Thermodesulfovibrio; however, amendment of enrichments with molybdate, an inhibitor of sulfate reduction, suggested that sulfate reduction was not a primary metabolic pathway involved in DIR in the cultures. A metagenomic analysis of enrichment cultures is underway in anticipation of identifying genes involved in DIR in the less well-characterized dominant organisms. Current studies are aimed at interrogating the in situ microbial community at CP. Core samples were collected along the flow path (Fig. 1) and subdivided into 1 cm depth intervals for geochemical and microbiological analysis. The presence of significant quantities of Fe(II) in the solids indicated that DIR is active in situ. A parallel study investigated in vitro microbial DIR in sediments collected from three of the coring sites. DNA was extracted from samples from both studies for 16S rRNA gene and metagenomic sequencing in order to obtain a detailed understanding of the vertical and longitudinal distribution of microbial taxa throughout CP. These studies will provide insight into the operation of the microbial Fe redox cycle, demonstrating how genomic properties relate to and control geochemical conditions with depth and distance in a Fe-rich, neutral pH geothermal environment.

  12. Feasibility of infectious prion digestion using mild conditions and commercial subtilisin.

    PubMed

    Pilon, John L; Nash, Paul B; Arver, Terry; Hoglund, Don; Vercauteren, Kurt C

    2009-10-01

    Two serine protease enzymes, subtilisin 309 and subtilisin 309-v, were used to digest brain homogenates containing high levels of prion infectivity using mildly alkaline conditions to investigate prion decontamination methods. To establish that PrP(res) infectivity was eliminated, we utilized the Rocky Mountain Laboratory (RML) mouse-adapted scrapie model system for bioassay. Only one digestion condition (subtilisin 309 at 138mAU/ml, 55 degrees C and 14h digestion time pH 7.9) was considered to be highly relevant statistically (P<0.001) compared to control, with 52% of challenged mice surviving until the end of the study period. In contrast, treatment of PrP(res) by autoclaving at 134 degrees C or treatment with hypochlorite at a concentration of 20,000 ppm completely protected mice from prionosis. Further, in vitro assays suggest that potential proteolytic based PrP(res) decontamination methods must use high enzyme concentration, pH values >9.0, and elevated temperatures to be a safely efficacious, thereby limiting applicability on delicate surgical instruments and use in the environment.

  13. Distributed All-Optical Sensor to Detect dCO2 in Aqueous Environments

    NASA Astrophysics Data System (ADS)

    Bhatia, S.; Coelho, J.; Melo, L.; Davies, B.; Ahmed, F.; Bao, B.; Wild, P.; Risk, D. A.; Sinton, D.; Jun, M.

    2012-12-01

    Already a proven technology for temperature and stress measurements, an all-optical sensor to detect dCO2 is being developed for deployment in challenging environments. Optical sensors function under high pressure, do not require electronics and therefore experience no magnetic interference. They are also able to transmit signals over long distances with minimal losses. The dCO2 sensor's principal application is in measurement monitoring and verification of carbon capture and storage sites; however, it could also be useful in ocean, fresh water, and transition environments. The objective for the first phase of development was to detect a CO2 signal in laboratory tests. The developmental program incorporated experiments to detect CO2 under high pressure (1400 psi) in aqueous environments. Laboratory testing involved a custom pressure cell, off-the-shelf and custom long period gratings written in SMF125 fiber. Femptosecond laser micromachining was used to test alternative long period grating (LPG) and cutout shapes to maximize evanescent field interaction with the environment. A comprehensive program of geochemical modeling using PHREEQC 2 was used to identify the diversity of species in environments of interest that could exert confounding influence. Purchased UV-LPG responded to changes in concentration of scCO2 in brine at high pressure. Signal differences between CO2-saturated brine and pure brine were also noted under the same, high pressure conditions. Geochemical modeling software, PHREEQC 2, revealed a diversity of species in environments of interest whose concentrations varied strongly with temperature and pH. The modeling program's detailed characterization of environments informed work currently being undertaken as part of Phase 2, to develop a CO2-selective membrane to filter out measurement artifact.

  14. Effect of variable hydrothermal conditions on sulfur speciation and isotopic compositions mediated by two Thiomicrospira strains

    NASA Astrophysics Data System (ADS)

    Houghton, J.; Wills, E.; Fike, D. A.

    2012-12-01

    Microbially mediated reactions involving elemental sulfur in low temperature hydrothermal environments are a critical component of the net hydrothermal flux of sulfur to the global oceans. We assess here the physiological impact on sulfur speciation and isotopic composition of two microbial strains at a range of pH conditions consistent with the sharp gradients found in seafloor hydrothermal environments. Thiomicrospira thermophila and T. crunogena, both isolated from hydrothermal vents at East Pacific Rise, were grown with thiosulfate as the electron donor under aerobic, closed system conditions at controlled pH and optimal temperature (35°C). T. thermophila at pH 8 produced sulfate at a 1:1 ratio with thiosulfate consumption during exponential growth, with the ratio decreasing as pH decreases. This stoichiometric ratio decreases more steeply as a function of pH during metabolism by T. crunogena. Sulfate:thiosulfate ratios less than one indicate the production of alternative oxidized sulfur compounds such as polythionates. The rate of sulfate production is comparable in both strains and is dependent on pH, decreasing from 0.8mM/hr at pH 8 to 0.2mM/hr at pH 5.6. Fractionation of 34S expressed as Δ34S between reactant and product range from 0‰ to 3‰ for both sulfate and elemental sulfur produced, with no difference between products in pH buffered experiments (pH 5.6 and 8.0). However, in unbuffered experiments during which growth causes pH to decrease from 7 to below 4.5, Δ34S(S2O3-SO4) is consistently larger than Δ34S(S2O3-S) in both strains by a factor of 2. The metabolic activity of these (and similar) strains indicate that complex and cryptic sulfur cycling may be occurring in the subsurface, associated with only minimal variation in the δ34S isotopic composition of sulfate and elemental sulfur.

  15. Stability of Secondary and Tertiary Structures of Virus-Like Particles Representing Noroviruses: Effects of pH, Ionic Strength, and Temperature and Implications for Adhesion to Surfaces.

    PubMed

    Samandoulgou, Idrissa; Hammami, Riadh; Morales Rayas, Rocio; Fliss, Ismail; Jean, Julie

    2015-11-01

    Loss of ordered molecular structure in proteins is known to increase their adhesion to surfaces. The aim of this work was to study the stability of norovirus secondary and tertiary structures and its implications for viral adhesion to fresh foods and agrifood surfaces. The pH, ionic strength, and temperature conditions studied correspond to those prevalent in the principal vehicles of viral transmission (vomit and feces) and in the food processing and handling environment (pasteurization and refrigeration). The structures of virus-like particles representing GI.1, GII.4, and feline calicivirus (FCV) were studied using circular dichroism and intrinsic UV fluorescence. The particles were remarkably stable under most of the conditions. However, heating to 65°C caused losses of β-strand structure, notably in GI.1 and FCV, while at 75°C the α-helix content of GII.4 and FCV decreased and tertiary structures unfolded in all three cases. Combining temperature with pH or ionic strength caused variable losses of structure depending on the particle type. Regardless of pH, heating to pasteurization temperatures or higher would be required to increase GII.4 and FCV adhesion, while either low or high temperatures would favor GI.1 adhesion. Regardless of temperature, increased ionic strength would increase GII.4 adhesion but would decrease GI.1 adhesion. FCV adsorption would be greater at refrigeration, pasteurization, or high temperature combined with a low salt concentration or at a higher NaCl concentration regardless of temperature. Norovirus adhesion mediated by hydrophobic interaction may depend on hydrophobic residues normally exposed on the capsid surface at pH 3, pH 8, physiological ionic strength, and low temperature, while at pasteurization temperatures it may rely more on buried hydrophobic residues exposed upon structural rearrangement. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  16. Polyethylenimine-modified fungal biomass as a high-capacity biosorbent for Cr(VI) anions: sorption capacity and uptake mechanisms.

    PubMed

    Deng, Shubo; Ting, Yen Peng

    2005-11-01

    Heavy metal pollution in the aqueous environment is a problem of global concern. Biosorption has been considered as a promising technology for the removal of low levels of toxic metals from industrial effluents and natural waters. A modified fungal biomass of Penicillium chrysogenum with positive surface charges was prepared by grafting polyethylenimine (PEI) onto the biomass surface in a two-step reaction. The presence of PEI on the biomass surface was verified by FTIR and X-ray photoelectron spectroscopy (XPS) analyses. Due to the high density of amine groups in the long chains of PEI molecules on the surface, the modified biomass was found to possess positive zeta potential at pH below 10.4 as well as high sorption capacity for anionic Cr(VI). Using the Langmuir adsorption isotherm, the maximum sorption capacity for Cr(VI) at a pH range of 4.3-5.5 was 5.37 mmol/g of biomass dry weight, the highest sorption capacity for Cr(VI) compared to other sorbents reported in the literature. Scanning electronic microscopy (SEM) provided evidence of chromium aggregates formed on the biomass surface. XPS results verified the presence of Cr(III) on the biomass surface in the pH range 2.5-10.5, suggesting that some Cr(VI) anions were reduced to Cr(III) during the sorption. The sorption kinetics indicated that redox reaction occurred on the biomass surface, and whether the converted Cr(III) ions were released to solution or adsorbed on the biomass depended on the solution pH. Sorption mechanisms including electrostatic interaction, chelation, and precipitation were found to be involved in the complex sorption of chromium on the PEI-modified biomass.

  17. Influence of surface chemistry of carbon materials on their interactions with inorganic nitrogen contaminants in soil and water.

    PubMed

    Sumaraj; Padhye, Lokesh P

    2017-10-01

    Inorganic nitrogen contaminants (INC) (NH 4 + , NO 3 - , NO 2 - , NH 3 , NO, NO 2 , and N 2 O) pose a growing risk to the environment, and their remediation methods are highly sought after. Application of carbon materials (CM), such as biochar and activated carbon, to remediate INC from agricultural fields and wastewater treatment plants has gained a significant interest since past few years. Understanding the role of surface chemistry of CM in adsorption of various INC is highly critical to increase adsorption efficiency as well as to assess the long term impact of using these highly recalcitrant CM for remediation of INC. Critical reviews of adsorption studies related to INC have revealed that carbon surface chemistry (surface functional groups, pH, Eh, elemental composition, and mineral content) has significant influence on adsorption of INC. Compared to basic functional groups, oxygen containing surface functional groups have been found to be more influential for adsorption of INC. However, basic sites on carbon materials still play an important role in chemisorption of anionic INC. Apart from surface functional groups, pH, Eh and pH zpc of CM and elemental and mineral composition of its surface are important properties capable of altering INC interactions with CM. This review summarizes our current understanding of INC interactions with CM's surface through the known chemisorption mechanisms: electrostatic interaction, hydrogen bonding, electron donor-acceptor mechanism, hydrophobic and hydrophilic interaction, chemisorption aided by minerals, and interactions influenced by pH and elemental composition. Change in surface chemistry of CM in soil during aging is also discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Preliminary biological sampling of GT3 and BT1 cores and the microbial community dynamics of existing subsurface wells

    NASA Astrophysics Data System (ADS)

    Kraus, E. A.; Stamps, B. W.; Rempfert, K. R.; Ellison, E. T.; Nothaft, D. B.; Boyd, E. S.; Templeton, A. S.; Spear, J. R.

    2017-12-01

    Subsurface microbial life is poorly understood but potentially very important to the search for life on other planets as well as increasing our understanding of Earth's geobiological processes. Fluids and rocks of actively serpentinizing subsurface environments are a recent target of biological study due to their apparent ubiquity across the solar system. Areas of serpentinization can contain high concentrations of molecular hydrogen, H2, that can serve as the dominant fuel source for subsurface microbiota. Working with the Oman Drilling Project, DNA and RNA were extracted from fluids of seven alkaline wells and two rock cores from drill sites GT3 and BT1 within the Samail ophiolite. DNA and cDNA (produced via reverse transcription from the recovered RNA) were sequenced using universal primers to identify microbial life across all three domains. Alkaline subsurface fluids support a microbial community that changes with pH and host-rock type. In peridotite with pH values of >11, wells NSHQ 14 and WAB 71 have high relative abundances of Meiothermus, Methanobacterium, the family Nitrospiraceae, and multiple types of the class Dehalococcoidia. While also hosted in peridotite but at pH 8.5, wells WAB 104 and 105 have a distinct, more diverse microbial community. This increased variance in community make-up is seen in wells that sit near/at the contact of gabbro and peridotite formations as well. Core results indicate both sampled rock types host a very low biomass environment subject to multiple sources of contamination during the drilling process. Suggestions for contaminant reduction, such as having core handlers wear nitrile gloves and flame-sterilizing the outer surfaces of core rounds for biological sampling, would have minimal impact to overall ODP coreflow and maximize the ability to better understand in situ microbiota in this low-biomass serpentinizing subsurface environment. While DNA extraction was successful with gram amounts of crushed rock, much can be done to improve yields and reduce contamination sources for Phase II drilling.

  19. Preparation of pH-sensitive anionic liposomes designed for drug delivery system (DDS) application.

    PubMed

    Aoki, Asami; Akaboshi, Hikaru; Ogura, Taku; Aikawa, Tatsuo; Kondo, Takeshi; Tobori, Norio; Yuasa, Makoto

    2015-01-01

    We prepared pH-sensitive anionic liposomes composed solely of anionic bilayer membrane components that were designed to promote efficient release of entrapped agents in response to acidic pH. The pH-sensitive anionic liposomes showed high dispersion stability at neutral pH, but the fluidity of the bilayer membrane was enhanced in an acidic environment. These liposomes were rather simple and were composed of dimyristoylphosphatidylcholine (DMPC), an anionic bilayer membrane component, and polyoxyethylene sorbitan monostearate (Tween 80). In particular, the present pH-sensitive anionic liposomes showed higher temporal stability than those of conventional DMPC/DPPC liposomes. We found that pHsensitive properties strongly depended on the molecular structure, pKa value, and amount of an incorporated anionic bilayer membrane component, such as sodium oleate (SO), dimyristoylphosphatidylserine (DMPS), or sodium β-sitosterol sulfate (SS). These results provide an opportunity to manipulate liposomal stability in a pH-dependent manner, which could lead to the formulation of a high performance drug delivery system (DDS).

  20. Resistance of bioparticles formed of phosphate-accumulating bacteria and zeolite to harsh environmental conditions.

    PubMed

    Ivankovic, Tomislav; Hrenovic, Jasna; Matonickin-Kepcija, Renata

    2013-01-01

    Extreme environmental conditions, such as pH fluctuations, high concentrations of toxicants or grazing of protozoa, can potentially be found in wastewater treatment systems. This study was carried out to provide specific evidence on how 'bioparticles' can resist these conditions. The term 'bioparticle' is used to describe a particle comprising natural zeolitized tuff with a developed biofilm of the phosphate-accumulating bacterial species, Acinetobacter junii, on the surface. The bacteria in the biofilm were protected from the negative influence of extremely low pH, high concentrations of benzalkonium-chloride and grazing by Paramecium caudatum and Euplotes affinis, even under conditions that caused complete eradication of planktonic bacteria. During an incubation of 24 h, the biofilms were maintained and bacteria detached from the bioparticles, thus bioaugmenting the wastewater. The bioparticles provided a safe environment for the survival of bacteria in harsh environmental conditions and could be used for successful bioaugmentation in wastewater treatment plants.

  1. Green synthesis and characterisation of platinum nanoparticles using quail egg yolk

    NASA Astrophysics Data System (ADS)

    Nadaroglu, Hayrunnisa; Gungor, Azize Alayli; Ince, Selvi; Babagil, Aynur

    2017-02-01

    Nanotechnology is extensively used in all parts today. Therefore, nano synthesis is also significant in all explored areas. The results of studies conducted have revealed that nanoparticle synthesis is performed by using both chemical and physical methods. It is well known that these syntheses are carried out at high charge, pressure and temperature in harsh environments. Therefore, this study investigated green synthesis method that sustains more mild conditions. In this study, quail egg yolk having high vitamin and protein content was prepared for green synthesis reaction and used for the synthesis of platinum nanoparticles in the reaction medium. Reaction situations were optimised as a function of pH, temperature, time and concentration by using quail egg yolk. The results showed that the highest platinum nanoparticles were synthesised at 20 °C and pH 6.0 for 4 h. Also, optimal concentration of metal ions was established as 0.5 mM. The synthesised platinum nanoparticles were characterised by using UV spectrum, X-ray diffraction and scanning electron microscope.

  2. High-rate sulphidogenic fluidised-bed treatment of metal-containing wastewater at high temperature.

    PubMed

    Sahinkaya, E; Ozkaya, B; Kaksonen, A H; Puhakka, J A

    2007-01-01

    The applicability of fluidised-bed reactor (FBR) based sulphate reducing bioprocess was investigated for the treatment of iron containing (40-90 mg/L) acidic wastewater at 65 degrees C. The FBR was inoculated with sulphate-reducing bacteria (SRB) originally enriched from a hot mining environment. Ethanol or acetate was supplemented as carbon and electron source for the SRB. A rapid startup with 99.9, 46 and 29% ethanol, sulphate and acetate removals, in respective order, was observed even after 6 days. Iron was almost completely removed with a rate of 90 mg/L.d. The feed pH was decreased gradually from its initial value of 6 to around 3.7 during 100 days of operation. The wastewater pH of 4.3-4.4 was neutralised by the alkalinity produced in acetate oxidation and the average effluent pH was 7.8 +/- 0.8. Although ethanol removal was complete, acetate accumulated. Later the FBR was fed with acetate only. Although acetate was present in the reactor for 295 days, its oxidation rates did not improve, which may be due to low growth rate and poor attachment ability of acetate oxidising SRB. Hence, the oxidation of acetate is the rate limiting step in the sulphidogenic ethanol oxidation by the thermophilic SRB.

  3. Target-Based Screen Against a Periplasmic Serine Protease That Regulates Intrabacterial pH Homeostasis in Mycobacterium tuberculosis

    PubMed Central

    2015-01-01

    Mycobacterium tuberculosis (Mtb) maintains its intrabacterial pH (pHIB) near neutrality in the acidic environment of phagosomes within activated macrophages. A previously reported genetic screen revealed that Mtb loses this ability when the mycobacterial acid resistance protease (marP) gene is disrupted. In the present study, a high throughput screen (HTS) of compounds against the protease domain of MarP identified benzoxazinones as inhibitors of MarP. A potent benzoxazinone, BO43 (6-chloro-2-(2′-methylphenyl)-4H-1,3-benzoxazin-4-one), acylated MarP and lowered Mtb’s pHIB and survival during incubation at pH 4.5. BO43 had similar effects on MarP-deficient Mtb, suggesting the existence of additional target(s). Reaction of an alkynyl-benzoxazinone, BO43T, with Mycobacterium bovis variant bacille Calmette-Guérin (BCG) followed by click chemistry with azido-biotin identified both the MarP homologue and the high temperature requirement A1 (HtrA1) homologue, an essential protein. Thus, the chemical probe identified through a target-based screen not only reacted with its intended target in the intact cells but also implicated an additional enzyme that had eluded a genetic screen biased against essential genes. PMID:25457457

  4. Coregulated Expression of the Na+/Phosphate Pho89 Transporter and Ena1 Na+-ATPase Allows Their Functional Coupling under High-pH Stress

    PubMed Central

    Serra-Cardona, Albert; Petrezsélyová, Silvia; Canadell, David; Ramos, José

    2014-01-01

    The yeast Saccharomyces cerevisiae has two main high-affinity inorganic phosphate (Pi) transporters, Pho84 and Pho89, that are functionally relevant at acidic/neutral pH and alkaline pH, respectively. Upon Pi starvation, PHO84 and PHO89 are induced by the activation of the PHO regulon by the binding of the Pho4 transcription factor to specific promoter sequences. We show that PHO89 and PHO84 are induced by alkalinization of the medium with different kinetics and that the network controlling Pho89 expression in response to alkaline pH differs from that of other members of the PHO regulon. In addition to Pho4, the PHO89 promoter is regulated by the transcriptional activator Crz1 through the calcium-activated phosphatase calcineurin, and it is under the control of several repressors (Mig2, Nrg1, and Nrg2) coordinately regulated by the Snf1 protein kinase and the Rim101 transcription factor. This network mimics the one regulating expression of the Na+-ATPase gene ENA1, encoding a major determinant for Na+ detoxification. Our data highlight a scenario in which the activities of Pho89 and Ena1 are functionally coordinated to sustain growth in an alkaline environment. PMID:25266663

  5. Adsorptive removal of heavy metals from water using sodium titanate nanofibres loaded onto GAC in fixed-bed columns.

    PubMed

    Sounthararajah, D P; Loganathan, P; Kandasamy, J; Vigneswaran, S

    2015-04-28

    Heavy metals are serious pollutants in aquatic environments. A study was undertaken to remove Cu, Cd, Ni, Pb and Zn individually (single metal system) and together (mixed metals system) from water by adsorption onto a sodium titanate nanofibrous material. Langmuir adsorption capacities (mg/g) at 10(-3)M NaNO3 ionic strength in the single metal system were 60, 83, 115 and 149 for Ni, Zn, Cu, and Cd, respectively, at pH 6.5 and 250 for Pb at pH 4.0. In the mixed metals system they decreased at high metals concentrations. In column experiments with 4% titanate material and 96% granular activated carbon (w/w) mixture at pH 5.0, the metals breakthrough times and adsorption capacities (for both single and mixed metals systems) decreased in the order Pb>Cd, Cu>Zn>Ni within 266 bed volumes. The amounts adsorbed were up to 82 times higher depending on the metal in the granular activated carbon+titanate column than in the granular activated carbon column. The study showed that the titanate material has high potential for removing heavy metals from polluted water when used with granular activated carbon at a very low proportion in fixed-bed columns. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Development and application of an excitation ratiometric optical pH sensor for bioprocess monitoring.

    PubMed

    Badugu, Ramachandram; Kostov, Yordan; Rao, Govind; Tolosa, Leah

    2008-01-01

    The development of a fluorescent excitation ratiometric pH sensor (AHQ-PEG) using a novel allylhydroxyquinolinium (AHQ) derivative copolymerized with polyethylene glycol dimethacrylate (PEG) is described. The AHQ-PEG sensor film is shown to be suitable for real-time, noninvasive, continuous, online pH monitoring of bioprocesses. Optical ratiometric measurements are generally more reliable, robust, inexpensive, and insensitive to experimental errors such as fluctuations in the source intensity and fluorophore photobleaching. The sensor AHQ-PEG in deionized water was shown to exhibit two excitation maxima at 375 and 425 nm with a single emission peak at 520 nm. Excitation spectra of AHQ-PEG show a decrease in emission at the 360 nm excitation and an increase at the 420 nm excitation with increasing pH. Accordingly, the ratio of emission at 420:360 nm excitation showed a maximum change between pH 5 and 8 with an apparent pK(a) of 6.40. The low pK(a) value is suitable for monitoring the fermentation of most industrially important microorganisms. Additionally, the AHQ-PEG sensor was shown to have minimal sensitivity to ionic strength and temperature. Because AHQ is covalently attached to PEG, the film shows no probe leaching and is sterilizable by steam and alcohol. It shows rapid (approximately 2 min) and reversible response to pH over many cycles without any photobleaching. Subsequently, the AHQ-PEG sensor film was tested for its suitability in monitoring the pH of S. cereviseae (yeast) fermentation. The observed pH using AHQ-PEG film is in agreement with a conventional glass pH electrode. However, unlike the glass electrode, the present sensor is easily adaptable to noninvasive monitoring of sterilized, closed bioprocess environments without the awkward wire connections that electrodes require. In addition, the AHQ-PEG sensor is easily miniaturized to fit in microwell plates and microbioreactors for high-throughput cell culture applications.

  7. The acid tolerance response and pH adaptation of Enterococcus faecalis in extract of lime Citrus aurantiifolia from Aceh Indonesia.

    PubMed

    Mubarak, Zaki; Soraya, Cut

    2018-01-01

    Background:  The objective of the present study was to evaluate the acid tolerance response and pH adaptation when Enterococcus faecalis interacted with extract of lime ( Citrus aurant iifolia ). Methods : We used E. faecalis ATCC 29212 and lime extract from Aceh, Indonesia. The microbe was analyzed for its pH adaptation, acid tolerance response, and adhesion assay using a light microscope with a magnification of x1000. Further, statistical tests were performed to analyze both correlation and significance of the acid tolerance and pH adaptation as well as the interaction activity. Results : E. faecalis was able to adapt to a very acidic environment (pH 2.9), which was characterized by an increase in its pH (reaching 4.2) at all concentrations of the lime extract (p < 0.05). E. faecalis was also able to provide acid tolerance response to lime extract based on spectrophotometric data (595 nm) (p < 0.05). Also, the interaction activity of E. faecalis in different concentrations of lime extract was relatively stable within 6 up to 12 hours (p < 0.05), but it became unstable within 24-72 hours (p > 0.05) based on the mass profiles of its interaction activity. Conclusions : E. faecalis can adapt to acidic environments (pH 2.9-4.2); it is also able to tolerate acid generated by Citrus auranti ifolia extract, revealing a stable interaction in the first 6-12 hours.

  8. Quantification of Kinetic Rate Law Parameters of Uranium Release from Sodium Autunite as a Function of Aqueous Bicarbonate Concentrations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gudavalli, Ravi; Katsenovich, Yelena; Wellman, Dawn M.

    2013-09-05

    ABSTRACT: Hydrogen carbonate is one of the most significant components within the uranium geochemical cycle. In aqueous solutions, hydrogen carbonate forms strong complexes with uranium. As such, aqueous bicarbonate may significantly increase the rate of uranium release from uranium minerals. Quantifying the relationship of aqueous hydrogen carbonate solutions to the rate of uranium release during dissolution is critical to understanding the long-term fate of uranium within the environment. Single-pass flow-through (SPTF) experiments were conducted to estimate the rate of uranium release from Na meta-autunite as a function of bicarbonate solutions (0.0005-0.003 M) under the pH range of 6-11 and temperaturesmore » of 5-60oC. Consistent with the results of previous investigation, the rate of uranium release from sodium autunite exhibited minimal dependency on temperature; but were strongly dependent on pH and increasing concentrations of bicarbonate solutions. Most notably at pH 7, the rate of uranium release exhibited 370 fold increases relative to the rate of uranium release in the absence of bicarbonate. However, the effect of increasing concentrations of bicarbonate solutions on the release of uranium was significantly less under higher pH conditions. It is postulated that at high pH values, surface sites are saturated with carbonate, thus the addition of more bicarbonate would have less effect on uranium release. Results indicate the activation energies were unaffected by temperature and bicarbonate concentration variations, but were strongly dependent on pH conditions. As pH increased from 6 to 11, activation energy values were observed to decrease from 29.94 kJ mol-1 to 13.07 kJ mol-1. The calculated activation energies suggest a surface controlled dissolution mechanism.« less

  9. Multiscale modeling of a conditionally disordered pH-sensing chaperone.

    PubMed

    Ahlstrom, Logan S; Law, Sean M; Dickson, Alex; Brooks, Charles L

    2015-04-24

    The pH-sensing chaperone HdeA promotes the survival of enteropathogenic bacteria during transit through the harshly acidic environment of the mammalian stomach. At low pH, HdeA transitions from an inactive, folded, dimer to chaperone-active, disordered, monomers to protect against the acid-induced aggregation of periplasmic proteins. Toward achieving a detailed mechanistic understanding of the pH response of HdeA, we develop a multiscale modeling approach to capture its pH-dependent thermodynamics. Our approach combines pK(a) (logarithmic acid dissociation constant) calculations from all-atom constant pH molecular dynamics simulations with coarse-grained modeling and yields new, atomic-level, insights into HdeA chaperone function that can be directly tested by experiment. "pH triggers" that significantly destabilize the dimer are each located near the N-terminus of a helix, suggesting that their neutralization at low pH destabilizes the helix macrodipole as a mechanism of monomer disordering. Moreover, we observe a non-monotonic change in the pH-dependent stability of HdeA, with maximal stability of the dimer near pH5. This affect is attributed to the protonation Glu37, which exhibits an anomalously high pK(a) value and is located within the hydrophobic dimer interface. Finally, the pH-dependent binding pathway of HdeA comprises a partially unfolded, dimeric intermediate that becomes increasingly stable relative to the native dimer at lower pH values and displays key structural features for chaperone-substrate interaction. We anticipate that the insights from our model will help inform ongoing NMR and biochemical investigations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. XFEL structures of the influenza M2 proton channel: Room temperature water networks and insights into proton conduction

    DOE PAGES

    Thomaston, Jessica L.; Woldeyes, Rahel A.; Nakane, Takanori; ...

    2017-08-23

    The M2 proton channel of influenza A is a drug target that is essential for the reproduction of the flu virus. It is also a model system for the study of selective, unidirectional proton transport across a membrane. Ordered water molecules arranged in “wires” inside the channel pore have been proposed to play a role in both the conduction of protons to the four gating His37 residues and the stabilization of multiple positive charges within the channel. To visualize the solvent in the pore of the channel at room temperature while minimizing the effects of radiation damage, data were collectedmore » to a resolution of 1.4 Å using an X-ray free-electron laser (XFEL) at three different pH conditions: pH 5.5, pH 6.5, and pH 8.0. Data were collected on the Inward open state, which is an intermediate that accumulates at high protonation of the His37 tetrad. At pH 5.5, a continuous hydrogen-bonded network of water molecules spans the vertical length of the channel, consistent with a Grotthuss mechanism model for proton transport to the His37 tetrad. This ordered solvent at pH 5.5 could act to stabilize the positive charges that build up on the gating His37 tetrad during the proton conduction cycle. The number of ordered pore waters decreases at pH 6.5 and 8.0, where the Inward open state is less stable. Furthermore, these studies provide a graphical view of the response of water to a change in charge within a restricted channel environment.« less

  11. Terrestrial soil pH and MAAT records based on the MBT/CBT in the southern South China Sea: implications for the atmospheric CO2 evolution in Southeast Asia

    NASA Astrophysics Data System (ADS)

    Dong, L.; Li, L.; Li, Q.; Zhang, C.

    2013-12-01

    Liang Dong1, Li Li1, Qianyu Li1,2, Chuanlun L. Zhang1,3 1State Key Laboratory of Marine Geology, Tongji University, Shanghai 200092, China 2School of Earth and Environment Sciences, University of Adelaide, SA 5005, Australia 3Department of Marine Sciences, University of Georgia, Athens, GA 30602, USA The methylation index of branched tetraethers (MBT) and/or the cyclization ratio of branched tetraethers (CBT) are derived from the branched glycerol dialkyl Glycerol tetraethers (GDGTs) of bacterial origin and are widely used to reconstruct the terrestrial soil pH and mean annual air temperature (MAAT); however, these proxies are less frequently used in the oceanic settings. Here we provide the first high resolution records of soil pH and MAAT since the last glacial maximum based on the sedimentary core of MD05-2896 in the southern South China Sea. The MAAT record exhibited typical glacial and interglacial cycles and was consistent with the winter insolation variation. The pH values were lower (6.4-7) in the glacial time and higher (7-8.4) in the interglacial time. Changes in soil pH allowed the evaluation of changes in soil CO2 based on the atmosphere-soil CO2 balance. The results imply that the lower winter MAAT variation with a lower winter atmospheric CO2 concentration might have resulted in a higher pH in the interglacial period. Our records provide a new insight into the evolution of atmospheric CO2 between glacial and interglacial cycles in East Asia. Key words: South China Sea, MBT/CBT, b-GDGTs, MAAT, pH

  12. XFEL structures of the influenza M2 proton channel: Room temperature water networks and insights into proton conduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomaston, Jessica L.; Woldeyes, Rahel A.; Nakane, Takanori

    The M2 proton channel of influenza A is a drug target that is essential for the reproduction of the flu virus. It is also a model system for the study of selective, unidirectional proton transport across a membrane. Ordered water molecules arranged in “wires” inside the channel pore have been proposed to play a role in both the conduction of protons to the four gating His37 residues and the stabilization of multiple positive charges within the channel. To visualize the solvent in the pore of the channel at room temperature while minimizing the effects of radiation damage, data were collectedmore » to a resolution of 1.4 Å using an X-ray free-electron laser (XFEL) at three different pH conditions: pH 5.5, pH 6.5, and pH 8.0. Data were collected on the Inward open state, which is an intermediate that accumulates at high protonation of the His37 tetrad. At pH 5.5, a continuous hydrogen-bonded network of water molecules spans the vertical length of the channel, consistent with a Grotthuss mechanism model for proton transport to the His37 tetrad. This ordered solvent at pH 5.5 could act to stabilize the positive charges that build up on the gating His37 tetrad during the proton conduction cycle. The number of ordered pore waters decreases at pH 6.5 and 8.0, where the Inward open state is less stable. Furthermore, these studies provide a graphical view of the response of water to a change in charge within a restricted channel environment.« less

  13. Hyperintense White Matter Lesions in 50 High-Altitude Pilots with Neurologic Decompression Sickness

    DTIC Science & Technology

    2012-12-01

    Environ Med 2004 ; 75 : 969 – 72 . 4. Bartzokis G, Tishler TA, Shin IS, Lu PH, Cummings JL . Brain ferritin iron as a risk factor for...Coyle T, Lancaster J, et al. Can structural MRI indices of cerebral integrity track cognitive trends in executive control function during normal...Digital brain atlases . Trends Neurosci 1995 ; 18 : 210 – 1 . 28. Miura K, Soyama Y, Morikawa Y, Nishijo M, Nakanishi Y, et al

  14. Plasma-Based Surface Modification and Corrosion in High Temperature Environments

    DTIC Science & Technology

    2009-02-05

    supercritical water, molten salts, supercritical carbon dioxide (KAPL), and helium have been designed and built Room temperature corrosion tests for...coatings such as diamond-like carbon (DLC) and Si-DLC, performed at < 5kV) 4 Energetic ion mixing of thin nano-multilayers Enhancing coating-substrate...Nitrogen ion implantation of 17-7PH stainless steel (with Alison Gas Turbines ) Also a 11% decrease in erosion rate for the N+ implanted sample

  15. Functional and rheological properties of proteins in frozen turkey breast meat with different ultimate pH.

    PubMed

    Chan, J T Y; Omana, D A; Betti, M

    2011-05-01

    Functional and rheological properties of proteins from frozen turkey breast meat with different ultimate pH at 24 h postmortem (pH(24)) have been studied. Sixteen breast fillets from Hybrid Tom turkeys were initially selected based on lightness (L*) values for each color group (pale, normal, and dark), with a total of 48 breast fillets. Further selection of 8 breast samples was made within each class of meat according to the pH(24). The average L* and pH values of the samples were within the following range: pale (L* >52; pH ≤5.7), normal (46 < L* < 52; 5.9 < pH <6.1), and dark (L* <46; pH ≥6.3), referred to as low, normal, and high pH meat, respectively. Ultimate pH did not cause major changes in the emulsifying and foaming properties of the extracted sarcoplasmic and myofibrillar proteins. An SDS-PAGE profile of proteins from low and normal pH meat was similar, which revealed that the extent of protein denaturation was the same. Low pH meat had the lowest water-holding capacity compared with normal and high pH meat as shown by the increase in cooking loss, which can be explained by factors other than protein denaturation. Gel strength analysis and folding test revealed that gel-forming ability was better for high pH meat compared with low and normal pH meat.Dynamic viscoelastic behavior showed that myosin denaturation temperature was independent of pH(24). Normal and high pH meat had similar hardness, springiness, and chewiness values as revealed by texture profile analysis. The results from this study indicate that high pH meat had similar or better functional properties than normal pH meat. Therefore, high pH meat is suitable for further processed products, whereas low pH meat may need additional treatment or ingredient formulations to improve its functionality.

  16. Experimental chemical weathering of various bedrock types at different pH-values. 1. Sandstone and granite

    USGS Publications Warehouse

    Afifi, A.A.; Bricker, O.P.; Chemerys, J.C.

    1985-01-01

    Experimental chemical weathering of the so-called Old Rag Granite and Massanutten Sandstone, Virginia, U.S.A., has produced a comparison with the natural environment, and prediction of the effect of acid precipitation. The experimental results of the release of elements, dissolution of minerals, total rock weathered and the degree of weathering as function of volume of leachate were plotted. These data were compared with the natural environment. The use of the plots to predict the effect of high levels of rain acidity on weathering of these rocks is demonstrated. A nonexpandable 14-A?? clay was developed from the alteration of biotite during the experimental chemical weathering of the granite at pH 4. This interstratified Al(OH)-mica clay resembles those of the soil developed on the granite and sandstone. Hydroxy-Al may be precipitating between the mica interlayers and producing a 14-A?? spacing. Development of this clay by chemical alteration of biotite may change the current hypotheses about its origin in the soils of northeastern U.S.A. While Al-hydroxide seems to regulate Al concentrations in stream waters at the present level of rain acidity, it was found that at lower pH and in the presence of high sulfate concentrations, Al solubility may be controlled by Al-sulfate phase(s). ?? 1985.

  17. Design and validation of a new ratiometric intracellular pH imaging probe using lanthanide-doped upconverting nanoparticles.

    PubMed

    Du, Shuoren; Hernández-Gil, Javier; Dong, Hao; Zheng, Xiaoyu; Lyu, Guangming; Bañobre-López, Manuel; Gallo, Juan; Sun, Ling-Dong; Yan, Chun-Hua; Long, Nicholas J

    2017-10-17

    pH homeostasis is strictly controlled at a subcellular level. A deregulation of the intra/extra/subcellular pH environment is associated with a number of diseases and as such, the monitoring of the pH state of cells and tissues is a valuable diagnostic tool. To date, only a few tools have been developed to measure the pH in living cells with the spatial resolution needed for intracellular imaging. Among the techniques available, only optical imaging offers enough resolution and biocompatibility to be proposed for subcellular pH monitoring. We present herein a ratiometric probe based on upconversion nanoparticles modified with a pH sensitive moiety for the quantitative imaging of pH at the subcellular level in living cells. This system provides the properties required for live cell quantitative imaging i.e. positive cellular uptake, biocompatibility, long wavelength excitation, sensitive response to pH within a biologically relevant range, and self-referenced signal.

  18. Influence of pH and temperature on alunite dissolution rates and products

    NASA Astrophysics Data System (ADS)

    Acero, Patricia; Hudson-Edwards, Karen

    2015-04-01

    Aluminium is one of the main elements in most mining-affected environments, where it may influence the mobility of other elements and play a key role on pH buffering. Moreover, high concentrations of Al can have severe effects on ecosystems and humans; Al intake, for example, has been implicated in neurological pathologies (e.g., Alzheimer's disease; Flaten, 2001). The behaviour of Al in mining-affected environments is commonly determined, at least partially, by the dissolution of Al sulphate minerals and particularly by the dissolution of alunite (KAl3(SO4)2(OH)6), which is one of the most important and ubiquitous Al sulphates in mining-affected environments (Nordstrom, 2011). The presence of alunite has been described in other acid sulphate environments, including some soils (Prietzel & Hirsch, 1998) and on the surface of Mars (Swayze et al., 2008). Despite the important role of alunite, its dissolution rates and products, and their controlling factors under conditions similar to those found in these environments, remain largely unknown. In this work, batch dissolution experiments have been carried out in order to shed light on the rates, products and controlling factors of alunite dissolution under different pH conditions (between 3 and 8) and temperatures (between 279 and 313K) similar to those encountered in natural systems. The obtained initial dissolution rates using synthetic alunite, based on the evolution of K concentrations, are between 10-9.7 and 10-10.9 mol-m-2-s-1, with the lowest rates obtained at around pH 4.8, and increases in the rates recorded with both increases and decreases in pH. Increases of temperature in the studied range also cause increases in the dissolution rates. The dissolution of alunite dissolution is incongruent, as has been reported for jarosite (isostructural with alunite) by Welch et al. (2008). Compared with the stoichiometric ratio in the bulk alunite (Al/K=3), K tends to be released to the solution preferentially over Al, leading to dissolved Al/K ratios between 0.5 and 2.5. This depletion of Al in the solution is especially clear for the experiments at pH 4.5-4.8 and 8 and it is consistent with the results of elemental quantifications of the same proportions in the reacted alunite surfaces using X-ray Photoelectron Spectroscopy (XPS). REFERENCES Flaten, T.P. (2001): Aluminium as a risk factor in Alzheimzer's disease, with emphasis on drinking water. Brain Research Bulletin 55: 187-196. Nordstrom, D.K. (2011): Hydrogeochemical processes governing the origin, transport and fate of major and trace elements from mine wastes and mineralized rock to surface waters. Applied Geochemistry 26: 1777-1791. Prietzel, J., & Hirsch, C. (1998). Extractability and dissolution kinetics of pure and soil-added synthesized aluminium hydroxy sulphate minerals. European journal of soil science, 49(4), 669-681. Swayze, G.A., Ehlmann, B.L., Milliken, R.E., Poulet, F., Wray, J.J., Rye, R.O., Clark, R.N., Desborough, G.A., Crowley, J.K., Gondet, B., Mustard, J.F., Seelos, K.D. and Murchie, S.L., 2008. Discovery of the Acid-Sulfate Mineral Alunite in Terra Sirenum, Mars, Using MRO CRISM: Possible Evidence for Acid-Saline Lacustrine Deposits?, American Geophysical Union, Fall Meeting 2008, abstract #P44A-04. Welch, S. A., Kirste, D., Christy, A. G., Beavis, F. R., & Beavis, S. G. (2008): Jarosite dissolution II'Reaction kinetics, stoichiometry and acid flux. Chemical Geology, 254(1), 73-86.

  19. Factors that facilitate or inhibit interest of domestic students in the engineering PhD: A mixed methods study

    NASA Astrophysics Data System (ADS)

    Howell Smith, Michelle C.

    Given the increasing complexity of technology in our society, the United States has a growing demand for a more highly educated technical workforce. Unfortunately, the proportion of United States citizens earning a PhD in engineering has been declining and there is concern about meeting the economic, national security and quality of life needs of our country. This mixed methods sequential exploratory instrument design study identified factors that facilitate or inhibit interest in engineering PhD programs among domestic engineering undergraduate students in the United States. This study developed a testable theory for how domestic students become interested in engineering PhD programs and a measure of that process, the Exploring Engineering Interest Inventory (EEII). The study was conducted in four phases. The first phase of the study was a qualitative grounded theory exploration of interest in the engineering PhD. Qualitative data were collected from domestic engineering students, engineering faculty and industry professional who had earned a PhD in engineering. The second phase, instrument development, developed the Exploring Engineering Interest Inventory (EEII), a measurement instrument designed with good psychometric properties to test a series of preliminary hypotheses related to the theory generated in the qualitative phase. In the third phase of the study, the EEII was used to collect data from a larger sample of junior and senior engineering majors. The fourth phase integrated the findings from the qualitative and quantitative phases. Four factors were identified as being significant influences of interest in the engineering PhD: Personal characteristics, educational environment, misperceptions of the economic and personal costs, and misperceptions of engineering work. Recommendations include increasing faculty encouragement of students to pursue an engineering PhD and programming to correct the misperceptions of the costs of the engineering PhD and the nature of the work that PhD engineers do. The tested model provides engineering educators with information to help them prioritize their efforts to increase interest in the engineering PhD among domestic students.

  20. An investigation of total bacterial communities, culturable antibiotic-resistant bacterial communities and integrons in the river water environments of Taipei city.

    PubMed

    Yang, Chu-Wen; Chang, Yi-Tang; Chao, Wei-Liang; Shiung, Iau-Iun; Lin, Han-Sheng; Chen, Hsuan; Ho, Szu-Han; Lu, Min-Jheng; Lee, Pin-Hsuan; Fan, Shao-Ning

    2014-07-30

    The intensive use of antibiotics may accelerate the development of antibiotic-resistant bacteria (ARB). The global geographical distribution of environmental ARB has been indicated by many studies. However, the ARB in the water environments of Taiwan has not been extensively investigated. The objective of this study was to investigate the communities of ARB in Huanghsi Stream, which presents a natural acidic (pH 4) water environment. Waishuanghsi Stream provides a neutral (pH 7) water environment and was thus also monitored to allow comparison. The plate counts of culturable bacteria in eight antibiotics indicate that the numbers of culturable carbenicillin- and vancomycin-resistant bacteria in both Huanghsi and Waishuanghsi Streams are greater than the numbers of culturable bacteria resistant to the other antibiotics tested. Using a 16S rDNA sequencing approach, both the antibiotic-resistant bacterial communities (culture-based) and the total bacterial communities (metagenome-based) in Waishuanghsi Stream exhibit a higher diversity than those in Huanghsi Stream were observed. Of the three classes of integron, only class I integrons were identified in Waishuanghsi Stream. Our results suggest that an acidic (pH 4) water environment may not only affect the community composition of antibiotic-resistant bacteria but also the horizontal gene transfer mediated by integrons. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Self-assembly processes in the prebiotic environment

    PubMed Central

    Deamer, David; Singaram, Sara; Rajamani, Sudha; Kompanichenko, Vladimir; Guggenheim, Stephen

    2006-01-01

    An important question guiding research on the origin of life concerns the environmental conditions where molecular systems with the properties of life first appeared on the early Earth. An appropriate site would require liquid water, a source of organic compounds, a source of energy to drive polymerization reactions and a process by which the compounds were sufficiently concentrated to undergo physical and chemical interactions. One such site is a geothermal setting, in which organic compounds interact with mineral surfaces to promote self-assembly and polymerization reactions. Here, we report an initial study of two geothermal sites where mixtures of representative organic solutes (amino acids, nucleobases, a fatty acid and glycerol) and phosphate were mixed with high-temperature water in clay-lined pools. Most of the added organics and phosphate were removed from solution with half-times measured in minutes to a few hours. Analysis of the clay, primarily smectite and kaolin, showed that the organics were adsorbed to the mineral surfaces at the acidic pH of the pools, but could subsequently be released in basic solutions. These results help to constrain the range of possible environments for the origin of life. A site conducive to self-assembly of organic solutes would be an aqueous environment relatively low in ionic solutes, at an intermediate temperature range and neutral pH ranges, in which cyclic concentration of the solutes can occur by transient dry intervals. PMID:17008220

  2. Photodegradation of pharmaceuticals in the aquatic environment by sunlight and UV-A, -B and -C irradiation.

    PubMed

    Kawabata, Kohei; Sugihara, Kazumi; Sanoh, Seigo; Kitamura, Shigeyuki; Ohta, Shigeru

    2013-01-01

    In order to investigate the effect of sunlight on the persistence and ecotoxicity of pharmaceuticals contaminating the aquatic environment, we exposed nine pharmaceuticals (acetaminophen (AA), amiodarone (AM), dapsone (DP), dexamethasone (DX), indomethacin (IM), naproxen (NP), phenytoin (PH), raloxifene (RL), and sulindac (SL)) in aqueous media to sunlight and to ultraviolet (UV) irradiation at 254, 302 or 365 nm (UV-C, UV-B or UV-A, respectively). Degradation of the pharmaceuticals was monitored by means of high-performance liquid chromatography (HPLC). Sunlight completely degraded AM, DP and DX within 6 hr, and partly degraded the other pharmaceuticals, except AA and PH, which were not degraded. Similar results were obtained with UV-B, while UV-A was less effective (both UV-A and -B are components of sunlight). All the pharmaceuticals were photodegraded by UV-C, which is used for sterilization in sewage treatment plants. Thus, the photodegradation rates of pharmaceuticals are dependent on both chemical structure and the wavelength of UV exposure. Toxicity assay using the luminescent bacteria test (ISO11348) indicated that UV irradiation reduced the toxicity of some pharmaceuticals to aquatic organisms by decreasing their amount (photodegradation) and increased the toxicity of others by generating toxic photoproduct(s). These results indicate the importance of investigating not only parent compounds, but also photoproducts in the risk assessment of pharmaceuticals in aquatic environments.

  3. Phosphatase activities as biosignatures of extant life

    NASA Astrophysics Data System (ADS)

    Kobayashi, K.; Itoh, Y.; Edazawa, Y.; Moroi, A.; Takano, Y.

    It has been recognized that terrestrial biosphere expands to such extreme environments as deep subsurface lithosphere high temperature hot springs and stratosphere Possible extraterrestrial biospheres in Mars Europa and Titan are being discussed Many biosignatures or biomarkers have been proposed to detect microbial activities in such extreme environments Phosphate esters are essential for the terrestrial life since they are constituents of nucleic acids and cell mebranes Thus all the terrestrial organisms have phosphatases that are enzymes catalyzing hydrolysis of phosphate esters We analyzed phosphatase activities in the samples obtained in extreme environments such as submarine hydrothermal systems and discussed whether they can be used as biosignatures for extant life Core samples and chimney samples were collected at the Suiyo Seamount Izu-Bonin Arc the Pacific Ocean in 2001 and 2002 and in South Mariana hydrothermal systems the Pacific Oceanas in 2003 both in a part of the Archaean Park Project Phosphatase activity in solid rock samples was measured spectrometrically by using 25 mM p-nitrophenyl phosphate pH 8 0 or pH 6 5 as a substrate as follows Pulverized samples were incuvated with substrate solution for an hour and then production rate of p-nitrophenol was calculated with absorbance at 410 nm Phosphatase activity in extracts was measured fluorometrically by using 4-methylumberyferryl phosphate as a substrate Concentration of amino acids and their enantiomeric ratio were determined by HPLC after HF digestion of the

  4. Physiological and isotopic responses of scleractinian corals to ocean acidification

    NASA Astrophysics Data System (ADS)

    Krief, Shani; Hendy, Erica J.; Fine, Maoz; Yam, Ruth; Meibom, Anders; Foster, Gavin L.; Shemesh, Aldo

    2010-09-01

    Uptake of anthropogenic CO 2 by the oceans is altering seawater chemistry with potentially serious consequences for coral reef ecosystems due to the reduction of seawater pH and aragonite saturation state ( Ωarag). The objectives of this long-term study were to investigate the viability of two ecologically important reef-building coral species, massive Porites sp. and Stylophora pistillata, exposed to high pCO 2 (or low pH) conditions and to observe possible changes in physiologically related parameters as well as skeletal isotopic composition. Fragments of Porites sp. and S. pistillata were kept for 6-14 months under controlled aquarium conditions characterized by normal and elevated pCO 2 conditions, corresponding to pH T values of 8.09, 7.49, and 7.19, respectively. In contrast with shorter, and therefore more transient experiments, the long experimental timescale achieved in this study ensures complete equilibration and steady state with the experimental environment and guarantees that the data provide insights into viable and stably growing corals. During the experiments, all coral fragments survived and added new skeleton, even at seawater Ωarag < 1, implying that the coral skeleton is formed by mechanisms under strong biological control. Measurements of boron (B), carbon (C), and oxygen (O) isotopic composition of skeleton, C isotopic composition of coral tissue and symbiont zooxanthellae, along with physiological data (such as skeletal growth, tissue biomass, zooxanthellae cell density, and chlorophyll concentration) allow for a direct comparison with corals living under normal conditions and sampled simultaneously. Skeletal growth and zooxanthellae density were found to decrease, whereas coral tissue biomass (measured as protein concentration) and zooxanthellae chlorophyll concentrations increased under high pCO 2 (low pH) conditions. Both species showed similar trends of δ 11B depletion and δ 18O enrichment under reduced pH, whereas the δ 13C results imply species-specific metabolic response to high pCO 2 conditions. The skeletal δ 11B values plot above seawater δ 11B vs. pH borate fractionation curves calculated using either the theoretically derived α B value of 1.0194 (Kakihana et al. (1977) Bull. Chem. Soc. Jpn.50, 158) or the empirical α B value of 1.0272 (Klochko et al. (2006) EPSL248, 261). However, the effective α B must be greater than 1.0200 in order to yield calculated coral skeletal δ 11B values for pH conditions where Ωarag ⩾ 1. The δ 11B vs. pH offset from the seawater δ 11B vs. pH fractionation curves suggests a change in the ratio of skeletal material laid down during dark and light calcification and/or an internal pH regulation, presumably controlled by ion-transport enzymes. Finally, seawater pH significantly influences skeletal δ 13C and δ 18O. This must be taken into consideration when reconstructing paleo-environmental conditions from coral skeletons.

  5. Growth of juvenile hard clams in Narragansett Bay after laboratory exposure to low pH

    EPA Science Inventory

    Ocean uptake of carbon dioxide is causing decreases in pH and the concentration of carbonate ions used by marine organisms during shell and skeletal formation. When these conditions are reproduced in laboratory environments and field enclosures, effects on biological rates such ...

  6. Growth and mycotoxin production by Chaetomium globosum is favored in a neutral pH.

    PubMed

    Fogle, Matthew R; Douglas, David R; Jumper, Cynthia A; Straus, David C

    2008-12-01

    Chaetomium globosum is frequently isolated in water-damaged buildings and produces two mycotoxins called chaetoglobosins A and C when cultured on building material. In this study, the influence of ambient pH on the growth of C. globosum was examined on an artificial medium. This fungus was capable of growth on potato dextrose agar ranging in pH from 4.3 to 9.4 with optimal growth and chaetoglobosin C production occurring at a neutral pH. In addition, our results show that sporulation is favored in an acidic environment.

  7. Growth and Mycotoxin Production by Chaetomium globosum Is Favored in a Neutral pH

    PubMed Central

    Fogle, Matthew R.; Douglas, David R.; Jumper, Cynthia A.; Straus, David C.

    2008-01-01

    Chaetomium globosum is frequently isolated in water-damaged buildings and produces two mycotoxins called chaetoglobosins A and C when cultured on building material. In this study, the influence of ambient pH on the growth of C. globosum was examined on an artificial medium. This fungus was capable of growth on potato dextrose agar ranging in pH from 4.3 to 9.4 with optimal growth and chaetoglobosin C production occurring at a neutral pH. In addition, our results show that sporulation is favored in an acidic environment. PMID:19330080

  8. Seagrass ecosystem response to long-term high CO2 in a Mediterranean volcanic vent.

    PubMed

    Apostolaki, Eugenia T; Vizzini, Salvatrice; Hendriks, Iris E; Olsen, Ylva S

    2014-08-01

    We examined the long-term effect of naturally acidified water on a Cymodocea nodosa meadow growing at a shallow volcanic CO2 vent in Vulcano Island (Italy). Seagrass and adjacent unvegetated habitats growing at a low pH station (pH = 7.65 ± 0.02) were compared with corresponding habitats at a control station (pH = 8.01 ± 0.01). Density and biomass showed a clear decreasing trend at the low pH station and the below- to above-ground biomass ratio was more than 10 times lower compared to the control. C content and δ(13)C of leaves and epiphytes were significantly lower at the low pH station. Photosynthetic activity of C. nodosa was stimulated by low pH as seen by the significant increase in Chla content of leaves, maximum electron transport rate and compensation irradiance. Seagrass community metabolism was intense at the low pH station, with significantly higher net community production, respiration and gross primary production than the control community, whereas metabolism of the unvegetated community did not differ between stations. Productivity was promoted by the low pH, but this was not translated into biomass, probably due to nutrient limitation, grazing or poor environmental conditions. The results indicate that seagrass response in naturally acidified conditions is dependable upon species and geochemical characteristics of the site and highlight the need for a better understanding of complex interactions in these environments. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Interpreting the role of pH on stable isotopes in large benthic foraminifera

    USGS Publications Warehouse

    Robbins, Lisa L.; Knorr, P.O.; Wynn, J.G.; Hallock, P.; Harries, P.

    2016-01-01

    Large benthic foraminifera (LBF) are prolific producers of calcium carbonate sediments in shallow, tropical environments that are being influenced by ocean acidification (OA). Two LBF species, Amphistegina gibbosa (Order Rotaliida) with low-Mg calcite tests and Archaias angulatus (Order Miliolida) with high-Mg calcite tests, were studied to assess the effects of pH 7.6 on oxygen and carbon isotopic fractionation between test calcite and ambient seawater. The δ18O and δ13C values of terminal chambers and of whole adult tests of both species after 6 weeks were not significantly different between pH treatments of 8.0 and 7.6. However, tests of juveniles produced during the 6-week treatments showed significant differences between δ18O and δ13C values from control (pH 8.0) when compared with the treatment (pH 7.6) for both species. Although each individual's growth was photographed and measured, difficulty in distinguishing and manually extracting newly precipitated calcite from adult specimens likely confounded any differences in isotopic signals. However, juvenile specimens that resulted from asexual reproduction that occurred during the experiments did not contain old carbonate that could confound the new isotopic signals. These data reveal a potential bias in the design of OA experiments if only adults are used to investigate changes in test chemistries. Furthermore, the results reaffirm that different calcification mechanisms in these two foraminiferal orders control the fractionation of stable isotopes in the tests and will reflect decreasing pH in seawater somewhat differently. .

  10. Investigation of pharmaceutical transport in saturated sandy aquifers using column experiments: the effect of pH

    NASA Astrophysics Data System (ADS)

    Börnick, Hilmar; Boxberger, Norman; Licha, Tobias; Worch, Eckhard

    2010-05-01

    Due to the development of advanced analytical techniques it is increasingly known that a high number of polar organic trace compounds, particularly residues of pharmaceuticals, occur in the aquatic environment. In contrast to the sources and pathways of such compounds, their impact on ecosystems and their fate in different environmental compartments are comparatively less investigated. Because of the spatial extension and time available, the zone between water and natural solids (e.g. sediments or soil in groundwater zones, bank filtration sites and for soil aquifer treatment) plays an important role in the elimination of anthropogenic trace compounds from water phase. Here, degradation and sorption processes mainly influence the content of trace compounds. Correlations, specific for compound groups, between n-octanol-water distribution coefficients, available from experiment or calculations, and sorption coefficients (e.g. KOC) often allow a suitable prognosis of the transport behavior of organic pollutants in an underground passage. In case of polar, ionizable organic compounds such prediction is problematic and often not possible. Here, besides relatively weak non-polar van der Waals attraction, other interaction mechanisms, such as covalent bonding, complex formation, or ion exchange, can dominate. The latter is closely connected with the type of basic and/or acid groups in a molecule. The degree of protonation could be changed in dependence of type and concentration of other ions and of the acidity constants (pKa) and therefore from pH. Laboratory column studies at different pH value (range from 4 to 8) were carried out using natural sandy sediments from aquifers and model water containing selected pharmaceuticals to investigate the influence of degree of protonation on sorption. Eight different pharmaceuticals were chosen for laboratory column experiments. Their selection was based on the presence of basic/acid functional groups, pKa, high production and consumption rates, and occurrence in environment. The long-term objective of this research is to consider specific interactions such as ion exchange for the improved transport models. Breakthrough experiments show that retardation is significantly influenced by pH for the majority of the selected pharmaceuticals. As a general tendency, it was observed that a decreasing pH caused an enhanced delay. For acidic compounds such as naproxen, this behavior was expected because of the neutral species being the dominating one. The stronger retardation of cationic agents such as atenolol with decreased pH could be explained by additional cation exchange effects. With the exception of atenolol all chosen model compounds show a high stability towards microbial degradation at aerobic conditions. All experiments were repeated at least three times at identical conditions, whereby a good reproducibility was observed. Further experiments are currently performed to characterize pH-depending change of sediment surfaces and to investigate the competitive influence of other presented cations.

  11. Experimental Evolution of Escherichia coli K-12 at High pH and RpoS Induction.

    PubMed

    Hamdallah, Issam; Torok, Nadia; Bischof, Katarina M; Majdalani, Nadim; Chadalavada, Sriya; Mdluli, Nonto; Creamer, Kaitlin E; Clark, Michelle; Holdener, Chase; Basting, Preston J; Gottesman, Susan; Slonczewski, Joan L

    2018-05-25

    Experimental evolution of Escherichia coli K-12 W3110 by serial dilutions for 2,200 generations at high pH extended the range of sustained growth from pH 9.0 to pH 9.3. pH 9.3-adapted isolates showed mutations in DNA-binding regulators and envelope proteins. One population showed an IS1 knockout of phoB (positive regulator of the phosphate regulon). A phoB :: kanR knockout increased growth at high pH. phoB mutants are known to increase production of fermentation acids, which could enhance fitness at high pH. Mutations in pcnB (poly(A) polymerase) also increased growth at high pH. Three out of four populations showed deletions of torI, an inhibitor of TorR, which activates expression of torCAD (trimethylamine N-oxide respiration) at high pH. All populations showed point mutations affecting the stationary-phase sigma RpoS, either in the coding gene or in regulators of RpoS expression. RpoS is required for survival in extreme base. In our microplate assay, rpoS deletion slightly decreased growth at pH 9.1. RpoS protein accumulated faster at pH 9 than at pH 7. The RpoS accumulation at high pH required the presence of one or more antiadapters that block degradation (IraM, IraD, and IraP). Other genes with mutations after high pH evolution encode regulators such as yobG ( mgrB ) (PhoPQ regulator), rpoN (nitrogen starvation sigma), malI , and purR ; as well as envelope proteins ompT and yahO Overall, E. coli evolution at high pH selects for mutations in key transcriptional regulators, including phoB and the stationary-phase sigma RpoS. IMPORTANCE Escherichia coli in its native habitat encounters high pH stress such as that of pancreatic secretions. Experimental evolution over 2,000 generations showed selection for mutations in regulatory factors, such as deletion of the phosphate regulator PhoB and mutations that alter function of the global stress regulator RpoS. RpoS is induced at high pH via multiple mechanisms. Copyright © 2018 American Society for Microbiology.

  12. Lipidic biosignatures in diagenetically stabilized ironstones terraces of Rio Tinto, an acidic environment with analogies to Mars

    NASA Astrophysics Data System (ADS)

    Sánchez-García, L.; Carrizo, D.; Fernández-Remolar, D.; Parro, V.

    2017-09-01

    The characterization of extreme environments with analogies to Mars is important for understanding if/how life may have thrived in the Red Planet. Río Tinto in SW Spain is an extreme environment with constant acidic waters (mean pH of 2.3) and high concentration of heavy metals, which are direct consequence of the active metabolism of chemolithotrophic microorganisms thriving in the rich polymetallic sulfides present in the massive Iberian Pyritic Belt. Abundant minerals rich in ferric iron and sulfates, which result from the pyrite metabolism (e.g. jarosite, goethite, hematites, etc.) are of special interest for their potential for organics preservation [1]. Here, we investigate the occurrence and preservation of biological signatures in diagenetically stabilized ironstone deposits in Río Tinto, by using geolipidic markers.

  13. Chromium Isotope Behaviour During Aerobic Microbial Reduction Activities

    NASA Astrophysics Data System (ADS)

    Zhang, Q.; Amor, K.; Porcelli, D.; Thompson, I.

    2014-12-01

    Microbial activity is a very important, and possibly even the dominant, reduction mechanism for many metals in natural water systems. Isotope fractionations during microbial metal reduction can reflect one major mechanism in metal cycling in the environment, and isotopic signatures can be used to identify and quantify reduction processes during biogeochemical cycling in the present environment as well as in the past. There are many Cr (VI)-reducing bacteria that have been discovered and isolated from the environment, and Cr isotopes were found to be fractionated during microbial reduction processes. In this study, Cr reduction experiments have been undertaken to determine the conditions under which Cr is reduced and the corresponding isotope signals that are generated. The experiments have been done with a facultative bacteria Pseudomonas fluorescens LB 300, and several parameters that have potential impact on reduction mechanisms have been investigated. Electron donors are important for bacteria growth and metabolism. One factor that can control the rate of Cr reduction is the nature of the electron donor. The results show that using citrate as an electron donor can stimulate bacteria reduction activity to a large extent; the reduction rate is much higher (15.10 mgˑL-1hour-1) compared with experiments using glucose (6.65 mgˑL-1ˑhour-1), acetate (4.88 mgˑL-1hour-1) or propionate (4.85 mgˑL-1hour-1) as electron donors. Groups with higher electron donor concentrations have higher reduction rates. Chromium is toxic, and when increasing Cr concentrations in the medium, the bacteria reduction rate is also higher, which reflects bacteria adapting to the toxic environment. In the natural environment, under different pH conditions, bacteria may metabolise in different ways. In our experiments with pH, bacteria performed better in reducing Cr (VI) when pH = 8, and there are no significant differences between groups with pH = 4 or pH = 6. To investigate this further, Cr isotope determinations will be presented, which are essential in better understanding bacterial reducing activities under different environmental conditions and can also provide important background information for interpreting Cr isotope fractionations in natural environment, and using Cr isotopes to identify reduction by microbial activity.

  14. Low pH increases the yield of exosome isolation.

    PubMed

    Ban, Jae-Jun; Lee, Mijung; Im, Wooseok; Kim, Manho

    2015-05-22

    Exosomes are the extracellular vesicles secreted by various cells. Exosomes mediate intercellular communication by delivering a variety of molecules between cells. Cancer cell derived exosomes seem to be related with tumor progression and metastasis. Tumor microenvironment is thought to be acidic and this low pH controls exosome physiology, leading to tumor progression. Despite the importance of microenvironmental pH on exosome, most of exosome studies have been performed without regard to pH. Therefore, the difference of exosome stability and yield of isolation by different pH need to be studied. In this research, we investigated the yield of total exosomal protein and RNA after incubation in acidic, neutral and alkaline conditioned medium. Representative exosome markers were investigated by western blot after incubation of exosomes in different pH. As a result, the concentrations of exosomal protein and nucleic acid were significantly increased after incubation in the acidic medium compared with neutral medium. The higher levels of exosome markers including CD9, CD63 and HSP70 were observed after incubation in an acidic environment. On the other hand, no exosomal protein, exosomal RNA and exosome markers have been detected after incubation in an alkaline condition. In summary, our results indicate that the acidic condition is the favorable environment for existence and isolation of exosomes. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. pH Control Enables Simultaneous Enhancement of Nitrogen Retention and N2O Reduction in Shewanella loihica Strain PV-4.

    PubMed

    Kim, Hayeon; Park, Doyoung; Yoon, Sukhwan

    2017-01-01

    pH has been recognized as one of the key environmental parameters with significant impacts on the nitrogen cycle in the environment. In this study, the effects of pH on NO 3 - /NO 2 - fate and N 2 O emission were examined with Shewanella loihica strain PV-4, an organism with complete denitrification and respiratory ammonification pathways. Strain PV-4 was incubated at varying pH with lactate as the electron donor and NO 3 - /NO 2 - and N 2 O as the electron acceptors. When incubated with NO 3 - and N 2 O at pH 6.0, transient accumulation of N 2 O was observed and no significant NH 4 + production was observed. At pH 7.0 and 8.0, strain PV-4 served as a N 2 O sink, as N 2 O concentration decreased consistently without accumulation. Respiratory ammonification was upregulated in the experiments performed at these higher pH values. When NO 2 - was used in place of NO 3 - , neither growth nor NO 2 - reduction was observed at pH 6.0. NH 4 + was the exclusive product from NO 2 - reduction at both pH 7.0 and 8.0 and neither production nor consumption of N 2 O was observed, suggesting that NO 2 - regulation superseded pH effects on the nitrogen-oxide dissimilation reactions. When NO 3 - was the electron acceptor, nirK transcription was significantly upregulated upon cultivation at pH 6.0, while nrfA transcription was significantly upregulated at pH 8.0. The highest level of nosZ transcription was observed at pH 6.0 and the lowest at pH 8.0. With NO 2 - as the electron acceptor, transcription profiles of nirK, nrfA , and nosZ were statistically indistinguishable between pH 7.0 and 8.0. The transcriptions of nirK and nosZ were severely downregulated regardless of pH. These observations suggested that the kinetic imbalance between N 2 O production and consumption, but neither decrease in expression nor activity of NosZ, was the major cause of N 2 O accumulation at pH 6.0. The findings also suggest that simultaneous enhancement of nitrogen retention and N 2 O emission reduction may be feasible through pH modulation, but only in environments where C:N or NO 2 - :NO 3 - ratio does not exhibit overarching control over the NO 3 - /NO 2 - reduction pathways.

  16. pH-modulated self-assembly of colloidal nanoparticles in a dual-droplet inkjet printing process.

    PubMed

    Al-Milaji, Karam Nashwan; Radhakrishnan, Vinod; Kamerkar, Prajakta; Zhao, Hong

    2018-06-05

    Interfacial self-assembly has been demonstrated as a powerful driving mechanism for creating various nanostructured assemblies. In this work, we employed a dual-droplet printing process and interfacial self-assembly mechanism to produce deposits with controlled assembly structures of colloidal nanoparticles. We hypothesize that pH modulation of the droplet will influence the interfacial self-assembly through the multibody interactions, e.g. particle-particle, particle-interface, and particle-substrate interactions, correspondingly affecting the deposition morphology of the colloidal nanoparticles. During the dual-droplet printing, a wetting droplet, containing colloidal nanoparticles, was jetted over a supporting droplet that contains water only. pH modulation was carried out to the supporting droplet. The self-assembly of two kinds of functionalized polystyrene (PS) nanoparticles (carboxyl-PS and sulfate-PS) was systematically investigated under various pH conditions. Depending on the pH level of the supporting droplet, deposits of carboxyl-PS particles ranging from clear ring-like patterns to nearly uniform monolayer depositions have been obtained. On the other hand, the sulfate-PS particles, even at extreme basic and acidic environments, successfully assemble into nearly monolayer depositions. The multibody interactions are discussed. Such findings can be harnessed in manufacturing high-performance optical and electronic devices. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. The influence of long-term copper contaminated agricultural soil at different pH levels on microbial communities and springtail transcriptional regulation.

    PubMed

    de Boer, Tjalf E; Taş, Neslihan; Braster, Martin; Temminghoff, Erwin J M; Röling, Wilfred F M; Roelofs, Dick

    2012-01-03

    Copper has long been applied for agricultural practises. Like other metals, copper is highly persistent in the environment and biologically active long after its use has ceased. Here we present a unique study on the long-term effects (27 years) of copper and pH on soil microbial communities and on the springtail Folsomia candida an important representative of the soil macrofauna, in an experiment with a full factorial, random block design. Bacterial communities were mostly affected by pH. These effects were prominent in Acidobacteria, while Actinobacteria and Gammaroteobacteria communities were affected by original and bioavailable copper. Reproduction and survival of the collembolan F. candida was not affected by the studied copper concentrations. However, the transcriptomic responses to copper reflected a mechanism of copper transport and detoxification, while pH exerted effects on nucleotide and protein metabolism and (acute) inflammatory response. We conclude that microbial community structure reflected the history of copper contamination, while gene expression analysis of F. candida is associated with the current level of bioavailable copper. The study is a first step in the development of a molecular strategy aiming at a more comprehensive assessment of various aspects of soil quality and ecotoxicology.

  18. Quantitative models for predicting adsorption of oxytetracycline, ciprofloxacin and sulfamerazine to swine manures with contrasting properties.

    PubMed

    Cheng, Dengmiao; Feng, Yao; Liu, Yuanwang; Li, Jinpeng; Xue, Jianming; Li, Zhaojun

    2018-09-01

    Understanding antibiotic adsorption in livestock manures is crucial to assess the fate and risk of antibiotics in the environment. In this study, three quantitative models developed with swine manure-water distribution coefficients (LgK d ) for oxytetracycline (OTC), ciprofloxacin (CIP) and sulfamerazine (SM1) in swine manures. Physicochemical parameters (n=12) of the swine manure were used as independent variables using partial least-squares (PLSs) analysis. The cumulative cross-validated regression coefficients (Q 2 cum ) values, standard deviations (SDs) and external validation coefficient (Q 2 ext ) ranged from 0.761 to 0.868, 0.027 to 0.064, and 0.743 to 0.827 for the three models; as such, internal and external predictability of the models were strong. The pH, soluble organic carbon (SOC) and nitrogen (SON), and Ca were important explanatory variables for the OTC-Model, pH, SOC, and SON for the CIP-model, and pH, total organic nitrogen (TON), and SOC for the SM1-model. The high VIPs (variable importance in the projections) of pH (1.178-1.396), SOC (0.968-1.034), and SON (0.822 and 0.865) established these physicochemical parameters as likely being dominant (associatively) in affecting transport of antibiotics in swine manures. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Redox Reactions of Phenazine Antibiotics with Ferric (Hydr)oxides and Molecular Oxygen

    PubMed Central

    Wang, Yun; Newman, Dianne K.

    2009-01-01

    Phenazines are small redox-active molecules produced by a variety of bacteria. Beyond merely serving as antibiotics, recent studies suggest that phenazines play important physiological roles, including one in iron acquisition. Here we characterize the ability of four electrochemically reduced natural phenazines—pyocyanin (PYO), phenazine-1-carboxylate (PCA), phenazine-1-carboxamide, and 1-hydroxyphenazine (1-OHPHZ)—to reductively dissolve ferrihydrite and hematite in the pH range 5–8. Generally, the reaction rate is higher for a phenazine with a lower reduction potential, with the reaction between PYO and ferrihydrite at pH 5 being an exception; the rate decreases as the pH increases; the rate is higher for poorly crystalline ferrihydrite than for highly crystalline hematite. Ferric (hydr)oxide reduction by reduced phenazines can potentially be inhibited by oxygen, where O2 competes with Fe(III) as the final oxidant. The reactivity of reduced phenazines with O2 decreases in the order: PYO > 1-OHPHZ > PCA. Strikingly, reduced PYO, which is the least reactive phenazine with ferrihydrite and hematite at pH 7, is the most reactive phenazine with O2. These results imply that different phenazines may perform different functions in environments with gradients of iron and O2. PMID:18504969

  20. Bacterial Abundance and Activity across Sites within Two Northern Wisconsin Sphagnum Bogs.

    PubMed

    Fisher; Graham; Graham

    1998-11-01

    Abstract Bacterial abundance, temperature, pH, and dissolved organic carbon (DOC) concentration were compared across surface sites within and between two northern Wisconsin Sphagnum peatlands over the summer seasons in 1995 and 1996. Sites of interest were the Sphagnum mat surface, the water-filled moat (lagg) at the bog margin, and the bog lake littoral zone. Significant differences in both bacterial populations and water chemistry were observed between sites. pH was highest in the lake and lowest in the mat at both bogs; the opposite was true for DOC. Large populations of bacteria were present in surface interstitial water from the mat; abundance in this site was consistently higher than in the moat or lake. Bacterial abundance also increased across sites of increasing DOC concentration and declining pH. Bacterial activities (rates of [3H]leucine incorporation) and growth in dilution cultures (with grazers removed) were also assessed in lake, moat, and mat sites. Results using these measures generally supported the trends observed in abundance, although high rates of [3H]leucine incorporation were recorded in the moat at one of the bogs. Our results indicate that bacterial populations in Sphagnum peatlands are not adversely affected by acidity, and that DOC may be more important than pH in determining bacterial abundance in these environments.

Top