Zhang, Shuangyou; Wu, Jiutao; Leng, Jianxiao; Lai, Shunnan; Zhao, Jianye
2014-11-15
In this Letter, we demonstrate a fully stabilized Er:fiber frequency comb by using a fiber-based, high-precision optical-microwave phase detector. To achieve high-precision and long-term phase locking of the repetition rate to a microwave reference, frequency control techniques (tuning pump power and cavity length) are combined together as its feedback. Since the pump power has been used for stabilization of the repetition rate, we introduce a pair of intracavity prisms as a regulator for carrier-envelope offset frequency, thereby phase locking one mode of the comb to the rubidium saturated absorption transition line. The stabilized comb performs the same high stability as the reference for the repetition rate and provides a residual frequency instability of 3.6×10(-13) for each comb mode. The demonstrated stabilization scheme could provide a high-precision comb for optical communication, direct frequency comb spectroscopy.
NASA Astrophysics Data System (ADS)
Wang, Yi X.; Wu, Q.; Chen, Xiang R.; Geng, Hua Y.
2016-09-01
The pressure-induced transition of vanadium from BCC to rhombohedral structures is unique and intriguing among transition metals. In this work, the stability of these phases is revisited by using density functional theory. At finite temperatures, a novel transition of rhombohedral phases back to BCC phase induced by thermal electrons is discovered. This reentrant transition is found not driven by phonons, instead it is the electronic entropy that stabilizes the latter phase, which is totally out of expectation. Parallel to this transition, we find a peculiar and strong increase of the shear modulus C44 with increasing temperature. It is counter-intuitive in the sense that it suggests an unusual harding mechanism of vanadium by temperature. With these stability analyses, the high-pressure and finite-temperature phase diagram of vanadium is proposed. Furthermore, the dependence of the stability of RH phases on the Fermi energy and chemical environment is investigated. The results demonstrate that the position of the Fermi level has a significant impact on the phase stability, and follows the band-filling argument. Besides the Fermi surface nesting, we find that the localization/delocalization of the d orbitals also contributes to the instability of rhombohedral distortions in vanadium.
Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off.
Li, Zhiming; Pradeep, Konda Gokuldoss; Deng, Yun; Raabe, Dierk; Tasan, Cemal Cem
2016-06-09
Metals have been mankind's most essential materials for thousands of years; however, their use is affected by ecological and economical concerns. Alloys with higher strength and ductility could alleviate some of these concerns by reducing weight and improving energy efficiency. However, most metallurgical mechanisms for increasing strength lead to ductility loss, an effect referred to as the strength-ductility trade-off. Here we present a metastability-engineering strategy in which we design nanostructured, bulk high-entropy alloys with multiple compositionally equivalent high-entropy phases. High-entropy alloys were originally proposed to benefit from phase stabilization through entropy maximization. Yet here, motivated by recent work that relaxes the strict restrictions on high-entropy alloy compositions by demonstrating the weakness of this connection, the concept is overturned. We decrease phase stability to achieve two key benefits: interface hardening due to a dual-phase microstructure (resulting from reduced thermal stability of the high-temperature phase); and transformation-induced hardening (resulting from the reduced mechanical stability of the room-temperature phase). This combines the best of two worlds: extensive hardening due to the decreased phase stability known from advanced steels and massive solid-solution strengthening of high-entropy alloys. In our transformation-induced plasticity-assisted, dual-phase high-entropy alloy (TRIP-DP-HEA), these two contributions lead respectively to enhanced trans-grain and inter-grain slip resistance, and hence, increased strength. Moreover, the increased strain hardening capacity that is enabled by dislocation hardening of the stable phase and transformation-induced hardening of the metastable phase produces increased ductility. This combined increase in strength and ductility distinguishes the TRIP-DP-HEA alloy from other recently developed structural materials. This metastability-engineering strategy should thus usefully guide design in the near-infinite compositional space of high-entropy alloys.
Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off
NASA Astrophysics Data System (ADS)
Li, Zhiming; Pradeep, Konda Gokuldoss; Deng, Yun; Raabe, Dierk; Tasan, Cemal Cem
2016-06-01
Metals have been mankind’s most essential materials for thousands of years; however, their use is affected by ecological and economical concerns. Alloys with higher strength and ductility could alleviate some of these concerns by reducing weight and improving energy efficiency. However, most metallurgical mechanisms for increasing strength lead to ductility loss, an effect referred to as the strength-ductility trade-off. Here we present a metastability-engineering strategy in which we design nanostructured, bulk high-entropy alloys with multiple compositionally equivalent high-entropy phases. High-entropy alloys were originally proposed to benefit from phase stabilization through entropy maximization. Yet here, motivated by recent work that relaxes the strict restrictions on high-entropy alloy compositions by demonstrating the weakness of this connection, the concept is overturned. We decrease phase stability to achieve two key benefits: interface hardening due to a dual-phase microstructure (resulting from reduced thermal stability of the high-temperature phase); and transformation-induced hardening (resulting from the reduced mechanical stability of the room-temperature phase). This combines the best of two worlds: extensive hardening due to the decreased phase stability known from advanced steels and massive solid-solution strengthening of high-entropy alloys. In our transformation-induced plasticity-assisted, dual-phase high-entropy alloy (TRIP-DP-HEA), these two contributions lead respectively to enhanced trans-grain and inter-grain slip resistance, and hence, increased strength. Moreover, the increased strain hardening capacity that is enabled by dislocation hardening of the stable phase and transformation-induced hardening of the metastable phase produces increased ductility. This combined increase in strength and ductility distinguishes the TRIP-DP-HEA alloy from other recently developed structural materials. This metastability-engineering strategy should thus usefully guide design in the near-infinite compositional space of high-entropy alloys.
2009-01-27
high temperature mechanical properties , it was confirmed that the three phase eutectic structure exhibited exceptionally high strength and creep...microstructurc constituent, offer an attractive property balance of high melting temperature, oxidation resistance and useful high temperature mechanical ...design of new multiphase high-temperature alloys with balanced environmental and mechanical properties . 15. SUBJECT TERMS Phase Stability, Alloying
Resolving phase stability in the Ti-O binary with first-principles statistical mechanics methods
NASA Astrophysics Data System (ADS)
Gunda, N. S. Harsha; Puchala, Brian; Van der Ven, Anton
2018-03-01
The Ti-O system consists of a multitude of stable and metastable oxides that are used in wide ranging applications. In this work we investigate phase stability in the Ti-O binary from first principles. We perform a systematic search for ground state structures as a function of oxygen concentration by considering oxygen-vacancy and/or titanium-vacancy orderings over four parent crystal structures: (i) hcp Ti, (ii) ω -Ti, (iii) rocksalt, and (iv) hcp oxygen containing interstitial titanium. We explore phase stability at finite temperature using cluster expansion Hamiltonians and Monte Carlo simulations. The calculations predict a high oxygen solubility in hcp Ti and the stability of suboxide phases that undergo order-disorder transitions upon heating. Vacancy ordered rocksalt phases are also predicted at low temperature that disorder to form an extended solid solution at high temperatures. Predicted stable and metastable phase diagrams are qualitatively consistent with experimental observations, however, important discrepancies are revealed between first-principles density functional theory predictions of phase stability and the current understanding of phase stability in this system.
Wang, Yi X.; Wu, Q.; Chen, Xiang R.; Geng, Hua Y.
2016-01-01
The pressure-induced transition of vanadium from BCC to rhombohedral structures is unique and intriguing among transition metals. In this work, the stability of these phases is revisited by using density functional theory. At finite temperatures, a novel transition of rhombohedral phases back to BCC phase induced by thermal electrons is discovered. This reentrant transition is found not driven by phonons, instead it is the electronic entropy that stabilizes the latter phase, which is totally out of expectation. Parallel to this transition, we find a peculiar and strong increase of the shear modulus C44 with increasing temperature. It is counter-intuitive in the sense that it suggests an unusual harding mechanism of vanadium by temperature. With these stability analyses, the high-pressure and finite-temperature phase diagram of vanadium is proposed. Furthermore, the dependence of the stability of RH phases on the Fermi energy and chemical environment is investigated. The results demonstrate that the position of the Fermi level has a significant impact on the phase stability, and follows the band-filling argument. Besides the Fermi surface nesting, we find that the localization/delocalization of the d orbitals also contributes to the instability of rhombohedral distortions in vanadium. PMID:27581551
Equilibrium high entropy alloy phase stability from experiments and thermodynamic modeling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saal, James E.; Berglund, Ida S.; Sebastian, Jason T.
Long-term stability of high entropy alloys (HEAs) is a critical consideration for the design and practical application of HEAs. It has long been assumed that many HEAs are a kinetically-stabilized metastable structure, and recent experiments have confirmed this hypothesis by observing HEA ecomposition after long-termequilibration. In the presentwork,we demonstrate the use of the CALculation of PHAse Diagrams (CALPHAD) approach to predict HEA stability and processing parameters, comparing experimental long-term annealing observations to CALPHAD phase diagrams from a commercially-available HEA database. As a result, we find good agreement between single- and multi-phase predictions and experiments.
Equilibrium high entropy alloy phase stability from experiments and thermodynamic modeling
Saal, James E.; Berglund, Ida S.; Sebastian, Jason T.; ...
2017-10-29
Long-term stability of high entropy alloys (HEAs) is a critical consideration for the design and practical application of HEAs. It has long been assumed that many HEAs are a kinetically-stabilized metastable structure, and recent experiments have confirmed this hypothesis by observing HEA ecomposition after long-termequilibration. In the presentwork,we demonstrate the use of the CALculation of PHAse Diagrams (CALPHAD) approach to predict HEA stability and processing parameters, comparing experimental long-term annealing observations to CALPHAD phase diagrams from a commercially-available HEA database. As a result, we find good agreement between single- and multi-phase predictions and experiments.
Influence of transition group elements on the stability of the δ- and η-phase in nickelbase alloys
NASA Astrophysics Data System (ADS)
Bäker, Martin; Rösler, Joachim; Hentrich, Tatiana; Ackland, Graeme
2018-01-01
To improve the high-temperature capability of 718-type wrought nickel-base superalloys, the γ \\prime -phase ({{Ni}}3{Al}) can be stabilized. However, this also reduces the size of the forging window because forging has to be done above the γ \\prime - and below the solvus temperature of the phase that is used to enable fine-grain forging, i.e. the δ-phase of {{Ni}}3{Nb} type or the η-phase of {{Ni}}3{Ti}-type. Understanding the influence of alloying elements on the formation of these phases is therefore important. In this paper, density functional theory calculations at 0 K are performed to determine the stabilizing effect of aluminium and of the transition group elements on the stability of the δ-phase and η-phase. Most of the transition group elements of 5th and 6th period stabilize the δ-phase, whereas the stabilizing effect on the η-phase is weaker. According to the calculations, Mo, Tc, W, Re, and Os may be expected to stabilize the δ-phase but not the η-phase, whereas Al and Zn strongly stabilize the η-phase. V, Zr, Ru, Rh, Pd, Ag, Cd, Hf, Ta, Ir, Pt, Au, and Hg stabilize both phases. For some elements (Cr, Mn, Fe, Co), magnetic effects in the δ and especially in the η-phase are shown to be significant at the concentrations studied here.
Scandia-and-Yttria-Stabilized Zirconia for Thermal Barriers
NASA Technical Reports Server (NTRS)
Mess, Derek
2003-01-01
yttria in suitable proportions has shown promise of being a superior thermal- barrier coating (TBC) material, relative to zirconia stabilized with yttria only. More specifically, a range of compositions in the zirconia/scandia/yttria material system has been found to afford increased resistance to deleterious phase transformations at temperatures high enough to cause deterioration of yttria-stabilized zirconia. Yttria-stabilized zirconia TBCs have been applied to metallic substrates in gas turbine and jet engines to protect the substrates against high operating temperatures. These coatings have porous and microcracked structures, which can accommodate strains induced by thermal-expansion mismatch and thermal shock. The longevity of such a coating depends upon yttria as a stabilizing additive that helps to maintain the zirconia in an yttria-rich, socalled non-transformable tetragonal crystallographic phase, thus preventing transformation to the monoclinic phase with an associated deleterious volume change. However, at a temperature greater than about 1,200 C, there is sufficient atomic mobility that the equilibrium, transformable zirconia phase is formed. Upon subsequent cooling, this phase transforms to the monoclinic phase, with an associated volume change that adversely affects the integrity of the coating. Recently, scandia was identified as a stabilizer that could be used instead of, or in addition to, yttria. Of particular interest are scandia-and-yttria-stabilized zirconia (SYSZ) compositions of about 6 mole percent scandia and 1 mole percent yttria, which have been found to exhibit remarkable phase stability at a temperature of 1,400 C in simple aging tests. Unfortunately, scandia is expensive, so that the problem becomes one of determining whether there are compositions with smaller proportions of scandia that afford the required high-temperature stability. In an attempt to solve this problem, experiments were performed on specimens made with reduced proportions of scandia. The criterion used to judge these specimens was whether they retained the non-transformable tetragonal phase after a severe heat treatment of 140 hours at 1,400 C.
Fu, Yang; Xiong, Weilai; Wang, Jianying; Li, Jinghua; Mei, Tao; Wang, Xianbao
2018-05-01
Polyethylene glycol (PEG) based graphene aerogel (GA) confined shaped-stabilized phase change materials (PCMs) are simply prepared by a one-step hydrothermal method. Three-dimensional GA inserted by PEG molecule chains, as a supporting material, obtained by reducing graphene oxide sheets, is used to keep their stabilized shape during a phase change process. The volume of GA is obviously expended after adding PEG, and only 9.8 wt% of GA make the composite achieve high energy efficiency without leakage during their phase change because of hydrogen bonding widely existing in the GA/PEG composites (GA-PCMs). The heat storage energy of GA-PCMs is 164.9 J/g, which is 90.2% of the phase change enthalpy of pure PEG. In addition, this composite inherits the natural thermal properties of graphene and thus shows enhanced thermal conductivity compared with pure PEG. This novel study provides an efficient way to fabricate shape-stabilized PCMs with a high content of PEG for thermal energy storage.
Wang, Weijie; Loke, Desmond; Shi, Luping; Zhao, Rong; Yang, Hongxin; Law, Leong-Tat; Ng, Lung-Tat; Lim, Kian-Guan; Yeo, Yee-Chia; Chong, Tow-Chong; Lacaita, Andrea L
2012-01-01
The quest for universal memory is driving the rapid development of memories with superior all-round capabilities in non-volatility, high speed, high endurance and low power. Phase-change materials are highly promising in this respect. However, their contradictory speed and stability properties present a key challenge towards this ambition. We reveal that as the device size decreases, the phase-change mechanism changes from the material inherent crystallization mechanism (either nucleation- or growth-dominated), to the hetero-crystallization mechanism, which resulted in a significant increase in PCRAM speeds. Reducing the grain size can further increase the speed of phase-change. Such grain size effect on speed becomes increasingly significant at smaller device sizes. Together with the nano-thermal and electrical effects, fast phase-change, good stability and high endurance can be achieved. These findings lead to a feasible solution to achieve a universal memory.
Wang, Weijie; Loke, Desmond; Shi, Luping; Zhao, Rong; Yang, Hongxin; Law, Leong-Tat; Ng, Lung-Tat; Lim, Kian-Guan; Yeo, Yee-Chia; Chong, Tow-Chong; Lacaita, Andrea L.
2012-01-01
The quest for universal memory is driving the rapid development of memories with superior all-round capabilities in non-volatility, high speed, high endurance and low power. Phase-change materials are highly promising in this respect. However, their contradictory speed and stability properties present a key challenge towards this ambition. We reveal that as the device size decreases, the phase-change mechanism changes from the material inherent crystallization mechanism (either nucleation- or growth-dominated), to the hetero-crystallization mechanism, which resulted in a significant increase in PCRAM speeds. Reducing the grain size can further increase the speed of phase-change. Such grain size effect on speed becomes increasingly significant at smaller device sizes. Together with the nano-thermal and electrical effects, fast phase-change, good stability and high endurance can be achieved. These findings lead to a feasible solution to achieve a universal memory. PMID:22496956
Jiao, Bo; Shi, Aimin; Qiang, Wang; Binks, Bernard
2018-05-30
High internal phase Pickering emulsions have various applications in materials science. However, the biocompatibility and biodegradability of inorganic or synthetic stabilizers limit their applications. Herein, we describe the high internal phase Pickering emulsions with 87% edible oil or 88% n-hexane in water stabilized by peanut protein isolate microgel particles. These dispersed phase volume fractions reach the highest in all known food-grade Pickering emulsions. The protein based microgel particles are in different aggregate states depends on pH. The emulsions can be utilized for multiple potential applications simply by changing the internal phase composition. A substitute for partially hydrogenated vegetable oils is obtained when the internal phase is an edible oil. If the internal phase is n-hexane, the emulsion can be used as a template to produce porous materials, which can be used in tissue engineering advantageously since the raw materials are natural and non-toxic. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
High-pressure crystal structures of an insensitive energetic crystal: 1,1-diamino-2,2-dinitroethene
Dreger, Zbigniew A.; Stash, Adam I.; Yu, Zhi -Gang; ...
2015-12-03
Understanding the insensitivity/stability of insensitive high explosive crystals requires detailed structural information at high pressures and high temperatures of interest. Synchrotron single crystal x-ray diffraction experiments were used to determine the high-pressure structures of 1,1-diamino-2,2-dinitroethene (FOX-7), a prototypical insensitive high explosive. The phase transition around 4.5 GPa was investigated and the structures were determined at 4.27 GPa (α’-phase) and 5.9 GPa (ε-phase). The α’-phase (monoclinic, P2 1/ n), structurally indistinguishable from the ambient α-phase, transforms to the new ε-phase (triclinic, P1). The most notable features of the ε-phase, compared to the α’-phase, are: formation of planar layers and flattening ofmore » molecules. Density functional theory (DFT-D2) calculations complemented the experimental results. Furthermore, the results presented here are important for understanding the molecular and crystalline attributes governing the high-pressure insensitivity/stability of insensitive high explosive crystals.« less
High-pressure crystal structures of an insensitive energetic crystal: 1,1-diamino-2,2-dinitroethene
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dreger, Zbigniew A.; Stash, Adam I.; Yu, Zhi -Gang
Understanding the insensitivity/stability of insensitive high explosive crystals requires detailed structural information at high pressures and high temperatures of interest. Synchrotron single crystal x-ray diffraction experiments were used to determine the high-pressure structures of 1,1-diamino-2,2-dinitroethene (FOX-7), a prototypical insensitive high explosive. The phase transition around 4.5 GPa was investigated and the structures were determined at 4.27 GPa (α’-phase) and 5.9 GPa (ε-phase). The α’-phase (monoclinic, P2 1/ n), structurally indistinguishable from the ambient α-phase, transforms to the new ε-phase (triclinic, P1). The most notable features of the ε-phase, compared to the α’-phase, are: formation of planar layers and flattening ofmore » molecules. Density functional theory (DFT-D2) calculations complemented the experimental results. Furthermore, the results presented here are important for understanding the molecular and crystalline attributes governing the high-pressure insensitivity/stability of insensitive high explosive crystals.« less
Zhang, Taiyang; Dar, M. Ibrahim; Li, Ge; Xu, Feng; Guo, Nanjie; Grätzel, Michael; Zhao, Yixin
2017-01-01
Among various all-inorganic halide perovskites exhibiting better stability than organic-inorganic halide perovskites, α-CsPbI3 with the most suitable band gap for tandem solar cell application faces an issue of phase instability under ambient conditions. We discovered that a small amount of two-dimensional (2D) EDAPbI4 perovskite containing the ethylenediamine (EDA) cation stabilizes the α-CsPbI3 to avoid the undesirable formation of the nonperovskite δ phase. Moreover, not only the 2D perovskite of EDAPbI4 facilitate the formation of α-CsPbI3 perovskite films exhibiting high phase stability at room temperature for months and at 100°C for >150 hours but also the α-CsPbI3 perovskite solar cells (PSCs) display highly reproducible efficiency of 11.8%, a record for all-inorganic lead halide PSCs. Therefore, using the bication EDA presents a novel and promising strategy to design all-inorganic lead halide PSCs with high performance and reliability. PMID:28975149
Water-in-oil Pickering emulsions stabilized by stearoylated microcrystalline cellulose.
Pang, Bo; Liu, Huan; Liu, Peiwen; Peng, Xinwen; Zhang, Kai
2018-03-01
Hydrophobic particles with static water contact angles larger than 90° are more like to stabilize W/O Pickering emulsions. In particular, high internal phase Pickering emulsions (HIPEs) are of great interest for diverse applications. However, W/O HIPEs have rarely been realized using sustainable biopolymers. Herein, we used stearoylated microcrystalline cellulose (SMCC) to stabilize W/O Pickering emulsions and especially, W/O HIPEs. Moreover, these W/O HIPEs can be further used as platforms for the preparation of porous materials, such as porous foams. Stearoylated microcrystalline cellulose (SMCC) was prepared by modifying MCC with stearoyl chloride under heterogeneous conditions. Using SMCC as emulsifiers, W/O medium and high internal phase Pickering emulsions (MIPEs and HIPEs) with various organic solvents as continuous phases were prepared using one-step and two-step methods, respectively. Polystyrene (PS) foams were prepared after polymerization of oil phase using HIPEs as templates and their oil/water separation capacity were studied. SMCC could efficiently stabilize W/O Pickering emulsions and HIPEs could only be prepared via the two-step method. The internal phase volume fraction of the SMCC-stabilized HIPEs reached as high as 89%. Diverse internal phase volume fractions led to distinct inner structures of foams with closed or open cells. These macroporous polystyrene (PS) foams demonstrated great potential for the effective absorption of organic solvents from underwater. Copyright © 2017 Elsevier Inc. All rights reserved.
Final Report: Novel ALD-Coated Nanoparticle Anodes for Enhanced Performance Lithium-Ion Batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Groner, Markus
2009-04-16
The Phase I effort is described in detail in the Phase I report given below. The key accomplishments of the Phase I project were (1) the demonstration of high stability LiCoO2 cathodes using ALD-coated LiCoO2 particles, as well as on ALD-coated LiCoO2 electrodes and (2) the demonstration of high stability of graphite anodes using ALD-coated graphite electrodes.
Understanding phase stability of Al-Co-Cr-Fe-Ni high entropy alloys
Zhang, Chuan; Zhang, Fan; Diao, Haoyan; ...
2016-07-19
The concept of high entropy alloy (HEA) opens a vast unexplored composition range for alloy design. As a well-studied system, Al-Co-Cr-Fe-Ni has attracted tremendous amount of attention to develop new-generation low-density structural materials for automobile and aerospace applications. In spite of intensive investigations in the past few years, the phase stability within this HEA system is still poorly understood and needs to be clarified, which poses obstacles to the discovery of promising Al-Co-Cr-Fe-Ni HEAs. In the present work, the CALPHAD approach is employed to understand the phase stability and explore the phase transformation within the Al-Co-Cr-Fe-Ni system. As a result,more » the phase-stability mapping coupled with density contours is then constructed within the composition - temperature space, which provides useful guidelines for the design of low-density Al-Co-Cr-Fe-Ni HEAs with desirable properties.« less
Understanding phase stability of Al-Co-Cr-Fe-Ni high entropy alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Chuan; Zhang, Fan; Diao, Haoyan
The concept of high entropy alloy (HEA) opens a vast unexplored composition range for alloy design. As a well-studied system, Al-Co-Cr-Fe-Ni has attracted tremendous amount of attention to develop new-generation low-density structural materials for automobile and aerospace applications. In spite of intensive investigations in the past few years, the phase stability within this HEA system is still poorly understood and needs to be clarified, which poses obstacles to the discovery of promising Al-Co-Cr-Fe-Ni HEAs. In the present work, the CALPHAD approach is employed to understand the phase stability and explore the phase transformation within the Al-Co-Cr-Fe-Ni system. As a result,more » the phase-stability mapping coupled with density contours is then constructed within the composition - temperature space, which provides useful guidelines for the design of low-density Al-Co-Cr-Fe-Ni HEAs with desirable properties.« less
Sihler, Susanne; Lindén, Mika; Ziener, Ulrich
2017-10-03
Pickering emulsions with a remarkable transmittance of up to 86% across the visible spectrum have been prepared without adjusting the refractive index (RI) of the stabilizing particles to those of the aqueous and oil phases. Commercially available hydrophilic silica particles with a diameter of 20 nm, which are hydrophobized partially in situ, were used to stabilize water droplets with diameters below 400 nm in IsoparM. In this system, the stabilizing particles and the emulsion droplets act as one single scattering object, which renders RI-matching of the particles unnecessary. By either evaporation of some water from the droplets or addition of an appropriate organic liquid to the oil phase, it is possible to match the RI of the droplets (aqueous phase + particles) with that of the continuous phase, which minimizes scattering and results in highly transparent emulsions.
Chen, Shouyuan; Chini, Michael; Wang, He; Yun, Chenxia; Mashiko, Hiroki; Wu, Yi; Chang, Zenghu
2009-10-20
Carrier-envelope (CE) phase stabilization of a two-stage chirped pulse amplifier laser system with regenerative amplification as the preamplifier is demonstrated. The CE phase stability of this laser system is found to have a 90 mrad rms error averaged over 50 laser shots for a locking period of 4.5 h. The CE phase locking was confirmed unambiguously by experimental observation of the 2pi periodicity of the high-order harmonic spectrum generated by double optical gating.
Sb7Te3/Ge multilayer films for low power and high speed phase-change memory
NASA Astrophysics Data System (ADS)
Chen, Shiyu; Wu, Weihua; Zhai, Jiwei; Song, Sannian; Song, Zhitang
2017-06-01
Phase-change memory has attracted enormous attention for its excellent properties as compared to flash memories due to their high speed, high density, better date retention and low power consumption. Here we present Sb7Te3/Ge multilayer films by using a magnetron sputtering method. The 10 years’ data retention temperature is significantly increased compared with pure Sb7Te3. When the annealing temperature is above 250 °C, the Sb7Te3/Ge multilayer thin films have better interface properties, which renders faster crystallization speed and high thermal stability. The decrease in density of ST/Ge multilayer films is only around 5%, which is very suitable for phase change materials. Moreover, the low RESET power benefits from high resistivity and better thermal stability in the PCM cells. This work demonstrates that the multilayer configuration thin films with tailored properties are beneficial for improving the stability and speed in phase change memory applications.
NASA Technical Reports Server (NTRS)
Brown, Gerald V.; Kascak, Albert F.; Jansen, Ralph H.; Dever, Timothy P.; Duffy, Kirsten P.
2006-01-01
For magnetic-bearing-supported high-speed rotating machines with significant gyroscopic effects, it is necessary to stabilize forward and backward tilt whirling modes. Instability or low damping of these modes can prevent the attainment of desired shaft speed. We show analytically that both modes can be stabilized by using cross-axis proportional gains and high- and low-pass filters in the magnetic bearing controller. Furthermore, at high shaft speeds, where system phase lags degrade the stability of the forward-whirl mode, a phasor advance of the control signal can partially counteract the phase lag. In some range of high shaft speed, the derivative gain for the tilt modes (essential for stability for slowly rotating shafts) can be removed entirely. We show analytically how the tilt eigenvalues depend on shaft speed and on various controller feedback parameters.
Thermal stability of intermetallic phases in Fe-rich Fe-Cr-Ni-Mo alloys
Yang, Ying; Tan, Lizhen; Busby, Jeremy T.
2015-06-12
Understanding the stability of precipitate phases in the Fe-rich Fe-Cr-Ni-Mo alloys is critical to the alloy design and application of Mo-containing Austenitic steels. Coupled with thermodynamic modeling, stability of the chi and Laves phases in two Fe-Cr-Ni-Mo alloys were investigated at 1000, 850 and 700 °C for different annealing time. The morphologies, compositions and crystal structures of the matrix and precipitate phases were carefully examined by Scanning Electron Microscopy, Electron Probe Microanalysis, X-ray diffraction and Transmission Electron Microscopy. The two key findings resulted from this work. One is that the chi phase is stable at high temperature and transformed intomore » the Laves phase at low temperature. The other is that both the chi and Laves phases have large solubilites of Cr, Mo and Ni, among which the Mo solubility has a major role on the relative stability of the precipitate phases. The developed thermodynamic models were then applied to evaluating the Mo effect on the stability of precipitate phases in AISI 316 and NF709 alloys.« less
First-principles phase stability at high temperatures and pressure in Nb 90Zr 10 alloy
Landa, A.; Soderlind, P.
2016-08-18
The phase stability of Nb 90Zr 10 alloy at high temperatures and compression is explored by means of first-principles electronic-structure calculations. Utilizing the self-consistent ab initio lattice dynamics (SCAILD) approach in conjunction with density-functional theory, we show that pressure-induced mechanical instability of the body-centered cubic phase, which results in formation of a rhombohedral phase at around 50 GPa, will prevail significant heating. As a result, the body-centered cubic structure will recover before melting at ~1800 K.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Yanwei, E-mail: yanwei.huang@hpstar.ac.cn, E-mail: wangling@hpstar.ac.cn; College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018; Chen, Fengjiao
We report a unique phase transition in compressed exposed curved surface nano-TiO{sub 2} with high photocatalytic activity using in situ synchrotron X-ray diffraction and Raman Spectroscopy. High-pressure studies indicate that the anatase phase starts to transform into baddeleyite phase upon compression at 19.4 GPa, and completely transforms into the baddeleyite phase above 24.6 GPa. Upon decompression, the baddeleyite phase was maintained until the pressure was released to 6.4 GPa and then transformed into the α-PbO{sub 2} phase at 2.7 GPa. Together with the results of high-resolution transmission electron microscopy and the pressure-volume relationship, this phase transition's characteristics during the compression-decompression cycle demonstrate that themore » truncated biconic morphology possessed excellent stability. This study may provide an insight to the mechanisms of stability for high photocatalytic activity of nano-TiO{sub 2}.« less
Toscani, S
2002-05-01
In this communication, an application of classical thermodynamics to crystalline solid state polymorphism is shown to allow stability p, T domains and stability hierarchy among crystalline phases of a polymorph to be defined by constructing the unary p, T phase diagram. The three topological rules upon which this construction is founded are presented; the first one is a straight consequence of the least vapour pressure criterion by Ostwald. Calculation of triple point co-ordinates and of two-phase equilibrium curves is based upon using both thermodynamic and crystallographic data obtained at ordinary pressure. Clapeyron equation allows the slopes of the straight lines representing equilibria between condensed phases to be calculated and, hence, triple points situated at high or negative pressure to be determined. On the other hand, the hierarchy among the thermodynamic stability degrees of the crystalline varieties may be inferred from the location of the sublimation curves, by merely acknowledging inequalities among vapour pressures at each temperature on the whole T-range. These building-up processes are pointed out by outlining the achievement of a phase diagram related to the tetramorphism of fananserine, an anxiolytic drug. Three out four crystalline forms, namely phases II, III and IV, possess their own stability domain, although those belonging to phases II and III are limited at high pressure by that of phase IV. Conversely, phase I is overall metastable and exhibits a whole monotropic behaviour.
NASA Astrophysics Data System (ADS)
Wang, Zhenyu; Liu, Jingzhou; Wang, Li; Li, Xiaowei; Ke, Peiling; Wang, Aiying
2017-02-01
Ti2AlN belongs to a family of ternary nano-laminate alloys known as the MAX phases, which exhibit a unique combination of metallic and ceramic properties. In the present work, the dense and high-stability Ti2AlN coating has been successfully prepared through the combined cathodic arc/sputter deposition, followed by heat post-treatment. It was found that the as-deposited Ti-Al-N coating behaved a multilayer structure, where (Ti, N)-rich layer and Al-rich layer grew alternately, with a mixed phase constitution of TiN and TiAlx. After annealing at 800 °C under vacuum condition for 1.5 h, although the multilayer structure still was found, part of multilayer interfaces became indistinct and disappeared. In particular, the thickness of the Al-rich layer decreased in contrast to that of as-deposited coating due to the inner diffusion of the Al element. Moreover, the Ti2AlN MAX phase emerged as the major phase in the annealed coatings and its formation mechanism was also discussed in this study. The vacuum thermal analysis indicated that the formed Ti2AlN MAX phase exhibited a high-stability, which was mainly benefited from the large thickness and the dense structure. This advanced technique based on the combined cathodic arc/sputter method could be extended to deposit other MAX phase coatings with tailored high performance like good thermal stability, high corrosion and oxidation resistance etc. for the next protective coating materials.
Ab Initio Simulations of Temperature Dependent Phase Stability and Martensitic Transitions in NiTi
NASA Technical Reports Server (NTRS)
Haskins, Justin B.; Thompson, Alexander E.; Lawson, John W.
2016-01-01
For NiTi based alloys, the shape memory effect is governed by a transition from a low-temperature martensite phase to a high-temperature austenite phase. Despite considerable experimental and computational work, basic questions regarding the stability of the phases and the martensitic phase transition remain unclear even for the simple case of binary, equiatomic NiTi. We perform ab initio molecular dynamics simulations to describe the temperature-dependent behavior of NiTi and resolve several of these outstanding issues. Structural correlation functions and finite temperature phonon spectra are evaluated to determine phase stability. In particular, we show that finite temperature, entropic effects stabilize the experimentally observed martensite (B19') and austenite (B2) phases while destabilizing the theoretically predicted (B33) phase. Free energy computations based on ab initio thermodynamic integration confirm these results and permit estimates of the transition temperature between the phases. In addition to the martensitic phase transition, we predict a new transition between the B33 and B19' phases. The role of defects in suppressing these phase transformations is discussed.
Polymer lipids stabilize the ripple phase in lipid bilayers
NASA Astrophysics Data System (ADS)
Cunningham, Beth; Likar, Justin; Wolfe, David; Williams, W. Patrick
2001-03-01
We have recently discovered using X-ray diffraction that incorporating membrane lipids with covalently attached polymer headgroups leads to a marked stabilization of the ripple phase of dipalmitoyl phosphatidylcholine (DPPC). The ripple phase of DPPC is an undulated gel phase normally restricted to a temperature range 36 to 41^oC. In the presence of small amounts of dipalmitoyl phosphatidylethanolamine (DPPE) derivatives with polyethylene glycol (PEG) headgroups, the ripple phase is stable over a temperature range of a least 20 to 65^oC. We attribute this ability of the polymer lipid to stabilize the ripple phase to its tendency to accumulate in, and then stabilize, regions of high membrane curvature^1. 1. H.E. Warriner, P. Davidson, N.L. Slack, M. Schellhorn, P. Eiselt, S. H. J. Idziak, H.-W. Schmidt, and C.R. Safinya, J. Chem. Phys. (1997) 107, 3707-3722.
Thompson, Ronald W; Latypov, Ramil F; Wang, Ying; Lomakin, Aleksey; Meyer, Julie A; Vunnum, Suresh; Benedek, George B
2016-11-14
Colloidal stability of IgG antibody solutions is important for pharmaceutical and medicinal applications. Solution pH and ionic strength are two key factors that affect the colloidal stability of protein solutions. In this work, we use a method based on the PEG-induced liquid-liquid phase separation to examine the effects of pH and ionic strength on the colloidal stability of IgG solutions. We found that at high ionic strength (≥0.25M), the colloidal stability of most of our IgGs is insensitive to pH, and at low ionic strength (≤0.15M), all IgG solutions are much more stable at pH 5 than at pH 7. In addition, the PEG-induced depletion force is less efficient in causing phase separation at pH 5 than at pH 7. In contrast to the native inter-protein interaction of IgGs, the effect of depletion force on phase separation of the antibody solutions is insensitive to ionic strength. Our results suggest that the long-range electrostatic inter-protein repulsion at low ionic strength stabilizes the IgG solutions at low pH. At high ionic strength, the short-range electrostatic interactions do not make a significant contribution to the colloidal stability for most IgGs with a few exceptions. The weaker effect of depletion force at lower pH indicates a reduction of protein concentration in the condensed phase. This work advances our basic understanding of the colloidal stability of IgG solutions and also introduces a practical approach to measuring protein colloidal stability under various solution conditions.
Chemical stability of molten 2,4,6-trinitrotoluene at high pressure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dattelbaum, Dana M., E-mail: danadat@lanl.gov; Chellappa, Raja S.; Bowden, Patrick R.
2014-01-13
2,4,6-trinitrotoluene (TNT) is a molecular explosive that exhibits chemical stability in the molten phase at ambient pressure. A combination of visual, spectroscopic, and structural (x-ray diffraction) methods coupled to high pressure, resistively heated diamond anvil cells was used to determine the melt and decomposition boundaries to >15 GPa. The chemical stability of molten TNT was found to be limited, existing in a small domain of pressure-temperature conditions below 2 GPa. Decomposition dominates the phase diagram at high temperatures beyond 6 GPa. From the calculated bulk temperature rise, we conclude that it is unlikely that TNT melts on its principal Hugoniot.
NASA Astrophysics Data System (ADS)
Wilcox, R. B.; Byrd, J. M.; Doolittle, L. R.; Holzwarth, R.; Huang, G.
2011-09-01
We propose a method of synchronizing mode-locked lasers separated by hundreds of meters with the possibility of achieving sub-fs performance by locking the phases of corresponding lines in the optical comb spectrum. The optical phase from one comb line is transmitted to the remote laser over an interferometrically stabilized link by locking a single frequency laser to a comb line with high phase stability. We describe how these elements are integrated into a complete system and estimate the potential performance.
Ultrastable α phase nickel hydroxide as energy storage materials for alkaline secondary batteries
NASA Astrophysics Data System (ADS)
Huang, Haili; Guo, Yinjian; Cheng, Yuanhui
2018-03-01
α Phase nickel hydroxide (α-Ni(OH)2) has higher theoretical capacity than that of commercial β phase Ni(OH)2. But the low stability inhibits its wide application in alkaline rechargeable batteries. Here, we propose a totally new idea to stabilize α phase Ni(OH)2 by introducing large organic molecule into the interlayer spacing together with doping multivalent cobalt into the layered Ni(OH)2 host. Ethylene glycol is served as neutral stabilizer in the interlayer spacing. Nickel is substituted by cobalt to increase the electrostatic attraction between layered Ni(OH)2 host and anion ions in the interlayer spacing. Polyethylene glycol (PEG-200) is utilized to design a three-dimensional network structure. This prepared α-Ni(OH)2-20 exhibits specific capacity as high as 334 mAh g-1and good structural stability even after immersing into strong alkaline zincate solution for 20 days. Ni(OH)2 electrode with a specific capacity of 35 mAh cm-2 is fabricated and used as positive electrode in zinc-nickel single flow batteries, which also shows good cycling stability. This result can provide an important guideline for the rational design and preparation of highly active and stable α phase Ni(OH)2 for alkaline secondary battery.
Stabilization mechanism of γ-Mg17Al12 and β-Mg2Al3 complex metallic alloys
NASA Astrophysics Data System (ADS)
Vrtnik, S.; Jazbec, S.; Jagodič, M.; Korelec, A.; Hosnar, L.; Jagličić, Z.; Jeglič, P.; Feuerbacher, M.; Mizutani, U.; Dolinšek, J.
2013-10-01
Large-unit-cell complex metallic alloys (CMAs) frequently achieve stability by lowering the kinetic energy of the electron system through formation of a pseudogap in the electronic density of states (DOS) across the Fermi energy ɛF. By employing experimental techniques that are sensitive to the electronic DOS in the vicinity of ɛF, we have studied the stabilization mechanism of two binary CMA phases from the Al-Mg system: the γ-Mg17Al12 phase with 58 atoms in the unit cell and the β-Mg2Al3 phase with 1178 atoms in the unit cell. Since the investigated alloys are free from transition metal elements, orbital hybridization effects must be small and we were able to test whether the alloys obey the Hume-Rothery stabilization mechanism, where a pseudogap in the DOS is produced by the Fermi surface-Brillouin zone interactions. The results have shown that the DOS of the γ-Mg17Al12 phase exhibits a pronounced pseudogap centered almost exactly at ɛF, which is compatible with the theoretical prediction that this phase is stabilized by the Hume-Rothery mechanism. The disordered cubic β-Mg2Al3 phase is most likely entropically stabilized at high temperatures, whereas at lower temperatures stability is achieved by undergoing a structural phase transition to more ordered rhombohedral β‧ phase at 214 ° C, where all atomic sites become fully occupied. No pseudogap in the vicinity of ɛF was detected for the β‧ phase on the energy scale of a few 100 meV as determined by the ‘thermal observation window’ of the Fermi-Dirac function, so that the Hume-Rothery stabilization mechanism is not confirmed for this compound. However, the existence of a much broader shallow pseudogap due to several critical reciprocal lattice vectors \\buildrel{\\rightharpoonup}\\over{G} that simultaneously satisfy the Hume-Rothery interference condition remains the most plausible stabilization mechanism of this phase. At Tc = 0.85 K, the β‧ phase undergoes a superconducting transition, which slightly increases the cohesive energy and may contribute to relative stability of this phase against competing neighboring phases.
Fully stabilized mid-infrared frequency comb for high-precision molecular spectroscopy.
Vainio, Markku; Karhu, Juho
2017-02-20
A fully stabilized mid-infrared optical frequency comb spanning from 2.9 to 3.4 µm is described in this article. The comb is based on half-harmonic generation in a femtosecond optical parametric oscillator, which transfers the high phase coherence of a fully stabilized near-infrared Er-doped fiber laser comb to the mid-infrared region. The method is simple, as no phase-locked loops or reference lasers are needed. Precise locking of optical frequencies of the mid-infrared comb to the pump comb is experimentally verified at sub-20 mHz level, which corresponds to a fractional statistical uncertainty of 2 × 10-16 at the center frequency of the mid-infrared comb. The fully stabilized mid-infrared comb is an ideal tool for high-precision molecular spectroscopy, as well as for optical frequency metrology in the mid-infrared region, which is difficult to access with other stabilized frequency comb techniques.
Ueda, Keisuke; Higashi, Kenjirou; Moribe, Kunikazu
2017-07-03
We investigated the phase separation behavior and maintenance mechanism of the supersaturated state of poorly water-soluble nifedipine (NIF) in hypromellose (HPMC) derivative solutions. Highly supersaturated NIF formed NIF-rich nanodroplets through phase separation from aqueous solution containing HPMC derivative. Dissolvable NIF concentration in the bulk water phase was limited by the phase separation of NIF from the aqueous solution. HPMC derivatives stabilized the NIF-rich nanodroplets and maintained the NIF supersaturation with phase-separated NIF for several hours. The size of the NIF-rich phase was different depending on the HPMC derivatives dissolved in aqueous solution, although the droplet size had no correlation with the time for which NIF supersaturation was maintained without NIF crystallization. HPMC acetate and HPMC acetate succinate (HPMC-AS) effectively maintained the NIF supersaturation containing phase-separated NIF compared with HPMC. Furthermore, HPMC-AS stabilized NIF supersaturation more effectively in acidic conditions. Solution 1 H NMR measurements of NIF-supersaturated solution revealed that HPMC derivatives distributed into the NIF-rich phase during the phase separation of NIF from the aqueous solution. The hydrophobicity of HPMC derivative strongly affected its distribution into the NIF-rich phase. Moreover, the distribution of HPMC-AS into the NIF-rich phase was promoted at lower pH due to the lower aqueous solubility of HPMC-AS. The distribution of a large amount of HPMC derivatives into NIF-rich phase induced the strong inhibition of NIF crystallization from the NIF-rich phase. Polymer distribution into the drug-rich phase directly monitored by solution NMR technique can be a useful index for the stabilization efficiency of drug-supersaturated solution containing a drug-rich phase.
Xue, Zheng; Worthen, Andrew; Qajar, Ali; Robert, Isaiah; Bryant, Steven L; Huh, Chun; Prodanović, Maša; Johnston, Keith P
2016-01-01
To date, relatively few examples of ultra-high internal phase supercritical CO2-in-water foams (also referred to as macroemulsions) have been observed, despite interest in applications including "waterless" hydraulic fracturing in energy production. The viscosities and stabilities of foams up to 0.98 CO2 volume fraction were investigated in terms of foam bubble size, interfacial tension, and bulk and surface viscosity. The foams were stabilized with laurylamidopropyl betaine (LAPB) surfactant and silica nanoparticles (NPs), with and without partially hydrolyzed polyacrylamide (HPAM). For foams stabilized with mixture of LAPB and NPs, fine ∼70 μm bubbles and high viscosities on the order of 100 cP at>0.90 internal phase fraction were stabilized for hours to days. The surfactant reduces interfacial tension, and thus facilitates bubble generation and decreases the capillary pressure to reduce the drainage rate of the lamella. The LAPB, which is in the cationic protonated form, also attracts anionic NPs (and anionic HPAM in systems containing polymer) to the interface. The adsorbed NPs at the interface are shown to slow down Ostwald ripening (with or without polymer added) and increase foam stability. In systems with added HPAM, the increase in the bulk and surface viscosity of the aqueous phase further decreases the lamella drainage rate and inhibits coalescence of foams. Thus, the added polymer increases the foam viscosity by threefold. Scaling law analysis shows the viscosity of 0.90 volume fraction foams is inversely proportional to the bubble size. Copyright © 2015 Elsevier Inc. All rights reserved.
Otto, M. R.; René de Cotret, L. P.; Stern, M. J.; Siwick, B. J.
2017-01-01
We demonstrate the compression of electron pulses in a high-brightness ultrafast electron diffraction instrument using phase-locked microwave signals directly generated from a mode-locked femtosecond oscillator. Additionally, a continuous-wave phase stabilization system that accurately corrects for phase fluctuations arising in the compression cavity from both power amplification and thermal drift induced detuning was designed and implemented. An improvement in the microwave timing stability from 100 fs to 5 fs RMS is measured electronically, and the long-term arrival time stability (>10 h) of the electron pulses improves to below our measurement resolution of 50 fs. These results demonstrate sub-relativistic ultrafast electron diffraction with compressed pulses that is no longer limited by laser-microwave synchronization. PMID:28852686
Hossain, R.; Pahlevani, F.; Quadir, M. Z.; Sahajwalla, V.
2016-01-01
Although high carbon martensitic steels are well known for their industrial utility in high abrasion and extreme operating environments, due to their hardness and strength, the compressive stability of their retained austenite, and the implications for the steels’ performance and potential uses, is not well understood. This article describes the first investigation at both the macro and nano scale of the compressive stability of retained austenite in high carbon martensitic steel. Using a combination of standard compression testing, X-ray diffraction, optical microstructure, electron backscattering diffraction imaging, electron probe micro-analysis, nano-indentation and micro-indentation measurements, we determined the mechanical stability of retained austenite and martensite in high carbon steel under compressive stress and identified the phase transformation mechanism, from the macro to the nano level. We found at the early stage of plastic deformation hexagonal close-packed (HCP) martensite formation dominates, while higher compression loads trigger body-centred tetragonal (BCT) martensite formation. The combination of this phase transformation and strain hardening led to an increase in the hardness of high carbon steel of around 30%. This comprehensive characterisation of stress induced phase transformation could enable the precise control of the microstructures of high carbon martensitic steels, and hence their properties. PMID:27725722
Maier-Kiener, Verena; Schuh, Benjamin; George, Easo P.; ...
2016-11-19
The equiatomic high-entropy alloy (HEA), CrMnFeCoNi, has recently been shown to be microstructurally unstable, resulting in a multi-phase microstructure after intermediate-temperature annealing treatments. The decomposition occurs rapidly in the nanocrystalline (NC) state and after longer annealing times in coarse-grained states. To characterize the mechanical properties of differently annealed NC states containing multiple phases, nanoindentation was used in this paper. The results revealed besides drastic changes in hardness, also for the first time significant changes in the Young's modulus and strain rate sensitivity. Finally, nanoindentation of NC HEAs is, therefore, a useful complementary screening tool with high potential as a highmore » throughput approach to detect phase decomposition, which can also be used to qualitatively predict the long-term stability of single-phase HEAs.« less
Structural stability and phase transition of Bi 2 Te 3 under high pressure and low temperature
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, J. L.; Zhang, S. J.; Zhu, J. L.
2017-09-01
Structural stability and phase transition of topological insulator Bi2Te3 were studied via angle-dispersive synchrotron radiation X-ray diffraction under high pressure and low temperature condition. The results manifest that the R-3m phase (phase I) is stable at 8 K over the pressure range up to 10 GPa and phase transition occurs between 8 K and 45 K at 8 GPa. According to the Birch-Murnaghan equation of state, the bulk modulus at ambient pressure B0 was estimated to be 45 ± 3 GPa with the assumption of B0' = 4. The structural robustness of phase I at 8 K suggests that themore » superconductivity below 10 GPa is related to phase I. Topological properties of superconducting Bi2Te3 phase under pressure were discussed.« less
Precision control of carrier-envelope phase in grating based chirped pulse amplifiers.
Li, Chengquan; Moon, Eric; Mashiko, Hiroki; Nakamura, Christopher M; Ranitovic, Predrag; Maharjan, Chakra M; Cocke, C Lewis; Chang, Zenghu; Paulus, Gerhard G
2006-11-13
It is demonstrated that the carrier-envelope (CE) phase of pulses from a high power ultrafast laser system with a grating-based stretcher and compressor can be stabilized to a root mean square (rms) value of 180 mrad over almost 2 hours, excluding a brief re-locking period. The stabilization was accomplished via feedback control of the grating separation in the stretcher. It shows that the long term CE phase stability of a grating based chirped pulse amplification system can be as good as that of lasers using a glass-block stretcher and a prism pair compressor. Moreover, by adjusting the grating separation to preset values, the relative CE phase could be locked to an arbitrary value in the range of 2pi. This method is better than using a pair of wedge plates to adjust the phase after the hollow-core fiber compressor. The CE phase stabilization after a hollow-core fiber compressor was confirmed by a CE-phase meter based on the measurement of the left-to-right asymmetry of electrons produced by above-threshold ionization.
Liu, Ruirui; Zhou, Xiao; Zhai, Jiwei; Song, Jun; Wu, Pengzhi; Lai, Tianshu; Song, Sannian; Song, Zhitang
2017-08-16
A multilayer thin film, comprising two different phase change material (PCM) components alternatively deposited, provides an effective means to tune and leverage good properties of its components, promising a new route toward high-performance PCMs. The present study systematically investigated the SnSb 4 -SbSe multilayer thin film as a potential PCM, combining experiments and first-principles calculations, and demonstrated that these multilayer thin films exhibit good electrical resistivity, robust thermal stability, and superior phase change speed. In particular, the potential operating temperature for 10 years is shown to be 122.0 °C and the phase change speed reaches 5 ns in the device test. The good thermal stability of the multilayer thin film is shown to come from the formation of the Sb 2 Se 3 phase, whereas the fast phase change speed can be attributed to the formation of vacancies and a SbSe metastable phase. It is also demonstrated that the SbSe metastable phase contributes to further enhancing the electrical resistivity of the crystalline state and the thermal stability of the amorphous state, being vital to determining the properties of the multilayer SnSb 4 -SbSe thin film.
Oxygen stabilization induced enhancement in superconducting characteristics of high-Tc oxides
NASA Technical Reports Server (NTRS)
Wu, M. K.; Chen, J. T.; Huang, C. Y.
1991-01-01
In an attempt to enhance the electrical and mechanical properties of the high temperature superconducting oxides, high T(sub c) composites were prepared composed of the 123 compounds and AgO. The presence of extra oxygen due to the decomposition of AgO at high temperature is found to stabilize the superconducting 123 phase. Ag is found to serve as clean flux for grain growth and precipitates as pinning center. Consequently, almost two orders of magnitude enhancement in critical current densities were also observed in these composites. In addition, these composites also show much improvement in workability and shape formation. On the other hand, proper oxygen treatment of Y5Ba6Cu11Oy was found to possibly stabilize superconducting phase with T(sub c) near 250 K. I-V, ac susceptibility, and electrical resistivity measurements indicate the existence of this ultra high T(sub c) phase in this compound. Detailed structure, microstructure, electrical, magnetic and thermal studies of the superconducting composites and the ultra high T(sub c) compound are presented and discussed.
NASA Astrophysics Data System (ADS)
Santamarta, Ruben; Evirgen, Alper; Perez-Sierra, Aquilina M.; Pons, Jaume; Cesari, Eduard; Karaman, Ibrahim; Noebe, Ron D.
2015-11-01
Among all the promising high-temperature shape memory alloys (HTSMAs), the Ni-Mn-Ga and the Ni-Ti-Hf/Zr systems exhibit interesting shape memory and superelastic properties that may place them in a good position for potential applications. The present work shows that thermal treatments play a crucial role in controlling the martensitic phase transformation characteristics of both systems, but in different ways. On one hand, the equilibrium phase diagram of the Ni-Mn-Ga family allows selecting compositions with high transformation temperatures and outstanding thermal stability at relatively high temperatures in air, showing no significant changes in the transformation behavior for continuous aging up to ˜5 years at 500 °C. Moreover, the excellent thermal stability correlates with a good thermal cyclic stability and an exceptional oxidation resistance of the parent phase. On the other hand, precipitation processes controlled by thermal treatments are needed to manipulate the transformation temperatures, mechanical properties, and thermal stability of Ni-rich Ni-Ti-Hf/Zr alloys to become HTSMAs. These changes in the functional properties are a consequence of the competition between the mechanical and compositional effects of the precipitates on the martensitic transformation.
Using phase locking for improving frequency stability and tunability of THz-band gyrotrons
NASA Astrophysics Data System (ADS)
Adilova, Asel B.; Gerasimova, Svetlana A.; Melnikova, Maria M.; Tyshkun, Alexandra V.; Rozhnev, Andrey G.; Ryskin, Nikita M.
2018-04-01
Medium-power (10-100 W) THz-band gyrotrons operating in a continuous-wave (CW) mode are of great importance for many applications such as NMR spectroscopy with dynamic nuclear polarization (DNP/NMR), plasma diagnostics, nondestructive inspection, stand-off detection of radioactive materials, biomedical applications, etc. For all these applications, high frequency stability and tunability within 1-2 GHz frequency range is typically required. Apart from different existing techniques for frequency stabilization, phase locking has recently attracted strong interest. In this paper, we present the results of theoretical analysis and numerical simulation for several phase locking techniques: (a) phase locking by injection of the external driving signal; (b) mutual phase locking of two coupled gyrotrons; and (c) selfinjection locking by a wave reflected from the remote load.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Xiulu; Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology, 621010 Mianyang, Sichuan; Liu, Zhongli
2015-02-07
The high-pressure solid phase stability of molybdenum (Mo) has been the center of a long-standing controversy on its high-pressure melting. In this work, experimental and theoretical researches have been conducted to check its solid phase stability under compression. First, we performed sound velocity measurements from 38 to 160 GPa using the two-stage light gas gun and explosive loading in backward- and forward-impact geometries, along with the high-precision velocity interferometry. From the sound velocities, we found no solid-solid phase transition in Mo before shock melting, which does not support the previous solid-solid phase transition conclusion inferred from the sharp drops of themore » longitudinal sound velocity [Hixson et al., Phys. Rev. Lett. 62, 637 (1989)]. Then, we searched its structures globally using the multi-algorithm collaborative crystal structure prediction technique combined with the density functional theory. By comparing the enthalpies of body centered cubic structure with those of the metastable structures, we found that bcc is the most stable structure in the range of 0–300 GPa. The present theoretical results together with previous ones greatly support our experimental conclusions.« less
Self-stabilized narrow-bandwidth and high-fidelity entangled photons generated from cold atoms
NASA Astrophysics Data System (ADS)
Yu, Y. C.; Ding, D. S.; Dong, M. X.; Shi, S.; Zhang, W.; Shi, B. S.
2018-04-01
Entangled photon pairs are critically important in fundamental quantum mechanics research as well as in many areas within the field of quantum information, such as quantum communication, quantum computation, and quantum cryptography. Previous demonstrations of entangled photons based on atomic ensembles were achieved by using a reference laser to stabilize the phase of two spontaneous four-wave mixing paths. Here, we demonstrate a convenient and efficient scheme to generate polarization-entangled photons with a narrow bandwidth of 57.2 ±1.6 MHz and a high-fidelity of 96.3 ±0.8 % by using a phase self-stabilized multiplexing system formed by two beam displacers and two half-wave plates where the relative phase between the different signal paths can be eliminated completely. It is possible to stabilize an entangled photon pair for a long time with this system and produce all four Bell states, making this a vital step forward in the field of quantum information.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mello, Mariana G. de, E-mail: marianagm@fem.unicamp.br; Salvador, Camilo F., E-mail: csalvador@fem.unicamp.br; Cremasco, Alessandra, E-mail: alessandra@fem.unicamp.br
Increases in life expectancy and improvements in necessary healthcare attach great importance to the development of biomaterials. Ti alloys containing β stabilizing elements are often used as biomaterials due to their high specific strength, high corrosion resistance, unusual biocompatibility and low elastic moduli, which benefit bone tissues close to an implant. This study deals with phase stability in β Ti–Mo–Sn alloys processed under different conditions and was performed according to the following steps: a study of the effect of Sn content (a) on phase stability in Ti–Mo alloys, (b) on the suppression of α″ and ω phase precipitation; (c) onmore » α-phase precipitation during aging heat treatments and (d) on mechanical properties, including the elastic modulus, as measured using tensile tests and acoustic techniques. The alloys were prepared by arc melting under a controlled atmosphere followed by homogenization heat treatment and hot rolling. Optical microscopy, scanning and transmission electron microscopy, X-ray diffraction and differential scanning calorimetry were employed for characterization purposes. Samples were also submitted to solution treatment above the β transus temperature and aging heat treatments under a controlled atmosphere. The results suggest that Sn suppresses the formation of the ω and α″ phases in Ti–Mo system. - Highlights: • Sn addition to Ti alloys decreases elastic modulus by suppressing ω phase precipitation. • Sn addition decreases the temperature of martensite decomposition. • Sn addition decreases the temperature of α phase precipitation and β transus. • Mechanical strength decreases with increasing Sn content.« less
Dynamics of face and annular seals with two-phase flow
NASA Technical Reports Server (NTRS)
Hughes, William F.; Basu, Prithwish; Beatty, Paul A.; Beeler, Richard M.; Lau, Stephen
1989-01-01
A detailed study was made of face and annular seals under conditions where boiling, i.e., phase change of the leaking fluid, occurs within the seal. Many seals operate in this mode because of flashing due to pressure drop and/or heat input from frictional heating. High pressure, water pumps, industrial chemical pumps, and cryogenic pumps are mentioned as a few of many applications. The initial motivation was the LOX-GOX seals for the space shuttle main engine, but the study was expanded to include any face or annular seal where boiling occurs. Some of the distinctive behavior characteristics of two-phase seals were discussed, particularly their axial stability. While two-phase seals probably exhibit instability to disturbances of other degrees of freedom such as wobble, etc., under certain conditions, such analyses are too complex to be treated at present. Since an all liquid seal (with parallel faces) has a neutral axial stiffness curve, and is stabilized axially by convergent coning, other degrees of freedom stability analyses are necessary. However, the axial stability behavior of the two-phase seal is always a consideration no matter how well the seal is aligned and regardless of the speed. Hence, axial stability is thought of as the primary design consideration for two-phase seals and indeed the stability behavior under sub-cooling variations probably overshadows other concerns. The main thrust was the dynamic analysis of axial motion of two-phase face seals, principally the determination of axial stiffness, and the steady behavior of two-phase annular seals. The main conclusions are that seals with two-phase flow may be unstable if improperly balanced. Detailed theoretical analyses of low (laminar) and high (turbulent) leakage seals are presented along with computer codes, parametric studies, and in particular a simplified PC based code that allows for rapid performance prediction. A simplified combined computer code for the performance prediction over the laminar and turbulent ranges of a two-phase seal is described and documented. The analyses, results, and computer codes are summarized.
Zhang, Bingxing; Zhang, Jianling; Liu, Chengcheng; Peng, Li; Sang, Xinxin; Han, Buxing; Ma, Xue; Luo, Tian; Tan, Xiuniang; Yang, Guanying
2016-01-01
To design high-internal-phase emulsion (HIPE) systems is of great interest from the viewpoints of both fundamental researches and practical applications. Here we demonstrate for the first time the utilization of metal-organic framework (MOF) for HIPE formation. By stirring the mixture of water, oil and MOF at room temperature, the HIPE stabilized by the assembly of MOF nanocrystals at oil-water interface could be formed. The MOF-stabilized HIPE provides a novel route to produce highly porous metal-organic aerogel (MOA) monolith. After removing the liquids from the MOF-stabilized HIPE, the ultralight MOA with density as low as 0.01 g·cm−3 was obtained. The HIPE approach for MOA formation has unique advantages and is versatile in producing different kinds of ultralight MOAs with tunable porosities and structures. PMID:26892258
Stability limits and transformation pathways of α-quartz under high pressure
NASA Astrophysics Data System (ADS)
Hu, Q. Y.; Shu, J.-F.; Yang, W. G.; Park, C.; Chen, M. W.; Fujita, T.; Mao, H.-K.; Sheng, H. W.
2017-03-01
Ubiquitous on Earth, α-quartz plays an important role in modern science and technology. However, despite extensive research in the past, the mechanism of the polymorphic transitions of α-quartz at high pressures remains poorly understood. Here, combining in situ single-crystal x-ray diffraction experiment and advanced ab initio modeling, we report two stability limits and competing transition pathways of α-quartz under high pressure. Under near-equilibrium compression conditions at room temperature, α-quartz transits to a new P 2 /c silica phase via a structural intermediate. If the thermally activated transition is kinetically suppressed, the ultimate stability of α-quartz is controlled by its phonon instability and α-quartz collapses into a different crystalline phase. Our studies reveal that pressure-induced solid-state transformation of α-quartz undergoes a succession of structural stability limits, due to thermodynamic and mechanical catastrophes, and exhibits a hierarchy of transition pathways contingent upon kinetic conditions.
Stable radio-frequency transfer over optical fiber by phase-conjugate frequency mixing.
He, Yabai; Orr, Brian J; Baldwin, Kenneth G H; Wouters, Michael J; Luiten, Andre N; Aben, Guido; Warrington, R Bruce
2013-08-12
We demonstrate long-distance (≥100-km) synchronization of the phase of a radio-frequency reference over an optical-fiber network without needing to actively stabilize the optical path length. Frequency mixing is used to achieve passive phase-conjugate cancellation of fiber-length fluctuations, ensuring that the phase difference between the reference and synchronized oscillators is independent of the link length. The fractional radio-frequency-transfer stability through a 100-km "real-world" urban optical-fiber network is 6 × 10(-17) with an averaging time of 10(4) s. Our compensation technique is robust, providing long-term stability superior to that of a hydrogen maser. By combining our technique with the short-term stability provided by a remote, high-quality quartz oscillator, this system is potentially applicable to transcontinental optical-fiber time and frequency dissemination where the optical round-trip propagation time is significant.
NASA Technical Reports Server (NTRS)
Densmore, A. C.
1988-01-01
A digital phase-locked loop (PLL) scheme is described which detects the phase and power of a high SNR calibration tone. The digital PLL is implemented in software directly from the given description. It was used to evaluate the stability of the Goldstone Deep Space Station open loop receivers for Radio Science. Included is a derivative of the Allan variance sensitivity of the PLL imposed by additive white Gaussian noise; a lower limit is placed on the carrier frequency.
Oxygen stabilization induced enhancement in J(sub c) and T(sub c) of superconducting oxides
NASA Technical Reports Server (NTRS)
Wu, M. K.; Chen, J. T.; Huang, C. Y.
1990-01-01
In an attempt to enhance the electrical and mechanical properties of the high temperature superconducting oxides, high T(sub c) composites were prepared composed of the 123 compounds and AgO. The presence of extra oxygen due to the decomposition of AgO at high temperature is found to stabilize the superconducting 123 phase. Ag is found to serve as clean flux for grain growth and precipitates as pinning center. Consequently, almost two orders of magnitude enhancement in critical current densities were also observed in these composites. In addition, these composites also show much improvement in workability and shape formation. On the other hand, proper oxygen treatment of Y5Ba6Cu11Oy was found to possibly stabilize superconducting phase with T(sub c) near 250 K. I-V, ac susceptibility, and electrical resistivity measurements indicate the existence of this ultra high T(sub c) phase in this compound. Detailed structure, microstructure, electrical, magnetic and thermal studies of the superconducting composites and the ultra high T(sub c) compound are presented and discussed.
Structural Stability of Mathematical Models of National Economy
NASA Astrophysics Data System (ADS)
Ashimov, Abdykappar A.; Sultanov, Bahyt T.; Borovskiy, Yuriy V.; Adilov, Zheksenbek M.; Ashimov, Askar A.
2011-12-01
In the paper we test robustness of particular dynamic systems in a compact regions of a plane and a weak structural stability of one dynamic system of high order in a compact region of its phase space. The test was carried out based on the fundamental theory of dynamical systems on a plane and based on the conditions for weak structural stability of high order dynamic systems. A numerical algorithm for testing the weak structural stability of high order dynamic systems has been proposed. Based on this algorithm we assess the weak structural stability of one computable general equilibrium model.
DC/DC Converter Stability Testing Study
NASA Technical Reports Server (NTRS)
Wang, Bright L.
2008-01-01
This report presents study results on hybrid DC/DC converter stability testing methods. An input impedance measurement method and a gain/phase margin measurement method were evaluated to be effective to determine front-end oscillation and feedback loop oscillation. In particular, certain channel power levels of converter input noises have been found to have high degree correlation with the gain/phase margins. It becomes a potential new method to evaluate stability levels of all type of DC/DC converters by utilizing the spectral analysis on converter input noises.
RF Phase Stability and Electron Beam Characterization for the PLEIADES Thomson X-Ray Source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, W J; Hartemann, F V; Tremaine, A M
2002-10-16
We report on the performance of an S-band RF photocathode electron gun and accelerator for operation with the PLEIADES Thomson x-ray source at LLNL. To produce picosecond, high brightness x-ray pulses, picosecond timing, terahertz bandwidth diagnostics, and RF phase control are required. Planned optical, RF, x-ray and electron beam measurements to characterize the dependence of electron beam parameters and synchronization on RF phase stability are presented.
The NATO III 5 MHz Distribution System
NASA Technical Reports Server (NTRS)
Vulcan, A.; Bloch, M.
1981-01-01
A high performance 5 MHz distribution system is described which has extremely low phase noise and jitter characteristics and provides multiple buffered outputs. The system is completely redundant with automatic switchover and is self-testing. Since the 5 MHz reference signals distributed by the NATO III distribution system are used for up-conversion and multiplicative functions, a high degree of phase stability and isolation between outputs is necessary. Unique circuit design and packaging concepts insure that the isolation between outputs is sufficient to quarantee a phase perturbation of less than 0.0016 deg when other outputs are open circuited, short circuited or terminated in 50 ohms. Circuit design techniques include high isolation cascode amplifiers. Negative feedback stabilizes system gain and minimizes circuit phase noise contributions. Balanced lines, in lieu of single ended coaxial transmission media, minimize pickup.
NASA Astrophysics Data System (ADS)
Song, Hee Jo; Kim, Jae-Chan; Dar, Mushtaq Ahmad; Kim, Dong-Wan
2018-02-01
With the increasing demand for high energy density in energy-storage systems, a high-voltage cathode is essential in rechargeable Li-ion and Na-ion batteries. The operating voltage of a triclinic-polymorph Na2CoP2O7, also known as the rose form, is above 4.0 V (vs. Na/Na+), which is relatively high compared to that of other cathode materials. Thus, it can be employed as a potential high-voltage cathode material in Na-ion batteries. However, it is difficult to synthesize a pure rose phase because of its low phase stability, thus limiting its use in high-voltage applications. Herein, compositional-engineered, rose-phase Na2-2xCo1+xP2O7/C (x = 0, 0.1 and 0.2) nanopowder are prepared using a wet-chemical method. The Na2-2xCo1+xP2O7/C cathode shows high electrochemical reactivity with Na ions at 4.0 V, delivering high capacity and high energy density.
NASA Technical Reports Server (NTRS)
Kishio, K.; Shimoyama, J.; Hahakura, S.; Kitazawa, K.; Yamaura, K.; Hiroi, Z.; Takano, M.
1995-01-01
A homologous series of new Hg-based HTSC compounds, (Hg,M)Sr2Ca(n - 1)Cu(n)P(y) with n = 1 to 3, have been synthesized. The stabilization of the pure phases have been accomplished by chemical doping of third elements such as M = Cr, Mo and Re. While the Hgl2O1(n = 1) phase was readily obtained in this way, it was necessary to simultaneously dope Y into the Ca site to stabilize the Hg1212(n = 2) phase. On the other hand, single-phase Y-free Hg1212(n = 2) and Hg1223 (n = 3) samples were synthesized only under a high pressure of 6 GPa. In sharp contrast to the Ba containing compounds, all the samples prepared in the present study have been quite stable during the synthesis and no deterioration in air has been observed after the preparation.
NASA Astrophysics Data System (ADS)
Saule, T.; Holzberger, S.; De Vries, O.; Plötner, M.; Limpert, J.; Tünnermann, A.; Pupeza, I.
2017-01-01
We present a high-power, MHz-repetition-rate, phase-stable femtosecond laser system based on a phase-stabilized Ti:Sa oscillator and a multi-stage Yb-fiber chirped-pulse power amplifier. A 10-nm band around 1030 nm is split from the 7-fs oscillator output and serves as the seed for subsequent amplification by 54 dB to 80 W of average power. The µJ-level output is spectrally broadened in a solid-core fiber and compressed to 30 fs with chirped mirrors. A pulse picker prior to power amplification allows for decreasing the repetition rate from 74 MHz by a factor of up to 4 without affecting the pulse parameters. To compensate for phase jitter added by the amplifier to the feed-forward phase-stabilized seeding pulses, a self-referencing feed-back loop is implemented at the system output. An integrated out-of-loop phase noise of less than 100 mrad was measured in the band from 0.4 Hz to 400 kHz, which to the best of our knowledge corresponds to the highest phase stability ever demonstrated for high-power, multi-MHz-repetition-rate ultrafast lasers. This system will enable experiments in attosecond physics at unprecedented repetition rates, it offers ideal prerequisites for the generation and field-resolved electro-optical sampling of high-power, broadband infrared pulses, and it is suitable for phase-stable white light generation.
Nonlinear stability and control study of highly maneuverable high performance aircraft
NASA Technical Reports Server (NTRS)
Mohler, R. R.
1993-01-01
This project is intended to research and develop new nonlinear methodologies for the control and stability analysis of high-performance, high angle-of-attack aircraft such as HARV (F18). Past research (reported in our Phase 1, 2, and 3 progress reports) is summarized and more details of final Phase 3 research is provided. While research emphasis is on nonlinear control, other tasks such as associated model development, system identification, stability analysis, and simulation are performed in some detail as well. An overview of various models that were investigated for different purposes such as an approximate model reference for control adaptation, as well as another model for accurate rigid-body longitudinal motion is provided. Only a very cursory analysis was made relative to type 8 (flexible body dynamics). Standard nonlinear longitudinal airframe dynamics (type 7) with the available modified F18 stability derivatives, thrust vectoring, actuator dynamics, and control constraints are utilized for simulated flight evaluation of derived controller performance in all cases studied.
Octahedral tilting instabilities in inorganic halide perovskites
NASA Astrophysics Data System (ADS)
Bechtel, Jonathon S.; Van der Ven, Anton
2018-02-01
Dynamic instabilities, stabilized by anharmonic interactions in cubic and tetragonal halide perovskites at high temperature, play a role in the electronic structure and optoelectronic properties of halide perovskites. In particular, inorganic and hybrid perovskite materials undergo structural phase transitions associated with octahedral tilts of the metal-halide octahedra. We investigate the structural instabilities present in inorganic Cs M X3 perovskites with Pb or Sn on the metal site and Br or I on the X site. Defining primary order parameters in terms of symmetry-adapted collective displacement modes and secondary order parameters in terms of symmetrized Hencky strain components, we unravel the coupling between octahedral tilt modes and macroscopic strains as well as the role of A -site displacements in perovskite phase stability. Symmetry-allowed secondary strain order parameters are enumerated for the 14 unique perovskite tilt systems. Using first-principles calculations to explore the Born-Oppenheimer energy surface in terms of symmetrized order parameters, we find coupling between octahedral tilting and A -site displacements is necessary to stabilize P n m a ground states. Additionally, we show that the relative stability of an inorganic halide perovskite tilt system correlates with the volume decrease from the high-symmetry cubic phase to the low-symmetry distorted phase.
Nonequilibrium Phase Chemistry in High Temperature Structure Alloys
NASA Technical Reports Server (NTRS)
Wang, R.
1991-01-01
Titanium and nickel aluminides of nonequilibrium microstructures and in thin gauge thickness were identified, characterized and produced for potential high temperature applications. A high rate sputter deposition technique for rapid surveillance of the microstructures and nonequilibrium phase is demonstrated. Alloys with specific compositions were synthesized with extended solid solutions, stable dispersoids, and specific phase boundaries associated with different heat treatments. Phase stability and mechanical behavior of these nonequilibrium alloys were investigated and compared.
Design of c-band telecontrol transmitter local oscillator for UAV data link
NASA Astrophysics Data System (ADS)
Cao, Hui; Qu, Yu; Song, Zuxun
2018-01-01
A C-band local oscillator of an Unmanned Aerial Vehicle (UAV) data link radio frequency (RF) transmitter unit with high-stability, high-precision and lightweight was designed in this paper. Based on the highly integrated broadband phase-locked loop (PLL) chip HMC834LP6GE, the system performed fractional-N control by internal modules programming to achieve low phase noise and small frequency resolution. The simulation and testing methods were combined to optimize and select the loop filter parameters to ensure the high precision and stability of the frequency synthesis output. The theoretical analysis and engineering prototype measurement results showed that the local oscillator had stable output frequency, accurate frequency step, high spurious suppression and low phase noise, and met the design requirements. The proposed design idea and research method have theoretical guiding significance for engineering practice.
Xing, Yuxiu; Peng, Jun; Xu, Kai; Gao, Shuxi; Gui, Xuefeng; Liang, Shengyuan; Sun, Longfeng; Chen, Mingcai
2017-08-30
A well-defined pH-responsive star-shaped polymer containing poly(N,N-dimethylaminoethyl methacrylate) (PDMA) arms and a cage-like methacryloxypropyl silsesquioxane (CMSQ-T 10 ) core was used as an interfacial stabilizer for emulsions consisting of m-xylene and water. We explored the properties of the CMSQ/PDMA star-shaped polymer using the characteristic results of nuclear magnetic resonance (NMR) spectroscopy, size exclusion chromatography (SEC), dynamic light scattering (DLS), and zeta potential and conductivity measurements. The interfacial tension results showed that the CMSQ/PDMA star-shaped polymer reduced the interfacial tension between water and oil in a pH-dependent manner. Gelled high internal phase emulsions (HIPEs) including o/w and w/o types were formed in the pH ranges of 1.2-5.8 and 9.1-12.3 with the CMSQ/PDMA star-shaped polymer as a stabilizer, when the oil fractions were 80-90 vol% and 10-20 vol%, respectively. The soluble star-shaped polymer aggregated spontaneously to form a microgel that adsorbed to the two immiscible phases. Images of the fluorescently labeled polymers demonstrated that there was a star-shaped polymer in the continuous phase, and the non-Pickering stabilization based on the percolating network of the star-shaped polymer also contributed to the stabilization of the HIPE. This pH-dependent HIPE was prepared with a novel stabilization mechanism consisting of microgel adsorption and non-Pickering stabilization. Moreover, the preparation of HIPEs provided the possibility of their application in porous materials and responsive materials.
Wu, Zhen-Guo; Li, Jun-Tao; Zhong, Yan-Jun; Guo, Xiao-Dong; Huang, Ling; Zhong, Ben-He; Agyeman, Daniel-Adjei; Lim, Jin-Myoung; Kim, Du-Ho; Cho, Maeng-Hyo; Kang, Yong-Mook
2017-06-28
A synergistic approach for advanced cathode materials is proposed. Sodium manganese oxide with a layered-tunnel hybrid structure was designed, synthesized, and subsequently investigated. The layered-tunnel hybrid structure provides fast Na ion diffusivity and high structural stability thanks to the tunnel phase, enabling high rate capability and greatly improved cycling stability compared to that of the pure P2 layered phase while retaining the high specific capacity of the P2 layered phase. The hybrid structure provided a decent discharge capacity of 133.4 mAh g -1 even at 8 C, which exceeds the reported best rate capability for Mn-based cathodes. It also displayed an impressive cycling stability, maintaining 83.3 mAh g -1 after 700 cycles at 10 C. Theoretical calculation and the potentiostatic intermittent titration technique (PITT) demonstrated that this hybrid structure helps enhance Na ion diffusivity during charge and discharge, attaining, as a result, an unprecendented electrochemical performance.
Synthesis of the new compound CaFe(CO 3) 2 and experimental constraints on the (Ca,Fe)CO 3 join
NASA Astrophysics Data System (ADS)
Davidson, Paula M.; Symmes, Gregory H.; Cohen, Barbara A.; Reeder, Richard J.; Lindsley, Donald H.
1993-12-01
Synthesis of the new (disordered) compound CaFe(CO 3) 2 has been achieved with the use of Fe-substituted CaCO 3(Cc ss) + Ca-substituted FeCO 3(Sid ss) as starting materials, and high CO 2 pressures. High pressure (20-30 kbar) is needed to stabilize FeCO 3 to sufficiently high temperatures for disordered CaFe(CO 3) 2 to form. Experiments provide reversed compositions of coexisting disordered phases in the CaFe join and locate the solvus temperature for CaFe(C) 3) 2 between 815 and 845°C at 30 kbars. Calculated phase relations predict that the stability of ordered CaFe(CO 3) 2 is limited to T < ˜450°C by the breakdown to Cc ss + Sid ss. A comparison of the unit-cell volume measured for disordered CaFe(CO 3) 2 vs. that estimated for ordered CaFe(CO 3) 2 suggests that increasing pressure stabilizes the disordered phase.
Enhancement of redox- and phase-stability of thermoelectric CaMnO3-δ by substitution
NASA Astrophysics Data System (ADS)
Thiel, Philipp; Populoh, Sascha; Yoon, Songhak; Weidenkaff, Anke
2015-09-01
Redox Reactivity and structural phase transitions have a major impact on transport and me-chemical properties of thermoelectric CaMnO3-δ. In this study series of Ca1-xAxMn1-yByO3-δ (0≤x,y≤0.8) compounds, each with A-site (Dy3+, Yb3+) or B-site (Nb5+, Ta5+ and Mo6+, W6+) substitution, were synthesized and crystallographically analyzed. It was found that the high-temperature oxygen content is widely independent from the substituent. Subsequently, with increasing temperature the differences in the Seebeck coefficient vanish above 1200 K. With increasing substitution the orthorhombic distortion of the perovskite-like phase increases. The orthorhombic distortion and the upper temperature limit of the stability of the orthorhombic crystal structure show an almost linear dependency. Accordingly, the mechanical stability of all-oxides thermoelectric converters at temperatures exceeding 1000 K will be increased employing materials with high substitution level and substituents inducing a high orthorhombic distortion.
Synthesis and thermal stability of zirconia and yttria-stabilized zirconia microspheres.
Leib, Elisabeth W; Vainio, Ulla; Pasquarelli, Robert M; Kus, Jonas; Czaschke, Christian; Walter, Nils; Janssen, Rolf; Müller, Martin; Schreyer, Andreas; Weller, Horst; Vossmeyer, Tobias
2015-06-15
Zirconia microparticles produced by sol-gel synthesis have great potential for photonic applications. To this end, identifying synthetic methods that yield reproducible control over size uniformity is important. Phase transformations during thermal cycling can disintegrate the particles. Therefore, understanding the parameters driving these transformations is essential for enabling high-temperature applications. Particle morphology is expected to influence particle processability and stability. Yttria-doping should improve the thermal stability of the particles, as it does in bulk zirconia. Zirconia and YSZ particles were synthesized by improved sol-gel approaches using fatty acid stabilizers. The particles were heated to 1500 °C, and structural and morphological changes were monitored by SEM, ex situ XRD and high-energy in situ XRD. Zirconia particles (0.4-4.3 μm in diameter, 5-10% standard deviation) synthesized according to the modified sol-gel approaches yielded significantly improved monodispersities. As-synthesized amorphous particles transformed to the tetragonal phase at ∼450 °C with a volume decrease of up to ∼75% and then to monoclinic after heating from ∼650 to 850 °C. Submicron particles disintegrated at ∼850 °C and microparticles at ∼1200 °C due to grain growth. In situ XRD revealed that the transition from the amorphous to tetragonal phase was accompanied by relief in microstrain and the transition from tetragonal to monoclinic was correlated with the tetragonal grain size. Early crystallization and smaller initial grain sizes, which depend on the precursors used for particle synthesis, coincided with higher stability. Yttria-doping reduced grain growth, stabilized the tetragonal phase, and significantly improved the thermal stability of the particles. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Kagdada, Hardik L.; Jha, Prafulla K.; Śpiewak, Piotr; Kurzydłowski, Krzysztof J.
2018-04-01
The stability of GeTe in rhombohedral (R 3 m ), face centred cubic (F m 3 m ), and simple cubic (P m 3 m ) phases has been studied using density functional perturbation theory. The rhombohedral phase of GeTe is dynamically stable at 0 GPa, while F m 3 m and P m 3 m phases are stable at 3.1 and 33 GPa, respectively. The pressure-dependent phonon modes are observed in F m 3 m and P m 3 m phases at Γ and M points, respectively. The electronic and the thermoelectric properties have been investigated for the stable phases of GeTe. The electronic band gap for rhombohedral and F m 3 m phases of GeTe has been observed as 0.66 and 0.17 eV, respectively, while the P m 3 m phase shows metallic behavior. We have used the Boltzmann transport equation under a rigid band approximation and constant relaxation time approximation as implemented in boltztrap code for the calculation of thermoelectric properties of GeTe. The metallic behavior of P m 3 m phase gives a very low value of Seebeck coefficient compared to the other two phases as a function of temperature and the chemical potential μ. It is observed that the rhombohedral phase of GeTe exhibits higher thermoelectric performance. Due to the metallic nature of P m 3 m phase, negligible thermoelectric performance is observed compared to R 3 m and F m 3 m -GeTe. The calculated lattice thermal conductivities are low for F m 3 m -GeTe and high for R 3 m -GeTe. At the relatively higher temperature of 1350 K, the figure of merit ZT is found to be 0.7 for rhombohedral GeTe. The elastic constants satisfy the Born stability criteria for all three phases. The rhombohedral and F m 3 m phases exhibits brittleness and the P m 3 m phase shows ductile nature.
NASA Astrophysics Data System (ADS)
Wang, Leini; Jian, Zhang; Ning, Wei
2017-12-01
We have investigated the phonon, mechanical and thermodynamic properties of B2-phase AlY under high pressure by performing density functional theory (DFT). The result of phonon band structure shows B2-phase AlY exhibits dynamical stability. Then, the elastic properties of AlY under high pressure have been discussed. The elastic constants of AlY increase monotonically with the increase of the pressure and all the elastic constants meet the mechanical stability standard under high pressure. By analyzing the Poisson’s ratio ν and the value of B/G of AlY, we first predicted that AlY undergoes transformation from brittleness to ductility at 30 GPa and high pressure can improve the ductility. To obtain the thermodynamic properties of B2-phase AlY, the quasi-harmonic Debye model has been employed. Debye temperature ΘD, thermal expansion coefficient α, heat capacity Cp and Grüneisen parameter γ of B2-phase AlY are systematically explored at pressure of 0-75 GPa and temperature of 0-700 K.
Imran, Tayyab; Lee, Yong S; Nam, Chang H; Hong, Kyung-Han; Yu, Tae J; Sung, Jae H
2007-01-08
We have stabilized and electronically controlled the carrier-envelope phase (CEP) of high-power femtosecond laser pulses, generated in a grating-based chirped-pulse amplification kHz Ti:sapphire laser, using the direct locking technique [Opt. Express 13, 2969 (2005)] combined with a slow feedback loop. An f-2f spectral interferometer has shown the CEP stabilities of 1.2 rad with the direct locking loop applied to the oscillator and of 180 mrad with an additional slow feedback loop, respectively. The electronic CEP modulations that can be easily realized in the direct locking loop are also demonstrated with the amplified pulses.
Silveira, José Leandro R; Dib, Samia R; Faria, Anizio M
2014-01-01
A new material based on silica coated with alumina nanoparticles was proposed for use as a chromatographic support for reversed-phase high-performance liquid chromatography. Alumina nanoparticles were synthesized by a sol-gel process in reversed micelles composed of sodium bis(2-ethylhexyl)sulfosuccinate, and the support material was formed by the self-assembly of alumina layers on silica spheres. Spectroscopic and (29)Si nuclear magnetic resonance results showed evidence of chemical bonds between the alumina nanoparticles and the silica spheres, while morphological characterizations showed that the aluminized silica maintained the morphological properties of silica desired for chromatographic purposes after alumina incorporation. Stability studies indicated that bare silica showed high dissolution (~83%), while the aluminized silica remained practically unchanged (99%) after passing one liter of the alkaline mobile phase, indicating high stability under alkaline conditions. The C18 bonded aluminized silica phase showed great potential for use in high-performance liquid chromatography to separate basic molecules in the reversed-phase mode.
Precipitation Effect on Mechanical Properties and Phase Stability of High Manganese Steel
NASA Astrophysics Data System (ADS)
Bae, Cheoljun; Kim, Rosa; Lee, Un-Hae; Kim, Jongryoul
2017-09-01
High manganese (Mn) steels are attractive for automotive applications due to their excellent tensile strength and superior elongation. However, the relatively low yield strength of Mn steels compared to other advanced high-strength steels is a critical problem limiting their use in structural parts. In order to increase the yield strength, the precipitation hardening effect of Mn steels was investigated by the addition of carbide-forming elements. Changes in the austenite phase stability were also evaluated in terms of stacking fault energy (SFE). As a result, fine V(C,N) precipitates were found to increase the yield strength effectively but to lower the SFE by the consumption of matrix carbons. For achieving precipitation hardening without sacrificing austenite stability, the soluble carbon content was discussed.
Phase transition thermodynamics of bisphenols.
Costa, José C S; Dávalos, Juan Z; Santos, Luís M N B F
2014-10-16
Herein we have studied, presented, and analyzed the phase equilibria thermodynamics of a bisphenols (BP-A, BP-E, BP-F, BP-AP, and BP-S) series. In particular, the heat capacities, melting temperatures, and vapor pressures at different temperatures as well as the standard enthalpies, entropies, and Gibbs energies of phase transition (fusion and sublimation) were experimentally determined. Also, we have presented the phase diagrams of each bisphenol derivative and investigated the key parameters related to the thermodynamic stability of the condensed phases. When all the bisphenol derivatives are compared at the same conditions, solids BP-AP and BP-S present lower volatilities (higher Gibbs energy of sublimation) and high melting temperatures due to the higher stability of their solid phases. Solids BP-A and BP-F present similar stabilities, whereas BP-E is more volatile. The introduction of -CH3 groups in BP-F (giving BP-E and BP-A) leads an entropic differentiation in the solid phase, whereas in the isotropic liquids the enthalpic and entropic differentiations are negligible.
The effects of biomacromolecules on the physical stability of W/O/W emulsions.
Li, Jinlong; Zhu, Yunping; Teng, Chao; Xiong, Ke; Yang, Ran; Li, Xiuting
2017-02-01
The effect of bovine serum albumin (BSA), whey protein isolate (WPI), whey protein hydrolysate (WPH), sodium caseinate (SC), carboxymethylcellulose sodium (CMC), fish gelatin (FG), high methoxyl apple pectin (HMAP), low methoxyl apple pectin (LMAP), gum Arabic (GA), ι-carrageenan (CGN), and hydroxypropyl chitosan (HPCTS) on physical stability of internal or external aqueous phase of water-in-oil-in-water (W/O/W) emulsions was evaluated. WPI and CGN in the internal aqueous phase, and GA, HPCTS, and CMC in the external phase reduced the size of emulsion droplets. BSA, WPI, SC, FG, CGN, and HPCTS improved the dilution stability of W/O/W emulsions, but HMAP had a negative effect. BSA, WPI, SC, FG, LMAP, GA, CGN, HPCTS, or CMC significantly improved the thermal stability of W/O/W emulsions. Results also indicated that the addition of CGN (1.0%), HMAP (1.0%), WPH (1.0%), or HPCTS (1.0%) in internal aqueous phase significantly increased the viscosity of emulsions, however, addition to the external aqueous phase had insignificant effects. A protein-knockout experiment confirmed that proteins as biomacromolecules, were the key factor in improving physical stability of emulsions.
Yao, Xue; Yi, Ping; Zhao, Guang; Sun, Xin; Dai, Caili
2018-04-28
The dispersed particle gel (DPG) three-phase foam is a novel profile control and flooding system. The stability mechanism of the DPG three-phase foam was studied using an interfacial dilational rheology method. The results show that the elastic modulus of the DPG three-phase foam is up to 14 mN/m, which is much higher than the traditional foam. The increase in interface elasticity produces significantly positive effects on foam stability. Emphasis is given to the influences of frequency, temperature, pressure, and concentration on the viscoelasticity and interfacial adsorption of DPG particles, which change the modules of the foam interface and have a significant effect on foam stability. In addition, the microstructure of the DPG three-phase foam was observed. A viscoelastic shell is formed by the aggregation of the DPG particles on the interface. The irreversible adsorption gives the interface high elasticity and mechanical strength. The electrostatic repulsion between particles increases the spacing between bubbles. The combined effects of these factors give the interface higher mechanical strength, slow down the film drainage, effectively prevent gas permeation, and significantly improve the foam stability.
Yi, Ping; Zhao, Guang; Sun, Xin; Dai, Caili
2018-01-01
The dispersed particle gel (DPG) three-phase foam is a novel profile control and flooding system. The stability mechanism of the DPG three-phase foam was studied using an interfacial dilational rheology method. The results show that the elastic modulus of the DPG three-phase foam is up to 14 mN/m, which is much higher than the traditional foam. The increase in interface elasticity produces significantly positive effects on foam stability. Emphasis is given to the influences of frequency, temperature, pressure, and concentration on the viscoelasticity and interfacial adsorption of DPG particles, which change the modules of the foam interface and have a significant effect on foam stability. In addition, the microstructure of the DPG three-phase foam was observed. A viscoelastic shell is formed by the aggregation of the DPG particles on the interface. The irreversible adsorption gives the interface high elasticity and mechanical strength. The electrostatic repulsion between particles increases the spacing between bubbles. The combined effects of these factors give the interface higher mechanical strength, slow down the film drainage, effectively prevent gas permeation, and significantly improve the foam stability. PMID:29710805
Stability of the body-centred-cubic phase of iron in the Earth's inner core.
Belonoshko, Anatoly B; Ahuja, Rajeev; Johansson, Börje
2003-08-28
Iron is thought to be the main constituent of the Earth's core, and considerable efforts have therefore been made to understand its properties at high pressure and temperature. While these efforts have expanded our knowledge of the iron phase diagram, there remain some significant inconsistencies, the most notable being the difference between the 'low' and 'high' melting curves. Here we report the results of molecular dynamics simulations of iron based on embedded atom models fitted to the results of two implementations of density functional theory. We tested two model approximations and found that both point to the stability of the body-centred-cubic (b.c.c.) iron phase at high temperature and pressure. Our calculated melting curve is in agreement with the 'high' melting curve, but our calculated phase boundary between the hexagonal close packed (h.c.p.) and b.c.c. iron phases is in good agreement with the 'low' melting curve. We suggest that the h.c.p.-b.c.c. transition was previously misinterpreted as a melting transition, similar to the case of xenon, and that the b.c.c. phase of iron is the stable phase in the Earth's inner core.
Zhang, Juzhou; Li, Jing; Shao, Dongliang; Yao, Bangben; Jiang, Junshu
2012-02-01
An effective high performance liquid chromatographic (HPLC) method has been developed for the simultaneous determination of 9 ultraviolet stabilizers in food plastic packaging materials. The food packaging samples were firstly extracted by methanol-ethyl acetate, and then purified by a C18 solid-phase extraction (SPE) column. The target compounds were separated on a ZORBAX SB-C18 column (250 mm x 4.6 mm, 5 microm) in gradient elution mode using methanol and water as mobile phases. The detection wavelength was at 310 nm. The linear plots of the nine ultraviolet stabilizers were obtained between 0.2 and 10 mg/L, with the correlation coefficients of above 0. 999 for the nine ultraviolet stabilizers. The limits of detection for this method were in the range from 0.05 to 0.1 mg/L. The recoveries spiked in commercial food plastic packaging materials were in the range of 70.2% - 89.0% with the relative standard deviations of 0.4% - 4.5%. The results indicated that the method is simple, accurate, and suitable for the simultaneous determination of the nine ultraviolet stabilizers in food plastic packaging materials.
NASA Astrophysics Data System (ADS)
Gozzard, David R.; Schediwy, Sascha W.; Dodson, Richard; Rioja, María J.; Hill, Mike; Lennon, Brett; McFee, Jock; Mirtschin, Peter; Stevens, Jamie; Grainge, Keith
2017-07-01
In order to meet its cutting-edge scientific objectives, the Square Kilometre Array (SKA) telescope requires high-precision frequency references to be distributed to each of its antennas. The frequency references are distributed via fiber-optic links and must be actively stabilized to compensate for phase noise imposed on the signals by environmental perturbations on the links. SKA engineering requirements demand that any proposed frequency reference distribution system be proved in “astronomical verification” tests. We present results of the astronomical verification of a stabilized frequency reference transfer system proposed for SKA-mid. The dual-receiver architecture of the Australia Telescope Compact Array was exploited to subtract the phase noise of the sky signal from the data, allowing the phase noise of observations performed using a standard frequency reference, as well as the stabilized frequency reference transfer system transmitting over 77 km of fiber-optic cable, to be directly compared. Results are presented for the fractional frequency stability and phase drift of the stabilized frequency reference transfer system for celestial calibrator observations at 5 and 25 GHz. These observations plus additional laboratory results for the transferred signal stability over a 166 km metropolitan fiber-optic link are used to show that the stabilized transfer system under test exceeds all SKA phase-stability requirements within a broad range of observing conditions. Furthermore, we have shown that alternative reference dissemination systems that use multiple synthesizers to supply reference signals to sub-sections of an array may limit the imaging capability of the telescope.
Precipitation behavior of AlxCoCrFeNi high entropy alloys under ion irradiation
NASA Astrophysics Data System (ADS)
Yang, Tengfei; Xia, Songqin; Liu, Shi; Wang, Chenxu; Liu, Shaoshuai; Fang, Yuan; Zhang, Yong; Xue, Jianming; Yan, Sha; Wang, Yugang
2016-08-01
Materials performance is central to the satisfactory operation of current and future nuclear energy systems due to the severe irradiation environment in reactors. Searching for structural materials with excellent irradiation tolerance is crucial for developing the next generation nuclear reactors. Here, we report the irradiation responses of a novel multi-component alloy system, high entropy alloy (HEA) AlxCoCrFeNi (x = 0.1, 0.75 and 1.5), focusing on their precipitation behavior. It is found that the single phase system, Al0.1CoCrFeNi, exhibits a great phase stability against ion irradiation. No precipitate is observed even at the highest fluence. In contrast, numerous coherent precipitates are present in both multi-phase HEAs. Based on the irradiation-induced/enhanced precipitation theory, the excellent structural stability against precipitation of Al0.1CoCrFeNi is attributed to the high configurational entropy and low atomic diffusion, which reduces the thermodynamic driving force and kinetically restrains the formation of precipitate, respectively. For the multiphase HEAs, the phase separations and formation of ordered phases reduce the system configurational entropy, resulting in the similar precipitation behavior with corresponding binary or ternary conventional alloys. This study demonstrates the structural stability of single-phase HEAs under irradiation and provides important implications for searching for HEAs with higher irradiation tolerance.
Amide-Catalyzed Phase-Selective Crystallization Reduces Defect Density in Wide-Bandgap Perovskites.
Kim, Junghwan; Saidaminov, Makhsud I; Tan, Hairen; Zhao, Yicheng; Kim, Younghoon; Choi, Jongmin; Jo, Jea Woong; Fan, James; Quintero-Bermudez, Rafael; Yang, Zhenyu; Quan, Li Na; Wei, Mingyang; Voznyy, Oleksandr; Sargent, Edward H
2018-03-01
Wide-bandgap (WBG) formamidinium-cesium (FA-Cs) lead iodide-bromide mixed perovskites are promising materials for front cells well-matched with crystalline silicon to form tandem solar cells. They offer avenues to augment the performance of widely deployed commercial solar cells. However, phase instability, high open-circuit voltage (V oc ) deficit, and large hysteresis limit this otherwise promising technology. Here, by controlling the crystallization of FA-Cs WBG perovskite with the aid of a formamide cosolvent, light-induced phase segregation and hysteresis in perovskite solar cells are suppressed. The highly polar solvent additive formamide induces direct formation of the black perovskite phase, bypassing the yellow phases, thereby reducing the density of defects in films. As a result, the optimized WBG perovskite solar cells (PSCs) (E g ≈ 1.75 eV) exhibit a high V oc of 1.23 V, reduced hysteresis, and a power conversion efficiency (PCE) of 17.8%. A PCE of 15.2% on 1.1 cm 2 solar cells, the highest among the reported efficiencies for large-area PSCs having this bandgap is also demonstrated. These perovskites show excellent phase stability and thermal stability, as well as long-term air stability. They maintain ≈95% of their initial PCE after 1300 h of storage in dry air without encapsulation. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Nonlinear stability and control study of highly maneuverable high performance aircraft, phase 2
NASA Technical Reports Server (NTRS)
Mohler, R. R.
1992-01-01
Research leading to the development of new nonlinear methodologies for the adaptive control and stability analysis of high angle of attack aircraft such as the F-18 is discussed. The emphasis has been on nonlinear adaptive control, but associated model development, system identification, stability analysis, and simulation were studied in some detail as well. Studies indicated that nonlinear adaptive control can outperform linear adaptive control for rapid maneuvers with large changes in angle of attack. Included here are studies on nonlinear model algorithmic controller design and an analysis of nonlinear system stability using robust stability analysis for linear systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mantlikova, A., E-mail: mantlikova@fzu.cz; Poltierova Vejpravova, J.; Bittova, B.
2012-07-15
We have investigated the processes leading to the formation of the Fe{sub 2}O{sub 3} and CeO{sub 2} nanoparticles in the SiO{sub 2} matrix in order to stabilize the {epsilon}-Fe{sub 2}O{sub 3} as the major phase. The samples with two different concentrations of the Fe were prepared by sol-gel method, subsequently annealed at different temperatures up to 1100 Degree-Sign C, and characterized by the Moessbauer spectroscopy, Transmission Electron Microscopy (TEM), Powder X-ray Diffraction (PXRD), Energy Dispersive X-ray analysis (EDX) and magnetic measurements. The evolution of the different Fe{sub 2}O{sub 3} phases under various conditions of preparation was investigated, starting with themore » preferential appearance of the {gamma}-Fe{sub 2}O{sub 3} phase for the sample with low Fe concentration and low annealing temperature and stabilization of the major {epsilon}-Fe{sub 2}O{sub 3} phase for high Fe concentration and high annealing temperature, coexisting with the most stable {alpha}-Fe{sub 2}O{sub 3} phase. A continuous increase of the particle size of the CeO{sub 2} nanocrystals with increasing annealing temperature was also observed. - Graphical abstract: The graphical abstract displays the most important results of our work. The significant change of the phase composition due to the variation of preparation conditions is demonstrated. As a result, significant change of the magnetic properties from superparamagnetic {gamma}-Fe{sub 2}O{sub 3} phase with negligible coercivity to the high coercivity {epsilon}-Fe{sub 2}O{sub 3} phase has been observed. Highlights: Black-Right-Pointing-Pointer Research of the stabilization of the high coercivity {epsilon}-Fe{sub 2}O{sub 3} in CeO{sub 2}-Fe{sub 2}O{sub 3}/SiO{sub 2}. Black-Right-Pointing-Pointer Samples with two different concentrations of Fe and three annealing temperatures. Black-Right-Pointing-Pointer Phase transition {gamma}{yields}{epsilon}{yields}({beta}){yields}{alpha} with increasing annealing temperature and particle size. Black-Right-Pointing-Pointer Elimination of the superparamagnetic phases in samples with higher content of Fe. Black-Right-Pointing-Pointer Best conditions for high coercivity {epsilon}-Fe{sub 2}O{sub 3}-higher Fe content and T{sub A}=1100 Degree-Sign C.« less
NASA Technical Reports Server (NTRS)
Mizan, Muhammad; Higgins, Thomas; Sturzebecher, Dana
1993-01-01
EPSD has designed, fabricated and tested, ultra-stable, low phase noise microwave dielectric resonator oscillators (DRO's) at S, X, Ku, and K-bands, for potential application to high dynamic range and low radar cross section target detection radar systems. The phase noise and the temperature stability surpass commercially available DROs. Low phase noise signals are critical for CW Doppler radars, at both very close-in and large offset frequencies from the carrier. The oscillators were built without any temperature compensation techniques and exhibited a temperature stability of 25 parts per million (ppm) over an extended temperature range. The oscillators are lightweight, small and low cost compared to BAW & SAW oscillators, and can impact commercial systems such as telecommunications, built-in-test equipment, cellular phone and satellite communications systems. The key to obtaining this performance was a high Q factor resonant structure (RS) and careful circuit design techniques. The high Q RS consists of a dielectric resonator (DR) supported by a low loss spacer inside a metal cavity. The S and the X-band resonant structures demonstrated loaded Q values of 20,300 and 12,700, respectively.
Experimental pressure-temperature phase diagram of boron: resolving the long-standing enigma
Parakhonskiy, Gleb; Dubrovinskaia, Natalia; Bykova, Elena; Wirth, Richard; Dubrovinsky, Leonid
2011-01-01
Boron, discovered as an element in 1808 and produced in pure form in 1909, has still remained the last elemental material, having stable natural isotopes, with the ground state crystal phase to be unknown. It has been a subject of long-standing controversy, if α-B or β-B is the thermodynamically stable phase at ambient pressure and temperature. In the present work this enigma has been resolved based on the α-B-to- β-B phase boundary line which we experimentally established in the pressure interval of ∼4 GPa to 8 GPa and linearly extrapolated down to ambient pressure. In a series of high pressure high temperature experiments we synthesised single crystals of the three boron phases (α-B, β-B, and γ-B) and provided evidence of higher thermodynamic stability of α-B. Our work opens a way for reproducible synthesis of α-boron, an optically transparent direct band gap semiconductor with very high hardness, thermal and chemical stability. PMID:22355614
Doping-Based Stabilization of the M2 Phase in Free-Standing VO2 Nanostructures at Room Temperature
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strelcov, Evgheni; Tselev, Alexander; Ivanov, Ilia N
2012-01-01
A new high-yield method of doping VO2 nanostructures with aluminum is proposed, which renders possible stabilization of the monoclinic M2 phase in free-standing nanoplatelets in ambient conditions and opens an opportunity for realization of a purely electronic Mott Transition Field-Effect Transistor without an accompanying structural transition. The synthesized free-standing M2-phase nanostructures are shown to have very high crystallinity and an extremely sharp temperature-driven metal-insulator transition. A combination of x-ray microdiffraction, micro-Raman spectroscopy, Energy-Dispersive X-ray spectroscopy, and four-probe electrical measurements allowed thorough characterization of the doped nanostructures. Light is shed onto some aspects of the nanostructure growth, and the temperature-doping levelmore » phase diagram is established.« less
Yucel, Umut; Elias, Ryan J; Coupland, John N
2013-03-15
The distribution and reactivity of the lipophilic spin probe 4-phenyl-2,2,5,5-tetramethyl-3-imidazoline-1-oxyl nitroxide (PTMIO) in tetradecane (C14)- and eicosane (C20)-in-water emulsions and solid lipid nanoparticles (SLN) respectively, were investigated by electron paramagnetic resonance (EPR) spectroscopy. The lipid phase (10 wt% C14 or C20) was emulsified into either caseinate solutions (1 wt%) or lecithin+bile salt dispersions (2.4 wt%+0.6 wt%) at 70-75 °C. In C14 emulsions stabilized with lecithin+bile salt, three populations of PTMIO were observed: a population in the lipid phase (~60%, a(N)~13.9 G), an aqueous phase population (~20%, a(N)~15.4 G) with high mobility, and an immobilized surface layer population (~20%, a(N)~14.2 G) with low mobility. However, in C14 emulsions stabilized by caseinate, only two distinct populations of PTMIO were seen: a lipid phase population (~70%, a(N)~13.8 G) and an aqueous phase population (~30%, a(N)~15.5 G) with high mobility. In C20 SLN stabilized with either lecithin+bile salt or caseinate, PTMIO was excluded from the lipid phase. In lecithin+bile salt-stabilized C20 SLN, the majority of the probe (~77%) was in the interfacial layer. For both surfactant systems the rate of PTMIO reduction by aqueous iron/ascorbate was greater for C20 SLN than C14 emulsions. Lecithin affects the properties of emulsions and SLN as delivery systems by providing a distinct environment for small molecules. Copyright © 2013 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Marvel, Christopher Jonathan
The development of nanocrystalline materials has been increasingly pursued over the last few decades. They have been shown to exhibit superior properties compared to their coarse-grain counterparts, and thus present a tremendous opportunity to revolutionize the performance of nanoscale devices or bulk structural materials. However, nanocrystalline materials are highly prone to grain growth, and if the nanocrystalline grains coarsen, the beneficial properties are lost. There is a strong effort to determine the most effective thermal stability mechanisms to avoid grain growth, but the physical nature of nanocrystalline grain growth is still unclear due to a lack of detailed understanding of nanocrystalline microstructures. Furthermore, the influence of contamination has scarcely been explored with advanced transmission electron microscopy techniques, nor has there been a direct comparison of alloys fabricated with different bulk processes. Therefore, this research has applied aberration-corrected scanning transmission electron microscopy to characterize nanocrystalline Ni-W on the atomic scale and elucidate the physical grain growth behavior. Three primary objectives were pursued: (1) explore the thermal stability mechanisms of nanocrystalline Ni-W, (2) evaluate the phase stability of Ni-W and link any findings to grain growth behavior, and (3) compare the influences of bulk fabrication processing, including electrodeposition, DC magnetron sputtering, and mechanical alloying, on the thermal stability and phase stability of Ni-W. Several thermal stability mechanisms were identified throughout the course of this research. First and foremost, W-segregation was scarcely observed to grain boundaries, and it is unclear if W-segregation improves thermal stability contrary to most reports in the 2 literature. Long-range Ni4W chemical ordering was observed in alloys with more than 20 at.% W, and it is likely Ni4W domains reduce grain boundary mobility. In addition, lattice diffusivity calculations conceptually suggested that increasing W alloying concentrations can decrease the grain growth rate. The strongest evidence of grain growth stagnation was via nanoscale oxide particle drag in highly contaminated electrodeposited alloys. Interestingly, W-segregation was also detected to the oxide phase boundaries and revealed a potential indirect mechanism of thermal stability. The phase stability of pure and contaminated Ni-W alloys was investigated with density functional theory. Primarily, the calculations suggested that the intermetallic phases NiW and NiW2 are thermodynamically unstable, meaning the binary phase diagram is incorrect, but the ternary carbides Ni 6W6C and Ni2W4C are stable. Several Ni-W binary and Ni-W-C ternary phase diagrams were constructed using a simplified CALPHAD approach to improve the understanding of Ni-W phase stability. Lastly, it was determined that the fabrication process greatly influences the impurity types and concentrations of the alloys, and therefore greatly dictate which thermal stability mechanisms are active. Mechanically alloyed samples were found to be the most resistant to grain growth. The findings of this research will hopefully guide future efforts to design more thermally stable nanocrystalline alloys. The link between phase stability and grain growth behavior of Ni-W was thoroughly discussed, as well as the dependence of bulk fabrication processing on the contamination found in the alloys. Ultimately, this research has greatly expanded the general understanding of nanocrystalline Ni-W microstructures, and it is likely that similar phenomena occur in other nanocrystalline systems.
NASA Astrophysics Data System (ADS)
Suo, Xiaojing; Liao, Hengcheng; Hu, Yiyun; Dixit, Uday S.; Petrov, Pavel
2018-02-01
The formation of Al15Mn3Si2 phase in Al-12Si-4Cu-1.2Mn (wt.%) alloy during solidification was investigated by adopting CALPHAD method and microstructural observation by optical microscopy, SEM-EDS, TEM-EDS/SAD and XRD analysis; SEM fixed-point observation method was applied to evaluate its thermal stability. As-cast microstructural observation consistently demonstrates the solidification sequence of the studied alloy predicted by phase diagram calculation. Based on the phase diagram calculation, SEM-EDS, TEM-EDS/SAD and XRD analysis, as well as evidences on Al-Si-Mn-Fe compounds from the literature, the primary and eutectic Mn-rich phases with different morphologies in the studied alloy are identified to be Al15Mn3Si2 that has a body-centered cubic (BCC) structure with a lattice constant of a = 1.352 nm. SEM fixed-point observation and XRD analysis indicate that Al15Mn3Si2 phase has more excellent thermal stability at high temperature than that of CuAl2 phase and can serve as the major strengthening phase in heat-resistant aluminum alloy that has to face a high-temperature working environment. Results of tension test show that addition of Mn can improve the strength of Al-Si-Cu alloy, especially at elevated temperature.
NASA Astrophysics Data System (ADS)
Cheng, Tai-min; Yu, Guo-liang; Su, Yong; Zhu, Lin; Li, Lin
2018-04-01
The stability of lattice dynamics and the magnetism of the ordered γ‧-Fe4N crystalline alloy at high pressures were studied by first-principle calculations based on density-functional theory. The dynamical stable new phase P2/m-Fe4N at high pressures was found by conducting the softening phenomenon at the point M (0.5 0.5 0) of the acoustic phonon at 10 GPa in the γ‧-Fe4N via soft-mode phase transition theory. Compared to the phonon spectrum of γ‧-Fe4N without considering electronic spin polarization, the ground-state lattice dynamical stability of the ferromagnetic phase γ‧-Fe4N is induced by the spontaneous magnetization at pressures below 1 GPa. However, P2/m-Fe4N is more thermodynamically stable than γ‧-phase at pressures below 1 GPa, and the magnetic moments of the two phases are almost the same. The ground-state structure of P2/m phase is more stable than that of γ‧-phase in the pressure range from 2.9 to 19 GPa. The magnetic moments of the two phases are almost the same in the pressure range from 20 to 214 GPa, but the ground-state structure of γ‧-phase is more stable than that of P2/m phase in the pressure range from 143.8 to 214 GPa. On the contrary, the ground-state structure of P2/m phase is more stable when the pressure is above 214 GPa. In the pressure range from 214 to 300 GPa, the magnetic moment of P2/m phase is lower than that of γ‧-phase, and the magnetic moments of the two phase tend to be consistent when the pressure exceeds 300 GPa.
Radar Waveform Pulse Analysis Measurement System for High-Power GaN Amplifiers
NASA Technical Reports Server (NTRS)
Thrivikraman, Tushar; Perkovic-Martin, Dragana; Jenabi, Masud; Hoffman, James
2012-01-01
This work presents a measurement system to characterize the pulsed response of high-power GaN amplifiers for use in space-based SAR platforms that require very strict amplitude and phase stability. The measurement system is able to record and analyze data on three different time scales: fast, slow, and long, which allows for greater detail of the mechanisms that impact amplitude and phase stability. The system is fully automated through MATLAB, which offers both instrument control capability and in-situ data processing. To validate this system, a high-power GaN HEMT amplifier operated in saturation was characterized. The fast time results show that variations to the amplitude and phase are correlated to DC supply transients, while long time characteristics are correlated to temperature changes.
Cr-doped Ge{sub 2}Sb{sub 2}Te{sub 5} for ultra-long data retention phase change memory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Qing; Xia, Yangyang; Zheng, Yonghui
Phase change memory is regarded as one of the most promising candidates for the next-generation non-volatile memory. Its storage medium, phase change material, has attracted continuous exploration. Ge{sub 2}Sb{sub 2}Te{sub 5} (GST) is the most popular phase change material, but its thermal stability needs to be improved when used in some fields at high temperature (more than 120 °C). In this paper, we doped Cr atoms into GST and obtained Cr{sub 10}(Ge{sub 2}Sb{sub 2}Te{sub 5}){sub 90} (labeled as Cr-GST) with high thermal stability. For Cr-GST film, the sheet resistance ratio between amorphous and crystalline states is high up to 3 ordersmore » of magnitude. The crystalline Cr-GST film inherits the phase structure of GST, with metastable face-centered cubic phase and/or stable hexagonal phase. The doped Cr atoms not only bond with other atoms but also help to improve the anti-oxidation property of Cr-GST. As for the amorphous thermal stability, the calculated temperature for 10-year-data-retention of Cr-GST film, based on the Arrhenius equation, is about 180 °C. The threshold current and threshold voltage of a cell based on Cr-GST are about 6 μA and 2.7 V. The cell could be operated by suitable voltages for more than 40 000 cycles. Thus, Cr-GST is proved to be a promising phase change material with ultra-long data retention.« less
NASA Astrophysics Data System (ADS)
Poddar, Raju; Zawadzki, Robert J.; Cortés, Dennis E.; Mannis, Mark J.; Werner, John S.
2015-06-01
We present in vivo volumetric depth-resolved vasculature images of the anterior segment of the human eye acquired with phase-variance based motion contrast using a high-speed (100 kHz, 105 A-scans/s) swept source optical coherence tomography system (SSOCT). High phase stability SSOCT imaging was achieved by using a computationally efficient phase stabilization approach. The human corneo-scleral junction and sclera were imaged with swept source phase-variance optical coherence angiography and compared with slit lamp images from the same eyes of normal subjects. Different features of the rich vascular system in the conjunctiva and episclera were visualized and described. This system can be used as a potential tool for ophthalmological research to determine changes in the outflow system, which may be helpful for identification of abnormalities that lead to glaucoma.
NASA Astrophysics Data System (ADS)
Isaev, Eyvaz I.; Skorodumova, Natalia V.; Ahuja, Rajeev; Vekilov, Yuri K.; Johansson, Börje
2007-05-01
The core extends from the depth of 2,900 km to the center of the Earth and is composed mainly of an iron-rich alloy with nickel, with 10% of the mass comprised of lighter elements like hydrogen, but the exact composition is uncertain. We present a quantum mechanical first-principles study of the dynamical stability of FeH phases and their phonon densities of states at high pressure. Our free-energy calculations reveal a phonon-driven stabilization of dhcp FeH at low pressures, thus resolving the present contradiction between experimental observations and theoretical predictions. Calculations reveal a complex phase diagram for FeH under pressure with a dhcp → hcp → fcc sequence of structural transitions.
NASA Astrophysics Data System (ADS)
Bernert, T.; Ruiz-Fuertes, J.; Bayarjargal, L.; Winkler, B.
2015-05-01
The phase-purity of ilmenite-type ZnTiO3 prepared by the ceramic method was investigated in dependence of the conditions during ball milling. The previously proposed addition of 2 ml ethanol to the starting materials led to a significant contamination of the product phase after a subsequent sintering process at 1073 K. However, by omitting ethanol this synthesis route led to a phase-pure sample of ZnTiO3 as confirmed by X-ray powder diffraction and Raman spectroscopy. High-temperature high-pressure experiments gave an ilmenite-type to perovskite-type phase boundary with a slope of dT/dP∼-135 K GPa-1 crossing ambient temperature conditions at ∼ 24 GPa in good agreement with previous calculations. Room-temperature high-pressure Raman spectroscopy experiments have shown the stability of the ilmenite-type phase up to a pressure of at least 38.5 GPa, the highest pressure applied in this study, indicating the presence of a kinetic barrier in this phase transition. The synthesis of ferroelectric LiNbO3-type ZnTiO3 was confirmed by second harmonic generation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kishio, K.; Shimoyama, J.; Hahakura, S.
1994-12-31
A homologous series of new Hg-based HTSC compounds, (Hg,M)Sr{sub 2}Ca{sub n-1}Cu{sub n}O{sub y} with n=1 to 3, have been synthesized. The stabilization of the pure phases have been accomplished by chemical doping of third elements such as M=Cr, Mo and Re. While the Hg1201(n=1) phase was readily obtained in this way, it was necessary to simultaneously dope Y into the Ca site to stabilize the Hg1212(n=2) phase. On the other hand, single-phase Y-free Hg1212(n=2) and Hg1223(n=3) samples were synthesized only under a high pressure of 6 GPa. In sharp contrast to the Ba-containing compounds, all the samples prepared in themore » present study have been quite stable during the synthesis and no deterioration in air has been observed after the preparation.« less
Stabilization of soft clay subgrades in Virginia : phase I laboratory study.
DOT National Transportation Integrated Search
2005-01-01
Many pavement subgrades in Virginia consist of wet, highly plastic clay or other troublesome soils. Such soils can be treated with traditional lime and cement stabilization methods. Alternatives, including lignosulfonates and polymers, are available,...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clarke, Samantha M.; Amsler, Maximilian; Walsh, James P. S.
Exploration beyond the known phase space of thermodynamically stable compounds into the realm of metastable materials is a frontier of materials chemistry. The application of high pressure in experiment and theory provides a powerful vector by which to explore this uncharted phase space, allowing discovery of complex new structures and bonding in the solid state. We harnessed this approach for the Cu–Bi system, where the realization of new phases offers potential for exotic properties such as superconductivity. This potential is due to the presence of bismuth, which, by virtue of its status as one of the heaviest stable elements, formsmore » a critical component in emergent materials such as superconductors and topological insulators. To fully investigate and understand the Cu–Bi system, we welded theoretical predictions with experiment to probe the Cu–Bi system under high pressures. By employing the powerful approach of in situ X-ray diffraction in a laser-heated diamond anvil cell (LHDAC), we thoroughly explored the high-pressure and high-temperature (high-PT) phase space to gain insight into the formation of intermetallic compounds at these conditions. We employed density functional theory (DFT) calculations to calculate a pressure versus temperature phase diagram, which correctly predicts that CuBi is stabilized at lower pressures than Cu11Bi7, and allows us to uncover the thermodynamic contributions responsible for the stability of each phase. Detailed comparisons between the NiAs structure type and the two high-pressure Cu–Bi phases, Cu11Bi7 and CuBi, reveal the preference for elemental segregation within the Cu–Bi phases, and highlight the unique channels and layers formed by ordered Cu vacancies. The electron localization function from DFT calculations account for the presence of these “voids” as a manifestation of the lone pair orientation on the Bi atoms. Our study demonstrates the power of joint experimental–computational work in exploring the chemistry occurring at high-PT conditions. The existence of multiple high-pressure-stabilized phases in the Cu–Bi binary system, which can be readily identified with in situ techniques, offers promise for other systems in which no ambient pressure phases are known to exist.« less
Hagberg, Gisela E; Bianciardi, Marta; Brainovich, Valentina; Cassara, Antonino Mario; Maraviglia, Bruno
2012-02-15
Although the majority of fMRI studies exploit magnitude changes only, there is an increasing interest regarding the potential additive information conveyed by the phase signal. This integrated part of the complex number furnished by the MR scanners can also be used for exploring direct detection of neuronal activity and for thermography. Few studies have explicitly addressed the issue of the available signal stability in the context of phase time-series, and therefore we explored the spatial pattern of frequency specific phase fluctuations, and evaluated the effect of physiological noise components (heart beat and respiration) on the phase signal. Three categories of retrospective noise reduction techniques were explored and the temporal signal stability was evaluated in terms of a physiologic noise model, for seven fMRI measurement protocols in eight healthy subjects at 3T, for segmented CSF, gray and white matter voxels. We confirmed that for most processing methods, an efficient use of the phase information is hampered by the fact that noise from physiological and instrumental sources contributes significantly more to the phase than to the magnitude instability. Noise regression based on the phase evolution of the central k-space point, RETROICOR, or an orthonormalized combination of these were able to reduce their impact, but without bringing phase stability down to levels expected from the magnitude signal. Similar results were obtained after targeted removal of scan-to-scan variations in the bulk magnetic field by the dynamic off-resonance in k-space (DORK) method and by the temporal off-resonance alignment of single-echo time series technique (TOAST). We found that spatial high-pass filtering was necessary, and in vivo a Gaussian filter width of 20mm was sufficient to suppress physiological noise and bring the phase fluctuations to magnitude levels. Stronger filters brought the fluctuations down to levels dictated by thermal noise contributions, and for 62.5mm(3) voxels the phase stability was as low as 5 mrad (0.27°). In conditions of low SNR(o) and high temporal sampling rate (short TR); we achieved an upper bound for the phase instabilities at 0.0017 ppm, which is close to the dHb contribution to the GM/WM phase contrast. Copyright © 2011 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Marumo, Yoshitaka; Katayama, Tsuyoshi
This study uses the energy flow method to analyze how structural flexibility affects the motorcycle wobble and weave modes. Lateral bending of the front fork and torsion of the main frame affect the wobble mode stability. These are based on the gyroscopic effect of the front wheel in the steering motion by considering structural flexibility. At high speeds, lateral bending of the front fork and torsion of the rear swing arm more significantly affect the weave mode stability. These are primarily due to the phase changes of the external force generated by the yaw rate in the lateral motion. The phase change of the yaw rate force in the lateral motion originates from the phase change of the tire side forces.
Carrier-envelope phase-stabilized attosecond pulses from asymmetric molecules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lan Pengfei; Lu Peixiang; Cao Wei
2007-08-15
High-order harmonic generation from asymmetric molecules is investigated, and the concept of phase-stabilized infrared ultrashort laser pulses is extended to the extreme ultraviolet regime. It is shown that the ionization symmetry in consecutive half optical cycles is broken for asymmetric molecules, and both even and odd harmonics with comparable intensity are produced. In the time domain, only one attosecond pulse is generated in each cycle of the driving field, and the carrier-envelope phases of the attosecond pulses are equal. Consequently, a clean attosecond pulse train with the same carrier-envelope phase from pulse to pulse is obtained in the extreme ultravioletmore » regime.« less
Droux, S; Roy, M; Félix, G
2014-10-01
We report here the study of the stability under subcritical water conditions of one of the most popular polysaccharide chiral stationary phase (CSP): Chiralcel OD. This CSP was used under high temperature and reversed phase conditions with acetonitrile and 2-propanol as modifier, respectively. The evolution of selectivity and resolution was investigated both in normal and reversed mode conditions with five racemates after packing, heating at 150 °C and separations of some racemic compounds under different high temperatures and mobile phase conditions. The results show that after using at high temperature and subcritical water conditions the selectivity was only moderately affected while the resolution fell dramatically especially in reversed mode due to the creation of a void at the head of the columns which reflects the dissolution of the silica matrix. Copyright © 2014 Elsevier B.V. All rights reserved.
A common-path phase-shift interferometry surface plasmon imaging system
NASA Astrophysics Data System (ADS)
Su, Y.-T.; Chen, Shean-Jen; Yeh, T.-L.
2005-03-01
A biosensing imaging system is proposed based on the integration of surface plasmon resonance (SPR) and common-path phase-shift interferometry (PSI) techniques to measure the two-dimensional spatial phase variation caused by biomolecular interactions upon a sensing chip. The SPR phase imaging system can offer high resolution and high-throughout screening capabilities to analyze microarray biomolecular interaction without the need for additional labeling. With the long-term stability advantage of the common-path PSI technique even with external disturbances such as mechanical vibration, buffer flow noise, and laser unstable issue, the system can match the demand of real-time kinetic study for biomolecular interaction analysis (BIA). The SPR-PSI imaging system has achieved a detection limit of 2×10-7 refraction index change, a long-term phase stability of 2.5x10-4π rms over four hours, and a spatial phase resolution of 10-3 π with a lateral resolution of 100μm.
Phase Restructuring in Transition Metal Dichalcogenides for Highly Stable Energy Storage.
Leng, Kai; Chen, Zhongxin; Zhao, Xiaoxu; Tang, Wei; Tian, Bingbing; Nai, Chang Tai; Zhou, Wu; Loh, Kian Ping
2016-09-28
Achieving homogeneous phase transition and uniform charge distribution is essential for good cycle stability and high capacity when phase conversion materials are used as electrodes. Herein, we show that chemical lithiation of bulk 2H-MoS 2 distorts its crystalline domains in three primary directions to produce mosaic-like 1T' nanocrystalline domains, which improve phase and charge uniformity during subsequent electrochemical phase conversion. 1T'-Li x MoS 2 , a macroscopic dense material with interconnected nanoscale grains, shows excellent cycle stability and rate capability in a lithium rechargeable battery compared to bulk or exfoliated-restacked MoS 2 . Transmission electron microscopy studies reveal that the interconnected MoS 2 nanocrystals created during the phase change process are reformable even after multiple cycles of galvanostatic charging/discharging, which allows them to play important roles in the long term cycling performance of the chemically intercalated TMD materials. These studies shed light on how bulk TMDs can be processed into quasi-2D nanophase material for stable energy storage.
Improved image reconstruction of low-resolution multichannel phase contrast angiography
P. Krishnan, Akshara; Joy, Ajin; Paul, Joseph Suresh
2016-01-01
Abstract. In low-resolution phase contrast magnetic resonance angiography, the maximum intensity projected channel images will be blurred with consequent loss of vascular details. The channel images are enhanced using a stabilized deblurring filter, applied to each channel prior to combining the individual channel images. The stabilized deblurring is obtained by the addition of a nonlocal regularization term to the reverse heat equation, referred to as nonlocally stabilized reverse diffusion filter. Unlike reverse diffusion filter, which is highly unstable and blows up noise, nonlocal stabilization enhances intensity projected parallel images uniformly. Application to multichannel vessel enhancement is illustrated using both volunteer data and simulated multichannel angiograms. Robustness of the filter applied to volunteer datasets is shown using statistically validated improvement in flow quantification. Improved performance in terms of preserving vascular structures and phased array reconstruction in both simulated and real data is demonstrated using structureness measure and contrast ratio. PMID:26835501
Zhang, Hemin; Tsuchiya, Takashi; Liang, Changhao; Terabe, Kazuya
2015-08-12
Nanoscaled ionic conductors are crucial for future nanodevices. A well-known ionic conductor, AgI, exhibited conductivity greater than 1 Ω(-1) cm(-1) in α-phase and transformed into poorly conducting β-/γ-phase below 147 °C, thereby limiting applications. Here, we report that transition temperatures both from the β-/γ- to α-phase (Tc↑) and the α- to β-/γ-phase (Tc↓) are tuned by AgI/Ag heteronanowires embedded in anodic aluminum oxide (AAO) membranes with 10-30 nm pores. Tc↑ and Tc↓ shift to correspondingly higher and lower temperature as pore size decreases, generating a progressively enlarged thermal hysteresis. Tc↑ and Tc↓ specifically achieve 185 and 52 °C in 10 nm pores, and the final survived conductivity reaches ∼8.3 × 10(-3) Ω(-1) cm(-1) at room temperature. Moreover, the low-temperature stabilizing α-phase (down to 21 °C, the lowest in state of the art temperatures) is reproducible and survives further thermal cycling. The low-temperature phase stabilization and enhancement conductivity reported here suggest promising applications in silver-ion-based future nanodevices.
NASA Astrophysics Data System (ADS)
Aoki, Yuta; Saito, Susumu
2013-03-01
Titanium dioxide (TiO2) is one of the most representative photocatalytic materials and much attention is focused on understanding and improvement of its photocatalytic activity. At the same time, TiO2 is known to be a highly polymorphic material and as many as eleven crystal phases have been identified so far. It is expected that TiO2 show various photocatalytic properties depending on crystal phases. However, relative stabilities of these identified phases are still controversial. In order to clarify the thermodynamic phase stabilities of TiO2, we obtain the free energies of its several representative phases, rutile, anatase, brookite, and TiO2-II within the framework of the density-functional theory using the pseudopotential method. We calculate both the static energy and the contribution of phonons to the free energy through the quasiharmonic approximation for each phase. It is found that treatment of semicore electrons in constructing the pseudopotential of the Ti atom significantly affects the relative phase stabilities. From the phase diagram obtained, we find that the anatase phase is the most stable at lower temperature and pressure. We also discuss the thermodynamic effects on structural properties such as thermal expansion. We acknowledge the financial supports from the Global Center-of-Excellence Program by MEXT, Japan through the Nanoscience and Quantum Physics Project of Tokyo Institute of Technology, and the Elements Science and Technology Project by MEXT.
Rao, Vishal Govind; Banerjee, Chiranjib; Ghosh, Surajit; Mandal, Sarthak; Kuchlyan, Jagannath; Sarkar, Nilmoni
2013-06-20
Owing to their fascinating properties and wide range of potential applications, interest in nonaqueous microemulsions has escalated in the past decade. In the recent past, nonaqueous microemulsions containing ionic liquids (ILs) have been utilized in performing chemical reactions, preparation of nanomaterials, synthesis of nanostructured polymers, and drug delivery systems. The most promising fact about IL-in-oil microemulsions is their high thermal stability compared to that of aqueous microemulsions. Recently, surfactant-like properties of surface active ionic liquids (SAILs) have been used for preparation of microemulsions with high-temperature stability and temperature insensitivity. However, previously described methods present a limited possibility of developing IL-in-oil microemulsions with a wide range of thermal stability. With our previous work, we introduced a novel method of creating a huge number of IL-in-oil microemulsions (Rao, V. G.; Ghosh, S.; Ghatak, C.; Mandal, S.; Brahmachari, U.; Sarkar, N. J. Phys. Chem. B2012, 116, 2850-2855), composed of a SAIL as a surfactant, room-temperature ionic liquids as a polar phase, and benzene as a nonpolar phase. The use of benzene as a nonpolar solvent limits the application of the microemulsions to temperatures below 353 K. To overcome this limitation, we have synthesized N,N-dimethylethanolammonium 1,4-bis(2-ethylhexyl) sulfosuccinate (DAAOT), which was used as a surfactant. DAAOT in combination with isopropyl myristate (IPM, as an oil phase) and ILs (as a polar phase) produces a huge number of high-temperature stable IL-in-oil microemulsions. By far, this is the first report of a huge number of high-temperature stable IL-in-oil microemulsions. In particular, we demonstrate the wide range of thermal stability of [C6mim][TF2N]/DAAOT/IPM microemulsions by performing a phase behavior study, dynamic light scattering measurements, and (1)H NMR measurements and by using coumarin-480 (C-480) as a fluorescent probe molecule.
Nagase, Takeshi; Takeuchi, Akira; Amiya, Kenji; ...
2017-07-18
Here, the phase stability of high entropy alloy (HEA), Al 0.5TiZrPdCuNi, under fast electron irradiation was studied by in-situ high voltage electron microscopy (HVEM). The initial phase of this alloy quenched from the melt was dependent on cooling rate. At high cooling rates an amorphous phase was obtained, whereas a body-centered cubic ( b.c.c.) phase were obtained at low cooling rates. By thermal crystallization of the amorphous phase b.c.c. phase nano-crystals were formed. Upon fast electron irradiation solid state amorphization (SSA) was observed in b.c.c. phase regardless of the initial microstructure (i.e., “coarse crystalline structure” or “nano-crystalline structure with grainmore » boundaries as a sink for point defects”). SSA behavior in the Al 0.5TiZrPdCuNi HEAs was investigated by in-situ transmission electron microscopy observations. Because the amorphization is very rarely achieved in a solid solution phase under fast electron irradiation in common metallic materials, this result suggests that the Al 0.5TiZrPdCuNi HEA from other common alloys and the other HEAs. The differences in phase stability against the irradiation between the Al 0.5TiZrPdCuNi HEA and the other HEAs were discussed. This is the first experimental evidence of SSA in HEAs stimulated by fast electron irradiation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Applegate, Brian E.; Park, Jesung; Carbajal, Esteban
Phase-sensitive Optical Coherence Tomography (PhOCT) is an emerging tool for in vivo investigation of the vibratory function of the intact middle and inner ear. PhOCT is able to resolve micron scale tissue morphology in three dimensions as well as measure picometer scale motion at each spatial position. Most PhOCT systems to date have relied upon the phase stability offered by spectrometer detection. On the other hand swept laser source based PhOCT offers a number of advantages including balanced detection, long imaging depths, and high imaging speeds. Unfortunately the inherent phase instability of traditional swept laser sources has necessitated complex usermore » developed hardware/software solutions to restore phase sensitivity. Here we present recent results using a prototype swept laser that overcomes these issues. The akinetic swept laser is electronically tuned and precisely controls sweeps without any mechanical movement, which results in high phase stability. We have developed an optical fiber based PhOCT system around the akinetic laser source that had a 1550 nm center wavelength and a sweep rate of 140 kHz. The stability of the system was measured to be 4.4 pm with a calibrated reflector, thus demonstrating near shot noise limited performance. Using this PhOCT system, we have acquired structural and vibratory measurements of the middle ear in a mouse model, post mortem. The quality of the results suggest that the akinetic laser source is a superior laser source for PhOCT with many advantages that greatly reduces the required complexity of the imaging system.« less
Structure and Mechanical Properties of Al-Cu-Fe-X Alloys with Excellent Thermal Stability.
Školáková, Andrea; Novák, Pavel; Mejzlíková, Lucie; Průša, Filip; Salvetr, Pavel; Vojtěch, Dalibor
2017-11-05
In this work, the structure and mechanical properties of innovative Al-Cu-Fe based alloys were studied. We focused on preparation and characterization of rapidly solidified and hot extruded Al-Cu-Fe, Al-Cu-Fe-Ni and Al-Cu-Fe-Cr alloys. The content of transition metals affects mechanical properties and structure. For this reason, microstructure, phase composition, hardness and thermal stability have been investigated in this study. The results showed exceptional thermal stability of these alloys and very good values of mechanical properties. Alloying by chromium ensured the highest thermal stability, while nickel addition refined the structure of the consolidated alloy. High thermal stability of all tested alloys was described in context with the transformation of the quasicrystalline phases to other types of intermetallics.
Structure and Mechanical Properties of Al-Cu-Fe-X Alloys with Excellent Thermal Stability
Školáková, Andrea; Novák, Pavel; Mejzlíková, Lucie; Průša, Filip; Salvetr, Pavel; Vojtěch, Dalibor
2017-01-01
In this work, the structure and mechanical properties of innovative Al-Cu-Fe based alloys were studied. We focused on preparation and characterization of rapidly solidified and hot extruded Al-Cu-Fe, Al-Cu-Fe-Ni and Al-Cu-Fe-Cr alloys. The content of transition metals affects mechanical properties and structure. For this reason, microstructure, phase composition, hardness and thermal stability have been investigated in this study. The results showed exceptional thermal stability of these alloys and very good values of mechanical properties. Alloying by chromium ensured the highest thermal stability, while nickel addition refined the structure of the consolidated alloy. High thermal stability of all tested alloys was described in context with the transformation of the quasicrystalline phases to other types of intermetallics. PMID:29113096
NASA Astrophysics Data System (ADS)
Francillon, Wesley
This dissertation is an investigation of materials and processed under consideration for next generation thermal structural oxides with potential applications as thermal barrier coatings; wherein, high temperature stability and mechanical properties affect durability. Two notable next generation materials systems under investigation are pyrochlore and co-doped zirconia oxides. The motivation for this work is based on current limitations of the currently used thermal barrier material of yttria stabilized zirconia (YSZ) deposited by the plasma spray processes. The rapid quenching associated with the plasma spray process, results in a metastable structure that is a non-transformable tetragonal structure in the yttria partially stabilized zirconia system rather than the equilibrium anticipated two phase mixture of cubic and monoclinic phases. It has been shown that this metastable structure offers enhanced toughness and thus durability during thermomechanical cycling from the operating temperatures in excess of 1000C to ambient. However, the metastable oxides are susceptible to partitioning at temperatures greater than 1200C, thus resulting in a transformation of the tetragonal phase oxides. Transformations of the tetragonal prime phase into the parent cubic and tetragonal prime phase result in coating degradation. Several of the emerging oxides are based on rare earth additions to zirconia. However, there is limited information of the high temperature stability of these oxide coatings and more notably these compositions exhibit limited toughness for durable performance. A potential ternary composition based on the YSZ system that offers the ability to tailor the phase structure is based YO1.5-TiO2 -ZrO2. The ternary of YO1.5-TiO2-ZrO 2 has the current TBC composition of seven molar percent yttria stabilized zirconia, pyrochlore phase oxide and zirconia doped with yttria and titania additions (Ti-YSZ). The Ti-YSZ phase field is of interest because at equilibrium it is a single tetragonal phase. Thus, compositions are of single phase tetragonal phase, theoretically, should not undergo high temperature partitioning. Single Tetragonal phase oxides of Ti-YSZ also offer the possibility of enhanced toughness and higher temperature stability akin to those observed in yttria partially stabilized zirconia. Many pyrochlore oxides are under review because they have shown to have lower thermal conductivity than YSZ oxides. This study focused on chemically synthesizing homogeneous starting material compositions in a metastable state (preferably amorphous), following its evolution according to the phase hierarchy under conditions of kinetic constraints. The current equilibrium diagram of YO1.5-TiO2-ZrO 2 is based on theoretical calculations. One of the contributions of this work is the redefined phase fields in YO1.5-TiO2-ZrO 2 based on our experimental results. Investigated compositions were based on tie lines of Y2-xTi2ZrxO7+x/2 and Y2Ti2-yZryO7 representing substitution of Zr4+ for Y3+ and Zr4+ for Ti4+ respectively. More notably, we observed extended metastable phases in pyrochlore and fluorite oxides at low temperature. The significance of this result is that it offers a larger compositional range for investing pyrochlore oxides with associated high temperature phase stability for TBC applications. In tetragonal oxides, our results showed that Ti-YSZ results have slower partitioning kinetics in comparison to YSZ at high temperature. This study also emphasized the deposition of advanced ceramic coatings by plasma spray for tetragonal and pyrochlore systems, compositionally complex functional oxides that may potentially have lower thermal conductivity values compared to current YSZ oxides. Next generation thermal barrier coatings require powders with high chemical purity, chemical homogeneity, controlled particle size/shape and pertinent phase state. Thermal spray offers an avenue to create novel materials and deposits directly from the precursor and compositionally controlled powder feedstock. This study contributed to investigating an unexplored field that offers a variety of opportunities in materials synthesis that would not be possible by conventional methods. Understanding processing-microstructure-property correlations is of considerable importance in thermal spray of functional oxide materials. This thesis demonstrated by radio-frequency thermal spray that the complex pyrochlore oxide Y 2Ti2O7 could be deposited by directly injecting molecularly mixed precursors to form oxide coatings. Structural analysis revealed the metastable fluorite phase; however, with thermal treatments at relatively low temperature of 700°C the pyrochlore phase was obtained. For Ti-YSZ coatings, the tetragonal phase oxides were obtained with unique microstructures, however, the tetragonal prime destabilized at 1200°C. This dissertation explored novel oxide compositions through detailed structural analysis. The approach presented a comprehensive and integrated investigation as it pertains to phase evolution of oxides in powder feedstock to coating characteristics (phase/properties).
Stagno, Vincenzo; Bindi, Luca; Park, Changyong; ...
2015-11-20
Icosahedrite, the first natural quasicrystal with composition Al 63Cu 24Fe 13, was discovered in several grains of the Khatyrka meteorite, a unique CV3 carbonaceous chondrite. The presence in the meteorite fragments of icosahedrite strictly associated with high-pressure phases like ahrensite and stishovite indicates a formation conditions at high pressures and temperatures, likely during an impact-induced shock occurred in contact with the reducing solar nebula gas. In contrast, previous experimental studies on the stability of synthetic icosahedral AlCuFe, which were limited to ambient pressure, indicated incongruent melting at ~1123 K, while high-pressure experiments carried out at room temperature showed structural stabilitymore » up to about 35 GPa. These data are insufficient to experimentally constrain the formation and stability of icosahedrite under extreme conditions. Here we present the results of in situ high pressure experiments using diamond anvil cells of the compressional behavior of synthetic icosahedrite up to ~50 GPa at room temperature. Simultaneous high P-T experiments have been also carried out using both laser-heated diamond anvil cells combined with in situ synchrotron X-ray diffraction (at ~42 GPa) and multi-anvil apparatus (at 21 GPa) to investigate the structural evolution of icosahedral Al 63Cu 24Fe 13 and crystallization of possible coexisting phases. The results demonstrate that the quasiperiodic symmetry of icosahedrite is retained over the entire experimental pressure range explored. In addition, we show that pressure acts to stabilize the icosahedral symmetry at temperatures much higher than previously reported. Based on our experimental study, direct crystallization of Al-Cu-Fe quasicrystals from an unusual Al-Cu-rich melt would be possible but limited to a narrow temperature range beyond which crystalline phases would form, like those observed in the Khatyrka meteorite. Here, an alternative mechanism would consist in late formation of the quasicrystal after crystallization and solid-solid reaction of Al-rich phases. In both cases, linking our results with observations in nature, quasicrystals are expected to preserve their structure even after hypervelocity impacts that involve simultaneous high pressures and temperatures, thus proving their cosmic stability.« less
Peng, Biaolin; Zhang, Qi; Li, Xing; Sun, Tieyu; Fan, Huiqing; Ke, Shanming; Ye, Mao; Wang, Yu; Lu, Wei; Niu, Hanben; Zeng, Xierong; Huang, Haitao
2015-06-24
A highly textured (111)-oriented Pb0.8Ba0.2ZrO3 (PBZ) relaxor thin film with the coexistence of antiferroelectric (AFE) and ferroelectric (FE) phases was prepared on a Pt/TiOx/SiO2/Si(100) substrate by using a sol-gel method. A large recoverable energy storage density of 40.18 J/cm(3) along with an efficiency of 64.1% was achieved at room temperature. Over a wide temperature range of 250 K (from room temperature to 523 K), the variation of the energy density is within 5%, indicating a high thermal stability. The high energy storage performance was endowed by a large dielectric breakdown strength, great relaxor dispersion, highly textured orientation, and the coexistence of FE and AFE phases. The PBZ thin film is believed to be an attractive material for applications in energy storage systems over a wide temperature range.
Phase stability and magnetic behavior of FeCrCoNiGe high-entropy alloy
NASA Astrophysics Data System (ADS)
Huang, Shuo; Vida, Ádám; Molnár, Dávid; Kádas, Krisztina; Varga, Lajos Károly; Holmström, Erik; Vitos, Levente
2015-12-01
We report an alternative FeCrCoNiGe magnetic material based on FeCrCoNi high-entropy alloy with Curie point far below the room temperature. Investigations are done using first-principles calculations and key experimental measurements. Results show that the equimolar FeCrCoNiGe system is decomposed into a mixture of face-centered cubic and body-centered cubic solid solution phases. The increased stability of the ferromagnetic order in the as-cast FeCrCoNiGe composite, with measured Curie temperature of 640 K, is explained using the exchange interactions.
Multipurpose exciter with low phase noise
NASA Technical Reports Server (NTRS)
Conroy, B.; Le, D.
1989-01-01
Results of an effort to develop a lower-cost exciter with high stability, low phase noise, and controllable phase and frequency for use in Deep Space Network and Goldstone Solar System Radar applications are discussed. Included is a discussion of the basic concept, test results, plans, and concerns.
High stability buffered phase comparator
NASA Technical Reports Server (NTRS)
Adams, W. A.; Reinhardt, V. S. (Inventor)
1984-01-01
A low noise RF signal phase comparator comprised of two high stability driver buffer amplifiers driving a double balanced mixer which operate to generate a beat frequency between the two RF input signals coupled to the amplifiers from the RF sources is described. The beat frequency output from the mixer is applied to a low noise zero crossing detector which is the phase difference between the two RF inputs. Temperature stability is provided by mounting the amplifiers and mixer on a common circuit board with the active circuit elements located on one side of a circuit board and the passive circuit elements located on the opposite side. A common heat sink is located adjacent the circuit board. The active circuit elements are embedded into the bores of the heat sink which slows the effect of ambient temperature changes and reduces the temperature gradients between the active circuit elements, thus improving the cancellation of temperature effects. The two amplifiers include individual voltage regulators, which increases RF isolation.
Phase relations in the Fe-Ni-Cr-S system and the sulfidation of an austenitic stainless steel
NASA Technical Reports Server (NTRS)
Jacob, K. T.; Rao, D. B.; Nelson, H. G.
1977-01-01
The stability fields of various sulfide phases that form on Fe-Cr, Fe-Ni, Ni-Cr and Fe-Cr-Ni alloys were developed as a function of temperature and the partial pressure of sulfur. The calculated stability fields in the ternary system were displayed on plots of log P sub S sub 2 versus the conjugate extensive variable which provides a better framework for following the sulfidation of Fe-Cr-Ni alloys at high temperatures. Experimental and estimated thermodynamic data were used in developing the sulfur potential diagrams. Current models and correlations were employed to estimate the unknown thermodynamic behavior of solid solutions of sulfides and to supplement the incomplete phase diagram data of geophysical literature. These constructed stability field diagrams were in excellent agreement with the sulfide phases and compositions determined during a sulfidation experiment.
Design of a fiber-optic transmitter for microwave analog transmission with high phase stability
NASA Technical Reports Server (NTRS)
Logan, R. T., Jr.; Lutes, G. F.; Primas, L. E.; Maleki, L.
1990-01-01
The principal considerations in the design of fiber-optic transmitters for highly phase-stable radio frequency and microwave analog transmission are discussed. Criteria for a fiber-optic transmitter design with improved amplitude and phase-noise performance are developed through consideration of factors affecting the phase noise, including low-frequency laser-bias supply noise, the magnitude and proximity of external reflections into the laser, and temperature excursions of the laser-transmitter package.
High-pressure orthorhombic ferromagnesite as a potential deep-mantle carbon carrier
Liu, Jin; Lin, Jung -Fu; Prakapenka, Vitali B.
2015-01-06
In this study, knowledge of the physical and chemical properties of candidate deep-carbon carriers such as ferromagnesite [(Mg,Fe)CO 3] at high pressure and temperature of the deep mantle is necessary for our understanding of deep-carbon storage as well as the global carbon cycle of the planet. Previous studies have reported very different scenarios for the (Mg,Fe)CO 3 system at deep-mantle conditions including the chemical dissociation to (Mg,Fe)O+CO 2, the occurrence of the tetrahedrally-coordinated carbonates based on CO 4 structural units, and various high-pressure phase transitions. Here we have studied the phase stability and compressional behavior of (Mg,Fe)CO 3 carbonates upmore » to relevant lower-mantle conditions of approximately 120 GPa and 2400 K. Our experimental results show that the rhombohedral siderite (Phase I) transforms to an orthorhombic phase (Phase II with Pmm2 space group) at approximately 50 GPa and 1400 K. The structural transition is likely driven by the spin transition of iron accompanied by a volume collapse in the Fe-rich (Mg,Fe)CO 3 phases; the spin transition stabilizes the high-pressure phase II at much lower pressure conditions than its Mg-rich counterpart. It is conceivable that the low-spin ferromagnesite phase II becomes a major deep-carbon carrier at the deeper parts of the lower mantle below 1900 km in depth.« less
FPGA-Based Optical Cavity Phase Stabilization for Coherent Pulse Stacking
Xu, Yilun; Wilcox, Russell; Byrd, John; ...
2017-11-20
Coherent pulse stacking (CPS) is a new time-domain coherent addition technique that stacks several optical pulses into a single output pulse, enabling high pulse energy from fiber lasers. We develop a robust, scalable, and distributed digital control system with firmware and software integration for algorithms, to support the CPS application. We model CPS as a digital filter in the Z domain and implement a pulse-pattern-based cavity phase detection algorithm on an field-programmable gate array (FPGA). A two-stage (2+1 cavities) 15-pulse stacking system achieves an 11.0 peak-power enhancement factor. Each optical cavity is fed back at 1.5kHz, and stabilized at anmore » individually-prescribed round-trip phase with 0.7deg and 2.1deg rms phase errors for Stages 1 and 2, respectively. Optical cavity phase control with nanometer accuracy ensures 1.2% intensity stability of the stacked pulse over 12 h. The FPGA-based feedback control system can be scaled to large numbers of optical cavities.« less
FPGA-Based Optical Cavity Phase Stabilization for Coherent Pulse Stacking
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Yilun; Wilcox, Russell; Byrd, John
Coherent pulse stacking (CPS) is a new time-domain coherent addition technique that stacks several optical pulses into a single output pulse, enabling high pulse energy from fiber lasers. We develop a robust, scalable, and distributed digital control system with firmware and software integration for algorithms, to support the CPS application. We model CPS as a digital filter in the Z domain and implement a pulse-pattern-based cavity phase detection algorithm on an field-programmable gate array (FPGA). A two-stage (2+1 cavities) 15-pulse stacking system achieves an 11.0 peak-power enhancement factor. Each optical cavity is fed back at 1.5kHz, and stabilized at anmore » individually-prescribed round-trip phase with 0.7deg and 2.1deg rms phase errors for Stages 1 and 2, respectively. Optical cavity phase control with nanometer accuracy ensures 1.2% intensity stability of the stacked pulse over 12 h. The FPGA-based feedback control system can be scaled to large numbers of optical cavities.« less
First principles study of surface stability and segregation of PdRuRh ternary metal alloy system
NASA Astrophysics Data System (ADS)
Aspera, Susan Meñez; Arevalo, Ryan Lacdao; Nakanishi, Hiroshi; Kasai, Hideaki
2018-05-01
The recognized importance on the studies of alloyed materials is due to the high possibility of forming designer materials that caters to different applications. In any reaction and application, the stability and configuration of the alloy combination are important. In this study, we analyzed the surface stability and segregation of ternary metal alloy system PdRuRh through first principles calculation using density functional theory (DFT). We considered the possibility of forming phases as observed in the binary combinations of elements, i.e., completely miscible, and separating phases. With that, the model we analyzed for the ternary metal alloy slabs considers forming complete atomic miscibility, segregation of each component, and segregation of one component with mixing of the two other. Our results show that for the ternary combination of Pd, Rh and Ru, the Pd atoms have high tendency to segregate at the surface, while due to the high tendency of Ru and Rh to mix, core formation of a mixed RuRh is possible. Also, we determined that the trend of stability in the binary alloy system is a good determinant of stability in the ternary alloy system.
NASA Astrophysics Data System (ADS)
Li, Qi-Lian; Cui, Xiang-Zhong; Li, Shu-Qing; Yang, Wei-Hua; Wang, Chun; Cao, Qian
2015-01-01
Scandia, gadolinia, and ytterbia co-doped zirconia (SGYZ) ceramic powder was synthesized by chemical co-precipitation and calcination processes for application in thermal barrier coatings to promote the durability of gas turbines. The ceramic powder was agglomerated and sintered at 1150 °C for 2 h, and the powder exhibited good flowability and apparent density to be suitable for plasma spraying process. The microstructure, morphology and phase stability of the powder and plasma-sprayed SGYZ coatings were analyzed by means of scanning electron microscope and x-ray diffraction. Thermal conductivity of plasma-sprayed SGYZ coatings was measured. The results indicated that the SGYZ ceramic powder and the coating exhibit excellent stability to retain single non-transformable tetragonal zirconia even after high temperature (1400 °C) exposure for 500 h and do not undergo a tetragonal-to-monoclinic phase transition upon cooling. Furthermore, the plasma-sprayed SGYZ coating also exhibits lower thermal conductivity than yttria stabilized zirconia coating currently used in gas turbine engine industry. SGYZ can be explored as a candidate material of ultra-high temperature thermal barrier coating for advanced gas turbine engines.
Epitaxial stabilization and phase instability of VO2 polymorphs
NASA Astrophysics Data System (ADS)
Lee, Shinbuhm; Ivanov, Ilia N.; Keum, Jong K.; Lee, Ho Nyung
2016-01-01
The VO2 polymorphs, i.e., VO2(A), VO2(B), VO2(M1) and VO2(R), have a wide spectrum of functionalities useful for many potential applications in information and energy technologies. However, synthesis of phase pure materials, especially in thin film forms, has been a challenging task due to the fact that the VO2 polymorphs are closely related to each other in a thermodynamic framework. Here, we report epitaxial stabilization of the VO2 polymorphs to synthesize high quality single crystalline thin films and study the phase stability of these metastable materials. We selectively deposit all the phases on various perovskite substrates with different crystallographic orientations. By investigating the phase instability, phonon modes and transport behaviours, not only do we find distinctively contrasting physical properties of the VO2 polymorphs, but that the polymorphs can be on the verge of phase transitions when heated as low as ~400 °C. Our successful epitaxy of both VO2(A) and VO2(B) phases, which are rarely studied due to the lack of phase pure materials, will open the door to the fundamental studies of VO2 polymorphs for potential applications in advanced electronic and energy devices.
Epitaxial stabilization and phase instability of VO2 polymorphs.
Lee, Shinbuhm; Ivanov, Ilia N; Keum, Jong K; Lee, Ho Nyung
2016-01-20
The VO2 polymorphs, i.e., VO2(A), VO2(B), VO2(M1) and VO2(R), have a wide spectrum of functionalities useful for many potential applications in information and energy technologies. However, synthesis of phase pure materials, especially in thin film forms, has been a challenging task due to the fact that the VO2 polymorphs are closely related to each other in a thermodynamic framework. Here, we report epitaxial stabilization of the VO2 polymorphs to synthesize high quality single crystalline thin films and study the phase stability of these metastable materials. We selectively deposit all the phases on various perovskite substrates with different crystallographic orientations. By investigating the phase instability, phonon modes and transport behaviours, not only do we find distinctively contrasting physical properties of the VO2 polymorphs, but that the polymorphs can be on the verge of phase transitions when heated as low as ~400 °C. Our successful epitaxy of both VO2(A) and VO2(B) phases, which are rarely studied due to the lack of phase pure materials, will open the door to the fundamental studies of VO2 polymorphs for potential applications in advanced electronic and energy devices.
Epitaxial stabilization and phase instability of VO2 polymorphs
Lee, Shinbuhm; Ivanov, Ilia N.; Keum, Jong K.; Lee, Ho Nyung
2016-01-01
The VO2 polymorphs, i.e., VO2(A), VO2(B), VO2(M1) and VO2(R), have a wide spectrum of functionalities useful for many potential applications in information and energy technologies. However, synthesis of phase pure materials, especially in thin film forms, has been a challenging task due to the fact that the VO2 polymorphs are closely related to each other in a thermodynamic framework. Here, we report epitaxial stabilization of the VO2 polymorphs to synthesize high quality single crystalline thin films and study the phase stability of these metastable materials. We selectively deposit all the phases on various perovskite substrates with different crystallographic orientations. By investigating the phase instability, phonon modes and transport behaviours, not only do we find distinctively contrasting physical properties of the VO2 polymorphs, but that the polymorphs can be on the verge of phase transitions when heated as low as ~400 °C. Our successful epitaxy of both VO2(A) and VO2(B) phases, which are rarely studied due to the lack of phase pure materials, will open the door to the fundamental studies of VO2 polymorphs for potential applications in advanced electronic and energy devices. PMID:26787259
Yang, Cheng-Xiong; Liu, Chang; Cao, Yi-Meng; Yan, Xiu-Ping
2015-08-07
A simple and facile room-temperature solution-phase synthesis was developed to fabricate a spherical covalent organic framework with large surface area, good solvent stability and high thermostability for high-resolution chromatographic separation of diverse important industrial analytes including alkanes, cyclohexane and benzene, α-pinene and β-pinene, and alcohols with high column efficiency and good precision.
Structural stability of coplanar 1T-2H superlattice MoS2 under high energy electron beam.
Reshmi, S; Akshaya, M V; Satpati, Biswarup; Basu, Palash Kumar; Bhattacharjee, K
2018-05-18
Coplanar heterojunctions composed of van der Waals layered materials with different structural polymorphs have drawn immense interest recently due to low contact resistance and high carrier injection rate owing to low Schottky barrier height. Present research has largely focused on efficient exfoliation of these layered materials and their restacking to achieve better performances. We present here a microwave assisted easy, fast and efficient route to induce high concentration of metallic 1T phase in the original 2H matrix of exfoliated MoS 2 layers and thus facilitating the formation of a 1T-2H coplanar superlattice phase. High resolution transmission electron microscopy (HRTEM) investigations reveal formation of highly crystalline 1T-2H hybridized structure with sharp interface and disclose the evidence of surface ripplocations within the same exfoliated layer of MoS 2 . In this work, the structural stability of 1T-2H superlattice phase during HRTEM measurements under an electron beam of energy 300 keV is reported. This structural stability could be either associated to the change in electronic configuration due to induction of the restacked hybridized phase with 1T- and 2H-regions or to the formation of the surface ripplocations. Surface ripplocations can act as an additional source of scattering centers to the electron beam and also it is possible that a pulse train of propagating ripplocations can sweep out the defects via interaction from specific areas of MoS 2 sheets.
Structural stability of coplanar 1T-2H superlattice MoS2 under high energy electron beam
NASA Astrophysics Data System (ADS)
Reshmi, S.; Akshaya, M. V.; Satpati, Biswarup; Basu, Palash Kumar; Bhattacharjee, K.
2018-05-01
Coplanar heterojunctions composed of van der Waals layered materials with different structural polymorphs have drawn immense interest recently due to low contact resistance and high carrier injection rate owing to low Schottky barrier height. Present research has largely focused on efficient exfoliation of these layered materials and their restacking to achieve better performances. We present here a microwave assisted easy, fast and efficient route to induce high concentration of metallic 1T phase in the original 2H matrix of exfoliated MoS2 layers and thus facilitating the formation of a 1T-2H coplanar superlattice phase. High resolution transmission electron microscopy (HRTEM) investigations reveal formation of highly crystalline 1T-2H hybridized structure with sharp interface and disclose the evidence of surface ripplocations within the same exfoliated layer of MoS2. In this work, the structural stability of 1T-2H superlattice phase during HRTEM measurements under an electron beam of energy 300 keV is reported. This structural stability could be either associated to the change in electronic configuration due to induction of the restacked hybridized phase with 1T- and 2H-regions or to the formation of the surface ripplocations. Surface ripplocations can act as an additional source of scattering centers to the electron beam and also it is possible that a pulse train of propagating ripplocations can sweep out the defects via interaction from specific areas of MoS2 sheets.
Compact and highly stable quantum dots through optimized aqueous phase transfer
NASA Astrophysics Data System (ADS)
Tamang, Sudarsan; Beaune, Grégory; Poillot, Cathy; De Waard, Michel; Texier-Nogues, Isabelle; Reiss, Peter
2011-03-01
A large number of different approaches for the aqueous phase transfer of quantum dots have been proposed. Surface ligand exchange with small hydrophilic thiols, such as L-cysteine, yields the lowest particle hydrodynamic diameter. However, cysteine is prone to dimer formation, which limits colloidal stability. We demonstrate that precise pH control during aqueous phase transfer dramatically increases the colloidal stability of InP/ZnS quantum dots. Various bifunctional thiols have been applied. The formation of disulfides, strongly diminishing the fluorescence QY has been prevented through addition of appropriate reducing agents. Bright InP/ZnS quantum dots with a hydrodynamic diameter <10 nm and long-term stability have been obtained. Finally we present in vitro studies of the quantum dots functionalized with the cell-penetrating peptide maurocalcine.
Non-equilibrium phase stabilization versus bubble nucleation at a nanoscale-curved Interface
NASA Astrophysics Data System (ADS)
Schiffbauer, Jarrod; Luo, Tengfei
Using continuum dynamic van der Waals theory in a radial 1D geometry with a Lennard-Jones fluid model, we investigate the nature of vapor bubble nucleation near a heated, nanoscale-curved convex interface. Vapor bubble nucleation and growth are observed for interfaces with sufficiently large radius of curvature while phase stabilization of a superheated fluid layer occurs at interfaces with smaller radius. The hypothesis that the high Laplace pressure required for stable equilibrium of very small bubbles is responsible for phase stability is tested by effectively varying the parameter which controls liquid-vapor surface tension. In doing so, the liquid-vapor surface tension- hence Laplace pressure-is shown to have limited effect on phase stabilization vs. bubble nucleation. However, the strong dependence of nucleation on leading-order momentum transport, i.e. viscous dissipation, near the heated inner surface is demonstrated. We gratefully acknowledge ND Energy for support through the ND Energy Postdoctoral Fellowship program and the Army Research Office, Grant No. W911NF-16-1-0267, managed by Dr. Chakrapani Venanasi.
Experimental investigation of condensation predictions for dust-enriched systems
NASA Astrophysics Data System (ADS)
Ustunisik, Gokce; Ebel, Denton S.; Walker, David; Boesenberg, Joseph S.
2014-10-01
Condensation models describe the equilibrium distribution of elements between coexisting phases (mineral solid solutions, silicate liquid, and vapor) in a closed chemical system, where the vapor phase is always present, using equations of state of the phases involved at a fixed total pressure (<1 bar) and temperature (T). The VAPORS code uses a CaO-MgO-Al2O3-SiO2 (CMAS) liquid model at T above the stability field of olivine, and the MELTS thermodynamics algorithm at lower T. Quenched high-T crystal + liquid assemblages are preserved in meteorites as Type B Ca-, Al-rich inclusions (CAIs), and olivine-rich ferromagnesian chondrules. Experimental tests of compositional regions within 100 K of the predicted T of olivine stability may clarify the nature of the phases present, the phase boundaries, and the partition of trace elements among these phases. Twenty-three Pt-loop equilibrium experiments in seven phase fields on twelve bulk compositions at specific T and dust enrichment factors tested the predicted stability fields of forsteritic olivine (Mg2SiO4), enstatite (MgSiO3), Cr-bearing spinel (MgAl2O4), perovskite (CaTiO3), melilite (Ca2Al2SiO7-Ca2Mg2Si2O7) and/or grossite (CaAl4O7) crystallizing from liquid. Experimental results for forsterite, enstatite, and grossite are in very good agreement with predictions, both in chemistry and phase abundances. On the other hand the stability of spinel with olivine, and stability of perovskite and gehlenite are quite different from predictions. Perovskite is absent in all experiments. Even at low oxygen fugacity (IW-3.4), the most TiO2-rich experiments do not crystallize Al-, Ti-bearing calcic pyroxene. The stability of spinel and olivine together is limited to a smaller phase field than is predicted. The melilite stability field is much larger than predicted, indicating a deficiency of current liquid or melilite activity models. In that respect, these experiments contribute to improving the data for calibrating thermodynamic models including MELTS.
Swarnkar, Abhishek; Marshall, Ashley R.; Sanehira, Erin M.; ...
2016-10-07
Here, we show nanoscale phase stabilization of CsPbI 3 quantum dots (QDs) to low temperatures that can be used as the active component of efficient optoelectronic devices. CsPbI 3 is an all-inorganic analog to the hybrid organic cation halide perovskites, but the cubic phase of bulk CsPbI3 (..alpha..-CsPbI 3) -- the variant with desirable band gap -- is only stable at high temperatures. We also describe the formation of ..alpha..-CsPbI 3 QD films that are phase-stable for months in ambient air. The films exhibit long-range electronic transport and were used to fabricate colloidal perovskite QD photovoltaic cells with an open-circuitmore » voltage of 1.23 volts and efficiency of 10.77%. Furthermore, these devices function as light-emitting diodes with low turn-on voltage and tunable emission.« less
Cell Cycle Regulates Nuclear Stability of AID and Determines the Cellular Response to AID
Le, Quy; Maizels, Nancy
2015-01-01
AID (Activation Induced Deaminase) deaminates cytosines in DNA to initiate immunoglobulin gene diversification and to reprogram CpG methylation in early development. AID is potentially highly mutagenic, and it causes genomic instability evident as translocations in B cell malignancies. Here we show that AID is cell cycle regulated. By high content screening microscopy, we demonstrate that AID undergoes nuclear degradation more slowly in G1 phase than in S or G2-M phase, and that mutations that affect regulatory phosphorylation or catalytic activity can alter AID stability and abundance. We directly test the role of cell cycle regulation by fusing AID to tags that destabilize nuclear protein outside of G1 or S-G2/M phases. We show that enforced nuclear localization of AID in G1 phase accelerates somatic hypermutation and class switch recombination, and is well-tolerated; while nuclear AID compromises viability in S-G2/M phase cells. We identify AID derivatives that accelerate somatic hypermutation with minimal impact on viability, which will be useful tools for engineering genes and proteins by iterative mutagenesis and selection. Our results further suggest that use of cell cycle tags to regulate nuclear stability may be generally applicable to studying DNA repair and to engineering the genome. PMID:26355458
Wu, Weihua; Chen, Shiyu; Zhai, Jiwei; Liu, Xinyi; Lai, Tianshu; Song, Sannian; Song, Zhitang
2017-10-06
Superlattice-like Ge 50 Te 50 /Ge 8 Sb 92 (SLL GT/GS) thin film was systematically investigated for multi-level storage and ultra-fast switching phase-change memory application. In situ resistance measurement indicates that SLL GT/GS thin film exhibits two distinct resistance steps with elevated temperature. The thermal stability of the amorphous state and intermediate state were evaluated with the Kissinger and Arrhenius plots. The phase-structure evolution revealed that the amorphous SLL GT/GS thin film crystallized into rhombohedral Sb phase first, then the rhombohedral GeTe phase. The microstructure, layered structure, and interface stability of SLL GT/GS thin film was confirmed by using transmission electron microscopy. The transition speed of crystallization and amorphization was measured by the picosecond laser pump-probe system. The volume variation during the crystallization was obtained from x-ray reflectivity. Phase-change memory (PCM) cells based on SLL GT/GS thin film were fabricated to verify the multi-level switching under an electrical pulse as short as 30 ns. These results illustrate that the SLL GT/GS thin film has great potentiality in high-density and high-speed PCM applications.
NASA Astrophysics Data System (ADS)
Wu, Lang; Xiao, Jizong; Wang, Xin; Teng, Yuancheng; Li, Yuxiang; Liao, Qilong
2018-01-01
The crystalline phase, microstructure, and aqueous stability of zirconolite-barium borosilicate glass-ceramics with different content (0-30 wt %) of simulated sulfate bearing high-level liquid waste (HLLW) were evaluated. The sulfate phase segregation in vitrification process was also investigated. The results show that the glass-ceramics with 0-20 wt% of HLLW possess mainly zirconolite phase along with a small amount baddeleyite phase. The amount of perovskite crystals increases while the amount of zirconolite crystals decreases when the HLLW content increases from 20 to 30 wt%. For the samples with 20-30 wt% HLLW, yellow phase was observed during the vitrification process and it disappeared after melting at 1150 °C for 2 h. The viscosity of the sample with 16 wt% HLLW (HLLW-16) is about 27 dPa·s at 1150 °C. The addition of a certain amount (≤20 wt %) of HLLW has no significant change on the aqueous stability of glass-ceramic waste forms. After 28 days, the 90 °C PCT-type normalized leaching rates of Na, B, Si, and La of the sample HLLW-16 are 7.23 × 10-3, 1.57 × 10-3, 8.06 × 10-4, and 1.23 × 10-4 g·m-2·d-1, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sandhu, Arvinder S.; Gagnon, Etienne; Paul, Ariel
2006-12-15
We present evidence for a new regime of high-harmonic generation in a waveguide where bright, sub-optical-cycle, quasimonochromatic, extreme ultraviolet (EUV) light is generated via a mechanism that is relatively insensitive to carrier-envelope phase fluctuations. The interplay between the transient plasma which determines the phase matching conditions and the instantaneous laser intensity which drives harmonic generation gives rise to a new nonlinear stabilization mechanism in the waveguide, localizing the phase-matched EUV emission to within sub-optical-cycle duration. The sub-optical-cycle EUV emission generated by this mechanism can also be selectively optimized in the spectral domain by simple tuning of parameters.
Phenomenology of Polymorphism, III: p, TDiagram and Stability of Piracetam Polymorphs
NASA Astrophysics Data System (ADS)
Céolin, R.; Agafonov, V.; Louër, D.; Dzyabchenko, V. A.; Toscani, S.; Cense, J. M.
1996-02-01
The nootropic drug Piracetam is known to crystallize in three phases. In order to obtain their stability hierarchy from sublimation pressure inequalities, the drawing of a topologicalp,Tdiagram was attempted. For such a purpose and also for quality control, crystallographic and thermodynamic data were required. Powder X-ray diffractometry (XRD) and differential scanning calorimetry (DSC) were used. Molecular energy calculations were performed. Phase I melts at 426 K (ΔfusH(I) = +180 J·g-1). Phase II transforms into Phase I at 399 K (Δ(II→I)H= +24 J·g-1). Phase III transforms into phase I at 392 K (Δ(III→I)H= +28 J·g-1) or melts at 412 K (ΔfusH(III) = +210 J·g-1). Thep,Tdiagram shows that phase I is stable at higher temperature and phase II at lower temperature, like phase III, which is stable under high pressure. At room temperature, phase II is the more stable form, and phase I the less stable one. This agrees with the spontaneous I → II transformation observed at 298 K within a few hours, and with lattice energies, calculated previously. Molecular energy calculations and crystal structure comparison show how intermolecular hydrogen bonds and H-bonded dimers, in phases II and III, may stabilize conformations higher in energy than those of the isolated molecule and of phase I.
Anomalous perovskite PbRuO3 stabilized under high pressure
Cheng, J.-G.; Kweon, K. E.; Zhou, J.-S.; Alonso, J. A.; Kong, P.-P.; Liu, Y.; Jin, Changqing; Wu, Junjie; Lin, Jung-Fu; Larregola, S. A.; Yang, Wenge; Shen, Guoyin; MacDonald, A. H.; Manthiram, Arumugam; Hwang, G. S.; Goodenough, John B.
2013-01-01
Perovskite oxides ABO3 are important materials used as components in electronic devices. The highly compact crystal structure consists of a framework of corner-shared BO6 octahedra enclosing the A-site cations. Because of these structural features, forming a strong bond between A and B cations is highly unlikely and has not been reported in the literature. Here we report a pressure-induced first-order transition in PbRuO3 from a common orthorhombic phase (Pbnm) to an orthorhombic phase (Pbn21) at 32 GPa by using synchrotron X-ray diffraction. This transition has been further verified with resistivity measurements and Raman spectra under high pressure. In contrast to most well-studied perovskites under high pressure, the Pbn21 phase of PbRuO3 stabilized at high pressure is a polar perovskite. More interestingly, the Pbn21 phase has the most distorted octahedra and a shortest Pb—Ru bond length relative to the average Pb—Ru bond length that has ever been reported in a perovskite structure. We have also simulated the behavior of the PbRuO3 perovskite under high pressure by first principles calculations. The calculated critical pressure for the phase transition and evolution of lattice parameters under pressure match the experimental results quantitatively. Our calculations also reveal that the hybridization between a Ru:t2g orbital and an sp hybrid on Pb increases dramatically in the Pbnm phase under pressure. This pressure-induced change destabilizes the Pbnm phase to give a phase transition to the Pbn21 phase where electrons in the overlapping orbitals form bonding and antibonding states along the shortest Ru—Pb direction at P > Pc. PMID:24277807
Ali, Muthana; McCoy, Thomas M; McKinnon, Ian R; Majumder, Mainak; Tabor, Rico F
2017-05-31
Graphene oxide/polystyrene (GO/PS) nanocomposite capsules containing a two-compartment cargo have been successfully fabricated using a Pickering emulsion strategy. Highly purified GO sheets with typically micrometer-scale lateral dimensions and amphiphilic characteristics were prepared from the oxidation reaction of graphite with concomitant exfoliation of the graphite structure. These GO sheets were employed as a stabilizer for oil-in-water emulsions where the oil phase comprised toluene or olive oil. The stability and morphology of the emulsions were extensively studied as a function of different parameters including GO concentration, aqueous phase pH, ultrasonication time, effects of added electrolytes and stability to dilution. In selected conditions, the olive oil emulsions showed spontaneous formation of multiple w/o/w emulsions with high stability, whereas toluene formed simple o/w emulsions of lower overall stability. Olive oil emulsions were therefore used to prepare capsules templated from emulsion droplets by surrounding the oil phase with a GO/PS shell. The GO sheets, emulsions and composite capsules were characterized using a variety of physical and spectroscopic techniques in order to unravel the interactions responsible for capsule formation. The ability of the capsules to control the release of a model active agent in the form of a hydrophilic dye was explored, and release kinetics were monitored using UV-visible spectroscopy to obtain rate parameters. The composite capsules showed promising sustained release properties, with release rates 11× lower than the precursor GO-stabilized multiple emulsion droplets.
Vortex spin-torque oscillator stabilized by phase locked loop using integrated circuits
NASA Astrophysics Data System (ADS)
Kreissig, Martin; Lebrun, R.; Protze, F.; Merazzo-Jaimes, K.; Hem, J.; Vila, L.; Ferreira, R.; Cyrille, M.-C.; Ellinger, F.; Cros, V.; Ebels, U.; Bortolotti, P.
2017-05-01
Spin-torque nano-oscillators (STO) are candidates for the next technological implementation of spintronic devices in commercial electronic systems. For use in microwave applications, improving the noise figures by efficient control of their phase dynamics is a mandatory requirement. In order to achieve this, we developed a compact phase locked loop (PLL) based on custom integrated circuits (ICs) and demonstrate that it represents an efficient way to reduce the phase noise level of a vortex based STO. The advantage of our approach to phase stabilize STOs is that our compact system is highly reconfigurable e.g. in terms of the frequency divider ratio N, RF gain and loop gain. This makes it robust against device to device variations and at the same time compatible with a large range of STOs. Moreover, by taking advantage of the natural highly non-isochronous nature of the STO, the STO frequency can be easily controlled by e.g. changing the divider ratio N.
On-target diagnosing of few-cycle pulses by high-order-harmonic generation
NASA Astrophysics Data System (ADS)
Brambila, Danilo S.; Husakou, Anton; Ivanov, Misha; Zhavoronkov, Nickolai
2017-12-01
We propose an approach to determine the residual phase distortion directly in the interaction region of few-cycle laser radiation with a gaseous target. We describe how the spectra of the generated high harmonics measured as a function of externally introduced dispersion into the driving few-cycle laser pulse can be used to decode small amounts of second- and third-order spectral phase, including the sign. The diagnosis is based on the analysis of several key features in the high-harmonic spectrum: the depth of spectral modulation, the position of the cutoff, and the symmetry of the spectrum with respect to the introduced dispersion. The approach is applicable to pulses without carrier-envelope phase (CEP) stabilization. Surprisingly, we find that for nearly-single-cycle pulses with nonstabilized CEP, deep spectral modulations in the harmonic spectra emerge for positively rather than negatively chirped pulses, in contrast to the case of CEP-stabilized pulses.
The A-B transition in superfluid helium-3 under confinement in a thin slab geometry
Zhelev, N.; Abhilash, T. S.; Smith, E. N.; Bennett, R. G.; Rojas, X.; Levitin, L.; Saunders, J.; Parpia, J. M.
2017-01-01
The influence of confinement on the phases of superfluid helium-3 is studied using the torsional pendulum method. We focus on the transition between the A and B phases, where the A phase is stabilized by confinement and a spatially modulated stripe phase is predicted at the A–B phase boundary. Here we discuss results from superfluid helium-3 contained in a single 1.08-μm-thick nanofluidic cavity incorporated into a high-precision torsion pendulum, and map the phase diagram between 0.1 and 5.6 bar. We observe only small supercooling of the A phase, in comparison to bulk or when confined in aerogel, with evidence for a non-monotonic pressure dependence. This suggests that an intrinsic B-phase nucleation mechanism operates under confinement. Both the phase diagram and the relative superfluid fraction of the A and B phases, show that strong coupling is present at all pressures, with implications for the stability of the stripe phase. PMID:28671184
Aguilar, Alberto; Mauclair, Cyril; Faure, Nicolas; Colombier, Jean-Philippe; Stoian, Razvan
2017-11-28
Optical feedback is often evoked in laser-induced periodic nanostructures. Visualizing the coupling between surfaces and light requires highly-resolved imaging methods. We propose in-situ structured-illumination-microscopy to observe ultrafast-laser-induced nanostructures during fabrication on metallic glass surfaces. This resolves the pulse-to-pulse development of periodic structures on a single irradiation site and indicates the optical feedback on surface topographies. Firstly, the quasi-constancy of the ripples pattern and the reinforcement of the surface relief with the same spatial positioning indicates a phase-locking mechanism that stabilizes and amplifies the ordered corrugation. Secondly, on sites with uncorrelated initial corrugation, we observe ripple patterns spatially in-phase. These feedback aspects rely on the electromagnetic interplay between the laser pulse and the surface relief, stabilizing the pattern in period and position. They are critically dependent on the space-time coherence of the exciting pulse. This suggests a modulation of energy according to the topography of the surface with a pattern phase imposed by the driving pulse. A scattering and interference model for ripple formation on surfaces supports the experimental observations. This relies on self-phase-stabilized far-field interaction between surface scattered wavelets and the incoming pulse front.
Effect of Branching on Rod-coil Polyimides as Membrane Materials for Lithium Polymer Batteries
NASA Technical Reports Server (NTRS)
Meador, Mary Ann B.; Cubon, Valerie A.; Scheiman, Daniel A.; Bennett, William R.
2003-01-01
This paper describes a series of rod-coil block co-polymers that produce easy to fabricate, dimensionally stable films with good ionic conductivity down to room temperature for use as electrolytes for lithium polymer batteries. The polymers consist of short, rigid rod polyimide segments, alternating with flexible, polyalkylene oxide coil segments. The highly incompatible rods and coils should phase separate, especially in the presence of lithium ions. The coil phase would allow for conduction of lithium ions, while the rigid rod phase would provide a high degree of dimensional stability. An optimization study was carried out to study the effect of four variables (degree of branching, formulated molecular weight, polymerization solvent and lithium salt concentration) on ionic conductivity, glass transition temperature and dimensional stability in this system.
NASA Astrophysics Data System (ADS)
Chen, Xing-Qiu; Podloucky, R.; Rogl, P.
2006-12-01
By means of density functional calculations, the magnetic and electronic properties and phase stabilities of the Heusler compounds Co2MSi (with M =Ti,V,Cr,Mn,Fe,Co,Ni) were investigated. Based on the calculated results, we predict the ferromagnetic phases of the compounds Co2TiSi, Co2VSi, and Co2CrSi to be half metals. Of particular interest is Co2CrSi because of its high density of majority-spin states at Fermi energy in combination with a reasonably high estimated Curie temperature of 747K. The compounds Co2TiSi and Co2VSi are thermodynamically stable, whereas Co2CrSi is of a metastable phase which might be stabilized by suitable experimental techniques.
METHOD FOR STABILIZING KLYSTRONS
Magnuson, D.W.; Smith, D.F.
1959-04-14
High-frequency oscillators for the generation of microwaves, particularly a system for stabilizing frequency-modulated klystron oscillators of the reflex type, are described. The system takos advantage of the fact that a change in oscillator frequency will alter the normal phase displacement between the cavity and its modulator, creating an error voltage which is utilized to regulate the frequency of the oscillator and stabilize it.
NASA Astrophysics Data System (ADS)
Wang, Junyong; Andriamitantsoa, Radoelizo S.; Atinafu, Dimberu G.; Gao, Hongyi; Dong, Wenjun; Wang, Ge
2018-03-01
A novel in-situ assembly strategy has been developed to synthesis polyethylene glycol (PEG)@iron-benzenetricarboxylate metal-organic gel (MOG-100-Fe) shape-stabilized composite phase change materials by regulating metal-to-ligand ratio. The PEG@MOG-100-Fe was prepared by an ingenious introduction of PEG into the traditional sol-gel prepared MOG-100-Fe. The composite exhibited high heat storage density and thermal stability. The PEG loading content reached up to 92% without any leakage above its melting point. The heat storage density reaches to 152.88
Villani, Daniela; Iannello, Paola; Cipresso, Pietro; Antonietti, Alessandro
2017-01-01
Empirical research on well-being has rapidly increased in recent years. One of the most dominant issue concerns the degree of cross-situational consistency and stability of well-being across time, and this is of particular relevance to women life. The aim of this study was to verify the stability of women well-being in short windows of time, specifically across menstrual cycle phases. A within-subject design with 25 normally cycling women (range: 19-26 years) was carried out. The multidimensional assessment of well-being included the administration of psychological well-being, self-esteem, and emotional self-efficacy beliefs questionnaires during both high and low-fertility phases. The results showed the stability of the level of individual well-being across menstrual cycle phases. Albeit preliminary, results indicated that women representations of their well-being do not change according to menstrual cycle. Rather, an effective organization and integration of the entire self-system appears sustained by the stability of well-being measured through a multi-componential assessment over short periods of time.
Tan, Huan; Zhao, Lifeng; Tian, Sisi; Wen, Hui; Gou, Xiaojun; Ngai, To
2017-02-01
The potential application of Pickering high-internal phase emulsions (HIPEs) in the food and pharmaceutical industries has yet to be fully developed. Herein, we synthesized fairly monodisperse, nontoxic, autofluorescent gelatin particles for use as sole stabilizers for fabricating oil-in-water (O/W) HIPEs in an effort to improve the protection and bioaccessibility of entrapped β-carotene. Our results showed that the concentration of gelatin particles determined the formation, microstructure, droplet size distribution, and digestion profile of the HIPEs. For storage stability, the retention of β-carotene in HIPEs was significantly higher than in dispersion in bulk oil, even after storage for 27 days. In addition, in vitro digestion experiments indicated that the bioaccessibility of β-carotene was improved 5-fold in HIPEs. This study will help establish a correlation between the physicochemical properties of gelatin particle-stabilized HIPEs with their applications in the oral delivery of bioactive nutraceuticals.
Liang, Dong; DeGrave, John P.; Stolt, Matthew J.; Tokura, Yoshinori; Jin, Song
2015-01-01
Skyrmions hold promise for next-generation magnetic storage as their nanoscale dimensions may enable high information storage density and their low threshold for current-driven motion may enable ultra-low energy consumption. Skyrmion-hosting nanowires not only serve as a natural platform for magnetic racetrack memory devices but also stabilize skyrmions. Here we use the topological Hall effect (THE) to study phase stability and current-driven dynamics of skyrmions in MnSi nanowires. THE is observed in an extended magnetic field-temperature window (15–30 K), suggesting stabilization of skyrmions in nanowires compared with the bulk. Furthermore, we show in nanowires that under the high current density of 108–109 A m−2, the THE decreases with increasing current densities, which demonstrates the current-driven motion of skyrmions generating the emergent electric field in the extended skyrmion phase region. These results open up the exploration of skyrmions in nanowires for fundamental physics and magnetic storage technologies. PMID:26400204
Recent developments in heterodyne laser interferometry at Harbin Institute of Technology
NASA Astrophysics Data System (ADS)
Hu, P. C.; Tan, J. B. B.; Yang, H. X. X.; Fu, H. J. J.; Wang, Q.
2013-01-01
In order to fulfill the requirements for high-resolution and high-precision heterodyne interferometric technologies and instruments, the laser interferometry group of HIT has developed some novel techniques for high-resolution and high-precision heterodyne interferometers, such as high accuracy laser frequency stabilization, dynamic sub-nanometer resolution phase interpolation and dynamic nonlinearity measurement. Based on a novel lock point correction method and an asymmetric thermal structure, the frequency stabilized laser achieves a long term stability of 1.2×10-8, and it can be steadily stabilized even in the air flowing up to 1 m/s. In order to achieve dynamic sub-nanometer resolution of laser heterodyne interferometers, a novel phase interpolation method based on digital delay line is proposed. Experimental results show that, the proposed 0.62 nm, phase interpolator built with a 64 multiple PLL and an 8-tap digital delay line achieves a static accuracy better than 0.31nm and a dynamic accuracy better than 0.62 nm over the velocity ranging from -2 m/s to 2 m/s. Meanwhile, an accuracy beam polarization measuring setup is proposed to check and ensure the light's polarization state of the dual frequency laser head, and a dynamic optical nonlinearity measuring setup is built to measure the optical nonlinearity of the heterodyne system accurately and quickly. Analysis and experimental results show that, the beam polarization measuring setup can achieve an accuracy of 0.03° in ellipticity angles and an accuracy of 0.04° in the non-orthogonality angle respectively, and the optical nonlinearity measuring setup can achieve an accuracy of 0.13°.
Stable Aqueous Foams from Cellulose Nanocrystals and Methyl Cellulose.
Hu, Zhen; Xu, Richard; Cranston, Emily D; Pelton, Robert H
2016-12-12
The addition of cellulose nanocrystals (CNC) greatly enhanced the properties of methylcellulose (MC) stabilized aqueous foams. CNC addition decreased air bubble size, initial foam densities and drainage rates. Mixtures of 2 wt % CNC + 0.5 wt % MC gave the lowest density foams. This composition sits near the onset of nematic phase formation and also near the overlap concentration of methylcellulose. More than 94% of the added CNC particles remained in the foam phase, not leaving with the draining water. We propose that the nanoscale CNC particles bind to the larger MC coils both in solution and with MC at the air/water interface, forming weak gels that stabilize air bubbles. Wet CNC-MC foams were sufficiently robust to withstand high temperature (70 °C for 6 h) polymerization of water-soluble monomers giving macroporous CNC composite hydrogels based on acrylamide (AM), 2-hydroxyethyl methacrylate (HEMA), or polyethylene glycol diacrylate (PEGDA). At high temperatures, the MC was present as a fibrillar gel phase reinforced by CNC particles, explaining the very high foam stability. Finally, our CNC-MC foams are based on commercially available forms of CNC and MC, already approved for many applications. This is a "shovel-ready" technology.
Structural and electronic phase transitions of MoTe2 induced by Li ionic gating
NASA Astrophysics Data System (ADS)
Hwang, Jeongwoon; Zhang, Chenxi; Cho, Kyeongjae
2017-12-01
Monolayer MoTe2 has semiconducting and semimetallic phases with small energy difference, and the relative stability is readily reversed by gating. By first-principles calculations, we investigate the changes in atomic structure, electronic structure, and relative stability of two phases induced by Li ionic gating. To model Li ionic gating, we employ two approaches; one is direct adsorption of Li on MoTe2 and the other is introducing non-contacting Li plate over MoTe2. We show phonon instability in H-phase of MoTe2 with increasing the amount of charge transfer from Li, which implies a large electron-phonon coupling in the system resulting in a charge density wave state. Structural distortion is also observed in highly doped T d phase. The transition energy barrier from distorted H phase to distorted T d phase is reduced considerably compared to that of pristine MoTe2.
Interface Promoted Reversible Mg Insertion in Nanostructured Tin-Antimony Alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Yingwen; Shao, Yuyan; Parent, Lucas R.
This paper demonstrates intermetallic compounds SnSb are highly active materials for reversibly hosting Mg ions. Compared with monometallic Sn and Sb, SnSb alloy exhibited exceptionally high reversible capacity (420 mAh/g), excellent rate capability and good cyclic stability. Mg insertion into pristine SnSb involves an activation process to complete, which induces particle breakdown and results in phase segregation to Sn-rich and Sb-rich phases. Both experimental analysis and DFT simulation suggest that the Sn-rich phase is particularly active and provides most of the capacity whereas the Sb-rich phase is not as active, and the interface between these two phases play a keymore » role in promoting the formation and stabilization of the cubic Sn phase that is more favorable for fast and reversible Mg insertion. We further show that activated SnSb alloy has good compatibility with simple Mg electrolytes. Overall, this work could provide new approaches for designing materials capable of reversible Mg ion insertion and new opportunities for understanding Mg electrochemistry.« less
Phase restructuring in transition metal dichalcogenides for highly stable energy storage
Leng, Kai; Chen, Zhongxin; Zhao, Xiaoxu; ...
2016-09-16
Achieving homogeneous phase transition and uniform charge distribution is essential for good cycle stability and high capacity when phase conversion materials are used as electrodes. Herein, we show that chemical lithiation of bulk 2H-MoS 2 distorts its crystalline domains in three primary directions to produce mosaic-like 1T' nanocrystalline domains, which improve phase and charge uniformity during subsequent electrochemical phase conversion. 1T'-Li xMoS 2, a macroscopic dense material with interconnected nanoscale grains, shows excellent cycle stability and rate capability in a lithium rechargeable battery compared to bulk or exfoliated-restacked MoS 2. Transmission electron microscopy studies reveal that the interconnected MoS 2more » nanocrystals created during the phase change process are reformable even after multiple cycles of galvanostatic charging/discharging, which allows them to play important roles in the long term cycling performance of the chemically intercalated TMD materials. Finally, these studies shed light on how bulk TMDs can be processed into quasi-2D nanophase material for stable energy storage.« less
NASA Astrophysics Data System (ADS)
Li, Haoyi; Chen, Shuangming; Jia, Xiaofan; Xu, Biao; Lin, Haifeng; Yang, Haozhou; Song, Li; Wang, Xun
2017-05-01
Highly active and robust eletcrocatalysts based on earth-abundant elements are desirable to generate hydrogen and oxygen as fuels from water sustainably to replace noble metal materials. Here we report an approach to synthesize porous hybrid nanostructures combining amorphous nickel-cobalt complexes with 1T phase molybdenum disulfide (MoS2) via hydrazine-induced phase transformation for water splitting. The hybrid nanostructures exhibit overpotentials of 70 mV for hydrogen evolution and 235 mV for oxygen evolution at 10 mA cm-2 with long-term stability, which have superior kinetics for hydrogen- and oxygen-evolution with Tafel slope values of 38.1 and 45.7 mV dec-1. Moreover, we achieve 10 mA cm-2 at a low voltage of 1.44 V for 48 h in basic media for overall water splitting. We propose that such performance is likely due to the complete transformation of MoS2 to metallic 1T phase, high porosity and stabilization effect of nickel-cobalt complexes on 1T phase MoS2.
Physical stability of R-(+)-Limonene emulsions stabilized by Ulva fasciata algae polysaccharide.
Shao, Ping; Ma, Huiling; Qiu, Qiang; Jing, Weiping
2016-11-01
The physical stability of R-(+)-Limonene emulsions stabilized by Ulva fasciata polysaccharide (UFP) was investigated in this study. Emulsion physical stability was evaluated under different polysaccharide concentrations (1%-5%, wt/wt) and pH values (3.0-11.0). The stability of R-(+)-Limonene emulsions was demonstrated by droplet size distribution, rheological properties, zeta potential and visual phase separation. R-(+)-Limonene emulsions displayed monomodal droplet size distributions, high absolute values of zeta potential and good storage stability when 3% (wt/wt) UFP was used. The rheological properties and stability of R-(+)-Limonene emulsions appeared to be dependent on polysaccharide concentration. The emulsion stability was impacted by pH. Higher zeta potential (-52.6mV) and smaller mean droplet diameter (2.45μm) were achieved in neutral liquid environment (pH 7.0). Extreme acidity caused the flocculation of emulsions, which was manifested as phase separation, while emulsions were quite stable in an alkaline environment. Through comparing the stabilities of emulsions stabilized by different emulsifiers (i.e. UFP, GA and Gelatin), the result suggested that UFP was the best emulsifying agent among them. Copyright © 2016 Elsevier B.V. All rights reserved.
Calorimetric Determination of Thermodynamic Stability of MAX and MXene Phases
Sharma, Geetu; Naguib, Michael; Feng, Dawei; ...
2016-11-19
MXenes are layered two dimensional materials with exciting properties useful to a wide range of energy applications. They are derived from ceramics (MAX phases) by leaching and their properties reflect their resulting complex compositions which include intercalating cations and anions and water. Their thermodynamic stability is likely linked to these functional groups but has not yet been addressed by quantitative experimental measurements. We report enthalpies of formation from the elements at 25 °C measured using high temperature oxide melt solution calorimetry for a layered Ti-Al-C MAX phase, and the corresponding Ti-C based MXene. The thermodynamic stability of the Ti 3Cmore » 2T x MXene (Tx stands for anionic surface moieties, and intercalated cations) was assessed by calculating the enthalpy of reaction of the MAX phase (ideal composition Ti 3AlC 2) to form MXene, The very exothermic enthalpy of reaction confirms the stability of MXene in an aqueous environment. The surface terminations (O, OH and F) and cations (Li) chemisorbed on the surface and intercalated in the interlayers play a major role in the thermodynamic stabilization of MXene. These findings help to understand and potentially improve properties and performance by characterizing the energetics of species binding to MXene surfaces during synthesis and in energy storage, water desalination and other applications.« less
Peroxidase-catalyzed stabilization of 2,4-dichlorophenol in alkali-extracted soils.
Palomo, Mónica; Bhandari, Alok
2011-01-01
Horseradish peroxidase- (HRP) mediated stabilization of phenolic contaminants is a topic of interest due to its potential for remediation of contaminated soils. This study evaluated the sorption of 2,4-dichlorophenol (DCP) and its HRP-mediated stabilization in two alkali-extracted soils. Alkali extraction reduced the soil organic matter (SOM) contents of the geomaterials and enriched the residual SOM with humin C. Sorption of DCP on these sorbents was complete within 1 d. However, most of the sorbed DCP was removed from the geomaterials by water and methanol, suggesting weak solute-sorbent interactions. The addition of HRP resulted in the generation of DCP polymerization products (DPP), which partitioned between the aqueous and solid phases. The DPP phase distribution was rapid and complete within 24 h. Between 70 and 90% of the added DCP was converted to DPP and up to 43% of the initial aqueous phase contaminant was transformed into a residue that was resistant to extraction with methanol. Bound residues of DPP increased with initial aqueous phase solute concentration and remained fairly constant after 7 d of contact. Contaminant stabilization was noted to be high in the humin-mineral geomaterial. Results illustrate that HRP may be effective in stabilizing phenolic contaminants in subsoils that are likely to contain SOM enriched in humin C.
Selective Solvent-Induced Stabilization of Polar Oxide Surfaces in an Electrochemical Environment
NASA Astrophysics Data System (ADS)
Yoo, Su-Hyun; Todorova, Mira; Neugebauer, Jörg
2018-02-01
The impact of an electrochemical environment on the thermodynamic stability of polar oxide surfaces is investigated for the example of ZnO(0001) surfaces immersed in water using density functional theory calculations. We show that solvation effects are highly selective: They have little effect on surfaces showing a metallic character, but largely stabilize semiconducting structures, particularly those that have a high electrostatic penalty in vacuum. The high selectivity is shown to have direct consequences for the surface phase diagram and explains, e.g., why certain surface structures could be observed only in an electrochemical environment.
MoSbTe for high-speed and high-thermal-stability phase-change memory applications
NASA Astrophysics Data System (ADS)
Liu, Wanliang; Wu, Liangcai; Li, Tao; Song, Zhitang; Shi, Jianjun; Zhang, Jing; Feng, Songlin
2018-04-01
Mo-doped Sb1.8Te materials and electrical devices were investigated for high-thermal-stability and high-speed phase-change memory applications. The crystallization temperature (t c = 185 °C) and 10-year data retention (t 10-year = 112 °C) were greatly enhanced compared with those of Ge2Sb2Te5 (t c = 150 °C, t 10-year = 85 °C) and pure Sb1.8Te (t c = 166 °C, t 10-year = 74 °C). X-ray diffraction and transmission electron microscopy results show that the Mo dopant suppresses crystallization, reducing the crystalline grain size. Mo2.0(Sb1.8Te)98.0-based devices were fabricated to evaluate the reversible phase transition properties. SET/RESET with a large operation window can be realized using a 10 ns pulse, which is considerably better than that required for Ge2Sb2Te5 (∼50 ns). Furthermore, ∼1 × 106 switching cycles were achieved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dreger, Zbigniew A.; Tao, Yuchuan; Gupta, Yogendra M.
The high pressure-high temperature (HP-HT) phase diagram and decomposition of FOX-7, central to understanding its stability and reactivity, were determined using optical spectroscopy and imaging measurements in hydrostatically compressed and heated single crystals. Boundaries between various FOX-7 phases (α, α’, β, γ, and ε) and melting/decomposition curves were established up to 10 GPa and 750 K. Main findings are: (i) a triple point is observed between α, β, and γ phases ~ 0.6 GPa and ~ 535 K, (ii) previously suggested δ phase is not a new phase but is partly decomposed γ phase, (iii) the α-α’ transition takes placemore » along an isobar, whereas the α’-ε transition pressure decreases with increasing temperature, and (iv) melting/decomposition temperatures increase rapidly with pressure, with an increase in the slope at the onset of the α’-ε transition. Our results differ from the recently reported HP-HT phase diagram for nonhydrostatically compressed polycrystalline FOX-7. In addition, the observed interplay between melting and decomposition suggests the suppression of melting with pressure. Our FTIR measurements at different pressures to 3.5 GPa showed similar decomposition products, suggesting similar decomposition pathways irrespective of the pressure. Lastly, the present results provide new insights into the structural and chemical stability of an important insensitive high explosive (IHE) crystal under well-defined HP-HT conditions.« less
Dreger, Zbigniew A.; Tao, Yuchuan; Gupta, Yogendra M.
2016-05-10
The high pressure-high temperature (HP-HT) phase diagram and decomposition of FOX-7, central to understanding its stability and reactivity, were determined using optical spectroscopy and imaging measurements in hydrostatically compressed and heated single crystals. Boundaries between various FOX-7 phases (α, α’, β, γ, and ε) and melting/decomposition curves were established up to 10 GPa and 750 K. Main findings are: (i) a triple point is observed between α, β, and γ phases ~ 0.6 GPa and ~ 535 K, (ii) previously suggested δ phase is not a new phase but is partly decomposed γ phase, (iii) the α-α’ transition takes placemore » along an isobar, whereas the α’-ε transition pressure decreases with increasing temperature, and (iv) melting/decomposition temperatures increase rapidly with pressure, with an increase in the slope at the onset of the α’-ε transition. Our results differ from the recently reported HP-HT phase diagram for nonhydrostatically compressed polycrystalline FOX-7. In addition, the observed interplay between melting and decomposition suggests the suppression of melting with pressure. Our FTIR measurements at different pressures to 3.5 GPa showed similar decomposition products, suggesting similar decomposition pathways irrespective of the pressure. Lastly, the present results provide new insights into the structural and chemical stability of an important insensitive high explosive (IHE) crystal under well-defined HP-HT conditions.« less
High-power Yb-fiber comb based on pre-chirped-management self-similar amplification
NASA Astrophysics Data System (ADS)
Luo, Daping; Liu, Yang; Gu, Chenglin; Wang, Chao; Zhu, Zhiwei; Zhang, Wenchao; Deng, Zejiang; Zhou, Lian; Li, Wenxue; Zeng, Heping
2018-02-01
We report a fiber self-similar-amplification (SSA) comb system that delivers a 250-MHz, 109-W, 42-fs pulse train with a 10-dB spectral width of 85 nm at 1056 nm. A pair of grisms is employed to compensate the group velocity dispersion and third-order dispersion of pre-amplified pulses for facilitating a self-similar evolution and a self-phase modulation (SPM). Moreover, we analyze the stabilities and noise characteristics of both the locked carrier envelope phase and the repetition rate, verifying the stability of the generated high-power comb. The demonstration of the SSA comb at such high power proves the feasibility of the SPM-based low-noise ultrashort comb.
Pickering emulsions stabilized by paraffin wax and Laponite clay particles.
Li, Caifu; Liu, Qian; Mei, Zhen; Wang, Jun; Xu, Jian; Sun, Dejun
2009-08-01
Emulsions containing wax in dispersed droplets stabilized by disc-like Laponite clay particles are prepared. Properties of the emulsions prepared at different temperatures are examined using stability, microscopy and droplet-size analysis. At low temperature, the wax crystals in the oil droplets can protrude through the interface, leading to droplet coalescence. But at higher temperatures, the droplet size decreases with wax concentration. Considering the viscosity of the oil phase and the interfacial tension, we conclude that the wax is liquid-like during the high temperature emulsification process, but during cooling wax crystals appear around the oil/water interface and stabilize the droplets. The oil/water ratio has minimal effect on the emulsions between ratios of 3:7 and 7:3. The Laponite is believed to stabilize the emulsions by increasing the viscosity of the continuous phase and also by adsorbing at the oil/water interface, thus providing a physical barrier to coalescence.
Sequential bottom-up assembly of mechanically stabilized synthetic cells by microfluidics
NASA Astrophysics Data System (ADS)
Weiss, Marian; Frohnmayer, Johannes Patrick; Benk, Lucia Theresa; Haller, Barbara; Janiesch, Jan-Willi; Heitkamp, Thomas; Börsch, Michael; Lira, Rafael B.; Dimova, Rumiana; Lipowsky, Reinhard; Bodenschatz, Eberhard; Baret, Jean-Christophe; Vidakovic-Koch, Tanja; Sundmacher, Kai; Platzman, Ilia; Spatz, Joachim P.
2018-01-01
Compartments for the spatially and temporally controlled assembly of biological processes are essential towards cellular life. Synthetic mimics of cellular compartments based on lipid-based protocells lack the mechanical and chemical stability to allow their manipulation into a complex and fully functional synthetic cell. Here, we present a high-throughput microfluidic method to generate stable, defined sized liposomes termed `droplet-stabilized giant unilamellar vesicles (dsGUVs)’. The enhanced stability of dsGUVs enables the sequential loading of these compartments with biomolecules, namely purified transmembrane and cytoskeleton proteins by microfluidic pico-injection technology. This constitutes an experimental demonstration of a successful bottom-up assembly of a compartment with contents that would not self-assemble to full functionality when simply mixed together. Following assembly, the stabilizing oil phase and droplet shells are removed to release functional self-supporting protocells to an aqueous phase, enabling them to interact with physiologically relevant matrices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herchenroeder, J.W.
1989-02-01
The high temperature bcc allotrope of a rare earth metal has the potential for substantially different magnetic properties than the room temperature hexagonal (hcp or dhcp) counterpart because of its more symmetrical crystal field. The stabilization by alloying and quenching of this bcc phase was studied for La-M alloys where M is an non-rare earth metal from Group II or III. The factors influencing the stabilization, such as size of M and quench rate, are discussed. ..gamma..La (bcc) could be retained over a composition range around the eutectoid composition by Mg or Cd alloying. A comparison of T/sub o/ curvesmore » of the various alloy systems suggest that the eutectoid temperature of the La-M system must be approximately equal to or less than a critical T/sub o/ temperature of 515/degree/C if the bcc phase is to be retained by quenching. The thermal stability of ..beta..Gd (bcc) was investigated by DTA and isothermal annealing. It was found to transform to an intermediate phase before reverting to the equilibrium phases in contrast to ..gamma..La alloys which decompose directly on heating to the equilibrium phases. 71 refs., 52 figs., 7 tabs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lone, A. G., E-mail: agl221986@gmail.com; Bhowmik, R. N.
2015-06-24
We investigate the structural phase transformation from orthorhombic to rhombohedral structure in FeGaO{sub 3} by adopting a combined effect of mechanical alloying/milling and solid state sintering techniques. The structural phase formation of the FeGaO{sub 3} compound has been characterized by X-ray diffraction pattern. Mechanical milling played a significant role on the stabilization of rhombohedral phase in FeGaO{sub 3}, where as high temperature sintering stabilized the system in orthorhombic phase. A considerable difference has been observed in magnetic and ferroelectric properties of the system in two phases. The system in rhombohedral (R-3c) phase exhibited better ferromagnetic and of ferroelectric properties atmore » room temperature in comparison to orthorhombic (Pc2{sub 1}n) phase. The rhombohedral phase appears to be good for developing metal doped hematite system for spintronics applications and in that process mechanical milling played an important role.« less
A Short History of the Theory and Experimental Discovery of Superfluidity in 3He
NASA Astrophysics Data System (ADS)
Brinkman, W. F.
I discuss the development of the theory and experiments on superfluid 3He. After the discovery of superfluidity in 3He by Osheroff, Richardson and Lee, Phil Anderson quickly recruited Doug Osheroff to come to Bell Labs and set up a dilution fridge to continue his experiments. One of the mysteries at that time was how the high-temperature A-phase, which has a gapless excitation spectrum, could be stabilized relative to the fully gapped, lower temperature B-phase. I explain how Phil Anderson and I developed the spin fluctuation theory of the A-phase of superfluid 3He which accounted for its stability, leading to the Anderson-Brinkman-Morel (ABM) theory of the superfluid A-phase...
Computational multiheterodyne spectroscopy
Burghoff, David; Yang, Yang; Hu, Qing
2016-01-01
Dual-comb spectroscopy allows for high-resolution spectra to be measured over broad bandwidths, but an essential requirement for coherent integration is the availability of a phase reference. Usually, this means that the combs’ phase and timing errors must be measured and either minimized by stabilization or removed by correction, limiting the technique’s applicability. We demonstrate that it is possible to extract the phase and timing signals of a multiheterodyne spectrum completely computationally, without any extra measurements or optical elements. These techniques are viable even when the relative linewidth exceeds the repetition rate difference and can tremendously simplify any dual-comb system. By reconceptualizing frequency combs in terms of the temporal structure of their phase noise, not their frequency stability, we can greatly expand the scope of multiheterodyne techniques. PMID:27847870
Epitaxial stabilization and phase instability of VO 2 polymorphs
Lee, Shinbuhm; Ivanov, Ilia N.; Keum, Jong K.; ...
2016-01-20
The VO 2 polymorphs, i.e., VO 2(A), VO 2(B), VO 2(M1) and VO 2(R), have a wide spectrum of functionalities useful for many potential applications in information and energy technologies. However, synthesis of phase pure materials, especially in thin film forms, has been a challenging task due to the fact that the VO 2 polymorphs are closely related to each other in a thermodynamic framework. Here, we report epitaxial stabilization of the VO 2 polymorphs to synthesize high quality single crystalline thin films and study the phase stability of these metastable materials. We selectively deposit all the phases on variousmore » perovskite substrates with different crystallographic orientations. By investigating the phase instability, phonon modes and transport behaviours, not only do we find distinctively contrasting physical properties of the VO 2 polymorphs, but that the polymorphs can be on the verge of phase transitions when heated as low as ~400 °C. In conclusion, our successful epitaxy of both VO 2(A) and VO 2(B) phases, which are rarely studied due to the lack of phase pure materials, will open the door to the fundamental studies of VO 2 polymorphs for potential applications in advanced electronic and energy devices.« less
Li, Nan; Zhu, Zonglong; Chueh, Chu -Chen; ...
2016-09-26
In this study, different from the commonly explored strategy of incorporating a smaller cation, MA + and Cs + into FAPbI 3 lattice to improve efficiency and stability, it is revealed that the introduction of phenylethylammonium iodide (PEAI) into FAPbI 3 perovksite to form mixed cation FA xPEA 1–xPbI 3 can effectively enhance both phase and ambient stability of FAPbI 3 as well as the resulting performance of the derived devices. From our experimental and theoretical calculation results, it is proposed that the larger PEA cation is capable of assembling on both the lattice surface and grain boundaries to formmore » quais-3D perovskite structures. The surrounding of PEA + ions at the crystal grain boundaries not only can serve as molecular locks to tighten FAPbI 3 domains but also passivate the surface defects to improve both phase and moisture stablity. Consequently, a high-performance (PCE:17.7%) and ambient stable FAPbI 3 solar cell could be developed« less
Energy absorption as a predictor of leg impedance in highly trained females.
Kulas, Anthony S; Schmitz, Randy J; Schultz, Sandra J; Watson, Mary Allen; Perrin, David H
2006-08-01
Although leg spring stiffness represents active muscular recruitment of the lower extremity during dynamic tasks such as hopping and running, the joint-specific characteristics comprising the damping portion of this measure, leg impedance, are uncertain. The purpose of this investigation was to assess the relationship between leg impedance and energy absorption at the ankle, knee, and hip during early (impact) and late (stabilization) phases of landing. Twenty highly trained female dancers (age = 20.3 +/- 1.4 years, height = 163.7 +/- 6.0 cm, mass = 62.1 +/- 8.1 kg) were instrumented for biomechanical analysis. Subjects performed three sets of double-leg landings from under preferred, stiff, and soft landing conditions. A stepwise linear regression analysis revealed that ankle and knee energy absorption at impact, and knee and hip energy absorption during the stabilization phases of landing explained 75.5% of the variance in leg impedance. The primary predictor of leg impedance was knee energy absorption during the stabilization phase, independently accounting for 55% of the variance. Future validation studies applying this regression model to other groups of individuals are warranted.
NASA Astrophysics Data System (ADS)
Park, Hanbit; Reddy, D. Amaranatha; Kim, Yujin; Lee, Seunghee; Ma, Rory; Lim, Manho; Kim, Tae Kyu
2017-04-01
Ultra-dispersed bimetallic nanomaterials have attracted much attention in the hydrogenation of highly toxic aromatic nitro compounds to aromatic amines owing to their high stability, superior activity, reusability, and unique optical and electronic properties, as compared to monometalic nanocrystals. However, the lack of facile and economically controllable strategies of producing highly pure ultra-dispersed bimetallic nanocatalysts limits their practical industrial applications. Considering the above obstacles, we present a simple and effective strategy for the formation of bimetallic (PdCu) nanocrystals by liquid phase pulsed laser ablation using a bulk Pd metal plate submerged in CuCl2 solutions with different concentrations, in contrast to the complex and costly experimental methods used previously. The microstructural and optical properties of the synthesized nanocrystals indicate that the obtained bimetallic nanostructures are highly pure and monodispersed. Moreover, bimetallic PdCu nanostructures show a higher catalytic activity than monometallic Pd nanocrystals for the hydrogenation of 4-nitrophenol to 4-aminophenol at room temperature, also exhibiting high stability for up to four recycles. The mechanism of the enhanced catalytic activity and stability of bimetallic nanocrystals is discussed in detail. Finally, we believe that the presented design strategy and utilization of bimetallic nanocrystals for catalytic applications enables the development of novel bimetallic nanostructures by liquid phase pulsed laser ablation and their catalytic application for environmental remediation.
Stabilization of Phase of a Sinusoidal Signal Transmitted Over Optical Fiber
NASA Technical Reports Server (NTRS)
DAddario, Larry R.; Trink, Joseph T.
2010-01-01
In the process of connecting widely distributed antennas into a coherent array, it is necessary to synchronize the timing of signals at the various locations. This can be accomplished by distributing a common reference signal from a central source, usually over optical fiber. A high-frequency (RF or microwave) tone is a good choice for the reference. One difficulty is that the effective length of the optical fiber changes with temperature and mechanical stress, leading to phase instability in the received tone. This innovation provides a new way to stabilize the phase of the received tone, in spite of variations in the electrical length of the fiber. Stabilization is accomplished by two-way transmission in which part of the received signal is returned to the transmitting end over an identical fiber. The returned signal is detected and used to close an electrical servo loop whose effect is to keep constant the phase of the tone at the receiving end.
Yu, Tae Jun; Hong, Kyung-Han; Choi, Hyun-Gyug; Sung, Jae Hee; Choi, Il Woo; Ko, Do-Kyeong; Lee, Jongmin; Kim, Junwon; Kim, Dong Eon; Nam, Chang Hee
2007-06-25
We demonstrate a long-term operation with reduced phase noise in the carrier-envelope-phase (CEP) stabilization process by employing a double feedback loop and an improved signal detection in the direct locking technique [Opt. Express 13, 2969 (2005)]. A homodyne balanced detection method is employed for efficiently suppressing the dc noise in the f-2f beat signal, which is converted into the CEP noise in the direct locking loop working at around zero carrier-envelope offset frequency (f(ceo)). In order to enhance the long-term stability, we have used the double feedback scheme that modulates both the oscillator pump power for a fast control and the intracavity-prism insertion depth for a slow and high-dynamic-range control. As a result, the in-loop phase jitter is reduced from 50 mrad of the previous result to 29 mrad, corresponding to 13 as in time scale, and the long-term stable operation is achieved for more than 12 hours.
NASA Astrophysics Data System (ADS)
Miura, Seiji; Hatabata, Toru; Okawa, Takuya; Mohri, Tetsuo
2014-03-01
To find a new route for microstructure control and to find additive elements beneficial for improving high-temperature strength, a systematic investigation is performed on hypoeutectic Nb-15 at. pct Si-X ternary alloys containing a transition element, Fe, Co, Ni, Cu, Ru, Rh, Pd, Re, Os, Ir, Pt, or Au. Information on phase equilibrium is classified in terms of phase stability of silicide phases, α Nb5Si3, Nb4SiX, and Nb3Si, and the relationship between microstructure and mechanical properties both at room temperature and high temperature is investigated. All the additive elements are found to stabilize either α Nb5Si3 or Nb4SiX but destabilize Nb3Si. A microstructure of Nbss/α Nb5Si3 alloy composed of spheroidized α Nb5Si3 phase embedded in the Nbss matrix is effective for toughening, regardless of the initial as-cast microstructure. Also the plastic deformation of Nbss dendrites may effectively suppress the propagation of longer cracks. High-temperature strength of alloys is governed by the deformation of Nbss phase and increases with higher melting point additives.
NASA Astrophysics Data System (ADS)
Liang, Dong; Degrave, John; Stolt, Matthew; Tokura, Yoshinori; Jin, Song
2015-03-01
Skyrmions, novel topologically stable spin vortices, hold promise for next-generation high-density magnetic storage technologies due to their nanoscale domains and ultralow energy consumption. One-dimensional (1D) nanowires are ideal hosts for skyrmions since they not only serve as a natural platform for magnetic racetrack memory devices but also can potentially stabilize skyrmions. We use the topological Hall effect (THE) to study the phase stability and current-driven dynamics of the skyrmions in MnSi nanowires. The THE was observed in an extended magnetic field-temperature window (15 to 30 K), suggesting stabilization of skyrmion phase in nanowires compared with the bulk (27 to 29.5 K). Furthermore, we study skyrmion dynamics in this extended skyrmion phase region and found that under the high current-density of 108-109Am-2 enabled by nanowire geometry, the THE decreases with increasing current densities, which demonstrates the current-driven motion of skyrmions generating the emergent electric field. These results open up the exploration of nanowires as an attractive platform for investigating skyrmion physics in 1D systems and exploiting skyrmions in magnetic storage concepts. This work is supported by US National Science Foundation (ECCS-1231916) and JSPS Grant-in-Aid for Scientific Research No. 24224009.
Effect of small addition of Cr on stability of retained austenite in high carbon steel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hossain, Rumana; Pahlevani, Farshid, E-mail: f.pah
High carbon steels with dual phase structures of martensite and austenite have considerable potential for industrial application in high abrasion environments due to their hardness, strength and relatively low cost. To design cost effective high carbon steels with superior properties, it is crucial to identify the effect of Chromium (Cr) on the stability of retained austenite (RA) and to fully understand its effect on solid-state phase transition. This study addresses this important knowledge gap. Using standard compression tests on bulk material, quantitative X-ray diffraction analysis, nano-indentation on individual austenitic grains, transmission electron microscopy and electron backscatter diffraction–based orientation microscopy techniques,more » the authors investigated the effect of Cr on the microstructure, transformation behaviour and mechanical stability of retained austenite in high carbon steel, with varying Cr contents. The results revealed that increasing the Cr %, altered the morphology of the RA and increased its stability, consequently, increasing the critical pressure for martensitic transformation. This study has critically addressed the elastoplastic behaviour of retained austenite – and provides a deep understanding of the effect of small additions of Cr on the metastable austenite of high carbon steel from the macro- to nano-level. Consequently, it paves the way for new applications for high carbon low alloy steels. - Highlights: • Effect of small addition of Cr on metastable austenite of high carbon steel from the macro- to nano-level • A multi-scale study of elastoplastic behaviour of retained austenite in high carbon steel • The mechanical stability of retained austenite during plastic deformation increased with increasing Cr content • Effect of grain boundary misorientation angle on hardness of individual retained austenite grains in high carbon steel.« less
NASA Technical Reports Server (NTRS)
Tarbell, Theodore D.; Topka, Kenneth P.
1992-01-01
The definition phase of a scientific study of active regions on the sun by balloon flight of a former Spacelab instrument, the Solar Optical Universal Polarimeter (SOUP) is described. SOUP is an optical telescope with image stabilization, tunable filter and various cameras. After the flight phase of the program was cancelled due to budgetary problems, scientific and engineering studies relevant to future balloon experiments of this type were completed. High resolution observations of the sun were obtained using SOUP components at the Swedish Solar Observatory in the Canary Islands. These were analyzed and published in studies of solar magnetic fields and active regions. In addition, testing of low-voltage piezoelectric transducers was performed, which showed they were appropriate for use in image stabilization on a balloon.
Reversible adapting layer produces robust single-crystal electrocatalyst for oxygen evolution.
Tung, Ching-Wei; Hsu, Ying-Ya; Shen, Yen-Ping; Zheng, Yixin; Chan, Ting-Shan; Sheu, Hwo-Shuenn; Cheng, Yuan-Chung; Chen, Hao Ming
2015-08-28
Electrochemically converting water into oxygen/hydrogen gas is ideal for high-density renewable energy storage in which robust electrocatalysts for efficient oxygen evolution play crucial roles. To date, however, electrocatalysts with long-term stability have remained elusive. Here we report that single-crystal Co3O4 nanocube underlay with a thin CoO layer results in a high-performance and high-stability electrocatalyst in oxygen evolution reaction. An in situ X-ray diffraction method is developed to observe a strong correlation between the initialization of the oxygen evolution and the formation of active metal oxyhydroxide phase. The lattice of skin layer adapts to the structure of the active phase, which enables a reversible facile structural change that facilitates the chemical reactions without breaking the scaffold of the electrocatalysts. The single-crystal nanocube electrode exhibits stable, continuous oxygen evolution for >1,000 h. This robust stability is attributed to the complementary nature of defect-free single-crystal electrocatalyst and the reversible adapting layer.
SOLVENT NANOFILTRATION USING LOW-COST INORGANIC MEMBRANE MODULES - PHASE I
This Phase I project addresses: (1) development of fully inorganic nanofiltration (NF) membrane modules that have the attributes of low-cost, excellent chemical resistance in aggressive organic and aqueous media and high thermal stability; and (2) demonstration of the perfo...
L-Band Transmit/Receive Module for Phase-Stable Array Antennas
NASA Technical Reports Server (NTRS)
Andricos, Constantine; Edelstein, Wendy; Krimskiy, Vladimir
2008-01-01
Interferometric synthetic aperture radar (InSAR) has been shown to provide very sensitive measurements of surface deformation and displacement on the order of 1 cm. Future systematic measurements of surface deformation will require this capability over very large areas (300 km) from space. To achieve these required accuracies, these spaceborne sensors must exhibit low temporal decorrelation and be temporally stable systems. An L-band (24-cmwavelength) InSAR instrument using an electronically steerable radar antenna is suited to meet these needs. In order to achieve the 1-cm displacement accuracy, the phased array antenna requires phase-stable transmit/receive (T/R) modules. The T/R module operates at L-band (1.24 GHz) and has less than 1- deg absolute phase stability and less than 0.1-dB absolute amplitude stability over temperature. The T/R module is also high power (30 W) and power efficient (60-percent overall efficiency). The design is currently implemented using discrete components and surface mount technology. The basic T/R module architecture is augmented with a calibration loop to compensate for temperature variations, component variations, and path loss variations as a function of beam settings. The calibration circuit consists of an amplitude and phase detector, and other control circuitry, to compare the measured gain and phase to a reference signal and uses this signal to control a precision analog phase shifter and analog attenuator. An architecture was developed to allow for the module to be bidirectional, to operate in both transmit and receive mode. The architecture also includes a power detector used to maintain a transmitter power output constant within 0.1 dB. The use of a simple, stable, low-cost, and high-accuracy gain and phase detector made by Analog Devices (AD8302), combined with a very-high efficiency T/R module, is novel. While a self-calibrating T/R module capability has been sought for years, a practical and cost-effective solution has never been demonstrated. By adding the calibration loop to an existing high-efficiency T/R module, there is a demonstrated order-of-magnitude improvement in the amplitude and phase stability.
NASA Astrophysics Data System (ADS)
Soni, Vinay Kumar; Sanyal, S.; Sinha, S. K.
2018-05-01
The present work reports the structural and phase stability analysis of equiatomic FeCoNiCuZn High entropy alloy (HEA) systems prepared by mechanical alloying (MA) method. In this research effort some 1287 alloy combinations were extensively studied to arrive at most favourable combination. FeCoNiCuZn based alloy system was selected on the basis of physiochemical parameters such as enthalpy of mixing (ΔHmix), entropy of mixing (ΔSmix), atomic size difference (ΔX) and valence electron concentration (VEC) such that it fulfils the formation criteria of stable multi component high entropy alloy system. In this context, we have investigated the effect of novel alloying addition in view of microstructure and phase formation aspect. XRD plots of the MA samples shows the formation of stable solid solution with FCC (Face Cantered Cubic) after 20 hr of milling time and no indication of any amorphous or intermetallic phase formation. Our results are in good agreement with calculation and analysis done on the basis of physiochemical parameters during selection of constituent elements of HEA.
Microstructural Evolution of Thor™ 115 Creep-Strength Enhanced Ferritic Steel
NASA Astrophysics Data System (ADS)
Ortolani, Matteo; D'Incau, Mirco; Ciancio, Regina; Scardi, Paolo
2017-12-01
A new ferritic steel branded as Thor™ 115 has been developed to enhance high-temperature resistance. The steel design combines an improved oxidation resistance with long-term microstructural stability. The new alloy, cast to different product forms such as plates and tubes, was extensively tested to assess the high-temperature time-dependent mechanical behavior (creep). The main strengthening mechanism is precipitation hardening by finely dispersed carbide and nitride phases. Information on the evolution of secondary phases and time-temperature-precipitation behavior of the alloy, essential to ensure long-term property stability, was obtained by scanning transmission electron microscopy with energy dispersive spectroscopy, and by X-ray Powder Diffraction on specimens aged up to 50,000 hours. A thermodynamic modeling supports presentation and evaluation of the experimental results. The evolution of precipitates in the new alloy confirms the retention of the strengthening by secondary phases, even after long-term exposure at high temperature. The deleterious conversion of nitrides into Z phase is shown to be in line with, or even slower than that of the comparable ASME grade 91 steel.
Phase-locking behavior in a high-frequency gymnotiform weakly electric fish, Adontosternarchus.
Kawasaki, Masashi; Leonard, John
2017-02-01
An apteronotid weakly electric fish, Adontosternarchus, emits high-frequency electric organ discharges (700-1500 Hz) which are stable in frequency if no other fish or artificial signals are present. When encountered with an artificial signal of higher frequency than the fish's discharge, the fish raised its discharge frequency and eventually matched its own frequency to that of the artificial signal. At this moment, phase locking was observed, where the timing of the fish's discharge was precisely stabilized at a particular phase of the artificial signal over a long period of time (up to minutes) with microsecond precision. Analyses of the phase-locking behaviors revealed that the phase values of the artificial stimulus at which the fish stabilizes the phase of its own discharge (called lock-in phases) have three populations between -180° and +180°. During the frequency rise and the phase-locking behavior, the electrosensory system is exposed to the mixture of feedback signals from its electric organ discharges and the artificial signal. Since the signal mixture modulates in both amplitude and phase, we explored whether amplitude or phase information participated in driving the phase-locking behavior, using a numerical model. The model which incorporates only amplitude information well predicted the three populations of lock-in phases. When phase information was removed from the electrosensory stimulus, phase-locking behavior was still observed. These results suggest that phase-locking behavior of Adontosternarchus requires amplitude information but not phase information available in the electrosensory stimulus.
Dreger, Z. A.; Breshike, C. J.; Gupta, Y. M.
2017-05-08
Raman spectroscopy was used to examine the high pressure-high temperature structural and chemical stability of an insensitive, high-performance energetic crystal – dihydroxylammonium 5,5'-bistetrazole-1,1'-diolate (TKX-50). The phase diagram was determined over 8 GPa and (293-760) K. Under isobaric heating, the melting/decomposition of TKX-50 is preceded by a transformation to two consecutive high-temperature intermediates; a lower-temperature intermediate – diammonium 5,5’-bistetrazole-1,1'-diolate, and a higher-temperature intermediate – dihydroxylammonium 5,5'-bistetrazolate and/or diammonium 5,5'-bistetrazolate. Pressure strongly increases the transition temperatures for these transformations and subsequent decomposition. As a result, significant increase in the chemical stability of TKX-50 and intermediates with pressure was attributed to a suppressionmore » of hydrogen-transfer.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Gui -Liang; Amine, Rachid; Xu, Yue -Feng
Cathode materials are critical to the energy density, power density and safety of sodium-ion batteries (SIBs). Herein, we performed a comprehensive study to elucidate and exemplify the interplay mechanism between phase structures, interfacial microstrain and electrochemical properties of layered-structured Na xNi 1/3Co 1/3Mn 1/3O 2 cathode materials for high voltage SIBs. The electrochemical test results showed that Na xNi 1/3Co 1/3Mn 1/3O 2 with an intergrowth P2/O3/O1 structure demonstrates better electrochemical performance and better thermal stability than Na xNi 1/3Co 1/3Mn 1/3O 2 with P2/O3 binary-phase integration and Na xNi 1/3Co 1/3Mn 1/3O 2 where only the P phase ismore » dominant. This result is caused by the distinct interfacial microstrain development during the synthesis and cycling of the P2/O3/O1 phase. In operando high energy X-ray diffraction further revealed that the intergrowth P2/O1/O3 cathode can inhibit the irreversible P2–O2 phase transformation and simultaneously improve the structure stability of the O3 and O1 phases during cycling. Here, we believe that interfacial microstrain can serve as an indispensable bridge to guide future design and synthesis of high performance SIB cathode materials and other high energy battery materials.« less
Pressure-induced effects and phase relations in Mg2NiH4
NASA Astrophysics Data System (ADS)
Gavra, Z.; Kimmel, G.; Gefen, Y.; Mintz, Moshe H.
1985-05-01
The low-temperature (<210 °C) crystallographic structure, electrical conductivity, and thermal stability of Mg2NiH4 powders compacted under isostatic pressures of up to 10 kbar were studied. A comparison is made with the corresponding properties of the noncompressed material. It has been concluded that under stress-free hydriding conditions performed below 210 °C, a two-phase hydride mixture is formed. Each of the hydride particles consists of an inner core composed of an hydrogen-deficient monoclinic phase coated by a layer of a stoichiometric orthorhombic phase. The monoclinic phase has a metalliclike electrical conductivity while the orthorhombic phase is insulating. High compaction pressures cause the transformation of the orthorhombic structure into the monoclinic one, thereby resulting in a pressure-induced insulator-to-conductor transition. Reduced decomposition temperatures are obtained for the compressed hydrides. This reduction is attributed to kinetic factors rather than to a reduced thermodynamic stability.
NASA Astrophysics Data System (ADS)
Rajeswarapalanichamy, R.; Kavitha, M.; Sudha Priyanga, G.; Iyakutti, K.
2015-03-01
The crystal structure, structural stability, electronic and mechanical properties of ReN and TcN are investigated using first principles calculations. We have considered five different crystal structures: NaCl, zinc blende (ZB), NiAs, tungsten carbide (WC) and wurtzite (WZ). Among these ZB phase is found to be the lowest energy phase for ReN and TcN at normal pressure. Pressure induced structural phase transitions from ZB to WZ phase at 214 GPa in ReN and ZB to NiAs phase at 171 GPa in TcN are predicted. The electronic structure reveals that both ReN and TcN are metallic in nature. The computed elastic constants indicate that both the nitrides are mechanically stable. As ReN in NiAs phase has high bulk and shear moduli and low Poisson's ratio, it is found to be a potential ultra incompressible super hard material.
Designing and Thermal Analysis of Safe Lithium Ion Cathode Materials for High Energy Applications
NASA Astrophysics Data System (ADS)
Hu, Enyuan
Safety is one of the most critical issues facing lithium-ion battery application in vehicles. Addressing this issue requires the integration of several aspects, especially the material chemistry and the battery thermal management. First, thermal stability investigation was carried out on an attractive high energy density material LiNi0.5Mn1.5O4. New findings on the thermal-stability and thermal-decomposition-pathways related to the oxygen-release are discovered for the high-voltage spinel Li xNi0.5Mn1.5O4 (LNMO) with ordered (o-) and disordered (d-) structures at fully delithiated (charged) state using a combination of in situ time-resolved x-ray diffraction (TR-XRD) coupled with mass spectroscopy (MS) and x-ray absorption spectroscopy (XAS). Both fully charged o--LixNi0.5Mn1.5O 4 and d-LixNi0.5Mn1.5O 4 start oxygen-releasing structural changes at temperatures below 300 °C, which is in sharp contrast to the good thermal stability of the 4V-spinel LixMn2O4 with no oxygen being released up to 375 °C. This is mainly caused by the presence of Ni4+ in LNMO, which undergoes dramatic reduction during the thermal decomposition. In addition, charged o-LNMO shows better thermal stability than the d-LNMO counterpart, due to the Ni/Mn ordering and smaller amount of the rock-salt impurity phase in o-LNMO. Newly identified two thermal-decomposition-pathways from the initial LixNi0.5Mn1.5O 4 spinel to the final NiMn2O4-type spinel structure with and without the intermediate phases (NiMnO3 and alpha-Mn 2O3) are found to play key roles in thermal stability and oxygen release of LNMO during thermal decomposition. In addressing the safety issue associated with LNMO, Fe is selected to partially substitute Ni and Mn simultaneously utilizing the electrochemical activity and structure-stabilizing high spin Fe3+. The synthesized LiNi1/3Mn4/3Fe1/3O4 showed superior thermal stability and satisfactory electrochemical performance. At charged state, it is able to withstand the temperature as high as 500°C without observable oxygen release. It shows comparable cyclability performance to the LNMO material with better rate capability. The undiminished high voltage capacity is due to the electrochemical activity of Fe in the system. Fe also plays the key role of stabilizing the system at Fe3O4 type spinel phase against further phase transformation to the rock salt phase, accounting for the superior thermal stability of LiNi1/3Mn 4/3Fe1/3O4. Thermal analysis of the lithium-ion battery indicates the key role of electric current in contributing to a thermal runaway. FLUENT simulation on a 10-cell battery shows that under fast discharging conditions, the temperature level can easily reach the threshold of malfunction and the battery temperature features a large distribution of 18°C. Simple air cooling is not effective enough in addressing the problem. Designed air cooling or liquid cooling is required for the normal operation of lithium-ion batteries in vehicles.
Ice polyamorphism in the minimal Mercedes-Benz model of water.
Cartwright, Julyan H E; Piro, Oreste; Sánchez, Pedro A; Sintes, Tomás
2012-12-28
We investigate ice polyamorphism in the context of the two-dimensional Mercedes-Benz model of water. We find a first-order phase transition between a crystalline phase and a high-density amorphous phase. Furthermore, we find a reversible transformation between two amorphous structures of high and low density; however, we find this to be a continuous and not an abrupt transition, as the low-density amorphous phase does not show structural stability. We discuss the origin of this behavior and its implications with regard to the minimal generic modeling of polyamorphism.
Ice polyamorphism in the minimal Mercedes-Benz model of water
NASA Astrophysics Data System (ADS)
Cartwright, Julyan H. E.; Piro, Oreste; Sánchez, Pedro A.; Sintes, Tomás
2012-12-01
We investigate ice polyamorphism in the context of the two-dimensional Mercedes-Benz model of water. We find a first-order phase transition between a crystalline phase and a high-density amorphous phase. Furthermore, we find a reversible transformation between two amorphous structures of high and low density; however, we find this to be a continuous and not an abrupt transition, as the low-density amorphous phase does not show structural stability. We discuss the origin of this behavior and its implications with regard to the minimal generic modeling of polyamorphism.
High pressure phase transitions and compressibilities of Er2Zr2O7 and Ho2Zr2O7
NASA Astrophysics Data System (ADS)
Zhang, F. X.; Lang, M.; Becker, U.; Ewing, R. C.; Lian, J.
2008-01-01
Phase stability and compressibility of rare earth zirconates with the defect-fluorite structure were investigated by in situ synchrotron x-ray diffraction. A sluggish defect-fluorite to a cotunnitelike phase transformation occurred at pressures of ˜22 and ˜30GPa for Er2Zr2O7 and Ho2Zr2O7, respectively. Enhanced compressibility was found for the high pressure phase as a result of increasing cation coordination number and cation-anion bond length.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Wenzhi; Yang, Jili; Wang, Chunjie
2012-09-15
Highlights: ► Tetragonal t″ phase was stabilized in Zr{sub 0.5}Ce{sub 0.5}O{sub 2} solid solution at temperature as high as 1000 °C. ► Specific surface area of powders decreased with the increase of water addition and the Ce content. ► The single stable phase was controlled by adjusting the volume ratio of water and ethanol. ► Tetragonal (t″) phase dissociated into cubic and tetragonal (t′) phases at 1200 °C. -- Abstract: ZrO{sub 2}–CeO{sub 2} mixed oxides were synthesized via sol–gel process. Thermal stability, structure and morphology of samples were investigated by powder X-ray diffraction, FT-Raman spectroscopy, X-ray photoelectron spectroscopy and scanningmore » electron microscopy. In this approach, the solvent composition and Zr/Ce molar ratio have great influences on the structure and morphology of final products. With decreasing water content in the mixed solvent, specific surface area of powders increased and the single tetragonal phase was obtained. Only when the volume ratio of water and ethanol and the Zr/Ce molar ratio were 1:1, tetragonal t″-Zr{sub 0.5}Ce{sub 0.5}O{sub 2} could be stabilized in powders at temperature as high as 1000 °C. Meanwhile, tetragonal (t′) and (t″) phases coexisted in Zr{sub 0.5}Ce{sub 0.5}O{sub 2} solid solution without peak splitting after calcination at 1100 °C, further transforming into cubic and tetragonal (t′) phases at 1200 °C. The effective activation energy for Zr{sub 0.5}Ce{sub 0.5}O{sub 2} nanocrystallite growth during annealing is about 5.24 ± 0.15 kJ/mol.« less
Montesdeoca-Esponda, Sarah; Sosa-Ferrera, Zoraida; Kabir, Abuzar; Furton, Kenneth G; Santana-Rodríguez, José Juan
2015-10-01
A fast and sensitive sample preparation strategy using fabric phase sorptive extraction followed by ultra-high-performance liquid chromatography and tandem mass spectrometry detection has been developed to analyse benzotriazole UV stabilizer compounds in aqueous samples. Benzotriazole UV stabilizer compounds are a group of compounds added to sunscreens and other personal care products which may present detrimental effects to aquatic ecosystems. Fabric phase sorptive extraction is a novel solvent minimized sample preparation approach that integrates the advantages of sol-gel derived hybrid inorganic-organic nanocomposite sorbents and the flexible, permeable and hydrophobic surface chemistry of polyester fabric. It is a highly sensitive, fast, efficient and inexpensive device that can be reused and does not suffer from coating damage, unlike SPME fibres or stir bars. In this paper, we optimized the extraction of seven benzotriazole UV filters evaluating the majority of the parameters involved in the extraction process, such as sorbent chemistry selection, extraction time, back-extraction solvent, back-extraction time and the impact of ionic strength. Under the optimized conditions, fabric phase sorptive extraction allows enrichment factors of 10 times with detection limits ranging from 6.01 to 60.7 ng L(-1) and intra- and inter-day % RSDs lower than 11 and 30 % for all compounds, respectively. The optimized sample preparation technique followed by ultra-high-performance liquid chromatography and tandem mass spectrometry detection was applied to determine the target analytes in sewage samples from wastewater treatment plants with different purification processes of Gran Canaria Island (Spain). Two UV stabilizer compounds were measured in ranges 17.0-60.5 ng mL(-1) (UV 328) and 69.3-99.2 ng mL(-1) (UV 360) in the three sewage water samples analysed.
Ide, Andreas; Drisko, Glenna L; Scales, Nicholas; Luca, Vittorio; Schiesser, Carl H; Caruso, Rachel A
2011-11-01
To take advantage of the full potential of functionalized transition metal oxides, a well-understood nonsilane based grafting technique is required. The functionalization of mixed titanium zirconium oxides was studied in detail using a bisphosphonic acid, featuring two phosphonic acid groups with high surface affinity. The bisphosphonic acid employed was coupled to a UV active benzamide moiety in order to track the progress of the surface functionalization in situ. Using different material compositions, altering the pH environment, and looking at various annealing conditions, key features of the functionalization process were identified that consequently will allow for intelligent material design. Loading with bisphosphonic acid was highest on supports calcined at 650 °C compared to lower calcination temperatures: A maximum capacity of 0.13 mmol g(-1) was obtained and the adsorption process could be modeled with a pseudo-second-order rate relationship. Heating at 650 °C resulted in a phase transition of the mixed binary oxide to a ternary oxide, titanium zirconium oxide in the srilankite phase. This phase transition was crucial in order to achieve high loading of the bisphosphonic acid and enhanced chemical stability in highly acidic solutions. Due to the inert nature of phosphorus-oxygen-metal bonds, materials functionalized by bisphosphonic acids showed increased chemical stability compared to their nonfunctionalized counterparts in harshly acidic solutions. Leaching studies showed that the acid stability of the functionalized material was improved with a partially crystalline srilankite phase. The materials were characterized using nitrogen sorption, X-ray powder diffraction, and UV-vis spectroscopy; X-ray photoelectron spectroscopy was used to study surface coverage with the bisphosphonic acid molecules.
1988-07-15
solvents were used. For high performance liquid chromatographic studies, the DNA bases thymine, adenine, cytocine, uracil, and guanine (Aldrich...this experiment. The DNA bases guanine, adenine, cytocine, uracil, and thymine were detected for a gradient elution of a mixture of the bases in a
Energetics of zirconia stabilized by cation and nitrogen substitution
NASA Astrophysics Data System (ADS)
Molodetsky, Irina
Tetragonal and cubic zirconia are used in advanced structural ceramics, fuel cells, oxygen sensors, nuclear waste ceramics and many other applications. These zirconia phases are stabilized at room temperature (relative to monoclinic phase for pure zirconia) by cation and nitrogen substitution. This work is aimed at a better understanding of the mechanisms of stabilization of the high-temperature zirconia. phases. Experimental data are produced on the energetics of zirconia stabilized by yttria and calcia, energetics of nitrogen-oxygen substitution in zirconia and cation doped zirconia, and energetics of x-ray amorphous zirconia. obtained by low-temperature synthesis. High-temperature oxide melt solution enables direct measurement of enthalpies of formation of these refractory oxides. The enthalpy of the monoclinic to cubic phase transition of zirconia is DeltaHm-c = 12.2 +/- 1.2 kJ/mol. For cubic phases of YSZ at low yttria contents, a straight line DeltaH f,YSZ = -(52.4 +/- 3.6)x + (12.2 +/- 1.2) approximates the enthalpy of formation as a function of the yttria content, x (0. 1 < x < 0.3). Use of the quadratic fit DeltaHf,YSZ = 126.36 x 2 - 81.29 x + 12.37 (0.1 ≲ x ≲ 0.53) indicates that yttria stabilizes the cubic phase in enthalpy at low dopant content and destabilizes the cubic phase as yttria content increases. Positive entropy of mixing in YSZ and small enthalpy of long range ordering in 0.47ZrO2-0.53YO1.5, DeltaHord = -2.4 +/- 3.0 kJ/mol, indicate presence of short range ordering in YSZ. The enthalpy of formation of calcia stabilized zirconia as a function of calcia content x, is approximated as DeltaHf,c = (-91.4 +/- 3.8) x + (13.5 +/- 1.7) kJ/mol. The enthalpy of oxygen-nitrogen substitution, DeltaHO-N, in zirconium oxynitrides is a linear function of nitrogen content. DeltaH O-N ˜ -500 kJ/mol N is for Ca (Y)-Zr-N-O and Zr-N-O oxynitrides and DeltaHO-N ˜ -950 kJ/mol N is for Mg-Zr-N-O oxynitrides. X-ray amorphous zirconia is 58.6 +/- 3.3 kJ/mol less stable in enthalpy than monoclinic zirconia. The difference between the surface energies of amorphous and tetragonal zirconia phases is ˜1.19 +/- 0.05 J/m2, with a lower surface energy for the amorphous material.
Gu, Zhi-Yuan; Yang, Cheng-Xiong; Chang, Na; Yan, Xiu-Ping
2012-05-15
In modern analytical chemistry researchers pursue novel materials to meet analytical challenges such as improvements in sensitivity, selectivity, and detection limit. Metal-organic frameworks (MOFs) are an emerging class of microporous materials, and their unusual properties such as high surface area, good thermal stability, uniform structured nanoscale cavities, and the availability of in-pore functionality and outer-surface modification are attractive for diverse analytical applications. This Account summarizes our research on the analytical applications of MOFs ranging from sampling to chromatographic separation. MOFs have been either directly used or engineered to meet the demands of various analytical applications. Bulk MOFs with microsized crystals are convenient sorbents for direct application to in-field sampling and solid-phase extraction. Quartz tubes packed with MOF-5 have shown excellent stability, adsorption efficiency, and reproducibility for in-field sampling and trapping of atmospheric formaldehyde. The 2D copper(II) isonicotinate packed microcolumn has demonstrated large enhancement factors and good shape- and size-selectivity when applied to on-line solid-phase extraction of polycyclic aromatic hydrocarbons in water samples. We have explored the molecular sieving effect of MOFs for the efficient enrichment of peptides with simultaneous exclusion of proteins from biological fluids. These results show promise for the future of MOFs in peptidomics research. Moreover, nanosized MOFs and engineered thin films of MOFs are promising materials as novel coatings for solid-phase microextraction. We have developed an in situ hydrothermal growth approach to fabricate thin films of MOF-199 on etched stainless steel wire for solid-phase microextraction of volatile benzene homologues with large enhancement factors and wide linearity. Their high thermal stability and easy-to-engineer nanocrystals make MOFs attractive as new stationary phases to fabricate MOF-coated capillaries for high-resolution gas chromatography (GC). We have explored a dynamic coating approach to fabricate a MOF-coated capillary for the GC separation of important raw chemicals and persistent organic pollutants with high resolution and excellent selectivity. We have combined a MOF-coated fiber for solid-phase microextraction with a MOF-coated capillary for GC separation, which provides an effective MOF-based tandem molecular sieve platform for selective microextraction and high-resolution GC separation of target analytes in complex samples. Microsized MOFs with good solvent stability are attractive stationary phases for high-performance liquid chromatography (HPLC). These materials have shown high resolution and good selectivity and reproducibility in both the normal-phase HPLC separation of fullerenes and substituted aromatics on MIL-101 packed columns and position isomers on a MIL-53(Al) packed column and the reversed-phase HPLC separation of a wide range of analytes from nonpolar to polar and acidic to basic solutes. Despite the above achievements, further exploration of MOFs in analytical chemistry is needed. Especially, analytical application-oriented engineering of MOFs is imperative for specific applications.
Xu, Gui -Liang; Amine, Rachid; Xu, Yue -Feng; ...
2017-06-08
Cathode materials are critical to the energy density, power density and safety of sodium-ion batteries (SIBs). Herein, we performed a comprehensive study to elucidate and exemplify the interplay mechanism between phase structures, interfacial microstrain and electrochemical properties of layered-structured Na xNi 1/3Co 1/3Mn 1/3O 2 cathode materials for high voltage SIBs. The electrochemical test results showed that Na xNi 1/3Co 1/3Mn 1/3O 2 with an intergrowth P2/O3/O1 structure demonstrates better electrochemical performance and better thermal stability than Na xNi 1/3Co 1/3Mn 1/3O 2 with P2/O3 binary-phase integration and Na xNi 1/3Co 1/3Mn 1/3O 2 where only the P phase ismore » dominant. This result is caused by the distinct interfacial microstrain development during the synthesis and cycling of the P2/O3/O1 phase. In operando high energy X-ray diffraction further revealed that the intergrowth P2/O1/O3 cathode can inhibit the irreversible P2–O2 phase transformation and simultaneously improve the structure stability of the O3 and O1 phases during cycling. Here, we believe that interfacial microstrain can serve as an indispensable bridge to guide future design and synthesis of high performance SIB cathode materials and other high energy battery materials.« less
NASA Astrophysics Data System (ADS)
Juillard, J.; Brenes, A.
2018-05-01
In this paper, the frequency stability of high-Q electrostatically-actuated MEMS oscillators with cubic restoring forces, and its relation with the amplitude, the phase and the shape of the excitation waveform, is studied. The influence on close-to-the carrier frequency noise of additive processes (such as thermomechanical noise) or parametric processes (bias voltage fluctuations, feedback phase fluctuations, feedback level fluctuations) is taken into account. It is shown that the optimal operating conditions of electrostatically-actuated MEMS oscillators are highly waveform-dependent, a factor that is largely overlooked in the existing literature. This simulation-based study covers the cases of harmonic and pulsed excitation of a parallel-plate capacitive MEMS resonator.
Dolomite III: A new candidate lower mantle carbonate
NASA Astrophysics Data System (ADS)
Mao, Zhu; Armentrout, Matt; Rainey, Emma; Manning, Craig E.; Dera, Przemyslaw; Prakapenka, Vitali B.; Kavner, Abby
2011-11-01
Dolomite is a major constituent of subducted carbonates; therefore evaluation of its phase stability and equation of state at high pressures and temperatures is important for understanding the deep Earth carbon cycle. X-ray diffraction experiments in the diamond anvil cell show that Ca0.988Mg0.918Fe0.078Mn0.016(CO3)2 dolomite transforms to dolomite-II at ∼17 GPa and 300 K and then upon laser-heating transforms to a new monoclinic phase (dolomite-III), that is observed between 36 and 83 GPa. Both high-pressure polymorphs are stable up to 1500 K, indicating that addition of minor Fe stabilizes dolomite to Earth's deep-mantle conditions.
Rawlence, M; Filippin, A N; Wäckerlin, A; Lin, T-Y; Cuervo-Reyes, E; Remhof, A; Battaglia, C; Rupp, J L M; Buecheler, S
2018-04-25
Replacing the liquid electrolyte in conventional lithium-ion batteries with thin-film solid-state lithium-ion conductors is a promising approach for increasing energy density, lifetime, and safety. In particular, Li 7 La 3 Zr 2 O 12 is appealing due to its high lithium-ion conductivity and wide electrochemical stability window. Further insights into thin-film processing of this material are required for its successful integration into solid-state batteries. In this work, we investigate the phase evolution of Li 7-3 x Ga x La 3 Zr 2 O 12 in thin films with various amounts of Li and Ga for stabilizing the cubic phase. Through this work, we gain valuable insights into the crystallization processes unique to thin films and are able to form dense Li 7-3 x Ga x La 3 Zr 2 O 12 layers stabilized in the cubic phase with high in-plane lithium-ion conductivities of up to 1.6 × 10 -5 S cm -1 at 30 °C. We also note the formation of cubic Li 7 La 3 Zr 2 O 12 at the relatively low temperature of 500 °C.
Organomineral Complexation at the Nanoscale: Iron Speciation and Soil Carbon Stabilization
NASA Astrophysics Data System (ADS)
Coward, E.; Thompson, A.; Plante, A. F.
2016-12-01
Much of the uncertainty in the biogeochemical behavior of soil carbon (C) in tropical ecosystems derives from an incomplete understanding of soil C stabilization processes. The 2:1 phyllosilicate clays often associated with temperate organomineral complexation are largely absent in tropical soils due to extensive weathering. In contrast, these soils contain an abundance of Fe- and Al-containing short-range-order (SRO) mineral phases capable of C stabilization through sorption or co-precipitation, largely enabled by high specific surface area (SSA). SRO-mediated organomineral associations may thus prove a critical, yet matrix-selective, driver of the long-term C stabilization capacity observed in tropical soils. Characterizing the interactions between inherently heterogeneous organic matter and amorphous mineralogy presses the limits of current analytical techniques. This work pairs inorganic selective dissolution with high-resolution assessment of Fe speciation to determine the contribution of extracted mineral phases to the mineral matrix, and to C stabilization capacity. Surface (0-20 cm) samples were taken from 20 quantitative soil pits within the Luquillo Critical Zone Observatory in northeast Puerto Rico stratified across granodioritic and volcaniclastic parent materials. 57Fe-Mössbauer spectroscopy (MBS) and x-ray diffraction (XRD) before and after Fe-SOM extraction were used to assess changes in the mineralogical matrix associated with SOM dissolution, while N2-BET sorption was used to determine the contributions of the extractable phases to SSA. Results indicate (1) selective extraction of soil C produces significant shifts in Fe phase distribution, (2) SRO minerals contribute substantially to SSA, and (3) SRO minerals appear protected by more crystalline phases via physical mechanisms, rather than dissolution-dependent chemical bonds. This nanoscale characterization of Fe-C complexes thus provides evidence for both anticipated mineral-organic and unexpected mineral-mineral associations, which may dynamically impact the temporal fate of tropical soil C.
Bai, Long; Xiang, Wenchao; Huan, Siqi; Rojas, Orlando J
2018-05-14
We report on high-internal-phase, oil-in-water Pickering emulsions that are stable against coalescence during storage. Viscous, edible oil (sunflower) was emulsified by combining naturally derived cellulose nanocrystals (CNCs) and a food-grade, biobased cationic surfactant obtained from lauric acid and L-arginine (ethyl lauroyl arginate, LAE). The interactions between CNC and LAE were elucidated by isothermal titration calorimetry (ITC) and supplementary techniques. LAE adsorption on CNC surfaces and its effect on nanoparticle electrostatic stabilization, aggregation state, and emulsifying ability was studied and related to the properties of resultant oil-in-water emulsions. Pickering systems with tunable droplet diameter and stability against oil coalescence during long-term storage were controllably achieved depending on LAE loading. The underlying stabilization mechanism was found to depend on the type of complex formed, the LAE structures adsorbed on the cellulose nanoparticles (as unimer or as adsorbed admicelles), the presence of free LAE in the aqueous phase, and the equivalent alkane number of the oil phase (sunflower and dodecane oils were compared). The results extend the potential of CNC in the formulation of high-quality and edible Pickering emulsions. The functional properties imparted by LAE, a highly effective molecule against food pathogens and spoilage organisms, open new opportunities in food, cosmetics, and pharmaceutical applications, where the presence of CNC plays a critical role in achieving synergistic effects with LAE.
NASA Astrophysics Data System (ADS)
Pinney, Nathan Douglas
Due to their high surface area and reactivity toward a variety of heavy metal and oxyanion species of environmental concern, Fe-(oxyhydr)oxide materials play an important role in the geochemical fate of natural and anthropogenic contaminants in soils, aquifers and surface water environments worldwide. In this research, ab initio simulations describe the bulk structure, magnetic properties, and relative phase stability of major Fe-(oxyhydr)oxide materials, including hematite, goethite, lepidocrocite, and ferrihydrite.These bulk models are employed in further studies of point defect and alloy/dopant thermodynamics in these materials, allowing construction of a phase stability model that better replicates the structure and composition of real materials. Li + adsorption at the predominant goethite (101) surface is simulated using ab initio methods, offering energetic and structural insight into the binding mechanisms of metal cations over a range of surface protonation conditions.
Ab initio study on structural stability of uranium carbide
NASA Astrophysics Data System (ADS)
Sahoo, B. D.; Joshi, K. D.; Gupta, Satish C.
2013-06-01
First principles calculations have been performed using plane wave pseudopotential and full potential linearized augmented plane wave (FP-LAPW) methods to analyze structural, elastic and dynamic stability of UC under hydrostatic compression. Our calculations within pseudopotential method suggest that the rocksalt (B1) structure will transform to body centered orthorhombic (bco) structure at ˜21.5 GPa. The FP-LAPW calculations put this transition at 23 GPa. The transition pressures determined from our calculations though agree reasonably with the experimental value of 27 GPa, the high pressure bco structure suggested by theory differs slightly from the experimentally reported pseudo bco phase. The elastic stability analysis of B1 phase suggests that the B1 to bco transition is driven by the failure of C44 modulus. This finding is further substantiated by the lattice dynamic calculations which demonstrate that the B1 phase becomes dynamically unstable around the transition pressure and the instability is of long wavelength nature.
Imtiaz, Qasim; Kurlov, Alexey; Rupp, Jennifer Lilia Marguerite; Müller, Christoph Rüdiger
2015-06-22
Chemical looping combustion (CLC) and chemical looping with oxygen uncoupling (CLOU) are emerging thermochemical CO2 capture cycles that allow the capture of CO2 with a small energy penalty. Here, the development of suitable oxygen carrier materials is a key aspect to transfer these promising concepts to practical installations. CuO is an attractive material for CLC and CLOU because of its high oxygen-storage capacity (20 wt %), fast reaction kinetics, and high equilibrium partial pressure of oxygen at typical operating temperatures (850-1000 °C). However, despite its promising characteristics, its low Tammann temperature requires the development of new strategies to phase-stabilize CuO-based oxygen carriers. In this work, we report a strategy based on stabilization by co-precipitated ceria (CeO2-x ), which allowed us to increase the oxygen capacity, coke resistance, and redox stability of CuO-based oxygen carriers substantially. The performance of the new oxygen carriers was evaluated in detail and compared to the current state-of-the-art materials, that is, Al2 O3 -stabilized CuO with similar CuO loadings. We also demonstrate that the higher intrinsic oxygen uptake, release, and mobility in CeO2-x -stabilized CuO leads to a three times higher carbon deposition resistance compared to that of Al2 O3 -stabilized CuO. Moreover, we report a high cyclic stability without phase intermixing for CeO2-x -supported CuO. This was accompanied by a lower reduction temperature compared to state-of-the-art Al2 O3 -supported CuO. As a result of its high resistance towards carbon deposition and fast oxygen uncoupling kinetics, CeO2-x -stabilized CuO is identified as a very promising material for CLC- and CLOU-based CO2 capture architectures. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Controlling the stability of nonlinear optical modes via electromagnetically induced transparency
NASA Astrophysics Data System (ADS)
Zhang, Kun; Liang, Yi-zeng; Lin, Ji; Li, Hui-jun
2018-02-01
We propose a scheme to generate and stabilize the high-dimensional spatial solitons via electromagnetically induced transparency (EIT). The system we consider is a resonant atomic ensemble having Λ configuration. We illustrate that under EIT conditions the equation satisfied by the probe field envelope is reduced to a saturable nonlinear Schrödinger equation with the trapping potential, provided by a far-detuned laser field and a random magnetic field. We present high-dimensional soliton solutions exhibiting many interesting characteristics, including diversity (i.e., many different types of soliton solutions can be found, including bright, ring multipole bright, ring multipole defect mode, multiring bright, multiring defect mode, and vortices solitons), the phase transition between bright soliton and higher-order defect modes (i.e., the phase transition can be realized by controlling the nonlinear coefficient or the intensity of the trapping potential), and stability (i.e., various solitons can be stabilized by the Gaussian potential provided by the far detuned laser field, or the random potential provided by the magnetic field). We also find that some solitons are the extension of the linear eigenmode, whereas others entirely derive from the role of nonlinearity. Compared with previous studies, we not only show the diverse soliton solutions in the same system but also find the boundary of the phase transition for the type of solitons. In addition, we present the possibility of using the random potential to stabilize various solitons and vortices.
Structural phase stability in nanocrystalline titanium to 161 GPa
DOE Office of Scientific and Technical Information (OSTI.GOV)
Velisavljevic, Nenad; Jacobsen, Matthew K.; Vohra, Yogesh K.
2014-09-16
Nanocrystalline titanium (nc-Ti) metal was investigated up to 161 GPa at room temperature using a diamond anvil cell. X-ray diffraction and electrical resistance techniques were used to investigate the compressibility and structural phase stability. nc-Ti is observed to undergo three structural phase transitions at high pressures, starting with α → ω at 10GPa and followed by ω → γ at 127GPa and γ → δ at 140GPa. The observed structural phase transitions, as well as compressibility, are consistent with previously reported values for coarse grained Ti (c-Ti). The high pressure experiments on nc-Ti samples do no show any significant variationmore » of the α → ω transition pressure under varying nonhydrostatic conditions. This is in sharp contrast to c-Ti, where a significant decrease in the α → ω transition pressure is observed under increasing nonhydrostatic conditions. As a result, this would indicate that the decrease in grain size in nano grained titanium makes the α → ω phase transition less sensitive to shear stresses as compared to bulk or c-Ti.« less
First principles investigation of high pressure behavior of FeOOH-AlOOH-phase H (MgSiO4H2) system.
NASA Astrophysics Data System (ADS)
Tsuchiya, J.; Thompson, E. C.; Tsuchiya, T.; Nishi, M.; Kuwayama, Y.
2017-12-01
It has been believed that water is carried into the deep Earth's interior by hydrous minerals such as the dense hydrous magnesium silicates (DHMSs) in the descending cold plate. A numbers of researches have been conducted so far about the high pressure behaviors of DHMSs. In recent years, we found new DHMS, phase H, at lower mantle pressure condition and the solid solution between phase H and d-AlOOH has been proposed as the most important carrier of water in the deepest part of Earth's mantle (Tsuchiya 2013 GRL, Nishi et al. 2014 Nature Geo., Ohira et al. 2014 EPSL). However, those hydrous minerals are actually not denser than surrounding (dry) mantle minerals (Tsuchiya and Mookherjee 2015 Scientific Reports) and the gravitational stability in deeper part of the Earth is questionable. Therefore, the effects of denser element such as Fe on the stability of DHMS are intimately connected to the ability of transportation of water into Earth's deep interiors. In order to assess the effect of Fe on the phase relation of phase H and d-AlOOH, we first investigated the high pressure behavior of the end-member composition of this system, the e-FeOOH. We have found the new high pressure transformation of FeOOH in the lower mantle conditions both theoretically and experimentally(Nishi et al. 2017 Nature). Here we show high pressure structures and the physical properties of FeOOH-AlOOH-phase H system using first principles calculation and discuss the possible geophysical implications of these phases.
Preparation of Nanocrystalline Powders of ZrO2, Stabilized by Y2O3 Dobs for Ceramics
NASA Astrophysics Data System (ADS)
Petrunin, V. F.; Korovin, S. A.
The purpose of this study was to develop a synthesis conditions and produce samples of nanocrystalline zirconia powder in a high-temperature phase state. To increase the stability of this state at room temperature, Y2O3 was used as a dop in the two-stages chemical method including coprecipitation mixture of the corresponding hydroxides and air drying. To reduce agglomeration of nanoparticles during heat treatment of precursors the microwave oven instead of a muffle was used. Different characterisation methods have been used to determine that the obtained powders are nano-scale corresponds to a high-temperature tetragonal phase of ZrO2. It is shown that such nanocrystalline powders may be used to produce highly-dense nanoceramics.
Design and development of advanced castable refractory materials
NASA Astrophysics Data System (ADS)
Davis, Robert Bruce
New formulations of castable refractory composite materials were studied. This technology is used to produce low cost composite concrete structures designed for high temperature stability, superior wear resistance and improved strength. An in situ fired, castable cement installation is a heterogeneous structure divided into three zones according to the temperature history and microstructure. The properties of each zone depend on the predominant bonding mode between constituents. Each zone has a characteristic microstructure that influences the integrity of the monolith. The hot side may have a highly dense and developed network of ceramic bonds between constituent particles while the cold side may never reach temperatures sufficient to drive off free water. The thermal, structural and tribological properties depend on the microstructure and the type of bonding that holds the monolith together. The phase distributions are defined by sets of metastable phase conditions driven by the local hydrated chemistry, nearest neighbor oxide compounds, impurities and sintering temperature. Equilibrium phase diagrams were used to select optimum compositions based on higher melting point phases. The phase diagrams were also used to target high temperature phase fields that are stable over wide temperature and stoichiometric ranges. Materials selection of candidate hydraulic clinkers, high temperature oxides, and reinforcement phases were based on requirements for high temperature stability. The calcium aluminate (CaO-Al2O3) and calcium dialuminate (CaO-(Al2O3)2) are common refractory clinkers used in castable refractory cements. The thermodynamics and kinetics of cement hydrate formation are well studied and suited to become the building block of a design for a superior refractory castable cement. The inert oxides mixed with the calcium aluminate clinkers are magnesia (MgO), alumina (Al 2O3), spinel (MgAl2O4) and chromic (Cr2O3). The bulk of the experiments concentrated in the Al2O3--MgO--CaO ternary system. Materials selection criteria for reinforcement materials was based on improved high temperature stability, increased strength, reduced thermal expansion mismatch, low thermal conductivity and increasing wear resistance. The reinforcement phases selected for this investigation are zircon (ZrSiO4), zirconia (ZrO2), spinel (MgAl2O4) and dead burnt magnesia (MgO). Batches of the formulations were tested for thermal conductivity, wear resistance and mechanical strength. Relative rankings of the formulations against commercial products indicate improved or similar performance with increased maximum temperature limits and improved thermal insulating power. The new cement formulations proved to exhibit superior high temperature stability with an increasing volume fraction of high temperature oxides. The addition of reinforcement aggregates and powder sizing to offset the loss of strength. The room temperature compression strength and wear resistance of the optimized formulations exceeded the properties of conventional refractory, brick and castable cement tested concurrently.
NASA Astrophysics Data System (ADS)
Rauwel, E.; Dubourdieu, C.; Holländer, B.; Rochat, N.; Ducroquet, F.; Rossell, M. D.; Van Tendeloo, G.; Pelissier, B.
2006-07-01
Addition of yttrium in HfO2 thin films prepared on silicon by metal organic chemical vapor deposition is investigated in a wide compositional range (2.0-99.5at.%). The cubic structure of HfO2 is stabilized for 6.5at.%. The permittivity is maximum for yttrium content of 6.5-10at.%; in this range, the effective permittivity, which results from the contribution of both the cubic phase and silicate phase, is of 22. These films exhibit low leakage current density (5×10-7A /cm2 at -1V for a 6.4nm film). The cubic phase is stable upon postdeposition high temperature annealing at 900°C under NH3.
Thermal behavior of glassy phase stabilized ammonium nitrate (PSAN) thin films
Yeager, J. D.; Chellappa, R.; Singh, S.; ...
2015-06-01
Ammonium nitrate (AN) is a high interest material because of its wide usage in propellants and explosives but can be difficult to handle from a formulation standpoint. It is soluble in many common solvents and has complex phase behavior. Here, we formulate phase stabilized AN (PSAN) films in a polymer matrix and characterize thermal and phase behavior using neutron reflectometry and ellipsometry. Our PSAN films are generally stable up to 160 °C, though we observe small material loss between 60 and 100 °C, which we attribute to solvent interactions with the PSAN. Crystallization of AN from supersaturated polymer is mostmore » common at thicker regions of the film, suggesting a critical nucleation thickness for the AN which can be avoided by making very thin films.« less
A class of optimum digital phase locked loops
NASA Technical Reports Server (NTRS)
Kumar, R.; Hurd, W. J.
1986-01-01
This paper presents a class of optimum digital filters for digital phase locked loops, for the important case in which the maximum update rate of the loop filter and numerically controlled oscillator (NCO) is limited. This case is typical when the loop filter is implemented in a microprocessor. In these situations, pure delay is encountered in the loop transfer function and thus the stability and gain margin of the loop are of crucial interest. The optimum filters designed for such situations are evaluated in terms of their gain margin for stability, dynamic error, and steady-state error performance. For situations involving considerably high phase dynamics an adaptive and programmable implementation is also proposed to obtain an overall optimum strategy.
Li, Haoyi; Chen, Shuangming; Jia, Xiaofan; Xu, Biao; Lin, Haifeng; Yang, Haozhou; Song, Li; Wang, Xun
2017-01-01
Highly active and robust eletcrocatalysts based on earth-abundant elements are desirable to generate hydrogen and oxygen as fuels from water sustainably to replace noble metal materials. Here we report an approach to synthesize porous hybrid nanostructures combining amorphous nickel-cobalt complexes with 1T phase molybdenum disulfide (MoS2) via hydrazine-induced phase transformation for water splitting. The hybrid nanostructures exhibit overpotentials of 70 mV for hydrogen evolution and 235 mV for oxygen evolution at 10 mA cm−2 with long-term stability, which have superior kinetics for hydrogen- and oxygen-evolution with Tafel slope values of 38.1 and 45.7 mV dec−1. Moreover, we achieve 10 mA cm−2 at a low voltage of 1.44 V for 48 h in basic media for overall water splitting. We propose that such performance is likely due to the complete transformation of MoS2 to metallic 1T phase, high porosity and stabilization effect of nickel-cobalt complexes on 1T phase MoS2. PMID:28485395
Synchronization in oscillator networks with delayed coupling: a stability criterion.
Earl, Matthew G; Strogatz, Steven H
2003-03-01
We derive a stability criterion for the synchronous state in networks of identical phase oscillators with delayed coupling. The criterion applies to any network (whether regular or random, low dimensional or high dimensional, directed or undirected) in which each oscillator receives delayed signals from k others, where k is uniform for all oscillators.
Thermodynamic analysis and purifying an amorphous phase of frozen crystallization centers
NASA Astrophysics Data System (ADS)
Lysov, V. I.; Tsaregradskaya, T. L.; Turkov, O. V.; Saenko, G. V.
2017-12-01
The possibility of dissolving frozen crystallization centers in amorphous alloys of the Fe-B system is considered by means of thermodynamic calculations. This can in turn improve the thermal stability of an amorphous alloy. The effect isothermal annealing has on the thermal stability of multicomponent amorphous alloys based on iron is investigated via the highly sensitive dilatometric technique, measurements of microsolidity, and electron microscopic investigations. The annealing temperature is determined empirically on the basis of the theses of the thermodynamic theory of the high temperature stability of multicomponent amorphous alloys, according to which there exists a range of temperatures that is characterized by a negative difference between the chemical potentials of phases in a heterogeneous amorphous matrix-frozen crystallization centers system. The thermodynamic condition of the possible dissolution of frozen crystallization centers is thus met. It is shown that introducing regimes of thermal processing allows us to expand the ranges of the thermal stability of iron-based amorphous alloys by 20-40 K through purifying an amorphous matrix of frozen crystallization centers. This conclusion is proved via electron microscopic investigations.
Cavity Self-Stabilization and Enhancement of Laser Gyroscopes by (Coupled) Optical Resonators
NASA Technical Reports Server (NTRS)
Smith, David D.
2006-01-01
We analyze the effect of a highly dispersive element placed inside a modulated optical cavity on the frequency and amplitude of the modulation to determine the conditions for cavity self-stabilization and enhanced gyroscopic sensitivity. Hence, we model cavity rotation or instability by an arbitrary AM/FM modulation, and the dispersive element as a phase and amplitude filter. We find that anomalous dispersion may be used to self-stabilize a laser cavity, provided the magnitude of the group index of refraction is smaller than the phase index of refraction in the cavity. The optimal stabilization is found to occur when the group index is zero. Group indices with magnitudes larger than the phase index (both normal and anomalous dispersion) are found to enhance the sensitivity of a laser gyroscope to rotation. Furthermore, our results indicate that atomic media, even coherent superpositions in multilevel atoms, are not useful for these applications, because the amplitude and phase filters work against one another, i.e., decreasing the modulation frequency increases its amplitude and vice versa, with one exception: negative group indices whose magnitudes are larger than the phase index result in negative, but enhanced, beat frequencies. On the other hand, for optical resonators the dispersion reversal associated with critical coupling enables the amplitude and phase filters to work together under a greater variety of circumstances than for atomic media. We find that for single over-coupled resonators, or in the case of under-coupled coupled-resonator-induced absorption, the absorption and normal dispersion on-resonance increase the contrast and frequency of the beat-note, respectively, resulting in a substantial enhancement of the gyroscopic response. Moreover, for cavity self-stabilization, we propose the use of a variety of coupled-resonator induced transparency that is accompanied by anomalous dispersion.
Hydrophilic microspheres from water-in-oil emulsions by the water diffusion technique.
Trotta, Michele; Chirio, Daniela; Cavalli, Roberta; Peira, Elena
2004-08-01
In this study, we developed and evaluated a novel method to produce insulin-loaded hydrophilic microspheres allowing high encapsulation efficiency and the preservation of peptide stability during particle processing. The preparation method used the diffusion of water by an excess of solvent starting from a water-in-solvent emulsion. The water dispersed phase containing albumin or lactose, or albumin-lactose in different weight ratios, and insulin was emulsified in water-saturated triacetin with and without emulsifiers, producing a water-in-triacetin emulsion. An excess of triacetin was added to the emulsion so that water could be extracted into the continuous phase, allowing the insulin-loaded microsphere precipitation. Insulin stability within the microspheres after processing was evaluated by reverse-phase and size-exclusion high-performance liquid chromatography. The water diffusion extraction process provided spherical microparticles of albumin or albumin-lactose. The mean diameter of the microspheres prepared with or without emulsifiers ranged from 2 to 10 microm, and the encapsulation efficiency of insulin was between 60% and 75%, respectively. The analysis of microsphere content after processing showed that insulin did not undergo any chemical modification within microspheres. The use of lactose alone led to the formation of highly viscous droplets that coalesced during the purification step. The water extraction procedures successfully produced insulin-loaded hydrophilic microspheres allowing the preservation of peptide stability. The type of excipient and the size of the disperse phase of the primary w/o emulsion were crucial determinants of microsphere characteristics.
Stabilizing liquid drops of arbitrary shape by the interfacial jamming of nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Russell, Thomas P.; Cui, Mengmeng; Emrick, Todd
A stabilized assembly including a first liquid phase of non-spherical droplets in a second liquid phase, wherein the second liquid phase is immiscible with the first phase, and nanoparticle surfactants assembled at an interface of the non-spherical droplets and the second phase is disclosed. The nanoparticle surfactants include nanoparticles and end-functionalized polymers that can interact through ligand type interactions, and the first phase is stabilized by a disordered, jammed layer of nanoparticle surfactants. A method of preparing a stabilized assembly is also disclosed.
Direct carrier-envelope phase control of an amplified laser system.
Balčiūnas, Tadas; Flöry, Tobias; Baltuška, Andrius; Stanislauskas, Tomas; Antipenkov, Roman; Varanavičius, Arūnas; Steinmeyer, Günter
2014-03-15
Direct carrier-envelope phase stabilization of an Yb:KGW MOPA laser system is demonstrated with a residual phase jitter reduced to below 100 mrad, which compares favorably with previous stabilization reports, both of amplified laser systems as well as of ytterbium-based oscillators. This novel stabilization scheme relies on a frequency synthesis scheme and a feed-forward approach. The direct stabilization of a sub-MHz frequency comb from a CPA amplifier not only reduces the phase noise but also greatly simplifies the stabilization setup.
Byrne, Jonathan; Velasco-Torrijos, Trinidad; Reinhardt, Robert
2014-08-05
A novel stability-indicating reversed phase high performance liquid chromatographic (RP-HPLC) method for the simultaneous assay of betamethasone-17-valerate, fusidic acid and potassium sorbate as well as methyl- and propylparaben in a topical cream preparation has been developed. A 100mm×3.0mm ID. Ascentis Express C18 column maintained at 30°C and UV detection at 240nm were used. A gradient programme was employed at a flow-rate of 0.75ml/min. Mobile phase A comprised of an 83:17 (v/v) mixture of acetonitrile and methanol and mobile phase B of a 10g/l solution of 85% phosphoric acid in purified water. The method has been validated according to current International Conference on Harmonisation (ICH) guidelines and applied during formulation development and stability studies. The procedure has been shown to be stability-indicating for the topical cream. Copyright © 2014 Elsevier B.V. All rights reserved.
Phase Stability of Epsilon and Gamma HNIW (CL-20) at High-Pressure and Temperature
NASA Astrophysics Data System (ADS)
Gump, Jared
2007-06-01
Hexanitrohexaazaisowurtzitane (CL-20) is one of the few ingredients developed since World War II to be considered for transition to military use. Five polymorphs have been identified for CL-20 by FTIR measurements (α, β, γ, ɛ, and ζ). As CL-20 is transitioned into munitions it will become necessary to predict its response under conditions of detonation, for performance evaluation. Such predictive modeling requires a phase diagram and basic thermodynamic properties of the various phases at high pressure and temperature. Theoretical calculations have been performed for a variety of explosive ingredients including CL-20, but it was noted that no experimental measurements existed for comparison with the theoretical bulk modulus calculated for CL-20. Therefore, the phase stabilities of epsilon and gamma CL-20 at static high-pressure and temperature were investigated using synchrotron angle-dispersive x-ray diffraction experiments. The samples were compressed and heated using diamond anvil cells (DAC). Pressures and temperatures achieved were around 5GPa and 175^oC, respectively. No phase change (from the starting epsilon phase) was observed under hydrostatic compression up to 6.3 GPa at ambient temperature. Under ambient pressure the epsilon phase was determined to be stable to a temperature of 120^oC. When heating above 125^oC the gamma phase appeared and it remained stable until thermal decomposition occurred above 150^oC. The gamma phase exhibits a phase change upon compression at both ambient temperature and 140^oC. Pressure -- volume data for the epsilon and gamma phase at ambient temperature and the epsilon phase at 75^oC were fit to the Birch-Murnaghan formalism to obtain isothermal equations of state.
Metastable structure of Li13Si4
NASA Astrophysics Data System (ADS)
Gruber, Thomas; Bahmann, Silvia; Kortus, Jens
2016-04-01
The Li13Si4 phase is one out of several crystalline lithium silicide phases, which is a potential electrode material for lithium ion batteries and contains a high theoretical specific capacity. By means of ab initio methods like density functional theory (DFT) many properties such as heat capacity or heat of formation can be calculated. These properties are based on the calculation of phonon frequencies, which contain information about the thermodynamical stability. The current unit cell of "Li13Si4" given in the ICSD database is unstable with respect to DFT calculations. We propose a modified unit cell that is stable in the calculations. The evolutionary algorithm EVO found a structure very similar to the ICSD one with both of them containing metastable lithium positions. Molecular dynamic simulations show a phase transition between both structures where these metastable lithium atoms move. This phase transition is achieved by a very fast one-dimensional lithium diffusion and stabilizes this phase.
Dynamical stability of Fe-H in the Earth's mantle and core regions.
Isaev, Eyvaz I; Skorodumova, Natalia V; Ahuja, Rajeev; Vekilov, Yuri K; Johansson, Börje
2007-05-29
The core extends from the depth of 2,900 km to the center of the Earth and is composed mainly of an iron-rich alloy with nickel, with 10% of the mass comprised of lighter elements like hydrogen, but the exact composition is uncertain. We present a quantum mechanical first-principles study of the dynamical stability of FeH phases and their phonon densities of states at high pressure. Our free-energy calculations reveal a phonon-driven stabilization of dhcp FeH at low pressures, thus resolving the present contradiction between experimental observations and theoretical predictions. Calculations reveal a complex phase diagram for FeH under pressure with a dhcp --> hcp --> fcc sequence of structural transitions.
Dynamical stability of Fe-H in the Earth's mantle and core regions
Isaev, Eyvaz I.; Skorodumova, Natalia V.; Ahuja, Rajeev; Vekilov, Yuri K.; Johansson, Börje
2007-01-01
The core extends from the depth of 2,900 km to the center of the Earth and is composed mainly of an iron-rich alloy with nickel, with 10% of the mass comprised of lighter elements like hydrogen, but the exact composition is uncertain. We present a quantum mechanical first-principles study of the dynamical stability of FeH phases and their phonon densities of states at high pressure. Our free-energy calculations reveal a phonon-driven stabilization of dhcp FeH at low pressures, thus resolving the present contradiction between experimental observations and theoretical predictions. Calculations reveal a complex phase diagram for FeH under pressure with a dhcp → hcp → fcc sequence of structural transitions. PMID:17483486
NASA Astrophysics Data System (ADS)
Ditenberg, I. A.; Tyumentsev, A. N.
2018-03-01
The results of investigations of thermal stability of microstructure and microhardness of alloys of the V-4Ti-4Cr and Mo-47Re systems, subjected to torsional deformation by high quasi-hydrostatic pressure at room temperature, are reported. It is shown that submicrocrystalline and nanocrystalline states, and the respective high values of microhardness, persist up to the upper bound ( 0.4 Tmelt) of the temperature interval of their recovery and polygonization in a single-phase state. The main factors ensuring thermal stability of highlydefective states in heterophase alloys are discussed.
A stable solid acid material: Sulfated ZrO2 dispersed on alumina nanotubes
NASA Astrophysics Data System (ADS)
Feng, Yu; Jiaqi, Chen; Xu, Wang; Rui-Feng, Li
2017-02-01
A tubular solid acid catalyst was designed by loading sulfated zirconia into γ-Al2O3 nanotubes using the method of stepwise deposition. The XRD, N2 adsorption-desorption characterization demonstrated that introducing alumina nanotube and SO4 2- anions have played an important role in stabilizing the metastable tetragonal ZrO2 phase, and the sulfated zirconia on the surface of the γ-Al2O3 nanotube has high dispersion and stability. The catalyst reused repeatedly possesses large amounts of acid sites and good acidity, exhibiting high catalytic activity and stability for isopropylbenzene cracking.
Matrix Transformation in Boron Containing High-Temperature Co-Re-Cr Alloys
NASA Astrophysics Data System (ADS)
Strunz, Pavel; Mukherji, Debashis; Beran, Přemysl; Gilles, Ralph; Karge, Lukas; Hofmann, Michael; Hoelzel, Markus; Rösler, Joachim; Farkas, Gergely
2018-03-01
An addition of boron largely increases the ductility in polycrystalline high-temperature Co-Re alloys. Therefore, the effect of boron on the alloy structural characteristics is of high importance for the stability of the matrix at operational temperatures. Volume fractions of ɛ (hexagonal close-packed—hcp), γ (face-centered cubic—fcc) and σ (Cr2Re3 type) phases were measured at ambient and high temperatures (up to 1500 °C) for a boron-containing Co-17Re-23Cr alloy using neutron diffraction. The matrix phase undergoes an allotropic transformation from ɛ to γ structure at high temperatures, similar to pure cobalt and to the previously investigated, more complex Co-17Re-23Cr-1.2Ta-2.6C alloy. It was determined in this study that the transformation temperature depends on the boron content (0-1000 wt. ppm). Nevertheless, the transformation temperature did not change monotonically with the increase in the boron content but reached a minimum at approximately 200 ppm of boron. A probable reason is the interplay between the amount of boron in the matrix and the amount of σ phase, which binds hcp-stabilizing elements (Cr and Re). Moreover, borides were identified in alloys with high boron content.
NASA Astrophysics Data System (ADS)
Füglistaler, A.; Pfenniger, D.
2016-06-01
Context. Molecular clouds typically consist of 3/4 H2, 1/4 He and traces of heavier elements. In an earlier work we showed that at very low temperatures and high densities, H2 can be in a phase transition leading to the formation of ice clumps as large as comets or even planets. However, He has very different chemical properties and no phase transition is expected before H2 in dense interstellar medium conditions. The gravitational stability of fluid mixtures has been studied before, but these studies did not include a phase transition. Aims: We study the gravitational stability of binary fluid mixtures with special emphasis on when one component is in a phase transition. The numerical results are aimed at applications in molecular cloud conditions, but the theoretical results are more general. Methods: First, we study the gravitational stability of van der Waals fluid mixtures using linearized analysis and examine virial equilibrium conditions using the Lennard-Jones intermolecular potential. Then, combining the Lennard-Jones and gravitational potentials, the non-linear dynamics of fluid mixtures are studied via computer simulations using the molecular dynamics code LAMMPS. Results: Along with the classical, ideal-gas Jeans instability criterion, a fluid mixture is always gravitationally unstable if it is in a phase transition because compression does not increase pressure. However, the condensed phase fraction increases. In unstable situations the species can separate: in some conditions He precipitates faster than H2, while in other conditions the converse occurs. Also, for an initial gas phase collapse the geometry is essential. Contrary to spherical or filamentary collapses, sheet-like collapses starting below 15 K easily reach H2 condensation conditions because then they are fastest and both the increase of heating and opacity are limited. Conclusions: Depending on density, temperature and mass, either rocky H2 planetoids, or gaseous He planetoids form. H2 planetoids are favoured by high density, low temperature and low mass, while He planetoids need more mass and can form at temperature well above the critical value.
Understanding decomposition and encapsulation energies of structure I and II clathrate hydrates
NASA Astrophysics Data System (ADS)
Alavi, Saman; Ohmura, Ryo
2016-10-01
When compressed with water or ice under high pressure and low temperature conditions, some gases form solid gas hydrate inclusion compounds which have higher melting points than ice under those pressures. In this work, we study the balance of the guest-water and water-water interaction energies that lead to the formation of the clathrate hydrate phases. In particular, molecular dynamics simulations with accurate water potentials are used to study the energetics of the formation of structure I (sI) and II (sII) clathrate hydrates of methane, ethane, and propane. The dissociation enthalpy of the clathrate hydrate phases, the encapsulation enthalpy of methane, ethane, and propane guests in the corresponding phases, and the average bonding enthalpy of water molecules are calculated and compared with accurate calorimetric measurements and previous classical and quantum mechanical calculations, when available. The encapsulation energies of methane, ethane, and propane guests stabilize the small and large sI and sII hydrate cages, with the larger molecules giving larger encapsulation energies. The average water-water interactions are weakened in the sI and sII phases compared to ice. The relative magnitudes of the van der Waals potential energy in ice and the hydrate phases are similar, but in the ice phase, the electrostatic interactions are stronger. The stabilizing guest-water "hydrophobic" interactions compensate for the weaker water-water interactions and stabilize the hydrate phases. A number of common assumptions regarding the guest-cage water interactions are used in the van der Waals-Platteeuw statistical mechanical theory to predict the clathrate hydrate phase stability under different pressure-temperature conditions. The present calculations show that some of these assumptions may not accurately reflect the physical nature of the interactions between guest molecules and the lattice waters.
Understanding decomposition and encapsulation energies of structure I and II clathrate hydrates.
Alavi, Saman; Ohmura, Ryo
2016-10-21
When compressed with water or ice under high pressure and low temperature conditions, some gases form solid gas hydrate inclusion compounds which have higher melting points than ice under those pressures. In this work, we study the balance of the guest-water and water-water interaction energies that lead to the formation of the clathrate hydrate phases. In particular, molecular dynamics simulations with accurate water potentials are used to study the energetics of the formation of structure I (sI) and II (sII) clathrate hydrates of methane, ethane, and propane. The dissociation enthalpy of the clathrate hydrate phases, the encapsulation enthalpy of methane, ethane, and propane guests in the corresponding phases, and the average bonding enthalpy of water molecules are calculated and compared with accurate calorimetric measurements and previous classical and quantum mechanical calculations, when available. The encapsulation energies of methane, ethane, and propane guests stabilize the small and large sI and sII hydrate cages, with the larger molecules giving larger encapsulation energies. The average water-water interactions are weakened in the sI and sII phases compared to ice. The relative magnitudes of the van der Waals potential energy in ice and the hydrate phases are similar, but in the ice phase, the electrostatic interactions are stronger. The stabilizing guest-water "hydrophobic" interactions compensate for the weaker water-water interactions and stabilize the hydrate phases. A number of common assumptions regarding the guest-cage water interactions are used in the van der Waals-Platteeuw statistical mechanical theory to predict the clathrate hydrate phase stability under different pressure-temperature conditions. The present calculations show that some of these assumptions may not accurately reflect the physical nature of the interactions between guest molecules and the lattice waters.
New High Pressure Phase of CaCO3: Implication for the Deep Diamond Formation
NASA Astrophysics Data System (ADS)
Mao, Z.; Li, X.; Zhang, Z.; Lin, J. F.; Ni, H.; Prakapenka, V.
2017-12-01
Surface carbon can be transported to the Earth's deep interior through sinking subduction slabs. Carbonates, including CaCO3, MgCO3 and MgCa(CO3)2, are important carbon carriers for the deep carbon cycle. Experimental studies on the phase stability of carbonates with coexisting mantle minerals at relevant pressure and temperature conditions are thus important for understanding the deep carbon cycle. In particular, recent petrological studies have revealed the evidence for the transportation of CaCO3 to the depth at least of the top lower mantle by analyzing the diamond inclusions. Yet the phase stability of CaCO3 at relevant pressure and temperature conditions of the top lower mantle is still unclear. Previous single-crystal study has shown that CaCO3 transforms from the CaCO3-III structure to CaCO3-VI at 15 GPa and 300 K. The CaCO3-VI is stable at least up to 40 GPa at 300 K. At high temperatures, CaCO3 in the aragonite structure will directly transform into the post-aragonite structure at 40 GPa. However, a recent theoretical study predicted a new phase of CaCO3 with a space group of P21/c between 32 and 48 GPa which is different from previous experimental results. In this study, we have investigated the phase stability of CaCO3 at high pressure-temperature conditions using synchrotron X-ray diffraction in laser-heated diamond anvil cells. We report the discovery of a new phase of CaCO3 at relevant pressure-temperature conditions of the top lower mantle which is consistent with previous theoretical predictions. This new phase is an important carrier for the transportation of carbon to the Earth's lower mantle and crucial for growing deep diamonds in the region.
High-pressure NaCl-phase of tetrahedral compounds
NASA Astrophysics Data System (ADS)
Soma, T.; -Matsuo Kagaya, H.
1984-04-01
The phase transition of tetrahedral compounds such as GaP, InP, ZnS, ZnSe, ZnTe and CdTe under pressure is investigated from the electronic theory of solids by using our recently presented binding force, which includes mainly covalent interactions in the pseudopotential formalism and partially ionic interactions. The partially ionic forces give the important contributions to the high-pressure phase and stabilize the NaCl-type structure for the high-pressure phase of these compounds, although not reported for GaP experimentally. Then, the numerical results such as the transition pressure, the volume-discontinuity, the transition heat with respect to the pressure-induced phase transition from the zinc-blende-to the NaCl-type lattice are obtained theoretically.
NASA Astrophysics Data System (ADS)
Lu, Fengyuan
Material design at the nanometer scale is an effective strategy for developing advanced materails with enhanced radiation tolerance for advanced nuclear energy systems as high densities of surfaces and interfaces of the nanostructured materials may behave as effective sinks for defect recovery. However, nanostructured materials may not be intrinsically radiation tolerant, and the interplay among the factors of crystal size, temperature, chemical composition, surface energy and radiation conditions may eventually determine material radiation behaviors. Therefore, it is necessary to understand the radiation effects of nanostructured materials and the underlying physics for the design of advanced nanostructured nuclear materials. The main objective of this doctoral thesis is to study the behavior of nanostructured oxides and nitrides used as fuel matrix and waste forms under extreme radiation conditions with the focus of phase transformation, microstructural evolution and damage mechanisms. Radiation experiments were performed using energetic ion beam techniques to simulate radiation damage resulting from energetic neutrons, alpha-decay events and fission fragments, and various experimental approaches were employed to characterize materials’ microstructural evolution and phase stability upon intense radiation environments including transmission electron microscopy (TEM), X-ray diffraction (XRD) and Raman spectroscopy. Thermal annealing experiments indicated that nanostructured ZrO2 phase stability is strongly affected by the grain size. Radiation results on nanostructured ZrO2 indicated that thermodynamically unstable or metastable high temperature phases can be induced by energetic beam irradiation at room temperature. Various phase transformation among different polymorphs of monoclinic, tetragonal and amorphous states can be induced, and different mechanisms are responsible for structural transformations including oxygen vacancies accumulation upon displacive damage, radiation-assistant recrystallization and thermal spike by ionization radiation. The radiation response of nanosized pyrochlores indicated that the radiation tolerance of nanoceramics is highly dependent on the composition and size. Nanosized tantalate pyrochlores KxLnyTa2O 7-v (Ln = Gd, Y, Lu) with the average grain size around 10 - 15 nm are highly sensitive to radiation-induced amorphization. The pyrochlore A to B site ionic radius ratio rA/rB is crucial in determining the radiation tolerance of pyrochlores, and a minimum rA/rB of 1.605 exists for the occurring of radiation induced amorphization. The interplay among chemical compositions, structural deviation and grain size eventually determines the phase stability and structural transformation processes of tantalate pyrochlores under intense radiation environments. ZrN shows extremely high phase stability under both displacive ion irradiation and ionizing swift heavy ion irradiation. However, a contraction in lattice constant up to ~ 1.42 % can be induced in nanocrystalline ZrN irradiated with displacive ion beams. In contrast, the strongly ionizing swift heavy ions cannot induce any lattice contraction. Such lattice contractions may be due to a negative strain field in the ZrN nanograins related to N vacancies built up upon displacive radiation. Ion irradiations also lead to the formation of orthorhombic ZrSi phase at the interface between ZrN and Si substrate, resulting from atom mixing and precipitation upon ion irradiations. The fundamental knowledge provides critical data for assessing and quantifying nanostructured ceramics as fuel matrix and waste forms utilized in the extreme environments of advanced nuclear energy systems. Further possibilities are being pursued in manipulating microstructure at the nano-scale, controlling phase stability and tailoring the physical properties of materials for various important engineering applications.
Facile Preparation of Internally Self-assembled Lipid Particles Stabilized by Carbon Nanotubes
Patil-Sen, Yogita; Sadeghpour, Amin; Rappolt, Michael; Kulkarni, Chandrashekhar V.
2016-01-01
We present a facile method to prepare nanostructured lipid particles stabilized by carbon nanotubes (CNTs). Single-walled (pristine) and multi-walled (functionalized) CNTs are used as stabilizers to produce Pickering type oil-in-water (O/W) emulsions. Lipids namely, Dimodan U and Phytantriol are used as emulsifiers, which in excess water self-assemble into the bicontinuous cubic Pn3m phase. This highly viscous phase is fragmented into smaller particles using a probe ultrasonicator in presence of conventional surfactant stabilizers or CNTs as done here. Initially, the CNTs (powder form) are dispersed in water followed by further ultrasonication with the molten lipid to form the final emulsion. During this process the CNTs get coated with lipid molecules, which in turn are presumed to surround the lipid droplets to form a particulate emulsion that is stable for months. The average size of CNT-stabilized nanostructured lipid particles is in the submicron range, which compares well with the particles stabilized using conventional surfactants. Small angle X-ray scattering data confirms the retention of the original Pn3m cubic phase in the CNT-stabilized lipid dispersions as compared to the pure lipid phase (bulk state). Blue shift and lowering of the intensities in characteristic G and G' bands of CNTs observed in Raman spectroscopy characterize the interaction between CNT surface and lipid molecules. These results suggest that the interactions between the CNTs and lipids are responsible for their mutual stabilization in aqueous solutions. As the concentrations of CNTs employed for stabilization are very low and lipid molecules are able to functionalize the CNTs, the toxicity of CNTs is expected to be insignificant while their biocompatibility is greatly enhanced. Hence the present approach finds a great potential in various biomedical applications, for instance, for developing hybrid nanocarrier systems for the delivery of multiple functional molecules as in combination therapy or polytherapy. PMID:26967650
Facile Preparation of Internally Self-assembled Lipid Particles Stabilized by Carbon Nanotubes.
Patil-Sen, Yogita; Sadeghpour, Amin; Rappolt, Michael; Kulkarni, Chandrashekhar V
2016-02-19
We present a facile method to prepare nanostructured lipid particles stabilized by carbon nanotubes (CNTs). Single-walled (pristine) and multi-walled (functionalized) CNTs are used as stabilizers to produce Pickering type oil-in-water (O/W) emulsions. Lipids namely, Dimodan U and Phytantriol are used as emulsifiers, which in excess water self-assemble into the bicontinuous cubic Pn3m phase. This highly viscous phase is fragmented into smaller particles using a probe ultrasonicator in presence of conventional surfactant stabilizers or CNTs as done here. Initially, the CNTs (powder form) are dispersed in water followed by further ultrasonication with the molten lipid to form the final emulsion. During this process the CNTs get coated with lipid molecules, which in turn are presumed to surround the lipid droplets to form a particulate emulsion that is stable for months. The average size of CNT-stabilized nanostructured lipid particles is in the submicron range, which compares well with the particles stabilized using conventional surfactants. Small angle X-ray scattering data confirms the retention of the original Pn3m cubic phase in the CNT-stabilized lipid dispersions as compared to the pure lipid phase (bulk state). Blue shift and lowering of the intensities in characteristic G and G' bands of CNTs observed in Raman spectroscopy characterize the interaction between CNT surface and lipid molecules. These results suggest that the interactions between the CNTs and lipids are responsible for their mutual stabilization in aqueous solutions. As the concentrations of CNTs employed for stabilization are very low and lipid molecules are able to functionalize the CNTs, the toxicity of CNTs is expected to be insignificant while their biocompatibility is greatly enhanced. Hence the present approach finds a great potential in various biomedical applications, for instance, for developing hybrid nanocarrier systems for the delivery of multiple functional molecules as in combination therapy or polytherapy.
Zereshki, Sina; Daraei, Parisa; Shokri, Amin
2018-05-18
Using an emulsion liquid membrane based on edible oils is investigated for removing cationic dyes from aqueous solutions. There is a great potential for using edible oils in food industry extraction processes. The parameters affecting the stability of the emulsion and the extraction rate were studied. These parameters were the emulsification time, the stirring speed, the surfactant concentration, the internal phase concentration, the feed phase concentration, the volume ratio of internal phase to organic phase and the treat ratio. In order to stabilize the emulsion without using a carrier, edible paraffin oil and heptane are used at an 80:20 ratio. The optimum conditions for the extraction of methylene blue (MB), crystal violet and methyl violet (CV and MV) cationic dyes using edible paraffin oil as an environment friendly solvent are represented. A removal percentage of 95% was achieved for a mixture of dyes. The optimum concentration of sodium hydroxide in the internal phase, which results a stabile emulsion with a high stripping efficiency of 96%, was 0.04 M. An excellent membrane recovery was observed and the extraction of dyes did not decrease up to seven run cycles. Copyright © 2018 Elsevier B.V. All rights reserved.
Structural transformations in Ge{sub 2}Sb{sub 2}Te{sub 5} under high pressure and temperature
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mio, A. M.; Privitera, S., E-mail: stefania.privitera@imm.cnr.it; D'Arrigo, G.
2015-08-14
The structural transformations occurring in Ge{sub 2}Sb{sub 2}Te{sub 5} films heated at temperature up to 400 °C, and under hydrostatic pressure up to 12 GPa, have been investigated through in-situ X ray diffraction measurements. The adopted experimental conditions are close to those experienced by the phase change material during the SET (crystallization)/RESET (amorphization) processes in a nonvolatile memory device. The compression enhances the thermal stability of the amorphous phase, which remains stable up to 180 °C at 8 GPa and to 230 °C at 12 GPa. The structure of the crystalline phases is also modified, with the formation of a CsCl-type structure instead of rock-salt andmore » of a GeS-type structure at the temperature at which usually the trigonal stable phase is formed. Overall, the stability of the stable phase appears to be more affected by the compression. We argue that the presence of weak bonds associated to the van der Waals gaps is a determining factor for the observed reduced stability.« less
Thermal stability of simple tetragonal and hexagonal diamond germanium
Huston, Larissa Q.; Johnson, Brett C.; Haberl, Bianca; ...
2017-11-07
Here, exotic phases of germanium, that form under high pressure but persist under ambient conditions, are of technological interest due to their unique optical and electrical properties. The thermal evolution and stability of two of these exotic Ge phases, the simple tetragonal (st12) and hexagonal diamond (hd) phases, are investigated in detail. These metastable phases, formed by high pressure decompression in either a diamond anvil cell or by nanoindentation, are annealed at temperatures ranging from 280 to 320 °C for st12-Ge and 200 to 550 °C for hd-Ge. In both cases, the exotic phases originated from entirely pure Ge precursormore » materials. Raman microspectroscopy is used to monitor the phase changes ex situ following annealing. Our results show that hd-Ge synthesized via a pure form of a-Ge first undergoes a subtle change in structure and then an irreversible phase transformation to dc-Ge with an activation energy of (4.3 ± 0.2) eV at higher temperatures. St12-Ge was found to transform to dc-Ge with an activation energy of (1.44 ± 0.08) eV. Taken together with results from previous studies, this study allows for intriguing comparisons with silicon and suggests promising technological applications.« less
Real-time eye motion correction in phase-resolved OCT angiography with tracking SLO
Braaf, Boy; Vienola, Kari V.; Sheehy, Christy K.; Yang, Qiang; Vermeer, Koenraad A.; Tiruveedhula, Pavan; Arathorn, David W.; Roorda, Austin; de Boer, Johannes F.
2012-01-01
In phase-resolved OCT angiography blood flow is detected from phase changes in between A-scans that are obtained from the same location. In ophthalmology, this technique is vulnerable to eye motion. We address this problem by combining inter-B-scan phase-resolved OCT angiography with real-time eye tracking. A tracking scanning laser ophthalmoscope (TSLO) at 840 nm provided eye tracking functionality and was combined with a phase-stabilized optical frequency domain imaging (OFDI) system at 1040 nm. Real-time eye tracking corrected eye drift and prevented discontinuity artifacts from (micro)saccadic eye motion in OCT angiograms. This improved the OCT spot stability on the retina and consequently reduced the phase-noise, thereby enabling the detection of slower blood flows by extending the inter-B-scan time interval. In addition, eye tracking enabled the easy compounding of multiple data sets from the fovea of a healthy volunteer to create high-quality eye motion artifact-free angiograms. High-quality images are presented of two distinct layers of vasculature in the retina and the dense vasculature of the choroid. Additionally we present, for the first time, a phase-resolved OCT angiogram of the mesh-like network of the choriocapillaris containing typical pore openings. PMID:23304647
Thermal stability of simple tetragonal and hexagonal diamond germanium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huston, Larissa Q.; Johnson, Brett C.; Haberl, Bianca
Here, exotic phases of germanium, that form under high pressure but persist under ambient conditions, are of technological interest due to their unique optical and electrical properties. The thermal evolution and stability of two of these exotic Ge phases, the simple tetragonal (st12) and hexagonal diamond (hd) phases, are investigated in detail. These metastable phases, formed by high pressure decompression in either a diamond anvil cell or by nanoindentation, are annealed at temperatures ranging from 280 to 320 °C for st12-Ge and 200 to 550 °C for hd-Ge. In both cases, the exotic phases originated from entirely pure Ge precursormore » materials. Raman microspectroscopy is used to monitor the phase changes ex situ following annealing. Our results show that hd-Ge synthesized via a pure form of a-Ge first undergoes a subtle change in structure and then an irreversible phase transformation to dc-Ge with an activation energy of (4.3 ± 0.2) eV at higher temperatures. St12-Ge was found to transform to dc-Ge with an activation energy of (1.44 ± 0.08) eV. Taken together with results from previous studies, this study allows for intriguing comparisons with silicon and suggests promising technological applications.« less
Gallagher, Elyssia S.; Adem, Seid M.; Baker, Christopher A.; Ratnayaka, Saliya N.; Jones, Ian W.; Hall, Henry K.; Saavedra, S. Scott; Aspinwall, Craig A.
2015-01-01
The ability to rapidly screen complex libraries of pharmacological modulators is paramount to modern drug discovery efforts. This task is particularly challenging for agents that interact with lipid bilayers or membrane proteins due to the limited chemical, physical, and temporal stability of conventional lipid-based chromatographic stationary phases. Here, we describe the preparation and characterization of a novel stationary phase material composed of highly stable, polymeric-phospholipid bilayers self-assembled onto silica microparticles. Polymer lipid membranes were prepared by photochemical or redox initiated polymerization of 1,2-bis[10-(2′,4′-hexadieoyloxy)decanoyl]-sn-glycero-2-phosphocholine (bis-SorbPC), a synthetic, polymerizable lipid. The resulting polymerized bis-SorbPC (poly(bis-SorbPC)) stationary phases exhibited enhanced stability compared to particles coated with 1,2-dioleoyl-sn-glycero-phosphocholine (unpolymerized) phospholipid bilayers when exposed to chemical (50mM triton X-100 or 50% acetonitrile) and physical (15 min sonication) insults after 30 days of storage. Further, poly(bis-SorbPC)-coated particles survived slurry packing into fused silica capillaries, compared to unpolymerized lipid membranes, where the lipid bilayer was destroyed during packing. Frontal chromatographic analyses of the lipophilic small molecules acetylsalicylic acid, benzoic acid, and salicylic acid showed > 44% increase in retention times (P < 0.0001) for all analytes on poly(bis-SorbPC)-functionalized stationary phase compared to bare silica microspheres, suggesting a lipophilic retention mechanism. Phospholipid membrane-functionalized stationary phases that withstand the chemical and physical rigors of capillary LC conditions can substantially increase the efficacy of lipid membrane affinity chromatography, and represents a key advance towards the development of robust membrane protein-functionalized chromatographic stationary phases. PMID:25670414
Phase stability of iron germanate, FeGeO3, to 127 GPa
NASA Astrophysics Data System (ADS)
Dutta, R.; Tracy, S. J.; Stan, C. V.; Prakapenka, V. B.; Cava, R. J.; Duffy, T. S.
2018-04-01
The high-pressure behavior of germanates is of interest as these compounds serve as analogs for silicates of the deep Earth. Current theoretical and experimental studies of iron germanate, FeGeO3, are limited. Here, we have examined the behavior of FeGeO3 to 127 GPa using the laser-heated diamond anvil cell combined with in situ synchrotron X-ray diffraction. Upon compression at room temperature, the ambient-pressure clinopyroxene phase transforms to a disordered triclinic phase [FeGeO3 (II)] at 18 GPa in agreement with earlier studies. An additional phase transition to FeGeO3 (III) occurs above 54 GPa at room temperature. Laser-heating experiments ( 1200-2200 K) were conducted at three pressures (33, 54, and 123 GPa) chosen to cover the stability regions of different GeO2 polymorphs. In all cases, we observe that FeGeO3 dissociates into GeO2 + FeO at high pressure and temperature conditions. Neither the perovskite nor the post-perovskite phase was observed up to 127 GPa at ambient or high temperatures. The results are consistent with the behavior of FeSiO3, which also dissociates into a mixture of the oxides (FeO + SiO2) at least up to 149 GPa.
The high-pressure phase transitions of hydroxides
NASA Astrophysics Data System (ADS)
Nishi, M.; Kuwayama, Y.; Tsuchiya, J.; Tsuchiya, T.; Irifune, T.
2017-12-01
The discovery of new high-pressure hydrous minerals has important implications for understanding the structure, dynamics, and evolution of the Earth, since hydrogen significantly affects the physical properties and stabilities of Earth's constituent minerals. Whereas hydrous minerals commonly dehydrate under pressures of around a few tens of gigapascals (GPa) and at temperature around 1,500 K, those with CaCl2-type crystal structure, MgSiO4H2 phase H, δ-AlOOH and ɛ-FeOOH, are known to be stable at pressures corresponding to the lower mantle. However, although the CaCl2-type hydroxides were suggested to form a solid solution owing to their similar crystal structure, there are few experimental studies on the stability of the hydroxide in such multicomponent. Moreover, ab initio calculations have predicted that some CaCl2-type hydroxides transform to pyrite-type structure at higher pressures. Here, we conducted high pressure-temperature experiments on pure AlOOH, FeOOH, and their solid solutions, with the aid of these first-principles predictions. We use in situ X-ray measurements in conjunction with a multi-anvil apparatus to study the high-pressure behaviour of hydroxides in the multicomponent system under middle lower mantle conditions. Solid solutions in wide compositional ranges between CaCl2-type δ-AlOOH and ɛ-FeOOH were recognized from X-ray diffraction patterns. Also, unit cell volume of FeOOH and (Al,Fe)OOH significantly decreased accompanied with the spin transition of iron at 50 GPa. Thus, the wide compositional ranges in CaCl2-type hydroxide are maintained beyond the depth of the middle lower mantle, where the spin transition of iron occurs. We used a laser-heated diamond anvil cell in order to study the stability of AlOOH and FeOOH at higher pressures above 70 GPa. We observed that ɛ-FeOOH transforms to the pyrite-type structure at above 80 GPa, which is consistent with the theoretical prediction. At conditions above 190 GPa and 2,500 K, we observed the phase transition of δ-AlOOH to its higher pressure phase at above 170 GPa although further experimental study should be required to determine the precise structure. Based on these experimental and theoretical results, the stability and phase transitions of hydrous phases in the lower mantle will be discussed.
Nature of phase transitions in crystalline and amorphous GeTe-Sb2Te3 phase change materials.
Kalkan, B; Sen, S; Clark, S M
2011-09-28
The thermodynamic nature of phase stabilities and transformations are investigated in crystalline and amorphous Ge(1)Sb(2)Te(4) (GST124) phase change materials as a function of pressure and temperature using high-resolution synchrotron x-ray diffraction in a diamond anvil cell. The phase transformation sequences upon compression, for cubic and hexagonal GST124 phases are found to be: cubic → amorphous → orthorhombic → bcc and hexagonal → orthorhombic → bcc. The Clapeyron slopes for melting of the hexagonal and bcc phases are negative and positive, respectively, resulting in a pressure dependent minimum in the liquidus. When taken together, the phase equilibria relations are consistent with the presence of polyamorphism in this system with the as-deposited amorphous GST phase being the low entropy low-density amorphous phase and the laser melt-quenched and high-pressure amorphized GST being the high entropy high-density amorphous phase. The metastable phase boundary between these two polyamorphic phases is expected to have a negative Clapeyron slope. © 2011 American Institute of Physics
Ott, N; Beni, A; Ulrich, A; Ludwig, C; Schmutz, P
2014-03-01
Al-Cr-Fe complex metallic alloys are new intermetallic phases with low surface energy, low friction, and high corrosion resistance down to very low pH values (0-2). Flow microcapillary plasma mass spectrometry under potentiostatic control was used to characterize the dynamic aspect of passivation of an Al-Cr-Fe gamma phase in acidic electrolytes, allowing a better insight on the parameters inducing chemical stability at the oxyhydroxide-solution interface. In sulfuric acid pH 0, low element dissolution rates (in the µg cm(-2) range after 60 min) evidenced the passive state of the Al-Cr-Fe gamma phase with a preferential over-stoichiometric dissolution of Al and Fe cations. Longer air-aging was found to be beneficial for stabilizing the passive film. In chloride-containing electrolytes, ten times higher Al dissolution rates were detected at open-circuit potential (OCP), indicating that the spontaneously formed passive film becomes unstable. However, electrochemical polarization at low passive potentials induces electrical field generated oxide film modification, increasing chemical stability at the oxyhydroxide-solution interface. In the high potential passive region, localized attack is initiated with subsequent active metal dissolution. © 2013 Published by Elsevier B.V.
Wang, Ying; Latypov, Ramil F; Lomakin, Aleksey; Meyer, Julie A; Kerwin, Bruce A; Vunnum, Suresh; Benedek, George B
2014-05-05
Colloidal stability of antibody solutions, i.e., the propensity of the folded protein to precipitate, is an important consideration in formulation development of therapeutic monoclonal antibodies. In a protein solution, different pathways including crystallization, colloidal aggregation, and liquid-liquid phase separation (LLPS) can lead to the formation of precipitates. The kinetics of crystallization and aggregation are often slow and vary from protein to protein. Due to the diverse mechanisms of these protein condensation processes, it is a challenge to develop a standardized test for an early evaluation of the colloidal stability of antibody solutions. LLPS would normally occur in antibody solutions at sufficiently low temperature, provided that it is not preempted by freezing of the solution. Poly(ethylene glycol) (PEG) can be used to induce LLPS at temperatures above the freezing point. Here, we propose a colloidal stability test based on inducing LLPS in antibody solutions and measuring the antibody concentration of the dilute phase. We demonstrate experimentally that such a PEG-induced LLPS test can be used to compare colloidal stability of different antibodies in different solution conditions and can be readily applied to high-throughput screening. We have derived an equation for the effects of PEG concentration and molecular weight on the results of the LLPS test. Finally, this equation defines a binding energy in the condensed phase, which can be determined in the PEG-induced LLPS test. This binding energy is a measure of attractive interactions between antibody molecules and can be used for quantitative characterization of the colloidal stability of antibody solutions.
NASA Astrophysics Data System (ADS)
Xiao-Lin, Zhang; Yuan-Yuan, Wu; Xiao-Hong, Shao; Yong, Lu; Ping, Zhang
2016-05-01
The high pressure behaviors of Th4H15 and ThH2 are investigated by using the first-principles calculations based on the density functional theory (DFT). From the energy-volume relations, the bct phase of ThH2 is more stable than the fcc phase at ambient conditions. At high pressure, the bct ThH2 and bcc Th4H15 phases are more brittle than they are at ambient pressure from the calculated elastic constants and the Poisson ratio. The thermodynamic stability of the bct phase ThH2 is determined from the calculated phonon dispersion. In the pressure domain of interest, the phonon dispersions of bcc Th4H15 and bct ThH2 are positive, indicating the dynamical stability of these two phases, while the fcc ThH2 is unstable. The thermodynamic properties including the lattice vibration energy, entropy, and specific heat are predicted for these stable phases. The vibrational free energy decreases with the increase of the temperature, and the entropy and the heat capacity are proportional to the temperature and inversely proportional to the pressure. As the pressure increases, the resistance to the external pressure is strengthened for Th4H15 and ThH2. Project supported by the Long-Term Subsidy Mechanism from the Ministry of Finance and the Ministry of Education of China.
Computational study of elements of stability of a four-helix bundle protein biosurfactant
NASA Astrophysics Data System (ADS)
Schaller, Andrea; Connors, Natalie K.; Dwyer, Mirjana Dimitrijev; Oelmeier, Stefan A.; Hubbuch, Jürgen; Middelberg, Anton P. J.
2015-01-01
Biosurfactants are surface-active molecules produced principally by microorganisms. They are a sustainable alternative to chemically-synthesized surfactants, having the advantages of being non-toxic, highly functional, eco-friendly and biodegradable. However they are currently only used in a few industrial products due to costs associated with production and purification, which exceed those for commodity chemical surfactants. DAMP4, a member of a four-helix bundle biosurfactant protein family, can be produced in soluble form and at high yield in Escherichia coli, and can be recovered using a facile thermal phase-separation approach. As such, it encompasses an interesting synergy of biomolecular and chemical engineering with prospects for low-cost production even for industrial sectors. DAMP4 is highly functional, and due to its extraordinary thermal stability it can be purified in a simple two-step process, in which the combination of high temperature and salt leads to denaturation of all contaminants, whereas DAMP4 stays stable in solution and can be recovered by filtration. This study aimed to characterize and understand the fundamental drivers of DAMP4 stability to guide further process and surfactant design studies. The complementary use of experiments and molecular dynamics simulation revealed a broad pH and temperature tolerance for DAMP4, with a melting point of 122.4 °C, suggesting the hydrophobic core as the major contributor to thermal stability. Simulation of systematically created in silico variants of DAMP4 showed an influence of number and location of hydrophilic mutations in the hydrophobic core on stability, demonstrating a tolerance of up to three mutations before a strong loss in stability occurred. The results suggest a consideration of a balance of stability, functionality and kinetics for new designs according to their application, aiming for maximal functionality but at adequate stability to allow for cost-efficient production using thermal phase separation approaches.
Hot Electrons Regain Coherence in Semiconducting Nanowires
NASA Astrophysics Data System (ADS)
Reiner, Jonathan; Nayak, Abhay Kumar; Avraham, Nurit; Norris, Andrew; Yan, Binghai; Fulga, Ion Cosma; Kang, Jung-Hyun; Karzig, Toesten; Shtrikman, Hadas; Beidenkopf, Haim
2017-04-01
The higher the energy of a particle is above equilibrium, the faster it relaxes because of the growing phase space of available electronic states it can interact with. In the relaxation process, phase coherence is lost, thus limiting high-energy quantum control and manipulation. In one-dimensional systems, high relaxation rates are expected to destabilize electronic quasiparticles. Here, we show that the decoherence induced by relaxation of hot electrons in one-dimensional semiconducting nanowires evolves nonmonotonically with energy such that above a certain threshold hot electrons regain stability with increasing energy. We directly observe this phenomenon by visualizing, for the first time, the interference patterns of the quasi-one-dimensional electrons using scanning tunneling microscopy. We visualize the phase coherence length of the one-dimensional electrons, as well as their phase coherence time, captured by crystallographic Fabry-Pèrot resonators. A remarkable agreement with a theoretical model reveals that the nonmonotonic behavior is driven by the unique manner in which one-dimensional hot electrons interact with the cold electrons occupying the Fermi sea. This newly discovered relaxation profile suggests a high-energy regime for operating quantum applications that necessitate extended coherence or long thermalization times, and may stabilize electronic quasiparticles in one dimension.
Stability and corrosion testing of a high temperature phase change material for CSP applications
NASA Astrophysics Data System (ADS)
Liu, Ming; Bell, Stuart; Tay, Steven; Will, Geoffrey; Saman, Wasim; Bruno, Frank
2016-05-01
This paper presents the stability and corrosion testing results of a candidate high temperature phase change material (PCM) for potential use in concentrating solar power applications. The investigated PCM is a eutectic mixture of NaCl and Na2CO3 and both are low cost materials. This PCM has a melting temperature of 635 °C and a relatively high latent heat of fusion of 308.1 J/g. The testing was performed by means of an electric furnace subjected to 150 melt-freeze cycles between 600 °C and 650 °C. The results showed that this PCM candidate has no obvious decomposition up to 650 °C after 150 cycles and stainless steel 316 potentially can be used as the containment material under the minimized oxygen atmosphere.
Absolute Stability Analysis of a Phase Plane Controlled Spacecraft
NASA Technical Reports Server (NTRS)
Jang, Jiann-Woei; Plummer, Michael; Bedrossian, Nazareth; Hall, Charles; Jackson, Mark; Spanos, Pol
2010-01-01
Many aerospace attitude control systems utilize phase plane control schemes that include nonlinear elements such as dead zone and ideal relay. To evaluate phase plane control robustness, stability margin prediction methods must be developed. Absolute stability is extended to predict stability margins and to define an abort condition. A constrained optimization approach is also used to design flex filters for roll control. The design goal is to optimize vehicle tracking performance while maintaining adequate stability margins. Absolute stability is shown to provide satisfactory stability constraints for the optimization.
NASA Astrophysics Data System (ADS)
Zurkowski, C. C.; Chidester, B.; Davis, A.; Brauser, N.; Greenberg, E.; Prakapenka, V. B.; Campbell, A.
2017-12-01
Earth's core is comprised of an iron-nickel alloy that contains 5-15% of a light element component. The abundance and alloying capability of sulfur, silicon and oxygen in the bulk Earth make them important core alloy candidates; therefore, the high-pressure phase equilibria of the Fe-S-O and Fe-S-Si systems are relevant for understanding the possible chemistry of Earth's core. Previously, a Fe3S2 phase was recognized as a low-pressure intermediate phase in the Fe-FeS system that is stable from 14-21 GPa, but the structure of this phase has not been resolved. We report in-situ XRD and chemical analysis of recovered samples to further examine the stability and structure of Fe3S2 as it coexists with other phases in the Fe-S-O and Fe-S-Si systems. In situ high P-T synchrotron XRD experiments were conducted in the laser-heated diamond anvil cell to determine the equilibrium phases in Fe75S7O18 and Fe80S5Si15 compositions between 30 and 174 GPa and up to 3000 K. In the S,O-rich samples, an orthorhombic Fe3S2 phase coexists with hcp-Fe, Fe3S and FeO and undergoes two monoclinic distortions between 60 and 174 GPa. In the S,Si-rich samples, the orthorhombic Fe3S2 phase was observed up to 115 GPa. With increasing pressure, the Fe3S2 phase becomes stable to higher temperatures in both compositions, suggesting possible Fe3(S,O)2 or Fe3(S,Si)2 solid solutions. SEM analysis of a laser heated Fe75S7O18 sample recovered from 40 GPa and 1450 K confirms a Fe3(S,O)2 phase with O dissolved into the structure. Based on the current melting data in the Fe-S-O and Fe-S-Si systems, the Fe3(S,O)2 stability field intersects the solidus in the outer core and could be a possible liquidus phase in Fe,S,O-rich planetary cores, whereas Fe3S is the stable sulfide at outer core pressures in Fe,S,Si-rich systems.
Bulk and Thin Film Synthesis of Compositionally Variant Entropy-stabilized Oxides.
Sivakumar, Sai; Zwier, Elizabeth; Meisenheimer, Peter Benjamin; Heron, John T
2018-05-29
Here, we present a procedure for the synthesis of bulk and thin film multicomponent (Mg0.25(1-x)CoxNi0.25(1-x)Cu0.25(1-x)Zn0.25(1-x))O (Co variant) and (Mg0.25(1-x)Co0.25(1-x)Ni0.25(1-x)CuxZn0.25(1-x))O (Cu variant) entropy-stabilized oxides. Phase pure and chemically homogeneous (Mg0.25(1-x)CoxNi0.25(1-x)Cu0.25(1-x)Zn0.25(1-x))O (x = 0.20, 0.27, 0.33) and (Mg0.25(1-x)Co0.25(1-x)Ni0.25(1-x)CuxZn0.25(1-x))O (x = 0.11, 0.27) ceramic pellets are synthesized and used in the deposition of ultra-high quality, phase pure, single crystalline thin films of the target stoichiometry. A detailed methodology for the deposition of smooth, chemically homogeneous, entropy-stabilized oxide thin films by pulsed laser deposition on (001)-oriented MgO substrates is described. The phase and crystallinity of bulk and thin film materials are confirmed using X-ray diffraction. Composition and chemical homogeneity are confirmed by X-ray photoelectron spectroscopy and energy dispersive X-ray spectroscopy. The surface topography of thin films is measured with scanning probe microscopy. The synthesis of high quality, single crystalline, entropy-stabilized oxide thin films enables the study of interface, size, strain, and disorder effects on the properties in this new class of highly disordered oxide materials.
Phase stability and processing of strontium and magnesium doped lanthanum gallate
NASA Astrophysics Data System (ADS)
Zheng, Feng
Fuel Cells are one of the most promising energy transformers with respect to ecological and environmental issues. Solid Oxide Fuel Cells (SOFC) are all solid-state devices. One of the challenges to improve a SOFC is to lower the operating temperature while maintaining or increasing its output voltage. Undoped LaGaO3 is an insulator, doping transforms it into an oxygen-ionic conductor. Sr and Mg doped LaGaO3 (LSGM) perovskite is a new oxygen-ionic conductor with higher conductivity than yttria-stabilized zirconia (YSZ). This material is a candidate for a wide variety of electrochemical devices. In order to realize this potential, the phase stability and processing of this material needs to be investigated in detail. In this study, a systematic investigation of the LSGM materials in terms of phase stability, phase transition, sintering, microstructure and electrical conductivity as functions of temperature, doping content and A/B cation ratio has been carried out. The generalized formula of the materials investigated is (La1--xSrx)A(Ga1--yMg y)BO3--delta. Optimized processing parameters have been obtained by investigating their impact on density change and microstructure. Consequently, a suitable compositional window of the LSGM perovskite has been identified for SOFC electrolyte applications. Based on detailed diffraction analysis, it is found that the undoped LaGaO3 takes on the orthorhombic (Pbnm) symmetry at room temperature. This structure changes to rhombohedral (R3c) at 147 +/- 2°C or changes to monoclinic (I2/a) when the doping level increases from 0.1 to 0.2 moles. We have optimized the compositional window to make the single perovskite phase with high oxygen ionic conductivity (x = 0.10 to 0.20 with A/B ratio between 0.98 to 1.02). The best processing condition, starting from glycine nitrate process (GNP) combustion synthesized ultra-fine LSGM powder, is sintering in air at 1500°C for 2 hours. The doped material has higher oxygen ionic conductivity than YSZ at all temperatures. In addition, based on the structure and phase relations, a high temperature phase diagram for this system has been proposed. Finally, a model has been proposed to account for the high ionic conductivity of this material and to explain the effect of the doping content and the stoichiometry on the ionic conductivity. (Abstract shortened by UMI.)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Qi; Yu, Chao; Long, Hai
2015-05-08
Highly stable permanently interlocked aryleneethynylene molecular cages were synthesized from simple triyne monomers using dynamic alkyne metathesis. The interlocked complexes are predominantly formed in the reaction solution in the absence of any recognition motif and were isolated in a pure form using column chromatography. This study is the first example of the thermodynamically controlled solution-phase synthesis of interlocked organic cages with high stability.
High pressure–temperature phase diagram of 1,1-diamino-2,2-dinitroethylene (FOX-7)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bishop, Matthew M.; Velisavljevic, Nenad; Chellappa, Raja
In this study, the pressure–temperature (P–T) phase diagram of 1,1-diamino-2,2-dinitroethylene (FOX-7) was determined by in situ synchrotron infrared radiation spectroscopy with the resistively heated diamond anvil cell (DAC) technique. The stability of high-P–T FOX-7 polymorphs is established from ambient pressure up to 10 GPa and temperatures until decomposition. The phase diagram indicates two near isobaric phase boundaries at ~2 GPa (α → I) and ~5 GPa (I → II) that persists from 25 °C until the onset of decomposition at ~300 °C. In addition, the ambient pressure, high-temperature α → β phase transition (~111 °C) lies along a steep boundarymore » (~100 °C/GPa) with a α–β–δ triple point at ~1 GPa and 300 °C. A 0.9 GPa isobaric temperature ramping measurement indicates a limited stability range for the γ-phase between 0.5 and 0.9 GPa and 180 and 260 °C, terminating in a β–γ–δ triple point. With increasing pressure, the δ-phase exhibited a small negative dT/dP slope (up to ~0.2 GPa) before turning over to a positive 70 °C/GPa slope, at higher pressures. The decomposition boundary (~55 °C/GPa) was identified through the emergence of spectroscopic signatures of the characteristic decomposition products as well as trapped inclusions within the solid KBr pressure media.« less
High pressure–temperature phase diagram of 1,1-diamino-2,2-dinitroethylene (FOX-7)
Bishop, Matthew M.; Velisavljevic, Nenad; Chellappa, Raja; ...
2015-08-27
In this study, the pressure–temperature (P–T) phase diagram of 1,1-diamino-2,2-dinitroethylene (FOX-7) was determined by in situ synchrotron infrared radiation spectroscopy with the resistively heated diamond anvil cell (DAC) technique. The stability of high-P–T FOX-7 polymorphs is established from ambient pressure up to 10 GPa and temperatures until decomposition. The phase diagram indicates two near isobaric phase boundaries at ~2 GPa (α → I) and ~5 GPa (I → II) that persists from 25 °C until the onset of decomposition at ~300 °C. In addition, the ambient pressure, high-temperature α → β phase transition (~111 °C) lies along a steep boundarymore » (~100 °C/GPa) with a α–β–δ triple point at ~1 GPa and 300 °C. A 0.9 GPa isobaric temperature ramping measurement indicates a limited stability range for the γ-phase between 0.5 and 0.9 GPa and 180 and 260 °C, terminating in a β–γ–δ triple point. With increasing pressure, the δ-phase exhibited a small negative dT/dP slope (up to ~0.2 GPa) before turning over to a positive 70 °C/GPa slope, at higher pressures. The decomposition boundary (~55 °C/GPa) was identified through the emergence of spectroscopic signatures of the characteristic decomposition products as well as trapped inclusions within the solid KBr pressure media.« less
A New Class of Ternary Compound for Lithium-Ion Battery: from Composite to Solid Solution.
Wang, Jiali; Wu, Hailong; Cui, Yanhua; Liu, Shengzhou; Tian, Xiaoqing; Cui, Yixiu; Liu, Xiaojiang; Yang, Yin
2018-02-14
Searching for high-performance cathode materials is a crucial task to develop advanced lithium-ion batteries (LIBs) with high-energy densities for electrical vehicles (EVs). As a promising lithium-rich material, Li 2 MnO 3 delivers high capacity over 200 mAh g -1 but suffers from poor structural stability and electronic conductivity. Replacing Mn 4+ ions by relatively larger Sn 4+ ions is regarded as a possible strategy to improve structural stability and thus cycling performance of Li 2 MnO 3 material. However, large difference in ionic radii of Mn 4+ and Sn 4+ ions leads to phase separation of Li 2 MnO 3 and Li 2 SnO 3 during high-temperature synthesis. To prepare solid-solution phase of Li 2 MnO 3 -Li 2 SnO 3 , a buffer agent of Ru 4+ , whose ionic radius is in between that of Mn 4+ and Sn 4+ ions, is introduced to assist the formation of a single solid-solution phase. The results show that the Li 2 RuO 3 -Li 2 MnO 3 -Li 2 SnO 3 ternary system evolves from mixed composite phases into a single solid-solution phase with increasing Ru content. Meanwhile, discharge capacity of this ternary system shows significantly increase at the transformation point which is ascribed to the improvement of Li + /e - transportation kinetics and anionic redox chemistry for solid-solution phase. The role of Mn/Sn molar ratio of Li 2 RuO 3 -Li 2 MnO 3 -Li 2 SnO 3 ternary system has also been studied. It is revealed that higher Sn content benefits cycling stability of the system because Sn 4+ ions with larger sizes could partially block the migration of Mn 4+ and Ru 4+ from transition metal layer to Li layer, thus suppressing structural transformation of the system from layered-to-spinel phase. These findings may enable a new route for exploring ternary or even quaternary lithium-rich cathode materials for LIBs.
Ab initio-aided CALPHAD thermodynamic modeling of the Sn-Pb binary system under current stressing
Lin, Shih-kang; Yeh, Chao-kuei; Xie, Wei; Liu, Yu-chen; Yoshimura, Masahiro
2013-01-01
Soldering is an ancient process, having been developed 5000 years ago. It remains a crucial process with many modern applications. In electronic devices, electric currents pass through solder joints. A new physical phenomenon – the supersaturation of solders under high electric currents – has recently been observed. It involves (1) un-expected supersaturation of the solder matrix phase, and (2) the formation of unusual “ring-shaped” grains. However, the origin of these phenomena is not yet understood. Here we provide a plausible explanation of these phenomena based on the changes in the phase stability of Pb-Sn solders. Ab initio-aided CALPHAD modeling is utilized to translate the electric current-induced effect into the excess Gibbs free energies of the phases. Hence, the phase equilibrium can be shifted by current stressing. The Pb-Sn phase diagrams with and without current stressing clearly demonstrate the change in the phase stabilities of Pb-Sn solders under current stressing. PMID:24060995
Phase stability and microstructures of high entropy alloys ion irradiated to high doses
NASA Astrophysics Data System (ADS)
Xia, Songqin; Gao, Michael C.; Yang, Tengfei; Liaw, Peter K.; Zhang, Yong
2016-11-01
The microstructures of AlxCoCrFeNi (x = 0.1, 0.75 and 1.5 in molar ratio) high entropy alloys (HEAs) irradiated at room temperature with 3 MeV Au ions at the highest fluence of 105, 91, and 81 displacement per atom, respectively, were studied. Transmission electron microscopy (TEM) and high-resolution TEM (HRTEM) analyses show that the initial microstructures and phase composition of all three alloys are retained after ion irradiation and no phase decomposition is observed. Furthermore, it is demonstrated that the disordered face-centered cubic (FCC) and disordered body-centered cubic (BCC) phases show much less defect cluster formation and structural damage than the NiAl-type ordered B2 phase. This effect is explained by higher entropy of mixing, higher defect formation/migration energies, substantially lower thermal conductivity, and higher atomic level stress in the disordered phases.
First principles materials design of novel functional oxides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cooper, Valentino R.; Voas, Brian K.; Bridges, Craig A.
2016-05-31
We review our efforts to develop and implement robust computational approaches for exploring phase stability to facilitate the prediction-to-synthesis process of novel functional oxides. These efforts focus on a synergy between (i) electronic structure calculations for properties predictions, (ii) phenomenological/empirical methods for examining phase stability as related to both phase segregation and temperature-dependent transitions and (iii) experimental validation through synthesis and characterization. We illustrate this philosophy by examining an inaugural study that seeks to discover novel functional oxides with high piezoelectric responses. Lastly, our results show progress towards developing a framework through which solid solutions can be studied to predictmore » materials with enhanced properties that can be synthesized and remain active under device relevant conditions.« less
Microstructural stability of fine-grained fully lamellar XD TiAl alloys by step aging
NASA Astrophysics Data System (ADS)
Zhu, Hanliang; Maruyama, K.; Seo, D. Y.; Au, P.
2005-05-01
XD TiAl alloys (Ti-45 and 47Al-2Nb-2Mn+0.8 vol pct TiB2) (at. pct) were oil quenched to produce fine-grained fully lamellar (FGFL) structures, and aging treatments at different temperatures for different durations were carried out to stabilize the FGFL structures. Microstructural examinations show that the aging treatments cause phase transformation of α 2 to γ, resulting in stabilization of the lamellar structure, as indicated by a significant decrease in α 2 volume fraction. However, several degradation processes are also introduced. After aging, within lamellar colonies, the α 2 lamellae become finer due to dissolution, whereas most of the γ lamellae coarsen. The dissolution of α 2 involves longitudinal dissolution and lateral dissolution. In addition, at lamellar colony boundaries, lamellar termination migration, nucleation and growth of γ grains, and discontinuous coarsening occur. With the exception of longitudinal dissolution, all the other transformation modes are considered as degradation processes as they result in a reduction in α 2/ γ interfaces. Different phase transformation modes are present to varying degrees in the aged FGFL structures, depending on aging conditions and Al content. A multiple step aging reduces the drive force for phase transformation at high temperature by promoting phase transformation via longitudinal dissolution at low temperatures. As a result, this aging procedure effectively stabilizes the lamellar structure and suppresses other degradation processes. Therefore, the multiple step aging is suggested to be an optimal aging condition for stabilizing FGFL XD TiAl alloys.
Yabuuchi, Naoaki; Ikeuchi, Issei; Kubota, Kei; Komaba, Shinichi
2016-11-30
Thermal stability and phase transition processes of NaCrO 2 and Na 0.5 CrO 2 are carefully examined by high-temperature synchrotron X-ray diffraction method. O3-type NaCrO 2 shows anisotropic thermal expansion on heating, which is a common character as layered materials, without phase transition in the temperature range of 27-527 °C. In contrast, for the desodiated phase, in-plane distorted P3-type layered oxide (P'3 Na 0.5 CrO 2 ), phase transition occurs in the following order. Monoclinic distortion associated with Na/vacancy ordering is gradually lost on heating, and its symmetry increases and changes to a rhombohedral lattice at 207 °C. On further heating, phase segregation to two P3 layered metastable phases, which have different interlayer distances (17.0 and 13.5 Å, presumably sodium-rich and sodium-free P3 phases, respectively) are observed on heating to 287-477 °C, but oxygen loss is not observed. Oxygen loss is observed at temperatures only above 500 °C, resulting in the formation of corundum-type Cr 2 O 3 and O3 NaCrO 2 as thermodynamically stable phases. From these results, possibility of Na x CrO 2 as a positive electrode material for safe rechargeable sodium batteries is also discussed.
Ortiz, Mayreli; Mehdi, Ahmed; Methivier, Christophe; Thorimbert, Serge; Hasenknopf, Bernold; O'Sullivan, Ciara K
2018-05-21
Self-assembled monolayers formed by chemisorption of thiolated molecules on gold surfaces are widely applied for biosensing. Moreover, and due to the low stability of thiol-gold chemistry, contributions to the functionalisation of gold substrates with linkers that provide a more stable platform for the immobilisation of electroactive or biological molecules are highly appreciated. In the work reported here, we demonstrate that a carboxylated organotin compound can be successfully grafted onto gold substrates to form a highly stable organic layer with reactivity for subsequent binding to an aminated molecule. A battery of techniques was used to characterise the surface chemistry. The grafted layer was used to anchor aminoferrocene and subjected to both thermostability tests and long term stability studies over the period of one year, demonstrating thermostability up to 90 oC and storage stability for at least 12 months when stored at 4 oC protected from light. The stable surface tethering of molecules on gold substrates can be exploited in a plethora of applications including molecular techniques such as solid-phase amplification and solid-phase melting curve analysis that require elevated temperature stability, as well as biosensors, which require long-term storage stability. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Cloud, Jacqueline E; Wang, Yonglong; Li, Xuemin; Yoder, Tara S; Yang, Yuan; Yang, Yongan
2014-10-20
Lithium silicide (LixSi) is the lithiated form of silicon, one of the most promising anode materials for the next generation of lithium-ion batteries (LIBs). In contrast to silicon, LixSi has not been well studied. Herein we report a facile high-energy ball-milling-based synthesis of four phase-pure LixSi (x = 4.4, 3.75, 3.25, and 2.33), using hexane as the lubricant. Surprisingly, the obtained Li3.75Si phase shows significant downward shifts in all X-ray diffraction peak positions, compared with the standard. Our interpretation is that the high-energy ball-mill-synthesized Li3.75Si presents smaller internal pressures and larger lattice constants. The chemical-stability study reveals that only surface reactions occur after Li4.4Si and Li3.75Si are immersed in several battery-assembly-related chemicals. The thermal-stability study shows that Li4.4Si is stable up to 350 °C and Li3.75Si is stable up to 200 °C. This remarkable thermal stability of Li3.75Si is in stark contrast to the long-observed metastability for electrochemically synthesized Li3.75Si. The carbon encapsulation of Li4.4Si has also been studied for its potential applications in LIBs.
High mobility and high stability glassy metal-oxynitride materials and devices
NASA Astrophysics Data System (ADS)
Lee, Eunha; Kim, Taeho; Benayad, Anass; Hur, Jihyun; Park, Gyeong-Su; Jeon, Sanghun
2016-04-01
In thin film technology, future semiconductor and display products with high performance, high density, large area, and ultra high definition with three-dimensional functionalities require high performance thin film transistors (TFTs) with high stability. Zinc oxynitride, a composite of zinc oxide and zinc nitride, has been conceded as a strong substitute to conventional semiconductor film such as silicon and indium gallium zinc oxide due to high mobility value. However, zinc oxynitride has been suffered from poor reproducibility due to relatively low binding energy of nitrogen with zinc, resulting in the instability of composition and its device performance. Here we performed post argon plasma process on zinc oxynitride film, forming nano-crystalline structure in stable amorphous matrix which hampers the reaction of oxygen with zinc. Therefore, material properties and device performance of zinc oxynitride are greatly enhanced, exhibiting robust compositional stability even exposure to air, uniform phase, high electron mobility, negligible fast transient charging and low noise characteristics. Furthermore, We expect high mobility and high stability zinc oxynitride customized by plasma process to be applicable to a broad range of semiconductor and display devices.
High-velocity projectile impact induced 9R phase in ultrafine-grained aluminium.
Xue, Sichuang; Fan, Zhe; Lawal, Olawale B; Thevamaran, Ramathasan; Li, Qiang; Liu, Yue; Yu, K Y; Wang, Jian; Thomas, Edwin L; Wang, Haiyan; Zhang, Xinghang
2017-11-21
Aluminium typically deforms via full dislocations due to its high stacking fault energy. Twinning in aluminium, although difficult, may occur at low temperature and high strain rate. However, the 9R phase rarely occurs in aluminium simply because of its giant stacking fault energy. Here, by using a laser-induced projectile impact testing technique, we discover a deformation-induced 9R phase with tens of nm in width in ultrafine-grained aluminium with an average grain size of 140 nm, as confirmed by extensive post-impact microscopy analyses. The stability of the 9R phase is related to the existence of sessile Frank loops. Molecular dynamics simulations reveal the formation mechanisms of the 9R phase in aluminium. This study sheds lights on a deformation mechanism in metals with high stacking fault energies.
NASA Astrophysics Data System (ADS)
Shu, Haibo; Li, Feng; Hu, Chenli; Liang, Pei; Cao, Dan; Chen, Xiaoshuang
2016-01-01
Two-dimensional (2D) layered MoS2 nanosheets possess great potential as anode materials for lithium ion batteries (LIBs), but they still suffer from poor cycling performance. Improving the cycling stability of electrode materials depends on a deep understanding of their dynamic structural evolution and reaction kinetics in the lithiation process. Herein, thermodynamic phase diagrams and the lithiation dynamics of MoS2-based nanostructures with the intercalation of lithium ions are studied by using first-principles calculations and ab initio molecular dynamics simulations. Our results demonstrate that the continuous intercalation of Li ions induces structural destruction of 2H phase MoS2 nanosheets in the discharge process that follows a layer-by-layer dissociation mechanism. Meanwhile, the intercalation of Li ions leads to a structural transition of MoS2 nanosheets from the 2H to the 1T phase due to the ultralow transition barriers (~0.1 eV). We find that the phase transition can slow down the dissociation of MoS2 nanosheets during lithiation. The result can be applied to explain extensive experimental observation of the fast capacity fading of MoS2-based anode materials between the first and the subsequent discharges. To suppress the dissociation of MoS2 nanosheets in the lithiation process, we propose a strategy by constructing a sandwich-like graphene/MoS2/graphene structure that indicates high chemical stability, superior conductivity, and high Li-ion mobility in the charge/discharge process, implying the possibility to induce an improvement in the anode cycling performance. This work opens a new route to rational design layered transition-metal disulfide (TMD) anode materials for LIBs with superior cycling stability and electrochemical performance.Two-dimensional (2D) layered MoS2 nanosheets possess great potential as anode materials for lithium ion batteries (LIBs), but they still suffer from poor cycling performance. Improving the cycling stability of electrode materials depends on a deep understanding of their dynamic structural evolution and reaction kinetics in the lithiation process. Herein, thermodynamic phase diagrams and the lithiation dynamics of MoS2-based nanostructures with the intercalation of lithium ions are studied by using first-principles calculations and ab initio molecular dynamics simulations. Our results demonstrate that the continuous intercalation of Li ions induces structural destruction of 2H phase MoS2 nanosheets in the discharge process that follows a layer-by-layer dissociation mechanism. Meanwhile, the intercalation of Li ions leads to a structural transition of MoS2 nanosheets from the 2H to the 1T phase due to the ultralow transition barriers (~0.1 eV). We find that the phase transition can slow down the dissociation of MoS2 nanosheets during lithiation. The result can be applied to explain extensive experimental observation of the fast capacity fading of MoS2-based anode materials between the first and the subsequent discharges. To suppress the dissociation of MoS2 nanosheets in the lithiation process, we propose a strategy by constructing a sandwich-like graphene/MoS2/graphene structure that indicates high chemical stability, superior conductivity, and high Li-ion mobility in the charge/discharge process, implying the possibility to induce an improvement in the anode cycling performance. This work opens a new route to rational design layered transition-metal disulfide (TMD) anode materials for LIBs with superior cycling stability and electrochemical performance. Electronic supplementary information (ESI) available: Models and energetics of Li adsorption/intercalation onto MoS2 sheets, details of the phase diagram calculations, schematic illustration for the structural evolution of lithiated MoS2 nanosheets, AIMD trajectories for lithiated silicene/MoS2/silicene composites, and movies for recording the AIMD simulation results. See DOI: 10.1039/c5nr07909h
Ihlen, Espen A. F.; van Schooten, Kimberley S.; Bruijn, Sjoerd M.; Pijnappels, Mirjam; van Dieën, Jaap H.
2017-01-01
Over the last decades, various measures have been introduced to assess stability during walking. All of these measures assume that gait stability may be equated with exponential stability, where dynamic stability is quantified by a Floquet multiplier or Lyapunov exponent. These specific constructs of dynamic stability assume that the gait dynamics are time independent and without phase transitions. In this case the temporal change in distance, d(t), between neighboring trajectories in state space is assumed to be an exponential function of time. However, results from walking models and empirical studies show that the assumptions of exponential stability break down in the vicinity of phase transitions that are present in each step cycle. Here we apply a general non-exponential construct of gait stability, called fractional stability, which can define dynamic stability in the presence of phase transitions. Fractional stability employs the fractional indices, α and β, of differential operator which allow modeling of singularities in d(t) that cannot be captured by exponential stability. The fractional stability provided an improved fit of d(t) compared to exponential stability when applied to trunk accelerations during daily-life walking in community-dwelling older adults. Moreover, using multivariate empirical mode decomposition surrogates, we found that the singularities in d(t), which were well modeled by fractional stability, are created by phase-dependent modulation of gait. The new construct of fractional stability may represent a physiologically more valid concept of stability in vicinity of phase transitions and may thus pave the way for a more unified concept of gait stability. PMID:28900400
NASA Astrophysics Data System (ADS)
Kim, Sun-Woo; Kim, Hyun-Jung; Ming, Fangfei; Jia, Yu; Zeng, Changgan; Cho, Jun-Hyung; Zhang, Zhenyu
2015-05-01
It was recently proposed that the stress state of a material can also be altered via electron or hole doping, a concept termed electronic stress (ES), which is different from the traditional mechanical stress (MS) due to lattice contraction or expansion. Here we demonstrate the equivalence of ES and MS in structural stabilization, using In wires on Si(111) as a prototypical example. Our systematic density-functional theory calculations reveal that, first, for the same degrees of carrier doping into the In wires, the ES of the high-temperature metallic 4 ×1 structure is only slightly compressive, while that of the low-temperature insulating 8 ×2 structure is much larger and highly anisotropic. As a consequence, the intrinsic energy difference between the two phases is significantly reduced towards electronically phase-separated ground states. Our calculations further demonstrate quantitatively that such intriguing phase tunabilities can be achieved equivalently via lattice-contraction induced MS in the absence of charge doping. We also validate the equivalence through our detailed scanning tunneling microscopy experiments. The present findings have important implications for understanding the underlying driving forces involved in various phase transitions of simple and complex systems alike.
Note: Low phase noise programmable phase-locked loop with high temperature stability.
Michálek, Vojtěch; Procházka, Ivan
2017-03-01
The design and construction of low jitter programmable phase-locked loop with low temperature coefficient of phase are presented. It has been designed for demanding high precision timing applications, especially as a clock source for event timer with subpicosecond precision. The phase-locked loop itself has a jitter of few hundreds of femtoseconds. It produces square wave with programmable output frequency from 100 MHz to 500 MHz and programmable amplitude of 0.25 V to 1.2 V peak-to-peak, which is locked to 5 MHz or 10 MHz reference frequency common for disciplined oscillators and highly stable clocks such as hydrogen maser. Moreover, it comprises an on-board temperature compensated crystal oscillator for stand-alone usage. The device provides temperature coefficient of the phase lock of 0.9 ps/K near room temperature.
NASA Astrophysics Data System (ADS)
Zhou, Xilin; Wu, Liangcai; Song, Zhitang; Rao, Feng; Zhu, Min; Peng, Cheng; Yao, Dongning; Song, Sannian; Liu, Bo; Feng, Songlin
2012-10-01
Carbon-doped Ge2Sb2Te5 material is proposed for high-density phase-change memories. The carbon doping effects on electrical and structural properties of Ge2Sb2Te5 are studied by in situ resistance and x-ray diffraction measurements as well as optical spectroscopy. C atoms are found to significantly enhance the thermal stability of amorphous Ge2Sb2Te5 by increasing the degree of disorder of the amorphous phase. The reversible electrical switching capability of the phase-change memory cells is improved in terms of power consumption with carbon addition. The endurance of ˜2.1 × 104 cycles suggests that C-doped Ge2Sb2Te5 film will be a potential phase-change material for high-density storage application.
Stable Light-Emitting Diodes Using Phase-Pure Ruddlesden-Popper Layered Perovskites.
Tsai, Hsinhan; Nie, Wanyi; Blancon, Jean-Christophe; Stoumpos, Constantinos C; Soe, Chan Myae Myae; Yoo, Jinkyoung; Crochet, Jared; Tretiak, Sergei; Even, Jacky; Sadhanala, Aditya; Azzellino, Giovanni; Brenes, Roberto; Ajayan, Pulickel M; Bulović, Vladimir; Stranks, Samuel D; Friend, Richard H; Kanatzidis, Mercouri G; Mohite, Aditya D
2018-02-01
State-of-the-art light-emitting diodes (LEDs) are made from high-purity alloys of III-V semiconductors, but high fabrication cost has limited their widespread use for large area solid-state lighting. Here, efficient and stable LEDs processed from solution with tunable color enabled by using phase-pure 2D Ruddlesden-Popper (RP) halide perovskites with a formula (CH 3 (CH 2 ) 3 NH 3 ) 2 (CH 3 NH 3 ) n -1 Pb n I 3 n +1 are reported. By using vertically oriented thin films that facilitate efficient charge injection and transport, efficient electroluminescence with a radiance of 35 W Sr -1 cm -2 at 744 nm with an ultralow turn-on voltage of 1 V is obtained. Finally, operational stability tests suggest that phase purity is strongly correlated to stability. Phase-pure 2D perovskites exhibit >14 h of stable operation at peak operating conditions with no droop at current densities of several Amperes cm -2 in comparison to mixtures of 2D/3D or 3D perovskites, which degrade within minutes. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Equation of state and electron localisation in fcc lithium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frost, Mungo; Levitan, Abraham L.; Sun, Peihao
We present an improved equation of state for the high-pressure fcc phase of lithium with ambient temperature experimental data, extending the pressure range of previous studies to 36 GPa. Accompanying density functional theory calculations, which reproduce the experimental equation of state, show that with increasing density the phase diverges from a nearly free electron metal. At the high pressure limit of its stability fcc lithium exhibits enhanced electron density on the octahedral interstices with a high degree of localisation.
Equation of state and electron localisation in fcc lithium
Frost, Mungo; Levitan, Abraham L.; Sun, Peihao; ...
2018-02-14
We present an improved equation of state for the high-pressure fcc phase of lithium with ambient temperature experimental data, extending the pressure range of previous studies to 36 GPa. Accompanying density functional theory calculations, which reproduce the experimental equation of state, show that with increasing density the phase diverges from a nearly free electron metal. At the high pressure limit of its stability fcc lithium exhibits enhanced electron density on the octahedral interstices with a high degree of localisation.
Anomalous behaviour of thermodynamic properties at successive phase transitions in (NH4)3GeF7
NASA Astrophysics Data System (ADS)
Bogdanov, Evgeniy V.; Kartashev, Andrey V.; Pogoreltsev, Evgeniy I.; Gorev, Mikhail V.; Laptash, Natalia M.; Flerov, Igor N.
2017-12-01
Heat capacity, thermal dilatation, susceptibility to hydrostatic pressure and dielectric properties associated with succession of three phase transitions below room temperature in double fluoride salt (NH4)3GeF7 were studied. A possible transformation into the parent Pm-3m cubic phase was not observed up to the decomposition of compound. Nonferroelectric nature of structural distortions was confirmed. The DTA under pressure studies revealed a high temperature stability of two phases: P4/mbm and Pbam. The entropies of the phase transitions agree well with the model of structural distortions. Analysis of the thermal properties associated with the individual phase transitions in the framework of thermodynamic equations has shown a high reliability of the data obtained.
Wang, Hongwei; Wen, Jianguo; Miller, Dean; ...
2016-03-14
In ABO 3 perovskites, oxygen octahedron rotations are common structural distortions that can promote large ferroelectricity in BiFeO 3 with an R3c structure [1] but suppress ferroelectricity in CaTiO 3 with a Pbnm symmetry [2]. For many CaTiO3-like perovskites, the BiFeO 3 structure is a metastable phase. Here, we report the stabilization of the highly polar BiFeO 3-like phase of CaTiO 3 in a BaTiO 3/CaTiO 3 superlattice grown on a SrTiO 3 substrate. The stabilization is realized by a reconstruction of oxygen octahedron rotations at the interface from the pattern of nonpolar bulk CaTiO 3 to a different patternmore » that is characteristic of a BiFeO 3 phase. The reconstruction is interpreted through a combination of amplitude-contrast sub-0.1-nm high-resolution transmission electron microscopy and first-principles theories of the structure, energetics, and polarization of the superlattice and its constituents. We further predict a number of new artificial ferroelectric materials demonstrating that nonpolar perovskites can be turned into ferroelectrics via this interface mechanism. Therefore, a large number of perovskites with the CaTiO 3 structure type, which include many magnetic representatives, are now good candidates as novel highly polar multiferroic materials [3].« less
Piloted simulator evaluation of a relaxed static stability fighter at high angle-of-attack
NASA Technical Reports Server (NTRS)
Lapins, M.; Klein, R. W.; Martorella, R. P.; Cangelosi, J.; Neely, W. R., Jr.
1982-01-01
A piloted simulator evaluation of the stability and control characteristics of a relaxed static stability fighter aircraft was conducted using a differential maneuvering simulator. The primary purpose of the simulation was to evaluate the effectiveness of the limiters in preventing departure from controlled flight. The simulation was conducted in two phases, the first consisting of open-loop point stability evaluations over a range of subsonic flight conditions, the second concentrating on closed-loop tracking of a preprogrammed target in low speed, high angle-of-attack air combat maneuvering. The command limiters were effective in preventing departure from controlled flight while permitting competent levels of sustained maneuvering. Parametric variations during the study included the effects of pitch control power and wing-body static margin. Stability and control issues were clearly shown to impact the configuration design.
Phase stabilities at a glance: Stability diagrams of nickel dipnictides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bachhuber, F.; School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland; Rothballer, J.
2013-12-07
In the course of the recent advances in chemical structure prediction, a straightforward type of diagram to evaluate phase stabilities is presented based on an expedient example. Crystal structures and energetic stabilities of dipnictides NiPn{sub 2} (Pn = N, P, As, Sb, Bi) are systematically investigated by first principles calculations within the framework of density functional theory using the generalized gradient approximation to treat exchange and correlation. These dipnictides show remarkable polymorphism that is not yet understood systematically and offers room for the discovery of new phases. Relationships between the concerned structures including the marcasite, the pyrite, the arsenopyrite/CoSb{sub 2},more » and the NiAs{sub 2} types are highlighted by means of common structural fragments. Electronic stabilities of experimentally known and related AB{sub 2} structure types are presented graphically in so-called stability diagrams. Additionally, competing binary phases are taken into consideration in the diagrams to evaluate the stabilities of the title compounds with respect to decomposition. The main purpose of the stability diagrams is the introduction of an image that enables the estimation of phase stabilities at a single glance. Beyond that, some of the energetically favored structure types can be identified as potential new phases.« less
Partial Analysis of Insta-Foam
NASA Technical Reports Server (NTRS)
Chou, L. W.
1983-01-01
Insta-Foam, used as a thermal insulator for the non-critical area of the external tank during the prelaunch phase to minimize icing, is a two-component system. Component A has polyisocyanates, blowing agents, and stabilizers; Component B has the polyols, catalysts, blowing agents, stabilizers and fire retardant. The blowing agents are Freon 11 and Freon 12, the stabilizers are silicone surfactants, the catalysts are tertiary amines, and the fire retardant is tri-(beta-chloro-isopropyl) phosphate (PCF). High performance liquid chromatography (HPLC) was quantitatively identified polyols and PFC.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kazyak, Eric; Chen, Kuan-Hung; Wood, Kevin N.
Lithium solid electrolytes are a promising platform for achieving high energy density, long-lasting, and safe rechargeable batteries, which could have widespread societal impact. In particular, the ceramic oxide garnet Li7La3Zr2O12 (LLZO) has been shown to be a promising electrolyte due to its stability and high ionic conductivity. Two major challenges for commercialization are manufacturing of thin layers and creating stable, low-impedance, interfaces with both anode and cathode materials. Atomic Layer Deposition (ALD) has recently been shown as a potential method for depositing both solid electrolytes and interfacial layers to improve the stability and performance at electrode-electrolyte interfaces in battery systems.more » Herein we present the first reported ALD process for LLZO, demonstrating the ability to tune composition within the amorphous film and anneal to achieve the desired cubic garnet phase. Formation of the cubic phase was observed at temperatures as low as 555°C, significantly lower than is required for bulk processing. Additionally, challenges associated with achieving a dense garnet phase due to substrate reactivity, morphology changes and Li loss under the necessary high temperature annealing are quantified via in situ synchrotron diffraction.« less
Solid state stability and solubility of triethylenetetramine dihydrochloride.
Henriet, Théo; Gana, Inès; Ghaddar, Carine; Barrio, Maria; Cartigny, Yohann; Yagoubi, Najet; Do, Bernard; Tamarit, Josep-Lluis; Rietveld, Ivo B
2016-09-10
The API triethylenetetramine dihydrochloride used as an alternative treatment of Wilson's disease is sensitive to water and it exhibits polymorphism. As this may become an issue for the drug formulation, the physical stability has been studied by differential scanning calorimetry, high-pressure thermal analysis, dynamic vapor sorption, and X-ray diffraction as a function of temperature. In addition, high-pressure liquid chromatography and mass spectrometry have been used to study the purity and chemical stability of the API. A pressure-temperature phase diagram of the pure compound has been constructed and it can be concluded that form II is monotropic in relation to form I, which is the only stable solid. The solubilities of the different solid forms have been determined with the help of a temperature - composition phase diagram. The API is very soluble, at 20° C about 10% of the saturated solution with respect to the dihydrate consists of API and the solubility of the pure form I is twice as high. Moreover, it has been shown that at 20°C, a relative humidity above 40% induces the formation of the dihydrate and at 70% a saturated solution appears. At higher temperatures, the formation of the dihydrate appears at lower relative humidity values. A clear link has been established between the API's chemical stability, its physical stability and the relative humidity in the air. Humidity levels above 40% are detrimental to the quality of the API. Copyright © 2016 Elsevier B.V. All rights reserved.
The phase diagram of ammonium nitrate.
Chellappa, Raja S; Dattelbaum, Dana M; Velisavljevic, Nenad; Sheffield, Stephen
2012-08-14
The pressure-temperature (P-T) phase diagram of ammonium nitrate (AN) [NH(4)NO(3)] has been determined using synchrotron x-ray diffraction (XRD) and Raman spectroscopy measurements. Phase boundaries were established by characterizing phase transitions to the high temperature polymorphs during multiple P-T measurements using both XRD and Raman spectroscopy measurements. At room temperature, the ambient pressure orthorhombic (Pmmn) AN-IV phase was stable up to 45 GPa and no phase transitions were observed. AN-IV phase was also observed to be stable in a large P-T phase space. The phase boundaries are steep with a small phase stability regime for high temperature phases. A P-V-T equation of state based on a high temperature Birch-Murnaghan formalism was obtained by simultaneously fitting the P-V isotherms at 298, 325, 446, and 467 K, thermal expansion data at 1 bar, and volumes from P-T ramping experiments. Anomalous thermal expansion behavior of AN was observed at high pressure with a modest negative thermal expansion in the 3-11 GPa range for temperatures up to 467 K. The role of vibrational anharmonicity in this anomalous thermal expansion behavior has been established using high P-T Raman spectroscopy.
The phase diagram of ammonium nitrate
NASA Astrophysics Data System (ADS)
Chellappa, Raja S.; Dattelbaum, Dana M.; Velisavljevic, Nenad; Sheffield, Stephen
2012-08-01
The pressure-temperature (P-T) phase diagram of ammonium nitrate (AN) [NH4NO3] has been determined using synchrotron x-ray diffraction (XRD) and Raman spectroscopy measurements. Phase boundaries were established by characterizing phase transitions to the high temperature polymorphs during multiple P-T measurements using both XRD and Raman spectroscopy measurements. At room temperature, the ambient pressure orthorhombic (Pmmn) AN-IV phase was stable up to 45 GPa and no phase transitions were observed. AN-IV phase was also observed to be stable in a large P-T phase space. The phase boundaries are steep with a small phase stability regime for high temperature phases. A P-V-T equation of state based on a high temperature Birch-Murnaghan formalism was obtained by simultaneously fitting the P-V isotherms at 298, 325, 446, and 467 K, thermal expansion data at 1 bar, and volumes from P-T ramping experiments. Anomalous thermal expansion behavior of AN was observed at high pressure with a modest negative thermal expansion in the 3-11 GPa range for temperatures up to 467 K. The role of vibrational anharmonicity in this anomalous thermal expansion behavior has been established using high P-T Raman spectroscopy.
NASA Astrophysics Data System (ADS)
Edison, John R.; Dasgupta, Tonnishtha; Dijkstra, Marjolein
2016-08-01
We study the phase behaviour of a binary mixture of colloidal hard spheres and freely jointed chains of beads using Monte Carlo simulations. Recently Panagiotopoulos and co-workers predicted [Nat. Commun. 5, 4472 (2014)] that the hexagonal close packed (HCP) structure of hard spheres can be stabilized in such a mixture due to the interplay between polymer and the void structure in the crystal phase. Their predictions were based on estimates of the free-energy penalty for adding a single hard polymer chain in the HCP and the competing face centered cubic (FCC) phase. Here we calculate the phase diagram using free-energy calculations of the full binary mixture and find a broad fluid-solid coexistence region and a metastable gas-liquid coexistence region. For the colloid-monomer size ratio considered in this work, we find that the HCP phase is only stable in a small window at relatively high polymer reservoir packing fractions, where the coexisting HCP phase is nearly close packed. Additionally we investigate the structure and dynamic behaviour of these mixtures.
Phase stability of TiO 2 polymorphs from diffusion Quantum Monte Carlo
Luo, Ye; Benali, Anouar; Shulenburger, Luke; ...
2016-11-24
Titanium dioxide, TiO 2, has multiple applications in catalysis, energy conversion and memristive devices because of its electronic structure. Most of applications utilize the naturally existing phases: rutile, anatase and brookite. In spite of the simple form of TiO 2 and its wide uses, there is long- standing disagreement between theory and experiment on the energetic ordering of these phases that has never been resolved. We present the first analysis of phase stability at zero temperature using the highly accurate many-body fixed node diffusion Quantum Monte Carlo (QMC) method. We include temperature effects by calculating the Helmholtz free energy includingmore » both internal energy corrected by QMC and vibrational contributions from phonon calculations within the quasi harmonic approximation via density functional perturbation theory. Our QMC calculations find that anatase is the most stable phase at zero temperature, consistent with many previous mean- field calculations. Furthermore, at elevated temperatures, rutile becomes the most stable phase. For all finite temperatures, brookite is always the least stable phase.« less
Chemical characterization of iron-mediated soil organic matter stabilization in tropical subsoils
NASA Astrophysics Data System (ADS)
Coward, E.; Plante, A. F.; Thompson, A.
2015-12-01
Tropical forest soils contribute disproportionately to the poorly-characterized and persistent deep soil carbon (C) pool. Highly-weathered and often extending one to two meters deep, these soils also contain an abundance of semicrystalline, Fe- and Al-containing short-range-order (SRO) minerals, metastable derivatives of framework silicate and ferromagnesian parent materials. SRO minerals are capable of soil organic matter (SOM) stabilization through sorption or co-precipitation, a faculty enhanced by their high specific surface area (SSA). As such, SRO-mediated organomineral associations may prove a critical, yet matrix-selective, driver of SOM stabilization capacity in tropical soils, particularly at depth. Surface (0-20 cm) and subsoil (50-80 cm) samples were taken from 20 quantitative soil pits dug in the Luquillo Critical Zone Observatory, located in northeast Puerto Rico. Soils were stratified across granodiorite and volcaniclastic parent materials, spanning primary mineral contents of 5 to 40%. Selective dissolution procedures were used to isolate distinct forms of Fe-C interactions: (1) sodium pyrophosphate to isolate organo-mineral complexes, (2) hydroxylamine and (3) oxalate to isolate SRO phases, and (4) inorganic dithionite to isolate crystalline Fe oxides. Extracts were analysed for dissolved organic C (DOC) and Fe and Al concentrations to estimate SOM associated with each mineral phase. Soils were also subjected to SSA analysis, 57Fe-Mössbauer spectroscopy and X-ray diffraction before and after extraction to determine the contribution of extracted mineral phases to SOM stabilization capacity. Preliminary results indicate a dominance of secondary (hydr)oxides and kaolin minerals in surface soils, strongly driven by parent material. With depth, however, we observe a marked shift towards SRO mineral phases across both parent materials, suggesting that SRO-mediated organomineral associations are significant contributors to observed C storage in tropical subsoils.
High-yield synthesis of brookite TiO.sub.2 nanoparticles
Huber, Dale L [Albuquerque, NM; Monson, Todd C [Albuquerque, NM
2011-05-17
A method for forming non-agglomerated brookite TiO.sub.2 nanoparticles without the use of expensive organic surfactants or high temperature processing. Embodiments of this invention use titanium isopropoxide as the titanium precursor and isopropanol as both the solvent and ligand for ligand-stabilized brookite-phase titania. Isopropanol molecules serve as the ligands interacting with the titania surfaces that stabilize the titania nanoparticles. The isopropanol ligands can be exchanged with other alcohols and other ligands during or after the nanoparticle formation reaction.
Rapid microwave-assisted synthesis of sub-30nm lipid nanoparticles.
Dunn, Stuart S; Beckford Vera, Denis R; Benhabbour, S Rahima; Parrott, Matthew C
2017-02-15
Accessing the phase inversion temperature by microwave heating may enable the rapid synthesis of small lipid nanoparticles. Nanoparticle formulations consisted of surfactants Brij 78 and Vitamin E TPGS, and trilaurin, trimyristin, or miglyol 812 as nanoparticle lipid cores. Each formulation was placed in water and heated by microwave irradiation at temperatures ranging from 65°C to 245°C. We observed a phase inversion temperature (PIT) for these formulations based on a dramatic decrease in particle Z-average diameters. Subsequently, nanoparticles were manufactured above and below the PIT and studied for (a) stability toward dilution, (b) stability over time, (c) fabrication as a function of reaction time, and (d) transmittance of lipid nanoparticle dispersions. Lipid-based nanoparticles with distinct sizes down to 20-30nm and low polydispersity could be attained by a simple, one-pot microwave synthesis. This was carried out by accessing the phase inversion temperature using microwave heating. Nanoparticles could be synthesized in just one minute and select compositions demonstrated high stability. The notable stability of these particles may be explained by the combination of van der Waals interactions and steric repulsion. 20-30nm nanoparticles were found to be optically transparent. Published by Elsevier Inc.
Room-Temperature Deformation and Martensitic Transformation of Two Co-Cr-Based Alloys
NASA Astrophysics Data System (ADS)
Cai, S.; Schaffer, J. E.; Huang, D.; Gao, J.; Ren, Y.
2018-05-01
Deformation of two Co-Cr alloys was studied by in situ synchrotron X-ray diffraction. Both alloys show stress-induced martensite transformation, which is affected by phase stabilities and transformation strains. Crystal structure of WC in Co-20Cr-15W-10Ni is identified. Compared with other phases present, it is elastically isotropic, exhibits high strength, and can elastically withstand strains exceeding 1 pct. Texture change during phase transformation is explained based on the crystal orientation relationship between γ- and ɛ-phases.
Room-Temperature Deformation and Martensitic Transformation of Two Co-Cr-Based Alloys
NASA Astrophysics Data System (ADS)
Cai, S.; Schaffer, J. E.; Huang, D.; Gao, J.; Ren, Y.
2018-07-01
Deformation of two Co-Cr alloys was studied by in situ synchrotron X-ray diffraction. Both alloys show stress-induced martensite transformation, which is affected by phase stabilities and transformation strains. Crystal structure of WC in Co-20Cr-15W-10Ni is identified. Compared with other phases present, it is elastically isotropic, exhibits high strength, and can elastically withstand strains exceeding 1 pct. Texture change during phase transformation is explained based on the crystal orientation relationship between γ- and ɛ-phases.
NASA Astrophysics Data System (ADS)
Gorai, S.; Ghosh, P. S.; Bhattacharya, C.; Arya, A.
2018-04-01
The pressure evolution of phase stability, structural and mechanical properties of Fe3C in ferro-magnetic (FM) and high pressure non magnetic (NM) phase is investigated from first principle calculations. The 2nd order FM to NM phase transition of Fe3C is identified around 60 GPa. Pressure (or density) variation of sound velocities from our ab-initio calculated single crystal elastic constants are determined to predict these parameters at Earth's outer core pressure.
High Precision Laser Range Sensor
NASA Technical Reports Server (NTRS)
Dubovitsky, Serge (Inventor); Lay, Oliver P. (Inventor)
2003-01-01
The present invention is an improved distance measuring interferometer that includes high speed phase modulators and additional phase meters to generate and analyze multiple heterodyne signal pairs with distinct frequencies. Modulation sidebands with large frequency separation are generated by the high speed electro-optic phase modulators, requiring only a single frequency stable laser source and eliminating the need for a fist laser to be tuned or stabilized relative to a second laser. The combination of signals produced by the modulated sidebands is separated and processed to give the target distance. The resulting metrology apparatus enables a sensor with submicron accuracy or better over a multi- kilometer ambiguity range.
Calcium with the β-tin structure at high pressure and low temperature
Li, Bing; Ding, Yang; Yang, Wenge; Wang, Lin; Zou, Bo; Shu, Jinfu; Sinogeikin, Stas; Park, Changyong; Zou, Guangtian; Mao, Ho-kwang
2012-01-01
Using synchrotron high-pressure X-ray diffraction at cryogenic temperatures, we have established the phase diagram for calcium up to 110 GPa and 5–300 K. We discovered the long-sought for theoretically predicted β-tin structured calcium with I41/amd symmetry at 35 GPa in a s mall low-temperature range below 10 K, thus resolving the enigma of absence of this lowest enthalpy phase. The stability and relations among various distorted simple-cubic phases in the Ca-III region have also been examined and clarified over a wide range of high pressures and low temperatures. PMID:23012455
Morais, Helena; Ramos, Cristina; Forgács, Esther; Cserháti, Tibor; Oliviera, José
2002-04-25
The effect of light, storage time and temperature on the decomposition rate of monomeric anthocyanin pigments extracted from skins of grape (Vitis vinifera var. Red globe) was determined by reversed-phase high-performance liquid chromatography (RP-HPLC). The impact of various storage conditions on the pigment stability was assessed by stepwise regression analysis. RP-HPLC separated well the five anthocyanins identified and proved the presence of other unidentified pigments at lower concentrations. Stepwise regression analysis confirmed that the overall decomposition rate of monomeric anthocyanins, peonidin-3-glucoside and malvidin-3-glucoside significantly depended on the time and temperature of storage, the effect of storage time being the most important. The presence or absence of light exerted a negligible impact on the decomposition rate.
Effect of citronella essential oil fractions as oil phase on emulsion stability
NASA Astrophysics Data System (ADS)
Septiyanti, Melati; Meliana, Yenny; Agustian, Egi
2017-11-01
The emulsion system consists of water, oil and surfactant. In order to create stable emulsion system, the composition and formulation between water phase, surfactant and oil phase are very important. Essential oil such as citronella oil has been known as active ingredient which has ability as insect repellent. This research studied the effect of citronella oil and its fraction as oil phase on emulsion stability. The cycle stability test was conducted to check the emulsion stability and it was monitored by pH, density, viscosity, particle size, refractive index, zeta potential, physical appearance and FTIR for 4 weeks. Citronellal fraction has better stability compared to citronella oil and rhodinol fraction with slight change of physical and chemical properties before and after the cycle stability test. However, it is need further study to enhance the stability of the emulsion stability for this formulation.
Zhang, Mingliang; Mallik, Abul K; Takafuji, Makoto; Ihara, Hirotaka; Qiu, Hongdeng
2015-08-05
Ionic liquids (ILs), a class of unique substances composed purely by cation and anions, are renowned for their fascinating physical and chemical properties, such as negligible volatility, high dissolution power, high thermal stability, tunable structure and miscibility. They are enjoying ever-growing applications in a great diversity of disciplines. IL-modified silica, transforming the merits of ILs into chromatographic advantages, has endowed the development of high-performance liquid chromatography (HPLC) stationary phase with considerable vitality. In the last decade, IL-functionalized silica stationary phases have evolved into a series of branches to accommodate to different HPLC modes. An up-to-date overview of IL-immobilized stationary phases is presented in this review, and divided into five parts according to application mode, i.e., ion-exchange, normal-phase, reversed-phase, hydrophilic interaction and chiral recognition. Specific attention is channeled to synthetic strategies, chromatographic behavior and separation performance of IL-functionalized silica stationary phases. Copyright © 2015 Elsevier B.V. All rights reserved.
Method for transition prediction in high-speed boundary layers, phase 2
NASA Astrophysics Data System (ADS)
Herbert, T.; Stuckert, G. K.; Lin, N.
1993-09-01
The parabolized stability equations (PSE) are a new and more reliable approach to analyzing the stability of streamwise varying flows such as boundary layers. This approach has been previously validated for idealized incompressible flows. Here, the PSE are formulated for highly compressible flows in general curvilinear coordinates to permit the analysis of high-speed boundary-layer flows over fairly general bodies. Vigorous numerical studies are carried out to study convergence and accuracy of the linear-stability code LSH and the linear/nonlinear PSE code PSH. Physical interfaces are set up to analyze the M = 8 boundary layer over a blunt cone calculated by using a thin-layer Navier Stokes (TNLS) code and the flow over a sharp cone at angle of attack calculated using the AFWAL parabolized Navier-Stokes (PNS) code. While stability and transition studies at high speeds are far from routine, the method developed here is the best tool available to research the physical processes in high-speed boundary layers.
Cubic martensite in high carbon steel
NASA Astrophysics Data System (ADS)
Chen, Yulin; Xiao, Wenlong; Jiao, Kun; Ping, Dehai; Xu, Huibin; Zhao, Xinqing; Wang, Yunzhi
2018-05-01
A distinguished structural characteristic of martensite in Fe-C steels is its tetragonality originating from carbon atoms occupying only one set of the three available octahedral interstitial sites in the body-centered-cubic (bcc) Fe lattice. Such a body-centered-tetragonal (bct) structure is believed to be thermodynamically stable because of elastic interactions between the interstitial carbon atoms. For such phase stability, however, there has been a lack of direct experimental evidence despite extensive studies of phase transformations in steels over one century. In this Rapid Communication, we report that the martensite formed in a high carbon Fe-8Ni-1.26C (wt%) steel at room temperature induced by applied stress/strain has actually a bcc rather than a bct crystal structure. This finding not only challenges the existing theories on the stability of bcc vs bct martensite in high carbon steels, but also provides insights into the mechanism for martensitic transformation in ferrous alloys.
NASA Astrophysics Data System (ADS)
Ilie, Alina Georgiana; Scarisoreanu, Monica; Dutu, Elena; Dumitrache, Florian; Banici, Ana-Maria; Fleaca, Claudiu Teodor; Vasile, Eugenia; Mihailescu, Ion
2018-01-01
Laser pyrolysis has proven a viable and trustworthy method of TiO2 nanoparticles fabrication, ensuring good quality and wide variety of nanoparticle morphologies and sizes. This work is aimed to phase control, experimentally studied, by parameter modulation, during one step laser pyrolysis synthesis or in combination with thermal annealing. High phase purity anatase and rutile TiO2 nanoparticles, oxygen abundant, are synthesized from TiCl4 and C2H4 gas mixtures, in the presence of air as oxygen donor, under CO2 laser radiation. The nano-titania samples are analyzed by X-ray Diffraction, EDAX, TEM and Raman spectroscopy and reveal good phase stability and distinct morphology. This study extends the method applicability onto rutile majoritarian TiO2 synthesis and generation of thermally stable anatase titania, a well-known catalyst.
NASA Technical Reports Server (NTRS)
Hauser, F. D.; Szollosi, G. D.; Lakin, W. S.
1972-01-01
COEBRA, the Computerized Optimization of Elastic Booster Autopilots, is an autopilot design program. The bulk of the design criteria is presented in the form of minimum allowed gain/phase stability margins. COEBRA has two optimization phases: (1) a phase to maximize stability margins; and (2) a phase to optimize structural bending moment load relief capability in the presence of minimum requirements on gain/phase stability margins.
Xia, Yi; Zhang, Cong; Wang, Jie-Xin; Wang, Dan; Zeng, Xiao-Fei; Chen, Jian-Feng
2018-05-30
The controllable synthesis of metal oxide nanoparticles is of fundamental and technological interest. In this article, highly transparent aqueous nanodispersion of ZrO 2 with controllable crystalline phase, high concentration, and long-term stability was facilely prepared without any modification via the reaction of inexpensive inorganic zirconium salt and sodium hydroxide in water under an acid surrounding, combined with hydrothermal treatment. The as-prepared transparent nanodispersion had an average particle size of 7 nm, a high stability of 18 months, and a high solid content of 35 wt %. ZrO 2 nanocrystals could be readily dispersed in many solvents with high polarity including ethanol, dimethyl sulfoxide, acetic acid, ethylene glycol, and N, N-dimethylformamide, forming stable transparent nanodispersions. Furthermore, highly transparent polyvinyl alcohol/ZrO 2 nanocomposite films with high refractive index were successfully prepared with a simple solution mixing route. The refractive index could be tuned from 1.528 to 1.754 (@ 589 nm) by changing the mass fraction (0-80 wt %) of ZrO 2 in transparent nanocomposite films.
Han, Linjie; Hyung, Suk-Joon; Ruotolo, Brandon T
2013-01-01
The role that water plays in the salt-based stabilization of proteins is central to our understanding of protein biophysics. Ion hydration and the ability of ions to alter water surface tension are typically invoked, along with direct ion-protein binding, to describe Hofmeister stabilization phenomena observed for proteins experimentally, but the relative influence of these forces has been extraordinarily difficult to measure directly. Recently, we have used gas-phase measurements of proteins and large multiprotein complexes, using a combination of innovative ion mobility (IM) and mass spectrometry (MS) techniques, to assess the ability of bound cations and anions to stabilize protein ions in the absence of the solvation forces described above. Our previous work has studied a broad set of 12 anions bound to a range of proteins and protein complexes, and while primarily motivated by the analytical challenges surrounding the gas-phase measurement of solution-phase relevant protein structures, our work has also lead to a detailed physical mechanism of anion-protein complex stabilization in the absence of bulk solvent. Our more-recent work has screened a similarly-broad set of cations for their ability to stabilize gas-phase protein structure, and we have discovered surprising differences between the operative mechanisms for cations and anions in gas-phase protein stabilization. In both cases, cations and anions affect protein stabilization in the absence of solvent in a manner that is generally reversed relative to their ability to stabilize the same proteins in solution. In addition, our evidence suggests that the relative solution-phase binding affinity of the anions and cations studied here is preserved in our gas-phase measurements, allowing us to study the influence of such interactions in detail. In this report, we collect and summarize such gas-phase measurements to distill a generalized picture of salt-based protein stabilization in the absence of bulk water. Further, we communicate our most recent efforts to study the combined effects of stabilizing cations and anions on gas-phase proteins, and identify those salts that bear anion/cation pairs having the strongest stabilizing influence on protein structures
Stability, Elastic Properties, and Deformation of LiBN2: A Potential High-Energy Material.
Zhu, Chunye; Zhu, Wenjun; Yang, Yanqiang
2018-05-15
Searching for high-energy-density materials is of great interest in scientific research and for industrial applications. Using an unbiased structure prediction method and first-principles calculations, we investigated the phase stability of LiBN 2 from 0 to100 GPa. Two new structures with space groups P4̅2 1 m and Pnma were discovered. The theoretical calculations revealed that Pnma LiBN 2 is stable with respect to a mixture of 1 / 3 Li 3 N, BN, and 1 / 3 N 2 above 22 GPa. The electronic band structure revealed that Pnma LiBN 2 has an indirect band gap of 2.3 eV, which shows a nonmetallic feature. The Pnma phase has a high calculated bulk modulus and shear modulus, indicating its incompressible nature. The microscopic mechanism of the structural deformation was demonstrated by ideal tensile shear strength calculations. It is worth mentioning that Pnma LiBN 2 is dynamically stable under ambient conditions. The decomposition of this phase is exothermic, releasing an energy of approximately 1.23 kJ/g at the PBE level. The results provide new thoughts for designing and synthesizing novel high-energy compounds in ternary systems.
Vadgama, Rajeshkumar N; Odaneth, Annamma A; Lali, Arvind M
2015-12-01
Isopropyl myristate finds many applications in food, cosmetic and pharmaceutical industries as an emollient, thickening agent, or lubricant. Using a homogeneous reaction phase, non-specific lipase derived from Candida antartica, marketed as Novozym 435, was determined to be most suitable for the enzymatic synthesis of isopropyl myristate. The high molar ratio of alcohol to acid creates novel single phase medium which overcomes mass transfer effects and facilitates downstream processing. The effect of various reaction parameters was optimized to obtain a high yield of isopropyl myristate. Effect of temperature, agitation speed, organic solvent, biocatalyst loading and batch operational stability of the enzyme was systematically studied. The conversion of 87.65% was obtained when the molar ratio of isopropyl alcohol to myristic acid (15:1) was used with 4% (w/w) catalyst loading and agitation speed of 150 rpm at 60 °C. The enzyme has also shown good batch operational stability under optimized conditions.
Chen, Yan; Rangasamy, Ezhiylmurugan; dela Cruz, Clarina R.; ...
2015-09-28
Doped Li 7La 3Zr 2O 12 garnets, oxide-based solids with good Li + conductivity and compatibility, show great potential as leading electrolyte material candidates for all-solid-state lithium ion batteries. Still yet, the conductive bulk usually suffers from the presence of secondary phases and the transition towards a low-conductivity tetragonal phase during synthesis. Dopants are designed to stabilize the high-conductive cubic phase and suppress the formation of the low-conductivity phases. In situ neutron diffraction enables a direct observation of the doping effects by monitoring the phase evolutions during garnet synthesis. It reveals the reaction mechanism involving the temporary presence of intermediatemore » phases. The off-stoichiometry due to the liquid Li 2CO 3 evaporation leads to the residual of the low-conductivity intermediate phase in the as-synthesized bulk. Appropriate doping of an active element may alter the component of the intermediate phases and promote the completion of the reaction. While the dopants aid to stabilize most of the cubic phase, a small amount of tetragonal phase tends to form under a diffusion process. Lastly, the in situ observations provide the guideline of process optimization to suppress the formation of unwanted low-conductivity phases.« less
Phase stability of iron germanate, FeGeO 3, to 127 GPa
Dutta, R.; Tracy, S. J.; Stan, C. V.; ...
2017-11-15
The high-pressure behavior of germanates is of interest as these compounds serve as analogs for silicates of the deep Earth. Current theoretical and experimental studies of iron germanate, FeGeO 3, are limited. Here in this paper, we have examined the behavior of FeGeO 3 to 127 GPa using the laser-heated diamond anvil cell combined with in situ synchrotron X-ray diffraction. Upon compression at room temperature, the ambient-pressure clinopyroxene phase transforms to a disordered triclinic phase [FeGeO 3 (II)] at ~ 18 GPa in agreement with earlier studies. An additional phase transition to FeGeO 3 (III) occurs above 54 GPa atmore » room temperature. Laser-heating experiments (~ 1200–2200 K) were conducted at three pressures (33, 54, and 123 GPa) chosen to cover the stability regions of different GeO 2 polymorphs. In all cases, we observe that FeGeO 3 dissociates into GeO 2 + FeO at high pressure and temperature conditions. Neither the perovskite nor the post-perovskite phase was observed up to 127 GPa at ambient or high temperatures. The results are consistent with the behavior of FeSiO 3, which also dissociates into a mixture of the oxides (FeO + SiO 2) at least up to 149 GPa.« less
NASA Astrophysics Data System (ADS)
Zhang, Jianzhong; Vogel, Sven; Brown, Donald; Clausen, Bjorn; Hackenberg, Robert
2018-05-01
In-situ time-of-flight neutron diffraction experiments were conducted on the uranium-niobium alloy with 6 wt. % Nb (U-6Nb) at pressures up to 4.7 GPa and temperatures up to 1073 K. Upon static compression at room temperature, the monoclinic structure of U-6Nb (α″ U-6Nb) remains stable up to the highest experimental pressure. Based on the pressure-volume measurements at room temperature, the least-squares fit using the finite-strain equation of state (EOS) yields an isothermal bulk modulus of B0 = 127 ± 2 GPa for the α″-phase of U-6Nb. The calculated zero-pressure bulk sound speed from this EOS is 2.706 ± 0.022 km/s, which is in good agreement with the linear extrapolation of the previous Hugoniot data above 12 GPa for α″ U-6Nb, indicating that the dynamic response under those shock-loading conditions is consistent with the stabilization of the initial monoclinic phase of U-6Nb. Upon heating at ambient and high pressures, the metastable α″ U-6Nb exhibits complex transformation paths leading to the diffusional phase decomposition, which are sensitive to applied pressure, stress state, and temperature-time path. These findings provide new insight into the behavior of atypical systems such as U-Nb and suggest that the different U-Nb phases are separated by rather small energies and hence highly sensitive to compositional, thermal, and mechanical perturbations.
Water adsorbate phases on ZnO and impact of vapor pressure on the equilibrium shape of nanoparticles
NASA Astrophysics Data System (ADS)
Kenmoe, Stephane; Biedermann, P. Ulrich
2018-02-01
ZnO nanoparticles are used as catalysts and have potential applications in gas-sensing and solar energy conversion. A fundamental understanding of the exposed crystal facets, their surface chemistry, and stability as a function of environmental conditions is essential for rational design and improvement of synthesis and properties. We study the stability of water adsorbate phases on the non-polar low-index (10 1 ¯ 0 ) and (11 2 ¯ 0 ) surfaces from low coverage to multilayers using ab initio thermodynamics. We show that phonon contributions and the entropies due to a 2D lattice gas at low coverage and multiple adsorbate configurations at higher coverage have an important impact on the stability range of water adsorbate phases in the (T,p) phase diagram. Based on this insight, we compute and analyze the possible growth mode of water films for pressures ranging from UHV via ambient conditions to high pressures and the impact of water adsorption on the equilibrium shape of nanoparticles in a humid environment. A 2D variant of the Wulff construction shows that the (10 1 ¯ 0 ) and (11 2 ¯ 0 ) surfaces coexist on 12-faceted prismatic ZnO nanoparticles in dry conditions, while in humid environment, the (10 1 ¯ 0 ) surface is selectively stabilized by water adsorption resulting in hexagonal prisms.
Criteria for predicting the formation of single-phase high-entropy alloys
Troparevsky, M Claudia; Morris, James R..; Kent, Paul R.; ...
2015-03-15
High entropy alloys constitute a new class of materials whose very existence poses fundamental questions. Originally thought to be stabilized by the large entropy of mixing, these alloys have attracted attention due to their potential applications, yet no model capable of robustly predicting which combinations of elements will form a single-phase currently exists. Here we propose a model that, through the use of high-throughput computation of the enthalpies of formation of binary compounds, is able to confirm all known high-entropy alloys while rejecting similar alloys that are known to form multiple phases. Despite the increasing entropy, our model predicts thatmore » the number of potential single-phase multicomponent alloys decreases with an increasing number of components: out of more than two million possible 7-component alloys considered, fewer than twenty single-phase alloys are likely.« less
Phase relations of Fe Ni alloys at high pressure and temperature
NASA Astrophysics Data System (ADS)
Mao, Wendy L.; Campbell, Andrew J.; Heinz, Dion L.; Shen, Guoyin
2006-04-01
Using a diamond anvil cell and double-sided laser-heating coupled with synchrotron X-ray diffraction, we determined phase relations for three compositions of Fe-rich FeNi alloys in situ at high pressure and high temperature. We studied Fe with 5, 15, and 20 wt.% Ni to 55, 62, and 72 GPa, respectively, at temperatures up to ˜3000 K. Ni stabilizes the face-centered cubic phase to lower temperatures and higher pressure, and this effect increases with increasing pressure. Extrapolation of our experimental results for Fe with 15 wt.% Ni suggests that the stable phase at inner core conditions is hexagonal close packed, although if the temperature at the inner core boundary is higher than ˜6400 K, a two phase outer region may also exist. Comparison to previous laser-heated diamond anvil cell studies demonstrates the importance of kinetics even at high temperatures.
Xie, Zhilin; Terracciano, Anthony C.; Cullen, David A.; ...
2015-05-13
The formation of IrB 2, IrB 1.35, IrB 1.1 and IrB monoboride phases in the Ir–B ceramic nanopowder was confirmed during mechanochemical reaction between metallic Ir and elemental B powders. The Ir–B phases were analysed after 90 h of high energy ball milling and after annealing of the powder for 72 h at 1050°C in vacuo. The iridium monoboride (IrB) orthorhombic phase was synthesised experimentally for the first time and identified by powder X-ray diffraction. Additionally, the ReB 2 type IrB 2 hexagonal phase was also produced for the first time and identified by high resolution transmission electron microscope. Irmore » segregation along disordered domains of the boron lattice was found to occur during high temperature annealing. Furthermore, these nanodomains may have useful catalytic properties.« less
Improved phase stability of formamidinium lead triiodide perovskite by strain relaxation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Xiaojia; Wu, Congcong; Jha, Shikhar K.
2016-10-18
Though formamidinium lead triiodide (FAPbI 3) possesses a suitable band gap and good thermal stability, the phase transition from the pure black perovskite phase (α-phase) to the undesirable yellow nonperovskite polymorph (δ-phase) at room temperature, especially under humid air, hinders its practical application. Here, we investigate the intrinsic instability mechanism of the α-phase at ambient temperature and demonstrate the existence of an anisotropic strained lattice in the (111) plane that drives phase transformation into the δ-phase. Methylammonium bromide (MABr) alloying (or FAPbI 3-MABr) was found to cause lattice contraction, thereby balancing the lattice strain. This led to dramatic improvement inmore » the stability of α-FAPbI 3. As a result, solar cells fabricated using FAPbI 3-MABr demonstrated significantly enhanced stability under the humid air.« less
NASA Astrophysics Data System (ADS)
Sun, Xinjun; Liu, Changdong; Guo, Yongliang; Sun, Deyan; Ke, Xuezhi
2018-03-01
The structural and thermodynamic properties of titanium nitride (TiN) have been investigated by merging first-principles calculations and particle-swarm algorithm. The three phases are identified for TiN, including the B1, the P63 / mmc, and the B2 phases. A new phase of anti-TiP structure with the space group P63 / mmc has been predicted. The calculated phase transition from the B1 to the P63 / mmc occurs at 270 GPa. The vibrational, elastic, and thermodynamic properties for the three phases have been calculated and discussed.
Optoelectronic oscillator with improved phase noise and frequency stability
NASA Astrophysics Data System (ADS)
Eliyahu, Danny; Sariri, Kouros; Taylor, Joseph; Maleki, Lute
2003-07-01
In this paper we report on recent improvements in phase noise and frequency stability of a 10 GHz opto-electronic oscillator. In our OEO loop, the high Q elements (the optical fiber and the narrow bandpass microwave filter) are thermally stabilized using resistive heaters and temperature controllers, keeping their temperature above ambient. The thermally stabilized free running OEO demonstrates a short-term frequency stability of 0.02 ppm (over several hours) and frequency vs. temperature slope of -0.1 ppm/°C (compared to -8.3 ppm/°C for non thermally stabilized OEO). We obtained an exceptional spectral purity with phase noise level of -143 dBc/Hz at 10 kHz of offset frequency. We also describe the multi-loop configuration that reduces dramatically the spurious level at offset frequencies related to the loop round trip harmonic frequency. The multi-loop configuration has stronger mode selectivity due to interference between signals having different cavity lengths. A drop of the spurious level below -90 dBc was demonstrated. The effect of the oscillator aging on the frequency stability was studied as well by recording the oscillator frequency (in a chamber) over several weeks. We observed reversal in aging direction with logarithmic behavior of A ln(B t+1)-C ln(D t+1), where t is the time and A, B, C, D are constants. Initially, in the first several days, the positive aging dominates. However, later the negative aging mechanism dominates. We have concluded that the long-term aging behavioral model is consistent with the experimental results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Yong; Pan, Xuan; Bernussi, Ayrton A.
We demonstrate that catalyst-assisted hydrogen spillover doping of VO{sub 2} thin films significantly alters the metal-insulator transition characteristics and stabilizes the metallic rutile phase at room temperature. With hydrogen inserted into the VO{sub 2} lattice, high resolution X-ray diffraction reveals expansion of the V-V chain separation when compared to the VO{sub 2}(R) phase. The donated free electrons, possibly from O-H bond formation, stabilize the VO{sub 2}(R) to low temperatures. By controlling the amount of dopants to obtain mixed insulating and metallic phases, VO{sub 2} resistivity can be continuously tuned until a critical condition is achieved that suppresses Fabry-Perot resonances. Ourmore » results demonstrate that hydrogen spillover is an effective technique to tune the electrical and optical properties of VO{sub 2} thin films.« less
NASA Astrophysics Data System (ADS)
Wang, Xiaoqiang; Ju, Lili; Du, Qiang
2016-07-01
The Willmore flow formulated by phase field dynamics based on the elastic bending energy model has been widely used to describe the shape transformation of biological lipid vesicles. In this paper, we develop and investigate some efficient and stable numerical methods for simulating the unconstrained phase field Willmore dynamics and the phase field Willmore dynamics with fixed volume and surface area constraints. The proposed methods can be high-order accurate and are completely explicit in nature, by combining exponential time differencing Runge-Kutta approximations for time integration with spectral discretizations for spatial operators on regular meshes. We also incorporate novel linear operator splitting techniques into the numerical schemes to improve the discrete energy stability. In order to avoid extra numerical instability brought by use of large penalty parameters in solving the constrained phase field Willmore dynamics problem, a modified augmented Lagrange multiplier approach is proposed and adopted. Various numerical experiments are performed to demonstrate accuracy and stability of the proposed methods.
NASA Astrophysics Data System (ADS)
Jing, Gu; Dehong, Xia; Li, Wang; Wenqing, Ao; Zhaodong, Qi
2018-03-01
We report herein a novel series of Mannitol/GNPs (graphene nanoplatelets) composites with incremental GNPs loadings from 1 wt% to 10 wt% for further applications in medium-temperature thermal energy system. The phase change behavior and thermal conductivity of Mannitol/GNPs composite, a nanostructured PCM, have been evaluated as a function of GNPs content. Compared to the pristine Mannitol, the resultant stabilized composite with 8 wt% of GNPs displays an extremely high 1054% enhancement in thermal conductivity, and inherits 92% of phase change enthalpy of bulk Mannitol PCM (phase change material). More importantly, 92%Mannitol/GNPs composite still preserves its initial shape without any leakage even when subjected to a 400 consecutive melting/re-solidification cycles. The resulting Mannitol composites exhibit excellent chemical compatibility, large phase change enthalpy and improved thermal reliability, as compared to base PCM, which stands distinct in its class of organic with reference to the past literatures.
NASA Technical Reports Server (NTRS)
Benkel, Samantha; Zhu, Dongming
2011-01-01
Advanced environmental barrier coatings are being developed to protect SiC/SiC ceramic matrix composites in harsh combustion environments. The current coating development emphasis has been placed on the significantly improved cyclic durability and combustion environment stability in high-heat-flux and high velocity gas turbine engine environments. Environmental barrier coating systems based on hafnia (HfO2) and ytterbium silicate, HfO2-Si nano-composite bond coat systems have been processed and their stability and thermal conductivity behavior have been evaluated in simulated turbine environments. The incorporation of Silicon Carbide Nanotubes (SiCNT) into high stability (HfO2) and/or HfO2-silicon composite bond coats, along with ZrO2, HfO2 and rare earth silicate composite top coat systems, showed promise as excellent environmental barriers to protect the SiC/SiC ceramic matrix composites.
Gou, Xinlei; Zhao, Xinying; Chi, Haitao; Gao, Xia; Zhou, Mingqiang; Liu, Weili
2015-06-01
A sensitive method was developed for the simultaneous determination of ten benzotriazole ultraviolet stabilizers in food contact plastic materials by ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The sample was extracted by methanol-dichloromethane, and purified by a C18 solid-phase extraction (SPE) column. The separation was performed by using water containing 0. 1% (v/v) formic acid and methanol as the mobile phases with gradient elution at a flow rate of 0. 3 mL/min. The electrospray ionization (ESI) source in positive ion mode was used for the analysis of the ten benzotriazole ultraviolet stabilizers in multiple reaction monitoring (MRM) mode. The results showed that the standard curves were obtained with good correlation coefficients (r2 > 0.996) in their linear concentration ranges. The limits of detection (LODs, S/N = 3) for the ten benzotriazole ultraviolet stabilizers were in the range of 0.6-1.6 µg/kg. The mean recoveries for the ten benzotriazole ultraviolet stabilizers at three spiked levels (low, medium and high) were 75.2%-85.3% with relative standard deviations of 1.0%-5.7%. Ten kinds of food contact plastic materials were tested, and 2,2'-methylenebis (6-(benzotriazol-2-yl)-4-tert-octylphenol) (UV-360) was found in a sample of polyethylene (PE) material. The method is accurate, simple, rapid and feasible for the simultaneous determination of benzotriazole ultraviolet stabilizers in food plastic materials.
Nanoparticle engineering of colloidal suspension behavior
NASA Astrophysics Data System (ADS)
Chan, Angel Thanda
We investigate the effects of highly charged nanoparticles on the phase behavior, structure, and assembly of colloidal microsphere suspensions. Specifically, by selectively tuning the electrostatic interactions between silica microspheres and polystyrene nanoparticles, we study the behavior of four key systems: (i) strongly repulsive, (ii) haloing, (iii) weakly attractive, and (iv) strongly attractive systems. In each system, a combination of nanoparticle adsorption, zeta potential, and confocal microscopy measurements are carried out to systematically study the effects of nanoparticle volume fraction, microsphere/nanoparticle size ratios, and interparticle interactions on their behavior. Our observations indicate that minimal adsorption of highly charged nanoparticles occurs on like-charged and negligibly-charged microspheres, whereas their extent of association increases dramatically with increasing microsphere-nanoparticle attraction. A rich phase behavior emerges in these systems based on whether the nanoparticle species serve as depletants, haloing, or bridging species. The phase transitions in the haloing system occur at constant nanoparticle volume fractions, φnano, over a broad range of microsphere volume fractions, φmicro . By contrast, the observed transitions in the weakly and strongly attractive mixtures occur at a constant number ratio of nanoparticles per microsphere, Nnano/Nmicro. Important structural differences emerge, which can be exploited in the assembly of colloidal gels for direct ink writing and colloidal crystals on epitaxially patterned substrates. Finally, for the first time, we explore nanoparticle haloing as a new route for stabilizing hydrophobic colloidal drugs in aqueous suspensions media for preparation of injectable pharmaceuticals. These microsphere suspensions exhibit improved stability relative to their surfactant-stabilized counterparts after autoclaving, a critical processing step for this target applications. This research opens up a new avenue for stabilization of hydrophobic particles, when surfactant additions alone do not provide sufficient stabilization.
Han, Dong-Wook; Ku, Jun-Hwan; Kim, Ryoung-Hee; Yun, Dong-Jin; Lee, Seok-Soo; Doo, Seok-Gwang
2014-07-01
We report a new discovery for enhancing the energy density of manganese oxide (Nax MnO2 ) cathode materials for sodium rechargeable batteries by incorporation of aluminum. The Al incorporation results in NaAl(0.1) Mn(0.9) O2 with a mixture of tunnel and layered crystal structures. NaAl(0.1) Mn(0.9) O2 shows a much higher initial discharge capacity and superior cycling performance compared to pristine Na(0.65) MnO2 . We ascribe this enhancement in performance to the formation of a new orthorhombic layered NaMnO2 phase merged with a small amount of tunnel Na(0.44) MnO2 phase in NaAl(0.1) Mn(0.9) O2 , and to improvements in the surface stability of the NaAl(0.1) Mn(0.9) O2 particles caused by the formation of Al-O bonds on their surfaces. Our findings regarding the phase transformation and structure stabilization induced by incorporation of aluminum, closely related to the structural analogy between orthorhombic Na(0.44) MnO2 and NaAl(0.1) Mn(0.9) O2 , suggest a strategy for achieving sodium rechargeable batteries with high energy density and stability. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Lin, Jia-De; Wang, Tsai-Yen; Mo, Ting-Shan; Huang, Shuan-Yu; Lee, Chia-Rong
2016-01-01
This work successfully develops a largely-gradient-pitched polymer-stabilized blue phase (PSBP) photonic bandgap (PBG) device with a wide-band spatial tunability in nearly entire visible region within a wide blue phase (BP) temperature range including room temperature. The device is fabricated based on the reverse diffusion of two injected BP-monomer mixtures with a low and a high chiral concentrations and afterwards through UV-curing. This gradient-pitched PSBP can show a rainbow-like reflection appearance in which the peak wavelength of the PBG can be spatially tuned from the blue to the red regions at room temperature. The total tuning spectral range for the cell is as broad as 165 nm and covers almost the entire visible region. Based on the gradient-pitched PSBP, a spatially tunable laser is also demonstrated in this work. The temperature sensitivity of the lasing wavelength for the laser is negatively linear and approximately −0.26 nm/°C. The two devices have a great potential for use in applications of photonic devices and displays because of their multiple advantages, such as wide-band tunability, wide operated temperature range, high stability and reliability, no issue of hysteresis, no need of external controlling sources, and not slow tuning speed (mechanically). PMID:27456475
Beyond Atomic Sizes and Hume-Rothery Rules: Understanding and Predicting High-Entropy Alloys
Troparevsky, M. Claudia; Morris, James R.; Daene, Markus; ...
2015-09-03
High-entropy alloys constitute a new class of materials that provide an excellent combination of strength, ductility, thermal stability, and oxidation resistance. Although they have attracted extensive attention due to their potential applications, little is known about why these compounds are stable or how to predict which combination of elements will form a single phase. Here, we present a review of the latest research done on these alloys focusing on the theoretical models devised during the last decade. We discuss semiempirical methods based on the Hume-Rothery rules and stability criteria based on enthalpies of mixing and size mismatch. To provide insightsmore » into the electronic and magnetic properties of high-entropy alloys, we show the results of first-principles calculations of the electronic structure of the disordered solid-solution phase based on both Korringa Kohn Rostoker coherent potential approximation and large supercell models of example face-centered cubic and body-centered cubic systems. Furthermore, we discuss in detail a model based on enthalpy considerations that can predict which elemental combinations are most likely to form a single-phase high-entropy alloy. The enthalpies are evaluated via first-principles high-throughput density functional theory calculations of the energies of formation of binary compounds, and therefore it requires no experimental or empirically derived input. Finally, the model correctly accounts for the specific combinations of metallic elements that are known to form single-phase alloys while rejecting similar combinations that have been tried and shown not to be single phase.« less
Structural stability of methane hydrate at high pressures
Shu, J.; Chen, X.; Chou, I-Ming; Yang, W.; Hu, Jiawen; Hemley, R.J.; Mao, Ho-kwang
2011-01-01
The structural stability of methane hydrate under pressure at room temperature was examined by both in-situ single-crystal and powder X-ray diffraction techniques on samples with structure types I, II, and H in diamond-anvil cells. The diffraction data for types II (sII) and H (sH) were refined to the known structures with space groups Fd3m and P63/mmc, respectively. Upon compression, sI methane hydrate transforms to the sII phase at 120 MPa, and then to the sH phase at 600 MPa. The sII methane hydrate was found to coexist locally with sI phase up to 500 MPa and with sH phase up to 600 MPa. The pure sH structure was found to be stable between 600 and 900 MPa. Methane hydrate decomposes at pressures above 3 GPa to form methane with the orientationally disordered Fm3m structure and ice VII (Pn3m). The results highlight the role of guest (CH4)-host (H2O) interactions in the stabilization of the hydrate structures under pressure.
NASA Astrophysics Data System (ADS)
Denton, Alan R.; Schmidt, Matthias
2005-06-01
The equilibrium phase behavior of a binary mixture of charged colloids and neutral, nonadsorbing polymers is studied within free-volume theory. A model mixture of charged hard-sphere macroions and ideal, coarse-grained, effective-sphere polymers is mapped first onto a binary hard-sphere mixture with nonadditive diameters and then onto an effective Asakura-Oosawa model [S. Asakura and F. Oosawa, J. Chem. Phys. 22, 1255 (1954)]. The effective model is defined by a single dimensionless parameter—the ratio of the polymer diameter to the effective colloid diameter. For high salt-to-counterion concentration ratios, a free-volume approximation for the free energy is used to compute the fluid phase diagram, which describes demixing into colloid-rich (liquid) and colloid-poor (vapor) phases. Increasing the range of electrostatic interactions shifts the demixing binodal toward higher polymer concentration, stabilizing the mixture. The enhanced stability is attributed to a weakening of polymer depletion-induced attraction between electrostatically repelling macroions. Comparison with predictions of density-functional theory reveals a corresponding increase in the liquid-vapor interfacial tension. The predicted trends in phase stability are consistent with observed behavior of protein-polysaccharide mixtures in food colloids.
Applied Time Domain Stability Margin Assessment for Nonlinear Time-Varying Systems
NASA Technical Reports Server (NTRS)
Kiefer, J. M.; Johnson, M. D.; Wall, J. H.; Dominguez, A.
2016-01-01
The baseline stability margins for NASA's Space Launch System (SLS) launch vehicle were generated via the classical approach of linearizing the system equations of motion and determining the gain and phase margins from the resulting frequency domain model. To improve the fidelity of the classical methods, the linear frequency domain approach can be extended by replacing static, memoryless nonlinearities with describing functions. This technique, however, does not address the time varying nature of the dynamics of a launch vehicle in flight. An alternative technique for the evaluation of the stability of the nonlinear launch vehicle dynamics along its trajectory is to incrementally adjust the gain and/or time delay in the time domain simulation until the system exhibits unstable behavior. This technique has the added benefit of providing a direct comparison between the time domain and frequency domain tools in support of simulation validation. This technique was implemented by using the Stability Aerospace Vehicle Analysis Tool (SAVANT) computer simulation to evaluate the stability of the SLS system with the Adaptive Augmenting Control (AAC) active and inactive along its ascent trajectory. The gains for which the vehicle maintains apparent time-domain stability defines the gain margins, and the time delay similarly defines the phase margin. This method of extracting the control stability margins from the time-domain simulation is relatively straightforward and the resultant margins can be compared to the linearized system results. The sections herein describe the techniques employed to extract the time-domain margins, compare the results between these nonlinear and the linear methods, and provide explanations for observed discrepancies. The SLS ascent trajectory was simulated with SAVANT and the classical linear stability margins were evaluated at one second intervals. The linear analysis was performed with the AAC algorithm disabled to attain baseline stability margins. At each time point, the system was linearized about the current operating point using Simulink's built-in solver. Each linearized system in time was evaluated for its rigid-body gain margin (high frequency gain margin), rigid-body phase margin, and aero gain margin (low frequency gain margin) for each control axis. Using the stability margins derived from the baseline linearization approach, the time domain derived stability margins were determined by executing time domain simulations in which axis-specific incremental gain and phase adjustments were made to the nominal system about the expected neutral stability point at specific flight times. The baseline stability margin time histories were used to shift the system gain to various values around the zero margin point such that a precise amount of expected gain margin was maintained throughout flight. When assessing the gain margins, the gain was applied starting at the time point under consideration, thereafter following the variation in the margin found in the linear analysis. When assessing the rigid-body phase margin, a constant time delay was applied to the system starting at the time point under consideration. If the baseline stability margins were correctly determined via the linear analysis, the time domain simulation results should contain unstable behavior at certain gain and phase values. Examples will be shown from repeated simulations with variable added gain and phase lag. Faithfulness of margins calculated from the linear analysis to the nonlinear system will be demonstrated.
Phase Stabilization of Zirconia.
1997-01-30
preparing stabilized zirconia pursuant to this disclosure, an insoluble alumina powder is mixed with zirconia powder using a liquid dispersant, such...in a drying oven or a furnace. When mixing the alumina and zirconia powders , it is not necessary to have zirconia in any particular phase to achieve...phase stabilization, as disclosed herein. When mixed with alumina powder, zirconia powder can be in cubic, tetragonal or 20 monoclinic phases
Microstructure and Phase Stability of Single Crystal NiAl Alloyed with Hf and Zr
NASA Technical Reports Server (NTRS)
Locci, I. E.; Dickerson, R. M.; Garg, A.; Noebe, R. D.; Whittenberger, J. D.; Nathal, M. V.; Darolia, R.
1996-01-01
Six near stoichiometric, NiAl single-crystal alloys, with 0.05-1.5 at.% of Hf and Zr additions plus Si impurities, were microstructurally analyzed in the as-cast, homogenized, and aged conditions. Hafnium-rich interdendritic regions, containing the Heusler phase (Ni2AlHf), were found in all the as-cast alloys containing Hf. Homogenization heat treatments partially reduced these interdendritic segregated regions. Transmission electron microscopy (TEM) observations of the as-cast and homogenized microstructures revealed the presence of a high density of fine Hf (or Zr) and Si-rich precipitates. These were identified as G-phase, Nil6X6Si7, or as an orthorhombic NiXSi phase, where X is Hf or Zr. Under these conditions the expected Heusler phase (beta') was almost completely absent. The Si responsible for the formation of the G and NiHfSi phases is the result of molten metal reacting with the Si-containing crucible used during the casting process. Varying the cooling rates after homogenization resulted in the refinement or complete suppression of the G and NiHfSi phases. In some of the alloys studied, long-term aging heat treatments resulted in the formation of Heusler precipitates, which were more stable at the aging temperature and coarsened at the expense of the G-phase. In other alloys, long-term aging resulted in the formation of the NiXSi phase. The stability of the Heusler or NiXSi phases can be traced to the reactive element (Hf or Zr) to silicon ratio. If the ratio is high, then the Heusler phase appears stable after long time aging. If the ratio is low, then the NiHfSi phase appears to be the stable phase.
Spectral and temporal characterization of a fused-quartz-microresonator optical frequency comb
DOE Office of Scientific and Technical Information (OSTI.GOV)
Papp, Scott B.; Diddams, Scott A.
2011-11-15
We report on the fabrication of high-Q, fused-quartz microresonators and the parametric generation of a frequency comb with 36-GHz line spacing using them. We have characterized the intrinsic stability of the comb in both the time and frequency domains to assess its suitability for future precision metrology applications. Intensity autocorrelation measurements and line-by-line comb control reveal near-transform-limited picosecond pulse trains that are associated with good relative phase and amplitude stability of the comb lines. The comb's 36-GHz line spacing can be readily photodetected, which enables measurements of its intrinsic and absolute phase fluctuations.
Gilbert, Sarah Skye; Thakare, Neeraj; Ramanujapuram, Arun; Akkihal, Anup
2017-04-19
Immunization supply chains in low resource settings do not always reach children with necessary vaccines. Digital information systems can enable real time visibility of inventory and improve vaccine availability. In 2014, a digital, mobile/web-based information system was implemented in two districts of Uttar Pradesh, India. This retrospective investigates improvements and stabilization of supply chain performance following introduction of the digital information system. All data were collected via the digital information system between March 2014 and September 2015. Data included metadata and transaction logs providing information about users, facilities, and vaccines. Metrics evaluated include adoption (system access, timeliness and completeness), data quality (error rates), and performance (stock availability on immunization session days, replenishment response duration, rate of zero stock events). Stability was defined as the phase in which quality and performance metrics achieved equilibrium rates with minimal volatility. The analysis compared performance across different facilities and vaccines. Adoption appeared sufficiently high from the onset to commence stability measures of data quality and supply chain performance. Data quality stabilized from month 3 onwards, and supply chain performance stabilized from month 13 onwards. For data quality, error rates reduced by two thirds post stabilization. Although vaccine availability remained high throughout the pilot, the three lowest-performing facilities improved from 91.05% pre-stability to 98.70% post-stability (p<0.01; t-test). Average replenishment duration (as a corrective response to stock-out events) decreased 52.3% from 4.93days to 2.35days (p<0.01; t-test). Diphtheria-tetanus-pertussis vaccine was significantly less likely to be stocked out than any other material. The results suggest that given sufficient adoption, stability is sequentially achieved, beginning with data quality, and then performance. Identifying when a pilot stabilizes can enable more predictable, reliable cost estimates, and outcome forecasts in the scale-up phase. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Stability Properties and Cross Coupling Performance of the Control Allocation Scheme CAPIO
NASA Technical Reports Server (NTRS)
Yildiz, Yildiray; Kolmanovsky, Ilya V.
2010-01-01
This paper presents a stability analysis and an application of a recently developed Control Allocator for recovery from Pilot Induced Oscillations (CAPIO). When actuators are rate-saturated due to either aggressive pilot commands, high gain ight control systems or some anomaly in the system, the effective delay in the control loop may increase. This effective delay increase manifests itself as a phase shift between the commanded and actual system signals and can instigate Pilot induced Oscillations (PIO). CAPIO reduces the e ective time delay by minimizing the phase shift between the commanded and the actual attitude accelerations. We present a stability analysis of CAPIO for a scalar system. In addition, we present simulation results for aircraft with cross-coupling which demonstrates the potential of CAPIO serving as an effective PIO handler in adverse conditions.
Prediction of B1 to B10 phase transition in LuN under pressure: An ab-initio investigation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sahoo, B. D., E-mail: bdsahoo@barc.gov.in; Mukherjee, D.; Joshi, K. D.
2016-05-23
Ab-initio total energy calculations have been performed in lutetium nitride (LuN) as a function of hydrostatic compression to understand the high pressure behavior of this compound. Our calculations predict a phase transition from ambient rocksalt type structure (B1 phase) to a tetragonal structure (B10 phase) at ~ 240 GPa. The phase transition has been identified as first order in nature with volume discontinuity of ~ 6%. The predicted high pressure phase has been found to be stable up to at least 400 GPa, the maximum pressure up to which calculations have been performed.Further, to substantiate the results of static lattice calculations analysismore » of lattice dynamic stability of B1 and B10 phase has been carried out at different pressures. Apart from this, we have analyzed the lattice dynamic stability CsCl type (B2) phase around the 240 GPa, the pressure reported for B1 to B2 transition in previous all-electron calculations by Gupta et al. 2013. We find that the B2 structure is lattice dynamically unstable at this pressure and remains unstable up to ~ 400 GPa, ruling out the possibility of B1 to B2 phase transition at least up to ~ 400 GPa. Further, the theoretically determined equation of state has been utilized to derive various physical quantities such as zero pressure equilibrium volume, bulk modulus, and pressure derivative of bulk modulus of B1 phase at ambient conditions.« less
Design and Testing of a Ground-based System for Phase Stabilized Standard Frequency Transmission
NASA Astrophysics Data System (ADS)
Wang, J. Q.; Jiang, Y. C.; Gou, W.; Yu, L. F.; Liu, Q. H.; Fan, Q. Y.; Lou, F. X.; Lao, B. Q.
2014-09-01
In this paper, a 1.5 GHz phase stabilized frequency transmission system is described. Compatible with the coaxial cable and optical fiber transmission media, the system has both the capabilities of real-time and post phase compensation. The phase stabilizing principle of the equipment is analyzed, and its performance is evaluated. Under the test environment, the results of the prototype system based on a coaxial cable show that the real-time compensation mode can improve the phase stabilities by more than 112 times in comparison with the uncompensated cables. The frequency stabilities are also improved significantly with a 7-second integration time, and one order-of-magnitude improvement is achieved after 60 seconds. The post compensation mode can improve phase fluctuations by 40 times. The frequency stabilities can be improved significantly after 2.5-second integration, while a 10-fold enhancement is achieved after 40 seconds. With longer integration time, both real-time and post compensation modes can improve the frequency stabilities by more than 1.5 orders of magnitude. The proposed equipment can effectively reduce slowly stretching effects due to the factors such as the temperature coefficient variations of the transmission medium and mechanical disturbances.
Superconducting H5S2 phase in sulfur-hydrogen system under high-pressure
NASA Astrophysics Data System (ADS)
Ishikawa, Takahiro; Nakanishi, Akitaka; Shimizu, Katsuya; Katayama-Yoshida, Hiroshi; Oda, Tatsuki; Suzuki, Naoshi
2016-03-01
Recently, hydrogen sulfide was experimentally found to show the high superconducting critical temperature (Tc) under high-pressure. The superconducting Tc shows 30-70 K in pressure range of 100-170 GPa (low-Tc phase) and increases to 203 K, which sets a record for the highest Tc in all materials, for the samples annealed by heating it to room temperature at pressures above 150 GPa (high-Tc phase). Here we present a solid H5S2 phase predicted as the low-Tc phase by the application of the genetic algorithm technique for crystal structure searching and first-principles calculations to sulfur-hydrogen system under high-pressure. The H5S2 phase is thermodynamically stabilized at 110 GPa, in which asymmetric hydrogen bonds are formed between H2S and H3S molecules. Calculated Tc values show 50-70 K in pressure range of 100-150 GPa within the harmonic approximation, which can reproduce the experimentally observed low-Tc phase. These findings give a new aspect of the excellent superconductivity in compressed sulfur-hydrogen system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gwalani, B.; Choudhuri, D.; Soni, V.
2017-05-01
A detailed investigation of precipitation of the ordered L12 (γ’) phase in a Al0.3CrCuFeNi2 high entropy alloy (HEA), more generally referred to as a complex concentrated alloy (CCA), reveals the role of copper (Cu) on stabilization and precipitation of the ordered L12 ( γ’) phase. Detailed characterization via coupling of scanning and transmission electron microscopy, and atom probe tomography revealed novel insights into Cu clustering within the face-centered cubic matrix of this HEA, leading to heterogeneous nucleation sites for the γ’ precipitates. The subsequent partitioning of Cu into the γ’ precipitates indicates their stabilization is due to Cu addition. Themore » γ’ order-disorder transition temperature was determined to be ~930 _C in this alloy, based on synchrotron diffraction experiments, involving in situ annealing. The growth and high temperature stability of the γ’ precipitates was also confirmed via systematic scanning electron microscopy investigations of samples annealed at temperatures in the range of 700-900 oC. The role of Cu revealed by this study can be employed in the design of precipitation strengthened HEAs, as well as in a more general sense applied to other types of superalloys, with the objective of potentially enhancing their mechanical properties at room and elevated temperatures« less
NASA Astrophysics Data System (ADS)
Youn, Jeong Il; Shin, Yong Kwan; Kang, Byung Il; Kim, Young Jig; Suk, Jhin Ik; Ryu, Seok Hyeon
The alloys required for fossil power plants are altered from stainless steel that has been used below 600 °C to Ni-based alloy that can operate over 700 °C for advanced ultra super critical (A-USC) steam turbine. The IN 740 alloy is proposed for improved rupture strength and corrosion resistance at high temperature. However, previous studies with experiments and simulations on stable phases at over 700 °C have indicated the formation of the eta phase with the wasting of the gamma prime phase, which is the most important reinforced phase in precipitation hardened Ni alloys. This results in the formation of precipitation free zones to decrease the strength. LESS 1 alloy designed through some modifications of IN 740 was suggested in this study. LESS 1 showed the phase stability more than IN 740 due to the optimum composition of Cr, Mo, Ti and Al. The experimental results established that a needle-shaped eta phase was formed in the grain boundary and it grew to intra-grain, and a precipitation free zone was also observed in IN 740, but these defects were entirely controlled in LESS 1.
Computational thermodynamics aided design of novel ferritic alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Ying; Chen, Tianyi; Tan, Lizhen
With the aid of computational thermodynamics, Ni was identified to suppress the liquidus temperature of Fe 2Zr and four Fe-Cr-Ni-Zr alloys were designed to study the Ni effect on the phase stability of Fe 2Zr laves_phase. These alloys were fabricated through traditional arc-metling, followed by annealing at 1000 C for 336 hours and 700 C for 1275 hours. The microstructure were examined and characterized by SEM BSE image, EDS compositional mapping and point scan, XRD and TEM analysis. The major results were summarized below: 1)For investigated alloys with 12wt% Cr, 3~6wt% Zr and 3~9 wt%Ni, the phases in equilibrium withmore » the BCC phase are C15_Laves phase, Fe 23Zr 6 phase. The volume fraction of intermetallic phases increases with Ni and Zr contents. 2)Instead of (Fe,Cr) 2Zr C14_Laves phase, Ni stabilizes the C15_Laves structure in Fe-Cr-Ni-Zr alloys by substituting Fe and Cr atoms with Ni atoms in the first sublattice. 3)Fe 23Zr 6, that is metastable in the Fe-Cr-Zr ternary, is also stabilized by Ni addition. 4)Ni 7Zr 2 phase was observed in samples with high Ni/Zr ratio. Extensive solubility of Fe was identified in the phase. The microstructural and composition results obtained from this study will be incorportated into the the Fe-Cr-Ni-Zr database. The current samples will be subjected to ion irradiaition to be compared with those results for Fe-Cr-Zr alloys. Additional alloys will be designed to form (Fe,Cr,Ni) 2Zr nanoprecipitates for further studies.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
O’Brien, C. J.; Barr, C. M.; Price, P. M.
There has recently been a great deal of interest in employing immiscible solutes to stabilize nanocrystalline microstructures. Existing modeling efforts largely rely on mesoscale Monte Carlo approaches that employ a simplified model of the microstructure and result in highly homogeneous segregation to grain boundaries. However, there is ample evidence from experimental and modeling studies that demonstrates segregation to grain boundaries is highly non-uniform and sensitive to boundary character. This work employs a realistic nanocrystalline microstructure with experimentally relevant global solute concentrations to illustrate inhomogeneous boundary segregation. Furthermore, experiments quantifying segregation in thin films are reported that corroborate the prediction thatmore » grain boundary segregation is highly inhomogeneous. In addition to grain boundary structure modifying the degree of segregation, the existence of a phase transformation between low and high solute content grain boundaries is predicted. In order to conduct this study, new embedded atom method interatomic potentials are developed for Pt, Au, and the PtAu binary alloy.« less
Spatial filter with volume gratings for high-peak-power multistage laser amplifiers
NASA Astrophysics Data System (ADS)
Tan, Yi-zhou; Yang, Yi-sheng; Zheng, Guang-wei; Shen, Ben-jian; Pan, Heng-yue; Liu, Li
2010-08-01
The regular spatial filters comprised of lens and pinhole are essential component in high power laser systems, such as lasers for inertial confinement fusion, nonlinear optical technology and directed-energy weapon. On the other hand the pinhole is treated as a bottleneck of high power laser due to harmful plasma created by the focusing beam. In this paper we present a spatial filter based on angular selectivity of Bragg diffraction grating to avoid the harmful focusing effect in the traditional pinhole filter. A spatial filter consisted of volume phase gratings in two-pass amplifier cavity were reported. Two-dimensional filter was proposed by using single Pi-phase-shifted Bragg grating, numerical simulation results shown that its angular spectrum bandwidth can be less than 160urad. The angular selectivity of photo-thermorefractive glass and RUGATE film filters, construction stability, thermal stability and the effects of misalignments of gratings on the diffraction efficiencies under high-pulse-energy laser operating condition are discussed.
O’Brien, C. J.; Barr, C. M.; Price, P. M.; ...
2017-10-31
There has recently been a great deal of interest in employing immiscible solutes to stabilize nanocrystalline microstructures. Existing modeling efforts largely rely on mesoscale Monte Carlo approaches that employ a simplified model of the microstructure and result in highly homogeneous segregation to grain boundaries. However, there is ample evidence from experimental and modeling studies that demonstrates segregation to grain boundaries is highly non-uniform and sensitive to boundary character. This work employs a realistic nanocrystalline microstructure with experimentally relevant global solute concentrations to illustrate inhomogeneous boundary segregation. Furthermore, experiments quantifying segregation in thin films are reported that corroborate the prediction thatmore » grain boundary segregation is highly inhomogeneous. In addition to grain boundary structure modifying the degree of segregation, the existence of a phase transformation between low and high solute content grain boundaries is predicted. In order to conduct this study, new embedded atom method interatomic potentials are developed for Pt, Au, and the PtAu binary alloy.« less
A new solution to emulsion liquid membrane problems by non-Newtonian conversion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skelland, A.H.P.; Meng, X.
1996-02-01
Surfactant-stabilized emulsion liquid membrane processes constitute an emerging separation technology that has repeatedly been shown to be highly suited for such diverse separation processes as metal recovery or removal from dilute aqueous solutions; separations in the food industry; removal of organic bases and acids from water; and separation of hydrocarbons. Emulsion liquid membrane separation processes remain excessively vulnerable to one or more of four major problems. Difficulties lie in developing liquid membranes that combine high levels of both stability and permeability with acceptably low levels of swelling and ease of subsequent demulsification for membrane and solute recovery. This article providesmore » a new technique for simultaneously overcoming the first three problems, while identifying physical indications that the proposed solution may have little adverse effect on the fourth problem (demulsification) and may even alleviate it. Numerous benefits of optimized conversion of the membrane phase into suitable non-Newtonian form are identified, their mechanisms outlined, and experimental verifications provided. These include increased stability, retained (or enhanced) permeability, reduced swelling, increased internal phase volume, and increased stirrer speeds. The highly favorable responsiveness of both aliphatic and aromatic membranes to the new technique is demonstrated.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tao, Xiaoma; Computational Alloy Design Group, IMDEA Materials Institute, Getafe, Madrid 28906; Wang, Ziru
2016-05-15
The phase stability, electronic and mechanical properties of Ce–Pb intermetallics have been investigated by using first-principles calculations. Five stable and four metastable phases of Ce–Pb intermetallics were verified. Among them, CePb{sub 2} has been confirmed as HfGa{sub 2}-type structure. For Ce{sub 5}Pb{sub 3}, the high pressure phase transformation from D8{sub m} to D8{sub 8} with trivalent Ce has been predicted to occur at P=1.2 GPa and a high temperature phase transformation has been predicted from D8{sub m} to D8{sub 8} with tetravalent Ce at 531.5 K. The calculated lattice constants of the five stable phases are in good agreement withmore » experimental values. The electronic density of states, charge density and electron localization function of Ce{sub 3}Pb have been calculated, which indicated that the Ce and Pb show ionic behavior. The polycrystalline bulk modulus, shear modulus, Young's modulus, and Poisson's ratio are also estimated from the calculated single crystalline elastic constants. All of the calculated elastic constants satisfy mechanical stability criteria. The microhardness and mechanical anisotropy are predicted. The anisotropic nature of the Ce–Pb intermetallic compounds are demonstrated by the three-dimensional orientation dependent surfaces of Young's moduli and linear compressibility are also demonstrated. The longitudinal, transverse and average sound velocities and the Debye temperatures are also obtained in this work. The Ce{sub 3}Pb has the largest Debye temperature of 192.6 K, which means the Ce{sub 3}Pb has a highest melting point and high thermal conductivity than other compounds. - Graphical abstract: The convex hull plots of the enthalpies of formation for Ce–Pb binary systems calculated at 0 K. - Highlights: • The five stable and four metastable phases in the Ce–Pb binary system were predicted. • The crystal structure of CePb{sub 2} has been confirmed as HfGa{sub 2}-type.« less
NASA Astrophysics Data System (ADS)
Stagno, Vincenzo; Bindi, Luca; Steinhardt, Paul J.; Fei, Yingwei
2017-10-01
Two of the three natural quasiperiodic crystals found in the Khatyrka meteorite show a composition within the Al-Cu-Fe system. Icosahedrite, with formula Al63Cu24Fe13, coexists with the new Al62Cu31Fe7 quasicrystal plus additional Al-metallic minerals such as stolperite (AlCu), kryachkoite [(Al,Cu)6(Fe,Cu)], hollisterite (AlFe3), khatyrkite (Al2Cu) and cupalite (AlCu), associated to high-pressure phases like ringwoodite/ahrensite, coesite, and stishovite. These high-pressure minerals represent the evidence that most of the Khatyrka meteoritic fragments formed at least at 5 GPa and 1200 °C, if not at more extreme conditions. On the other hand, experimental studies on phase equilibria within the representative Al-Cu-Fe system appear mostly limited to ambient pressure conditions, yet. This makes the interpretation of the coexisting mineral phases in the meteoritic sample quite difficult. We performed experiments at 3, 5 and 21 GPa and temperatures of 800-1500 °C using the multi-anvil apparatus to investigate the phase equilibria in the Al65Cu23Fe12 system representative of the first natural quasicrystal, icosahedrite. Our results, supported by single-crystal X-ray diffraction and analyses by scanning electron microscopy, confirm the stability of icosahedrite at high pressure and temperature along with additional coexisting Al-bearing phases representative of khatyrkite and stolperite as those found in the natural meteorite. One reversal experiment performed at 5 GPa and 1200 °C shows the formation of the icosahedral quasicrystal from a pure Al, Cu and Fe mixture, a first experimental synthesis of icosahedrite under those conditions. Pressure appears to not play a major role in the distribution of Al, Cu and Fe between the coexisting phases, icosahedrite in particular. Results from this study extend our knowledge on the stability of icosahedral AlCuFe at higher temperature and pressure than previously examined, and provide a new constraint on the stability of icosahedrite.
Advanced aeroservoelastic stabilization techniques for hypersonic flight vehicles
NASA Technical Reports Server (NTRS)
Chan, Samuel Y.; Cheng, Peter Y.; Myers, Thomas T.; Klyde, David H.; Magdaleno, Raymond E.; Mcruer, Duane T.
1992-01-01
Advanced high performance vehicles, including Single-Stage-To-Orbit (SSTO) hypersonic flight vehicles, that are statically unstable, require higher bandwidth flight control systems to compensate for the instability resulting in interactions between the flight control system, the engine/propulsion dynamics, and the low frequency structural modes. Military specifications, such as MIL-F-9490D and MIL-F-87242, tend to limit treatment of structural modes to conventional gain stabilization techniques. The conventional gain stabilization techniques, however, introduce low frequency effective time delays which can be troublesome from a flying qualities standpoint. These time delays can be alleviated by appropriate blending of gain and phase stabilization techniques (referred to as Hybrid Phase Stabilization or HPS) for the low frequency structural modes. The potential of using HPS for compensating structural mode interaction was previously explored. It was shown that effective time delay was significantly reduced with the use of HPS; however, the HPS design was seen to have greater residual response than a conventional gain stablized design. Additional work performed to advance and refine the HPS design procedure, to further develop residual response metrics as a basis for alternative structural stability specifications, and to develop strategies for validating HPS design and specification concepts in manned simulation is presented. Stabilization design sensitivity to structural uncertainties and aircraft-centered requirements are also assessed.
High pressure behaviour of uranium dicarbide (UC{sub 2}): Ab-initio study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sahoo, B. D., E-mail: bdsahoo@barc.gov.in; Mukherjee, D.; Joshi, K. D.
2016-08-28
The structural stability of uranium dicarbide has been examined under hydrostatic compression employing evolutionary structure search algorithm implemented in the universal structure predictor: evolutionary Xtallography (USPEX) code in conjunction with ab-initio electronic band structure calculation method. The ab-initio total energy calculations involved for this purpose have been carried out within both generalized gradient approximations (GGA) and GGA + U approximations. Our calculations under GGA approximation predict the high pressure structural sequence of tetragonal → monoclinic → orthorhombic for this material with transition pressures of ∼8 GPa and 42 GPa, respectively. The same transition sequence is predicted by calculations within GGA + U also with transition pressuresmore » placed at ∼24 GPa and ∼50 GPa, respectively. Further, on the basis of comparison of zero pressure equilibrium volume and equation of state with available experimental data, we find that GGA + U approximation with U = 2.5 eV describes this material better than the simple GGA approximation. The theoretically predicted high pressure structural phase transitions are in disagreement with the only high experimental study by Dancausse et al. [J. Alloys. Compd. 191, 309 (1993)] on this compound which reports a tetragonal to hexagonal phase transition at a pressure of ∼17.6 GPa. Interestingly, during lowest enthalpy structure search using USPEX, we do not see any hexagonal phase to be closer to the predicted monoclinic phase even within 0.2 eV/f. unit. More experiments with varying carbon contents in UC{sub 2} sample are required to resolve this discrepancy. The existence of these high pressure phases predicted by static lattice calculations has been further substantiated by analyzing the elastic and lattice dynamic stability of these structures in the pressure regimes of their structural stability. Additionally, various thermo-physical quantities such as equilibrium volume, bulk modulus, Debye temperature, thermal expansion coefficient, Gruneisen parameter, and heat capacity at ambient conditions have been determined from these calculations and compared with the available experimental data.« less
Entropic Anomaly Observed in Lipid Polymorphisms Induced by Surfactant Peptide SP-B(1-25).
Tran, Nhi; Kurian, Justin; Bhatt, Avni; McKenna, Robert; Long, Joanna R
2017-10-05
The N-terminal 25 amino-acid residues of pulmonary surfactant protein B (SP-B 1-25 ) induces unusual lipid polymorphisms in a model lipid system, 4:1 DPPC/POPG, mirroring the lipid composition of native pulmonary surfactant. It is widely suggested that SP-B 1-25 -induced lipid polymorphisms within the alveolar aqueous subphase provide a structural platform for rapid lipid adsorption to the air-water interface. Here, we characterize in detail the phase behavior of DPPC and POPG in hydrated lipid assemblies containing therapeutic levels of SP-B 1-25 using 2 H and 31 P solid state NMR spectroscopy. The appearance of a previously observed isotropic lipid phase is found to be highly dependent on the thermal cycling of the samples. Slow heating of frozen samples leads to phase separation of DPPC into a lamellar phase whereas POPG lipids interact with the peptide to form an isotropic phase at physiologic temperature. Rapid heating of frozen samples to room temperature leads to strongly isotropic phase behavior for both DPPC and POPG lipids, with DPPC in exchange between isotropic and interdigitated phases. 31 P T 2 relaxation times confirm the isotropic phase to be consistent with a lipid cubic phase. The observed phases exhibit thermal stability up to physiologic temperature (37 °C) and are consistent with the formation of a ripple phase containing a large number of peptide-induced membrane structural defects enabling rapid transit of lipids between lipid lamellae. The coexistance of a lipid cubic phase with interdigitated lipids suggests a specific role for the highly conserved N-terminus of SP-B in stabilizing this unusual lipid polymorphism.
2015-11-02
George , Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys, Acta Mater. 61 (2013) 2628e2638. [4] B... Cantor , I.T.H. Chang, P. Knight, A.J.B. Vincent, Microstructural development in equiatomic multicomponent alloys, Mater. Sci. Eng. A 375e377 (2004...an Al0.5CoCrCuFeNi high entropy alloy, In- termetallics 31 (2012) 165e172. [24] Z. Wu, H. Bei, F. Otto, G.M. Pharr, E.P. George , Recovery
Mechanism of Properties of Noble ZnS-SiO2 Protection Layer for Phase Change Optical Disk Media
NASA Astrophysics Data System (ADS)
Tsu, David V.; Ohta, Takeo
2006-08-01
A ZnS-SiO2 composite dielectric is widely used in the optical stack designs of rewritable optical recording media as an index-matching medium and as a protection layer for the high-index chalcogenide (compound with sixth group element of S, Se, Te) phase change material used in these media. The addition of Si and O to ZnS is primarily intended to stabilize against crystalline grain growth of ZnS with high numbers of direct overwriting cycles. In this study, we carry out infrared (IR) spectroscopy to clarify the role of Si in this stabilization process. IR spectroscopy is performed on sputter as-deposited and annealed ZnS-SiO2 dielectric protection layers. We find that Si exists not in the SiO2 oxide phase but as [SiS4-nOn] tetrahedrons. Moreover, zinc and sulfur do not exist as ZnS, but in highly chemically disordered ZnS:O crystallites. The highly directional and rigid covalent bonds in the [SiS4-nOn] tetrahedrons are key to establishing thermal stability against the coalescence of ZnS. The importance of the Si-S bond also extends into a more thorough understanding of the low thermal conductivity of the ZnS-SiO2 material. The consideration of elastic implications allows us to predict an average phonon velocity less than 50% compared to that in SiO2. With this, we predict a thermal conductivity of 0.0067 W cm-1 K-1 for this material, which is in complete agreement with measured values.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bai Xianchen; Zhang Jiande; Yang Jianhua
2012-12-15
Theoretical analyses and preliminary experiments on the phase-locking characteristics of an inductively loaded 2-cavity wide-gap klystron amplifier (WKA) with high power injection driven by a GW-class relativistic backward wave oscillator (RBWO) are presented. Electric power of the amplifier and oscillator is supplied by a single accelerator being capable of producing dual electron beams. The well phase-locking effect of the RBWO-WKA system requires the oscillator have good frequency reproducibility and stability from pulse to pulse. Thus, the main switch of the accelerator is externally triggered to stabilize the diode voltage and then the working frequency. In the experiment, frequency of themore » WKA is linearly locked by the RBWO. With a diode voltage of 530 kV and an input power of {approx}22 MW, an output power of {approx}230 MW with the power gain of {approx}10.2 dB is obtained from the WKA. As the main switch is triggered, the relative phase difference between the RBWO and the WKA is less than {+-}15 Degree-Sign in a single shot, and phase jitter of {+-}11 Degree-Sign is obtained within a series of shots with duration of about 40 ns.« less
NASA Astrophysics Data System (ADS)
Bai, Xianchen; Zhang, Jiande; Yang, Jianhua; Jin, Zhenxing
2012-12-01
Theoretical analyses and preliminary experiments on the phase-locking characteristics of an inductively loaded 2-cavity wide-gap klystron amplifier (WKA) with high power injection driven by a GW-class relativistic backward wave oscillator (RBWO) are presented. Electric power of the amplifier and oscillator is supplied by a single accelerator being capable of producing dual electron beams. The well phase-locking effect of the RBWO-WKA system requires the oscillator have good frequency reproducibility and stability from pulse to pulse. Thus, the main switch of the accelerator is externally triggered to stabilize the diode voltage and then the working frequency. In the experiment, frequency of the WKA is linearly locked by the RBWO. With a diode voltage of 530 kV and an input power of ˜22 MW, an output power of ˜230 MW with the power gain of ˜10.2 dB is obtained from the WKA. As the main switch is triggered, the relative phase difference between the RBWO and the WKA is less than ±15° in a single shot, and phase jitter of ±11° is obtained within a series of shots with duration of about 40 ns.
Reentrant equilibrium disordering in nanoparticle–polymer mixtures
Meng, Dong; Kumar, Sanat K.; Grest, Gary S.; ...
2017-01-31
A large body of experimental work has established that athermal colloid/polymer mixtures undergo a sequence of transitions from a disordered fluid state to a colloidal crystal to a second disordered phase with increasing polymer concentration. These transitions are driven by polymer-mediated interparticle attraction, which is a function of both the polymer density and size. It has been posited that the disordered state at high polymer density is a consequence of strong interparticle attractions that kinetically inhibit the formation of the colloidal crystal, i.e., the formation of a non-equilibrium gel phase interferes with crystallization. Here we use molecular dynamics simulations andmore » density functional theory on polymers and nanoparticles (NPs) of comparable size and show that the crystal-disordered phase coexistence at high polymer density for sufficiently long chains corresponds to an equilibrium thermodynamic phase transition. While the crystal is, indeed, stabilized at intermediate polymer density by polymer-induced intercolloid attractions, it is destabilized at higher densities because long chains lose significant configurational entropy when they are forced to occupy all of the crystal voids. Finally, our results are in quantitative agreement with existing experimental data and show that, at least in the nanoparticle limit of sufficiently small colloidal particles, the crystal phase only has a modest range of thermodynamic stability.« less
Stability of the phase motion in race-track microtrons
NASA Astrophysics Data System (ADS)
Kubyshin, Yu. A.; Larreal, O.; Ramírez-Ros, R.; Seara, T. M.
2017-06-01
We model the phase oscillations of electrons in race-track microtrons by means of an area preserving map with a fixed point at the origin, which represents the synchronous trajectory of a reference particle in the beam. We study the nonlinear stability of the origin in terms of the synchronous phase -the phase of the synchronous particle at the injection. We estimate the size and shape of the stability domain around the origin, whose main connected component is enclosed by an invariant curve. We describe the evolution of the stability domain as the synchronous phase varies. We also clarify the role of the stable and unstable invariant curves of some hyperbolic (fixed or periodic) points.
Thermal stability and phase transformation in fully indium oxide (InO{sub 1.5}) stabilized zirconia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Piva, R.H., E-mail: honorato.piva@ua.pt; Piva, D.H
2017-01-15
Indium oxide (InO{sub 1.5}) stabilized zirconia (InSZ) is an attractive material as electrolyte, or electrode, in solid oxide fuel cells (SOFCs), and as corrosion resistant top coat in thermal barrier coatings. However, little is known about the phase stability of cubic InSZ at temperatures that simulate the conditions in an operating SOFC or turbine. This article provides an investigation of the phase stability and phase transformations in cubic InSZ after heat treatments at 800, 1000, and 1200 °C for periods up to 2000 h. The results revealed that cubic InSZ is not stable during annealing at 1000 and 1200 °C,more » owing to a fast destabilization of the initial cubic phase to tetragonal, and eventually to monoclinic (c → t → m). The c → t → m transition in InSZ is intimately associated with the indium volatilization. On the other hand, cubic InSZ remained stable for 2000 h at 800 °C, although the partial formation of the tetragonal phase was observed along with a 0.25% contraction in the unit cell volume of the cubic phase, caused by short-range ordering. These results demonstrate that technological applications of cubic InSZ are restricted to temperatures at which the volatilization of the InO{sub 1.5} stabilizer does not occur. - Highlights: •Phase stability of fully InO{sub 1.5} stabilized zirconia (cubic InSZ) was evaluated. •Cubic InSZ is instable at temperatures ≥ 1000 °C, owing to the cubic-to-tetragonal-to-monoclinic destabilization. •Cubic InSZ undergoes the cubic-to-tetragonal transformation at ~ 800 °C. •Owing to the low phase stability, applications of cubic InSZ in TBCs or SOFCs are restricted.« less
Le, Nguyen Hoai An; Van Phan, Hoang; Yu, Jiaqi; Chan, Hak-Kim; Neild, Adrian; Alan, Tuncay
2018-01-01
This article presents an acoustically enhanced microfluidic mixer to generate highly uniform and ultra-fine nanoparticles, offering significant advantages over conventional liquid antisolvent techniques. The method employed a 3D microfluidic geometry whereby two different phases - solvent and antisolvent - were introduced at either side of a 1 μm thick resonating membrane, which contained a through-hole. The vibration of the membrane rapidly and efficiently mixed the two phases, at the location of the hole, leading to the formation of nanoparticles. The versatility of the device was demonstrated by synthesizing budesonide (a common asthma drug) with a mean diameter of 135.7 nm and a polydispersity index of 0.044. The method offers a 40-fold reduction in the size of synthesized particles combined with a substantial improvement in uniformity, achieved without the need of stabilizers.
High Throughput Discovery of Solar Fuels Photoanodes in the CuO-V 2 O 5 System
Zhou, Lan; Yan, Qimin; Shinde, Aniketa; ...
2015-08-26
Solar photoelectrochemical generation of fuel is a promising energy technology yet the lack of an efficient, robust photoanode remains a primary materials challenge in the development and deployment of solar fuels generators. Metal oxides comprise the most promising class of photoanode materials, but no known material meets the demanding requirements of low band gap energy, photoelectrocatalysis of the oxygen evolution reaction, and stability under highly oxidizing conditions. Here, we report the identification of new photoelectroactive materials through a strategic combination of combinatorial materials synthesis, high-throughput photoelectrochemistry, optical spectroscopy, and detailed electronic structure calculations. We identify 4 photoelectrocatalyst phases - α-Cumore » 2V 2O 7, β-Cu 2V 2O 7, γ-Cu 3V 2O 8, and Cu 11V 6O 26 - with band gap energy at or below 2 eV. The photoelectrochemical properties and 30-minute stability of these copper vanadate phases are demonstrated in 3 different aqueous electrolytes (pH 7, pH 9, and pH 13), with select combinations of phase and electrolyte exhibiting unprecedented photoelectrocatalytic stability for metal oxides with sub-2 eV band gap. Through integration of experimental and theoretical techniques, we determine new structure-property relationships and establish CuO-V 2O 5 as the most prominent composition system for OER photoelectrocatalysts, providing crucial information for materials genomes initiatives and paving the way for continued development of solar fuels photoanodes.« less
Ultra fast polymer network blue phase liquid crystals
NASA Astrophysics Data System (ADS)
Hussain, Zakir; Masutani, Akira; Danner, David; Pleis, Frank; Hollfelder, Nadine; Nelles, Gabriele; Kilickiran, Pinar
2011-06-01
Polymer-stabilization of blue phase liquid crystal systems within a host polymer network are reported, which enables ultrafast switching flexible displays. Our newly developed method to stabilize the blue phase in an existing polymer network (e.g., that of a polymer network liquid crystal; PNLC) has shown wide temperature stability and fast response speeds. Systems where the blue phase is stabilized in an already existing polymer network are attractive candidates for ultrafast LCDs. The technology also promises to be applied to flexible PNLC and/or polymer dispersed liquid crystal (PDLC) displays using plastic substrate such as polyethylene terephthalate (PET).
Pressure-induced stable BeN4 as a high-energy density material
NASA Astrophysics Data System (ADS)
Zhang, Shoutao; Zhao, Ziyuan; Liu, Lulu; Yang, Guochun
2017-10-01
Polynitrogens are the ideal rocket fuels or propellants. Due to strong triple N≡N bond in N2, the direct polymerization of nitrogen is rather difficult (i.e. extreme high temperature and high pressure). However, the use of nitrides as precursors or the reaction of N2 with other elements has been proved to be an effective way to obtain polynitrogens. Here, with assistance of the advanced first-principles swarm-intelligence structure searches, we found that P 1 bar -BeN4, containing infinite zigzag-like polymeric nitrogen chains, can be synthesized by compressing the mixture of Be3N2 and N2 at 25.4 GPa, which is greatly lower than 110 GPa for synthesizing cubic gauche nitrogen and other polynitrogen compounds (e.g. bulk CNO at 52 GPa and SN4 at 49 GPa). Its structural stability can be attributed to the coexistence of ionic Be-N and covalent N-N bonds. Intriguingly, this phase has high kinetic stability and remains metastable at ambient pressure. The exceptional properties, including high energy density (3.60 kJ g-1), high nitrogen content (86.1%), high dynamical stability, and low polymerization pressure, make P 1 bar -structured BeN4 a promising high energy material. Infinite nitrogen chains in P 1 bar -BeN4 transform to N10 rings network in P21/c phase at 115.1 GPa. P 1 bar -BeN4 is metallic, while P21/c-BeN4 is an insulator.
Aluminum-stabilized NB3SN superconductor
Scanlan, Ronald M.
1988-01-01
An aluminum-stabilized Nb.sub.3 Sn superconductor and process for producing same, utilizing ultrapure aluminum. Ductile components are co-drawn with aluminum to produce a conductor suitable for winding magnets. After winding, the conductor is heated to convert it to the brittle Nb.sub.3 Sn superconductor phase, using a temperature high enough to perform the transformation but still below the melting point of the aluminum. This results in reaction of substantially all of the niobium, while providing stabilization and react-in-place features which are beneficial in the fabrication of magnets utilizing superconducting materials.
Mechanism of Radiation Damage Reduction in Equiatomic Multicomponent Single Phase Alloys.
Granberg, F; Nordlund, K; Ullah, Mohammad W; Jin, K; Lu, C; Bei, H; Wang, L M; Djurabekova, F; Weber, W J; Zhang, Y
2016-04-01
Recently a new class of metal alloys, of single-phase multicomponent composition at roughly equal atomic concentrations ("equiatomic"), have been shown to exhibit promising mechanical, magnetic, and corrosion resistance properties, in particular, at high temperatures. These features make them potential candidates for components of next-generation nuclear reactors and other high-radiation environments that will involve high temperatures combined with corrosive environments and extreme radiation exposure. In spite of a wide range of recent studies of many important properties of these alloys, their radiation tolerance at high doses remains unexplored. In this work, a combination of experimental and modeling efforts reveals a substantial reduction of damage accumulation under prolonged irradiation in single-phase NiFe and NiCoCr alloys compared to elemental Ni. This effect is explained by reduced dislocation mobility, which leads to slower growth of large dislocation structures. Moreover, there is no observable phase separation, ordering, or amorphization, pointing to a high phase stability of this class of alloys.
Mechanism of Radiation Damage Reduction in Equiatomic Multicomponent Single Phase Alloys
NASA Astrophysics Data System (ADS)
Granberg, F.; Nordlund, K.; Ullah, Mohammad W.; Jin, K.; Lu, C.; Bei, H.; Wang, L. M.; Djurabekova, F.; Weber, W. J.; Zhang, Y.
2016-04-01
Recently a new class of metal alloys, of single-phase multicomponent composition at roughly equal atomic concentrations ("equiatomic"), have been shown to exhibit promising mechanical, magnetic, and corrosion resistance properties, in particular, at high temperatures. These features make them potential candidates for components of next-generation nuclear reactors and other high-radiation environments that will involve high temperatures combined with corrosive environments and extreme radiation exposure. In spite of a wide range of recent studies of many important properties of these alloys, their radiation tolerance at high doses remains unexplored. In this work, a combination of experimental and modeling efforts reveals a substantial reduction of damage accumulation under prolonged irradiation in single-phase NiFe and NiCoCr alloys compared to elemental Ni. This effect is explained by reduced dislocation mobility, which leads to slower growth of large dislocation structures. Moreover, there is no observable phase separation, ordering, or amorphization, pointing to a high phase stability of this class of alloys.
Mechanism of Radiation Damage Reduction in Equiatomic Multicomponent Single Phase Alloys
Granberg, F.; Nordlund, K.; Ullah, Mohammad W.; ...
2016-04-01
Recently a new class of metal alloys, of single-phase multicomponent composition at roughly equal atomic concentrations (“equiatomic”), have been shown to exhibit promising mechanical, magnetic, and corrosion resistance properties, in particular, at high temperatures. These features make them potential candidates for components of next-generation nuclear reactors and other high-radiation environments that will involve high temperatures combined with corrosive environments and extreme radiation exposure. In spite of a wide range of recent studies of many important properties of these alloys, their radiation tolerance at high doses remains unexplored. In this work, a combination of experimental and modeling efforts reveals a substantialmore » reduction of damage accumulation under prolonged irradiation in single-phase NiFe and NiCoCr alloys compared to elemental Ni. This effect is explained by reduced dislocation mobility, which leads to slower growth of large dislocation structures. Finally and moreover, there is no observable phase separation, ordering, or amorphization, pointing to a high phase stability of this class of alloys.« less
Ye, Fan; Miao, Ming; Jiang, Bo; Campanella, Osvaldo H; Jin, Zhengyu; Zhang, Tao
2017-08-15
The aim of present study was to study the medium-chain triacylglycerol-in-water (O/W) Pickering emulsion stabilized using different modified starch-based nanoparticles (octenylsuccinylation treated soluble starch nanoparticle, OSA-SSNP, and insoluble starch nanoparticle, ISNP). The major factors for affecting the system stability, rheological behaviour and microstructure of the emulsions were also investigated. The parameters of the O/W emulsions stabilized by OSA-SSNP or ISNP were selected as follows: 3.0% of starch nanoparticles concentration, 50% of MCT fraction and 7.0 of system pH. The rheological properties indicated that both emulsions displayed shear-thinning behaviour as a non-Newtonian fluid. For OSA-SSNP, the viscosities of the emulsion were higher than those of ISNP throughout shear rate range for the same condition. The plot of droplet size distribution for emulsion stabilized OSA-SSNP appeared as a single narrow peak, whereas a broader droplet size distribution with bimodal pattern was observed for emulsion stabilized ISNP. The microscopy results showed that both OSA-SSNP and ISNP were adsorbed at oil-water interface to form a barrier film and retard the phase separation. When emulsion was stored for 30d, no phase separation was detected for O/W emulsion, revealing high stability of emulsion stabilized by both OSA-SSNP and ISNP. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Rogers, James; Sokolov, Radomir; Hicks, Daniel; Cartwright, Lloyd
1993-01-01
The JAPE short range data provide a good opportunity for studying phase and amplitude fluctuations of acoustic signals in the atmosphere over distances of several hundred meters. Several factors contribute to the usefulness of these data: extensive meteorological measurements were made, controlled sources were used, the data were recorded with a high dynamic range digital system that preserved phase information and a significant number of measurement points were obtained allowing both longitudinal and transverse studies. Further, Michigan Tech, in cooperation with the U.S. Army TARDEC, has developed phase tracking algorithms for studying vehicle acoustic signals. These techniques provide an excellent tool for analyzing the amplitude and phase fluctuations of the JAPE data. The results of studies such as those reported here have application at several levels: the mechanisms of signal amplitude and phase fluctuations in propagating acoustic signals are not well understood nor are the mathematical models highly developed, acoustic arrays depend strongly on signal coherence and signal amplitude stability in order to perform to their design specifications and active noise control implementation in regions considerably removed from the primary and secondary sources depends upon signal amplitude and phase stability. Work reported here is preliminary in nature but it does indicate the utility of the phase tracking and amplitude detection algorithms. The results obtained indicate that the phase fluctuations of the JAPE continuous multiple tone data (simultaneous transmission of 80, 200 and 500 Hz) are in general agreement with existing theories but the amplitude fluctuations are seen to be less well behaved and show less consistency.
Persistent dopants and phase segregation in organolead mixed-halide perovskites
Rosales, Bryan A.; Men, Long; Cady, Sarah D.; ...
2016-07-25
Organolead mixed-halide perovskites such as CH 3NH 3PbX 3–aX' a (X, X' = I, Br, Cl) are interesting semiconductors because of their low cost, high photovoltaic power conversion efficiencies, enhanced moisture stability, and band gap tunability. Using a combination of optical absorption spectroscopy, powder X-ray diffraction (XRD), and, for the first time, 207Pb solid state nuclear magnetic resonance (ssNMR), we probe the extent of alloying and phase segregation in these materials. Because 207Pb ssNMR chemical shifts are highly sensitive to local coordination and electronic structure, and vary linearly with halogen electronegativity and band gap, this technique can provide the truemore » chemical speciation and composition of organolead mixed-halide perovskites. We specifically investigate samples made by three different preparative methods: solution phase synthesis, thermal annealing, and solid phase synthesis. 207Pb ssNMR reveals that nonstoichiometric dopants and semicrystalline phases are prevalent in samples made by solution phase synthesis. We show that these nanodomains are persistent after thermal annealing up to 200 °C. Further, a novel solid phase synthesis that starts from the parent, single-halide perovskites can suppress phase segregation but not the formation of dopants. Our observations are consistent with the presence of miscibility gaps and spontaneous spinodal decomposition of the mixed-halide perovskites at room temperature. This underscores how strongly different synthetic procedures impact the nanostructuring and composition of organolead halide perovskites. In conclusion, better optoelectronic properties and improved device stability and performance may be achieved through careful manipulation of the different phases and nanodomains present in these materials.« less
Persistent dopants and phase segregation in organolead mixed-halide perovskites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosales, Bryan A.; Men, Long; Cady, Sarah D.
Organolead mixed-halide perovskites such as CH 3NH 3PbX 3–aX' a (X, X' = I, Br, Cl) are interesting semiconductors because of their low cost, high photovoltaic power conversion efficiencies, enhanced moisture stability, and band gap tunability. Using a combination of optical absorption spectroscopy, powder X-ray diffraction (XRD), and, for the first time, 207Pb solid state nuclear magnetic resonance (ssNMR), we probe the extent of alloying and phase segregation in these materials. Because 207Pb ssNMR chemical shifts are highly sensitive to local coordination and electronic structure, and vary linearly with halogen electronegativity and band gap, this technique can provide the truemore » chemical speciation and composition of organolead mixed-halide perovskites. We specifically investigate samples made by three different preparative methods: solution phase synthesis, thermal annealing, and solid phase synthesis. 207Pb ssNMR reveals that nonstoichiometric dopants and semicrystalline phases are prevalent in samples made by solution phase synthesis. We show that these nanodomains are persistent after thermal annealing up to 200 °C. Further, a novel solid phase synthesis that starts from the parent, single-halide perovskites can suppress phase segregation but not the formation of dopants. Our observations are consistent with the presence of miscibility gaps and spontaneous spinodal decomposition of the mixed-halide perovskites at room temperature. This underscores how strongly different synthetic procedures impact the nanostructuring and composition of organolead halide perovskites. In conclusion, better optoelectronic properties and improved device stability and performance may be achieved through careful manipulation of the different phases and nanodomains present in these materials.« less
Coherent and incoherent phase stabilities of thermoelectric rocksalt IV-VI semiconductor alloys
NASA Astrophysics Data System (ADS)
Doak, Jeff W.; Wolverton, C.
2012-10-01
Nanostructures formed by phase separation improve the thermoelectric figure of merit in lead chalcogenide semiconductor alloys, with coherent nanostructures giving larger improvements than incoherent nanostructures. However, large coherency strains in these alloys drastically alter the thermodynamics of phase stability. Incoherent phase stability can be easily inferred from an equilibrium phase diagram, but coherent phase stability is more difficult to assess experimentally. Therefore, we use density functional theory calculations to investigate the coherent and incoherent phase stability of the IV-VI rocksalt semiconductor alloy systems Pb(S,Te), Pb(Te,Se), Pb(Se,S), (Pb,Sn)Te, (Sn,Ge)Te, and (Ge,Pb)Te. Here we use the term coherent to indicate that there is a common and unbroken lattice between the phases under consideration, and we use the term incoherent to indicate that the lattices of coexisting phases are unconstrained and allowed to take on equilibrium volumes. We find that the thermodynamic ground state of all of the IV-VI pseudobinary systems studied is incoherent phase separation. We also find that the coherency strain energy, previously neglected in studies of these IV-VI alloys, is lowest along [111] (in contrast to most fcc metals) and is a large fraction of the thermodynamic driving force for incoherent phase separation in all systems. The driving force for coherent phase separation is significantly reduced, and we find that coherent nanostructures can only form at low temperatures where kinetics may prohibit their precipitation. Furthermore, by calculating the energies of ordered structures for these systems we find that the coherent phase stability of most IV-VI systems favors ordering over spinodal decomposition. Our results suggest that experimental reports of spinodal decomposition in the IV-VI rocksalt alloys should be re-examined.
Ab initio molecular dynamic study of solid-state transitions of ammonium nitrate
Yu, Hongyu; Duan, Defang; Liu, Hanyu; Yang, Ting; Tian, Fubo; Bao, Kuo; Li, Da; Zhao, Zhonglong; Liu, Bingbing; Cui, Tian
2016-01-01
High-pressure polymorphism and phase transitions have wide ranging consequences on the basic properties of ammonium nitrate. However, the phase diagram of ammonium nitrate at high pressure and high temperature is still under debate. This study systematically investigates the phase transitions and structural properties of ammonium nitrate at a pressure range of 5–60 GPa and temperature range of 250–400 K by ab initio molecular dynamics simulations. Two new phases are identified: one corresponds to the experimentally observed phase IV’ and the other is named AN-X. Simultaneously, the lattice strains play a significant role in the formation and stabilization of phase IV’, providing a reasonable explanation for experimental observation of phase IV-IV’ transition which only appears under nonhydrostatic pressure. In addition, 12 O atoms neighboring the NH (N atom in ammonium cation) atom are selected as reference system to clearly display the tanglesome rotation of ammonium cation. PMID:26754622
Surface-bonded ionic liquid stationary phases in high-performance liquid chromatography--a review.
Pino, Verónica; Afonso, Ana M
2012-02-10
Ionic liquids (ILs) are a class of ionic, nonmolecular solvents which remain in liquid state at temperatures below 100°C. ILs possess a variety of properties including low to negligible vapor pressure, high thermal stability, miscibility with water or a variety of organic solvents, and variable viscosity. IL-modified silica as novel high-performance liquid chromatography (HPLC) stationary phases have attracted considerable attention for their differential behavior and low free-silanol activity. Indeed, around 21 surface-confined ionic liquids (SCIL) stationary phases have been developed in the last six years. Their chromatographic behavior has been studied, and, despite the presence of a positive charge on the stationary phase, they showed considerable promise for the separation of neutral solutes (not only basic analytes), when operated in reversed phase mode. This aspect points to the potential for truly multimodal stationary phases. This review attempts to summarize the state-of-the-art about SCIL phases including their preparation, chromatographic behavior, and analytical performance. Copyright © 2011 Elsevier B.V. All rights reserved.
Mashiko, Hiroki; Gilbertson, Steve; Li, Chengquan; Khan, Sabih D; Shakya, Mahendra M; Moon, Eric; Chang, Zenghu
2008-03-14
We demonstrated a novel optical switch to control the high-order harmonic generation process so that single attosecond pulses can be generated with multiple-cycle pulses. The technique combines two powerful optical gating methods: polarization gating and two-color gating. An extreme ultraviolet supercontinuum supporting 130 as was generated with neon gas using 9 fs laser pulses. We discovered a unique dependence of the harmonic spectra on the carrier-envelope phase of the laser fields, which repeats every 2 pi radians.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mashiko, Hiroki; Gilbertson, Steve; Li, Chengquan
2008-03-14
We demonstrated a novel optical switch to control the high-order harmonic generation process so that single attosecond pulses can be generated with multiple-cycle pulses. The technique combines two powerful optical gating methods: polarization gating and two-color gating. An extreme ultraviolet supercontinuum supporting 130 as was generated with neon gas using 9 fs laser pulses. We discovered a unique dependence of the harmonic spectra on the carrier-envelope phase of the laser fields, which repeats every 2{pi} radians.
Semiconductor-to-metal phase change in MoTe2 layers (Conference Presentation)
NASA Astrophysics Data System (ADS)
Davydov, Albert V.; Krylyuk, Sergiy; Kalish, Irina; Meshi, Louisa; Beams, Ryan; Kalanyan, Berc; Sharma, Deepak K.; Beck, Megan; Bergeron, Hadallia; Hersam, Mark C.
2016-09-01
Molybdenum ditelluride (MoTe2), which can exist in a semiconducting prismatic hexagonal (2H) or a metallic distorted octahedral (1T') phases, is one of the very few materials that exhibit metal-semiconductor transition. Temperature-driven 2H - 1T' phase transition in bulk MoTe2 occurs at high temperatures (above 900 °C) and it is usually accompanied by Te loss. The latter can exacerbate the control over reversibility of the phase transition. Here, we study effects of high-temperature annealing on phase transition in MoTe2 single crystals. First, MoTe2 were grown in sealed evacuated quartz ampoules from polycrystalline MoTe2 powder in an iodine-assisted chemical vapor transport process at 1000 °C. The 2H and 1T' phases were stabilized by controlling the cooling rate after the growth. In particular, slow cooling at 10 °C/h rate yielded the 2H phase whereas the 1T' phase was stabilized by ice-water quenching. Next, the phase conversion was achieved by annealing MoTe2 single crystals in vacuum-sealed ampoules at 1000 °C with or without additional poly-MoTe2 powder followed by fast or slow cooling. Similarly to the CVT growth, slow cooling and quenching consistently produced 2H and 1T' phases, respectively, regardless of the initial MoTe2 crystal structure. We will discuss structural and optical properties of the as-grown and phase-converted MoTe2 single crystals using TEM, SEM/EDS, XRD, XPS and Raman. Electrical characteristics of two-terminal devices made from metallic 1T' and bottom-gated FETs made from 2H exfoliated crystals will also be presented.
The principle of phase stability and the accelerator program at Berkeley, 1945--1954
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lofgren, E.J.
1994-07-01
The discovery of the Principle of Phase Stability by Vladimir Veksler and Edwin McMillian and the end of the war released a surge of accelerator activity at the Lawrence Berkeley Laboratory (then The University of California Radiation Laboratory). Six accelerators incorporating the Principle of Phase Stability were built in the period 1945--1954.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quirinale, D. G.; Rustan, G. E.; Kreyssig, A.
2015-06-15
Previous investigations of undercooled liquid Fe{sub 83}B{sub 17} near the eutectic composition have found that metastable crystalline phases, such as Fe{sub 23}B{sub 6}, can be formed and persist down to ambient temperature even for rather modest cooling rates. Using time-resolved high-energy x-ray diffraction on electrostatically levitated samples of Fe{sub 83}B{sub 17}, we demonstrate that the Fe{sub 23}B{sub 6} metastable phase and fcc γ-Fe grow coherently from the undercooled Fe{sub 83}B{sub 17} liquid and effectively suppress the formation of the equilibrium Fe{sub 2}B + bcc α-Fe phases. The stabilization of γ-Fe offers another opportunity for experimental investigations of magnetism in metastable fcc iron.
Digital multi-channel stabilization of four-mode phase-sensitive parametric multicasting.
Liu, Lan; Tong, Zhi; Wiberg, Andreas O J; Kuo, Bill P P; Myslivets, Evgeny; Alic, Nikola; Radic, Stojan
2014-07-28
Stable four-mode phase-sensitive (4MPS) process was investigated as a means to enhance two-pump driven parametric multicasting conversion efficiency (CE) and signal to noise ratio (SNR). Instability of multi-beam, phase sensitive (PS) device that inherently behaves as an interferometer, with output subject to ambient induced fluctuations, was addressed theoretically and experimentally. A new stabilization technique that controls phases of three input waves of the 4MPS multicaster and maximizes CE was developed and described. Stabilization relies on digital phase-locked loop (DPLL) specifically was developed to control pump phases to guarantee stable 4MPS operation that is independent of environmental fluctuations. The technique also controls a single (signal) input phase to optimize the PS-induced improvement of the CE and SNR. The new, continuous-operation DPLL has allowed for fully stabilized PS parametric broadband multicasting, demonstrating CE improvement over 20 signal copies in excess of 10 dB.
On precise phase difference measurement approach using border stability of detection resolution.
Bai, Lina; Su, Xin; Zhou, Wei; Ou, Xiaojuan
2015-01-01
For the precise phase difference measurement, this paper develops an improved dual phase coincidence detection method. The measurement resolution of the digital phase coincidence detection circuits is always limited, for example, only at the nanosecond level. This paper reveals a new way to improve the phase difference measurement precision by using the border stability of the circuit detection fuzzy areas. When a common oscillator signal is used to detect the phase coincidence with the two comparison signals, there will be two detection fuzzy areas for the reason of finite detection resolution surrounding the strict phase coincidence. Border stability of fuzzy areas and the fluctuation difference of the two fuzzy areas can be even finer than the picoseconds level. It is shown that the system resolution obtained only depends on the stability of the circuit measurement resolution which is much better than the measurement device resolution itself.
Chen, Xing; McClements, David Julian; Wang, Jian; Zou, Liqiang; Deng, Sumeng; Liu, Wei; Yan, Chi; Zhu, Yuqing; Cheng, Ce; Liu, Chengmei
2018-04-11
Particle-stabilized W 1 /O/W 2 emulsion gels were fabricated using a two-step procedure: ( i) a W 1 /O emulsion was formed containing saccharose (for osmotic stress balance) and gelatin (as a gelling agent) in the aqueous phase and polyglycerol polyricinoleate (a lipophilic surfactant) in the oil phase; ( ii) this W 1 /O emulsion was then homogenized with another water phase (W 2 ) containing wheat gliadin nanoparticles (hydrophilic emulsifier). The gliadin nanoparticles in the external aqueous phase aggregated at pH 5.5, which led to the formation of particle-stabilized W 1 /O/W 2 emulsion gels with good stability to phase separation. These emulsion gels were then used to coencapsulate a hydrophilic bioactive (epigallocatechin-3-gallate, EGCG) in the internal aqueous phase (encapsulation efficiency = 65.5%) and a hydrophobic bioactive (quercetin) in the oil phase (encapsulation efficiency = 97.2%). The emulsion gels improved EGCG chemical stability and quercetin solubility under simulated gastrointestinal conditions, which led to a 2- and 4-fold increase in their effective bioaccessibility, respectively.
Effect of anisotropic MoS2 nanoparticles on the blue phase range of a chiral liquid crystal.
Lavrič, Marta; Cordoyiannis, George; Kralj, Samo; Tzitzios, Vassilios; Nounesis, George; Kutnjak, Zdravko
2013-08-01
Liquid-crystalline blue phases are attracting significant interest due to their potential for applications related to tunable photonic crystals and fast optical displays. In this work a brief theoretical model is presented accounting for the impact of anisotropic nanoparticles on the blue phase stability region. This model is tested by means of high-resolution calorimetric and optical measurements of the effect of anisotropic, surface-functionalized MoS2 nanoparticles on the blue phase range of a chiral liquid crystal. The addition of these nanoparticles effectively increases the temperature range of blue phases and especially the cubic structure of blue phase I.
NASA Technical Reports Server (NTRS)
Numata, Kenji; Camp, Jordan
2012-01-01
We have developed a linearly polarized Ytterbium-doped fiber ring laser with a single longitudinal mode output at 1064 run. A fiber-coupled intracavity phase modulator ensured mode-hop free operation and allowed fast frequency tuning. The fiber laser was locked with high stability to an iodine-stabilized laser, showing a frequency noise suppression of a factor approx 10 (exp 5) at 1 mHz
Elhag, Amro S; Da, Chang; Chen, Yunshen; Mukherjee, Nayan; Noguera, Jose A; Alzobaidi, Shehab; Reddy, Prathima P; AlSumaiti, Ali M; Hirasaki, George J; Biswal, Sibani L; Nguyen, Quoc P; Johnston, Keith P
2018-07-15
The viscosity and stability of CO 2 /water foams at elevated temperature can be increased significantly with highly viscoelastic aqueous lamellae. The slow thinning of these viscoelastic lamellae leads to greater foam stability upon slowing down Ostwald ripening and coalescence. In the aqueous phase, the viscoelasticity may be increased by increasing the surfactant tail length to form more entangled micelles even at high temperatures and salinity. Systematic measurements of the steady state shear viscosity of aqueous solutions of the diamine surfactant (C 16-18 N(CH 3 )C 3 N(CH 3 ) 2 ) were conducted at varying surfactant concentrations and salinity to determine the parameters for formation of entangled wormlike micelles. The apparent viscosity and stability of CO 2 /water foams were compared for systems with viscoelastic entangled micellar aqueous phases relative to those with much less viscous spherical micelles. We demonstrated for the first time stable CO 2 /water foams at temperatures up to 120 °C and CO 2 volumetric fractions up to 0.98 with a single diamine surfactant, C 16-18 N(CH 3 )C 3 N(CH 3 ) 2 . The foam stability was increased by increasing the packing parameter of the surfactant with a long tail and methyl substitution on the amine to form entangled viscoelastic wormlike micelles in the aqueous phase. The foam was more viscous and stable compared to foams with spherical micelles in the aqueous lamellae as seen with C 12-14 N(EO) 2 and C 16-18 N(EO)C 3 N(EO) 2 . Copyright © 2018. Published by Elsevier Inc.
Wong, Ling L C; Villafranca, Pedro M Baiz; Menner, Angelika; Bismarck, Alexander
2013-05-21
In building construction, structural elements, such as lattice girders, are positioned specifically to support the mainframe of a building. This arrangement provides additional structural hierarchy, facilitating the transfer of load to its foundation while keeping the building weight down. We applied the same concept when synthesizing hierarchical open-celled macroporous polymers from high internal phase emulsion (HIPE) templates stabilized by varying concentrations of a polymeric non-ionic surfactant from 0.75 to 20 w/vol %. These hierarchical poly(merized)HIPEs have multimodally distributed pores, which are efficiently arranged to enhance the load transfer mechanism in the polymer foam. As a result, hierarchical polyHIPEs produced from HIPEs stabilized by 5 vol % surfactant showed a 93% improvement in Young's moduli compared to conventional polyHIPEs produced from HIPEs stabilized by 20 vol % of surfactant with the same porosity of 84%. The finite element method (FEM) was used to determine the effect of pore hierarchy on the mechanical performance of porous polymers under small periodic compressions. Results from the FEM showed a clear improvement in Young's moduli for simulated hierarchical porous geometries. This methodology could be further adapted as a predictive tool to determine the influence of hierarchy on the mechanical properties of a range of porous materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Lei; Ding, Xiangdong, E-mail: dingxd@mail.xjtu.edu.cn, E-mail: ekhard@esc.cam.ac.uk; Sun, Jun
2016-07-18
The energy landscape of Zr at high hydrostatic pressure suggests that its transformation behavior is strongly pressure dependent. This is in contrast to the known transition mechanism in Ti, which is essentially independent of hydrostatic pressure. Generalized solid-state nudged elastic band calculations at constant pressure shows that α-Zr transforms like Ti only at the lowest pressure inside the stability field of ω-phase. Different pathways apply at higher pressures where the energy landscape contains several high barriers so that metastable states are expected, including the appearance of a transient bcc phase at ca. 23 GPa. The global driving force for the hcp-ωmore » transition increases strongly with increasing pressure and reaches 23.7 meV/atom at 23 GPa. Much of this energy relates to the excess volume of the hcp phase compared with its ω phase.« less
Structural Effects of Lanthanide Dopants on Alumina
Patel, Ketan; Blair, Victoria; Douglas, Justin; Dai, Qilin; Liu, Yaohua; Ren, Shenqiang; Brennan, Raymond
2017-01-01
Lanthanide (Ln3+) doping in alumina has shown great promise for stabilizing and promoting desirable phase formation to achieve optimized physical and chemical properties. However, doping alumina with Ln elements is generally accompanied by formation of new phases (i.e. LnAlO3, Ln2O3), and therefore inclusion of Ln-doping mechanisms for phase stabilization of the alumina lattice is indispensable. In this study, Ln-doping (400 ppm) of the alumina lattice crucially delays the onset of phase transformation and enables phase population control, which is achieved without the formation of new phases. The delay in phase transition (θ → α), and alteration of powder morphology, particle dimensions, and composition ratios between α- and θ-alumina phases are studied using a combination of solid state nuclear magnetic resonance, electron microscopy, digital scanning calorimetry, and high resolution X-ray diffraction with refinement fitting. Loading alumina with a sparse concentration of Ln-dopants suggests that the dopants reside in the vacant octahedral locations within the alumina lattice, where complete conversion into the thermodynamically stable α-domain is shown in dysprosium (Dy)- and lutetium (Lu)-doped alumina. This study opens up the potential to control the structure and phase composition of Ln-doped alumina for emerging applications. PMID:28059121
Structural Effects of Lanthanide Dopants on Alumina
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patel, Ketan; Blair, Victoria; Douglas, Justin
Lanthanide (Ln 3+) doping in alumina has shown great promise for stabilizing and promoting desirable phase formation to achieve optimized physical and chemical properties. However, doping alumina with Ln elements is generally accompanied by formation of new phases (i.e. LnAlO 3, Ln 2O 3), and therefore inclusion of Ln-doping mechanisms for phase stabilization of the alumina lattice is indispensable. In this study, Ln-doping (400 ppm) of the alumina lattice crucially delays the onset of phase transformation and enables phase population control, which is achieved without the formation of new phases. In addition, the delay in phase transition (θ → α),more » and alteration of powder morphology, particle dimensions, and composition ratios between α- and θ-alumina phases are studied using a combination of solid state nuclear magnetic resonance, electron microscopy, digital scanning calorimetry, and high resolution X-ray diffraction with refinement fitting. Loading alumina with a sparse concentration of Ln-dopants suggests that the dopants reside in the vacant octahedral locations within the alumina lattice, where complete conversion into the thermodynamically stable α-domain is shown in dysprosium (Dy)- and lutetium (Lu)-doped alumina. Lastly, this study opens up the potential to control the structure and phase composition of Ln-doped alumina for emerging applications.« less
Structural Effects of Lanthanide Dopants on Alumina
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patel, Ketan; Blair, Victoria; Douglas, Justin
Lanthanide (Ln 3+) doping in alumina has shown great promise for stabilizing and promoting desirable phase formation to achieve optimized physical and chemical properties. However, doping alumina with Ln elements is generally accompanied by formation of new phases (i.e. LnAlO3, Ln2O3), and therefore inclusion of Ln-doping mechanisms for phase stabilization of the alumina lattice is indispensable. In this study, Ln-doping (400 ppm) of the alumina lattice crucially delays the onset of phase transformation and enables phase population control, which is achieved without the formation of new phases. The delay in phase transition (θ → α), and alteration of powder morphology,more » particle dimensions, and composition ratios between α- and θ-alumina phases are studied using a combination of solid state nuclear magnetic resonance, electron microscopy, digital scanning calorimetry, and high resolution X-ray diffraction with refinement fitting. Loading alumina with a sparse concentration of Ln-dopants suggests that the dopants reside in the vacant octahedral locations within the alumina lattice, where complete conversion into the thermodynamically stable α-domain is shown in dysprosium (Dy)- and lutetium (Lu)-doped alumina. This study opens up the potential to control the structure and phase composition of Ln-doped alumina for emerging applications.« less
Structural Effects of Lanthanide Dopants on Alumina
Patel, Ketan; Blair, Victoria; Douglas, Justin; ...
2017-01-06
Lanthanide (Ln 3+) doping in alumina has shown great promise for stabilizing and promoting desirable phase formation to achieve optimized physical and chemical properties. However, doping alumina with Ln elements is generally accompanied by formation of new phases (i.e. LnAlO 3, Ln 2O 3), and therefore inclusion of Ln-doping mechanisms for phase stabilization of the alumina lattice is indispensable. In this study, Ln-doping (400 ppm) of the alumina lattice crucially delays the onset of phase transformation and enables phase population control, which is achieved without the formation of new phases. In addition, the delay in phase transition (θ → α),more » and alteration of powder morphology, particle dimensions, and composition ratios between α- and θ-alumina phases are studied using a combination of solid state nuclear magnetic resonance, electron microscopy, digital scanning calorimetry, and high resolution X-ray diffraction with refinement fitting. Loading alumina with a sparse concentration of Ln-dopants suggests that the dopants reside in the vacant octahedral locations within the alumina lattice, where complete conversion into the thermodynamically stable α-domain is shown in dysprosium (Dy)- and lutetium (Lu)-doped alumina. Lastly, this study opens up the potential to control the structure and phase composition of Ln-doped alumina for emerging applications.« less
Abedi, Maryam; Jin, Tian; Sun, Kewen
2015-06-17
In this paper, a gyroscopic mounting method for crystal oscillators to reduce the impact of dynamic loads on their output stability has been proposed. In order to prove the efficiency of this mounting approach, each dynamic load-induced instability has been analyzed in detail. A statistical study has been performed on the elevation angle of the g-sensitivity vector of Stress Compensated-cut (SC-cut) crystals. The analysis results show that the proposed gyroscopic mounting method gives good performance for host vehicle attitude changes. A phase noise improvement of 27 dB maximum and 5.7 dB on average can be achieved in the case of steady state loads, while under sinusoidal vibration conditions, the maximum and average phase noise improvement are as high as 24 dB and 7.5 dB respectively. With this gyroscopic mounting method, random vibration-induced phase noise instability is reduced 30 dB maximum and 8.7 dB on average. Good effects are apparent for crystal g-sensitivity vectors with low elevation angle φ and azimuthal angle β. under highly dynamic conditions, indicating the probability that crystal oscillator instability will be significantly reduced by using the proposed mounting approach.
Lower extremity muscle activation during baseball pitching.
Campbell, Brian M; Stodden, David F; Nixon, Megan K
2010-04-01
The purpose of this study was to investigate muscle activation levels of select lower extremity muscles during the pitching motion. Bilateral surface electromyography data on 5 lower extremity muscles (biceps femoris, rectus femoris, gluteus maximus, vastus medialis, and gastrocnemius) were collected on 11 highly skilled baseball pitchers and compared with individual maximal voluntary isometric contraction (MVIC) data. The pitching motion was divided into 4 distinct phases: phase 1, initiation of pitching motion to maximum stride leg knee height; phase 2, maximum stride leg knee height to stride foot contact (SFC); phase 3, SFC to ball release; and phase 4, ball release to 0.5 seconds after ball release (follow-through). Results indicated that trail leg musculature elicited moderate to high activity levels during phases 2 and 3 (38-172% of MVIC). Muscle activity levels of the stride leg were moderate to high during phases 2-4 (23-170% of MVIC). These data indicate a high demand for lower extremity strength and endurance. Specifically, coaches should incorporate unilateral and bilateral lower extremity exercises for strength improvement or maintenance and to facilitate dynamic stabilization of the lower extremities during the pitching motion.
NASA Astrophysics Data System (ADS)
Li, Juan; Sun, Zhigao; Liu, Chenggang; Zhu, Minggui
2018-03-01
HCFC-141b hydrate is a new type of environment-friendly cold storage medium which may be adopted to balance energy supply and demand, achieve peak load shifting and energy saving, wherein the hydrate induction time and system stability are key factors to promote and realize its application in industrial practice. Based on step cooling curve measurement, two kinds of aliphatic hydrocarbon organics, n-capric acid (CA) and lauryl alcohol (DE), were selected to form composite phase change material and to promote the generation of HCFC-141b hydrate. Five kinds of CA-DE mass concentration were chosen to compare the induction time and hydration system stability. In order to accelerate temperature reduction rate, the metal Cu with high heat conductivity performance was adopted to conduct out the heat generated during phase change. Instability index was introduced to appraise system stability. Experimental results show that phase change temperature and sub-cooling degree of CA-DE is 11.1°C and 3.0°C respectively, which means it is a preferable medium for HCFC-141b hydrate formation. For the experimental hydration systems, segmented emulsification is achieved by special titration manner to avoid rapid layering under static condition. Induction time can achieve up to 23.3min with the densest HCFC-141b hydrate and the lowest instability index, wherein CA-DE mass concentration is 3%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hugosson, H.W.; Eriksson, O.; Nordstroem, L.
1999-10-01
First principles, total energy methods have been applied to predict the relative stabilities of the four experimentally verified MoC phases: the cubic {delta}(NaCl) phase and the three hexagonal {gamma}(WC), {eta} and {gamma}{sup {prime}}(TiAs) phases. The effect of vacancies on the relative stability of these four phases was investigated using a model structure with ordered vacancies within the carbon sublattice. For stoichiometric MoC, the {gamma} phase was found to be the most stable followed by {gamma}{sup {prime}}, {delta}, and {eta}, but for substoichiometric MoC{sub 0.75}, the order of relative stability was changed and the substoichiometric {delta} phase was found to havemore » the lowest energy followed by {gamma}{sup {prime}} and {gamma}. A study of the electronic structure revealed vacancy induced peaks in the density of state and the electron density attached to these peaks was analyzed and found to emanate from unscreened Mo{endash}Mo bonds through the carbon vacancy site. Finally, the oxygen stabilization of the {gamma}{sup {prime}} MoC phase was studied. {copyright} {ital 1999 American Institute of Physics.}« less
NASA Astrophysics Data System (ADS)
Bazyleva, O. A.; Povarova, K. B.; Kazanskaya, N. K.; Drozdov, A. A.
2009-04-01
The possibility of increasing the life of heterophase cast light Ni3Al-based superalloys at temperatures higher than 0.8 T m of Ni3Al is studied when their directional structure is additionally stabilized by nanoprecipitates, which form upon additional alloying of these alloys by refractory and active metals, and using special methods for preparing and melting of an alloy charge. The effect of the method of introducing the main components and refractory reaction-active and surface-active alloying elements into Ni3Al-based cast superalloys, which are thermally stable natural composite materials of the eutectic type, on the structure-phase state and the life of these alloys is studied. When these alloys are melted, it is necessary to perform a set of measures to form particles of refractory oxide cores covered with the β-NiAl phase and, then, γ'prim-Ni3Al phase precipitates during solidification. The latter phase forms the outer shell of grain nuclei, which provides high thermal stability and hot strength of an intermetallic compound-based alloy. As a result, a modified structure that is stabilized by the nanoprecipitates of nickel and aluminum lanthanides and the nanoprecipitates of phases containing refractory metals is formed. This structure enhances the life of the alloy at 1000 °C by a factor of 1.8-2.5.
Drive beam stabilisation in the CLIC Test Facility 3
NASA Astrophysics Data System (ADS)
Malina, L.; Corsini, R.; Persson, T.; Skowroński, P. K.; Adli, E.
2018-06-01
The proposed Compact Linear Collider (CLIC) uses a high intensity, low energy drive beam to produce the RF power needed to accelerate a lower intensity main beam with 100 MV/m gradient. This scheme puts stringent requirements on drive beam stability in terms of phase, energy and current. The consequent experimental work was carried out in CLIC Test Facility CTF3. In this paper, we present a novel analysis technique in accelerator physics to find beam drifts and their sources in the vast amount of the continuously gathered signals. The instability sources are identified and adequately mitigated either by hardware improvements or by implementation and commissioning of various feedbacks, mostly beam-based. The resulting drive beam stability is of 0.2°@ 3 GHz in phase, 0.08% in relative beam energy and about 0.2% beam current. Finally, we propose a stabilisation concept for CLIC to guarantee the main beam stability.
Ma, AiHua; Jia, QingMing; Su, HongYing; Zhi, YunFei; Tian, Na; Wu, Jing; Shan, ShaoYun
2016-02-01
Using lime mud (LM) purified by sucrose method, derived from paper-making industry, as calcium precursor, and using mineral rejects-bauxite-tailings (BTs) from aluminum production as dopant, the CaO-based sorbents for high-temperature CO2 capture were prepared. Effects of BTs content, precalcining time, and temperature on CO2 cyclic absorption stability were illustrated. The cyclic carbonation behavior was investigated in a thermogravimetric analyzer (TGA). Phase composition and morphologies were analyzed by XRD and SEM. The results reflected that the as-synthesized CaO-based sorbent doped with 10 wt% BTs showed a superior CO2 cyclic absorption-desorption conversion during multiple cycles, with conversion being >38 % after 50 cycles. Occurrence of Ca12Al14O33 phase during precalcination was probably responsible for the excellent CO2 cyclic stability.
Graves, J P; Chapman, I T; Coda, S; Lennholm, M; Albergante, M; Jucker, M
2012-01-10
Virtually collisionless magnetic mirror-trapped energetic ion populations often partially stabilize internally driven magnetohydrodynamic disturbances in the magnetosphere and in toroidal laboratory plasma devices such as the tokamak. This results in less frequent but dangerously enlarged plasma reorganization. Unique to the toroidal magnetic configuration are confined 'circulating' energetic particles that are not mirror trapped. Here we show that a newly discovered effect from hybrid kinetic-magnetohydrodynamic theory has been exploited in sophisticated phase space engineering techniques for controlling stability in the tokamak. These theoretical predictions have been confirmed, and the technique successfully applied in the Joint European Torus. Manipulation of auxiliary ion heating systems can create an asymmetry in the distribution of energetic circulating ions in the velocity orientated along magnetic field lines. We show the first experiments in which large sawtooth collapses have been controlled by this technique, and neoclassical tearing modes avoided, in high-performance reactor-relevant plasmas.
NASA Technical Reports Server (NTRS)
Holanda, R.
1984-01-01
The thermoelectric properties alloys of the nickel-base, iron-base, and cobalt-base groups containing from 1% to 25% 106 chromium were compared and correlated with the following material characteristics: atomic percent of the principle alloy constituent; ratio of concentration of two constituents; alloy physical property (electrical resistivity); alloy phase structure (percent precipitate or percent hardener content); alloy electronic structure (electron concentration). For solid-solution-type alloys the most consistent correlation was obtained with electron concentration, for precipitation-hardenable alloys of the nickel-base superalloy group, the thermoelectric potential correlated with hardener content in the alloy structure. For solid-solution-type alloys, no problems were found with thermoelectric stability to 1000; for precipitation-hardenable alloys, thermoelectric stability was dependent on phase stability. The effects of the compositional range of alloy constituents on temperature measurement uncertainty are discussed.
Jones; Diddams; Ranka; Stentz; Windeler; Hall; Cundiff
2000-04-28
We stabilized the carrier-envelope phase of the pulses emitted by a femtosecond mode-locked laser by using the powerful tools of frequency-domain laser stabilization. We confirmed control of the pulse-to-pulse carrier-envelope phase using temporal cross correlation. This phase stabilization locks the absolute frequencies emitted by the laser, which we used to perform absolute optical frequency measurements that were directly referenced to a stable microwave clock.
Ihlen, Espen A. F.; Weiss, Aner; Helbostad, Jorunn L.; Hausdorff, Jeffrey M.
2015-01-01
The present study compares phase-dependent measures of local dynamic stability of daily life walking with 35 conventional gait features in their ability to discriminate between community-dwelling older fallers and nonfallers. The study reanalyzes 3D-acceleration data of 3-day daily life activity from 39 older people who reported less than 2 falls during one year and 31 who reported two or more falls. Phase-dependent local dynamic stability was defined for initial perturbation at 0%, 20%, 40%, 60%, and 80% of the step cycle. A partial least square discriminant analysis (PLS-DA) was used to compare the discriminant abilities of phase-dependent local dynamic stability with the discriminant abilities of 35 conventional gait features. The phase-dependent local dynamic stability λ at 0% and 60% of the step cycle discriminated well between fallers and nonfallers (AUC = 0.83) and was significantly larger (p < 0.01) for the nonfallers. Furthermore, phase-dependent λ discriminated as well between fallers and nonfallers as all other gait features combined. The present result suggests that phase-dependent measures of local dynamic stability of daily life walking might be of importance for further development in early fall risk screening tools. PMID:26491669
McMillan, E.M.; Judd, D.L.
1959-02-01
A cyclotron is presented embodying a unique magnetic field configuration, which configuration increases in intensity with radius and therefore compensates for the reltivistic mass effect, the field having further convolutions productive of axial stability in the particle beam. By reconciling the seemingly opposed requirements of mass increase compensation on one hand and anial stability on the other, the production of extremely high current particle beams in the relativistie energy range is made feasible. Certain further advantages inhere in the invention, notably an increase in the usable magnet gap, simplified and more efficient extraction of the beam from the accelerator, and ready adaptation to the use of multiply phased excitation as contrasted with the single phased systems herstofore utilized. General
Exploration of phase transition in ThS under pressure: An ab-initio investigation
NASA Astrophysics Data System (ADS)
Sahoo, B. D.; Mukherjee, D.; Joshi, K. D.; Kaushik, T. C.
2018-04-01
The ab-initio total energy calculations have been performed in thorium sulphide (ThS) to explore its high pressure phase stability. Our calculations predict a phase transformation from ambient rocksalt type structure (B1 phase) to a rhombohedral structure (R-3m phase) at ˜ 15 GPa and subsequently R-3m phase transforms to CsCl type structure (B2 phase) at ˜ 45 GPa. The first phase transition has been identified as second order type; whereas, the second transition is of first order type with volume discontinuity of 6.5%. The predicted high pressure R-3m phase is analogous to the experimentally observed hexagonal (distorted fcc) phase (Benedict et al., J. Less-Common Met., 1984) above 20 GPa. Further, using these calculations we have derived the equation of state which has been utilized to determine various physical quantities such as zero pressure equilibrium volume, bulk modulus, and pressure derivative of bulk modulus at ambient conditions.
NASA Technical Reports Server (NTRS)
Bigelow, Glen S.; Padula, Santo A., II; Garg, Anita; Noebe, Ronald D.
2007-01-01
High-temperature shape memory alloys in the NiTiPd system are being investigated as lower cost alternatives to NiTiPt alloys for use in compact solid-state actuators for the aerospace, automotive, and power generation industries. A range of ternary NiTiPd alloys containing 15 to 46 at.% Pd has been processed and actuator mimicking tests (thermal cycling under load) were used to measure transformation temperatures, work behavior, and dimensional stability. With increasing Pd content, the work output of the material decreased, while the amount of permanent strain resulting from each load-biased thermal cycle increased. Monotonic isothermal tension testing of the high-temperature austenite and low temperature martensite phases was used to partially explain these behaviors, where a mismatch in yield strength between the austenite and martensite phases was observed at high Pd levels. Moreover, to further understand the source of the permanent strain at lower Pd levels, strain recovery tests were conducted to determine the onset of plastic deformation in the martensite phase. Consequently, the work behavior and dimensional stability during thermal cycling under load of the various NiTiPd alloys is discussed in relation to the deformation behavior of the materials as revealed by the strain recovery and monotonic tension tests.
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Chen, Yuan L.; Miller, Robert A.
2003-01-01
Advanced oxide thermal barrier coatings have been developed by incorporating multi-component rare earth oxide dopants into zirconia-yttria to effectively promote the creation of the thermodynamically stable, immobile oxide defect clusters and/or nano-scale phases within the coating systems. The presence of these nano-sized defect clusters has found to significantly reduce the coating intrinsic thermal conductivity, improve sintering resistance, and maintain long-term high temperature stability. In this paper, the defect clusters and nano-structured phases, which were created by the addition of multi-component rare earth dopants to the plasma-sprayed and electron-beam physical vapor deposited thermal barrier coatings, were characterized by high-resolution transmission electron microscopy (TEM). The defect cluster size, distribution, crystallographic and compositional information were investigated using high-resolution TEM lattice imaging, selected area diffraction (SAD), electron energy-loss spectroscopy (EELS) and energy dispersive spectroscopy (EDS) analysis techniques. The results showed that substantial defect clusters were formed in the advanced multi-component rare earth oxide doped zirconia- yttria systems. The size of the oxide defect clusters and the cluster dopant segregation was typically ranging from 5 to 50 nm. These multi-component dopant induced defect clusters are an important factor for the coating long-term high temperature stability and excellent performance.
Design and Calibration of an RF Actuator for Low-Level RF Systems
NASA Astrophysics Data System (ADS)
Geng, Zheqiao; Hong, Bo
2016-02-01
X-ray free electron laser (FEL) machines like the Linac Coherent Light Source (LCLS) at SLAC require high-quality electron beams to generate X-ray lasers for various experiments. Digital low-level RF (LLRF) systems are widely used to control the high-power RF klystrons to provide a highly stable RF field in accelerator structures for beam acceleration. Feedback and feedforward controllers are implemented in LLRF systems to stabilize or adjust the phase and amplitude of the RF field. To achieve the RF stability and the accuracy of the phase and amplitude adjustment, low-noise and highly linear RF actuators are required. Aiming for the upgrade of the S-band Linac at SLAC, an RF actuator is designed with an I/Qmodulator driven by two digital-to-analog converters (DAC) for the digital LLRF systems. A direct upconversion scheme is selected for RF actuation, and an on-line calibration algorithm is developed to compensate the RF reference leakage and the imbalance errors in the I/Q modulator, which may cause significant phase and amplitude actuation errors. This paper presents the requirements on the RF actuator, the design of the hardware, the calibration algorithm, and the implementation in firmware and software and the test results at LCLS.
NASA Astrophysics Data System (ADS)
Bigelow, Glen S.; Padula, Santo A., II; Garg, Anita; Noebe, Ronald D.
2007-04-01
High-temperature shape memory alloys in the NiTiPd system are being investigated as lower cost alternatives to NiTiPt alloys for use in compact solid-state actuators for the aerospace, automotive, and power generation industries. A range of ternary NiTiPd alloys containing 15 to 46 at.% Pd has been processed and actuator mimicking tests (thermal cycling under load) were used to measure transformation temperatures, work behavior, and dimensional stability. With increasing Pd content, the work output of the material decreased, while the amount of permanent strain resulting from each load-biased thermal cycle increased. Monotonic isothermal tension testing of the high-temperature austenite and low temperature martensite phases was used to partially explain these behaviors, where a mismatch in yield strength between the austenite and martensite phases was observed at high Pd levels. Moreover, to further understand the source of the permanent strain at lower Pd levels, strain recovery tests were conducted to determine the onset of plastic deformation in the martensite phase. Consequently, the work behavior and dimensional stability during thermal cycling under load of the various NiTiPd alloys is discussed in relation to the deformation behavior of the materials as revealed by the strain recovery and monotonic tension tests.
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Chen, Yuan L.; Miller, Robert A.
1990-01-01
Advanced oxide thermal barrier coatings have been developed by incorporating multi- component rare earth oxide dopants into zirconia-yttria to effectively promote the creation of the thermodynamically stable, immobile oxide defect clusters and/or nano-scale phases within the coating systems. The presence of these nano-sized defect clusters has found to significantly reduce the coating intrinsic thermal conductivity, improve sintering resistance, and maintain long-term high temperature stability. In this paper, the defect clusters and nano-structured phases, which were created by the addition of multi-component rare earth dopants to the plasma- sprayed and electron-beam physical vapor deposited thermal barrier coatings, were characterized by high-resolution transmission electron microscopy (TEM). The defect cluster size, distribution, crystallographic and compositional information were investigated using high-resolution TEM lattice imaging, selected area diffraction (SAD), and energy dispersive spectroscopy (EDS) analysis techniques. The results showed that substantial defect clusters were formed in the advanced multi-component rare earth oxide doped zirconia-yttria systems. The size of the oxide defect clusters and the cluster dopant segregation was typically ranging fiom 5 to 50 nm. These multi-component dopant induced defect clusters are an important factor for the coating long-term high temperature stability and excellent performance.
NASA Technical Reports Server (NTRS)
Cook, Anthony; McNeil, Shirley; Switzer, Gregg; Battle, Philip
2010-01-01
Precise laser remote sensing of aerosol extinction and backscatter in the atmosphere requires a high-power, pulsed, frequency doubled Nd:YAG laser that is wavelength- stabilized to a narrow absorption line such as found in iodine vapor. One method for precise wavelength control is to injection seed the Nd:YAG laser with a low-power CW laser that is stabilized by frequency converting a fraction of the beam to 532 nm, and to actively frequency-lock it to an iodine vapor absorption line. While the feasibility of this approach has been demonstrated using bulk optics in NASA Langley s Airborne High Spectral Resolution Lidar (HSRL) program, an ideal, lower cost solution is to develop an all-waveguide, frequency-locked seed laser in a compact, robust package that will withstand the temperature, shock, and vibration levels associated with airborne and space-based remote sensing platforms. A key technology leading to this miniaturization is the integration of an efficient waveguide frequency doubling element, and a low-voltage phase modulation element into a single, monolithic, planar light-wave circuit (PLC). The PLC concept advances NASA's future lidar systems due to its compact, efficient and reliable design, thus enabling use on small aircraft and satellites. The immediate application for this technology is targeted for NASA Langley's HSRL system for aerosol and cloud characterization. This Phase I effort proposes the development of a potassium titanyl phosphate (KTP) waveguide phase modulator for future integration into a PLC. For this innovation, the proposed device is the integration of a waveguide-based frequency doubler and phase modulator in a single, fiber pigtail device that will be capable of efficient second harmonic generation of 1,064-nm light and subsequent phase modulation of the 532 nm light at 250 MHz, providing a properly spectrally formatted beam for HSRL s seed laser locking system. Fabrication of the integrated PLC chip for NASA Langley, planned for the Phase II effort, will require full integration and optimization of the waveguide components (SHG waveguide, splitters, and phase modulator) onto a single, monolithic device. The PLC will greatly reduce the size and weight, improve electrical- to-optical efficiency, and significantly reduce the cost of NASA Langley s current stabilized HSRL seed laser system built around a commercial off-the-shelf seed laser that is free-space coupled to a bulk doubler and bulk phase modulator.
NASA Astrophysics Data System (ADS)
Ni, Wei-Tou; Han, Sen; Jin, Tao
2016-11-01
With the LIGO announcement of the first direct detection of gravitational waves (GWs), the GW Astronomy was formally ushered into our age. After one-hundred years of theoretical investigation and fifty years of experimental endeavor, this is a historical landmark not just for physics and astronomy, but also for industry and manufacturing. The challenge and opportunity for industry is precision and innovative manufacturing in large size - production of large and homogeneous optical components, optical diagnosis of large components, high reflectance dielectric coating on large mirrors, manufacturing of components for ultrahigh vacuum of large volume, manufacturing of high attenuating vibration isolation system, production of high-power high-stability single-frequency lasers, production of high-resolution positioning systems etc. In this talk, we address the requirements and methods to satisfy these requirements. Optical diagnosis of large optical components requires large phase-shifting interferometer; the 1.06 μm Phase Shifting Interferometer for testing LIGO optics and the recently built 24" phase-shifting Interferometer in Chengdu, China are examples. High quality mirrors are crucial for laser interferometric GW detection, so as for ring laser gyroscope, high precision laser stabilization via optical cavities, quantum optomechanics, cavity quantum electrodynamics and vacuum birefringence measurement. There are stringent requirements on the substrate materials and coating methods. For cryogenic GW interferometer, appropriate coating on sapphire or silicon are required for good thermal and homogeneity properties. Large ultrahigh vacuum components and high attenuating vibration system together with an efficient metrology system are required and will be addressed. For space interferometry, drag-free technology and weak-light manipulation technology are must. Drag-free technology is well-developed. Weak-light phase locking is demonstrated in the laboratories while weak-light manipulation technology still needs developments.
NASA Astrophysics Data System (ADS)
Thangavelu, Karthik; Asthana, Saket
2015-09-01
The effect of magnetic cation substitution on the phase stabilization, ferroelectric, dielectric and magnetic properties of a lead free Na0.5Bi0.5TiO3 (NBT) system prepared by O2 atmosphere solid state sintering were studied extensively. Cobalt (Co) was chosen as the magnetic cation to substitute at the Ti-site of NBT with optimized 2.5 mol%. Rietveld analysis of x-ray diffraction data favours the monoclinic Cc phase stabilization strongly rather than the parent R3c phase. FE-SEM micrograph supports the single phase characteristics without phase segregation at the grain boundaries. The stabilized Cc space group was explained based on the collective local distortion effects due to spin-orbit stabilization at Co3+ and Co2+ functional centres. The phonon mode changes as observed in the TiO6 octahedral modes also support the Cc phase stabilization. The major Co3+-ion presence was revealed from corresponding crystal field transitions observed through solid state diffuse reflectance spectroscopy. The enhanced spontaneous polarization (Ps) from ≅38 μC cm-2 to 45 μC cm-2 could be due to the easy rotation of polarization vector along the {(1\\bar{1}0)}{{pc}} in Cc phase. An increase in static dielectric response (ɛ) from ɛ ≅ 42 to 60 along with enhanced diffusivity from γ ≅ 1.53 to 1.75 was observed. Magneto-thermal irreversibility and their magnetic field dependent ZFC/FC curves suggest the possibility of a spin glass like behaviour below 50 K. The monoclinic Cc phase stabilization as confirmed from structural studies was well correlated with the observed ferroic properties in magnetically diluted NBT.
Proton conducting ceramic membranes for hydrogen separation
Elangovan, S [South Jordan, UT; Nair, Balakrishnan G [Sandy, UT; Small, Troy [Midvale, UT; Heck, Brian [Salt Lake City, UT
2011-09-06
A multi-phase proton conducting material comprising a proton-conducting ceramic phase and a stabilizing ceramic phase. Under the presence of a partial pressure gradient of hydrogen across the membrane or under the influence of an electrical potential, a membrane fabricated with this material selectively transports hydrogen ions through the proton conducting phase, which results in ultrahigh purity hydrogen permeation through the membrane. The stabilizing ceramic phase may be substantially structurally and chemically identical to at least one product of a reaction between the proton conducting phase and at least one expected gas under operating conditions of a membrane fabricated using the material. In a barium cerate-based proton conducting membrane, one stabilizing phase is ceria.
Polymer Dispersed Liquid Crystal Displays
NASA Astrophysics Data System (ADS)
Doane, J. William
The following sections are included: * INTRODUCTION AND HISTORICAL DEVELOPMENT * PDLC MATERIALS PREPARATION * Polymerization induced phase separation (PIPS) * Thermally induced phase separation (TIPS) * Solvent induced phase separation (SIPS) * Encapsulation (NCAP) * RESPONSE VOLTAGE * Dielectric and resistive effects * Radial configuration * Bipolar configuration * Other director configurations * RESPONSE TIME * DISPLAY CONTRAST * Light scattering and index matching * Incorporation of dyes * Contrast measurements * PDLC DISPLAY DEVICES AND INNOVATIONS * Reflective direct view displays * Large-scale, flexible displays * Switchable windows * Projection displays * High definition spatial light modulator * Haze-free PDLC shutters: wide angle view displays * ENVIRONMENTAL STABILITY * ACKNOWLEDGEMENTS * REFERENCES
Phase transition in conjugated oligomers suspended in chloroform
NASA Astrophysics Data System (ADS)
Dwivedi, Shikha; Kumar, Anupam; Yadav, S. N. S.; Mishra, Pankaj
2015-08-01
Density functional theory (DFT) has been used to investigate the isotropic-nematic (I-N) phase transition in a system of high aspect ratio conjugated oligomers suspended in chloroform. The interaction between the oligomers is modeled using Gay-Berne potential in which effect of solvent is implicit. Percus-Yevick integral equation theory has been used to evaluate the pair correlation functions of the fluid phase at several temperatures and densities. These pair correlation function has been used in the DFT to evaluate the I-N freezing parameters. Highly oriented nematic is found to stabilize at low density. The results obtained are in qualitative agreement with the simulation and are verifiable.
NASA Astrophysics Data System (ADS)
Srivastava, Vishal; Nandy, Sreyankar; Singh Mehta, Dalip
2013-04-01
Topography and tomography of fish cornea is reconstructed using high resolution white light interference microscopy. White light interferograms at different depths were recorded by moving the object axially. For each depth position, five phase shifted interferograms were recorded and analyzed. From the reconstructed phase maps, the corneal topography and hence the refractive index was determined and from amplitude images the cross-sectional image of fish cornea was reconstructed. In the present method, we utilize a nearly common-path interference microscope and wide field illumination and hence do not require any mechanical B-scan. Therefore, the phase stability of the recorded data is improved.
Xu, Jing; Mukherjee, Dipaloke; Chang, Sam K C
2018-02-01
This study investigated the effects of the ultrahigh pressure homogenization (pressure, protein concentration, oil phase fraction, pH, temperature, and ionic strength) and storage on the properties of nanoemulsions (100-500nm range), which were stabilized by laboratory-prepared soybean protein isolate (SPI), β-conglycinin (7S) and glycinin (11S). The nanoemulsions made with SPI, 7S and 11S proteins exhibited considerable stability over various ionic strengths (0-500mM NaCl), pH (<4 or >7), thermal treatments (30-60°C) and storage (0-45days). The far-UV spectra of SPI, 7S, 11S dispersions, and SPI-, 7S-, 11S protein-stabilized nanoemulsions were analyzed for the protein structural changes following lipid removal. The ultra-high pressure homogenization changed the secondary structure of SPI, 7S, 11S proteins in the nanoemulsions, and enhanced their stability. This study demonstrated that SPI, 7S, and 11S proteins can be used as effective emulsifiers in nanoemulsions prepared by ultra-high pressure homogenization. Copyright © 2017. Published by Elsevier Ltd.
High Chloride Doping Levels Stabilize the Perovskite Phase of Cesium Lead Iodide.
Dastidar, Subham; Egger, David A; Tan, Liang Z; Cromer, Samuel B; Dillon, Andrew D; Liu, Shi; Kronik, Leeor; Rappe, Andrew M; Fafarman, Aaron T
2016-06-08
Cesium lead iodide possesses an excellent combination of band gap and absorption coefficient for photovoltaic applications in its perovskite phase. However, this is not its equilibrium structure under ambient conditions. In air, at ambient temperature it rapidly transforms to a nonfunctional, so-called yellow phase. Here we show that chloride doping, particularly at levels near the solubility limit for chloride in a cesium lead iodide host, provides a new approach to stabilizing the functional perovskite phase. In order to achieve high doping levels, we first co-deposit colloidal nanocrystals of pure cesium lead chloride and cesium lead iodide, thereby ensuring nanometer-scale mixing even at compositions that potentially exceed the bulk miscibility of the two phases. The resulting nanocrystal solid is subsequently fused into a polycrystalline thin film by chemically induced, room-temperature sintering. Spectroscopy and X-ray diffraction indicate that the chloride is further dispersed during sintering and a polycrystalline mixed phase is formed. Using density functional theory (DFT) methods in conjunction with nudged elastic band techniques, low-energy pathways for interstitial chlorine diffusion into a majority-iodide lattice were identified, consistent with the facile diffusion and fast halide exchange reactions observed. By comparison to DFT-calculated values (with the PBE exchange-correlation functional), the relative change in band gap and the lattice contraction are shown to be consistent with a Cl/I ratio of a few percent in the mixed phase. At these incorporation levels, the half-life of the functional perovskite phase in a humid atmosphere increases by more than an order of magnitude.
Yao, Lei; Pan, Wei; Luo, Jian; Zhao, Xiaohui; Cheng, Jing; Nishijima, Hiroki
2018-01-10
Nanocrystalline materials often exhibit extraordinary mechanical and physical properties but their applications at elevated temperatures are impaired by the rapid grain growth. Moreover, the grain growth in nanocrystalline oxide nanofibers at high temperatures can occur at hundreds of degrees lower than that would occur in corresponding bulk nanocrystalline materials, which would eventually break the fibers. Herein, by characterizing a model system of scandia-stabilized zirconia using hot-stage in situ scanning transmission electron microscopy, we discover that the enhanced grain growth in nanofibers is initiated at the surface. Subsequently, we demonstrate that coating the fibers with nanometer-thick amorphous alumina layer can enhance their temperature stability by nearly 400 °C via suppressing the surface-initiated grain growth. Such a strategy can be effectively applied to other oxide nanofibers, such as samarium-doped ceria, yttrium-stabilized zirconia, and lanthanum molybdate. The nanocoatings also increase the flexibility of the oxide nanofibers and stabilize the high-temperature phases that have 10 times higher ionic conductivity. This study provides new insights into the surface-initiated grain growth in nanocrystalline oxide nanofibers and develops a facile yet innovative strategy to improve the high-temperature stability of nanofibers for a broad range of applications.
Gupta, Ujjwal; Reber, Arthur C; Clayborne, Penee A; Melko, Joshua J; Khanna, Shiv N; Castleman, A W
2008-12-01
Synergistic studies of bismuth doped tin clusters combining photoelectron spectra with first principles theoretical investigations establish that highly charged Zintl ions, observed in the condensed phase, can be stabilized as isolated gas phase clusters through atomic substitution that preserves the overall electron count but reduces the net charge and thereby avoids instability because of coulomb repulsion. Mass spectrometry studies reveal that Sn(8)Bi(-), Sn(7)Bi(2)(-), and Sn(6)Bi(3)(-) exhibit higher abundances than neighboring species, and photoelectron spectroscopy show that all of these heteroatomic gas phase Zintl analogues (GPZAs) have high adiabatic electron detachment energies. Sn(6)Bi(3)(-) is found to be a particularly stable cluster, having a large highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) gap. Theoretical calculations demonstrate that the Sn(6)Bi(3)(-) cluster is isoelectronic with the well know Sn(9)(-4) Zintl ion; however, the fluxionality reported for Sn(9)(-4) is suppressed by substituting Sn atoms with Bi atoms. Thus, while the electronic stability of the clusters is dominated by electron count, the size and position of the atoms affects the dynamics of the cluster as well. Substitution with Bi enlarges the cage compared with Sn(9)(-4) making it favorable for endohedral doping, findings which suggest that these cages may find use for building blocks of cluster assembled materials.
Synthesis of Caffeine/Maleic Acid Co-crystal by Ultrasound-assisted Slurry Co-crystallization.
Apshingekar, Prafulla P; Aher, Suyog; Kelly, Adrian L; Brown, Elaine C; Paradkar, Anant
2017-01-01
A green approach has been used for co-crystallization of noncongruent co-crystal pair of caffeine/maleic acid using water. Ultrasound is known to affect crystallization; hence, the effect of high power ultrasound on the ternary phase diagram has been investigated in detail using a slurry co-crystallization approach. A systematic investigation was performed to understand how the accelerated conditions during ultrasound-assisted co-crystallization will affect different regions of the ternary phase diagram. Application of ultrasound showed considerable effect on the ternary phase diagram, principally on caffeine/maleic acid 2:1 (disappeared) and 1:1 co-crystal (narrowed) regions. Also, the stability regions for pure caffeine and maleic acid in water were narrowed in the presence of ultrasound, expanding the solution region. The observed effect of ultrasound on the phase diagram was correlated with solubility of caffeine and maleic acid and stability of co-crystal forms in water. Copyright © 2016. Published by Elsevier Inc.
Method and apparatus for stabilizing pulsed microwave amplifiers
Hopkins, Donald B.
1993-01-01
Phase and amplitude variations at the output of a high power pulsed microwave amplifier arising from instabilities of the driving electron beam are suppressed with a feed-forward system that can stabilize pulses which are too brief for regulation by conventional feedback techniques. Such variations tend to be similar during successive pulses. The variations are detected during each pulse by comparing the amplifier output with the low power input signal to obtain phase and amplitude error signals. This enables storage of phase and amplitude correction signals which are used to make compensating changes in the low power input signal during the following amplifier output pulse which suppress the variations. In the preferred form of the invention, successive increments of the correction signals for each pulse are stored in separate channels of a multi-channel storage. Sequential readout of the increments during the next pulse provides variable control voltages to a voltage controlled phase shifter and voltage controlled amplitude modulator in the amplifier input signal path.
Method and apparatus for stabilizing pulsed microwave amplifiers
Hopkins, D.B.
1993-01-26
Phase and amplitude variations at the output of a high power pulsed microwave amplifier arising from instabilities of the driving electron beam are suppressed with a feed-forward system that can stabilize pulses which are too brief for regulation by conventional feedback techniques. Such variations tend to be similar during successive pulses. The variations are detected during each pulse by comparing the amplifier output with the low power input signal to obtain phase and amplitude error signals. This enables storage of phase and amplitude correction signals which are used to make compensating changes in the low power input signal during the following amplifier output pulse which suppress the variations. In the preferred form of the invention, successive increments of the correction signals for each pulse are stored in separate channels of a multi-channel storage. Sequential readout of the increments during the next pulse provides variable control voltages to a voltage controlled phase shifter and voltage controlled amplitude modulator in the amplifier input signal path.
NASA Technical Reports Server (NTRS)
Schreifels, W. A.; Muan, A.
1975-01-01
Phase relations in the liquidus temperature region of the system 'FeO'-Al2O3-TiO2 in contact with metallic iron, at a total pressure below 1 atm, have been determined by the quenching technique. Four invariant points have been located, with phase assemblages and temperatures as follows; wuestite, ulvoespinel, nercynite and liquid, 1306 C; ulvoespinel, ilmenite, ferropseudobrookite and liquid, 1340 C; ulvoespinel, hercynite, ferropseudobrookite and liquid, 1367 C; hercynite, ferropseudobrookite, corundum and liquid, 1465 C. The data obtained confirm the presence of a miscibility gap between titanate and aluminate spinels, and provide quantitative data for the effect of Al2O3 on mutual stability relations among spinel, ilmenite, and ferropseudobrookite phases in the presence of liquid at high temperatures and strongly reducing conditions. It is shown that Al2O3 has a strong stabilizing effect on the phase assemblage ferropseudobrookite and spinel relative to ilmenite.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Achyuthan, Komandoor E.; Wheeler, David R.
Evaluating the stability of coupling reagents, quality control (QC), and surface functionalization metrology are all critical to the production of high quality peptide microarrays. We describe a broadly applicable screening technique for evaluating the fidelity of solid phase peptide synthesis (SPPS), the stability of activation/coupling reagents, and a microarray surface metrology tool. This technique was used to assess the stability of the activation reagent 1-{[1-(Cyano-2-ethoxy-2-oxo-ethylidenaminooxy)dimethylamino-morpholinomethylene]}methaneaminiumHexafluorophosphate (COMU) (Sigma-Aldrich, St. Louis, MO, USA) by SPPS of Leu-Enkephalin (YGGFL) or the coupling of commercially synthesized YGGFL peptides to (3-aminopropyl)triethyoxysilane-modified glass surfaces. Coupling efficiency was quantitated by fluorescence signaling based on immunoreactivity of themore » YGGFL motif. It was concluded that COMU solutions should be prepared fresh and used within 5 h when stored at ~23 °C and not beyond 24 h if stored refrigerated, both in closed containers. Caveats to gauging COMU stability by absorption spectroscopy are discussed. Commercial YGGFL peptides needed independent QC, due to immunoreactivity variations for the same sequence synthesized by different vendors. This technique is useful in evaluating the stability of other activation/coupling reagents besides COMU and as a metrology tool for SPPS and peptide microarrays.« less
Achyuthan, Komandoor E.; Wheeler, David R.
2015-08-27
Evaluating the stability of coupling reagents, quality control (QC), and surface functionalization metrology are all critical to the production of high quality peptide microarrays. We describe a broadly applicable screening technique for evaluating the fidelity of solid phase peptide synthesis (SPPS), the stability of activation/coupling reagents, and a microarray surface metrology tool. This technique was used to assess the stability of the activation reagent 1-{[1-(Cyano-2-ethoxy-2-oxo-ethylidenaminooxy)dimethylamino-morpholinomethylene]}methaneaminiumHexafluorophosphate (COMU) (Sigma-Aldrich, St. Louis, MO, USA) by SPPS of Leu-Enkephalin (YGGFL) or the coupling of commercially synthesized YGGFL peptides to (3-aminopropyl)triethyoxysilane-modified glass surfaces. Coupling efficiency was quantitated by fluorescence signaling based on immunoreactivity of themore » YGGFL motif. It was concluded that COMU solutions should be prepared fresh and used within 5 h when stored at ~23 °C and not beyond 24 h if stored refrigerated, both in closed containers. Caveats to gauging COMU stability by absorption spectroscopy are discussed. Commercial YGGFL peptides needed independent QC, due to immunoreactivity variations for the same sequence synthesized by different vendors. This technique is useful in evaluating the stability of other activation/coupling reagents besides COMU and as a metrology tool for SPPS and peptide microarrays.« less
Robust Stability Analysis of the Space Launch System Control Design: A Singular Value Approach
NASA Technical Reports Server (NTRS)
Pei, Jing; Newsome, Jerry R.
2015-01-01
Classical stability analysis consists of breaking the feedback loops one at a time and determining separately how much gain or phase variations would destabilize the stable nominal feedback system. For typical launch vehicle control design, classical control techniques are generally employed. In addition to stability margins, frequency domain Monte Carlo methods are used to evaluate the robustness of the design. However, such techniques were developed for Single-Input-Single-Output (SISO) systems and do not take into consideration the off-diagonal terms in the transfer function matrix of Multi-Input-Multi-Output (MIMO) systems. Robust stability analysis techniques such as H(sub infinity) and mu are applicable to MIMO systems but have not been adopted as standard practices within the launch vehicle controls community. This paper took advantage of a simple singular-value-based MIMO stability margin evaluation method based on work done by Mukhopadhyay and Newsom and applied it to the SLS high-fidelity dynamics model. The method computes a simultaneous multi-loop gain and phase margin that could be related back to classical margins. The results presented in this paper suggest that for the SLS system, traditional SISO stability margins are similar to the MIMO margins. This additional level of verification provides confidence in the robustness of the control design.
Raman spectroscopy analysis of air grown oxide scale developed on pure zirconium substrate
NASA Astrophysics Data System (ADS)
Kurpaska, L.; Favergeon, J.; Lahoche, L.; El-Marssi, M.; Grosseau Poussard, J.-L.; Moulin, G.; Roelandt, J.-M.
2015-11-01
Using Raman spectroscopy technique, external and internal parts of zirconia oxide films developed at 500 °C and 600 °C on pure zirconium substrate under air at normal atmospheric pressure have been examined. Comparison of Raman peak positions of tetragonal and monoclinic zirconia phases, recorded during the oxide growth at elevated temperature, and after cooling at room temperature have been presented. Subsequently, Raman peak positions (or shifts) were interpreted in relation with the stress evolution in the growing zirconia scale, especially closed to the metal/oxide interface, where the influence of compressive stress in the oxide is the biggest. Reported results, for the first time show the presence of a continuous layer of tetragonal zirconia phase developed in the proximity of pure zirconium substrate. Based on the Raman peak positions we prove that this tetragonal layer is stabilized by the high compressive stress and sub-stoichiometry level. Presence of the tetragonal phase located in the outer part of the scale have been confirmed, yet its Raman characteristics suggest a stress-free tetragonal phase, therefore different type of stabilization mechanism. Presented study suggest that its stabilization could be related to the lattice defects introduced by highstoichiometry of zirconia or presence of heterovalent cations.
Formation and Stability of Pb-Sn Embedded Multiphase Alloy Nanoparticles via Mechanical Alloying
NASA Astrophysics Data System (ADS)
Khan, Patan Yousaf; Devi, M. Manolata; Biswas, Krishanu
2015-08-01
The present paper describes the preparation, characterization, and stability of Pb-Sn multiphase alloy nanoparticles embedded in Al matrix via mechanical alloying (MA). MA is a solid-state processing route, which can produce nanocrystalline phases by severely deforming the materials at high strain rate. Therefore, in order to understand the effect of the increasing interface as well as defects on the phase transformation behavior of Pb-Sn nanoparticles, Pb-Sn multiphase nanoparticles have been embedded in Al by MA. The nanoparticles have extensively been characterized using X-ray diffraction and transmission electron microscope. The characterization reveals the formation of biphasic as well as single-phase solid solution nanoparticles embedded in the matrix. The detailed microstructural and differential scanning calorimetry studies indicate that the formation of biphasic nanoparticles is due to size effect, mechanical attrition, and ballistic diffusion of Pb and Sn nanoparticles embedded in Al grains. Thermal characterization data reveal that the heating event consists of the melting peaks due to the multiphase nanoparticles and the peak positions shift to lower temperature with the increase in milling time. The role of interface structure is believed to play a prominent role in determining the phase stability of the nanoparticle. The results are discussed in the light of the existing literature.
On the stability of sub-stoichiometric uranium oxides
NASA Astrophysics Data System (ADS)
Winer, K.; Colmenares, C. A.; Smith, R. L.; Wooten, F.
1986-12-01
The oxidation of clean, high-purity polycrystalline uranium metal surfaces for low exposures to dry oxygen was studied with AES and XPS in an attempt to substantiate claims for the formation of a stable UO surface phase at ambient temperatures. We found no evidence for such a surface phase and found instead that grossly sub-stoichiometric surface oxides were formed after sequential oxygen saturation and heating.
Encapsulation of nZVI particles using a Gum Arabic stabilized oil-in-water emulsion.
Long, Tao; Ramsburg, C Andrew
2011-05-30
Stabilization of reactive iron particles against aggregation and sedimentation is a critical engineering aspect for successful application of nZVI (nanoscale zero valent iron) within the contaminated subsurface environment. In this work we explore the stability and reactivity of a new encapsulation approach that relies upon Gum Arabic to stabilize high quantities of nZVI (∼ 12 g/L) in the dispersed phase of a soybean oil-in-water emulsion. The emulsion is kinetically stable due to substantial repulsive barriers to droplet-droplet induced deformation and subsequent coalescence. Sedimentation time scales were found to be on the order of hours (τ=4.77 ± 0.02 h). Thus, the use of Gum Arabic represents an advance in stabilizing nZVI-in-oil-in-water emulsions. nZVI within the emulsion was shown to be reactive with both TCE degradation and H(2) production observed. Degradation rates were observed to be on the same order of magnitude as those reported for less stable, aqueous suspensions of nZVI. TCE consumption within the emulsion was described with an equivalent aqueous phase rate coefficient of ∼ 5 × 10(-4)L(aq)/m(2)h. Copyright © 2011 Elsevier B.V. All rights reserved.
Quantification of the Conditioning Phase in Cooled Pixelated TlBr Detectors
NASA Astrophysics Data System (ADS)
Koehler, Will; He, Zhong; O'Neal, Sean; Yang, Hao; Kim, Hadong; Cirignano, Leonard; Shah, Kanai
2015-08-01
Thallium-bromide (TlBr) is currently under investigation as an alternative room-temperature semiconductor gamma-ray spectrometer due to its favorable material properties (large bandgap, high atomic numbers, and high density). Previous work has shown that 5 mm thick pixelated TlBr detectors can achieve sub-1% FWHM energy resolution at 662 keV for single-pixel events. These results are limited to - 20° C operation where detector performance is stable. During the first one to five days of applied bias at - 20° C, many TlBr detectors undergo a conditioning phase, where the energy resolution improves and the depth-dependent electron drift velocity stabilizes. In this work, the spectroscopic performance, drift velocity, and freed electron concentrations of multiple 5 mm thick pixelated TlBr detectors are monitored throughout the conditioning phase. Additionally, conditioning is performed twice on the same detector at different times to show that improvement mechanisms relax when the detector is stored without bias. We conclude that the improved spectroscopy results from internal electric field stabilization and uniformity caused by fewer trapped electrons.
Setzer, Max J.
2001-03-01
In contrast to the triple-point condition of bulk material, condensed matter in porous media can coexist stably as liquid, solid, and vapor over a wide temperature range. The necessary conditions are found by a thermodynamic approach starting with the potential which reflects the grand canonical distribution and is characterized by heat and matter exchange. The other parameters are volume and surface. Therefore, it is designated the free mechanical potential. General expressions for mechanical stability are given. On condensation and melting the nonwetting phases vanish. These are thermodynamically stable phase transitions. For the opposing effects evaporation and fusion, an energy barrier must be transgressed either by nucleation or by intrusion as discussed here. These are metastable states. Phase transitions are the conditions which limit the triple-phase region. Within this region high negative pressures are generated in the unfrozen liquid independent of the pore size where it exists. The findings are applied to water in the disperse matrix of hardened cement paste. They are the basis for "micro ice lens pumping". Copyright 2001 Academic Press.
Multi-Phase Field Models and Microstructural Evolution with Applications in Fuel Cell Technology
NASA Astrophysics Data System (ADS)
Davis, Ryan Scott
The solid oxide fuel cell (SOFC) has shown tremendous potential as an efficient energy conversion device that may be instrumental in the transition to renewable resources. However, commercialization is hindered by many degradation mechanisms that plague long term stability. In this dissertation, computation methods are used to explore the relationship between the microstructure of the fuel cell anode and performance critical metrics. The phase field method and standard modeling procedures are introduced using a classic model of spinodal decomposition. This is further developed into a complete, multi-phase modeling framework designed for the complex microstructural evolution of SOFC anode systems. High-temperature coarsening of the metallic phase in the state-of-the-art SOFC cermet anode is investigated using our phase field model. A systematic study into the effects of interface properties on microstructural evolution is accomplished by altering the contact angle between constituent phases. It is found that metrics of catalytic activity and conductivity display undesirable minima near the contact angle of conventional SOFC materials. These results suggest that tailoring the interface properties of the constituent phases could lead to a significant increase in the performance and lifetime of SOFCs. Supported-metal catalyst systems are investigated in the first detailed study of their long-term stability and application to SOFC anode design. Porous support structures are numerically sintered to mimic specific fabrication techniques, and these structures are then infiltrated with a nanoscale catalyst phase ranging from 2% to 21% loading. Initially, these systems exhibit enhanced potential for catalytic activity relative to conventional cells. However, extended evolution results in severe degradation, and we show that Ostwald ripening and particle migration are key kinetic processes. Strong geometric heterogeneity in the support structure via a novel approach to nanopore formation is proposed as a potential solution for catalyst stabilization.
Stavrou, Elissaios; Yao, Yansun; Zaug, Joseph M; Bastea, Sorin; Kalkan, Bora; Konôpková, Zuzana; Kunz, Martin
2016-08-12
Magnesium chloride (MgCl2) with the rhombohedral layered CdCl2-type structure (α-MgCl2) has been studied experimentally using synchrotron angle-dispersive powder x-ray diffraction and Raman spectroscopy using a diamond-anvil cell up to 100 GPa at room temperature and theoretically using first-principles density functional calculations. The results reveal a pressure-induced second-order structural phase transition to a hexagonal layered CdI2-type structure (β-MgCl2) at 0.7 GPa: the stacking sequence of the Cl anions are altered resulting in a reduction of the c-axis length. Theoretical calculations confirm this phase transition sequence and the calculated transition pressure is in excellent agreement with the experiment. Lattice dynamics calculations also reproduce the experimental Raman spectra measured for the ambient and high-pressure phase. According to our experimental results MgCl2 remains in a 2D layered phase up to 100 GPa and further, the 6-fold coordination of Mg cations is retained. Theoretical calculations of relative enthalpy suggest that this extensive pressure stability is due to a low enthalpy of the layered structure ruling out kinetic barrier effects. This observation is unusual, as it contradicts with the general structural behavior of highly compressed AB2 compounds.
Stavrou, Elissaios; Yao, Yansun; Zaug, Joseph M.; ...
2016-08-12
We studied magnesium chloride (MgCl 2) with the rhombohedral layered CdCl 2-type structure (α-MgCl 2), experimentally, using synchrotron angle-dispersive powder x-ray diffraction and Raman spectroscopy using a diamond-anvil cell up to 100 GPa at room temperature and theoretically using first-principles density functional calculations. Our results reveal a pressure-induced second-order structural phase transition to a hexagonal layered CdI 2-type structure (β-MgCl 2) at 0.7 GPa: the stacking sequence of the Cl anions are altered resulting in a reduction of the c-axis length. Theoretical calculations confirm this phase transition sequence and the calculated transition pressure is in excellent agreement with the experiment.more » Lattice dynamics calculations also reproduce the experimental Raman spectra measured for the ambient and high-pressure phase. According to our experimental results MgCl 2 remains in a 2D layered phase up to 100 GPa and further, the 6-fold coordination of Mg cations is retained. Theoretical calculations of relative enthalpy suggest that this extensive pressure stability is due to a low enthalpy of the layered structure ruling out kinetic barrier effects. Our observation is unusual, as it contradicts with the general structural behavior of highly compressed AB 2 compounds.« less
Aeroservoelastic stabilization technique refinement for hypersonic flight vehicles
NASA Technical Reports Server (NTRS)
Cheng, Peter Y.; Chan, Samuel Y.; Myers, Thomas T.; Klyde, David H.; Mcruer, Duane T.
1992-01-01
Conventional gain-stabilization techniques introduce low frequency effective time delays which can be troublesome from the viewpoint of SSTOV vehicles' flying qualities. These time delays can be alleviated through a blending of gain-stabilization and phase-stabilization techniques; the resulting hybrid phase stabilization (HPS) for the low-frequency structural modes has been noted to have greater residual response than a conventional gain-stabilizer design. HPS design procedures are presently refined, and residual response metrics are developed.
Effect of Al on stability of DHMS up to the uppermost lower mantle
NASA Astrophysics Data System (ADS)
Xu, C.; Inoue, T.
2017-12-01
Water plays an important role on Earth. It influences the physical and chemical property of minerals and melts, which further effects the evolution of the Earth. A series of dense hydrous magnesium silicate (DHMS) phases such as phase A (PhA), phase E (PhE), superhydrous phase B (SUB) and phase D (PhD) have been suggested as potential water carriers to transition zone and even to the lower mantle under the conditions present in the cold subducting slabs [e.g. Kawamoto, 2004; Komabayashi and Omori, 2006]. Because of its importance, the DHMS have been widely studied by using different starting materials in MgO-SiO2-H2O system. Recently, the newly reported Al-PhD is stable at temperatures up to 2,000 °C at 26 GPa, which indicates aluminum increases stability regions of DHMS [e.g. Pamato et al., 2015]. To systematically study the effect of Al on the stability of hydrous phases, we use Kawai-type high pressure apparatus to investigate nature clinochlore, which contains about 15 wt% H2O and about 14 wt% Al2O3. The Al-bearing hydrous PhE, SUB and PhD were observed with P-T increasing. Following the P-T path of cold subduction, the phase assemblage PhE + PhD is stable at 14-23 GPa, and even a trace of PhE is detected at 1150°C and 25 GPa coexisting with PhD. The phase SUB is stable between 16-22 GPa coexisting with PhE + PhD. Following the P-T path of hot subduction, the phase assemblage PhE + Gt is observed at 14-18 GPa coexisting with fluid or melt. The phase assemblage SUB + PhD is stable at 18-25 GPa, which may extend to higher pressures and temperatures. Therefore, it is obvious that Al enhances the stabilities of these three hydrous minerals, which are stable even in the hot subducting conditions. On the other hand, the Al substitution mechanism in PhE, SUB and PhD were clarified according to chemical compositional relationship between Mg, Si, Al. This shows that they can hold a significant amount of H (water) in their structure. Our results may indicate that the wide stabilities of Al-bearing DHMS increase the chance of water transportation to deeper mantle after antigorite (serpentine) decomposition at the shallow region of the subduction zone.
Stability of smectic phases in hard-rod mixtures
NASA Astrophysics Data System (ADS)
Martínez-Ratón, Yuri; Velasco, Enrique; Mederos, Luis
2005-09-01
Using density-functional theory, we have analyzed the phase behavior of binary mixtures of hard rods of different lengths and diameters. Previous studies have shown a strong tendency of smectic phases of these mixtures to segregate and, in some circumstances, to form microsegregated phases. Our focus in the present work is on the formation of columnar phases which some studies, under some approximations, have shown to become thermodynamically stable prior to crystallization. Specifically we focus on the relative stability between smectic and columnar phases, a question not fully addressed in previous work. Our analysis is based on two complementary perspectives: on the one hand, an extended Onsager theory, which includes the full orientational degrees of freedom but with spatial and orientational correlations being treated in an approximate manner; on the other hand, we formulate a Zwanzig approximation of fundamental-measure theory on hard parallelepipeds, whereby orientations are restricted to be only along three mutually orthogonal axes, but correlations are faithfully represented. In the latter case novel, complete phase diagrams containing regions of stability of liquid-crystalline phases are calculated. Our findings indicate that the restricted-orientation approximation enhances the stability of columnar phases so as to preempt smectic order completely while, in the framework of the extended Onsager model, with full orientational degrees of freedom taken into account, columnar phases may preempt a large region of smectic stability in some mixtures, but some smectic order still persists.
Phase Transition Control for High Performance Ruddlesden-Popper Perovskite Solar Cells.
Zhang, Xu; Munir, Rahim; Xu, Zhuo; Liu, Yucheng; Tsai, Hsinhan; Nie, Wanyi; Li, Jianbo; Niu, Tianqi; Smilgies, Detlef-M; Kanatzidis, Mercouri G; Mohite, Aditya D; Zhao, Kui; Amassian, Aram; Liu, Shengzhong Frank
2018-05-01
Ruddlesden-Popper reduced-dimensional hybrid perovskite (RDP) semiconductors have attracted significant attention recently due to their promising stability and excellent optoelectronic properties. Here, the RDP crystallization mechanism in real time from liquid precursors to the solid film is investigated, and how the phase transition kinetics influences phase purity, quantum well orientation, and photovoltaic performance is revealed. An important template-induced nucleation and growth of the desired (BA) 2 (MA) 3 Pb 4 I 13 phase, which is achieved only via direct crystallization without formation of intermediate phases, is observed. As such, the thermodynamically preferred perpendicular crystal orientation and high phase purity are obtained. At low temperature, the formation of intermediate phases, including PbI 2 crystals and solvate complexes, slows down intercalation of ions and increases nucleation barrier, leading to formation of multiple RDP phases and orientation randomness. These insights enable to obtain high quality (BA) 2 (MA) 3 Pb 4 I 13 films with preferentially perpendicular quantum well orientation, high phase purity, smooth film surface, and improved optoelectronic properties. The resulting devices exhibit high power conversion efficiency of 12.17%. This work should help guide the perovskite community to better control Ruddlesden-Popper perovskite structure and further improve optoelectronic and solar cell devices. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Polymer-stabilized liquid crystal blue phases.
Kikuchi, Hirotsugu; Yokota, Masayuki; Hisakado, Yoshiaki; Yang, Huai; Kajiyama, Tisato
2002-09-01
Blue phases are types of liquid crystal phases that appear in a temperature range between a chiral nematic phase and an isotropic liquid phase. Because blue phases have a three-dimensional cubic structure with lattice periods of several hundred nanometres, they exhibit selective Bragg reflections in the range of visible light corresponding to the cubic lattice. From the viewpoint of applications, although blue phases are of interest for fast light modulators or tunable photonic crystals, the very narrow temperature range, usually less than a few kelvin, within which blue phases exist has always been a problem. Here we show the stabilization of blue phases over a temperature range of more than 60 K including room temperature (260-326 K). Furthermore, we demonstrate an electro-optical switching with a response time of the order of 10(-4) s for the stabilized blue phases at room temperature.
Superconducting H5S2 phase in sulfur-hydrogen system under high-pressure
Ishikawa, Takahiro; Nakanishi, Akitaka; Shimizu, Katsuya; Katayama-Yoshida, Hiroshi; Oda, Tatsuki; Suzuki, Naoshi
2016-01-01
Recently, hydrogen sulfide was experimentally found to show the high superconducting critical temperature (Tc) under high-pressure. The superconducting Tc shows 30–70 K in pressure range of 100–170 GPa (low-Tc phase) and increases to 203 K, which sets a record for the highest Tc in all materials, for the samples annealed by heating it to room temperature at pressures above 150 GPa (high-Tc phase). Here we present a solid H5S2 phase predicted as the low-Tc phase by the application of the genetic algorithm technique for crystal structure searching and first-principles calculations to sulfur-hydrogen system under high-pressure. The H5S2 phase is thermodynamically stabilized at 110 GPa, in which asymmetric hydrogen bonds are formed between H2S and H3S molecules. Calculated Tc values show 50–70 K in pressure range of 100–150 GPa within the harmonic approximation, which can reproduce the experimentally observed low-Tc phase. These findings give a new aspect of the excellent superconductivity in compressed sulfur-hydrogen system. PMID:26983593
The system of high accuracy UV spectral radiation system
NASA Astrophysics Data System (ADS)
Lin, Guan-yu; Yu, Lei; Xu, Dian; Cao, Dian-sheng; Yu, Yu-Xiang
2016-10-01
UV spectral radiation detecting and visible observation telescope is designed by the coaxial optical. In order to decrease due to the incident light polarization effect, and improve the detection precision, polarizer need to be used in the light path. Four pieces of quartz of high Precision UV radiation depolarizer retarder stack together is placed in front of Seya namioka dispersion unit. The coherent detection principle of modulation of light signal and the reference signal multiplied processing, increase the phase sensitive detector can be adjustment function, ensure the UV spectral radiation detection stability. A lock-in amplifier is used in the electrical system to advance the accuracy of measurement. To ensure the precision measurement detected, the phase-sensitive detector function can be adjustable. the output value is not more than 10mV before each measurement, so it can be ensured that the stability of the measured radiation spectrum is less than 1 percent.
Chen, Qijing; Deng, Xiaoyong; An, Zesheng
2014-06-01
A pH-responsive core cross-linked star (CCS) polymer containing poly(N,N-dimethylaminoethyl methacrylate) (PDMAEMA) arms was used as an interfacial stabilizer for emulsions containing toluene (80 v%) and water (20 v%). In the pH range of 12.1-9.3, ordinary water-in-oil emulsions were formed. Intermediate multiple emulsions of oil-in-water-in-oil and water-in-oil-in-water were formed at pH 8.6 and 7.5, respectively. Further lowering the pH resulted in the formation of gelled high internal phase emulsions of oil-in-water type in the pH range of 6.4-0.6. The emulsion behavior was correlated with interfacial tension, conductivity and configuration of the CCS polymer at different pH. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Stability of fluorite-type La 2Ce 2O 7 under extreme conditions
Zhang, F. X.; Tracy, C. L.; Lang, M.; ...
2016-03-03
Here, the structural stability of fluorite-type La 2Ce 2O 7 was studied at pressure up to ~40 GPa and under hydrothermal conditions (~1 GPa, 350 °C), respectively, using synchrotron x-ray diffraction (XRD) and Raman scattering measurements. XRD measurements indicated that fluorite-type La 2Ce 2O 7 is not stable at pressures greater than 22.6 GPa and slowly transforms to a high-pressure phase. The high-pressure phase is not stable and changes back to the fluorite-type structure when pressure is released. The La 2Ce 2O 7 fluorite is also not stable under hydrothermal conditions and begins to react with water at 200~250 °C.more » Both Raman and XRD results suggest that lanthanum hydroxide La(OH) 3 and La 3+-doped CeO 2 fluorite are the dominant products after hydrothermal treatment.« less
Hydrogen enhances strength and ductility of an equiatomic high-entropy alloy.
Luo, Hong; Li, Zhiming; Raabe, Dierk
2017-08-29
Metals are key materials for modern manufacturing and infrastructures as well as transpot and energy solutions owing to their strength and formability. These properties can severely deteriorate when they contain hydrogen, leading to unpredictable failure, an effect called hydrogen embrittlement. Here we report that hydrogen in an equiatomic CoCrFeMnNi high-entropy alloy (HEA) leads not to catastrophic weakening, but instead increases both, its strength and ductility. While HEAs originally aimed at entropy-driven phase stabilization, hydrogen blending acts opposite as it reduces phase stability. This effect, quantified by the alloy's stacking fault energy, enables nanotwinning which increases the material's work-hardening. These results turn a bane into a boon: hydrogen does not generally act as a harmful impurity, but can be utilized for tuning beneficial hardening mechanisms. This opens new pathways for the design of strong, ductile, and hydrogen tolerant materials.
A Phase-Separation Route to Synthesize Porous CNTs with Excellent Stability for Na+ Storage.
Chen, Zhi; Wang, Taihong; Zhang, Ming; Cao, Guozhong
2017-06-01
Porous carbon nanotubes (CNTs) are obtained by removing MoO 2 nanoparticles from MoO 2 @C core@shell nanofibers which are synthesized by phase-segregation via a single-needle electrospinning method. The specific surface area of porous CNTs is 502.9 m 2 g -1 , and many oxygen-containing functional groups (COH, CO) are present. As anodes for sodium-ion batteries, the porous CNT electrode displays excellent rate performance and cycling stability (110 mA h g -1 after 1200 cycles at 5 A g -1 ). Those high properties can be attributed to the porous structure and surface modification to steadily store Na + with high capacity. The work provides a facile and broadly applicable way to fabricate the porous CNTs and their composites for batteries, catalysts, and fuel cells. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Schuh, B.; Mendez-Martin, F.; Völker, B.; ...
2015-06-24
An equiatomic CoCrFeMnNi high-entropy alloy (HEA), produced by arc melting and drop casting, was subjected to severe plastic deformation (SPD) using high-pressure torsion. This process induced substantial grain refinement in the coarse-grained casting leading to a grain size of approximately 50 nm. As a result, strength increased significantly to 1950 MPa, and hardness to similar to 520 MV. Analyses using transmission electron microscopy (TEM) and 3-dimensional atom probe tomography (3D-APT) showed that, after SPD, the alloy remained a true single-phase solid solution down to the atomic scale. Subsequent investigations characterized the evolution of mechanical properties and microstructure of this nanocrystallinemore » HEA upon annealing. Isochronal (for 1 h) and isothermal heat treatments were performed followed by microhardness and tensile tests. The isochronal anneals led to a marked hardness increase with a maximum hardness of similar to 630 HV at about 450 degrees C before softening set in at higher temperatures. The isothermal anneals, performed at this peak hardness temperature, revealed an additional hardness rise to a maximum of about 910 MV after 100 h. To clarify this unexpected annealing response, comprehensive microstructural analyses were performed using TEM and 3D-APT. New nano-scale phases were observed to form in the originally single-phase HEA. After times as short as 5 min at 450 degrees C, a NiMn phase and Cr-rich phase formed. With increasing annealing time, their volume fractions increased and a third phase, FeCo, also formed. It appears that the surfeit of grain boundaries in the nanocrystalline HEA offer many fast diffusion pathways and nucleation sites to facilitate this phase decomposition. The hardness increase, especially for the longer annealing times, can be attributed to these nano-scaled phases embedded in the HEA matrix. The present results give new valuable insights into the phase stability of single-phase high-entropy alloys as well as the mechanisms controlling the mechanical properties of nanostructured multiphase composites. (C) 2015 Acta Materialia Inc. Published by Elsevier Ltd.« less
Stahl, Christian; Albe, Karsten
2012-01-01
Summary Nanoparticles of Pt–Rh were studied by means of lattice-based Monte Carlo simulations with respect to the stability of ordered D022- and 40-phases as a function of particle size and composition. By thermodynamic integration in the semi-grand canonical ensemble, phase diagrams for particles with a diameter of 7.8 nm, 4.3 nm and 3.1 nm were obtained. Size-dependent trends such as the lowering of the critical ordering temperature, the broadening of the compositional stability range of the ordered phases, and the narrowing of the two-phase regions were observed and discussed in the context of complete size-dependent nanoparticle phase diagrams. In addition, an ordered surface phase emerges at low temperatures and low platinum concentration. A decrease of platinum surface segregation with increasing global platinum concentration was observed, when a second, ordered phase is formed inside the core of the particle. The order–disorder transitions were analyzed in terms of the Warren–Cowley short-range order parameters. Concentration-averaged short-range order parameters were used to remove the surface segregation bias of the conventional short-range order parameters. Using this procedure, it was shown that the short-range order in the particles at high temperatures is bulk-like. PMID:22428091
Orbitally limited pair-density-wave phase of multilayer superconductors
NASA Astrophysics Data System (ADS)
Möckli, David; Yanase, Youichi; Sigrist, Manfred
2018-04-01
We investigate the magnetic field dependence of an ideal superconducting vortex lattice in the parity-mixed pair-density-wave phase of multilayer superconductors within a circular cell Ginzburg-Landau approach. In multilayer systems, due to local inversion symmetry breaking, a Rashba spin-orbit coupling is induced at the outer layers. This combined with a perpendicular paramagnetic (Pauli) limiting magnetic field stabilizes a staggered layer dependent pair-density-wave phase in the superconducting singlet channel. The high-field pair-density-wave phase is separated from the low-field BCS phase by a first-order phase transition. The motivating guiding question in this paper is: What is the minimal necessary Maki parameter αM for the appearance of the pair-density-wave phase of a superconducting trilayer system? To address this problem we generalize the circular cell method for the regular flux-line lattice of a type-II superconductor to include paramagnetic depairing effects. Then, we apply the model to the trilayer system, where each of the layers are characterized by Ginzburg-Landau parameter κ0 and a Maki parameter αM. We find that when the spin-orbit Rashba interaction compares to the superconducting condensation energy, the orbitally limited pair-density-wave phase stabilizes for Maki parameters αM>10 .
Tang, Ruilian; Li, Yan; Xie, Shengyi; Li, Nana; Chen, Jiuhua; Gao, Chunxiao; Zhu, Pinwen; Wang, Xin
2016-01-01
Raman spectroscopy, synchrotron angle-dispersive X-ray diffraction (ADXRD), first-principles calculations, and electrical resistivity measurements were carried out under high pressure to investigate the structural stability and electrical transport properties of metavanadate MgV2O6. The results have revealed the coordination change of vanadium ions (from 5+1 to 6) at around 4 GPa. In addition, a pressure-induced structure transformation from the C2/m phase to the C2 phase in MgV2O6 was detected above 20 GPa, and both phases coexisted up to the highest pressure. This structural phase transition was induced by the enhanced distortions of MgO6 octahedra and VO6 octahedra under high pressure. Furthermore, the electrical resistivity decreased with pressure but exhibited different slope for these two phases, indicating that the pressure-induced structural phase transitions of MgV2O6 was also accompanied by the obvious changes in its electrical transport behavior. PMID:27924843
Nonlinear stability and control study of highly maneuverable high performance aircraft, phase 2
NASA Technical Reports Server (NTRS)
Mohler, R. R.
1992-01-01
This research should lead to the development of new nonlinear methodologies for the adaptive control and stability analysis of high angle-of-attack aircraft such as the F18 (HARV). The emphasis has been on nonlinear adaptive control, but associated model development, system identification, stability analysis and simulation is performed in some detail as well. Various models under investigation for different purposes are summarized in tabular form. Models and simulation for the longitudinal dynamics have been developed for all types except the nonlinear ordinary differential equation model. Briefly, studies completed indicate that nonlinear adaptive control can outperform linear adaptive control for rapid maneuvers with large changes in alpha. The transient responses are compared where the desired alpha varies from 5 degrees to 60 degrees to 30 degrees and back to 5 degrees in all about 16 sec. Here, the horizontal stabilator is the only control used with an assumed first-order linear actuator with a 1/30 sec time constant.
Isotropic differential phase contrast microscopy for quantitative phase bio-imaging.
Chen, Hsi-Hsun; Lin, Yu-Zi; Luo, Yuan
2018-05-16
Quantitative phase imaging (QPI) has been investigated to retrieve optical phase information of an object and applied to biological microscopy and related medical studies. In recent examples, differential phase contrast (DPC) microscopy can recover phase image of thin sample under multi-axis intensity measurements in wide-field scheme. Unlike conventional DPC, based on theoretical approach under partially coherent condition, we propose a new method to achieve isotropic differential phase contrast (iDPC) with high accuracy and stability for phase recovery in simple and high-speed fashion. The iDPC is simply implemented with a partially coherent microscopy and a programmable thin-film transistor (TFT) shield to digitally modulate structured illumination patterns for QPI. In this article, simulation results show consistency of our theoretical approach for iDPC under partial coherence. In addition, we further demonstrate experiments of quantitative phase images of a standard micro-lens array, as well as label-free live human cell samples. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Gas chromatography on wall-coated open-tubular columns with ionic liquid stationary phases.
Poole, Colin F; Lenca, Nicole
2014-08-29
Ionic liquids have moved from novel to practical stationary phases for gas chromatography with an increasing portfolio of applications. Ionic liquids complement conventional stationary phases because of a combination of thermophysical and solvation properties that only exist for ionic solvents. Their high thermal stability and low vapor pressure makes them suitable as polar stationary phases for separations requiring high temperatures. Ionic liquids are good solvents and can be used to expand the chemical space for separations. They are the only stationary phases with significant hydrogen-bond acidity in common use; they extend the hydrogen-bond basicity of conventional stationary phases; they are as dipolar/polarizable as the most polar conventional stationary phases; and some ionic liquids are significantly less cohesive than conventional polar stationary phases. Problems in column coating techniques and related low column performance, column activity, and stationary phase reactivity require further exploration as the reasons for these features are poorly understood at present. Copyright © 2014 Elsevier B.V. All rights reserved.
Amorphous Calcium Carbonate in Biomineralization: Stable and Precursor Phases
NASA Astrophysics Data System (ADS)
Weiner, S.
2003-12-01
The biological formation of the crystalline polymorphs of calcium carbonate, aragonite and calcite, is widespread. The less stable polymorphs, vaterite and monohydrocalcite are also formed by some organisms. Surprisingly, the highly unstable phase, amorphous calcium carbonate (ACC), is formed by a variety of organisms from different phyla. Most of these are stable at least within the lifetime of the organism. The stable forms all have a stoichiometry of CaCO3.H2O. Despite the fact that they do not diffract X-rays. Studies of their short range order by EXAFS, reveal species specific variations in the number and distances of atoms that surround the calcium ion. Proteins extracted from stable biogenic ACC are able to stabilize the phase in vitro. ACC has also been identified as a transient precursor phase during the formation of the calcitic larval spicule of the sea urchin and the formation of the larval shell of a bivalve. The transient form has little or no water associated with the CaCO3. Preliminary EXAFS data suggest that the short range order of the sea urchin spicule transient ACC resembles calcite. Proteins extracted from these spicules are able to stabilize ACC provided Mg is present in the solution. As the mollusks and the echinoderms are on two different branches of the animal phylogenetic tree, it is conceivable that the strategy of using ACC as a precursor phase at least for larval mineralization may be widespread. It has yet to be shown that it is used by adults of either phylum. The manner in which organisms precipitate, stabilize and destabilize if necessary, this highly metastable phase of calcium carbonate presents many fascinating and enigmatic questions, whose solutions could well contribute to a better understanding of basic processes in biomineralization. For more details and references, see Addadi, L., Raz, S. and Weiner, S. (2003). Taking advantage of disorder: Amorphous calcium carbonate and its roles in biomineralization. Adv. Mat.15, 959-970.
Bhatnagar, Bakul S; Martin, Susan W H; Hodge, Tamara S; Das, Tapan K; Joseph, Liji; Teagarden, Dirk L; Shalaev, Evgenyi Y; Suryanarayanan, Raj
2011-08-01
The objectives of the current study were to investigate (i) the phase behavior of a PEGylated recombinant human growth hormone (PEG-rhGH, ∼60 kDa) during freeze-drying and (ii) its storage stability. The phase transitions during freeze-thawing of an aqueous solution containing PEG-rhGH and sucrose were characterized by differential scanning calorimetry. Finally, PEG-rhGH and sucrose formulations containing low, medium, and high polyethylene glycol (PEG) to sucrose ratios were freeze-dried in dual-chamber syringes and stored at 4°C and 25°C. Chemical decomposition (methionine oxidation and deamidation) and irreversible aggregation were characterized by size-exclusion and ion-exchange chromatography, and tryptic mapping. PEG crystallization was facilitated when it was covalently linked with rhGH. When the solutions were frozen, phase separation into PEG-rich and sucrose-rich phases facilitated PEG crystallization and the freeze-dried cake contained crystalline PEG. Annealing caused PEG crystallization and when coupled with higher drying temperatures, the primary drying time decreased by up to 51%. When the freeze-dried cakes were stored at 4°C, while there was no change in the purity of the PEG-rhGH monomer, deamidation was highest in the formulations with the lowest PEG to sucrose ratio. When stored at 25°C, this composition also showed the most pronounced decrease in monomer purity, the highest level of aggregation, and deamidation. Furthermore, an increase in PEG crystallinity during storage was accompanied by a decrease in PEG-rhGH stability. Interestingly, during storage, there was no change in PEG crystallinity in formulations with medium and high PEG to sucrose ratios. Although PEG crystallization during freeze-drying did not cause protein degradation, crystallization during storage might have influenced protein stability. Copyright © 2011 Wiley-Liss, Inc.
Related Studies in Long Term Lithium Battery Stability
NASA Technical Reports Server (NTRS)
Horning, R. J.; Chua, D. L.
1984-01-01
The continuing growth of the use of lithium electrochemical systems in a wide variety of both military and industrial applications is primarily a result of the significant benefits associated with the technology such as high energy density, wide temperature operation and long term stability. The stability or long term storage capability of a battery is a function of several factors, each important to the overall storage life and, therefore, each potentially a problem area if not addressed during the design, development and evaluation phases of the product cycle. Design (e.g., reserve vs active), inherent material thermal stability, material compatibility and self-discharge characteristics are examples of factors key to the storability of a power source.
Additive Manufacturing of Hierarchical Multi-Phase High-Entropy Alloys for Nuclear Component
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Nan
In recent years, high entropy alloys (HEAs), composed of four or more metallic elements mixed in equal or near equal atomic percent, have attracted significant attention due to their excellent mechanical properties and good corrosion resistance. They show significant promise as candidates for high temperature fission and fusion structural applications. However, the conventional synthesis methods are unlikely to present an industrially suitable route for the production and use of HEAs. Recognizing rapidly evolving additive manufacturing (AM) techniques, the goal of this proposal is to optimize the AM process to fabricate HEAs with predesigned chemical compositions and phase morphologies for nuclearmore » components. For this project, two HEAs FeCrNiMn and FeCrNiMnAl have been successfully synthesized. Correlated mechanical response has been systematically characterized under a variety of laser processing and ion irradiations. Both high entropy alloys are found to present comparable swelling and extraordinary irradiation tolerance (limited voids and stabilized phase structure under high irradiation dose). In addition, the microstructure and radiation-induced hardening can be tailored by laser processing under additive manufacturing. And we have assembled at LANL a unique database of HEAs containing a total of 674 compositions with Phase Stability information. Based on this, the machine learning and Artificial Intelligence capability now are established to predict the microstructure of casted HEAs by given chemical compositions. This unique integration will lead to an optimal AM recipe for fabricating radiation tolerant HEAs. The development of both modeling models and experimental capability will also benefit other programs at LANL.« less
Enhanced ferroelectric polarization and possible morphotrophic phase boundary in PZT-based alloys
Parker, David S.; Singh, David; McGuire, Michael A.; ...
2016-05-16
We present a combined theoretical and experimental study of alloys of the high performance piezoelectric PZT (PbZr 0.5Ti 0.5O 3) with BZnT (BiZn 0.5Ti 0.5O 3) and BZnZr (BiZn 0.5Zr 0.5O 3), focusing on atomic displacements, ferroelectric polarization, and elastic stability. From theory we find that the 75-25 PZT-BZnT alloy has substantially larger cation displacements, and hence ferroelectric polarization than the PZT base material, on the tetragonal side of the phase diagram. We also find a possible morphotrophic phase boundary in this system by comparing displacement patterns and optimized c/a ratios. Elastic stability calculations find the structures to be essentiallymore » stable. Lastly, experiments indicate the feasibility of sample synthesis within this alloy system, although measurements do not find significant polarization, probably due to a large coercive field.« less
Stability and superconducting properties of GaH5 at high pressure
NASA Astrophysics Data System (ADS)
Ning, Yan-Li; Yang, Wen-Hua; Zang, Qing-Jun; Lu, Wen-Cai
2017-11-01
Using genetic algorithm (GA) method combined with first-principles calculations, the structures, dynamical and thermodynamic stabilities of GaH5 were studied. The calculated results suggested that at the pressure range 150-400 GPa, the P21/m phase of GaH5 is the most favorable phase and dynamically stable, but thermodynamically it is unstable and can decompose into GaH3 and H2. The superconducting property of GaH5 was further calculated, and the predicted superconducting transformation temperature Tc of GaH5 P21/m phase is about 35.63 K at 250 GPa. Besides, we compared the GaH5 and GaH3 superconducting properties, and found that GaH3-Pm-3n structure has a larger DOS near Fermi level than GaH5-P21/m structure, which may be the main reason causing higher Tc of GaH3 than GaH5.
Phase Stability and Superconductivity of Compressed Argon-Hydrogen Compounds from First-Principles
NASA Astrophysics Data System (ADS)
Ishikawa, Takahiro; Nakanishi, Akitaka; Shimizu, Katsuya; Oda, Tatsuki
2017-12-01
We present the phase stability and superconductivity of Ar-H compounds under high pressure predicted by first-principles calculations and a genetic algorithm technique for crystal structure search. We found that insulating ArH4, earlier predicted to be metalized at 350 GPa, survives up to 700 GPa owing to the transition into a new phase Pnma at around 250 GPa and then decomposes into metallic ArH2 and pure solid hydrogen. At around 1500 GPa, the bonding form of ArH2 is changed by the dissociation of H2 molecules at the interstitial site of the argon lattice, and antibonding orbitals are partially filled, which causes an increase in the density of states at the Fermi level. Results showed that electron-phonon coupling is enhanced and the superconducting critical temperature is increased from 0.2 to 67 K.
Ab initio study of phase stability of NaZr{sub 2}(PO{sub 4}){sub 3} under pressure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chinnappan, Ravi; Kaur, Gurpreet; Panigrahi, B. K.
2016-05-23
The elastic constants of NaZr{sub 2}(PO{sub 4}){sub 3} were computed as a function of pressure through Density Functional Theory calculations. The behavior of elastic constants show that the rhombohedral (R-3c) NaZr{sub 2}(PO{sub 4}){sub 3} becomes unstable above 8 GPa and is driven by softening of C{sub 44} through one of the Born stability criteria. High pressure equation of state and enthalpy show further that the ambient rhombohedral (R-3c)) NaZr{sub 2}(PO{sub 4}){sub 3} transforms first to another rhombohedral (R3) phase and subsequently to LiZr{sub 2}(PO{sub 4}){sub 3}-type orthorhombic phase at pressures above 6 and 8 GPa respectively which are in agreement with recentmore » X-ray diffraction study.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kazakevich, G.; Johnson, R.; Lebedev, V.
State of the art high-current superconducting accelerators require efficient RF sources with a fast dynamic phase and power control. This allows for compensation of the phase and amplitude deviations of the accelerating voltage in the Superconducting RF (SRF) cavities caused by microphonics, etc. Efficient magnetron transmitters with fast phase and power control are attractive RF sources for this application. They are more cost effective than traditional RF sources such as klystrons, IOTs and solid-state amplifiers used with large scale accelerator projects. However, unlike traditional RF sources, controlled magnetrons operate as forced oscillators. Study of the impact of the controlling signalmore » on magnetron stability, noise and efficiency is therefore important. This paper discusses experiments with 2.45 GHz, 1 kW tubes and verifies our analytical model which is based on the charge drift approximation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ward, J. W.; Goetz, K. P.; Obaid, A.
The use of organic semiconductors in high-performance organic field-effect transistors requires a thorough understanding of the effects that processing conditions, thermal, and bias-stress history have on device operation. Here, we evaluate the temperature dependence of the electrical properties of transistors fabricated with 2,8-difluoro-5,11-bis(triethylsilylethynyl)anthradithiophene, a material that has attracted much attention recently due to its exceptional electrical properties. We have discovered a phase transition at T = 205 K and discuss its implications on device performance and stability. We examined the impact of this low-temperature phase transition on the thermodynamic, electrical, and structural properties of both single crystals and thin films of this material.more » Our results show that while the changes to the crystal structure are reversible, the induced thermal stress yields irreversible degradation of the devices.« less
NASA Astrophysics Data System (ADS)
Wang, L. F.; Ye, W. H.; Wu, J. F.; Liu, Jie; Zhang, W. Y.; He, X. T.
2016-05-01
It is demonstrated that the growth of acceleration-phase instabilities in inertial confinement fusion implosions can be controlled, especially in the high-foot implosions [O. A. Hurricane et al., Phys. Plasmas 21, 056314 (2014)] on the National Ignition Facility. However, the excessive growth of the deceleration-phase instabilities can still destroy the hot spot ignition. A scheme is proposed to retard the deceleration-phase Rayleigh-Taylor instability growth by shock collision near the waist of the inner shell surface. Two-dimensional radiation hydrodynamic simulations confirm the improved deceleration-phase hot spot stability properties without sacrificing the fuel compression.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, L. F., E-mail: wang-lifeng@iapcm.ac.cn; Ye, W. H.; Liu, Jie
It is demonstrated that the growth of acceleration-phase instabilities in inertial confinement fusion implosions can be controlled, especially in the high-foot implosions [O. A. Hurricane et al., Phys. Plasmas 21, 056314 (2014)] on the National Ignition Facility. However, the excessive growth of the deceleration-phase instabilities can still destroy the hot spot ignition. A scheme is proposed to retard the deceleration-phase Rayleigh–Taylor instability growth by shock collision near the waist of the inner shell surface. Two-dimensional radiation hydrodynamic simulations confirm the improved deceleration-phase hot spot stability properties without sacrificing the fuel compression.
Stability measurements of the radio science system at the 34-m high-efficiency antennas
NASA Technical Reports Server (NTRS)
Pham, T. T.; Breidenthal, J. C.; Peng, T. K.; Abbate, S. F.; Rockwell, S. T.
1993-01-01
From 1991 to 1993 the fractional frequency stability of the operational Radio Science System was measured at DSS's 15, 45, and 65. These stations are designed to have the most stable uplink and downlink equipment in the Deep Space Network (DSN). Some measurements were performed when the antenna was moving and the frequency was ramped. The stability, including contributions of all elements in the station except for the antenna and the hydrogen maser, was measured to be 0.3 to 1.3 x 10(exp -15) when the frequency was fixed, and 0.6 to 6.0 x 10(exp -15) when the frequency was ramped (sample interval, 1000 sec). Only one measurement out of fifteen exceeded specification. In all other cases, when previous measurements on the antenna and the hydrogen maser were added, a total system stability requirement of 5.0 x 10(exp -15) as met. In addition, ambient temperature was found to cause phase variation in the measurements at a rate of 5.5 deg of phase per deg C.
Aluminum-stabilized Nb/sub 3/Sn superconductor
Scanlan, R.M.
1984-02-10
This patent discloses an aluminum-stabilized Nb/sub 3/Sn superconductor and process for producing same, utilizing ultrapure aluminum. Ductile components are co-drawn with aluminum to produce a conductor suitable for winding magnets. After winding, the conductor is heated to convert it to the brittle Nb/sub 3/Sn superconductor phase, using a temperature high enough to perform the transformation but still below the melting point of the aluminum. This results in reaction of substantially all of the niobium, while providing stabilization and react-in-place features which are beneficial in the fabrication of magnets utilizing superconducting materials.
Aluminum-stabilized Nb[sub 3]Sn superconductor
Scanlan, R.M.
1988-05-10
Disclosed are an aluminum-stabilized Nb[sub 3]Sn superconductor and process for producing same, utilizing ultrapure aluminum. Ductile components are co-drawn with aluminum to produce a conductor suitable for winding magnets. After winding, the conductor is heated to convert it to the brittle Nb[sub 3]Sn superconductor phase, using a temperature high enough to perform the transformation but still below the melting point of the aluminum. This results in reaction of substantially all of the niobium, while providing stabilization and react-in-place features which are beneficial in the fabrication of magnets utilizing superconducting materials. 4 figs.
NASA Astrophysics Data System (ADS)
Rubio, Ernesto Javier
High-temperature coatings are critical to the future power-generation systems and industries. Thermal barrier coatings (TBCs), which are usually the ceramic materials applied as thin coatings, protect engine components and allow further increase in engine temperatures for higher efficiency. Thus, the durability and reliability of the coating systems have to be more robust compared to current natural gas based engines. While a near and mid-term target is to develop TBC architecture with a 1300 °C surface temperature tolerance, a deeper understanding of the structure evolution and thermal behavior of the TBC-bond coat interface, specifically the thermally grown oxide (TGO), is of primary importance. In the present work, attention is directed towards yttria-stabilized hafnia (YSH) coatings on alumina (α-Al2O 3) to simulate the TBC-TGO interface and understand the phase evolution, microstructure and thermal oxidation of the coatings. YSH coatings were grown on α-Al2O3 substrates by sputter deposition by varying coating thickness in a wide range ˜30-1000 nm. The effect of coating thickness on the structure, morphology and the residual stress has been investigated using X-ray diffraction (XRD) and high resolution scanning electron microscopy (SEM). Thermal oxidation behavior of the coatings has been evaluated using the isothermal oxidation measurements under static conditions. X-ray diffraction analyses revealed the existence of monoclinic hafnia phase for relatively thin coatings indicating that the interfacial phenomena are dominant in phase stabilization. The evolution towards pure stabilized cubic phase of hafnia with the increasing coating thickness is observed. The SEM results indicate the changes in morphology of the coatings; the average grain size increases from 15 to 500 nm with increasing thickness. Residual stress was calculated employing XRD using the variable ψ-angle. Relation between residual stress and structural change is also studied. The results obtained on the thermal oxidation behavior indicate that the YSH coatings exhibit initial mass gain in the first 6 hours and sustained structure for extended hours of thermal treatment.
NASA Astrophysics Data System (ADS)
Koch-Müller, Monika; Jahn, Sandro; Birkholz, Natalie; Ritter, Eglof; Schade, Ulrich
2016-09-01
The stability of the high-pressure CaCO3 calcite (cc)-related polymorphs was studied in experiments that were performed in conventional diamond anvil cells (DAC) at room temperature as a function of pressure up to 30 GPa as well as in internally heated diamond anvil cells (DAC-HT) at pressures and temperatures up to 20 GPa and 800 K. To probe structural changes, we used Raman and FTIR spectroscopy. For the latter, we applied conventional and synchrotron mid-infrared as well as synchrotron far-infrared radiation. Within the cc-III stability field (2.2-15 GPa at room temperature, e.g., Catalli and Williams in Phys Chem Miner 32(5-6):412-417, 2005), we observed in the Raman spectra consistently three different spectral patterns: Two patterns at pressures below and above 3.3 GPa were already described in Pippinger et al. (Phys Chem Miner 42(1):29-43, 2015) and assigned to the phase transition of cc-IIIb to cc-III at 3.3 GPa. In addition, we observed a clear change between 5 and 6 GPa that is independent of the starting material and the pressure path and time path of the experiments. This apparent change in the spectral pattern is only visible in the low-frequency range of the Raman spectra—not in the infrared spectra. Complementary electronic structure calculations confirm the existence of three distinct stability regions of cc-III-type phases at pressures up to about 15 GPa. By combining experimental and simulation data, we interpret the transition at 5-6 GPa as a re-appearance of the cc-IIIb phase. In all types of experiments, we confirmed the transition from cc-IIIb to cc-VI at about 15 GPa at room temperature. We found that temperature stabilizes cc-VI to lower pressure. The reaction cc-IIIb to cc-VI has a negative slope of -7.0 × 10-3 GPa K-1. Finally, we discuss the possibility of the dense cc-VI phase being more stable than aragonite at certain pressure and temperature conditions relevant to the Earth's mantle.
Xu, Hongwu; Chavez, Manuel E.; Mitchell, Jeremy N.; ...
2015-04-23
An analogue of the mineral pollucite (CsAlSi 2O 6), CsTiSi 2O 6.5 has a potential host phase for radioactive Cs. However, as 137Cs and 135Cs transmute to 137Ba and 135Ba, respectively, through the beta decay, it is essential to study the structure and stability of this phase upon Cs → Ba substitution. In this work, two series of Ba/Ti-substituted samples, Cs xBa (1-x)/2TiSi 2O 6.5 and Cs xBa 1-xTiSi 2O 7-0.5x, (x = 0.9 and 0.7), were synthesized by high-temperature crystallization from their respective precursors. Synchrotron X-ray diffraction and Rietveld analysis reveal that while Cs xBa (1-x)/2TiSi 2O 6.5 samplesmore » are phase-pure, Cs xBa 1-xTiSi 2O 7-0.5x samples contain Cs3x/(2+x)Ba (1-x)/(2+x)TiSi 2O 6.5 pollucites (i.e., also two-Cs-to-one-Ba substitution) and a secondary phase, fresnoite (Ba2TiSi2O8). Thus, the Cs xBa 1-xTiSi 2O 7-0.5x series is energetically less favorable than Cs xBa (1-x)/2TiSi 2O 6.5. To study the stability systematics of Cs xBa (1-x)/2TiSi 2O 6.5 pollucites, high-temperature calorimetric experiments were performed at 973 K with or without the lead borate solvent. Enthalpies of formation from the constituent oxides (and elements) have thus been derived. Our results show that with increasing Ba/(Cs + Ba) ratio, the thermodynamic stability of these phases decreases with respect to their component oxides. Hence, from the energetic viewpoint, continued Cs → Ba transmutation tends to destabilize the parent silicotitanate pollucite structure. However, the Ba-substituted pollucite co-forms with fresnoite (which incorporates the excess Ba), thereby providing viable ceramic waste forms for all the Ba decay products.« less
Synthesis of superconducting phases in Tl-Ba-Ca-Cu-O system
NASA Astrophysics Data System (ADS)
Bayya, S. S.; Stangle, G. C.; Snyder, R. L.
1992-04-01
This paper describes various novel processing techniques for the synthesis of superconducting phases in the Ti-Ba-Ca-Cu-O system. A Self propagating high temperature synthesis technique has been used to synthesize phase pure 2212 and 2223. Various engineering parameters are identified for this process. A glass-ceramic (melt quench) technique with subsequent post heat-treatment produced pure 2201 and 2212 phases. Tl2O3 itself is not a very good glass former and the addition of other glass formers is necessary to form stable glasses. Only the gallate glass system has been found to stabilize the 2201 and 2212 superconducting phases. Molten salt synthesis studies showed that the superconducting phases in the thallium system are stable in the NaCl-KCl eutectic salt system. Highly textured 2201 grains (about 60 μm×60 ¯ platelets) were grown by this technique. Various potential applications of these techniques are also discussed.
Goodwin, A M
1981-07-03
The Precambrian record is interpreted in terms of an evolutionary progression that moves in the direction of increasing continental stability. An early, highly mobile microplate tectonics phase progressed through a more stable, largely intracratonic, ensialic, mobile belt phase to the modern macroplate tectonics phase that involves large, rigid lithospheric plates. Various phases are characterized by distinctive crustal associations. Three controls-bulk earth heat production, crustal fractionation and cratonization, and atmospheric oxygen accumulation-are viewed as the cumulative cause of the trends and events that characterize the crust at different stages of development, from its inception approximately 4.6 billion years ago to the present.
Duong, The; Mulmudi, Hemant Kumar; Wu, YiLiang; Fu, Xiao; Shen, Heping; Peng, Jun; Wu, Nandi; Nguyen, Hieu T; Macdonald, Daniel; Lockrey, Mark; White, Thomas P; Weber, Klaus; Catchpole, Kylie
2017-08-16
Perovskite material with a bandgap of 1.7-1.8 eV is highly desirable for the top cell in a tandem configuration with a lower bandgap bottom cell, such as a silicon cell. This can be achieved by alloying iodide and bromide anions, but light-induced phase-segregation phenomena are often observed in perovskite films of this kind, with implications for solar cell efficiency. Here, we investigate light-induced phase segregation inside quadruple-cation perovskite material in a complete cell structure and find that the magnitude of this phenomenon is dependent on the operating condition of the solar cell. Under short-circuit and even maximum power point conditions, phase segregation is found to be negligible compared to the magnitude of segregation under open-circuit conditions. In accordance with the finding, perovskite cells based on quadruple-cation perovskite with 1.73 eV bandgap retain 94% of the original efficiency after 12 h operation at the maximum power point, while the cell only retains 82% of the original efficiency after 12 h operation at the open-circuit condition. This result highlights the need to have standard methods including light/dark and bias condition for testing the stability of perovskite solar cells. Additionally, phase segregation is observed when the cell was forward biased at 1.2 V in the dark, which indicates that photoexcitation is not required to induce phase segregation.
Enabling Large Superalloy Parts Using Compact Coprecipitation of γ' and γ''
NASA Astrophysics Data System (ADS)
Detor, Andrew J.; DiDomizio, Richard; Sharghi-Moshtaghin, Reza; Zhou, Ning; Shi, Rongpei; Wang, Yunzhi; McAllister, Donald P.; Mills, Michael J.
2018-03-01
Next-generation gas turbines will require disk materials capable of operating at 923 K (650 °C) and above to achieve efficiencies well beyond today's 62 pct benchmark. This temperature requirement marks a critical turning point in materials selection. Current turbine disk alloys, such as 706 and 718, are limited by the stability of their major strengthening phase, γ'', which coarsens rapidly beyond 923 K (650 °C) resulting in significant degradation in properties. More capable γ' strengthened superalloys, such as those used in jet engine disks, are also limited due to the sheer size of gas turbine hardware; the γ' phase overages during the slow cooling rates inherent in processing thick-section parts. In the present work, we address this fundamental gap in available superalloy materials. Through careful control of Al, Ti, and Nb levels, we show that fine (<100 nm) γ' and compact γ'/γ'' coprecipitate structures can be formed even under extremely slow cooling rates from high temperature. The presence of Ti is shown to have a dominant effect on phase formation, dictating whether γ', γ'/γ'' coprecipitates, or other less desirable acicular phases form on cooling. Sensitivity to cooling rate and aging heat treatment is also explored. A custom phase field model along with commercial precipitation kinetics software is used to better understand the phase evolution and stability of compact coprecipitates. The alloying strategies discussed here enable a new class of superalloys suitable for applications requiring large parts operating at high temperature.
NASA Astrophysics Data System (ADS)
Baby, Benjamin Hudson; Bharathi Mohan, D.
2017-11-01
Single phase of SnS thin film was fabricated from S/Sn/S/Sn/S multilayer prepared by using atmospheric pressure and vacuum thermal evaporation methods Glancing angle high vacuum thermal evaporation technique was employed to grow Sn nanorods which facilitated the sulphur diffusion in a faster manner to prepare SnS nanoparticles. The sulphur deposition temperature, sulphur deposition time and tin deposition time were successfully tailored in the synthesis process and stabilized α-phase SnS by probing through confocal micro-Raman spectrometer. X-ray diffraction confirms the formation of SnS crystal structure at sulphur deposition temperature 200 °C. The mechanism of formation of highly porous SnS phase with flower like morphology is explained from the morphological analysis of post deposition annealed film. The complete absence of any oxidation state as evident from Raman as well as EDAX analysis confirms that the proposed sulphurization method could be a suitable, simple and cheap technique for the successful sulphurization of metal films. Band gap calculation from Tauc plot showed a direct band gap value of 1.5 eV for films with single phase of SnS which can be used as a p-type absorber layer in thin film solar cells. Emission studies showed the energy transitions attributed to band edge transition and due to the presence of intrinsic defects.
NASA Astrophysics Data System (ADS)
Pi, Mingyu; Wu, Tianli; Guo, Weimeng; Wang, Xiaodeng; Zhang, Dingke; Wang, Shuxia; Chen, Shijian
2017-05-01
The design and development of high-efficiency and non-noble-metal hydrogen evolution reaction (HER) electrocatalysts for future clean and renewable energy system has excited significant research interests over the recent years. In this communication, the polymorphic tungsten diphosphide (p-WP2) nanoparticles with mixed monoclinic (α-) and orthorhombic (β-) phases are synthesized by phase-controlled phosphidation route via vacuum capsulation and explored as a novel efficient electrocatalyst towards HER. The p-WP2 catalyst delivers superior performance with excellent stability under both acidic and alkaline conditions over its single phases of α-WP2 and β-WP2. This finding demonstrates that a highly efficient hybrid electrocatalyst can be achieved via precise composition controlling and may open up exciting opportunities for their practical applications toward energy conversion.
NASA Astrophysics Data System (ADS)
Manikandan, M.; Rajeswarapalanichamy, R.; Iyakutti, K.
2018-03-01
First-principles calculations based on density functional theory was performed to analyse the structural stability of transition metal carbides TMC (TM = Ru, Rh, Pd, Os, Ir, Pt). It is observed that zinc-blende phase is the most stable one for these carbides. Pressure-induced structural phase transition from zinc blende to NiAs phase is predicted at the pressures of 248.5 GPa, 127 GPa and 142 GPa for OsC, IrC and PtC, respectively. The electronic structure reveals that RuC exhibits a semiconducting behaviour with an energy gap of 0.7056 eV. The high bulk modulus values of these carbides indicate that these metal carbides are super hard materials. The high B/G value predicts that the carbides are ductile in their most stable phase.
Oxygen vacancies dependent phase transition of Y2O3 films
NASA Astrophysics Data System (ADS)
Yu, Pengfei; Zhang, Kan; Huang, Hao; Wen, Mao; Li, Quan; Zhang, Wei; Hu, Chaoquan; Zheng, Weitao
2017-07-01
Y2O3 films have great application potential in high-temperature metal matrix composite and nuclear engineering, used as interface diffusion and reaction barrier coating owing to their excellent thermal and chemical stability, high melting point and extremely negative Gibbs formation energy, and thus their structural and mechanical properties at elevated temperature are especially important. Oxygen vacancies exist commonly in yttrium oxide (Y2O3) thin films and act strongly on the phase structure and properties, but oxygen vacancies dependent phase transition at elevated temperature has not been well explored yet. Y2O3 thin films with different oxygen vacancy concentrations have been achieved by reactive sputtering through varying substrate temperature (Ts), in which oxygen vacancies increase monotonously with increasing Ts. For as-deposited Y2O3 films, oxygen vacancies present at high Ts can promote the nucleation of monoclinic phase, meanwhile, high Ts can induce the instability of monoclinic phase. Thus their competition results in forming mixed phases of cubic and monoclinic at high Ts. During vacuum annealing at 1000 °C, a critical oxygen vacancy concentration is observed, below which phase transition from monoclinic to cubic takes place, and above which phase transfer from monoclinic to the oxygen defective phase (ICDD file no. 39-1063), accompanying by stress reversal from compressive to tensile and maintenance of high hardness.
Research on phase locked loop in optical memory servo system
NASA Astrophysics Data System (ADS)
Qin, Liqin; Ma, Jianshe; Zhang, Jianyong; Pan, Longfa; Deng, Ming
2005-09-01
Phase locked loop (PLL) is a closed loop automatic control system, which can track the phase of input signal. It widely applies in each area of electronic technology. This paper research the phase locked loop in optical memory servo area. This paper introduces the configuration of digital phase locked loop (PLL) and phase locked servo system, the control theory, and analyses system's stability. It constructs the phase locked loop experiment system of optical disk spindle servo, which based on special chip. DC motor is main object, this system adopted phase locked servo technique and digital signal processor (DSP) to achieve constant linear velocity (CLV) in controlling optical spindle motor. This paper analyses the factors that affect the stability of phase locked loop in spindle servo system, and discusses the affection to the optical disk readout signal and jitter due to the stability of phase locked loop.
NASA Astrophysics Data System (ADS)
Wang, Qing; Dong, Chuang; Liaw, Peter K.
2015-08-01
Structural stabilities of β-Ti alloys are generally investigated by an empirical Mo equivalent, which quantifies the stability contribution of each alloying element, M, in comparison to that of the major β-Ti stabilizer, Mo. In the present work, a new Mo equivalent (Moeq)Q is proposed, which uses the slopes of the boundary lines between the β and ( α + β) phase zones in binary Ti-M phase diagrams. This (Moeq)Q reflects a simple fact that the β-Ti stability is enhanced, when the β phase zone is enlarged by a β-Ti stabilizer. It is expressed as (Moeq)Q = 1.0 Mo + 0.74 V + 1.01 W + 0.23 Nb + 0.30 Ta + 1.23 Fe + 1.10 Cr + 1.09 Cu + 1.67 Ni + 1.81 Co + 1.42 Mn + 0.38 Sn + 0.34 Zr + 0.99 Si - 0.57 Al (at. pct), where the equivalent coefficient of each element is the slope ratio of the [ β/( α + β)] boundary line of the binary Ti-M phase diagram to that of the Ti-Mo. This (Moeq)Q is shown to reliably characterize the critical stability limit of multi-component β-Ti alloys with low Young's moduli, where the critical lower limit for β stabilization is (Moeq)Q = 6.25 at. pct or 11.8 wt pct Mo.
Anastos, N; Barnett, N W; Pfeffer, F M; Lewis, S W
2006-01-01
This paper reports an investigation into the temporal stability of aqueous solutions of psilocin and psilocybin reference drug standards over a period of fourteen days. This study was performed using high performance liquid chromatography utilising a (95:5% v/v) methanol: 10 mM ammonium formate, pH 3.5 mobile phase and absorption detection at 269 nm. It was found that the exclusion of light significantly prolonged the useful life of standards, with aqueous solutions of both psilocin and psilocybin being stable over a period of seven days.
NASA Astrophysics Data System (ADS)
Yu, Hongbing; Yao, Zhongwen; Daymond, Mark R.
2017-09-01
In this paper, a dual phase Zr-Sn-Nb-Mb alloy was studied with TEM after thermal treatment and high-temperature tensile deformation. Plate and pressure tube material, manufactured through different processing routes, were used in this study. The overall average concentrations of Mo and Nb in the β phase are higher in the pressure tube than in the plate. It was revealed that these concentrations have significant effects on the subsequent stability of the β and ω phases as well as on the precipitation behavior of the α phase from the β phase. That is, the higher the concentrations, the more stable the β and ω phases are, and hence there is a reduced tendency for precipitation of α phase. Aging treatments cause the transformation of athermal ω to isothermal ω, as expected. The most striking finding is the product of the decomposition of the isothermal ω particles during aging treatment is determined as not being α phase, even though the structure of it is, as-yet, not fully determined. The non-uniform morphology of the β grains in the plate material provides us a unique opportunity to investigate the effects of morphology on the aging response of the β phase. It was found that thin β filaments suppress the precipitation of isothermal ω particles but enhance the precipitation of α phase at α/β interfaces. The effect of the Burgers orientation relationship between α and β grains on the precipitation of the α phase at the α/β interface is discussed. Applied high-temperature stress/strain has been found to enhance the decomposition of isothermal ω phase but suppress α precipitation inside the β grains. The suppression of α precipitation by applied stress/strain is discussed in terms of the ω assisted α precipitation. Implications of these findings for the in-service application of the alloy are discussed.
Pre-Combustion Carbon Dioxide Capture by a New Dual Phase Ceramic-Carbonate Membrane Reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Jerry Y. S.
2015-01-31
This report documents synthesis, characterization and carbon dioxide permeation and separation properties of a new group of ceramic-carbonate dual-phase membranes and results of a laboratory study on their application for water gas shift reaction with carbon dioxide separation. A series of ceramic-carbonate dual phase membranes with various oxygen ionic or mixed ionic and electronic conducting metal oxide materials in disk, tube, symmetric, and asymmetric geometric configurations was developed. These membranes, with the thickness of 10 μm to 1.5 mm, show CO 2 permeance in the range of 0.5-5×10 -7 mol·m -2·s -1·Pa -1 in 500-900°C and measured CO 2/N 2more » selectivity of up to 3000. CO 2 permeation mechanism and factors that affect CO 2 permeation through the dual-phase membranes have been identified. A reliable CO 2 permeation model was developed. A robust method was established for the optimization of the microstructures of ceramic-carbonate membranes. The ceramic-carbonate membranes exhibit high stability for high temperature CO 2 separations and water gas shift reaction. Water gas shift reaction in the dual-phase membrane reactors was studied by both modeling and experiments. It is found that high temperature syngas water gas shift reaction in tubular ceramic-carbonate dual phase membrane reactor is feasible even without catalyst. The membrane reactor exhibits good CO 2 permeation flux, high thermal and chemical stability and high thermal shock resistance. Reaction and separation conditions in the membrane reactor to produce hydrogen of 93% purity and CO 2 stream of >95% purity, with 90% CO 2 capture have been identified. Integration of the ceramic-carbonate dual-phase membrane reactor with IGCC process for carbon dioxide capture was analyzed. A methodology was developed to identify optimum operation conditions for a membrane tube of given dimensions that would treat coal syngas with targeted performance. The calculation results show that the dual-phase membrane reactor could improve IGCC process efficiency but the cost of the membrane reactor with membranes having current CO 2 permeance is high. Further research should be directed towards improving the performance of the membranes and developing cost-effective, scalable methods for fabrication of dual-phase membranes and membrane reactors.« less
Cun, Dongmei; Jensen, Ditte Krohn; Maltesen, Morten Jonas; Bunker, Matthew; Whiteside, Paul; Scurr, David; Foged, Camilla; Nielsen, Hanne Mørck
2011-01-01
Poly(DL-lactide-co-glycolide acid) (PLGA) is an attractive polymer for delivery of biopharmaceuticals owing to its biocompatibility, biodegradability and outstanding controlled release characteristics. The purpose of this study was to understand and define optimal parameters for preparation of small interfering RNA (siRNA)-loaded PLGA nanoparticles by the double emulsion solvent evaporation method and characterize their properties. The experiments were performed according to a 2(5-1) fractional factorial design based on five independent variables: The volume ratio between the inner water phase and the oil phase, the PLGA concentration, the sonication time, the siRNA load and the amount of acetylated bovine serum albumin (Ac-BSA) in the inner water phase added to stabilize the primary emulsion. The effects on the siRNA encapsulation efficiency and the particle size were investigated. The most important factors for obtaining an encapsulation efficiency as high as 70% were the PLGA concentration and the volume ratio whereas the size was mainly affected by the PLGA concentration. The viscosity of the oil phase was increased at high PLGA concentration, which explains the improved encapsulation by stabilization of the primary emulsion and reduction of siRNA leakage to the outer water phase. Addition of Ac-BSA increased the encapsulation efficiency at low PLGA concentrations. The PLGA matrix protected siRNA against nuclease degradation, provided a burst release of surface-localized siRNA followed by a triphasic sustained release for two months. These results enable careful understanding and definition of optimal process parameters for preparation of PLGA nanoparticles encapsulating high amounts of siRNA with immediate and long-term sustained release properties. Copyright © 2010 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Yadav, T. P.; Mukhopadhyay, Semanti; Mishra, S. S.; Mukhopadhyay, N. K.; Srivastava, O. N.
2017-12-01
The high-entropy Ti-Zr-V-Cr-Ni (20 at% each) alloy consisting of all five hydride-forming elements was successfully synthesised by the conventional melting and casting as well as by the melt-spinning technique. The as-cast alloy consists entirely of the micron size hexagonal Laves Phase of C14 type; whereas, the melt-spun ribbon exhibits the evolution of nanocrystalline Laves phase. There was no evidence of any amorphous or any other metastable phases in the present processing condition. This is the first report of synthesising a single phase of high-entropy complex intermetallic compound in the equiatomic quinary alloy system. The detailed characterisation by X-ray diffraction, scanning and transmission electron microscopy and energy-dispersive X-ray spectroscopy confirmed the existence of a single-phase multi-component hexagonal C14-type Laves phase in all the as-cast, melt-spun and annealed alloys. The lattice parameter a = 5.08 Å and c = 8.41 Å was determined from the annealed material (annealing at 1173 K). The thermodynamic calculations following the Miedema's approach support the stability of the high-entropy multi-component Laves phase compared to that of the solid solution or glassy phases. The high hardness value (8.92 GPa at 25 g load) has been observed in nanocrystalline high-entropy alloy ribbon without any cracking. It implies that high-yield strength ( 3.00 GPa) and the reasonable fracture toughness can be achieved in this high-entropy material.
Effects of Exposures on Superalloys for Space Applications
NASA Technical Reports Server (NTRS)
Gabb, Tim; Garg, Anita; Gayda, John
2007-01-01
The industry is demanding longer term service at high temperatures for nickel-base superalloys in gas turbine engine as well as potential space applications. However, longer term service can severely tax alloy phase stability, to the potential detriment of mechanical properties. Cast Mar-M247LC and wrought Haynes 230 superalloys were exposed and creep tested for extended times at elevated temperature. Microstructure and phase evaluations were then undertaken for comparisons.
NASA Technical Reports Server (NTRS)
Schmitt, Michael P.; Rai, Amarendra K.; Zhu, Dongming; Dorfman, Mitchell R.; Wolfe, Douglas E.
2015-01-01
To enhance efficiency of gas turbines, new thermal barrier coatings (TBCs) must be designed which improve upon the thermal stability limit of 7 wt% yttria stabilized zirconia (7YSZ), approximately 1200 C. This tenant has led to the development of new TBC materials and microstructures capable of improved high temperature performance. This study focused on increasing the erosion durability of cubic zirconia based TBCs, traditionally less durable than the metastable t' zirconia based TBCs. Composite TBC microstructures composed of a low thermal conductivity/high temperature stable cubic Low-k matrix phase and a durable t' Low-k secondary phase were deposited via APS. Monolithic coatings composed of cubic Low-k and t' Low-k were also deposited, in addition to a 7YSZ benchmark. The thermal conductivity and erosion durability were then measured and it was found that both of the Low-k materials have significantly reduced thermal conductivities, with monolithic t' Low-k and cubic Low-k improving upon 7YSZ by approximately 13 and approximately 25%, respectively. The 40 wt% t' Low-k composite (40 wt% t' Low-k - 60 wt% cubic Low-k) showed a approximately 22% reduction in thermal conductivity over 7YSZ, indicating even at high levels, the t' Low-k secondary phase had a minimal impact on thermal in the composite coating. It was observed that a mere 20 wt% t' Low-k phase addition can reduce the erosion of a cubic Low-k matrix phase composite coating by over 37%. Various mixing rules were then investigated to assess this non-linear composite behavior and suggestions were made to further improve erosion durability.