Science.gov

Sample records for high power gyrotrons

  1. Improved Collectors for High Power Gyrotrons

    SciTech Connect

    Ives, R. Lawrence; Singh, Amarjit; Read, Michael; Borchard, Phillipp; Neilson, Jeff

    2009-05-20

    High power gyrotrons are used for electron cyclotron heating, current drive and parasitic mode suppression in tokamaks for fusion energy research. These devices are crucial for successful operation of many research programs around the world, including the ITER program currently being constructed in France. Recent gyrotron failures resulted from cyclic fatigue of the copper material used to fabricated the collectors. The techniques used to collect the spent beam power is common in many gyrotrons produced around the world. There is serious concern that these tubes may also be at risk from cyclic fatigue. This program addresses the cause of the collector failure. The Phase I program successfully demonstrated feasibility of a mode of operation that eliminates the cyclic operation that caused the failure. It also demonstrated that new material can provide increased lifetime under cyclic operation that could increase the lifetime by more than on order of magnitude. The Phase II program will complete that research and develop a collector that eliminates the fatigue failures. Such a design would find application around the world.

  2. Theory and Modeling of High-Power Gyrotrons

    SciTech Connect

    Nusinovich, Gregory Semeon

    2016-04-29

    This report summarized results of the work performed at the Institute for Research in Electronics and Applied Physics of the University of Maryland (College Park, MD) in the framework of the DOE Grant “Theory and Modeling of High-Power Gyrotrons”. The report covers the work performed in 2011-2014. The research work was performed in three directions: - possibilities of stable gyrotron operation in very high-order modes offering the output power exceeding 1 MW level in long-pulse/continuous-wave regimes, - effect of small imperfections in gyrotron fabrication and alignment on the gyrotron efficiency and operation, - some issues in physics of beam-wave interaction in gyrotrons.

  3. Innovation on high-power long-pulse gyrotrons

    NASA Astrophysics Data System (ADS)

    Litvak, Alexander; Sakamoto, Keishi; Thumm, Manfred

    2011-12-01

    Progress in the worldwide development of high-power gyrotrons for magnetic confinement fusion plasma applications is described. After technology breakthroughs in research on gyrotron components in the 1990s, significant progress has been achieved in the last decade, in particular, in the field of long-pulse and continuous wave (CW) gyrotrons for a wide range of frequencies. At present, the development of 1 MW-class CW gyrotrons has been very successful; these are applicable for self-ignition experiments on fusion plasmas and their confinement in the tokamak ITER, for long-pulse confinement experiments in the stellarator Wendelstein 7-X (W7-X) and for EC H&CD in the future tokamak JT-60SA. For this progress in the field of high-power long-pulse gyrotrons, innovations such as the realization of high-efficiency stable oscillation in very high order cavity modes, the use of single-stage depressed collectors for energy recovery, highly efficient internal quasi-optical mode converters and synthetic diamond windows have essentially contributed. The total tube efficiencies are around 50% and the purity of the fundamental Gaussian output mode is 97% and higher. In addition, activities for advanced gyrotrons, e.g. a 2 MW gyrotron using a coaxial cavity, multi-frequency 1 MW gyrotrons and power modulation technology, have made progress.

  4. Development of high-power gyrotrons with gradually tapered cavity

    SciTech Connect

    Lei Chaojun; Yu Sheng; Niu Xinjian; Liu Yinghui; Li Hongfu; Li Xiang

    2012-12-15

    In high power gyrotrons, the parasitic modes coupled with the operating mode cannot be avoided in the beam-wave interaction. These parasitic modes will decrease the efficiency of the gyrotrons. The purity of the operating mode affected by different tapers should be carefully studied. The steady-state self-consistent nonlinear theory for gyrotron with gradually tapered cavity is developed in this paper. A steady-state calculation code including 'cold cavity' and 'hot cavity' is designed. By comparison, a time-domain model analysis of gyrotron operation is also studied by particle-in-cell (PIC). It is found that the tapers of gyrotron have different influences on the modes coupling between the operating mode and the parasitic modes. During the study, an example of 94 GHz gyrotron with pure operating mode TE{sub 03} has been designed. The purity of the operating mode in the optimized cavity is up to -77 dB, and in output waveguide of the cavity is up to -76 dB. At the same time, the beam-wave interaction in the designed cavity has been simulated, too. An output power of 120 kW, corresponding to 41.6% efficiency and an oscillation frequency of 94.099 GHz have been achieved with a 50 kV, 6 A helical electron beam at a guiding magnetic field of 3.5485 T. The results show that the power in spurious modes of the optimized cavity may be kept far below than that of the traditional tapered cavity.

  5. High power 303 GHz gyrotron for CTS in LHD

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Y.; Kasa, J.; Saito, T.; Tatematsu, Y.; Kotera, M.; Kubo, S.; Shimozuma, T.; Tanaka, K.; Nishiura, M.

    2015-10-01

    A high-power pulsed gyrotron is under development for 300 GHz-band collective Thomson scattering (CTS) diagnostics in the Large Helical Device (LHD). High-density plasmas in the LHD require a probe wave with power exceeding 100 kW in the sub-terahertz region to obtain sufficient signal intensity and large scattering angles. At the same time, the frequency bandwidth should be less than several tens of megahertz to protect the CTS receiver using a notch filter against stray radiations. Moreover, duty cycles of ~ 10% are desired for the time domain analysis of the CTS spectrum. At present, a 77 GHz gyrotron for electron cyclotron heating is used as a CTS wave source in the LHD. However, the use of such a low-frequency wave suffers from refraction, cutoff and absorption at the electron cyclotron resonance layer. Additionally, the signal detection is severely affected by background noise from electron cyclotron emission. To resolve those problems, high-power gyrotrons in the 300 GHz range have been developed. In this frequency range, avoiding mode competition is critical to realizing high-power and stable oscillation. A moderately over-moded cavity was investigated to isolate a desired mode from neighbouring modes. After successful tests with a prototype tube, the practical one was constructed with a cavity for TE22,2 operation mode, a triode electron gun forming intense laminar electron beams, and an internal mode convertor. We have experimentally confirmed single mode oscillation of the TE22,2 mode at the frequency of 303.3 GHz. The spectrum peak is sufficiently narrow. The output power of 290 kW has been obtained at the moment.

  6. High power microwave generation from a large orbit gyrotron

    SciTech Connect

    Lawson, W.; Destler, W.W.; Striffler, C.D.

    1985-10-01

    A study of the production of high power microwave radiation from a large orbit gyrotron in azimuthally periodic boundary systems has been conducted. Linear growth rates have been calculated for the 2 modes of magnetron-like hole-and-slot resonator (HASR) and vane resonator (VR) systems using a general growth rate formalism. The experiment involves the interaction of a 2.3 MeV, 1-2 kA, 5 ns rotating electron layer with the HASR and VR structures. Maximum power levels are about 300 MW in X band from a 10 slot HASR system; about 500 MW in Ku band from a 20 slot VR system; and about 15 MW in K band from about 30 slot systems. The peak efficiency is about 15%. The radiation characteristics are in reasonably good agreement with the theoretical predictions. The reduced power levels for about 30 slot systems are partially attributed to radial mode competition.

  7. High Power Operation of a 170 GHz Gyrotron for ITER

    NASA Astrophysics Data System (ADS)

    Kreischer, Kenneth E.

    1996-11-01

    Recent experiments at MIT (In collaboration with B.G. Danly, T. Kimura, and R.J. Temkin) on a megawatt gyrotron designed for ITER have achieved record powers at 170.1 GHz. Single mode emission with a peak output power of 1.5 MW and an efficiency of 35% has been measured. The MIT gyrotron operates for 3 μsec pulses at 2 Hz but has been designed to model long pulse or cw operation. The experiment is based on a resonant cylindrical cavity operating in the TE_28,8,1 mode that is situated in the bore of a 6.7 T magnet. It is necessary to operate in a very high order mode in order to reduce cavity ohmic losses to levels that can be adequately cooled (about 1 kW/cm^2). The microwaves are generated in the cavity by an 83 kV annular electron beam produced by a triode-type magnetron injection gun that is capable of currents up to 50 A. Megawatt power levels with efficiencies between 30-35% have been measured over a wide range of operating parameters for the TE_28,8,1 mode. Similar results were also achieved in the neighboring TE_27,8,1 mode at 166.6 GHz, and the TE_29,8,1 mode at 173.5 GHz. These results are in good agreement with nonlinear multimode simulations of the cavity. (S.Y. Cai, T.M. Antonsen, G. Saraph, and B. Levush, Int. J. Electronics, Vol. 72, 759-777 (1992).) The high output power is the result of a carefully designed electron gun that is less sensitive than previous guns to misalignment, and a novel cavity that is less prone to mode competition. The gun was built by C.P.I. (formerly Varian Associates), and has a low perpendicular velocity spread (6-10%). The cavity, which was designed in collaboration with the University of Maryland, uses an output iris to increase the diffraction Q while keeping the interaction length short. Future plans include the installation of an internal mode converter that will transform the TE_28,8,1 mode into a Gaussian beam, and the use of a depressed collector to increase the device efficiency above 50%. The successful

  8. Numerical study on a 0.4 THz second harmonic gyrotron with high power

    SciTech Connect

    Chaojun, Lei; Sheng, Yu; Hongfu, Li; Yinghui, Liu; Xinjian, Niu; Qixiang, Zhao

    2013-07-15

    Terahertz and sub-terahertz science and technology are promising topics today. However, it is difficult to obtain high power source of terahertz wave. In this paper, the mode competition and beam-wave interaction in a gradually tapered cavity are studied to achieve high efficiency of a 0.4THz second harmonic gyrotron in practice. In order to attain high power and stable radiation, the TE{sub 32,5} mode is selected as the operating mode of the desired gyrotron to realize single mode oscillation. The issues of studying on the high-order mode gyrotrons are solved effectively by transforming the generalized telegraphist's equations. The efficiency and output power of the gyrotron under different conditions have been calculated by the code, which is based on the transformed equations. Consequently, the results show that single mode second harmonic radiation with power of over 150 kW at frequency of 0.4 THz could be achieved.

  9. Study of Cavity and Output Window for High Power Gyrotron

    NASA Astrophysics Data System (ADS)

    Alaria, M. K.; Mukherjee, P.; Das, S.; Sinha, A. K.

    2011-02-01

    In this paper Eigen mode analysis has been carried out using Ansoft HFSS for high frequency 42, 120 and 140 GHz Gyrotron cavity. The design of RF window for 42 GHz, 200 kW Gyrotron has also been carried out using the Ansoft HFSS and CST microwave studio. In 42 GHz gyrotron double disc of diameter 85 mm and thickness 3.2 mm sapphire window and spacing (Coolant FC-75) of discs 2.5 mm has been used in the simulation. The return loss (S11) and transmission loss (S21) of the 42 GHz gyrotron window have been found -47.3 and -0.04 dB, respectively. The return loss and transmission loss of the S-band single disc sapphire window have also been found -27.3 and -0.07 dB, respectively at cylindrical waveguide length 33 mm. The simulated result has been validated through experimental results for pill-box S-band sapphire window.

  10. Long-Term Operating Experience with High-Power Gyrotron Oscillators

    NASA Astrophysics Data System (ADS)

    Felch, Kevin

    2005-10-01

    High-power, megawatt-class gyrotron oscillators have now been used in electron cyclotron heating (ECH) experiments for several years. The long periods of sustained operation have provided important information about the design limits that had initially been placed on the key elements of the gyrotron. In particular, observations made on recent 110 GHz, 1 MW gyrotrons used in ECH experiments on DIII-D at General Atomics indicate that several of the important components of the device, including the electron guns, interaction cavities and diamond output windows, have performed quite well, while analyses of the electron beam collectors on some of the devices indicate that design limits have often been exceeded. Observations made on these gyrotrons will be summarized and plans to address problem areas will be discussed.

  11. To the theory of high-power gyrotrons with uptapered resonators

    SciTech Connect

    Dumbrajs, O.; Nusinovich, G. S.

    2010-05-15

    In high-power gyrotrons it is desirable to combine an optimal resonator length with the optimal value of the resonator quality factor. In resonators with the constant radius of the central part, the possibilities of this combination are limited because the quality factor of the resonator sharply increases with its length. Therefore the attempts to increase the length for maximizing the efficiency leads to such increase in the quality factor which makes the optimal current too small. Resonators with slightly uptapered profiles offer more flexibility in this regard. In such resonators, one can separate optimization of the interaction length from optimization of the quality factor because the quality factor determined by diffractive losses can be reduced by increasing the angle of uptapering. In the present paper, these issues are analyzed by studying as a typical high-power 17 GHz gyrotron which is currently under development in Europe for ITER (http://en.wikipedia.org/wiki/ITER). The effect of a slight uptapering of the resonator wall on the efficiency enhancement and the purity of the radiation spectrum in the process of the gyrotron start-up and power modulation are studied. Results show that optimal modification of the shape of a slightly uptapered resonator may result in increasing the gyrotron power from 1052 to 1360 kW.

  12. Gyrotrons for High-Power Terahertz Science and Technology at FIR UF

    NASA Astrophysics Data System (ADS)

    Idehara, Toshitaka; Sabchevski, Svilen Petrov

    2017-01-01

    In this review paper, we present the recent progress in the development of a series of gyrotrons at the Research Center for Development of Far-Infrared Region, University of Fukui, that have opened the road to many novel applications in the high-power terahertz science and technology. The current status of the research in this actively developing field is illustrated by the most representative examples in which the developed gyrotrons are used as powerful and frequency-tunable sources of coherent radiation operating in a continuous-wave regime. Among them are high-precision spectroscopic techniques (most notably dynamic nuclear polarization-nuclear magnetic resonance, electron spin resonance, X-ray detected magnetic resonance, and studies of the hyperfine splitting of the energy levels of positronium), treatment and characterization of advanced materials, and new medical technologies.

  13. CW, high power, gyrotron development at 110 GHz for ECH applications

    SciTech Connect

    Chu, T.S.; Borchard, P.; Felch, K.; Jory, H.; Loring, C.M.

    1996-12-31

    Electron cyclotron heating (ECH) is the most promising plasma heating method to achieve fusion. High-power, long-pulse or CW gyrotrons are required in many present and future ECH experiments. For example, the planned experiment at DIII-D, the experimental tokamak at General Atomics, will require 4 MW of RF power at 110 GHz for a pulse duration of 10 seconds. The RF requirement for the planned International Thermonuclear Experimental Reactor (ITER) is 50 MW at 170 GHz and CW operation. CPI is developing high-power, CW gyrotrons at frequencies ranging from 84--170 GHz for various ECH experiments. In particular, the authors are developing a 1 MW, CW gyrotron with an internal converter at 110 GHz. To achieve the goal of 1 MW, CW operation, the authors have designed and begun fabrication of a new tube that has improved cooling to all tube parts which showed signs of overheating during the last experiment. In addition, they are looking at the possibility of using alternate output window designs to increase power handling capability. They summarize the design of the new tube and present initial test data.

  14. CW, high power, gyrotron development at 110 GHz for ECH applications

    SciTech Connect

    Chu, T.S.; Borchard, P.; Felch, K.; Jory, H.; Loring, C.M.

    1996-12-31

    Electron cyclotron heating (ECH) is the most promising plasma heating method to achieve fusion. High-power, long-pulse or CW gyrotrons are required in many present and future ECH experiments. For example, the planned experiment at DIII-D, the experimental tokamak at General Atomics, will require 4 MW of RF power at 110 GHz for a pulse duration of 10 seconds. The RF requirement for the planned International Thermonuclear Experimental Reactor (ITER) is 50 MW at 170 GHz and CW operation. CPI is developing high-power, CW gyrotrons at frequencies ranging from 84--170 GHz for various ECH experiments. In particular, the authors are developing a 1 MW, CW gyrotron with an internal converter at 110 GHz. To achieve the goal of 1 MW, CW operation, they have designed and begun fabrication of a new tube that has improved cooling to all tube parts which showed signs of overheating during the last experiment. In addition, they are looking at the possibility of using alternate output window designs to increase power handling capability. They will summarize the design of the new tube and present initial test data.

  15. Development of advanced high-power 140 GHz gyrotrons for ECW applications

    SciTech Connect

    Kuntze, M.; Dammertz, G.; Iatrou, C.; Moebius, A.; Piosczyk, B.; Soudee, G.; Braz, O.; Kern, S.; Thumm, M.; Wien, A.

    1995-11-01

    A main goal of the gyrotron development program at the Research Center Karlsruhe (FZK) is the design, construction and test of high-power gyrotron oscillators for electron cyclotron wave (ECW) applications and diagnostics of magnetically confined plasmas in controlled thermonuclear fusion research. A TE{sub 10,4} gyrotron oscillator with advanced built-in quasi-optical mode converter and radial output coupling, into a Gaussian mode (94.5 % mode purity) has been operated at 0.46 MW with 200 ms pulse duration and total output efficiency 32 % (38 % electronic efficiency). The maximum output power was 0.6 MW (12 ms) at 27 % output efficiency. In first proof of principle experiments this total tube efficiency was improved to 51 % by the use of a single-stage potential depressed collector. In short pulse experiments (10 ms) with a TE{sub 22,6} mode cavity about 1 MW output power was generated at 140.1 GHz with U{sub b}= 85 kV and I{sub b} = 53 A. Modes of type TE{sub m,6} with m = 20 to 26 were excited in the frequency range between 136 GHz and 155 GHz with output powers of 500-600 kW at I{sub b} = 40 A. The measurements were carried out with a single disk output window and a non improved quasi-optical mode converter. First short pulse experiments with a coaxial cavity gyrotron designed for 1.5 MW output power gave 1 MW at 140 GHz (TE{sub 28,16}) and 1.3 MW at 166 GHz (TE{sub 27,15}) with efficiencies of 23 % and 29 %, respectively.

  16. High current multicharged metal ion source using high power gyrotron heating of vacuum arc plasma.

    PubMed

    Vodopyanov, A V; Golubev, S V; Khizhnyak, V I; Mansfeld, D A; Nikolaev, A G; Oks, E M; Savkin, K P; Vizir, A V; Yushkov, G Yu

    2008-02-01

    A high current, multi charged, metal ion source using electron heating of vacuum arc plasma by high power gyrotron radiation has been developed. The plasma is confined in a simple mirror trap with peak magnetic field in the plug up to 2.5 T, mirror ratio of 3-5, and length variable from 15 to 20 cm. Plasma formed by a cathodic vacuum arc is injected into the trap either (i) axially using a compact vacuum arc plasma gun located on axis outside the mirror trap region or (ii) radially using four plasma guns surrounding the trap at midplane. Microwave heating of the mirror-confined, vacuum arc plasma is accomplished by gyrotron microwave radiation of frequency 75 GHz, power up to 200 kW, and pulse duration up to 150 micros, leading to additional stripping of metal ions by electron impact. Pulsed beams of platinum ions with charge state up to 10+, a mean charge state over 6+, and total (all charge states) beam current of a few hundred milliamperes have been formed.

  17. Development of High Power Gyrotrons at 84, 110, and 140 GHz

    NASA Astrophysics Data System (ADS)

    Cauffman, Stephen; Blank, Monica; Borchard, Philipp; Cahalan, Pat; Chu, Sam; Felch, Kevin; Jory, Howard

    2002-11-01

    High power mm-wave sources are needed for electron cyclotron heating, current drive, and instability suppression in fusion plasmas. CPI has recently developed an 84 GHz, 500 kW, 2 second pulse gyrotron for use on K-STAR; a series of 110 GHz, 1 MW, 10 second pulse gyrotrons (two of which had achieved 1 MW 5 second pulse widths as of the writing of this abstract) for use on DIII-D; and a 140 GHz, 1 MW, CW gyrotron (for which initial tests were conducted, and which is presently being modified in preparation for further testing) for use on W-7X. Each design employs a diode magnetron injection gun, a high-order TE-mode interaction cavity, an internal mode converter to transform the excitation mode into a Gaussian output beam, and a CVD diamond output window to allow low- loss transmission of the output beam. The 84 GHz and 140 GHz systems employ a single-stage depressed voltage beam collector to enhance the overall electrical efficiency of the device and an external high voltage layout that obviates the need for oil insulation. Experimental results for each system will be discussed.

  18. High Peak Power Ka-Band Gyrotron Oscillator Experiment.

    DTIC Science & Technology

    1987-09-21

    has also demonstrated frequency tuning over the range 28 to 49 GHz by operating in a family of TE.’ modes, with the azimuthal index m ranging from 4 to...10, by Varia- tion of the guide magnetic field. Operation is in general agrement with the predictions of theory. 1% 20. DISTRIBUTION /AVAILABIUTY OF...proved to be highly efficient, exceptionally high average power millimeter-wave sources.1 Operating at moderate currents and voltages (typically, S50

  19. Feasibility study of a cryogenically cooled window for high-power gyrotrons

    SciTech Connect

    Haste, G.R.; Kimrey, H.D.; Prosise, J.D.

    1986-07-01

    Single-crystal sapphire is currently in use as the material for output windows in high-power microwave tubes, particularly gyrotrons. These windows are currently being cooled by fluorocarbon fluids at near-room temperatures. There are, however, several advantages in operating the window at very low temperatures: less absorption and consequent heating of the window, greater material strength, improved resistance to crack formation, greater thermal conductivity, and reduced thermal expansion. Operation at cryogenic temperatures is shown to be feasible. The output power, which is currently limited by window constraints, could be increased by an order of magnitude or more.

  20. Cold tests and high power measurements on an advanced quasi-optical mode converter for a 118 GHz gyrotron

    SciTech Connect

    Braz, O.; Losert, M.; Moebius, A.; Thumm, M. |

    1995-12-31

    This paper reports on cold test and high power measurements of the improved, dimple type quasi-optical mode converter for the 118 GHz, 0.5 MW, 210 s TE{sub 22,6} gyrotron oscillator collaboratively developed by CEA Cadarache, CRPP Lausanne, FZK Karlsruhe and Thomson Tubes Electroniques Velizy. For the low power measurements the required rotating TE{sub 22,6} mode was generated in a coaxial cavity using quasioptical techniques. The high power measurements were performed on the gyrotron output beam using an infrared camera. The evaluated mode purity of the linearly polarized fundamental Gaussian output mode is (96 {plus_minus} 1)% in agreement with calculations.

  1. Scattering volume in the collective Thomson scattering measurement using high power gyrotron in the LHD

    NASA Astrophysics Data System (ADS)

    Kubo, S.; Nishiura, M.; Tanaka, K.; Moseev, D.; Ogasawara, S.; Shimozuma, T.; Yoshimura, Y.; Igami, H.; Takahashi, H.; Tsujimura, T. I.; Makino, R.

    2016-06-01

    High-power gyrotrons prepared for the electron cyclotron heating at 77 GHz has been used for a collective Thomson scattering (CTS) study in LHD. Due to the difficulty in removing fundamental and/or second harmonic resonance in the viewing line of sight, the subtraction of the background ECE from measured signal was performed by modulating the probe beam power from a gyrotron. The separation of the scattering component from the background has been performed successfully taking into account the response time difference between both high-energy and bulk components. The other separation was attempted by fast scanning the viewing beam across the probing beam. It is found that the intensity of the scattered spectrum corresponding to the bulk and high energy components were almost proportional to the calculated scattering volume in the relatively low density region, while appreciable background scattered component remains even in the off volume in some high density cases. The ray-trace code TRAVIS is used to estimate the change in the scattering volume due to probing and receiving beam deflection effect.

  2. Systematic Observation of Time-Dependent Phenomena in the RF Output Spectrum of High Power Gyrotrons

    NASA Astrophysics Data System (ADS)

    Schlaich, Andreas; Gantenbein, Gerd; Kern, Stefan; Thumm, Manfred

    2012-09-01

    At IHM/KIT, high power gyrotrons with conventional cavity (e.g. 1 MW CW at 140 GHz for the stellarator Wendelstein 7-X) and coaxial cavity (2 MW shortpulse at 170 GHz for ITER) for fusion applications are being developed and verified experimentally. Especially with respect to the problem of parasitic RF oscillations in the beam tunnel of some W7-X tubes, investigations of the gyrotron RF output spectrum have proved to be a valuable source of diagnostic information. Signs of transient effects in millisecond pulses, like frequency switching or intermittent low-frequency modulation, have indicated that truly time-dependent measurements with high frequency resolution and dynamic range could give deeper insight into these phenomena. In this paper, an improved measurement system is presented, which employs a fast oscilloscope as receiver. Shorttime Fourier transform (STFT) is applied to the time-domain signal, yielding time-variant spectra with frequency resolutions only limited by acquisition length and STFT segmentation choice. Typical reasonable resolutions are in the range of 100 kHz to 10 MHz with a currently memory-limited maximum acquisition length of 4 ms. A key feature of the system consists in the unambiguity of frequency measurement: The system receives through two parallel channels, each using a harmonic mixer (h = 9 - 12) to convert the signal from RF millimeter wave frequencies (full D-Band, 110 - 170 GHz) to IF (0 - 3 GHz). For each IF output signal of each individual mixer, injection side and receiving harmonic are initially not known. Using accordingly determined LO frequencies, this information is retrieved from the redundancy of the channels, yielding unambiguously reconstructed RF spectra with a total span of twice the usable receiver IF bandwidth, up to ≈ 6 GHz in our case. Using the system, which is still being improved continuously, various transient effects like cavity mode switching, parasitic oscillation frequency variation, and lowfrequency

  3. High harmonic terahertz confocal gyrotron with nonuniform electron beam

    SciTech Connect

    Fu, Wenjie; Guan, Xiaotong; Yan, Yang

    2016-01-15

    The harmonic confocal gyrotron with nonuniform electron beam is proposed in this paper in order to develop compact and high power terahertz radiation source. A 0.56 THz third harmonic confocal gyrotron with a dual arc section nonuniform electron beam has been designed and investigated. The studies show that confocal cavity has extremely low mode density, and has great advantage to operate at high harmonic. Nonuniform electron beam is an approach to improve output power and interaction efficiency of confocal gyrotron. A dual arc beam magnetron injection gun for designed confocal gyrotron has been developed and presented in this paper.

  4. High-power pulsed gyrotron for 300 GHz-band collective Thomson scattering diagnostics in the Large Helical Device

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Yuusuke; Saito, Teruo; Tatematsu, Yoshinori; Ikeuchi, Shinji; Manuilov, Vladimir N.; Kasa, Jun; Kotera, Masaki; Idehara, Toshitaka; Kubo, Shin; Shimozuma, Takashi; Tanaka, Kenji; Nishiura, Masaki

    2015-01-01

    A high-power pulse gyrotron was developed to generate a probe wave for 300 GHz-band collective Thomson scattering (CTS) diagnostics in the Large Helical Device. In this frequency range, avoiding mode competition is critical to realizing high-power and stable oscillation with a narrow frequency bandwidth. A moderately over-moded cavity was investigated to ensure sufficient isolation of a desired mode from neighbouring modes, and to achieve high power output simultaneously. A cavity with the TE14,2 operation mode, a triode electron gun with an intense laminar electron beam, and an internal mode convertor were designed to construct a prototype tube. It was experimentally observed that oscillation of the TE14,2 mode was strong enough for mode competition, and provided high power with sufficient stability. The oscillation characteristics associated with the electron beam properties were compared with the numerical characteristics to find an optimum operating condition. As a result, single-mode operation with maximum output power of 246 kW was demonstrated at 294 GHz with 65 kV/14 A electron beam, yielding efficiency of ˜27%. The radiation pattern was confirmed to be highly Gaussian. The duration of the 130 kW pulse, which is presently limited by the power supply, was extended up to 30 µs. The experimental results validate our design concept and indicate the potential for realizing a gyrotron with higher power and longer pulse toward practical use in 300 GHz CTS diagnostics.

  5. High Power Microwave Emission of Large and Small Orbit Gyrotron Devices in Rectangular Interaction Structures

    NASA Astrophysics Data System (ADS)

    Hochman, J. M.; Gilgenbach, R. M.; Jaynes, R. L.; Rintamaki, J. I.; Luginsland, J. W.; Lau, Y. Y.; Spencer, T. A.

    1996-11-01

    Experiments utilize large and small orbit e-beam gyrotron devices in a rectangular-cross-section (RCS) gyrotron. This device is being explored to examine polarization control. Other research issues include pulse shortening, and mode competition. MELBA generates electron beams with parameters of: -800kV, 1-10kA diode current, and 0.5-1.0 μ sec pulselengths. The small orbit gyrotron device is converted to a large orbit experiment by running MELBA's annular electron beam through a magnetic cusp. Initial experiments showed an increase in beam alpha (V_perp/V_par) of a factor of ~ 4 between small and large orbit devices. Experimental results from the RCS gyrotron will be compared for large-orbit and small-orbit electron beams. Beam transport data and frequency measurements will be presented. Computer modeling utilizing the MAGIC and E-gun codes will be shown.

  6. Radio-frequency plasma cleaning for mitigation of high-power microwave-pulse shortening in a coaxial gyrotron

    NASA Astrophysics Data System (ADS)

    Cohen, William E.; Gilgenbach, Ronald M.; Jaynes, Reginald L.; Peters, Christopher W.; Lopez, Mike R.; Lau, Y. Y.; Anderson, Scott A.; Brake, Mary L.; Spencer, Thomas A.

    2000-12-01

    Results are reported demonstrating that radio-frequency (rf) plasma cleaning is an effective technique for mitigating microwave-pulse shortening (i.e., lengthening the pulse) in a multimegawatt, large-orbit, coaxial gyrotron. Cleaning plasmas were generated by 50 W of rf power at 13.56 MHz in nitrogen fill gas in the pressure range 15-25 mTorr. Improvements in the averaged microwave energy output of this high-power-microwave device ranged from 15% to 245% for different initial conditions and cleaning protocols. The mechanism for this improvement is believed to be rf plasma sputtering of excess water vapor from the cavity/waveguide and subsequent removal of the contaminant by cryogenic vacuum pumps.

  7. Harmonic gyrotrons operating in high-order symmetric modes

    SciTech Connect

    Nusinovich, Gregory S.; Kashyn, Dmytro G.; Antonsen, T. M.

    2015-01-05

    It is shown that gyrotrons operating at cyclotron harmonics can be designed for operation in symmetric TE{sub 0,p}-modes. Such operation in fundamental harmonic gyrotrons is possible only at small radial indices (p≤3) because of the severe mode competition with TE{sub 2,p}-modes, which are equally coupled to annular beams as the symmetric modes. At cyclotron harmonics, however, this “degeneracy” of coupling is absent, and there is a region in the parameter space where harmonic gyrotrons can steadily operate in symmetric modes. This fact is especially important for sub-THz and THz-range gyrotrons where ohmic losses limit the power achievable in continuous-wave and high duty cycle regimes.

  8. Soviet Development of Gyrotrons

    DTIC Science & Technology

    1986-05-01

    order to increase gyrotron power , Strelkov noted that "At the present time, highly efficient gyrotrons with weakly relativistic beams have been built...Consequently, the power of vacuum gyrotrons is limited: for examl)le, for a I MeV beam, the max- imum theoretical power of a high- efficiency 3)) percent...45’ and 0.5 kA, producing an output power of 25 MW. Further increase in injection current in the vacuum gyrotron decreased efficiency without

  9. A 670 GHz gyrotron with record power and efficiency

    NASA Astrophysics Data System (ADS)

    Glyavin, M. Yu.; Luchinin, A. G.; Nusinovich, G. S.; Rodgers, J.; Kashyn, D. G.; Romero-Talamas, C. A.; Pu, R.

    2012-10-01

    A 670 GHz gyrotron with record power and efficiency has been developed in joint experiments of the Institute of Applied Physics, Russian Academy of Sciences (Nizhny Novgord, Russia), and the University of Maryland (USA) teams. The magnetic field of 27-28 T required for operation at the 670 GHz at the fundamental cyclotron resonance is produced by a pulsed solenoid. The pulse duration of the magnetic field is several milliseconds. A gyrotron is driven by a 70 kV, 15 A electron beam, so the beam power is on the order of 1 MW in 10-20 ms pulses. The ratio of the orbital to axial electron velocity components is in the range of 1.2-1.3. The gyrotron is designed to operate in the TE31,8-mode. Operation in a so high-order mode results in relatively low ohmic losses (less than 10% of the radiated power). Achieved power of the outgoing radiation (210 kW) and corresponding efficiency (about 20%) represent record numbers for high-power sources of sub-THz radiation.

  10. Design and development of mode launcher for high frequency Gyrotron

    NASA Astrophysics Data System (ADS)

    Alaria, Mukesh Kumar; Sinha, A. K.; Khatun, H.

    2016-03-01

    In this paper, we describe the design and development of helical cut smooth wall mode launcher for high frequency and high power Gyrotron. A Vlasov-type helical cut mode launcher for converting TE22,6 mode to a Gaussian mode has been designed for 120 GHz, 1 MW Gyrotron. The initial design of mode launcher has been optimized using LOT/SURF-3D software. The mode launcher diameter and length are optimized considering the minimum return loss and the minimum insertion loss by using CST microwave studio. The return loss (S11) and insertion loss (S21) performance of helical cut smooth wall mode launcher have been obtained using CST-Microwave Studio. The fabrication of Vlasov-type helical cut mode launcher for 120 GHz Gyrotron has also been carried out.

  11. Development of High-Power, Long-Pulse Gyrotrons and Its Application for High Electron Temperature, EBWH and ECCD Experiments on LHD

    NASA Astrophysics Data System (ADS)

    Yoshimura, Y.; Kubo, S.; Shimozuma, T.; Igami, H.; Takahashi, H.; Nishiura, M.; Ito, S.; Kobayashi, S.; Mizuno, Y.; Okada, K.; Takita, Y.; Mutoh, T.; Yamada, H.; Komori, A.; Kariya, T.; Imai, T.; Marushchenko, Nikolai B.; Turkin, Yuri

    2011-12-01

    To sustain plasmas with higher parameters and with longer pulse duration in LHD, ECH system has been upgraded by introducing newly developed 77 GHz gyrotrons. The designed output power and operation duration time are over 1 MW for several seconds and 0.3 MW for continuous operation, respectively. Owing to the upgrade of gyrotrons and improved power supply operation procedure, total injection power of EC-waves to LHD increased up to 3.7 MW at the last LHD experimental campaign in 2010. Application of the high-power 77 GHz EC-waves of 3.4 MW as focused beams to the center of plasma with low line-average electron density of ˜0.2×1019m-3 causes highly steep electron temperature profile and the central electron temperature reached up to 20 keV, which highly exceeds the former record of 15 keV. At higher density region of 1×1019 m-3, central electron temperature reached 8.6 keV. Additional electron Bernstein wave heatings, O-X-B and slow X-B heatings, using a 77 GHz ECH system caused clear increase in plasma stored energy even for the high-density plasmas over plasma cutoff (>7.35×1019 m-3) sustained with NBI. For the O-X-B scenario, the 77 GHz EC-wave was obliquely injected from low-field side in O-mode polarization, aiming at the point where high mode-conversion efficiency was expected. For realizing slow X-B scenario, new inner-vessel mirrors were installed in LHD just close to a helical coil, that is, at the high-field side (HFS) region. Using the inner-vessel mirror, X-mode waves were injected from HFS, showing evident increase in plasma stored energy. Oblique injection of long-pulse 0.77 MW/8 s 77 GHz wave with various N∥ clearly demonstrated ECCD in LHD. The EC-driven current changes its direction with the sign of N∥, and the highest EC-driven current reached up to 42 kA.

  12. Development of High-Power, Long-Pulse Gyrotrons and Its Application for High Electron Temperature, EBWH and ECCD Experiments on LHD

    SciTech Connect

    Yoshimura, Y.; Kubo, S.; Shimozuma, T.; Igami, H.; Takahashi, H.; Nishiura, M.; Ito, S.; Kobayashi, S.; Mizuno, Y.; Okada, K.; Takita, Y.; Mutoh, T.; Yamada, H.; Komori, A.; Kariya, T.; Imai, T.; Marushchenko, Nikolai B.; Turkin, Yuri

    2011-12-23

    To sustain plasmas with higher parameters and with longer pulse duration in LHD, ECH system has been upgraded by introducing newly developed 77 GHz gyrotrons. The designed output power and operation duration time are over 1 MW for several seconds and 0.3 MW for continuous operation, respectively. Owing to the upgrade of gyrotrons and improved power supply operation procedure, total injection power of EC-waves to LHD increased up to 3.7 MW at the last LHD experimental campaign in 2010.Application of the high-power 77 GHz EC-waves of 3.4 MW as focused beams to the center of plasma with low line-average electron density of {approx}0.2x10{sup 19} m{sup -3} causes highly steep electron temperature profile and the central electron temperature reached up to 20 keV, which highly exceeds the former record of 15 keV. At higher density region of 1x10{sup 19} m{sup -3}, central electron temperature reached 8.6 keV.Additional electron Bernstein wave heatings, O-X-B and slow X-B heatings, using a 77 GHz ECH system caused clear increase in plasma stored energy even for the high-density plasmas over plasma cutoff (>7.35x10{sup 19} m{sup -3}) sustained with NBI. For the O-X-B scenario, the 77 GHz EC-wave was obliquely injected from low-field side in O-mode polarization, aiming at the point where high mode-conversion efficiency was expected. For realizing slow X-B scenario, new inner-vessel mirrors were installed in LHD just close to a helical coil, that is, at the high-field side (HFS) region. Using the inner-vessel mirror, X-mode waves were injected from HFS, showing evident increase in plasma stored energy.Oblique injection of long-pulse 0.77 MW/8 s 77 GHz wave with various N{sub ||} clearly demonstrated ECCD in LHD. The EC-driven current changes its direction with the sign of N{sub ||}, and the highest EC-driven current reached up to 42 kA.

  13. Two-tier calibrated electro-optic sensing system for intense field characterization of high-power W-band gyrotron.

    PubMed

    Kim, Seok; Hong, Young-Pyo; Yang, Jong-Won; Lee, Dong-Joon

    2016-05-16

    We present a field-calibrated electro-optic sensing system for measurement of the electric field radiating from a high-power vacuum oscillator at ~95 GHz. The intense electric field is measured in absolute scale via two probe-calibration steps, associated with a photonic heterodyne scheme. First, a micro-electro-optic probe, fabricated to less than one-tenth the oscillation wavelength scale to minimize field-perturbation due to the probe, is placed on the aperture of a field-calculable WR-10 waveguide to calibrate the probe in V/m scale. Then, using this arrangement as a calibrated reference probe at the first-tier position, another probe-bulkier, and thus more robust and sensitive but not accessible to the aperture-is calibrated at the second-tier position away from the waveguide aperture. This two-tier calibrated probe was utilized to diagnose the sub-MV/m scale of intense electric fields and emissions from a high-power W-band gyrotron. The experimental results obtained proved consistent with calculated analytical results-verifying the efficacy of the developed system.

  14. Development of an Ultra High Frequency Gyrotron with a Pulsed Magnet

    SciTech Connect

    Idehara, T.; Kamada, M.; Tsuchiya, H.; Hayashi, T.; Agusu, La; Mitsudo, S.; Ogawa, I.; Manuilov, V. N.; Naito, K.; Yuyama, T.; Jiang, W.; Yatsui, K.

    2006-01-03

    An ultra-high frequency gyrotron is being developed as a THz radiation source by using a pulsed magnet. We have achieved the highest field intensity of 20.2 T. High frequency operation at the second harmonic will achieve 1.01 THz; the corresponding cavity mode is TE6,11,1. On the other hand, an ultra-high power gyrotron with a pulsed magnet is also being developed as a millimeter to submillimeter wave radiation source. The gyrotron is a large orbit gyrotron (LOG) using an intense relativistic electron beam (IREB). A pulsed power generator 'ETIGO-IV' is applied for generation of the IREB. A prototype relativistic LOG was constructed for fundamental operation. The output of the LOG will achieve 144 GHz and 9 MW; the corresponding cavity mode is TE1,4,1. Cavities for 2nd and 4th harmonic operations were designed by numerical simulation for achievement of higher frequency. The progress of development for prototype high frequency gyrotrons with pulsed magnets is presented.

  15. Development of second harmonic gyrotrons, Gyrotron FU CW GII and Gyrotron FU CW GIII, equipped with internal mode converters

    NASA Astrophysics Data System (ADS)

    Tatematsu, Yoshinori; Yamaguchi, Yuusuke; Idehara, Toshitaka; Kawase, Tatsuru; Ichioka, Ryoichi; Ogawa, Isamu; Saito, Teruo; Fujiwara, Toshimichi

    2014-01-01

    Second harmonic gyrotrons, Gyrotron FU CW GII and Gyrotron FU CW GIII, were developed at the Research Center for Development of Far-Infrared Region, University of Fukui, Japan to achieve two goals. Each gyrotron was equipped with an internal quasi-optical mode converter. Using Gyrotron FU CW GII allowed the design of the cavity and mode converter to be validated, which was the first goal. After that, Gyrotron FU CW GIII, which is an improved version of Gyrotron FU CW GII, allowed us to achieve a high power output of up to 420 W, which was the second goal, with a cathode voltage setting of -21 kV and a beam current of 0.57 A. This was achieved using a newly developed electron gun and with the careful sitting of the gyrotron on the magnet.

  16. Development of gyrotrons for fusion with power exceeding 1 MW over a wide frequency range

    NASA Astrophysics Data System (ADS)

    Kariya, T.; Imai, T.; Minami, R.; Numakura, T.; Eguchi, T.; Kato, T.; Endo, Y.; Ichimura, M.; Shimozuma, T.; Kubo, S.; Takahashi, H.; Yoshimura, Y.; Igami, H.; Ito, S.; Mutoh, T.; Sakamoto, K.; Idei, H.; Zushi, H.; Nagasaki, K.; Sano, F.; Ono, M.; Mitsunaka, Y.

    2015-09-01

    Megawatt-class gyrotrons covering a wide frequency range (14 GHz-300 GHz) are in increasing demand for nuclear fusion. Recent electron cyclotron heating and electron cyclotron current drive experiments highlight a requirement of megawatt-scale gyrotrons at a relatively lower frequency (14-35 GHz) range of some plasma devices, like GAMMA 10/PDX of the University of Tsukuba, QUEST of Kyushu University, NSTX-U of Princeton Plasma Physics Laboratory, and Heliotron J of Kyoto University. Collaborative studies for designing a new 28 GHz/35 GHz dual-frequency gyrotron and a 14 GHz gyrotron have commenced. Operation above 1 MW of 28 GHz/35 GHz dual oscillation was demonstrated experimentally. Further in the design of dual-frequency gyrotron, operations with 2 MW 3 s and 0.4 MW CW (continuous wave) at 28 GHz, and power exceeding 1 MW for 3 s at 34.8 GHz have been shown to be feasible. The 14 GHz gyrotron is expected to operate above 1 MW. We are also developing higher frequency gyrotrons (77-300 GHz). The joint program of National Institute for Fusion Science and the University of Tsukuba developed two new 154 GHz gyrotrons for the large helical device after the demonstration of three 77 GHz gyrotrons. The 154 GHz gyrotrons achieved a maximum output power of 1.25 MW and quasi-CW operation of 0.35 MW for 30 min.

  17. Note: A 95 GHz mid-power gyrotron for medical applications measurements

    NASA Astrophysics Data System (ADS)

    Pilossof, Moritz; Einat, Moshe

    2015-01-01

    A mid-power 95 GHz gyrotron was built and used for measuring insertion loss of biological tissue. The gyrotron is a compact table-top device that allows convenient measurements in a biological setup. It operates at the fundamental harmonic with TE02 circular mode. A mode converter is used to obtain TE10 rectangular mode in standard WR10 components. Using this gyrotron, beef tissue insertion loss was measured to be about 7-8 dB per millimeter.

  18. Progress in Increasing Gyrotron Output Power Beyond 1 MW

    NASA Astrophysics Data System (ADS)

    Felch, K.; Blank, M.; Borchard, P.; Cahalan, P.; Cauffman, S.; Jory, H.

    2009-04-01

    A 95 GHz, multi-megawatt continuous-wave (CW) gyrotron oscillator is currently under development at CPI. The gyrotron consists of a single-anode magnetron injection gun designed to operate at 75 A and 90 kV, a TE22,6 mode cylindrical interaction cavity, an internal mode converter to transform the TE22,6 mode to a Gausssian beam, an edge-cooled CVD diamond output window, and a single-stage depressed collector fabricated from a strengthened copper alloy. During the initial experimental campaign, carried out in the Summer of 2007, peak output power levels up to 1 MW at 40 A beam current were demonstrated at pulse lengths up to 5 ms. In addition, pulses up to 15 s in duration at 25 A beam current, the long-pulse limit of the CPI test stand, and 630 kW peak output power were achieved. In the Fall of 2007, modifications to the CPI test stand were made to allow for short-pulse operation up to 75 A. A second test campaign, aimed at demonstrating peak output power in excess of 1 MW, is planned for early in 2008.

  19. Power Accountability with 1 MW 110 GHz Gyrotron System on the DIII--D Tokamak

    NASA Astrophysics Data System (ADS)

    Zhang, Daqing; Lohr, John; Tooker, J. W.; Ponce, Dan; Callis, R. W.

    1996-11-01

    A new gyrotron system (110 GHz, 1 MW, 2 sec) has been built for the DIII--D tokamak. Before the ECH physics experiments were carried out on DIII--D, the power produced by the gyrotron was measured carefully as well as the power absorbed by parts of the system such as in the gyrotron window, mirror optics unit, miter bends, and dummy loads, for different pulse durations. The maximum output power achieved up to now is 885 kW for 500 msec pulse length. The gyrotron generation efficiency is 37%, very close to the optimum operation parameters, and the whole system's efficiency is 29%. The output mode and frequency of the gyrotron was also measured. Detailed experimental results will be presented.

  20. GYROTRON POWER BALANCE BASED ON CALORIMETRIC MEASUREMENTS IN THE DIII-D ECH SYSTEM

    SciTech Connect

    GORELOV,I.A; LOHR,J.M; BAITY,JR.,F.W; CAHALAN,P; CALLIS,R.W; PONCE,D; CHIU,H.K

    2003-10-01

    OAK-B135 A powerful microwave system operating at the second harmonic of the electron cyclotron frequency on the DIII-D tokamak was upgraded up to six assemblies of 110 GHz gyrotrons in 2003. three Gycom gyrotrons nominally generate 750 kW for 2 s pulses, with the pulse length limit resulting from the peak temperature allowed on the boron nitride rf output window. Three Communications and Power Industries (CPI) gyrotrons with diamond windows have been recently installed and have been tested to 0.9-1.0 MW for 5 s pulses. Heat loading on internal parts of the gyrotrons, the matching optics unit and the dummy loads is measured calorimetrically. This paper discusses the calorimetry system and calorimetric measurements of gyrotron performance.

  1. Emittance of short-pulsed high-current ion beams formed from the plasma of the electron cyclotron resonance discharge sustained by high-power millimeter-wave gyrotron radiation

    NASA Astrophysics Data System (ADS)

    Razin, S.; Zorin, V.; Izotov, I.; Sidorov, A.; Skalyga, V.

    2014-02-01

    We present experimental results on measuring the emittance of short-pulsed (≤100 μs) high-current (80-100 mA) ion beams of heavy gases (Nitrogen, Argon) formed from a dense plasma of an ECR source of multiply charged ions (MCI) with quasi-gas-dynamic mode of plasma confinement in a magnetic trap of simple mirror configuration. The discharge was created by a high-power (90 kW) pulsed radiation of a 37.5-GHz gyrotron. The normalized emittance of generated ion beams of 100 mA current was (1.2-1.3) π mm mrad (70% of ions in the beams). Comparing these results with those obtained using a cusp magnetic trap, it was concluded that the structure of the trap magnetic field lines does not exert a decisive influence on the emittance of ion beams in the gas-dynamic ECR source of MCI.

  2. On the dependence of the efficiency of a 240 GHz high-power gyrotron on the displacement of the electron beam and on the azimuthal index

    SciTech Connect

    Dumbrajs, O.; Avramidis, K. A.; Franck, J.; Jelonnek, J.

    2014-01-15

    Two issues in the cavity design for a Megawatt-class, 240 GHz gyrotron are addressed. Those are first, the effect of a misaligned electron beam on the gyrotron efficiency and second, a possible azimuthal instability of the gyrotron. The aforementioned effects are important for any gyrotron operation, but could be more critical in the operation of Megawatt-class gyrotrons at frequencies above 200 GHz, which will be the anticipated requirement of DEMO. The target is to provide some basic trends to be considered during the refinement and optimization of the design. Self-consistent calculations are the base for simulations wherever possible. However, in cases for which self-consistent models were not available, fixed-field results are presented. In those cases, the conservative nature of the results should be kept in mind.

  3. Suppression and nonlinear excitation of parasitic modes in second harmonic gyrotrons operating in a very high order mode

    SciTech Connect

    Nusinovich, Gregory S.; Pu, Ruifeng; Granatstein, Victor L.

    2015-07-06

    In recent years, there was an active development of high-power, sub-terahertz (sub-THz) gyrotrons for numerous applications. For example, a 0.67 THz gyrotron delivering more than 200 kW with about 20% efficiency was developed. This record high efficiency was achieved because the gyrotron operated in a high-order TE{sub 31,8}-mode with the power of ohmic losses less than 10% of the power of outgoing radiation. That gyrotron operated at the fundamental cyclotron resonance, and a high magnetic field of about 27 T was created by a pulse solenoid. For numerous applications, it is beneficial to use gyrotrons at cyclotron harmonics which can operate in available cryomagnets with fields not exceeding 15 T. However, typically, the gyrotron operation at harmonics faces severe competition from parasitic modes at the fundamental resonance. In the present paper, we consider a similar 0.67 THz gyrotron designed for operation in the same TE{sub 31,8}-mode, but at the second harmonic. We focus on two nonlinear effects typical for interaction between the fundamental and second harmonic modes, viz., the mode suppression and the nonlinear excitation of the mode at the fundamental harmonic by the second harmonic oscillations. Our study includes both the analytical theory and numerical simulations performed with the self-consistent code MAGY. The simulations show that stable second harmonic operation in the TE{sub 31,8} mode is possible with only modest sacrifice of efficiency and power.

  4. Gyrotron: an ECH system component

    SciTech Connect

    Loring, C.M.; Eason, H.O.; Kimrey, H.D.; White, T.L.; Jory, H.R.; Evans, S.J.

    1981-01-01

    The gyrotron, or electron-cyclotron maser, in the form of a gyromonotron, is being developed as a source of millimeter wave energy for fusion plasma heating. The characteristics of this high power, high efficiency electron tube are described in terms of the requirements for the beam power supply system, the mechanical support system, the cooling system, the focusing and tuning magnets, and the waveguide system. Requirements of power level and transmission efficiency dictate the use of oversize waveguide. The implications, both to the user and to the interaction mechanisms in the gyrotron, of the use of oversize waveguide are treated. The effects of variations of various operating parameters upon the gyrotron's power output and stability are also discussed. Data from gyrotron development and system operation are used where appropriate.

  5. Generation of high charge state platinum ions on vacuum arc plasma heated by gyrotron radiation.

    PubMed

    Yushkov, G Yu; Vodopyanov, A V; Nikolaev, A G; Izotov, I V; Savkin, K P; Golubev, S V; Oks, E M

    2014-02-01

    The hybrid high charge metal ion source based on vacuum arc plasma heated by gyrotron radiation into simple magnetic trap has been developed. Two types of magnetic traps were used: a mirror configuration and a cusp one with inherent "minimum-B" structure. Pulsed high power (>100 kW) gyrotrons with frequency 37.5 GHz and 75 GHz were used for heating the vacuum arc plasma injected into the traps. Two different ways were used for injecting the metal plasma-axial injection by a miniature arc source located on-axis near the microwave window, and simultaneous radial injection by a number of sources mounted radially at the midplane of the traps. This article represents all data gathered for platinum ions, thus making comparison of the experimental results obtained with different traps and injections convenient and accurate.

  6. Observation of dynamic interactions between fundamental and second-harmonic modes in a high-power sub-terahertz gyrotron operating in regimes of soft and hard self-excitation.

    PubMed

    Saito, Teruo; Tatematsu, Yoshinori; Yamaguchi, Yuusuke; Ikeuchi, Shinji; Ogasawara, Shinya; Yamada, Naoki; Ikeda, Ryosuke; Ogawa, Isamu; Idehara, Toshitaka

    2012-10-12

    Dynamic mode interaction between fundamental and second-harmonic modes has been observed in high-power sub-terahertz gyrotrons [T. Notake et al., Phys. Rev. Lett. 103, 225002 (2009); T. Saito et al. Phys. Plasmas 19, 063106 (2012)]. Interaction takes place between a parasitic fundamental or first-harmonic (FH) mode and an operating second-harmonic (SH) mode, as well as among SH modes. In particular, nonlinear excitation of the parasitic FH mode in the hard self-excitation regime with assistance of a SH mode in the soft self-excitation regime was clearly observed. Moreover, both cases of stable two-mode oscillation and oscillation of the FH mode only were observed. These observations and theoretical analyses of the dynamic behavior of the mode interaction verify the nonlinear hard self-excitation of the FH mode.

  7. Design and operation of 140 GHz gyrotron oscillators for power levels up to 1 MW CW

    SciTech Connect

    Jory, H.; Bier, R.; Craig, L.J.; Felch, K.; Ives, L.; Lopez, N.; Spang, S.

    1986-12-01

    Varian has designed and tested 140 GHz gyrotron oscillators that have generated output powers of 100 kW CW and 200 kW for 1 ms pulses. Upcoming tubes will be designed to operate at power levels of 200 kW CW and ultimately up to 1 MW CW. The important design considerations which are addressed in the higher power tubes include the design of the electron gun, interaction circuit, and output window. These issues will be discussed and the results of the earlier 140 GHz gyrotron work at Varian will be summarized.

  8. Effect of electron-cyclotron resonance plasma heating conditions on the low-frequency modulation of the gyrotron power at the L-2M stellarator

    SciTech Connect

    Batanov, G. M.; Borzosekov, V. D.; Kolik, L. V.; Konchekov, E. M. Malakhov, D. V.; Petelin, M. I.; Petrov, A. E.; Sarksyan, K. A.; Skvortsova, N. N.; Stepakhin, V. D.; Kharchev, N. K.

    2015-08-15

    Low-frequency modulation of the gyrotron power at the L-2M stellarator was studied at different modes of plasma confinement. The plasma was heated at the second harmonic of the electron gyrofrequency. The effect of reflection of gyrotron radiation from the region of electron-cyclotron resonance plasma heating, as well as of backscattering of gyrotron radiation from fluctuations of the plasma density, on the modulation of the gyrotron power was investigated.

  9. A review on the sub-THz/THz gyrotrons

    NASA Astrophysics Data System (ADS)

    Kumar, Nitin; Singh, Udaybir; Bera, Anirban; Sinha, A. K.

    2016-05-01

    A review on the sub-THz/THz gyrotrons is performed in this manuscript. The present development status of gyrotrons can be divided into three streams for the sake of better understanding: 1. low frequency (<35 GHz), medium power (<100 kW), small size and easy to handle gyrotrons for industrial applications, 2. very high power (1 MW or more), medium frequency (100-200 GHz) gyrotrons for plasma fusion applications, 3. low power (few tens of watt to kW), high frequency (>200 GHz) gyrotrons for various innovative applications. In this manuscript, the third stream of gyrotron development is reviewed. In last few decades several innovative applications are searched in sub-THz/THz band where the gyrotrons could be used as an efficient source of RF radiation. The applications of sub-THz/THz gyrotrons including the futuristic scope of the device are also discussed in this article. Further, several criticalities arise in the design and development when the gyrotron operation shifts toward the high frequency band. Various such design and technological challenges are also discussed here. Finally the development status of sub-THz/THz gyrotrons as per the use in various scientific and technological applications is also discussed.

  10. Continuous-wave Submillimeter-wave Gyrotrons

    PubMed Central

    Han, Seong-Tae; Griffin, Robert G.; Hu, Kan-Nian; Joo, Chan-Gyu; Joye, Colin D.; Mastovsky, Ivan; Shapiro, Michael A.; Sirigiri, Jagadishwar R.; Temkin, Richard J.; Torrezan, Antonio C.; Woskov, Paul P.

    2007-01-01

    Recently, dynamic nuclear polarization enhanced nuclear magnetic resonance (DNP/NMR) has emerged as a powerful technique to obtain significant enhancements in spin spectra from biological samples. For DNP in modern NMR systems, a high power continuous-wave source in the submillimeter wavelength range is necessary. Gyrotrons can deliver tens of watts of CW power at submillimeter wavelengths and are well suited for use in DNP/NMR spectrometers. To date, 140 GHz and 250 GHz gyrotrons are being employed in DNP spectrometer experiments at 200 MHz and 380 MHz at MIT. A 460 GHz gyrotron, which has operated with 8 W of CW output power, will soon be installed in a 700 MHz NMR spectrometer. High power radiation with good spectral and spatial resolution from these gyrotrons should provide NMR spectrometers with high signal enhancement through DNP. Also, these tubes operating at submillimeter wavelengths should have important applications in research in physics, chemistry, biology, materials science and medicine. PMID:17404605

  11. Gyrotron Output Power Stabilization by PID Feedback Control of Heater Current and Anode Voltage

    NASA Astrophysics Data System (ADS)

    Khutoryan, E. M.; Idehara, T.; Kuleshov, A. N.; Ueda, K.

    2014-12-01

    To provide stable output power of a gyrotron during long operation time the power stabilization was achieved by two schemes with PID feedback control of heater current and anode voltage. It was based on the dependence of the output power on both the anode voltage and the beam current and also on the dependence of the beam current on the gun heater current. Both schemes provided decrease of the power standard deviation to 0.3-0.5%. The comparison between parameters of both schemes is discussed in the paper.

  12. System Development and Performance Testing of a W-Band Gyrotron

    NASA Astrophysics Data System (ADS)

    Kim, Sung Gug; Sawant, Ashwini; Lee, Ingeun; Kim, Dongsung; Choe, MunSeok; Won, Jong-Hyo; Kim, Jungho; So, Joonho; Jang, Won; Choi, EunMi

    2016-03-01

    A high-power W-band gyrotron has been designed and performance tested in Korea, with an output power in the range of tens of kilowatts. The gyrotron consists of a diode-type electron gun operating at 40 kV, a TE6,2 mode interaction cavity, and a mode converter for producing a highly Gaussian output mode beam. Presented here are the detailed component design procedure and the experimental results of the gyrotron's performance evaluation. A maximum power of 62 kW was achieved with an efficiency of 22 %, and a highly Gaussian output beam was observed. The gyrotron's output beam is analyzed, and its transmission through an oversized waveguide is discussed. This gyrotron is the first gyrotron developed in Korea with high power greater than 10 kW and high frequency greater than 90 GHz.

  13. Modelling and simulation of new generation powerful gyrotrons for the fusion research

    NASA Astrophysics Data System (ADS)

    Sabchevski, S.; Zhelyazkov, I.

    2007-04-01

    One of the important issues related with the cyclotron resonance heating (CRH) and current drive of fusion plasmas in thermonuclear reactors (tokamaks and stellarators) is the development of multi-megawatt class gyrotrons. There are generally three stages of the implementation of that task, notably (i) elaborating a novel generation of software tools for the physical modelling and simulation of such kind of gyrotrons, (ii) their computer aided design (CAD) and construction on the basis of the simulation's results, and finally, (iii) gyrotrons' testing in real experimental conditions. This tutorial paper concerns the first item-the development of software tools. In co-operation with the Institute for Pulsed Power and Microwave Technology at the Forschungszentrum Karlsruhe, Germany, and Centre de Recherches en Physique des Plasmas at École Polytechnique Fédérale de Lausanne, Switzerland, we work on the conceptual design of the software tools under development. The basic conclusions are that the numerical codes for gyrotrons' modelling should possess the following essential characteristics: (a) portability, (b) extensibility, (c) to be oriented toward the solution of practical problems (i.e., elaborating of computer programs that can be used in the design process), (d) to be based on self-consistent 3D physical models, which take into account the departure from axial symmetry, and (e) ability to simulate time dependent processes (electrostatic PIC simulation) alongside with a trajectory analysis (ray tracing simulation). Here, we discuss how various existing numerical codes have to be improved and implemented via the advanced programming technologies for state-of-the-art computer systems including clusters, grid, parallel platforms, and supercomputers.

  14. Two-wave regime of operation of the high-harmonic gyrotron

    SciTech Connect

    Savilov, A. V.; Denisov, G. G.; Kalynov, Yu. K.; Osharin, I. V.

    2015-04-15

    The use of the two-wave co-generation is proposed as a way to decrease the effective Q-factor of the operating near-cutoff wave of the gyrotron. In this two-wave regime, the operating wave represents a “hot” wave mode formed by two partial “cold” modes (near-cutoff and far-from-cutoff ones) coupled on the electron beam. It is shown that the use of this regime can provide a significant decrease of the Ohmic losses in low-relativistic high-harmonic gyrotrons operating in the THz frequency range.

  15. Excitation of parasitic modes in gyrotrons with fast voltage rise

    SciTech Connect

    Nusinovich, G. S.; Antonsen, T. M. Jr.; Vlasov, A. N.; Lohr, J.; Danly, B. G.; Hogge, J.-P.

    2008-10-15

    Megawatt-class, long-pulse and continuous-wave gyrotrons operate in high-order modes in order to handle the thermal losses in the resonators. The spectral density of neighboring modes in these devices is high; consequently during the beam voltage rise parasitic modes can be excited. If such gyrotrons are used in plasma experiments, these parasites can be dangerous for the receiving channels of numerous diagnostic tools. It is shown that in gyrotrons utilizing diode-type magnetron injection guns the shortening of the voltage rise time to about one microsecond can practically eliminate excitation of parasitic modes even in devices with a 2 MW power level. Some means for realizing such rise times in high-voltage modulators which can be used for megawatt-class gyrotrons are discussed. It is also shown that allowable beam voltage overshoot in such gyrotrons is about 2.5%.

  16. High power millimeter wave source development program

    NASA Technical Reports Server (NTRS)

    George, T. V.

    1989-01-01

    High power millimeter wave sources for fusion program; ECH source development program strategy; and 1 MW, 140 GHz gyrotron experiment design philosophy are briefly outlined. This presentation is represented by viewgraphs only.

  17. Recent result of gyrotron operation in NIFS

    NASA Astrophysics Data System (ADS)

    Ito, Satoshi; Shimozuma, Takashi; Yoshimura, Yasuo; Igami, Hiroe; Takahashi, Hiromi; Nishiura, Masaki; Kobayashi, Sakuji; Mizuno, Yoshinori; Okada, Kota; Kubo, Shin

    2015-03-01

    In the last Large Helical Device (LHD) experimental campaign, a 154GHz gyrotron which had been conditioned to generate 1 MW/2 s, 0.5 MW/CW was installed for LHD experiments. Four high power gyrotrons (three-77 GHz/1~1.5 MW and one-154 GHz/1 MW) and a CW gyrotron (84 GHz/0.2 MW) are ready. Our experiment requires high energy and various injection patterns for Electron Cyclotron Resonance Heating (ECRH). Higher individual injection power and various injection patterns, we developed a power enhancement method by stepped anode acceleration voltage control and operated the gyrotron in the hard excitation region. These operations were realized by a remote controlled waveform generator. However the oscillation map of high power or long pulse operation in the hard excitation region were limited because in order to achieve the hard excitation region by the anode voltage control one must pass through the high anode current phase within a time short enough that the anode or the anode power supply is not overloaded. This limitation becomes more critical when the gyrotron beam current is increased in order to increase the output power. In the long pulse operation it was impossible to reach the hard excitation region in a low beam current (<10A).

  18. Simultaneous Stabilization of Gyrotron Frequency and Power by PID Double Feedback Control on the Acceleration and Anode Voltages

    NASA Astrophysics Data System (ADS)

    Khutoryan, E. M.; Idehara, T.; Kuleshov, A. N.; Tatematsu, Y.; Yamaguchi, Y.; Matsuki, Y.; Fujiwara, T.

    2017-03-01

    In this paper, we present the results of simultaneous stabilization of both the frequency and the output power by a double PID feedback control on the acceleration and anode voltages in the 460-GHz gyrotron FU CW GVI, also known as "Gyrotron FU CW GO-1" (according to the nomenclature adopted at Osaka University). The approach used in the experiments is based on the modulation of the cyclotron frequency and the pitch factor (velocity ratio) of the electron beam by varying the acceleration and the anode voltages, respectively. In a long-term experiment, the frequency and power stabilities were made to be better than ±10-6 and ±1%, respectively.

  19. The Gyrotron at 50: Historical Overview

    NASA Astrophysics Data System (ADS)

    Nusinovich, Gregory S.; Thumm, Manfred K. A.; Petelin, Michael I.

    2014-04-01

    Gyrotrons form a specific group of devices in the class of fast-wave vacuum electronic sources of coherent electromagnetic wave radiation known as electron cyclotron masers (ECMs) or cyclotron resonance masers (CRMs). The operation of CRMs is based on the cyclotron maser instability which originates from the relativistic dependence of the electron cyclotron frequency on the electron energy. This relativistic effect can be pronounced even at low voltages when the electron kinetic energy is small in comparison with the rest energy. The free energy for generation of electromagnetic (EM) waves is the energy of electron gyration in an external magnetic field. As in any fast-wave device, the EM field in a gyrotron interaction space is not localized near a circuit wall (like in slow-wave devices), but can occupy large volumes. Due to possibilities of using various methods of mode selection (electrodynamical and electronic ones), gyrotrons can operate in very high order modes. Since the use of large, oversized cavities and waveguides reduces the role of ohmic wall losses and breakdown limitations, gyrotrons are capable of producing very high power radiation at millimeter and submillimeter wavelengths. The present review is restricted primarily by the description of the development and the present state-of-the-art of gyrotrons for controlled thermonuclear fusion plasma applications. The first gyrotron was invented, designed and tested in Gorky, USSR (now Nizhny Novgorod, Russia), in 1964.

  20. Intense high-frequency gyrotron-based microwave beams for material processing

    SciTech Connect

    Hardek, T.W.; Cooke, W.D.; Katz, J.D.; Perry, W.L.; Rees, D.E.

    1997-03-01

    Microwave processing of materials has traditionally utilized frequencies in the 0.915 and 2.45 GHz regions. Microwave power sources are readily available at these frequencies but the relatively long wavelengths can present challenges in uniformly heating materials. An additional difficulty is the poor coupling of ceramic based materials to the microwave energy. Los Alamos National Laboratory scientists, working in conjunction with the National Center for Manufacturing Sciences (NCMS), have assembled a high-frequency demonstration processing facility utilizing gyrotron based RF sources. The facility is primarily intended to demonstrate the unique features available at frequencies as high as 84 GHz. The authors can readily provide quasi-optical, 37 GHz beams at continuous wave (CW) power levels in the 10 kW range. They have also provided beams at 84 GHz at 10 kW CW power levels. They are presently preparing a facility to demonstrate the sintering of ceramics at 30 GHz. This paper presents an overview of the present demonstration processing facility and describes some of the features they have available now and will have available in the near future.

  1. Megawatt Long-Pulse Gyrotrons for ECH and ECCD Applications

    NASA Astrophysics Data System (ADS)

    Cauffman, S.; Felch, K.; Blank, M.; Borchard, P.; Cahalan, P.; Chu, T. S.; Jory, H.; Saraph, G.; Wagner, D.

    2000-10-01

    High-power long-pulse mm-wave sources are required for electron cyclotron heating and current drive in large-scale fusion experiments. Gyrotron oscillator technology has developed considerably in recent years, enabling the generation of Gaussian mm-wave beams at megawatt power levels for pulse durations in excess of 10 seconds from a single unit. This presentation summarizes CPI's recent gyrotron development activities for fusion applications. CPI has fabricated a series of 110 GHz gyrotrons for use in DIII-D ECH experiments. The three most recent gyrotrons in this series employ a diode electron gun, an internal quasi-optical mode converter, and a CVD diamond output window. Further development activities funded by DOE are aimed at incorporating a multi-stage depressed electron beam collector to improve efficiency and optimizing other design components to enable output power levels of 1.5 MW. CPI is also constructing a prototype 140 GHz 1 MW CW gyrotron for use with the W7-X stellarator. This gyrotron employs a single-stage depressed collector and a high-voltage design eliminating the need for oil around the insulating ceramics. A similar configuration was employed successfully in a recently delivered 70 GHz 500 kW gyrotron, and is being used for an 84 GHz 500 kW system under development for the KSTAR tokamak program. Design features of these devices will be compared, and empirical results will be presented for those devices for which test data is available.

  2. Gyrotron-driven high current ECR ion source for boron-neutron capture therapy neutron generator

    NASA Astrophysics Data System (ADS)

    Skalyga, V.; Izotov, I.; Golubev, S.; Razin, S.; Sidorov, A.; Maslennikova, A.; Volovecky, A.; Kalvas, T.; Koivisto, H.; Tarvainen, O.

    2014-12-01

    Boron-neutron capture therapy (BNCT) is a perspective treatment method for radiation resistant tumors. Unfortunately its development is strongly held back by a several physical and medical problems. Neutron sources for BNCT currently are limited to nuclear reactors and accelerators. For wide spread of BNCT investigations more compact and cheap neutron source would be much more preferable. In present paper an approach for compact D-D neutron generator creation based on a high current ECR ion source is suggested. Results on dense proton beams production are presented. A possibility of ion beams formation with current density up to 600 mA/cm2 is demonstrated. Estimations based on obtained experimental results show that neutron target bombarded by such deuteron beams would theoretically yield a neutron flux density up to 6·1010 cm-2/s. Thus, neutron generator based on a high-current deuteron ECR source with a powerful plasma heating by gyrotron radiation could fulfill the BNCT requirements significantly lower price, smaller size and ease of operation in comparison with existing reactors and accelerators.

  3. Operating experience on six 110 GHz, 1 MW gyrotrons for ECH applications

    NASA Astrophysics Data System (ADS)

    Felch, K.; Blank, M.; Borchard, P.; Cahalan, P.; Cauffman, S.; Jory, H.; Gorelov, Y.; Lohr, J.

    2008-05-01

    Since 1999, CPI has shipped six, 110 GHz, 1 MW, 5 s pulsed gyrotrons to General Atomics (GA) for use in electron cyclotron heating experiments on the DIII-D tokamak. As a result of extensive testing of these gyrotrons at CPI and GA, a wealth of information has been obtained regarding the long-term performance of the original electrical and mechanical design of the tubes. All of the gyrotrons have achieved long-pulse operation and five of the six gyrotrons achieved 1 MW output power levels with the nominal beam voltage and current of 80 kV and 40 A, respectively. Experience with the electron guns and interaction cavities has been quite good, though the low efficiency experienced by one gyrotron may be attributed to a gun or cavity irregularity. The internal converters employed in the gyrotrons have produced high-quality Gaussian output beams with internal diffractions losses of 5-6.5%. After several years of operation, the first three 110 GHz gyrotrons experienced collector failures due to cyclic fatigue. Improved analyses and diagnostics have been employed to avoid these problems in the future. Two problems have been experienced with the diamond output windows. These problems have been eliminated by changing braze techniques and procedures. Based on the experience obtained on these six gyrotrons, recommendations can be made for future gyrotron development work.

  4. Scaling Calculations for a Relativistic Gyrotron.

    DTIC Science & Technology

    2014-09-26

    relativistic gyrotron is under development 46-N ,an ultra -high power source of millimeter wave radia- tion. The purpose of the present study is to estimate the...to and m0c Xmn ley ( Le. rw° E, . B ....r respecti 2 EB). Unnormalized ’wo’ m c2 xmn o Xmnn quantities are expressed in mks units unless otherwise

  5. Suppression of spurious mode oscillation in mega-watt 77-GHz gyrotron as a high quality probe beam source for the collective Thomson scattering in LHD

    SciTech Connect

    Ogasawara, S.; Kubo, S.; Nishiura, M.; Tanaka, K.; Shimozuma, T.; Yoshimura, Y.; Igami, H.; Takahashi, H.; Ito, S.; Takita, Y.; Kobayashi, S.; Mizuno, Y.; Okada, K.; Tatematsu, Y.; Saito, T.; Minami, R.; Kariya, T.; Imai, T.

    2012-10-15

    Collective Thomson scattering (CTS) diagnostic requires a strong probing beam to diagnose a bulk and fast ion distribution function in fusion plasmas. A mega-watt gyrotron for electron cyclotron resonance heating is used as a probing beam in the large helical device. Spurious mode oscillations are often observed during the turning on/off phase of the modulation. The frequency spectra of the 77-GHz gyrotron output power have been measured, and then one of the spurious modes, which interferes with the CTS receiver system, is identified as the TE{sub 17,6} mode at the frequency of 74.7 GHz. The mode competition calculation indicates that the increase of the magnetic field strength at the gyrotron resonator can avoid such a spurious mode and excite only the main TE{sub 18,6} mode. The spurious radiation at the 74.7 GHz is experimentally demonstrated to be suppressed in the stronger magnetic field than that optimized for the high-power operation.

  6. Terahertz Gyrotrons at IAP RAS: Status and New Designs

    NASA Astrophysics Data System (ADS)

    Bratman, V. L.; Glyavin, M. Yu.; Kalynov, Yu. K.; Litvak, A. G.; Luchinin, A. G.; Savilov, A. V.; Zapevalov, V. E.

    2011-03-01

    Powerful gyrotrons with radiation frequencies in the range 0.33-0.65 THz were demonstrated at the IAP as early as in the 1970-1980s. This trend has recently been renewed in connection with a significant increase in interest in terahertz frequency range. In the course of new experiments, the radiation frequency of pulsed gyrotrons was increased up to 1.3 THz and 1 THz at the fundamental and third cyclotron harmonics, respectively. In addition, gyrotrons operated in CW regime with a frequency of 0.3 THz for technological applications (in collaboration with the University of Fukui, Japan) and 0.26 THz for the dynamic nuclear polarization at a high-field NMR were implemented. Designs of a pulsed fundamental-harmonic gyrotron with MW-level power at 0.3 THz and a CW kW-level third-harmonic gyrotron with a frequency of 0.4 THz are currently developed. Estimates show that modern techniques for the creation of strong magnetic fields now make it possible to realize gyrotrons with an operating frequency at least up to 1-1.5 THz. Such generators utilize a relatively low particle energy and can provide higher average power than the existing FELs.

  7. RF Behavior and Launcher Design for a Fast Frequency Step-tunable 236 GHz Gyrotron for DEMO

    NASA Astrophysics Data System (ADS)

    Kalaria, P. C.; Avramidis, K. A.; Franck, J.; Gantenbein, G.; Illy, S.; Jin, J.; Pagonakis, I. Gr.; Thumm, M.; Jelonnek, J.

    2017-03-01

    As part of the EUROfusion project, the conceptual design of a 1 MW 236 GHz hollow-cavity gyrotron is ongoing at IHM, KIT for a DEMOnstration Power Plant (DEMO), along with a 2 MW coaxial-cavity design concept. Fast frequency-tunable gyrotrons (tuning within a few seconds) are recommended for plasma stabilization using a non-steerable antenna. In this work, the mode-selection approach for such a frequency-tunable gyrotron is presented and suitable operating modes for fast frequency tunability are suggested. Magnetic field tuning has been studied as an effective technique to tune the gyrotron operating frequency. The step-tunability of the 236 GHz gyrotron within the frequency range of ±10 GHz in steps of 2-3 GHz is demonstrated in numerical simulations. A hybrid-type Quasi-Optical Launcher (QOL) has been designed for a step-frequency tunable gyrotron with sufficiently high Fundamental Gaussian Mode Content (FGMC).

  8. Development of frequency step tunable 1 MW gyrotron at 131 to 146.5 GHz

    SciTech Connect

    Samartsev, A.; Gantenbein, G.; Dammertz, G.; Illy, S.; Kern, S.; Leonhardt, W.; Schlaich, A.; Schmid, M.; Thumm, M.

    2011-07-01

    Effective control of power absorption in tokamaks and stellarators could be achieved by the frequency tuning of ECH and CD power delivered by high-power gyrotrons. In this report some results of the development of a frequency tunable gyrotron with fused-silica Brewster window are presented. Excitation of several modes at 1 MW power level in the range of frequencies from 131 to 146.5 GHz is achieved. (author)

  9. High power millimeter wave ECRH source needs for fusion program

    SciTech Connect

    Not Available

    1984-06-01

    This document stems from the four-day Gyrotron Symposium held at the US Department of Energy (DOE) Headquarters on June 13-16, 1983, and serves as a position paper for the Office of Fusion Energy, DOE, on high-power millimeter wave source development for Electron Cyclotron Heating (ECH) of plasmas. It describes the fusion program needs for gyrotron as ECH sources, their current status, and desirable development strategies.

  10. Polarization Issues with High Power Injection and Low Power Emission in Fusion Experiments

    SciTech Connect

    Goodman, T. P.; Felici, F.; Udintsev, V. S.

    2009-11-26

    All tokamak experiments using ECCD require setting of the beam elliptical polarization for proper coupling to the plasma. This is done either in the matching optics unit (MOU) at the output of the gyrotron, or in a couple of miter bends of the transmission line. Similarly, oblique ECE receivers require selection of the correct elliptical polarization to provide localized measurements. For the TCV tokamak at the CRPP, gyrotron and oblique-ECE polarizers are characterized during either high- or low- power testing of equipment: for the gyrotrons the behaviour is determined at a single frequency, but for the oblique-ECE the broadband response is needed. These characteristics are included in the calibration database and used during subsequent analysis of the power coupling to, or from, the sources (gyrotron, plasma, or low power transmitting antenna). A more detailed characterization has been carried out (at low power) with the MOU for the EU, 170 GHz, 2 MW, gyrotron prototype for ITER. This paper discusses the methodology and results of these measurements, as well as a review of nearly a decade's worth of experimental data from the 6 gyrotron, 3 MW, 82.6 GHz TCV system. In particular, the consistency between the calibrations and the subsequent data from tokamak experiments is analysed.

  11. High power local ECH in CHS

    SciTech Connect

    Kubo, S.; Idei, H.; Iwase, M.; Ohkubo, K.; Minami, T.; Yamada, I.; Narihara, K.; Tanaka, K.; Wilgen, J.B.; Murakami, M.; Rasumussen, D.A.; Nishimura, K.; Okamura, S.; Matsuoka, K.

    1996-02-01

    Electron cyclotron heating (ECH) experiments with 200 kW and 400 kW gyrotrons at the frequency of 53.2 GHz have been performed in Compact Helical System (CHS). Microwave power from both gyrotrons is transmitted with quasi-optical transmission line and highly focused on the mid-plane of CHS. The main purpose of these experiments is to understand the heating and energy transport mechanisms in CHS at the low collisional regime. The combination of the magnetic field, focal position and polarization enables the investigation of the on/off axis local heating effect with fundamental and second harmonic ECH. {copyright} {ital 1996 American Institute of Physics.}

  12. Gyrotron-Based Microwave Sintering of Ceramics

    NASA Astrophysics Data System (ADS)

    Fliflet, A. W.; Bruce, R. W.; Fischer Lewis, R. P., III; Bender, B. A.; Chow, G.-M.; Rayne, R. J.; Kurihara, L. K.; Schoen, P. E.

    1997-11-01

    The development of powerful gyrotrons has opened up the millimeter-wave regime (>= 28 GHz) for processing ceramic materials. A number of studies of microwave sintering of ceramics have indicated that sintering proceeds much faster in microwave furnaces than in conventional furnaces, however, specific conclusions have been limited by the wide range of materials investigated and measurement difficulties. To assess the potential of high frequency microwave sintering, and to investigate the possibility of a specific microwave mechanism, the Naval Research Laboratory has recently undertaken a systematic study focused on the sintering of fine and ultra-fine grained alumina and titania compacts. This paper presents 35 GHz microwave sintering data obtained using a gyrotron-powered furnace and compares our data with results from other microwave and conventional sintering studies.

  13. Design and measurement of a TE13 input converter for high order mode gyrotron travelling wave amplifiers

    NASA Astrophysics Data System (ADS)

    Wang, Yan; Liu, Guo; Shu, Guoxiang; Yan, Ran; Wang, Li; Agurgo Balfour, E.; Fu, Hao; Luo, Yong; Wang, Shafei

    2016-03-01

    A technique to launch a circular TE13 mode to interact with the helical electron beam of a gyrotron travelling wave amplifier is proposed and verified by simulation and cold test in this paper. The high order (HOM) TE13 mode is excited by a broadband Y-type power divider with the aid of a cylindrical waveguide system. Using grooves and convex strips loaded at the lateral planes of the output cylindrical waveguide, the electric fields of the potential competing TE32 and TE71 modes are suppressed to allow the transmission of the dominant TE13 mode. The converter performance for different structural dimensions of grooves and convex strips is studied in detail and excellent results have been achieved. Simulation predicts that the average transmission is ˜-1.8 dB with a 3 dB bandwidth of 7.2 GHz (91.5-98.7 GHz) and port reflection is less than -15 dB. The conversion efficiency to the TE32 and TE71 modes are, respectively, under -15 dB and -24 dB in the operating frequency band. Such an HOM converter operating at W-band has been fabricated and cold tested with the radiation boundary. Measurement from the vector network analyzer cold test and microwave simulations show a good reflection performance for the converter.

  14. Ion Compensation for Space Charge in the Helical Electron Beams of Gyrotrons

    NASA Astrophysics Data System (ADS)

    Manuilov, V. N.; Semenov, V. E.

    2016-06-01

    We solve analytically the problem about ion compensation for the space charge of a helical electron beam in a gyrotron operated in the long-pulse regime. Elementary processes, which take place during ionization of residual gas in the tube under typical pressures of 10-6-10-7 mm Hg, are considered. It is shown that distribution of the space charge is affected mainly by the electrons of the initial beam and slow-moving ions produced by ionization of the residual gas. Steady-state density of ions in the operating space of the gyrotron after the end of the transitional processes is found, as well as the electron density profile in the channel of electron beam transportation. The results obtained allow us to evaluate the pitch-factor variations caused by partial compensations for the potential "sagging" in the gyrotron cavity, thus being useful for analysis of starting currents, efficiency, and mode competition in high-power gyrotrons.

  15. HV-system for CW-gyrotrons at W7-X and the relevance for ITER

    NASA Astrophysics Data System (ADS)

    Braune, H.; Brand, P.; Krampitz, R.; Leonhardt, W.; Mellein, D.; Michel, G.; Mueller, G.; Sachtleben, J.; Winkler, M.; W7-X ECRH Teams at IPP IPF; FZK

    2005-01-01

    Electron Cyclotron Resonance Heating (ECRH) is the main heating method for the Wendelstein 7-X Stellarator (W7-X), which is under construction at IPP-Greifswald. A 10 MW ECRH plant with CW-capability at 140 GHz is under construction to meet the scientific objectives. The microwave power is generated by 10 gyrotrons with 1 MW each two gyrotrons are operational at IPP in Greifswald. The tubes are equipped with a single-stage depressed collector for energy recovery and operate with an output power modulation between 0.3 and 1 MW with a sinusoidal frequency of up to 10 kHz which is achieved by modulating the depression voltage and is an interesting feature for NTM control at ITER. The general features of the ECRH-plant such as frequency power, cw-capability, flexibility and the experimental experience are of high relevance for the ITER system. Each gyrotron is fed by two high-voltage sources. A high-power supply for driving the electron beam and a precision low-power supply for beam acceleration. The high-power facility consists of modular solid state HV-supplies (-65 kV 50/100 A) providing fast power control and high flexibility. The low-power high-voltage source for beam acceleration is realized by a feed back controlled high-voltage servo-amplifier driving the depression voltage. A protection system with a thyratron crowbar for fast power removal in case of gyrotron failure by arcing is installed. Both the high power and low-power high-voltage sources have the capability to supply a 2 MW ITER gyrotron without any modification. Analogue electronic devices control the fast functions of the high-voltage system for each gyrotron and a hierarchy of industrial standard PLCs and computers supervise the whole ECRH-plant.

  16. Development of 1 to 1.5 MW CW Gyrotrons

    NASA Astrophysics Data System (ADS)

    Felch, K.; Blank, M.; Borchard, P.; Cahalan, P.; Cauffman, S.; Chu, S.; Jory, H.

    2003-10-01

    High power mm-wave sources provide electron cyclotron heating, current drive, and instability suppression in fusion plasmas. CPI has delivered three 110 GHz, 1 MW gyrotrons for ECH and ECCD experiments on DIII-D, each of which has demonstrated reliable operation at 1 MW for pulse lengths up to 5 seconds. CPI has also delivered a 140 GHz, 1 MW gyrotron to IPP for use on W-7X. This gyrotron has produced a peak output power of 900 kW, and pulse lengths up to 700 seconds at 500 kW. Ten consecutive 500 kW 600 second pulses were demonstrated without fault at 25CPI's test facilities could not support long pulse operation at full power, such operation is planned at IPP. The 140 GHz system employs a diode magnetron injection gun, a TE_28,7 cavity interaction mode, an internal mode converter to produce a Gaussian output beam, a low-loss CVD diamond output window, and a single-stage depressed-voltage beam collector to enhance the overall electrical efficiency of the device. Currently, under a DOE development program, CPI is fabricating a 110 GHz, 1.3-1.5 MW CW depressed-collector gyrotron to deliver improved reliability at power levels above 1 MW.

  17. Development of simulation tools for numerical investigation and computer-aided design (CAD) of gyrotrons

    NASA Astrophysics Data System (ADS)

    Damyanova, M.; Sabchevski, S.; Zhelyazkov, I.; Vasileva, E.; Balabanova, E.; Dankov, P.; Malinov, P.

    2016-10-01

    As the most powerful CW sources of coherent radiation in the sub-terahertz to terahertz frequency range the gyrotrons have demonstrated a remarkable potential for numerous novel and prospective applications in the fundamental physical research and the technologies. Among them are powerful gyrotrons for electron cyclotron resonance heating (ECRH) and current drive (ECCD) of magnetically confined plasma in various reactors for controlled thermonuclear fusion (e.g., tokamaks and most notably ITER), high-frequency gyrotrons for sub-terahertz spectroscopy (for example NMR-DNP, XDMR, study of the hyperfine structure of positronium, etc.), gyrotrons for thermal processing and so on. Modelling and simulation are indispensable tools for numerical studies, computer-aided design (CAD) and optimization of such sophisticated vacuum tubes (fast-wave devices) operating on a physical principle known as electron cyclotron resonance maser (ECRM) instability. During the recent years, our research team has been involved in the development of physical models and problem-oriented software packages for numerical analysis and CAD of different gyrotrons in the framework of a broad international collaboration. In this paper we present the current status of our simulation tools (GYROSIM and GYREOSS packages) and illustrate their functionality by results of numerical experiments carried out recently. Finally, we provide an outlook on the envisaged further development of the computer codes and the computational modules belonging to these packages and specialized to different subsystems of the gyrotrons.

  18. High order mode beam waveguide for technological medium power millimeter wave applications

    SciTech Connect

    Rio, C. del; Gonzalo, R.; Marin, M.; Sorolla, M.; Moebius, A.; Thumm, M.

    1995-12-31

    The use of medium power millimeter CW gyrotrons (10-30 kW and 30-100 GHz) has several potential applications in advanced materials processing. Since a stochastic field distribution in the applicator is desirable no pencil beam is necessary. Then the possibility to couple the circular symmetric gyrotron output to a higher order free space mode can be considered. Beam waveguides based on iterative reflection of such high order beams on properly disigned mirrors opens the possibility to increase the efficiency and to reduce costs of present compact transmission lines in gyrotron technological systems.

  19. Neutron generator for BNCT based on high current ECR ion source with gyrotron plasma heating.

    PubMed

    Skalyga, V; Izotov, I; Golubev, S; Razin, S; Sidorov, A; Maslennikova, A; Volovecky, A; Kalvas, T; Koivisto, H; Tarvainen, O

    2015-12-01

    BNCT development nowadays is constrained by a progress in neutron sources design. Creation of a cheap and compact intense neutron source would significantly simplify trial treatments avoiding use of expensive and complicated nuclear reactors and accelerators. D-D or D-T neutron generator is one of alternative types of such sources for. A so-called high current quasi-gasdynamic ECR ion source with plasma heating by millimeter wave gyrotron radiation is suggested to be used in a scheme of D-D neutron generator in the present work. Ion source of that type was developed in the Institute of Applied Physics of Russian Academy of Sciences (Nizhny Novgorod, Russia). It can produce deuteron ion beams with current density up to 700-800 mA/cm(2). Generation of the neutron flux with density at the level of 7-8·10(10) s(-1) cm(-2) at the target surface could be obtained in case of TiD2 target bombardment with deuteron beam accelerated to 100 keV. Estimations show that it is enough for formation of epithermal neutron flux with density higher than 10(9) s(-1) cm(-2) suitable for BNCT. Important advantage of described approach is absence of Tritium in the scheme. First experiments performed in pulsed regime with 300 mA, 45 kV deuteron beam directed to D2O target demonstrated 10(9) s(-1) neutron flux. This value corresponds to theoretical estimations and proofs prospects of neutron generator development based on high current quasi-gasdynamic ECR ion source.

  20. 95 GHz gyrotron with ferroelectric cathode.

    PubMed

    Einat, M; Pilossof, M; Ben-Moshe, R; Hirshbein, H; Borodin, D

    2012-11-02

    Ferroelectric cathodes were reported as a feasible electron source for microwave tubes. However, due to the surface plasma emission characterizing this cathode, operation of millimeter wave tubes based on it remains questionable. Nevertheless, the interest in compact high power sources of millimeter waves and specifically 95 GHz is continually growing. In this experiment, a ferroelectric cathode is used as an electron source for a gyrotron with the output frequency extended up to 95 GHz. Power above a 5 kW peak and ~0.5 μs pulses are reported; a duty cycle of 10% is estimated to be achievable.

  1. Effects of electron beam parameters and velocity spread on radio frequency output of a photonic band gap cavity gyrotron oscillator

    NASA Astrophysics Data System (ADS)

    Singh, Ashutosh; Jain, P. K.

    2015-09-01

    In this paper, the effects of electron beam parameters and velocity spread on the RF behavior of a metallic photonic band gap (PBG) cavity gyrotron operating at 35 GHz with TE041-like mode have been theoretically demonstrated. PBG cavity is used here to achieve a single mode operation of the overmoded cavity. The nonlinear time-dependent multimode analysis has been used to observe the beam-wave interaction behavior of the PBG cavity gyrotron, and a commercially available PIC code "CST Particle Studio" has been reconfigured to obtain 3D simulation results in order to validate the analytical values. The output power for this typical PBG gyrotron has been obtained ˜108 kW with ˜15.5% efficiency in a well confined TE041-like mode, while all other competing modes have significantly low values of power output. The output power and efficiency of a gyrotron depend highly on the electron beam parameters and velocity spread. The influence of several electron beam parameters, e.g., beam voltage, beam current, beam velocity pitch factor, and DC magnetic field, on the PBG gyrotron operations has been investigated. This study would be helpful in optimising the electron beam parameters and estimating accurate RF output power of the high frequency PBG cavity based gyrotron oscillators.

  2. Effects of electron beam parameters and velocity spread on radio frequency output of a photonic band gap cavity gyrotron oscillator

    SciTech Connect

    Singh, Ashutosh; Jain, P. K.

    2015-09-15

    In this paper, the effects of electron beam parameters and velocity spread on the RF behavior of a metallic photonic band gap (PBG) cavity gyrotron operating at 35 GHz with TE{sub 041}–like mode have been theoretically demonstrated. PBG cavity is used here to achieve a single mode operation of the overmoded cavity. The nonlinear time-dependent multimode analysis has been used to observe the beam-wave interaction behavior of the PBG cavity gyrotron, and a commercially available PIC code “CST Particle Studio” has been reconfigured to obtain 3D simulation results in order to validate the analytical values. The output power for this typical PBG gyrotron has been obtained ∼108 kW with ∼15.5% efficiency in a well confined TE{sub 041}–like mode, while all other competing modes have significantly low values of power output. The output power and efficiency of a gyrotron depend highly on the electron beam parameters and velocity spread. The influence of several electron beam parameters, e.g., beam voltage, beam current, beam velocity pitch factor, and DC magnetic field, on the PBG gyrotron operations has been investigated. This study would be helpful in optimising the electron beam parameters and estimating accurate RF output power of the high frequency PBG cavity based gyrotron oscillators.

  3. Nonstationary oscillations in gyrotrons revisited

    SciTech Connect

    Dumbrajs, O.; Kalis, H.

    2015-05-15

    Development of gyrotrons requires careful understanding of different regimes of gyrotron oscillations. It is known that in the planes of the generalized gyrotron variables: cyclotron resonance mismatch and dimensionless current or cyclotron resonance mismatch and dimensionless interaction length complicated alternating sequences of regions of stationary, periodic, automodulation, and chaotic oscillations exist. In the past, these regions were investigated on the supposition that the transit time of electrons through the interaction space is much shorter than the cavity decay time. This assumption is valid for short and/or high diffraction quality resonators. However, in the case of long and/or low diffraction quality resonators, which are often utilized, this assumption is no longer valid. In such a case, a different mathematical formalism has to be used for studying nonstationary oscillations. One example of such a formalism is described in the present paper.

  4. PRACTICAL EXERIENCES WITH THE 6 GYROTRON SYSTEM ON THE DIII-D TOKAMAK

    SciTech Connect

    LOHR,J; CARY,W.P; GORELOV,Y.A; GRUNLOH,H.J; KAJIWARA,K; PEAVY,J.J; PONCE,D; TOOKER,J; CALLIS,R.W

    2003-10-01

    OAK-B135 The gyrotron installation on the DIII-D tokamak now comprises six 110 GHz gyrotrons in the 1 MW class, three manufactured by CPI[1] and three by Gycom [2]. Two tetrode rectifier/modulator/regulator power supplies were constructed to provide power for the CPI gyrotrons. A second system uses three mod/reg tetrodes connected in parallel, which are fed by a dual parallel tetrode mod/reg to power the Gycom tubes. the windowless evacuated transmission lines are up to 100 m in length, with 80% transmission efficiency. Engineering solutions were developed in specific problematic areas encountered in the development of this complex system, including: Gyrotron instability; high voltage circuit instability; gyrotron conditioning; rf beam forming and coupling to waveguide; output window vacuum seals; material control; launcher mechanics and diagnosis; polarizer mechanics; dummy loads; power measurements; polarization measurements; cooling; calorimetry; and operating controls. The system is in routine operation in support of tokamak experiments, with peak generated power of about 5 MW at 2 s. pulse length and about 3 MW for 5 s. pulses. This presentation focuses on practical lessons learned in the development and operation of these systems.

  5. Investigations of Cavity Designs for a High Power Gyrotron.

    DTIC Science & Technology

    1982-05-20

    WGM in a coaxial resonator, one has to work with very small annulus spacing, thus making electron beam alignment difficult and, more importantly...are shown in Table 1. In order to operate with a low order mode, one has to work with a small annulus spacing (making beam alignment critical) and

  6. Gyrotron with a sectioned cavity based on excitation of a far-from-cutoff operating mode

    SciTech Connect

    Bandurkin, I. V.; Kalynov, Yu. K.; Osharin, I. V.; Savilov, A. V.

    2016-01-15

    A typical problem of weakly relativistic low-power gyrotrons (especially in the case of operation at high cyclotron harmonics) is the use of long cavities ensuring extremely high diffraction Q-factors for the operating near-cutoff waves. As a result, a great share of the rf power radiated by electrons is spent in Ohmic losses. In this paper, we propose to use a sectioned cavity with π-shifts of the wave phase between sections. In such a cavity, a far-from-cutoff axial mode of the operating cavity having a decreased diffraction Q-factor is excited by the electron beam in a gyrotron-like regime.

  7. A 250 GHz Gyrotron with a 3 GHz Tuning Bandwidth for Dynamic Nuclear Polarization

    PubMed Central

    Barnes, Alexander B.; Nanni, Emilio A.; Herzfeld, Judith; Griffin, Robert G.; Temkin, Richard J.

    2012-01-01

    We describe the design and implementation of a novel tunable 250 GHz gyrotron oscillator with >10 W output power over most of a 3 GHz band and >35 W peak power. The tuning bandwidth and power are sufficient to generate a >1 MHz nutation frequency across the entire nitroxide EPR lineshape for cross effect DNP, as well as to excite solid effect transitions utilizing other radicals, without the need for sweeping the NMR magnetic field. Substantially improved tunability is achieved by implementing a long (23 mm) interaction cavity that can excite higher order axial modes by changing either the magnetic field of the gyrotron or the cathode potential. This interaction cavity excites the rotating TE5,2,q mode, and an internal mode converter outputs a high-quality microwave beam with >94% Gaussian content. The gyrotron was integrated into a DNP spectrometer, resulting in a measured DNP enhancement of 54 on the membrane protein bacteriorhodopsin. PMID:22743211

  8. A 250 GHz gyrotron with a 3 GHz tuning bandwidth for dynamic nuclear polarization.

    PubMed

    Barnes, Alexander B; Nanni, Emilio A; Herzfeld, Judith; Griffin, Robert G; Temkin, Richard J

    2012-08-01

    We describe the design and implementation of a novel tunable 250 GHz gyrotron oscillator with >10 W output power over most of a 3 GHz band and >35 W peak power. The tuning bandwidth and power are sufficient to generate a >1 MHz nutation frequency across the entire nitroxide EPR lineshape for cross effect DNP, as well as to excite solid effect transitions utilizing other radicals, without the need for sweeping the NMR magnetic field. Substantially improved tunability is achieved by implementing a long (23 mm) interaction cavity that can excite higher order axial modes by changing either the magnetic field of the gyrotron or the cathode potential. This interaction cavity excites the rotating TE(₅,₂,q) mode, and an internal mode converter outputs a high-quality microwave beam with >94% Gaussian content. The gyrotron was integrated into a DNP spectrometer, resulting in a measured DNP enhancement of 54 on the membrane protein bacteriorhodopsin.

  9. A 250 GHz gyrotron with a 3 GHz tuning bandwidth for dynamic nuclear polarization

    NASA Astrophysics Data System (ADS)

    Barnes, Alexander B.; Nanni, Emilio A.; Herzfeld, Judith; Griffin, Robert G.; Temkin, Richard J.

    2012-08-01

    We describe the design and implementation of a novel tunable 250 GHz gyrotron oscillator with >10 W output power over most of a 3 GHz band and >35 W peak power. The tuning bandwidth and power are sufficient to generate a >1 MHz nutation frequency across the entire nitroxide EPR lineshape for cross effect DNP, as well as to excite solid effect transitions utilizing other radicals, without the need for sweeping the NMR magnetic field. Substantially improved tunability is achieved by implementing a long (23 mm) interaction cavity that can excite higher order axial modes by changing either the magnetic field of the gyrotron or the cathode potential. This interaction cavity excites the rotating TE5,2,q mode, and an internal mode converter outputs a high-quality microwave beam with >94% Gaussian content. The gyrotron was integrated into a DNP spectrometer, resulting in a measured DNP enhancement of 54 on the membrane protein bacteriorhodopsin.

  10. A point-like source of extreme ultraviolet radiation based on a discharge in a non-uniform gas flow, sustained by powerful gyrotron radiation of terahertz frequency band

    SciTech Connect

    Glyavin, M. Yu.; Golubev, S. V.; Izotov, I. V.; Litvak, A. G.; Luchinin, A. G.; Razin, S. V.; Sidorov, A. V.; Skalyga, V. A.; Vodopyanov, A. V.

    2014-10-27

    The possibility and prospects of extreme ultraviolet (UV) point-like source development are discussed in the present paper. The UV source is based on the discharge sustained by powerful gyrotron radiation of terahertz (THz) frequency band in non-uniform gas flow injected into vacuum volume through a nozzle with diameter less than 1 mm. Recent developments of THz-band gyrotrons with appropriate power level made such discharges possible. First experimental results on a point-like plasma creation by 100 kW radiation of 0.67 THz gyrotron are presented. The possibility of discharge localization within the area less than 1 mm is demonstrated. The discharge emission within the wavelength range from 112 nm to 650 nm was studied. The measured power of light emission in the range of 112–180 nm was measured to be up to 10 kW.

  11. System using a megawatt class millimeter wave source and a high-power rectenna to beam power to a suspended platform

    DOEpatents

    Caplan, Malcolm; Friedman, Herbert W.

    2005-07-19

    A system for beaming power to a high altitude platform is based upon a high power millimeter gyrotron source, optical transmission components, and a high-power receiving antenna (i.e., a rectenna) capable of rectifying received millimeter energy and converting such energy into useable electrical power.

  12. Recent progress in developing a 170 GHz, 500 kW gyrotron for testing ITER transmission line components

    NASA Astrophysics Data System (ADS)

    Felch, Kevin; Blank, Monica; Borchard, Philipp; Cahalan, Pat; Cauffman, Steve

    2011-10-01

    A 170 GHz, 500 kW CW gyrotron has been developed for testing ITER transmission line components. Although specified as a 500 kW source, the electrical design has been conceived with the goal of generating up to 1 MW of continuous output power. The design employs a double-anode electron gun, an interaction cavity operating in the TE31,8 cavity mode, a three-mirror internal converter to produce a fundamental Gaussian output beam, a CVD diamond output window and a depressed collector to safely dissipate the spent electron beam power. Fabrication of the gyrotron is nearly complete and initial high-power tests will soon be carried out. Details of the gyrotron design, results of low-power tests on the internal converter and initial high-power tests will be presented.

  13. Mutual synchronization of weakly coupled gyrotrons

    SciTech Connect

    Rozental, R. M.; Glyavin, M. Yu.; Sergeev, A. S.; Zotova, I. V.; Ginzburg, N. S.

    2015-09-15

    The processes of synchronization of two weakly coupled gyrotrons are studied within the framework of non-stationary equations with non-fixed longitudinal field structure. With the allowance for a small difference of the free oscillation frequencies of the gyrotrons, we found a certain range of parameters where mutual synchronization is possible while a high electronic efficiency is remained. It is also shown that synchronization regimes can be realized even under random fluctuations of the parameters of the electron beams.

  14. Photonic-Band-Gap Traveling-Wave Gyrotron Amplifier

    PubMed Central

    Nanni, E. A.; Lewis, S. M.; Shapiro, M. A.; Griffin, R. G.; Temkin, R. J.

    2014-01-01

    We report the experimental demonstration of a gyrotron traveling-wave-tube amplifier at 250 GHz that uses a photonic band gap (PBG) interaction circuit. The gyrotron amplifier achieved a peak small signal gain of 38 dB and 45 W output power at 247.7 GHz with an instantaneous −3 dB bandwidth of 0.4 GHz. The amplifier can be tuned for operation from 245–256 GHz. The widest instantaneous −3 dB bandwidth of 4.5 GHz centered at 253.25 GHz was observed with a gain of 24 dB. The PBG circuit provides stability from oscillations by supporting the propagation of transverse electric (TE) modes in a narrow range of frequencies, allowing for the confinement of the operating TE03-like mode while rejecting the excitation of oscillations at nearby frequencies. This experiment achieved the highest frequency of operation for a gyrotron amplifier; at present, there are no other amplifiers in this frequency range that are capable of producing either high gain or high output power. This result represents the highest gain observed above 94 GHz and the highest output power achieved above 140 GHz by any conventional-voltage vacuum electron device based amplifier. PMID:24476286

  15. Photonic-band-gap traveling-wave gyrotron amplifier.

    PubMed

    Nanni, E A; Lewis, S M; Shapiro, M A; Griffin, R G; Temkin, R J

    2013-12-06

    We report the experimental demonstration of a gyrotron traveling-wave-tube amplifier at 250 GHz that uses a photonic band gap (PBG) interaction circuit. The gyrotron amplifier achieved a peak small signal gain of 38 dB and 45 W output power at 247.7 GHz with an instantaneous -3  dB bandwidth of 0.4 GHz. The amplifier can be tuned for operation from 245-256 GHz. The widest instantaneous -3  dB bandwidth of 4.5 GHz centered at 253.25 GHz was observed with a gain of 24 dB. The PBG circuit provides stability from oscillations by supporting the propagation of transverse electric (TE) modes in a narrow range of frequencies, allowing for the confinement of the operating TE03-like mode while rejecting the excitation of oscillations at nearby frequencies. This experiment achieved the highest frequency of operation for a gyrotron amplifier; at present, there are no other amplifiers in this frequency range that are capable of producing either high gain or high output power. This result represents the highest gain observed above 94 GHz and the highest output power achieved above 140 GHz by any conventional-voltage vacuum electron device based amplifier.

  16. Influence of Reflections on Frequency Tunability and Mode Competition in the Second-Harmonic THz Gyrotron

    NASA Astrophysics Data System (ADS)

    Khutoryan, Eduard M.; Idehara, Toshitaka; Melnikova, Maria M.; Ryskin, Nikita M.; Dumbrajs, Olgierd

    2017-03-01

    Effect of delayed reflection on operation of a second-harmonic terahertz (THz)-band gyrotron is studied. Theoretical analyses, numerical calculations, and experimental observations for the 0.394-THz Fukui University (FU) and continuous wave (CW) IIB gyrotron are presented. The reflections decrease starting current and expand frequency tunability range owing to excitation of high-order axial modes. They also increase frequency stability, i.e., reduce frequency change due to variation of the magnetic field. In addition, the reflections strongly affect mode competition causing suppress of the second-harmonic mode by the fundamental one and vice versa or, in the case of cooperative mode interaction, mutual power increase.

  17. Efficient Low-Voltage Operation of a CW Gyrotron Oscillator at 233 GHz

    PubMed Central

    Hornstein, Melissa K.; Bajaj, Vikram S.; Griffin, Robert G.; Temkin, Richard J.

    2007-01-01

    The gyrotron oscillator is a source of high average power millimeter-wave through terahertz radiation. In this paper, we report low beam power and high-efficiency operation of a tunable gyrotron oscillator at 233 GHz. The low-voltage operating mode provides a path to further miniaturization of the gyrotron through reduction in the size of the electron gun, power supply, collector, and cooling system, which will benefit industrial and scientific applications requiring portability. Detailed studies of low-voltage operation in the TE2,3,1 mode reveal that the mode can be excited with less than 7 W of beam power at 3.5 kV. During CW operation with 3.5-kV beam voltage and 50-mA beam current, the gyrotron generates 12 W of RF power at 233.2 GHz. The EGUN electron optics code describes the low-voltage operation of the electron gun. Using gun-operating parameters derived from EGUN simulations, we show that a linear theory adequately predicts the low experimental starting currents. PMID:17687412

  18. Initial results for a 170 GHz high power ITER waveguide component test stand

    NASA Astrophysics Data System (ADS)

    Bigelow, Timothy; Barker, Alan; Dukes, Carl; Killough, Stephen; Kaufman, Michael; White, John; Bell, Gary; Hanson, Greg; Rasmussen, Dave

    2014-10-01

    A high power microwave test stand is being setup at ORNL to enable prototype testing of 170 GHz cw waveguide components being developed for the ITER ECH system. The ITER ECH system will utilize 63.5 mm diameter evacuated corrugated waveguide and will have 24 >150 m long runs. A 170 GHz 1 MW class gyrotron is being developed by Communications and Power Industries and is nearing completion. A HVDC power supply, water-cooling and control system has been partially tested in preparation for arrival of the gyrotron. The power supply and water-cooling system are being designed to operate for >3600 second pulses to simulate the operating conditions planned for the ITER ECH system. The gyrotron Gaussian beam output has a single mirror for focusing into a 63.5 mm corrugated waveguide in the vertical plane. The output beam and mirror are enclosed in an evacuated duct with absorber for stray radiation. Beam alignment with the waveguide is a critical task so a combination of mirror tilt adjustments and a bellows for offsets will be provided. Analysis of thermal patterns on thin witness plates will provide gyrotron mode purity and waveguide coupling efficiency data. Pre-prototype waveguide components and two dummy loads are available for initial operational testing of the gyrotron. ORNL is managed by UT-Battelle, LLC, for the U.S. Dept. of Energy under Contract DE-AC-05-00OR22725.

  19. High-power Ka-band amplifier

    NASA Technical Reports Server (NTRS)

    Cormier, R.

    1993-01-01

    Development of a high-power tube suitable to power a Ka-band (34.5-GHz) antenna transmitter located at the Goldstone, California, tracking station is continuing. The University of Maryland Laboratory for Plasma Research and JPL are conducting a joint effort to test the feasibility of phase locking a second-harmonic gyrotron both by direct injection at the output cavity and by using a priming cavity to bunch the electrons in the beam. This article describes several design options and the results of computer simulation testing.

  20. Review of quasi-optical gyrotron development

    NASA Astrophysics Data System (ADS)

    Fliflet, A. W.; Hargreaves, T. A.; Fischer, R. P.; Manheimer, W. M.; Sprangle, P.

    1990-03-01

    There is currently a need for megawatt average power sources of 100-600 GHz radiation for electron cyclotron heating of fusion plasmas. One of the leading candidates for such a source, the conventional wave guide cavity gyrotron,(1) has produced impressive output powers and efficiencies at frequencies up to about 300 GHz. However, this gyrotron configuration is limited at high frequencies by high ohmic heating and problems with transverse mode competition due to the highly overmoded configuration, and with beam collection, since the beam must be collected along a section of the output waveguide. The quasi-optical gyrotron (QOG), first proposed in 1980 by Sprangle, Vomvoridis, and Manheimer,(3) features an open resonator formed by a pair of spherical mirrors instead of a waveguide resonator and has the potential for overcoming each of these limitations. The resonator mirrors can be well removed from the beam-wave interaction region, allowing a large volume for the interaction and low ohmic heating densities at the mirrors. The beam direction is transverse to the resonator so that beam collection is separate from the output waveguide. This geometry is particularly well suited to the use of a depressed collector for electron beam energy recovery. The QOG operates in the lowest-order transverse (TEMool) Guassian mode of the resonator, higher-order transverse modes being effectively suppressed by higher diffraction losses. This paper reviews recent progress toward the development of high-power quasi-optical gyrotrons for ECRH of fusion plasmas. It includes an overview of gyrotron theory in terms of normalized variables as they apply to the quasi-optical gyrotron for operation both in the fundamental and the higher harmonics. Scaling equations for the output power and resonator mirror heating by the RF are given. The design tradeoffs between annular and sheet electron beams are discussed as is the issue of beam space-charge depression in the open resonator. Recent

  1. A Fully-Sealed Carbon-Nanotube Cold-Cathode Terahertz Gyrotron

    PubMed Central

    Yuan, Xuesong; Zhu, Weiwei; Zhang, Yu; Xu, Ningsheng; Yan, Yang; Wu, Jianqiang; Shen, Yan; Chen, Jun; She, Juncong; Deng, Shaozhi

    2016-01-01

    Gigahertz to terahertz radiation sources based on cold-cathode vacuum electron technology are pursued, because its unique characteristics of instant switch-on and power saving are important to military and space applications. Gigahertz gyrotron was reported using carbon nanotube (CNT) cold-cathode. It is reported here in first time that a fully-sealed CNT cold-cathode 0.22 THz-gyrotron is realized, typically with output power of 500 mW. To achieve this, we have studied mechanisms responsible for CNTs growth on curved shape metal surface, field emission from the sidewall of a CNT, and crystallized interface junction between CNT and substrate material. We have obtained uniform growth of CNTs on and direct growth from cone-cylinder stainless-steel electrode surface, and field emission from both tips and sidewalls of CNTs. It is essential for the success of a CNT terahertz gyrotron to have such high quality, high emitting performance CNTs. Also, we have developed a magnetic injection electron gun using CNT cold-cathode to exploit the advantages of such a conventional gun design, so that a large area emitting surface is utilized to deliver large current for electron beam. The results indicate that higher output power and higher radiation frequency terahertz gyrotron may be made using CNT cold-cathode electron gun. PMID:27609247

  2. A Fully-Sealed Carbon-Nanotube Cold-Cathode Terahertz Gyrotron

    NASA Astrophysics Data System (ADS)

    Yuan, Xuesong; Zhu, Weiwei; Zhang, Yu; Xu, Ningsheng; Yan, Yang; Wu, Jianqiang; Shen, Yan; Chen, Jun; She, Juncong; Deng, Shaozhi

    2016-09-01

    Gigahertz to terahertz radiation sources based on cold-cathode vacuum electron technology are pursued, because its unique characteristics of instant switch-on and power saving are important to military and space applications. Gigahertz gyrotron was reported using carbon nanotube (CNT) cold-cathode. It is reported here in first time that a fully-sealed CNT cold-cathode 0.22 THz-gyrotron is realized, typically with output power of 500 mW. To achieve this, we have studied mechanisms responsible for CNTs growth on curved shape metal surface, field emission from the sidewall of a CNT, and crystallized interface junction between CNT and substrate material. We have obtained uniform growth of CNTs on and direct growth from cone-cylinder stainless-steel electrode surface, and field emission from both tips and sidewalls of CNTs. It is essential for the success of a CNT terahertz gyrotron to have such high quality, high emitting performance CNTs. Also, we have developed a magnetic injection electron gun using CNT cold-cathode to exploit the advantages of such a conventional gun design, so that a large area emitting surface is utilized to deliver large current for electron beam. The results indicate that higher output power and higher radiation frequency terahertz gyrotron may be made using CNT cold-cathode electron gun.

  3. Installation and Testing of a 110 GHz Gyrotron With Depressed Collector Potential on the DIII-D Tokamak

    NASA Astrophysics Data System (ADS)

    Lohr, John; Gorelov, I. A.; Grunloh, H. J.; Kajiwara, K.; Pawley, C.; Ponce, D.; Tooker, J. F.; Chu, T. S.; Blank, M.; Borchard, P.; Cahalan, P.; Cauffman, S.; Felch, K.

    2006-10-01

    A single stage depressed collector gyrotron has been installed for testing on the DIII-D tokamak. The tube has operated at the 1.25 MW level at 44% efficiency for short pulses and at 0.5 MW for 10 s pulses at CPI and now is being tested to full parameters at DIII-D. A two-stage mode conversion dummy load has been built to handle the higher ultimate power from this gyrotron for pulses up to 5 s in length. Modifications to the high voltage power supply system were required to provide 30 kV depression and sequencing of the application of the voltages.

  4. High power test of a wideband diplexer with short-slotted metal half mirrors for electron cyclotron current drive system

    SciTech Connect

    Saigusa, M.; Atsumi, K.; Yamaguchi, T.; Nagashima, K.; Oda, Y.; Fukunari, M.; Sakamoto, K.

    2014-02-12

    The wideband high power diplexer has been developed for combining and fast switching of high power millimeter waves generated by a dual frequency gyrotron. The actual diplexer was tested at the frequency band of 170 GHz in low power. After adjusting a resonant frequency of diplexer for the gyrotron frequency, the evacuated wideband diplexer with short-slotted metal half mirrors was tested at an incident power of about 150 kW, a pulse duration of 30 ms and a frequency band of 170.2–170.3 GHz. Any discharge damage was not observed in the diplexer.

  5. High-Power Microwave Transmission and Mode Conversion Program

    SciTech Connect

    Vernon, Ronald J.

    2015-08-14

    This is a final technical report for a long term project to develop improved designs and design tools for the microwave hardware and components associated with the DOE Plasma Fusion Program. We have developed basic theory, software, fabrication techniques, and low-power measurement techniques for the design of microwave hardware associated gyrotrons, microwave mode converters and high-power microwave transmission lines. Specifically, in this report we discuss our work on designing quasi-optical mode converters for single and multiple frequencies, a new method for the analysis of perturbed-wall waveguide mode converters, perturbed-wall launcher design for TE0n mode gyrotrons, quasi-optical traveling-wave resonator design for high-power testing of microwave components, and possible improvements to the HSX microwave transmission line.

  6. Automated Microwave Complex on the Basis of a Continuous-Wave Gyrotron with an Operating Frequency of 263 GHz and an Output Power of 1 kW

    NASA Astrophysics Data System (ADS)

    Glyavin, M. Yu.; Morozkin, M. V.; Tsvetkov, A. I.; Lubyako, L. V.; Golubiatnikov, G. Yu.; Kuftin, A. N.; Zapevalov, V. E.; V. Kholoptsev, V.; Eremeev, A. G.; Sedov, A. S.; Malygin, V. I.; Chirkov, A. V.; Fokin, A. P.; Sokolov, E. V.; Denisov, G. G.

    2016-02-01

    We study experimentally the automated microwave complex for microwave spectroscopy and diagnostics of various media, which was developed at the Institute of Applied Physics of the Russian Academy of Sciences in cooperation with GYCOM Ltd. on the basis of a gyrotron with a frequency of 263 GHz and operated at the first gyrofrequency harmonic. In the process of the experiments, a controllable output power of 0 .1 -1 kW was achieved with an efficiency of up to 17 % in the continuous-wave generation regime. The measured radiation spectrum with a relative width of about 10 -6 and the frequency values measured at various parameters of the device are presented. The results of measuring the parameters of the wave beam, which was formed by a built-in quasioptical converter, as well as the data obtained by measuring the heat loss in the cavity and the vacuum output window are analyzed.

  7. Feasibility study of the EU home team on a 170GHz 1MW CW gyrotron for ECH on ITER

    SciTech Connect

    Iatrou, C.T.; Moebius, A.; Norajitra, P.

    1995-06-01

    The gyrotron system for ECH and burn control on ITER requires at least 50 MW of RF power at frequencies near 170GHz operating in CW. To meet these requirements, high efficiency gyrotron tubes with {ge}1MW power output capability are necessary, as well as simple coupling to either a quasi-optical or waveguide transmission line. The paper reports the feasibility study on the design of an ITER-relevant gyrotron oscillator at 170GHz, 1MW CW employing a diode electron gun, an advanced internal quasi-optical converter, a cryogenically cooled single disk sapphire window, and a depressed potential collector. The operating mode selection and the cavity design is a compromise between many design constraints.

  8. The Multiple Gyrotron System on the DIII-D Tokamak

    NASA Astrophysics Data System (ADS)

    Lohr, J.; Anderson, J.; Brambila, R.; Cengher, M.; Chen, X.; Ellis, R. A.; Grosnickle, W.; Moeller, C.; Prater, R.; Ponce, D.; Riford, L.; Torrezan, A. C.

    2016-01-01

    A major component of the versatile heating systems on the DIII-D tokamak is the gyrotron complex. This system routinely operates at 110 GHz with 4.7 MW-generated rf power for electron cyclotron heating and current drive. The complex is being upgraded with the addition of new depressed collector potential gyrotrons operating at 117.5 GHz and generating rf power in excess of 1.0 MW each. The long-term upgrade plan calls for 10 gyrotrons at the higher frequency being phased in as resources permit, for an injected power near 10 MW. This paper presents a summary of the current status of the DIII-D gyrotron complex, its performance, individual components, testing procedures, operational parameters, plans, and a brief summary of the experiments for which the system is currently being used.

  9. The 28 GHZ, 10 KW, CW Gyrotron Generator for the VENUS ECR Ion Source at LBNL

    SciTech Connect

    Marks, M.; Evans, S.; Jory, H.; Holstein, D.; Rizzo, R.; Beck, P.; Cisto, B.; Leitner, D.; Lyneis, C.M.; Collins, D.; Dwinell, R.D.

    2005-03-15

    The VIA-301 Heatwave{sup TM} gyrotron generator was specifically designed to meet the requirements of the Venus ECR Ion Source at the Lawrence Berkeley National Laboratory (LBNL). VENUS (Versatile ECR ion source for NUclear Science) is a next generation superconducting ECR ion source, designed to produce high current, high charge state ions for the 88-Inch Cyclotron at the Lawrence Berkeley National Laboratory. VENUS also serves as the prototype ion source for the RIA (Rare Isotope Accelerator) front end].This VIA-301 Heatwave{sup TM} gyrotron system provides 100 watts to 10 kW continuous wave (CW) RF output at 28 GHz. The RF output level is smoothly controllable throughout this entire range. The power can be set and maintained to within 10 watts at the higher power end of the power range and to within 30 watts at the lower power end of the power range. A dual directional coupler, analog conditioning circuitry, and a 12-bit analog input to the embedded controller are used to provide a power measurement accurate to within 2%. The embedded controller completes a feedback loop using an external command set point for desired power output. Typical control-loop-time is on the order of 500 mS. Hard-wired interlocks are provided for personnel safety and for protection of the generator system. In addition, there are software controlled interlocks for protection of the generator from high ambient temperature, high water temperature, and other conditions that would affect the performance of the generator or reduce the lifetime of the gyrotron. Cooling of the gyrotron and power supply is achieved using both water and forced circulation of ambient air. Water-cooling provides about 80% of the cooling requirement. Input power to the generator from the prime power line is less than 60 kW at full power. The Heatwave{sup TM} may be operated locally via its front panel or remotely via either RS-232 and/or Ethernet connections. Through the RS-232 the forward power, the reflected power

  10. The 28 GHZ, 10 KW, CW Gyrotron Generator for the VENUS ECR Ion Source at LBNL

    NASA Astrophysics Data System (ADS)

    Marks, M.; Evans, S.; Jory, H.; Holstein, D.; Rizzo, R.; Beck, P.; Cisto, B.; Leitner, D.; Lyneis, C. M.; Collins, D.; Dwinell, R. D.

    2005-03-01

    The VIA-301 Heatwave™ gyrotron generator was specifically designed to meet the requirements of the Venus ECR Ion Source at the Lawrence Berkeley National Laboratory (LBNL). VENUS (Versatile ECR ion source for NUclear Science) is a next generation superconducting ECR ion source, designed to produce high current, high charge state ions for the 88-Inch Cyclotron at the Lawrence Berkeley National Laboratory. VENUS also serves as the prototype ion source for the RIA (Rare Isotope Accelerator) front end [1]. This VIA-301 Heatwave™ gyrotron system provides 100 watts to 10 kW continuous wave (CW) RF output at 28 GHz. The RF output level is smoothly controllable throughout this entire range. The power can be set and maintained to within 10 watts at the higher power end of the power range and to within 30 watts at the lower power end of the power range. A dual directional coupler, analog conditioning circuitry, and a 12-bit analog input to the embedded controller are used to provide a power measurement accurate to within 2%. The embedded controller completes a feedback loop using an external command set point for desired power output. Typical control-loop-time is on the order of 500 mS. Hard-wired interlocks are provided for personnel safety and for protection of the generator system. In addition, there are software controlled interlocks for protection of the generator from high ambient temperature, high water temperature, and other conditions that would affect the performance of the generator or reduce the lifetime of the gyrotron. Cooling of the gyrotron and power supply is achieved using both water and forced circulation of ambient air. Water-cooling provides about 80% of the cooling requirement. Input power to the generator from the prime power line is less than 60 kW at full power. The Heatwave™ may be operated locally via its front panel or remotely via either RS-232 and/or Ethernet connections. Through the RS-232 the forward power, the reflected power, the

  11. Spectral Characteristics of a 140-GHz Long-Pulsed Gyrotron

    PubMed Central

    Han, Seong-Tae; Griffin, Robert G.; Hu, Kan-Nian; Joo, Chan-Gyu; Joye, Colin D.; Sirigiri, Jagadishwar R.; Temkin, Richard J.; Torrezan, Antonio C.; Woskov, Paul P.

    2008-01-01

    Gyrotrons operating in the millimeter and submillimeter wavelength ranges are the promising sources for applications that are requiring good spectral characteristics and a wide range of output power. We report the precise measurement results of gyrotron spectra. Experiments were conducted using a 140-GHz long-pulse gyrotron that is developed for the dynamic nuclear polarization/nuclear-magnetic-resonance spectroscopy at the Massachusetts Institute of Technology. Transient downshift of the frequency by 12 MHz with a time constant of 3 s was observed. After reaching equilibrium, the frequency was maintained within 1 ppm for over 20 s. The coefficient of the frequency change with cavity temperature was −2.0 MHz/K, which shows that fine tuning of the gyrotron frequency is plausible by cavity-temperature control. Frequency pulling by the beam current was observed, but it was shown to be masked by the downward shift of the gyrotron frequency with temperature. The linewidth was measured to be much less than 1 MHz at 60 dB relative to the carrier power [in decibels relative to carrier (dBc)] and 4.3 MHz at 75 dBc, which is the largest dynamic range to date for the measurement of gyrotron linewidth to our knowledge. PMID:19081779

  12. Theoretical study on a 0.6 THz third harmonic gyrotron

    SciTech Connect

    Yuan Xuesong; Ma Chunyan; Han Yu; Yan Yang; Lan Ying

    2011-10-15

    A theoretical study on a 0.6 THz third harmonic TE{sub 37} mode gyrotron oscillator is reported in this paper in order to develop a compact, reliable, and high power terahertz radiation source. An output power of 4 kW can be generated in the TE{sub 37} mode (0.6 THz) at a resonant magnetic field of 7.86 T by the gyrotron oscillator operating at 55 kV/2 A with an electron beam radius of 0.32 mm. A magnetron injection gun (MIG) with high compression ratio has been designed. The simulation results of MIG show that the velocity ratio {alpha} is 1.37, and the perpendicular velocity spread and parallel velocity spread are 6.1% and 8.9%, respectively.

  13. Development of problem-oriented software packages for numerical studies and computer-aided design (CAD) of gyrotrons

    NASA Astrophysics Data System (ADS)

    Damyanova, M.; Sabchevski, S.; Zhelyazkov, I.; Vasileva, E.; Balabanova, E.; Dankov, P.; Malinov, P.

    2016-03-01

    Gyrotrons are the most powerful sources of coherent CW (continuous wave) radiation in the frequency range situated between the long-wavelength edge of the infrared light (far-infrared region) and the microwaves, i.e., in the region of the electromagnetic spectrum which is usually called the THz-gap (or T-gap), since the output power of other devices (e.g., solid-state oscillators) operating in this interval is by several orders of magnitude lower. In the recent years, the unique capabilities of the sub-THz and THz gyrotrons have opened the road to many novel and future prospective applications in various physical studies and advanced high-power terahertz technologies. In this paper, we present the current status and functionality of the problem-oriented software packages (most notably GYROSIM and GYREOSS) used for numerical studies, computer-aided design (CAD) and optimization of gyrotrons for diverse applications. They consist of a hierarchy of codes specialized to modelling and simulation of different subsystems of the gyrotrons (EOS, resonant cavity, etc.) and are based on adequate physical models, efficient numerical methods and algorithms.

  14. Progress in producing megawatt gyrotrons for ECR (electron cyclotron resonance) heating

    SciTech Connect

    Felch, K.; Hess, C.; Huey, H.; Jongewaard, E.; Jory, H.; Neilson, J.; Pendleton, R.; Tsirulnikov, M. )

    1990-10-01

    Varian is carrying out the development of high-power, CW gyrotrons at frequencies ranging from 100--500 GHz for use in electron cyclotron resonance (ECR) heating of magnetically-confined plasma. Initial test vehicles at 140 GHz have utilized TE{sub 15,2,1} interaction cavities, and have been designed to generate short-pulse (up to 20 ms) power levels of 1 MW and up to 400 kW CW. Recently, short-pulse power levels of 940 kW at 35% efficiency have been obtained and average powers of 200 kW have been achieved at peak powers of 400 kW. Long-pulse testing is currently underway. Initial test have resulted in output levels of 400 kW for pulse durations of 380 ms. Design work on 110 GHz, 500 kW CW gyrotron oscillators has recently been completed and a prototype tube has been assembled and is currently being tested. The design of a 110 GHz, 1 MW CW gyrotron, using a novel output coupling approach, is nearly complete. Fabrication of the first 1 MW CW experimental tube is in progress.

  15. ECH by FEL and gyrotron sources on the Microwave Tokamak Experiment (MTX) tokamak

    SciTech Connect

    Stallard, B.W.; Turner, W.C.; Allen, S.L.; Byers, J.A.; Felker, B.; Fenstermacher, M.E.; Ferguson, S.W.; Hooper, E.G.; Thomassen, K.I.; Throop, A.L. ); Makowski, M.A. )

    1990-08-09

    The Microwave Tokamak Experiment (MTX) at LLNL is studying the physics of intense pulse ECH is a high-density tokamak plasma using a microwave FEL. Related technology development includes the FEL, a windowless quasi-optical transmission system, and other microwave components. Initial plasma experiments have been carried out at 140 GHz with single rf pulses generated using the ETA-II accelerator and the ELF wiggler. Peak power levels up to 0.2 GW and pulse durations up to 10 ns were achieved for injection into the plasma using as untapered wiggler. FEL pulses were transmitted over 33 m from the FEL to MTX using six mirrors mounted in a 50-cm-diam evacuated pipe. Measurements of the microwave beam and transmission through the plasma were carried out. For future rapid pulse experiments at high average power (4 GW peak power, 5kHz pulse rate, and {bar P} > 0.5 MW) using the IMP wiggler with tapered magnetic field, a gyrotron (140 GHz, 400 kW cw or up to 1 MW short pulse) is being installed to drive the FEL input or to directly heat the tokamak plasma at full gyrotron power. Quasi-optic techniques will be used to couple the gyrotron power. For direct plasma heating, the gyrotron will couple into the existing mirror transport system. Using both sources of rf generation, experiments are planned to investigate intense pulse absorption and tokamak physics, such as the ECH of a pellet-fueled plasma and plasma control using localized heating. 12 refs., 9 figs.

  16. ECH by FEL and gyrotron sources on the Microwave Tokamak Experiment (MTX) tokamak

    NASA Astrophysics Data System (ADS)

    Stallard, B. W.; Turner, W. C.; Allen, S. L.; Byers, J. A.; Felker, B.; Fenstermacher, M. E.; Ferguson, S. W.; Hooper, E. G.; Thomassen, K. I.; Throop, A. L.

    1990-08-01

    The Microwave Tokamak Experiment (MTX) at LLNL is studying the physics of intense pulse ECH is a high-density tokamak plasma using a microwave FEL. Related technology development includes the FEL, a windowless quasi-optical transmission system, and other microwave components. Initial plasma experiments have been carried out at 140 GHz with single RF pulses generated using the ETA-2 accelerator and the ELF wiggler. Peak power levels up to 0.2 GW and pulse durations up to 10 ns were achieved for injection into the plasma using as untapered wiggler. FEL pulses were transmitted over 33 m from the FEL to MTX using six mirrors mounted in a 50 cm diam evacuated pipe. Measurements of the microwave beam and transmission through the plasma were carried out. For future rapid pulse experiments at high average power (4 GW peak power, 5 kHz pulse rate, and bar P is greater than 0.5 MW) using the IMP wiggler with tapered magnetic field, a gyrotron (140 GHz, 400 kW CW or up to 1 MW short pulse) is being installed to drive the FEL input or to directly heat the tokamak plasma at full gyrotron power. Quasi-optic techniques will be used to couple the gyrotron power. For direct plasma heating, the gyrotron will couple into the existing mirror transport system. Using both sources of RF generation, experiments are planned to investigate intense pulse absorption and tokamak physics, such as the ECH of a pellet-fueled plasma and plasma control using localized heating.

  17. A ferromagnetic shim insert for NMR magnets - Towards an integrated gyrotron for DNP-NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Ryan, Herbert; van Bentum, Jan; Maly, Thorsten

    2017-04-01

    In recent years high-field Dynamic Nuclear Polarization (DNP) enhanced NMR spectroscopy has gained significant interest. In high-field DNP-NMR experiments (⩾400 MHz 1H NMR, ⩾9.4 T) often a stand-alone gyrotron is used to generate high microwave/THz power to produce sufficiently high microwave induced B1e fields at the position of the NMR sample. These devices typically require a second, stand-alone superconducting magnet to operate. Here we present the design and realization of a ferroshim insert, to create two iso-centers inside a commercially available wide-bore NMR magnet. This work is part of a larger project to integrate a gyrotron into NMR magnets, effectively eliminating the need for a second, stand-alone superconducting magnet.

  18. Operation of a step tunable megawatt gyrotron

    NASA Technical Reports Server (NTRS)

    Kreischer, K. E.; Temkin, R. J.

    1989-01-01

    An electron cyclotron resonance maser; gyrotron fundamental oscillator; advantages of gyrotrons; a schematic of the experiment; gyrotron design theory; 1 MW design parameters; compact ignition tokamak; and a gyrotron with quasi-optical output coupler are briefly presented. This presentation is represented by viewgraphs only.

  19. Continuous-Wave Operation of a Frequency-Tunable 460-GHz Second-Harmonic Gyrotron for Enhanced Nuclear Magnetic Resonance

    PubMed Central

    Torrezan, Antonio C.; Han, Seong-Tae; Mastovsky, Ivan; Shapiro, Michael A.; Sirigiri, Jagadishwar R.; Temkin, Richard J.; Barnes, Alexander B.; Griffin, Robert G.

    2011-01-01

    The design, operation, and characterization of a continuous-wave (CW) tunable second-harmonic 460-GHz gyrotron are reported. The gyrotron is intended to be used as a submillimeter-wave source for 700-MHz nuclear magnetic resonance experiments with sensitivity enhanced by dynamic nuclear polarization. The gyrotron operates in the whispering-gallery mode TE11,2 and has generated 16 W of output power with a 13-kV 100-mA electron beam. The start oscillation current measured over a range of magnetic field values is in good agreement with theoretical start currents obtained from linear theory for successive high-order axial modes TE11,2,q. The minimum start current is 27 mA. Power and frequency tuning measurements as a function of the electron cyclotron frequency have also been carried out. A smooth frequency tuning range of 1 GHz was obtained for the operating second-harmonic mode either by magnetic field tuning or beam voltage tuning. Long-term CW operation was evaluated during an uninterrupted period of 48 h, where the gyrotron output power and frequency were kept stable to within ±0.7% and ±6 ppm, respectively, by a computerized control system. Proper operation of an internal quasi-optical mode converter implemented to transform the operating whispering-gallery mode to a Gaussian-like beam was also verified. Based on the images of the gyrotron output beam taken with a pyroelectric camera, the Gaussian-like mode content of the output beam was computed to be 92% with an ellipticity of 12%. PMID:21243088

  20. Continuous-Wave Operation of a Frequency-Tunable 460-GHz Second-Harmonic Gyrotron for Enhanced Nuclear Magnetic Resonance

    PubMed Central

    Torrezan, Antonio C.; Han, Seong-Tae; Mastovsky, Ivan; Shapiro, Michael A.; Sirigiri, Jagadishwar R.; Temkin, Richard J.; Griffin, Robert G.; Barnes, Alexander B.

    2012-01-01

    The design, operation, and characterization of a continuous-wave (CW) tunable second-harmonic 460-GHz gyrotron are reported. The gyrotron is intended to be used as a submillimeter-wave source for 700-MHz nuclear magnetic resonance experiments with sensitivity enhanced by dynamic nuclear polarization. The gyrotron operates in the whispering-gallery mode TE11,2 and has generated 16 W of output power with a 13-kV 100-mA electron beam. The start oscillation current measured over a range of magnetic field values is in good agreement with theoretical start currents obtained from linear theory for successive high-order axial modes TE11,2,q. The minimum start current is 27 mA. Power and frequency tuning measurements as a function of the electron cyclotron frequency have also been carried out. A smooth frequency tuning range of 1 GHz was obtained for the operating second-harmonic mode either by magnetic field tuning or beam voltage tuning. Long-term CW operation was evaluated during an uninterrupted period of 48 h, where the gyrotron output power and frequency were kept stable to within ±0.7% and ±6 ppm, respectively, by a computerized control system. Proper operation of an internal quasi-optical mode converter implemented to transform the operating whispering-gallery mode to a Gaussian-like beam was also verified. Based on the images of the gyrotron output beam taken with a pyroelectric camera, the Gaussian-like mode content of the output beam was computed to be 92% with an ellipticity of 12%. PMID:23761938

  1. INFRARED MONITORING OF 110GHz GYROTRON WINDOWS AT DIII-D

    SciTech Connect

    Y. GORELOV; J. LOHR; R.W. CALLIS; D. PONCE

    2002-05-01

    The combination of low millimeter wave losses and excellent thermal conductivity with good mechanical properties make artificial chemical vapor deposition (CVD) diamonds a compelling choice for 1 MW 110 GHz gyrotron windows. Five gyrotrons are currently operating at the DIII-D tokamak. Three Gycom gyrotrons have boron nitride (BN) ceramic windows. Due to temperature increases of the windows up to about 930 C, the pulse duration of these tubes is limited to 2 s for output power near 800 kW. Two Communications and Power Industries (CPI) gyrotrons with diamond windows are also installed and operating. The diamond disks of these windows and the construction of their water-cooling assemblies are different. This paper reviews the infrared (IR) measurements of both types of gyrotron windows, with emphasis on the two diamond designs.

  2. Experimental study of a 1 MW, 170 GHz gyrotron oscillator

    NASA Astrophysics Data System (ADS)

    Kimura, Takuji

    A detailed experimental study is presented of a 1 MW, 170 GHz gyrotron oscillator whose design is consistent with the ECH requirements of the International Thermonuclear Experimental Reactor (ITER) for bulk heating and current drive. This work is the first to demonstrate that megawatt power level at 170 GHz can be achieved in a gyrotron with high efficiency for plasma heating applications. Maximum output power of 1.5 MW is obtained at 170.1 GHz in 85 kV, 50A operation for an efficiency of 35%. Although the experiment at MIT is conducted with short pulses (3 μs), the gyrotron is designed to be suitable for development by industry for continuous wave operation. The peak ohmic loss on the cavity wall for 1 MW of output power is calculated to be 2.3 kW/cm2, which can be handled using present cooling technology. Mode competition problems in a highly over-moded cavity are studied to maximize the efficiency. Various aspects of electron gun design are examined to obtain high quality electron beams with very low velocity spread. A triode magnetron injection gun is designed using the EGUN simulation code. A total perpendicular velocity spread of less than 8% is realized by designing a low- sensitivity, non-adiabatic gun. The RF power is generated in a short tapered cavity with an iris step. The operating mode is the TE28,8,1 mode. A mode converter is designed to convert the RF output to a Gaussian beam. Power and efficiency are measured in the design TE28,8,1 mode at 170.1 GHz as well as the TE27,8,1 mode at 166.6 GHz and TE29,8,1 mode at 173.5 GHz. Efficiencies between 34%-36% are consistently obtained over a wide range of operating parameters. These efficiencies agree with the highest values predicted by the multimode simulations. The startup scenario is investigated and observed to agree with the linear theory. The measured beam velocity ratio is consistent with EGUN simulation. Interception of reflected beam by the mod-anode is measured as a function of velocity ratio

  3. Folded waveguide gyrotron traveling-wave-tube amplifier

    SciTech Connect

    Choi, J.J.; Armstrong, C.M.; Ganguly, A.K.; Calise, F.

    1995-03-01

    A compact, low cost gyrotron traveling-wave-tube (gyro-TWT) amplifier capable of producing high-power, broadband, millimeter wave radiation is reported. The interaction circuit is a periodic, magnetic field plane (H plane) bend, transverse folded waveguide employed with a high-power axis-encircling electron beam. Transverse beam modulation and wave amplification in the folded waveguide gyro-TWT are observed in both linear theory and large signal simulations. Calculations from an equivalent circuit model and a three-dimensional electromagnetic code predict a mode coalescing of the first stop-band in a periodic structure. The mode coalescing is verified from experimental measurements. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  4. Final Report for "Gyrotron Design and Evaluation using New Particle-in-Cell Capability"

    SciTech Connect

    David N Smithe

    2008-05-28

    ITER will depend on high power CW gyrotrons to deliver power to the plasma at ECR frequencies. However, gyrotrons can suffer from undesirable low frequency oscillations (LFO’s) which are known to interfere with the gun-region diagnostics and data collection, and are also expected to produce undesirable energy and velocity spread in the beam. The origins and processes leading to these oscillations are poorly understood, and existing gyrotron R&D tools, such as static gun solvers and interaction region models, are not designed to look at time-dependant oscillatory behavior. We have applied a time-domain particle-in-cell method to investigate the LFO phenomenon. Our company is at the forefront of smooth-curved-boundary treatment of the electromagnetic fields and particle emission surfaces, and such methods are necessary to simulate the adiabatically trapped and reflected electrons thought to be driving the oscillations. This approach provides the means for understanding, in microscopic detail, the underlying physical processes driving the low-frequency oscillations. In the Phase I project, an electron gun region from an existing gyrotron, known to observe LFO’s, was selected as a proof-of-principle geometry, and was modeled with the curved-geometry time-domain simulation tool, in order to establish the feasibility of simulating LFO physics with this tool on office-scale, and larger, parallel cluster computers. Generally, it was found to be feasible to model the simulation geometry, emission, and magnetic features of the electron gun. Ultimately, the tool will be used to investigate the origins and life cycle within the trapped particle population. This tool also provides the foundations and validation for potential application of the software to numerous other time-dependant beam and rf source problems in the commercial arena.

  5. Studies of novel 140 GHz gyrotrons

    NASA Astrophysics Data System (ADS)

    Hu, Wen

    We have designed, built and tested the world's first mode-selective confocal cavity gyrotron oscillator operating at 140GHz with over 66kW of RF power and up to 23% efficiency. The tube operates at the HE06 mode of the confocal cavity. A Magnetotron Injection Gun (MIG) provides an annular electron beam with up to 70kV and 8A. The confocal gyrotron oscillator is designed to better characterize the confocal cavity's mode spectrum for future amplifier applications. The device utilizes the interaction between an electron beam in cyclotron motion and the cavity mode in an open two-mirror confocal cavity are suppressed, and only gaussian-like modes can propagate with small loss. As a result, the confocal geometry reduces mode indices from two dimensional TEn,m to one dimensional HE0,q in confocal waveguide. The greatly reduced mode density of this structure lowers the risk of spurious mode competition, which is a critical issue in gyrotron development. Several models were formulated for various configurations of gyrotrons. A nonlinear theory for the mirror based quasi-optical Gyrotron Traveling Wave Tube (Gyro-TWT) was developed for the first time. The Gyro-TWT consists of a series of parallel spherical mirrors. A free space Gaussian beam propagates through the structure by bouncing between the mirrors in a serpentine path. A co- propagating electron beam in gyromotion interacts with and the amplifies the wave. The model shows excellent agreement with the well benchmarked linear theory. The phase front distortion effect in the quasi-optical gyro- TWT is revealed by this model. A preliminary confocal waveguide based gyro-TWT amplifier is designed. Cold tests of the quasi-optical input circuit show good gaussian beam transport with low loss. The amplifier performance is theoretically predicted to have a 4dB/cm linear gain, 20% efficiency and 70kW RF power. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.)

  6. Progress on Gyrotrons for ITER and Future Fusion Reactors

    SciTech Connect

    Thumm, Manfred K.

    2009-11-26

    The prototype of the Japan 170 GHz ITER gyrotron holds the energy and efficiency world record of 2.88 GJ (0.8 MW, 3600 s, 57%) with 55% efficiency at 1 MW, 800 s, whereas the Russian 170 GHz ITER prototype tube achieved 0.83 MW with a pulse duration of 203 s at 48% efficiency and 1 MW at 116 s and 52%. The record parameters of the European megawatt-class 140 GHz gyrotron for the Stellarator Wendelstein W7-X are: 0.92 MW output power at 1800 s pulse duration, almost 45% efficiency and 97.5% Gaussian mode purity. All these gyrotrons employ a cylindrical cavity, a quasi-optical output coupler, a synthetic diamond window and a single-stage depressed collector (SDC) for energy recovery. In coaxial cavities the existence of the longitudinally corrugated inner conductor reduces the problems of mode competition and limiting current, thus allowing one to use even higher order modes with lower Ohmic attenuation than in cylindrical cavities. Synthetic diamond windows with a transmission capability of 2 MW, continuous wave (CW) are feasible. In order to keep the number of the required gyrotrons and magnets as low as possible, to reduce the costs of the ITER 26 MW, 170 GHz ECRH system and to allow compact upper launchers for plasma stabilization, 2 MW mm-wave power per gyrotron tube is desirable. The FZK pre-prototype tube for an EU 170 GHz, 2 MW ITER gyrotron has achieved 1.8 MW at 28% efficiency (without depressed collector). Design studies for a 4 MW 170 GHz coaxial-cavity gyrotron with two synthetic diamond output windows and two 2 MW mm-wave output beams for future fusion reactors are currently being performed at FZK. The availability of sources with fast frequency tunability (several GHz s{sup -1}, tuning in 1.5-2.5% steps for about ten different frequencies) would permit the use of a simple, fixed, non-steerable mirror antenna for local current drive (ECCD) experiments and plasma stabilization. GYCOM in Russia develops in collaboration with IPP Garching and FZK an

  7. NRL quasioptical gyrotron program. Final report, November 1, 1991--October 31, 1993

    SciTech Connect

    Fliflet, A.

    1997-06-01

    The quasioptical gyrotron (QOG) has been under development as a high power, tunable source for tokamak plasma heating applications. Given the critical importance of source efficiency for large-scale ESCH applications, understanding the causes of the low QOG efficiency and finding ways of improving it became a top priority for the current NRL program. The importance of the present work is that is represents new insight into the factors controlling the efficiency of quasioptical gyrotrons. The author has demonstrated that the technique of mode priming provides a method for improving efficiency via enhanced mode detuning and leads to more stable single-mode operation of highly over-moded resonators. The latter feature is an important consideration for output coupler and rf transmission system optimization and can make the QOG less sensitive to external influences such as window reflections. He has shown that a prebunching resonator is readily implemented in the quasioptical configuration. It is relatively free of the problems of spurious modes and cross-talk which plague over-moded prebunching cavities in conventional gyrotrons. The observation of almost 18% efficiency represents a doubling of the previous best single-mode results. Further improvements are expected from the optimization of start-up conditions and the study of the effects of the second harmonic interaction.

  8. Reflections in gyrotrons with radial output: Consequences for the ITER coaxial gyrotron

    SciTech Connect

    Dumbrajs, O.; Nusinovich, G.S.; Piosczyk, B.

    2004-12-01

    A theory describing the influence of reflections on operation of gyrotrons with radial output is presented. The theory is used for evaluating the effect of reflections on the operation of the 170 GHz ITER coaxial cavity gyrotron, which is under development in cooperation between EUROATOM Associations (CRPP Lausanne, FZK Karlsruhe, and HUT Helsinki) together with European tube industry (Thales Electron Devices, Velizy, France). It is shown that for optimally chosen external magnetic field value and electron beam radius, possible reflections do not change the final steady-state operation, which corresponds to generation of a 2.2 MW millimeter-wave power. The effect of deviation of the magnetic field and the beam radius from optimal values on the device operation is also studied.

  9. High pulse power rf sources for linear colliders

    SciTech Connect

    Wilson, P.B.

    1983-09-01

    RF sources with high peak power output and relatively short pulse lengths will be required for future high gradient e/sup +/e/sup -/ linear colliders. The required peak power and pulse length depend on the operating frequency, energy gradient and geometry of the collider linac structure. The frequency and gradient are in turn constrained by various parameters which depend on the beam-beam collision dynamics, and on the total ac wall-plug power that has been committed to the linac rf system. Various rf sources which might meet these requirements are reviewed. Existing source types (e.g., klystrons, gyrotrons) and sources which show future promise based on experimental prototypes are first considered. Finally, several proposals for high peak power rf sources based on unconventional concepts are discussed. These are an FEL source (two beam accelerator), rf energy storage cavities with switching, and a photocathode device which produces an rf current by direct emission modulation of the cathode.

  10. High-power microwave transmission and launching systems for fusion plasma heating systems

    SciTech Connect

    Bigelow, T.S.

    1989-01-01

    Microwave power in the 30- to 300-GHz frequency range is becoming widely used for heating of plasma in present-day fusion energy magnetic confinement experiments. Microwave power is effective in ionizing plasma and heating electrons through the electron cyclotron heating (ECH) process. Since the power is absorbed in regions of the magnetic field where resonance occurs and launching antennas with narrow beam widths are possible, power deposition location can be highly controlled. This is important for maximizing the power utilization efficiency and improving plasma parameters. Development of the gyrotron oscillator tube has advanced in recent years so that a 1-MW continuous-wave, 140-GHz power source will soon be available. Gyrotron output power is typically in a circular waveguide propagating a circular electric mode (such as TE/sub 0,2/) or a whispering-gallery mode (such as TE/sub 15,2/), depending on frequency and power level. An alternative high-power microwave source currently under development is the free-electron laser (FEL), which may be capable of generating 2-10 MW of average power at frequencies of up to 500 GHz. The FEL has a rectangular output waveguide carrying the TE/sub 0,1/ mode. Because of its higher complexity and cost, the high-average-power FEL is not yet as extensively developed as the gyrotron. In this paper, several types of operating ECH transmission systems are discussed, as well systems currently being developed. The trend in this area is toward higher power and frequency due to the improvements in plasma density and temperature possible. Every system requires a variety of components, such as mode converters, waveguide bends, launchers, and directional couplers. Some of these components are discussed here, along with ongoing work to improve their performance. 8 refs.

  11. 110 GHz, 1 MW Gyrotron Design Upgrades

    NASA Astrophysics Data System (ADS)

    Cauffman, Steve; Felch, Kevin; Borchard, Philipp; Cahalan, Pat; Chu, Sam; Dubrule, Craig

    1999-11-01

    Communications and Power Industries has incorporated a number of design changes into its most recent series of 110 GHz 1 MW gyrotrons, for use in ECH and ECCD experiments on the DIII-D tokamak. Two development gyrotrons previously installed at DIII-D used a modulating-anode electron gun design and output windows consisting of double-disk face-cooled sapphire on one system and an edge-cooled CVD diamond disk on the other. Three new systems presently in fabrication and test employ (a) a single-anode electron gun to avoid excitation of spurious modes during turn-on and turn-off and to simplify power supply requirements, (b) a modified TE_22,6 cavity to reduce competition from neighboring modes, (c) a two inch aperture edge-cooled CVD diamond window to allow transmission of a 1 MW Gaussian output beam, (d) a superconducting magnet system with a cryo-cooler to reduce liquid helium consumption, and (e) a number of internal and external plumbing simplifications to make cooling system connections more straightforward. Initial test results, if available, will be presented.

  12. Molecular gas spectroscopy using radioacoustic detection and high-power coherent subterahertz radiation sources

    NASA Astrophysics Data System (ADS)

    Koshelev, M. A.; Tsvetkov, A. I.; Morozkin, M. V.; Glyavin, M. Yu.; Tretyakov, M. Yu.

    2017-01-01

    We study the "power" approach to improve the sensitivity of the radioacoustic detection method by increasing the radiation power. A gyrotron is the source of high-power continuous monochromatic radiation in the spectrometer. As a result of analysis of experimental profiles of known lines of the rotational SO2 spectrum, it was demonstrated for the first time that an increase of radiation power by about three orders of magnitude leads to a proportional increase of the RAD spectrometer sensitivity. This permitted us, in particular, to observe the weak transitions predicted earlier in the SO2 molecule.

  13. Experimental Study of a Gyrotron with a Sectioned Klystron-Type Cavity Operated at Higher Cyclotron Harmonics

    NASA Astrophysics Data System (ADS)

    Bandurkin, I. V.; Kalynov, Yu. K.; Savilov, A. V.

    2016-02-01

    We are planning to use extended cavities in order to excite gyrotrons with large electron orbits, which are operated at higher cyclotron harmonics in the terahertz frequency range. This is determined by both the weakness of the electron-wave interaction, and relatively low operating currents. Since the diffraction Q-factor of such cavities is high, a significant part of the highfrequency power produced by the electron beam is lost due to the ohmic loss in the cavity walls. As a way to solve this problem, we proposed a sectioned klystron-type cavity, where an extended length of the electron-wave interaction region can be combined with a relatively low diffraction Q-factor of the system. This work presents the results of the first experiment on a gyrotron with a sectioned cavity, where selective excitation of higher (second and third) cyclotron harmonics was observed in the terahertz frequency range (0 .55 and 0 .74 THz).

  14. TWANG-PIC, a novel gyro-averaged one-dimensional particle-in-cell code for interpretation of gyrotron experiments

    SciTech Connect

    Braunmueller, F. Tran, T. M.; Alberti, S.; Genoud, J.; Hogge, J.-Ph.; Tran, M. Q.; Vuillemin, Q.

    2015-06-15

    A new gyrotron simulation code for simulating the beam-wave interaction using a monomode time-dependent self-consistent model is presented. The new code TWANG-PIC is derived from the trajectory-based code TWANG by describing the electron motion in a gyro-averaged one-dimensional Particle-In-Cell (PIC) approach. In comparison to common PIC-codes, it is distinguished by its computation speed, which makes its use in parameter scans and in experiment interpretation possible. A benchmark of the new code is presented as well as a comparative study between the two codes. This study shows that the inclusion of a time-dependence in the electron equations, as it is the case in the PIC-approach, is mandatory for simulating any kind of non-stationary oscillations in gyrotrons. Finally, the new code is compared with experimental results and some implications of the violated model assumptions in the TWANG code are disclosed for a gyrotron experiment in which non-stationary regimes have been observed and for a critical case that is of interest in high power gyrotron development.

  15. Long-pulse operation of a 0.5 MW TE{sub 10.4} gyrotron at 140 GHz

    SciTech Connect

    Dammertz, G.; Iatrou, C.T.; Kuntze, M.; Moebius, A.; Piosczyk, B.; Braz, O.; Thumm, M. |

    1996-06-01

    Gyrotron oscillators have proven to be highly efficient sources of coherent mm-wave radiation. They have been used successfully for electron cyclotron resonance heating (ECRH) experiments and electron cyclotron diagnostics (ECD) of plasma fusion for some time. Due to the localized energy deposition, the temperature profile can be modified and the stability of the plasma can be improved. Here, the operation features of a TE{sub 10.4}-mode gyrotron oscillator with a quasi-optical mode converter and a single-stage depressed collector at 140 GHz with an output power of 500 kW in long pulses of 0.2 s are presented. Measurements on long-pulse operation of the tube are described in detail, and the significant differences between short- and long-pulse operation concerning efficiency and output power are pointed out. The variation of frequency during a pulse and an irreversible frequency shift during long-pulse operation were measured and are discussed with respect to gyrotron design.

  16. The DIII-D ECH multiple gyrotron control system

    SciTech Connect

    Ponce, D.; Lohr, J.; Tooker, J.F.; Cary, W.P.; Harris, T.E.

    1997-11-01

    DIII-D`s ECH upgrade with 1 MW, 110 GHz gyrotrons is ongoing, and with it, an upgrade of the control system. The ECH Multiple Gyrotron Control System uses software distributed among networked computers, interfaced to a programmable logic controller (PLC), the timing and pulse system, power supplies, vacuum and wave guide controls, and instrumentation. During DIII-D operations, the system will allow a chief and a co-operator to control and monitor a number of gyrotrons from different manufacturers. The software, written using LabVIEW, allows for remote and multiple operator control. Thus any supported computer can become a control station and multiple projects can be simultaneously accommodated. Each operator can be given access to the controls of all gyrotrons or to a subset of controls. Status information is also remotely available. The use of a PLC simplifies the hardware and software design. It reduces interlock and control circuitry, includes monitoring for slow analog signals, and allows one software driver to efficiently interface to a number of systems. In addition, the interlock logic can be easily changed and control points can be forced as needed. The pulse system is designed around arbitrary function generators. Various modulation schemes can be accommodated, including real-time control of the modulation. This discussion will include the hardware and software design of the control system and its current implementation.

  17. Nonlinear theory for a terahertz gyrotron with a special cross-section interaction cavity

    SciTech Connect

    Yuan, Xuesong; Han Yu; Yan Yang; Lan Ying

    2012-05-15

    The fully numerical nonlinear theory for a gyrotron with a special cross-section interaction cavity has been developed in this paper. In this theory, the analytical solution to different modes in the special cross-section interaction cavity is replaced by the numerical solution based on electromagnetic simulation results. A 0.4 THz third harmonic gyrotron with an azimuthally corrugated interaction cavity has been investigated by using this theory and simulation results show that this approach has a significant advantage of developing high harmonic terahertz gyrotrons.

  18. Analyses of advanced concepts in multi-stage gyro-amplifiers and startup in high power gyro-oscillators

    NASA Astrophysics Data System (ADS)

    Sinitsyn, Oleksandr V.

    Gyrotrons are well recognized sources of high-power coherent electromagnetic radiation. The power that gyrotrons can radiate in the millimeter- and submillimeter-wavelength regions exceeds the power of classical microwave tubes by many orders of magnitude. In this work, the author considers some problems related to the operation of gyro-devices and methods of their solution. In particular, the self-excitation conditions for parasitic backward waves and effect of distributed losses on the small-signal gain of gyro-TWTs are analyzed. The corresponding small-signal theory describing two-stage gyro-traveling-wave tubes (gyro-TWTs) with the first stage having distributed losses is presented. The theory is illustrated by using it for the description of operation of a Ka-band gyro-TWT designed at the Naval Research Laboratory. Also, the results of nonlinear studies of this tube are presented and compared with the ones obtained by the use of MAGY, a multi-frequency, self-consistent code developed at the University of Maryland. An attempt to build a large signal theory of gyro-TWTs with tapered geometry and magnetic field profile is made and first results are obtained for a 250 GHz gyro-TWT. A comparative small-signal analysis of conventional four-cavity and three-stage clustered-cavity gyroklystrons is performed. The corresponding point-gap models for these devices are presented. The efficiency, gain, bandwidth and gain-bandwidth product are analyzed for each scheme. Advantages of the clustered-cavity over the conventional design are discussed. The startup scenarios in high-power gyrotrons and the most important physical effects associated with them are considered. The work presents the results of startup simulations for a 140 GHz, MW-class gyrotron developed by Communications and Power Industries (CPI) for electron-cyclotron resonance heating (ECRH) and current drive experiments on the "Wendelstein 7-X" stellarator plasma. Also presented are the results for a 110 GHz, 1

  19. Multi-Megawatt Operation of a 95 GHz Gyrotron

    NASA Astrophysics Data System (ADS)

    Felch, Kevin; Blank, Monica; Borchard, Philipp; Cahalan, Pat; Cauffman, Steve

    2010-11-01

    A 95 GHz gyrotron capable of generating CW power levels in excess of 2 MW is under development at CPI. The gyrotron employs a single-anode electron gun that produces a 90-kV, 75-A electron beam for interaction with the TE22,6,1 cavity mode. Output power from the cavity is transformed into a Gaussian beam using an internal converter that consists of a waveguide launcher and three focusing and phase-correcting mirrors. The beam exits the tube through a chemical-vapor-deposition diamond window. The spent electron beam is dissipated in a 40.6-cm diameter collector fabricated from a strengthened copper alloy. The collector nominally operates at a voltage of 61 kV relative to the cathode potential to minimize the amount of power absorbed in the collector and to improve efficiency. In tests on the gyrotron the maximum power achieved thus far is 1.72 MW with 33% efficiency at the nominal beam current of 75 A. At a reduced beam current of 45 A, an output power of 1.4 MW is obtained with over 50% efficiency. We are planning tube modifications to increase the output power level where efficiencies of greater than 50% can still be obtained.

  20. Initial Testing of a 140 GHz 1 MW Gyrotron

    NASA Astrophysics Data System (ADS)

    Cauffman, Stephen; Felch, Kevin; Blank, Monica; Borchard, Philipp; Cahalan, Pat; Chu, Sam; Jory, Howard

    2001-10-01

    CPI has completed the fabrication of a 140 GHz 1 MW CW gyrotron to be used on the W7-X stellarator at IPP Greifswald. Testing of the initial build of this gyrotron had just begun when this abstract was prepared, and was expected to finish in September, at which time a planned rebuild of the device was scheduled to begin. This poster will summarize the gyrotron design, present results of initial testing, and outline any design changes planned as a consequence of these results. This gyrotron's design employs a number of advanced features, including a diode electron gun for simplified operation, a single-stage depressed collector to enhance overall efficiency, a CVD diamond output window, an internal mode converter that converts the excited TE28,7 cavity mode to a Gaussian output beam, and a high-voltage layout that locates all external high voltage below the superconducting magnet system without requiring an oil tank for insulation. Similar features are being used for an 84 GHz 500 kW system being built for the KSTAR tokamak program and for a 110 GHz 1.5 MW system being designed in collaboration with MIT, UMd, UW, GA, and Calabazas Creek Research with funding provided by DOE.

  1. Free-Space Power Transmission

    NASA Technical Reports Server (NTRS)

    1989-01-01

    NASA Lewis Research Center organized a workshop on technology availability for free-space power transmission (beam power). This document contains a collection of viewgraph presentations that describes the effort by academia, industry, and the national laboratories in the area of high-frequency, high-power technology applicable to free-space power transmission systems. The areas covered were rectenna technology, high-frequency, high-power generation (gyrotrons, solar pumped lasers, and free electron lasers), and antenna technology.

  2. Optimal parameters of gyrotrons with weak electron-wave interaction

    NASA Astrophysics Data System (ADS)

    Glyavin, M. Yu.; Oparina, Yu. S.; Savilov, A. V.; Sedov, A. S.

    2016-09-01

    In low-power gyrotrons with weak electron-wave interaction, there is a problem of determining the optimal length of the operating cavity, which is found as a result of a tradeoff between the enhancement of the electron efficiency and the increase in the Ohmic loss share with increasing cavity length. In fact, this is the problem of an optimal ratio between the diffraction and Ohmic Q-factors of the operating gyrotron mode, which determines the share of the radiated rf power lost in the cavity wall. In this paper, this problem is studied on the basis of a universal set of equations, which are appropriate for a wide class of electron oscillators with low efficiencies of the electron-wave interaction.

  3. Use of High-Power Combiners and Fast Directional Switches in ECRH Systems

    SciTech Connect

    Bruschi, A.; Bin, W.; D'Arcangelo, O.; Muzzini, V.; Kasparek, W.; Plaum, B.; Erckmann, V.; Petelin, M.; Lubyako, L.

    2009-11-26

    The new generation of compact devices for the combination and the fast switching of high-power millimeter-wave beams [1] for Electron Cyclotron Heating (ECH) gives the possibility to switch the power (in tens of microseconds) between two lines (or two ECH launchers, even modulating it between them) and combine two gyrotron sources (or in principle even more) in one single transmission line, for doubling the transmitted power. This is useful in many respects in order to: 1){approx}double the efficiency in modulated EC for neoclassical Tearing Modes (NTM) stabilization, 2) avoid to switch-off gyrotrons in conventional (slow) switching, 3) electronically control the power sharing between different applications (heating/current-drive or NTM stabilization), 4) upgrade the existing ECH systems to twice the power without adding complete transmission lines and launchers, 5) test components at a power doubled with respect to the power capability of the available sources. This opens the way to the development of a more effective 'active' real-time control of the ECRH power routing and generally to more flexible and powerful ECH systems. The development of different devices and the advantages for (and in view of) ITER are addressed.

  4. Synthesis of Current-Voltage Characteristics of 670 GHz Gyrotron Magnetron Injection Gun and Calculation of the Helical Electron Beam Parameters at the Leading Edge of a High-Voltage Pulse

    NASA Astrophysics Data System (ADS)

    Manuilov, V. N.; Glyavin, M. Yu.

    2013-02-01

    A method of synthesis of current-voltage characteristics (CVC) and calculation of the parameters of a helical electron beam (HEB) at the leading edge of the accelerating voltage pulse for gyrotron electron guns is proposed. These data can be used for a study of the gyrotron startup scenario with the mode competition taken into account. As an example, the results of calculations for a pulsed gyrotron with a frequency of 670 GHz are presented.

  5. Design study of a tunable coaxial gyrotron

    SciTech Connect

    Dumbrajs, O.; Moebius, A.; Muehleisen, M.

    1995-12-31

    A possibility is investigated to tune the frequency of a coaxial gyrotron by means of a nonuniform inner conductor which is movable in the axial direction. A technological gyrotron working in the TE{sub 2,2} mode in the frequency range 24 - 32 GHz is considered as an example.

  6. Design considerations in achieving 1 MW CW operation with a whispering-gallery-mode gyrotron

    SciTech Connect

    Felch, K.; Feinstein, J.; Hess, C.; Huey, H.; Jongewaard, E.; Jory, H.; Neilson, J.; Pendleton, R.; Pirkle, D.; Zitelli, L. )

    1989-09-01

    Varian is developing high-power, CW gyrotrons at frequencies in the range 100 GHz to 150 GHz, for use in electron cyclotron heating applications. Early test vehicles have utilized a TE{sub 15,2,1} interaction cavity, have achieved short-pulse power levels of 820 kW and average power levels of 80 kW at 140 GHz. Present tests are aimed at reaching 400 kW under CW operating conditions and up to 1 MW for short pulse durations. Work is also underway on modifications to the present design that will enable power levels of up to 1 MW CW to be achieved. 7 refs., 2 figs.

  7. High Power, Millimeter-Wavelength, Coherent Radiation Sources.

    DTIC Science & Technology

    1986-09-25

    Electronics and Electron Physics (Academic, New York. 19801, put power at longer wavelengths is comparable to that of Vol. 55. other sources, such as gyrotrons ...and the peak efficiency 6J. L. Hirshfield, " Gyrotrons ," in Infrared and Millimeter Waves (Aca- demic, New York. 1979), Vol. 1.( 1-10%) is what...would be expected for a nonoptimized trav - ’A. A. Andronov, V. A. Flyagin, A. V. Gapanov, A. L. Gol’denberg, M. 1. eling wave device. It also performs

  8. Design of the Collective Thomson scattering (CTS) system by using 170-GHz gyrotron in the KSTAR

    NASA Astrophysics Data System (ADS)

    Park, Min; Kim, Sun-Ho; Kim, Sung-Kyu; Lee, Kyu-Dong; Wang, Son-Jong

    2014-10-01

    The physics of energetic ions is one of the primary subjects to be understood toward the realization of a nuclear fusion power plant. Collective Thomson scattering (CTS) offers the possibility to diagnose the fast ions and the alpha particles in burning plasmas. Spatially- and temporally-resolved one-dimensional velocity distributions of the fast ions can be obtained from the scattered radiation with fewer geometric constraints by utilizing millimeter waves from a high-power gyrotron as a probe beam. We studied the feasibility of CTS fast-ion measurements in the KSTAR by calculating the spectral density functions. Based on that, we suggest a design for the CTS system that uses the currently-operating 170-GHz gyrotron for electron cyclotron heating (ECH) and electron cyclotron current drive (ECCD) in the KSTAR. The CTS system is presented as two subsystems: the antenna system and the heterodyne receiver system. The design procedure for an off-axis ellipsoidal mirror is described, and the CTS system requirements are discussed.

  9. Generation of 1.5-kW, 1-THz coherent radiation from a gyrotron with a pulsed magnetic field.

    PubMed

    Glyavin, M Yu; Luchinin, A G; Golubiatnikov, G Yu

    2008-01-11

    To cover a so-called terahertz gap in available sources of coherent electromagnetic radiation, the gyrotron with a pulsed solenoid producing up to a 40 T magnetic field has been designed, manufactured, and tested. At a 38.5 T magnetic field, the gyrotron generated coherent radiation at 1.022 THz frequency in 50 musec pulses. The microwave power and energy per pulse were about 1.5 kW and 75 mJ, respectively. Details of the gyrotron design, manufacturing, operation and measurements of output radiation are given.

  10. Experimental tests of a 263 GHz gyrotron for spectroscopic applications and diagnostics of various media

    SciTech Connect

    Glyavin, M. Yu. Denisov, G. G.; Zapevalov, V. E.; Chirkov, A. V.; Fokin, A. P.; Kholoptsev, V. V.; Kuftin, A. N.; Luchinin, A. G.; Golubyatnikov, G. Yu.; Malygin, V. I.; Morozkin, M. V.; Manuilov, V. N.; Proyavin, M. D.; Sedov, A. S.; Tsvetkov, A. I.; Sokolov, E. V.; Tai, E. M.

    2015-05-15

    A 263 GHz continuous-wave (CW) gyrotron was developed at the IAP RAS for future applications as a microwave power source in Dynamic Nuclear Polarization / Nuclear magnetic resonance (DNP/NMR) spectrometers. A new experimental facility with a computerized control was built to test this and subsequent gyrotrons. We obtained the maximum CW power up to 1 kW in the 15 kV/0.4 A operation regime. The power about 10 W, which is sufficient for many spectroscopic applications, was realized in the low current 14 kV/0.02 A regime. The possibility of frequency tuning by variation of the coolant temperature about 4 MHz/1 °C was demonstrated. The spectral width of the gyrotron radiation was about 10{sup −6}.

  11. Corrugated Waveguide and Directional Coupler for CW 250-GHz Gyrotron DNP Experiments

    PubMed Central

    Woskov, Paul P.; Bajaj, Vikram S.; Hornstein, Melissa K.; Temkin, Richard J.; Griffin, Robert G.

    2007-01-01

    A 250-GHz corrugated transmission line with a directional coupler for forward and backward power monitoring has been constructed and tested for use with a 25-W continuous-wave gyrotron for dynamic nuclear polarization (DNP) experiments. The main corrugated line (22-mm internal diameter, 2.4-m long) connects the gyrotron output to the DNP probe input. The directional coupler, inserted approximately midway, is a four-port crossed waveguide beamsplitter design. Two beamsplitters, a quartz plate and ten-wire array, were tested with output coupling of 2.5% (−16 dB) at 250.6 GHz and 1.6% (−18 dB), respectively. A pair of mirrors in the DNP probe transferred the gyrotron beam from the 22-mm waveguide to an 8-mm helically corrugated waveguide for transmission through the final 0.58-m distance inside the NMR magnet to the sample. The transmission-line components were all cold tested with a 248 ± 4-GHz radiometer. A total insertion loss of 0.8 dB was achieved for HE11 -mode propagation from the gyrotron to the sample with only 1% insertion loss for the 22-mm-diameter waveguide. A clean Gaussian gyrotron beam at the waveguide output and reliable forward power monitoring were achieved for many hours of continuous operation. PMID:17901907

  12. Dependence of the gyrotron efficiency on the azimuthal index of non-symmetric modes

    SciTech Connect

    Dumbrajs, O.; Nusinovich, G. S.; Antonsen, T. M.

    2014-06-15

    Development of MW-class gyrotrons for future controlled fusion reactors requires careful analysis of the stability of high efficiency operation in very high-order modes. In the present paper, this problem is analyzed in the framework of the non-stationary self-consistent theory of gyrotrons. Two approaches are used: the one based on the wave envelope representation of the resonator field and the second one based on representation of this field as a superposition of eigenmodes, whose fields are determined by a self-consistent set of equations. It is shown that at relatively low beam currents, when the maximum efficiency can be realized in the regime of soft self-excitation, the operation in the desired mode is stable even in the case of a very dense spectrum of competing modes. At higher currents, the maximum efficiency can be realized in the regimes with hard self-excitation; here the operation in the desired mode can be unstable because of the presence of some competing modes with low start currents. Two 170 GHz European gyrotrons for the international thermonuclear experimental reactor are considered as examples. In the first one, which is the 2 MW gyrotron with a coaxial resonator, the stability of operation in a chosen TE{sub 34,19}-mode in the presence of two sideband modes with almost equidistant spectrum is analyzed and the region of magnetic fields in which the oscillations of the central mode are stable is determined. The operation of the second gyrotron, which is the 1 MW gyrotron with a cylindrical cavity currently under development in Europe, is studied by using the wave envelope approach. It is shown that high efficiency operation of this gyrotron in the TE{sub 32,9}-mode should be stable.

  13. CHARACTERISTICS OF DIAMOND WINDOWS ON THE 1 MW, 110 GHz GYROTRON SYSTEMS ON THE DIII-D TOKAMAK

    SciTech Connect

    Y.A. GORELOV; J. LOHR; R.W. CALLIS; D. PONCE

    2002-08-01

    Diamond disks made using the chemical vapor deposition (CVD) technique are now in common use as gyrotron output windows. The low millimeter wave losses and excellent thermal conductivity of diamond have made it possible to use such windows in gyrotrons with {approx}1 MW output power and pulse length up to and greater than 10 s. A ubiquitous characteristic of diamond gyrotron windows is the presence of apparent hot spots in the infrared images registered during rf pulses. Many of these spots are co-located with bright points seen in visible video images. The spots do not seem to compromise the integrity of the windows. Analysis of the infrared observations on several different gyrotrons operating at the DIII-D tokamak are reported.

  14. Investigations and advanced concepts on gyrotron interaction modeling and simulations

    SciTech Connect

    Avramidis, K. A.

    2015-12-15

    In gyrotron theory, the interaction between the electron beam and the high frequency electromagnetic field is commonly modeled using the slow variables approach. The slow variables are quantities that vary slowly in time in comparison to the electron cyclotron frequency. They represent the electron momentum and the high frequency field of the resonant TE modes in the gyrotron cavity. For their definition, some reference frequencies need to be introduced. These include the so-called averaging frequency, used to define the slow variable corresponding to the electron momentum, and the carrier frequencies, used to define the slow variables corresponding to the field envelopes of the modes. From the mathematical point of view, the choice of the reference frequencies is, to some extent, arbitrary. However, from the numerical point of view, there are arguments that point toward specific choices, in the sense that these choices are advantageous in terms of simulation speed and accuracy. In this paper, the typical monochromatic gyrotron operation is considered, and the numerical integration of the interaction equations is performed by the trajectory approach, since it is the fastest, and therefore it is the one that is most commonly used. The influence of the choice of the reference frequencies on the interaction simulations is studied using theoretical arguments, as well as numerical simulations. From these investigations, appropriate choices for the values of the reference frequencies are identified. In addition, novel, advanced concepts for the definitions of these frequencies are addressed, and their benefits are demonstrated numerically.

  15. Experimental Verification on Remote Detectability of Concealed Radioactive Material Based on the Plasma Discharge Delay Time using High-Power Millimeter-Wave

    NASA Astrophysics Data System (ADS)

    Kim, Dongsung; Yu, Dongho; Sawant, Ashwini; Choe, Mun Seok; Lee, Ingeun; Choi, Eunmi

    2016-10-01

    We experimentally demonstrate a remote detection method of a radioactive source by plasma breakdown using high-power millimeter-wave source, gyrotron. A number of free electrons near the radioactive source are much higher than those of without the radioactive source (roughly 10 particles/cm3) owing to the interaction of air molecules and strong gamma rays generated by radioactive material. The RF wave beam is focused in ambient air, and the plasmas discharge occurs involving random delay time which means a time interval between the RF wave and a fluorescent light caused by the plasma. We observed that the delay time decreased significantly due to the high density of free electrons in Ar plasma with an existence of Co60 radioactive material. This technique of delay time measurement shows 1000 times more sensitive than a method of detectable mass equation to identify the existence of radioactive source remotely. It is the first experimental verification of radioactive material detection using a high power gyrotron. This study shows that a remote detection of radioactive material based on analysis of precise delay time measurement could be feasible by using a high power millimeter/THz wave gyrotron. NRF-2013R1A1A2061062, NRF-2012-Global Ph.D. Fellowship Program.

  16. Initial high-power testing of the ATF (Advanced Toroidal Facility) ECH (electron cyclotron heating) system

    SciTech Connect

    White, T.L.; Bigelow, T.S.; Kimrey, H.D. Jr.

    1987-01-01

    The Advanced Toroidal Facility (ATF) is a moderate aspect ratio torsatron that will utilize 53.2 GHz 200 kW Electron Cyclotron Heating (ECH) to produce nearly current-free target plasmas suitable for subsequent heating by strong neutral beam injection. The initial configuration of the ECH system from the gyrotron to ATF consists of an optical arc detector, three bellows, a waveguide mode analyzer, two TiO/sub 2/ mode absorbers, two 90/sup 0/ miter bends, two waveguide pumpouts, an insulating break, a gate valve, and miscellaneous straight waveguide sections feeding a launcher radiating in the TE/sub 02/ mode. Later, a focusing Vlasov launcher will be added to beam the ECH power to the saddle point in ATF magnetic geometry for optimum power deposition. The ECH system has several unique features; namely, the entire ECH system is evacuated, the ECH system is broadband, forward power is monitored by a newly developed waveguide mode analyzer, phase correcting miter bends will be employed, and the ECH system will be capable of operating short pulse to cw. Initial high-power tests show that the overall system efficiency is 87%. The waveguide mode analyzer shows that the gyrotron mode output consists of 13% TE/sub 01/, 82.6% TE/sub 02/, 2.5% TE/sub 03/, and 1.9% TE/sub 04/. 4 refs.

  17. 250 GHz CW gyrotron oscillator for dynamic nuclear polarization in biological solid state NMR

    NASA Astrophysics Data System (ADS)

    Bajaj, Vikram S.; Hornstein, Melissa K.; Kreischer, Kenneth E.; Sirigiri, Jagadishwar R.; Woskov, Paul P.; Mak-Jurkauskas, Melody L.; Herzfeld, Judith; Temkin, Richard J.; Griffin, Robert G.

    2007-12-01

    In this paper, we describe a 250 GHz gyrotron oscillator, a critical component of an integrated system for magic angle spinning (MAS) dynamic nuclear polarization (DNP) experiments at 9 T, corresponding to 380 MHz 1H frequency. The 250 GHz gyrotron is the first gyro-device designed with the goal of seamless integration with an NMR spectrometer for routine DNP enhanced NMR spectroscopy and has operated under computer control for periods of up to 21 days with a 100% duty cycle. Following a brief historical review of the field, we present studies of the membrane protein bacteriorhodopsin (bR) using DNP enhanced multidimensional NMR. These results include assignment of active site resonances in [U- 13C, 15N]-bR and demonstrate the utility of DNP for studies of membrane proteins. Next, we review the theory of gyro-devices from quantum mechanical and classical viewpoints and discuss the unique considerations that apply to gyrotron oscillators designed for DNP experiments. We then characterize the operation of the 250 GHz gyrotron in detail, including its long-term stability and controllability. We have measured the spectral purity of the gyrotron emission using both homodyne and heterodyne techniques. Radiation intensity patterns from the corrugated waveguide that delivers power to the NMR probe were measured using two new techniques to confirm pure mode content: a thermometric approach based on the temperature-dependent color of liquid crystalline media applied to a substrate and imaging with a pyroelectric camera. We next present a detailed study of the mode excitation characteristics of the gyrotron. Exploration of the operating characteristics of several fundamental modes reveals broadband continuous frequency tuning of up to 1.8 GHz as a function of the magnetic field alone, a feature that may be exploited in future tunable gyrotron designs. Oscillation of the 250 GHz gyrotron at the second harmonic of cyclotron resonance begins at extremely low beam currents (as

  18. 250 GHz CW Gyrotron Oscillator for Dynamic Nuclear Polarization in Biological Solid State NMR

    PubMed Central

    Bajaj, Vikram S.; Hornstein, Melissa K.; Kreischer, Kenneth E.; Sirigiri, Jagadishwar R.; Woskov, Paul P.; Mak-Jurkauskas, Melody L.; Herzfeld, Judith; Temkin, Richard J.; Griffin, Robert G.

    2009-01-01

    In this paper, we describe a 250 GHz gyrotron oscillator, a critical component of an integrated system for magic angle spinning (MAS) dynamic nuclear polarization (DNP) experiments at 9T, corresponding to 380 MHz 1H frequency. The 250 GHz gyrotron is the first gyro-device designed with the goal of seamless integration with an NMR spectrometer for routine DNP-enhanced NMR spectroscopy and has operated under computer control for periods of up to 21 days with a 100% duty cycle. Following a brief historical review of the field, we present studies of the membrane protein bacteriorhodopsin (bR) using DNP-enhanced multidimensional NMR. These results include assignment of active site resonances in [U-13C,15N]-bR and demonstrate the utility of DNP for studies of membrane proteins. Next, we review the theory of gyro-devices from quantum mechanical and classical viewpoints and discuss the unique considerations that apply to gyrotron oscillators designed for DNP experiments. We then characterize the operation of the 250 GHz gyrotron in detail, including its long-term stability and controllability. We have measured the spectral purity of the gyrotron emission using both homodyne and heterodyne techniques. Radiation intensity patterns from the corrugated waveguide that delivers power to the NMR probe were measured using two new techniques to confirm pure mode content: a thermometric approach based on the temperature-dependent color of liquid crystalline media applied to a substrate and imaging with a pyroelectric camera. We next present a detailed study of the mode excitation characteristics of the gyrotron. Exploration of the operating characteristics of several fundamental modes reveals broadband continuous frequency tuning of up to 1.8 GHz as a function of the magnetic field alone, a feature that may be exploited in future tunable gyrotron designs. Oscillation of the 250 GHz gyrotron at the second harmonic of cyclotron resonance begins at extremely low beam currents (as low

  19. High power millimeter wave experiment of ITER relevant electron cyclotron heating and current drive system.

    PubMed

    Takahashi, K; Kajiwara, K; Oda, Y; Kasugai, A; Kobayashi, N; Sakamoto, K; Doane, J; Olstad, R; Henderson, M

    2011-06-01

    High power, long pulse millimeter (mm) wave experiments of the RF test stand (RFTS) of Japan Atomic Energy Agency (JAEA) were performed. The system consists of a 1 MW/170 GHz gyrotron, a long and short distance transmission line (TL), and an equatorial launcher (EL) mock-up. The RFTS has an ITER-relevant configuration, i.e., consisted by a 1 MW-170 GHz gyrotron, a mm wave TL, and an EL mock-up. The TL is composed of a matching optics unit, evacuated circular corrugated waveguides, 6-miter bends, an in-line waveguide switch, and an isolation valve. The EL-mock-up is fabricated according to the current design of the ITER launcher. The Gaussian-like beam radiation with the steering capability of 20°-40° from the EL mock-up was also successfully proved. The high power, long pulse power transmission test was conducted with the metallic load replaced by the EL mock-up, and the transmission of 1 MW/800 s and 0.5 MW/1000 s was successfully demonstrated with no arcing and no damages. The transmission efficiency of the TL was 96%. The results prove the feasibility of the ITER electron cyclotron heating and current drive system.

  20. Real-time, T-ray imaging using a sub-terahertz gyrotron

    NASA Astrophysics Data System (ADS)

    Han, Seong-Tae; Torrezan, Antonio C.; Sirigiri, Jagadishwar R.; Shapiro, Michael A.; Temkin, Richard J.

    2012-06-01

    We demonstrated real-time, active, T-ray imaging using a 0.46 THz gyrotron capable of producing 16 W in continuous wave operation and a pyroelectric array camera with 124-by-124 pixels. An expanded Gaussian beam from the gyrotron was used to maintain the power density above the detection level of the pyroelectric array over the area of the irradiated object. Real-time imaging at a video rate of 48 Hz was achieved through the use of the built-in chopper of the camera. Potential applications include fast scanning for security purposes and for quality control of dry or frozen foods.

  1. Design of interaction cavity for 170 GHz, 1 MW ITER gyrotron

    SciTech Connect

    Kumar, Anil; Kumar, Nitin; Khatun, Hasina; Singh, Udaybir; Sinha, A.K. E-mail: aksinha@ceeri.ernet.in; Vyas, V.

    2011-07-01

    In this paper the design of interaction cavity for 170 GHz, 1 MW gyrotron is presented. An in-house developed code GCOMS has been used for operating mode selection and mode competition. For 170 GHz, 1 MW gyrotron interaction cavity TE28, 7 mode excite as a operating mode at the fundamental harmonic number. The electromagnetic simulator-MAGIC, a Particle-in-Cell (PIC) code has been used for the cold cavity analysis and the beam-wave interaction. More than 1MW output power has been achieved at guiding cavity magnetic field 6.77 T. (author)

  2. Continuously Tunable 250 GHz Gyrotron with a Double Disk Window for DNP-NMR Spectroscopy

    PubMed Central

    Jawla, Sudheer; Ni, Qing Zhe; Barnes, Alexander; Guss, William; Daviso, Eugenio; Herzfeld, Judith; Griffin, Robert; Temkin, Richard

    2012-01-01

    In this paper, we describe the design and experimental results from the rebuild of a 250 GHz gyrotron used for Dynamic Nuclear Polarization enhanced Nuclear Magnetic Resonance spectroscopy on a 380 MHz spectrometer. Tuning bandwidth of approximately 2 GHz is easily achieved at a fixed magnetic field of 9.24 T and a beam current of 95 mA producing an average output power of >10 W over the entire tuning band. This tube incorporates a double disk output sapphire window in order to maximize the transmission at 250.58 GHz. DNP Signal enhancement of >125 is achieved on a 13C-Urea sample using this gyrotron. PMID:23539422

  3. Steady-state operation of 170 GHz 1 MW gyrotron for ITER

    NASA Astrophysics Data System (ADS)

    Kasugai, A.; Sakamoto, K.; Takahashi, K.; Kajiwara, K.; Kobayashi, N.

    2008-05-01

    A 170 GHz gyrotron has been developed at JAEA, which has achieved operation of 1 MW/800 s and up to 55% efficiency. This is the first demonstration of a gyrotron achieving and even exceeding the ITER operating requirements of 1 MW/500 s and 50% efficiency. In addition the gyrotron demonstrated operation for 1 h with an output power of 0.6 MW. The oscillation was stable with all cooling water temperatures and vacuum pressure reaching equilibrium conditions during the pulse length at either power level. The successful operation was aided by a very low level of stray radiation (~2% of the output power), which contributed to fast conditioning and stable operation. The output power from the gyrotron was coupled into an ITER sized corrugated waveguide (phi = 63.5 mm) via a matching optics unit with a total of 0.97 MW transmitted to the dummy load after two miter bends and ~7 m of a waveguide without any trouble. These results give an encouraging outlook for the success of the ITER electron cyclotron heating and current drive system.

  4. High Power Hall Thrusters

    NASA Technical Reports Server (NTRS)

    Jankovsky, Robert; Tverdokhlebov, Sergery; Manzella, David

    1999-01-01

    The development of Hall thrusters with powers ranging from tens of kilowatts to in excess of one hundred kilowatts is considered based on renewed interest in high power. high thrust electric propulsion applications. An approach to develop such thrusters based on previous experience is discussed. It is shown that the previous experimental data taken with thrusters of 10 kW input power and less can be used. Potential mass savings due to the design of high power Hall thrusters are discussed. Both xenon and alternate thruster propellant are considered, as are technological issues that will challenge the design of high power Hall thrusters. Finally, the implications of such a development effort with regard to ground testing and spacecraft intecrati'on issues are discussed.

  5. CSTI high capacity power

    SciTech Connect

    Winter, J.M.

    1994-09-01

    The SP-100 program was established in 1983 by DOD, DOE, and NASA as a joint program to develop the technology necessary for space nuclear power systems for military and civil application. During FY86 and 87, the NASA SP-100 Advanced Technology Program was devised to maintain the momentum of promising technology advancement efforts started during Phase I of SP-100 and to strengthen, in key areas, the chances for successful development and growth capability of space nuclear reactor power systems for future space applications. In FY88, the Advanced Technology Program was incorporated into NASA`s new Civil Space Technology Initiative (CSTI). The CSTI Program was established to provide the foundation for technology development in automation and robotics, information, propulsion, and power. The CSTI High Capacity Power Program builds on the technology efforts of the SP-100 program, incorporates the previous NASA SP-100 Advanced Technology project, and provides a bridge to NASA Project Pathfinder. The elements of CSTI High Capacity Power development include Conversion Systems, Thermal Management, Power Management, System Diagnostics, and Environmental Interactions. Technology advancement in all areas, including materials, is required to assure the high reliability and 7 to 10 year lifetime demanded for future space nuclear power systems. The overall program will develop and demonstrate the technology base required to provide a wide range of modular power systems as well as allowing mission independence from solar and orbital attitude requirements. Several recent advancements in CSTI High Capacity power development will be discussed.

  6. CSTI High Capacity Power

    NASA Technical Reports Server (NTRS)

    Winter, Jerry M.

    1989-01-01

    The SP-100 program was established in 1983 by DOD, DOE, and NASA as a joint program to develop the technology necessary for space nuclear power systems for military and civil application. During FY-86 and 87, the NASA SP-100 Advanced Technology Program was devised to maintain the momentum of promising technology advancement efforts started during Phase 1 of SP-100 and to strengthen, in key areas, the chances for successful development and growth capability of space nuclear reactor power systems for future space applications. In FY-88, the Advanced Technology Program was incorporated into NASA's new Civil Space Technology Initiative (CSTI). The CSTI Program was established to provide the foundation for technology development in automation and robotics, information, propulsion, and power. The CSTI High Capacity Power Program builds on the technology efforts of the SP-100 program, incorporates the previous NASA SP-100 Advanced Technology project, and provides a bridge to NASA Project Pathfinder. The elements of CSTI High Capacity Power development include Conversion Systems, Thermal Management, Power Management, System Diagnostics, and Environmental Interactions. Technology advancement in all areas, including materials, is required to assure the high reliability and 7 to 10 year lifetime demanded for future space nuclear power systems. The overall program will develop and demonstrate the technology base required to provide a wide range of modular power systems as well as allowing mission independence from solar and orbital attitude requirements. Several recent advancements in CSTI High Capacity power development will be discussed.

  7. Electron beam gun with kinematic coupling for high power RF vacuum devices

    SciTech Connect

    Borchard, Philipp

    2016-11-22

    An electron beam gun for a high power RF vacuum device has components joined by a fixed kinematic coupling to provide both precise alignment and high voltage electrical insulation of the components. The kinematic coupling has high strength ceramic elements directly bonded to one or more non-ductile rigid metal components using a high temperature active metal brazing alloy. The ceramic elements have a convex surface that mates with concave grooves in another one of the components. The kinematic coupling, for example, may join a cathode assembly and/or a beam shaping focus electrode to a gun stem, which is preferably composed of ceramic. The electron beam gun may be part of a high power RF vacuum device such as, for example, a gyrotron, klystron, or magnetron.

  8. Megawatt, 330 Hz PRF tunable gyrotron experiments

    NASA Astrophysics Data System (ADS)

    Spark, S. N.; Cross, A. W.; Phelps, A. D. R.; Ronald, K.

    1994-12-01

    Repetitively pulsed and cw gyrotrons have hitherto used thermionic cathodes, whereas cold cathode gyrotrons have normally operated as ‘single shot’ devices. The novel results presented here show that cold cathode gyrotrons can be successfully pulsed repetitively. A tunable gyrotron with a pulse repetition frequency (PRF) of 150Hz is demonstrated. This system developed >4MW mm-wave output pulses at 100GHz. The gyrotron is based on a two-electrode configuration comprising a field-immersed, field emission, cold cathode and a shaped anode cavity. A superconducting magnet was used to produce the homogeneous intra-cavity magnetic field and a cable pulser was used to drive the electron beam. This pulser produced up to a (200±20)kV pulse with 10ns rise time, a 100ns flat top, a 10ns decay with a characteristic impedance of 200Ω. The energy storage capacity of the cable pulser was 35J. The charging unit limited the maximum PRF to 330Hz. Due to spark gap switching limitations 330Hz was only obtainable in 5 to 10 pulse bursts. For substantial periods of the order of 30 seconds, 100Hz PRF was achieved over an oscillating range of 28 to 100GHz and 150Hz PRF was achieved at 80GHz. No degradation effects on the mm-wave output pulse was evident due to diode recovery time throughout this series of results. A subsequent conclusion is that the diode recovery time in our cold cathode gyrotron is less than 3ms.

  9. CONDITIONING AND PROTECTION CIRCUITRY FOR EXTERNAL MODULATION OF A PREPROGRAMMED GYROTRON CATHODE VOLTAGE COMMAND WAVEFORM

    SciTech Connect

    PONCE,D; FERRON,J.R; LEGG,R.A

    2003-10-01

    OAK-B135 The modulating voltages applied to the DIII-D gyrotrons are controlled by reference signals which are synthesized by arbitrary waveform generators.These generators allow ECH operators to pre-program reference waveforms consisting of ramps, flat tops, and various modulation shapes. This capability is independent of the DIII-D central timing and waveform facilities, which provides the ECH operators operational flexibility. The waveform generators include an amplitude modulation input, providing a means to control the pre-programmed waveform externally. This input is being used to allow the DIII-D plasma control system (PCS) to control gyrotron power in response top selected feedback signals. As the PCS control signal could potentially modulate the gyrotrons beyond operational limits or otherwise in a manner leading to recalcitrant rf generation, the control signal is conditioned so that its effect upon the ECH pre-programmed reference waveform is limited by conditions set by the ECH operators. The design of the circuitry which restricts the range over which the PCS control signal may modulate the reference waveform will be discussed. Test and DIII-D experimental results demonstrating the utility and effectiveness of gyrotron power modulated by the PCS will be presented.

  10. Status of Experiments on the EU 2 MW Coaxial Cavity Iter Gyrotron Pre-Prototype at Fzk

    NASA Astrophysics Data System (ADS)

    Kern, S.; Flamm, J.; Gantenbein, G.; Illy, S.; Jin, J.; Piosczyk, B.; Prinz, O.; Rzesnicki, T.; Thumm, M.; Dumbrajs, O.

    2009-04-01

    A coaxial cavity gyrotron, similar to the EU 2 MW tube for ITER, is under investigation at FZK at reduced magnetic field, which limits the expected RF power to 1.5 MW. While in former experiments only 1.1 MW was obtained, now, after the electron gun was changed, parasitic low frequency oscillations were removed and an RF power of 1.3 MW was reached. The power now seems to be limited by another parasitic high frequency oscillation at 160 GHz, which appears simultaneously to the desired working mode. A second problem of the pre-prototype tube, insufficient Gaussian mode content of the output wave of only 76%, was investigated by verifying the employed tools. The results indicate a problem at the third, phase correcting mirror, while the simulations appear to be acceptable. Finally, to further improve the quasi-optical mode converter a different approach to launcher design using arbitrary wall deformations is underway.

  11. Development of a kW Level-200 GHz Gyrotron FU CW GI with an Internal Quasi-optical Mode Convertor

    NASA Astrophysics Data System (ADS)

    Tatematsu, Yoshinori; Yamaguchi, Yuusuke; Idehara, Toshitaka; Ozeki, Takanori; Ikeda, Ryosuke; Kanemaki, Tomohiro; Ogawa, Isamu; Saito, Teruo

    2012-03-01

    Development of gyrotrons with an internal mode convertor has started in Research Center for Development of Far-Infrared Region, University of Fukui (FIR FU). As the first gyrotron of such a kind, we have designed and manufactured Gyrotron FU CW GI. It operates at 203 GHz at fundamental cyclotron resonance. We have designed a cavity and a mode convertor under some constraints such as reuse of an electron gun and small diameter of a magnet bore. Designed output power is about 1 kW. We have succeeded in observation of a circular radiation pattern. The maximum observed output power is 0.5 kW for the setting cathode voltage of 20 kV and the beam current of 0.5 A. This success makes gyrotron development in FIR FU to proceed to a new stage.

  12. High power microwave generator

    DOEpatents

    Ekdahl, Carl A.

    1986-01-01

    A microwave generator efficiently converts the energy of an intense relativistic electron beam (REB) into a high-power microwave emission using the Smith-Purcell effect which is related to Cerenkov radiation. Feedback for efficient beam bunching and high gain is obtained by placing a cylindrical Smith-Purcell transmission grating on the axis of a toroidal resonator. High efficiency results from the use of a thin cold annular highly-magnetized REB that is closely coupled to the resonant structure.

  13. High power microwave generator

    DOEpatents

    Ekdahl, C.A.

    1983-12-29

    A microwave generator efficiently converts the energy of an intense relativistic electron beam (REB) into a high-power microwave emission using the Smith-Purcell effect which is related to Cerenkov radiation. Feedback for efficient beam bunching and high gain is obtained by placing a cylindrical Smith-Purcell transmission grating on the axis of a toroidal resonator. High efficiency results from the use of a thin cold annular highly-magnetized REB that is closely coupled to the resonant structure.

  14. Fast switching, modular high-voltage DC/AC-power supplies for RF-Amplifiers and other applications

    SciTech Connect

    Alex, J.; Schminke, W.

    1995-12-31

    A new kind of high voltage high-power Pulse-Step Modulator (PSM) for broadcast transmitters, accelerator sources, for NBI (Neutral Beam Injection for Plasma Heating), gyrotrons and klystrons has been developed. Since its first introduction in 1984 for broadcast transmitters, more than 100 high-power sound broadcast transmitters had been equipped with the first generation of the PSM modulators, using Gate Turn-Off Thyristors (GTOs) as switching elements. Recently, due to faster switching elements and making use of the latest DSP technologies (Digital Signal Processing), the performance data and areas of application could be extended further. In 1994, a precision high voltage source for MW gyrotrons was installed at CRPP in Lausanne. Supplementary very low cost solutions for lower powers but high voltages had been developed. Hence, today, a large area of applications can be satisfied with the family of solutions. The paper describes the principle of operation, the related control systems and refers to some particular applications of the PSM amplifiers, especially the newest developments and corresponding field results.

  15. High power density targets

    NASA Astrophysics Data System (ADS)

    Pellemoine, Frederique

    2013-12-01

    In the context of new generation rare isotope beam facilities based on high-power heavy-ion accelerators and in-flight separation of the reaction products, the design of the rare isotope production targets is a major challenge. In order to provide high-purity beams for science, high resolution is required in the rare isotope separation. This demands a small beam spot on the production target which, together with the short range of heavy ions in matter, leads to very high power densities inside the target material. This paper gives an overview of the challenges associated with this high power density, discusses radiation damage issues in targets exposed to heavy ion beams, and presents recent developments to meet some of these challenges through different projects: FAIR, RIBF and FRIB which is the most challenging. Extensive use of Finite Element Analysis (FEA) has been made at all facilities to specify critical target parameters and R&D work at FRIB successfully retired two major risks related to high-power density and heavy-ion induced radiation damage.

  16. The design of a multi-harmonic step-tunable gyrotron

    NASA Astrophysics Data System (ADS)

    Qi, Xiang-Bo; Du, Chao-Hai; Zhu, Juan-Feng; Pan, Shi; Liu, Pu-Kun

    2017-03-01

    The theoretical study of a step-tunable gyrotron controlled by successive excitation of multi-harmonic modes is presented in this paper. An axis-encircling electron beam is employed to eliminate the harmonic mode competition. Physics images are depicted to elaborate the multi-harmonic interaction mechanism in determining the operating parameters at which arbitrary harmonic tuning can be realized by magnetic field sweeping to achieve controlled multiband frequencies' radiation. An important principle is revealed that a weak coupling coefficient under a high-harmonic interaction can be compensated by a high Q-factor. To some extent, the complementation between the high Q-factor and weak coupling coefficient makes the high-harmonic mode potential to achieve high efficiency. Based on a previous optimized magnetic cusp gun, the multi-harmonic step-tunable gyrotron is feasible by using harmonic tuning of first-to-fourth harmonic modes. Multimode simulation shows that the multi-harmonic gyrotron can operate on the 34 GHz first-harmonic TE11 mode, 54 GHz second-harmonic TE21 mode, 74 GHz third-harmonic TE31 mode, and 94 GHz fourth-harmonic TE41 mode, corresponding to peak efficiencies of 28.6%, 35.7%, 17.1%, and 11.4%, respectively. The multi-harmonic step-tunable gyrotron provides new possibilities in millimeter-terahertz source development especially for advanced terahertz applications.

  17. A permanent magnet system for gyrotrons

    SciTech Connect

    Moebius, A.

    1995-12-31

    Currently known configurations of permanent magnet systems for gyrotrons create an axial guiding field with a change of direction along the electron beam path causing problems for the beam stability. In this paper a novel configuration is shown leading to an axial magnetic field with no such change of sign and hence being usable for currently existing tubes.

  18. Recent progress of high-power millimeter wavelength gyrodevices

    NASA Astrophysics Data System (ADS)

    Goldenberg, A. L.; Litvak, A. G.

    1995-06-01

    This presentation reviews recent progress of Russian physicists in developing electronic devices of the gyroresonance type, which are so far the most advanced sources of millimeter microwaves. It deals with the concept of the gyrotron as a device operating at higher volume resonator modes with a built-in quasioptical converter of the output radiation into a wave beam. That concept made it possible to create comparatively simple and reliable long-pulse and quasicontinuous devices with a power level of 0.5 MW in the frequency band 30-160 GHz. Analysis of the principal problems of projects for continuous-wave (CW) gyrotrons of near 1 MW output power (choice of an operating mode, requirements to an electron beam, peculiarities of built-in converters) is included, as well as the results of model experiments. For amplifying millimeter wavelength gyroklystrons, a level of several hundreds of kW at the frequency 35 GHz, and up to 65 kW at frequency 94 GHz were also achieved. Some modifications of gyrotrons for material processing and special research are described.

  19. Application of Fusion Gyrotrons to Enhanced Geothermal Systems (EGS)

    NASA Astrophysics Data System (ADS)

    Woskov, P.; Einstein, H.; Oglesby, K.

    2013-10-01

    The potential size of geothermal energy resources is second only to fusion energy. Advances are needed in drilling technology and heat reservoir formation to realize this potential. Millimeter-wave (MMW) gyrotrons and related technologies developed for fusion energy research could contribute to enabling EGS. Directed MMW energy can be used to advance rock penetration capabilities, borehole casing, and fracking. MMWs are ideally suited because they can penetrate through small particulate extraction plumes, can be efficiently guided long distances in borehole dimensions, and continuous megawatt sources are commercially available. Laboratory experiments with a 10 kW, 28 GHz CPI gyrotron have shown that granite rock can be fractured and melted with power intensities of about 1 kW/cm2 and minute exposure times. Observed melted rock MMW emissivity and estimated thermodynamics suggest that penetrating hot, hard crystalline rock formations may be economic with fusion research developed MMW sources. Supported by USDOE, Office of Energy Efficiency and Renewable Energy and Impact Technologies, LLC.

  20. High Current Power Controller

    DTIC Science & Technology

    1981-04-01

    AFWAL-TR-81- 2016 U iui.N HIGH CURRENT Ŕ POWER CONTROLLER P. E. McCOLLUM Audwo ROCKWELL INTERNATIONAL AUTONETICS STRATEGIC SYSTEMS DIVISION 3370...personnel. During norm3l operation, HCP \\.s pose no hazard, bLt unde- certain operating conditions potential noaza-ds do exist. They are: (1) During

  1. High Power Cryogenic Targets

    SciTech Connect

    Gregory Smith

    2011-08-01

    The development of high power cryogenic targets for use in parity violating electron scattering has been a crucial ingredient in the success of those experiments. As we chase the precision frontier, the demands and requirements for these targets have grown accordingly. We discuss the state of the art, and describe recent developments and strategies in the design of the next generation of these targets.

  2. High power arcjet

    NASA Technical Reports Server (NTRS)

    Goelz, T. M.; Auweter-Kurtz, M.; Kurtz, H. L.; Schrade, H. O.

    1991-01-01

    The activities of the High Power Arcjet Project (HIPARC) from August 1990 to January 1991 are discussed. In this period the HIPARC thruster was ignited for the first time. Power levels up to 140 kW with a mass flow rate of 300 mg/s hydrogen were reached. Specific impulse values of more than 1300 s were shown to be possible. Tests were performed with the baseline thruster version only, which has a 6 mm throat diameter and a conical nozzle with a 20 degree half angle. Measurement data summing up all tests carried out until now is included. All measuring methods are described, including a check on possible error sources.

  3. High power connection system

    DOEpatents

    Schaefer, Christopher E.; Beer, Robert C.; McCall, Mark D.

    2000-01-01

    A high power connection system adapted for automotive environments which provides environmental and EMI shielding includes a female connector, a male connector, and a panel mount. The female connector includes a female connector base and a snap fitted female connector cover. The male connector includes a male connector base and a snap fitted male connector cover. The female connector base has at least one female power terminal cavity for seatably receiving a respective female power terminal. The male connector base has at least one male power terminal cavity for seatably receiving a respective male power terminal. The female connector is covered by a cover seal and a conductive shroud. A pair of lock arms protrude outward from the front end of the male connector base, pass through the panel mount and interface with a lever of a lever rotatably connected to the shroud to thereby mechanically assist mating of the male and female connectors. Safety terminals in the male and female connectors provide a last-to-connect-first-to-break connection with an HVIL circuit.

  4. Analysis of cavity and window for THz gyrotron

    SciTech Connect

    Alaria, Mukesh Kumar; Mukherjee, P.; Rao, R.R.; Sinha, A.K. E-mail: aksinha@ceeri.ernet.in

    2011-07-01

    In this paper study of cavity and window has been carried out using Ansoft HFSS for Terahertz Gyrotron. Eigen mode analysis of the cavity has been carried out at 1 THz. An idea about the operating modes in the cavity of the Gyrotron and obtained the simulated Eigen frequency and field pattern of the modes. The design of window for 1 THz Gyrotron has also been carried out using HFSS. The simulated results have also been compared with ST microwave studio. (author)

  5. On optimization of sub-THz gyrotron parameters

    SciTech Connect

    Dumbrajs, O.; Nusinovich, G. S.

    2012-10-15

    The theory is developed describing how the optimization of gyrotron parameters should be done taking into account two effects deteriorating the gyrotron efficiency: the spread in electron velocities and the spread in the guiding center radii. The paper starts from qualitative analysis of the problem. This simplified theory is used for making some estimates for a specific gyrotron design. The same design is then studied by using more accurate numerical methods. Results of the latter treatment agree with former qualitative predictions.

  6. High Power Switching Transistor

    NASA Technical Reports Server (NTRS)

    Hower, P. L.; Kao, Y. C.; Carnahan, D. C.

    1983-01-01

    Improved switching transistors handle 400-A peak currents and up to 1,200 V. Using large diameter silicon wafers with twice effective area as D60T, form basis for D7 family of power switching transistors. Package includes npn wafer, emitter preform, and base-contact insert. Applications are: 25to 50-kilowatt high-frequency dc/dc inverters, VSCF converters, and motor controllers for electrical vehicles.

  7. High power arcjet

    NASA Technical Reports Server (NTRS)

    Auweter-Kurtz, M.; Glocker, B.; Goelz, T. M.; Habiger, H.; Kurtz, H. L.; Schrade, H. O.; Wegmann, T.

    1990-01-01

    The activities on the development of the high power arc jet HIPARC, the thrust balance, and plasma diagnostic probes are discussed. Modifications of the HIPARC design and a synopsis of the materials used are given. Further experimental results with the TT30 thruster in the 50 kW range are presented. Some first calibration measurements of the thrust balance are also included. Progress concerning the development of plasma diagnostic devices is documented.

  8. High Power Modulator.

    DTIC Science & Technology

    1986-08-01

    The bushing consists of three segments of alumina tubing with interspersed metal rings. All metallic surfaces ex- *posed to vacuum are stainless steel...high voltage transient only lasted for several hundred ns, no vacuum insulator breakdown was noted during the tests. 4.2 Acceptance tests at PSI The...ation at 1 pps. The oil insulated output pulse transformer has multiple secondary windings which can be used to provide heater power for a thermionic

  9. Start-Up Scenario in Gyrotrons with a Nonstationary Microwave-Field Structure

    NASA Astrophysics Data System (ADS)

    Nusinovich, G. S.; Yeddulla, M.; Antonsen, T. M., Jr.; Vlasov, A. N.

    2006-03-01

    Megawatt class gyrotrons operate in very high-order modes. Therefore, control of a gyrotron oscillator’s start-up is important for excitation of the desired mode in the presence of the many undesired modes. Analysis of such scenario using the self-consistent code MAGY [M. Botton , IEEE Trans. Plasma Sci. 26,ITPSBD0093-3813 882 (1998)10.1109/27.700860] reveals that during start-up not only mode amplitudes vary in time, but also their axial structure can be time dependent. Simulations done for a 1.5 MW gyrotron show that the excitation of a single operating TE22,6 mode can exhibit a sort of intermittency when, first, it is excited as a mode whose axial structure extends outside the interaction cavity, then it ceases and then reappears as a mode mostly localized in the cavity. This phenomenon makes it necessary to analyze start-up scenarios in such gyrotrons with the use of codes that account for the possible evolution of field profiles.

  10. High voltage power supply

    NASA Technical Reports Server (NTRS)

    Ruitberg, A. P.; Young, K. M. (Inventor)

    1985-01-01

    A high voltage power supply is formed by three discrete circuits energized by a battery to provide a plurality of concurrent output signals floating at a high output voltage on the order of several tens of kilovolts. In the first two circuits, the regulator stages are pulse width modulated and include adjustable ressistances for varying the duty cycles of pulse trains provided to corresponding oscillator stages while the third regulator stage includes an adjustable resistance for varying the amplitude of a steady signal provided to a third oscillator stage. In the first circuit, the oscillator, formed by a constant current drive network and a tuned resonant network included a step up transformer, is coupled to a second step up transformer which, in turn, supplies an amplified sinusoidal signal to a parallel pair of complementary poled rectifying, voltage multiplier stages to generate the high output voltage.

  11. HIGH POWER PULSED OSCILLATOR

    DOEpatents

    Singer, S.; Neher, L.K.

    1957-09-24

    A high powered, radio frequency pulse oscillator is described for generating trains of oscillations at the instant an input direct voltage is impressed, or immediately upon application of a light pulse. In one embodiment, the pulse oscillator comprises a photo-multiplier tube with the cathode connected to the first dynode by means of a resistor, and adjacent dynodes are connected to each other through adjustable resistors. The ohmage of the resistors progressively increases from a very low value for resistors adjacent the cathode to a high value adjacent the plate, the last dynode. Oscillation occurs with this circuit when a high negative voltage pulse is applied to the cathode and the photo cathode is bombarded. Another embodiment adds capacitors at the resistor connection points of the above circuit to increase the duration of the oscillator train.

  12. Wide Band Gyrotron Traveling Wave Amplifier Analysis.

    DTIC Science & Technology

    1987-12-01

    phase versus frequency characteristics. It is in these aspects that the gyrotron amplifier effort has been less than successful. A C-band gyro- TWT ...proposals were made several years ago, no experimental results have yet been reported. Another concept for increasing the bandwidth of the gyro- TWT is to...including dielectric loading of the waveguide [24], helix loaded waveguide (25]-[26], and disc-loaded waveguide [26]-(27). No experimental results on

  13. Continuously tunable, split-cavity gyrotrons

    NASA Astrophysics Data System (ADS)

    Brand, G. F.; Gross, M.

    1985-12-01

    Attention is given to a gyrotron cavity configuration which is split in halves longitudinally, to allow any frequency lying between the fixed cavity resonance to be assessed by mechanically changing the separation of the two halves. Experimental results are presented which demonstrate that the rate-of-change in resonant frequency with separation is greatest if the minor axis of the cavity cross section is the one undergoing change. Excellent agreement with theory is noted for these results.

  14. High Power Density Motors

    NASA Technical Reports Server (NTRS)

    Kascak, Daniel J.

    2004-01-01

    With the growing concerns of global warming, the need for pollution-free vehicles is ever increasing. Pollution-free flight is one of NASA's goals for the 21" Century. , One method of approaching that goal is hydrogen-fueled aircraft that use fuel cells or turbo- generators to develop electric power that can drive electric motors that turn the aircraft's propulsive fans or propellers. Hydrogen fuel would likely be carried as a liquid, stored in tanks at its boiling point of 20.5 K (-422.5 F). Conventional electric motors, however, are far too heavy (for a given horsepower) to use on aircraft. Fortunately the liquid hydrogen fuel can provide essentially free refrigeration that can be used to cool the windings of motors before the hydrogen is used for fuel. Either High Temperature Superconductors (HTS) or high purity metals such as copper or aluminum may be used in the motor windings. Superconductors have essentially zero electrical resistance to steady current. The electrical resistance of high purity aluminum or copper near liquid hydrogen temperature can be l/lOO* or less of the room temperature resistance. These conductors could provide higher motor efficiency than normal room-temperature motors achieve. But much more importantly, these conductors can carry ten to a hundred times more current than copper conductors do in normal motors operating at room temperature. This is a consequence of the low electrical resistance and of good heat transfer coefficients in boiling LH2. Thus the conductors can produce higher magnetic field strengths and consequently higher motor torque and power. Designs, analysis and actual cryogenic motor tests show that such cryogenic motors could produce three or more times as much power per unit weight as turbine engines can, whereas conventional motors produce only 1/5 as much power per weight as turbine engines. This summer work has been done with Litz wire to maximize the current density. The current is limited by the amount of heat it

  15. High power microwave generator

    DOEpatents

    Minich, Roger W.

    1988-01-01

    A device (10) for producing high-powered and coherent microwaves is described. The device comprises an evacuated, cylindrical, and hollow real cathode (20) that is driven to inwardly field emit relativistic electrons. The electrons pass through an internally disposed cylindrical and substantially electron-transparent cylindrical anode (24), proceed toward a cylindrical electron collector electrode (26), and form a cylindrical virtual cathode (32). Microwaves are produced by spatial and temporal oscillations of the cylindrical virtual cathode (32), and by electrons that reflex back and forth between the cylindrical virtual cathode (32) and the cylindrical real cathode (20).

  16. High Power Coax Window

    SciTech Connect

    Neubauer, M. L.; Dudas, A.; Sah, R.; Elliott, T. S.; Rimmer, R. A.; Stirbet, M. S.

    2010-05-23

    A su­per­con­duct­ing RF (SRF) power cou­pler ca­pa­ble of han­dling 500 kW CW RF power is re­quired for pre­sent and fu­ture stor­age rings and linacs. There are over 35 cou­pler de­signs for SRF cav­i­ties rang­ing in fre­quen­cy from 325 to 1500 MHz. Cou­pler win­dows vary from cylin­ders to cones to disks, and RF power cou­plers are lim­it­ed by the abil­i­ty of ce­ram­ic win­dows to with­stand the stress­es due to heat­ing and me­chan­i­cal flex­ure. We pro­pose a novel ro­bust co-ax­i­al SRF cou­pler de­sign which uses com­pressed win­dow tech­nol­o­gy. This tech­nol­o­gy will allow the use of high­ly ther­mal­ly con­duc­tive ma­te­ri­als for cryo­genic win­dows. Using com­pressed win­dow tech­niques on disk co-ax­i­al win­dows will make sig­nif­i­cant im­prove­ments in the power han­dling of SRF cou­plers. We pre­sent the bench test re­sults of two win­dow as­sem­blies back to back, as well as in­di­vid­u­al win­dow VSWR in EIA3.125 coax. A vac­u­um test as­sem­bly was made and the win­dows baked out at 155C. The pro­cess­es used to build win­dows is scal­able to larg­er di­am­e­ter coax and to high­er power lev­els.

  17. Time domain analysis of a gyrotron traveling wave amplifier with misaligned electron beam

    SciTech Connect

    Wang, Qiushi Peng, Shuyuan; Luo, Jirun

    2014-08-15

    This article develops a time-domain theory to study the beam-wave interaction in gyrotron traveling wave amplifier (gyro-TWA) with a misaligned electron beam. The effects of beam misalignment on the TE{sub 01} mode gyro-TWA operating at the fundamental are discussed. Numerical results show that the effect of misalignment is less obvious when the input power is larger, and the influences of misalignment on the stable gain and the stable time are basically opposite.

  18. High power coaxial ubitron

    NASA Astrophysics Data System (ADS)

    Balkcum, Adam J.

    In the ubitron, also known as the free electron laser, high power coherent radiation is generated from the interaction of an undulating electron beam with an electromagnetic signal and a static periodic magnetic wiggler field. These devices have experimentally produced high power spanning the microwave to x-ray regimes. Potential applications range from microwave radar to the study of solid state material properties. In this dissertation, the efficient production of high power microwaves (HPM) is investigated for a ubitron employing a coaxial circuit and wiggler. Designs for the particular applications of an advanced high gradient linear accelerator driver and a directed energy source are presented. The coaxial ubitron is inherently suited for the production of HPM. It utilizes an annular electron beam to drive the low loss, RF breakdown resistant TE01 mode of a large coaxial circuit. The device's large cross-sectional area greatly reduces RF wall heat loading and the current density loading at the cathode required to produce the moderate energy (500 keV) but high current (1-10 kA) annular electron beam. Focusing and wiggling of the beam is achieved using coaxial annular periodic permanent magnet (PPM) stacks without a solenoidal guide magnetic field. This wiggler configuration is compact, efficient and can propagate the multi-kiloampere electron beams required for many HPM applications. The coaxial PPM ubitron in a traveling wave amplifier, cavity oscillator and klystron configuration is investigated using linear theory and simulation codes. A condition for the dc electron beam stability in the coaxial wiggler is derived and verified using the 2-1/2 dimensional particle-in-cell code, MAGIC. New linear theories for the cavity start-oscillation current and gain in a klystron are derived. A self-consistent nonlinear theory for the ubitron-TWT and a new nonlinear theory for the ubitron oscillator are presented. These form the basis for simulation codes which, along

  19. Theoretical and experimental study of the space-charge oscillations in the electron-optical system of a relativistic gyrotron

    SciTech Connect

    Ilyakov, E. V. Kulagin, I. S.; Manuilov, V. N.; Movshevich, B. Z.

    2011-12-15

    A theoretical and experimental study of the oscillations of a space-charge cloud in a magnetron-injection gun of a powerful relativistic gyrotron has been performed. The charge storage occurs via electron-beam magnetic compression of the reflection of a part of the electrons having the highest transverse velocities from a magnetic mirror. It has been established that at high values of the compression coefficient the beam loses its stability that finally leads to the appearance of the beam current modulation at the frequency of the longitudinal oscillations of an electron beam in an adiabatic trap. According to the numerical simulations, the energy spread in the formed beam under these conditions reaches 4.6%, which is higher by an order of magnitude than that due to the space-charge effect in the beam transported along the metal tube.

  20. Magnetic field profile analysis for gyrotron experimental investigation

    NASA Astrophysics Data System (ADS)

    Pagonakis, Ioannis Gr.; Avramidis, Konstantinos A.; Gantenbein, Gerd; Rzesnicki, Tomasz; Samartsev, Andrey; Jelonnek, John

    2017-03-01

    The external applied magnetic field plays a main role on the gyrotron operation. Even if the gyrotron design is optimized for the nominal magnetic profile, it is possible the performance to be better for an alternative one. This unexpected result can happen for several reasons, such as the manufacturing imperfections, the misalignment issues, and several unknown factors in gyrotron theory and design. The systematic experimental investigation of the gyrotron in different magnetic profiles is very important for the optimization of the gyrotron operation and for the better understanding of the gyrotron behavior. In this sense, an analytical approach for the definition of the appropriate magnetic profiles based on the beam characteristics instead of the coil currents definition is proposed for a systematic experimental study. Using this technique, operational maps in the space of the important magnetic profile parameters are developed, which are very useful for the characterization of the gyrotron performance. For the demonstration of this idea, the operational maps of the short-pulse prototype of the 170 GHz, 1 MW European ITER gyrotron project are presented.

  1. Design considerations for a 1 MW CW gyrotron with an internal converter

    SciTech Connect

    Felch, K.; Chu, T.S.; Huey, H.; Jory, H.; Neilson, J.; Schumacher, R.; Lorbeck, J.A.; Vernon, R.J.

    1993-07-01

    Varian is carrying out the development of high-power, CW gyrotrons at frequencies ranging from 100--140 GHz. Recent experiments, carried out at a frequency of 110 GHz, resulted in the generation of output powers of 500 kW for 2.5-second pulses and 1 MW for 1 ms pulse durations. The output mode of this tube was a whispering-gallery mode, based on the TE{sub 22,2} mode employed in the interaction cavity. Current design activity is aimed at producing a 1 MW CW gryotron at the same frequency, but with a guassian output mode structure. This type of output mode is desirable for low-loss transmission in a corrugated waveguide or mirror transmission line. In addition to the change in output coupling, the cavity mode will be changed to the TE{sub 22,6} mode. The higher order cavity mode is consistent with higher power or higher frequency requirements that will be addressed in subsequent development activities.

  2. High power beam analysis

    NASA Astrophysics Data System (ADS)

    Aharon, Oren

    2014-02-01

    In various modern scientific and industrial laser applications, beam-shaping optics manipulates the laser spot size and its intensity distribution. However the designed laser spot frequently deviates from the design goal due to real life imperfections and effects, such as: input laser distortions, optical distortion, heating, overall instabilities, and non-linear effects. Lasers provide the ability to accurately deliver large amounts of energy to a target area with very high accuracy. Thus monitoring beam size power and beam location is of high importance for high quality results and repeatability. Depending on the combination of wavelength, beam size and pulse duration , laser energy is absorbed by the material surface, yielding into processes such as cutting, welding, surface treatment, brazing and many other applications. This article will cover the aspect of laser beam measurements, especially at the focal point where it matters the most. A brief introduction to the material processing interactions will be covered, followed by fundamentals of laser beam propagation, novel measurement techniques, actual measurement and brief conclusions.

  3. Stable harmonic multiplying gyrotron traveling-wave amplifier with distributed wall losses and attenuating severs

    SciTech Connect

    Yeh, Y. S.; Cheng, J. H.; Chen, L. K.; Hung, C. W.; Lo, C. Y.; Liao, C. W.

    2008-02-15

    Harmonic multiplying gyrotron traveling-wave amplifiers (gyro-TWTs) provide magnetic field reduction and frequency multiplication. However, spurious oscillations may reduce the amplification of the gyro-TWT. Most distributed-loss structures are stabilized in gyro-TWTs that operate at low beam currents. Attenuating severs are added to the interaction circuit of a distributed-loss gyro-TWT to prevent high beam currents that result in mode competition. This study proposes a Ka-band harmonic multiplying gyro-TWT, using distributed wall losses and attenuating severs, to improve the stability of the amplification and the performance of the amplifier. Simulation results reveal that the absolute instabilities are effectively suppressed by wall losses of the lossy and severed sections, especially in the low-k{sub z} and high-order modes. Meanwhile, the severed section, dividing an interaction circuit into several short sections, reduces the effective interaction lengths of the absolute instabilities. The stable harmonic multiplying gyro-TWT is predicted to yield a peak output power of 230 kW at 33.65 GHz with an efficiency of 30%, a saturated gain of 40 dB, and a 3 dB bandwidth of 0.8 GHz for a 60 kV, 13 A electron beam with an axial velocity spread of {delta}v{sub z}/v{sub z}=8%. The power/gain scaling and phase relation between the drive and the output waves are elucidated.

  4. G-band harmonic multiplying gyrotron traveling-wave amplifier with a mode-selective circuit

    SciTech Connect

    Yeh, Y. S.; Chen, Chang-Hong; Wang, Z. W.; Kao, B. H.; Chen, Chien-Hsiang; Lin, T. Y.; Guo, Y. W.

    2014-12-15

    Harmonic multiplying gyrotron traveling-wave amplifiers (gyro-TWAs) permit for magnetic field reduction and frequency multiplication. A high-order-mode harmonic multiplying gyro-TWA with large circuit dimensions and low ohmic loss can achieve a high average power. By amplifying a fundamental harmonic TE{sub 01} drive wave, the second harmonic component of the beam current initiates a TE{sub 02} wave to be amplified. Wall losses can suppress some competing modes because they act as an effective sink of the energy of the modes. However, such wall losses do not suppress all competing modes as the fields are contracted in the copper section in the gyro-TWA. An improved mode-selective circuit, using circular waveguides with the specified radii, can provide the rejection points within the frequency range to suppress the competing modes. The simulated results reveal that the mode-selective circuit can provide an attenuation of more than 10 dB to suppress the competing modes (TE{sub 21}, TE{sub 51}, TE{sub 22}, and TE{sub 03}). A G-band second harmonic multiplying gyro-TWA with the mode-selective circuit is predicted to yield a peak output power of 50 kW at 198.8 GHz, corresponding to a saturated gain of 55 dB at an interaction efficiency of 10%. The full width at half maximum bandwidth is 5 GHz.

  5. High power, high frequency component test facility

    NASA Technical Reports Server (NTRS)

    Roth, Mary Ellen; Krawczonek, Walter

    1990-01-01

    The NASA Lewis Research Center has available a high frequency, high power laboratory facility for testing various components of aerospace and/or terrestrial power systems. This facility is described here. All of its capabilities and potential applications are detailed.

  6. Experimental results of the 140 GHz, 1 MW long-pulse gyrotron for W7-X

    NASA Astrophysics Data System (ADS)

    Koppenburg, K.; Arnold, A.; Borie, E.; Dammertz, G.; Giguet, E.; Heidinger, R.; Illy, S.; Kuntze, M.; Le Cloarec, G.; Legrand, F.; Leonhardt, W.; Lievin, C.; Neffe, G.; Piosczyk, B.; Schmid, M.; Thumm, M.

    2003-02-01

    Gyrotrons at high frequency with high output power are mainly developed for microwave heating and current drive in plasmas for thermonuclear fusion. For the stellarator Wendelstein 7-X now under construction at IPP Greifswald, Germany, a 10 MW ECRH system is foreseen. A 1 MW, 140 GHz long-pulse gyrotron has been designed and a pre-prototype (Maquette) has been constructed and tested in an European collaboration between FZK Karlsruhe, CRPP Lausanne, IPF Suttgart, IPP Greifswald, CEA Cadarache and TED Vélizy [1]. The cylindrical cavity is designed for operating in the TE28,8 mode. It is a standard tapered cavity with linear input downtaper and a non-linear uptaper. The diameter of the cylindrical part is 40.96 mm. The transitions between tapers and straight section are smoothly rounded to avoid mode conversion. The TE28,8-cavity mode is transformed to a Gaussian TEM0,0 output mode by a mode converter consisting of a rippled-wall waveguide launcher followed by a three mirror system. The output window uses a single, edge cooled CVD-diamond disk with an outer diameter of 106 mm, a window aperture of 88 mm and a thickness of 1.8 mm corresponding to four half wavelengths. The collector is at ground potential, and a depression voltage for energy recovery can be applied to the cavity and to the first two mirrors. Additional normal-conducting coils are employed to the collector in order to produce an axial magnetic field for sweeping the electron beam with a frequency of 7 Hz. A temperature limited magnetron injection gun without intermediate anode ( diode type ) is used. In short pulse operation at the design current of 40 A an output power of 1 MW could be achieved for an accelerating voltage of 82 kV without depression voltage and with a depression voltage of 25 kV an output power of 1.15 MW at an accelerating voltage of 84 kV has been measured. For these values an efficiency of 49% was obtained. At constant accelerating voltages, the output power did not change up to

  7. High-Efficiency Power Module

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N. (Inventor); Wintucky, Edwin G. (Inventor)

    2015-01-01

    One or more embodiments of the present invention pertain to an all solid-state microwave power module. The module includes a plurality of solid-state amplifiers configured to amplify a signal using a low power stage, a medium power stage, and a high power stage. The module also includes a power conditioner configured to activate a voltage sequencer (e.g., bias controller) when power is received from a power source. The voltage sequencer is configured to sequentially apply voltage to a gate of each amplifier and sequentially apply voltage to a drain of each amplifier.

  8. High-Efficiency Power Module

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N (Inventor); Wintucky, Edwin G (Inventor)

    2013-01-01

    One or more embodiments of the present invention pertain to an all solid-state microwave power module. The module includes a plurality of solid-state amplifiers configured to amplify a signal using a low power stage, a medium power stage, and a high power stage. The module also includes a power conditioner configured to activate a voltage sequencer (e.g., bias controller) when power is received from a power source. The voltage sequencer is configured to sequentially apply voltage to a gate of each amplifier and sequentially apply voltage to a drain of each amplifier.

  9. Microwave method for synthesis of micro- and nanostructures with controllable composition during gyrotron discharge

    NASA Astrophysics Data System (ADS)

    Batanov, German M.; Borzosekov, Valentin D.; Golberg, Dmitri; Iskhakova, Ludmila D.; Kolik, Leonid V.; Konchekov, Evgeny M.; Kharchev, Nikolai K.; Letunov, Alexander A.; Malakhov, Dmitry V.; Milovich, Filipp O.; Obraztsova, Ekaterina A.; Petrov, Alexander E.; Ryabikina, Irina G.; Sarksian, Karen A.; Stepakhin, Vladimir D.; Skvortsova, Nina N.

    2016-01-01

    We introduce an approach toward the synthesis of micro- and nanostructures under nonequilibrium microwave discharges within metal-dielectric powder mixtures induced by powerful microwave gyrotron radiation. A new plasma-chemical reactor capable of sustaining a discharge regime with an afterglow phase of an order of magnitude longer than the gyrotron pulse duration was constructed for these experiments. In the nonequilibrium conditions of such a discharge, plasma-induced exothermic chemical reactions leading to the synthesis of various compounds were initiated. The synthesized structures were deposited on the reactor walls and on the impurity particles within the reactor. This method was tested under gyrotron-initiated discharges within various metal-dielectric powder mixtures of titanium-boron, molybdenum-boron, titanium-silicon-boron, molybdenum-boron nitride, molybdenum-tungsten-boron nitride, and so on. Depending on the powder mixture composition, reactor atmosphere, and other parameters, micro- and nanosized particles of boron nitride, titanium diboride, molybdenum boride, titanium boride, molybdenum, and molybdenum oxide, were synthesized, detected, and analyzed.

  10. Experimental Research on a 1.5 MW, 110 GHz Gyrotron

    NASA Astrophysics Data System (ADS)

    Shapiro, M. A.; Hidaka, Y.; Choi, E. M.; Mastovsky, I.; Sirigiri, J. R.; Tax, D. S.; Temkin, R. J.; Neilson, J.

    2008-11-01

    We report experimental research on the after cavity interaction (ACI) in a 1.5-MW, 110-GHz gyrotron with an internal mode converter operating in 3 microsecond pulses. Recent experiments with a single-stage depressed collector revealed the effects of the ACI, a second interaction that occurs after the electron beam passes through the intended primary interaction region. The ACI causes re-absorption of the microwave power and broadening of the spent electron beam energy distribution, thus leading to a significant reduction in gyrotron efficiency. The broadening of the spent electron beam energy spectrum, which results in degraded performance of the depressed collector, has been experimentally verified. Ways to minimize the ACI are currently being investigated. Also, a new internal mode converter, consisting of a helically-cut launcher and four smooth curved mirrors, has been designed and fabricated. The cold test shows a good agreement with the theoretical Gaussian beam pattern. This new converter will be hot tested shortly in the gyrotron.

  11. Short-pulse Calorimetric Load for High Power Millimeter-wave Beams

    NASA Astrophysics Data System (ADS)

    Gandini, F.; Bruschi, A.; Cirant, S.; Gittini, G.; Granucci, G.; Muzzini, V.; Sozzi, C.; Spinicchia, N.

    2007-02-01

    A spherical compact matched load, for high vacuum operation suited for short pulses (2 MW, 0.1 s) precise measurement has been designed to test high power gyrotrons Bruschi, Gandini, Muzzini, Spinicchia, Cirant, Gittini, Granucci, Mellera, Nardone, Simonetto, and Sozzi (Fusion Eng. Des. 56 57:649 654, 2001); Bruschi, Cirant, Gandini, Granucci, Mellera, Muzzini, Nardone, Simonetto, Sozzi, and Spinicchia (Nucl. Fusion 43:1513 1519, 2003); Bruschi, Cirant, Gandini, Gittini, Granucci, Mellera, Muzzini, Nardone, Simonetto, Sozzi, Spinicchia, Angella, and Signorelli (Development of CW and short-pulse calorimetric loads for high power millimeter-wave Beams, 23rd Symposium on Fusion Technology, September 20 24, 2004, Venice, Italy). In order to enhance the power handling capability of the load and to reduce the operation problems that may arise from an excessive reflection from the load, a ray tracing code has been written to model the power distribution on the inner surface and the pattern of the reflected radiation. The outcome of this code has been used to select a more convenient profile for the spreading mirror of the load and to optimize a pre-load specially conceived to minimize the power reflected fraction.

  12. Components for transmission of very high power mm waves (200 kW at 28, 70 and 140 GHz) in overmoded circular waveguides

    NASA Astrophysics Data System (ADS)

    Thumm, M.; Erckmann, V.; Kasparek, W.; Kumric, H.; Mueller, G. A.; Schueller, P. G.; Wilhelm, R.

    1986-03-01

    Optimized overmoded circular waveguide components of transmission lines developed for high-power (200 kW) millimeter wave applications at 28, 70, and 140 GHz, as e.g., electron cyclotron resonance heating of plasmas for thermonuclear fusion research with gyrotrons, are described. Axisymmetric, narrow, pencil-like beams with well-defined polarization (HE11 hybrid mode) are used at open-ended corrugated waveguide antennas. The HE11 mode is generated from TE0n gyrotron modes by multistep mode conversion: TE0n yields T001 yields TE11 yields HE11 or TE0n yields TE01 yields TM11 yields HE11. Analyses and measurements on mode transducer systems of the first type at 28 and 70 GHz and of the second type at 140 GHz are reported. In all cases the overall efficiency of the complete mode conversion sequence in the desired mode is 92% to 95%. Mode purity in the transmission lines is conserved by using corrugated gradual waveguide bends with optimized curvature distribution and diameter tapers with nonlinear contours. Highly efficient corrugated-wall mode selective filters decouple the different waveguide sections. Mode content and reflected powere are determined by a k-spectrometer. Absolute power calibration is done with calorimetric loads using an organic absorbing fluid.

  13. High power phase shifter

    SciTech Connect

    Foster, B.; Gonin, I.; Khabiboulline, T.; Makarov, A.; Solyak, N.; Terechkine, I.; Wildman, D.; /Fermilab

    2005-05-01

    One of the approaches to power distribution system of a superconducting proton linac under discussion at FNAL requires development of a fast-action, megawatt-range phase shifter. Using a couple of this kind of devices with a waveguide hybrid junction can allow independent control of phase and amplitude of RF power at the input of each superconducting cavity, which will result in significant saving in number of klystrons and modulators required for the accelerator. A prototype of a waveguide version of the shifter that uses Yttrium-Iron Garnet (YIG) blocks was developed and tested. This report presents design concept of the device, and main results of simulation and proof-of-principle tests.

  14. A 0.33-THz second-harmonic frequency-tunable gyrotron

    NASA Astrophysics Data System (ADS)

    Zheng-Di, Li; Chao-Hai, Du; Xiang-Bo, Qi; Li, Luo; Pu-Kun, Liu

    2016-02-01

    Dynamics of the axial mode transition process in a 0.33-THz second-harmonic gyrotron is investigated to reveal the physical mechanism of realizing broadband frequency tuning in an open cavity circuit. A new interaction mechanism about propagating waves, featured by wave competition and wave cooperation, is presented and provides a new insight into the beam-wave interaction. The two different features revealed in the two different operation regions of low-order axial modes (LOAMs) and high-order axial modes (HOAMs) respectively determine the characteristic of the overall performance of the device essentially. The device performance is obtained by the simulation based on the time-domain nonlinear theory and shows that using a 12-kV/150-mA electron beam and TE-3,4 mode, the second harmonic gyrotron can generate terahertz radiations with frequency-tuning ranges of about 0.85 GHz and 0.60 GHz via magnetic field and beam voltage tuning, respectively. Additionally, some non-stationary phenomena in the mode startup process are also analyzed. The investigation in this paper presents guidance for future developing high-performance frequency-tunable gyrotrons toward terahertz applications. Project supported by the National Natural Science Foundation of China (Grant Nos. 61471007, 61531002, 61522101, and 11275206) and the Seeding Grant for Medicine and Information Science of Peking University, China (Grant No. 2014-MI-01).

  15. Dynamic nuclear polarization at 9 T using a novel 250 GHz gyrotron microwave source

    NASA Astrophysics Data System (ADS)

    Bajaj, V. S.; Farrar, C. T.; Hornstein, M. K.; Mastovsky, I.; Vieregg, J.; Bryant, J.; Eléna, B.; Kreischer, K. E.; Temkin, R. J.; Griffin, R. G.

    2011-12-01

    In this communication, we report enhancements of nuclear spin polarization by dynamic nuclear polarization (DNP) in static and spinning solids at a magnetic field strength of 9 T (250 GHz for g = 2 electrons, 380 MHz for 1H). In these experiments, 1H enhancements of up to 170 ± 50 have been observed in 1- 13C-glycine dispersed in a 60:40 glycerol/water matrix at temperatures of 20 K; in addition, we have observed significant enhancements in 15N spectra of unoriented pf1-bacteriophage. Finally, enhancements of ˜17 have been obtained in two-dimensional 13C- 13C chemical shift correlation spectra of the amino acid U- 13C, 15N-proline during magic angle spinning (MAS), demonstrating the stability of the DNP experiment for sustained acquisition and for quantitative experiments incorporating dipolar recoupling. In all cases, we have exploited the thermal mixing DNP mechanism with the nitroxide radical 4-amino-TEMPO as the paramagnetic dopant. These are the highest frequency DNP experiments performed to date and indicate that significant signal enhancements can be realized using the thermal mixing mechanism even at elevated magnetic fields. In large measure, this is due to the high microwave power output of the 250 GHz gyrotron oscillator used in these experiments.

  16. High Power Fiber Lasers

    DTIC Science & Technology

    2012-08-02

    mode, purity of polarization state, minimization of nonlinear effects, compatibility with all-fiber pumps, and high temperature buffer coatings. Over...nonlinear effects, compatibility with all-fiber pumps, and high temperature buffer coatings. Over the duration of this program the most significant...minimization of nonlinear effects, compatibility with all-fiber pumps, and high temperature buffer coatings. Over the duration of this program the most

  17. High Power Switch Development.

    DTIC Science & Technology

    1979-11-29

    fundamental properties of electron beam triggered LJ switches and determine their capabilities and limitations. 2. Investigate breakdown phenomena at high...discharge is goal have been achieved by laser triggered broad in cross-section. switching 1 (ITS), and by e-beam triggered Voltage, current, and jitter...and J. R. Settis; "The Laser Triggering of High Voltage Switches ". J. , .’-- o, .. Phys. D.: Appl. Phys., Vol. 11, 1577,(1978). c..-- , 2. E. A

  18. TRANSISTOR HIGH VOLTAGE POWER SUPPLY

    DOEpatents

    Driver, G.E.

    1958-07-15

    High voltage, direct current power supplies are described for use with battery powered nuclear detection equipment. The particular advantages of the power supply described, are increased efficiency and reduced size and welght brought about by the use of transistors in the circuit. An important feature resides tn the employment of a pair of transistors in an alternatefiring oscillator circuit having a coupling transformer and other circuit components which are used for interconnecting the various electrodes of the transistors.

  19. High Power Proton Facilities

    NASA Astrophysics Data System (ADS)

    Nagaitsev, Sergei

    2015-04-01

    This presentation will provide an overview of the capabilities and challenges of high intensity proton accelerators, such as J-PARC, Fermilab MI, SNS, ISIS, PSI, ESS (in the future) and others. The presentation will focus on lessons learned, new concepts, beam loss mechanisms and methods to mitigate them.

  20. Possible standoff detection of ionizing radiation using high-power THz electromagnetic waves

    NASA Astrophysics Data System (ADS)

    Nusinovich, Gregory S.; Sprangle, Phillip; Romero-Talamas, Carlos A.; Rodgers, John; Pu, Ruifeng; Kashyn, Dmytro G.; Antonsen, Thomas M., Jr.; Granatstein, Victor L.

    2012-06-01

    Recently, a new method of remote detection of concealed radioactive materials was proposed. This method is based on focusing high-power short wavelength electromagnetic radiation in a small volume where the wave electric field exceeds the breakdown threshold. In the presence of free electrons caused by ionizing radiation, in this volume an avalanche discharge can then be initiated. When the wavelength is short enough, the probability of having even one free electron in this small volume in the absence of additional sources of ionization is low. Hence, a high breakdown rate will indicate that in the vicinity of this volume there are some materials causing ionization of air. To prove this concept a 0.67 THz gyrotron delivering 200-300 kW power in 10 microsecond pulses is under development. This method of standoff detection of concealed sources of ionizing radiation requires a wide range of studies, viz., evaluation of possible range, THz power and pulse duration, production of free electrons in air by gamma rays penetrating through container walls, statistical delay time in initiation of the breakdown in the case of low electron density, temporal evolution of plasma structure in the breakdown and scattering of THz radiation from small plasma objects. Most of these issues are discussed in the paper.

  1. Compact High Power THz Source

    SciTech Connect

    Geoffrey Krafft

    2003-08-01

    In this paper a new type of THz radiation source, based on recirculating an electron beam through a high gradient superconducting radio frequency cavity, and using this beam to drive a standard electromagnetic undulator, is discussed. Because the beam is recirculated, short bunches may be produced that radiate coherently in the undulator, yielding high average THz power for relatively low average beam power. Deceleration from the coherent emission, and the detuning it causes is discussed.

  2. High average power pockels cell

    DOEpatents

    Daly, Thomas P.

    1991-01-01

    A high average power pockels cell is disclosed which reduces the effect of thermally induced strains in high average power laser technology. The pockels cell includes an elongated, substantially rectangular crystalline structure formed from a KDP-type material to eliminate shear strains. The X- and Y-axes are oriented substantially perpendicular to the edges of the crystal cross-section and to the C-axis direction of propagation to eliminate shear strains.

  3. High power solid state lasers

    SciTech Connect

    Weber, H.

    1988-01-01

    These proceedings discuss the following subjects: trends in materials processing with laser radiation; slabs and high power systems; glasses and new crystals; solid state lasers at HOYA Corp.; lamps, resonators and transmission; glasses as active materials for high average power solid state lasers; flashlamp pumped GGG-crystals; alexandrite lasers; designing telescope resonators; mode operation of neodymium: YAG lasers; intracavity frequency doubling with KTP crystal and thermal effects in cylinder lasers.

  4. Design considerations for a 100 kW c-w, 140 GHz gyrotron oscillator

    SciTech Connect

    Felch, K.; Bier, R.; Fox, L.; Huey, H.; Ives, L.; Jory, H.; Spang, S.

    1984-01-01

    A gyrotron oscillator capable of generating 100 kW of c-w power is currently under development at Varian. The tube is being designed for operation in the TE/sup 0//sub 031/ cavity mode with the electron beam located at the second radial electric field maximum in the cavity. The electron beam will be produced by a magnetron injection gun and the 56 kG magnetic field required for 140 GHz operation will be provided by a superconducting magnet. Initial design calculations for the important elements of the tube are reported and the various technology issues of the tube design are discussed.

  5. High power ferrite microwave switch

    NASA Technical Reports Server (NTRS)

    Bardash, I.; Roschak, N. K.

    1975-01-01

    A high power ferrite microwave switch was developed along with associated electronic driver circuits for operation in a spaceborne high power microwave transmitter in geostationary orbit. Three units were built and tested in a space environment to demonstrate conformance to the required performance characteristics. Each unit consisted of an input magic-tee hybrid, two non-reciprocal latching ferrite phase shifters, an out short-slot 3 db quadrature coupler, a dual driver electronic circuit, and input logic interface circuitry. The basic mode of operation of the high power ferrite microwave switch is identical to that of a four-port, differential phase shift, switchable circulator. By appropriately designing the phase shifters and electronic driver circuits to operate in the flux-transfer magnetization mode, power and temperature insensitive operation was achieved. A list of the realized characteristics of the developed units is given.

  6. Improved Measurements of Injected Electron Cyclotron Power in DIII-D

    NASA Astrophysics Data System (ADS)

    Gorelov, I. A.; Lohr, J.; Ponce, D.; Cengher, M.; Johnson, P. S.

    2007-11-01

    Direct measurements of the rf power injected into the DIII-D tokamak from the ECH gyrotrons are being made using a high power dummy load at the tokamak. The measurements will permitt power monitors, which measure the rf leakage from well-aligned gaps in the vacuum waveguides near the tokamak, to be calibrated for various elliptical polarizations of the rf propagating in the HE11 waveguide mode. Using these measurements, correlations with calorimetric measurements of the gyrotron cooling circuits, the usual basis for rf power measurements in the system, will be made. Low power rf measurements and theoretical and experimental estimates of the transmission efficiencies of the individual components in the transmission lines will be compared with the direct measurements.

  7. A Stable 0.2-THz Coaxial-Waveguide Gyrotron Traveling-Wave-Tube Amplifier with Distributed Losses

    NASA Astrophysics Data System (ADS)

    Hung, C. L.; Yeh, Y. S.; Chang, T. H.; Fang, R. S.

    2017-01-01

    For high-power operation, a THz gyrotron traveling-wave-tube (gyro-TWT) amplifier must operate in a high-order waveguide mode to enlarge the transverse dimension of an interaction waveguide. However, a gyro-TWT amplifier operating in a high-order waveguide mode is susceptible to spurious oscillations. To improve the device stability, in this study, we investigate the possibility of using a coaxial waveguide with distributed losses as the interaction structure. For the same required attenuation, all threatening oscillating modes can be suppressed using different combinations of losses of inner and outer cylinders. This provides flexibility in designing distributed losses when considering the ohmic loading of the interaction structure. We predict that the 0.2-THz gyro-TWT can stably produce a peak power of 14 kW with an efficiency of 23 %, a 3-dB bandwidth of 3.5 GHz, and a saturated gain of 50 dB for a 20-kV 3-A electron beam with a 5 % velocity spread and 1.0 velocity ratio.

  8. High Power Amplifier and Power Supply

    NASA Technical Reports Server (NTRS)

    Duong, Johnny; Stride, Scot; Harvey, Wayne; Haque, Inam; Packard, Newton; Ng, Quintin; Ispirian, Julie Y.; Waian, Christopher; Janes, Drew

    2008-01-01

    A document discusses the creation of a high-voltage power supply (HVPS) that is able to contain voltages up to -20 kV, keep electrical field strengths to below 200 V/mil (approximately equal to 7.87 kV/mm), and can provide a 200-nanosecond rise/fall time focus modulator swinging between cathode potential of 16.3 kV and -19.3 kV. This HVPS can protect the 95-GHz, pulsed extended interaction klystron (EIK) from arcs/discharges from all sources, including those from within the EIK fs vacuum envelope. This innovation has a multi-winding pulse transformer design, which uses new winding techniques to provide the same delays and rise/fall times (less than 10 nanoseconds) at different potential levels ranging from -20 kV to -16 kV. Another feature involves a high-voltage printed-wiring board that was corona-free at -20 kV DC with a 3- kV AC swing. The corona-free multilayer high-voltage board is used to simulate fields of less than 200 V/mil (approximately equal to 7.87 kV/mm) at 20 kV DC. Drive techniques for the modulator FETs (field-effect transistors) (four to 10 in a series) were created to change states (3,000-V swing) without abrupt steps, while still maintaining required delays and transition times. The packing scheme includes a potting mold to house a ten-stage modulator in the space that, in the past, only housed a four-stage modulator. Problems keeping heat down were solved using aluminum oxide substrate in the high-voltage section to limit temperature rise to less than 10 while withstanding -20 kV DC voltage and remaining corona-free.

  9. First and second harmonic ECRH experience at gyrotron frequencies at LLNL

    SciTech Connect

    Stallard, B.

    1987-11-01

    Plasma heating of electrons in both mirror machines and tokamaks, using mm wave gyrotron sources, have been carried out in many experiments in recent years. The technology for both sources and mode-preserving waveguide transmission systems is well developed at power levels of 200 kW. At LLNL electron heating at 28 GHz in the TMX-U tandem mirror has been used to create hot electrons required for a thermal barrier (potential well). TMX-U, and other devices operating at lower frequency and power (10 GHz, few kW), routinely generates electron populations with mean energies of 100 to 500 keV and densities in the low to mid 10/sup 11/ cm/sup -3/ range. Radial pressure profiles vary from peaked-on-axis to hollow and are dependent on the mod-B resonance surfaces. Experiments on the axisymmetric mirror SM-1 have shown improved heating efficiency using multiple frequencies with narrow frequency separation. The importance of rf diffusion in determining electron confinement has been shown in CONSTANCE B. Fokker-Planck and particle orbit models have been useful for understanding the importance of cavity heating for creating runaway electrons, the sensitivity of hot electron production to cold plasma, the reduction of electron lifetime by rf diffusion, and the effect of multiple frequencies on heating stochasticity. Potential wells generated in plasmas with large fractions of mirror-trapped electrons have been measured in TMX-U. These offer prospects for enhanced confinement of highly stripped ions. 11 refs., 18 figs., 2 tabs.

  10. Integrated high power VCSEL systems

    NASA Astrophysics Data System (ADS)

    Moench, Holger; Conrads, Ralf; Gronenborn, Stephan; Gu, Xi; Miller, Michael; Pekarski, Pavel; Pollmann-Retsch, Jens; Pruijmboom, Armand; Weichmann, Ulrich

    2016-03-01

    High power VCSEL systems are a novel laser source used for thermal treatment in industrial manufacturing. These systems will be applied in many applications, which have not used a laser source before. This is enabled by the unique combination of efficiency, compactness and robustness. High power VCSEL system technology encompasses elements far beyond the VCSEL chip itself: i.e. heat sinks, bonding technology and integrated optics. This paper discusses the optimization of these components and processes specifically for building high-power laser systems with VCSEL arrays. New approaches help to eliminate components and process steps and make the system more robust and easier to manufacture. New cooler concepts with integrated electrical and mechanical interfaces have been investigated and offer advantages for high power system design. The bonding process of chips on sub-mounts and coolers has been studied extensively and for a variety of solder materials. High quality of the interfaces as well as good reliability under normal operation and thermal cycling have been realized. A viable alternative to soldering is silver sintering. The very positive results which have been achieved with a variety of technologies indicate the robustness of the VCSEL chips and their suitability for high power systems. Beam shaping micro-optics can be integrated on the VCSEL chip in a wafer scale process by replication of lenses in a polymer layer. The performance of VCSEL arrays with integrated collimation lenses has been positively evaluated and the integrated chips are fully compatible with all further assembly steps. The integrated high power systems make the application even easier and more robust. New examples in laser material processing and pumping of solid state lasers are presented.

  11. Pulsed high-power beams

    SciTech Connect

    Reginato, L.L.; Birx, D.L.

    1988-06-01

    The marriage of induction linac technology with nonlinear magnetic modulators has produced some unique capabilities. It is now possible to produce short-pulse electron beams with average currents measured in amperes, at gradients approaching 1-MeV/m, and with power efficiencies exceeding 50%. A 70-Mev, 3-kA induction accelerator (ETA II) constructed at the Lawrence Livermore National Laboratory incorporates the pulse technology concepts that have evolved over the past several years. The ETA II is a linear induction accelerator and provides a test facility for demonstration of the high-average-power components and high-brightness sources used in such accelerators. The pulse drive for the accelerator is based on state-of-the-art magnetic pulse compressors with very high peak-power capability, repetition rates exceeding 1 kHz, and excellent reliability. 6 figs.

  12. High-Average Power Facilities

    SciTech Connect

    Dowell, David H.; Power, John G.; /Argonne

    2012-09-05

    There has been significant progress in the development of high-power facilities in recent years yet major challenges remain. The task of WG4 was to identify which facilities were capable of addressing the outstanding R&D issues presently preventing high-power operation. To this end, information from each of the facilities represented at the workshop was tabulated and the results are presented herein. A brief description of the major challenges is given, but the detailed elaboration can be found in the other three working group summaries.

  13. NTM stabilization by alternating O-point EC current drive using a high-power diplexer

    NASA Astrophysics Data System (ADS)

    Kasparek, W.; Doelman, N.; Stober, J.; Maraschek, M.; Zohm, H.; Monaco, F.; Eixenberger, H.; Klop, W.; Wagner, D.; Schubert, M.; Schütz, H.; Grünwald, G.; Plaum, B.; Munk, R.; Schlüter, K. H.; ASDEX Upgrade Team

    2016-12-01

    At the tokamak ASDEX Upgrade, experiments to stabilize neoclassical tearing modes (NTMs) by electron cyclotron (EC) heating and current drive in the O-points of the magnetic islands were performed. For the first time, injection into the O-points of the revolving islands was performed via a fast directional switch, which toggled the EC power between two launchers synchronously to the island rotation. The switching was performed by a resonant diplexer employing a sharp resonance in the transfer function, and a small frequency modulation of the feeding gyrotron around the slope of the resonance. Thus, toggling of the power between the two outputs of the diplexer connected to two articulating launchers was possible. Phasing and control of the modulation were performed via a set of Mirnov coils and appropriate signal processing. In the paper, technological issues, the design of the diplexer, the tracking of the diplexer resonance to the gyrotron frequency, the generation and processing of control signals for the gyrotron, and the typical performance concerning switching contrast and efficiency are discussed. The plasma scenario is described, and plasma experiments are presented, where the launchers scanned the region of the resonant surface continuously and also where the launchers were at a fixed position near to the q  =  1.5-surface. In the second case, complete stabilization of a 3/2 NTM could be reached. These experiments are also seen as a technical demonstration for the applicability of diplexers in large-scale ECRH systems.

  14. High-power microwave transmission systems for electron-cyclotron-resonance plasma heating

    SciTech Connect

    Vernon, R.J.

    1991-08-01

    This progress report is for the sixth year of a grant from the US Department of Energy for the design, development, and fabrication of ECRH transmission and mode conversion systems to transport microwave power from a gyrotron to a magnetically confined plasma. The design and low-power testing of new and improved components for such systems and development of underlying theory is the focus of this project. Devising and improving component testing and diagnostic techniques is also an important part of this effort. The development of possible designs for sections of gyrotrons themselves, such as tapers or Vlasov-type launchers, in support of the Varian gyrotron development program is also considered when appropriate. We also provide support to other groups working on ECR heating of magnetically confined plasmas such as the groups at General Atomics, the University of Texas at Austin, and Lawrence Livermore National Laboratory. During the last year, we designed and had fabricated a two-dimensional Vlasov antenna system for a 110 GHz TE{sub 15,2} mode gyrotron for possible use at General Atomics. The system included the launcher section, a visor, main reflector, and focusing reflector. Programs to generate the tool-path profiles to cut the General Atomics'' Vlasov components on a milling machine were developed. We have also developed state-of-the art theory and programs for three-dimensional whispering-gallery-mode Vlasov antenna systems. A design for a 110 GHz TE{sub 01}-TE{sub 15,2} mode converter system for cold testing WGM Vlasov antenna systems was developed and is currently being fabricated also.

  15. Comparative analysis of fourth-harmonic multiplying gyrotron traveling-wave amplifiers operating at different frequency multiplications

    NASA Astrophysics Data System (ADS)

    Yeh, Y. S.; Kao, W. J.; Li, L. J.; Guo, Y. W.

    2017-01-01

    The harmonic multiplying operation in a gyrotron traveling-wave amplifier (gyro-TWA) permits magnetic field reduction and frequency multiplication. This study presents a comparative analysis of fourth-harmonic multiplying gyro-TWAs with three schemes of operation. An improved mode-selective circuit using circular waveguides with various radii provides the rejection points within the range of operating frequencies to suppress the competing modes of gyro-TWAs. The simulated results reveal that gyro-TWAs are the most susceptible to the fundamental-harmonic TE11 competing mode, regardless of the operating scheme, and that the mode-selective circuit can provide an attenuation of more than 20 dB to suppress the competing modes. The amplification of the waves in a gyro-TWA depends on the lengths of the sections, and the simulated results show that the gain increases for all schemes, as the length of the lossy section or the length of the copper section increases. All schemes exhibit nearly the same saturated output powers and bandwidths; however, the saturated gain of the scheme at a high frequency multiplication ratio is less than that of the scheme at a low frequency multiplication ratio. Extensive numerical calculations of power and gain scaling are conducted for all schemes.

  16. The 5.8 T Cryogen-Free Gyrotron Superconducting Magnet System on HL-2A

    NASA Astrophysics Data System (ADS)

    Xia, Donghui; Huang, Mei; Zhou, Jun; Bai, Xingyu; Zheng, Tieliu; Rao, Jun; Zhuang, Ge

    2014-04-01

    A 5.8 T cryogen-free superconducting magnet (SCM) system with a warm bore hole of 160 mm in diameter, used for gyrotrons operating in the frequency range from 68 GHz to 140 GHz, is installed on the site of the HL-2A tokamak. The SCM consists of two separate solenoidal magnetic coils connected in series, a 4.2 K Gifford-McMahon (GM) refrigerator, a compressor, a coil power supply and two temperature monitors. The performance, test and preliminary experimental results of this SCM system are described in this paper. The magnetic field distribution was measured along the axis, and a dummy tube was used for adjusting the magnet system. Finally, the magnet was used for the operation of a 68 GHz/500 kW gyrotron, which is part of an electron cyclotron resonance heating (ECRH) system. With an additional auxiliary coil and after adjusting the magnet system, a maximum output power for the ECRH system of up to 400 kW was achieved.

  17. High power neutron production targets

    SciTech Connect

    Wender, S.

    1996-06-01

    The author describes issues of concern in the design of targets and associated systems for high power neutron production facilities. The facilities include uses for neutron scattering, accelerator driven transmutation, accelerator production of tritium, short pulse spallation sources, and long pulse spallation sources. Each of these applications requires a source with different design needs and consequently different implementation in practise.

  18. Kinetic instabilities in a mirror-confined plasma sustained by high-power microwave radiation

    NASA Astrophysics Data System (ADS)

    Shalashov, A. G.; Viktorov, M. E.; Mansfeld, D. A.; Golubev, S. V.

    2017-03-01

    This paper summarizes the studies of plasma kinetic instabilities in the electron cyclotron frequency range carried out over the last decade at the Institute of Applied Physics in Nizhny Novgorod. We investigate the nonequilibrium plasma created and sustained by high-power microwave radiation of a gyrotron under the electron cyclotron resonance condition. Resonant plasma heating results in the formation of at least two electron components, one of which, more dense and cold, determines the dispersion properties of the high-frequency waves, and the other, a small group of energetic electrons with a highly anisotropic velocity distribution, is responsible for the excitation of unstable waves. Dynamic spectra and the intensity of stimulated electromagnetic emission are studied with high temporal resolution. Interpretation of observed data is based on the cyclotron maser paradigm; in this context, a laboratory modeling of non-stationary wave-particle interaction processes has much in common with similar processes occurring in the magnetosphere of Earth, planets, and solar coronal loops.

  19. High voltage power transistor development

    NASA Technical Reports Server (NTRS)

    Hower, P. L.

    1981-01-01

    Design considerations, fabrication procedures, and methods of evaluation for high-voltage power-transistor development are discussed. Technique improvements such as controlling the electric field at the surface and perserving lifetimes in the collector region which have advanced the state of the art in high-voltage transistors are discussed. These improvements can be applied directly to the development of 1200 volt, 200 ampere transistors.

  20. High power, high reliability laser diodes

    NASA Astrophysics Data System (ADS)

    Scifres, D. R.; Welch, D. F.; Craig, R. R.; Zucker, E.; Major, J. S.; Harnagel, G. L.; Sakamoto, M.; Haden, J. M.; Endriz, J. G.; Kung, H.

    1992-06-01

    Results are presented on catastrophic damage limits and life-test measurements for four types of high-power laser diodes operating at wavelengths between 980 nm and 690 nm. The laser diodes under consideration are CW multimode lasers, CW laser bars, quasi-CW bars/2D stacked arrays, and single transverse mode lasers.

  1. High-power, high-efficiency FELs

    SciTech Connect

    Sessler, A.M.

    1989-04-01

    High power, high efficiency FELs require tapering, as the particles loose energy, so as to maintain resonance between the electromagnetic wave and the particles. They also require focusing of the particles (usually done with curved pole faces) and focusing of the electromagnetic wave (i.e. optical guiding). In addition, one must avoid transverse beam instabilities (primarily resistive wall) and longitudinal instabilities (i.e sidebands). 18 refs., 7 figs., 3 tabs.

  2. High temperature, high power piezoelectric composite transducers.

    PubMed

    Lee, Hyeong Jae; Zhang, Shujun; Bar-Cohen, Yoseph; Sherrit, Stewart

    2014-08-08

    Piezoelectric composites are a class of functional materials consisting of piezoelectric active materials and non-piezoelectric passive polymers, mechanically attached together to form different connectivities. These composites have several advantages compared to conventional piezoelectric ceramics and polymers, including improved electromechanical properties, mechanical flexibility and the ability to tailor properties by using several different connectivity patterns. These advantages have led to the improvement of overall transducer performance, such as transducer sensitivity and bandwidth, resulting in rapid implementation of piezoelectric composites in medical imaging ultrasounds and other acoustic transducers. Recently, new piezoelectric composite transducers have been developed with optimized composite components that have improved thermal stability and mechanical quality factors, making them promising candidates for high temperature, high power transducer applications, such as therapeutic ultrasound, high power ultrasonic wirebonding, high temperature non-destructive testing, and downhole energy harvesting. This paper will present recent developments of piezoelectric composite technology for high temperature and high power applications. The concerns and limitations of using piezoelectric composites will also be discussed, and the expected future research directions will be outlined.

  3. High Temperature, High Power Piezoelectric Composite Transducers

    PubMed Central

    Lee, Hyeong Jae; Zhang, Shujun; Bar-Cohen, Yoseph; Sherrit, StewarT.

    2014-01-01

    Piezoelectric composites are a class of functional materials consisting of piezoelectric active materials and non-piezoelectric passive polymers, mechanically attached together to form different connectivities. These composites have several advantages compared to conventional piezoelectric ceramics and polymers, including improved electromechanical properties, mechanical flexibility and the ability to tailor properties by using several different connectivity patterns. These advantages have led to the improvement of overall transducer performance, such as transducer sensitivity and bandwidth, resulting in rapid implementation of piezoelectric composites in medical imaging ultrasounds and other acoustic transducers. Recently, new piezoelectric composite transducers have been developed with optimized composite components that have improved thermal stability and mechanical quality factors, making them promising candidates for high temperature, high power transducer applications, such as therapeutic ultrasound, high power ultrasonic wirebonding, high temperature non-destructive testing, and downhole energy harvesting. This paper will present recent developments of piezoelectric composite technology for high temperature and high power applications. The concerns and limitations of using piezoelectric composites will also be discussed, and the expected future research directions will be outlined. PMID:25111242

  4. Development program for a 200 kW, CW gyrotron. Quarterly report No. 16, April-June 1983

    SciTech Connect

    DeHope, W.J.; Ferguson, P.E.; Hart, S.L.; Matranga, V.A.; Sandoval, J.J.; Schmitt, M.J.; Tancredi, J.J.

    1983-01-01

    The objective of this program is the design and development of a millimeter-wave device to produce 200 kW of continuous wave power at 60 GHz. The device, a gyrotron oscillator, will be compatible with power delivery to an electron-cyclotron heated plasma. Smooth control of rf power over a 17 dB range is required, and the device should be capable of operation into a severely time-varying load mismatch. Progress is presented in the testing, analyses and understanding of S/N 1B behavior and in preparing S/N 3 for test in the coming report period.

  5. Demonstration of Steady State Operation with 1 MW of 170 GHz gyrotron for ITER

    SciTech Connect

    Kasugai, Atsushi; Takahashi, Koji; Kajiwara, Ken; Kobayashi, Noriyuki; Sakamoto, Keishi

    2007-09-28

    A quasi-steady-state operation of 1 MW/800 s with the efficiency of 55%, which exceeded 1 MW/500 s/50% of the performance required in ITER, was demonstrated in a 170 GHz gyrotron. The oscillation characteristics in the long pulse operation was clarified, and the operation scenario to the hard self-excitation region for the high efficiency oscillation was newly established by controlling a pitch factor of the electron and the cavity magnetic field during the pulse with fixed beam voltage in the triode MIG. The result gives a clear outlook for the success of ECH and ECCD in ITER.

  6. Plasma Physics Challenges of MM-to-THz and High Power Microwave Generation

    NASA Astrophysics Data System (ADS)

    Booske, John

    2007-11-01

    Homeland security and military defense technology considerations have stimulated intense interest in mobile, high power sources of millimeter-wave to terahertz regime electromagnetic radiation, from 0.1 to 10 THz. While sources at the low frequency end, i.e., the gyrotron, have been deployed or are being tested for diverse applications such as WARLOC radar and active denial systems, the challenges for higher frequency sources have yet to be completely met for applications including noninvasive sensing of concealed weapons and dangerous agents, high-data-rate communications, and high resolution spectroscopy and atmospheric sensing. The compact size requirements for many of these high frequency sources requires miniscule, micro-fabricated slow wave circuits with high rf ohmic losses. This necessitates electron beams with not only very small transverse dimensions but also very high current density for adequate gain. Thus, the emerging family of mm-to-THz e-beam-driven vacuum electronics devices share many of the same plasma physics challenges that currently confront ``classic'' high power microwave (HPM) generators [1] including bright electron sources, intense beam transport, energetic electron interaction with surfaces and rf air breakdown at output windows. Multidimensional theoretical and computational models are especially important for understanding and addressing these challenges. The contemporary plasma physics issues, recent achievements, as well as the opportunities and outlook on THz and HPM will be addressed. [1] R.J. Barker, J.H. Booske, N.C. Luhmann, and G.S. Nusinovich, Modern Microwave and Millimeter-Wave Power Electronics (IEEE/Wiley, 2005).

  7. High frequency power distribution system

    NASA Technical Reports Server (NTRS)

    Patel, Mikund R.

    1986-01-01

    The objective of this project was to provide the technology of high frequency, high power transmission lines to the 100 kW power range at 20 kHz frequency. In addition to the necessary design studies, a 150 m long, 600 V, 60 A transmission line was built, tested and delivered for full vacuum tests. The configuration analysis on five alternative configurations resulted in the final selection of the three parallel Litz straps configuration, which gave a virtually concentric design in the electromagnetic sense. Low inductance, low EMI and flexibility in handling are the key features of this configuration. The final design was made after a parametric study to minimize the losses, weight and inductance. The construction of the cable was completed with no major difficulties. The R,L,C parameters measured on the cable agreed well with the calculated values. The corona tests on insulation samples showed a safety factor of 3.

  8. High power gas laser amplifier

    DOEpatents

    Leland, Wallace T.; Stratton, Thomas F.

    1981-01-01

    A high power output CO.sub.2 gas laser amplifier having a number of sections, each comprising a plurality of annular pumping chambers spaced around the circumference of a vacuum chamber containing a cold cathode, gridded electron gun. The electron beam from the electron gun ionizes the gas lasing medium in the sections. An input laser beam is split into a plurality of annular beams, each passing through the sections comprising one pumping chamber.

  9. Operational Characteristics of a 14-W 140-GHz Gyrotron for Dynamic Nuclear Polarization

    PubMed Central

    Joye, Colin D.; Griffin, Robert G.; Hornstein, Melissa K.; Hu, Kan-Nian; Kreischer, Kenneth E.; Rosay, Melanie; Shapiro, Michael A.; Sirigiri, Jagadishwar R.; Temkin, Richard J.; Woskov, Paul P.

    2006-01-01

    The operating characteristics of a 140-GHz 14-W long pulse gyrotron are presented. The device is being used in dynamic nuclear polarization enhanced nuclear magnetic resonance (DNP/NMR) spectroscopy experiments. The gyrotron yields 14 W peak power at 139.65 GHz from the TE(0,3) operating mode using a 12.3-kV 25-mA electron beam. Additionally, up to 12 W peak has been observed in the TE(2,3) mode at 136.90 GHz. A series of mode converters transform the TE(0,3) operating mode to the TE(1,1) mode. Experimental results are compared with nonlinear simulations and show reasonable agreement. The millimeter-wave output beam was imaged in a single shot using a pyroelectric camera. The mode patterns matched reasonably well to theory for both the TE(0,1) mode and the TE(1,1) mode. Repeatable mode patterns were obtained at intervals ranging from 0.8 s apart to 11 min apart at the output of the final mode converter. PMID:17431442

  10. Beam-wave interaction behavior of a 35 GHz metal PBG cavity gyrotron

    NASA Astrophysics Data System (ADS)

    Singh, Ashutosh; Jain, P. K.

    2014-09-01

    The RF behavior of a 35 GHz photonic band gap (PBG) cavity gyrotron operating in TE041-like mode has been presented to demonstrate its single mode operation capability. In this PBG cavity gyrotron, the conventional tapered cylindrical cavity is replaced by a metal PBG cavity as its RF interaction structure. The beam-wave interaction behavior has been explored using time dependent multimode nonlinear analysis as well as through 3D PIC simulation. Metal PBG cavity is treated here similar to that of a conventional cylindrical cavity for the desired mode confinement. The applied DC magnetic field profile has been considered uniform along the PBG cavity length both in analysis as well as in simulation. Electrons energy and phase along the interaction length of the PBG cavity facilitates bunching mechanism as well as energy transfer phenomena from the electron beam to the RF field. The RF output power for the TE041-like design mode as well as nearby competing modes have been estimated and found above to 100 kW in TE041-like mode with ˜15% efficiency. Results obtained from the analysis and the PIC simulation are found in agreement within 8% variation, and also it supports the single mode operation, as the PBG cavity does not switch into other parasitic modes in considerably large range of varying DC magnetic field, contrary to the conventional cylindrical cavity interaction structure.

  11. Collective scattering of gyrotron radiation for T/sub i/ measurements on EBT

    SciTech Connect

    Bighel, L.; White, T.L.

    1981-02-01

    For T/sub i/ measurements in EBT, 90/sup 0/ Thomson scattering of 110-GHz, cw gyrotron radiation is proposed. Currently measured steady-state plasma parameters are: n/sub e/ = 1.5 x 10/sup 12/ cm/sup -3/, T/sub e/ = 500 eV, and T/sub i/ = 100 eV, with f/sub ce/ = 28 GHz. The measured plasma background at 100 GHz due to synchrotron emission from the relativistic electron rings is 10/sup 3/ times stronger than the expected scattered signal for an input power level to the plasma P/sub i/ = 10 kW. Therefore, gyrotron output modulation and synchronous detection are required. The collectively scattered spectra will be observed with a heterodyne detection system containing eight i.f. channels; each channel consists of a filter, a video detector, and a lock-in amplifier (which synchronously detects the modulated scattered signal). Scattering from low level suprathermal fluctuations and the applicability of the diagnostic to tokamaks are also considered.

  12. Beam-wave interaction behavior of a 35 GHz metal PBG cavity gyrotron

    SciTech Connect

    Singh, Ashutosh; Jain, P. K.

    2014-09-15

    The RF behavior of a 35 GHz photonic band gap (PBG) cavity gyrotron operating in TE{sub 041}-like mode has been presented to demonstrate its single mode operation capability. In this PBG cavity gyrotron, the conventional tapered cylindrical cavity is replaced by a metal PBG cavity as its RF interaction structure. The beam-wave interaction behavior has been explored using time dependent multimode nonlinear analysis as well as through 3D PIC simulation. Metal PBG cavity is treated here similar to that of a conventional cylindrical cavity for the desired mode confinement. The applied DC magnetic field profile has been considered uniform along the PBG cavity length both in analysis as well as in simulation. Electrons energy and phase along the interaction length of the PBG cavity facilitates bunching mechanism as well as energy transfer phenomena from the electron beam to the RF field. The RF output power for the TE{sub 041}-like design mode as well as nearby competing modes have been estimated and found above to 100 kW in TE{sub 041}-like mode with ∼15% efficiency. Results obtained from the analysis and the PIC simulation are found in agreement within 8% variation, and also it supports the single mode operation, as the PBG cavity does not switch into other parasitic modes in considerably large range of varying DC magnetic field, contrary to the conventional cylindrical cavity interaction structure.

  13. High-Power Rf Load

    DOEpatents

    Tantawi, Sami G.; Vlieks, Arnold E.

    1998-09-01

    A compact high-power RF load comprises a series of very low Q resonators, or chokes [16], in a circular waveguide [10]. The sequence of chokes absorb the RF power gradually in a short distance while keeping the bandwidth relatively wide. A polarizer [12] at the input end of the load is provided to convert incoming TE.sub.10 mode signals to circularly polarized TE.sub.11 mode signals. Because the load operates in the circularly polarized mode, the energy is uniformly and efficiently absorbed and the load is more compact than a rectangular load. Using these techniques, a load having a bandwidth of 500 MHz can be produced with an average power dissipation level of 1.5 kW at X-band, and a peak power dissipation of 100 MW. The load can be made from common lossy materials, such as stainless steel, and is less than 15 cm in length. These techniques can also produce loads for use as an alternative to ordinary waveguide loads in small and medium RF accelerators, in radar systems, and in other microwave applications. The design is easily scalable to other RF frequencies and adaptable to the use of other lossy materials.

  14. High Power Free Electron Lasers

    SciTech Connect

    George Neil

    2004-04-12

    FEL Oscillators have been around since 1977 providing not only a test bed for the physics of Free Electron Lasers and electron/photon interactions but as a workhorse of scientific research. The characteristics that have driven the development of these sources are the desire for high peak and average power, high pulse energies, wavelength tunability, timing flexibility, and wavelengths that are unavailable from more conventional laser sources. User programs have been performed using such sources encompassing medicine, biology, solid state research, atomic and molecular physics, effects of non-linear fields, surface science, polymer science, pulsed laser vapor deposition, to name just a few. Recently the incorporation of energy recovery systems has permitted extension of the average power capabilities to the kW level and beyond. Development of substantially higher power systems with applications in defense and security is believed feasible with modest R&D efforts applied to a few technology areas. This paper will discuss at a summary level the physics of such devices, survey existing and planned facilities, and touch on the applications that have driven the development of these popular light sources.

  15. High average power solid state laser power conditioning system

    SciTech Connect

    Steinkraus, R.F.

    1987-03-03

    The power conditioning system for the High Average Power Laser program at Lawrence Livermore National Laboratory (LLNL) is described. The system has been operational for two years. It is high voltage, high power, fault protected, and solid state. The power conditioning system drives flashlamps that pump solid state lasers. Flashlamps are driven by silicon control rectifier (SCR) switched, resonant charged, (LC) discharge pulse forming networks (PFNs). The system uses fiber optics for control and diagnostics. Energy and thermal diagnostics are monitored by computers.

  16. High voltage DC power supply

    DOEpatents

    Droege, T.F.

    1989-12-19

    A high voltage DC power supply having a first series resistor at the output for limiting current in the event of a short-circuited output, a second series resistor for sensing the magnitude of output current, and a voltage divider circuit for providing a source of feedback voltage for use in voltage regulation is disclosed. The voltage divider circuit is coupled to the second series resistor so as to compensate the feedback voltage for a voltage drop across the first series resistor. The power supply also includes a pulse-width modulated control circuit, having dual clock signals, which is responsive to both the feedback voltage and a command voltage, and also includes voltage and current measuring circuits responsive to the feedback voltage and the voltage developed across the second series resistor respectively. 7 figs.

  17. High voltage DC power supply

    DOEpatents

    Droege, Thomas F.

    1989-01-01

    A high voltage DC power supply having a first series resistor at the output for limiting current in the event of a short-circuited output, a second series resistor for sensing the magnitude of output current, and a voltage divider circuit for providing a source of feedback voltage for use in voltage regulation is disclosed. The voltage divider circuit is coupled to the second series resistor so as to compensate the feedback voltage for a voltage drop across the first series resistor. The power supply also includes a pulse-width modulated control circuit, having dual clock signals, which is responsive to both the feedback voltage and a command voltage, and also includes voltage and current measuring circuits responsive to the feedback voltage and the voltage developed across the second series resistor respectively.

  18. High power cladding light strippers

    NASA Astrophysics Data System (ADS)

    Wetter, Alexandre; Faucher, Mathieu; Sévigny, Benoit

    2008-02-01

    The ability to strip cladding light from double clad fiber (DCF) fibers is required for many different reasons, one example is to strip unwanted cladding light in fiber lasers and amplifiers. When removing residual pump light for example, this light is characterized by a large numerical aperture distribution and can reach power levels into the hundreds of watts. By locally changing the numerical aperture (N.A.) of the light to be stripped, it is possible to achieve significant attenuation even for the low N.A. rays such as escaped core modes in the same device. In order to test the power-handling capability of this device, one hundred watts of pump and signal light is launched from a tapered fusedbundle (TFB) 6+1x1 combiner into a high power-cladding stripper. In this case, the fiber used in the cladding stripper and the output fiber of the TFB was a 20/400 0.06/0.46 N.A. double clad fiber. Attenuation of over 20dB in the cladding was measured without signal loss. By spreading out the heat load generated by the unwanted light that is stripped, the package remained safely below the maximum operating temperature internally and externally. This is achieved by uniformly stripping the energy along the length of the fiber within the stripper. Different adhesive and heat sinking techniques are used to achieve this uniform removal of the light. This suggests that these cladding strippers can be used to strip hundreds of watts of light in high power fiber lasers and amplifiers.

  19. Study of hydrogen ECR plasma in a simple mirror magnetic trap heated by 75 GHz pulsed gyrotron radiation

    NASA Astrophysics Data System (ADS)

    Skalyga, V. A.; Izotov, I. V.; Sidorov, A. V.; Golubev, S. V.; Razin, S. V.

    2017-03-01

    Plasma of electron cyclotron resonance (ECR) discharge sustained by millimeter wave radiation is widely used for production of ion beams of different kind. The main trend in ECR ion sources development nowadays is an increase of frequency and power of microwave heating. The most advanced systems use gyrotrons in 24-60 GHz frequency range. In previous studies at IAP RAS it was demonstrated that ECR source SMIS 37 (Simple Mirror Ion Source) with 37.5 GHz heating operating in quasigasdynamic regime of plasma confinement is able to produce proton and deuteron beams with ion current density about 700 mA/cm2. As the next step of these investigations plasma properties of the discharge sustained by 75 GHz radiation have been studied. Plasma density and electron temperature were determined using spectroscopic and Langmuir probe techniques. It was demonstrated that plasma density could reach values close to 1014 cm-3 and that is of great interest for further development of high current ion sources for various applications.

  20. High power, high beam quality regenerative amplifier

    DOEpatents

    Hackel, Lloyd A.; Dane, Clifford B.

    1993-01-01

    A regenerative laser amplifier system generates high peak power and high energy per pulse output beams enabling generation of X-rays used in X-ray lithography for manufacturing integrated circuits. The laser amplifier includes a ring shaped optical path with a limited number of components including a polarizer, a passive 90 degree phase rotator, a plurality of mirrors, a relay telescope, and a gain medium, the components being placed close to the image plane of the relay telescope to reduce diffraction or phase perturbations in order to limit high peak intensity spiking. In the ring, the beam makes two passes through the gain medium for each transit of the optical path to increase the amplifier gain to loss ratio. A beam input into the ring makes two passes around the ring, is diverted into an SBS phase conjugator and proceeds out of the SBS phase conjugator back through the ring in an equal but opposite direction for two passes, further reducing phase perturbations. A master oscillator inputs the beam through an isolation cell (Faraday or Pockels) which transmits the beam into the ring without polarization rotation. The isolation cell rotates polarization only in beams proceeding out of the ring to direct the beams out of the amplifier. The diffraction limited quality of the input beam is preserved in the amplifier so that a high power output beam having nearly the same diffraction limited quality is produced.

  1. High power, high beam quality regenerative amplifier

    DOEpatents

    Hackel, L.A.; Dane, C.B.

    1993-08-24

    A regenerative laser amplifier system generates high peak power and high energy per pulse output beams enabling generation of X-rays used in X-ray lithography for manufacturing integrated circuits. The laser amplifier includes a ring shaped optical path with a limited number of components including a polarizer, a passive 90 degree phase rotator, a plurality of mirrors, a relay telescope, and a gain medium, the components being placed close to the image plane of the relay telescope to reduce diffraction or phase perturbations in order to limit high peak intensity spiking. In the ring, the beam makes two passes through the gain medium for each transit of the optical path to increase the amplifier gain to loss ratio. A beam input into the ring makes two passes around the ring, is diverted into an SBS phase conjugator and proceeds out of the SBS phase conjugator back through the ring in an equal but opposite direction for two passes, further reducing phase perturbations. A master oscillator inputs the beam through an isolation cell (Faraday or Pockels) which transmits the beam into the ring without polarization rotation. The isolation cell rotates polarization only in beams proceeding out of the ring to direct the beams out of the amplifier. The diffraction limited quality of the input beam is preserved in the amplifier so that a high power output beam having nearly the same diffraction limited quality is produced.

  2. Improved Programmable High-Voltage Power Supply

    NASA Technical Reports Server (NTRS)

    Castell, Karen; Rutberg, Arthur

    1994-01-01

    Improved dc-to-dc converter functions as programmable high-voltage power supply with low-power-dissipation voltage regulator on high-voltage side. Design of power supply overcomes deficiencies of older designs. Voltage regulation with low power dissipation provided on high-voltage side.

  3. High Power Helicon Propulsion Experiments

    NASA Astrophysics Data System (ADS)

    Ziemba, Timothy; Slough, John; Winglee, Robert

    2005-02-01

    The High Power Helicon (HPH) under development at the University of Washington may have an attractive application as an electrode-less in-space thruster. Output plasma characteristics show that plasma is created in and near the helicon coil and is accelerated by a helicon induced axial potential downstream away from the HPH. The bulk acceleration of the plasma is believed to be due to a coupling of the plasma electrons to the helicon field, which in turn transfers energy to the ions via an ambipolar electric field. Downstream electric potentials of greater than 150 volts having been measured with the amplitude of the electric field being dependent on experimentally controlled parameters. Time of flight measurements of the plasma transiting downstream show specific impulses (Isp) near 2000 seconds for Argon with calculated thrust levels near 1 Newton for input powers to the plasma in the tens of kilowatts. The system is capable of using different neutral gases as propellants with nitrogen and hydrogen having baseline Isp levels of 3000 and 5000 seconds respectfully giving some variability in Isp and thrust by the choice of propellants. Current work focuses on the determination and optimization of the system efficiencies and increasing output power levels.

  4. High-power pulsed lasers

    SciTech Connect

    Holzrichter, J.F.

    1980-04-02

    The ideas that led to the successful construction and operation of large multibeam fusion lasers at the Lawrence Livermore Laboratory are reviewed. These lasers are based on the use of Nd:glass laser materials. However, most of the concepts are applicable to any laser being designed for fusion experimentation. This report is a summary of lectures given by the author at the 20th Scottish University Summer School in Physics, on Laser Plasma Interaction. This report includes basic concepts of the laser plasma system, a discussion of lasers that are useful for short-pulse, high-power operation, laser design constraints, optical diagnostics, and system organization.

  5. The Electron-Optical System of a Gyrotron with an Operating Frequency of 263 GHz for Spectroscopic Research

    NASA Astrophysics Data System (ADS)

    Kuftin, A. N.; Manuilov, V. N.

    2016-07-01

    We describe specific features of modeling numerically the operation of magnetron-injection guns, which form high-quality helical electron beams in gyrotrons operated in the short-wave part of the millimeter-wave band (at a wavelength of 1 mm). As an example, we consider the gun of a gyrotron having an operating frequency of 263 GHz designed for spectroscopic research. It is shown that there are good reasons to perform calculations and optimization of the magnetroninjection un in two steps. At the first step, a simplest two-dimensional model can be used, which allows only for the influence of the field of the electrodes and the intrinsic space charge of the beam on the beam parameters. At the second, final stage one should allow for such factors as roughness of the emitting surface and thermal velocities of electrons. The electron distribution function in oscillatory velocities and the coefficient of electron reflection from the magnetic mirror should be calculated. It is demonstrated that the magnetron-injection gun, which is optimized by the method presented, is sufficiently universal and can be operated both at the first and second cyclotron-frequency harmonics. This opens up the possibility of developing gyrotrons for spectroscopy applications at frequencies of 263 and 526 GHz, respectively, which are required for biological and medical research.

  6. High frequency, high power capacitor development

    NASA Astrophysics Data System (ADS)

    White, C. W.; Hoffman, P. S.

    1983-03-01

    A program to develop a special high energy density, high power transfer capacitor to operate at frequency of 40 kHz, 600 V rms at 125 A rms plus 600 V dc bias for space operation. The program included material evaluation and selection, a capacitor design was prepared, a thermal analysis performed on the design. Fifty capacitors were manufactured for testing at 10 kHz and 40 kHz for 50 hours at Industrial Electric Heating Co. of Columbus, Ohio. The vacuum endurance test used on environmental chamber and temperature plate furnished by Maxwell. The capacitors were energized with a special power conditioning apparatus developed by Industrial Electric Heating Co. Temperature conditions of the capacitors were monitored by IEHCo test equipment. Successful completion of the vacuum endurance test series confirmed achievement of the main goal of producing a capacitor or reliable operation at high frequency in an environment normally not hospitable to electrical and electronic components. The capacitor developed compared to a typical commercial capacitor at the 40 kHz level represents a decrease in size and weight by a factor of seven.

  7. High frequency, high power capacitor development

    NASA Technical Reports Server (NTRS)

    White, C. W.; Hoffman, P. S.

    1983-01-01

    A program to develop a special high energy density, high power transfer capacitor to operate at frequency of 40 kHz, 600 V rms at 125 A rms plus 600 V dc bias for space operation. The program included material evaluation and selection, a capacitor design was prepared, a thermal analysis performed on the design. Fifty capacitors were manufactured for testing at 10 kHz and 40 kHz for 50 hours at Industrial Electric Heating Co. of Columbus, Ohio. The vacuum endurance test used on environmental chamber and temperature plate furnished by Maxwell. The capacitors were energized with a special power conditioning apparatus developed by Industrial Electric Heating Co. Temperature conditions of the capacitors were monitored by IEHCo test equipment. Successful completion of the vacuum endurance test series confirmed achievement of the main goal of producing a capacitor or reliable operation at high frequency in an environment normally not hospitable to electrical and electronic components. The capacitor developed compared to a typical commercial capacitor at the 40 kHz level represents a decrease in size and weight by a factor of seven.

  8. High Power, High Voltage Electric Power System for Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Aintablian, Harry; Kirkham, Harold; Timmerman, Paul

    2006-01-01

    This paper provides an overview of the 30 KW, 600 V MRHE power subsystem. Descriptions of the power subsystem elements, the mode of power transfer, and power and mass estimates are presented. A direct-drive architecture for electric propulsion is considered which reduces mass and complexity. Solar arrays with concentrators are used for increased efficiency. Finally, the challenges due to the environment of a hypothetical lunar mission as well as due to the advanced technologies considered are outlined.

  9. Development of High Power Electron Beam Measuring and Analyzing System for Microwave Vacuum Electron Devices

    NASA Astrophysics Data System (ADS)

    Ruan, C. J.; Wu, X. L.; Li, Q. S.; Li, C. S.

    The measurement and analysis of high power electron beam during its formation and transmission are the basic scientific problems and key techniques for the development of high performance microwave vacuum electron devices, which are widely used in the fields of military weapon, microwave system and scientific instruments. In this paper, the dynamic parameters measurement and analysis system being built in Institute of Electronics, Chinese Academy of Sciences (IECAS) recently are introduced. The instrument are designed to determine the cross-section, the current density, and the energy resolution of the high power electron beam during its formation and transmission process, which are available both for the electron gun and the electron optics system respectively. Then the three dimension trajectory images of the electron beam can be rebuilt and display with computer controlled data acquisition and processing system easily. Thus, much more complicated structures are considered and solved completely to achieve its detection and analysis, such as big chamber with 10-6 Pa high vacuum system, the controlled detector movement system in axis direction with distance of 600 mm inside the vacuum chamber, the electron beam energy analysis system with high resolution of 0.5%, and the electron beam cross-section and density detector using the YAG: Ce crystal and CCD imaging system et al. At present, the key parts of the instrument have been finished, the cross-section experiment of the electron beam have been performed successfully. Hereafter, the instrument will be used to measure and analyze the electron beam with the electron gun and electron optics system for the single beam and multiple beam klystron, gyrotron, sheet beam device, and traveling wave tube etc. thoroughly.

  10. Application of high power lasers to space power and propulsion

    NASA Technical Reports Server (NTRS)

    Nored, D. L.

    1976-01-01

    The transmission of laser power over long distances for applications such as direct conversion to propulsive thrust or electrical power is considered. Factors discussed include: problems inherent in transmitting, propagating, and receiving the laser beam over long ranges; high efficiency, closed-cycle, continuous wave operation; advancement of CO2 laser technology; and compatibility with photovoltaic power conversion devices.

  11. High Power Orbit Transfer Vehicle

    DTIC Science & Technology

    2003-07-01

    PowerSail’s design . The power subsystem includes the solar array design and cell selection, load, and batteries to store the power captured by the...the complete mission. The mass of the solar array guides the design of the propulsion system and batteries needed on PowerSail. For example, the...to the size of the batteries . For this reason, minimizing the mass of the solar array is designated a weight of 2/20. Minimizing the total mass is

  12. Measurements of the Ech Power and of the Transmission Line Losses on Diii-D

    NASA Astrophysics Data System (ADS)

    Cengher, M.; Lohr, J.; Gorelov, I. A.; Grosnickle, W. H.; Ponce, D.; Johnson, P.

    2009-04-01

    The measurement of the power injected by the electron cyclotron heating (ECH) system in the DIII-D tokamak is a critical requirement for analysis of experiments, for tuning the gyrotrons for maximum power and efficiency, for tracking long-term operational trends and for providing a warning of problems with the system. The ECH system at General Atomics consists of six 110 GHz, 1 MW class gyrotrons. The rf power generated by each gyrotron is determined from calorimetry, using the relevant temperature and flow measurements from the cooling circuits of cavity, matching optics unit and dummy loads. The rf pulse length and time dependence are measured using an rf monitor at the first miter bend in the transmission line. The direct measurement of the efficiencies of four of the transmission lines was performed using a high power, small dummy load (SDL) placed alternately in 2 positions of each DIII-D waveguide line, at accessible points close the beginning and the end of each line. Total losses in the transmission lines range from 21.2% to 30.7%. Experimental results are compared to theoretical predictions of the performance of the components and waveguide lines.

  13. High power laser apparatus and system

    NASA Technical Reports Server (NTRS)

    Evans, J. C., Jr.; Brandhorst, H. W., Jr. (Inventor)

    1975-01-01

    A high-power, continuous-wave laser was designed for use in power transmission and energy-collecting systems, and for producing incoherent light for pumping a laser material. The laser has a high repetitive pulsing rate per unit time, resulting in a high-power density beam. The laser is composed of xenon flash tubes powered by fast-charging capacitors flashed in succession by a high-speed motor connected to an automobile-type distributor.

  14. Optics assembly for high power laser tools

    DOEpatents

    Fraze, Jason D.; Faircloth, Brian O.; Zediker, Mark S.

    2016-06-07

    There is provided a high power laser rotational optical assembly for use with, or in high power laser tools for performing high power laser operations. In particular, the optical assembly finds applications in performing high power laser operations on, and in, remote and difficult to access locations. The optical assembly has rotational seals and bearing configurations to avoid contamination of the laser beam path and optics.

  15. Self-consistent non-stationary theory of the gyrotron

    NASA Astrophysics Data System (ADS)

    Dumbrajs, Olgierd; Nusinovich, Gregory S.

    2016-08-01

    For a long time, the gyrotron theory was developed assuming that the transit time of electrons through the interaction space is much shorter than the cavity fill time. Correspondingly, it was assumed that during this transit time, the amplitude of microwave oscillations remains constant. A recent interest to such additional effects as the after-cavity interaction between electrons and the outgoing wave in the output waveguide had stimulated some studies of the beam-wave interaction processes over much longer distances than a regular part of the waveguide which serves as a cavity in gyrotrons. Correspondingly, it turned out that the gyrotron theory free from the assumption about constant amplitude of microwave oscillations during the electron transit time should be developed. The present paper contains some results obtained in the framework of such theory. The main attention is paid to modification of the boundary between the regions of oscillations with constant amplitude and automodulation in the plane of normalized parameters characterizing the external magnetic field and the beam current. It is shown that the theory free from the assumption about the frozen wave amplitude during the electron transit time predicts some widening of the region of automodulation.

  16. Deevelopment of a 1.5 MW, 140 GHz coaxial gyrotron

    SciTech Connect

    Piosczyk, B.; Dammertz, G.; Iatrou, C.T.; Moebius, A.; Zhang, S.C.

    1995-12-31

    A 1.5 MW, 140 GHz, TE{sub 28,16}-coaxial gyrotron with an inverse MIG is under development. Preliminary rf-tests using an axial rf output and a simple cavity with a constant diameter and non-corrugated inner rod gave an rf output power of 1 MW with an efficiency of 23% at 140 GHz (TE{sub 28,16}) and 1.3 MW with an efficiency of 29% at 133 GHz (TE{sup 27,15}). No indications of beam instabilities in the beam tunnel between the IMIG gun and the cavity have been observed. Experiments with an improved cavity and the design of the tube with a radial dual Gaussian beam output and a depressed collector are underway.

  17. 1 megawatt, 100 GHz gyrotron study. Final report, March 21-September 1, 1983

    SciTech Connect

    Dionne, N.J.; Mallavarpu, R.; Palevsky, A.

    1983-11-21

    This report provides the results of a design study on a gyrotron device employing a new type of hollow gyrobeam formation system and having a capability for delivering megawatt CW power at 100 GHz to an ECRH-heated, magnetically-confined plasma. The conceptual basis for the beam formation system is the tilt-angle gun (TAG) in which a conically-shaped electron beam is formed in a magnetically-shielded region and is then injected into the stray-field region of the main magnetic focusing system. Because fluid coolants can be accessed through the central pole of the TAG-type gun, rf interaction can be contemplated with cavity configurations not practical with the conventional MIG-type gyrobeam formation systems.

  18. Pulse-Periodic Regimes of Kinetic Instabilities in the Non-Equilibrium Plasma of an Electron Cyclotron Resonance Discharge Maintained by Continuous-Wave Radiation of a 24 GHz Gyrotron

    NASA Astrophysics Data System (ADS)

    Mansfeld, D. A.; Viktorov, M. E.; Vodopyanov, A. V.

    2017-01-01

    We have experimentally discovered an instability, which manifests itself as precipitations of hot electrons occurring synchronously with generation of bursts of electromagnetic radiation, in the plasma of an electron cyclotron resonance discharge maintained by a high-power, continuous-wave radiation of a 24 GHz gyrotron, for the first time. The observed instability has the kinetic nature and is determined by the formation of the non-equilibrium velocity distribution of hot particles. Two possible explanations are proposed for the mechanism of wave excitation in a two-component plasma with a stationary source of non-equilibrium particles. The results of the studies performed are of interest for modeling of the dynamics of magnetospheric cyclotron masers.

  19. ULTRA HIGH POWER TRANSMISSION LINE TECHNIQUES

    DTIC Science & Technology

    The ultra-high power transmission line techniques including both failure mechanisms and component design are discussed. Failures resulting from...a waveguide. In view of the many advantages of the low loss mode in circular waveguide for ultra-high power levels, a mode transducer and a two...percent of the peak power of a standard rectangular wave guide. Water cooling is provided for high average power operation. Analysis of mode sup pression

  20. Simplified High-Power Inverter

    NASA Technical Reports Server (NTRS)

    Edwards, D. B.; Rippel, W. E.

    1984-01-01

    Solid-state inverter simplified by use of single gate-turnoff device (GTO) to commutate multiple silicon controlled rectifiers (SCR's). By eliminating conventional commutation circuitry, GTO reduces cost, size and weight. GTO commutation applicable to inverters of greater than 1-kilowatt capacity. Applications include emergency power, load leveling, drives for traction and stationary polyphase motors, and photovoltaic-power conditioning.

  1. Research on a 170 GHz, 2 MW coaxial cavity gyrotron with inner-outer corrugation

    SciTech Connect

    Hou, Shenyong; Yu, Sheng; Li, Hongfu

    2015-03-15

    In this paper, a coaxial cavity gyrotron with inner-outer corrugation is researched. The electron kineto-equations and the first order transmission line equations of the gyrotron are derived from Lorentz force equation and the transmission line theory, respectively. And then, a 2 MW, 170 GHz coaxial cavity gyrotron with inner-outer corrugation is designed. By means of numerical calculation, the beam-wave interaction of the coaxial cavity gyrotron with inner-outer corrugation is investigated. Results show that the efficient and the outpower of the gyrotron are 42.3% and 2.38 MW, respectively.

  2. Rotary high power transfer apparatus

    NASA Technical Reports Server (NTRS)

    Jacobson, Peter E. (Inventor); Porter, Ryan S. (Inventor)

    1987-01-01

    An apparatus for reducing terminal-to-terminal circuit resistance and enhancing heat transfer in a rotary power transfer apparatus of the roll ring type comprising a connecting thimble for attaching an external power cable to a cone shaped terminal which is attached to a tab integral to an outer ring. An inner ring having a spherical recess mates with the spherical end of a tie connector. A cone shaped terminal is fitted to a second connecting thimble for attaching a second external power cable.

  3. High power RF solid state power amplifier system

    NASA Technical Reports Server (NTRS)

    Sims, III, William Herbert (Inventor); Chavers, Donald Gregory (Inventor); Richeson, James J. (Inventor)

    2011-01-01

    A high power, high frequency, solid state power amplifier system includes a plurality of input multiple port splitters for receiving a high-frequency input and for dividing the input into a plurality of outputs and a plurality of solid state amplifier units. Each amplifier unit includes a plurality of amplifiers, and each amplifier is individually connected to one of the outputs of multiport splitters and produces a corresponding amplified output. A plurality of multiport combiners combine the amplified outputs of the amplifiers of each of the amplifier units to a combined output. Automatic level control protection circuitry protects the amplifiers and maintains a substantial constant amplifier power output.

  4. High voltage-high power components for large space power distribution systems

    NASA Technical Reports Server (NTRS)

    Renz, D. D.

    1984-01-01

    Space power components including a family of bipolar power switching transistors, fast switching power diodes, heat pipe cooled high frequency transformers and inductors, high frequency conduction cooled transformers, high power-high frequency capacitors, remote power controllers and rotary power transfer devices were developed. Many of these components such as the power switching transistors, power diodes and the high frequency capacitor are commercially available. All the other components were developed to the prototype level. The dc/dc series resonant converters were built to the 25 kW level.

  5. Performance Of The DIII-D ECH High Power Transmission Lines And Launching Systems

    NASA Astrophysics Data System (ADS)

    Cengher, Mirela; Lohr, J.; Gorelov, Y.; Torrezan, A.; Ponce, D.; Moeller, C.; Ellis, R. A.; Kolemen, E.

    2015-11-01

    The Electron Cyclotron Heating (ECH) transmission system on the DIII D tokamak consists of corrugated coaxial 31.75 mm waveguide transmission lines and steerable launching mirrors. Total power injected into plasma can reach up to 3.5 MW, with pulse length up to 5 seconds. The ECH power injected to the tokamak from each gyrotron is measured on a shot-to-shot basis and shows individual average injected powers from a gyrotron into the plasma between 540 and 700 kW. The transmission coefficient including the waveguide line and the MOU is between -1.04 dB and -1.43 dB. The maximum ECH energy injected into DIII-D is 16.6 MJ. The HE11 mode content is over 85 % for all the lines. The four dual waveguide launchers have increased poloidal scanning speed, and can steer the RF beams 40 degrees poloidally in 200 ms, with real-time poloidal motion control by the plasma control system. A new method of in-situ calibration of the mirror angle was used in conjunction with the upgrading of the encoders and motors for the launchers. Work supported by US DOE under DE-FC02-04ER54698 and DE-AC02-09CH11466.

  6. Plasma density in discharge sustained in inhomogeneous gas flow by high-power radiation in the terahertz frequency range

    NASA Astrophysics Data System (ADS)

    Vodopyanov, A. V.; Glyavin, M. Yu.; Golubev, S. V.; Luchinin, A. G.; Razin, S. V.; Safronova, M. I.; Sidorov, A. V.; Fokin, A. P.

    2017-02-01

    We have measured the density of plasma (electron concentration) in discharge maintained in inhomogeneous argon flow under the action of high-power pulsed radiation of gyrotron (frequency, 0.67 THz; power 40 kW; pulse duration, 20-30 μs) in a range of background gas pressures in the discharge chamber from 10-3 to 300 Torr. The electron concentration at low pressures (10-3 to 7 Torr) was determined using Starkeffect induced broadening of the Hα atomic emission line (656.3 nm) of hydrogen present in discharge as a small impurity in residual gases. The maximum observed Stark broadening of the Hα line corresponded to a plasma density on the order of 2 × 1016 cm-3, which exceeded the critical value for the given frequency of radiation sustaining the discharge. At background pressures above 7 Torr, the plasma density was estimated from analysis of the spatiotemporal patterns and waveforms of discharge glow in the visible spectral range. These estimations gave electron concentrations on the level of (1-2) × 1015 cm-3.

  7. High Power Electromagnetic (HPEM) Threat Analysis

    DTIC Science & Technology

    2008-04-01

    EMERGING THREATS ...... 13 HEMP coupling characteristics ............................................................................... 13 High power...microwave (HPEM) coupling characteristics ..................................... 16 High power microwave: local protective measures...ncy (W1 Figure 22. Various bands summarizing EM threats. HEMP coupling characteristics In the early 1960’s, researchers proposed a theory that a high

  8. High average power induction accelerators

    SciTech Connect

    Swingle, J.C.

    1985-10-01

    The induction accelerator is discussed with respect to general background and concept, beam transport, scaling, pulse power technology, and the electron beam injector. A discussion of the factors which affect the scaling of the intensity of the beam is given. Limiting factors include collective forces in the beam, virtual cathode formation, surroundings, and beam breakup instability. 24 refs., 11 figs. (WRF)

  9. Operation of high power converters in parallel

    NASA Technical Reports Server (NTRS)

    Decker, D. K.; Inouye, L. Y.

    1993-01-01

    High power converters that are used in space power subsystems are limited in power handling capability due to component and thermal limitations. For applications, such as Space Station Freedom, where multi-kilowatts of power must be delivered to user loads, parallel operation of converters becomes an attractive option when considering overall power subsystem topologies. TRW developed three different unequal power sharing approaches for parallel operation of converters. These approaches, known as droop, master-slave, and proportional adjustment, are discussed and test results are presented.

  10. An explosively driven high-power microwave pulsed power system

    NASA Astrophysics Data System (ADS)

    Elsayed, M. A.; Neuber, A. A.; Dickens, J. C.; Walter, J. W.; Kristiansen, M.; Altgilbers, L. L.

    2012-02-01

    The increased popularity of high power microwave systems and the various sources to drive them is the motivation behind the work to be presented. A stand-alone, self-contained explosively driven high power microwave pulsed power system has been designed, built, and tested at Texas Tech University's Center for Pulsed Power and Power Electronics. The system integrates four different sub-units that are composed of a battery driven prime power source utilizing capacitive energy storage, a dual stage helical flux compression generator as the main energy amplification device, an integrated power conditioning system with inductive energy storage including a fast opening electro-explosive switch, and a triode reflex geometry virtual cathode oscillator as the microwave radiating source. This system has displayed a measured electrical source power level of over 5 GW and peak radiated microwaves of about 200 MW. It is contained within a 15 cm diameter housing and measures 2 m in length, giving a housing volume of slightly less than 39 l. The system and its sub-components have been extensively studied, both as integrated and individual units, to further expand on components behavior and operation physics. This report will serve as a detailed design overview of each of the four subcomponents and provide detailed analysis of the overall system performance and benchmarks.

  11. A High Power Frequency Doubled Fiber Laser

    NASA Technical Reports Server (NTRS)

    Thompson, Robert J.; Tu, Meirong; Aveline, Dave; Lundblad, Nathan; Maleki, Lute

    2003-01-01

    This viewgraph presentation reports on the development of a high power 780 nm laser suitable for space applications of laser cooling. A possible solution is to use frequency doubling of high power 1560 nm telecom lasers. The presentation shows a diagram of the frequency conversion, and a graph of the second harmonic generation in one crystal, and the use of the cascading crystals. Graphs show the second harmonic power as a function of distance between crystals, second harmonic power vs. pump power, tunability of laser systems.

  12. Magnetron injection gun for a broadband gyrotron backward-wave oscillator

    SciTech Connect

    Yuan, C. P.; Chang, T. H.; Chen, N. C.; Yeh, Y. S.

    2009-07-15

    The magnetron injection gun is capable of generating relativistic electron beam with high velocity ratio and low velocity spread for a gyrotron backward-wave oscillator (gyro-BWO). However, the velocity ratio ({alpha}) varies drastically against both the magnetic field and the beam voltage, which significantly limits the tuning bandwidth of a gyro-BWO. This study remedies this drawback by adding a variable trim field to adjust the magnetic compression ratio when changing the operating conditions. Theoretical results obtained by employing a two-dimensional electron gun code (EGUN) demonstrate a constant velocity ratio of 1.5 with a low axial velocity spread of 6% from 3.4-4.8 Tesla. These results are compared with a three-dimensional particle-tracing code (computer simulation technology, CST). The underlying physics for constant {alpha} will be discussed in depth.

  13. Computer simulation of phase locking multi-cavity relativistic gyrotrons

    NASA Astrophysics Data System (ADS)

    Lin, A. T.; Yang, Z. H.; Lin, Chih-Chien

    1989-07-01

    A particle-in-cell model has been employed to investigate the phase-locking phenomenon of multi-cavity relativistic gyrotron oscillators. Simulation results show that a prebunched beam causes the output wave to overshoot, which in turn prolongs the time for establishing phase locking. The beam axial velocity spread is observed to reduce the locking bandwidth. The phenomenon of priming or injection seeding is simulated. The phase locked time depends on the growth rate of the oscillator and the amount of inject frequency deviation from the locking boundary.

  14. High Density Power Converters for Photovoltaic Power Management

    NASA Astrophysics Data System (ADS)

    Sangwan, Rahul

    In typical photovoltaic systems, PV cells are connected in series to achieve high output voltages, which decreases conduction losses and helps the downstream power electronics operate at higher efficiencies. A series connection means that the current through the string is limited by the worst case cell, substring, or module, which can result in suboptimal operation of the rest of the string. Given how even small shading can have a large effect on performance, there has been growing interest in the use of distributed power management architectures to mitigate losses from variation in PV systems. In particular, partial power processing converters have gained traction as a means to improve the performance of PV arrays with small, distributed converters that configure in parallel with PV cells. These converters can use low voltage components, only process a fraction of the total power allowing them to achieve higher efficiencies and power density and also have higher reliability. This work details the design and operation of a partial power processing converter implemented as a Resonant Switched Capacitor (ReSC) converter. An integrated circuit (IC) is designed in 0.18 mum CMOS process. Operation at high frequencies (20-50 MHz) allows high levels of integration with air core inductors directly attached to the die through a gold bump, solder reflow process. Test results for the IC are presented with power density and efficiency metrics. The IC is then used as a partial power processing converter to implement equalization with a specially constructed PV panel. The converter is shown to mitigate power loss due to mismatch.

  15. Test facilities for high power electric propulsion

    NASA Technical Reports Server (NTRS)

    Sovey, James S.; Vetrone, Robert H.; Grisnik, Stanley P.; Myers, Roger M.; Parkes, James E.

    1991-01-01

    Electric propulsion has applications for orbit raising, maneuvering of large space systems, and interplanetary missions. These missions involve propulsion power levels from tenths to tens of megawatts, depending upon the application. General facility requirements for testing high power electric propulsion at the component and thrust systems level are defined. The characteristics and pumping capabilities of many large vacuum chambers in the United States are reviewed and compared with the requirements for high power electric propulsion testing.

  16. High Power Josephson Effect Sources

    DTIC Science & Technology

    1994-09-01

    large spacing was nsed ,along with cooling water, os Iao a d$ to ensure the substrate temperature did not rise durn theCox flow Osiltr.adsaljnto ry~ h m...Here two arra’s. a 400 s.m Josephson effect detector and an SIS mixer are "I integrated on a single silicon substrate . One array func- tions as the...junction’s shunt resistor, on array’s output power and detector’s current- voltage characteristics are also discussed. I. INTRODUCTION - U Phb &z locked

  17. High power laser perforating tools and systems

    SciTech Connect

    Zediker, Mark S; Rinzler, Charles C; Faircloth, Brian O; Koblick, Yeshaya; Moxley, Joel F

    2014-04-22

    ystems devices and methods for the transmission of 1 kW or more of laser energy deep into the earth and for the suppression of associated nonlinear phenomena. Systems, devices and methods for the laser perforation of a borehole in the earth. These systems can deliver high power laser energy down a deep borehole, while maintaining the high power to perforate such boreholes.

  18. Very High Power THz Radiation Sources.

    PubMed

    Carr, G L; Martin, M C; McKinney, W R; Jordan, K; Neil, G R; Williams, G P

    2003-06-01

    We report the production of high power (20watts average, ∼ 1 Megawatt peak) broadbandTHz light based on coherent emission fromrelativistic electrons. Such sources areideal for imaging, for high power damagestudies and for studies of non-linearphenomena in this spectral range. Wedescribe the source, presenting theoreticalcalculations and their experimentalverification. For clarity we compare thissource with one based on ultrafast lasertechniques.

  19. Photoconductive switching for high power microwave generation

    SciTech Connect

    Pocha, M.D.; Hofer, W.W.

    1990-10-01

    Photoconductive switching is a technology that is being increasingly applied to generation of high power microwaves. Two primary semiconductors used for these devices are silicon and gallium arsenide. Diamond is a promising future candidate material. This paper discusses the important material parameters and switching modes, critical issues for microwave generation, and future directions for this high power, photoconductive switching technology.

  20. High efficiency solar photovoltaic power module concept

    NASA Technical Reports Server (NTRS)

    Bekey, I.

    1978-01-01

    The investigation of a preliminary concept for high efficiency solar power generation in space is presented. The concept was a synergistic combination of spectral splitting, tailored bandgap cells, high concentration ratios, and cool cell areas.

  1. Design of a 1-MW, CW coaxial gyrotron with two gaussian beam outputs

    NASA Astrophysics Data System (ADS)

    Hirata, Y.; Hayashi, K.; Mitsunaka, Y.; Itoh, Y.; Sugawara, T.

    1995-04-01

    The design of a 170 GHz, 1 MW-CW gyrotron for electron cyclotron heating of nuclear fusion plasmas is presented. The designed gyrotron incorporates a coaxial cavity to reduce mode competition, and a coaxial electron gun to support the cavity inner conductor. A new mode converter splits the generated wave into two beams and radiates them in different directions. The radiated beams are transmitted to two output windows through two mirror systems, being transformed into Gaussian-like beams. A single-stage depressed collector improves the overall efficiency of the gyrotron and reduces the heat flux to the collector surface.

  2. Recent Tests on 500 kW and 1 MW, Multi-Second-Pulsed Gyrotrons

    NASA Astrophysics Data System (ADS)

    Felch, K.; Blank, M.; Borchard, P.; Cahalan, P.; Cauffman, S.; Chu, T. S.; Jory, H.

    2003-02-01

    Long-pulse and CW gyrotrons are being developed at CPI for several electron cyclotron heating experiments. Designs at three different frequencies, 110 GHz, 140 GHz and 84 GHz, have recently been tested. Common features of the three designs include single-anode, magnetron-injection electron guns, internal converters that produce a TEM00 Gaussian output mode and CVD (chemical-vapor deposition) diamond output windows. The three designs use different cavity interaction modes and two of the designs employ collector depression to raise the overall efficiency of the gyrotron installations. Further details of the individual designs and the results of tests on the various gyrotrons are discussed below.

  3. High temperature power electronics for space

    NASA Technical Reports Server (NTRS)

    Hammoud, Ahmad N.; Baumann, Eric D.; Myers, Ira T.; Overton, Eric

    1991-01-01

    A high temperature electronics program at NASA Lewis Research Center focuses on dielectric and insulating materials research, development and testing of high temperature power components, and integration of the developed components and devices into a demonstrable 200 C power system, such as inverter. An overview of the program and a description of the in-house high temperature facilities along with experimental data obtained on high temperature materials are presented.

  4. High Power Klystrons for Efficient Reliable High Power Amplifiers.

    DTIC Science & Technology

    1980-11-01

    components of the space charge waves in the electron beam of a microwave tube are combined to produce more highly concentrated electron bunches raising the...the drift lengths to enhance the 2nd harmonic component in the space charge waves . The latter method was utilized in the VKC-7790. Computer...photographs, operating/ maintanance instructions, layout drawings/schematics and the purchase specification are included, in the above order, in

  5. High power plasma spraying of oxide ceramics

    SciTech Connect

    Lugscheider, E.; Jungklaus, H.; Schwier, G.; Mathesius, H.; Heinrich, P.

    1995-12-31

    New developed high power plasma spray (HPPS) systems offer opportunities for generating both high thermal as well as high kinetic energy transfer to the powder particles. The operation level can be elevated up to 250 kW for continuous processing. PLCs and mass flow controls support high power processing under production conditions. The process is designed for applying large quantities even of high melt materials, such as oxide ceramics. High power plasma processing may result in enhanced coating characteristics. The work in this paper shows first conclusions for processing commercial powders such as alumina, alumina-titania, chromia and a recently developed multicomponent oxide with a HPPS system. Particle velocities were measured after optimizing spraying parameters. Coatings were evaluated by optical microscopy (microstructure and porosity), microhardness and pin-on-disc abrasive wear tests. Powder types and sizes as well as the systems configuration are considered for a general discussion of the capability and limitation in high power plasma spraying.

  6. High power diode lasers reliability experiment

    NASA Astrophysics Data System (ADS)

    Lu, Guoguang; Xie, Shaofeng; Hao, Mingming; Huang, Yun; En, Yunfei

    2013-12-01

    In order to evaluate and obtain the actual lifetime data of high power laser diodes, an automated high power laser diodes reliability experiment was developed and reported in this paper. This computer controlled setup operates the laser diodes 24 hours a day, the parameters such as output power, wavelength were test once in one hour. The experiment has 60 work stations, the temperature control range is from 25°C to 70°C, and the output power of the aging device is beyond 20W.

  7. Technology for satellite power conversion

    NASA Technical Reports Server (NTRS)

    Campbell, D. P.; Gouker, M. A.; Summers, C.; Gallagher, J. J.

    1984-01-01

    Techniques for satellite electromagnetic energy transfer and power conversion at millimeter and infrared wavelengths are discussed. The design requirements for rectenna receiving elements are reviewed for both coherent radiation sources and Earth thermal infrared emission. Potential power transmitters including gyrotrons, free electron lasers, and CO2 lasers are assessed along with the rectification properties of metal-oxide metal diode power converters.

  8. High-Temperature Passive Power Electronics

    NASA Technical Reports Server (NTRS)

    1997-01-01

    In many future NASA missions - such as deep-space exploration, the National AeroSpace Plane, minisatellites, integrated engine electronics, and ion or arcjet thrusters - high-power electrical components and systems must operate reliably and efficiently in high-temperature environments. The high-temperature power electronics program at the NASA Lewis Research Center focuses on dielectric and insulating material research, the development and characterization of high-temperature components, and the integration of the developed components into a demonstrable 200 C power system - such as an inverter. NASA Lewis has developed high-temperature power components through collaborative efforts with the Air Force Wright Laboratory, Northrop Grumman, and the University of Wisconsin. Ceramic and film capacitors, molypermalloy powder inductors, and a coaxially wound transformer were designed, developed, and evaluated for high-temperature operation.

  9. High power solid state switches

    NASA Astrophysics Data System (ADS)

    Gundersen, Martin

    1991-11-01

    We have successfully produced an optically triggered thyristor based in Gallium Arsenide, developed a model for breakdown, and are developing two related devices, including a Gallium Arsenide based static inductor thyristor. We are getting at the basic limitations of Gallium Arsenide for these applications, and are developing models for the physical processes that will determine device limitations. The previously supported gas phase work - resulting in the back-lighted thyratron (BLT) - has actually resulted in a very changed view of how switching can be accomplished, and this is impacting the design of important machines. The BLT is being studied internationally: in Japan for laser fusion and laser isotope separation. ITT has built a BLT that has switched 30 kA at 60 kV in testing at NSWC Dahlgren and the device is being commercialized by another American company. Versions of the switch are now being tested for excimer laser and other applications. Basically, the switch, which arose from pulse power physics studies at USC, can switch more current faster (higher di/dt), with less housekeeping, and with other advantageous properties. There are a large number of other new applications, include kinetic energy weapons, pulsed microwave sources and R.F. accelerators.

  10. High power ultrashort pulse lasers

    SciTech Connect

    Perry, M.D.

    1994-10-07

    Small scale terawatt and soon even petawatt (1000 terawatt) class laser systems are made possible by application of the chirped-pulse amplification technique to solid-state lasers combined with the availability of broad bandwidth materials. These lasers make possible a new class of high gradient accelerators based on the large electric fields associated with intense laser-plasma interactions or from the intense laser field directly. Here, we concentrate on the laser technology to produce these intense pulses. Application of the smallest of these systems to the production of high brightness electron sources is also introduced.

  11. HIGH AVERAGE POWER OPTICAL FEL AMPLIFIERS.

    SciTech Connect

    BEN-ZVI, ILAN, DAYRAN, D.; LITVINENKO, V.

    2005-08-21

    Historically, the first demonstration of the optical FEL was in an amplifier configuration at Stanford University [l]. There were other notable instances of amplifying a seed laser, such as the LLNL PALADIN amplifier [2] and the BNL ATF High-Gain Harmonic Generation FEL [3]. However, for the most part FELs are operated as oscillators or self amplified spontaneous emission devices. Yet, in wavelength regimes where a conventional laser seed can be used, the FEL can be used as an amplifier. One promising application is for very high average power generation, for instance FEL's with average power of 100 kW or more. The high electron beam power, high brightness and high efficiency that can be achieved with photoinjectors and superconducting Energy Recovery Linacs (ERL) combine well with the high-gain FEL amplifier to produce unprecedented average power FELs. This combination has a number of advantages. In particular, we show that for a given FEL power, an FEL amplifier can introduce lower energy spread in the beam as compared to a traditional oscillator. This properly gives the ERL based FEL amplifier a great wall-plug to optical power efficiency advantage. The optics for an amplifier is simple and compact. In addition to the general features of the high average power FEL amplifier, we will look at a 100 kW class FEL amplifier is being designed to operate on the 0.5 ampere Energy Recovery Linac which is under construction at Brookhaven National Laboratory's Collider-Accelerator Department.

  12. High-power picosecond laser pulse recirculation.

    PubMed

    Shverdin, M Y; Jovanovic, I; Semenov, V A; Betts, S M; Brown, C; Gibson, D J; Shuttlesworth, R M; Hartemann, F V; Siders, C W; Barty, C P J

    2010-07-01

    We demonstrate a nonlinear crystal-based short pulse recirculation cavity for trapping the second harmonic of an incident high-power laser pulse. This scheme aims to increase the efficiency and flux of Compton-scattering-based light sources. We demonstrate up to 40x average power enhancement of frequency-doubled submillijoule picosecond pulses, and 17x average power enhancement of 177 mJ, 10 ps, 10 Hz pulses.

  13. High Power Picosecond Laser Pulse Recirculation

    SciTech Connect

    Shverdin, M Y; Jovanovic, I; Semenov, V A; Betts, S M; Brown, C; Gibson, D J; Shuttlesworth, R M; Hartemann, F V; Siders, C W; Barty, C P

    2010-04-12

    We demonstrate a nonlinear crystal-based short pulse recirculation cavity for trapping the second harmonic of an incident high power laser pulse. This scheme aims to increase the efficiency and flux of Compton-scattering based light sources. We demonstrate up to 36x average power enhancement of frequency doubled sub-millijoule picosecond pulses, and 17x average power enhancement of 177 mJ, 10 ps, 10 Hz pulses.

  14. High-efficiency solid state power amplifier

    NASA Technical Reports Server (NTRS)

    Wallis, Robert E. (Inventor); Cheng, Sheng (Inventor)

    2005-01-01

    A high-efficiency solid state power amplifier (SSPA) for specific use in a spacecraft is provided. The SSPA has a mass of less than 850 g and includes two different X-band power amplifier sections, i.e., a lumped power amplifier with a single 11-W output and a distributed power amplifier with eight 2.75-W outputs. These two amplifier sections provide output power that is scalable from 11 to 15 watts without major design changes. Five different hybrid microcircuits, including high-efficiency Heterostructure Field Effect Transistor (HFET) amplifiers and Monolithic Microwave Integrated Circuit (MMIC) phase shifters have been developed for use within the SSPA. A highly efficient packaging approach enables the integration of a large number of hybrid circuits into the SSPA.

  15. High Power Co-Axial Coupler

    SciTech Connect

    Neubauer, M.; Dudas, A.; Rimmer, Robert A.; Guo, Jiquan; Williams, R. Scott

    2013-12-01

    A very high power Coax RF Coupler (MW-Level) is very desirable for a number of accelerator and commercial applications. For example, the development of such a coupler operating at 1.5 GHz may permit the construction of a higher-luminosity version of the Electron-Ion Collider (EIC) being planned at JLab. Muons, Inc. is currently funded by a DOE STTR grant to develop a 1.5-GHz high-power doublewindowcoax coupler with JLab (about 150 kW). Excellent progress has been made on this R&D project, so we propose an extension of this development to build a very high power coax coupler (MW level peak power and a max duty factor of about 4%). The dimensions of the current coax coupler will be scaled up to provide higher power capability.

  16. High voltage photovoltaic power converter

    DOEpatents

    Haigh, Ronald E.; Wojtczuk, Steve; Jacobson, Gerard F.; Hagans, Karla G.

    2001-01-01

    An array of independently connected photovoltaic cells on a semi-insulating substrate contains reflective coatings between the cells to enhance efficiency. A uniform, flat top laser beam profile is illuminated upon the array to produce electrical current having high voltage. An essentially wireless system includes a laser energy source being fed through optic fiber and cast upon the photovoltaic cell array to prevent stray electrical signals prior to use of the current from the array. Direct bandgap, single crystal semiconductor materials, such as GaAs, are commonly used in the array. Useful applications of the system include locations where high voltages are provided to confined spaces such as in explosive detonation, accelerators, photo cathodes and medical appliances.

  17. Ceramics for High Power Lasers

    DTIC Science & Technology

    2011-12-01

    stoichiometry, determined by either atomistic simulation or XRD. The simulation results correspond to various defect reactions identified in this work...spatially resolved. The data obtained with this set-up have been calibrated against high-quality fused silica and sapphire absorption standards having...Coefficient (ppm/cm) YAG, Z-713 750 Nd:YAG, Z-714 1050 Gd:YAG, Z-715 1100 Single-crystal Sc1 1000 Kono1 135 Fused silica standard 10 Sapphire

  18. High-power red VCSEL arrays

    NASA Astrophysics Data System (ADS)

    Seurin, Jean-Francois; Khalfin, Viktor; Xu, Guoyang; Miglo, Alexander; Li, Daizong; Zhou, Delai; Sundaresh, Mukta; Zou, Wei-Xiong; Lu, Chien-Yao; Wynn, James D.; Ghosh, Chuni

    2013-03-01

    High-power red laser sources are used in many applications such as cosmetics, cancer photodynamic therapy, and DNA sequencing in the medical field, laser-based RGB projection display, and bar-code scanning to name a few. Verticalcavity surface-emitting lasers (VCSELs) can be used as high-power laser sources, as efficient single devices can be configured into high-power two-dimensional arrays and scaled into modules of arrays. VCSELs emit in a circular, uniform beam which can greatly reduce the complexity and cost of optics. Other advantages include a narrow and stable emission spectrum, low speckle of the far-field emission, and good reliability. However, developing efficient red VCSEL sources presents some challenges because of the reduced quantum-well carrier confinement and the increased Aluminum content (to avoid absorption) which increases thermal impedance, and also decreases the DBR index contrast resulting in increased penetration length and cavity losses. We have recently developed VCSEL devices lasing in the visible 6xx nm wavelength band, and reaching 30% power conversion efficiency. We fabricated high-power 2D arrays by removing the GaAs substrate entirely and soldered the chips on high thermal conductivity submounts. Such arrays have demonstrated several Watts of output power at room temperature, in continuous-wave (CW) operation. Several tens of Watts are obtained in QCW operation. Results and challenges of these high-power visible VCSEL arrays will be discussed.

  19. High Power Amplifier Harmonic Output Level Measurement

    NASA Technical Reports Server (NTRS)

    Perez, R. M.; Hoppe, D. J.; Khan, A. R.

    1995-01-01

    A method is presented for the measurement of the harmonic output power of high power klystron amplifiers, involving coherent hemispherical radiation pattern measurements of the radiated klystron output. Results are discussed for the operation in saturated and unsaturated conditions, and with a waveguide harmonic filter included.

  20. Optical power splitter for splitting high power light

    DOEpatents

    English, R.E. Jr.; Christensen, J.J.

    1995-04-18

    An optical power splitter for the distribution of high-power light energy has a plurality of prisms arranged about a central axis to form a central channel. The input faces of the prisms are in a common plane which is substantially perpendicular to the central axis. A beam of light which is substantially coaxial to the central axis is incident on the prisms and at least partially strikes a surface area of each prism input face. The incident beam also partially passes through the central channel. 5 figs.

  1. Optical power splitter for splitting high power light

    DOEpatents

    English, Jr., Ronald E.; Christensen, John J.

    1995-01-01

    An optical power splitter for the distribution of high-power light energy has a plurality of prisms arranged about a central axis to form a central channel. The input faces of the prisms are in a common plane which is substantially perpendicular to the central axis. A beam of light which is substantially coaxial to the central axis is incident on the prisms and at least partially strikes a surface area of each prism input face. The incident beam also partially passes through the central channel.

  2. High power density carbonate fuel cell

    SciTech Connect

    Yuh, C.; Johnsen, R.; Doyon, J.; Allen, J.

    1996-12-31

    Carbonate fuel cell is a highly efficient and environmentally clean source of power generation. Many organizations worldwide are actively pursuing the development of the technology. Field demonstration of multi-MW size power plant has been initiated in 1996, a step toward commercialization before the turn of the century, Energy Research Corporation (ERC) is planning to introduce a 2.85MW commercial fuel cell power plant with an efficiency of 58%, which is quite attractive for distributed power generation. However, to further expand competitive edge over alternative systems and to achieve wider market penetration, ERC is exploring advanced carbonate fuel cells having significantly higher power densities. A more compact power plant would also stimulate interest in new markets such as ships and submarines where space limitations exist. The activities focused on reducing cell polarization and internal resistance as well as on advanced thin cell components.

  3. Coupling output of multichannel high power microwaves

    SciTech Connect

    Li Guolin; Shu Ting; Yuan Chengwei; Zhang Jun; Yang Jianhua; Jin Zhenxing; Yin Yi; Wu Dapeng; Zhu Jun; Ren Heming; Yang Jie

    2010-12-15

    The coupling output of multichannel high power microwaves is a promising technique for the development of high power microwave technologies, as it can enhance the output capacities of presently studied devices. According to the investigations on the spatial filtering method and waveguide filtering method, the hybrid filtering method is proposed for the coupling output of multichannel high power microwaves. As an example, a specific structure is designed for the coupling output of S/X/X band three-channel high power microwaves and investigated with the hybrid filtering method. In the experiments, a pulse of 4 GW X band beat waves and a pulse of 1.8 GW S band microwave are obtained.

  4. High Voltage Power Transmission for Wind Energy

    NASA Astrophysics Data System (ADS)

    Kim, Young il

    The high wind speeds and wide available area at sea have recently increased the interests on offshore wind farms in the U.S.A. As offshore wind farms become larger and are placed further from the shore, the power transmission to the onshore grid becomes a key feature. Power transmission of the offshore wind farm, in which good wind conditions and a larger installation area than an onshore site are available, requires the use of submarine cable systems. Therefore, an underground power cable system requires unique design and installation challenges not found in the overhead power cable environment. This paper presents analysis about the benefit and drawbacks of three different transmission solutions: HVAC, LCC/VSC HVDC in the grid connecting offshore wind farms and also analyzed the electrical characteristics of underground cables. In particular, loss of HV (High Voltage) subsea power of the transmission cables was evaluated by the Brakelmann's theory, taking into account the distributions of current and temperature.

  5. High power regenerative laser amplifier

    DOEpatents

    Miller, J.L.; Hackel, L.A.; Dane, C.B.; Zapata, L.E.

    1994-02-08

    A regenerative amplifier design capable of operating at high energy per pulse, for instance, from 20-100 Joules, at moderate repetition rates, for instance from 5-20 Hertz is provided. The laser amplifier comprises a gain medium and source of pump energy coupled with the gain medium; a Pockels cell, which rotates an incident beam in response to application of a control signal; an optical relay system defining a first relay plane near the gain medium and a second relay plane near the rotator; and a plurality of reflectors configured to define an optical path through the gain medium, optical relay and Pockels cell, such that each transit of the optical path includes at least one pass through the gain medium and only one pass through the Pockels cell. An input coupler, and an output coupler are provided, implemented by a single polarizer. A control circuit coupled to the Pockels cell generates the control signal in timed relationship with the input pulse so that the input pulse is captured by the input coupler and proceeds through at least one transit of the optical path, and then the control signal is applied to cause rotation of the pulse to a polarization reflected by the polarizer, after which the captured pulse passes through the gain medium at least once more and is reflected out of the optical path by the polarizer before passing through the rotator again to provide an amplified pulse. 7 figures.

  6. High power regenerative laser amplifier

    DOEpatents

    Miller, John L.; Hackel, Lloyd A.; Dane, Clifford B.; Zapata, Luis E.

    1994-01-01

    A regenerative amplifier design capable of operating at high energy per pulse, for instance, from 20-100 Joules, at moderate repetition rates, for instance from 5-20 Hertz is provided. The laser amplifier comprises a gain medium and source of pump energy coupled with the gain medium; a Pockels cell, which rotates an incident beam in response to application of a control signal; an optical relay system defining a first relay plane near the gain medium and a second relay plane near the rotator; and a plurality of reflectors configured to define an optical path through the gain medium, optical relay and Pockels cell, such that each transit of the optical path includes at least one pass through the gain medium and only one pass through the Pockels cell. An input coupler, and an output coupler are provided, implemented by a single polarizer. A control circuit coupled to the Pockels cell generates the control signal in timed relationship with the input pulse so that the input pulse is captured by the input coupler and proceeds through at least one transit of the optical path, and then the control signal is applied to cause rotation of the pulse to a polarization reflected by the polarizer, after which the captured pulse passes through the gain medium at least once more and is reflected out of the optical path by the polarizer before passing through the rotator again to provide an amplified pulse.

  7. Very high power THz radiation sources

    SciTech Connect

    Carr, G.L.; Martin, Michael C.; McKinney, Wayne R.; Jordan, K.; Neil, George R.; Williams, G.P.

    2002-10-31

    We report the production of high power (20 watts average, {approx} 1 Megawatt peak) broadband THz light based on coherent emission from relativistic electrons. Such sources are ideal for imaging, for high power damage studies and for studies of non-linear phenomena in this spectral range. We describe the source, presenting theoretical calculations and their experimental verification. For clarity we compare this source to one based on ultrafast laser techniques.

  8. Very High Power THz Radiation Sources

    SciTech Connect

    G.L. Carr; Michael C. Martin; Wayne R. McKinney; Kevin Jordan; George R. Neil; Gwyn P. Williams

    2002-10-01

    We report the production of high power (20 watts average, {approx}1 Megawatt peak) broadband THz light based on coherent emission from relativistic electrons. Such sources are ideal for imaging, for high power damage studies and for studies of non-linear phenomena in this spectral range. We describe the source, presenting theoretical calculations and their experimental verification. For clarity, we compare this sources with one based on ultrafast laser techniques.

  9. Spacecraft high-voltage power supply construction

    NASA Technical Reports Server (NTRS)

    Sutton, J. F.; Stern, J. E.

    1975-01-01

    The design techniques, circuit components, fabrication techniques, and past experience used in successful high-voltage power supplies for spacecraft flight systems are described. A discussion of the basic physics of electrical discharges in gases is included and a design rationale for the prevention of electrical discharges is provided. Also included are typical examples of proven spacecraft high-voltage power supplies with typical specifications for design, fabrication, and testing.

  10. The MTX computer control system for the 400 kilowatt 140 GHz gyrotron

    NASA Astrophysics Data System (ADS)

    Jackson, M. C.; Ferguson, S. W.; Petersen, D. E.

    1991-09-01

    A 400 kilowatt, 140 GHz gyrotron is employed on MTX as a source of direct plasma heating and, additionally, as a driver for a free electron laser, which is used for plasma heating. The control system that operates this gyrotron uses a new graphics oriented software system called TACL (Thaumaturgic Automated Control Logic) developed by the Continuous Electron Beam Accelerator Facility (CEBAF) and owned by DOE. This control language does not require a software specialist, but is easily handled by the engineer or technician working on the system. All control logic and custom displays are entered via graphics oriented editors and no actual lines of code need to be written. The graphics displays make the gyrotron operation quite simple and allow individual users to define displays to meet their own needs or develop one for a specific set of tests to be run. The system, additionally, can be used for logging functions, which have been found quite useful in tracking long term trends in vacion current and calorimetry of gyrotron cooling circuits. The system is composed of one computer (HP 9000 series 300) controlling multiple CAMAC crates located at the various components used in the system. A second series 300 computer is used as a supervisor and is located in the main tokamak control room. This supervisory computer provides remote operation of the gyrotron, and also provides a link to the microwave transport vacuum control (also TACL). The supervisory computer, additionally, is used as a subsystem status summary point for permissives to the gyrotron control system.

  11. High Power Short Wavelength Laser Development

    DTIC Science & Technology

    1977-11-01

    Unlimited güä^äsjäsiiiüüü X NRTC-77-43R P I High Power Short Wavelength Laser Development November 1977 D. B. Cohn and W. B. Lacina...NO NRTC-77-43R, «. TITLE fana »uetjjitj BEFORE COMPLETING FORM CIPIENT’S CATALOO NUMBER KIGH.POWER SHORT WAVELENGTH LASER DEVELOPMENT , 7...fWhtn Data Enterte NRTC-77-43R HIGH POWER SHORT WAVELENGTH LASER DEVELOPMENT ARPA Order Number: Program Code Number: Contract Number: Principal

  12. Inverter design for high frequency power distribution

    NASA Technical Reports Server (NTRS)

    King, R. J.

    1985-01-01

    A class of simple resonantly commutated inverters are investigated for use in a high power (100 KW - 1000 KW) high frequency (10 KHz - 20 KHz) AC power distribution system. The Mapham inverter is found to provide a unique combination of large thyristor turn-off angle and good utilization factor, much better than an alternate 'current-fed' inverter. The effects of loading the Mapham inverter entirely with rectifier loads are investigated by simulation and with an experimental 3 KW 20 KHz inverter. This inverter is found to be well suited to a power system with heavy rectifier loading.

  13. High-Speed, high-power, switching transistor

    NASA Technical Reports Server (NTRS)

    Carnahan, D.; Ohu, C. K.; Hower, P. L.

    1979-01-01

    Silicon transistor rate for 200 angstroms at 400 to 600 volts combines switching speed of transistors with ruggedness, power capacity of thyristor. Transistor introduces unique combination of increased power-handling capability, unusally low saturation and switching losses, and submicrosecond switching speeds. Potential applications include high power switching regulators, linear amplifiers, chopper controls for high frequency electrical vehicle drives, VLF transmitters, RF induction heaters, kitchen cooking ranges, and electronic scalpels for medical surgery.

  14. The NASA CSTI high capacity power project

    NASA Technical Reports Server (NTRS)

    Winter, J.; Dudenhoefer, J.; Juhasz, A.; Schwarze, G.; Patterson, R.; Ferguson, D.; Titran, R.; Schmitz, P.; Vandersande, J.

    1992-01-01

    The SP-100 Space Nuclear Power Program was established in 1983 by DOD, DOE, and NASA as a joint program to develop technology for military and civil applications. Starting in 1986, NASA has funded a technology program to maintain the momentum of promising aerospace technology advancement started during Phase 1 of SP-100 and to strengthen, in key areas, the chances for successful development and growth capability of space nuclear reactor power systems for a wide range of future space applications. The elements of the Civilian Space Technology Initiative (CSTI) High Capacity Power Project include Systems Analysis, Stirling Power Conversion, Thermoelectric Power Conversion, Thermal Management, Power Management, Systems Diagnostics, Environmental Interactions, and Material/Structural Development. Technology advancement in all elements is required to provide the growth capability, high reliability and 7 to 10 year lifetime demanded for future space nuclear power systems. The overall project will develop and demonstrate the technology base required to provide a wide range of modular power systems compatible with the SP-100 reactor which facilitates operation during lunar and planetary day/night cycles as well as allowing spacecraft operation at any attitude or distance from the sun. Significant accomplishments in all of the project elements will be presented, along with revised goals and project timelines recently developed.

  15. The NASA CSTI High Capacity Power Project

    SciTech Connect

    Winter, J.; Dudenhoefer, J.; Juhasz, A.; Schwarze, G.; Patterson, R.; Ferguson, D.; Titran, R.; Schmitz, P.; Vandersande, J.

    1994-09-01

    The SP-100 Space Nuclear Power Program was established in 1983 by DOD, DOE, and NASA as a joint program to develop technology for military and civil applications. Starting in 1986, NASA has funded a technology program to maintain the momentum of promising aerospace technology advancement started during Phase I of SP-100 and to strengthen, in key areas, the changes for successful development and growth capability of space nuclear reactor power systems for a wide range of future space applications. The elements of the CSTI High Capacity Power Project include Systems Analysis, Stirling Power Conversion, Thermoelectric Power Conversion, Thermal Management, Power Management, Systems Diagnostics, Environmental Interactions, and Material/Structural Development. Technology advancement in all elements is required to provide the growth capability, high reliability and 7 to 10 year lifetime demanded for future space nuclear power systems. The overall project with develop and demonstrate the technology base required to provide a wide range of modular power systems compatible with the SP-100 reactor which facilitates operation during lunar and planetary day/night cycles as well as allowing spacecraft operation at any attitude or distance from the sun. Significant accomplishments in all of the project elements will be presented, along with revised goals and project timelines recently developed.

  16. Low-voltage harmonic multiplying gyrotron traveling-wave amplifier in G band

    SciTech Connect

    Yeh, Y. S.; Guo, Y. W.; Kao, B. H.; Chen, C. H.; Wang, Z. W.; Hung, C. L.; Chang, T. H.

    2015-12-15

    Harmonic multiplying operation in a gyrotron traveling-wave amplifier (gyro-TWA) permits for magnetic field reduction and frequency multiplication. Lowering a beam voltage is an important step toward miniaturization of a harmonic multiplying gyro-TWA. However, the additional degree of freedom that is provided by the multitude cyclotron harmonics in a low-voltage harmonic multiplying gyro-TWA still easily generates various competing modes. An improved mode-selective circuit, using circular waveguides with various radii, can provide the rejection points within the frequency range to suppress competing modes. Simulated results reveal that the mode-selective circuit can provide an attenuation of more than 14 dB to suppress the competing modes. Furthermore, the performance of the gyro-TWA is analyzed for studying the sensitivity of the saturated output power and full width at half maximum bandwidth of the gyro-TWA to the beam voltage and the magnetic field. A stable low-voltage harmonic multiplying gyro-TWA with the mode-selective circuit is predicted to yield a peak output power of 24 kW at 200.4 GHz, corresponding to a saturated gain of 56 dB at an interaction efficiency of 20%. The full width at half maximum bandwidth is 3.0 GHz.

  17. Low-voltage harmonic multiplying gyrotron traveling-wave amplifier in G band

    NASA Astrophysics Data System (ADS)

    Yeh, Y. S.; Hung, C. L.; Chang, T. H.; Guo, Y. W.; Kao, B. H.; Chen, C. H.; Wang, Z. W.

    2015-12-01

    Harmonic multiplying operation in a gyrotron traveling-wave amplifier (gyro-TWA) permits for magnetic field reduction and frequency multiplication. Lowering a beam voltage is an important step toward miniaturization of a harmonic multiplying gyro-TWA. However, the additional degree of freedom that is provided by the multitude cyclotron harmonics in a low-voltage harmonic multiplying gyro-TWA still easily generates various competing modes. An improved mode-selective circuit, using circular waveguides with various radii, can provide the rejection points within the frequency range to suppress competing modes. Simulated results reveal that the mode-selective circuit can provide an attenuation of more than 14 dB to suppress the competing modes. Furthermore, the performance of the gyro-TWA is analyzed for studying the sensitivity of the saturated output power and full width at half maximum bandwidth of the gyro-TWA to the beam voltage and the magnetic field. A stable low-voltage harmonic multiplying gyro-TWA with the mode-selective circuit is predicted to yield a peak output power of 24 kW at 200.4 GHz, corresponding to a saturated gain of 56 dB at an interaction efficiency of 20%. The full width at half maximum bandwidth is 3.0 GHz.

  18. Mechanisms of amplification of ultrashort electromagnetic pulses in gyrotron traveling wave tube with helically corrugated waveguide

    SciTech Connect

    Ginzburg, N. S. Zaslavsky, V. Yu.; Zotova, I. V.; Sergeev, A. S.; Zheleznov, I. V.; Samsonov, S. V.; Mishakin, S. V.

    2015-11-15

    A time-domain self consistent theory of a gyrotron traveling wave tube with a helically corrugated operating waveguide has been developed. Based on this model, the process of short pulse amplification was studied in regimes of grazing and intersection of the dispersion curves of the electromagnetic wave and the electron beam. In the first case, the possibility of amplification without pulse form distortion was demonstrated for the pulse spectrum width of the order of the gain bandwidth. In the second case, when the electrons' axial velocity was smaller than the wave's group velocity, it was shown that the slippage of the incident signal with respect to the electron beam provides feeding of the signal by “fresh” electrons without initial modulation. As a result, the amplitude of the output pulse can exceed the amplitude of its saturated value for the case of the grazing regime, and, for optimal parameters, the peak output power can be even larger than the kinetic power of the electron beam.

  19. Advances in high power semiconductor diode lasers

    NASA Astrophysics Data System (ADS)

    Ma, Xiaoyu; Zhong, Li

    2008-03-01

    High power semiconductor lasers have broad applications in the fields of military and industry. Recent advances in high power semiconductor lasers are reviewed mainly in two aspects: improvements of diode lasers performance and optimization of packaging architectures of diode laser bars. Factors which determine the performance of diode lasers, such as power conversion efficiency, temperature of operation, reliability, wavelength stabilization etc., result from a combination of new semiconductor materials, new diode structures, careful material processing of bars. The latest progress of today's high-power diode lasers at home and abroad is briefly discussed and typical data are presented. The packaging process is of decisive importance for the applicability of high-power diode laser bars, not only technically but also economically. The packaging techniques include the material choosing and the structure optimizing of heat-sinks, the bonding between the array and the heat-sink, the cooling and the fiber coupling, etc. The status of packaging techniques is stressed. There are basically three different diode package architectural options according to the integration grade. Since the package design is dominated by the cooling aspect, different effective cooling techniques are promoted by different package architectures and specific demands. The benefit and utility of each package are strongly dependent upon the fundamental optoelectronic properties of the individual diode laser bars. Factors which influence these properties are outlined and comparisons of packaging approaches for these materials are made. Modularity of package for special application requirements is an important developing tendency for high power diode lasers.

  20. High power impulse magnetron sputtering discharge

    SciTech Connect

    Gudmundsson, J. T.; Brenning, N.; Lundin, D.; Helmersson, U.

    2012-05-15

    The high power impulse magnetron sputtering (HiPIMS) discharge is a recent addition to plasma based sputtering technology. In HiPIMS, high power is applied to the magnetron target in unipolar pulses at low duty cycle and low repetition frequency while keeping the average power about 2 orders of magnitude lower than the peak power. This results in a high plasma density, and high ionization fraction of the sputtered vapor, which allows better control of the film growth by controlling the energy and direction of the deposition species. This is a significant advantage over conventional dc magnetron sputtering where the sputtered vapor consists mainly of neutral species. The HiPIMS discharge is now an established ionized physical vapor deposition technique, which is easily scalable and has been successfully introduced into various industrial applications. The authors give an overview of the development of the HiPIMS discharge, and the underlying mechanisms that dictate the discharge properties. First, an introduction to the magnetron sputtering discharge and its various configurations and modifications is given. Then the development and properties of the high power pulsed power supply are discussed, followed by an overview of the measured plasma parameters in the HiPIMS discharge, the electron energy and density, the ion energy, ion flux and plasma composition, and a discussion on the deposition rate. Finally, some of the models that have been developed to gain understanding of the discharge processes are reviewed, including the phenomenological material pathway model, and the ionization region model.

  1. Small high cooling power space cooler

    SciTech Connect

    Nguyen, T. V.; Raab, J.; Durand, D.; Tward, E.

    2014-01-29

    The small High Efficiency pulse tube Cooler (HEC) cooler, that has been produced and flown on a number of space infrared instruments, was originally designed to provide cooling of 10 W @ 95 K. It achieved its goal with >50% margin when limited by the 180 W output ac power of its flight electronics. It has also been produced in 2 stage configurations, typically for simultaneously cooling of focal planes to temperatures as low as 35 K and optics at higher temperatures. The need for even higher cooling power in such a low mass cryocooler is motivated by the advent of large focal plane arrays. With the current availability at NGAS of much larger power cryocooler flight electronics, reliable long term operation in space with much larger cooling powers is now possible with the flight proven 4 kg HEC mechanical cooler. Even though the single stage cooler design can be re-qualified for those larger input powers without design change, we redesigned both the linear and coaxial version passive pulse tube cold heads to re-optimize them for high power cooling at temperatures above 130 K while rejecting heat to 300 K. Small changes to the regenerator packing, the re-optimization of the tuned inertance and no change to the compressor resulted in the increased performance at 150 K. The cooler operating at 290 W input power achieves 35 W@ 150 K corresponding to a specific cooling power at 150 K of 8.25 W/W and a very high specific power of 72.5 W/Kg. At these powers the cooler still maintains large stroke, thermal and current margins. In this paper we will present the measured data and the changes to this flight proven cooler that were made to achieve this increased performance.

  2. Silver based batteries for high power applications

    NASA Astrophysics Data System (ADS)

    Karpinski, A. P.; Russell, S. J.; Serenyi, J. R.; Murphy, J. P.

    The present status of silver oxide-zinc technology and applications has been described by Karpinski et al. [A.P. Karpinski, B. Makovetski, S.J. Russell, J.R. Serenyi, D.C. Williams, Silver-Zinc: status of technology and applications, Journal of Power Sources, 80 (1999) 53-60], where the silver-zinc couple is still the preferred choice where high specific energy/energy density, coupled with high specific power/power density are important for high-rate, weight or size/configuration sensitive applications. Perhaps the silver oxide cathode can be considered one of the most versatile electrode materials. When coupled with other anodes and corresponding electrolyte management system, the silver electrode provides for a wide array of electrochemical systems that can be tailored to meet the most demanding, high power requirements. Besides zinc, the most notable include cadmium, iron, metal hydride, and hydrogen electrode for secondary systems, while primary systems include lithium and aluminum. Alloys including silver are also available, such as silver chloride, which when coupled with magnesium or aluminum are primarily used in many seawater applications. The selection and use of these couples is normally the result of a trade-off of many factors. These include performance, safety, risk, reliability, and cost. When high power is required, silver oxide-zinc, silver oxide-aluminum, and silver oxide-lithium are the most energetic. For moderate performance (i.e., lower power), silver oxide-zinc or silver-cadmium would be the system of choice. This paper summarizes the suitability of the silver-based couples, with an emphasis on the silver-zinc system, as primary or rechargeable power sources for high energy/power applications.

  3. Extension of high T{sub e} regime with upgraded electron cyclotron resonance heating system in the Large Helical Device

    SciTech Connect

    Takahashi, H. Shimozuma, T.; Kubo, S.; Yoshimura, Y.; Igami, H.; Ito, S.; Kobayashi, S.; Mizuno, Y.; Okada, K.; Mutoh, T.; Nagaoka, K.; Osakabe, M.; Yamada, I.; Nakano, H.; Yokoyama, M.; Ido, T.; Shimizu, A.; Seki, R.; Ida, K.; Yoshinuma, M.; and others

    2014-06-15

    Enhancement of the output power per gyrotron has been planned in the Large Helical Device (LHD). Three 77-GHz gyrotrons with an output power of more than 1 MW have been operated. In addition, a high power gyrotron with the frequency of 154 GHz (1 MW/5 s, 0.5 MW/CW) was newly installed in 2012, and the total injection power of Electron cyclotron resonance heating (ECRH) reached 4.6 MW. The operational regime of ECRH plasma on the LHD has been extended due to the upgraded ECRH system such as the central electron temperature of 13.5 keV with the line-averaged electron density n{sub e-fir} = 1 × 10{sup 19} m{sup −3}. The electron thermal confinement clearly improved inside the electron internal transport barrier, and the electron thermal diffusivity reached neoclassical level. The global energy confinement time increased with increase of n{sub e-fir}. The plasma stored energy of 530 kJ with n{sub e-fir} = 3.2 × 10{sup 19} m{sup −3}, which is 1.7 times larger than the previous record in the ECRH plasma in the LHD, has been successfully achieved.

  4. Power spectral density specifications for high-power laser systems

    SciTech Connect

    Lawson, J.K.; Aikens, D.A.; English, R.E. Jr.; Wolfe, C.R.

    1996-04-22

    This paper describes the use of Fourier techniques to characterize the transmitted and reflected wavefront of optical components. Specifically, a power spectral density, (PSD), approach is used. High power solid-state lasers exhibit non-linear amplification of specific spatial frequencies. Thus, specifications that limit the amplitude of these spatial frequencies are necessary in the design of these systems. Further, NIF optical components have square, rectangular or irregularly shaped apertures with major dimensions up-to 800 mm. Components with non-circular apertures can not be analyzed correctly with Zernicke polynomials since these functions are an orthogonal set for circular apertures only. A more complete and powerful representation of the optical wavefront can be obtained by Fourier analysis in 1 or 2 dimensions. The PSD is obtained from the amplitude of frequency components present in the Fourier spectrum. The shape of a resultant wavefront or the focal spot of a complex multicomponent laser system can be calculated and optimized using PSDs of the individual optical components which comprise the system. Surface roughness can be calculated over a range of spatial scale-lengths by integrating the PSD. Finally, since the optical transfer function (OTF) of the instruments used to measure the wavefront degrades at high spatial frequencies, the PSD of an optical component is underestimated. We can correct for this error by modifying the PSD function to restore high spatial frequency information. The strengths of PSD analysis are leading us to develop optical specifications incorporating this function for the planned National Ignition Facility (NIF).

  5. Structural and Microwave Properties of Silica Xerogel Glass-Ceramic Sintered by Sub-millimeter Wave Heating using a Gyrotron

    NASA Astrophysics Data System (ADS)

    Aripin, H.; Mitsudo, S.; Prima, E. S.; Sudiana, I. N.; Tani, S.; Sako, K.; Fujii, Y.; Saito, T.; Idehara, T.; Sano, S.; Sunendar, B.; Sabchevski, S.

    2012-11-01

    In this paper, we present and discuss experimental results from a microwave sintering of silica glass-ceramics, produced from amorphous silica xerogel extracted from sago waste ash. As a radiation source for a microwave heating a sub-millimeter wave gyrotron (Gyrotron FU CW I) with an output frequency of 300 GHz has been used. The powders of the amorphous silica xerogel have been dry pressed and then sintered at temperatures ranging from 300 °C to 1200 °C. Microwave absorbing properties of the sintered samples were investigated by measuring the dielectric constant, the dielectric loss, and the reflection loss at different frequencies in the interval from 8.2 to 12.4 GHz. Furthermore, the characteristics of the formation process for producing silica glass-ceramics were studied using a Raman Spectroscopy and a Scanning Electron Microscopy (SEM). The results indicate that the samples sintered at 1200 °C are characterized by lower reflection losses and a better transparency due to the formation of a fully crystallized silica glass- ceramic at sufficiently high temperature.

  6. High-Power, High-Temperature Superconductor Technology Development

    NASA Technical Reports Server (NTRS)

    Bhasin, Kul B.

    2005-01-01

    Since the first discovery of high-temperature superconductors (HTS) 10 years ago, the most promising areas for their applications in microwave systems have been as passive components for communication systems. Soon after the discovery, experiments showed that passive microwave circuits made from HTS material exceeded the performance of conventional devices for low-power applications and could be 10 times as small or smaller. However, for superconducting microwave components, high-power microwave applications have remained elusive until now. In 1996, DuPont and Com Dev Ltd. developed high-power superconducting materials and components for communication applications under a NASA Lewis Research Center cooperative agreement, NCC3-344 "High Power High Temperature Superconductor (HTS) Technology Development." The agreement was cost shared between the Defense Advanced Research Projects Agency's (DARPA) Technology Reinvestment Program Office and the two industrial partners. It has the following objectives: 1) Material development and characterization for high-power HTS applications; 2) Development and validation of generic high-power microwave components; 3) Development of a proof-of-concept model for a high-power six-channel HTS output multiplexer.

  7. High power diode laser Master Oscillator-Power Amplifier (MOPA)

    NASA Technical Reports Server (NTRS)

    Andrews, John R.; Mouroulis, P.; Wicks, G.

    1994-01-01

    High power multiple quantum well AlGaAs diode laser master oscillator - power amplifier (MOPA) systems were examined both experimentally and theoretically. For two pass operation, it was found that powers in excess of 0.3 W per 100 micrometers of facet length were achievable while maintaining diffraction-limited beam quality. Internal electrical-to-optical conversion efficiencies as high as 25 percent were observed at an internal amplifier gain of 9 dB. Theoretical modeling of multiple quantum well amplifiers was done using appropriate rate equations and a heuristic model of the carrier density dependent gain. The model gave a qualitative agreement with the experimental results. In addition, the model allowed exploration of a wider design space for the amplifiers. The model predicted that internal electrical-to-optical conversion efficiencies in excess of 50 percent should be achievable with careful system design. The model predicted that no global optimum design exists, but gain, efficiency, and optical confinement (coupling efficiency) can be mutually adjusted to meet a specific system requirement. A three quantum well, low optical confinement amplifier was fabricated using molecular beam epitaxial growth. Coherent beam combining of two high power amplifiers injected from a common master oscillator was also examined. Coherent beam combining with an efficiency of 93 percent resulted in a single beam having diffraction-limited characteristics. This beam combining efficiency is a world record result for such a system. Interferometric observations of the output of the amplifier indicated that spatial mode matching was a significant factor in the less than perfect beam combining. Finally, the system issues of arrays of amplifiers in a coherent beam combining system were investigated. Based upon experimentally observed parameters coherent beam combining could result in a megawatt-scale coherent beam with a 10 percent electrical-to-optical conversion efficiency.

  8. CLIC RF High Power Production Testing Program

    SciTech Connect

    Syratchev, I.; Riddone, G.; Tantawi, S.G.; /SLAC

    2011-11-02

    The CLIC Power Extraction and Transfer Structure (PETS) is a passive microwave device in which bunches of the drive beam interact with the impedance of the periodically loaded waveguide and generate RF power for the main linac accelerating structure. The demands on the high power production ({approx} 150 MW) and the needs to transport the 100 A drive beam for about 1 km without losses, makes the PETS design rather unique and the operation very challenging. In the coming year, an intense PETS testing program will be implemented. The target is to demonstrate the full performance of the PETS operation. The testing program overview and test results available to date are presented.

  9. High-frequency-link based power electronics in power systems

    NASA Astrophysics Data System (ADS)

    Sree, Hari

    Power quality has become a serious concern to many utility customers in recent times. Among the many power quality problems, voltage sags are one of the most common and most mischievous, affecting industrial and commercial customers. They are primarily caused by power system faults at the transmission and distribution level, and thus, are mostly unavoidable. Their effect depends on the equipment sensitivities to the magnitude and duration of these sags and each can cost an industry up to few million dollars. To counter these limitations, many solutions at the customer end have been proposed which include Constant Voltage Transformers (CVT's), UPS and line frequency transformer based Dynamic Voltage Restorer (DVR). These approaches have their respective limitations with regard to capabilities, size and cost. This research proposes a new approach to mitigating these voltage sags involving the use of high frequency transformer link. Suitable switching logic and control strategies have been implemented. The proposed approach in a one-phase application is verified with computer simulations and by a hardware proof-of-concept prototype. Application to three-phase system is verified through simulations. Application of high frequency transformers in other utility applications such as active filters and static compensators is also looked at.

  10. High power infrared QCLs: advances and applications

    NASA Astrophysics Data System (ADS)

    Patel, C. Kumar N.

    2012-01-01

    QCLs are becoming the most important sources of laser radiation in the midwave infrared (MWIR) and longwave infrared (LWIR) regions because of their size, weight, power and reliability advantages over other laser sources in the same spectral regions. The availability of multiwatt RT operation QCLs from 3.5 μm to >16 μm with wall plug efficiency of 10% or higher is hastening the replacement of traditional sources such as OPOs and OPSELs in many applications. QCLs can replace CO2 lasers in many low power applications. Of the two leading groups in improvements in QCL performance, Pranalytica is the commercial organization that has been supplying the highest performance QCLs to various customers for over four year. Using a new QCL design concept, the non-resonant extraction [1], we have achieved CW/RT power of >4.7 W and WPE of >17% in the 4.4 μm - 5.0 μm region. In the LWIR region, we have recently demonstrated QCLs with CW/RT power exceeding 1 W with WPE of nearly 10 % in the 7.0 μm-10.0 μm region. In general, the high power CW/RT operation requires use of TECs to maintain QCLs at appropriate operating temperatures. However, TECs consume additional electrical power, which is not desirable for handheld, battery-operated applications, where system power conversion efficiency is more important than just the QCL chip level power conversion efficiency. In high duty cycle pulsed (quasi-CW) mode, the QCLs can be operated without TECs and have produced nearly the same average power as that available in CW mode with TECs. Multiwatt average powers are obtained even in ambient T>70°C, with true efficiency of electrical power-to-optical power conversion being above 10%. Because of the availability of QCLs with multiwatt power outputs and wavelength range covering a spectral region from ~3.5 μm to >16 μm, the QCLs have found instantaneous acceptance for insertion into multitude of defense and homeland security applications, including laser sources for infrared

  11. The Jefferson Lab High Power Light Source

    SciTech Connect

    James R. Boyce

    2006-01-01

    Jefferson Lab has designed, built and operated two high average power free-electron lasers (FEL) using superconducting RF (SRF) technology and energy recovery techniques. Between 1999-2001 Jefferson Lab operated the IR Demo FEL. This device produced over 2 kW in the mid-infrared, in addition to producing world record average powers in the visible (50 W), ultraviolet (10 W) and terahertz range (50 W) for tunable, short-pulse (< ps) light. This FEL was the first high power demonstration of an accelerator configuration that is being exploited for a number of new accelerator-driven light source facilities that are currently under design or construction. The driver accelerator for the IR Demo FEL uses an Energy Recovered Linac (ERL) configuration that improves the energy efficiency and lowers both the capital and operating cost of such devices by recovering most of the power in the spent electron beam after optical power is extracted from the beam. The IR Demo FEL was de-commissioned in late 2001 for an upgraded FEL for extending the IR power to over 10 kW and the ultraviolet power to over 1 kW. The FEL Upgrade achieved 10 kW of average power in the mid-IR (6 microns) in July of 2004, and its IR operation currently is being extended down to 1 micron. In addition, we have demonstrated the capability of on/off cycling and recovering over a megawatt of electron beam power without diminishing machine performance. A complementary UV FEL will come on-line within the next year. This paper presents a summary of the FEL characteristics, user community accomplishments with the IR Demo, and planned user experiments.

  12. The NASA CSTI High Capacity Power Program

    NASA Technical Reports Server (NTRS)

    Winter, Jerry M.

    1991-01-01

    The SP-100 program was established in 1983 by DOD, DOE, and NASA as a joint program to develop the technology necessary for space nuclear power systems for military and civil applications. During 1986 and 1987, the NASA Advanced Technology Program was responsible for maintaining the momentum of promising technology advancement efforts started during Phase 1 of SP-100 and to strengthen, in key areas, the chances for successful development and growth capability of space nuclear reactor power systems for future space applications. In 1988, the NASA Advanced Technology Program was incorporated into NASA's new Civil Space Technology Initiative (CSTI). The CSTI program was established to provide the foundation for technology development in automation and robotics, information, propulsion, and power. The CSTI High Capacity Power Program builds on the technology efforts of the SP-100 program, incorporates the previous NASA advanced technology project, and provides a bridge to the NASA exploration technology programs. The elements of CSTI high capacity power development include conversion systems: Stirling and thermoelectric, thermal management, power management, system diagnostics, and environmental interactions. Technology advancement in all areas, including materials, is required to provide the growth capability, high reliability, and 7 to 10 year lifetime demanded for future space nuclear power systems. The overall program will develop and demonstrate the technology base required to provide a wide range of modular power systems while minimizing the impact of day/night operations as well as attitudes and distance from the Sun. Significant accomplishments in all of the program elements will be discussed, along with revised goals and project timelines recently developed.

  13. The NASA CSTI High Capacity Power Program

    SciTech Connect

    Winter, J.M.

    1994-09-01

    The SP-100 program was established in 1983 by DOD, DOE, and NASA as a joint program to develop the technology necessary for space nuclear power systems for military and civil applications. During 1986 and 1987, the NASA Advanced Technology Program was responsible for maintaining the momentum of promising technology advancement efforts started during Phase I of SP-100 and to strengthen, in key areas, the chances for successful development and growth capability of space nuclear reactor power systems for future space applications. In 1988, the NASA Advanced Technology Program was incorporated into NASA`s new Civil Space Technology Initiative (CSTI). The CSTI program was established to provide the foundation for technology development in automation and robotics, information, propulsion, and power. The CSTI High Capacity Power Program builds on the technology efforts of the SP-100 program, incorporates the previous NASA advanced technology project, and provides a bridge to the NASA exploration technology programs. The elements of CSTI high capacity power development include conversion systems - Stirling and thermoelectric, thermal management, power management, system diagnostics, and environmental interactions. Technology advancement in all areas, including materials, is required to provide the growth capability, high reliability and 7 to 10 years lifetime demanded for future space nuclear power systems. The overall program will develop and demonstrate the technology base required to provide a wide range of modular power systems while minimizing the impact of day/night operation as well as attitudes and distance from the Sun. Significant accomplishments in all of the program elements will be discussed, along with revised goals and project timelines recently developed.

  14. NASA GRC High Power Electromagnetic Thruster Program

    NASA Astrophysics Data System (ADS)

    Lapointe, Michael R.; Pencil, Eric J.

    2004-02-01

    Interest in high power electromagnetic propulsion has been revived to support a variety of future space missions, such as platform maneuvering in low earth orbit, cost-effective cargo transport to lunar and Mars bases, asteroid and outer planet sample return, deep space robotic exploration, and piloted missions to Mars and the outer planets. Magnetoplasmadynamic (MPD) thrusters have demonstrated, at the laboratory level, the capacity to process megawatts of electrical power while providing higher thrust densities than current electric propulsion systems. The ability to generate higher thrust densities permits a reduction in the number of thrusters required to perform a given mission and alleviates the system complexity associated with multiple thruster arrays. The specific impulse of an MPD thruster can be optimized to meet given mission requirements, from a few thousand seconds with heavier gas propellants up to 10,000 seconds with hydrogen propellant. In support of NASA space science and human exploration strategic initiatives, Glenn Research Center is developing and testing pulsed, MW-class MPD thrusters as a prelude to long-duration high power thruster tests. The research effort includes numerical modeling of self-field and applied-field MPD thrusters and experimental testing of quasi-steady MW-class MPD thrusters in a high power pulsed thruster facility. This paper provides an overview of the GRC high power electromagnetic thruster program and the pulsed thruster test facility.

  15. Technology development for high power induction accelerators

    SciTech Connect

    Birx, D.L.; Reginato, L.L.

    1985-06-11

    The marriage of Induction Linac technology with Nonlinear Magnetic Modulators has produced some unique capabilities. It appears possible to produce electron beams with average currents measured in amperes, at gradients exceeding 1 MeV/meter, and with power efficiencies approaching 50%. A 2 MeV, 5 kA electron accelerator has been constructed at the Lawrence Livermore National Laboratory (LLNL) to demonstrate these concepts and to provide a test facility for high brightness sources. The pulse drive for the accelerator is based on state-of-the-art magnetic pulse compressors with very high peak power capability, repetition rates exceeding a kilohertz and excellent reliability.

  16. High voltage solar cell power generating system

    NASA Technical Reports Server (NTRS)

    Levy, E., Jr.; Opjorden, R. W.; Hoffman, A. C.

    1974-01-01

    A laboratory solar power system regulated by on-panel switches has been delivered for operating high power (3 kW), high voltage (15,000 volt) loads (communication tubes, ion thrusters). The modular system consists of 26 solar arrays, each with an integral light source and cooling system. A typical array contains 2,560 series-connected cells. Each light source consists of twenty 500-watt tungsten iodide lamps providing plus or minus 5 percent uniformity at one solar constant. An array temperature of less than 40 C is achieved using an infrared filter, a water-cooled plate, a vacuum hold-down system, and air flushing.

  17. Low-order-mode harmonic multiplying gyrotron traveling-wave amplifier in W band

    SciTech Connect

    Yeh, Y. S.; Chen, C. H.; Yang, S. J.; Lai, C. H.; Lin, T. Y.; Lo, Y. C.; Hong, J. W.; Hung, C. L.; Chang, T. H.

    2012-09-15

    Harmonic multiplying gyrotron traveling-wave amplifiers (gyro-TWAs) allow for magnetic field reduction and frequency multiplication. To avoid absolute instabilities, this work proposes a W-band harmonic multiplying gyro-TWA operating at low-order modes. By amplifying a fundamental harmonic TE{sub 11} drive wave, the second harmonic component of the beam current initiates a TE{sub 21} wave to be amplified. Absolute instabilities in the gyro-TWA are suppressed by shortening the interaction circuit and increasing wall losses. Simulation results reveal that compared with Ka-band gyro-TWTs, the lower wall losses effectively suppress absolute instabilities in the W-band gyro-TWA. However, a global reflective oscillation occurs as the wall losses decrease. Increasing the length or resistivity of the lossy section can reduce the feedback of the oscillation to stabilize the amplifier. The W-band harmonic multiplying gyro-TWA is predicted to yield a peak output power of 111 kW at 98 GHz with an efficiency of 25%, a saturated gain of 26 dB, and a bandwidth of 1.6 GHz for a 60 kV, 7.5 A electron beam with an axial velocity spread of 8%.

  18. Industrial high-power diode lasers: reliability, power, and brightness

    NASA Astrophysics Data System (ADS)

    Strohmaier, Stephan; An, Haiyan; Vethake, Thilo

    2012-03-01

    High power semiconductor lasers, single emitters and bars are developing fast. During the last decade key parameters of diode lasers, such as beam quality, power, spatial and spectral brightness, efficiency as well as reliability have been greatly improved. However, often only individual parameters have been optimized, accepting an adverse effect in the other key parameters. For demanding industrial applications in most cases it is not sufficient to achieve a record value in one of the parameters, on the contrary it is necessary to optimize all the mentioned parameters simultaneously. To be able to achieve this objective it is highly advantageous to have insight in the whole process chain, from epitaxial device structure design and growth, wafer processing, mounting, heat sink design, product development and finally the customer needs your final product has to fulfill. In this publication an overview of recent advances in industrial diode lasers at TRUMPF will be highlighted enabling advanced applications for both high end pump sources as well as highest brightness direct diode.

  19. High to ultra-high power electrical energy storage.

    PubMed

    Sherrill, Stefanie A; Banerjee, Parag; Rubloff, Gary W; Lee, Sang Bok

    2011-12-14

    High power electrical energy storage systems are becoming critical devices for advanced energy storage technology. This is true in part due to their high rate capabilities and moderate energy densities which allow them to capture power efficiently from evanescent, renewable energy sources. High power systems include both electrochemical capacitors and electrostatic capacitors. These devices have fast charging and discharging rates, supplying energy within seconds or less. Recent research has focused on increasing power and energy density of the devices using advanced materials and novel architectural design. An increase in understanding of structure-property relationships in nanomaterials and interfaces and the ability to control nanostructures precisely has led to an immense improvement in the performance characteristics of these devices. In this review, we discuss the recent advances for both electrochemical and electrostatic capacitors as high power electrical energy storage systems, and propose directions and challenges for the future. We asses the opportunities in nanostructure-based high power electrical energy storage devices and include electrochemical and electrostatic capacitors for their potential to open the door to a new regime of power energy.

  20. High power electronic devices cooling at minimum ventilation power

    NASA Astrophysics Data System (ADS)

    Fabbri, Giampietro

    2008-01-01

    In the present work, the cooling of a high power electronic device is studied. The device is in contact with a heat dissipator crossed by air. The air motion through the dissipator is forced by a fan whose supplied power is to be minimized. A finite element dynamic model of the dissipator is firstly created, taking geometrical and physical properties into account as well as steady state experimental data. A simplified model is then obtained, which reproduces the time pattern of the maximum dissipator temperature as a response of the thermal flux removed from the electronic device and the mass flow rate of the air. Afterwards, the simplified model is utilized to build a control system which allows the electronic device to be correctly cooled at minimum air ventilation power during transition to steady states. Genetic algorithms are used to find the parameters of the finite element model and of the control system. Some functioning conditions of the electronic device are lastly considered and discussed.

  1. High-power microwave development in Russia

    NASA Astrophysics Data System (ADS)

    Gauthier, Sylvain

    1995-03-01

    This is a survey of Russian research and development in high-power microwave (HPM) sources. It emphasizes those sources of nanoseconds pulse duration time which have potential weapon as well as radar applications. It does not cover the whole range of Russian HPM research and development but concentrates on those aspects which may lead to military applications. Russian investigators have achieved many world firsts in HPM generation; for example, a multiwave Cerenkov generator with a peak output power of 15 gigawatts. Their successes are based on their impressive capability in pulsed power technology which has yielded high-current generators of terawatt peak power. They have transformed the energy of these currents into microwave radiation using tubes of both conventional and novel designs exploiting relativistic electron beams. Recently, the development of high-current mini-accelerators has moved relativistic electron-beam (REB) HPM generation out of the laboratory and enabled the development of deployable military systems with peak powers in the gigawatt range. As a result, they now see development of a REB-based radar systems as one of the most promising directions in radar systems. Details of such a system are described and the implications for HPM weapons are considered.

  2. Ultra high vacuum broad band high power microwave window

    DOEpatents

    Nguyen-Tuong, V.; Dylla, H.F. III

    1997-11-04

    An improved high vacuum microwave window has been developed that utilizes high density polyethylene coated on two sides with SiOx, SiNx, or a combination of the two. The resultant low dielectric and low loss tangent window creates a low outgassing, low permeation seal through which broad band, high power microwave energy may be passed. No matching device is necessary and the sealing technique is simple. The features of the window are broad band transmission, ultra-high vacuum compatibility with a simple sealing technique, low voltage standing wave ratio, high power transmission and low cost. 5 figs.

  3. Ultra high vacuum broad band high power microwave window

    DOEpatents

    Nguyen-Tuong, Viet; Dylla, III, Henry Frederick

    1997-01-01

    An improved high vacuum microwave window has been developed that utilizes high density polyethylene coated on two sides with SiOx, SiNx, or a combination of the two. The resultant low dielectric and low loss tangent window creates a low outgassing, low permeation seal through which broad band, high power microwave energy may be passed. No matching device is necessary and the sealing technique is simple. The features of the window are broad band transmission, ultra-high vacuum compatibility with a simple sealing technique, low voltage standing wave ratio, high power transmission and low cost.

  4. Operation of Power Grids with High Penetration of Wind Power

    NASA Astrophysics Data System (ADS)

    Al-Awami, Ali Taleb

    The integration of wind power into the power grid poses many challenges due to its highly uncertain nature. This dissertation involves two main components related to the operation of power grids with high penetration of wind energy: wind-thermal stochastic dispatch and wind-thermal coordinated bidding in short-term electricity markets. In the first part, a stochastic dispatch (SD) algorithm is proposed that takes into account the stochastic nature of the wind power output. The uncertainty associated with wind power output given the forecast is characterized using conditional probability density functions (CPDF). Several functions are examined to characterize wind uncertainty including Beta, Weibull, Extreme Value, Generalized Extreme Value, and Mixed Gaussian distributions. The unique characteristics of the Mixed Gaussian distribution are then utilized to facilitate the speed of convergence of the SD algorithm. A case study is carried out to evaluate the effectiveness of the proposed algorithm. Then, the SD algorithm is extended to simultaneously optimize the system operating costs and emissions. A modified multi-objective particle swarm optimization algorithm is suggested to identify the Pareto-optimal solutions defined by the two conflicting objectives. A sensitivity analysis is carried out to study the effect of changing load level and imbalance cost factors on the Pareto front. In the second part of this dissertation, coordinated trading of wind and thermal energy is proposed to mitigate risks due to those uncertainties. The problem of wind-thermal coordinated trading is formulated as a mixed-integer stochastic linear program. The objective is to obtain the optimal tradeoff bidding strategy that maximizes the total expected profits while controlling trading risks. For risk control, a weighted term of the conditional value at risk (CVaR) is included in the objective function. The CVaR aims to maximize the expected profits of the least profitable scenarios, thus

  5. Power Budget Analysis for High Altitude Airships

    NASA Technical Reports Server (NTRS)

    Choi, Sang H.; Elliott, James R.; King, Glen C.

    2006-01-01

    The High Altitude Airship (HAA) has various potential applications and mission scenarios that require onboard energy harvesting and power distribution systems. The energy source considered for the HAA s power budget is solar photon energy that allows the use of either photovoltaic (PV) cells or advanced thermoelectric (ATE) converters. Both PV cells and an ATE system utilizing high performance thermoelectric materials were briefly compared to identify the advantages of ATE for HAA applications in this study. The ATE can generate a higher quantity of harvested energy than PV cells by utilizing the cascaded efficiency of a three-staged ATE in a tandem mode configuration. Assuming that each stage of ATE material has the figure of merit of 5, the cascaded efficiency of a three-staged ATE system approaches the overall conversion efficiency greater than 60%. Based on this estimated efficiency, the configuration of a HAA and the power utility modules are defined.

  6. Ionospheric Stimulation By High Power Radio Waves

    NASA Astrophysics Data System (ADS)

    Minami, S.; Nishino, M.; Suzuki, Y.; Sato, S.; Tanikawa, T.; Nakamura, Y.; Wong, A. Y.

    1999-01-01

    We have performed an experiment to artificially stimulate the ionosphere using higher power radio waves at the HIPAS (High Power Auroral Stimulation) facility in Alaska. A radio transmission of 2.85 MHz was made at 80 MW (ERP). Diagnostics were made at the other site located 35 km from the transmission site. The results of cross-correlating the excited HF wave and observed with an 8 channel, 30 MHz scanning cosmic radio noise absorption records revealed the excited height of 90 km. Also atmospheric pressure waves observed on the ground show evident propagation of pressure waves which are generated in the ionosphere by the high-power HF wave. The results determine the excitation height of 90 km in the ionosphere and show evidence of the pressure wave coupling between the ionosphere and the lower atmosphere for periods of 10 min

  7. a High-Power Microwave Transmission and Launching System for Plasma Heating on the Ornl ATF Experiment.

    NASA Astrophysics Data System (ADS)

    Bigelow, Timothy Stuart

    1990-01-01

    A high power microwave transmission and launching system has been developed for Electron Cyclotron Heating (ECH) of plasmas in the Advanced Toroidal Facility (ATF) fusion confinement experiment at Oak Ridge National Laboratory. Microwave power is generated by two 53 GHz, 200 KW cw gyrotron tubes. A waveguide transmission and launching system for each tube has been designed and built with the goal of depositing the maximum amount of power at the center of the plasma. Centralized deposition of the microwave power is possible at high frequencies by use of a launcher with a narrow radiated beamwidth and carefully controlled polarization to couple to electrons at the cyclotron resonant surface. In order for the transmission systems to operate at this high frequency and power level, highly over-moded waveguides have been used to reduce losses and arcing. To produce a narrow, polarized beam, the waveguide system was designed for minimum parasitic mode conversion so that the launcher can operate with nearly a single input mode. Several waveguide components were developed for the waveguide system including: a waveguide mode analyzing directional coupler, a rippled-wall mode converter, improved miter bends, and vacuum pumpout sections. To determine the mode purity of these components and efficiency of the system, laboratory measurement techniques for over-moded waveguide component evaluation were developed. A polarization controlled beam launcher was developed which launches a ~ 12 cm (-20 dB) beamwidth linearly polarized beam. The plane of polarization can be rotated to allow optimum coupling to either extra-ordinary or ordinary plasma waves. The transmission and launching system performed reliably. Modeling of electromagnetic wave propagation in the ATF plasma and measurement of beam absorption and plasma parameters were performed to determine the overall effectiveness of the ECH system. A coupled-mode wave propagation code was written to investigate the effect of magnetic

  8. High Average Power, High Energy Short Pulse Fiber Laser System

    SciTech Connect

    Messerly, M J

    2007-11-13

    Recently continuous wave fiber laser systems with output powers in excess of 500W with good beam quality have been demonstrated [1]. High energy, ultrafast, chirped pulsed fiber laser systems have achieved record output energies of 1mJ [2]. However, these high-energy systems have not been scaled beyond a few watts of average output power. Fiber laser systems are attractive for many applications because they offer the promise of high efficiency, compact, robust systems that are turn key. Applications such as cutting, drilling and materials processing, front end systems for high energy pulsed lasers (such as petawatts) and laser based sources of high spatial coherence, high flux x-rays all require high energy short pulses and two of the three of these applications also require high average power. The challenge in creating a high energy chirped pulse fiber laser system is to find a way to scale the output energy while avoiding nonlinear effects and maintaining good beam quality in the amplifier fiber. To this end, our 3-year LDRD program sought to demonstrate a high energy, high average power fiber laser system. This work included exploring designs of large mode area optical fiber amplifiers for high energy systems as well as understanding the issues associated chirped pulse amplification in optical fiber amplifier systems.

  9. Continuous high-power gas lasers

    NASA Technical Reports Server (NTRS)

    Hertzberg, A.

    1979-01-01

    High power gas laser concepts are discussed with emphasis on the role that fluid mechanics has played in their development. Consideration is given to three types of systems: gasdynamic lasers, HF supersonic diffusion lasers, and electric discharge lasers. Flow effects and aerodynamic windows in such lasers are briefly described. Future directions of research are outlined.

  10. CHALLENGES FACING HIGH POWER PROTON ACCELERATORS

    SciTech Connect

    Plum, Michael A

    2013-01-01

    This presentation will provide an overview of the challenges of high power proton accelerators such as SNS, J-PARC, etc., and what we have learned from recent experiences. Beam loss mechanisms and methods to mitigate beam loss will also be discussed.

  11. BEAM INSTRUMENTATION FOR HIGH POWER HADRON BEAMS

    SciTech Connect

    Aleksandrov, Alexander V

    2013-01-01

    This presentation will describe developments in the beam diagnostics which support the understanding and operation of high power hadron accelerators. These include the measurement of large dynamic range transverse and longitudinal beam profiles, beam loss detection, and non-interceptive diagnostics.

  12. Targets for high power neutral beams

    SciTech Connect

    Kim, J.

    1980-01-01

    Stopping high-power, long-pulse beams is fast becoming an engineering challenge, particularly in neutral beam injectors for heating magnetically confined plasmas. A brief review of neutral beam target technology is presented along with heat transfer calculations for some selected target designs.

  13. High power diode pumped alkali vapor lasers

    NASA Astrophysics Data System (ADS)

    Zweiback, J.; Krupke, B.

    2008-05-01

    Diode pumped alkali lasers have developed rapidly since their first demonstration. These lasers offer a path to convert highly efficient, but relatively low brightness, laser diodes into a single high power, high brightness beam. General Atomics has been engaged in the development of DPALs with scalable architectures. We have examined different species and pump characteristics. We show that high absorption can be achieved even when the pump source bandwidth is several times the absorption bandwidth. In addition, we present experimental results for both potassium and rubidium systems pumped with a 0.2 nm bandwidth alexandrite laser. These data show slope efficiencies of 67% and 72% respectively.

  14. High Average Power Diode Pumped Solid State Lasers: Power Scaling With High Spectral and Spatial Coherence

    DTIC Science & Technology

    2009-03-30

    thulium upper laser level through cross-relaxation [5, 6]. Phosphate glass is also an attractive host for high-power single-frequency 2-µm Tm3+- doped...12, (8), p. 512 (1976) [4] D. G. Lancaster, A. Sabella, A. Hemming, S. Bennetts, S.D. Jackson, “Power-scalable thulium and holmium fibre lasers...efficient high-power thulium -doped germanate glass fiber laser,” Optics Letters, 32, (6), p. 638 (2007) [6] S. Jackson, “Power scaling method for 2-μm

  15. Scaling blackbody laser to high powers

    NASA Technical Reports Server (NTRS)

    Deyoung, R. J.

    1985-01-01

    Lasers pumped by solar heated blackbody cavities have potential for multimegawatt power beaming in space. There are two basic types of blackbody lasers; cavity pumped and transfer system. The transfer system is judged to be more readily scalable to high power. In this system, either N2 or CO is heated by the blackbody cavity then transferred into the laser cavity where CO2 is injected. The N2-CO2 system was demonstrated, but probably has lower efficiency than the CO-CO system. The characteristics of potential transfer laser systems are outlined.

  16. MI high power operation and future plans

    SciTech Connect

    Kourbanis, Ioanis; /Fermilab

    2008-09-01

    Fermilab's Main Injector on acceleration cycles to 120 GeV has been running a mixed mode operation delivering beam to both the antiproton source for pbar production and to the NuMI[1] target for neutrino production since 2005. On January 2008 the slip stacking process used to increase the beam to the pbar target was expanded to include the beam to the NuMI target increasing both the beam intensity and power. The current high power MI operation will be described along with the near future plans.

  17. High Efficiency Microwave Power Amplifier (HEMPA) Design

    NASA Technical Reports Server (NTRS)

    Sims, W. Herbert

    2004-01-01

    This paper will focus on developing an exotic switching technique that enhances the DC-to-RF conversion efficiency of microwave power amplifiers. For years, switching techniques implemented in the 10 kHz to 30 MHz region have resulted in DC-to-RF conversion efficiencies of 90-95-percent. Currently amplifier conversion efficiency, in the 2-3 GHz region approaches, 10-20-percent. Using a combination of analytical modeling and hardware testing, a High Efficiency Microwave Power Amplifier was built that demonstrated conversion efficiencies four to five times higher than current state of the art.

  18. High power bipolar lead-acid batteries

    NASA Technical Reports Server (NTRS)

    Halpert, Gerald; Attia, Alan

    1991-01-01

    The Jet Propulsion Laboratory (JPL), with interest in advanced energy storage systems, is involved in the development of a unique lead acid battery design. This battery utilizes the same combination of lead and lead dioxide active materials present in the automobile starting battery. However, it can provide 2 to 10 times the power while minimizing volume and weight. The typical starting battery is described as a monopolar type using one current collector for both the positive and negative plate of adjacent cells. Specific power as high as 2.5 kW/kg was projected for 30 second periods with as many as 2000 recharge cycles.

  19. High Power Experiments in VX-10

    NASA Astrophysics Data System (ADS)

    Squire, Jared; Chang-Diaz, Franklin; Araya-Chacon, Gonzalo; Jacobson, Verlin; Glover, Tim; McCaskill, Greg; Vera, Jerry; Baity, Wally; Carter, Mark; Goulding, Rick

    2004-11-01

    In the Advanced Space Propulsion Laboratory VASIMR experiment (VX-10) we have measured a plasma flux to input gas rate ratio near 100power levels up to 10 kW. The plasma source is being developed to supply a dense target with a high degree of ionization for ICRF acceleration of the flow in an expanding magnetic field. An upgrade to 20 kW helicon operations is underway. Recent results at Oak Ridge National Laboratory show enhanced efficiency operation with a high power density, over 5 kW in a 5 cm diameter tube. Our helicon is presently 9 cm in diameter, so comparable power densities will be achieved in VX-10. We have operated with a Boswell double-saddle antenna design with a magnetic cusp just upstream of the antenna. Recently we have converted to a double-helix half-turn antenna. ICRF experiments have been performed as 1.5 kW that show significant plasma flow acceleration, doubling the flow velocity. A 10 kW ICRF upgrade is underway. Results from high total power ( ˜ 30 kW) experiments with this new helicon antenna and ICRF acceleration are presented.

  20. High Power MPD Thruster Performance Measurements

    NASA Technical Reports Server (NTRS)

    LaPointe, Michael R.; Strzempkowski, Eugene; Pencil, Eric

    2004-01-01

    High power magnetoplasmadynamic (MPD) thrusters are being developed as cost effective propulsion systems for cargo transport to lunar and Mars bases, crewed missions to Mars and the outer planets, and robotic deep space exploration missions. Electromagnetic MPD thrusters have demonstrated, at the laboratory level, the ability to process megawatts of electrical power while providing significantly higher thrust densities than electrostatic electric propulsion systems. The ability to generate higher thrust densities permits a reduction in the number of thrusters required to perform a given mission, and alleviates the system complexity associated with multiple thruster arrays. The specific impulse of an MPD thruster can be optimized to meet given mission requirements, from a few thousand seconds with heavier gas propellants up to 10,000 seconds with hydrogen propellant. In support of programs envisioned by the NASA Office of Exploration Systems, Glenn Research Center is developing and testing quasi-steady MW-class MPD thrusters as a prelude to steady state high power thruster tests. This paper provides an overview of the GRC high power pulsed thruster test facility, and presents preliminary performance data for a quasi-steady baseline MPD thruster geometry.

  1. Lifetime Estimation of High Power White LEDs

    NASA Astrophysics Data System (ADS)

    Ishizaki, Shinya; Kimura, Hideyoshi; Sugimoto, Masaru

    We have developed a high power and long lifetime white LED module which can be used in general lighting applications. Since the materials in the package are very robust at high temperatures, the device can be operated at junction temperatures (Tj) over 250°C. Moreover, the thermal resistance of the package is less than 20°C/W. Therefore the device can be operated at input power as high as 2.4 W, making it possible to shorten the duration of accelerated lifetime tests. An acceleration ratio greater than 100 has been achieved. Assuming a thermally activated degradation process and applying the Arrhenius model, the LED chip lifetime (defined as a 50% reduction in luminous flux) is determined to be 40,000 hours for a Tj of 130°C. The activation energy of the degradation process was determined to be 1.55 eV.

  2. High power DUV lasers for material processing

    NASA Astrophysics Data System (ADS)

    Mimura, Toshio; Kakizaki, Kouji; Oizumi, Hiroaki; Kobayashi, Masakazu; Fujimoto, Junichi; Matsunaga, Takashi; Mizoguchi, Hakaru

    2016-11-01

    A frontier in laser machining has been required by material processing in DUV region because it is hard to get high power solid-state lasers in this spectral region. DUV excimer lasers are the only solution, and now the time has come to examine the new applications of material processing with DUV excimer lasers. The excimer lasers at 193nm and 248nm have been used in the semiconductor manufacturing for long years, and have field-proven stability and reliability. The high photon energy of 6.4 eV at 193nm is expected to interact directly with the chemical bond of hard-machining materials, such as CFRP, diamond and tempered glasses. We report the latest results of material processing by 193nm high power DUV laser.

  3. High power density solid oxide fuel cells

    DOEpatents

    Pham, Ai Quoc; Glass, Robert S.

    2004-10-12

    A method for producing ultra-high power density solid oxide fuel cells (SOFCs). The method involves the formation of a multilayer structure cells wherein a buffer layer of doped-ceria is deposited intermediate a zirconia electrolyte and a cobalt iron based electrode using a colloidal spray deposition (CSD) technique. For example, a cobalt iron based cathode composed of (La,Sr)(Co,Fe)O (LSCF) may be deposited on a zirconia electrolyte via a buffer layer of doped-ceria deposited by the CSD technique. The thus formed SOFC have a power density of 1400 mW/cm.sup.2 at 600.degree. C. and 900 mW/cm.sup.2 at 700.degree. C. which constitutes a 2-3 times increased in power density over conventionally produced SOFCs.

  4. High average power linear induction accelerator development

    SciTech Connect

    Bayless, J.R.; Adler, R.J.

    1987-07-01

    There is increasing interest in linear induction accelerators (LIAs) for applications including free electron lasers, high power microwave generators and other types of radiation sources. Lawrence Livermore National Laboratory has developed LIA technology in combination with magnetic pulse compression techniques to achieve very impressive performance levels. In this paper we will briefly discuss the LIA concept and describe our development program. Our goals are to improve the reliability and reduce the cost of LIA systems. An accelerator is presently under construction to demonstrate these improvements at an energy of 1.6 MeV in 2 kA, 65 ns beam pulses at an average beam power of approximately 30 kW. The unique features of this system are a low cost accelerator design and an SCR-switched, magnetically compressed, pulse power system. 4 refs., 7 figs.

  5. High-Power, High-Thrust Ion Thruster (HPHTion)

    NASA Technical Reports Server (NTRS)

    Peterson, Peter Y.

    2015-01-01

    Advances in high-power photovoltaic technology have enabled the possibility of reasonably sized, high-specific power solar arrays. At high specific powers, power levels ranging from 50 to several hundred kilowatts are feasible. Ion thrusters offer long life and overall high efficiency (typically greater than 70 percent efficiency). In Phase I, the team at ElectroDynamic Applications, Inc., built a 25-kW, 50-cm ion thruster discharge chamber and fabricated a laboratory model. This was in response to the need for a single, high-powered engine to fill the gulf between the 7-kW NASA's Evolutionary Xenon Thruster (NEXT) system and a notional 25-kW engine. The Phase II project matured the laboratory model into a protoengineering model ion thruster. This involved the evolution of the discharge chamber to a high-performance thruster by performance testing and characterization via simulated and full beam extraction testing. Through such testing, the team optimized the design and built a protoengineering model thruster. Coupled with gridded ion thruster technology, this technology can enable a wide range of missions, including ambitious near-Earth NASA missions, Department of Defense missions, and commercial satellite activities.

  6. Harmonic mode competition in a terahertz gyrotron backward-wave oscillator

    SciTech Connect

    Kao, S. H.; Chiu, C. C.; Chang, P. C.; Wu, K. L.; Chu, K. R.

    2012-10-15

    Electron cyclotron maser interactions at terahertz (THz) frequencies require a high-order-mode structure to reduce the wall loss to a tolerable level. To generate THz radiation, it is also essential to employ cyclotron harmonic resonances to reduce the required magnetic field strength to a value within the capability of the superconducting magnets. However, much weaker harmonic interactions in a high-order-mode structure lead to serious mode competition problems. The current paper addresses harmonic mode competition in the gyrotron backward wave oscillator (gyro-BWO). We begin with a comparative study of the mode formation and oscillation thresholds in the gyro-BWO and gyromonotron. Differences in linear features result in far fewer 'windows' for harmonic operation of the gyro-BWO. Nonlinear consequences of these differences are examined in particle simulations of the multimode competition processes in the gyro-BWO, which shed light on the competition criteria between modes of different as well as the same cyclotron harmonic numbers. The viability of a harmonic gyro-BWO is assessed on the basis of the results obtained.

  7. High-power, high-intensity laser propagation and interactions

    SciTech Connect

    Sprangle, Phillip; Hafizi, Bahman

    2014-05-15

    This paper presents overviews of a number of processes and applications associated with high-power, high-intensity lasers, and their interactions. These processes and applications include: free electron lasers, backward Raman amplification, atmospheric propagation of laser pulses, laser driven acceleration, atmospheric lasing, and remote detection of radioactivity. The interrelated physical mechanisms in the various processes are discussed.

  8. MULTIPULSE - high resolution and high power in one TDEM system

    NASA Astrophysics Data System (ADS)

    Chen, Tianyou; Hodges, Greg; Miles, Philip

    2015-09-01

    An airborne time domain electromagnetic (TEM) system with high resolution and great depth of exploration is desired for geological mapping as well as for mineral exploration. The MULTIPULSE technology enables an airborne TEM system to transmit a high power pulse (a half-sine, for instance) and one or multiple low power pulse(s) (trapezoid or square) within a half-cycle. The high power pulse ensures good depth of exploration and the low power pulse allows a fast transmitter current turn off and earlier off-time measurement thus providing higher frequency signals, which allows higher near-surface resolution and better sensitivity to weak conductors. The power spectrum of the MULTIPULSE waveform comprising a half-sine and a trapezoid pulse clearly shows increased power in the higher frequency range (> ~2.3 kHz) compared to that of a single half-sine waveform. The addition of the low power trapezoid pulse extends the range of the sensitivity 10-fold towards the weak conductors, expanding the geological conductivity range of a system and increasing the scope of its applications. The MULTIPULSE technology can be applied to standard single-pulse airborne TEM systems on both helicopter and fixed-wing. We field tested the HELITEM MULTIPULSE system over a wire-loop in Iroquois Falls, demonstrating the different sensitivity of the high and low power pulses to the overburden and the wire-loop. We also tested both HELITEM and GEOTEM MULTIPULSE systems over a layered oil sand geologic setting in Fort McMurray, Alberta, Canada. The results show comparable shallow geologic resolution of the MULTIPULSE to that of the RESOLVE system while maintaining superior depth of exploration, confirming the increased geological conductivity range of a system employing MULTIPULSE compared to the standard single-pulse systems.

  9. High power induction free electron laser

    NASA Astrophysics Data System (ADS)

    Miller, John L.

    1988-12-01

    Free electron laser (FEL) amplifiers driven by linear induction accelerators have considerable potential for scaling to high average powers. The high electron beam current produces large single pass gain and extraction efficiency, resulting in high peak power. The pulse repetition frequency scaling is limited primarily by accelerator and pulsed power technology. Two FEL experiments have been performed by the Beam Research Program at the Lawrence Livermore National Laboratory (LLNL): The ELF experiment used the 3.5-MeV beam from the Experimental Test Accelerator (ETA) and operated at a wavelength of 8.6 mm. This device achieved an overall single-pass gain of 45 dB, an output power of 1.5 GW, and an extraction efficiency of 35 percent. The microwave beam was confined in a waveguide in the 4-m-long wiggler. The PALADIN experiment uses the 45-MeV beam from the Advanced Test Accelerator and operates at a wavelength of 10.6 micrometers. Using a 15-m long wiggler a single pass gain of 27 dB was produced. Gain guiding was observed to confine the amplified beam within a beam tube that had a Fresnel number less than 1. The results of these experiments have been successfully modeled using a three dimensional particle simulation code. The Program also has ongoing efforts to develop wiggler, pulsed power and induction linac technology. A focus of much of this work is the ETA-II accelerator, which incorporates magnetic pulse compression drivers. One application of ETA-II will be to drive a 1 mm wavelength FEL. The microwave output will be used for a plasma heating experiment.

  10. High Power Induction Free Electron Laser

    NASA Astrophysics Data System (ADS)

    Miller, John L.

    1989-07-01

    Free electron laser (FEL) amplifiers driven by linear induction accelerators have considerable potential for scaling to high average powers. The high electron beam current produces large single pass gain and extraction efficiency, resulting in high peak power. The pulse repetition frequency scaling is limited primarily by accelerator and pulsed power technology. Two FEL experiments have been performed by the Beam Research Program at the Lawrence Livermore National Laboratory (LLNL): The ELF experiment used the 3.5-MeV beam from the Experimental Test Accelerator (ETA) and operated at a wavelength of 8.6 mm. This device achieved an overall single-pass gain of 45 dB, an output power of 1.5 GW, and an extraction efficiency of 35%. The microwave beam was confined in a waveguide in the 4-m-long wiggler. The PALADIN experiment uses the 45-MeV beam from the Advanced Test Accelerator and operates at a wavelength of 10.6 IA. Using a 15-m long wiggler a single pass gain of 27 dB was produced. Gain guiding was observed to confine the amplified beam within a beam tube that had a Fresnel number less than 1. The results of these expriments have been successfully modeled using a three dimensional particle simulation code. The Program also has ongoing efforts to develop wiggler, pulsed power and induction linac technology. A focus of much of this work is the ETA-II accelerator, which incorporates magnetic pulse compression drivers. One application of ETA-II will be to drive a 1 mm wavelength FEL. The microwave output will be used for a plasma heating experiment.

  11. High power THz sources for nonlinear imaging

    SciTech Connect

    Tekavec, Patrick F.; Kozlov, Vladimir G.

    2014-02-18

    Many biological and chemical compounds have unique absorption features in the THz (0.1 - 10 THz) region, making the use of THz waves attractive for imaging in defense, security, biomedical imaging, and monitoring of industrial processes. Unlike optical radiation, THz frequencies can pass through many substances such as paper, clothing, ceramic, etc. with little attenuation. The use of currently available THz systems is limited by lack of highpower, sources as well as sensitive detectors and detector arrays operating at room temperature. Here we present a novel, high power THz source based on intracavity downconverison of optical pulses. The source delivers 6 ps pulses at 1.5 THz, with an average power of >300 μW and peak powers >450 mW. We propose an imaging method based on frequency upconverison that is ideally suited to use the narrow bandwidth and high peak powers produced by the source. By upconverting the THz image to the infrared, commercially available detectors can be used for real time imaging.

  12. High Power UV LED Industrial Curing Systems

    SciTech Connect

    Karlicek, Robert, F., Jr; Sargent, Robert

    2012-05-14

    UV curing is a green technology that is largely underutilized because UV radiation sources like Hg Lamps are unreliable and difficult to use. High Power UV LEDs are now efficient enough to replace Hg Lamps, and offer significantly improved performance relative to Hg Lamps. In this study, a modular, scalable high power UV LED curing system was designed and tested, performing well in industrial coating evaluations. In order to achieve mechanical form factors similar to commercial Hg Lamp systems, a new patent pending design was employed enabling high irradiance at long working distances. While high power UV LEDs are currently only available at longer UVA wavelengths, rapid progress on UVC LEDs and the development of new formulations designed specifically for use with UV LED sources will converge to drive more rapid adoption of UV curing technology. An assessment of the environmental impact of replacing Hg Lamp systems with UV LED systems was performed. Since UV curing is used in only a small portion of the industrial printing, painting and coating markets, the ease of use of UV LED systems should increase the use of UV curing technology. Even a small penetration of the significant number of industrial applications still using oven curing and drying will lead to significant reductions in energy consumption and reductions in the emission of green house gases and solvent emissions.

  13. Feedthrough terminal for high-power cell

    DOEpatents

    Kaun, T.D.

    1982-05-28

    A feedthrough terminal for a high power electrochemical storage cell providing low resistance coupling to the conductive elements therein while isolating the terminal electrode from the highly corrosive environment within the cell is disclosed. A large diameter, cylindrical copper electrode is enclosed in a stainless steel tube with a BN powder feedthrough seal maintained around the stainless steel tube by means of facing insulative bushings and an outer sleeve. One end of the copper conductor is silver-brazed directly to a flat, butterfly bus bar within the cell, with the adjacent end of the surrounding outer feedthrough sleeve welded to the bus bar. A threaded seal is fixedly positioned on a distal portion of the stainless steel tube immediately adjacent the distal insulative bushing so as to compress the feedthrough seal in tight fitting relation around the stainless steel tube in providing a rugged, leak-proof electrical feedthrough terminal for the power cell.

  14. Lifetime estimation of high power lasers

    NASA Astrophysics Data System (ADS)

    Lu, Guoguang; Huang, Yun; En, Yunfei

    2010-11-01

    We have set up a computer automated controlled diode array reliability experiment which can take up 10 to 20 high power cm-bars. Subsequent 25°C and 50°C lifetime tests were completed. According to the method of least squares, the degradation model of cm-bars is obtained. Using the model and weibull++7 software, the extrapolated lifetime of cmbars at 25°C is 7950 hours (2.86×109 shots). We also obtain an acceleration factor 1.88 of resulting in a thermal activation energy of Ea=0.21eV using Arrhenius function. Finally, failure analysis was carried on the gradually degraded devices, the results show that it is the facet degradation which made high power cm-bars degrade during the long time lifetime test.

  15. Industrial Applications of High Power Ultrasonics

    NASA Astrophysics Data System (ADS)

    Patist, Alex; Bates, Darren

    Since the change of the millennium, high-power ultrasound has become an alternative food processing technology applicable to large-scale commercial applications such as emulsification, homogenization, extraction, crystallization, dewatering, low-temperature pasteurization, degassing, defoaming, activation and inactivation of enzymes, particle size reduction, extrusion, and viscosity alteration. This new focus can be attributed to significant improvements in equipment design and efficiency during the late 1990 s. Like most innovative food processing technologies, high-power ultrasonics is not an off-the-shelf technology, and thus requires careful development and scale-up for each and every application. The objective of this chapter is to present examples of ultrasonic applications that have been successful at the commercialization stage, advantages, and limitations, as well as key learnings from scaling up an innovative food technology in general.

  16. Power Supplies for High Energy Particle Accelerators

    NASA Astrophysics Data System (ADS)

    Dey, Pranab Kumar

    2016-06-01

    The on-going research and the development projects with Large Hadron Collider at CERN, Geneva, Switzerland has generated enormous enthusiasm and interest amongst all to know about the ultimate findings on `God's Particle'. This paper has made an attempt to unfold the power supply requirements and the methodology adopted to provide the stringent demand of such high energy particle accelerators during the initial stages of the search for the ultimate particles. An attempt has also been made to highlight the present status on the requirement of power supplies in some high energy accelerators with a view that, precautionary measures can be drawn during design and development from earlier experience which will be of help for the proposed third generation synchrotron to be installed in India at a huge cost.

  17. High power/large area PV systems

    NASA Technical Reports Server (NTRS)

    Wise, Joseph; Baraona, Cosmo

    1987-01-01

    The major photovoltaic power system technology drivers for a wide variety of mission types were ranked. Each technology driver was ranked on a scale of high, medium, or low in terms of importance to each particular mission type. The rankings were then compiled to determine the overall importance of each driver over the entire range of space missions. In each case cost was ranked the highest.

  18. Low Cost, Low Power, High Sensitivity Magnetometer

    DTIC Science & Technology

    2008-12-01

    Guedes , A.; et al., 2008: Hybrid - LOW COST, LOW POWER, HIGH SENSITIVITY MAGNETOMETER A.S. Edelstein*, James E. Burnette, Greg A. Fischer, M.G...Edelstein, 2004; Burnette, 2008), we suggested a method for mitigating the problem of 1/f noise. We and others ( Guedes , 2008) have been utilizing...6. Guedes , A.; et al., 2008: Hybrid - 3magnetoresistive/microelectromechanical devices for static field modulation and sensor 1/f noise

  19. High-Power Amplifier Free Electron Lasers

    DTIC Science & Technology

    2006-06-01

    society, including laser pointers , printers, compact-disc players, DVD players, product scanners and even as instruments in medical procedures. With...FREE ELECTRON LASERS by Tyrone Y. Voughs June 2006 Thesis Advisor: William B. Colson Co-Advisor: Robert L. Armstead...2006 3. REPORT TYPE AND DATES COVERED Master’s Thesis 4. TITLE AND SUBTITLE High-Power Amplifier Free Electron Lasers 6. AUTHOR(S) LT Tyrone Y

  20. Improved high-power TSP bits

    SciTech Connect

    Cohen, J.H.; Maurer, W.C.; Westcott, P.A.

    1994-12-31

    Four 3-in. (76.2-mm) diameter experimental bits utilizing large TSP cutters were manufactured in an attempt to develop improved hard rock drill bits. The bits were tested on a 2 3/8-in. (60.3-mm) downhole motor that operated at speeds up to 2,700 rpm and delivered up to 48 hp (36 kW). The TSP bits drilled Batesville marble at rates up to 550 ft/hr (168 m/hr) compared to 50 to 100 ft/hr (15 to 30 m/hr) for conventional roller cone bit drilling in this type of rock. The high penetration rates were achieved because the large cutters cut deep grooves in the rock and there was good clearance beneath the bits due to the large bit/rock standoff distance. None of the large cutters broke during the tests despite the severe drilling conditions and high power levels delivered to the bits, thus overcoming cutter breakage problems experienced with smaller TSP bits on earlier tests. The large cutter TSP bits were capable of operating at much higher power levels than the 48 hp (36 kW) delivered by the drilling motor, showing the need for improved high-power motors for use with these improved TSP bits.

  1. Mode selection and resonator design studies of a 95 GHz, 100 kW, CW gyrotron

    SciTech Connect

    Vamshi Krishna, P.; Kartikeyan, M.V. E-mail: kartik@iitr.ernet.in; Thumm, M.

    2011-07-01

    In this paper, the mode selection procedure leading to the design and the cavity resonator design studies of a 95 GHz, 100 kW, CW Gyrotron will be presented, such a gyrotron will be used for specific ECRH/ECRIS applications. In this course all the suitable modes with design constraints within the limits of design goals are considered and finally the TE{sub 10.4} mode is chosen as the operating mode which is suitable for the design. Design constraints are carefully investigated, and starting currents are computed. (author)

  2. The future of high power laser techniques

    NASA Astrophysics Data System (ADS)

    Poprawe, Reinhart; Loosen, Peter; Hoffmann, Hans-Dieter

    2007-05-01

    High Power Lasers have been used for years in corresponding applications. Constantly new areas and new processes have been demonstrated, developed and transferred to fruitful use in industry. With the advent of diode pumped solid state lasers in the multi-kW-power regime at beam qualities not far away from the diffraction limit, a new area of applicability has opened. In welding applications speeds could be increased and systems could be developed with higher efficiently leading also to new perspectives for increased productivity, e.g. in combined processing. Quality control is increasingly demanded by the applying industries, however applications still are rare. Higher resolution of coaxial process control systems in time and space combined with new strategies in signal processing could give rise to new applications. The general approach described in this paper emphasizes the fact, that laser applications can be developed more efficiently, more precisely and with higher quality, if the laser radiation is tailored properly to the corresponding application. In applying laser sources, the parameter ranges applicable are by far wider and more flexible compared to heat, mechanical or even electrical energy. The time frame ranges from several fs to continuous wave and this spans approximately 15 orders of magnitude. Spacewise, the foci range from several µm to cm and the resulting intensities suitable for materials processing span eight orders of magnitude from 10 3 to 10 11 W/cm2. In addition to space (power, intensity) and time (pulse) the wavelength can be chosen as a further parameter of optimization. As a consequence, the resulting new applications are vast and can be utilized in almost every market segment of our global economy (Fig. 1). In the past and only partly today, however, this flexibility of laser technology is not exploited in full in materials processing, basically because in the high power regime the lasers with tailored beam properties are not

  3. Production of high power femtosecond terahertz radiation

    SciTech Connect

    Neil, George R.; Carr, G.L.; Gubeli III, Joseph F.; Jordan, K.; Martin, Michael C.; McKinney, Wayne R.; Shinn, Michelle; Tani, Masahiko; Williams, G.P.; Zhang, X.-C.

    2003-07-11

    The terahertz (THz) region of the electromagnetic spectrum is attracting interest for a broad range of applications ranging from diagnosing electron beams to biological imaging. Most sources of short pulse THz radiation utilize excitation of biased semiconductors or electro-optic crystals by high peak power lasers. For example, this was done by using an un-doped InAs wafer irradiated by a femtosecond free-electron laser (FEL) at the Thomas Jefferson National Accelerator Facility. Microwatt levels of THz radiation were detected when excited with FEL pulses at 1.06 mm wavelength and 10W average power. Recently substantially higher powers of femtosecond THz pulses produced by synchrotron emission were extracted from the electron beamline. Calculations and measurements confirm the production of coherent broadband THz radiation from relativistic electrons with an average power of nearly 20W, a world record in this wavelength range by a factor of 10,000. We describe the source, presenting theoretical calculations and their experimental verification. Potential applications of this exciting new source include driving new non-linear phenomena, performing pump-probe studies of dynamical properties of novel materials, and studying molecular vibrations and rotations, low frequency protein motions, phonons, superconductor band gaps, electronic scattering, collective electronic excitations (e.g., charge density waves), and spintronics.

  4. 9xx high power pump modules

    NASA Astrophysics Data System (ADS)

    Pawlik, Susanne; Sverdlov, Boris; Bättig, Rainer; Schmidt, Berthold; Pfeiffer, Hans-Ulrich; Arlt, Sebastian; Lichtenstein, Norbert; Müller, Jürgen; Troger, Jörg; Valk, Bernd; Harder, Christoph

    2006-02-01

    In this communication we present the characteristics of Bookham's MU7-9xx-01 laser module with multimode fiber output. This latest generation of our multimode modules is designed for light output power of up to 7 W in uncooled operation in the wavelength range between 915 nm and 975 nm. The key element of the module is our new SES8-9xx-01 broad area single emitter. These high power lasers in the 9xx nm wavelength range show a high slope efficiency of up to 1.2 W/A in CW room temperature operation. High efficiency combined with low threshold current and low operation voltage result in a maximum wall plug efficiency of above 65%. Almost 4000 h lifetest data at accelerated conditions are available for the laser diodes. The data give estimated reliability values of below 5 kFIT at operating conditions (between 8 A and 8.5 A injection current at up to 35°C heat sink temperature). The robustness of the new lasers is also illustrated by the fact that no catastrophic mirror damage was observed up to 22.5 W of light output power. The low divergence of the laser beam allows coupling into multimode fiber with 0.15 or 0.22 numerical aperture (NA) with a coupling efficiency above 90% at operation condition. Maximum ex-fiber light output powers of 11.5 W are shown. On module level around 2000 h lifetest data are accumulated without any failure or sign of degradation.

  5. High-Efficiency Microwave Power Amplifier

    NASA Technical Reports Server (NTRS)

    Sims, Williams H.

    2005-01-01

    A high-efficiency power amplifier that operates in the S band (frequencies of the order of a few gigahertz) utilizes transistors operating under class-D bias and excitation conditions. Class-D operation has been utilized at lower frequencies, but, until now, has not been exploited in the S band. Nominally, in class D operation, a transistor is switched rapidly between "on" and "off" states so that at any given instant, it sustains either high current or high voltage, but not both at the same time. In the ideal case of zero "on" resistance, infinite "off" resistance, zero inductance and capacitance, and perfect switching, the output signal would be a perfect square wave. Relative to the traditional classes A, B, and C of amplifier operation, class D offers the potential to achieve greater power efficiency. In addition, relative to class-A amplifiers, class-D amplifiers are less likely to go into oscillation. In order to design this amplifier, it was necessary to derive mathematical models of microwave power transistors for incorporation into a larger mathematical model for computational simulation of the operation of a class-D microwave amplifier. The design incorporates state-of-the-art switching techniques applicable only in the microwave frequency range. Another major novel feature is a transmission-line power splitter/combiner designed with the help of phasing techniques to enable an approximation of a square-wave signal (which is inherently a wideband signal) to propagate through what would, if designed in a more traditional manner, behave as a more severely band-limited device (see figure). The amplifier includes an input, a driver, and a final stage. Each stage contains a pair of GaAs-based field-effect transistors biased in class D. The input signal can range from -10 to +10 dBm into a 50-ohm load. The table summarizes the performances of the three stages

  6. Piezoelectric transformer and modular connections for high power and high voltage power supplies

    NASA Technical Reports Server (NTRS)

    Vazquez Carazo, Alfredo (Inventor)

    2006-01-01

    A modular design for combining piezoelectric transformers is provided for high voltage and high power conversion applications. The input portions of individual piezoelectric transformers are driven for a single power supply. This created the vibration and the conversion of electrical to electrical energy from the input to the output of the transformers. The output portions of the single piezoelectric transformers are combining in series and/or parallel to provide multiple outputs having different rating of voltage and current.

  7. Gate Drive For High Speed, High Power IGBTs

    SciTech Connect

    Nguyen, M.N.; Cassel, R.L.; de Lamare, J.E.; Pappas, G.C.; /SLAC

    2007-06-18

    A new gate drive for high-voltage, high-power IGBTs has been developed for the SLAC NLC (Next Linear Collider) Solid State Induction Modulator. This paper describes the design and implementation of a driver that allows an IGBT module rated at 800A/3300V to switch up to 3000A at 2200V in 3{micro}S with a rate of current rise of more than 10000A/{micro}S, while still being short circuit protected. Issues regarding fast turn on, high de-saturation voltage detection, and low short circuit peak current will be presented. A novel approach is also used to counter the effect of unequal current sharing between parallel chips inside most high-power IGBT modules. It effectively reduces the collector-emitter peak current, and thus protects the IGBT from being destroyed during soft short circuit conditions at high di/dt.

  8. High peak power diode stacks for high energy lasers

    NASA Astrophysics Data System (ADS)

    Negoita, Viorel C.; Vethake, Thilo; Jiang, John; Roff, Robert; Shih, Ming; Duck, Richard; Bauer, Marc; Mite, Roberto; Boucke, Konstantin; Treusch, Georg

    2015-02-01

    High energy solid state lasers are being developed for fusion experiments and other research applications where high energy per pulse is required but the repetition rate is rather low, around 10Hz. We report our results on high peak power diode laser stacks used as optical pumps for these lasers. The stacks are based on 10 mm bars with 4 mm cavity length and 55% fill factor, with peak power exceeding 500 W per bar. These bars are stacked and mounted on a cooler which provides backside cooling and electrical insulation. Currently we mount 25 bars per cooler for a nominal peak power of 12.5 kW, but in principle the mounting scheme can be scaled to a different number of devices depending on the application. Pretesting of these bars before soldering on the cooler enables us to select devices with similar wavelength and thus we maintain tight control of the spectral width (FWHM less than 6 nm). Fine adjustments of the centroid wavelength can be done by means of temperature of the cooling fluid or bias current. The available wavelength range spans from 880 nm to 1000 nm, and the wavelength of the entire assembly of stacks can be controlled to within 0.5 nm of the target value, which makes these stacks suitable for pumping a variety of gain media. The devices are fast axis collimated, with over 95% power being collimated in 6 mrad (full angle). The slow axis divergence is 9° (full angle) for 95% power content.

  9. High-power LEDs for plant cultivation

    NASA Astrophysics Data System (ADS)

    Tamulaitis, Gintautas; Duchovskis, Pavelas; Bliznikas, Zenius; Breive, Kestutis; Ulinskaite, Raimonda; Brazaityte, Ausra; Novickovas, Algirdas; Zukauskas, Arturas; Shur, Michael S.

    2004-10-01

    We report on high-power solid-state lighting facility for cultivation of greenhouse vegetables and on the results of the study of control of photosynthetic activity and growth morphology of radish and lettuce imposed by variation of the spectral composition of illumination. Experimental lighting modules (useful area of 0.22 m2) were designed based on 4 types of high-power light-emitting diodes (LEDs) with emission peaked in red at the wavelengths of 660 nm and 640 nm (predominantly absorbed by chlorophyll a and b for photosynthesis, respectively), in blue at 455 nm (phototropic function), and in far-red at 735 nm (important for photomorphology). Morphological characteristics, chlorophyll and phytohormone concentrations in radish and lettuce grown in phytotron chambers under lighting with different spectral composition of the LED-based illuminator and under illumination by high pressure sodium lamps with an equivalent photosynthetic photon flux density were compared. A well-balanced solid-state lighting was found to enhance production of green mass and to ensure healthy morphogenesis of plants compared to those grown using conventional lighting. We observed that the plant morphology and concentrations of morphologically active phytohormones is strongly affected by the spectral composition of light in the red region. Commercial application of the LED-based illumination for large-scale plant cultivation is discussed. This technology is favorable from the point of view of energy consumption, controllable growth, and food safety but is hindered by high cost of the LEDs. Large scale manufacturing of high-power red AlInGaP-based LEDs emitting at 650 nm and a further decrease of the photon price for the LEDs emitting in the vicinity of the absorption peak of chlorophylls have to be achieved to promote horticulture applications.

  10. Coherently coupled high-power fiber arrays

    NASA Astrophysics Data System (ADS)

    Anderegg, Jesse; Brosnan, Stephen; Cheung, Eric; Epp, Paul; Hammons, Dennis; Komine, Hiroshi; Weber, Mark; Wickham, Michael

    2006-02-01

    A four-element fiber array has demonstrated 470 watts of coherently phased, linearly polarized light energy in a single far-field spot. Each element consists of a single-mode fiber-amplifier chain. Phase control of each element is achieved with a Lithium-Niobate phase modulator. A master laser provides a linearly polarized, narrow linewidth signal that is split into five channels. Four channels are individually amplified using polarization maintaining fiber power amplifiers. The fifth channel is used as a reference arm. It is frequency shifted and then combined interferometrically with a portion of each channel's signal. Detectors sense the heterodyne modulation signal, and an electronics circuit measures the relative phase for each channel. Compensating adjustments are then made to each channel's phase modulator. This effort represents the results of a multi-year effort to achieve high power from a single element fiber amplifier and to understand the important issues involved in coherently combining many individual elements to obtain sufficient optical power for directed energy weapons. Northrop Grumman Corporation and the High Energy Laser Joint Technology Office jointly sponsored this work.

  11. High-power LED package requirements

    NASA Astrophysics Data System (ADS)

    Wall, Frank; Martin, Paul S.; Harbers, Gerard

    2004-01-01

    Power LEDs have evolved from simple indicators into illumination devices. For general lighting applications, where the objective is to light up an area, white LED arrays have been utilized to serve that function. Cost constraints will soon drive the industry to provide a discrete lighting solution. Early on, that will mean increasing the power densities while quantum efficiencies are addressed. For applications such as automotive headlamps & projection, where light needs to be tightly collimated, or controlled, arrays of die or LEDs will not be able to satisfy the requirements & limitations defined by etendue. Ultimately, whether a luminaire requires a small source with high luminance, or light spread over a general area, economics will force the evolution of the illumination LED into a compact discrete high power package. How the customer interfaces with this new package should be an important element considered early on in the design cycle. If an LED footprint of adequate size is not provided, it may prove impossible for the customer, or end user, to get rid of the heat in a manner sufficient to prevent premature LED light output degradation. Therefore it is critical, for maintaining expected LED lifetime & light output, that thermal performance parameters be defined, by design, at the system level, which includes heat sinking methods & interface materials or methdology.

  12. High power ICRF experiments on TFTR

    SciTech Connect

    Wilson, J.R.; Hosea, J.C.; Majeski, R.; Phillips, C.K.; Rogers, J.H.; Schilling, G.; Stevens, J.; Taylor, G. ); Murakami, M.; Rasmussen, D.A. ); TFTR Group

    1994-10-15

    ICRF heating experiments have been conducted in a variety of conditions on the TFTR tokamak. Power levels up to 11.4 MW have been applied. During NBI driven supershot discharges the central electron temperature has been increased from 9 kev to 13 kev via [sup 3]He minority heating with 6 MW of RF power. This temperature increase leads to a 70% increase in the projected alpha energy slowing down time. In gas fueled L-mode discharges the energetic hydrogen minority tail is observed to strongly influence the MHD stability of the discharges. Besides the stabilization of the sawtooth instability previously reported, the destabilization of both the m=1 fishbone and the TAE (toroidal Alfven eigenmode) instabilities have been observed. The TAE instability is accompanied with significant ([similar to]10%) loss of high energy ions and degradation in global confinement time.

  13. The JLab high power ERL light source

    SciTech Connect

    G.R. Neil; C. Behre; S.V. Benson; M. Bevins; G. Biallas; J. Boyce; J. Coleman; L.A. Dillon-Townes; D. Douglas; H.F. Dylla; R. Evans; A. Grippo; D. Gruber; J. Gubeli; D. Hardy; C. Hernandez-Garcia; K. Jordan; M.J. Kelley; L. Merminga; J. Mammosser; W. Moore; N. Nishimori; E. Pozdeyev; J. Preble; R. Rimmer; Michelle D. Shinn; T. Siggins; C. Tennant; R. Walker; G.P. Williams and S. Zhang

    2005-03-19

    A new THz/IR/UV photon source at Jefferson Lab is the first of a new generation of light sources based on an Energy-Recovered, (superconducting) Linac (ERL). The machine has a 160 MeV electron beam and an average current of 10 mA in 75 MHz repetition rate hundred femtosecond bunches. These electron bunches pass through a magnetic chicane and therefore emit synchrotron radiation. For wavelengths longer than the electron bunch the electrons radiate coherently a broadband THz {approx} half cycle pulse whose average brightness is > 5 orders of magnitude higher than synchrotron IR sources. Previous measurements showed 20 W of average power extracted[1]. The new facility offers simultaneous synchrotron light from the visible through the FIR along with broadband THz production of 100 fs pulses with >200 W of average power. The FELs also provide record-breaking laser power [2]: up to 10 kW of average power in the IR from 1 to 14 microns in 400 fs pulses at up to 74.85 MHz repetition rates and soon will produce similar pulses of 300-1000 nm light at up to 3 kW of average power from the UV FEL. These ultrashort pulses are ideal for maximizing the interaction with material surfaces. The optical beams are Gaussian with nearly perfect beam quality. See www.jlab.org/FEL for details of the operating characteristics; a wide variety of pulse train configurations are feasible from 10 microseconds long at high repetition rates to continuous operation. The THz and IR system has been commissioned. The UV system is to follow in 2005. The light is transported to user laboratories for basic and applied research. Additional lasers synchronized to the FEL are also available. Past activities have included production of carbon nanotubes, studies of vibrational relaxation of interstitial hydrogen in silicon, pulsed laser deposition and ablation, nitriding of metals, and energy flow in proteins. This paper will present the status of the system and discuss some of the discoveries we have made

  14. The JLab high power ERL light source

    NASA Astrophysics Data System (ADS)

    Neil, G. R.; Behre, C.; Benson, S. V.; Bevins, M.; Biallas, G.; Boyce, J.; Coleman, J.; Dillon-Townes, L. A.; Douglas, D.; Dylla, H. F.; Evans, R.; Grippo, A.; Gruber, D.; Gubeli, J.; Hardy, D.; Hernandez-Garcia, C.; Jordan, K.; Kelley, M. J.; Merminga, L.; Mammosser, J.; Moore, W.; Nishimori, N.; Pozdeyev, E.; Preble, J.; Rimmer, R.; Shinn, M.; Siggins, T.; Tennant, C.; Walker, R.; Williams, G. P.; Zhang, S.

    2006-02-01

    A new THz/IR/UV photon source at Jefferson Lab is the first of a new generation of light sources based on an Energy-Recovered, (superconducting) Linac (ERL). The machine has a 160 MeV electron beam and an average current of 10 mA in 75 MHz repetition rate hundred femtosecond bunches. These electron bunches pass through a magnetic chicane and therefore emit synchrotron radiation. For wavelengths longer than the electron bunch the electrons radiate coherently a broadband THz ˜ half cycle pulse whose average brightness is >5 orders of magnitude higher than synchrotron IR sources. Previous measurements showed 20 W of average power extracted [Carr, et al., Nature 420 (2002) 153]. The new facility offers simultaneous synchrotron light from the visible through the FIR along with broadband THz production of 100 fs pulses with >200 W of average power. The FELs also provide record-breaking laser power [Neil, et al., Phys. Rev. Lett. 84 (2000) 662]: up to 10 kW of average power in the IR from 1 to 14 μm in 400 fs pulses at up to 74.85 MHz repetition rates and soon will produce similar pulses of 300-1000 nm light at up to 3 kW of average power from the UV FEL. These ultrashort pulses are ideal for maximizing the interaction with material surfaces. The optical beams are Gaussian with nearly perfect beam quality. See www.jlab.org/FEL for details of the operating characteristics; a wide variety of pulse train configurations are feasible from 10 ms long at high repetition rates to continuous operation. The THz and IR system has been commissioned. The UV system is to follow in 2005. The light is transported to user laboratories for basic and applied research. Additional lasers synchronized to the FEL are also available. Past activities have included production of carbon nanotubes, studies of vibrational relaxation of interstitial hydrogen in silicon, pulsed laser deposition and ablation, nitriding of metals, and energy flow in proteins. This paper will present the status of the

  15. Digitally Controlled High Availability Power Supply

    SciTech Connect

    MacNair, David; /SLAC

    2008-09-25

    This paper reports the design and test results on novel topology, high-efficiency, and low operating temperature, 1,320-watt power modules for high availability power supplies. The modules permit parallel operation for N+1 redundancy with hot swap capability. An embedded DSP provides intelligent start-up and shutdown, output regulation, general control and fault detection. PWM modules in the DSP drive the FET switches at 20 to 100 kHz. The DSP also ensures current sharing between modules, synchronized switching, and soft start up for hot swapping. The module voltage and current have dedicated ADCs (>200 kS/sec) to provide pulse-by-pulse output control. A Dual CAN bus interface provides for low cost redundant control paths. Over-rated module components provide high reliability and high efficiency at full load. Low on-resistance FETs replace conventional diodes in the buck regulator. Saturable inductors limit the FET reverse diode current during switching. The modules operate in a two-quadrant mode, allowing bipolar output from complimentary module groups. Controllable, low resistance FETs at the input and output provide fault isolation and allow module hot swapping.

  16. High-power high-brightness semiconductor lasers

    NASA Astrophysics Data System (ADS)

    Botez, D.

    2005-01-01

    Broad-stripe (greater than or equal to 100 microns) diode lasers have achieved CW powers as high as 15W, and wallplug efficiencies as high as 70%. For high coherent power photonic-crystal structures with modulated gain, that is active photonic crystals (APCs), of large index steps have been used, as early as 1988, for effective lateral-mode control range in large-aperture (100-200 microns) devices. Photonic-bandpass (PBP) structures relying on long-range resonant leaky-wave coupling, so called ROW arrays, have allowed stable, near-diffraction-limited beam operation to powers as high as 1.6W CW and 10W peak pulsed. Photonic-bandgap (PBG) structures with a built-in lattice defect, so called ARROW lasers, have provided up to 0.5W CW stable, single-mode power and hold the potential for 1W CW highly reliable single-mode operation. The solution for high-efficiency surface emission, from 2nd-order DFB/DBR lasers, in a single-lobe beam pattern was found in 2000. Single-lobe and single-mode operation in a diffraction-limited beam orthonormal to the chip surface was demonstrated, which opens the way for the realization of 2-D surface-emitting, 2nd-order APCs for the stable generation of watts of CW single-lobe, single-mode power from large 2-D apertures, as well as scalability of such devices at the wafer level.

  17. High Energy Density Sciences with High Power Lasers at SACLA

    NASA Astrophysics Data System (ADS)

    Kodama, Ryosuke

    2013-10-01

    One of the interesting topics on high energy density sciences with high power lasers is creation of extremely high pressures in material. The pressures of more than 0.1 TPa are the energy density corresponding to the chemical bonding energy, resulting in expectation of dramatic changes in the chemical reactions. At pressures of more than TPa, most of material would be melted on the shock Hugoniot curve. However, if the temperature is less than 1eV or lower than a melting point at pressures of more than TPa, novel solid states of matter must be created through a pressured phase transition. One of the interesting materials must be carbon. At pressures of more than TPa, the diamond structure changes to BC and cubic at more than 3TPa. To create such novel states of matter, several kinds of isentropic-like compression techniques are being developed with high power lasers. To explore the ``Tera-Pascal Science,'' now we have a new tool which is an x-ray free electron laser as well as high power lasers. The XFEL will clear the details of the HED states and also efficiently create hot dense matter. We have started a new project on high energy density sciences using an XFEL (SACLA) in Japan, which is a HERMES (High Energy density Revolution of Matter in Extreme States) project.

  18. Transportable high-energy high-power generator.

    PubMed

    Novac, B M; Smith, I R; Senior, P; Parker, M; Louverdis, G

    2010-05-01

    High-power applications sometimes require a transportable, simple, and robust gigawatt pulsed power generator, and an analysis of various possible approaches shows that one based on a twin exploding wire array is extremely advantageous. A generator based on this technology and used with a high-energy capacitor bank has recently been developed at Loughborough University. An H-configuration circuit is used, with one pair of diagonally opposite arms each comprising a high-voltage ballast inductor and the other pair exploding wire arrays capable of generating voltages up to 300 kV. The two center points of the H configuration provide the output to the load, which is coupled through a high-voltage self-breakdown spark gap, with the entire autonomous source being housed in a metallic container. Experimentally, a load resistance of a few tens of Ohms is provided with an impulse of more than 300 kV, having a rise time of about 140 ns and a peak power of over 1.7 GW. Details of the experimental arrangement and typical results are presented and diagnostic measurements of the current and voltage output are shown to compare well with theoretical predictions based on detailed numerical modeling. Finally, the next stage toward developing a more powerful and energetic transportable source is outlined.

  19. Earthquake Triggering by High Power Electric Pulses

    NASA Astrophysics Data System (ADS)

    Novikov, Victor; Konev, Yuri; Zeigarnik, Vladimir

    2010-05-01

    The study carried out by the Joint Institute for High Temperatures in cooperation with the Institute of Physics of the Earth and the Research Station in Bishkek of Russian Academy of Sciences in 1999-2008 showed a response of weak seismicity at field experiments with electric pulsed power systems, as well as acoustic emission of rock specimens under laboratory conditions on high-power electric current pulses applied to the rocks. It was suggested that the phenomenon discovered may be used in practice for partial release of tectonic stresses in the Earth crust for earthquake hazard mitigation. Nevertheless, the mechanism of the influence of man-made electromagnetic field on the regional seismicity is not clear yet. One of possible cause of the phenomenon may be pore fluid pressure increase in the rocks under stressed conditions due to Joule heat generation by electric current injected into the Earth crust. It is known that increase of pore fluid pressure in the fault zone over a critical pressure of about 0.05 MPa is sufficient to trigger an earthquake if the fault is near the critical state due to accumulated tectonic deformations. Detailed 3D-calculaton of electric current density in the Earth crust of the Northern Tien Shan provided by pulsed electric high-power system connected to grounded electric dipole showed that at the depth of earthquake epicenters (over 5 km) the electric current density is lower than 10-7 A/m2 that is not sufficient for increase of pressure in the fluid-saturated porous geological medium due to Joule heat generation, which may provide formation of cracks resulting in the fault propagation and release of tectonic stresses in the Earth crust. Nevertheless, under certain conditions, when electric current will be injected into the fault through the casing pipes of two deep wells with preliminary injection of conductive fluid into the fault, the current density may be high enough for significant increase of mechanic pressure in the porous two

  20. Power plant of high safety for underground nuclear power station

    SciTech Connect

    Dolgov, V.N.

    1993-12-31

    An ecologically pure, reliable, and economic nuclear power station is based on the use of nuclear power plants with the liquid-metal coolant. This plant with the inherent safety is protected from external influences due to the underground accommodations in geologically stable formations such as granites, cambrian clays, and salt deposits. The design features of this underground plant are described.

  1. 60 GHz gyrotron development program. Final report, April 1979-June 1984

    SciTech Connect

    Shively, J.F.; Bier, R.E.; Caplan, M.; Cheng, M.K.; Choi, E.; Conner, C.C.; Craig, L.J.; Evans, S.J.; Evers, S.J.; Felch, K.L.

    1986-01-01

    The original objective of this program was to develop a microwave amplifier or oscillator capable of producing 200 kW CW power output at 110 GHz. The use of cyclotron resonance interaction was pursued, and the design phases of this effort are discussed. Later, however, the program's objective was changed to develop a family of oscillators capable of producing 200 kw of peak output power at 60 GHz. Gyrotron behavior studies were performed at 28 GHz to obtain generic design information as quickly as possible. The first experimental device at 60 GHz produced over 200 kw of peak power at a pulse duration of 20 ..mu..s. Heating problems and mode interference were encountered. The second experimental tube incorporated an optimized gun location but also suffered from mode interference. The third experimental tube included modifications that reduced mode interference. It demonstrated 200 kw of peak output at 100 ms pulse duration. The fourth experimental tube, which used an older rf circuit design but in a CW configuration, produced 71.5 kW CW. The fifth experimental tube incorporated a thinner double-disc output window which improved window bandwidth and reduced window loss. This tube also incorporated modifications to the drift tunnel and cavity coupling, which had proven successful in the third experimental pulse tube tests. It produced 123 kW of CW output power at 60 GHz rf load coolant boiling and tube window failure terminated the tests. A new waterload was designed and constructed, and alternative window designs were explored. A secondary task of developing a 56 GHz CW tube produced in excess of 100 kW CW at this alternate frequency. Testing of the sixth experimental tube resulted in operation at CW output power in the range of 200 to 206 kW for an hour. Output mode purity of the seventh experimental tube was measured at 95% TE/sub 02/. The tube was operated for about forty-five minutes with CW power output over 200 kW.

  2. Hybrid high power femtosecond laser system

    NASA Astrophysics Data System (ADS)

    Trunov, V. I.; Petrov, V. V.; Pestryakov, E. V.; Kirpichnikov, A. V.

    2006-01-01

    Design of a high-power femtosecond laser system based on hybrid chirped pulse amplification (CPA) technique developed by us is presented. The goal of the hybrid principle is the use of the parametric and laser amplification methods in chirped pulse amplifiers. It makes it possible to amplify the low-cycle pulses with a duration of <= fs to terawatt power with a high contrast and high conversion efficiency of the pump radiation. In a created system the Ti:Sapphire laser with 10 fs pulses at 810 nm and output energy about 1-3 nJ will be used like seed source. The oscillator pulses were stretched to duration of about 500 ps by an all-reflective grating stretcher. Then the stretched pulses are injected into a nondegenerate noncollinear optical parametric amplifier (NOPA) on the two BBO crystals. After amplification in NOPA the residual pump was used in a bow-tie four pass amplifier with hybrid active medium (based on Al II0 3:Ti 3+ and BeAl IIO 4:Ti 3+ crystals). The final stage of the amplification system consists of two channels, namely NIR (820 nm) and short-VIS (410 nm). Numerical simulation has shown that the terawatt level of output power can be achieved also in a short-VIS channel at the pumping of the double-crystal BBO NOPA by the radiation of the fourth harmonic of the Nd:YAG laser at 266 nm. Experimentally parametric amplification in BBO crystals of 30-50 fs pulses were investigated and optimized using SPIDER technique and single-shot autocomelator for the realization of shortest duration 40 fs.

  3. High frequency inductive lamp and power oscillator

    DOEpatents

    MacLennan, Donald A.; Dymond, Jr., Lauren E.; Gitsevich, Aleksandr; Grimm, William G.; Kipling, Kent; Kirkpatrick, Douglas A.; Ola, Samuel A.; Simpson, James E.; Trimble, William C.; Tsai, Peter; Turner, Brian P.

    2001-01-01

    A high frequency inductively coupled electrodeless lamp includes an excitation coil with an effective electrical length which is less than one half wavelength of a driving frequency applied thereto, preferably much less. The driving frequency may be greater than 100 MHz and is preferably as high as 915 MHz. Preferably, the excitation coil is configured as a non-helical, semi-cylindrical conductive surface having less than one turn, in the general shape of a wedding ring. At high frequencies, the current in the coil forms two loops which are spaced apart and parallel to each other. Configured appropriately, the coil approximates a Helmholtz configuration. The lamp preferably utilizes an bulb encased in a reflective ceramic cup with a pre-formed aperture defined therethrough. The ceramic cup may include structural features to aid in alignment and I or a flanged face to aid in thermal management. The lamp head is preferably an integrated lamp head comprising a metal matrix composite surrounding an insulating ceramic with the excitation integrally formed on the ceramic. A novel solid-state oscillator preferably provides RF power to the lamp. The oscillator is a single active element device capable of providing over 70 watts of power at over 70% efficiency. Various control circuits may be employed to adjust the driving frequency of the oscillator.

  4. High power microwave hazard facing smart ammunitions

    NASA Astrophysics Data System (ADS)

    Bohl, J.

    1995-03-01

    The battle field of the present and even more the one in future will be characterized by the use of weapon systems with a high degree of electronics, computers, and sensors, designed and built to keep not only the man out of the loop. But the higher the technology used for smart weapon systems, the more these systems are endangered by numerous sources of hazard. One of those sources is the threat caused by induced or natural electromagnetic fields. These threat factors can be generated by natural, civil and military environment. In principle there are two main applications which must be considered in military applications: Firstly, weapon systems, that is, high power microwave sources as well as intelligent electromagnetic radiation systems to defeat ammunition on the battle field and secondly, the hardening of the own smart ammunition systems and missiles against the interference sources created by the different types of electromagnetic fields. This report will discuss the possible electromagnetic coupling effects on smart ammunition and missiles and their typical interference caused on the electronics and sensor level. Real time 6-DOF simulations show the flight mission which may be compromised depending on the coupled electromagnetic fields. The German MOD has established a research program where smart ammunitions with different seeker systems are investigated in respect of the coupling effects on smart ammunition caused by high power microwaves. This program considers all available resources and know how in Germany. The systems are investigated by analytical, numerical, and experimental methods with passive and activated missiles.

  5. High frequency inductive lamp and power oscillator

    DOEpatents

    MacLennan, Donald A.; Turner, Brian P.; Dolan, James T.; Kirkpatrick, Douglas A.; Leng, Yongzhang

    2000-01-01

    A high frequency inductively coupled electrodeless lamp includes an excitation coil with an effective electrical length which is less than one half wavelength of a driving frequency applied thereto, preferably much less. The driving frequency may be greater than 100 MHz and is preferably as high as 915 MHz. Preferably, the excitation coil is configured as a non-helical, semi-cylindrical conductive surface having less than one turn, in the general shape of a wedding ring. At high frequencies, the current in the coil forms two loops which are spaced apart and parallel to each other. Configured appropriately, the coil approximates a Helmholtz configuration. The lamp preferably utilizes an bulb encased in a reflective ceramic cup with a pre-formed aperture defined therethrough. The ceramic cup may include structural features to aid in alignment and/or a flanged face to aid in thermal management. The lamp head is preferably an integrated lamp head comprising a metal matrix composite surrounding an insulating ceramic with the excitation integrally formed on the ceramic. A novel solid-state oscillator preferably provides RF power to the lamp. The oscillator is a single active element device capable of providing over 70 watts of power at over 70% efficiency. Various control circuits may be employed to match the driving frequency of the oscillator to a plurality of tuning states of the lamp.

  6. High Power Helicon In-Space Thruster

    NASA Astrophysics Data System (ADS)

    Ziemba, Timothy; Slough, John; Winglee, Robert

    2004-11-01

    The High Power Helicon (HPH) under development at the University of Washington has direct application as an electrode-less in-space thruster. Axial and radial plasma probe characteristics show that the plasma is created in and near the helicon coil and is then accelerated in the axial direction downstream away from the HPH. The bulk acceleration of the plasma is believed to be due to a coupling of the plasma electrons to the helicon field, which in turn transfers energy to the ions via an ambipolar electric field with downstream electric potentials of greater than 150 volts having been measured. Time of flight measurements of the plasma transiting downstream show specific impulses near 2000 seconds for Argon with calculated thrust levels near 1 Newton for input powers to the plasma in the tens of kilowatts. Nitrogen and hydrogen propellants have Isp levels of 3000 and 5000 seconds respectfully giving some variability in Isp and thrust level by the choice of propellants. Current work focuses on the determination of the various loss channels and optimization of the system efficiencies at increased output power levels.

  7. Recent progress in high power ultrafast MIXSELs

    NASA Astrophysics Data System (ADS)

    Alfieri, C. G. E.; Waldburger, D.; Link, S. M.; Gini, E.; Golling, M.; Tilma, B. W.; Mangold, M.; Keller, U.

    2016-03-01

    The modelocked integrated external-cavity surface emitting laser (MIXSEL) is the most compact technology of ultrafast semiconductor disk laser, combining in the same epitaxial structure an active region and a saturable absorber for stable and self-starting passive modelocking in a linear straight cavity. Here we present the first MIXSEL structure able to produce sub-300-fs pulses at an average output power of 235 mW and 3.35 GHz pulse repetition rate, resulting in a record-high peak power of 240 W. At 10 GHz repetition rate the same MIXSEL generated 279-fs pulses with 310 mW of average output power. An optimized antireflection coating for dispersion minimization together with a reduced field enhancement inside the structure enabled the sensible improvement and the record performances of this novel MIXSEL. Furthermore, thanks to the development of suitable saturable absorbers with fast recovery dynamics and low saturation fluence, we demonstrate the first entirely MOVPE-grown MIXSEL.

  8. Photovoltaics for high capacity space power systems

    NASA Technical Reports Server (NTRS)

    Flood, Dennis J.

    1988-01-01

    The anticipated energy requirements of future space missions will grow by factors approaching 100 or more, particularly as a permanent manned presence is established in space. The advances that can be expected in solar array performance and lifetime, when coupled with advanced, high energy density storage batteries and/or fuel cells, will continue to make photovoltaic energy conversion a viable power generating option for the large systems of the future. The specific technologies required to satisfy any particular set of power requirements will vary from mission to mission. Nonetheless, in almost all cases the technology push will be toward lighter weight and higher efficiency, whether of solar arrays or storage devices. This paper will describe the content and direction of the current NASA program in space photovoltaic technology. The paper will also discuss projected system level capabilities of photovoltaic power systems in the context of some of the new mission opportunities under study by NASA, such as a manned lunar base, and a manned visit to Mars.

  9. Photovoltaics for high capacity space power systems

    NASA Technical Reports Server (NTRS)

    Flood, Dennis J.

    1988-01-01

    The anticipated energy requirements of future space missions will grow by factors approaching 100 or more, particularly as a permanent manned presence is established in space. The advances that can be expected in solar array performance and lifetime, when coupled with advanced, high energy density storage batteries and/or fuel cells, will continue to make photovoltaic energy conversion a viable power generating option for the large systems of the future. The specific technologies required to satisfy any particular set of power requirements will vary from mission to mission. Nonetheless, in almost all cases the technology push will be toward lighter weight and higher efficiency, whether of solar arrays of storage devices. This paper will describe the content and direction of the current NASA program in space photovoltaic technology. The paper will also discuss projected system level capabilities of photovoltaic power systems in the context of some of the new mission opportunities under study by NASA, such as a manned lunar base, and a manned visit to Mars.

  10. Low power, scalable multichannel high voltage controller

    DOEpatents

    Stamps, James Frederick; Crocker, Robert Ward; Yee, Daniel Dadwa; Dils, David Wright

    2008-03-25

    A low voltage control circuit is provided for individually controlling high voltage power provided over bus lines to a multitude of interconnected loads. An example of a load is a drive for capillary channels in a microfluidic system. Control is distributed from a central high voltage circuit, rather than using a number of large expensive central high voltage circuits to enable reducing circuit size and cost. Voltage is distributed to each individual load and controlled using a number of high voltage controller channel switches connected to high voltage bus lines. The channel switches each include complementary pull up and pull down photo isolator relays with photo isolator switching controlled from the central high voltage circuit to provide a desired bus line voltage. Switching of the photo isolator relays is further controlled in each channel switch using feedback from a resistor divider circuit to maintain the bus voltage swing within desired limits. Current sensing is provided using a switched resistive load in each channel switch, with switching of the resistive loads controlled from the central high voltage circuit.

  11. Low power, scalable multichannel high voltage controller

    DOEpatents

    Stamps, James Frederick; Crocker, Robert Ward; Yee, Daniel Dadwa; Dils, David Wright

    2006-03-14

    A low voltage control circuit is provided for individually controlling high voltage power provided over bus lines to a multitude of interconnected loads. An example of a load is a drive for capillary channels in a microfluidic system. Control is distributed from a central high voltage circuit, rather than using a number of large expensive central high voltage circuits to enable reducing circuit size and cost. Voltage is distributed to each individual load and controlled using a number of high voltage controller channel switches connected to high voltage bus lines. The channel switches each include complementary pull up and pull down photo isolator relays with photo isolator switching controlled from the central high voltage circuit to provide a desired bus line voltage. Switching of the photo isolator relays is further controlled in each channel switch using feedback from a resistor divider circuit to maintain the bus voltage swing within desired limits. Current sensing is provided using a switched resistive load in each channel switch, with switching of the resistive loads controlled from the central high voltage circuit.

  12. High power radio frequency attenuation device

    DOEpatents

    Kerns, Quentin A.; Miller, Harold W.

    1984-01-01

    A resistor device for attenuating radio frequency power includes a radio frequency conductor connected to a series of fins formed of high relative magnetic permeability material. The fins are dimensional to accommodate the skin depth of the current conduction therethrough, as well as an inner heat conducting portion where current does not travel. Thermal connections for air or water cooling are provided for the inner heat conducting portions of each fin. Also disclosed is a resistor device to selectively alternate unwanted radio frequency energy in a resonant cavity.

  13. High power singlemode edge-emitting master oscillator power amplifier

    NASA Technical Reports Server (NTRS)

    O'Brien, S.; Parke, R.; Welch, D. F.; Mehuys, D.; Scifres, D.

    1992-01-01

    An edge-emitting monolithically integrated master oscillator power amplifier (M-MOPA) has been fabricated by integrating a distributed Bragg reflector laser with a 500 microns long single mode amplifier. The M-MOPA contains a strained InGaAs quantum well in the active region and operates at about 981.5 nm in an edge-emitting fashion with maximum powers in excess of 175 mW. Single longitudinal and transverse mode operation is maintained to powers in excess of 110 mW CW.

  14. Improved cooling design for high power waveguide system

    NASA Astrophysics Data System (ADS)

    Chen, W. C. J.; Hartop, R.

    1981-06-01

    Testing of X band high power components in a traveling wave resonator indicates that this improved cooling design reduces temperature in the waveguide and flange. The waveguide power handling capability and power transmission reliability is increased substantially.

  15. Improved cooling design for high power waveguide system

    NASA Technical Reports Server (NTRS)

    Chen, W. C. J.; Hartop, R.

    1981-01-01

    Testing of X band high power components in a traveling wave resonator indicates that this improved cooling design reduces temperature in the waveguide and flange. The waveguide power handling capability and power transmission reliability is increased substantially.

  16. High power parallel ultrashort pulse laser processing

    NASA Astrophysics Data System (ADS)

    Gillner, Arnold; Gretzki, Patrick; Büsing, Lasse

    2016-03-01

    The class of ultra-short-pulse (USP) laser sources are used, whenever high precession and high quality material processing is demanded. These laser sources deliver pulse duration in the range of ps to fs and are characterized with high peak intensities leading to a direct vaporization of the material with a minimum thermal damage. With the availability of industrial laser source with an average power of up to 1000W, the main challenge consist of the effective energy distribution and disposition. Using lasers with high repetition rates in the MHz region can cause thermal issues like overheating, melt production and low ablation quality. In this paper, we will discuss different approaches for multibeam processing for utilization of high pulse energies. The combination of diffractive optics and conventional galvometer scanner can be used for high throughput laser ablation, but are limited in the optical qualities. We will show which applications can benefit from this hybrid optic and which improvements in productivity are expected. In addition, the optical limitations of the system will be compiled, in order to evaluate the suitability of this approach for any given application.

  17. High average power, high current pulsed accelerator technology

    SciTech Connect

    Neau, E.L.

    1995-05-01

    Which current pulsed accelerator technology was developed during the late 60`s through the late 80`s to satisfy the needs of various military related applications such as effects simulators, particle beam devices, free electron lasers, and as drivers for Inertial Confinement Fusion devices. The emphasis in these devices is to achieve very high peak power levels, with pulse lengths on the order of a few 10`s of nanoseconds, peak currents of up to 10`s of MA, and accelerating potentials of up to 10`s of MV. New which average power systems, incorporating thermal management techniques, are enabling the potential use of high peak power technology in a number of diverse industrial application areas such as materials processing, food processing, stack gas cleanup, and the destruction of organic contaminants. These systems employ semiconductor and saturable magnetic switches to achieve short pulse durations that can then be added to efficiently give MV accelerating, potentials while delivering average power levels of a few 100`s of kilowatts to perhaps many megawatts. The Repetitive High Energy Puled Power project is developing short-pulse, high current accelerator technology capable of generating beams with kJ`s of energy per pulse delivered to areas of 1000 cm{sup 2} or more using ions, electrons, or x-rays. Modular technology is employed to meet the needs of a variety of applications requiring from 100`s of kV to MV`s and from 10`s to 100`s of kA. Modest repetition rates, up to a few 100`s of pulses per second (PPS), allow these machines to deliver average currents on the order of a few 100`s of mA. The design and operation of the second generation 300 kW RHEPP-II machine, now being brought on-line to operate at 2.5 MV, 25 kA, and 100 PPS will be described in detail as one example of the new high average power, high current pulsed accelerator technology.

  18. Early history of high-power lasers

    NASA Astrophysics Data System (ADS)

    Sutton, George W.

    2002-02-01

    This paper gives the history of the invention and development of early high power lasers, to which the author contributed and had personal knowledge. The earliest hint that a high power laser could be built came from the electric CO2-N2-He laser of Javan. It happened that the director of the Avco-Everett Research Laboratory had written his Ph.D. dissertation on the deactivation of the vibrational excitation of N2 in an expanding flow under Edward Teller, then at Columbia Univ. The director then started an in-house project to determine if gain could be achieved in a mixture similar to Javan's by means of a shock tunnel where a shock heated mixture of N2, CO2, and He gas was expanded through a supersonic nozzle into a cavity. This concept was named by the author as the gasdynamic laser (GDL). The paper traces the history of the initial gain measurements, the Mark II laser, the RASTA laser, the Tri-Service laser, its troubles and solutions, the United Technology's XLD gasdynamic laser, and their ALL laser. The history of the coastal Crusader will also be mentioned. Also discussed are the early experiments on a combustion-driven chemical laser, and its subsequent rejection by the director.

  19. High power, electrically tunable quantum cascade lasers

    NASA Astrophysics Data System (ADS)

    Slivken, Steven; Razeghi, Manijeh

    2016-02-01

    Mid-infrared laser sources (3-14 μm wavelengths) which have wide spectral coverage and high output power are attractive for many applications. This spectral range contains unique absorption fingerprints of most molecules, including toxins, explosives, and nerve agents. Infrared spectroscopy can also be used to detect important biomarkers, which can be used for medical diagnostics by means of breath analysis. The challenge is to produce a broadband midinfrared source which is small, lightweight, robust, and inexpensive. We are currently investigating monolithic solutions using quantum cascade lasers. A wide gain bandwidth is not sufficient to make an ideal spectroscopy source. Single mode output with rapid tuning is desirable. For dynamic wavelength selection, our group is developing multi-section laser geometries with wide electrical tuning (hundreds of cm-1). These devices are roughly the same size as a traditional quantum cascade lasers, but tuning is accomplished without any external optical components. When combined with suitable amplifiers, these lasers are capable of multi-Watt single mode output powers. This manuscript will describe our current research efforts and the potential for high performance, broadband electrical tuning with the quantum cascade laser.

  20. High-Power Ion Thruster Technology

    NASA Technical Reports Server (NTRS)

    Beattie, J. R.; Matossian, J. N.

    1996-01-01

    Performance data are presented for the NASA/Hughes 30-cm-diam 'common' thruster operated over the power range from 600 W to 4.6 kW. At the 4.6-kW power level, the thruster produces 172 mN of thrust at a specific impulse of just under 4000 s. Xenon pressure and temperature measurements are presented for a 6.4-mm-diam hollow cathode operated at emission currents ranging from 5 to 30 A and flow rates of 4 sccm and 8 sccm. Highly reproducible results show that the cathode temperature is a linear function of emission current, ranging from approx. 1000 C to 1150 C over this same current range. Laser-induced fluorescence (LIF) measurements obtained from a 30-cm-diam thruster are presented, suggesting that LIF could be a valuable diagnostic for real-time assessment of accelerator-arid erosion. Calibration results of laminar-thin-film (LTF) erosion badges with bulk molybdenum are presented for 300-eV xenon, krypton, and argon sputtering ions. Facility-pressure effects on the charge-exchange ion current collected by 8-cm-diam and 30-cm-diam thrusters operated on xenon propellant are presented to show that accel current is nearly independent of facility pressure at low pressures, but increases rapidly under high-background-pressure conditions.

  1. Digitally Controlled High Availability Power Supply

    SciTech Connect

    MacNair, David; /SLAC

    2009-05-07

    This paper will report on the test results of a prototype 1320 watt power module for a high availability power supply. The module will allow parallel operation for N+1 redundancy with hot swap capability. The two quadrant output of each module allows pairs of modules to provide a 4 quadrant (bipolar) operation. Each module employs a novel 4 FET buck regulator arranged in a bridge configuration. Each side of the bridge alternately conducts through a small saturable ferrite that limits the reverse current in the FET body diode during turn off. This allows hard switching of the FETs with low switching losses. The module is designed with over-rated components to provide high reliability and better then 97% efficiency at full load. The modules use a Microchip DSP for control, monitoring, and fault detection. The switching FETS are driven by PWM modules in the DSP at 60 KHz. A Dual CAN bus interface provides for low cost redundant control paths. The DSP will also provide current sharing between modules, synchronized switching, and soft start up for hot swapping. The input and output of each module have low resistance FETs to allow hot swapping and isolation of faulted units.

  2. Fibrous zinc anodes for high power batteries

    NASA Astrophysics Data System (ADS)

    Zhang, X. Gregory

    This paper introduces newly developed solid zinc anodes using fibrous material for high power applications in alkaline and large size zinc-air battery systems. The improved performance of the anodes in these two battery systems is demonstrated. The possibilities for control of electrode porosity and for anode/battery design using fibrous materials are discussed in light of experimental data. Because of its mechanical integrity and connectivity, the fibrous solid anode has good electrical conductivity, mechanical stability, and design flexibility for controlling mass distribution, porosity and effective surface area. Experimental data indicated that alkaline cells made of such anodes can have a larger capacity at high discharging currents than commercially available cells. It showed even greater improvement over commercial cells with a non-conventional cell design. Large capacity anodes for a zinc-air battery have also been made and have shown excellent material utilization at various discharge rates. The zinc-air battery was used to power an electric bicycle and demonstrated good results.

  3. High Power ECR Ion Thruster Discharge Characterization

    NASA Technical Reports Server (NTRS)

    Foster, John E.; Kamhawi, Hani; Haag, Thomas; Carpenter, Christian; Williams, George W.

    2006-01-01

    Electron cyclotron resonance (ECR) based ion thrusters with carbon based ion optics can potentially satisfy lifetime requirements for long duration missions (approximately 10 years) because grid erosion and cathode insert depletion issues are virtually eliminated. Though the ECR plasma discharge has been found to typically operate at slightly higher discharge losses than conventional DC ion thrusters (for high total thruster power applications), the discharge power fraction is small (less than 1 percent at 25 kW). In this regard, the benefits of increased life, low discharge plasma potentials, and reduced complexity are welcome tradeoffs for the associated discharge efficiency decrease. Presented here are results from discharge characterization of a large area ECR plasma source for gridded ion thruster applications. These measurements included load matching efficacy, bulk plasma properties via Langmuir probe, and plasma uniformity as measured using current probes distributed at the exit plane. A high degree of plasma uniformity was observed (flatness greater than 0.9). Additionally, charge state composition was qualitatively evaluated using emission spectroscopy. Plasma induced emission was dominated by xenon ion lines. No doubly charged xenon ions were detected.

  4. Material considerations for high frequency, high power capacitors

    NASA Technical Reports Server (NTRS)

    White, W.; Galperin, I.

    1983-01-01

    Dielectric materials chosen for use in this high frequency, high power capacitor must endure hard vacuum conditions, high currents (up to 125 A rms), and frequencies up to 40 kHz. Temperature requirements for this type of capacitor are that capacitor operation must be efficient up to 125 C. A more stringent requirement for the sold dielectric is that the temperature coefficient of dissipation factor should indicate self stabilization well below 125 C. In addition, the dielectric temperature coefficient of capacitance should be negative.

  5. Material considerations for high frequency, high power capacitors

    NASA Astrophysics Data System (ADS)

    White, W.; Galperin, I.

    1983-10-01

    Dielectric materials chosen for use in this high frequency, high power capacitor must endure hard vacuum conditions, high currents (up to 125 A rms), and frequencies up to 40 kHz. Temperature requirements for this type of capacitor are that capacitor operation must be efficient up to 125 C. A more stringent requirement for the sold dielectric is that the temperature coefficient of dissipation factor should indicate self stabilization well below 125 C. In addition, the dielectric temperature coefficient of capacitance should be negative.

  6. Design studies of the output system of a 95 GHz, 100 kW, CW gyrotron

    SciTech Connect

    Vamshi Krishna, P.; Kartikeyan, M.V. E-mail: kartik@iitr.ernet.in; Thumm, M.

    2011-07-01

    This paper presents the design studies of the output system of a 95 GHz, 100 kW, CW gyrotron for ECRH7ECRIS applications. During this course, the design studies of an advanced dimpled-wall quasi optical launcher, non-linear taper and RF window will be carried out. (author)

  7. A comparative study on the modeling of dynamic after-cavity interaction in gyrotrons

    NASA Astrophysics Data System (ADS)

    Avramidis, K. A.; Ioannidis, Z. C.; Kern, S.; Samartsev, A.; Pagonakis, I. Gr.; Tigelis, I. G.; Jelonnek, J.

    2015-05-01

    There are cases where gyrotron interaction simulations predict dynamic After-Cavity Interaction (ACI). In dynamic ACI, a mode is excited by the electron beam at a dominant frequency in the gyrotron cavity and, at the same time, this mode is also interacting with the beam at a different frequency in the non-linear uptaper after the cavity. In favor of dynamic ACI being a real physical effect, there are some experimental findings that could be attributed to it, as well as some physical rationale indicating the possibility of a mode being resonant with the beam at different frequencies in different regions. However, the interaction codes used in dynamic ACI prediction up to now are based on simplifications that put questions on their capability of correctly simulating this effect. In this work, the shortcomings of the usual simplifications with respect to dynamic ACI modeling, namely, the trajectory approach and the single-frequency boundary condition, are identified. Extensive simulations of dynamic ACI cases are presented, using several "in-house" as well as commercial codes. We report on the comparison and the assessment of different modeling approaches and their results and we discuss whether, in some cases, dynamic ACI can be a numerical artifact or not. Although the possibility of existence of dynamic ACI in gyrotrons is not disputed, it is concluded that the widely used trajectory approach for gyrotron interaction modeling is questionable for simulating dynamic ACI and can lead to misleading results.

  8. Performance history and upgrades for the DIII-D gyrotron complex

    SciTech Connect

    Lohr, J.; Anderson, J. P.; Cengher, M.; Ellis, R. A.; Gorelov, Y. A.; Kolemen, E.; Lambot, T.; Murakami, D. D.; Myrabo, L.; Noraky, S.; Parkin, K. L.; Ponce, D.; Torrezan, A.

    2015-03-12

    The gyrotron installation on the DIII-D tokamak has been in operation at the second harmonic of the electron cyclotron resonance since the mid-1990s. Prior to that a large installation of ten 60 GHz tubes was operated at the fundamental resonance. The system has been upgraded regularly and is an everyday tool for experiments on DIII-D.

  9. 14 CFR 101.25 - Operating limitations for Class 2-High Power Rockets and Class 3-Advanced High Power Rockets.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Power Rockets and Class 3-Advanced High Power Rockets. 101.25 Section 101.25 Aeronautics and Space... OPERATING RULES MOORED BALLOONS, KITES, AMATEUR ROCKETS AND UNMANNED FREE BALLOONS Amateur Rockets § 101.25 Operating limitations for Class 2-High Power Rockets and Class 3-Advanced High Power Rockets. When...

  10. 14 CFR 101.25 - Operating limitations for Class 2-High Power Rockets and Class 3-Advanced High Power Rockets.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Power Rockets and Class 3-Advanced High Power Rockets. 101.25 Section 101.25 Aeronautics and Space... OPERATING RULES MOORED BALLOONS, KITES, AMATEUR ROCKETS AND UNMANNED FREE BALLOONS Amateur Rockets § 101.25 Operating limitations for Class 2-High Power Rockets and Class 3-Advanced High Power Rockets. When...

  11. 14 CFR 101.25 - Operating limitations for Class 2-High Power Rockets and Class 3-Advanced High Power Rockets.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Power Rockets and Class 3-Advanced High Power Rockets. 101.25 Section 101.25 Aeronautics and Space... OPERATING RULES MOORED BALLOONS, KITES, AMATEUR ROCKETS AND UNMANNED FREE BALLOONS Amateur Rockets § 101.25 Operating limitations for Class 2-High Power Rockets and Class 3-Advanced High Power Rockets. When...

  12. 14 CFR 101.25 - Operating limitations for Class 2-High Power Rockets and Class 3-Advanced High Power Rockets.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Power Rockets and Class 3-Advanced High Power Rockets. 101.25 Section 101.25 Aeronautics and Space... OPERATING RULES MOORED BALLOONS, KITES, AMATEUR ROCKETS AND UNMANNED FREE BALLOONS Amateur Rockets § 101.25 Operating limitations for Class 2-High Power Rockets and Class 3-Advanced High Power Rockets. When...

  13. 14 CFR 101.25 - Operating limitations for Class 2-High Power Rockets and Class 3-Advanced High Power Rockets.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Power Rockets and Class 3-Advanced High Power Rockets. 101.25 Section 101.25 Aeronautics and Space... OPERATING RULES MOORED BALLOONS, KITES, AMATEUR ROCKETS AND UNMANNED FREE BALLOONS Amateur Rockets § 101.25 Operating limitations for Class 2-High Power Rockets and Class 3-Advanced High Power Rockets. When...

  14. High Pressure Microwave Powered UV Light Sources

    NASA Astrophysics Data System (ADS)

    Cekic, M.; Frank, J. D.; Popovic, S.; Wood, C. H.

    1997-10-01

    Industrial microwave powered (*electrodeless*) light sources have been limited to quiescent pressures of 300 Torr of buffer gas and metal- halide fills. Recently developed multi-atmospheric electronegative bu lb fills (noble gas-halide excimers, metal halide) require electric field s for ionization that are often large multiples of the breakdown voltage for air. For these fills an auxiliary ignition system is necessary. The most successful scheme utilizes a high voltage pulse power supply and a novel field emission source. Acting together they create localized condition of pressure reduction and high free electron density. This allows the normal microwave fields to drive this small region into avalanche, ignite the bulb, and heat the plasma to it's operating poin t Standard diagnostic techniques of high density discharges are inapplicable to the excimer bulbs, because of the ionic molecular exci ted state structure and absence of self-absorption. The method for temperature determination is based on the equilibrium population of certain vibrational levels of excimer ionic excited states. Electron d ensity was determined from the measurements of Stark profiles of H_β radiation from a small amount of hydrogen mixed with noble gas and halogens. At the present time, high pressure (Te 0.5eV, ne 3 x 10^17 cm-3) production bulbs produce over 900W of radiation in a 30nm band, centered at 30nm. Similarly, these prototypes when loaded with metal-halide bulb fills produce 1 kW of radiation in 30nm wide bands, centered about the wavelength of interest.

  15. Breakdown phenomena in high power klystrons

    SciTech Connect

    Vlieks, A.E.; Allen, M.A.; Callin, R.S.; Fowkes, W.R.; Hoyt, E.W.; Lebacqz, J.V.; Lee, T.G.

    1988-03-01

    In the course of developing new high peak power klystrons at SLAC, high electric fields in several regions of these devices have become an important source of vacuum breakdown phenomena. In addition, a renewed interest in breakdown phenomena for nanosecond pulse, multi-megavolt per centimeter fields has been sparked by recent R and D work in the area of gigawatt RF sources. The most important regions of electrical breakdown are in the output cavity gap area, the RF ceramic windows, and the gun ceramic insulator. The details of the observed breakdown in these regions, experiments performed to understand the phenomena and solutions found to alleviate the problems will be discussed. Recently experiments have been performed on a new prototype R and D klystron. Peak electric fields across the output cavity gaps of this klystron exceed 2 MV/cm. The effect of peak field duration (i.e. pulse width) on the onset of breakdown have been measured. The pulse widths varied from tens of nanoseconds to microseconds. Results from these experiments will be presented. The failure of ceramic RF windows due to multipactor and puncturing was an important problem to overcome in order that our high power klystrons would have a useful life expectancy. Consequently many studies and tests were made to understand and alleviate window breakdown phenomena. Some of the results in this area, especially the effects of surface coatings, window materials and processing techniques and their effects on breakdown will be discussed. Another important source of klystron failure in the recent past at SLAC has been the puncturing of the high voltage ceramic insulator in the gun region. A way of alleviating this problem has been found although the actual cause of the puncturing is not yet clear. The ''practical'' solution to this breakdown process will be described and a possible mechanism for the puncturing will be presented. 9 refs., 5 figs., 3 tabs.

  16. High-Voltage, High-Power Gaseous Electronics Switch For Electric Grid Power Conversion

    NASA Astrophysics Data System (ADS)

    Sommerer, Timothy J.

    2014-05-01

    We are developing a high-voltage, high-power gas switch for use in low-cost power conversion terminals on the electric power grid. Direct-current (dc) power transmission has many advantages over alternating current (ac) transmission, but at present the high cost of ac-dc power interconversion limits the use of dc. The gas switch we are developing conducts current through a magnetized cold cathode plasma in hydrogen or helium to reach practical current densities > 1 A/cm2. Thermal and sputter damage of the cathode by the incident ion flux is a major technical risk, and is being addressed through use of a ``self-healing'' liquid metal cathode (eg, gallium). Plasma conditions and cathode sputtering loss are estimated by analyzing plasma spectral emission. A particle-in-cell plasma model is used to understand various aspects of switch operation, including the conduction phase (where plasma densities can exceed 1013 cm-3), the switch-open phase (where the high-voltage must be held against gas breakdown on the left side of Paschen's curve), and the switching transitions (especially the opening process, which is initiated by forming an ion-matrix sheath adjacent to a control grid). The information, data, or work presented herein was funded in part by the Advanced Research Projects Agency-Energy (ARPA-E), U.S. Department of Energy, under Award Number DE-AR0000298.

  17. Sexual aggression when power is new: Effects of acute high power on chronically low-power individuals.

    PubMed

    Williams, Melissa J; Gruenfeld, Deborah H; Guillory, Lucia E

    2017-02-01

    Previous theorists have characterized sexually aggressive behavior as an expression of power, yet evidence that power causes sexual aggression is mixed. We hypothesize that power can indeed create opportunities for sexual aggression-but that it is those who chronically experience low power who will choose to exploit such opportunities. Here, low-power men placed in a high-power role showed the most hostility in response to a denied opportunity with an attractive woman (Studies 1 and 2). Chronically low-power men and women given acute power were the most likely to say they would inappropriately pursue an unrequited workplace attraction (Studies 3 and 4). Finally, having power over an attractive woman increased harassment behavior among men with chronic low, but not high, power (Study 5). People who see themselves as chronically denied power appear to have a stronger desire to feel powerful and are more likely to use sexual aggression toward that end. (PsycINFO Database Record

  18. High Energy High Power Battery Exceeding PHEV40 Requirements

    SciTech Connect

    Rempel, Jane

    2016-03-31

    TIAX has developed long-life lithium-ion cells that can meet and exceed the energy and power targets (200Wh/kg and 800W/kg pulse power) set out by DOE for PHEV40 batteries. To achieve these targets, we selected and scaled-up a high capacity version of our proprietary high energy and high power CAM-7® cathode material. We paired the cathode with a blended anode containing Si-based anode material capable of delivering high capacity and long life. Furthermore, we optimized the anode blend composition, cathode and anode electrode design, and selected binder and electrolyte compositions to achieve not only the best performance, but also long life. By implementing CAM-7 with a Si-based blended anode, we built and tested prototype 18650 cells that delivered measured specific energy of 198Wh/kg total energy and 845W/kg at 10% SOC (projected to 220Wh/kg in state-of-the-art 18650 cell hardware and 250Wh/kg in 15Ah pouch cells). These program demonstration cells achieved 90% capacity retention after 500 cycles in on-going cycle life testing. Moreover, we also tested the baseline CAM-7/graphite system in 18650 cells showing that 70% capacity retention can be achieved after ~4000 cycles (20 months of on-going testing). Ultimately, by simultaneously meeting the PHEV40 power and energy targets and providing long life, we have developed a Li-ion battery system that is smaller, lighter, and less expensive than current state-of-the-art Li-ion batteries.

  19. High-power, widely-tunable Cr(2+):ZnSemaster oscillator power amplifier systems.

    PubMed

    Berry, P A; Schepler, K L

    2010-07-05

    We demonstrate high-power Cr(2+):ZnSe master oscillator power amplifier (MOPA) pure continuous wave (CW) laser systems with output power of 14 W and amplifier gain greater than 2X. In addition, we develop a theoretical model for this type of amplification and show single-knob tunability at high powers over 400 nm.

  20. Temperature measurements of high power LEDs

    NASA Astrophysics Data System (ADS)

    Badalan (Draghici), Niculina; Svasta, Paul; Drumea, Andrei

    2016-12-01

    Measurement of a LED junction temperature is very important in designing a LED lighting system. Depending on the junction temperature we will be able to determine the type of cooling system and the size of the lighting system. There are several indirect methods for junction temperature measurement. The method used in this paper is based on the thermal resistance model. The aim of this study is to identify the best device that would allow measuring the solder point temperature and the temperature on the lens of power LEDs. For this purpose four devices for measuring temperature on a high-power LED are presented and compared according to the acquired measurements: an infrared thermal camera from FLIR Systems, a multimeter with K type thermocouple (Velleman DVM4200), an infrared-spot based noncontact thermometer (Raynger ST) and a measurement system based on a digital temperature sensor (DS1821 type) connected to a PC. The measurements were conducted on an 18W COB (chip-on-board) LED. The measurement points are the supply terminals and the lens of the LED.

  1. K-band high power latching switch

    NASA Astrophysics Data System (ADS)

    Mlinar, M. J.; Piotrowski, W. S.; Raue, J. E.

    1980-12-01

    A 19 GHz waveguide latching switch with a bandwidth of 1400 MHz and an exceptionally low insertion loss of 0.25 dB was demonstrated. The RF and driver ferrites are separate structures and can be optimized individually. This analysis for each structure is separately detailed. Basically, the RF section features a dual turnstile junction. The circulator consists of a dielectric tube which contains two ferrite rods, and a dielectric spacer separating the ferrite parts along the center of symmetry of the waveguide to form two turnstiles. This subassembly is indexed and locked in the center of symmetry of a uniform junction of three waveguides by the metallic transformers installed in the top and bottom walls of the housing. The switching junction and its actuating circuitry met all RF performance objectives and all shock and vibration requirements with no physical damage or performance degradation. It exceeds thermal requirements by operating over a 100 C temperature range (-44 C to +56 C) and has a high power handling capability allowing up to 100 W of CW input power.

  2. High Power Flex-Propellant Arcjet Performance

    NASA Technical Reports Server (NTRS)

    Litchford, Ron J.

    2011-01-01

    implied nearly frozen flow in the nozzle and yielded performance ranges of 800-1100 sec for hydrogen and 400-600 sec for ammonia. Inferred thrust-to-power ratios were in the range of 30-10 lbf/MWe for hydrogen and 60-20 lbf/MWe for ammonia. Successful completion of this test series represents a fundamental milestone in the progression of high power arcjet technology, and it is hoped that the results may serve as a reliable touchstone for the future development of MW-class regeneratively-cooled flex-propellant plasma rockets.

  3. High-temperature alloys for high-power thermionic systems

    SciTech Connect

    Shin, Kwang S.; Jacobson, D.L.; D'cruz, L.; Luo, Anhua; Chen, Bor-Ling.

    1990-08-01

    The need for structural materials with useful strength above 1600 k has stimulated interest in refractory-metal alloys. Tungsten possesses an extreme high modulus of elasticity as well as the highest melting temperature among metals, and hence is being considered as one of the most promising candidate materials for high temperature structural applications such as space nuclear power systems. This report is divided into three chapters covering the following: (1) the processing of tungsten base alloys; (2) the tensile properties of tungsten base alloys; and (3) creep behavior of tungsten base alloys. Separate abstracts were prepared for each chapter. (SC)

  4. High power solid state laser modulator

    DOEpatents

    Birx, Daniel L.; Ball, Don G.; Cook, Edward G.

    2004-04-27

    A multi-stage magnetic modulator provides a pulse train of .+-.40 kV electrical pulses at a 5-7 kHz repetition rate to a metal vapor laser. A fractional turn transformer steps up the voltage by a factor of 80 to 1 and magnetic pulse compression is used to reduce the pulse width of the pulse train. The transformer is fabricated utilizing a rod and plate stack type of construction to achieve a high packing factor. The pulses are controlled by an SCR stack where a plurality of SCRs are electrically connected in parallel, each SCR electrically connected to a saturable inductor, all saturable inductors being wound on the same core of magnetic material for enhanced power handling characteristics.

  5. Modulation instability in high power laser amplifiers.

    PubMed

    Rubenchik, Alexander M; Turitsyn, Sergey K; Fedoruk, Michail P

    2010-01-18

    The modulation instability (MI) is one of the main factors responsible for the degradation of beam quality in high-power laser systems. The so-called B-integral restriction is commonly used as the criteria for MI control in passive optics devices. For amplifiers the adiabatic model, assuming locally the Bespalov-Talanov expression for MI growth, is commonly used to estimate the destructive impact of the instability. We present here the exact solution of MI development in amplifiers. We determine the parameters which control the effect of MI in amplifiers and calculate the MI growth rate as a function of those parameters. The safety range of operational parameters is presented. The results of the exact calculations are compared with the adiabatic model, and the range of validity of the latest is determined. We demonstrate that for practical situations the adiabatic approximation noticeably overestimates MI. The additional margin of laser system design is quantified.

  6. Frequency stable high power lasers in space

    NASA Technical Reports Server (NTRS)

    Byer, Robert L.

    1989-01-01

    The concept of a laser heterodyne gravity wave antenna that would operate in solar orbit with a one million kilometer path length is discussed. Laser technology that would be appropriate for operation of this space-based gravity wave detector is also discussed. The rapid progress in diode laser coupled with the energy storage and potentially sub-Hertz linewidths of solid state lasers, and the possibility of efficient frequency conversion by nonlinear optical techniques defines a technology that is appropriate for laser interferometry in space. The present status of diode-laser-pumped, solid state lasers is summarized and future progress is projected in areas of linewidth control, high average power, operating efficiency, and operational lifetimes that are essential for space-based applications.

  7. High power coherent polarization locked laser diode.

    PubMed

    Purnawirman; Phua, P B

    2011-03-14

    We have coherently combined a broad area laser diode array to obtain high power single-lobed output by using coherent polarization locking. The single-lobed coherent beam is achieved by spatially combining four diode emitters using walk-off crystals and waveplates while their phases are passively locked via polarization discrimination. While our previous work focused on coherent polarization locking of diode in Gaussian beams, we demonstrate in this paper, the feasibility of the same polarization discrimination for locking multimode beams from broad area diode lasers. The resonator is designed to mitigate the loss from smile effect by using retro-reflection feedback in the cavity. In a 980 nm diode array, we produced 7.2 W coherent output with M2 of 1.5x11.5. The brightness of the diode is improved by more than an order of magnitude.

  8. Highly symmetric POVMs and their informational power

    NASA Astrophysics Data System (ADS)

    Słomczyński, Wojciech; Szymusiak, Anna

    2016-01-01

    We discuss the dependence of the Shannon entropy of normalized finite rank-1 POVMs on the choice of the input state, looking for the states that minimize this quantity. To distinguish the class of measurements where the problem can be solved analytically, we introduce the notion of highly symmetric POVMs and classify them in dimension 2 (for qubits). In this case, we prove that the entropy is minimal, and hence, the relative entropy (informational power) is maximal, if and only if the input state is orthogonal to one of the states constituting a POVM. The method used in the proof, employing the Michel theory of critical points for group action, the Hermite interpolation, and the structure of invariant polynomials for unitary-antiunitary groups, can also be applied in higher dimensions and for other entropy-like functions. The links between entropy minimization and entropic uncertainty relations, the Wehrl entropy, and the quantum dynamical entropy are described.

  9. Facet engineering of high power single emitters

    NASA Astrophysics Data System (ADS)

    Yanson, Dan; Levi, Moshe; Shamay, Moshe; Tesler, Renana; Rappaport, Noam; Don, Yaroslav; Karni, Yoram; Schnitzer, Itzhak; Sicron, Noam; Shusterman, Sergey

    2011-03-01

    The ever increasing demand for high-power, high-reliability operation of single emitters at 9xx nm wavelengths requires the development of laser diodes with improved facet regions immune to both catastrophic and wear-out failure modes. In our study, we have evaluated several laser facet definition technologies in application to 90 micron aperture single emitters in asymmetric design (In)GaAs/AlGaAs based material emitting at 915, 925 and 980nm. A common epitaxy and emitter design makes for a straightforward comparison of the facet technologies investigated. Our study corroborates a clear trend of increasing difficulty in obtaining reliable laser operation from 980nm down to 915nm. At 980nm, one can employ dielectric facet passivation with a pre-clean cycle delivering a device lifetime in excess of 3,000 hours at increasing current steps. At 925nm, quantum-well intermixing can be used to define non-absorbing mirrors giving good device reliability, albeit with a large efficiency penalty. Vacuum cleaved emitters have delivered excellent reliability at 915nm, and can be expected to perform just as well at 925 and 980nm. Epitaxial regrowth of laser facets is under development and has yet to demonstrate an appreciable reliability improvement. Only a weak correlation between start-of-life catastrophic optical mirror damage (COMD) levels and reliability was established. The optimized facet design has delivered maximum powers in excess of 19 MW/sq.cm (rollover limited) and product-grade 980nm single emitters with a slope efficiency of >1 W/A and a peak efficiency of >60%. The devices have accumulated over 1,500 hours of CW operation at 11W. A fiber-coupled device emits 10W ex-fiber with 47% efficiency.

  10. Design Considerations for High Temperature Power Inductors

    NASA Technical Reports Server (NTRS)

    Niedra, Janis M.

    2005-01-01

    A uniform B-field approximation model is used to develop design formulas for single-layer wound, toroidal core, ac power inductors that must handle a specified current. Such a geometry is well suited for high temperature, high frequency inductors, where removal of heat from the core becomes critical. Explicit expressions are derived for core radii, core and winding volumes, winding turns and core permeability as functions of a dimensional scaling ratio (S). A limit on the maximum allowed core B-field leads to the result that the minimum core volume is proportional to the permeability, which has a lower bound. Plots versus S are provided for a specific case, to show that good designs can be picked in the overlap regions around the minima in mass and overall size, where the mass and size are relatively flat. Data to 250 C are presented for an MPP core based inductor to show that a quasi-linear, high temperature inductor can be constructed with available materials. A similar development is applied to a toroidal air-core geometry, showing that for the same ratings, such an inductor is considerably bigger and more massive, at least in the single-layer version.

  11. High Power High Efficiency Ka-Band Power Combiners for Solid-State Devices

    NASA Technical Reports Server (NTRS)

    Freeman, Jon C.; Wintucky, Edwin G.; Chevalier, Christine T.

    2006-01-01

    Wide-band power combining units for Ka-band are simulated for use as MMIC amplifier applications. Short-slot couplers as well as magic-tees are the basic elements for the combiners. Wide bandwidth (5 GHz) and low insertion (approx.0.2 dB) and high combining efficiencies (approx.90 percent) are obtained.

  12. Compact, high-pulse-energy, high-power, picosecond master oscillator power amplifier.

    PubMed

    Chan, Ho-Yin; Alam, Shaif-Ul; Xu, Lin; Bateman, James; Richardson, David J; Shepherd, David P

    2014-09-08

    We report a compact, stable, gain-switched-diode-seeded master oscillator power amplifier (MOPA), employing direct amplification via conventional Yb(3+)-doped fibers, to generate picosecond pulses with energy of 17.7 μJ and 97-W average output power (excluding amplified spontaneous emission) at 5.47-MHz repetition frequency in a diffraction-limited and single-polarization beam. A maximum peak power of 197 kW is demonstrated. Such a high-energy, high-power, MHz, picosecond MOPA is of great interest for high-throughput material processing. With 13.8-μJ pulse energy confined in the 0.87-nm 3-dB spectral bandwidth, this MOPA is also a promising source for nonlinear frequency conversion to generate high-energy pulses in other spectral regions. We have explored the pulse energy scaling until the stimulated Raman Scattering (SRS) becomes significant (i.e. spectral peak intensity exceeds 1% of that of the signal).

  13. High Pulsed Power, Self Excited Magnetohydrodynamic Power Generation Systems

    DTIC Science & Technology

    1985-12-27

    Degree of Ionization of Cesium on Performance 72 3.5.7. Effect of Channel Area Ratio on Performance 73 3.5.8. Comparison of Helium vs Argon Generator...EXPLOSIVE PULSED SYSTEM WEIGHTS,REF.2 32 TABLE 5: POWER DENSITY & ENTHALPY EXTRACTION OF CLOSED CYCLE GENERATORS 35 TABLE 6: ENTHALPY EXTRACTION VS PRESSURE...OF ALUMINUM PARTICLES 50 TABLE 11. ALUMINUM PARTICLE BURNING TIMES vs OPERATING CONDITIONS 52 TABLE 12. TOTAL COMBUSTION TIME OF Al. PARTICLES vs

  14. Method and apparatus for improved high power impulse magnetron sputtering

    DOEpatents

    Anders, Andre

    2013-11-05

    A high power impulse magnetron sputtering apparatus and method using a vacuum chamber with a magnetron target and a substrate positioned in the vacuum chamber. A field coil being positioned between the magnetron target and substrate, and a pulsed power supply and/or a coil bias power supply connected to the field coil. The pulsed power supply connected to the field coil, and the pulsed power supply outputting power pulse widths of greater that 100 .mu.s.

  15. Development of Quasi-Optical Gyrotrons for Fusion Plasma Heating

    DTIC Science & Technology

    1988-07-11

    1987 - NRL Invention Award May 1987 - Elected to Sigma Xi 158 W Scientific Projects Managed 1) Toroidal Plasma Modeling, Department of Energy ...OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER ORGANIZATION (If applicable) DeDartment of Energy 8c. ADDRESS (City, State, and ZIP Code) 10...Introduction The High Power Electromagnetic Radiation Branch (Code 4740) of the U. S. Naval Research Laboratory analyzes here for the Department of Energy a

  16. High power linear pulsed beam annealer

    DOEpatents

    Strathman, Michael D.; Sadana, Devendra K.; True, Richard B.

    1983-01-01

    A high power pulsed electron beam is produced in a system comprised of an electron gun having a heated cathode, control grid, focus ring, and a curved drift tube. The drift tube is maintained at a high positive voltage with respect to the cathode to accelerate electrons passing through the focus ring and to thereby eliminate space charge. A coil surrounding the curved drift tube provides a magnetic field which maintains the electron beam focused about the axis of the tube and imparts motion on electrons in a spiral path for shallow penetration of the electrons into a target. The curvature of the tube is selected so there is no line of sight between the cathode and a target holder positioned within a second drift tube spaced coaxially from the curved tube. The second tube and the target holder are maintained at a reference voltage that decelerates the electrons. A second coil surrounding the second drift tube maintains the electron beam focused about the axis of the second drift tube and compresses the electron beam to the area of the target. The target holder can be adjusted to position the target where the cross section of the beam matches the area of the target.

  17. Reactive high power impulse magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Gudmundsson, J. T.; Magnus, F.; Tryggvason, T. K.; Sveinsson, O. B.; Olafsson, S.

    2012-10-01

    Here we discuss reactive high power impulse magnetron sputtering sputtering (HiPIMS) [1] of Ti target in an Ar/N2 and Ar/O2 atmosphere. The discharge current waveform is highly dependent on both the pulse repetition frequency and discharge voltage. The discharge current increases with decreasing frequency or voltage. This we attribute to an increase in the secondary electron emission yield during the self-sputtering phase of the pulse, as nitride [2] or oxide [3] forms on the target. We also discuss the growth of TiN films on SiO2 at temperatures of 22-600 ^oC. The HiPIMS process produces denser films at lower growth temperature and the surface is much smoother and have a significantly lower resistivity than dc magnetron sputtered films on SiO2 at all growth temperatures due to reduced grain boundary scattering [4].[4pt] [1] J. T. Gudmundsson, N. Brenning, D. Lundin and U. Helmersson, J. Vac. Sci. Technol. A, 30 030801 (2012)[0pt] [2] F. Magnus, O. B. Sveinsson, S. Olafsson and J. T. Gudmundsson, J. Appl. Phys., 110 083306 (2011)[0pt] [3] F. Magnus, T. K. Tryggvason, S. Olafsson and J. T. Gudmundsson, J. Vac. Sci. Technol., submitted 2012[0pt] [4] F. Magnus, A. S. Ingason, S. Olafsson and J. T. Gudmundsson, IEEE Elec. Dev. Lett., accepted 2012

  18. Extension of high T{sub e} regime with upgraded ECRH system in the LHD

    SciTech Connect

    Takahashi, H.; Shimozuma, T.; Kubo, S.; Yoshimura, Y.; Igami, H.; Ito, S.; Kobayashi, S.; Mizuno, Y.; Okada, K.; Mutoh, T.; Nagaoka, K.; Osakabe, M.; Yamada, I.; Nakano, H.; Yokoyama, M.; Ido, T.; Shimizu, A.; Seki, R.; Ida, K.; Yoshinuma, M.; and others

    2014-02-12

    Enhancement of the output power per gyrotron has been planned in the Large Helical Device (LHD). Three 77-GHz gyrotrons with an output power of more than 1 MW have been operated. In addition, a high power gyrotron with the frequency of 154 GHz (1 MW/5 s, 0.5 MW/CW) was newly installed in 2012 and the total injection power of ECRH reached 4.6 MW. The operational regime of ECRH plasma on the LHD has been extended due to the upgraded ECRH system such as the central electron temperature T{sub e0} = 13.5 keV with n{sub e} = 1×10{sup 19}m{sup −3}. In the LHD, an electron-internal-transport barrier (e-ITB) related to the production of high T{sub e} plasmas has been realized by strongly centre-focused ECRH. The electron thermal confinement clearly improved inside the e-ITB. The radial electric field was measured using the heavy ion beam probe. The formation of the positive E{sub r} was observed in the core region, which well agreed with the prediction of the neoclassical transport theory. The energy confinement characteristics have been investigated in the ECRH plasmas. It was found that higher plasma stored energy and lower radiation power was realized in the outward configuration. The plasma stored energy of 530 kJ with n{sub e} = 3.2×10{sup 19}m{sup −3}, which is the 1.7 times larger than the previous record in the ECRH plasma in the LHD, has been successfully achieved.

  19. Powerful Quasar Outflows at High Redshifts

    NASA Astrophysics Data System (ADS)

    Aljanahi, Sara; Robert Scott Barrows

    2017-01-01

    Powerful quasar outflows can be driven by radiation pressure or radio jets, and they are capable of effecting the evolution of their host galaxies, particularly at high-redshifts (z~2)) when the quasar density peaks. We present a multi-wavelength analysis of 131 quasar outflows at high-redshifts (0.8high-redshift nature of this sample has pushed the systematic study of quasar outflows closer to the epoch in which quasar feedback is likely to have been important in galaxy evolution.

  20. Complete low power controller for high voltage power systems

    SciTech Connect

    Sumner, R.; Blanar, G.

    1997-12-31

    The MHV100 is a custom CMOS integrated circuit, developed for the AMS experiment. It provides complete control for a single channel high voltage (HV) generator and integrates all the required digital communications, D to A and A to D converters, the analog feedback loop and output drivers. This chip has been designed for use in both distributed high voltage systems or for low cost single channel high voltage systems. The output voltage and current range is determined by the external components.

  1. Concept of electric propulsion realization for high power space tug

    NASA Astrophysics Data System (ADS)

    Zakharenkov, L. E.; Semenkin, A. V.; Solodukhin, A. E.

    2016-07-01

    Popular at the beginning of the Space Age, ambitious projects aimed at Moon, Mars, and other space objects exploration, have returned with new technology and design level. High power space tug with electric propulsion system (EPS) is mainly considered as a transport vehicle for such missions. Modern high power space tugs projects as well as their spacecraft (SC) power and propulsion systems are reviewed in the paper. The main technologies and design solutions needed for high-power EPS realization are considered.

  2. The SPES High Power ISOL production target

    NASA Astrophysics Data System (ADS)

    Andrighetto, A.; Corradetti, S.; Ballan, M.; Borgna, F.; Manzolaro, M.; Scarpa, D.; Monetti, A.; Rossignoli, M.; Silingardi, R.; Mozzi, A.; Vivian, G.; Boratto, E.; De Ruvo, L.; Sattin, N.; Meneghetti, G.; Oboe, R.; Guerzoni, M.; Margotti, A.; Ferrari, M.; Zenoni, A.; Prete, G.

    2016-11-01

    SPES (Selective Production of Exotic Species) is a facility under construction at INFN-LNL (Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali di Legnaro), aimed to produce intense neutron-rich radioactive ion beams (RIBs). These will be obtained using the ISOL (Isotope Separation On-Line) method, bombarding a uranium carbide target with a proton beam of 40MeV energy and currents up to 200μA. The target configuration was designed to obtain a high number of fissions, up to 1013 per second, low power deposition and fast release of the produced isotopes. The exotic isotopes generated in the target are ionized, mass separated and re-accelerated by the ALPI superconducting LINAC at energies of 10AMeV and higher, for masses in the region of A = 130 amu , with an expected rate on the secondary target up to 109 particles per second. In this work, recent results on the R&D activities regarding the SPES RIB production target-ion source system are reported.

  3. Radiation of long and high power arcs

    NASA Astrophysics Data System (ADS)

    Cressault, Y.; Bauchire, J. M.; Hong, D.; Rabat, H.; Riquel, G.; Sanchez, F.; Gleizes, A.

    2015-10-01

    The operators working on electrical installations of low, medium and high voltages can be accidentally exposed to short-circuit arcs ranging from a few kA to several tens of kA. To protect them from radiation, according to the exposure limits, we need to characterize the radiation emitted by the powerful arc. Therefore, we have developed a general experimental and numerical study in order to estimate the spectral irradiance received at a given distance from the arc. The experimental part was based on a very long arc (up to 2 m) with high ac current (between 4 and 40 kA rms, duration 100 ms) using 3 kinds of metallic contacts (copper, steel and aluminium). We measured the irradiance received 10m from the axis of the arc, and integrated on 4 spectral intervals corresponding to the UV, visible, IRA  +  B and IRC. The theoretical part consisted of calculating the radiance of isothermal plasmas in mixtures of air and metal vapour, integrated over the same spectral intervals as defined in the experiments. The comparison between the theoretical and experimental results has allowed the defining of three isothermal radiation sources whose combination leads to a spectral irradiation equivalent to the experimental one. Then the calculation allowed the deduction of the spectral description of the irradiance over all the wavelength range, between 200 nm and 20 μm. The final results indicate that the influence of metal is important in the visible and UVA ranges whereas the IR radiation is due to the air plasma and surrounding hot gas and fumes.

  4. Laboratory Astrophysics on High Power Lasers and Pulsed Power Facilities

    SciTech Connect

    Remington, B A

    2002-02-05

    Over the past decade a new genre of laboratory astrophysics has emerged, made possible by the new high energy density (HED) experimental facilities, such as large lasers, z-pinch generators, and high current particle accelerators. (Remington, 1999; 2000; Drake, 1998; Takabe, 2001) On these facilities, macroscopic collections of matter can be created in astrophysically relevant conditions, and its collective properties measured. Examples of processes and issues that can be experimentally addressed include compressible hydrodynamic mixing, strong shock phenomena, radiative shocks, radiation flow, high Mach-number jets, complex opacities, photoionized plasmas, equations of state of highly compressed matter, and relativistic plasmas. These processes are relevant to a wide range of astrophysical phenomena, such as supernovae and supernova remnants, astrophysical jets, radiatively driven molecular clouds, accreting black holes, planetary interiors, and gamma-ray bursts. These phenomena will be discussed in the context of laboratory astrophysics experiments possible on existing and future HED facilities.

  5. 30 GHz High Power Production for CLIC

    SciTech Connect

    Syratchev, I.

    2006-01-03

    The CLIC Power Extraction and Transfer Structure (PETS) is a passive microwave device in which bunches of the drive beam interact with the impedance of the periodically loaded waveguide and excite preferentially the synchronous TM01 mode at 30 GHz. The RF power produced (several hundred MW) is collected at the downstream end of the structure by means of the Power Extractor and conveyed to the main linac structure. The PETS geometry is a result of multiple compromises between beam stability along single decelerator (600 m) and active length of the structure given by main linac RF power needs and layout. Surface electric and magnetic fields, power extraction method, HOM damping, ON/OFF capability and fabrication technology were all evaluated to provide reliable design.

  6. High-power converters for space applications

    NASA Technical Reports Server (NTRS)

    Park, J. N.; Cooper, Randy

    1991-01-01

    Phase 1 was a concept definition effort to extend space-type dc/dc converter technology to the megawatt level with a weight of less than 0.1 kg/kW (220 lb./MW). Two system designs were evaluated in Phase 1. Each design operates from a 5 kV stacked fuel cell source and provides a voltage step-up to 100 kV at 10 A for charging capacitors (100 pps at a duty cycle of 17 min on, 17 min off). Both designs use an MCT-based, full-bridge inverter, gaseous hydrogen cooling, and crowbar fault protection. The GE-CRD system uses an advanced high-voltage transformer/rectifier filter is series with a resonant tank circuit, driven by an inverter operating at 20 to 50 kHz. Output voltage is controlled through frequency and phase shift control. Fast transient response and stability is ensured via optimal control. Super-resonant operation employing MCTs provides the advantages of lossless snubbing, no turn-on switching loss, use of medium-speed diodes, and intrinsic current limiting under load-fault conditions. Estimated weight of the GE-CRD system is 88 kg (1.5 cu ft.). Efficiency of 94.4 percent and total system loss is 55.711 kW operating at 1 MW load power. The Maxwell system is based on a resonance transformer approach using a cascade of five LC resonant sections at 100 kHz. The 5 kV bus is converted to a square wave, stepped-up to a 100 kV sine wave by the LC sections, rectified, and filtered. Output voltage is controlled with a special series regulator circuit. Estimated weight of the Maxwell system is 83.8 kg (4.0 cu ft.). Efficiency is 87.2 percent and total system loss is 146.411 kW operating at 1 MW load power.

  7. Thermoelectric Powered High Temperature Wireless Sensing

    NASA Astrophysics Data System (ADS)

    Kucukkomurler, Ahmet

    This study describes use of a thermoelectric power converter to transform waste heat into electrical energy to power an RF receiver and transmitter, for use in harsh environment wireless temperature sensing and telemetry. The sensing and transmitting module employs a DS-1820 low power digital temperature sensor to perform temperature to voltage conversion, an ATX-34 RF transmitter, an ARX-34 RF receiver module, and a PIC16f84A microcontroller to synchronize data communication between them. The unit has been tested in a laboratory environment, and promising results have been obtained for an actual automotive wireless under hood temperature sensing and telemetry implementation.

  8. High-power microwaves for defense and accelerator applications

    SciTech Connect

    Manheimer, W. )

    1992-03-11

    This paper discusses high-power microwaves for application to the Defense Department and to the powering of large accelerators. The microwave sources discussed are the SLAC klystron, the relativistic klystron, the magnetron and the vircator.

  9. High power system for ECRH at 140Ghz, 2MW, 0.5s on FTU tokamak

    SciTech Connect

    Sozzi, C.; Bozzi, R.; Bruschi, A.; Cirant, S.; Gandini, F.; Granucci, G.; Mellera, V.; Muzzini, V.; Nardone, A.; Simonetto, A.; Spinicchia, N.; Berardi, B.; Ciccone, G.; DiGiovenale, S.; Iannone, F.; Lupini, S.; Mantovani, S.; Pesci, E.

    1999-09-20

    The 140GHz, 2MW, 0.5s ECRH system on FTU tokamak integrates closed waveguide transmission lines ({approx_equal}30 m) with quasi optical systems at both ends for efficient coupling from the 4 gyrotrons to the 4 waveguides and from these to the plasma through a single access port. Poloidal and toroidal control of the beam's launching angles and polarization is performed without movable components close to the plasma. Most of the components of each generation and transmission system were designed to operate at a power level higher than 0.5 MW, and a possible up-grade to a full 1 MW, 0.5 s capability is discussed.

  10. Amplification of picosecond pulses in a 140-GHz gyrotron-traveling wave tube.

    PubMed

    Kim, H J; Nanni, E A; Shapiro, M A; Sirigiri, J R; Woskov, P P; Temkin, R J

    2010-09-24

    An experimental study of picosecond pulse amplification in a gyrotron-traveling wave tube (gyro-TWT) has been carried out. The gyro-TWT operates with 30 dB of small signal gain near 140 GHz in the HE₀₆ mode of a confocal waveguide. Picosecond pulses show broadening and transit time delay due to two distinct effects: the frequency dependence of the group velocity near cutoff and gain narrowing by the finite gain bandwidth of 1.2 GHz. Experimental results taken over a wide range of parameters show good agreement with a theoretical model in the small signal gain regime. These results show that in order to limit the pulse broadening effect in gyrotron amplifiers, it is crucial to both choose an operating frequency at least several percent above the cutoff of the waveguide circuit and operate at the center of the gain spectrum with sufficient gain bandwidth.

  11. Suppression criteria of parasitic mode oscillations in a gyrotron beam tunnel

    SciTech Connect

    Kumar, Nitin; Singh, Udaybir; Sinha, A. K.; Singh, T. P.

    2011-02-15

    This paper presents the design criteria of the parasitic mode oscillations suppression for a periodic, ceramic, and copper loaded gyrotron beam tunnel. In such a type of beam tunnel, the suppression of parasitic mode oscillations is an important design problem. A method of beam-wave coupling coefficient and its mathematical formulation are presented. The developed design criteria are used in the beam tunnel design of a 42 GHz gyrotron to be developed for the Indian TOKAMAK system. The role of the thickness and the radius of the beam tunnel copper rings to obtain the developed design criteria are also discussed. The commercially available electromagnetic code CST and the electron trajectory code EGUN are used for the simulations.

  12. Design of 84 GHz 500 kW Gyrotron for Technological Millimeter Wave Applications

    NASA Astrophysics Data System (ADS)

    Singh, Udaybir; Kumar, Nitin; Kumar, Anil; Purohit, L. P.; Sinha, A. K.

    2011-04-01

    In this paper, the design and the numerical simulation of the 84 GHz, 500 kW gyrotron at first harmonic operation for technological applications is described. The operating mode of the gyrotron is TE10, 4. Various in-house developed and commercially available computer codes are used for the design purpose. The triode-type magnetron injection gun with the accelerating voltage 70-kV, the beam current 10-A and the maximum transverse velocity spread less than 5% is designed. The preliminary design is obtained by using some trade-off equations. The mode selection, the cold cavity and the beam-wave interaction analysis are discussed for the design of weakly tapered open resonator type of the interaction cavity. The parametric analysis of the interaction cavity and the electron gun is also presented.

  13. Numerical Simulation of a Double-anode Magnetron Injection Gun for 110 GHz, 1 MW Gyrotron

    NASA Astrophysics Data System (ADS)

    Singh, Udaybir; Kumar, Nitin; Purohit, L. P.; Sinha, Ashok K.

    2010-07-01

    A 40 A double-anode magnetron injection gun for a 1 MW, 110 GHz gyrotron has been designed. The preliminary design has been obtained by using some trade-off equations. The electron beam analysis has been performed by using the commercially available code EGUN and the in-house developed code MIGANS. The operating mode of the gyrotron is TE22,6 and it is operated in the fundamental harmonic. The electron beam with a low transverse velocity spread ( δ {β_{ bot max }} = 2.26% ) and the transverse-to-axial velocity ratio of the electron beam (α) = 1.37 is obtained. The simulated results of the MIG obtained with the EGUN code have been validated with another trajectory code TRAK. The results on the design output parameters obtained by both the codes are in good agreement. The sensitivity analysis has been carried out by changing the different gun parameters to decide the fabrication tolerance.

  14. Design of Electron Gun for 1.5 MW, 140 GHz Gyrotron

    NASA Astrophysics Data System (ADS)

    Singh, Udaybir; Kumar, Nitin; Purohit, L. P.; Sinha, A. K.

    2011-02-01

    This paper presents the design of the triode type electron gun for a 140 GHz, 1.5 MW gyrotron with the transverse to the axial velocity ratio of the beam 1.4 and the transverse velocity spread 1.28%. The operating mode of the gyrotron is TE24,8 and it is operated in the fundamental harmonic. The analytic trade-off equations for the electron gun design have been used to estimate the initial gun parameters. The electron trajectory tracing program has been used to optimize the electron gun design. The parametric dependences of modulating anode voltage, beam voltage and cathode magnetic field on the beam quality has also been studied.

  15. A High Power Frequency Doubled Fiber Laser

    NASA Technical Reports Server (NTRS)

    Thompson, Rob; Tu, Meirong; Aveline, Dave; Lundblad, Nathan; Maleki, Lute

    2003-01-01

    This slide presentation reviews the power frequencies for the doubled fiber laser. It includes information on the 780 nm laser, second harmonic generation in one crystal, cascading crystals, the tenability of laser systems, laser cooling, and directions for future work.

  16. HIGH POWER MICROWAVE FERRITES AND DEVICES

    DTIC Science & Technology

    FERROMAGNETIC MATERIALS, * MICROWAVE EQUIPMENT, ALUMINUM, DELAY LINES, ELECTRODES, FERRITES , GADOLINIUM , GARNET, IONS, IRON, MAGNESIUM ALLOYS...MAGNETIC FIELDS, MAGNETIC MATERIALS, MAGNETIC MOMENTS, MANGANESE ALLOYS, MICROWAVE SPECTROSCOPY, NICKEL ALLOYS, RADIOFREQUENCY POWER, RARE EARTH COMPOUNDS, SINGLE CRYSTALS, WAVEFORM GENERATORS, YTTRIUM.

  17. LIGHTWEIGHT HIGH-POWER THERMOELECTRIC MODULE DEVELOPMENT.

    DTIC Science & Technology

    ELECTRIC POWER PRODUCTION), *GENERATORS), (*THERMOCOUPLES, (*MODULES(ELECTRONICS), THERMOCOUPLES), (*THERMOELECTRICITY, HEAT, ENERGY CONVERSION, SEEBECK EFFECT , BONDED JOINTS, SILICON ALLOYS, GERMANIUM ALLOYS, LEAD ALLOYS, TELLURIUM ALLOYS, METALLOGRAPHY, SPACECRAFT COMPONENTS, MANUFACTURING.

  18. Time-domain theory of gyrotron traveling wave amplifiers operating at grazing incidence

    SciTech Connect

    Ginzburg, N. S.; Sergeev, A. S.; Zotova, I. V.; Zheleznov, I. V.

    2015-01-15

    Time-domain theory of the gyrotron traveling wave tube (gyro-TWT) operating at grazing incidence has been developed. The theory is based on a description of wave propagation by a parabolic equation. The results of the simulations are compared with experimental results of the observation of subnanosecond pulse amplification in a gyro-TWT consisting of three gain sections separated by severs. The theory developed can also be used successfully for a description of amplification of monochromatic signals.

  19. Conceptual design of a Gyrotron-driven superconducting ECR ion source

    SciTech Connect

    Countryman, P.J.; Lyneis, C.M.; Wolgast, R.C.

    1989-03-01

    The conceptual design for a superconducting Electron Cyclotron Resonance Ion Source (ECRIS) is presented. It is designed to take advantage of frequency scaling in ECRIS and be driven at 28 GHz by a laboratory scale gyrotron. The superconducting coils are surrounded by a warm bore iron yoke. Possible applications include cyclotrons, heavy-ion synchrotrons, ion implantation in semiconductors, and experiments in atomic physics. 10 refs., 5 figs., 1 tab.

  20. Test Results From a High Power Linear Alternator Test Rig

    NASA Technical Reports Server (NTRS)

    Birchenough, Arthur G.; Hervol, David S.; Gardner, Brent G.

    2010-01-01

    Stirling cycle power conversion is an enabling technology that provides high thermodynamic efficiency but also presents unique challenges with regard to electrical power generation, management, and distribution. The High Power Linear Alternator Test Rig (HPLATR) located at the NASA Glenn Research Center (GRC) in Cleveland, Ohio is a demonstration test bed that simulates electrical power generation from a Stirling engine driven alternator. It implements the high power electronics necessary to provide a well regulated DC user load bus. These power electronics use a novel design solution that includes active rectification and power factor control, active ripple suppression, along with a unique building block approach that permits the use of high voltage or high current alternator designs. This report describes the HPLATR, the test program, and the operational results.