Sample records for high power testing

  1. Test Results from a High Power Linear Alternator Test Rig

    NASA Technical Reports Server (NTRS)

    Birchenough, Arthur G.; Hervol, David S.; Gardner, Brent G.

    2010-01-01

    Stirling cycle power conversion is an enabling technology that provides high thermodynamic efficiency but also presents unique challenges with regard to electrical power generation, management, and distribution. The High Power Linear Alternator Test Rig (HPLATR) located at the NASA Glenn Research Center (GRC) in Cleveland, OH is a demonstration test bed that simulates electrical power generation from a Stirling engine driven alternator. It implements the high power electronics necessary to provide a well regulated DC user load bus. These power electronics use a novel design solution that includes active rectification and power factor control, active ripple suppression, along with a unique building block approach that permits the use of high voltage or high current alternator designs. This presentation describes the HPLATR, the test program, and the operational results.

  2. Test Results From a High Power Linear Alternator Test Rig

    NASA Technical Reports Server (NTRS)

    Birchenough, Arthur G.; Hervol, David S.; Gardner, Brent G.

    2010-01-01

    Stirling cycle power conversion is an enabling technology that provides high thermodynamic efficiency but also presents unique challenges with regard to electrical power generation, management, and distribution. The High Power Linear Alternator Test Rig (HPLATR) located at the NASA Glenn Research Center (GRC) in Cleveland, Ohio is a demonstration test bed that simulates electrical power generation from a Stirling engine driven alternator. It implements the high power electronics necessary to provide a well regulated DC user load bus. These power electronics use a novel design solution that includes active rectification and power factor control, active ripple suppression, along with a unique building block approach that permits the use of high voltage or high current alternator designs. This report describes the HPLATR, the test program, and the operational results.

  3. Irradiation Tests Supporting LEU Conversion of Very High Power Research Reactors in the US

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woolstenhulme, N. E.; Cole, J. I.; Glagolenko, I.

    The US fuel development team is developing a high density uranium-molybdenum alloy monolithic fuel to enable conversion of five high-power research reactors. Previous irradiation tests have demonstrated promising behavior for this fuel design. A series of future irradiation tests will enable selection of final fuel fabrication process and provide data to qualify the fuel at moderately-high power conditions for use in three of these five reactors. The remaining two reactors, namely the Advanced Test Reactor and High Flux Isotope Reactor, require additional irradiation tests to develop and demonstrate the fuel’s performance with even higher power conditions, complex design features, andmore » other unique conditions. This paper reviews the program’s current irradiation testing plans for these moderately-high irradiation conditions and presents conceptual testing strategies to illustrate how subsequent irradiation tests will build upon this initial data package to enable conversion of these two very-high power research reactors.« less

  4. Design development and testing of high voltage power supply with crowbar protection for IOT based RF amplifier system in VECC

    NASA Astrophysics Data System (ADS)

    Thakur, S. K.; Kumar, Y.

    2018-05-01

    This paper described the detailed design, development and testing of high voltage power supply (‑30 kV, 3.2 A) and different power supplies for biasing electrodes of Inductive Output Tube (IOT) based high power Radio Frequency (RF) amplifier. This IOT based RF amplifier is further used for pursuing research and development activity in superconducting RF cavity project at Variable Energy Cyclotron Centre (VECC) Kolkata. The state-of-the-art technology of IOT-based high power RF amplifier is designed, developed, and tested at VECC which is the first of its kind in India. A high voltage power supply rated at negative polarity of 30 kV dc/3.2 A is required for biasing cathode of IOT with crowbar protection circuit. This power supply along with crowbar protection system is designed, developed and tested at VECC for testing the complete setup. The technical difficulties and challenges occured during the design of cathode power supply, its crowbar protection techniques along with other supported power supplies i.e. grid and ion pump power supplies are discussed in this paper.

  5. 10kW TWT Transition to GaN IRE

    DTIC Science & Technology

    2015-03-31

    tubes in high power radar and Electronic Warfare (EW) applications. GaN transistors, using evaluation boards, were tested and analyzed, supplementing...29 Appendix B. High Power Amplifier Testing Data...19 Figure 11. High Power RF Amplifier Test Set ............................................................................. 22 Figure 12

  6. Evaluation of high-voltage, high-power, solid-state remote power controllers for amps

    NASA Technical Reports Server (NTRS)

    Callis, Charles P.

    1987-01-01

    The Electrical Power Branch at Marshall Space Flight Center has a Power System Development Facility where various power circuit breadboards are tested and evaluated. This project relates to the evaluation of a particular remote power controller (RPC) energizing high power loads. The Facility equipment permits the thorough testing and evaluation of high-voltage, high-power solid-state remote power controllers. The purpose is to evaluate a Type E, 30 Ampere, 200 V dc remote power controller. Three phases of the RPC evaluation are presented. The RPC is evaluated within a low-voltage, low-power circuit to check its operational capability. The RPC is then evaluated while performing switch/circuit breaker functions within a 200 V dc, 30 Ampere power circuit. The final effort of the project relates to the recommended procedures for installing these RPC's into the existing Autonomously Managed Power System (AMPS) breadboard/test facility at MSFC.

  7. Stability test for power converters in high-powered operations for J-PARC MR main magnets

    NASA Astrophysics Data System (ADS)

    Morita, Yuichi; Kurimoto, Yoshinori; Miura, Kazuki; Sagawa, Ryu; Shimogawa, Tetsushi

    2017-10-01

    The Japan Proton Accelerator Research Complex (J-PARC) aims at achieving a megawatt-class proton accelerator facility. One promising method for increasing the beam power is to shorten the repetition cycle of the main ring from the current cycle of 2.48 s to 1.3 s. In this scheme, however, the increase in the output voltage and the power variation of the electric system are serious concerns for the power supplies of the main magnets. We have been developing a new power supply that provides solutions to these issues. Recently, we proposed a new method for high-powered tests of the converter that does not require a large-scale load and power source. We carried out a high-powered test of ∼100 kVA for the prototype DC/DC converters of the new power supply with this method. This paper introduces the design of the power supply and the results of the high-powered test for the prototype DC/DC converters.

  8. Automated System Tests High-Power MOSFET's

    NASA Technical Reports Server (NTRS)

    Huston, Steven W.; Wendt, Isabel O.

    1994-01-01

    Computer-controlled system tests metal-oxide/semiconductor field-effect transistors (MOSFET's) at high voltages and currents. Measures seven parameters characterizing performance of MOSFET, with view toward obtaining early indication MOSFET defective. Use of test system prior to installation of power MOSFET in high-power circuit saves time and money.

  9. Ultra high vacuum test setup for electron gun

    NASA Astrophysics Data System (ADS)

    Pandiyar, M. L.; Prasad, M.; Jain, S. K.; Kumar, R.; Hannurkar, P. R.

    2008-05-01

    Ultra High Vacuum (UHV) test setup for electron gun testing has been developed. The development of next generation light sources and accelerators require development of klystron as a radio frequency power source, and in turn electron gun. This UHV electron gun test setup can be used to test the electron guns ranging from high average current, quasi-continuous wave to high peak current, single pulse etc. An electron gun has been designed, fabricated, assembled and tested for insulation up to 80 kV under the programme to develop high power klystron for future accelerators. Further testing includes the electron emission parameters characterization of the cathode, as it determines the development of a reliable and efficient electron gun with high electron emission current and high life time as well. This needs a clean ultra high vacuum to study these parameters particularly at high emission current. The cathode emission current, work function and vapour pressure of cathode surface material at high temperature studies will further help in design and development of high power electron gun The UHV electron gun test setup consists of Turbo Molecular Pump (TMP), Sputter Ion Pump (SIP), pressure gauge, high voltage and cathode power supplies, current measurement device, solenoid magnet and its power supply, residual gas analyser etc. The ultimate vacuum less than 2×10-9 mbar was achieved. This paper describes the UHV test setup for electron gun testing.

  10. Note: The full function test explosive generator.

    PubMed

    Reisman, D B; Javedani, J B; Griffith, L V; Ellsworth, G F; Kuklo, R M; Goerz, D A; White, A D; Tallerico, L J; Gidding, D A; Murphy, M J; Chase, J B

    2010-03-01

    We have conducted three tests of a new pulsed power device called the full function test. These tests represented the culmination of an effort to establish a high energy pulsed power capability based on high explosive pulsed power (HEPP) technology. This involved an extensive computational modeling, engineering, fabrication, and fielding effort. The experiments were highly successful and a new U.S. record for magnetic energy was obtained.

  11. Test facilities for high power electric propulsion

    NASA Technical Reports Server (NTRS)

    Sovey, James S.; Vetrone, Robert H.; Grisnik, Stanley P.; Myers, Roger M.; Parkes, James E.

    1991-01-01

    Electric propulsion has applications for orbit raising, maneuvering of large space systems, and interplanetary missions. These missions involve propulsion power levels from tenths to tens of megawatts, depending upon the application. General facility requirements for testing high power electric propulsion at the component and thrust systems level are defined. The characteristics and pumping capabilities of many large vacuum chambers in the United States are reviewed and compared with the requirements for high power electric propulsion testing.

  12. Perform qualify reliability-power tests by shooting common mistakes: practical problems and standard answers per Telcordia/Bellcore requests

    NASA Astrophysics Data System (ADS)

    Yu, Zheng

    2002-08-01

    Facing the new demands of the optical fiber communications market, almost all the performance and reliability of optical network system are dependent on the qualification of the fiber optics components. So, how to comply with the system requirements, the Telcordia / Bellcore reliability and high-power testing has become the key issue for the fiber optics components manufacturers. The qualification of Telcordia / Bellcore reliability or high-power testing is a crucial issue for the manufacturers. It is relating to who is the outstanding one in the intense competition market. These testing also need maintenances and optimizations. Now, work on the reliability and high-power testing have become the new demands in the market. The way is needed to get the 'Triple-Win' goal expected by the component-makers, the reliability-testers and the system-users. To those who are meeting practical problems for the testing, there are following seven topics that deal with how to shoot the common mistakes to perform qualify reliability and high-power testing: ¸ Qualification maintenance requirements for the reliability testing ¸ Lots control for preparing the reliability testing ¸ Sampling select per the reliability testing ¸ Interim measurements during the reliability testing ¸ Basic referencing factors relating to the high-power testing ¸ Necessity of re-qualification testing for the changing of producing ¸ Understanding the similarity for product family by the definitions

  13. Power Enhancement in High Dimensional Cross-Sectional Tests

    PubMed Central

    Fan, Jianqing; Liao, Yuan; Yao, Jiawei

    2016-01-01

    We propose a novel technique to boost the power of testing a high-dimensional vector H : θ = 0 against sparse alternatives where the null hypothesis is violated only by a couple of components. Existing tests based on quadratic forms such as the Wald statistic often suffer from low powers due to the accumulation of errors in estimating high-dimensional parameters. More powerful tests for sparse alternatives such as thresholding and extreme-value tests, on the other hand, require either stringent conditions or bootstrap to derive the null distribution and often suffer from size distortions due to the slow convergence. Based on a screening technique, we introduce a “power enhancement component”, which is zero under the null hypothesis with high probability, but diverges quickly under sparse alternatives. The proposed test statistic combines the power enhancement component with an asymptotically pivotal statistic, and strengthens the power under sparse alternatives. The null distribution does not require stringent regularity conditions, and is completely determined by that of the pivotal statistic. As specific applications, the proposed methods are applied to testing the factor pricing models and validating the cross-sectional independence in panel data models. PMID:26778846

  14. A high voltage electrical power system for low Earth orbit applications

    NASA Technical Reports Server (NTRS)

    Lanier, J. R., Jr.; Bush, J. R., Jr.

    1984-01-01

    The results of testing a high voltage electrical power system (EPS) breadboard using high voltage power processing equipment developed at Marshall Space Flight Center and Ni-Cd batteries are discussed. These test results are used to extrapolate to an efficient, reliable, high capacity EPS for near term low Earth orbit, high power applications. EPS efficiencies, figures of merit, and battery reliability with a battery protection and reconditioning circuit are presented.

  15. Test Results From a Simulated High-Voltage Lunar Power Transmission Line

    NASA Technical Reports Server (NTRS)

    Birchenough, Arthur; Hervol, David

    2008-01-01

    The Alternator Test Unit (ATU) in the Lunar Power System Facility (LPSF) located at the NASA Glenn Research Center (GRC) in Cleveland, Ohio was modified to simulate high-voltage transmission capability. The testbed simulated a 1 km transmission cable length from the ATU to the LPSF using resistors and inductors installed between the distribution transformers. Power factor correction circuitry was used to compensate for the reactance of the distribution system to improve the overall power factor. This test demonstrated that a permanent magnet alternator can successfully provide high-frequency ac power to a lunar facility located at a distance.

  16. Test Results from a Simulated High Voltage Lunar Power Transmission Line

    NASA Technical Reports Server (NTRS)

    Birchenough, Arthur; Hervol, David

    2008-01-01

    The Alternator Test Unit (ATU) in the Lunar Power System Facility (LPSF) located at the NASA Glenn Research Center (GRC) in Cleveland, OH was modified to simulate high voltage transmission capability. The testbed simulated a 1 km transmission cable length from the ATU to the LPSF using resistors and inductors installed between the distribution transformers. Power factor correction circuitry was used to compensate for the reactance of the distribution system to improve the overall power factor. This test demonstrated that a permanent magnet alternator can successfully provide high frequency AC power to a lunar facility located at a distance.

  17. High power microwave components for space communications satellite

    NASA Technical Reports Server (NTRS)

    Jankowski, H.; Geia, A.

    1972-01-01

    Analyzed, developed, and tested were high power microwave components for communications satellites systems. Included were waveguide and flange configurations with venting, a harmonic filter, forward and reverse power monitors, electrical fault sensors, and a diplexer for two channel simultaneous transmission. The assembly of 8.36 GHz components was bench tested, and then operated for 60 hours at 3.5 kW CW in a high vacuum. The diplexer was omitted from this test pending a modification of its end irises. An RF leakage test showed only that care is required at flange junctions; all other components were RF tight. Designs were extrapolated for 12 GHz and 2.64 GHz high power satellite systems.

  18. Neutron fluxes in test reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Youinou, Gilles Jean-Michel

    Communicate the fact that high-power water-cooled test reactors such as the Advanced Test Reactor (ATR), the High Flux Isotope Reactor (HFIR) or the Jules Horowitz Reactor (JHR) cannot provide fast flux levels as high as sodium-cooled fast test reactors. The memo first presents some basics physics considerations about neutron fluxes in test reactors and then uses ATR, HFIR and JHR as an illustration of the performance of modern high-power water-cooled test reactors.

  19. Long Term Performance Retention Test Using High Power COTS NiCd and NiMH Cells

    NASA Technical Reports Server (NTRS)

    Hall, Dan; Darcy, Eric; Strangways, Brad; Nelson, Tim

    2003-01-01

    This slide presentation reviews the tests and results for performance retention of high powered commercial off the shelf (COTS) NiCd, and NiMH cells. Electromechanical actuators for space flight requires short duration high power batteries. The concern is that NiCd battery designs demonstrate an unfavorable power degradation after long periods of inactivity. Cycling can recover some of the decay, but this reduces the readiness that these batteries must have. Two 5-cell SubC stick test batteries ere chosen using NiCd and NiMH were tested and then the differences for charge maintenance were compared.

  20. High power test of a wideband diplexer with short-slotted metal half mirrors for electron cyclotron current drive system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saigusa, M.; Atsumi, K.; Yamaguchi, T.

    2014-02-12

    The wideband high power diplexer has been developed for combining and fast switching of high power millimeter waves generated by a dual frequency gyrotron. The actual diplexer was tested at the frequency band of 170 GHz in low power. After adjusting a resonant frequency of diplexer for the gyrotron frequency, the evacuated wideband diplexer with short-slotted metal half mirrors was tested at an incident power of about 150 kW, a pulse duration of 30 ms and a frequency band of 170.2–170.3 GHz. Any discharge damage was not observed in the diplexer.

  1. Overview of Multi-Kilowatt Free-Piston Stirling Power Conversion Research at Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Geng, Steven M.; Mason, Lee S.; Dyson, Rodger W.; Penswick, L. Barry

    2008-01-01

    As a step towards development of Stirling power conversion for potential use in Fission Surface Power (FSP) systems, a pair of commercially available 1 kW class free-piston Stirling convertors and a pair of commercially available pressure wave generators (which will be plumbed together to create a high power Stirling linear alternator test rig) have been procured for in-house testing at Glenn Research Center (GRC). Delivery of both the Stirling convertors and the linear alternator test rig is expected by October 2007. The 1 kW class free-piston Stirling convertors will be tested at GRC to map and verify performance. The convertors will later be modified to operate with a NaK liquid metal pumped loop for thermal energy input. The high power linear alternator test rig will be used to map and verify high power Stirling linear alternator performance and to develop power management and distribution (PMAD) methods and techniques. This paper provides an overview of the multi-kilowatt free-piston Stirling power conversion work being performed at GRC.

  2. Overview of Multi-kilowatt Free-Piston Stirling Power Conversion Research at GRC

    NASA Technical Reports Server (NTRS)

    Geng, Steven M.; Mason, Lee S.; Dyson, Rodger W.; Penswick, L. Barry

    2008-01-01

    As a step towards development of Stirling power conversion for potential use in Fission Surface Power (FSP) systems, a pair of commercially available 1 kW class free-piston Stirling convertors and a pair of commercially available pressure wave generators (which will be plumbed together to create a high power Stirling linear alternator test rig) have been procured for in-house testing at Glenn Research Center. Delivery of both the Stirling convertors and the linear alternator test rig is expected by October, 2007. The 1 kW class free-piston Stirling convertors will be tested at GRC to map and verify performance. The convertors will later be modified to operate with a NaK liquid metal pumped loop for thermal energy input. The high power linear alternator test rig will be used to map and verify high power Stirling linear alternator performance and to develop power management and distribution (PMAD) methods and techniques. This paper provides an overview of the multi-kilowatt free-piston Stirling power conversion work being performed at GRC.

  3. Overview of Multi-Kilowatt Free-Piston Stirling Power Conversion Research at GRC

    NASA Astrophysics Data System (ADS)

    Geng, Steven M.; Mason, Lee S.; Dyson, Rodger W.; Penswick, L. Barry

    2008-01-01

    As a step towards development of Stirling power conversion for potential use in Fission Surface Power (FSP) systems, a pair of commercially available 1 kW class free-piston Stirling convertors and a pair of commercially available pressure wave generators (which will be plumbed together to create a high power Stirling linear alternator test rig) have been procured for in-house testing at Glenn Research Center. Delivery of both the Stirling convertors and the linear alternator test rig is expected by October, 2007. The 1 kW class free-piston Stirling convertors will be tested at GRC to map and verify performance. The convertors will later be modified to operate with a NaK liquid metal pumped loop for thermal energy input. The high power linear alternator test rig will be used to map and verify high power Stirling linear alternator performance and to develop power management and distribution (PMAD) methods and techniques. This paper provides an overview of the multi-kilowatt free-piston Stirling power conversion work being performed at GRC.

  4. High-voltage terminal test of a test stand for a 1-MV electrostatic accelerator

    NASA Astrophysics Data System (ADS)

    Park, Sae-Hoon; Kim, Yu-Seok

    2015-10-01

    The Korea Multipurpose Accelerator Complex has been developing a 300-kV test stand for a 1-MV electrostatic accelerator ion source. The ion source and accelerating tube will be installed in a high-pressure vessel. The ion source in the high-pressure vessel is required to have a high reliability. The test stand has been proposed and developed to confirm the stable operating conditions of the ion source. The ion source will be tested at the test stand to verify the long-time operating conditions. The test stand comprises a 300-kV high-voltage terminal, a battery for the ion-source power, a 60-Hz inverter, 200-MHz radio-frequency power supply, a 5-kV extraction power supply, a 300-kV accelerating tube, and a vacuum system. The results of the 300-kV high-voltage terminal tests are presented in this paper.

  5. Multi-Kilowatt Power Module for High-Power Hall Thrusters

    NASA Technical Reports Server (NTRS)

    Pinero, Luis R.; Bowers, Glen E.

    2005-01-01

    Future NASA missions will require high-performance electric propulsion systems. Hall thrusters are being developed at NASA Glenn for high-power, high-specific impulse operation. These thrusters operate at power levels up to 50 kW of power and discharge voltages in excess of 600 V. A parallel effort is being conducted to develop power electronics for these thrusters that push the technology beyond the 5kW state-of-the-art power level. A 10 kW power module was designed to produce an output of 500 V and 20 A from a nominal 100 V input. Resistive load tests revealed efficiencies in excess of 96 percent. Load current share and phase synchronization circuits were designed and tested that will allow connecting multiple modules in parallel to process higher power.

  6. Power Cycle Testing of Power Switches: A Literature Survey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    GopiReddy, Lakshmi Reddy; Tolbert, Leon M.; Ozpineci, Burak

    Reliability of power converters and lifetime prediction has been a major topic of research in the last few decades, especially for traction applications. The main failures in high power semiconductors are caused by thermomechanical fatigue. Power cycling and temperature cycling are the two most common thermal acceleration tests used in assessing reliability. The objective of this paper is to study the various power cycling tests found in the literature and to develop generalized steps in planning application specific power cycling tests. A comparison of different tests based on the failures, duration, test circuits, and monitored electrical parameters is presented.

  7. Power Cycle Testing of Power Switches: A Literature Survey

    DOE PAGES

    GopiReddy, Lakshmi Reddy; Tolbert, Leon M.; Ozpineci, Burak

    2014-09-18

    Reliability of power converters and lifetime prediction has been a major topic of research in the last few decades, especially for traction applications. The main failures in high power semiconductors are caused by thermomechanical fatigue. Power cycling and temperature cycling are the two most common thermal acceleration tests used in assessing reliability. The objective of this paper is to study the various power cycling tests found in the literature and to develop generalized steps in planning application specific power cycling tests. A comparison of different tests based on the failures, duration, test circuits, and monitored electrical parameters is presented.

  8. Design and testing of 45 kV, 50 kHz pulse power supply for dielectric barrier discharges

    NASA Astrophysics Data System (ADS)

    Sharma, Surender Kumar; Shyam, Anurag

    2016-10-01

    The design, construction, and testing of high frequency, high voltage pulse power supply are reported. The purpose of the power supply is to generate dielectric barrier discharges for industrial applications. The power supply is compact and has the advantage of low cost, over current protection, and convenient control for voltage and frequency selection. The power supply can generate high voltage pulses of up to 45 kV at the repetitive frequency range of 1 kHz-50 kHz with 1.2 kW input power. The output current of the power supply is limited to 500 mA. The pulse rise time and fall time are less than 2 μs and the pulse width is 2 μs. The power supply is short circuit proof and can withstand variable plasma load conditions. The power supply mainly consists of a half bridge series resonant converter to charge an intermediate capacitor, which discharges through a step-up transformer at high frequency to generate high voltage pulses. Semiconductor switches and amorphous cores are used for power modulation at higher frequencies. The power supply is tested with quartz tube dielectric barrier discharge load and worked stably. The design details and the performance of the power supply on no load and dielectric barrier discharge load are presented.

  9. Design and testing of 45 kV, 50 kHz pulse power supply for dielectric barrier discharges.

    PubMed

    Sharma, Surender Kumar; Shyam, Anurag

    2016-10-01

    The design, construction, and testing of high frequency, high voltage pulse power supply are reported. The purpose of the power supply is to generate dielectric barrier discharges for industrial applications. The power supply is compact and has the advantage of low cost, over current protection, and convenient control for voltage and frequency selection. The power supply can generate high voltage pulses of up to 45 kV at the repetitive frequency range of 1 kHz-50 kHz with 1.2 kW input power. The output current of the power supply is limited to 500 mA. The pulse rise time and fall time are less than 2 μs and the pulse width is 2 μs. The power supply is short circuit proof and can withstand variable plasma load conditions. The power supply mainly consists of a half bridge series resonant converter to charge an intermediate capacitor, which discharges through a step-up transformer at high frequency to generate high voltage pulses. Semiconductor switches and amorphous cores are used for power modulation at higher frequencies. The power supply is tested with quartz tube dielectric barrier discharge load and worked stably. The design details and the performance of the power supply on no load and dielectric barrier discharge load are presented.

  10. High-Power, High-Thrust Ion Thruster (HPHTion)

    NASA Technical Reports Server (NTRS)

    Peterson, Peter Y.

    2015-01-01

    Advances in high-power photovoltaic technology have enabled the possibility of reasonably sized, high-specific power solar arrays. At high specific powers, power levels ranging from 50 to several hundred kilowatts are feasible. Ion thrusters offer long life and overall high efficiency (typically greater than 70 percent efficiency). In Phase I, the team at ElectroDynamic Applications, Inc., built a 25-kW, 50-cm ion thruster discharge chamber and fabricated a laboratory model. This was in response to the need for a single, high-powered engine to fill the gulf between the 7-kW NASA's Evolutionary Xenon Thruster (NEXT) system and a notional 25-kW engine. The Phase II project matured the laboratory model into a protoengineering model ion thruster. This involved the evolution of the discharge chamber to a high-performance thruster by performance testing and characterization via simulated and full beam extraction testing. Through such testing, the team optimized the design and built a protoengineering model thruster. Coupled with gridded ion thruster technology, this technology can enable a wide range of missions, including ambitious near-Earth NASA missions, Department of Defense missions, and commercial satellite activities.

  11. Power components for the Space Station 20-kHz power distribution system

    NASA Technical Reports Server (NTRS)

    Renz, David D.

    1988-01-01

    Since 1984, NASA Lewis Research Center was developing high power, high frequency space power components as part of The Space Station Advanced Development program. The purpose of the Advanced Development program was to accelerate existing component programs to ensure their availability for use on the Space Station. These components include a rotary power transfer device, remote power controllers, remote bus isolators, high power semiconductor, a high power semiconductor package, high frequency-high power cable, high frequency-high power connectors, and high frequency-high power transformers. All the components were developed to the prototype level and will be installed in the Lewis Research Center Space Station power system test bed.

  12. Power components for the space station 20-kHz power distribution system

    NASA Technical Reports Server (NTRS)

    Renz, David D.

    1988-01-01

    Since 1984, NASA Lewis Research Center was developing high power, high frequency space power components as part of The Space Station Advanced Development program. The purpose of The Advanced Development program was to accelerate existing component programs to ensure their availability for use on the Space Station. These components include a rotary power transfer device, remote power controllers, remote bus isolators, high power semiconductor, a high power semiconductor package, high frequency-high power cable, high frequency-high power connectors, and high frequency-high power transformers. All the components were developed to the prototype level and will be installed in the Lewis Research Center Space Station power system test bed.

  13. Hybrid energy storage test procedures and high power battery project FY-1995 interim report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunt, G.L.

    1995-12-01

    Near the end of FY 1994, DOE provided funding and guidance to INEL for two separate but closely related tasks involving high power energy storage technology. One task was intended to develop and refine application-specific test procedures appropriate to high power energy storage devices for potential use in hybrid vehicles, including batteries, ultracapacitors, flywheels, and similar devices. The second task was intended to characterize the high power capabilities of presently available battery technologies, as well as eventually to evaluate the potential high power capabilities of advanced battery technologies such as those being developed by the USABC. Since the evaluation ofmore » such technologies is necessarily dependent to some extent on the availability of appropriate test methods, these two tasks have been closely coordinated. This report is intended to summarize the activities and results for both tasks accomplished during FY-1995.« less

  14. Tests of the Daimler D-IVa Engine at a High Altitude Test Bench

    NASA Technical Reports Server (NTRS)

    Noack, W G

    1920-01-01

    Reports of tests of a Daimler IVa engine at the test-bench at Friedrichshafen, show that the decrease of power of that engine, at high altitudes, was established, and that the manner of its working when air is supplied at a certain pressure was explained. These tests were preparatory to the installation of compressors in giant aircraft for the purpose of maintaining constant power at high altitudes.

  15. Space Power Facility at NASA’s Plum Brook Station

    NASA Image and Video Library

    1969-02-21

    Exterior view of the Space Power Facility at the National Aeronautics and Space Administration’s (NASA) Plum Brook Station in Sandusky, Ohio. The $28.4-million facility, which began operations in 1969, is the largest high vacuum chamber ever built. The chamber is 100 feet in diameter and 120 feet high. It produces a vacuum deep enough to simulate the conditions at 300 miles altitude. The facility can sustain a high vacuum; simulate solar radiation via a 4-megawatt quartz heat lamp array, solar spectrum by a 400-kilowatt arc lamp, and cold environments. The Space Power Facility was originally designed to test nuclear power sources for spacecraft during long durations in a space atmosphere, but it was never used for that purpose. The facility’s first test in 1970 involved a 15 to 20-kilowatt Brayton Cycle Power System for space applications. Three different methods of simulating solar heat were employed during the Brayton tests. The facility was also used for jettison tests of the Centaur Standard Shroud. The shroud was designed for the new Titan-Centaur rocket that was scheduled to launch the Viking spacecraft to Mars. The new shroud was tested under conditions that simulated the time from launch to the separation of the stages. Test programs at the facility include high-energy experiments, shroud separation tests, Mars Lander system tests, deployable Solar Sail tests and International Space Station hardware tests.

  16. Development and Testing of High Current Hollow Cathodes for High Power Hall Thrusters

    NASA Technical Reports Server (NTRS)

    Kamhawi, Hani; Van Noord, Jonathan

    2012-01-01

    NASA's Office of the Chief Technologist In-Space Propulsion project is sponsoring the testing and development of high power Hall thrusters for implementation in NASA missions. As part of the project, NASA Glenn Research Center is developing and testing new high current hollow cathode assemblies that can meet and exceed the required discharge current and life-time requirements of high power Hall thrusters. This paper presents test results of three high current hollow cathode configurations. Test results indicated that two novel emitter configurations were able to attain lower peak emitter temperatures compared to state-of-the-art emitter configurations. One hollow cathode configuration attained a cathode orifice plate tip temperature of 1132 degC at a discharge current of 100 A. More specifically, test and analysis results indicated that a novel emitter configuration had minimal temperature gradient along its length. Future work will include cathode wear tests, and internal emitter temperature and plasma properties measurements along with detailed physics based modeling.

  17. Brayton Power Conversion Unit Tested: Provides a Path to Future High-Power Electric Propulsion Missions

    NASA Technical Reports Server (NTRS)

    Mason, Lee S.

    2003-01-01

    Closed-Brayton-cycle conversion technology has been identified as an excellent candidate for nuclear electric propulsion (NEP) power conversion systems. Advantages include high efficiency, long life, and high power density for power levels from about 10 kWe to 1 MWe, and beyond. An additional benefit for Brayton is the potential for the alternator to deliver very high voltage as required by the electric thrusters, minimizing the mass and power losses associated with the power management and distribution (PMAD). To accelerate Brayton technology development for NEP, the NASA Glenn Research Center is developing a low-power NEP power systems testbed that utilizes an existing 2- kWe Brayton power conversion unit (PCU) from previous solar dynamic technology efforts. The PCU includes a turboalternator, a recuperator, and a gas cooler connected by gas ducts. The rotating assembly is supported by gas foil bearings and consists of a turbine, a compressor, a thrust rotor, and an alternator on a single shaft. The alternator produces alternating-current power that is rectified to 120-V direct-current power by the PMAD unit. The NEP power systems testbed will be utilized to conduct future investigations of operational control methods, high-voltage PMAD, electric thruster interactions, and advanced heat rejection techniques. The PCU was tested in Glenn s Vacuum Facility 6. The Brayton PCU was modified from its original solar dynamic configuration by the removal of the heat receiver and retrofitting of the electrical resistance gas heater to simulate the thermal input of a steady-state nuclear source. Then, the Brayton PCU was installed in the 3-m test port of Vacuum Facility 6, as shown. A series of tests were performed between June and August of 2002 that resulted in a total PCU operational time of about 24 hr. An initial test sequence on June 17 determined that the reconfigured unit was fully operational. Ensuing tests provided the operational data needed to characterize PCU performance over its full operating range. The primary test variables used in operating the Brayton PCU were heater input power and rotor speed. Testing demonstrated a maximum steady-state alternating-current power output of 1835 W at a gas heater power of 9000 W and a rotor speed of 52000 rpm. The corresponding measured turbine inlet gas temperature was 1076 K, and the compressor inlet gas temperature was 282 K. When insulation losses from the gas heater were neglected, the Brayton cycle efficiency for the maximum power point was calculated to be 24 percent. The net direct-current power output was 1750 W, indicating a PMAD efficiency of about 95 percent.

  18. High power cable with internal water cooling 400 kV

    NASA Astrophysics Data System (ADS)

    Rasquin, W.; Harjes, B.

    1982-08-01

    Due to the concentration of electricity production in large power plants, the need of higher power transmissions, and the protection of environment, developement of a 400 kV water cooled cable in the power range of 1 to 5 GVA was undertaken. The fabrication and testing of equipment, engineering of cable components, fabrication of a test cable, development of cable terminal laboratory, testing of test cable, field testing of test cable, fabrication of industrial cable laboratory, testing of industrial cable, field testing of industrial cable, and system analysis for optimization were prepared. The field testing was impossible to realize. However, it is proved that a cable consisting of an internal stainless steel water cooled tube, covered by stranded copper profiles, insulated with heavy high quality paper, and protected by an aluminum cover can be produced, withstand tests accordingly to IEC/VDE recommendations, and is able to fulfill all exploitation conditions.

  19. Engineering of beam direct conversion for a 120-kV, 1-MW ion beam

    NASA Technical Reports Server (NTRS)

    Barr, W. L.; Doggett, J. N.; Hamilton, G. W.; Kinney, J. D.; Moir, R. W.

    1977-01-01

    Practical systems for beam direct conversion are required to recover the energy from ion beams at high efficiency and at very high beam power densities in the environment of a high-power neutral-injection system. Such an experiment is now in progress using a 120-kV beam with a maximum total current of 20 A. After neutralization, the H(+) component to be recovered will have a power of approximately 1 MW. A system testing these concepts has been designed and tested at 15 kV, 2 kW in preparation for the full-power tests. The engineering problems involved in the full-power tests affect electron suppression, gas pumping, voltage holding, diagnostics, and measurement conditions. Planning for future experiments at higher power includes the use of cryopumping and electron suppression by a magnetic field rather than by an electrostatic field. Beam direct conversion for large fusion experiments and reactors will save millions of dollars in the cost of power supplies and electricity and will dispose of the charged beam under conditions that may not be possible by other techniques.

  20. Klamath Falls: High-Power Acoustic Well Stimulation Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Black, Brian

    Acoustic well stimulation (AWS) technology uses high-power sonic waves from specific frequency spectra in an attempt to stimulate production in a damaged or low-production wellbore. AWS technology is one of the most promising technologies in the oil and gas industry, but it has proven difficult for the industry to develop an effective downhole prototype. This collaboration between Klamath Falls Inc. and the Rocky Mountain Oilfield Testing Center (RMOTC) included a series of tests using high-power ultrasonic tools to stimulate oil and gas production. Phase I testing was designed and implemented to verify tool functionality, power requirements, and capacity of high-powermore » AWS tools. The purpose of Phase II testing was to validate the production response of wells with marginal production rates to AWS stimulation and to capture and identify any changes in the downhole environment after tool deployment. This final report presents methodology and results.« less

  1. Inductance effects in the high-power transmitter crowbar system

    NASA Technical Reports Server (NTRS)

    Daeges, J.; Bhanji, A.

    1987-01-01

    The effective protection of a klystron in a high-power transmitter requires the diversion of all stored energy in the protected circuit through an alternate low-impedance path, the crowbar, such that less than 1 joule of energy is dumped into the klystron during an internal arc. A scheme of adding a bypass inductor in the crowbar-protected circuit of the high-power transmitter was tested using computer simulations and actual measurements under a test load. Although this scheme has several benefits, including less power dissipation in the resistor, the tests show that the presence of inductance in the portion of the circuit to be protected severely hampers effective crowbar operation.

  2. The interaction of spacecraft high voltage power systems with the space plasma environment

    NASA Technical Reports Server (NTRS)

    Domitz, S.; Grier, N. T.

    1974-01-01

    Research work has shown that the interaction of a spacecraft and its high voltage power systems with the space plasma environment can result in harmful power loss and damage to insulators and metal surfaces. Insulator and solar panel tests were performed and flight tests are planned. High voltage power processing equipment was shown to be affected by power loss, and by transients due to plasma interactions. Power loss was determined to be roughly proportional to the square of the voltage and increases approximately as the square root of the area. Kapton, Teflon, and glass were found to be satisfactory insulating materials and it is concluded that for large space power stations should consider the effect of large pinhole currents.

  3. High Speed Balancing Applied to the T700 Engine

    NASA Technical Reports Server (NTRS)

    Walton, J.; Lee, C.; Martin, M.

    1989-01-01

    The work performed under Contracts NAS3-23929 and NAS3-24633 is presented. MTI evaluated the feasibility of high-speed balancing for both the T700 power turbine rotor and the compressor rotor. Modifications were designed for the existing Corpus Christi Army Depot (CCAD) T53/T55 high-speed balancing system for balancing T700 power turbine rotors. Tests conducted under these contracts included a high-speed balancing evaluation for T700 power turbines in the Army/NASA drivetrain facility at MTI. The high-speed balancing tests demonstrated the reduction of vibration amplitudes at operating speed for both low-speed balanced and non-low-speed balanced T700 power turbines. In addition, vibration data from acceptance tests of T53, T55, and T700 engines were analyzed and a vibration diagnostic procedure developed.

  4. Skylab Shroud in the Space Power Facility

    NASA Image and Video Library

    1970-12-21

    The 56-foot tall, 24,400-pound Skylab shroud installed in the Space Power Facility’s vacuum chamber at the National Aeronautics and Space Administration’s (NASA) Plum Brook Station. The Space Power Facility, which began operations in 1969, is the largest high vacuum chamber ever built. The chamber is 100 feet in diameter and 120 feet high. It can produce a vacuum deep enough to simulate the conditions at 300 miles altitude. The Space Power Facility was originally designed to test nuclear-power sources for spacecraft during long durations in a space atmosphere, but it was never used for that purpose. Payload shrouds are aerodynamic fairings to protect the payload during launch and ascent to orbit. The Skylab mission utilized the largest shroud ever attempted. Unlike previous launches, the shroud would not be jettisoned until the spacecraft reached orbit. NASA engineers designed these tests to verify the dynamics of the jettison motion in a simulated space environment. Fifty-four runs and three full-scale jettison tests were conducted from mid-September 1970 to June 1971. The shroud behaved as its designers intended, the detonators all fired, and early design issues were remedied by the final test. The Space Power Facility continues to operate today. The facility can sustain a high vacuum; simulate solar radiation via a 4-megawatt quartz heat lamp array, solar spectrum by a 400-kilowatt arc lamp, and cold environments. Test programs at the facility include high-energy experiments, shroud separation tests, Mars Lander system tests, deployable Solar Sail tests and International Space Station hardware tests.

  5. Long-pulse power-supply system for EAST neutral-beam injectors

    NASA Astrophysics Data System (ADS)

    Liu, Zhimin; Jiang, Caichao; Pan, Junjun; Liu, Sheng; Xu, Yongjian; Chen, Shiyong; Hu, Chundong; NBI Team

    2017-05-01

    The long-pulse power-supply system equipped for the 4 MW beam-power ion source is comprised of three units at ASIPP (Institute of Plasma Physics, Chinese Academy of Sciences): one for the neutral-beam test stand and two for the EAST neutral-beam injectors (NBI-1 and NBI-2, respectively). Each power supply system consists of two low voltage and high current DC power supplies for plasma generation of the ion source, and two high voltage and high current DC power supplies for the accelerator grid system. The operation range of the NB power supply is about 80 percent of the design value, which is the safe and stable operation range. At the neutral-beam test stand, a hydrogen ion beam with a beam pulse of 150 s, beam power of 1.5 MW and beam energy of 50 keV was achieved during the long-pulse testing experiments. The result shows that the power-supply system meets the requirements of the EAST-NBIs fully and lays a basis for achieving plasma heating.

  6. 30 CFR 75.831 - Electrical work; troubleshooting and testing.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) or (2): (1) If a trailing cable disconnecting switch is provided: (i) Open and ground the power... power receptacle. (b) Troubleshooting and testing the trailing cable. During troubleshooting and testing, the de-energized high-voltage cable may be disconnected from the power center only for that period of...

  7. 30 CFR 75.831 - Electrical work; troubleshooting and testing.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) or (2): (1) If a trailing cable disconnecting switch is provided: (i) Open and ground the power... power receptacle. (b) Troubleshooting and testing the trailing cable. During troubleshooting and testing, the de-energized high-voltage cable may be disconnected from the power center only for that period of...

  8. 30 CFR 75.831 - Electrical work; troubleshooting and testing.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) or (2): (1) If a trailing cable disconnecting switch is provided: (i) Open and ground the power... power receptacle. (b) Troubleshooting and testing the trailing cable. During troubleshooting and testing, the de-energized high-voltage cable may be disconnected from the power center only for that period of...

  9. 30 CFR 75.831 - Electrical work; troubleshooting and testing.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) or (2): (1) If a trailing cable disconnecting switch is provided: (i) Open and ground the power... power receptacle. (b) Troubleshooting and testing the trailing cable. During troubleshooting and testing, the de-energized high-voltage cable may be disconnected from the power center only for that period of...

  10. Advanced Grid Simulator for Multi-Megawatt Power Converter Testing and Certification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koralewicz, Przemyslaw; Gevorgian, Vahan; Wallen, Robb

    2017-02-16

    Grid integration testing of inverter-coupled renewable energy technologies is an essential step in the qualification of renewable energy and energy storage systems to ensure the stability of the power system. New types of devices must be thoroughly tested and validated for compliance with relevant grid codes and interconnection requirements. For this purpose, highly specialized custom-made testing equipment is needed to emulate various types of realistic grid conditions that are required by certification bodies or for research purposes. For testing multi-megawatt converters, a high power grid simulator capable of creating controlled grid conditions and meeting both power quality and dynamic characteristicsmore » is needed. This paper describes the new grid simulator concept based on ABB's medium voltage ACS6000 drive technology that utilizes advanced modulation and control techniques to create an unique testing platform for various multi-megawatt power converter systems. Its performance is demonstrated utilizing the test results obtained during commissioning activities at the National Renewable Energy Laboratory in Colorado, USA.« less

  11. RF Conditioning and Testing of Fundamental Power Couplers for SNS Superconducting Cavity Production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    M. Stirbet; G.K. Davis; M. A. Drury

    The Spallation Neutron Source (SNS) makes use of 33 medium beta (0.61) and 48 high beta (0.81) superconducting cavities. Each cavity is equipped with a fundamental power coupler, which should withstand the full klystron power of 550 kW in full reflection for the duration of an RF pulse of 1.3 msec at 60 Hz repetition rate. Before assembly to a superconducting cavity, the vacuum components of the coupler are submitted to acceptance procedures consisting of preliminary quality assessments, cleaning and clean room assembly, vacuum leak checks and baking under vacuum, followed by conditioning and RF high power testing. Similar acceptancemore » procedures (except clean room assembly and baking) were applied for the airside components of the coupler. All 81 fundamental power couplers for SNS superconducting cavity production have been RF power tested at JLAB Newport News and, beginning in April 2004 at SNS Oak Ridge. This paper gives details of coupler processing and RF high power-assessed performances.« less

  12. CLIC RF High Power Production Testing Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Syratchev, I.; Riddone, G.; /CERN

    The CLIC Power Extraction and Transfer Structure (PETS) is a passive microwave device in which bunches of the drive beam interact with the impedance of the periodically loaded waveguide and generate RF power for the main linac accelerating structure. The demands on the high power production ({approx} 150 MW) and the needs to transport the 100 A drive beam for about 1 km without losses, makes the PETS design rather unique and the operation very challenging. In the coming year, an intense PETS testing program will be implemented. The target is to demonstrate the full performance of the PETS operation.more » The testing program overview and test results available to date are presented.« less

  13. Materials Test Program, Contact Power Collection for High Speed Tracked Vehicles

    DOT National Transportation Integrated Search

    1971-01-01

    A test program is defined for determining the failure modes and wear characteristics for brushes used to collect electrical power from the wayside for high speed tracked vehicles. Simulation of running conditions and the necessary instrumentation for...

  14. High Input Voltage, Silicon Carbide Power Processing Unit Performance Demonstration

    NASA Technical Reports Server (NTRS)

    Bozak, Karin E.; Pinero, Luis R.; Scheidegger, Robert J.; Aulisio, Michael V.; Gonzalez, Marcelo C.; Birchenough, Arthur G.

    2015-01-01

    A silicon carbide brassboard power processing unit has been developed by the NASA Glenn Research Center in Cleveland, Ohio. The power processing unit operates from two sources: a nominal 300 Volt high voltage input bus and a nominal 28 Volt low voltage input bus. The design of the power processing unit includes four low voltage, low power auxiliary supplies, and two parallel 7.5 kilowatt (kW) discharge power supplies that are capable of providing up to 15 kilowatts of total power at 300 to 500 Volts (V) to the thruster. Additionally, the unit contains a housekeeping supply, high voltage input filter, low voltage input filter, and master control board, such that the complete brassboard unit is capable of operating a 12.5 kilowatt Hall effect thruster. The performance of the unit was characterized under both ambient and thermal vacuum test conditions, and the results demonstrate exceptional performance with full power efficiencies exceeding 97%. The unit was also tested with a 12.5kW Hall effect thruster to verify compatibility and output filter specifications. With space-qualified silicon carbide or similar high voltage, high efficiency power devices, this would provide a design solution to address the need for high power electric propulsion systems.

  15. Tests Of A Stirling-Engine Power Converter

    NASA Technical Reports Server (NTRS)

    Dochat, George

    1995-01-01

    Report describes acceptance tests of power converter consisting of pair of opposed free-piston Stirling engines driving linear alternators. Stirling engines offer potential for extremely long life, high reliability, high efficiency at low hot-to-cold temperature ratios, and relatively low heater-head temperatures.

  16. Dynamic Test Program, Contact Power Collection for High Speed Tracked Vehicles

    DOT National Transportation Integrated Search

    1973-01-01

    A laboratory test program is defined for determining the dynamic characteristics of a contact power collection system for a high speed tracked vehicle. The use of a hybrid computer is conjuntion with hydraulic exciters to simulate the expected dynami...

  17. Evaluation of a high power inverter for potential space applications

    NASA Technical Reports Server (NTRS)

    Guynes, B. V.; Lanier, J. R., Jr.

    1976-01-01

    The ADM-006 inverter discussed utilizes a unique method of using power switching circuits to produce three-phase low harmonic content voltages without any significant filtering. This method is referred to as the power center approach to inverter design and is explained briefly. The results are presented of tests performed by MSFC to evaluate inverter performance, especially when required to provide power to nonlinear loads such as half or full wave rectified loads with capacitive filtering. Test preocedures and results are described. These tests show that the power center inverter essentially met or exceeded all of claims excluding voltage regulation (3.9 percent versus specified 3.3 percent) and would be a good candidate for high power inverter applications such as may be found on Space Station, Spacelab, etc.

  18. Leakage and Power Loss Test Results for Competing Turbine Engine Seals

    NASA Technical Reports Server (NTRS)

    Proctor, Margaret P.; Delgado, Irebert R.

    2004-01-01

    Advanced brush and finger seal technologies offer reduced leakage rates over conventional labyrinth seals used in gas turbine engines. To address engine manufacturers concerns about the heat generation and power loss from these contacting seals, brush, finger, and labyrinth seals were tested in the NASA High Speed, High Temperature Turbine Seal Test Rig. Leakage and power loss test results are compared for these competing seals for operating conditions up to 922 K (1200 F) inlet air temperature, 517 KPa (75 psid) across the seal, and surface velocities up to 366 m/s (1200 ft/s).

  19. Experimental Results From a 2kW Brayton Power Conversion Unit

    NASA Technical Reports Server (NTRS)

    Hervol, David; Mason, Lee; Birchenough, Arthur

    2003-01-01

    This paper presents experimental test results from operation of a 2 kWe Brayton power conversion unit. The Brayton converter was developed for a solar dynamic power system flight experiment planned for the Mir Space Station in 1997. The flight experiment was cancelled, but the converter was tested at Glenn Research Center as part of the Solar Dynamic Ground Test Demonstration system which included a solar concentrator, heat receiver, and space radiator. In preparation for the current testing, the heat receiver was removed and replaced with an electrical resistance heater, simulating the thermal input of a steady-state nuclear source. The converter was operated over a full range of thermal input power levels and rotor speeds to generate an overall performance map. The converter unit will serve as the centerpiece of a Nuclear Electric Propulsion Testbed at Glenn. Future potential uses for the Testbed include high voltage electrical controller development, integrated electric thruster testing and advanced radiator demonstration testing to help guide high power Brayton technology development for Nuclear Electric Propulsion (NEP).

  20. High Power Silicon Carbide (SiC) Power Processing Unit Development

    NASA Technical Reports Server (NTRS)

    Scheidegger, Robert J.; Santiago, Walter; Bozak, Karin E.; Pinero, Luis R.; Birchenough, Arthur G.

    2015-01-01

    NASA GRC successfully designed, built and tested a technology-push power processing unit for electric propulsion applications that utilizes high voltage silicon carbide (SiC) technology. The development specifically addresses the need for high power electronics to enable electric propulsion systems in the 100s of kilowatts. This unit demonstrated how high voltage combined with superior semiconductor components resulted in exceptional converter performance.

  1. Brayton Cycle Power System in the Space Power Facility

    NASA Image and Video Library

    1969-07-21

    Set up of a Brayton Cycle Power System test in the Space Power Facility’s massive vacuum chamber at the National Aeronautics and Space Administration’s (NASA) Plum Brook Station in Sandusky, Ohio. The $28.4-million facility, which began operations in 1969, is the largest high vacuum chamber ever built. The chamber is 100 feet in diameter and 120 feet high. It can produce a vacuum deep enough to simulate the conditions at 300 miles altitude. The Space Power Facility was originally designed to test nuclear-power sources for spacecraft, but it was never used for that purpose. The Space Power Facility was first used to test a 15 to 20-kilowatt Brayton Cycle Power System for space applications. Three different methods of simulating solar heat were employed during the tests. Lewis researchers studied the Brayton power system extensively in the 1960s and 1970s. The Brayton engine converted solar thermal energy into electrical power. The system operated on a closed-loop Brayton thermodynamic cycle with a helium-xenon gas mixture as its working fluid. A space radiator was designed to serve as the system’s waste heat rejecter. The radiator was later installed in the vacuum chamber and tested in a simulated space environment to determine its effect on the power conversion system. The Brayton system was subjected to simulated orbits with 62 minutes of sun and 34 minutes of shade.

  2. Design, construction and long life endurance testing of cathode assemblies for use in microwave high-power transmitting tubes

    NASA Technical Reports Server (NTRS)

    Gorshe, R.

    1982-01-01

    The ability of state of the art cathode types to produce current densities of 2A/sq cm, respectively, over a minimum designed life of 30,000 hours of continuous operation without failures was demonstrated. The performance of the state of the art cathode types was evaluated by endurance testing while operating under identical electrical geometrical, and vacuum conditions that realistically duplicate the operating conditions present in a transmitter tube. Although there has been considerable life testing done on high current density types of cathodes, these have beem primarily limited to diodes. A diode and high power microwave tube are grossly different devices. A comparison of these two devices is provided. A diode and high power microwave tube are quite different; one could therefore assume different internal environments, especially in the cathode region. Therefore, in order to establish life capabilities of the cathodes just mentioned, they should be tested in a vehicle which has an internal environment similar to that of a high power microwave tube.

  3. A high-pressure carbon dioxide gasdynamic laser

    NASA Technical Reports Server (NTRS)

    Kuehn, D. M.

    1973-01-01

    A carbon dioxide gasdynamic laser was operated over a range of reservoir pressure and temperature, test-gas mixture, and nozzle geometry. A significant result is the dominant influence of nozzle geometry on laser power at high pressure. High reservoir pressure can be effectively utilized to increase laser power if nozzle geometry is chosen to efficiently freeze the test gas. Maximum power density increased from 3.3 W/cu cm of optical cavity volume for an inefficient nozzle to 83.4 W/cu cm at 115 atm for a more efficient nozzle. Variation in the composition of the test gas also caused large changes in laser power output. Most notable is the influence of the catalyst (helium or water vapor) that was used to depopulate the lower vibrational state of the carbon dioxide. Water caused an extreme deterioration of laser power at high pressure (100 atm), whereas, at low pressure the laser for the two catalysts approached similar values. It appears that at high pressure the depopulation of the upper laser level of the carbon dioxide by the water predominates over the lower state depopulation, thus destroying the inversion.

  4. Status of a Power Processor for the Prometheus-1 Electric Propulsion System

    NASA Technical Reports Server (NTRS)

    Pinero, Luis R.; Hill, Gerald M.; Aulisio, Michael; Gerber, Scott; Griebeler, Elmer; Hewitt, Frank; Scina, Joseph

    2006-01-01

    NASA is developing technologies for nuclear electric propulsion for proposed deep space missions in support of the Exploration initiative under Project Prometheus. Electrical power produced by the combination of a fission-based power source and a Brayton power conversion and distribution system is used by a high specific impulse ion propulsion system to propel the spaceship. The ion propulsion system include the thruster, power processor and propellant feed system. A power processor technology development effort was initiated under Project Prometheus to develop high performance and lightweight power-processing technologies suitable for the application. This effort faces multiple challenges including developing radiation hardened power modules and converters with very high power capability and efficiency to minimize the impact on the power conversion and distribution system as well as the heat rejection system. This paper documents the design and test results of the first version of the beam supply, the design of a second version of the beam supply and the design and test results of the ancillary supplies.

  5. Advanced Power Sources for Space Missions

    DTIC Science & Technology

    1989-01-01

    Range indicate that extremely high power levels hav- ing fast time-ramping capabilities must be provided during the tests. Only highly efficient prime...system efficiency results from advantages in thermal storage versus battery storage and from the increased conversion efficiency of a solar-dynamic... thermal manage- ment, power flow, and voltage levels, and may be in the same power range already experienced in the very- high -power radar and fusion

  6. Compact high-power microwave divider and combiner.

    PubMed

    Guo, L T; Chang, C; Huang, W H; Liu, Y S; Cao, Y B; Liu, C L; Sun, J

    2016-02-01

    A novel, compact, TM01-TE10 mode power divider and a novel, compact, four-way TE10-TM01 mode power combiner were theoretically designed and experimentally tested as a proof of principle. The theoretical and experimental S parameters are consistent with each other. High-power experiments show that their power capacities are no less than 1.5 GW and 3 GW, respectively. The devices have the merits of high power capacities and low insertion losses.

  7. Comparison of Depth of Cure, Hardness and Heat Generation of LED and High Intensity QTH Light Sources.

    PubMed

    Mousavinasab, Sayed Mostafa; Meyers, Ian

    2011-07-01

    To compare curing performance of a second generation LED curing light with a high power tungsten quartz halogen (QTH). A hybrid composite resin (Filtek Z 250, 3M, USA) was used as test material and cured using a second generation LED light (Translux Power Blue™, Heraus Kulzer ,Germany) or a very high power QTH light unit (EMS, Switzerland). A two split aluminum mold was used to prepare ten samples with LED light source cured for forty seconds and ten samples prepared using high power QTH light unit, cured for four or six seconds recommended exposure time. Hardness, depth of cure (DOC) and thermal rise during exposure time by these light sources were measured. The data submitted to analysis of variance (ANOVA), Tukey's and student's t tests at 5% significance level. Significant differences were found in hardness, DOC of samples cured by above mentioned light sources and also in thermal rises during exposure time. The curing performance of the tested QTH was not as well as the LED light. TPB light source produced the maximum hardness (81.25, 73.29, 65.49,55.83 and 24.53 for 0 mm, 1 mm, 2 mm, 3 mm and 4 mm intervals) and DOC (2.64 mm) values with forty seconds irradiation time and the high power (QTH) the least hardness (73.27, 61.51 and 31.59 for 0 mm, 1 mm and 2 mm, respectively) and DOC (2 mm) values with four seconds irradiation time. Thermal rises during 4 s and 6 s curing time using high power QTH and tested LED were 1.88°C, 3°C and 1.87°C, respectively. The used high power LED light produced greater hardness and depth of cure during forty seconds exposure time compared to high power QTH light with four or six seconds curing time. Thermal rise during 6 s curing time with QTH was greater compared to thermal changes occurred during 40 s curing time with tested LED light source. There was no difference seen in thermal changes caused by LED light with 40 s and QTH light with 4 s exposure time.

  8. Test Facilities in Support of High Power Electric Propulsion Systems

    NASA Technical Reports Server (NTRS)

    VanDyke, Melissa; Houts, Mike; Godfroy, Thomas; Dickens, Ricky; Martin, James J.; Salvail, Patrick; Carter, Robert

    2002-01-01

    Successful development of space fission systems requires an extensive program of affordable and realistic testing. In addition to tests related to design/development of the fission system, realistic testing of the actual flight unit must also be performed. If the system is designed to operate within established radiation damage and fuel burn up limits while simultaneously being designed to allow close simulation of heat from fission using resistance heaters, high confidence in fission system performance and lifetime can be attained through non-nuclear testing. Through demonstration of systems concepts (designed by DOE National Laboratories) in relevant environments, this philosophy has been demonstrated through hardware testing in the High Power Propulsion Thermal Simulator (HPPTS). The HPPTS is designed to enable very realistic non-nuclear testing of space fission systems. Ongoing research at the HPPTS is geared towards facilitating research, development, system integration, and system utilization via cooperative efforts with DOE labs, industry, universities, and other NASA centers. Through hardware based design and testing, the HPPTS investigates High Power Electric Propulsion (HPEP) component, subsystem, and integrated system design and performance.

  9. PNTAB view : minimum criteria for testing/evaluation of interference potential of high power terrestrial transmitters in repurposed radio bands.

    DOT National Transportation Integrated Search

    2017-03-30

    Brief, 6-point set of guidelines that describe how to test the interference potential of high power terrestrial transmitters in repurposed radio bands. Presented at Global Positioning System Adjacent Band Compatibility Assessment Workshop VI, 03/30/2...

  10. The Relative Importance of Low Significance Level and High Power in Multiple Tests of Significance.

    ERIC Educational Resources Information Center

    Westermann, Rainer; Hager, Willi

    1983-01-01

    Two psychological experiments--Anderson and Shanteau (1970), Berkowitz and LePage (1967)--are reanalyzed to present the problem of the relative importance of low Type 1 error probability and high power when answering a research question by testing several statistical hypotheses. (Author/PN)

  11. Dyadic Power Profiles: Power-Contingent Strategies for Value Creation in Negotiation

    ERIC Educational Resources Information Center

    Olekalns, Mara; Smith, Philip Leigh

    2013-01-01

    Using a simulated employment negotiation, we tested the conditional relationships among dyadic power profiles (symmetric high, symmetric low, and asymmetric), the choice and sequencing of strategies, and value creation. We showed that negotiators in symmetric high, symmetric low, and asymmetric power dyads took distinctly different paths to value…

  12. Diesel fuel to dc power: Navy & Marine Corps Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bloomfield, D.P.

    1996-12-31

    During the past year Analytic Power has tested fuel cell stacks and diesel fuel processors for US Navy and Marine Corps applications. The units are 10 kW demonstration power plants. The USN power plant was built to demonstrate the feasibility of diesel fueled PEM fuel cell power plants for 250 kW and 2.5 MW shipboard power systems. We designed and tested a ten cell, 1 kW USMC substack and fuel processor. The complete 10 kW prototype power plant, which has application to both power and hydrogen generation, is now under construction. The USN and USMC fuel cell stacks have beenmore » tested on both actual and simulated reformate. Analytic Power has accumulated operating experience with autothermal reforming based fuel processors operating on sulfur bearing diesel fuel, jet fuel, propane and natural gas. We have also completed the design and fabrication of an advanced regenerative ATR for the USMC. One of the significant problems with small fuel processors is heat loss which limits its ability to operate with the high steam to carbon ratios required for coke free high efficiency operation. The new USMC unit specifically addresses these heat transfer issues. The advances in the mill programs have been incorporated into Analytic Power`s commercial units which are now under test.« less

  13. Software control program for 25 kW breadboard testing. [spacecraft power supplies; high voltage batteries

    NASA Technical Reports Server (NTRS)

    Pajak, J. A.

    1981-01-01

    A data acquisition software program developed to operate in conjunction with the automated control system of the 25 kW PM Electric Power System Breadboard Test facility is described. The proram provides limited interactive control of the breadboard test while acquiring data and monitoring parameters, allowing unattended continuous operation. The breadboard test facility has two positions for operating separate configurations. The main variable in each test setup is the high voltage Ni-Cd battery.

  14. Power load prediction based on GM (1,1)

    NASA Astrophysics Data System (ADS)

    Wu, Di

    2017-05-01

    Currently, Chinese power load prediction is highly focused; the paper deeply studies grey prediction and applies it to Chinese electricity consumption during the recent 14 years; through after-test test, it obtains grey prediction which has good adaptability to medium and long-term power load.

  15. LPT. Aerial of low power test facility (TAN640 and 641) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    LPT. Aerial of low power test facility (TAN-640 and -641) and shield test facility (TAN-645 and -646). Camera facing south. Low power reactor cells at left, then one-story control building; diagonal fence; shield test control building, then (high-bay) pool room. In foreground are electrical pad, water tanks and guard house. Photographer: Lowin. Date: February 24, 1965. INEEL negative no. 65-987 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  16. Progress update of NASA's free-piston Stirling space power converter technology project

    NASA Technical Reports Server (NTRS)

    Dudenhoefer, James E.; Winter, Jerry M.; Alger, Donald

    1992-01-01

    A progress update is presented of the NASA LeRC Free-Piston Stirling Space Power Converter Technology Project. This work is being conducted under NASA's Civil Space Technology Initiative (CSTI). The goal of the CSTI High Capacity Power Element is to develop the technology base needed to meet the long duration, high capacity power requirements for future NASA space initiatives. Efforts are focused upon increasing system power output and system thermal and electric energy conversion efficiency at least five fold over current SP-100 technology, and on achieving systems that are compatible with space nuclear reactors. This paper will discuss progress toward 1050 K Stirling Space Power Converters. Fabrication is nearly completed for the 1050 K Component Test Power Converter (CTPC); results of motoring tests of the cold end (525 K), are presented. The success of these and future designs is dependent upon supporting research and technology efforts including heat pipes, bearings, superalloy joining technologies, high efficiency alternators, life and reliability testing, and predictive methodologies. This paper will compare progress in significant areas of component development from the start of the program with the Space Power Development Engine (SPDE) to the present work on CTPC.

  17. High Power MPD Thruster Development at the NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    LaPointe, Michael R.; Mikellides, Pavlos G.; Reddy, Dhanireddy (Technical Monitor)

    2001-01-01

    Propulsion requirements for large platform orbit raising, cargo and piloted planetary missions, and robotic deep space exploration have rekindled interest in the development and deployment of high power electromagnetic thrusters. Magnetoplasmadynamic (MPD) thrusters can effectively process megawatts of power over a broad range of specific impulse values to meet these diverse in-space propulsion requirements. As NASA's lead center for electric propulsion, the Glenn Research Center has established an MW-class pulsed thruster test facility and is refurbishing a high-power steady-state facility to design, build, and test efficient gas-fed MPD thrusters. A complimentary numerical modeling effort based on the robust MACH2 code provides a well-balanced program of numerical analysis and experimental validation leading to improved high power MPD thruster performance. This paper reviews the current and planned experimental facilities and numerical modeling capabilities at the Glenn Research Center and outlines program plans for the development of new, efficient high power MPD thrusters.

  18. High Speed Prototype Car Test

    NASA Image and Video Library

    2014-01-10

    CAPE CANAVERAL, Fla. - The Performance Power Racing and Hennessey Performance teams pose with a Hennessey Venom GT at the 3.5-mile long runway at the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. The teams are, from left, Hennessey's John Heinricy, John Hennessey, Brian Smith, Performance Power Racing's Johnny Bohmer, Matt Lundy and Jeff McEachran. The flat concrete runway is one of the few places in the world where high performance automobiles can be tested for aerodynamic and safety designs. Hennessey Performance of Sealy, Texas, worked with Performance Power Racing in West Palm Beach to arrange use of the NASA facility. Performance Power Racing has conducted numerous engineering tests on the runway with a variety of vehicles.

  19. Fluoride-fiber-based side-pump coupler for high-power fiber lasers at 2.8  μm.

    PubMed

    Schäfer, C A; Uehara, H; Konishi, D; Hattori, S; Matsukuma, H; Murakami, M; Shimizu, S; Tokita, S

    2018-05-15

    A side-pump coupler made of fluoride fibers was fabricated and tested. The tested device had a coupling efficiency of 83% and was driven with an incident pump power of up to 83.5 W, demonstrating high-power operation. Stable laser output of 15 W at a wavelength of around 2.8 μm was achieved over 1 h when using an erbium-doped double-clad fiber as the active medium. To the best of our knowledge, this is the first time a fluoride-glass-fiber-based side-pump coupler has been developed. A test with two devices demonstrated further power scalability.

  20. Free-piston Stirling technology for space power

    NASA Technical Reports Server (NTRS)

    Slaby, Jack G.

    1989-01-01

    An overview is presented of the NASA Lewis Research Center free-piston Stirling engine activities directed toward space power. This work is being carried out under NASA's new Civil Space Technology Initiative (CSTI). The overall goal of CSTI's High Capacity Power element is to develop the technology base needed to meet the long duration, high capacity power requirements for future NASA space missions. The Stirling cycle offers an attractive power conversion concept for space power needs. Discussed here is the completion of the Space Power Demonstrator Engine (SPDE) testing-culminating in the generation of 25 kW of engine power from a dynamically-balanced opposed-piston Stirling engine at a temperature ratio of 2.0. Engine efficiency was approximately 22 percent. The SPDE recently has been divided into two separate single-cylinder engines, called Space Power Research Engine (SPRE), that now serve as test beds for the evaluation of key technology disciplines. These disciplines include hydrodynamic gas bearings, high-efficiency linear alternators, space qualified heat pipe heat exchangers, oscillating flow code validation, and engine loss understanding.

  1. Bidirectional power converter control electronics

    NASA Technical Reports Server (NTRS)

    Mildice, J. W.

    1987-01-01

    The object of this program was to design, build, test, and deliver a set of control electronics suitable for control of bidirectional resonant power processing equipment of the direct output type. The program is described, including the technical background, and results discussed. Even though the initial program tested only the logic outputs, the hardware was subsequently tested with high-power breadboard equipment, and in the testbed of NASA contract NAS3-24399. The completed equipment is now operating as part of the Space Station Power System Test Facility at NASA Lewis Research Center.

  2. Assessment of rechargeable batteries for high power applications.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delnick, Frank M.; Ripple, Robert Eugene; Butler, Paul Charles

    2004-05-01

    This paper describes an assessment of a variety of battery technologies for high pulse power applications. Sandia National Laboratories (SNL) is performing the assessment activities in collaboration with NSWC-Dahlgren. After an initial study of specifications and manufacturers' data, the assessment team identified the following electrochemistries as promising for detailed evaluation: lead-acid (Pb-acid), nickel/metal hydride (Ni/MH), nickel/cadmium (Ni/Cd), and a recently released high power lithium-ion (Li-ion) technology. In the first three technology cases, test cells were obtained from at least two and in some instances several companies that specialize in the respective electrochemistry. In the case of the Li-ion technology, cellsmore » from a single company and are being tested. All cells were characterized in Sandia's battery test labs. After several characterization tests, the Pb-acid technology was identified as a backup technology for the demanding power levels of these tests. The other technologies showed varying degrees of promise. Following additional cell testing, the assessment team determined that the Ni/MH technology was suitable for scale-up and acquired 50-V Ni/MH modules from two suppliers for testing. Additional tests are underway to better characterize the Ni/Cd and the Li-ion technologies as well. This paper will present the testing methodology and results from these assessment activities.« less

  3. Programmatic status of NASA's CSTI high capacity power Stirling space power converter program

    NASA Technical Reports Server (NTRS)

    Dudenhoefer, James E.

    1990-01-01

    An overview is presented of the NASA Lewis Research Center Free-Piston Stirling Space Power Converter Technology Development Program. This work is being conducted under NASA's Civil Space Technology Initiative (CSTI). The goal of the CSTI High Capacity Power element is to develop the technology base needed to meet the long duration, high capacity power requirements for future NASA space initiatives. Efforts are focused upon increasing system thermal and electric energy conversion efficiency at least fivefold over current SP-100 technology, and on achieving systems that are compatible with space nuclear reactors. The status of test activities with the Space Power Research Engine (SPRE) is discussed. Design deficiencies are gradually being corrected and the power converter is now outputting 11.5 kWe at a temperature ratio of 2 (design output is 12.5 kWe). Detail designs were completed for the 1050 K Component Test Power Converter (CTPC). The success of these and future designs is dependent upon supporting research and technology efforts including heat pipes, gas bearings, superalloy joining technologies and high efficiency alternators. An update of progress in these technologies is provided.

  4. High Power Alternator Test Unit (ATU) Electrical System Test

    NASA Technical Reports Server (NTRS)

    Birchenough, Arthur; Hervol, David

    2007-01-01

    The Alternator Test Unit (ATU) in the Lunar Power System Facility (LPSF) located at the NASA Glenn Research Center (GRC) in Cleveland, OH was used to simulate the operating conditions and evaluate the performance of the ATU and it s interaction with various LPSF components in accordance with the JIMO AC Power System Requirements. The testing was carried out at the breadboard development level. Results of these tests will be used for the development and validation of analytical models for performance and lifetime prediction.

  5. Power calculation for overall hypothesis testing with high-dimensional commensurate outcomes.

    PubMed

    Chi, Yueh-Yun; Gribbin, Matthew J; Johnson, Jacqueline L; Muller, Keith E

    2014-02-28

    The complexity of system biology means that any metabolic, genetic, or proteomic pathway typically includes so many components (e.g., molecules) that statistical methods specialized for overall testing of high-dimensional and commensurate outcomes are required. While many overall tests have been proposed, very few have power and sample size methods. We develop accurate power and sample size methods and software to facilitate study planning for high-dimensional pathway analysis. With an account of any complex correlation structure between high-dimensional outcomes, the new methods allow power calculation even when the sample size is less than the number of variables. We derive the exact (finite-sample) and approximate non-null distributions of the 'univariate' approach to repeated measures test statistic, as well as power-equivalent scenarios useful to generalize our numerical evaluations. Extensive simulations of group comparisons support the accuracy of the approximations even when the ratio of number of variables to sample size is large. We derive a minimum set of constants and parameters sufficient and practical for power calculation. Using the new methods and specifying the minimum set to determine power for a study of metabolic consequences of vitamin B6 deficiency helps illustrate the practical value of the new results. Free software implementing the power and sample size methods applies to a wide range of designs, including one group pre-intervention and post-intervention comparisons, multiple parallel group comparisons with one-way or factorial designs, and the adjustment and evaluation of covariate effects. Copyright © 2013 John Wiley & Sons, Ltd.

  6. High Power MPD Thruster Performance Measurements

    NASA Technical Reports Server (NTRS)

    LaPointe, Michael R.; Strzempkowski, Eugene; Pencil, Eric

    2004-01-01

    High power magnetoplasmadynamic (MPD) thrusters are being developed as cost effective propulsion systems for cargo transport to lunar and Mars bases, crewed missions to Mars and the outer planets, and robotic deep space exploration missions. Electromagnetic MPD thrusters have demonstrated, at the laboratory level, the ability to process megawatts of electrical power while providing significantly higher thrust densities than electrostatic electric propulsion systems. The ability to generate higher thrust densities permits a reduction in the number of thrusters required to perform a given mission, and alleviates the system complexity associated with multiple thruster arrays. The specific impulse of an MPD thruster can be optimized to meet given mission requirements, from a few thousand seconds with heavier gas propellants up to 10,000 seconds with hydrogen propellant. In support of programs envisioned by the NASA Office of Exploration Systems, Glenn Research Center is developing and testing quasi-steady MW-class MPD thrusters as a prelude to steady state high power thruster tests. This paper provides an overview of the GRC high power pulsed thruster test facility, and presents preliminary performance data for a quasi-steady baseline MPD thruster geometry.

  7. Demonstrating the Viability and Affordability of Nuclear Surface Power Systems

    NASA Technical Reports Server (NTRS)

    Vandyke, Melissa K.

    2006-01-01

    A set of tasks have been identified to help demonstrate the viability, performance, and affordability of surface fission systems. Completion of these tasks will move surface fission systems closer to reality by demonstrating affordability and performance potential. Tasks include fabrication and test of a 19-pin section of a Surface Power Unit Demonstrator (SPUD); design, fabrication, and utilization of thermal simulators optimized for surface fission' applications; design, fabrication, and utilization of GPHS module thermal simulators; design, fabrication, and test of a fission surface power system shield; and work related to potential fission surface power fuel/clad systems. Work on the SPUD will feed directly into joint NASA MSFC/NASA GRC fabrication and test of a surface power plant Engineering Development Unit (EDU). The goal of the EDU will be to perform highly realistic thermal, structural, and electrical testing on an integrated fission surface power system. Fission thermal simulator work will help enable high fidelity non-nuclear testing of pumped NaK surface fission power systems. Radioisotope thermal simulator work will help enable design and development of higher power radioisotope systems (power ultimately limited by Pu-238 availability). Shield work is designed to assess the potential of using a water neutron shield on the surface of the moon. Fuels work is geared toward assessing the current potential of using fuels that have already flown in space.

  8. Pulse Power Capability Of High Energy Density Capacitors Based on a New Dielectric Material

    NASA Technical Reports Server (NTRS)

    Winsor, Paul; Scholz, Tim; Hudis, Martin; Slenes, Kirk M.

    1999-01-01

    A new dielectric composite consisting of a polymer coated onto a high-density metallized Kraft has been developed for application in high energy density pulse power capacitors. The polymer coating is custom formulated for high dielectric constant and strength with minimum dielectric losses. The composite can be wound and processed using conventional wound film capacitor manufacturing equipment. This new system has the potential to achieve 2 to 3 J/cu cm whole capacitor energy density at voltage levels above 3.0 kV, and can maintain its mechanical properties to temperatures above 150 C. The technical and manufacturing development of the composite material and fabrication into capacitors are summarized in this paper. Energy discharge testing, including capacitance and charge-discharge efficiency at normal and elevated temperatures, as well as DC life testing were performed on capacitors manufactured using this material. TPL (Albuquerque, NM) has developed the material and Aerovox (New Bedford, MA) has used the material to build and test actual capacitors. The results of the testing will focus on pulse power applications specifically those found in electro-magnetic armor and guns, high power microwave sources and defibrillators.

  9. System reliability analysis through corona testing

    NASA Technical Reports Server (NTRS)

    Lalli, V. R.; Mueller, L. A.; Koutnik, E. A.

    1975-01-01

    In the Reliability and Quality Engineering Test Laboratory at the NASA Lewis Research Center a nondestructive, corona-vacuum test facility for testing power system components was developed using commercially available hardware. The test facility was developed to simulate operating temperature and vacuum while monitoring corona discharges with residual gases. This facility is being used to test various high voltage power system components.

  10. System reliability analysis through corona testing

    NASA Technical Reports Server (NTRS)

    Lalli, V. R.; Mueller, L. A.; Koutnik, E. A.

    1975-01-01

    A corona vacuum test facility for nondestructive testing of power system components was built in the Reliability and Quality Engineering Test Laboratories at the NASA Lewis Research Center. The facility was developed to simulate operating temperature and vacuum while monitoring corona discharges with residual gases. The facility is being used to test various high-voltage power system components.

  11. Environmental testing and laser transmission results for ruggedized high power IR fiber cables

    NASA Astrophysics Data System (ADS)

    Busse, Lynda; Kung, Frederic; Florea, Catalin; Shaw, Brandon; Aggarwal, Ishwar; Sanghera, Jas

    2013-03-01

    We present successful results of high mid-IR laser power transmission as well as MIL-SPEC environmental testing (thermal cycling and vibration testing) of ruggedized, IR-transmitting chalcogenide glass fiber cables. The cables tested included chalcogenide fiber cables with endfaces imprinted with anti-reflective "moth eye" surfaces, whereby the reflection loss is reduced from about 17% per end to less than 3%. The cables with these moth eye surfaces also show excellent laser damage resistance.

  12. The US Army Foreign Comparative Test fuel cell program

    NASA Astrophysics Data System (ADS)

    Bostic, Elizabeth; Sifer, Nicholas; Bolton, Christopher; Ritter, Uli; Dubois, Terry

    The US Army RDECOM initiated a Foreign Comparative Test (FCT) Program to acquire lightweight, high-energy dense fuel cell systems from across the globe for evaluation as portable power sources in military applications. Five foreign companies, including NovArs, Smart Fuel Cell, Intelligent Energy, Ballard Power Systems, and Hydrogenics, Inc., were awarded competitive contracts under the RDECOM effort. This paper will report on the status of the program as well as the experimental results obtained from one of the units. The US Army has interests in evaluating and deploying a variety of fuel cell systems, where these systems show added value when compared to current power sources in use. For low-power applications, fuel cells utilizing high-energy dense fuels offer significant weight savings over current battery technologies. This helps reduce the load a solider must carry for longer missions. For high-power applications, the low operating signatures (acoustic and thermal) of fuel cell systems make them ideal power generators in stealth operations. Recent testing has been completed on the Smart Fuel Cell A25 system that was procured through the FCT program. The "A-25" is a direct methanol fuel cell hybrid and was evaluated as a potential candidate for soldier and sensor power applications.

  13. Status and test report on the LANL-Boeing APLE/HPO flying-wire beam-profile monitor. Status report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilke, M.; Barlow, D.; Fortgang, C.

    1994-07-01

    The High-Power Oscillator (HPO) demonstration of the Average Power Laser Experiment (APLE) is a collaboration by Los Alamos National Laboratory and Boeing to demonstrate a 10 kW average power, 10 {mu}m free electron laser (FEL). As part of the collaboration, Los Alamos National Laboratory (LANL) is responsible for many of the electron beam diagnostics in the linac, transport, and laser sections. Because of the high duty factor and power of the electron beam, special diagnostics are required. This report describes the flying wire diagnostic required to monitor the beam profile during high-power, high-duty operation. The authors describe the diagnostic andmore » prototype tests on the Los Alamos APLE Prototype Experiment (APEX) FEL. They also describe the current status of the flying wires being built for APLE.« less

  14. High-power baseline and motoring test results for the GPU-3 Stirling engine

    NASA Technical Reports Server (NTRS)

    Thieme, L. G.

    1981-01-01

    Test results are given for the full power range of the engine with both helium and hydrogen working fluids. Comparisons are made to previous testing using an alternator and resistance load bank to absorb the engine output. Indicated power results are presented as determined by several methods. Motoring tests were run to aid in determining engine mechanical losses. Comparisons are made between the results of motoring and energy-balance methods for finding mechanical losses.

  15. Testing the effects of temperature and humidity on printed passive UHF RFID tags on paper substrate

    NASA Astrophysics Data System (ADS)

    Linnea Merilampi, Sari; Virkki, Johanna; Ukkonen, Leena; Sydänheimo, Lauri

    2014-05-01

    This article is an interesting substrate material for environmental-friendly printable electronics. In this study, screen-printed RFID tags on paper substrate are examined. Their reliability was tested with low temperature, high temperature, slow temperature cycling, high temperature and high humidity and water dipping test. Environmental stresses affect the tag antenna impedance, losses and radiation characteristics due to their impact on the ink film and paper substrate. Low temperature, temperature cycling and high humidity did not have a radical effect on the measured parameters: threshold power, backscattered signal power or read range of the tags. However, the frequency response and the losses of the tags were slightly affected. Exposure to high temperature was found to even improve the tag performance due to the positive effect of high temperature on the ink film. The combined high humidity and high temperature had the most severe effect on the tag performance. The threshold power increased, backscattered power decreased and the read range was shortened. On the whole, the results showed that field use of these tags in high, low and changing temperature conditions and high humidity conditions is possible. Use of these tags in combined high-humidity and high-temperature conditions should be carefully considered.

  16. Simulations of NOx Emissions from Low Emissions Discrete Jet Injector Combustor Tests

    NASA Technical Reports Server (NTRS)

    Ajmani, Kumud; Breisacher, Kevin

    2014-01-01

    An experimental and computational study was conducted to evaluate the performance and emissions characteristics of a candidate Lean Direct Injection (LDI) combustor configuration with a mix of simplex and airblast injectors. The National Combustion Code (NCC) was used to predict the experimentally measured EINOx emissions for test conditions representing low power, medium power, and high-power engine cycle conditions. Of the six cases modeled with the NCC using a reduced-kinetics finite-rate mechanism and lagrangian spray modeling, reasonable predictions of combustor exit temperature and EINOx were obtained at two high-power cycle conditions.

  17. Operational Results From a High Power Alternator Test Bed

    NASA Technical Reports Server (NTRS)

    Birchenough, Arthur; Hervol, David

    2007-01-01

    The Alternator Test Unit (ATU) in the Lunar Power System Facility (LPSF) located at the NASA Glenn Research Center (GRC) in Cleveland, Ohio was used to simulate the operating conditions and evaluate the performance of the ATU and its interaction with various LPSF components in accordance with the current Fission Surface Power System (FSPS) requirements. The testing was carried out at the breadboard development level. These results successfully demonstrated excellent ATU power bus characteristics and rectified user load power quality during steady state and transient conditions. Information gained from this work could be used to assist the design and primary power quality considerations for a possible future FSPS. This paper describes the LPSF components and some preliminary test results.

  18. Cryogenic lifetime tests on a commercial epoxy resin high voltage bushing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwenterly, S W; Pleva, Ed; Ha, Tam T

    2012-06-12

    High-temperature superconducting (HTS) power devices operating in liquid nitrogen frequently require high-voltage bushings to carry the current leads from the superconducting windings to the room temperature grid connections. Oak Ridge National Laboratory is collaborating with Waukesha Electric Systems, SuperPower, and Southern California Edison to develop and demonstrate an HTS utility power transformer. Previous dielectric high voltage tests in support of this program have been carried out in test cryostats with commercial epoxy resin bushings from Electro Composites Inc. (ECI). Though the bushings performed well in these short-term tests, their long-term operation at high voltage in liquid nitrogen needs to bemore » verified for use on the utility grid. Long-term tests are being carried out on a sample 28-kV-class ECI bushing. The bushing has a monolithic cast, cycloaliphatic resin body and is fire- and shatter-resistant. The test cryostat is located in an interlocked cage and is energized at 25 kVac around the clock. Liquid nitrogen (LN) is automatically refilled every 9.5 hours. Partial discharge, capacitance, and leakage resistance tests are periodically performed to check for deviations from factory values. At present, over 2400 hours have been accumulated with no changes in these parameters. The tests are scheduled to run for four to six months.« less

  19. Cryogenic lifetime tests on a commercial epoxy resin high voltage bushing

    NASA Astrophysics Data System (ADS)

    Schwenterly, S. W.; Pleva, E. F.; Ha, T. T.

    2012-06-01

    High-temperature superconducting (HTS) power devices operating in liquid nitrogen frequently require high-voltage bushings to carry the current leads from the superconducting windings to the room temperature grid connections. Oak Ridge National Laboratory (ORNL) is collaborating with Waukesha Electric Systems (WES), SuperPower (SP), and Southern California Edison (SCE) to develop and demonstrate an HTS utility power transformer. Previous dielectric high voltage tests in support of this program have been carried out in test cryostats with commercial epoxy resin bushings from Electro Composites Inc. (ECI). Though the bushings performed well in these short-term tests, their long-term operation at high voltage in liquid nitrogen (LN) needs to be verified for use on the utility grid. Long-term tests are being carried out on a sample 28-kV-rms-class ECI bushing. The bushing has a monolithic cast, cycloaliphatic resin body and is fire- and shatter-resistant. The test cryostat is located in an interlocked cage and is continuously energized at 25 kVac rms. LN is automatically refilled every 9.5 hours. Partial discharge, capacitance, and leakage resistance tests are periodically performed to check for deviations from factory values. At present, over 2400 hours have been accumulated with no changes in these parameters. The tests are scheduled to run for four to six months.

  20. Fuel Pin Behavior Under the Slow Power Ramp Transients in the CABRI-2 Experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Charpenel, Jean; Lemoine, Francette; Sato, Ikken

    Slow ramp-type transient-overpower tests were performed within the framework of the international CABRI-2 experimental program. The implemented power transients of {approx}1% nominal power/s correspond to a control rod withdrawal-type accident in a liquid-metal-cooled fast breeder reactor (FBR). The analysis of the tests includes the information elements derived from the hodoscope signals, which were assessed quantitatively and supported by destructive and nondestructive posttest examinations. These tests, performed with fuels of various geometries, demonstrated the high margin to failure of such FBR fuel pins within the expected power level before the emergency reactor shutdown. At the same time, these tests performed withmore » high- and low-smear-density industrial pins led to clarification of the influence of pellet design on fuel pin behavior under high overpower condition. With the high-smear-density solid fuel pellet pin of high burnup level, the retained gaseous fission products played an important role in the solid fuel swelling, leading to clad deformation and failure at a maximum heating rate of 81 kW.m{sup -1}, which is much greater than the end-of-life (EOL) linear rating of the pin. With the low smear-density annular pellet pin, an important fuel swelling takes place, leading to degradation of the fuel thermal conductivity. This effect was detected at the power level around 73 kW.m{sup -1}, which is also much higher than the EOL value of the pin. Furthermore, the absence of clad deformation, and consequently of failure even at the power level going up to 134.7 kW.m{sup -1}, confirmed the very high margin to failure. In consequence, it was clarified that gaseous fission products have significant effects on failure threshold as well as on thermal performance during overpower condition, and such effects are significantly dependent on fuel design and power operation conditions.« less

  1. Experimental testing of prototype face gears for helicopter transmissions

    NASA Technical Reports Server (NTRS)

    Handschuh, R.; Lewicki, D.; Bossler, R.

    1992-01-01

    An experimental program to test the feasibility of using face gears in a high-speed and high-power environment was conducted. Four face gear sets were tested, two sets at a time, in a closed-loop test stand at pinion rotational speeds to 19,100 rpm and to 271 kW. The test gear sets were one-half scale of the helicopter design gear set. Testing the gears at one-eighth power, the test gear set had slightly increased bending and compressive stresses when compared to the full scale design. The tests were performed in the LeRC spiral bevel gear test facility. All four sets of gears successfully ran at 100 percent of design torque and speed for 30 million pinion cycles, and two sets successfully ran at 200 percent of torque for an additional 30 million pinion cycles. The results, although limited, demonstrated the feasibility of using face gears for high-speed, high-load applications.

  2. Configuration and Calibration of High Temperature Furnaces for Testing Ceramic Matrix Composites

    DTIC Science & Technology

    2014-10-01

    Actual Furnace Cavity Stainless Steel Mesh Cage For Electrical Connections (both sides) High Temperature Power Lead Clamp Furnace Control TC’s Power... tests generate the basic properties such as modulus (E), ultimate tensile strength (UTS), proportional limit (PL), strain at failure (f), as well as...stress- strain behavior. Each material was tested at room temperature, at the maximum use temperature for the CMC system (as determined by the CMC

  3. Student Attitudes toward Nuclear Power Plants: A Classroom Experiment in the Field of Environmental Psychology.

    ERIC Educational Resources Information Center

    Spada, Hans; And Others

    1977-01-01

    As part of a senior high school physics unit on nuclear power, changes in student attitudes toward nuclear power plants and problems of energy supply were analyzed. Tests included a situational test, semantic differentials, knowledge or achievement, and a final questionnaire. The results are discussed. (CTM)

  4. Bon-EV: an improved multiple testing procedure for controlling false discovery rates.

    PubMed

    Li, Dongmei; Xie, Zidian; Zand, Martin; Fogg, Thomas; Dye, Timothy

    2017-01-03

    Stability of multiple testing procedures, defined as the standard deviation of total number of discoveries, can be used as an indicator of variability of multiple testing procedures. Improving stability of multiple testing procedures can help to increase the consistency of findings from replicated experiments. Benjamini-Hochberg's and Storey's q-value procedures are two commonly used multiple testing procedures for controlling false discoveries in genomic studies. Storey's q-value procedure has higher power and lower stability than Benjamini-Hochberg's procedure. To improve upon the stability of Storey's q-value procedure and maintain its high power in genomic data analysis, we propose a new multiple testing procedure, named Bon-EV, to control false discovery rate (FDR) based on Bonferroni's approach. Simulation studies show that our proposed Bon-EV procedure can maintain the high power of the Storey's q-value procedure and also result in better FDR control and higher stability than Storey's q-value procedure for samples of large size(30 in each group) and medium size (15 in each group) for either independent, somewhat correlated, or highly correlated test statistics. When sample size is small (5 in each group), our proposed Bon-EV procedure has performance between the Benjamini-Hochberg procedure and the Storey's q-value procedure. Examples using RNA-Seq data show that the Bon-EV procedure has higher stability than the Storey's q-value procedure while maintaining equivalent power, and higher power than the Benjamini-Hochberg's procedure. For medium or large sample sizes, the Bon-EV procedure has improved FDR control and stability compared with the Storey's q-value procedure and improved power compared with the Benjamini-Hochberg procedure. The Bon-EV multiple testing procedure is available as the BonEV package in R for download at https://CRAN.R-project.org/package=BonEV .

  5. Demonstration of the High RF Power Production Feasibility in the CLIC Power Extraction and Transfer Structure (PETS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cappelletti, A.; /CERN; Dolgashev, V.

    A fundamental element of the CLIC concept is two-beam acceleration, where RF power is extracted from a high current, low energy drive beam in order to accelerate the low current main beam to high energy. The CLIC Power Extraction and Transfer Structure (PETS) is a passive microwave device in which bunches of the drive beam interact with the constant impedance of the periodically loaded waveguide and excite preferentially the synchronous mode. The RF power produced is collected downstream of the structure by means of the RF power extractor; it is delivered to the main linac using the waveguide network connectingmore » the PETS to the main CLIC accelerating structures. The PETS should produce 135 MW at 240 ns RF pulses at a very low breakdown rate: BDR < 10{sup -7}/pulse/m. Over 2010, a thorough high RF power testing program was conducted in order to investigate the ultimate performance and the limiting factors for the PETS operation. The testing program is described and the results are presented.« less

  6. Physiologic performance test differences in female volleyball athletes by competition level and player position.

    PubMed

    Schaal, Monique; Ransdell, Lynda B; Simonson, Shawn R; Gao, Yong

    2013-07-01

    The purpose of this study was to examine physiologic performance test differences by competition level (high school and Division-I collegiate athletes) and player position (hitter, setter, defensive specialist) in 4 volleyball-related tests. A secondary purpose was to establish whether a 150-yd shuttle could be used as a field test to assess anaerobic capacity. Female participants from 4 varsity high school volleyball teams (n = 27) and 2 Division-I collegiate volleyball teams (n = 26) were recruited for the study. Participants completed 4 performance-based field tests (vertical jump, agility T-test, and 150- and 300-yd shuttle runs) after completing a standardized dynamic warm-up. A 2-way multivariate analysis of variance with Bonferroni post hoc adjustments (when appropriate) and effect sizes were used for the analyses. The most important findings of this study were that (a) college volleyball athletes were older, heavier, and taller than high school athletes; (b) high school athletes had performance deficiencies in vertical jump/lower-body power, agility, and anaerobic fitness; (c) lower-body power was the only statistically significant difference in the performance test measures by player position; and (d) the correlation between the 150- and 300-yd shuttle was moderate (r = 0.488). Female high school volleyball players may enhance their ability to play collegiate volleyball by improving their vertical jump, lower-body power, agility, and anaerobic fitness. Furthermore, all player positions should emphasize lower-body power conditioning. These physical test scores provide baseline performance scores that should help strength and conditioning coaches create programs that will address deficits in female volleyball player performance, especially as they transition from high school to college.

  7. A hybrid electrochemical device based on a synergetic inner combination of Li ion battery and Li ion capacitor for energy storage.

    PubMed

    Zheng, Jun-Sheng; Zhang, Lei; Shellikeri, Annadanesh; Cao, Wanjun; Wu, Qiang; Zheng, Jim P

    2017-02-07

    Li ion battery (LIB) and electrochemical capacitor (EC) are considered as the most widely used energy storage systems (ESSs) because they can produce a high energy density or a high power density, but it is a huge challenge to achieve both the demands of a high energy density as well as a high power density on their own. A new hybrid Li ion capacitor (HyLIC), which combines the advantages of LIB and Li ion capacitor (LIC), is proposed. This device can successfully realize a potential match between LIB and LIC and can avoid the excessive depletion of electrolyte during the charge process. The galvanostatic charge-discharge cycling tests reveal that at low current, the HyLIC exhibits a high energy density, while at high current, it demonstrates a high power density. Ragone plot confirms that this device can make a synergetic balance between energy and power and achieve a highest energy density in the power density range of 80 to 300 W kg -1 . The cycle life test proves that HyLIC exhibits a good cycle life and an excellent coulombic efficiency. The present study shows that HyLIC, which is capable of achieving a high energy density, a long cycle life and an excellent power density, has the potential to achieve the winning combination of a high energy and power density.

  8. A hybrid electrochemical device based on a synergetic inner combination of Li ion battery and Li ion capacitor for energy storage

    PubMed Central

    Zheng, Jun-Sheng; Zhang, Lei; Shellikeri, Annadanesh; Cao, Wanjun; Wu, Qiang; Zheng, Jim P.

    2017-01-01

    Li ion battery (LIB) and electrochemical capacitor (EC) are considered as the most widely used energy storage systems (ESSs) because they can produce a high energy density or a high power density, but it is a huge challenge to achieve both the demands of a high energy density as well as a high power density on their own. A new hybrid Li ion capacitor (HyLIC), which combines the advantages of LIB and Li ion capacitor (LIC), is proposed. This device can successfully realize a potential match between LIB and LIC and can avoid the excessive depletion of electrolyte during the charge process. The galvanostatic charge-discharge cycling tests reveal that at low current, the HyLIC exhibits a high energy density, while at high current, it demonstrates a high power density. Ragone plot confirms that this device can make a synergetic balance between energy and power and achieve a highest energy density in the power density range of 80 to 300 W kg−1. The cycle life test proves that HyLIC exhibits a good cycle life and an excellent coulombic efficiency. The present study shows that HyLIC, which is capable of achieving a high energy density, a long cycle life and an excellent power density, has the potential to achieve the winning combination of a high energy and power density. PMID:28169329

  9. Operation of high power converters in parallel

    NASA Technical Reports Server (NTRS)

    Decker, D. K.; Inouye, L. Y.

    1993-01-01

    High power converters that are used in space power subsystems are limited in power handling capability due to component and thermal limitations. For applications, such as Space Station Freedom, where multi-kilowatts of power must be delivered to user loads, parallel operation of converters becomes an attractive option when considering overall power subsystem topologies. TRW developed three different unequal power sharing approaches for parallel operation of converters. These approaches, known as droop, master-slave, and proportional adjustment, are discussed and test results are presented.

  10. Best Practices: Power Quality and Integrated Testing at JSC

    NASA Technical Reports Server (NTRS)

    Davis, Lydia

    2018-01-01

    This presentation discusses Best Practices for Power Quality and Integrated Testing at JSC in regards to electrical systems. These high-level charts include mostly generic information; however, a specific issue is discussed involving flight hardware that could have been discovered prior to flight with an integrated test.

  11. High-Power Testing of 11.424-GHz Dielectric-Loaded Accelerating Structures

    NASA Astrophysics Data System (ADS)

    Gold, Steven; Gai, Wei

    2001-10-01

    Argonne National Laboratory has previously described the design, construction, and bench testing of an X-band traveling-wave accelerating structure loaded with a permittivity=20 dielectric (P. Zou et al., Rev. Sci. Instrum. 71, 2301, 2000.). We describe a new program to build a test accelerator using this structure. The accelerator will be powered by the high-power 11.424-GHz radiation from the magnicon facility at the Naval Research Laboratory ( O.A. Nezhevenko et al., Proc. PAC 2001, in press). The magnicon is expected to provide up to 30 MW from each of two WR-90 output waveguide arms in pulses of up to 1 microsecond duration, permitting tests up to a gradient of 40 MV/m. Still higher power pulses (100-500 MW) may be available at the output of an active pulse compressor driven by the magnicon ( A.L. Vikharev et al., Proc. 9th Workshop on Advanced Accelerator Concepts.).

  12. Test-retest reliability of knee extensor rate of velocity and power development in older adults using the isotonic mode on a Biodex System 3 dynamometer.

    PubMed

    Van Driessche, Stijn; Van Roie, Evelien; Vanwanseele, Benedicte; Delecluse, Christophe

    2018-01-01

    Isotonic testing and measures of rapid power production are emerging as functionally relevant test methods for detection of muscle aging. Our objective was to assess reliability of rapid velocity and power measures in older adults using the isotonic mode of an isokinetic dynamometer. Sixty-three participants (aged 65 to 82 years) underwent a test-retest protocol with one week time interval. Isotonic knee extension tests were performed at four different loads: 0%, 25%, 50% and 75% of maximal isometric strength. Peak velocity (pV) and power (pP) were determined as the highest values of the velocity and power curve. Rate of velocity (RVD) and power development (RPD) were calculated as the linear slopes of the velocity- and power-time curve. Relative and absolute measures of test-retest reliability were analyzed using intraclass correlation coefficients (ICC), standard error of measurement (SEM) and Bland-Altman analyses. Overall, reliability was high for pV, pP, RVD and RPD at 0%, 25% and 50% load (ICC: .85 - .98, SEM: 3% - 10%). A trend for increased reliability at lower loads seemed apparent. The tests at 75% load led to range of motion failure and should be avoided. In addition, results demonstrated that caution is advised when interpreting early phase results (first 50ms). To conclude, our results support the use of the isotonic mode of an isokinetic dynamometer for testing rapid power and velocity characteristics in older adults, which is of high clinical relevance given that these muscle characteristics are emerging as the primary outcomes for preventive and rehabilitative interventions in aging research.

  13. 3 kW single stage all-fiber Yb-doped single-mode fiber laser for highly reflective and highly thermal conductive materials processing

    NASA Astrophysics Data System (ADS)

    Ikoma, S.; Nguyen, H. K.; Kashiwagi, M.; Uchiyama, K.; Shima, K.; Tanaka, D.

    2017-02-01

    A 3 kW single stage all-fiber Yb-doped single-mode fiber laser with bi-directional pumping configuration has been demonstrated. Our newly developed high-power LD modules are employed for a high available pump power of 4.9 kW. The length of the delivery fiber is 20 m which is long enough to be used in most of laser processing machines. An output power of 3 kW was achieved at a pump power of 4.23 kW. The slope efficiency was 70%. SRS was able to be suppressed at the same output power by increasing ratio of backward pump power. The SRS level was improved by 5dB when 57% backward pump ratio was adopted compared with the case of 50%. SRS was 35dB below the laser power at the output power of 3 kW even with a 20-m delivery fiber. The M-squared factor was 1.3. Single-mode beam quality was obtained. To evaluate practical utility of the 3 kW single-mode fiber laser, a Bead-on-Plate (BoP) test onto a pure copper plate was executed. The BoP test onto a copper plate was made without stopping or damaging the laser system. That indicates our high power single-mode fiber lasers can be used practically in processing of materials with high reflectivity and high thermal conductivity.

  14. High Power Hall Thrusters

    NASA Technical Reports Server (NTRS)

    Jankovsky, Robert; Tverdokhlebov, Sergery; Manzella, David

    1999-01-01

    The development of Hall thrusters with powers ranging from tens of kilowatts to in excess of one hundred kilowatts is considered based on renewed interest in high power. high thrust electric propulsion applications. An approach to develop such thrusters based on previous experience is discussed. It is shown that the previous experimental data taken with thrusters of 10 kW input power and less can be used. Potential mass savings due to the design of high power Hall thrusters are discussed. Both xenon and alternate thruster propellant are considered, as are technological issues that will challenge the design of high power Hall thrusters. Finally, the implications of such a development effort with regard to ground testing and spacecraft intecrati'on issues are discussed.

  15. Experimental Investigations from the Operation of a 2 Kw Brayton Power Conversion Unit and a Xenon Ion Thruster

    NASA Technical Reports Server (NTRS)

    Mason, Lee; Birchenough, Arthur; Pinero, Luis

    2004-01-01

    A 2 kW Brayton Power Conversion Unit (PCU) and a xenon ion thruster were integrated with a Power Management and Distribution (PMAD) system as part of a Nuclear Electric Propulsion (NEP) Testbed at NASA's Glenn Research Center. Brayton converters and ion thrusters are potential candidates for use on future high power NEP missions such as the proposed Jupiter Icy Moons Orbiter (JIMO). The use of existing lower power test hardware provided a cost-effective means to investigate the critical electrical interface between the power conversion system and ion propulsion system. The testing successfully demonstrated compatible electrical operations between the converter and the thruster, including end-to-end electric power throughput, high efficiency AC to DC conversion, and thruster recycle fault protection. The details of this demonstration are reported herein.

  16. Experimental Investigation from the Operation of a 2 kW Brayton Power Conversion Unit and a Xenon Ion Thruster

    NASA Technical Reports Server (NTRS)

    Hervol, David; Mason, Lee; Birchenough, Art; Pinero, Luis

    2004-01-01

    A 2kW Brayton Power Conversion Unit (PCU) and a xenon ion thruster were integrated with a Power Management and Distribution (PMAD) system as part of a Nuclear Electric Propulsion (NEP) Testbed at NASA's Glenn Research Center. Brayton Converters and ion thrusters are potential candidates for use on future high power NEP mission such as the proposed Jupiter Icy Moons Orbiter (JIMO). The use of a existing lower power test hardware provided a cost effective means to investigate the critical electrical interface between the power conversion system and the propulsion system. The testing successfully demonstrated compatible electrical operations between the converter and the thruster, including end-to-end electric power throughput, high efficiency AC to DC conversion, and thruster recycle fault protection. The details of this demonstration are reported herein.

  17. Test results of the Chrysler upgraded automotive gas turbine engine: Initial design

    NASA Technical Reports Server (NTRS)

    Horvath, D.; Ribble, G. H., Jr.; Warren, E. L.; Wood, J. C.

    1981-01-01

    The upgraded engine as built to the original design was deficient in power and had excessive specific fuel consumption. A high instrumented version of the engine was tested to identify the sources of the engine problems. Analysis of the data shows the major problems to be low compressor and power turbine efficiency and excessive interstage duct losses. In addition, high HC and CO emission were measured at idle, and high NOx emissions at high energy speeds.

  18. Post-Test Analysis of a 10-Year Sodium Heat Pipe Life Test

    NASA Technical Reports Server (NTRS)

    Rosenfeld, John H.; Locci, Ivan E.; Sanzi, James L.; Hull, David R.; Geng, Steven M.

    2011-01-01

    High-temperature heat pipes are being evaluated for use in energy conversion applications such as fuel cells, gas turbine re-combustors, Stirling cycle heat sources; and with the resurgence of space nuclear power both as reactor heat removal elements and as radiator elements. Long operating life and reliable performance are critical requirements for these applications. Accordingly, long-term materials compatibility is being evaluated through the use of high-temperature life test heat pipes. Thermacore, Inc., has carried out a sodium heat pipe 10-year life test to establish long-term operating reliability. Sodium heat pipes have demonstrated favorable materials compatibility and heat transport characteristics at high operating temperatures in air over long time periods. A representative one-tenth segment Stirling Space Power Converter heat pipe with an Inconel 718 envelope and a stainless steel screen wick has operated for over 87,000 hr (10 years) at nearly 700 C. These life test results have demonstrated the potential for high-temperature heat pipes to serve as reliable energy conversion system components for power applications that require long operating lifetime with high reliability. Detailed design specifications, operating history, and post-test analysis of the heat pipe and sodium working fluid are described. Lessons learned and future life test plans are also discussed.

  19. Status of NASA's Stirling Space Power Converter Program

    NASA Technical Reports Server (NTRS)

    Dudenhoefer, James E.; Winter, Jerry M.

    1991-01-01

    An overview is presented of the NASA-Lewis Free-Piston Stirling Space Power Convertor Technology Program. The goal is to develop the technology base needed to meet the long duration, high capacity power requirements for future NASA space initiatives. Efforts are focused upon increasing system power output and system thermal and electric energy conversion efficiency at least fivefold over current SP-100 technology, and on achieving systems that are compatible with space nuclear reactors. Stirling experience in space and progress toward 1050 and 1300 K Stirling Space Power Converters is discussed. Fabrication is nearly completed for the 1050 K Component Test Power Converters (CTPC); results of motoring tests of cold end (525 K), are presented. The success of these and future designs is dependent upon supporting research and technology efforts including heat pipes, bearings, superalloy joining technologies, high efficiency alternators, life and reliability testing and predictive methodologies. An update is provided of progress in some of these technologies leading off with a discussion of free-piston Stirling experience in space.

  20. Preliminary test results from a free-piston Stirling engine technology demonstration program to support advanced radioisotope space power applications

    NASA Astrophysics Data System (ADS)

    White, Maurice A.; Qiu, Songgang; Augenblick, Jack E.

    2000-01-01

    Free-piston Stirling engines offer a relatively mature, proven, long-life technology that is well-suited for advanced, high-efficiency radioisotope space power systems. Contracts from DOE and NASA are being conducted by Stirling Technology Company (STC) for the purpose of demonstrating the Stirling technology in a configuration and power level that is representative of an eventual space power system. The long-term objective is to develop a power system with an efficiency exceeding 20% that can function with a high degree of reliability for up to 15 years on deep space missions. The current technology demonstration convertors (TDC's) are completing shakedown testing and have recently demonstrated performance levels that are virtually identical to projections made during the preliminary design phase. This paper describes preliminary test results for power output, efficiency, and vibration levels. These early results demonstrate the ability of the free-piston Stirling technology to exceed objectives by approximately quadrupling the efficiency of conventional radioisotope thermoelectric generators (RTG's). .

  1. A static investigation of the thrust vectoring system of the F/A-18 high-alpha research vehicle

    NASA Technical Reports Server (NTRS)

    Mason, Mary L.; Capone, Francis J.; Asbury, Scott C.

    1992-01-01

    A static (wind-off) test was conducted in the static test facility of the Langley 16-foot Transonic Tunnel to evaluate the vectoring capability and isolated nozzle performance of the proposed thrust vectoring system of the F/A-18 high alpha research vehicle (HARV). The thrust vectoring system consisted of three asymmetrically spaced vanes installed externally on a single test nozzle. Two nozzle configurations were tested: A maximum afterburner-power nozzle and a military-power nozzle. Vane size and vane actuation geometry were investigated, and an extensive matrix of vane deflection angles was tested. The nozzle pressure ratios ranged from two to six. The results indicate that the three vane system can successfully generate multiaxis (pitch and yaw) thrust vectoring. However, large resultant vector angles incurred large thrust losses. Resultant vector angles were always lower than the vane deflection angles. The maximum thrust vectoring angles achieved for the military-power nozzle were larger than the angles achieved for the maximum afterburner-power nozzle.

  2. Development of High-Power Hall Thruster Power Processing Units at NASA GRC

    NASA Technical Reports Server (NTRS)

    Pinero, Luis R.; Bozak, Karin E.; Santiago, Walter; Scheidegger, Robert J.; Birchenough, Arthur G.

    2015-01-01

    NASA GRC successfully designed, built and tested four different power processor concepts for high power Hall thrusters. Each design satisfies unique goals including the evaluation of a novel silicon carbide semiconductor technology, validation of innovative circuits to overcome the problems with high input voltage converter design, development of a direct-drive unit to demonstrate potential benefits, or simply identification of lessonslearned from the development of a PPU using a conventional design approach. Any of these designs could be developed further to satisfy NASA's needs for high power electric propulsion in the near future.

  3. High Speed Prototype Car Test

    NASA Image and Video Library

    2014-01-10

    CAPE CANAVERAL, Fla. - A Hennessey Venom GT stands on the 3.5-mile long runway between test runs at the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. The flat concrete runway is one of the few places in the world where high performance automobiles can be tested for aerodynamic and safety designs. Hennessey Performance of Sealy, Texas, worked with Performance Power Racing in West Palm Beach to arrange use of the NASA facility. Performance Power Racing has conducted numerous engineering tests on the runway with a variety of vehicles. Photo credit: NASA/Kim Shiflett

  4. Electrically Heated Testing of the Kilowatt Reactor Using Stirling Technology (KRUSTY) Experiment Using a Depleted Uranium Core

    NASA Technical Reports Server (NTRS)

    Briggs, Maxwell H.; Gibson, Marc A.; Sanzi, James

    2017-01-01

    The Kilopower project aims to develop and demonstrate scalable fission-based power technology for systems capable of delivering 110 kW of electric power with a specific power ranging from 2.5 - 6.5 Wkg. This technology could enable high power science missions or could be used to provide surface power for manned missions to the Moon or Mars. NASA has partnered with the Department of Energys National Nuclear Security Administration, Los Alamos National Labs, and Y-12 National Security Complex to develop and test a prototypic reactor and power system using existing facilities and infrastructure. This technology demonstration, referred to as the Kilowatt Reactor Using Stirling TechnologY (KRUSTY), will undergo nuclear ground testing in the summer of 2017 at the Nevada Test Site. The 1 kWe variation of the Kilopower system was chosen for the KRUSTY demonstration. The concept for the 1 kWe flight system consist of a 4 kWt highly enriched Uranium-Molybdenum reactor operating at 800 degrees Celsius coupled to sodium heat pipes. The heat pipes deliver heat to the hot ends of eight 125 W Stirling convertors producing a net electrical output of 1 kW. Waste heat is rejected using titanium-water heat pipes coupled to carbon composite radiator panels. The KRUSTY test, based on this design, uses a prototypic highly enriched uranium-molybdenum core coupled to prototypic sodium heat pipes. The heat pipes transfer heat to two Advanced Stirling Convertors (ASC-E2s) and six thermal simulators, which simulate the thermal draw of full scale power conversion units. Thermal simulators and Stirling engines are gas cooled. The most recent project milestone was the completion of non-nuclear system level testing using an electrically heated depleted uranium (non-fissioning) reactor core simulator. System level testing at the Glenn Research Center (GRC) has validated performance predictions and has demonstrated system level operation and control in a test configuration that replicates the one to be used at the Device Assembly Facility (DAF) at the Nevada National Security Site. Fabrication, assembly, and testing of the depleted uranium core has allowed for higher fidelity system level testing at GRC, and has validated the fabrication methods to be used on the highly enriched uranium core that will supply heat for the DAF KRUSTY demonstration.

  5. Microwave transmission system for space power

    NASA Technical Reports Server (NTRS)

    Dickinson, R. M.

    1976-01-01

    A small total system model and a large subsystem element similar to those that could be eventually used for wireless power transmission experiments in space have been successfully demonstrated by NASA. The short range, relatively low-power laboratory system achieved a dc-to-dc transmission efficiency of 54%. A separate high-power-level receiving subsystem, tested over a 1.54-km range at Goldstone, California, has achieved the transportation of over 30 kW of dc output power. Both tests used 12-cm wavelength microwaves.

  6. Femtosecond Laser Eyewear Protection: Measurements and Precautions

    PubMed Central

    Stromberg, Christopher J.; Hadler, Joshua A.; Alberding, Brian G.; Heilweil, Edwin J.

    2018-01-01

    Ultrafast laser systems are becoming more widespread throughout the research and industrial communities yet eye protection for these high power, bright pulsed sources still require scrupulous characterization and testing before use. Femtosecond lasers, with pulses naturally possessing broad-bandwidth and high average power with variable repetition rate, can exhibit spectral side-bands and subtly changing center wavelengths, which may unknowingly affect eyewear safety protection. Pulse spectral characterization and power diagnostics are presented for a 80 MHz, Ti+3:Sapphire, ≈ 800 nm, ≈40 femtosecond oscillator system. Power and spectral transmission for 22 test samples are measured to determine whether they fall within manufacturer specifications. PMID:29353984

  7. Femtosecond Laser Eyewear Protection: Measurements and Precautions.

    PubMed

    Stromberg, Christopher J; Hadler, Joshua A; Alberding, Brian G; Heilweil, Edwin J

    2017-11-01

    Ultrafast laser systems are becoming more widespread throughout the research and industrial communities yet eye protection for these high power, bright pulsed sources still require scrupulous characterization and testing before use. Femtosecond lasers, with pulses naturally possessing broad-bandwidth and high average power with variable repetition rate, can exhibit spectral side-bands and subtly changing center wavelengths, which may unknowingly affect eyewear safety protection. Pulse spectral characterization and power diagnostics are presented for a 80 MHz, Ti +3 :Sapphire, ≈ 800 nm, ≈40 femtosecond oscillator system. Power and spectral transmission for 22 test samples are measured to determine whether they fall within manufacturer specifications.

  8. An environmental testing facility for Space Station Freedom power management and distribution hardware

    NASA Technical Reports Server (NTRS)

    Jackola, Arthur S.; Hartjen, Gary L.

    1992-01-01

    The plans for a new test facility, including new environmental test systems, which are presently under construction, and the major environmental Test Support Equipment (TSE) used therein are addressed. This all-new Rocketdyne facility will perform space simulation environmental tests on Power Management and Distribution (PMAD) hardware to Space Station Freedom (SSF) at the Engineering Model, Qualification Model, and Flight Model levels of fidelity. Testing will include Random Vibration in three axes - Thermal Vacuum, Thermal Cycling and Thermal Burn-in - as well as numerous electrical functional tests. The facility is designed to support a relatively high throughput of hardware under test, while maintaining the high standards required for a man-rated space program.

  9. Pulsed beam tests at the SANAEM RFQ beamline

    NASA Astrophysics Data System (ADS)

    Turemen, G.; Akgun, Y.; Alacakir, A.; Kilic, I.; Yasatekin, B.; Ergenlik, E.; Ogur, S.; Sunar, E.; Yildiz, V.; Ahiska, F.; Cicek, E.; Unel, G.

    2017-07-01

    A proton beamline consisting of an inductively coupled plasma (ICP) source, two solenoid magnets, two steerer magnets and a radio frequency quadrupole (RFQ) is developed at the Turkish Atomic Energy Authority’s (TAEA) Saraykoy Nuclear Research and Training Center (SNRTC-SANAEM) in Ankara. In Q4 of 2016, the RFQ was installed in the beamline. The high power tests of the RF power supply and the RF transmission line were done successfully. The high power RF conditioning of the RFQ was performed recently. The 13.56 MHz ICP source was tested in two different conditions, CW and pulsed. The characterization of the proton beam was done with ACCTs, Faraday cups and a pepper-pot emittance meter. Beam transverse emittance was measured in between the two solenoids of the LEBT. The measured beam is then reconstructed at the entrance of the RFQ by using computer simulations to determine the optimum solenoid currents for acceptance matching of the beam. This paper will introduce the pulsed beam test results at the SANAEM RFQ beamline. In addition, the high power RF conditioning of the RFQ will be discussed.

  10. Degradation Physics of High Power LEDs in Outdoor Environment and the Role of Phosphor in the degradation process.

    PubMed

    Singh, Preetpal; Tan, Cher Ming

    2016-04-07

    A moisture- electrical - temperature (MET) test is proposed to evaluate the outdoor reliability of high power blue LEDs, with and without phosphor, and to understand the degradation physics of LEDs under the environment of combined humidity, temperature and electrical stresses. The blue LEDs with phosphor will be the high power white LEDs. Scanning acoustic microscopy is used to examine the resulted delamination during this test for the LEDs. The degradation mechanisms of blue LEDs (LEDs without phosphor) and white LEDs (LEDs with phosphor) are found to be different, under both the power on (i.e. with 350 mA through each LED) and power off (i.e. without current supply) conditions. Difference in the coefficient of thermal expansion between the molding part and the lens material as well as the heat generated by the phosphor layer are found to account for the major differences in the degradation mechanisms observed. The findings indicate that the proposed MET test is necessary for the LED industry in evaluating the reliability of LEDs under practical outdoor usage environment.

  11. Mitigation of multipacting, enhanced by gas condensation on the high power input coupler of a superconducting RF module, by comprehensive warm aging

    NASA Astrophysics Data System (ADS)

    Wang, Chaoen; Chang, Lung-Hai; Chang, Mei-Hsia; Chen, Ling-Jhen; Chung, Fu-Tsai; Lin, Ming-Chyuan; Liu, Zong-Kai; Lo, Chih-Hung; Tsai, Chi-Lin; Yeh, Meng-Shu; Yu, Tsung-Chi

    2017-11-01

    Excitation of multipacting, enhanced by gas condensation on cold surfaces of the high power input coupler in a SRF module poses the highest challenge for reliable SRF operation under high average RF power. This could prevent the light source SRF module from being operated with a desired high beam current. Off-line long-term reliability tests have been conducted for the newly constructed 500-MHz SRF KEKB type modules at an accelerating RF voltage of 1.6-MV to enable prediction of their operational reliability in the 3-GeV Taiwan Photon Source (TPS), since prediction from mere production performance by conventional horizontal test is presently unreliable. As expected, operational difficulties resulting from multipacting, enhanced by gas condensation, have been identified in the course of long-term reliability test. Our present hypothesis is that gas condensation can be slowed down by preserving the vacuum pressure at the power coupler close to that reached just after its cool down to liquid helium temperatures. This is achievable by reduction of the power coupler out-gassing rate through comprehensive warm aging. Its feasibility and effectiveness has been experimentally verified in a second long term reliability test. Our success opens the possibility to operate the SRF module free of multipacting trouble and opens a new direction to improve the operational performance of next generation SRF modules in light sources with high beam currents.

  12. HEMT Amplifiers and Equipment for their On-Wafer Testing

    NASA Technical Reports Server (NTRS)

    Fung, King man; Gaier, Todd; Samoska, Lorene; Deal, William; Radisic, Vesna; Mei, Xiaobing; Lai, Richard

    2008-01-01

    Power amplifiers comprising InP-based high-electron-mobility transistors (HEMTs) in coplanar-waveguide (CPW) circuits designed for operation at frequencies of hundreds of gigahertz, and a test set for onwafer measurement of their power levels have been developed. These amplifiers utilize an advanced 35-nm HEMT monolithic microwave integrated-circuit (MMIC) technology and have potential utility as local-oscillator drivers and power sources in future submillimeter-wavelength heterodyne receivers and imaging systems. The test set can reduce development time by enabling rapid output power characterization, not only of these and similar amplifiers, but also of other coplanar-waveguide power circuits, without the necessity of packaging the circuits.

  13. The Influence of Relationship Power Dynamics on HIV Testing in Rural Malawi

    PubMed Central

    Conroy, Amy A.

    2014-01-01

    Using the theory of gender and power (TGP) and data from the Tsogolo la Thanzi (TLT) study, we examined how relationship power shapes young people’s decisions to test for HIV in rural Malawi (N=932), a high-HIV prevalence setting undergoing rapid expansions in testing services. We used generalized estimating equations (GEE) to examine associations among five constructs of relationship power (socioeconomic inequalities, relationship dominance, relationship violence, relationship unity, and mistrust), perceived risk, and receiving an HIV test over a 16-month period. The results indicate that young Malawians are testing for HIV at relatively high rates, repeatedly, and not just during pregnancy. Over the study period, 47.3% of respondents received at least one HIV test outside of TLT (range: 0–4). The GEE analysis revealed that men and women with higher levels of relationship unity were less likely to test for HIV. For men, being a victim of sexual coercion was an additional barrier to testing. Women’s testing decisions were more strongly influenced by perceptions of a partner’s risk for HIV than their own, whereas men relied more on self-assessments. The results highlight that testing decisions are deeply embedded within the relationship context, which should be considered in future HIV testing interventions. PMID:24670263

  14. Development of gallium arsenide high-speed, low-power serial parallel interface modules: Executive summary

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Final report to NASA LeRC on the development of gallium arsenide (GaAS) high-speed, low power serial/parallel interface modules. The report discusses the development and test of a family of 16, 32 and 64 bit parallel to serial and serial to parallel integrated circuits using a self aligned gate MESFET technology developed at the Honeywell Sensors and Signal Processing Laboratory. Lab testing demonstrated 1.3 GHz clock rates at a power of 300 mW. This work was accomplished under contract number NAS3-24676.

  15. Effects of Beetroot Juice Supplementation on a 30-s High-Intensity Inertial Cycle Ergometer Test

    PubMed Central

    Domínguez, Raul; Garnacho-Castaño, Manuel Vicente; Cuenca, Eduardo; García-Fernández, Pablo; Muñoz-González, Arturo; de Jesús, Fernando; Lozano-Estevan, María Del Carmen; Veiga-Herreros, Pablo

    2017-01-01

    Background: Beetroot juice (BJ) is rich in inorganic nitrates and has proved effective at increasing blood nitric oxide (NO) levels. When used as a supplement BJ has shown an ergogenic effect on cardiorespiratory resistance exercise modalities, yet few studies have examined its impact on high intensity efforts. Objective: To assess the effects of BJ intake on anaerobic performance in a Wingate test. Methods: Fifteen trained men (age 21.46 ± 1.72 years, height 1.78 ± 0.07 cm and weight 76.90 ± 8.67 kg) undertook a 30-s maximum intensity test on an inertial cycle ergometer after drinking 70 mL of BJ (5.6 mmol NO3−) or placebo. Results: Despite no impacts of BJ on the mean power recorded during the test, improvements were produced in peak power (6%) (p = 0.034), average power 0–15 s (6.7%) (p = 0.048) and final blood lactate levels (82.6%) (p < 0.001), and there was a trend towards a shorter time taken to attain peak power (−8.4%) (p = 0.055). Conclusions: Supplementation with BJ has an ergonomic effect on maximum power output and on average power during the first 15 s of a 30-s maximum intensity inertial cycle ergometer test. PMID:29244746

  16. High frequency, high power capacitor development

    NASA Astrophysics Data System (ADS)

    White, C. W.; Hoffman, P. S.

    1983-03-01

    A program to develop a special high energy density, high power transfer capacitor to operate at frequency of 40 kHz, 600 V rms at 125 A rms plus 600 V dc bias for space operation. The program included material evaluation and selection, a capacitor design was prepared, a thermal analysis performed on the design. Fifty capacitors were manufactured for testing at 10 kHz and 40 kHz for 50 hours at Industrial Electric Heating Co. of Columbus, Ohio. The vacuum endurance test used on environmental chamber and temperature plate furnished by Maxwell. The capacitors were energized with a special power conditioning apparatus developed by Industrial Electric Heating Co. Temperature conditions of the capacitors were monitored by IEHCo test equipment. Successful completion of the vacuum endurance test series confirmed achievement of the main goal of producing a capacitor or reliable operation at high frequency in an environment normally not hospitable to electrical and electronic components. The capacitor developed compared to a typical commercial capacitor at the 40 kHz level represents a decrease in size and weight by a factor of seven.

  17. High frequency, high power capacitor development

    NASA Technical Reports Server (NTRS)

    White, C. W.; Hoffman, P. S.

    1983-01-01

    A program to develop a special high energy density, high power transfer capacitor to operate at frequency of 40 kHz, 600 V rms at 125 A rms plus 600 V dc bias for space operation. The program included material evaluation and selection, a capacitor design was prepared, a thermal analysis performed on the design. Fifty capacitors were manufactured for testing at 10 kHz and 40 kHz for 50 hours at Industrial Electric Heating Co. of Columbus, Ohio. The vacuum endurance test used on environmental chamber and temperature plate furnished by Maxwell. The capacitors were energized with a special power conditioning apparatus developed by Industrial Electric Heating Co. Temperature conditions of the capacitors were monitored by IEHCo test equipment. Successful completion of the vacuum endurance test series confirmed achievement of the main goal of producing a capacitor or reliable operation at high frequency in an environment normally not hospitable to electrical and electronic components. The capacitor developed compared to a typical commercial capacitor at the 40 kHz level represents a decrease in size and weight by a factor of seven.

  18. Power-Generation Characteristics After Vibration and Thermal Stresses of Thermoelectric Unicouples with CoSb3/Ti/Mo(Cu) Interfaces

    NASA Astrophysics Data System (ADS)

    Bae, Kwang Ho; Choi, Soon-Mok; Kim, Kyung-Hun; Choi, Hyoung-Seuk; Seo, Won-Seon; Kim, Il-Ho; Lee, Soonil; Hwang, Hae Jin

    2015-06-01

    Reliability tests for thermoelectric unicouples were carried out to investigate the adhesion properties of CoSb3/Ti/Mo(Cu) interfaces. The n-type In0.25 Co3.95Ni0.05Sb12 and p-type In0.25Co3FeSb12 bulks were prepared for fabricating a thermoelectric unicouple (one p- n couple) by an induction melting and a spark plasma sintering process. Mo-Cu alloy was selected as an electrode for the unicouples due to its high melting temperature and proper work function value. Many thermoelectric unicouples with the CoSb3/Ti/Mo(Cu) interfaces were fabricated with the proper brazing materials by means of a repeated firing process. Reliability of the unicouples with the interfaces was evaluated by a vibration test and a thermal cycling test. After the thermal cycling and vibration tests, the power-generation characteristics of the unicouples were compared with the unicouples before the tests. Even after the vibration test, electrical power with a power density of 0.5 W/cm2 was generated. The Ti-interlayer is considered as a possible candidate for making a reliable unicouple with high adhesion strength. With the thermal cycling test, the resistance of the unicouple increased and the electrical power from the unicouple decreased. A failure mode by the thermal cycling test was ascribed to a complex effect of micro-cracks originated from the thermal stress and oxidation problem of the thermoelectric materials; that is, a thick oxide layer more than 300 μm was detected after a high-temperature durability test of n-type In0.25Co3.95Ni0.05Sb12 material at 773 K in air for 7 days.

  19. The MAX Statistic is Less Powerful for Genome Wide Association Studies Under Most Alternative Hypotheses.

    PubMed

    Shifflett, Benjamin; Huang, Rong; Edland, Steven D

    2017-01-01

    Genotypic association studies are prone to inflated type I error rates if multiple hypothesis testing is performed, e.g., sequentially testing for recessive, multiplicative, and dominant risk. Alternatives to multiple hypothesis testing include the model independent genotypic χ 2 test, the efficiency robust MAX statistic, which corrects for multiple comparisons but with some loss of power, or a single Armitage test for multiplicative trend, which has optimal power when the multiplicative model holds but with some loss of power when dominant or recessive models underlie the genetic association. We used Monte Carlo simulations to describe the relative performance of these three approaches under a range of scenarios. All three approaches maintained their nominal type I error rates. The genotypic χ 2 and MAX statistics were more powerful when testing a strictly recessive genetic effect or when testing a dominant effect when the allele frequency was high. The Armitage test for multiplicative trend was most powerful for the broad range of scenarios where heterozygote risk is intermediate between recessive and dominant risk. Moreover, all tests had limited power to detect recessive genetic risk unless the sample size was large, and conversely all tests were relatively well powered to detect dominant risk. Taken together, these results suggest the general utility of the multiplicative trend test when the underlying genetic model is unknown.

  20. Spacecraft high-voltage power supply construction

    NASA Technical Reports Server (NTRS)

    Sutton, J. F.; Stern, J. E.

    1975-01-01

    The design techniques, circuit components, fabrication techniques, and past experience used in successful high-voltage power supplies for spacecraft flight systems are described. A discussion of the basic physics of electrical discharges in gases is included and a design rationale for the prevention of electrical discharges is provided. Also included are typical examples of proven spacecraft high-voltage power supplies with typical specifications for design, fabrication, and testing.

  1. NASA Lewis Stirling SPRE testing and analysis with reduced number of cooler tubes

    NASA Technical Reports Server (NTRS)

    Wong, Wayne A.; Cairelli, James E.; Swec, Diane M.; Doeberling, Thomas J.; Lakatos, Thomas F.; Madi, Frank J.

    1992-01-01

    Free-piston Stirling power converters are candidates for high capacity space power applications. The Space Power Research Engine (SPRE), a free-piston Stirling engine coupled with a linear alternator, is being tested at the NASA Lewis Research Center in support of the Civil Space Technology Initiative. The SPRE is used as a test bed for evaluating converter modifications which have the potential to improve the converter performance and for validating computer code predictions. Reducing the number of cooler tubes on the SPRE has been identified as a modification with the potential to significantly improve power and efficiency. Experimental tests designed to investigate the effects of reducing the number of cooler tubes on converter power, efficiency and dynamics are described. Presented are test results from the converter operating with a reduced number of cooler tubes and comparisons between this data and both baseline test data and computer code predictions.

  2. Power Hardware-in-the-Loop Testing of a Smart Distribution System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mendoza Carrillo, Ismael; Breaden, Craig; Medley, Paige

    This paper presents the results of the third and final phase of the National Renewable Energy Lab (NREL) INTEGRATE demonstration: Smart Distribution. For this demonstration, high penetrations of solar PV and wind energy systems were simulated in a power hardware-in-the-loop set-up using a smart distribution test feeder. Simulated and real DERs were controlled by a real-time control platform, which manages grid constraints under high clean energy deployment levels. The power HIL testing, conducted at NREL's ESIF smart power lab, demonstrated how dynamically managing DER increases the grid's hosting capacity by leveraging active network management's (ANM) safe and reliable control framework.more » Results are presented for how ANM's real-time monitoring, automation, and control can be used to manage multiple DERs and multiple constraints associated with high penetrations of DER on a distribution grid. The project also successfully demonstrated the importance of escalating control actions given how ANM enables operation of grid equipment closer to their actual physical limit in the presence of very high levels of intermittent DER.« less

  3. Novel high-frequency, high-power, pulsed oscillator based on a transmission line transformer.

    PubMed

    Burdt, R; Curry, R D

    2007-07-01

    Recent analysis and experiments have demonstrated the potential for transmission line transformers to be employed as compact, high-frequency, high-power, pulsed oscillators with variable rise time, high output impedance, and high operating efficiency. A prototype system was fabricated and tested that generates a damped sinusoidal wave form at a center frequency of 4 MHz into a 200 Omega load, with operating efficiency above 90% and peak power on the order of 10 MW. The initial rise time of the pulse is variable and two experiments were conducted to demonstrate initial rise times of 12 and 3 ns, corresponding to a spectral content from 4-30 and from 4-100 MHz, respectively. A SPICE model has been developed to accurately predict the circuit behavior and scaling laws have been identified to allow for circuit design at higher frequencies and higher peak power. The applications, circuit analysis, test stand, experimental results, circuit modeling, and design of future systems are all discussed.

  4. Tools and techniques for estimating high intensity RF effects

    NASA Astrophysics Data System (ADS)

    Zacharias, Richard L.; Pennock, Steve T.; Poggio, Andrew J.; Ray, Scott L.

    1992-01-01

    Tools and techniques for estimating and measuring coupling and component disturbance for avionics and electronic controls are described. A finite-difference-time-domain (FD-TD) modeling code, TSAR, used to predict coupling is described. This code can quickly generate a mesh model to represent the test object. Some recent applications as well as the advantages and limitations of using such a code are described. Facilities and techniques for making low-power coupling measurements and for making direct injection test measurements of device disturbance are also described. Some scaling laws for coupling and device effects are presented. A method for extrapolating these low-power test results to high-power full-system effects are presented.

  5. The final days of Solar Max - Lessons learned from engineering evaluation tests

    NASA Technical Reports Server (NTRS)

    Donnelly, Michael L.; Croft, John W.; Ward, David K.; Thames, Michael A.

    1990-01-01

    End-of-life engineering evaluation tests were performed on Solar Max between October and November 1989. The tests included four-wheel control law operation; reaction wheel rundowns; modular power subsystem standard power regulator unit voltage-temperature level tests; battery rundown/2nd plateau determination; high gain antenna retraction and jettison; and solar array jettison. This paper presents these tests, their results, and the lessons learned from them.

  6. Ten Year Operating Test Results and Post-Test Analysis of a 1/10 Segment Stirling Sodium Heat Pipe, Phase III

    NASA Technical Reports Server (NTRS)

    Rosenfeld, John, H; Minnerly, Kenneth, G; Dyson, Christopher, M.

    2012-01-01

    High-temperature heat pipes are being evaluated for use in energy conversion applications such as fuel cells, gas turbine re-combustors, Stirling cycle heat sources; and with the resurgence of space nuclear power both as reactor heat removal elements and as radiator elements. Long operating life and reliable performance are critical requirements for these applications. Accordingly, long-term materials compatibility is being evaluated through the use of high-temperature life test heat pipes. Thermacore, Inc., has carried out a sodium heat pipe 10-year life test to establish long-term operating reliability. Sodium heat pipes have demonstrated favorable materials compatibility and heat transport characteristics at high operating temperatures in air over long time periods. A representative one-tenth segment Stirling Space Power Converter heat pipe with an Inconel 718 envelope and a stainless steel screen wick has operated for over 87,000 hr (10 yr) at nearly 700 C. These life test results have demonstrated the potential for high-temperature heat pipes to serve as reliable energy conversion system components for power applications that require long operating lifetime with high reliability. Detailed design specifications, operating history, and post-test analysis of the heat pipe and sodium working fluid are described.

  7. Modeling a constant power load for nickel-hydrogen battery testing using SPICE

    NASA Technical Reports Server (NTRS)

    Bearden, Douglas B.; Lollar, Louis F.; Nelms, R. M.

    1990-01-01

    The effort to design and model a constant power load for the HST (Hubble Space Telescope) nickel-hydrogen battery tests is described. The constant power load was designed for three different simulations on the batteries: life cycling, reconditioning, and capacity testing. A dc-dc boost converter was designed to act as this constant power load. A boost converter design was chosen because of the low test battery voltage (4 to 6 VDC) generated and the relatively high power requirement of 60 to 70 W. The SPICE model was shown to consistently predict variations in the actual circuit as various designs were attempted. It is concluded that the confidence established in the SPICE model of the constant power load ensures its extensive utilization in future efforts to improve performance in the actual load circuit.

  8. Free-piston Stirling component test power converter

    NASA Technical Reports Server (NTRS)

    Dochat, George; Dhar, Manmohan

    1991-01-01

    The National Aeronautics and Space Administration (NASA) has been evaluating free-piston Stirling power converters (FPSPCs) for use on a wide variety of space missions. They provide high reliability, long life, and efficient operation and can be coupled with all potential heat sources, various heat input and heat rejection systems, and various power management and distribution systems. FPSPCs can compete favorably with alternative power conversion systems over a range of hundreds of watts to megawatts. Mechanical Technology Incorporated (MTI) is developing FPSPC technology under contract to NASA Lewis Research Center and will demonstrate this technology in two full-scale power converters operating at space temperature conditions. The testing of the first of these, the component test power converter (CTPC), was initiated in Spring 1991 to evaluate mechanical operation at space operating temperatures. The CTPC design, hardware fabrication, and initial test results are reviewed.

  9. Testing for association with multiple traits in generalized estimation equations, with application to neuroimaging data.

    PubMed

    Zhang, Yiwei; Xu, Zhiyuan; Shen, Xiaotong; Pan, Wei

    2014-08-01

    There is an increasing need to develop and apply powerful statistical tests to detect multiple traits-single locus associations, as arising from neuroimaging genetics and other studies. For example, in the Alzheimer's Disease Neuroimaging Initiative (ADNI), in addition to genome-wide single nucleotide polymorphisms (SNPs), thousands of neuroimaging and neuropsychological phenotypes as intermediate phenotypes for Alzheimer's disease, have been collected. Although some classic methods like MANOVA and newly proposed methods may be applied, they have their own limitations. For example, MANOVA cannot be applied to binary and other discrete traits. In addition, the relationships among these methods are not well understood. Importantly, since these tests are not data adaptive, depending on the unknown association patterns among multiple traits and between multiple traits and a locus, these tests may or may not be powerful. In this paper we propose a class of data-adaptive weights and the corresponding weighted tests in the general framework of generalized estimation equations (GEE). A highly adaptive test is proposed to select the most powerful one from this class of the weighted tests so that it can maintain high power across a wide range of situations. Our proposed tests are applicable to various types of traits with or without covariates. Importantly, we also analytically show relationships among some existing and our proposed tests, indicating that many existing tests are special cases of our proposed tests. Extensive simulation studies were conducted to compare and contrast the power properties of various existing and our new methods. Finally, we applied the methods to an ADNI dataset to illustrate the performance of the methods. We conclude with the recommendation for the use of the GEE-based Score test and our proposed adaptive test for their high and complementary performance. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Boeing's High Voltage Solar Tile Test Results

    NASA Astrophysics Data System (ADS)

    Reed, Brian J.; Harden, David E.; Ferguson, Dale C.; Snyder, David B.

    2002-10-01

    Real concerns of spacecraft charging and experience with solar array augmented electrostatic discharge arcs on spacecraft have minimized the use of high voltages on large solar arrays despite numerous vehicle system mass and efficiency advantages. Boeing's solar tile (patent pending) allows high voltage to be generated at the array without the mass and efficiency losses of electronic conversion. Direct drive electric propulsion and higher power payloads (lower spacecraft weight) will benefit from this design. As future power demand grows, spacecraft designers must use higher voltage to minimize transmission loss and power cable mass for very large area arrays. This paper will describe the design and discuss the successful test of Boeing's 500-Volt Solar Tile in NASA Glenn's Tenney chamber in the Space Plasma Interaction Facility. The work was sponsored by NASA's Space Solar Power Exploratory Research and Technology (SERT) Program and will result in updated high voltage solar array design guidelines being published.

  11. Boeing's High Voltage Solar Tile Test Results

    NASA Technical Reports Server (NTRS)

    Reed, Brian J.; Harden, David E.; Ferguson, Dale C.; Snyder, David B.

    2002-01-01

    Real concerns of spacecraft charging and experience with solar array augmented electrostatic discharge arcs on spacecraft have minimized the use of high voltages on large solar arrays despite numerous vehicle system mass and efficiency advantages. Boeing's solar tile (patent pending) allows high voltage to be generated at the array without the mass and efficiency losses of electronic conversion. Direct drive electric propulsion and higher power payloads (lower spacecraft weight) will benefit from this design. As future power demand grows, spacecraft designers must use higher voltage to minimize transmission loss and power cable mass for very large area arrays. This paper will describe the design and discuss the successful test of Boeing's 500-Volt Solar Tile in NASA Glenn's Tenney chamber in the Space Plasma Interaction Facility. The work was sponsored by NASA's Space Solar Power Exploratory Research and Technology (SERT) Program and will result in updated high voltage solar array design guidelines being published.

  12. Vibration Testing of Stirling Power Convertors

    NASA Technical Reports Server (NTRS)

    Hughes, Bill; Goodnight, Thomas; McNelis, Mark E.; Suarez, Vicente J.; Schreiber, Jeff; Samorezov, Sergey

    2003-01-01

    The NASA John H. Glenn Research Center (GRC) and the U.S. Department of Energy (DOE) are currently developing a high efficient, long life, free piston Stirling convertor for use as an advanced spacecraft power system for future NASA missions. As part of this development, a Stirling Technology Demonstrator Convertor (TDC), developed by Stirling Technology Company (STC) for DOE, was vibration tested at GRC s Structural Dynamics Laboratory (SDU7735) in November- December 1999. This testing demonstrated that the Stirling TDC is able to withstand the harsh random vibration (20 to 2000 Hertz) seen during a typical spacecraft launch and survive with no structural damage or functional power performance degradation, thereby enabling its usage in future spacecraft power systems. The Stirling Vibration Test Team at NASA GRC and STC personnel conducted tests on a single 55 electric watt TDC. The purpose was to characterize the TDC s structural response to vibration and determine if the TDC could survive the vibration criteria established by the Jet Propulsion Laboratory (JPL) for launch environments. The TDC was operated at full-stroke and full power conditions during the vibration testing. The TDC was tested in two orientations, with the direction of vibration parallel and perpendicular to the TDC s moving components (displacer and piston). The TDC successfully passed a series of sine and random vibration tests. The most severe test was a 12.3 Grms random vibration test (peak vibration level of 0.2 g2/Hz from 50 to 250 Hertz) with test durations of 3 minutes per axis. The random vibration test levels were chosen to simulate, with margin, the maximum anticipated launch vibration conditions. As a result of this very successful vibration testing and successful evaluations in other key technical readiness areas, the Stirling power system is now considered a viable technology for future application for NASA spacecraft missions. Possible usage of the Stirling power system would be to supply on- board electric spacecraft power for future NASA Deep-Space Missions, performing as an attractive alternative to Radioisotope Thermoelectric Generators (RTG). Usage of the Stirling technology is also being considered as the electric power source for future Mars rovers, whose mission profiles may exclude the use of photovoltaic power systems (such as exploring at high Martian latitudes or for missions of lengthy durations). GRC s Thermo-Mechanical Systems Branch (5490) provides Stirling technology expertise under a Space Act Agreement with the DOE. Additional vibration testing, by GRC s Structural Systems Dynamics Branch (7733, is planned to continue to demonstrate the Stirling power system s vibration capability as its technology and flight system designs progress.

  13. Performance Testing of a High Temperature Linear Alternator for Stirling Convertors

    NASA Technical Reports Server (NTRS)

    Metscher, Jonathan; Geng, Steven

    2016-01-01

    The NASA Glenn Research Center has conducted performance testing of a high temperature linear alternator (HTLA) in support of Stirling power convertor development for potential future Radioisotope Power Systems (RPS). The high temperature linear alternator is a modified version of that used in Sunpowers Advanced Stirling Convertor (ASC), and is capable of operation at temperatures up to 200 C. Increasing the temperature capability of the linear alternator could expand the mission space of future Stirling RPS designs. High temperature Neodymium-Iron-Boron (Nd-Fe-B) magnets were selected for the HTLA application, and were fully characterized and tested prior to uses. Higher temperature epoxy for alternator assembly was also selected and tested for thermal stability and strength. A characterization test was performed on the HTLA to measure its performance at various amplitudes, loads, and temperatures. HTLA endurance testing at 200 C is currently underway.

  14. Performance Testing of a High Temperature Linear Alternator for Stirling Convertors

    NASA Technical Reports Server (NTRS)

    Metscher, Jonathan F.; Geng, Steven M.

    2016-01-01

    The NASA Glenn Research Center has conducted performance testing of a high temperature linear alternator (HTLA) in support of Stirling power convertor development for potential future Radioisotope Power Systems (RPS). The high temperature linear alternator is a modified version of that used in Sunpower's Advanced Stirling Convertor (ASC), and is capable of operation at temperatures up to 200 deg. Increasing the temperature capability of the linear alternator could expand the mission set of future Stirling RPS designs. High temperature Neodymium-Iron-Boron (Nd-Fe-B) magnets were selected for the HTLA application, and were fully characterized and tested prior to use. Higher temperature epoxy for alternator assembly was also selected and tested for thermal stability and strength. A characterization test was performed on the HTLA to measure its performance at various amplitudes, loads, and temperatures. HTLA endurance testing at 200 deg is currently underway.

  15. Evaluation of a multi-Kw, high frequency transformer for space applications

    NASA Astrophysics Data System (ADS)

    Roth, Mary Ellen

    1994-08-01

    Various NASA studies have shown that high power (multi-kW and higher) electrical systems for various aerospace applications favor high frequency distribution systems, due to the improved safety and weight factors associated with those systems. Other favorable characteristics include low EMI, minimal wiring and ease of system parameter sensing and control of a single phase system. In aerospace power systems, as in terrestrial AC distribution systems, transformers are needed to provide voltage changes, isolation and the resetting of ground. Under NASA contract NAS3-21948 a multi-kW high frequency transformer was designed, fabricated and tested by Thermal Technology Lab, Inc. of Buffalo, New York. 'The goals of this program included the determination of the relationships between transformer weight, efficiency and operating frequency; low internal temperatures and reduced specific weight; and the validation of these new design concepts through experimentation and the fabrication and testing of transformers and their insulation systems.' The transformer was delivered to NASA-Lewis, where an evaluation program was conducted in Lewis' High Power High Frequency Component Test Facility. The transformer was tested in both atmosphere and under vacuum conditions. This paper will discuss the design of the transformer, the evaluation program and test results, the failures experienced and conclusions.

  16. Evaluation of a Multi-kw, High Frequency Transformer for Space Applications

    NASA Technical Reports Server (NTRS)

    Roth, Mary Ellen

    1994-01-01

    Various NASA studies have shown that high power (multi-kW and higher) electrical systems for various aerospace applications favor high frequency distribution systems, due to the improved safety and weight factors associated with those systems. Other favorable characteristics include low EMI, minimal wiring and ease of system parameter sensing and control of a single phase system. In aerospace power systems, as in terrestrial AC distribution systems, transformers are needed to provide voltage changes, isolation and the resetting of ground. Under NASA contract NAS3-21948 a multi-kW high frequency transformer was designed, fabricated and tested by Thermal Technology Lab, Inc. of Buffalo, New York. 'The goals of this program included the determination of the relationships between transformer weight, efficiency and operating frequency; low internal temperatures and reduced specific weight; and the validation of these new design concepts through experimentation and the fabrication and testing of transformers and their insulation systems.' The transformer was delivered to NASA-Lewis, where an evaluation program was conducted in Lewis' High Power High Frequency Component Test Facility. The transformer was tested in both atmosphere and under vacuum conditions. This paper will discuss the design of the transformer, the evaluation program and test results, the failures experienced and conclusions.

  17. Lumen degradation and chromaticity shift in glass and silicone based high-power phosphor-converted white-emitting diodes under thermal tests

    NASA Astrophysics Data System (ADS)

    Cheng, Wood-Hi; Tsai, Chun-Chin; Wang, Jimmy

    2011-10-01

    The lumen degradation and chromaticity shift in glass and silicone based high-power phosphor-converted white-emitting diodes (PC-WLEDs) under accelerated thermal tests at 150°C, 200°C, and 250°C are presented and compared. The glass based PC-WLEDs exhibited better thermal stability than the silicone by 4.8 time reductions in lumen loss 6.8 time reductions in chromaticity shift at 250°C, respectively. The mean-time-to-failure (MTTF) evaluation of glass and silicone based high-power PC-WLEDs in accelerated thermal tests is also presented and compared. The results showed that the glass based PC-WLEDs exhibited higher MTTF than the silicone by 7.53 times in lumen loss and 14.4 times in chromaticity shift at 250°C, respectively. The thermal performance of lumen, chromaticity, and MTTF investigations demonstrated that the thermal stability of the glass based PC-WLEDs were better than the silicone. A better thermal stability phosphor layer of glass as encapsulation material may be beneficial to the many applications where the LED modules with high power and high reliability are demanded.

  18. Development status of the heatpipe power and bimodal systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poston, David I.; Houts, Michael G.

    1999-01-01

    Space fission power systems can potentially enhance or enable ambitious lunar and Martian surface missions. Research into space fission power systems has been ongoing (at various levels) since the 1950s, but to date the United States (US) has flown only one space fission system, SNAP-10A, in 1965. Cost and development time have been significant reasons why space fission systems have not been used by the US. High cost and long development time are not inherent to the use of space fission power. However, high cost and long development time are inherent to any program that tries to do too muchmore » at once. Nearly all US space fission power programs have attempted to field systems capable of high power, even though more modest systems had not yet been flown. All of these programs have failed to fly a space fission system. Relatively low power (10 to 100 kWe) fission systems may be useful for near-term lunar and Martian surface missions, including missions in which in situ resource utilization is a priority. Such systems may also be useful for deep-space science missions and other missions. These systems can be significantly less expensive to develop than high power systems. Experience gained in the development of low-power space fission systems can then be used to enable cost-effective development of high-power ({gt}1000 kWe) fission systems. The Heatpipe Power System (HPS) is a potential, near-term, low-cost space fission power system. The Heatpipe Bimodal System (HBS) is a potential, near-term, low-cost space fission power and/or propulsion system. Both systems will be composed of independent modules, and all components use existing technology and operate within the existing database. The HPS and HBS have relatively few system integration issues; thus, the successful development of a module is a significant step toward verifying system feasibility and performance estimates. A prototypic HPS module was fabricated, and initial testing was completed in April 1997. All test objectives were accomplished, demonstrating the basic feasibility of the HPS. Fabrication of an HBS module is under way, and testing should begin in 1999. {copyright} {ital 1999 American Institute of Physics.}« less

  19. Development status of the heatpipe power and bimodal systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poston, David I.; Houts, Michael G.; Emrich, William J. Jr.

    1999-01-22

    Space fission power systems can potentially enhance or enable ambitious lunar and Martian surface missions. Research into space fission power systems has been ongoing (at various levels) since the 1950s, but to date the United States (US) has flown only one space fission system, SNAP-10A, in 1965. Cost and development time have been significant reasons why space fission systems have not been used by the US. High cost and long development time are not inherent to the use of space fission power. However, high cost and long development time are inherent to any program that tries to do too muchmore » at once. Nearly all US space fission power programs have attempted to field systems capable of high power, even though more modest systems had not yet been flown. All of these programs have failed to fly a space fission system. Relatively low power (10 to 100 kWe) fission systems may be useful for near-term lunar and Martian surface missions, including missions in which in situ resource utilization is a priority. Such systems may also be useful for deep-space science missions and other missions. These systems can be significantly less expensive to develop than high power systems. Experience gained in the development of low-power space fission systems can then be used to enable cost-effective development of high-power (>1000 kWe) fission systems. The Heatpipe Power System (HPS) is a potential, near-term, low-cost space fission power system. The Heatpipe Bimodal System (HBS) is a potential, near-term, low-cost space fission power and/or propulsion system. Both systems will be composed of independent modules, and all components use existing technology and operate within the existing database. The HPS and HBS have relatively few system integration issues; thus, the successful development of a module is a significant step toward verifying system feasibility and performance estimates. A prototypic HPS module was fabricated, and initial testing was completed in April 1997. All test objectives were accomplished, demonstrating the basic feasibility of the HPS. Fabrication of an HBS module is under way, and testing should begin in 1999.« less

  20. Development status of the heatpipe power and bimodal systems

    NASA Astrophysics Data System (ADS)

    Poston, David I.; Houts, Michael G.; Emrich, William J.

    1999-01-01

    Space fission power systems can potentially enhance or enable ambitious lunar and Martian surface missions. Research into space fission power systems has been ongoing (at various levels) since the 1950s, but to date the United States (US) has flown only one space fission system, SNAP-10A, in 1965. Cost and development time have been significant reasons why space fission systems have not been used by the US. High cost and long development time are not inherent to the use of space fission power. However, high cost and long development time are inherent to any program that tries to do too much at once. Nearly all US space fission power programs have attempted to field systems capable of high power, even though more modest systems had not yet been flown. All of these programs have failed to fly a space fission system. Relatively low power (10 to 100 kWe) fission systems may be useful for near-term lunar and Martian surface missions, including missions in which in situ resource utilization is a priority. Such systems may also be useful for deep-space science missions and other missions. These systems can be significantly less expensive to develop than high power systems. Experience gained in the development of low-power space fission systems can then be used to enable cost-effective development of high-power (>1000 kWe) fission systems. The Heatpipe Power System (HPS) is a potential, near-term, low-cost space fission power system. The Heatpipe Bimodal System (HBS) is a potential, near-term, low-cost space fission power and/or propulsion system. Both systems will be composed of independent modules, and all components use existing technology and operate within the existing database. The HPS and HBS have relatively few system integration issues; thus, the successful development of a module is a significant step toward verifying system feasibility and performance estimates. A prototypic HPS module was fabricated, and initial testing was completed in April 1997. All test objectives were accomplished, demonstrating the basic feasibility of the HPS. Fabrication of an HBS module is under way, and testing should begin in 1999.

  1. High-Power Hall Thruster Technology Evaluated for Primary Propulsion Applications

    NASA Technical Reports Server (NTRS)

    Manzella, David H.; Jankovsky, Robert S.; Hofer, Richard R.

    2003-01-01

    High-power electric propulsion systems have been shown to be enabling for a number of NASA concepts, including piloted missions to Mars and Earth-orbiting solar electric power generation for terrestrial use (refs. 1 and 2). These types of missions require moderate transfer times and sizable thrust levels, resulting in an optimized propulsion system with greater specific impulse than conventional chemical systems and greater thrust than ion thruster systems. Hall thruster technology will offer a favorable combination of performance, reliability, and lifetime for such applications if input power can be scaled by more than an order of magnitude from the kilowatt level of the current state-of-the-art systems. As a result, the NASA Glenn Research Center conducted strategic technology research and development into high-power Hall thruster technology. During program year 2002, an in-house fabricated thruster, designated the NASA-457M, was experimentally evaluated at input powers up to 72 kW. These tests demonstrated the efficacy of scaling Hall thrusters to high power suitable for a range of future missions. Thrust up to nearly 3 N was measured. Discharge specific impulses ranged from 1750 to 3250 sec, with discharge efficiencies between 46 and 65 percent. This thruster is the highest power, highest thrust Hall thruster ever tested.

  2. First observations of power MOSFET burnout with high energy neutrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oberg, D.L.; Wert, J.L.; Normand, E.

    Single event burnout was seen in power MOSFETs exposed to high energy neutrons. Devices with rated voltage {ge}400 volts exhibited burnout at substantially less than the rated voltage. Tests with high energy protons gave similar results. Burnout was also seen in limited tests with lower energy protons and neutrons. Correlations with heavy-ion data are discussed. Accelerator proton data gave favorable comparisons with burnout rates measured on the APEX spacecraft. Implications for burnout at lower altitudes are also discussed.

  3. Simulation, design, and testing of a high power collimator for the RDS-112 cyclotron.

    PubMed

    Peeples, Johanna L; Stokely, Matthew H; Poorman, Michael C; Bida, Gerald T; Wieland, Bruce W

    2015-03-01

    A high power [F-18] fluoride target package for the RDS-112 cyclotron has been designed, tested, and commercially deployed. The upgrade includes the CF-1000 target, a 1.3kW water target with an established commercial history on RDS-111/Eclipse cyclotrons, and a redesigned collimator with improved heat rejection capabilities. Conjugate heat transfer analyses were employed to both evaluate the existing collimator capabilities and design a suitable high current replacement. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. First observations of power MOSFET burnout with high energy neutrons

    NASA Astrophysics Data System (ADS)

    Oberg, D. L.; Wert, J. L.; Normand, E.; Majewski, P. P.; Wender, S. A.

    1996-12-01

    Single event burnout was seen in power MOSFETs exposed to high energy neutrons. Devices with rated voltage /spl ges/400 volts exhibited burnout at substantially less than the rated voltage. Tests with high energy protons gave similar results. Burnout was also seen in limited tests with lower energy protons and neutrons. Correlations with heavy-ion data are discussed. Accelerator proton data gave favorable comparisons with burnout rates measured on the APEX spacecraft. Implications for burnout at lower altitudes are also discussed.

  5. Variable frequency microwave heating apparatus

    DOEpatents

    Bible, Don W.; Lauf, Robert J.; Johnson, Arvid C.; Thigpen, Larry T.

    1999-01-01

    A variable frequency microwave heating apparatus (10) designed to allow modulation of the frequency of the microwaves introduced into a multi-mode microwave cavity (34) for testing or other selected applications. The variable frequency microwave heating apparatus (10) includes a microwave signal generator (12) and a high-power microwave amplifier (20) or a high-power microwave oscillator (14). A power supply (22) is provided for operation of the high-power microwave oscillator (14) or microwave amplifier (20). A directional coupler (24) is provided for detecting the direction and amplitude of signals incident upon and reflected from the microwave cavity (34). A first power meter (30) is provided for measuring the power delivered to the microwave furnace (32). A second power meter (26) detects the magnitude of reflected power. Reflected power is dissipated in the reflected power load (28).

  6. Feasibility of making sound power measurements in the NASA Langley V/STOL tunnel test section

    NASA Technical Reports Server (NTRS)

    Brooks, T. F.; Scheiman, J.; Silcox, R. J.

    1976-01-01

    Based on exploratory acoustic measurements in Langley's V/STOL wind tunnel, recommendations are made on the methodology for making sound power measurements of aircraft components in the closed tunnel test section. During airflow, tunnel self-noise and microphone flow-induced noise place restrictions on the amplitude and spectrum of the sound source to be measured. Models of aircraft components with high sound level sources, such as thrust engines and powered lift systems, seem likely candidates for acoustic testing.

  7. High Speed Prototype Car Test

    NASA Image and Video Library

    2014-01-10

    CAPE CANAVERAL, Fla. - An engineer readies a Hennessey Venom GT for test runs on the 3.5-mile long runway at the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. The flat concrete runway is one of the few places in the world where high performance automobiles can be tested for aerodynamic and safety designs. Hennessey Performance of Sealy, Texas, worked with Performance Power Racing in West Palm Beach to arrange use of the NASA facility. Performance Power Racing has conducted numerous engineering tests on the runway with a variety of vehicles. Photo credit: NASA/Kim Shiflett

  8. High Speed Prototype Car Test

    NASA Image and Video Library

    2014-01-10

    CAPE CANAVERAL, Fla. - Mechanics, engineers and Driver Brian Smith, in jumpsuit, ready a Hennessey Venom GT for test runs on the 3.5-mile long runway at the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. The flat concrete runway is one of the few places in the world where high performance automobiles can be tested for aerodynamic and safety designs. Hennessey Performance of Sealy, Texas, worked with Performance Power Racing in West Palm Beach to arrange use of the NASA facility. Performance Power Racing has conducted numerous engineering tests on the runway with a variety of vehicles. Photo credit: NASA/Kim Shiflett

  9. High Speed Prototype Car Test

    NASA Image and Video Library

    2014-01-10

    CAPE CANAVERAL, Fla. - Mechanics and engineers ready a Hennessey Venom GT for test runs on the 3.5-mile long runway at the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. The flat concrete runway is one of the few places in the world where high performance automobiles can be tested for aerodynamic and safety designs. Hennessey Performance of Sealy, Texas, worked with Performance Power Racing in West Palm Beach to arrange use of the NASA facility. Performance Power Racing has conducted numerous engineering tests on the runway with a variety of vehicles. Photo credit: NASA/Kim Shiflett

  10. Development and performance test of a new high power RF window in S-band PLS-II LINAC

    NASA Astrophysics Data System (ADS)

    Hwang, Woon-Ha; Joo, Young-Do; Kim, Seung-Hwan; Choi, Jae-Young; Noh, Sung-Ju; Ryu, Ji-Wan; Cho, Young-Ki

    2017-12-01

    A prototype of RF window was developed in collaboration with the Pohang Accelerator Laboratory (PAL) and domestic companies. High power performance tests of the single RF window were conducted at PAL to verify the operational characteristics for its application in the Pohang Light Source-II (PLS-II) linear accelerator (Linac). The tests were performed in the in-situ facility consisting of a modulator, klystron, waveguide network, vacuum system, cooling system, and RF analyzing equipment. The test results with Stanford linear accelerator energy doubler (SLED) have shown no breakdown up to 75 MW peak power with 4.5 μs RF pulse width at a repetition rate of 10 Hz. The test results with the current operation level of PLS-II Linac confirm that the RF window well satisfies the criteria for PLS-II Linac operation.

  11. SPERT Destructive Test - I on Aluminum, Highly Enriched Plate Type Core

    ScienceCinema

    None

    2018-01-16

    SPERT - Special Power Excursion Reactor Tests Destructive Test number 1 On Aluminum, Highly Enriched Plate Type Core. A test studying the behavior of the reactor under destructive conditions on a light water moderated pool-type reactor with a plate-type core.

  12. Advanced Thermal Simulator Testing: Thermal Analysis and Test Results

    NASA Technical Reports Server (NTRS)

    Bragg-Sitton, Shannon M.; Dickens, Ricky; Dixon, David; Reid, Robert; Adams, Mike; Davis, Joe

    2008-01-01

    Work at the NASA Marshall Space Flight Center seeks to develop high fidelity, electrically heated thermal simulators that represent fuel elements in a nuclear reactor design to support non-nuclear testing applicable to the development of a space nuclear power or propulsion system. Comparison between the fuel pins and thermal simulators is made at the outer fuel clad surface, which corresponds to the outer sheath surface in the thermal simulator. The thermal simulators that are currently being tested correspond to a SNAP derivative reactor design that could be applied for Lunar surface power. These simulators are designed to meet the geometric and power requirements of a proposed surface power reactor design, accommodate testing of various axial power profiles, and incorporate imbedded instrumentation. This paper reports the results of thermal simulator analysis and testing in a bare element configuration, which does not incorporate active heat removal, and testing in a water-cooled calorimeter designed to mimic the heat removal that would be experienced in a reactor core.

  13. Conceptual definition of a high voltage power supply test facility

    NASA Technical Reports Server (NTRS)

    Biess, John J.; Chu, Teh-Ming; Stevens, N. John

    1989-01-01

    NASA Lewis Research Center is presently developing a 60 GHz traveling wave tube for satellite cross-link communications. The operating voltage for this new tube is - 20 kV. There is concern about the high voltage insulation system and NASA is planning a space station high voltage experiment that will demonstrate both the 60 GHz communications and high voltage electronics technology. The experiment interfaces, requirements, conceptual design, technology issues and safety issues are determined. A block diagram of the high voltage power supply test facility was generated. It includes the high voltage power supply, the 60 GHz traveling wave tube, the communications package, the antenna package, a high voltage diagnostics package and a command and data processor system. The interfaces with the space station and the attached payload accommodations equipment were determined. A brief description of the different subsystems and a discussion of the technology development needs are presented.

  14. Advanced 35 W Free-Piston Stirling Engine for Space Power Applications

    NASA Astrophysics Data System (ADS)

    Wood, J. Gary; Lane, Neill

    2003-01-01

    This paper presents the projected performance and overall design characteristics of a high efficiency, low mass 35 W free-piston Stirling engine design. Overall (engine plus linear alternator) thermodynamic performance greater than 50% of Carnot, with a specific power close to 100 W/kg appears to be a reasonable goal at this small power level. Supporting test data and analysis results from exiting engines are presented. Design implications of high specific power in relatively low power engines is presented and discussed.

  15. Design and Development of High Voltage Direct Current (DC) Sources for the Solar Array Module Plasma Interaction Experiment

    NASA Technical Reports Server (NTRS)

    Bibyk, Irene K.; Wald, Lawrence W.

    1995-01-01

    Two programmable, high voltage DC power supplies were developed as part of the flight electronics for the Solar Array Module Plasma Interaction Experiment (SAMPIE). SAMPIE's primary objectives were to study and characterize the high voltage arcing and parasitic current losses of various solar cells and metal samples within the space plasma of low earth orbit (LEO). High voltage arcing can cause large discontinuous changes in spacecraft potential which lead to damage of the power system materials and significant Electromagnetic Interference (EMI). Parasitic currents cause a change in floating potential which lead to reduced power efficiency. These primary SAMPIE objectives were accomplished by applying artificial biases across test samples over a voltage range from -600 VDC to +300 VDC. This paper chronicles the design, final development, and test of the two programmable high voltage sources for SAMPIE. The technical challenges to the design for these power supplies included vacuum, space plasma effects, thermal protection, Shuttle vibrations and accelerations.

  16. Effects of lower extremity injuries on aerobic exercise capacity, anaerobic power, and knee isokinetic muscular function in high school soccer players.

    PubMed

    Ko, Kwang-Jun; Ha, Gi-Chul; Kim, Dong-Woo; Kang, Seol-Jung

    2017-10-01

    [Purpose] The study investigated the effects of lower extremity injuries on aerobic exercise capacity, anaerobic power, and knee isokinetic muscular function in high school soccer players. [Subjects and Methods] The study assessed U High School soccer players (n=40) in S area, South Korea, divided into 2 groups: a lower extremity injury group (n=16) comprising those with knee and ankle injuries and a control group (n=24) without injury. Aerobic exercise capacity, anaerobic power, and knee isokinetic muscular function were compared and analyzed. [Results] Regarding the aerobic exercise capacity test, significant differences were observed in maximal oxygen uptake and anaerobic threshold between both groups. For the anaerobic power test, no significant difference was observed in peak power and average power between the groups; however, a significant difference in fatigue index was noted. Regarding the knee isokinetic muscular test, no significant difference was noted in knee flexion, extension, and flexion/extension ratio between both groups. [Conclusion] Lower extremity injury was associated with reduced aerobic exercise capacity and a higher fatigue index with respect to anaerobic exercise capacity. Therefore, it seems necessary to establish post-injury training programs that improve aerobic and anaerobic exercise capacity for soccer players who experience lower extremity injury.

  17. High-Stakes Educational Testing and Democracy--Antagonistic or Symbiotic Relationship?

    ERIC Educational Resources Information Center

    Ydesen, Christian

    2014-01-01

    This article argues that high-stakes educational testing, along with the attendant questions of power, education access, education management and social selection, cannot be considered in isolation from society at large. Thus, high-stakes testing practices bear numerous implications for democratic conditions in society. For decades, advocates of…

  18. Modular, high power, variable R dynamic electrical load simulator

    NASA Technical Reports Server (NTRS)

    Joncas, K. P.

    1974-01-01

    The design of a previously developed basic variable R load simulator was entended to increase its power dissipation and transient handling capabilities. The delivered units satisfy all design requirements, and provides for a high power, modular simulation capability uniquely suited to the simulation of complex load responses. In addition to presenting conclusions and recommendations and pertinent background information, the report covers program accomplishments; describes the simulator basic circuits, transfer characteristic, protective features, assembly, and specifications; indicates the results of simulator evaluation, including burn-in and acceptance testing; provides acceptance test data; and summarizes the monthly progress reports.

  19. Application of low-power, high-rate PCM telemetry in a helicopter instrumentation system

    NASA Technical Reports Server (NTRS)

    Thomas, Mitchel E.; Diamond, John K.

    1987-01-01

    The use of low-power, high-rate pulse code modulation (PCM) in a helicopter instrumentation system is examined. A Helicopter Instrumentation and Recording System (HIARS) was developed to obtain main rotor blade measurements and fuselage performance measurements. The HIARS consists of a low-power PCM telemeter, a digital PCM system, an optical rotor position sensor, and a PCM decommutation unit; the components and functions of these subsystems are described. Flight tests were conducted to evaluate the ability of the HIARS to measure aircraft parameters. The test data reveal that the PCM telemetry is applicable to helicopter instrumentation systems.

  20. Kansas squat test: a reliable indicator of short-term anaerobic power.

    PubMed

    Fry, Andrew C; Kudrna, Rebecca A; Falvo, Michael J; Bloomer, Richard J; Moore, Christopher A; Schilling, Brian K; Weiss, Lawrence W

    2014-03-01

    The purposes of this study were to establish stability reliability of a measure of lower-body anaerobic power, the Kansas squat test (KST), and to compare the KST with the commonly used Wingate anaerobic test (WAnT) for lower-body power. Fourteen resistance-trained men (mean ± SD; age = 24.2 ± 3.6 years) performed both the KST and the WAnT twice on separate occasions. The KST consisted of using an external dynamometer to measure mean repetition power while performing 15 repetitions of speed squats using 70% of 1 repetition maximum system mass (barbell + body mass), initiating each repetition at 6-second intervals. Repetition power, mean power for all 15 repetitions, and % fatigue for the KST were all reliable (intraclass correlation coefficient = 0.754-0.937; p ≤ 0.05). There were no differences between tests for the mean power for all repetitions or relative fatigue (p ≤ 0.05) and no significant differences between tests for any individual repetition (test × repetition interaction, p < 0.05). Although absolute values were different (p > 0.05), significant correlations were found between the KST and WAnT for mean (r = 0.752) and maximum (r = 0.775) test powers but not for relative fatigue (r = 0.174). Lactate (HLa) responses were greater for the WAnT compared with the KST. These data indicate that the KST is reliable for resistance-trained men, and that measures of maximum and mean test powers for the KST are highly correlated to those values for the WAnT, but fatigue rates and HLa responses were not correlated. It appears that the KST is a lifting-specific anaerobic power and power endurance test that emphasizes phosphagen metabolism and may be used to assess training-induced changes in lower-body power.

  1. Update on results of SPRE testing at NASA Lewis

    NASA Technical Reports Server (NTRS)

    Cairelli, James E.; Swec, Diane M.; Wong, Wayne A.; Doeberling, Thomas J.; Madi, Frank J.

    1991-01-01

    The Space Power Research Engine (SPRE), a free-piston Stirling engine with a linear alternator, is being tested at NASA Lewis Research Center as part of the Civilian Space Technology Initiative (CSTI) as a candidate for high capacity space power. Results are presented from recent SPRE tests designed to investigated the effects of variation in the displacer seal clearance and piston centering port area on engine performance and dynamics. The impact of these variations on PV power and efficiency are presented. Comparisons of the displacer seal clearance tests results with HFAST code predictions show good agreement for PV power, but show poor agreement for PV efficiency. Correlations are presented relating the piston midstroke position to the dynamic Delta P across the piston and the centering port area. Test results indicate that a modest improvement in PV power and efficiency may be realized with a reduction in piston centering port area.

  2. Update on results of SPRE testing at NASA Lewis

    NASA Technical Reports Server (NTRS)

    Cairelli, James E.; Swec, Diane M.; Wong, Wayne A.; Doeberling, Thomas J.; Madi, Frank J.

    1991-01-01

    The Space Power Research Engine (SPRE), a free-piston Stirling engine with a linear alternator, is being tested at NASA Lewis Research Center as part of the Civilian Space Technology Initiative (CSTI) as a candidate for high capacity space power. Results are presented from recent SPRE tests designed to investigate the effects of variation in the displacer seal clearance and piston centering port area on engine performance and dynamics. The effects of these variations on PV power and efficiency are presented. Comparisons of the displacer seal clearance test results with HFAST code predictions show good agreement for PV power but poor agreement for PV efficiency. Correlations are presented relating the piston mid-stroke position to the dynamic Delta P across the piston and the centering port area. Test results indicate that a modest improvement in PV power and efficiency may be realized with a reduction in piston centering port area.

  3. Development of high-average-power DPSSL with high beam quality

    NASA Astrophysics Data System (ADS)

    Nakai, Sadao; Kanabe, Tadashi; Kawashima, Toshiyuki; Yamanaka, Masanobu; Izawa, Yasukazu; Nakatuka, Masahiro; Kandasamy, Ranganathan; Kan, Hirofumi; Hiruma, Teruo; Niino, Masayuki

    2000-08-01

    The recent progress of high power diode laser is opening new fields of laser and its application. We are developing high average power diode pumped solid state laser DPSSL for laser fusion power plant, for space propulsion and for various applications in industry. The common features or requirements of our High Average-power Laser for Nuclear-fusion Application (HALNA) are large pulse energy with relatively low repetition of few tens Hz, good beam quality of order of diffraction limit and high efficiency more than 10%. We constructed HALNA 10 (10J X 10 Hz) and tested the performance to clarify the scalability to higher power system. We have obtained in a preliminary experiment a 8.5 J output energy at 0.5 Hz with beam quality of 2 times diffraction limited far-field pattern.

  4. The ac power system testbed

    NASA Technical Reports Server (NTRS)

    Mildice, J.; Sundberg, R.

    1987-01-01

    The object of this program was to design, build, test, and deliver a high frequency (20 kHz) Power System Testbed which would electrically approximate a single, separable power channel of an IOC Space Station. That program is described, including the technical background, and the results are discussed showing that the major assumptions about the characteristics of this class of hardware (size, mass, efficiency, control, etc.) were substantially correct. This testbed equipment was completed and delivered and is being operated as part of the Space Station Power System Test Facility.

  5. Investigation of the Semicoa 2N7616 and 2N7425 and the Microsemi 2N7480 for Single-Event Gate Rupture and Single-Event Burnout

    NASA Technical Reports Server (NTRS)

    Scheick, Leif

    2014-01-01

    Single-event-effect test results for hi-rel total-dose-hardened power MOSFETs are presented in this report. The 2N7616 and the 2N7425 from Semicoa and the 2N7480 from International Rectifier were tested to NASA test condition standards and requirements. The 2N7480 performed well and the data agree with the manufacture's data. The 2N7616 and 2N7425 were entry parts from Semicoa using a new device architecture. Unfortunately, the device performed poorly and Semicoa is withdrawing power MOSFETs from it line due to these data. Vertical metal-oxide-semiconductor field-effect transistors (MOSFETs) are the most commonly used power transistor. MOSFETs are typically employed in power supplies and high current switching applications. Due to the inherent high electric fields in the device, power MOSFETs are sensitive to heavy ion irradiation and can fail catastrophically as a result of single-event gate rupture (SEGR) or single-event burnout (SEB). Manufacturers have designed radiation-hardened power MOSFETs for space applications. See [1] through [5] for more information. The objective of this effort was to investigate the SEGR and SEB responses of two power MOSFETs recently produced. These tests will serve as a limited verification of these parts. It is acknowledged that further testing on the respective parts may be needed for some mission profiles.

  6. High reliability level on single-mode 980nm-1060 nm diode lasers for telecommunication and industrial applications

    NASA Astrophysics Data System (ADS)

    Van de Casteele, J.; Bettiati, M.; Laruelle, F.; Cargemel, V.; Pagnod-Rossiaux, P.; Garabedian, P.; Raymond, L.; Laffitte, D.; Fromy, S.; Chambonnet, D.; Hirtz, J. P.

    2008-02-01

    We demonstrate very high reliability level on 980-1060nm high-power single-mode lasers through multi-cell tests. First, we show how our chip design and technology enables high reliability levels. Then, we aged 758 devices during 9500 hours among 6 cells with high current (0.8A-1.2A) and high submount temperature (65°C-105°C) for the reliability demonstration. Sudden catastrophic failure is the main degradation mechanism observed. A statistical failure rate model gives an Arrhenius thermal activation energy of 0.51eV and a power law forward current acceleration factor of 5.9. For high-power submarine applications (360mW pump module output optical power), this model exhibits a failure rate as low as 9 FIT at 13°C, while ultra-high power terrestrial modules (600mW) lie below 220 FIT at 25°C. Wear-out phenomena is observed only for very high current level without any reliability impact under 1.1A. For the 1060nm chip, step-stress tests were performed and a set of devices were aged during more than 2000 hours in different stress conditions. First results are in accordance with 980nm product with more than 100khours estimated MTTF. These reliability and performance features of 980-1060nm laser diodes will make high-power single-mode emitters the best choice for a number of telecommunication and industrial applications in the next few years.

  7. Testing in Support of Fission Surface Power System Qualification

    NASA Technical Reports Server (NTRS)

    Houts, Mike; Bragg-Sitton, Shannon; Godfroy, Tom; Martin, Jim; Pearson, Boise; VanDyke, Melissa

    2007-01-01

    The strategy for qualifying a FSP system could have a significant programmatic impact. The US has not qualified a space fission power system since launch of the SNAP-10A in 1965. This paper explores cost-effective options for obtaining data that would be needed for flight qualification of a fission system. Qualification data could be obtained from both nuclear and non-nuclear testing. The ability to perform highly realistic nonnuclear testing has advanced significantly throughout the past four decades. Instrumented thermal simulators were developed during the 1970s and 1980s to assist in the development, operation, and assessment of terrestrial fission systems. Instrumented thermal simulators optimized for assisting in the development, operation, and assessment of modern FSP systems have been under development (and utilized) since 1998. These thermal simulators enable heat from fission to be closely mimicked (axial power profile, radial power profile, temperature, heat flux, etc.) and extensive data to be taken from the core region. For transient testing, pin power during a transient is calculated based on the reactivity feedback that would occur given measured values of test article temperature and/or dimensional changes. The reactivity feedback coefficients needed for the test are either calculated or measured using cold/warm zero-power criticals. In this way non-nuclear testing can be used to provide very realistic information related to nuclear operation. Non-nuclear testing can be used at all levels, including component, subsystem, and integrated system testing. FSP fuels and materials are typically chosen to ensure very high confidence in operation at design burnups, fluences, and temperatures. However, facilities exist (e.g. ATR, HFIR) for affordably performing in-pile fuel and materials irradiations, if such testing is desired. Ex-core materials and components (such as alternator materials, control drum drives, etc.) could be irradiated in university or DOE reactors to ensure adequate radiation resistance. Facilities also exist for performing warm and cold zero-power criticals.

  8. Recent developments in high average power driver technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prestwich, K.R.; Buttram, M.T.; Rohwein, G.J>

    1979-01-01

    Inertial confinement fusion (ICF) reactors will require driver systems operating with tens to hundreds of megawatts of average power. The pulse power technology that will be required to build such drivers is in a primitive state of development. Recent developments in repetitive pulse power are discussed. A high-voltage transformer has been developed and operated at 3 MV in a single pulse experiment and is being tested at 1.5 MV, 5 kj and 10 pps. A low-loss, 1 MV, 10 kj, 10 pps Marx generator is being tested. Test results from gas-dynamic spark gaps that operate both in the 100 kVmore » and 700 kV range are reported. A 250 kV, 1.5 kA/cm/sup 2/, 30 ns electron beam diode has operated stably for 1.6 x 10/sup 5/ pulses.« less

  9. First On-Wafer Power Characterization of MMIC Amplifiers at Sub-Millimeter Wave Frequencies

    NASA Technical Reports Server (NTRS)

    Fung, A. K.; Gaier, T.; Samoska, L.; Deal, W. R.; Radisic, V.; Mei, X. B.; Yoshida, W.; Liu, P. S.; Uyeda, J.; Barsky, M.; hide

    2008-01-01

    Recent developments in semiconductor technology have enabled advanced submillimeter wave (300 GHz) transistors and circuits. These new high speed components have required new test methods to be developed for characterizing performance, and to provide data for device modeling to improve designs. Current efforts in progressing high frequency testing have resulted in on-wafer-parameter measurements up to approximately 340 GHz and swept frequency vector network analyzer waveguide measurements to 508 GHz. On-wafer noise figure measurements in the 270-340 GHz band have been demonstrated. In this letter we report on on-wafer power measurements at 330 GHz of a three stage amplifier that resulted in a maximum measured output power of 1.78mW and maximum gain of 7.1 dB. The method utilized demonstrates the extension of traditional power measurement techniques to submillimeter wave frequencies, and is suitable for automated testing without packaging for production screening of submillimeter wave circuits.

  10. Low-Rank Coal Grinding Performance Versus Power Plant Performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rajive Ganguli; Sukumar Bandopadhyay

    2008-12-31

    The intent of this project was to demonstrate that Alaskan low-rank coal, which is high in volatile content, need not be ground as fine as bituminous coal (typically low in volatile content) for optimum combustion in power plants. The grind or particle size distribution (PSD), which is quantified by percentage of pulverized coal passing 74 microns (200 mesh), affects the pulverizer throughput in power plants. The finer the grind, the lower the throughput. For a power plant to maintain combustion levels, throughput needs to be high. The problem of particle size is compounded for Alaskan coal since it has amore » low Hardgrove grindability index (HGI); that is, it is difficult to grind. If the thesis of this project is demonstrated, then Alaskan coal need not be ground to the industry standard, thereby alleviating somewhat the low HGI issue (and, hopefully, furthering the salability of Alaskan coal). This project studied the relationship between PSD and power plant efficiency, emissions, and mill power consumption for low-rank high-volatile-content Alaskan coal. The emissions studied were CO, CO{sub 2}, NO{sub x}, SO{sub 2}, and Hg (only two tests). The tested PSD range was 42 to 81 percent passing 76 microns. Within the tested range, there was very little correlation between PSD and power plant efficiency, CO, NO{sub x}, and SO{sub 2}. Hg emissions were very low and, therefore, did not allow comparison between grind sizes. Mill power consumption was lower for coarser grinds.« less

  11. Research of Characteristics of the Low Voltage Power Line in Underground Coal Mine

    NASA Astrophysics Data System (ADS)

    Wei, Shaoliang; Qin, Shiqun; Gao, Wenchang; Cheng, Fengyu; Cao, Zhongyue

    The power line communications (PLCs) can count on existing electrical connections reaching each corner in the locations where such applications are required, so signal transmission over power lines is nowadays gaining more and more interest for applications like internet. The research of characteristics of the low voltage power line is the fundamental and importance task. This work presents a device to test the characteristics of the low voltage power line. The low voltage power line channel characteristics overground and the channel characteristics underground were tested in using this device. Experiments show that, the characteristics are different between the PLCs channel underground coal mine and the PLC channel overground. Different technology should be adopted to structure the PLCs channel model underground coal mine and transmit high speed digital signal. But how to use the technology better to the high-speed digital communication under coal mine is worth of further studying.

  12. Chiyoda Thoroughbred CT-121 clean coal project at Georgia Power`s Plant Yates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burford, D.P.

    1997-12-31

    The Chiyoda Thoroughbred CT-121 flue gas desulfurization (FGD) process at Georgia Power`s Plant Yates completed a two year demonstration of its capabilities in late 1994 under both high- and low-particulate loading conditions. This $43 million demonstration was co-funded by Southern Company, the Electric Power Research Institute and the DOE under the auspices of the US Department of Energy`s Round II Innovative Clean Coal Technology (ICCT) program. The focus of the Yates Project was to demonstrate several cost-saving modifications to Chiyoda`s already efficient CT-121 process. These modifications included: the extensive use of fiberglass reinforced plastics (FRP) in the construction of themore » scrubber vessel and other associated vessels, the elimination of flue gas reheat through the use of an FRP wet chimney, and reliable operation without a spare absorber module. This paper focuses on the testing results from the last trimester of the second phase of testing (high-ash loading). Specifically, operation under elevated ash loading conditions, the effects of low- and high-sulfur coal, air toxics verification testing results and unexpected improvements in byproduct gypsum quality are discussed.« less

  13. Hall Thruster

    NASA Image and Video Library

    2017-03-06

    NASA Glenn engineer Dr. Peter Peterson prepares a high-power Hall thruster for ground testing in a vacuum chamber that simulates the environment in space. This high-powered solar electric propulsion thruster has been identified as a critical part of NASA’s future deep space exploration plans.

  14. RELIABILITY OF THE ONE REPETITION-MAXIMUM POWER CLEAN TEST IN ADOLESCENT ATHLETES

    PubMed Central

    Faigenbaum, Avery D.; McFarland, James E.; Herman, Robert; Naclerio, Fernando; Ratamess, Nicholas A.; Kang, Jie; Myer, Gregory D.

    2013-01-01

    Although the power clean test is routinely used to assess strength and power performance in adult athletes, the reliability of this measure in younger populations has not been examined. Therefore, the purpose of this study was to determine the reliability of the one repetition maximum (1 RM) power clean in adolescent athletes. Thirty-six male athletes (age 15.9 ± 1.1 yrs, body mass 79.1 ± 20.3 kg, height 175.1 ±7.4 cm) who had more than 1 year of training experience with weightlifting exercises performed a 1 RM power clean on two nonconsecutive days in the afternoon following standardized procedures. All test procedures were supervised by a senior level weightlifting coach and consisted of a systematic progression in test load until the maximum resistance that could be lifted for one repetition using proper exercise technique was determined. Data were analyzed using an intraclass correlation coefficient (ICC [2,k]), Pearson correlation coefficient (r), repeated measures ANOVA, Bland-Altman plot, and typical error analyses. Analysis of the data revealed that the test measures were highly reliable demonstrating a test-retest ICC of 0.98 (95% CI = 0.96–0.99). Testing also demonstrated a strong relationship between 1 RM measures on trial 1 and trial 2 (r=0.98, p<0.0001) with no significant difference in power clean performance between trials (70.6 ± 19.8 vs. 69.8 ± 19.8 kg). Bland Altman plots confirmed no systematic shift in 1 RM between trial 1 and trial 2. The typical error to be expected between 1 RM power clean trials is 2.9 kg and a change of at least 8.0 kg is indicated to determine a real change in lifting performance between tests in young lifters. No injuries occurred during the study period and the testing protocol was well-tolerated by all subjects. These findings indicate that 1 RM power clean testing has a high degree of reproducibility in trained male adolescent athletes when standardized testing procedures are followed and qualified instruction is present. PMID:22233786

  15. A 5-kW xenon ion thruster lifetest

    NASA Technical Reports Server (NTRS)

    Patterson, Michael J.; Verhey, Timothy R.

    1990-01-01

    The results of the first life test of a high power ring-cusp ion thruster are presented. A 30-cm laboratory model thruster was operated steady-state at a nominal beam power of 5 kW on xenon propellant for approximately 900 hours. This test was conducted to identify life-timing erosion modifications, and to demonstrate operation using simplified power processing. The results from this test are described including the conclusions derived from extensive post-test analyses of the thruster. Modifications to the thruster and ground support equipment, which were incorporated to solve problems identified by the lifetest, are also described.

  16. Testing of active heat sink for advanced high-power laser diodes

    NASA Astrophysics Data System (ADS)

    Vetrovec, John; Copeland, Drew A.; Feeler, Ryan; Junghans, Jeremy

    2011-03-01

    We report on the development of a novel active heat sink for high-power laser diodes offering unparalleled capacity in high-heat flux handling and temperature control. The heat sink employs convective heat transfer by a liquid metal flowing at high speed inside a miniature sealed flow loop. Liquid metal flow in the loop is maintained electromagnetically without any moving parts. Thermal conductance of the heat sink is electronically adjustable, allowing for precise control of diode temperature and the laser light wavelength. This paper presents the principles and challenges of liquid metal cooling, and data from testing at high heat flux and high heat loads.

  17. Rocket Propulsion 21 Steering Committee Meeting (RP21) NASA In-Space Propulsion Update

    NASA Technical Reports Server (NTRS)

    Klem, Mark

    2015-01-01

    In-house Support of NEXT-C Contract Status Thruster NEXT Long Duration Test post-test destructive evaluation in progress Findings will be used to verify service life models identify potential design improvements Cathode heater fabrication initiated for cyclic life testing Thruster operating algorithm definition verification initiated to provide operating procedures for mission users High voltage propellant isolator life test voluntarily terminated after successfully operating 51,200 h Power processor unit (PPU) Replaced all problematic stacked multilayer ceramic dual inline pin capacitors within PPU Test bed Rebuilt installed discharge power supply primary power board Completed full functional performance characterization Final test report in progress Transferred PPU Testbed to contractor to support prototype design effort.

  18. Degradation and ESR Failures in MnO2 Chip Tantalum Capacitors

    NASA Technical Reports Server (NTRS)

    Teverovsky, Alexander A.

    2017-01-01

    Equivalent series resistance (ESR) of chip tantalum capacitors determines the rate of energy delivery and power dissipation thus affecting temperature and reliability of the parts. Employment of advanced capacitors with reduced ESR decreases power losses and improves efficiency in power systems. Stability of ESR is essential for correct operations of power units and might cause malfunctioning and failures when ESR becomes too high or too low. Several cases with ESR values in CWR29 capacitors exceeding the specified limit that were observed recently raised concerns regarding environmental factors affecting ESR and the adequacy of the existing screening and qualification testing. In this work, results of stress testing of various types of military and commercial capacitors obtained over years by GSFC test lab and NEPP projects that involved ESR measurements are described. Environmental stress tests include testing in humidity and vacuum chambers, temperature cycling, long-term storage at high temperatures, and various soldering simulation tests. Note that in many cases parts failed due to excessive leakage currents or reduced breakdown voltages. However, only ESR-related degradation and failures are discussed. Mechanisms of moisture effect are discussed and recommendations to improve screening and qualification system are suggested.

  19. Description of A 2.3 kW power transformer for space applications

    NASA Technical Reports Server (NTRS)

    Hansen, I.

    1979-01-01

    The paper describes the principal features and special testing of a high-frequency high-power low-specific-weight (0.57 kg/kW) 2.3-kW electronic power transformer developed for space applications. The transformer is operated in a series resonant inverter supplying beam power to a 30-cm mercury ion thruster. High efficiency (above 98.5%) is obtained through careful detailed design. A number of unique heat removal techniques are discussed which control the winding temperature using only the available conductive cooling.

  20. Transmission line component testing for the ITER Ion Cyclotron Heating and Current Drive System

    NASA Astrophysics Data System (ADS)

    Goulding, Richard; Bell, G. L.; Deibele, C. E.; McCarthy, M. P.; Rasmussen, D. A.; Swain, D. W.; Barber, G. C.; Barbier, C. N.; Cambell, I. H.; Moon, R. L.; Pesavento, P. V.; Fredd, E.; Greenough, N.; Kung, C.

    2014-10-01

    High power RF testing is underway to evaluate transmission line components for the ITER Ion Cyclotron Heating and Current Drive System. The transmission line has a characteristic impedance Z0 = 50 Ω and a nominal outer diameter of 305 mm. It is specified to carry up to 6 MW at VSWR = 1.5 for 3600 s pulses, with transient voltages up to 40 kV. The transmission line is actively cooled, with turbulent gas flow (N2) used to transfer heat from the inner to outer conductor, which is water cooled. High voltage and high current testing of components has been performed using resonant lines generating steady state voltages of 35 kV and transient voltages up to 60 kV. A resonant ring, which has operated with circulating power of 6 MW for 1 hr pulses, is being used to test high power, low VSWR operation. Components tested to date include gas barriers, straight sections of various lengths, and 90 degree elbows. Designs tested include gas barriers fabricated from quartz and aluminum nitride, and transmission lines with quartz and alumina inner conductor supports. The latest results will be presented. This manuscript has been authored by UT-Battelle, LLC, under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy.

  1. High-power highly stable passively Q-switched fiber laser based on monolayer graphene

    NASA Astrophysics Data System (ADS)

    Wu, Hanshuo; Song, Jiaxin; Wu, Jian; Xu, Jiangming; Xiao, Hu; Leng, Jinyong; Zhou, Pu

    2018-03-01

    We demonstrate a monolayer graphene-based passively Q-switched fiber laser with three-stage amplifiers that can deliver an average power of over 80 W at 1064 nm. The highest average power achieved is 84.1 W, with a pulse energy of 1.67 mJ. To the best of our knowledge this is the first report of a high-power passively Q-switched fiber laser in the 1 µm range. More importantly, the Q-switched fiber laser operated stably during a week of tests for a few hours per day, which proves the stability and practical application potential of graphene in high-power pulsed fiber lasers.

  2. High frequency power distribution system

    NASA Technical Reports Server (NTRS)

    Patel, Mikund R.

    1986-01-01

    The objective of this project was to provide the technology of high frequency, high power transmission lines to the 100 kW power range at 20 kHz frequency. In addition to the necessary design studies, a 150 m long, 600 V, 60 A transmission line was built, tested and delivered for full vacuum tests. The configuration analysis on five alternative configurations resulted in the final selection of the three parallel Litz straps configuration, which gave a virtually concentric design in the electromagnetic sense. Low inductance, low EMI and flexibility in handling are the key features of this configuration. The final design was made after a parametric study to minimize the losses, weight and inductance. The construction of the cable was completed with no major difficulties. The R,L,C parameters measured on the cable agreed well with the calculated values. The corona tests on insulation samples showed a safety factor of 3.

  3. Strategies for Radiation Hardness Testing of Power Semiconductor Devices

    NASA Technical Reports Server (NTRS)

    Soltis, James V. (Technical Monitor); Patton, Martin O.; Harris, Richard D.; Rohal, Robert G.; Blue, Thomas E.; Kauffman, Andrew C.; Frasca, Albert J.

    2005-01-01

    Plans on the drawing board for future space missions call for much larger power systems than have been flown in the past. These systems would employ much higher voltages and currents to enable more powerful electric propulsion engines and other improvements on what will also be much larger spacecraft. Long term human outposts on the moon and planets would also require high voltage, high current and long life power sources. Only hundreds of watts are produced and controlled on a typical robotic exploration spacecraft today. Megawatt systems are required for tomorrow. Semiconductor devices used to control and convert electrical energy in large space power systems will be exposed to electromagnetic and particle radiation of many types, depending on the trajectory and duration of the mission and on the power source. It is necessary to understand the often very different effects of the radiations on the control and conversion systems. Power semiconductor test strategies that we have developed and employed will be presented, along with selected results. The early results that we have obtained in testing large power semiconductor devices give a good indication of the degradation in electrical performance that can be expected in response to a given dose. We are also able to highlight differences in radiation hardness that may be device or material specific.

  4. Characterization testing of Lockheed Martin high-power micro pulse tube cryocooler

    NASA Astrophysics Data System (ADS)

    McKinley, I. M.; Hummel, C. D.; Johnson, D. L.; Rodriguez, J. I.

    2017-12-01

    This paper describes the thermal vacuum, microphonics, magnetics, and radiation testing and results of a Lockheed Martin high-power micro pulse tube cryocooler. The thermal performance of the microcooler was measured in vacuum for heat reject temperatures between 185 and 300 K. The cooler was driven with a Chroma 61602 AC power source for input powers ranging from 10 to 60 W and drive frequency between 115 and 140 Hz during thermal performance testing. The optimal drive frequency was dependent on both input power and heat reject temperature. In addition, the microphonics of the cooler were measured with the cooler driven by Iris Technologies LCCE-2 and HP-LCCE drive electronics for input powers ranging from 10 to 60 W and drive frequency between 135 and 145 Hz. The exported forces were strongly dependent on input power while only weakly dependent on the drive frequency. Moreover, the exported force in the compressor axis was minimized by closed loop control with the HP-LCCE. The cooler also survived a 500 krad radiation dose while being continuously operated with 30 W of input power at 220 K heat rejection temperature in vacuum. Finally, the DC and AC magnetic fields around the cooler were measured at various locations.

  5. Exploring the motivational brain: effects of implicit power motivation on brain activation in response to facial expressions of emotion.

    PubMed

    Schultheiss, Oliver C; Wirth, Michelle M; Waugh, Christian E; Stanton, Steven J; Meier, Elizabeth A; Reuter-Lorenz, Patricia

    2008-12-01

    This study tested the hypothesis that implicit power motivation (nPower), in interaction with power incentives, influences activation of brain systems mediating motivation. Twelve individuals low (lowest quartile) and 12 individuals high (highest quartile) in nPower, as assessed per content coding of picture stories, were selected from a larger initial participant pool and participated in a functional magnetic resonance imaging study during which they viewed high-dominance (angry faces), low-dominance (surprised faces) and control stimuli (neutral faces, gray squares) under oddball-task conditions. Consistent with hypotheses, high-power participants showed stronger activation in response to emotional faces in brain structures involved in emotion and motivation (insula, dorsal striatum, orbitofrontal cortex) than low-power participants.

  6. Research of x-ray nondestructive detector for high-speed running conveyor belt with steel wire ropes

    NASA Astrophysics Data System (ADS)

    Wang, Junfeng; Miao, Changyun; Wang, Wei; Lu, Xiaocui

    2008-03-01

    An X-ray nondestructive detector for high-speed running conveyor belt with steel wire ropes is researched in the paper. The principle of X-ray nondestructive testing (NDT) is analyzed, the general scheme of the X-ray nondestructive testing system is proposed, and the nondestructive detector for high-speed running conveyor belt with steel wire ropes is developed. The hardware of system is designed with Xilinx's VIRTEX-4 FPGA that embeds PowerPC and MAC IP core, and its network communication software based on TCP/IP protocol is programmed by loading LwIP to PowerPC. The nondestructive testing of high-speed conveyor belt with steel wire ropes and network transfer function are implemented. It is a strong real-time system with rapid scanning speed, high reliability and remotely nondestructive testing function. The nondestructive detector can be applied to the detection of product line in industry.

  7. Evaluation of a microwave high-power reception-conversion array for wireless power transmission

    NASA Technical Reports Server (NTRS)

    Dickinson, R. M.

    1975-01-01

    Initial performance tests of a 24-sq m area array of rectenna elements are presented. The array is used as the receiving portion of a wireless microwave power transmission engineering verification test system. The transmitting antenna was located at a range of 1.54 km. Output dc voltage and power, input RF power, efficiency, and operating temperatures were obtained for a variety of dc load and RF incident power levels at 2388 MHz. Incident peak RF intensities of up to 170 mW/sq cm yielded up to 30.4 kW of dc output power. The highest derived collection-conversion efficiency of the array was greater than 80 percent.

  8. Power of tests for comparing trend curves with application to national immunization survey (NIS).

    PubMed

    Zhao, Zhen

    2011-02-28

    To develop statistical tests for comparing trend curves of study outcomes between two socio-demographic strata across consecutive time points, and compare statistical power of the proposed tests under different trend curves data, three statistical tests were proposed. For large sample size with independent normal assumption among strata and across consecutive time points, the Z and Chi-square test statistics were developed, which are functions of outcome estimates and the standard errors at each of the study time points for the two strata. For small sample size with independent normal assumption, the F-test statistic was generated, which is a function of sample size of the two strata and estimated parameters across study period. If two trend curves are approximately parallel, the power of Z-test is consistently higher than that of both Chi-square and F-test. If two trend curves cross at low interaction, the power of Z-test is higher than or equal to the power of both Chi-square and F-test; however, at high interaction, the powers of Chi-square and F-test are higher than that of Z-test. The measurement of interaction of two trend curves was defined. These tests were applied to the comparison of trend curves of vaccination coverage estimates of standard vaccine series with National Immunization Survey (NIS) 2000-2007 data. Copyright © 2011 John Wiley & Sons, Ltd.

  9. Testing of optical components to assure performance in a high-average-power environment

    NASA Astrophysics Data System (ADS)

    Chow, Robert; Taylor, John R.; Eickelberg, William K.; Primdahl, Keith A.

    1997-11-01

    Evaluation and testing of the optical components used in the atomic vapor laser isotope separation plant is critical for qualification of suppliers, developments of new optical multilayer designs and manufacturing processes, and assurance of performance in the production cycle. The range of specifications requires development of specialized test equipment and methods which are not routine or readily available in industry. Specifications are given on material characteristics such as index homogeneity, subsurface damage left after polishing, microscopic surface defects and contamination, coating absorption, and high average power laser damage. The approach to testing these performance characteristics and assuring the quality throughout the production cycle is described.

  10. Investigation of a metallic photonic crystal high power microwave mode converter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Dong, E-mail: mr20001@sina.com; Qin, Fen; Xu, Sha

    2015-02-15

    It is demonstrated that an L band metallic photonic crystal TEM-TE{sub 11} mode converter is suitable for narrow band high power microwave application. The proposed mode converter is realized by partially filling metallic photonic crystals along azimuthal direction in a coaxial transmission line for phase-shifting. A three rows structure is designed and simulated by commercial software CST Microwave Studio. Simulation results show that its conversion efficiency is 99% at the center frequency 1.58 GHz. Over the frequency range of 1.56-1.625 GHz, the conversion efficiency exceeds 90 %, with a corresponding bandwidth of 4.1 %. This mode converter has a gigawattmore » level power handling capability which is suitable for narrow band high power microwave application. Using magnetically insulated transmission line oscillator(MILO) as a high power microwave source, particle-in-cell simulation is carried out to test the performance of the mode converter. The expected TE{sub 11} mode microwave output is obtained and the MILO works well. Mode conversion performance of the converter is tested by far-field measurement method. And the experimental result confirms the validity of our design. Then, high power microwave experiment is carried out on a Marx-driven Blumlein water line pulsed power accelerator. Microwave frequency, radiated pattern and power are measured in the far-field region and the results agree well with simulation results. The experiment also reveals that no microwave breakdown or pulse shortening took place in the experimental setup.« less

  11. Ammunition for Law Enforcements. Part I. Methodology for Evaluating Relative Stopping Power and Results

    DTIC Science & Technology

    1979-10-01

    expansion, relative stopping power according to one or another formula or test method, penetration, ricochet, and other fragments. In the past, the solution...the data gathered for each test round, in the following documents: a. "Ammunition For Law Enforcement: Part II, Data Obtained for Bullets Penetrating...high velocity testing , chamber pressures exceeded those permissible in standard handguns. For safety, then, Mann test barrels were used. At this point

  12. SOVRaD - A Digest of Recent Soviet R and D Articles. Volume 2, Number 6, 1976

    DTIC Science & Technology

    1976-06-01

    6 Laser- Powered Rocket Model 1 High- Power CO2 Laser Radiation Effect in SF6 1 Tests With 9-Beam Laser Fusion Systems 1 Focusing Optics For...Boundary Layer 6 Deformation Theory of Artif.cial Muscles . 6 Dolphin Swimming Stereophotogrammetry 7 Stable Spark Gap for High- Power Pulsers 7...8 Resume of Soviet Tokamak Program .............. 9 First Measurements of Tokamak-10 Plasma , . . 10 Electrochemical Power Generation 11

  13. 200 MW S-band traveling wave resonant ring development at IHEP

    NASA Astrophysics Data System (ADS)

    Zhou, Zu-Sheng; Chi, Yun-Long; Git, Meng-Ping; Pei, Guo-Xi

    2010-03-01

    The resonant-ring is a traveling wave circuit, which is used to produce high peak power with comparatively smaller stored energy. The application to be considered is its use as a high power simulator mainly for testing the klystron ceramic output window, as well as for high power microwave transmission devices. This paper describes the principle of a resonant ring and introduces the structure and property of the newly constructed traveling wave resonant ring at IHEP. Our goal is to produce a 200 MW class resonant ring at 2.856 GHz with a pulse length of 2 μs and repetition rate of 25 Hz. The installation, commissioning and testing of the ring have been completed and a peak power of 200 MW at 3 μs has been achieved. The conditioning results show that all the parameters of the resonant ring reach the design goals.

  14. A low-power high-speed ultra-wideband pulse radio transmission system.

    PubMed

    Wei Tang; Culurciello, E

    2009-10-01

    We present a low-power high-speed ultra-wideband (UWB) transmitter with a wireless transmission test platform. The system is specifically designed for low-power high-speed wireless implantable biosensors. The integrated transmitter consists of a compact pulse generator and a modulator. The circuit is fabricated in the 0.5-mum silicon-on-sapphire process and occupies 420 mum times 420 mum silicon area. The transmitter is capable of generating pulses with 1-ns width and the pulse rate can be controlled between 90 MHz and 270 MHz. We built a demonstration/testing system for the transmitter. The transmitter achieves a 14-Mb/s data rate. With 50% duty cycle data, the power consumption of the chip is between 10 mW and 21 mW when the transmission distance is from 3.2 to 4 m. The core circuit size is 70 mum times 130 mum.

  15. Design and preliminary test results of the 40 MW power supply at the national high magnetic field laboratory

    NASA Astrophysics Data System (ADS)

    Boenig, Heinrich J.; Bogdan, Ferenc; Morris, Gary C.; Ferner, James A.; Schneider-Muntau, Hans J.; Rumrill, Ronald H.; Rumrill, Ronald S.

    1994-07-01

    Four highly stabilized, steady-state, 10 MW power supplies have been installed at the National High Magnetic Field Laboratory in Tallahassee, FL. Each supply consists of a 12.5 kV vacuum circuit breaker, two three-winding, step-down transformers, a 24-pulse rectifier with interphase reactors and freewheeling diodes, and a passive and an active filter. Two different transformer tap settings allow dc supply output voltages of 400 and 500 V. The rated current of a supply is 17 kA and each supply has a one hour overload capability of 20 kA. The power supply output bus system, including a reversing switch at the input and 2 x 16 disconnect switches at the output, connects each supply to 16 different magnet cells. The design of the power supply is described and preliminary test results with a supply feeding a 10 MW resistive load are presented.

  16. Social motives and cognitive power-sex associations: predictors of aggressive sexual behavior.

    PubMed

    Zurbriggen, E L

    2000-03-01

    The present study investigated whether implicit social motives and cognitive power-sex associations would predict self-reports of aggressive sexual behavior. Participants wrote stories in response to Thematic Apperception Test pictures, which were scored for power and affiliation-intimacy motives. They also completed a lexical-decision priming task that provided an index of the strength of the cognitive association between the concepts of "power" and "sexuality." For men, high levels of power motivation and strong power-sex associations predicted more frequent aggression. There was also an interaction: Power motivation was unrelated to aggression for men with the weakest power-sex associations. For women, high levels of affiliation-intimacy motivation were associated with more frequent aggression. Strong power-sex associations were also predictive for women but only when affiliation-intimacy motivation was high.

  17. Safety aspects for public access defibrillation using automated external defibrillators near high-voltage power lines.

    PubMed

    Schlimp, C J; Breiteneder, M; Lederer, W

    2004-05-01

    Automated external defibrillators (AEDs) must combine easy operability and high-quality diagnosis even under unfavorable conditions. This study determined the influence of electromagnetic interference caused by high-voltage power lines with 16.7-Hz alternating current on the quality of AEDs' rhythm analysis. Two AEDs frequently used in Austria were tested near high-voltage power lines (15 kV or 110 kV, alternating current with 16.7 Hz). The defibrillation electrodes were attached either to a proband with true sinus rhythm or to a resuscitation dummy with generated sinus rhythm, ventricular fibrillation, ventricular tachycardia or asystole. Electromagnetic interference was much more prominent in a human's than in a dummy's electrocardiogram and depended on the position of the electrodes and cables in relation to the power line. Near high-voltage power lines the AEDs showed a significant operational fault. One AED interpreted the interference as a motion artifact, even when underlying rhythms were clearly detectable. The other AED interpreted 16.7-Hz oscillation as ventricular fibrillation with consequent shock advice when no underlying rhythm was detected. The tested AEDs neither filter nor recognize a technical interference of 16.7 Hz caused by 15-kV power lines above railway tracks or 110-kV overland power lines, as run by railway companies in Austria, Germany, Norway, Sweden and Switzerland. These failures in AEDs' algorithms for rhythm analysis may cause substantial harm to patients undergoing public access defibrillation. The proper function of AEDs needs to be reconsidered to guarantee patients' safety near high-voltage power lines.

  18. A High Power Density Power System Electronics for NASA's Lunar Reconnaissance Orbiter

    NASA Technical Reports Server (NTRS)

    Hernandez-Pellerano, A.; Stone, R.; Travis, J.; Kercheval, B.; Alkire, G.; Ter-Minassian, V.

    2009-01-01

    A high power density, modular and state-of-the-art Power System Electronics (PSE) has been developed for the Lunar Reconnaissance Orbiter (LRO) mission. This paper addresses the hardware architecture and performance, the power handling capabilities, and the fabrication technology. The PSE was developed by NASA s Goddard Space Flight Center (GSFC) and is the central location for power handling and distribution of the LRO spacecraft. The PSE packaging design manages and distributes 2200W of solar array input power in a volume less than a cubic foot. The PSE architecture incorporates reliable standard internal and external communication buses, solid state circuit breakers and LiIon battery charge management. Although a single string design, the PSE achieves high reliability by elegantly implementing functional redundancy and internal fault detection and correction. The PSE has been environmentally tested and delivered to the LRO spacecraft for the flight Integration and Test. This modular design is scheduled to flight in early 2009 on board the LRO and Lunar Crater Observation and Sensing Satellite (LCROSS) spacecrafts and is the baseline architecture for future NASA missions such as Global Precipitation Measurement (GPM) and Magnetospheric MultiScale (MMS).

  19. Accelerated Solar-UV Test Chamber

    NASA Technical Reports Server (NTRS)

    Gupta, A.; Laue, E. G.

    1984-01-01

    Medium-pressure mercury-vapor lamps provide high ratio of ultraviolet to total power. Chamber for evaluating solar-ultraviolet (UV) radiation damage permits accelerated testing without overheating test specimens.

  20. A new storage-ring light source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chao, Alex

    2015-06-01

    A recently proposed technique in storage ring accelerators is applied to provide potential high-power sources of photon radiation. The technique is based on the steady-state microbunching (SSMB) mechanism. As examples of this application, one may consider a high-power DUV photon source for research in atomic and molecular physics or a high-power EUV radiation source for industrial lithography. A less challenging proof-of-principle test to produce IR radiation using an existing storage ring is also considered.

  1. Integration Testing of a Modular Discharge Supply for NASA's High Voltage Hall Accelerator Thruster

    NASA Technical Reports Server (NTRS)

    Pinero, Luis R.; Kamhawi, hani; Drummond, Geoff

    2010-01-01

    NASA s In-Space Propulsion Technology Program is developing a high performance Hall thruster that can fulfill the needs of future Discovery-class missions. The result of this effort is the High Voltage Hall Accelerator thruster that can operate over a power range from 0.3 to 3.5 kW and a specific impulse from 1,000 to 2,800 sec, and process 300 kg of xenon propellant. Simultaneously, a 4.0 kW discharge power supply comprised of two parallel modules was developed. These power modules use an innovative three-phase resonant topology that can efficiently supply full power to the thruster at an output voltage range of 200 to 700 V at an input voltage range of 80 to 160 V. Efficiencies as high as 95.9 percent were measured during an integration test with the NASA103M.XL thruster. The accuracy of the master/slave current sharing circuit and various thruster ignition techniques were evaluated.

  2. Strategic avionics technology definition studies. Subtask 3-1A3: Electrical Actuation (ELA) Systems Test Facility

    NASA Technical Reports Server (NTRS)

    Rogers, J. P.; Cureton, K. L.; Olsen, J. R.

    1994-01-01

    Future aerospace vehicles will require use of the Electrical Actuator systems for flight control elements. This report presents a proposed ELA Test Facility for dynamic evaluation of high power linear Electrical Actuators with primary emphasis on Thrust Vector Control actuators. Details of the mechanical design, power and control systems, and data acquisition capability of the test facility are presented. A test procedure for evaluating the performance of the ELA Test Facility is also included.

  3. Multi-Megawatt-Scale Power-Hardware-in-the-Loop Interface for Testing Ancillary Grid Services by Converter-Coupled Generation: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koralewicz, Przemyslaw J; Gevorgian, Vahan; Wallen, Robert B

    Power-hardware-in-the-loop (PHIL) is a simulation tool that can support electrical systems engineers in the development and experimental validation of novel, advanced control schemes that ensure the robustness and resiliency of electrical grids that have high penetrations of low-inertia variable renewable resources. With PHIL, the impact of the device under test on a generation or distribution system can be analyzed using a real-time simulator (RTS). PHIL allows for the interconnection of the RTS with a 7 megavolt ampere (MVA) power amplifier to test multi-megawatt renewable assets available at the National Wind Technology Center (NWTC). This paper addresses issues related to themore » development of a PHIL interface that allows testing hardware devices at actual scale. In particular, the novel PHIL interface algorithm and high-speed digital interface, which minimize the critical loop delay, are discussed.« less

  4. Multi-Megawatt-Scale Power-Hardware-in-the-Loop Interface for Testing Ancillary Grid Services by Converter-Coupled Generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koralewicz, Przemyslaw J; Gevorgian, Vahan; Wallen, Robert B

    Power-hardware-in-the-loop (PHIL) is a simulation tool that can support electrical systems engineers in the development and experimental validation of novel, advanced control schemes that ensure the robustness and resiliency of electrical grids that have high penetrations of low-inertia variable renewable resources. With PHIL, the impact of the device under test on a generation or distribution system can be analyzed using a real-time simulator (RTS). PHIL allows for the interconnection of the RTS with a 7 megavolt ampere (MVA) power amplifier to test multi-megawatt renewable assets available at the National Wind Technology Center (NWTC). This paper addresses issues related to themore » development of a PHIL interface that allows testing hardware devices at actual scale. In particular, the novel PHIL interface algorithm and high-speed digital interface, which minimize the critical loop delay, are discussed.« less

  5. Construction of a High Temperature Teg Measurement System for the Evaluation of Thermoelectric Oxide Modules

    NASA Astrophysics Data System (ADS)

    Populoh, S.; Trottmann, M.; Brunko, O. C.; Thiel, P.; Weidenkaff, A.

    2013-08-01

    A dedicated test stand was developed and built to characterize the efficiency, power output and open circuit voltage of various thermoelectric generators (TEGs) based on tellurides, heusler compounds and thermoelectric oxides. The test stand allows measurements of TEGs of sizes up to 4 cm × 4 cm at hot side temperatures up to 1150 K in different atmospheres. Special care was taken about the heat flux measurement by precise measurement of the temperature distribution within the reference block. In order to demonstrate the functionality of the test stand thermoelectric oxide modules (TOM) were built from n-type perovskite-type manganates and p-type cuprates. The modules were tested regarding their stability, maximum power output and efficiency at temperatures up to 1100 K. The TOMs withstand large temperature gradients and operated in ambient air yielding high power densities.

  6. Design of a heatpipe-cooled Mars-surface fission reactor

    NASA Astrophysics Data System (ADS)

    Poston, David I.; Kapernick, Richard J.; Guffee, Ray M.; Reid, Robert S.; Lipinski, Ronald J.; Wright, Steven A.; Talandis, Regina A.

    2002-01-01

    The next generation of robotic missions to Mars will most likely require robust power sources in the range of 3 to 20 kWe. Fission systems are well suited to provide safe, reliable, and economic power within this range. The goal of this study is to design a compact, low-mass fission system that meets Mars-surface power requirements, while maintaining a high level of safety and reliability at a relatively low cost. The Heatpipe Power System (HPS) is one possible approach for producing near-term, low-cost, space fission power. The goal of the HPS project is to devise an attractive space fission system that can be developed quickly and affordably. The primary ways of doing this are by using existing technology and by designing the system for inexpensive testing. If the system can be designed to allow highly prototypic testing with electrical heating, then an exhaustive test program can be carried out quickly and inexpensively, and thorough testing of the actual flight unit can be performed-which is a major benefit to reliability. Over the past 4 years, three small HPS proof-of-concept technology demonstrations have been conducted, and each has been highly successful. The Heatpipe-Operated Mars Exploration Reactor (HOMER) is a derivative of the HPS designed especially for producing power on the surface of Mars. The HOMER-15 is a 15-kWt reactor that couples with a 3-kWe Stirling engine power system. The reactor contains stainless-steel (SS)-clad uranium nitride (UN) fuel pins that are structurally and thermally bonded to SS/sodium heatpipes. Fission energy is conducted from the fuel pins to the heatpipes, which then carry the heat to the Stirling engine. This paper describes the attributes, specifications, and performance of a 15-kWt HOMER reactor. .

  7. Space Shuttle Main Engine Off-Nominal Low Power Level Operation

    NASA Technical Reports Server (NTRS)

    Bradley, Michael

    1997-01-01

    This paper describes Rocketdyne's successful analysis and demonstration of the Space Shuttle Main Engine (SSME) operation at off-nominal power levels during Reusable Launch Vehicle (RLV) evaluation tests. The nominal power level range for the SSME is from 65% rated power level (RPL) to 109% RPL. Off-nominal power levels incrementally demonstrated were: 17% RPL, 22% RPL, 27% RPL, 40% RPL, 45% RPL, and 50% RPL. Additional achievements during low power operation included: use of a hydrostatic bearing High Pressure Oxidizer Turbopump (HPOTP), nominal High Pressure Fuel Turbopump (HPFTP) first rotor critical speed operation, combustion stability at low power levels, and refined definition of nozzle flow separation heat loads.

  8. High Input Voltage, Silicon Carbide Power Processing Unit Performance Demonstration

    NASA Technical Reports Server (NTRS)

    Bozak, Karin E.; Pinero, Luis R.; Scheidegger, Robert J.; Aulisio, Michael V.; Gonzalez, Marcelo C.; Birchenough, Arthur G.

    2015-01-01

    A silicon carbide brassboard power processing unit has been developed by the NASA Glenn Research Center in Cleveland, Ohio. The power processing unit operates from two sources - a nominal 300-Volt high voltage input bus and a nominal 28-Volt low voltage input bus. The design of the power processing unit includes four low voltage, low power supplies that provide power to the thruster auxiliary supplies, and two parallel 7.5 kilowatt power supplies that are capable of providing up to 15 kilowatts of total power at 300-Volts to 500-Volts to the thruster discharge supply. Additionally, the unit contains a housekeeping supply, high voltage input filter, low voltage input filter, and master control board, such that the complete brassboard unit is capable of operating a 12.5 kilowatt Hall Effect Thruster. The performance of unit was characterized under both ambient and thermal vacuum test conditions, and the results demonstrate the exceptional performance with full power efficiencies exceeding 97. With a space-qualified silicon carbide or similar high voltage, high efficiency power device, this design could evolve into a flight design for future missions that require high power electric propulsion systems.

  9. A developmental perspective on high power laser facility technology for ICF

    NASA Astrophysics Data System (ADS)

    Zhu, Jianqiang; Sun, Mingying; Liu, Chong; Guo, Yajing; Yang, Lin; Yang, Pengqian; Zhang, Yanli; Wang, Bingyan; Liu, Cheng; Li, Yangshuai; Ren, Zhiyuan; Liu, Dean; Liu, Zhigang; Jiao, Zhaoyang; Ren, Lei; Zhang, Guowen; Fan, Quantang; Feng, Tao; Lin, Zunqi

    2018-02-01

    The latest progress on high power laser facilities in NLHPLP was reported. Based on a high power laser prototype, damage behavior of 3ω optics was experimentally tested, and the key influencing factors contributed to laser-induced damage in optics were deeply analyzed. The latest experimental results of advanced precision measurement for optical quality applied in the high power laser facility were introduced. At last, based on the accumulated works of 3ω elements damage behavior status in our laboratory, beam expanding scheme was presented to increase the total maximum output 3ω energy properly and decrease the laser induced damage risking of ω optics simultaneously.

  10. High Power RF Testing of A 3-Cell Superconducting Traveling Wave Accelerating Structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kanareykin, Alex; Kostin, Romna; Avrakhov, Pavel

    Euclid Techlabs has completed the Phase II SBIR project, entitled “High Power RF Testing of a 3-Cell Superconducting Traveling Wave Accelerating Structure” under Grant #DE-SC0006300. In this final technical report, we summarize the major achievements of Phase I of the project and review the details of Phase II of the project. The accelerating gradient in a superconducting structure is limited mainly by quenching, i.e., by the maximum surface RF magnetic field. Various techniques have been developed to increase the gradient. A traveling wave accelerating SC structure with a feedback waveguide was suggested to allow an increased transit time factor andmore » ultimately, a maximum gradient that is 22%-24% higher than in the best of the time standing wave SRF cavity solution. The proposed structure has an additional benefit in that it can be fabricated much longer than the standing wave ones that are limited by the field flatness factor. Taken together, all of these factors will result in a significant overall length and, correspondingly cost reduction of the SRF based linear collider ILC or SRF technology based FELs. In Phase I of this project, a 3-cell L-band SC traveling wave cavity was designed. Cavity shape, surface field ratios, inter-cell coupling coefficients, accelerating field flatness have been reviewed with the analysis of tuning issues. Moreover, the technological aspects of SC traveling wave accelerating structure fabrication have been studied. As the next step in the project, the Phase II experimental program included engineering design, manufacturing, surface processing and high gradient testing. Euclid Techlabs, LLC contracted AES, Inc. to manufacture two niobium cavities. Euclid Techlabs cold tested traveling wave regime in the cavity, and the results showed very good agreement with mathematical model specially developed for superconducting traveling wave cavity performance analysis. Traveling wave regime was adjusted by amplitude and phase variation of input signals due to application of developed power feeding scheme. Traveling wave excitation, adjustment and detection were successfully tested. Auxiliary equipment required for high power test such as the tuner, power and measure couplers, holding plates for VTS at Fermilab were developed and successfully tested. Both TW SRF cavities were fabricated by AES, Inc. without stiffening ribs before this company closed their production facility. Currently Roark EB welding company is finishing now welding process of the cavity for the high power testing at Fermilab VTS. Successful demonstration of high gradients in the 3-cell cavity along with studies of traveling wave excitation and tuning issues is leading to successful development of superconducting traveling wave technology for ILC applications and other future high energy SC accelerators.« less

  11. Ground test challenges in the development of the Space Shuttle orbiter auxiliary power unit

    NASA Technical Reports Server (NTRS)

    Chaffee, N. H.; Lance, R. J.; Weary, D. P.

    1984-01-01

    A conventional aircraft hydraulic system design approach was selected to provide fluid power for the Space Shuttle Orbiter. Developing the power unit, known as the Auxiliary Power Unit (APU), to drive the hydraulic pumps presented a major technological challenge. A small, high speed turbine drive unit powered by catalytically decomposed hydrazine and operating in the pulse mode was selected to meet the requirement. Because of limitations of vendor test facilities, significant portions of the development, flight qualification, and postflight anomaly testing of the Orbiter APU were accomplished at the Johnson Space Center (JSC) test facilities. This paper discusses the unique requirements of attitude, gravity forces, pressure profiles, and thermal environments which had to be satisfied by the APU, and presents the unique test facility and simulation techniques employed to meet the ground test requirements. In particular, the development of the zero-g lubrication system, the development of necessary APU thermal control techniques, the accomplishment of integrated systems tests, and the postflight investigation of the APU lube oil cooler behavior are discussed.

  12. Controlled soil warming powered by alternative energy for remote field sites.

    PubMed

    Johnstone, Jill F; Henkelman, Jonathan; Allen, Kirsten; Helgason, Warren; Bedard-Haughn, Angela

    2013-01-01

    Experiments using controlled manipulation of climate variables in the field are critical for developing and testing mechanistic models of ecosystem responses to climate change. Despite rapid changes in climate observed in many high latitude and high altitude environments, controlled manipulations in these remote regions have largely been limited to passive experimental methods with variable effects on environmental factors. In this study, we tested a method of controlled soil warming suitable for remote field locations that can be powered using alternative energy sources. The design was tested in high latitude, alpine tundra of southern Yukon Territory, Canada, in 2010 and 2011. Electrical warming probes were inserted vertically in the near-surface soil and powered with photovoltaics attached to a monitoring and control system. The warming manipulation achieved a stable target warming of 1.3 to 2 °C in 1 m(2) plots while minimizing disturbance to soil and vegetation. Active control of power output in the warming plots allowed the treatment to closely match spatial and temporal variations in soil temperature while optimizing system performance during periods of low power supply. Active soil heating with vertical electric probes powered by alternative energy is a viable option for remote sites and presents a low-disturbance option for soil warming experiments. This active heating design provides a valuable tool for examining the impacts of soil warming on ecosystem processes.

  13. Randomized controlled trial of toothbrushing to reduce ventilator-associated pneumonia pathogens and dental plaque in a critical care unit.

    PubMed

    Needleman, Ian G; Hirsch, Nicholas P; Leemans, Michele; Moles, David R; Wilson, Michael; Ready, Derren R; Ismail, Salim; Ciric, Lena; Shaw, Michael J; Smith, Martin; Garner, Anne; Wilson, Sally

    2011-03-01

    To investigate the effect of a powered toothbrush on colonization of dental plaque by ventilator-associated pneumonia (VAP)-associated organisms and dental plaque removal. Parallel-arm, single-centre, examiner- and analyst-masked randomized controlled trial. Forty-six adults were recruited within 48 h of admission. Test intervention: powered toothbrush, control intervention: sponge toothette, both used four times per day for 2 min. Groups received 20 ml, 0.2% chlorhexidine mouthwash at each time point. The results showed a low prevalence of respiratory pathogens throughout with no statistically significant differences between groups. A highly statistically significantly greater reduction in dental plaque was produced by the powered toothbrush compared with the control treatment; mean plaque index at day 5, powered toothbrush 0.75 [95% confidence interval (CI) 0.53, 1.00], sponge toothette 1.35 (95% CI 0.95, 1.74), p=0.006. Total bacterial viable count was also highly statistically significantly lower in the test group at day 5; Log(10) mean total bacterial counts: powered toothbrush 5.12 (95% CI 4.60, 5.63), sponge toothette 6.61 (95% CI 5.93, 7.28), p=0.002. Powered toothbrushes are highly effective for plaque removal in intubated patients in a critical unit and should be tested for their potential to reduce VAP incidence and health complications. © 2011 John Wiley & Sons A/S.

  14. Aural detection of small propeller-driven aircraft

    DOT National Transportation Integrated Search

    1987-10-31

    The Federal Aviation Administration (FAA) has conducted numerous flight tests of small propeller-driven aircraft in support of developing aircraft noise regulations. Those test typically measured ground-level noise resulting from high power/high RPM ...

  15. AC power system breadboard

    NASA Technical Reports Server (NTRS)

    Wappes, Loran J.; Sundberg, R.; Mildice, J.; Peterson, D.; Hushing, S.

    1987-01-01

    The object of this program was to design, build, test, and deliver a high-frequency (20-kHz) Power System Breadboard which would electrically approximate a pair of dual redundant power channels of an IOC Space Station. This report describes that program, including the technical background, and discusses the results, showing that the major assumptions about the characteristics of this class of hardware (size, mass, efficiency, control, etc.) were substantially correct. This testbed equipment has been completed and delivered to LeRC, where it is operating as a part of the Space Station Power System Test Facility.

  16. A high efficiency C-band internally-matched harmonic tuning GaN power amplifier

    NASA Astrophysics Data System (ADS)

    Lu, Y.; Zhao, B. C.; Zheng, J. X.; Zhang, H. S.; Zheng, X. F.; Ma, X. H.; Hao, Y.; Ma, P. J.

    2016-09-01

    In this paper, a high efficiency C-band gallium nitride (GaN) internally-matched power amplifier (PA) is presented. This amplifier consists of 2-chips of self-developed GaN high-electron mobility transistors (HEMTs) with 16 mm total gate width on SiC substrate. New harmonic manipulation circuits are induced both in the input and output matching networks for high efficiency matching at fundamental and 2nd-harmonic frequency, respectively. The developed amplifier has achieved 72.1% power added efficiency (PAE) with 107.4 W output power at 5 GHz. To the best of our knowledge, this amplifier exhibits the highest PAE in C-band GaN HEMT amplifiers with over 100 W output power. Additionally, 1000 hours' aging test reveals high reliability for practical applications.

  17. Power management and distribution system for a More-Electric Aircraft (MADMEL) -- Program status

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maldonado, M.A.; Shah, N.M.; Cleek, K.J.

    1995-12-31

    A number of technology breakthroughs in recent years have rekindled the concept of a more-electric aircraft. High-power solid-state switching devices, electrohydrostatic actuators (EHAs), electromechanical actuators (EMAs), and high-power generators are just a few examples of component developments that have made dramatic improvements in properties such as weight, size, power, and cost. However, these components cannot be applied piecemeal. A complete, and somewhat revolutionary, system design approach is needed to exploit the benefits that a more-electric aircraft can provide. A five-phase Power Management and Distribution System for a More-Electric Aircraft (MADMEL) program was awarded by the Air Force to the Northrop/Grumman,more » Military Aircraft Division team in September 1991. The objective of the program is to design, develop, and demonstrate an advanced electrical power generation and distribution system for a more-electric aircraft (MEA). The MEA emphasizes the use of electrical power in place of hydraulics, pneumatic, and mechanical power to optimize the performance and life cycle cost of the aircraft. This paper presents an overview of the MADMEL program and a top-level summary of the program results, development and testing of major components to date. In Phase 1 and Phase 2 studies, the electrical load requirements were established and the electrical power system architecture was defined for both near-term (NT-year 1996) and far-term (FT-year 2003) MEA application. The detailed design and specification for the electrical power system (EPS), its interface with the Vehicle Management System, and the test set-up were developed under the recently completed Phase 3. The subsystem level hardware fabrication and testing will be performed under the on-going Phase 4 activities. The overall system level integration and testing will be performed in Phase 5.« less

  18. Design and testing of high temperature micro-ORC test stand using Siloxane as working fluid

    NASA Astrophysics Data System (ADS)

    Turunen-Saaresti, Teemu; Uusitalo, Antti; Honkatukia, Juha

    2017-03-01

    Organic Rankine Cycle is a mature technology for many applications e.g. biomass power plants, waste heat recovery and geothermal power for larger power capacity. Recently more attention is paid on an ORC utilizing high temperature heat with relatively low power. One of the attractive applications of such ORCs would be utilization of waste heat of exhaust gas of combustion engines in stationary and mobile applications. In this paper, a design procedure of the ORC process is described and discussed. The analysis of the major components of the process, namely the evaporator, recuperator, and turbogenerator is done. Also preliminary experimental results of an ORC process utilizing high temperature exhaust gas heat and using siloxane MDM as a working fluid are presented and discussed. The turbine type utilized in the turbogenerator is a radial inflow turbine and the turbogenerator consists of the turbine, the electric motor and the feed pump. Based on the results, it was identified that the studied system is capable to generate electricity from the waste heat of exhaust gases and it is shown that high molecular weight and high critical temperature fluids as the working fluids can be utilized in high-temperature small-scale ORC applications. 5.1 kW of electric power was generated by the turbogenerator.

  19. Design and operating experience of a 40 MW, highly-stabilized power supply

    NASA Astrophysics Data System (ADS)

    Boenig, Heinrich J.; Ferner, James A.; Bogdan, Ferenc; Morris, Gary C.; Rumrill, Ron S.

    Four 10 MW, highly-stabilized power supply modules have been installed at the National High Magnetic Field Laboratory in Tallahassee, FL, to energize water-cooled, resistive, high-field research magnets. The power supply modules achieve a long term current stability if 10 ppM over a 12 h period with a short term ripple and noise variation of less than 10 ppM over a time period of one cycle. The power supply modules can operate independently, feeding four separate magnets, or two, three or four modules can operate in parallel. Each power supply module consists of a 12.5 kV vacuum circuit breaker, two three-winding, step-down transformers, a 24-pulse rectifier with interphase reactors, and a passive and an active filter. Two different transformer tap settings allow rated dc supply output voltages of 400 and 500 V. The rated current of a supply module is 17 kA and each supply module has a one-hour overload capability of 20 kA. The isolated output terminals of each power supply module are connected to a reversing switch. An extensive high-current bus system allows the modules to be connected to 16 magnet cells. This paper presents the detailed design of the power supply components. Various test results taken during the commissioning phase with a 10 MW resistive load and results taken with the research magnets are shown. The effects of the modules on the electrical supply system and the operational behavior of the power factor correction/harmonic filters are described. Included also are results of a power supply module feeding a superconducting magnet during quench propagation tests. Problems with the power supply design and solutions are presented. Some suggestions on how to improve the performance of these supplies are outlined.

  20. Surface Power Radiative Cooling Tests

    NASA Astrophysics Data System (ADS)

    Vaughn, Jason; Schneider, Todd

    2006-01-01

    Terrestrial nuclear power plants typically maintain their temperature through convective cooling, such as water and forced air. However, the space environment is a vacuum environment, typically 10-8 Torr pressure, therefore in proposed missions to the lunar surface, power plants would have to rely on radiative cooling to remove waste heat. Also, the Martian surface has a very tenuous atmosphere (e.g. ~5 Torr CO2), therefore, the main heat transfer method on the Martian surface is also radiative. Because of the lack of atmosphere on the Moon and the tenuous atmosphere on Mars, surface power systems on both the Lunar and Martian surface must rely heavily on radiative heat transfer. Because of the large temperature swings on both the lunar and the Martian surfaces, trying to radiate heat is inefficient. In order to increase power system efficiency, an effort is underway to test various combinations of materials with high emissivities to demonstrate their ability to survive these degrading atmospheres to maintain a constant radiator temperature improving surface power plant efficiency. An important part of this effort is the development of a unique capability that would allow the determination of a materials emissivity at high temperatures. A description of the test capability as well as initial data is presented.

  1. Second Magnetoplasmadynamic Thruster Workshop

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The meeting focused on progress made in establishing performance and lifetime expectations of magnetoplasmadynamic (MPD) thrusters as functions of power, propellant, and design; models for the plasma flow and electrode components; viability and transportability of quasi-steady thruster testing; engineering requirements for high power, long life thrusters; and facilities and their requirements for performance and life testing.

  2. Integrated Thermal Modules for Cooling Silicon and Silicon Carbide Power Modules

    DTIC Science & Technology

    2007-06-11

    analyses, bench tests, and motor tests comprise the program. The ITMs, in place of standard heatsinks, use a highly conductive pyrolytic graphite to...passively cool power modules. Initial results show that even simple ITMs can lower chip temperatures by 20 deg. C and 10 deg. C with engine oil and

  3. Flight Testing of the Capillary Pumped Loop 3 Experiment

    NASA Technical Reports Server (NTRS)

    Ottenstein, Laura; Butler, Dan; Ku, Jentung; Cheung, Kwok; Baldauff, Robert; Hoang, Triem

    2002-01-01

    The Capillary Pumped Loop 3 (CAPL 3) experiment was a multiple evaporator capillary pumped loop experiment that flew in the Space Shuttle payload bay in December 2001 (STS-108). The main objective of CAPL 3 was to demonstrate in micro-gravity a multiple evaporator capillary pumped loop system, capable of reliable start-up, reliable continuous operation, and heat load sharing, with hardware for a deployable radiator. Tests performed on orbit included start-ups, power cycles, low power tests (100 W total), high power tests (up to 1447 W total), heat load sharing, variable/fixed conductance transition tests, and saturation temperature change tests. The majority of the tests were completed successfully, although the experiment did exhibit an unexpected sensitivity to shuttle maneuvers. This paper describes the experiment, the tests performed during the mission, and the test results.

  4. Affected sib pair tests in inbred populations.

    PubMed

    Liu, W; Weir, B S

    2004-11-01

    The affected-sib-pair (ASP) method for detecting linkage between a disease locus and marker loci was first established 50 years ago, and since then numerous modifications have been made. We modify two identity-by-state (IBS) test statistics of Lange (Lange, 1986a, 1986b) to allow for inbreeding in the population. We evaluate the power and false positive rates of the modified tests under three disease models, using simulated data. Before estimating false positive rates, we demonstrate that IBS tests are tests of both linkage and linkage disequilibrium between marker and disease loci. Therefore, the null hypothesis of IBS tests should be no linkage and no LD. When the population inbreeding coefficient is large, the false positive rates of Lange's tests become much larger than the nominal value, while those of our modified tests remain close to the nominal value. To estimate power with a controlled false positive rate, we choose the cutoff values based on simulated datasets under the null hypothesis, so that both Lange's tests and the modified tests generate same false positive rate. The powers of Lange's z-test and our modified z-test are very close and do not change much with increasing inbreeding. The power of the modified chi-square test also stays stable when the inbreeding coefficient increases. However, the power of Lange's chi-square test increases with increasing inbreeding, and is larger than that of our modified chi-square test for large inbreeding coefficients. The power is high under a recessive disease model for both Lange's tests and the modified tests, though the power is low for additive and dominant disease models. Allowing for inbreeding is therefore appropriate, at least for diseases known to be recessive.

  5. Silicon Carbide MOSFET-Based Switching Power Amplifier for Precision Magnet Control

    NASA Astrophysics Data System (ADS)

    Miller, Kenneth; Ziemba, Timothy; Prager, James; Picard, Julian

    2016-10-01

    Eagle Harbor Technologies, Inc. (EHT) is using the latest in solid-state switching technologies to advance the state-of-the-art in magnet control for fusion science. Silicon carbide (SiC) MOSFETs offer advantages over IGBTs including lower drive energy requirements, lower conduction and switching losses, and higher switching frequency capabilities. When comparing SiC and traditional silicon-based MOSFETs, SiC MOSFETs provide higher current carrying capability allowing for smaller package weights and sizes and lower operating temperature. To validate the design, EHT has developed a low-power switching power amplifier (SPA), which has been used for precision control of magnetic fields, including rapidly changing the fields in coils. This design has been incorporated in to a high power SPA, which has been bench tested. This high power SPA will be tested at the Helicity Injected Torus (HIT) at the University of Washington. Following successful testing, EHT will produce enough SiC MOSFET-based SPAs to replace all of the units at HIT, which allows for higher frequency operation and an overall increase in pulsed current levels.

  6. Methods to Measure, Predict and Relate Friction, Wear and Fuel Economy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gravante, Steve; Fenske, George; Demas, Nicholas

    High-fidelity measurements of the coefficient of friction and the parasitic friction power of the power cylinder components have been made for the Isuzu 5.2L 4H on-highway engine. In particular, measurements of the asperity friction coefficient were made with test coupons using Argonne National Lab’s (ANL) reciprocating test rig for the ring-on-liner and skirt-on-liner component pairs. These measurements correlated well with independent measurements made by Electro-Mechanical Associates (EMA). In addition, surface roughness measurements of the Isuzu components were made using white light interferometer (WLI). The asperity friction and surface characterization are key inputs to advanced CAE simulation tools such as RINGPAKmore » and PISDYN which are used to predict the friction power and wear rates of power cylinder components. Finally, motored friction tests were successfully performed to quantify the friction mean effective pressure (FMEP) of the power cylinder components for various oils (High viscosity 15W40, low viscosity 5W20 with friction modifier (FM) and specially blended oil containing consisting of PAO/ZDDP/MoDTC) at 25, 50, and 110°C.« less

  7. A 25-kW Series-Resonant Power Converter

    NASA Technical Reports Server (NTRS)

    Frye, R. J.; Robson, R. R.

    1986-01-01

    Prototype exhibited efficiency of 93.9 percent. 25-kW resonant dc/dc power converter designed, developed, fabricated, and tested, using Westinghouse D7ST transistors as high-power switches. D7ST transistor characterized for use as switch in series-resonant converters, and refined base-drive circuit developed. Technical base includes advanced switching magnetic, and filter components, mathematical circuit models, control philosophies, and switch-drive strategies. Power-system benefits such as lower losses when used for high-voltage distribution, and reduced magnetics and filter mass realized.

  8. Environmental testing of CIS based modules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Willett, D.

    1995-11-01

    This report describes environmental testing of Siemen`s CIS modules. Charts and diagrams are presented on data concerning: temporary power loss of laminated mini-modules; the 50 thermal cycle test; the 10 humidity freeze cycle test; results after 1000 hours of exposure to damp heat; and interconnect test structures in damp heat testing. It is concluded that moisture ingress causes permanent increases in the series resistance of modules, and that improved packaging is needed for better high humidity reliability. Also, dry dark heat caused temporary power losses which were recovered in sunlight.

  9. A High-power Electric Propulsion Test Platform in Space

    NASA Technical Reports Server (NTRS)

    Petro, Andrew J.; Reed, Brian; Chavers, D. Greg; Sarmiento, Charles; Cenci, Susanna; Lemmons, Neil

    2005-01-01

    This paper will describe the results of the preliminary phase of a NASA design study for a facility to test high-power electric propulsion systems in space. The results of this design study are intended to provide a firm foundation for subsequent detailed design and development activities leading to the deployment of a valuable space facility. The NASA Exploration Systems Mission Directorate is sponsoring this design project. A team from the NASA Johnson Space Center, Glenn Research Center, the Marshall Space Flight Center and the International Space Station Program Office is conducting the project. The test facility is intended for a broad range of users including government, industry and universities. International participation is encouraged. The objectives for human and robotic exploration of space can be accomplished affordably, safely and effectively with high-power electric propulsion systems. But, as thruster power levels rise to the hundreds of kilowatts and up to megawatts, their testing will pose stringent and expensive demands on existing Earth-based vacuum facilities. These considerations and the human access to near-Earth space provided by the International Space Station (ISS) have led to a renewed interest in space testing. The ISS could provide an excellent platform for a space-based test facility with the continuous vacuum conditions of the natural space environment and no chamber walls to modify the open boundary conditions of the propulsion system exhaust. The test platform could take advantage of the continuous vacuum conditions of the natural space environment. Space testing would provide open boundary conditions without walls, micro-gravity and a realistic thermal environment. Testing on the ISS would allow for direct observation of the test unit, exhaust plume and space-plasma interactions. When necessary, intervention by on-board personnel and post-test inspection would be possible. The ISS can provide electrical power, a location for diagnostic instruments, data handling and thermal control. The platform will be designed to accommodate the side-by-side testing of multiple types of electric thrusters. It is intended to be a permanent facility in which different thrusters can be tested over time. ISS crews can provide maintenance for the platform and change out thruster test units as needed. The primary objective of this platform is to provide a test facility for electric propulsion devices of interest for future exploration missions. These thrusters are expected to operate in the range of hundreds of kilowatts and above. However, a platform with this capability could also accommodate testing of thrusters that require much lower power levels. Testing at the higher power levels would be accomplished by using power fiom storage devices on the platform, which would be gradually recharged by the ISS power generation system. This paper will summarize the results of the preliminary phase of the study with an explanation of the user requirements and the initial conceptual design. The concept for test operations will also be described. The NASA project team is defining the requirements but they will also reflect the inputs of the broader electric propulsion community including those at universities, commercial enterprises and other government laboratories. As a facility on the International Space Station, the design requirements are also intended to encompass the needs of international users. Testing of electric propulsion systems on the space station will help advance the development of systems needed for exploration and could also serve the needs of other customers. Propulsion systems being developed for commercial and military applications could be tested and certification testing of mature thrusters could be accomplished in the space environment.

  10. 2-kW Solar Dynamic Space Power System Tested in Lewis' Thermal Vacuum Facility

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Working together, a NASA/industry team successfully operated and tested a complete solar dynamic space power system in a large thermal vacuum facility with a simulated sun. This NASA Lewis Research Center facility, known as Tank 6 in building 301, accurately simulates the temperatures, high vacuum, and solar flux encountered in low-Earth orbit. The solar dynamic space power system shown in the photo in the Lewis facility, includes the solar concentrator and the solar receiver with thermal energy storage integrated with the power conversion unit. Initial testing in December 1994 resulted in the world's first operation of an integrated solar dynamic system in a relevant environment.

  11. Reliable high-power injection locked 6kHz 60W laser for ArF immersion lithography

    NASA Astrophysics Data System (ADS)

    Watanabe, Hidenori; Komae, Shigeo; Tanaka, Satoshi; Nohdomi, Ryoichi; Yamazaki, Taku; Nakarai, Hiroaki; Fujimoto, Junichi; Matsunaga, Takashi; Saito, Takashi; Kakizaki, Kouji; Mizoguchi, Hakaru

    2007-03-01

    Reliable high power 193nm ArF light source is desired for the successive growth of ArF-immersion technology for 45nm node generation. In 2006, Gigaphoton released GT60A, high power injection locked 6kHz/60W/0.5pm (E95) laser system, to meet the demands of semiconductor markets. In this paper, we report key technologies for reliable mass production GT laser systems and GT60A high durability performance test results up to 20 billion pulses.

  12. Posttest data analysis and assessment of TRAC-BD1/MOD1 with data from a Full Integral Simulation Test (FIST) power transient experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wheatley, P.D.; Wagner, K.C.

    The FIST power transient test 6PMC2 was analyzed to further the understanding of the FIST facility and provide an assessment of TRAC-BD1/MOD1. FIST power transient 6PMC2 investigated the thermal-hydraulic response following inadvertent closure of the main steam isolation valve and the subsequent failure of the reactor to scram. Failure of the high pressure core spray system was also assumed, resulting on only the reactor core isolation cooling flow for inventory makeup during the transient. The experiment was a sensitivity study with relatively high core power and low makeup rates. This study provides one of the first opportunities to assess TRAC-BD1/MOD1more » under power transient and natural circulation conditions with data from a facility with prototypical BWR geometry. The power transient test was analyzed with emphasis on the following phenomena; (a) the system pressure response, (b) the natural circulation flows and rates, and (c) the heater rod cladding temperature response. Based on the results of this study, TRAC-BD1/MOD1 can be expected to calculate the thermal-hydraulic behavior of a BWR during a power transient.« less

  13. Development of low head Kaplan turbine for power station rehabilitation project

    NASA Astrophysics Data System (ADS)

    Lim, S. M.; Ohtake, N.; Kurosawa, S.; Suzuki, T.; Yamasaki, T.; Nishi, H.

    2012-11-01

    This paper presents the latest Kaplan turbine rehabilitation project for Funagira Power Station in Japan completed by J-POWER Group in collaboration with Toshiba Corporation. Area of rehabilitation was restricted to guide vane and runner. The main goal of the rehabilitation project was to expand the operating range of the existing turbine in terms of discharge and power with high operational stability, low noise as well as high cavitation performance. Computational Fluids Dynamics and model test were used to optimize the shape of guide vane and runner in development stage. Finally, field tests and runner inspection were carried out to confirm the performance of the new turbine. It was found that the new turbine has excellent performance in efficiency, power output, operational stability compared with existing turbine. Moreover, no sign of cavitation on the runner blade surface was observed after 5078 hours of operation near 100% load.

  14. A HIGH BANDWIDTH BIPOLAR POWER SUPPLY FOR THE FAST CORRECTORS IN THE APS UPGRADE*

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Ju; Sprau, Gary

    The APS Upgrade of a multi-bend achromat (MBA) storage ring requires a fast bipolar power supply for the fast correction magnets. The key performance requirement of the power supply includes a small-signal bandwidth of 10 kHz for the output current. This requirement presents a challenge to the design because of the high inductance of the magnet load and a limited input DC voltage. A prototype DC/DC power supply utilizing a MOSFET H-bridge circuit with a 500 kHz PWM has been developed and tested successfully. The prototype achieved a 10-kHz bandwidth with less than 3-dB attenuation for a signal 0.5% ofmore » the maximum operating current of 15 amperes. This paper presents the design of the power circuit, the PWM method, the control loop, and the test results.« less

  15. Feeling High but Playing Low: Power, Need to Belong, and Submissive Behavior.

    PubMed

    Rios, Kimberly; Fast, Nathanael J; Gruenfeld, Deborah H

    2015-08-01

    Past research has demonstrated a causal relationship between power and dominant behavior, motivated in part by the desire to maintain the social distinctiveness created by one's position of power. In this article, we test the novel idea that some individuals respond to high-power roles by displaying not dominance but instead submissiveness. We theorize that high-power individuals who are also high in the need to belong experience the social distinctiveness associated with power as threatening, rather than as an arrangement to protect and maintain. We predict that such individuals will counter their feelings of threat with submissive behaviors to downplay their power and thereby reduce their distinctiveness. We found support for this hypothesis across three studies using different operationalizations of power, need to belong, and submissiveness. Furthermore, Study 3 illustrated the mediating role of fear of (positive) attention in the relationship between power, need to belong, and submissive behavior. © 2015 by the Society for Personality and Social Psychology, Inc.

  16. Signal and power roll ring testing update

    NASA Technical Reports Server (NTRS)

    Smith, Dennis W.

    1989-01-01

    The development of the roll ring as a long-life, low-torque alternative to the slip ring is discussed. A roll ring consists of one or more circular flexures captured by their own spring force in the annular space between two concentric conductors or contact rings. The advantages of roll rings over other types of electrical transfer devices are: extremely low drag torque, high transfer efficiencies in high-power configurations, extremely low wear debris generation, long life, and low weight for high-power applications.

  17. A Metric-Based Validation Process to Assess the Realism of Synthetic Power Grids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Birchfield, Adam; Schweitzer, Eran; Athari, Mir

    Public power system test cases that are of high quality benefit the power systems research community with expanded resources for testing, demonstrating, and cross-validating new innovations. Building synthetic grid models for this purpose is a relatively new problem, for which a challenge is to show that created cases are sufficiently realistic. This paper puts forth a validation process based on a set of metrics observed from actual power system cases. These metrics follow the structure, proportions, and parameters of key power system elements, which can be used in assessing and validating the quality of synthetic power grids. Though wide diversitymore » exists in the characteristics of power systems, the paper focuses on an initial set of common quantitative metrics to capture the distribution of typical values from real power systems. The process is applied to two new public test cases, which are shown to meet the criteria specified in the metrics of this paper.« less

  18. A Metric-Based Validation Process to Assess the Realism of Synthetic Power Grids

    DOE PAGES

    Birchfield, Adam; Schweitzer, Eran; Athari, Mir; ...

    2017-08-19

    Public power system test cases that are of high quality benefit the power systems research community with expanded resources for testing, demonstrating, and cross-validating new innovations. Building synthetic grid models for this purpose is a relatively new problem, for which a challenge is to show that created cases are sufficiently realistic. This paper puts forth a validation process based on a set of metrics observed from actual power system cases. These metrics follow the structure, proportions, and parameters of key power system elements, which can be used in assessing and validating the quality of synthetic power grids. Though wide diversitymore » exists in the characteristics of power systems, the paper focuses on an initial set of common quantitative metrics to capture the distribution of typical values from real power systems. The process is applied to two new public test cases, which are shown to meet the criteria specified in the metrics of this paper.« less

  19. Design and experiment of a directional coupler for X-band long pulse high power microwaves.

    PubMed

    Bai, Zhen; Li, Guolin; Zhang, Jun; Jin, Zhenxing

    2013-03-01

    Higher power and longer pulse are the trend of the development of high power microwave (HPM), and then some problems emerge in measuring the power of HPM because rf breakdown is easier to occur under the circumstance of high power (the level of gigawatt) and long pulse (about 100 ns). In order to measure the power of the dominant TM₀₁ mode of an X-band long pulse overmoded HPM source, a directional coupler with stable coupling coefficient, high directivity, and high power handling capacity in wide band is investigated numerically and experimentally. At the central frequency 9.4 GHz, the simulation results show that the coupling coefficient is -59.6 dB with the directivity of 35 dB and the power handling capacity of 2 GW. The coupling coefficient is calibrated to be accordant with the simulation results. The high power tests are performed on an X-band long pulse HPM source, whose output mode is mainly TM₀₁ mode, and the results show that the measured power and waveform of the directional coupler have a good consistency with the far-field measuring results.

  20. Two-step activation of paper batteries for high power generation: design and fabrication of biofluid- and water-activated paper batteries

    NASA Astrophysics Data System (ADS)

    Lee, Ki Bang

    2006-11-01

    Two-step activation of paper batteries has been successfully demonstrated to provide quick activation and to supply high power to credit card-sized biosystems on a plastic chip. A stack of a magnesium layer (an anode), a fluid guide (absorbent paper), a highly doped filter paper with copper chloride (a cathode) and a copper layer as a current collector is laminated between two transparent plastic films into a high power biofluid- and water-activated battery. The battery is activated by two-step activation: (1) after placing a drop of biofluid/water-based solution on the fluid inlet, the surface tension first drives the fluid to soak the fluid guide; (2) the fluid in the fluid guide then penetrates into the heavily doped filter paper with copper chloride to start the battery reaction. The fabricated half credit card-sized battery was activated by saliva, urine and tap water and delivered a maximum voltage of 1.56 V within 10 s after activation and a maximum power of 15.6 mW. When 10 kΩ and 1 KΩ loads are used, the service time with water, urine and saliva is measured as more than 2 h. An in-series battery of 3 V has been successfully tested to power two LEDs (light emitting diodes) and an electric driving circuit. As such, this high power paper battery could be integrated with on-demand credit card-sized biosystems such as healthcare test kits, biochips, lab-on-a-chip, DNA chips, protein chips or even test chips for water quality checking or chemical checking.

  1. Report of the Power Sub systems Panel. [spacecraft instrumentation technology

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Problems in spacecraft power system design, testing, integration, and operation are identified and solutions are defined. The specific technology development problems discussed include substorm and plasma design data, modeling of the power subsystem and components, power system monitoring and degraded system management, rotary joints for transmission of power and signals, nickel cadmium battery manufacturing and application, on-array power management, high voltage technology, and solar arrays.

  2. [The influence of high-tone power therapy on the functional status of patients with multiple sclerosis].

    PubMed

    Kubsik, Anna; Klimkiewicz, Paulina; Klimkiewicz, Robert; Jankowska, Katarzyna; Jankowska, Agnieszka; Woldańska-Okońska, Marta

    2014-07-01

    Multiple sclerosis is a chronic, inflammatory, demyelinating disease of the central nervous system, which is characterized by diverse symptomatology. Most often affects people at a young age gradually leading to their disability. Looking for new therapies to alleviate neurological deficits caused by the disease. One of the alternative methods of therapy is high - tone power therapy. The article is a comparison of high-tone power therapy and kinesis in improving patients with multiple sclerosis. The aim of this study was to evaluate the effectiveness of high-tone power therapy and exercises in kinesis on the functional status of patients with multiple sclerosis. The study involved 20 patients with multiple sclerosis, both sexes, treated at the Department of Rehabilitation and Physical Medicine in Lodz. Patients were randomly divided into two groups studied. In group high-tone power therapy applied for 60 minutes, while in group II were used exercises for kinesis. Treatment time for both groups of patients was 15 days. To assess the functional status scale was used: Expanded Disability Status Scale of Kurtzke (EDSS), as well as by Barthel ADL Index. Assessment of quality of life were made using MSQOL Questionnaire-54. For the evaluation of gait and balance using Tinetti scale, and pain VAS rated, and Laitinen. Changes in muscle tone was assessed on the basis of the Ashworth scale. Both group I and II improved on scales conducted before and after therapy. In group I, in which the applied high-tone power therapy, reported statistically significant results in 9 out of 10 tested parameters, while in group II, which was used in the exercises in kinesis an improvement in 6 out of 10 tested parameters. Correlating the results of both the test groups in relation to each other did not show statistically significant differences. High-Tone Power Therapy beneficial effect on the functional status of patients with multiple sclerosis. Obtaining results in terms of number of tested parameters allows for the use of this therapy in the comprehensive improvement of patients with multiple sclerosis. Exercises from the scheme kinesis favorable impact on the functional status of patients with MS and are essential in the rehabilitation of these patients. In any group, no adverse effects were observed.

  3. Measurement technology of RF interference current in high current system

    NASA Astrophysics Data System (ADS)

    Zhao, Zhihua; Li, Jianxuan; Zhang, Xiangming; Zhang, Lei

    2018-06-01

    Current probe is a detection method commonly used in electromagnetic compatibility. With the development of power electronics technology, the power level of power conversion devices is constantly increasing, and the power current of the electric energy conversion device in the electromagnetic launch system can reach 10kA. Current probe conventionally used in EMC (electromagnetic compatibility) detection cannot meet the test requirements on high current system due to the magnetic saturation problem. The conventional high current sensor is also not suitable for the RF (Radio Frequency) interference current measurement in high current power device due to the high noise level in the output of active amplifier. In this paper, a passive flexible current probe based on Rogowski coil and matching resistance is proposed that can withstand high current and has low noise level, to solve the measurement problems of interference current in high current power converter. And both differential mode and common mode current detection can be easily carried out with the proposed probe because of the probe's flexible structure.

  4. High Pressure Regenerative Turbine Engine: 21st Century Propulsion

    NASA Technical Reports Server (NTRS)

    Lear, W. E.; Laganelli, A. L.; Senick, Paul (Technical Monitor)

    2001-01-01

    A novel semi-closed cycle gas turbine engine was demonstrated and was found to meet the program goals. The proof-of-principle test of the High Pressure Regenerative Turbine Engine produced data that agreed well with models, enabling more confidence in designing future prototypes based on this concept. Emission levels were significantly reduced as predicted as a natural attribute of this power cycle. Engine testing over a portion of the operating range allowed verification of predicted power increases compared to the baseline.

  5. In Vivo Demonstration of a Self-Sustaining, Implantable, Stimulated-Muscle-Powered Piezoelectric Generator Prototype

    PubMed Central

    Lewandowski, B. E.; Kilgore, K. L.; Gustafson, K. J.

    2010-01-01

    An implantable, stimulated-muscle-powered piezoelectric active energy harvesting generator was previously designed to exploit the fact that the mechanical output power of muscle is substantially greater than the electrical power necessary to stimulate the muscle’s motor nerve. We reduced to practice the concept by building a prototype generator and stimulator. We demonstrated its feasibility in vivo, using rabbit quadriceps to drive the generator. The generated power was sufficient for self-sustaining operation of the stimulator and additional harnessed power was dissipated through a load resistor. The prototype generator was developed and the power generating capabilities were tested with a mechanical muscle analog. In vivo generated power matched the mechanical muscle analog, verifying its usefulness as a test-bed for generator development. Generator output power was dependent on the muscle stimulation parameters. Simulations and in vivo testing demonstrated that for a fixed number of stimuli/minute, two stimuli applied at a high frequency generated greater power than single stimuli or tetanic contractions. Larger muscles and circuitry improvements are expected to increase available power. An implanted, self-replenishing power source has the potential to augment implanted battery or transcutaneously powered electronic medical devices. PMID:19657742

  6. Electric prototype power processor for a 30cm ion thruster

    NASA Technical Reports Server (NTRS)

    Biess, J. J.; Inouye, L. Y.; Schoenfeld, A. D.

    1977-01-01

    An electrical prototype power processor unit was designed, fabricated and tested with a 30 cm mercury ion engine for primary space propulsion. The power processor unit used the thyristor series resonant inverter as the basic power stage for the high power beam and discharge supplies. A transistorized series resonant inverter processed the remaining power for the low power outputs. The power processor included a digital interface unit to process all input commands and internal telemetry signals so that electric propulsion systems could be operated with a central computer system. The electrical prototype unit included design improvement in the power components such as thyristors, transistors, filters and resonant capacitors, and power transformers and inductors in order to reduce component weight, to minimize losses, and to control the component temperature rise. A design analysis for the electrical prototype is also presented on the component weight, losses, part count and reliability estimate. The electrical prototype was tested in a thermal vacuum environment. Integration tests were performed with a 30 cm ion engine and demonstrated operational compatibility. Electromagnetic interference data was also recorded on the design to provide information for spacecraft integration.

  7. 0.15 {mu}m InGaAs/AlGaAs/GaAs HEMT production process for high performance and high yield v-band power MMICs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lai, R.; Biedenbender, M.; Lee, J.

    1995-12-31

    The authors present a unique high yield, high performance 0.15 {mu}m HEMT production process which supports fabrication of MMW power MMICs up to 70 GHz. This process has been transferred successfully from an R&D process to TRW`s GaAs production line. This paper reports the on-wafer test results of more than 1300 V-band MMIC PA circuits measured over 24 wafers. The best 2-stage V-band power MMICs have demonstrated state-of-the-art performance with 9 dB power gain, 20% PAE and 330 mW output power. An excellent RF yield of 60% was achieved with an 8 dB power gain and 250 mW output powermore » specification.« less

  8. A Summary of Closed Brayton Cycle Development Activities at NASA

    NASA Technical Reports Server (NTRS)

    Mason, Lee S.

    2009-01-01

    NASA has been involved in the development of Closed Brayton Cycle (CBC) power conversion technology since the 1960's. CBC systems can be coupled to reactor, isotope, or solar heat sources and offer the potential for high efficiency, long life, and scalability to high power. In the 1960's and 1970's, NASA and industry developed the 10 kW Brayton Rotating Unit (BRU) and the 2 kW mini-BRU demonstrating technical feasibility and performance, In the 1980's, a 25 kW CBC Solar Dynamic (SD) power system option was developed for Space Station Freedom and the technology was demonstrated in the 1990's as part of the 2 kW SO Ground Test Demonstration (GTD). Since the early 2000's, NASA has been pursuing CBC technology for space reactor applications. Before it was cancelled, the Jupiter Icy Moons Orbiter (HMO) mission was considering a 100 kWclass CBC system coupled to a gas-cooled fission reactor. Currently, CBC technology is being explored for Fission Surface Power (FSP) systems to provide base power on the moon and Mars. These recent activities have resulted in several CBC-related technology development projects including a 50 kW Alternator Test Unit, a 20 kW Dual Brayton Test Loop, a 2 kW Direct Drive Gas Brayton Test Loop, and a 12 kW FSP Power Conversion Unit design.

  9. High performance TWT development for the microwave power module

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whaley, D.R.; Armstrong, C.M.; Groshart, G.

    1996-12-31

    Northrop Grumman`s ongoing development of microwave power modules (MPM) provides microwave power at various power levels, frequencies, and bandwidths for a variety of applications. Present day requirements for the vacuum power booster traveling wave tubes of the microwave power module are becoming increasingly more demanding, necessitating the need for further enhancement of tube performance. The MPM development program at Northrop Grumman is designed specifically to meet this need by construction and test of a series of new tubes aimed at verifying computation and reaching high efficiency design goals. Tubes under test incorporate several different helix designs, as well as varyingmore » electron gun and magnetic confinement configurations. Current efforts also include further development of state-of-the-art TWT modeling and computational methods at Northrop Grumman incorporating new, more accurate models into existing design tools and developing new tools to be used in all aspects of traveling wave tube design. Current status of the Northrop Grumman MPM TWT development program will be presented.« less

  10. Helical screw expander evaluation project

    NASA Technical Reports Server (NTRS)

    Mckay, R.

    1982-01-01

    A one MW helical rotary screw expander power system for electric power generation from geothermal brine was evaluated. The technology explored in the testing is simple, potentially very efficient, and ideally suited to wellhead installations in moderate to high enthalpy, liquid dominated field. A functional one MW geothermal electric power plant that featured a helical screw expander was produced and then tested with a demonstrated average performance of approximately 45% machine efficiency over a wide range of test conditions in noncondensing, operation on two-phase geothermal fluids. The Project also produced a computer equipped data system, an instrumentation and control van, and a 1000 kW variable load bank, all integrated into a test array designed for operation at a variety of remote test sites. Data are presented for the Utah testing and for the noncondensing phases of the testing in Mexico. Test time logged was 437 hours during the Utah tests and 1101 hours during the Mexico tests.

  11. Phase I Final Scientific Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Xijia; Fetvedt, Jeremy; Dimmig, Walker

    This Final Scientific Report addresses the accomplishments achieved during Phase I of DE- FE0023985, Coal Syngas Combustor Development for Supercritical CO 2 Power Cycles. The primary objective of the project was to develop a coal syngas-fueled combustor design for use with high-pressure, high-temperature, oxy-fuel, supercritical CO 2 power cycles, with particular focus given to the conditions required by the Allam Cycle. The primary goals, from the Statement of Project Objectives, were to develop: (1) a conceptual design of a syngas-fueled combustor-turbine block for a 300MWe high-pressure, oxy-fuel, sCO2 power plant; (2) the preliminary design of a 5MWt test combustor; andmore » (3) the definition of a combustor test program. Accomplishments for each of these goals are discussed in this report.« less

  12. Diagnosis of power fade mechanisms in high-power lithium-ion cells

    NASA Astrophysics Data System (ADS)

    Abraham, D. P.; Liu, J.; Chen, C. H.; Hyung, Y. E.; Stoll, M.; Elsen, N.; MacLaren, S.; Twesten, R.; Haasch, R.; Sammann, E.; Petrov, I.; Amine, K.; Henriksen, G.

    Hybrid electric vehicles (HEV) need long-lived high-power batteries as energy storage devices. Batteries based on lithium-ion technology can meet the high-power goals but have been unable to meet HEV calendar-life requirements. As part of the US Department of Energy's Advanced Technology Development (ATD) Program, diagnostic studies are being conducted on 18650-type lithium-ion cells that were subjected to accelerated aging tests at temperatures ranging from 40 to 70 °C. This article summarizes data obtained by gas chromatography, liquid chromatography, electron microscopy, X-ray spectroscopy and electrochemical techniques, and identifies cell components that are responsible for the observed impedance rise and power fade.

  13. Initial results for a 170 GHz high power ITER waveguide component test stand

    NASA Astrophysics Data System (ADS)

    Bigelow, Timothy; Barker, Alan; Dukes, Carl; Killough, Stephen; Kaufman, Michael; White, John; Bell, Gary; Hanson, Greg; Rasmussen, Dave

    2014-10-01

    A high power microwave test stand is being setup at ORNL to enable prototype testing of 170 GHz cw waveguide components being developed for the ITER ECH system. The ITER ECH system will utilize 63.5 mm diameter evacuated corrugated waveguide and will have 24 >150 m long runs. A 170 GHz 1 MW class gyrotron is being developed by Communications and Power Industries and is nearing completion. A HVDC power supply, water-cooling and control system has been partially tested in preparation for arrival of the gyrotron. The power supply and water-cooling system are being designed to operate for >3600 second pulses to simulate the operating conditions planned for the ITER ECH system. The gyrotron Gaussian beam output has a single mirror for focusing into a 63.5 mm corrugated waveguide in the vertical plane. The output beam and mirror are enclosed in an evacuated duct with absorber for stray radiation. Beam alignment with the waveguide is a critical task so a combination of mirror tilt adjustments and a bellows for offsets will be provided. Analysis of thermal patterns on thin witness plates will provide gyrotron mode purity and waveguide coupling efficiency data. Pre-prototype waveguide components and two dummy loads are available for initial operational testing of the gyrotron. ORNL is managed by UT-Battelle, LLC, for the U.S. Dept. of Energy under Contract DE-AC-05-00OR22725.

  14. NASA's New High Intensity Solar Environment Test Capability

    NASA Technical Reports Server (NTRS)

    Schneider, Todd A.; Vaughn, Jason A.; Wright, Kenneth H.

    2012-01-01

    Across the world, new spaceflight missions are being designed and executed that will place spacecraft and instruments into challenging environments throughout the solar system. To aid in the successful completion of these new missions, NASA has developed a new flexible space environment test platform. The High Intensity Solar Environment Test (HISET) capability located at NASA fs Marshall Space Flight Center provides scientists and engineers with the means to test spacecraft materials and systems in a wide range of solar wind and solar photon environments. Featuring a solar simulator capable of delivering approximately 1 MW/m2 of broad spectrum radiation at maximum power, HISET provides a means to test systems or components that could explore the solar corona. The solar simulator consists of three high-power Xenon arc lamps that can be operated independently over a range of power to meet test requirements; i.e., the lamp power can be greatly reduced to simulate the solar intensity at several AU. Integral to the HISET capability are charged particle sources that can provide a solar wind (electron and proton) environment. Used individually or in combination, the charged particle sources can provide fluxes ranging from a few nA/cm2 to 100s of nA/cm2 over an energy range of 50 eV to 100 keV for electrons and 100 eV to 30 keV for protons. Anchored by a high vacuum facility equipped with a liquid nitrogen cold shroud for radiative cooling scenarios, HISET is able to accommodate samples as large as 1 meter in diameter. In this poster, details of the HISET capability will be presented, including the wide ]ranging configurability of the system.

  15. Note: An online testing method for lifetime projection of high power light-emitting diode under accelerated reliability test.

    PubMed

    Chen, Qi; Chen, Quan; Luo, Xiaobing

    2014-09-01

    In recent years, due to the fast development of high power light-emitting diode (LED), its lifetime prediction and assessment have become a crucial issue. Although the in situ measurement has been widely used for reliability testing in laser diode community, it has not been applied commonly in LED community. In this paper, an online testing method for LED life projection under accelerated reliability test was proposed and the prototype was built. The optical parametric data were collected. The systematic error and the measuring uncertainty were calculated to be within 0.2% and within 2%, respectively. With this online testing method, experimental data can be acquired continuously and sufficient amount of data can be gathered. Thus, the projection fitting accuracy can be improved (r(2) = 0.954) and testing duration can be shortened.

  16. A Ratio Test of Interrater Agreement with High Specificity

    ERIC Educational Resources Information Center

    Cousineau, Denis; Laurencelle, Louis

    2015-01-01

    Existing tests of interrater agreements have high statistical power; however, they lack specificity. If the ratings of the two raters do not show agreement but are not random, the current tests, some of which are based on Cohen's kappa, will often reject the null hypothesis, leading to the wrong conclusion that agreement is present. A new test of…

  17. Interpreting Space-Mission LET Requirements for SEGR in Power MOSFETs

    NASA Technical Reports Server (NTRS)

    Lauenstein, J. M.; Ladbury, R. L.; Batchelor, D. A.; Goldsman, N.; Kim, H. S.; Phan, A. M.

    2010-01-01

    A Technology Computer Aided Design (TCAD) simulation-based method is developed to evaluate whether derating of high-energy heavy-ion accelerator test data bounds the risk for single-event gate rupture (SEGR) from much higher energy on-orbit ions for a mission linear energy transfer (LET) requirement. It is shown that a typical derating factor of 0.75 applied to a single-event effect (SEE) response curve defined by high-energy accelerator SEGR test data provides reasonable on-orbit hardness assurance, although in a high-voltage power MOSFET, it did not bound the risk of failure.

  18. A High Power Helicon Antenna Design for DIII-D

    DOE PAGES

    Nagy, A.; deGrassie, J.; Moeller, C.; ...

    2017-08-02

    A new antenna design for driving current in high beta tokamaks using electromagnetic waves, called Helicons, will be experimentally tested for the first time at power approaching 1 megawatt (MW) in the DIII-D Tokamak. This method is expected to be more efficient than current drive using electron cyclotron waves or neutral beam injection, and may be well suited to reactor-like configurations. A low power (100 watt (W)) 476 megahertz (MHz) “comb-line” antenna, consisting of 12 inductively coupled electrostatically shielded, modular resonators, was tested in DIII-D and showed strong coupling to the plasma without disturbing its characteristics or introducing metal impurities.more » The high power antenna consists of 30 modules affixed to back-plates and mounted on the outer wall of the vacuum vessel above the mid-plane. The antenna design follows a similar low power antenna design modified to minimize RF loss. Heat removal is provided by water cooling and a novel heat conducting path using pyrolytic graphite sheet. The CuCrZr antenna modules are designed to handle high eddy current forces. The modules use molybdenum Faraday shields that have the plasma side coated with boron carbide to enhance thermal resistance and minimize high Z impurities. A RF strip-line feed routes the RF power from coaxial vacuum feed-throughs to the antenna. Multipactor analysis of the antenna, strip line, and feedthrough will be performed. A 1.2 MW, 476 MHz klystron system, provided by the Stanford Linear Accelerator (SLAC) will provide RF power to the new antenna. Lastly, a description of the design of the high power antenna, the RF strip-line feeds, and the vessel installation will be presented.« less

  19. A High Power Helicon Antenna Design for DIII-D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagy, A.; deGrassie, J.; Moeller, C.

    A new antenna design for driving current in high beta tokamaks using electromagnetic waves, called Helicons, will be experimentally tested for the first time at power approaching 1 megawatt (MW) in the DIII-D Tokamak. This method is expected to be more efficient than current drive using electron cyclotron waves or neutral beam injection, and may be well suited to reactor-like configurations. A low power (100 watt (W)) 476 megahertz (MHz) “comb-line” antenna, consisting of 12 inductively coupled electrostatically shielded, modular resonators, was tested in DIII-D and showed strong coupling to the plasma without disturbing its characteristics or introducing metal impurities.more » The high power antenna consists of 30 modules affixed to back-plates and mounted on the outer wall of the vacuum vessel above the mid-plane. The antenna design follows a similar low power antenna design modified to minimize RF loss. Heat removal is provided by water cooling and a novel heat conducting path using pyrolytic graphite sheet. The CuCrZr antenna modules are designed to handle high eddy current forces. The modules use molybdenum Faraday shields that have the plasma side coated with boron carbide to enhance thermal resistance and minimize high Z impurities. A RF strip-line feed routes the RF power from coaxial vacuum feed-throughs to the antenna. Multipactor analysis of the antenna, strip line, and feedthrough will be performed. A 1.2 MW, 476 MHz klystron system, provided by the Stanford Linear Accelerator (SLAC) will provide RF power to the new antenna. Lastly, a description of the design of the high power antenna, the RF strip-line feeds, and the vessel installation will be presented.« less

  20. A Robust Method of Measuring Other-Race and Other-Ethnicity Effects: The Cambridge Face Memory Test Format

    PubMed Central

    McKone, Elinor; Stokes, Sacha; Liu, Jia; Cohan, Sarah; Fiorentini, Chiara; Pidcock, Madeleine; Yovel, Galit; Broughton, Mary; Pelleg, Michel

    2012-01-01

    Other-race and other-ethnicity effects on face memory have remained a topic of consistent research interest over several decades, across fields including face perception, social psychology, and forensic psychology (eyewitness testimony). Here we demonstrate that the Cambridge Face Memory Test format provides a robust method for measuring these effects. Testing the Cambridge Face Memory Test original version (CFMT-original; European-ancestry faces from Boston USA) and a new Cambridge Face Memory Test Chinese (CFMT-Chinese), with European and Asian observers, we report a race-of-face by race-of-observer interaction that was highly significant despite modest sample size and despite observers who had quite high exposure to the other race. We attribute this to high statistical power arising from the very high internal reliability of the tasks. This power also allows us to demonstrate a much smaller within-race other ethnicity effect, based on differences in European physiognomy between Boston faces/observers and Australian faces/observers (using the CFMT-Australian). PMID:23118912

  1. Effects of frequency on gross efficiency and performance in roller ski skating.

    PubMed

    Leirdal, S; Sandbakk, O; Ettema, G

    2013-06-01

    The purpose of the present study was to examine the effect of frequency on efficiency and performance during G3 roller ski skating. Eight well-trained male cross-country skiers performed three submaximal 5-min speeds (10, 13, and 16 km/h) and a time-to-exhaustion (TTE) performance (at 20 km/h) using the G3 skating technique using freely chosen, high, and low frequency at all four speeds. All tests were done using roller skis on a large treadmill at 5% incline. Gross efficiency (GE) was calculated as power divided by metabolic rate. Power was calculated as the sum of power against frictional forces and power against gravity. Metabolic rate was calculated from oxygen consumption and blood lactate concentration. Freely chosen frequency increased from 60 to 70 strokes/min as speed increased from 10 to 20 km/h. GE increased with power. At high power (20 km/h performance test), both efficiency and performance were significantly reduced by high frequency. In regard to choice of frequency during G3 roller ski skating, cross-country skiers seems to be self-optimized both in relation to energy saving (efficiency) and performance (TTE). © 2011 John Wiley & Sons A/S.

  2. Core Dynamics Analysis for Reactivity Insertion and Loss of Coolant Flow Tests Using the High Temperature Engineering Test Reactor

    NASA Astrophysics Data System (ADS)

    Takamatsu, Kuniyoshi; Nakagawa, Shigeaki; Takeda, Tetsuaki

    Safety demonstration tests using the High Temperature Engineering Test Reactor (HTTR) are in progress to verify its inherent safety features and improve the safety technology and design methodology for High-temperature Gas-cooled Reactors (HTGRs). The reactivity insertion test is one of the safety demonstration tests for the HTTR. This test simulates the rapid increase in the reactor power by withdrawing the control rod without operating the reactor power control system. In addition, the loss of coolant flow tests has been conducted to simulate the rapid decrease in the reactor power by tripping one, two or all out of three gas circulators. The experimental results have revealed the inherent safety features of HTGRs, such as the negative reactivity feedback effect. The numerical analysis code, which was named-ACCORD-, was developed to analyze the reactor dynamics including the flow behavior in the HTTR core. We have modified this code to use a model with four parallel channels and twenty temperature coefficients. Furthermore, we added another analytical model of the core for calculating the heat conduction between the fuel channels and the core in the case of the loss of coolant flow tests. This paper describes the validation results for the newly developed code using the experimental results. Moreover, the effect of the model is formulated quantitatively with our proposed equation. Finally, the pre-analytical result of the loss of coolant flow test by tripping all gas circulators is also discussed.

  3. High-Efficiency Hall Thruster Discharge Power Converter

    NASA Technical Reports Server (NTRS)

    Jaquish, Thomas

    2015-01-01

    Busek Company, Inc., is designing, building, and testing a new printed circuit board converter. The new converter consists of two series or parallel boards (slices) intended to power a high-voltage Hall accelerator (HiVHAC) thruster or other similarly sized electric propulsion devices. The converter accepts 80- to 160-V input and generates 200- to 700-V isolated output while delivering continually adjustable 300-W to 3.5-kW power. Busek built and demonstrated one board that achieved nearly 94 percent efficiency the first time it was turned on, with projected efficiency exceeding 97 percent following timing software optimization. The board has a projected specific mass of 1.2 kg/kW, achieved through high-frequency switching. In Phase II, Busek optimized to exceed 97 percent efficiency and built a second prototype in a form factor more appropriate for flight. This converter then was integrated with a set of upgraded existing boards for powering magnets and the cathode. The program culminated with integrating the entire power processing unit and testing it on a Busek thruster and on NASA's HiVHAC thruster.

  4. Development of a Novel Guided Wave Generation System Using a Giant Magnetostrictive Actuator for Nondestructive Evaluation

    PubMed Central

    Luo, Mingzhang; Li, Weijie; Wang, Junming; Chen, Xuemin; Song, Gangbing

    2018-01-01

    As a common approach to nondestructive testing and evaluation, guided wave-based methods have attracted much attention because of their wide detection range and high detection efficiency. It is highly desirable to develop a portable guided wave testing system with high actuating energy and variable frequency. In this paper, a novel giant magnetostrictive actuator with high actuation power is designed and implemented, based on the giant magnetostrictive (GMS) effect. The novel GMS actuator design involves a conical energy-focusing head that can focus the amplified mechanical energy generated by the GMS actuator. This design enables the generation of stress waves with high energy, and the focusing of the generated stress waves on the test object. The guided wave generation system enables two kinds of output modes: the coded pulse signal and the sweep signal. The functionality and the advantages of the developed system are validated through laboratory testing in the quality assessment of rock bolt-reinforced structures. In addition, the developed GMS actuator and the supporting system are successfully implemented and applied in field tests. The device can also be used in other nondestructive testing and evaluation applications that require high-power stress wave generation. PMID:29510540

  5. Development of a Novel Guided Wave Generation System Using a Giant Magnetostrictive Actuator for Nondestructive Evaluation.

    PubMed

    Luo, Mingzhang; Li, Weijie; Wang, Junming; Wang, Ning; Chen, Xuemin; Song, Gangbing

    2018-03-04

    As a common approach to nondestructive testing and evaluation, guided wave-based methods have attracted much attention because of their wide detection range and high detection efficiency. It is highly desirable to develop a portable guided wave testing system with high actuating energy and variable frequency. In this paper, a novel giant magnetostrictive actuator with high actuation power is designed and implemented, based on the giant magnetostrictive (GMS) effect. The novel GMS actuator design involves a conical energy-focusing head that can focus the amplified mechanical energy generated by the GMS actuator. This design enables the generation of stress waves with high energy, and the focusing of the generated stress waves on the test object. The guided wave generation system enables two kinds of output modes: the coded pulse signal and the sweep signal. The functionality and the advantages of the developed system are validated through laboratory testing in the quality assessment of rock bolt-reinforced structures. In addition, the developed GMS actuator and the supporting system are successfully implemented and applied in field tests. The device can also be used in other nondestructive testing and evaluation applications that require high-power stress wave generation.

  6. Spinning Reserve From Hotel Load Response: Initial Progress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kueck, John D; Kirby, Brendan J

    2008-11-01

    This project was motivated by the fundamental match between hotel space conditioning load response capability and power system contingency response needs. As power system costs rise and capacity is strained demand response can provide a significant system reliability benefit at a potentially attractive cost. At ORNL s suggestion, Digital Solutions Inc. adapted its hotel air conditioning control technology to supply power system spinning reserve. This energy saving technology is primarily designed to provide the hotel operator with the ability to control individual room temperature set-points based upon occupancy (25% to 50% energy savings based on an earlier study [Kirby andmore » Ally, 2002]). DSI added instantaneous local load shedding capability in response to power system frequency and centrally dispatched load shedding capability in response to power system operator command. The 162 room Music Road Hotel in Pigeon Forge Tennessee agreed to host the spinning reserve test. The Tennessee Valley Authority supplied real-time metering equipment in the form of an internet connected Dranetz-BMI power quality meter and monitoring expertise to record total hotel load during both normal operations and test results. The Sevier County Electric System installed the metering. Preliminary testing showed that hotel load can be curtailed by 22% to 37% depending on the outdoor temperature and the time of day. These results are prior to implementing control over the common area air conditioning loads. Testing was also not at times of highest system or hotel loading. Full response occurred in 12 to 60 seconds from when the system operator s command to shed load was issued. The load drop was very rapid, essentially as fast as the 2 second metering could detect, with all units responding essentially simultaneously. Load restoration was ramped back in over several minutes. The restoration ramp can be adjusted to the power system needs. Frequency response testing was not completed. Initial testing showed that the units respond very quickly. Problems with local power quality generated false low frequency signals which required testing to be stopped. This should not be a problem in actual operation since the frequency trip points will be staggered to generate a droop curve which mimics generator governor response. The actual trip frequencies will also be low enough to avoid power quality problems. The actual trip frequencies are too low to generate test events with sufficient regularity to complete testing in a reasonable amount of time. Frequency response testing will resume once the local power quality problem is fully understood and reasonable test frequency settings can be determined. Overall the preliminary testing was extremely successful. The hotel response capability matches the power system reliability need, being faster than generation response and inherently available when the power system is under the most stress (times of high system and hotel load). Periodic testing is scheduled throughout the winter and spring to characterize hotel response capability under a full range of conditions. More extensive testing will resume when summer outdoor temperatures are again high enough to fully test hotel response.« less

  7. Reception-Conversion Subsystem (RXCV) for microwave power transmission system

    NASA Technical Reports Server (NTRS)

    1975-01-01

    As part of a program to demonstrate the feasibility of power transmission from space, an approximately 25 sq m Reception-Conversion Subsystem was designed and tested. The device collects high power microwave energy, converts it into dc, and dissipates it in an instrumented demonstration load.

  8. Space nuclear power systems; Proceedings of the 8th Symposium, Albuquerque, NM, Jan. 6-10, 1991. Pts. 1-3

    NASA Technical Reports Server (NTRS)

    El-Genk, Mohamed S. (Editor); Hoover, Mark D. (Editor)

    1991-01-01

    The present conference discusses NASA mission planning for space nuclear power, lunar mission design based on nuclear thermal rockets, inertial-electrostatic confinement fusion for space power, nuclear risk analysis of the Ulysses mission, the role of the interface in refractory metal alloy composites, an advanced thermionic reactor systems design code, and space high power nuclear-pumped lasers. Also discussed are exploration mission enhancements with power-beaming, power requirement estimates for a nuclear-powered manned Mars rover, SP-100 reactor design, safety, and testing, materials compatibility issues for fabric composite radiators, application of the enabler to nuclear electric propulsion, orbit-transfer with TOPAZ-type power sources, the thermoelectric properties of alloys, ruthenium silicide as a promising thermoelectric material, and innovative space-saving device for high-temperature piping systems. The second volume of this conference discusses engine concepts for nuclear electric propulsion, nuclear technologies for human exploration of the solar system, dynamic energy conversion, direct nuclear propulsion, thermionic conversion technology, reactor and power system control, thermal management, thermionic research, effects of radiation on electronics, heat-pipe technology, radioisotope power systems, and nuclear fuels for power reactors. The third volume discusses space power electronics, space nuclear fuels for propulsion reactors, power systems concepts, space power electronics systems, the use of artificial intelligence in space, flight qualifications and testing, microgravity two-phase flow, reactor manufacturing and processing, and space and environmental effects.

  9. Blue laser diode (450 nm) systems for welding copper

    NASA Astrophysics Data System (ADS)

    Silva Sa, M.; Finuf, M.; Fritz, R.; Tucker, J.; Pelaprat, J.-M.; Zediker, M. S.

    2018-02-01

    This paper will discuss the development of high power blue laser systems for industrial applications. The key development enabling high power blue laser systems is the emergence of high power, high brightness laser diodes at 450 nm. These devices have a high individual brightness rivaling their IR counterparts and they have the potential to exceed their performance and price barriers. They also have a very high To resulting in a 0.04 nm/°C wavelength shift. They have a very stable lateral far-field profile which can be combined with other diodes to achieve a superior brightness. This paper will report on the characteristics of the blue laser diodes, their integration into a modular laser system suitable for scaling the output power to the 1 kW level and beyond. Test results will be presented for welding of copper with power levels ranging from 150 Watts to 600 Watts

  10. Power Control and Monitoring Requirements for Thermal Vacuum/Thermal Balance Testing of the MAP Observatory

    NASA Technical Reports Server (NTRS)

    Johnson, Chris; Hinkle, R. Kenneth (Technical Monitor)

    2002-01-01

    The specific heater control requirements for the thermal vacuum and thermal balance testing of the Microwave Anisotropy Probe (MAP) Observatory at the Goddard Space Flight Center (GSFC) in Greenbelt, Maryland are described. The testing was conducted in the 10m wide x 18.3m high Space Environment Simulator (SES) Thermal Vacuum Facility. The MAP thermal testing required accurate quantification of spacecraft and fixture power levels while minimizing heater electrical emissions. The special requirements of the MAP test necessitated construction of five (5) new heater racks.

  11. Analysis of High Power IGBT Short Circuit Failures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pappas, G.

    2005-02-11

    The Next Linear Collider (NLC) accelerator proposal at SLAC requires a highly efficient and reliable, low cost, pulsed-power modulator to drive the klystrons. A solid-state induction modulator has been developed at SLAC to power the klystrons; this modulator uses commercial high voltage and high current Insulated Gate Bipolar Transistor (IGBT) modules. Testing of these IGBT modules under pulsed conditions was very successful; however, the IGBTs failed when tests were performed into a low inductance short circuit. The internal electrical connections of a commercial IGBT module have been analyzed to extract self and mutual partial inductances for the main current pathsmore » as well as for the gate structure. The IGBT module, together with the partial inductances, has been modeled using PSpice. Predictions for electrical paths that carry the highest current correlate with the sites of failed die under short circuit tests. A similar analysis has been carried out for a SLAC proposal for an IGBT module layout. This paper discusses the mathematical model of the IGBT module geometry and presents simulation results.« less

  12. Results of a XIPS(copyrighted) 25-cm Thruster Discharge Cathode Wear Test

    NASA Technical Reports Server (NTRS)

    Polk, James E.; Goebel, Dan M.; Tighe, William

    2009-01-01

    The Xenon Ion Propulsion System (XIPS(c)) 25-cm thruster produced by L-3 Communications Electron Technologies, Inc. offers a number of potential benefits for planetary missions, including high efficiency and high Isp over a large power throttling range and availability from an active product line. The thruster is qualified for use on commercial communications satellites, which have requirements differing from those for typical planetary missions. In particular, deep space missions require longer service life over a broad range of throttling conditions. A XIPS (c) discharge cathode assembly was subjected to a long duration test to extend operating experience at the maximum power point and at throttled conditions unique to planetary mission applications. A total of 16079 hours were accumulated at conditions corresponding to the full power engine operating point at 4.2 kWe, an intermediate power point at 2.76 kWe and the minimum power point at 0.49 kWe. Minor performance losses and cathode keeper erosion were observed at the full power point, but there were no changes in performance and negligible erosion at the intermediate and minimum power points.

  13. Application of a scattered-light radiometric power meter.

    PubMed

    Caron, James N; DiComo, Gregory P; Ting, Antonio C; Fischer, Richard P

    2011-04-01

    The power measurement of high-power continuous-wave laser beams typically calls for the use of water-cooled thermopile power meters. Large thermopile meters have slow response times that can prove insufficient to conduct certain tests, such as determining the influence of atmospheric turbulence on transmitted beam power. To achieve faster response times, we calibrated a digital camera to measure the power level as the optical beam is projected onto a white surface. This scattered-light radiometric power meter saves the expense of purchasing a large area power meter and the required water cooling. In addition, the system can report the power distribution, changes in the position, and the spot size of the beam. This paper presents the theory of the scattered-light radiometric power meter and demonstrates its use during a field test at a 2.2 km optical range. © 2011 American Institute of Physics

  14. Multi-KW dc distribution system technology research study

    NASA Technical Reports Server (NTRS)

    Dawson, S. G.

    1978-01-01

    The Multi-KW DC Distribution System Technology Research Study is the third phase of the NASA/MSFC study program. The purpose of this contract was to complete the design of the integrated technology test facility, provide test planning, support test operations and evaluate test results. The subjet of this study is a continuation of this contract. The purpose of this continuation is to study and analyze high voltage system safety, to determine optimum voltage levels versus power, to identify power distribution system components which require development for higher voltage systems and finally to determine what modifications must be made to the Power Distribution System Simulator (PDSS) to demonstrate 300 Vdc distribution capability.

  15. Magnetic suspension and balance systems (MSBSs)

    NASA Technical Reports Server (NTRS)

    Britcher, Colin P.; Kilgore, Robert A.

    1987-01-01

    The problems of wind tunnel testing are outlined, with attention given to the problems caused by mechanical support systems, such as support interference, dynamic-testing restrictions, and low productivity. The basic principles of magnetic suspension are highlighted, along with the history of magnetic suspension and balance systems. Roll control, size limitations, high angle of attack, reliability, position sensing, and calibration are discussed among the problems and limitations of the existing magnetic suspension and balance systems. Examples of the existing systems are presented, and design studies for future systems are outlined. Problems specific to large-scale magnetic suspension and balance systems, such as high model loads, requirements for high-power electromagnets, high-capacity power supplies, highly sophisticated control systems and position sensors, and high costs are assessed.

  16. Advanced development of double-injection, deep-impurity semiconductor switches

    NASA Technical Reports Server (NTRS)

    Hanes, M. H.

    1987-01-01

    Deep-impurity, double-injection devices, commonly refered to as (DI) squared devices, represent a class of semiconductor switches possessing a very high degree of tolerance to electron and neutron irradiation and to elevated temperature operation. These properties have caused them to be considered as attractive candidates for space power applications. The design, fabrication, and testing of several varieties of (DI) squared devices intended for power switching are described. All of these designs were based upon gold-doped silicon material. Test results, along with results of computer simulations of device operation, other calculations based upon the assumed mode of operation of (DI) squared devices, and empirical information regarding power semiconductor device operation and limitations, have led to the conculsion that these devices are not well suited to high-power applications. When operated in power circuitry configurations, they exhibit high-power losses in both the off-state and on-state modes. These losses are caused by phenomena inherent to the physics and material of the devices and cannot be much reduced by device design optimizations. The (DI) squared technology may, however, find application in low-power functions such as sensing, logic, and memory, when tolerance to radiation and temperature are desirable (especially is device performance is improved by incorporation of deep-level impurities other than gold.

  17. High-Average-Power Diffraction Pulse-Compression Gratings Enabling Next-Generation Ultrafast Laser Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alessi, D.

    Pulse compressors for ultrafast lasers have been identified as a technology gap in the push towards high peak power systems with high average powers for industrial and scientific applications. Gratings for ultrashort (sub-150fs) pulse compressors are metallic and can absorb a significant percentage of laser energy resulting in up to 40% loss as well as thermal issues which degrade on-target performance. We have developed a next generation gold grating technology which we have scaled to the petawatt-size. This resulted in improvements in efficiency, uniformity and processing as compared to previous substrate etched gratings for high average power. This new designmore » has a deposited dielectric material for the grating ridge rather than etching directly into the glass substrate. It has been observed that average powers as low as 1W in a compressor can cause distortions in the on-target beam. We have developed and tested a method of actively cooling diffraction gratings which, in the case of gold gratings, can support a petawatt peak power laser with up to 600W average power. We demonstrated thermo-mechanical modeling of a grating in its use environment and benchmarked with experimental measurement. Multilayer dielectric (MLD) gratings are not yet used for these high peak power, ultrashort pulse durations due to their design challenges. We have designed and fabricated broad bandwidth, low dispersion MLD gratings suitable for delivering 30 fs pulses at high average power. This new grating design requires the use of a novel Out Of Plane (OOP) compressor, which we have modeled, designed, built and tested. This prototype compressor yielded a transmission of 90% for a pulse with 45 nm bandwidth, and free of spatial and angular chirp. In order to evaluate gratings and compressors built in this project we have commissioned a joule-class ultrafast Ti:Sapphire laser system. Combining the grating cooling and MLD technologies developed here could enable petawatt laser systems to operate at 50kW average power.« less

  18. Performance of High Voltage Modules Under Abuse Operations

    NASA Technical Reports Server (NTRS)

    Jeevarajan, Judith A.; Darcy, Eric C.; Irlbeck, Bradley W.

    2005-01-01

    The Electric Auxiliary Power Unit (EAPU) or the Advanced Hydraulic Power System (AHPS) is a Shuttle Upgrade program. Of the two battery design approaches that were considered in support of this program, the current paper concentrates on the testing performed on the small-cell approach. Testing performed at both ComDev Space, Canada and at NASA-JSC is described in this paper. Testing included those under mission profile conditions and off-nominal abusive conditions.

  19. Recent Progress on High-Current SRF Cavities at Jlab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robert Rimmer, William Clemens, James Henry, Peter Kneisel, Kurt Macha, Frank Marhauser, Larry Turlington, Haipeng Wang, Daniel Forehand

    2010-05-01

    JLab has designed and fabricated several prototype SRF cavities with cell shapes optimized for high current beams and with strong damping of unwanted higher order modes. We report on the latest test results of these cavities and on developments of concepts for new variants optimized for particular applications such as light sources and high-power proton accelerators, including betas less than one. We also report on progress towards a first beam test of this design in the recirculation loop of the JLab ERL based FEL. With growing interest worldwide in applications of SRF for high-average power electron and hadron machines, amore » practical test of these concepts is highly desirable. We plan to package two prototype cavities in a de-mountable cryomodule for temporary installation into the JLab FEL for testing with RF and beam. This will allow verification of all critical design and operational parameters paving the way to a full-scale prototype cryomodule.« less

  20. Study of a High Voltage Ion Engine Power Supply

    NASA Technical Reports Server (NTRS)

    Stuart, Thomas A.; King, Roger J.; Mayer, Eric

    1996-01-01

    A complete laboratory breadboard version of a ion engine power converter was built and tested. This prototype operated on a line voltage of 80-120 Vdc, and provided output ratings of 1100 V at 1.8 kW, and 250 V at 20 mA. The high-voltage (HV) output voltage rating was revised from the original value of 1350 V at the beginning of the project. The LV output was designed to hold up during a 1-A surge current lasting up to 1 second. The prototype power converter included a internal housekeeping power supply which also operated from the line input. The power consumed in housekeeping was included in the overall energy budget presented for the ion engine converter. HV and LV output voltage setpoints were commanded through potentiometers. The HV converter itself reached its highest power efficiency of slightly over 93% at low line and maximum output. This would dip below 90% at high line. The no-load (rated output voltages, zero load current) power consumption of the entire system was less than 13 W. A careful loss breakdown shows that converter losses are predominately Metal-Oxide-Semiconductor Field Effect Transistor (MOSFET) conduction losses and HV rectifier snubbing losses, with the rectifier snubbing losses becoming predominant at high line. This suggests that further improvements in power efficiency could best be obtained by either developing a rectifier that was adequately protected against voltage overshoot with less snubbing, or by developing a pre-regulator to reduced the range of line voltage on the converter. The transient testing showed the converter to be fully protected against load faults, including a direct short-circuit from the HV output to the LV output terminals. Two currents sensors were used: one to directly detect any core ratcheting on the output transformer and re-initiate a soft start, and the other to directly detect a load fault and quickly shut down the converter for load protection. The finished converter has been extensively fault tested without failure. The finished converter has been packaged suitable for use as a laboratory prototype for further testing. The finished converter is readily transportable. An article on design issues for high voltage converters for ion engines is included as an attachement.

  1. NASA satellite communications application research, phase 2 addendum. Efficient high power, solid state amplifier for EHF communications

    NASA Technical Reports Server (NTRS)

    Benet, James

    1994-01-01

    This document is an addendum to the NASA Satellite Communications Application Research (SCAR) Phase 2 Final Report, 'Efficient High Power, Solid State Amplifier for EHF Communications.' This report describes the work performed from 1 August 1993 to 11 March 1994, under contract number NASW-4513. During this reporting period an array of transistor amplifiers was repaired by replacing all MMIC amplifier chips. The amplifier array was then tested using three different feedhorn configurations. Descriptions, procedures, and results of this testing are presented in this report, and conclusions are drawn based on the test results obtained.

  2. The R&D progress of 4 MW EAST-NBI high current ion source.

    PubMed

    Xie, Yahong; Hu, Chundong; Liu, Sheng; Xu, Yongjian; Liang, Lizhen; Xie, Yuanlai; Sheng, Peng; Jiang, Caichao; Liu, Zhimin

    2014-02-01

    A high current ion source, which consists of the multi-cusp bucket plasma generator and tetrode accelerator with multi-slot apertures, is developed and tested for the Experimental Advanced Superconducting Tokamak neutral beam injector. Three ion sources are tested on the test bed with arc power of 80 kW, beam voltage of 80 keV, and beam power of 4 MW. The arc regulation technology with Langmuir probes is employed for the long pulse operation of ion source, and the long pulse beam of 50 keV @ 15.5 A @ 100 s and 80 keV @ 52A @ 1s are extracted, respectively.

  3. GNSS Signal Authentication Via Power and Distortion Monitoring

    NASA Astrophysics Data System (ADS)

    Wesson, Kyle D.; Gross, Jason N.; Humphreys, Todd E.; Evans, Brian L.

    2018-04-01

    We propose a simple low-cost technique that enables civil Global Positioning System (GPS) receivers and other civil global navigation satellite system (GNSS) receivers to reliably detect carry-off spoofing and jamming. The technique, which we call the Power-Distortion detector, classifies received signals as interference-free, multipath-afflicted, spoofed, or jammed according to observations of received power and correlation function distortion. It does not depend on external hardware or a network connection and can be readily implemented on many receivers via a firmware update. Crucially, the detector can with high probability distinguish low-power spoofing from ordinary multipath. In testing against over 25 high-quality empirical data sets yielding over 900,000 separate detection tests, the detector correctly alarms on all malicious spoofing or jamming attacks while maintaining a <0.6% single-channel false alarm rate.

  4. Description of a 2.3 kW power transformer for space applications

    NASA Technical Reports Server (NTRS)

    Hansen, I.

    1979-01-01

    The principle features and special testing of a high voltage high power transformer designed and developed for space application are described. The transformer is operated in a series resonant inverter supplying beam power to a 30 cm mercury ion thruster. Electrical requirements include operation of 2.3 kW continuous power output, primary currents to 35 amps rms, and frequencies up to 20 kHz. High efficiency was obtained through detailed considerations of the tradeoffs available in core materials, wire selection, coil configurations and thermal control. A number of novel heat removal techniques are discussed which control the winding temperature using only the available conductive cooling.

  5. Early Results from Solar Dynamic Space Power System Testing

    NASA Technical Reports Server (NTRS)

    Shaltens, Richard K.; Mason, Lee S.

    1996-01-01

    A government/industry team designed, built and tested a 2-kWe solar dynamic space power system in a large thermal vacuum facility with a simulated Sun at the NASA Lewis Research Center. The Lewis facility provides an accurate simulation of temperatures, high vacuum and solar flux as encountered in low-Earth orbit. The solar dynamic system includes a Brayton power conversion unit integrated with a solar receiver which is designed to store energy for continuous power operation during the eclipse phase of the orbit. This paper reviews the goals and status of the Solar Dynamic Ground Test Demonstration project and describes the initial testing, including both operational and performance data. System testing to date has accumulated over 365 hours of power operation (ranging from 400 watts to 2.0-W(sub e)), including 187 simulated orbits, 16 ambient starts and 2 hot restarts. Data are shown for an orbital startup, transient and steady-state orbital operation and shutdown. System testing with varying insolation levels and operating speeds is discussed. The solar dynamic ground test demonstration is providing the experience and confidence toward a successful flight demonstration of the solar dynamic technologies on the Space Station Mir in 1997.

  6. Experimental results on plasma interactions with large surfaces at high voltages

    NASA Technical Reports Server (NTRS)

    Grier, N. T.

    1980-01-01

    Multikilowatt power levels for future payloads can be more efficiently generated using solar arrays operating in the kilovolt range. This implies that large areas of the array at high operating voltages will be exposed to the space plasma environment. The resulting interactions of these high voltage surfaces with space plasma environments can seriously impact the performance of the satellite system. The plasma-surface interaction phenomena were studied in tests performed in two separate vacuum chambers, a 4.6 m diameter by 19.2 long chamber and a 20 m diameter by 27.4 m long chamber. The generated plasma density was approximately 1x10 to the 4th power/cu cm. Ten solar array panels, each with areas of 1400 sq cm were used in the tests. Nine of the solar panels were tested as a composite unit in the form of a 3x3 solar panel matrix. The results from all the tests confirmed small sample tests results: insulators were found to enhance the plasma coupling current for high positive bias and arcing was found to occur at high negative bias.

  7. Advanced communications technology satellite high burst rate link evaluation terminal power control and rain fade software test plan, version 1.0

    NASA Technical Reports Server (NTRS)

    Reinhart, Richard C.

    1993-01-01

    The Power Control and Rain Fade Software was developed at the NASA Lewis Research Center to support the Advanced Communications Technology Satellite High Burst Rate Link Evaluation Terminal (ACTS HBR-LET). The HBR-LET is an experimenters terminal to communicate with the ACTS for various experiments by government, university, and industry agencies. The Power Control and Rain Fade Software is one segment of the Control and Performance Monitor (C&PM) Software system of the HBR-LET. The Power Control and Rain Fade Software automatically controls the LET uplink power to compensate for signal fades. Besides power augmentation, the C&PM Software system is also responsible for instrument control during HBR-LET experiments, control of the Intermediate Frequency Switch Matrix on board the ACTS to yield a desired path through the spacecraft payload, and data display. The Power Control and Rain Fade Software User's Guide, Version 1.0 outlines the commands and procedures to install and operate the Power Control and Rain Fade Software. The Power Control and Rain Fade Software Maintenance Manual, Version 1.0 is a programmer's guide to the Power Control and Rain Fade Software. This manual details the current implementation of the software from a technical perspective. Included is an overview of the Power Control and Rain Fade Software, computer algorithms, format representations, and computer hardware configuration. The Power Control and Rain Fade Test Plan provides a step-by-step procedure to verify the operation of the software using a predetermined signal fade event. The Test Plan also provides a means to demonstrate the capability of the software.

  8. Development of a current collection loss management system for SDI homopolar power supplies

    NASA Astrophysics Data System (ADS)

    Brown, D. W.

    1991-04-01

    High speed, high power density current collection systems have been identified as an enabling technology required to construct homopolar power supplies to meet SDI missions. This work is part of a three-year effort directed towards the analysis, experimental verification, and prototype construction of a current collection system designed to operate continuously at 2 kA/sq cm, at a rubbing speed of 200 m/s, and with acceptable losses in a space environment. To date, no system has achieved these conditions simultaneously. This is the final report covering the three year period of performance on DOE contract AC03-86SF-16518. Major areas covered include design, construction and operation of a cryogenically cooled brush test rig, design and construction of a high speed brush test rig, optimization study for homopolar machines, loss analysis of the current collection system, and an application study which defines the air-core homopolar construction necessary to achieve the goal of 80 kW/kg generator power density.

  9. Research on the honeycomb restrain layer application to the high power microwave dielectric window

    NASA Astrophysics Data System (ADS)

    Zhang, Qingyuan; Shao, Hao; Huang, Wenhua; Guo, Letian

    2018-01-01

    Dielectric window breakdown is an important problem of high power microwave radiation. A honeycomb layer can suppress the multipactor in two directions to restrain dielectric window breakdown. This paper studies the effect of the honeycomb restrain layer on improving the dielectric window power capability. It also studies the multipactor suppression mechanism by using the electromagnetic particle-in-cell software, gives the design method, and accomplishes the test experiment. The experimental results indicated that the honeycomb restrain layer can effectively improve the power capability twice.

  10. Research on the honeycomb restrain layer application to the high power microwave dielectric window.

    PubMed

    Zhang, Qingyuan; Shao, Hao; Huang, Wenhua; Guo, Letian

    2018-01-01

    Dielectric window breakdown is an important problem of high power microwave radiation. A honeycomb layer can suppress the multipactor in two directions to restrain dielectric window breakdown. This paper studies the effect of the honeycomb restrain layer on improving the dielectric window power capability. It also studies the multipactor suppression mechanism by using the electromagnetic particle-in-cell software, gives the design method, and accomplishes the test experiment. The experimental results indicated that the honeycomb restrain layer can effectively improve the power capability twice.

  11. Radioisotope powered AMTEC systems

    NASA Astrophysics Data System (ADS)

    Ivanenok, Joseph F., III; Sievers, Robert K.

    1994-11-01

    Alkali metal thermal to electric converter (AMTEC) systems are being developed for high performance spacecraft power systems, including small, general purpose heat source (GPHS) powered systems. Several design concepts have been evaluated for the power range from 75 W to 1 kW. The specific power for these concepts has been found to be as high as 18-20 W/kg and 22 kW/m(exp 3). The projected area, including radiators, has been as low as 0.4 m(exp 2)/kW. AMTEC power systems are extremely attractive, relative to other current and projected power systems, because AMTEC offers high power density, low projected area, and low volume. Two AMTEC cell design types have been identified. A single-tube cell is already under development and a multitube cell design, to provide additional power system gains, has undergone proof-of-principle testing. Solar powered AMTEC (SAMTEC) systems are also being developed, and numerous terrestrial applications have been identified for which the same basic AMTEC cells being developed for radioisotope systems are also suitable.

  12. ACE DD genotype is unfavorable to Korean short-term muscle power athletes.

    PubMed

    Kim, C-H; Cho, J-Y; Jeon, J Y; Koh, Y G; Kim, Y-M; Kim, H-J; Park, M; Um, H-S; Kim, C

    2010-01-01

    The purpose of this study was to test the hypothesis that the ACE DD genotype is unfavorably associated with the ultimate power-oriented performance. To test the hypothesis we recruited a total of 848 subjects including 55 international level power-oriented athletes (High-performance), 100 national level power-oriented athletes (Mid-performance) and 693 healthy controls (Control) in Korea. Then the distributions of ACE polymorphism throughout these groups were analyzed. As a result, there was a gradual decrease of frequencies of the DD genotype with advancing levels of performance (Control vs. Mid-performance vs. High-performance=17.2% vs. 10.0% vs. 5.5%, p=0.002). Also, the frequencies of D allele decreased gradually with advancing levels of performance (Control vs. Mid-performance vs. High-performance=42.6% vs. 35.0% vs. 30.9%, p<0.01). Therefore, power-oriented athletes at the top level had a markedly diminished frequency of the DD genotype and the D allele. This finding gave 3.83 times lower probability of success in power-oriented sports for individuals with the DD genotype than those with the II+ ID genotype. In conclusion, these results indicate that Korean power-oriented athletes with a lower frequency of the DD genotype had a lower probability of success in power-oriented sports. Georg Thieme Verlag KG Stuttgart, New York.

  13. A High Temperature Silicon Carbide mosfet Power Module With Integrated Silicon-On-Insulator-Based Gate Drive

    DOE PAGES

    Wang, Zhiqiang; Shi, Xiaojie; Tolbert, Leon M.; ...

    2014-04-30

    Here we present a board-level integrated silicon carbide (SiC) MOSFET power module for high temperature and high power density application. Specifically, a silicon-on-insulator (SOI)-based gate driver capable of operating at 200°C ambient temperature is designed and fabricated. The sourcing and sinking current capability of the gate driver are tested under various ambient temperatures. Also, a 1200 V/100 A SiC MOSFET phase-leg power module is developed utilizing high temperature packaging technologies. The static characteristics, switching performance, and short-circuit behavior of the fabricated power module are fully evaluated at different temperatures. Moreover, a buck converter prototype composed of the SOI gate drivermore » and SiC power module is built for high temperature continuous operation. The converter is operated at different switching frequencies up to 100 kHz, with its junction temperature monitored by a thermosensitive electrical parameter and compared with thermal simulation results. The experimental results from the continuous operation demonstrate the high temperature capability of the power module at a junction temperature greater than 225°C.« less

  14. The New NASA-STD-4005 and NASA-HDBK-4006, Essentials for Direct-Drive Solar Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Ferguson, Dale C.

    2007-01-01

    High voltage solar arrays are necessary for direct-drive solar electric propulsion, which has many advantages, including simplicity and high efficiency. Even when direct-drive is not used, the use of high voltage solar arrays leads to power transmission and conversion efficiencies in electric propulsion Power Management and Distribution. Nevertheless, high voltage solar arrays may lead to temporary power disruptions, through the so-called primary electrostatic discharges, and may permanently damage arrays, through the so-called permanent sustained discharges between array strings. Design guidance is needed to prevent these solar array discharges, and to prevent high power drains through coupling between the electric propulsion devices and the high voltage solar arrays. While most electric propulsion systems may operate outside of Low Earth Orbit, the plasmas produced by their thrusters may interact with the high voltage solar arrays in many ways similarly to Low Earth Orbit plasmas. A brief description of previous experiences with high voltage electric propulsion systems will be given in this paper. There are two new official NASA documents available free through the NASA Standards website to help in designing and testing high voltage solar arrays for electric propulsion. They are NASA-STD-4005, the Low Earth Orbit Spacecraft Charging Design Standard, and NASA-HDBK-4006, the Low Earth Orbit Spacecraft Charging Design Handbook. Taken together, they can both educate the high voltage array designer in the engineering and science of spacecraft charging in the presence of dense plasmas and provide techniques for designing and testing high voltage solar arrays to prevent electrical discharges and power drains.

  15. Reactor Testing and Qualification: Prioritized High-level Criticality Testing Needs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S. Bragg-Sitton; J. Bess; J. Werner

    2011-09-01

    Researchers at the Idaho National Laboratory (INL) were tasked with reviewing possible criticality testing needs to support development of the fission surface power system reactor design. Reactor physics testing can provide significant information to aid in development of technologies associated with small, fast spectrum reactors that could be applied for non-terrestrial power systems, leading to eventual system qualification. Several studies have been conducted in recent years to assess the data and analyses required to design and build a space fission power system with high confidence that the system will perform as designed [Marcille, 2004a, 2004b; Weaver, 2007; Parry et al.,more » 2008]. This report will provide a summary of previous critical tests and physics measurements that are potentially applicable to the current reactor design (both those that have been benchmarked and those not yet benchmarked), summarize recent studies of potential nuclear testing needs for space reactor development and their applicability to the current baseline fission surface power (FSP) system design, and provide an overview of a suite of tests (separate effects, sub-critical or critical) that could fill in the information database to improve the accuracy of physics modeling efforts as the FSP design is refined. Some recommendations for tasks that could be completed in the near term are also included. Specific recommendations on critical test configurations will be reserved until after the sensitivity analyses being conducted by Los Alamos National Laboratory (LANL) are completed (due August 2011).« less

  16. HVEPS Scramjet-Driven MHD Power Demonstration Test Results (Preprint)

    DTIC Science & Technology

    2007-06-01

    an outer annulus which provides the flow passage for the liquid NaK. Final fabrication and assembly of the seeding system was completed at UTRC as...ABSTRACT The Air Force sponsored Hypersonic Vehicle Electric Power System (HVEPS) program was a research program to develop scramjet driven...magnetohydrodynamic (MHD) power for an advanced high power, airborne electric power system . This program has been active for the past five years with various

  17. Advance Power Technology Experiment for the Starshine 3 Satellite

    NASA Technical Reports Server (NTRS)

    Jenkins, Phillip; Scheiman, David; Wilt, David; Raffaelle, Ryne; Button, Robert; Smith, Mark; Kerslake, Thomas; Miller, Thomas; Bailey, Sheila (Technical Monitor); Hepp, A. (Technical Monitor)

    2001-01-01

    The Starshine 3 satellite will carry several power technology demonstrations. Since Starshine 3 is primarily a passive experiment and does not need electrical power to successfully complete its mission, the requirement for a highly reliable power system is greatly reduced. This creates an excellent opportunity to test new power technologies. Several government and commercial interests have teamed up to provide Starshine 3 with a small power system using state-of-the-art components. Starshine 3 will also fly novel integrated microelectronic power supplies (IWS) for evaluation.

  18. Advance Power Technology Demonstration on Starshine 3

    NASA Technical Reports Server (NTRS)

    Jenkins, Phillip; Scheiman, David; Wilt, David; Raffaelle, Ryne; Button, Robert; Smith, Mark; Kerslake, Thomas; Miller, Thomas

    2002-01-01

    The Starshine 3 satellite will carry several power technology demonstrations. Since Starshine 3 is primarily a passive experiment and does not need electrical power to successfully complete its mission, the requirement for a highly reliable power system is greatly reduced. This creates an excellent opportunity to test new power technologies. Several government and commercial interests have teamed up to provide Starshine 3 with a small power system using state-of-the-art components. Starshine 3 will also fly novel integrated microelectronic power supplies (IMPS) for evaluation.

  19. Fast shut-down protection system for radio frequency breakdown and multipactor testing.

    PubMed

    Graves, T P; Hanson, P; Michaelson, J M; Farkas, A D; Hubble, A A

    2014-02-01

    Radio frequency (RF) breakdown such as multipactor or ionization breakdown is a device-limiting phenomenon for on-orbit spacecraft used for communication, navigation, or other RF payloads. Ground testing is therefore part of the qualification process for all high power components used in these space systems. This paper illustrates a shut-down protection system to be incorporated into multipactor/ionization breakdown ground testing for susceptible RF devices. This 8 channel system allows simultaneous use of different diagnostic classes and different noise floors. With initiation of a breakdown event, diagnostic signals increase above a user-specified level, which then opens an RF switch to eliminate RF power from the high power amplifier. Examples of this system in use are shown for a typical setup, illustrating the reproducibility of breakdown threshold voltages and the lack of multipactor conditioning. This system can also be utilized to prevent excessive damage to RF components in tests with sensitive or flight hardware.

  20. Relationship between Particle Size Distribution of Low-Rank Pulverized Coal and Power Plant Performance

    DOE PAGES

    Ganguli, Rajive; Bandopadhyay, Sukumar

    2012-01-01

    Tmore » he impact of particle size distribution (PSD) of pulverized, low rank high volatile content Alaska coal on combustion related power plant performance was studied in a series of field scale tests. Performance was gauged through efficiency (ratio of megawatt generated to energy consumed as coal), emissions (SO 2 , NO x , CO), and carbon content of ash (fly ash and bottom ash). he study revealed that the tested coal could be burned at a grind as coarse as 50% passing 76 microns, with no deleterious impact on power generation and emissions. he PSD’s tested in this study were in the range of 41 to 81 percent passing 76 microns. here was negligible correlation between PSD and the followings factors: efficiency, SO 2 , NO x , and CO. Additionally, two tests where stack mercury (Hg) data was collected, did not demonstrate any real difference in Hg emissions with PSD. he results from the field tests positively impacts pulverized coal power plants that burn low rank high volatile content coals (such as Powder River Basin coal). hese plants can potentially reduce in-plant load by grinding the coal less (without impacting plant performance on emissions and efficiency) and thereby, increasing their marketability.« less

  1. Power conditioning equipment for a thermoelectric outer planet spacecraft, volume 1, book 2

    NASA Technical Reports Server (NTRS)

    Andrews, R. E. (Editor)

    1972-01-01

    The design and development of power conditioning equipment for the thermoelectric outer planet spacecraft program are considered. One major aspect of the program included the design, assembly and test of various breadboard power conditioning elements. Among others these included a quad-redundant shunt regulator, a high voltage traveling wave tube dc-to-dc converter, two-phase gyro inverters and numerous solid state switching circuits. Many of these elements were arranged in a typical subsystem configuration and tests were conducted which demonstrated basic element compatibility. In parallel with the development of the basic power conditioning elements, system studies were continued. The salient features of the selected power subsystem configuration are presented.

  2. Test Results From The Idaho National Laboratory Of The NASA Bi-Supported Cell Design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    C Stoots; J O'Brien; T Cable

    The Idaho National Laboratory has been researching the application of solid-oxide fuel cell technology for large-scale hydrogen production. As a result, the Idaho National Laboratory has been testing various cell designs to characterize electrolytic performance. NASA, in conjunction with the University of Toledo, has developed a new cell concept with the goals of reduced weight and high power density. This paper presents results of the INL's testing of this new solid oxide cell design as an electrolyzer. Gas composition, operating voltage, and other parameters were varied during testing. Results to date show the NASA cell to be a promising designmore » for both high power-to-weight fuel cell and electrolyzer applications.« less

  3. A Nuclear Cryogenic Propulsion Stage for Near-Term Space Missions

    NASA Technical Reports Server (NTRS)

    Houts, Michael G.; Kim, Tony; Emrich, William J.; Hickman, Robert R.; Broadway, Jeramie W.; Gerrish, Harold P.; Doughty, Glen E.; Adams, Robert B.; Bechtel, Ryan D.; Borowski, Stanley K.; hide

    2013-01-01

    Development efforts in the United States have demonstrated the viability and performance potential of NTP systems. For example, Project Rover (1955 - 1973) completed 22 high power rocket reactor tests. Peak performances included operating at an average hydrogen exhaust temperature of 2550 K and a peak fuel power density of 5200 MW/m3 (Pewee test), operating at a thrust of 930 kN (Phoebus-2A test), and operating for 62.7 minutes on a single burn (NRXA6 test).1 Results from Project Rover indicated that an NTP system with a high thrust-toweight ratio and a specific impulse greater than 900 s would be feasible. Binary and ternary carbide fuels may have the potential for providing even higher specific impulses.

  4. Problems of the high-cycle fatigue of the materials intended for the parts of modern gas-turbine engines and power plants

    NASA Astrophysics Data System (ADS)

    Petukhov, A. N.

    2010-10-01

    The problems related to the determination of the life of the structural materials applied for important parts in gas-turbine engines and power plants from the results of high-cycle fatigue tests are discussed. Methods for increasing the reliability of the high-cycle fatigue characteristics and the factors affecting the operational reliability are considered.

  5. [The development of an oral biomechanical testing instrument].

    PubMed

    Zhang, X H; Sun, X D; Lin, Z

    2000-03-01

    An oral biomechanical testing instrument, which is portable, powered with batteries and controlled by single chip microcomputer, was described. The instrument was characterized by its multichannel, high accuracy, low power dissipation, wide rage of force measurement and stable performance. It can be used for acquisiting, displaying and storing data. And it may be expected to be an ideal instrument for oral biomechanical measurements.

  6. Thermal design and test of a high power spacecraft transponder platform

    NASA Technical Reports Server (NTRS)

    Stipandic, E. A.; Gray, A. M.; Gedeon, L.

    1975-01-01

    The high power transponder subsystem on board the Communications Technology Satellite (CTS) requires some unique thermal control techniques to maintain the required temperature limits throughout all mission phases. The transponder subsystem includes redundant 20-W output travelling wave tubes and a single 200-W output TWT with highly concentrated thermal dissipations of 70 W and 143 W, respectively. A thermal control system which maintains all components within the required temperature ranges has been designed and verified in thermal balance testing. Included in the design are second surface quartz mirrors on an aluminum honeycomb platform, high thermal conductivity aluminum doubler plates, commandable thermal control heaters and a Variable Conductance Heat Pipe System (VCHPS).

  7. Testing of a Miniature Loop Heat Pipe with Multiple Evaporators and Multiple Condensers for Space Applications

    NASA Technical Reports Server (NTRS)

    Nagano, Hosei; Ku, Jentung

    2006-01-01

    Thermal performance of a miniature loop heat pipe (MLHP) with two evaporators and two condensers is described. A comprehensive test program, including start-up, high power, low power, power cycle, and sink temperature cycle tests, has been executed at NASA Goddard Space Flight Center for potential space applications. Experimental data showed that the loop could start with heat loads as low as 2W. The loop operated stably with even and uneven evaporator heat loads, and even and uneven condenser sink temperatures. Heat load sharing between the two evaporators was also successfully demonstrated. The loop had a heat transport capability of l00W to 120W, and could recover from a dry-out by reducing the heat load to evaporators. Low power test results showed the loop could work stably for heat loads as low as 1 W to each evaporator. Excellent adaptability of the MLHP to rapid changes of evaporator power and sink temperature were also demonstrated.

  8. Fatigue life of laser cut metals

    NASA Technical Reports Server (NTRS)

    Martin, M. R.

    1986-01-01

    Fatigue tests were conducted to determine the actual reduction in fatigue life due to weight removal for balancing by: hand grinding, low power (20 watt) Nd:glass laser, and high power (400 watt) Nd:YAG laser.

  9. Effects of High Intensity Interval Training on Increasing Explosive Power, Speed, and Agility

    NASA Astrophysics Data System (ADS)

    Fajrin, F.; Kusnanik, N. W.; Wijono

    2018-01-01

    High Intensity Interval Training (HIIT) is a type of exercise that combines high-intensity exercise and low intensity exercise in a certain time interval. This type of training is very effective and efficient to improve the physical components. The process of improving athletes achievement related to how the process of improving the physical components, so the selection of a good practice method will be very helpful. This study aims to analyze how is the effects of HIIT on increasing explosive power, speed, and agility. This type of research is quantitative with quasi-experimental methods. The design of this study used the Matching-Only Design, with data analysis using the t-test (paired sample t-test). After being given the treatment for six weeks, the results showed there are significant increasing in explosive power, speed, and agility. HIIT in this study used a form of exercise plyometric as high-intensity exercise and jogging as mild or moderate intensity exercise. Increase was due to the improvement of neuromuscular characteristics that affect the increase in muscle strength and performance. From the data analysis, researchers concluded that, Exercises of High Intensity Interval Training significantly effect on the increase in Power Limbs, speed, and agility.

  10. High-efficiency solar-thermophotovoltaic system equipped with a monolithic planar selective absorber/emitter

    NASA Astrophysics Data System (ADS)

    Shimizu, Makoto; Kohiyama, Asaka; Yugami, Hiroo

    2015-01-01

    We demonstrate a high-efficiency solar-thermophotovoltaic system (STPV) using a monolithic, planar, and spectrally selective absorber/emitter. A complete STPV system using gallium antimonide (GaSb) cells was designed and fabricated to conduct power generation tests. To produce a high-efficiency STPV, it is important to match the thermal radiation spectrum with the sensitive region of the GaSb cells. Therefore, to reach high temperatures with low incident power, a planar absorber/emitter is incorporated for controlling the thermal radiation spectrum. This multilayer coating consists of thin-film tungsten sandwiched by yttria-stabilized zirconia. The system efficiency is estimated to be 16% when accounting for the optical properties of the fabricated absorber/emitter. Power generation tests using a high-concentration solar simulator show that the absorber/emitter temperature peaks at 1640 K with an incident power density of 45 W/cm2, which can be easily obtained by low-cost optics such as Fresnel lenses. The conversion efficiency became 23%, exceeding the Shockley-Queisser limit for GaSb, with a bandgap of 0.67 eV. Furthermore, a total system efficiency of 8% was obtained with the view factor between the emitter and the cell assumed to be 1.

  11. Photovoltaic-Powered Vaccine Refrigerator: Freezer Systems Field Test Results

    NASA Technical Reports Server (NTRS)

    Ratajczak, A. F.

    1985-01-01

    A project to develop and field test photovoltaic-powered refrigerator/freezers suitable for vaccine storage was undertaken. Three refrigerator/freezers were qualified; one by Solar Power Corp. and two by Solvolt. Follow-on contracts were awarded for 19 field test systems and for 10 field test systems. A total of 29 systems were installed in 24 countries between October 1981 and October 1984. The project, systems descriptions, installation experiences, performance data for the 22 systems for which field test data was reported, an operational reliability summary, and recommendations relative to system designs and future use of such systems are explained. Performance data indicate that the systems are highly reliable and are capable of maintaining proper vaccine storage temperatures in a wide range of climatological and user environments.

  12. Electrical characterization of a Space Station Freedom alpha utility transfer assembly

    NASA Technical Reports Server (NTRS)

    Yenni, Edward J.

    1994-01-01

    Electrical power, command signals and data are transferred across the Space Station Freedom solar alpha rotary joint by roll rings, which are incorporated within the Utility Transfer Assembly (UTA) designed and manufactured by Honeywell Space Systems Operations. A developmental Model of the UTA was tested at the NASA Lewis Research Center using the Power Management and Distribution DC test bed. The objectives of these tests were to obtain data for calibrating system models and to support final design of qualification and flight units. This testing marked the first time the UTA was operated at high power levels and exposed to electrical conditions similar to that which it will encounter on the actual Space Station. Satisfactory UTA system performance was demonstrated within the scope of this testing.

  13. [Effects of ß-alanine supplementation on wingate tests in university female footballers].

    PubMed

    Rodríguez Rodríguez, Fernando; Delgado Ormeño, Alex; Rivera Lobos, Patricio; Tapia Aranda, Víctor; Cristi-Montero, Carlos

    2014-11-01

    Football is a sport that develops actions intermittent high-intensity exercise using the anaerobic pathway, for that reason, the muscle fatigue would produce primarily by increasing acidosis. Carnosine, which is formed from L-histidine, ß-alanine, has proven to produce an effect "buffer" of acidosis. To determine the effect of ß-alanine supplementation, on three successive Wingate tests and compare the average power, maximum power and lactate blood in selected female college soccer. We evaluated 10 football players who were three Wingate, 5 min rest between each sprint, determining the average power, maximum and lactate at the end of each test, then consumed 2,4 gr/day of ß-alanine for 30 days and repeated the tests. The control group (n=8) performed the same tests, but without consuming the supplement. Monark cycle ergometer was used (Ergomedic 874E) and to measure lactate the Lactate Pro 2. The group with supplementation significantly improved mean power difference from the control group. The maximum power improved only in the first sprint unlike the control group and Lactate did not differ. The evidence shows that the ß-alanine improves performance on tests of more than 30 second long, but in our study improves average power and peak power even when performing consecutive sprint, being able to emulate the reality of the football game. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  14. The cost of large numbers of hypothesis tests on power, effect size and sample size.

    PubMed

    Lazzeroni, L C; Ray, A

    2012-01-01

    Advances in high-throughput biology and computer science are driving an exponential increase in the number of hypothesis tests in genomics and other scientific disciplines. Studies using current genotyping platforms frequently include a million or more tests. In addition to the monetary cost, this increase imposes a statistical cost owing to the multiple testing corrections needed to avoid large numbers of false-positive results. To safeguard against the resulting loss of power, some have suggested sample sizes on the order of tens of thousands that can be impractical for many diseases or may lower the quality of phenotypic measurements. This study examines the relationship between the number of tests on the one hand and power, detectable effect size or required sample size on the other. We show that once the number of tests is large, power can be maintained at a constant level, with comparatively small increases in the effect size or sample size. For example at the 0.05 significance level, a 13% increase in sample size is needed to maintain 80% power for ten million tests compared with one million tests, whereas a 70% increase in sample size is needed for 10 tests compared with a single test. Relative costs are less when measured by increases in the detectable effect size. We provide an interactive Excel calculator to compute power, effect size or sample size when comparing study designs or genome platforms involving different numbers of hypothesis tests. The results are reassuring in an era of extreme multiple testing.

  15. Waveguide Power Combiner Demonstration for Multiple High Power Millimeter Wave TWTAs

    NASA Technical Reports Server (NTRS)

    Wintucky, Edwin G.; Simons, Rainee N.; Lesny, Gary G.; Glass, Jeffrey L.

    2004-01-01

    NASA is presently developing nuclear reactor technologies, under Project Prometheus, which will provide spacecraft with greatly increased levels of sustained onboard power and thereby dramatically enhance the capability for future deep space exploration. The first mission planned for use of this high power technology is the Jupiter Icy Moons Orbiter (JIMO). In addition to electric propulsion and science, there will also be unprecedented onboard power available for deep space communications. A 32 GHz transmitter with 1 kW of RF output power is being considered to enable the required very high data transmission rates. One approach to achieving the 1 kW RF power, now being investigated at NASA GRC, is the possible power combining of a number of 100-1 50 W TWTs now under development. The work presented here is the results of a proof-of-concept demonstration of the power combining Ka-band waveguide circuit design and test procedure using two Ka- band TWTAs (Varian model VZA6902V3 and Logimetrics model A440/KA-1066), both of which were previously employed in data uplink evaluation terminals at 29.36 GHz for the NASA Advanced Communications Technology Satellite (ACTS) program. The characterization of the individual TWTAs and power combining demonstration were done over a 500 MHz bandwidth from 29.1 to 29.6 GHz to simulate the Deep Space Network (DSN) bandwidth of 3 1.8 to 32.3 GHz. Figures 1-3 show some of the power transfer and gain measurements of the TWTAs using a swept signal generator (Agilent 83640b) for the RF input. The input and output powers were corrected for circuit insertion losses due to the waveguide components. The RF saturated powers of both ACTS TWTAs were on the order of 120 W, which is comparable to the expected output powers of the 32 GHz TWTs. Additional results for the individual TWTAs will be presented (AM/AM, AM/PM conversion and gain compression), some of which were obtained from swept frequency and power measurements using a vector network analyzer. The results for the power combining demonstration as well as a more detailed description of the power combining test circuit and test procedure will also be presented.

  16. Lightweight Damage Tolerant, High-Temperature Radiators for Nuclear Power and Propulsion

    NASA Technical Reports Server (NTRS)

    Craven, Paul D.; SanSoucie, Michael P.

    2015-01-01

    NASA is increasingly emphasizing exploration to bodies beyond near-Earth orbit. New propulsion systems and new spacecraft are being built for these missions. As the target bodies get further out from Earth, high energy density systems, e.g., nuclear fusion, for propulsion and power will be advantageous. The mass and size of these systems, including supporting systems such as the heat exchange system, including thermal radiators, will need to be as small as possible. Conventional heat exchange systems are a significant portion of the total thermal management mass and size. Nuclear electric propulsion (NEP) is a promising option for high-speed, in-space travel due to the high energy density of nuclear fission power sources and efficient electric thrusters. Heat from the reactor is converted to power for use in propulsion or for system power. The heat not used in the power conversion is then radiated to space as shown in figure 1. Advanced power conversion technologies will require high operating temperatures and would benefit from lightweight radiator materials. Radiator performance dictates power output for nuclear electric propulsion systems. Pitch-based carbon fiber materials have the potential to offer significant improvements in operating temperature, thermal conductivity, and mass. These properties combine to allow significant decreases in the total mass of the radiators and significant increases in the operating temperature of the fins. A Center-funded project at NASA Marshall Space Flight Center has shown that high thermal conductivity, woven carbon fiber fins with no matrix material, can be used to dissipate waste heat from NEP systems and because of high specific power (kW/kg), will require less mass and possibly less total area than standard metal and composite radiator fins for radiating the same amount of heat. This project uses an innovative approach to reduce the mass and size required for the thermal radiators to the point that in-space NEP and power is enabled. High thermal conductivity carbon fibers are lightweight, damage tolerant, and can be heated to high temperature. Areal densities in the NASA set target range of 2 to 4 kg/m2 (for enabling NEP) are achieved and with specific powers (kW/kg) a factor of about 7 greater than conventional metal fins and about 1.5 greater than carbon composite fins. Figure 2 shows one fin under test. All tests were done under vacuum conditions.

  17. High-power operation of highly reliable narrow stripe pseudomorphic single quantum well lasers emitting at 980 nm

    NASA Technical Reports Server (NTRS)

    Larsson, A.; Forouhar, S.; Cody, J.; Lang, R. J.

    1990-01-01

    Ridge waveguide pseudomorphic InGaAs/GaAs/AlGaAs single-quantum-well lasers exhibiting record high quantum efficiencies and high output power densities (105 mW per facet from a 6 micron wide stripe) at a lasing wavelength of 980 nm are discussed that were fabricated from a graded index separate confinement heterostructure grown by molecular beam epitaxy. Life testing at an output power of 30 mW per uncoated facet reveals a slow gradual degradation during the initial 500 h of operation after which the operating characteristics of the lasers become stable. The emission wavelength, the high output power, and the fundamental lateral mode operation render these lasers suitable for pumping Er3+-doped fiber amplifiers.

  18. Testing Metal Chlorides For Use In Sodium-Cell Cathodes

    NASA Technical Reports Server (NTRS)

    Bugga, Ratnakumar V.; Attia, Alan I.; Halpert, Gerald

    1992-01-01

    Cyclic voltammetric curves of transition-metal wires in molten NaAlCl4 electrolyte used to eliminate suitability of transition metals as cathodes in sodium cells. Cyclic voltammetry used in conjunction with measurement of galvanostatic polarization curves determines whether given metal chloride suitable as cathode material in such cell. Cells useful in such high-energy-density and high-power-density applications as leveling loads on electric-power plants, supplying power to electric ground vehicles, and aerospace applications.

  19. Numerical and experimental determination of weld pool shape during high-power diode laser welding

    NASA Astrophysics Data System (ADS)

    Klimpel, Andrzej; Lisiecki, Aleksander; Szymanski, Andrzej; Hoult, Anthony P.

    2003-10-01

    In this paper, results of investigations on the shape of weld pool during High Power Diode Laser (HPDL) welding are presented. The results of tests showed that the shape of weld pool and mechanism of laser welding with a rectangular pattern of 808 nm laser radiation differs distinctly from previous laser welding mechanisms. For all power densities the conduction mode welds were observed and weld pool geometry depends significantly on the welding parameters.

  20. Development of compact rapid charging power supply for capacitive energy storage in pulsed power drivers.

    PubMed

    Sharma, Surender Kumar; Shyam, Anurag

    2015-02-01

    High energy capacitor bank is used for primary electrical energy storage in pulsed power drivers. The capacitors used in these pulsed power drivers have low inductance, low internal resistance, and less dc life, so it has to be charged rapidly and immediately discharged into the load. A series resonant converter based 45 kV compact power supply is designed and developed for rapid charging of the capacitor bank with constant charging current up to 150 mA. It is short circuit proof, and zero current switching technique is used to commute the semiconductor switch. A high frequency resonant inverter switching at 10 kHz makes the overall size small and reduces the switching losses. The output current of the power supply is limited by constant on-time and variable frequency switching control technique. The power supply is tested by charging the 45 kV/1.67 μF and 15 kV/356 μF capacitor banks. It has charged the capacitor bank up to rated voltage with maximum charging current of 150 mA and the average charging rate of 3.4 kJ/s. The output current of the power supply is limited by reducing the switching frequency at 5 kHz, 3.3 kHz, and 1.7 kHz and tested with 45 kV/1.67 μF capacitor bank. The protection circuit is included in the power supply for over current, under voltage, and over temperature. The design details and the experimental testing results of the power supply for resonant current, output current, and voltage traces of the power supply with capacitive, resistive, and short circuited load are presented and discussed.

  1. High-power VCSEL systems and applications

    NASA Astrophysics Data System (ADS)

    Moench, Holger; Conrads, Ralf; Deppe, Carsten; Derra, Guenther; Gronenborn, Stephan; Gu, Xi; Heusler, Gero; Kolb, Johanna; Miller, Michael; Pekarski, Pavel; Pollmann-Retsch, Jens; Pruijmboom, Armand; Weichmann, Ulrich

    2015-03-01

    Easy system design, compactness and a uniform power distribution define the basic advantages of high power VCSEL systems. Full addressability in space and time add new dimensions for optimization and enable "digital photonic production". Many thermal processes benefit from the improved control i.e. heat is applied exactly where and when it is needed. The compact VCSEL systems can be integrated into most manufacturing equipment, replacing batch processes using large furnaces and reducing energy consumption. This paper will present how recent technological development of high power VCSEL systems will extend efficiency and flexibility of thermal processes and replace not only laser systems, lamps and furnaces but enable new ways of production. High power VCSEL systems are made from many VCSEL chips, each comprising thousands of low power VCSELs. Systems scalable in power from watts to multiple ten kilowatts and with various form factors utilize a common modular building block concept. Designs for reliable high power VCSEL arrays and systems can be developed and tested on each building block level and benefit from the low power density and excellent reliability of the VCSELs. Furthermore advanced assembly concepts aim to reduce the number of individual processes and components and make the whole system even more simple and reliable.

  2. High power ferrite microwave switch

    NASA Technical Reports Server (NTRS)

    Bardash, I.; Roschak, N. K.

    1975-01-01

    A high power ferrite microwave switch was developed along with associated electronic driver circuits for operation in a spaceborne high power microwave transmitter in geostationary orbit. Three units were built and tested in a space environment to demonstrate conformance to the required performance characteristics. Each unit consisted of an input magic-tee hybrid, two non-reciprocal latching ferrite phase shifters, an out short-slot 3 db quadrature coupler, a dual driver electronic circuit, and input logic interface circuitry. The basic mode of operation of the high power ferrite microwave switch is identical to that of a four-port, differential phase shift, switchable circulator. By appropriately designing the phase shifters and electronic driver circuits to operate in the flux-transfer magnetization mode, power and temperature insensitive operation was achieved. A list of the realized characteristics of the developed units is given.

  3. Using Self-regulation to Successfully Overcome the Negotiation Disadvantage of Low Power

    PubMed Central

    Jäger, Andreas; Loschelder, David D.; Friese, Malte

    2017-01-01

    A plethora of studies has demonstrated that low-power negotiators attain lower outcomes compared to high-power negotiators. We argue that this low-power disadvantage can be conceptualized as impaired goal attainment and that self-regulation can help to overcome it. Three experiments tested this assertion. In Study 1, low-power negotiators attained lower profits compared to their high-power opponents in a face-to-face negotiation. Negotiators who set themselves goals and those who additionally formed if-then plans prior to the negotiation overcame the low-power disadvantage. Studies 2 and 3 replicated these effects in computer-mediated negotiations: Low-power negotiators conceded more than high-power negotiators. Again, setting goals and forming additional if-then plans helped to counter the power disadvantage. Process analyses revealed that negotiators’ concession-making at the start of the negotiation mediated both the low-power disadvantage and the beneficial effects of self-regulation. The present findings show how the low-power disadvantage unfolds in negotiations and how self-regulatory techniques can help to overcome it. PMID:28382005

  4. Using Self-regulation to Successfully Overcome the Negotiation Disadvantage of Low Power.

    PubMed

    Jäger, Andreas; Loschelder, David D; Friese, Malte

    2017-01-01

    A plethora of studies has demonstrated that low-power negotiators attain lower outcomes compared to high-power negotiators. We argue that this low-power disadvantage can be conceptualized as impaired goal attainment and that self-regulation can help to overcome it. Three experiments tested this assertion. In Study 1, low-power negotiators attained lower profits compared to their high-power opponents in a face-to-face negotiation. Negotiators who set themselves goals and those who additionally formed if-then plans prior to the negotiation overcame the low-power disadvantage. Studies 2 and 3 replicated these effects in computer-mediated negotiations: Low-power negotiators conceded more than high-power negotiators. Again, setting goals and forming additional if-then plans helped to counter the power disadvantage. Process analyses revealed that negotiators' concession-making at the start of the negotiation mediated both the low-power disadvantage and the beneficial effects of self-regulation. The present findings show how the low-power disadvantage unfolds in negotiations and how self-regulatory techniques can help to overcome it.

  5. High Power Laser Welding. [of stainless steel and titanium alloy structures

    NASA Technical Reports Server (NTRS)

    Banas, C. M.

    1972-01-01

    A review of recent developments in high power, carbon dixoide laser welding is presented. Deep penetration welding in stainless steel to 0.5-in. thick, high speed welding in thin gage rimmed steel and gas shielded welding in Ti-6Al-4V alloy are described. The effects of laser power, power density, focusing optics, gas-shielding techniques, material properties and weld speed on weld quality and penetration are discussed. It is shown that laser welding performance in thin materials is comparable to that of electron beams. It is further shown that high quality welds, as evidenced by NDT, mechanical and metal-lographic tests, can be achieved. The potential of the laser for industrial welding applications is indicated.

  6. Ice Crystal Icing Engine Testing in the NASA Glenn Research Center's Propulsion Systems Laboratory: Altitude Investigation

    NASA Technical Reports Server (NTRS)

    Oliver, Michael J.

    2014-01-01

    The National Aeronautics and Space Administration (NASA) conducted a full scale ice crystal icing turbofan engine test using an obsolete Allied Signal ALF502-R5 engine in the Propulsion Systems Laboratory (PSL) at NASA Glenn Research Center. The test article used was the exact engine that experienced a loss of power event after the ingestion of ice crystals while operating at high altitude during a 1997 Honeywell flight test campaign investigating the turbofan engine ice crystal icing phenomena. The test plan included test points conducted at the known flight test campaign field event pressure altitude and at various pressure altitudes ranging from low to high throughout the engine operating envelope. The test article experienced a loss of power event at each of the altitudes tested. For each pressure altitude test point conducted the ambient static temperature was predicted using a NASA engine icing risk computer model for the given ambient static pressure while maintaining the engine speed.

  7. Social power facilitates the effect of prosocial orientation on empathic accuracy.

    PubMed

    Côté, Stéphane; Kraus, Michael W; Cheng, Bonnie Hayden; Oveis, Christopher; van der Löwe, Ilmo; Lian, Hua; Keltner, Dacher

    2011-08-01

    Power increases the tendency to behave in a goal-congruent fashion. Guided by this theoretical notion, we hypothesized that elevated power would strengthen the positive association between prosocial orientation and empathic accuracy. In 3 studies with university and adult samples, prosocial orientation was more strongly associated with empathic accuracy when distinct forms of power were high than when power was low. In Study 1, a physiological indicator of prosocial orientation, respiratory sinus arrhythmia, exhibited a stronger positive association with empathic accuracy in a face-to-face interaction among dispositionally high-power individuals. In Study 2, experimentally induced prosocial orientation increased the ability to accurately judge the emotions of a stranger but only for individuals induced to feel powerful. In Study 3, a trait measure of prosocial orientation was more strongly related to scores on a standard test of empathic accuracy among employees who occupied high-power positions within an organization. Study 3 further showed a mediated relationship between prosocial orientation and career satisfaction through empathic accuracy among employees in high-power positions but not among employees in lower power positions. Discussion concentrates upon the implications of these findings for studies of prosociality, power, and social behavior.

  8. Design definition of a microwave power reception and conversion system for use on a high altitude powered platform

    NASA Technical Reports Server (NTRS)

    Brown, W. C.

    1981-01-01

    The design definition of a microwave power reception and conversion system for use on high altitude powered platform is presented. The study includes an initial design, construction and test effort on a thin film, printed circuit rectenna. A study of a low altitude demonstration of an airborne rectenna was made starting with the assumption that a fifty foot mechanically steerable parabolic reflector at the Wallops Flight Center would be retrofitted with a low microwave power source consisting of a five kilowatt commercially available magnetron and that a small blimp would be used to support the rectenna.

  9. Power Measurement Errors on a Utility Aircraft

    NASA Technical Reports Server (NTRS)

    Bousman, William G.

    2002-01-01

    Extensive flight test data obtained from two recent performance tests of a UH 60A aircraft are reviewed. A power difference is calculated from the power balance equation and is used to examine power measurement errors. It is shown that the baseline measurement errors are highly non-Gaussian in their frequency distribution and are therefore influenced by additional, unquantified variables. Linear regression is used to examine the influence of other variables and it is shown that a substantial portion of the variance depends upon measurements of atmospheric parameters. Correcting for temperature dependence, although reducing the variance in the measurement errors, still leaves unquantified effects. Examination of the power difference over individual test runs indicates significant errors from drift, although it is unclear how these may be corrected. In an idealized case, where the drift is correctable, it is shown that the power measurement errors are significantly reduced and the error distribution is Gaussian. A new flight test program is recommended that will quantify the thermal environment for all torque measurements on the UH 60. Subsequently, the torque measurement systems will be recalibrated based on the measured thermal environment and a new power measurement assessment performed.

  10. Materials for Advanced Ultra-supercritical (A-USC) Steam Turbines – A-USC Component Demonstration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Purgert, Robert; Phillips, Jeffrey; Hendrix, Howard

    The work by the United States Department of Energy (U.S. DOE)/Ohio Coal Development Office (OCDO) advanced ultra-supercritical (A-USC) Steam Boiler and Turbine Materials Consortia from 2001 through September 2015 was primarily focused on lab scale and pilot scale materials testing. This testing included air- or steam-cooled “loops” that were inserted into existing utility boilers to gain exposure of these materials to realistic conditions of high temperature and corrosion due to the constituents in the coal. Successful research and development resulted in metallic alloy materials and fabrication processes suited for power generation applications with metal temperatures up to approximately 1472°F (800°C).more » These materials or alloys have shown, in extensive laboratory tests and shop fabrication studies, to have excellent applicability for high-efficiency low CO 2 transformational power generation technologies previously mentioned. However, as valuable as these material loops have been for obtaining information, their scale is significantly below that required to minimize the risk associated with a power company building a multi-billion dollar A-USC power plant. To decrease the identified risk barriers to full-scale implementation of these advanced materials, the U.S. DOE/OCDO A-USC Steam Boiler and Turbine Materials Consortia identified the key areas of the technology that need to be tested at a larger scale. Based upon the recommendations and outcome of a Consortia-sponsored workshop with the U.S.’s leading utilities, a Component Test (ComTest) Program for A-USC was proposed. The A-USC ComTest program would define materials performance requirements, plan for overall advanced system integration, design critical component tests, fabricate components for testing from advanced materials, and carry out the tests. The AUSC Component Test was premised on the program occurring at multiple facilities, with the operating temperatures, pressure and/or size of these components determining the optimum test location. The first step of the ComTest, the steam turbine test, was determined best suited for a site in Youngstown, Ohio. Efforts were also undertaken to identify and evaluate other potential sites for high pressure testing.« less

  11. Nuclear Design of the HOMER-15 Mars Surface Fission Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poston, David I.

    2002-07-01

    The next generation of robotic missions to Mars will most likely require robust power sources in the range of 3 to 20 kWe. Fission systems are well suited to provide safe, reliable, and economic power within this range. The goal of this study is to design a compact, low-mass fission system that meets Mars surface power requirements, while maintaining a high level of safety and reliability at a relatively low cost. The Heat pipe Power System (HPS) is one possible approach for producing near-term, low-cost, space fission power. The goal of the HPS project is to devise an attractive spacemore » fission system that can be developed quickly and affordably. The primary ways of doing this are by using existing technology and by designing the system for inexpensive testing. If the system can be designed to allow highly prototypic testing with electrical heating, then an exhaustive test program can be carried out quickly and inexpensively, and thorough testing of the actual flight unit can be performed - which is a major benefit to reliability. Over the past 4 years, three small HPS proof-of-concept technology demonstrations have been conducted, and each has been highly successful. The Heat pipe-Operated Mars Exploration Reactor (HOMER) is a derivative of the HPS designed especially for producing power on the surface of Mars. The HOMER-15 is a 15-kWt reactor that couples with a 3-kWe Stirling engine power system. The reactor contains stainless-steel (SS)-clad uranium nitride (UN) fuel pins that are structurally and thermally bonded to SS/sodium heat pipes. Fission energy is conducted from the fuel pins to the heat pipes, which then carry the heat to the Stirling engine. This paper describes conceptual design and nuclear performance the HOMER-15 reactor. (author)« less

  12. Primary zinc-air batteries for space power

    NASA Technical Reports Server (NTRS)

    Bragg, Bobby J.; Bourland, Deborah S.; Merry, Glenn; Putt, Ron

    1992-01-01

    Prismatic HR and LC cells and batteries were built and tested, and they performed well with respect to the program goals of high capacity and high rate capability at specific energies. The HR batteries suffered reduced utilizations owing to dryout at the 2 and 3 A rates for the 50 C tests owing to the requirement for forced convection. The LC batteries suffered reduced utilizations under all conditions owing to the chimney effect at 1 G, although this effect would not occur at 0 G. An empirical model was developed which accurately predicted utilizations and average voltages for single cells, although thermal effects encountered during battery testing caused significant deviations, both positive and negative, from the model. Based on the encouraging results of the test program, we believe that the zinc-air primary battery of a flat, stackable configuration can serve as a high performance and safe power source for a range of space applications.

  13. A mobile test facility based on a magnetic cumulative generator to study the stability of the power plants under impact of lightning currents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shurupov, A. V.; Zavalova, V. E., E-mail: zavalova@fites.ru; Kozlov, A. V.

    The report presents the results of the development and field testing of a mobile test facility based on a helical magnetic cumulative generator (MCGTF). The system is designed for full-scale modeling of lightning currents to study the safety of power plants of any type, including nuclear power plants. Advanced technologies of high-energy physics for solving both engineering and applied problems underlie this pilot project. The energy from the magnetic cumulative generator (MCG) is transferred to a high-impedance load with high efficiency of more than 50% using pulse transformer coupling. Modeling of the dynamics of the MEG that operates in amore » circuit with lumped parameters allows one to apply the law of inductance output during operation of the MCG, thus providing the required front of the current pulse in the load without using any switches. The results of field testing of the MCGTF are presented for both the ground loop and the model load. The ground loop generates a load resistance of 2–4 Ω. In the tests, the ohmic resistance of the model load is 10 Ω. It is shown that the current pulse parameters recorded in the resistive-inductive load are close to the calculated values.« less

  14. Physiological Interpretation of the Slope during an Isokinetic Fatigue Test.

    PubMed

    Bosquet, L; Gouadec, K; Berryman, N; Duclos, C; Gremeaux, V; Croisier, J-L

    2015-07-01

    To assess the relationship between selected measures (the slope and average performance) obtained during a high intensity isokinetic fatigue test of the knee (FAT) and relevant measures of anaerobic and aerobic capacities. 20 well-trained cyclists performed 3 randomly ordered sessions involving a FAT consisting in 30 reciprocal maximal concentric contractions of knee flexors and extensors at 180°.s(-1), a maximal continuous graded exercise test (GXT), and a Wingate anaerobic test (WAnT). The slope calculated from peak torque (PT) and total work (TW) of knee extensors was highly associated to maximal PT (r=-0.86) and maximal TW (r=-0.87) measured during FAT, and moderately associated to peak power output measured during the WAnT (r=-0.64 to -0.71). Average PT and average TW were highly associated to maximal PT (r=0.93) and maximal TW (r=0.96), to mean power output measured during WAnT (r=0.83-0.90) and moderately associated to maximal oxygen uptake (0.58-0.67). In conclusion, the slope is mainly determined by maximal anaerobic power, while average performance is a composite measure depending on both aerobic and anaerobic energy systems according to proportions that are determined by the duration of the test. © Georg Thieme Verlag KG Stuttgart · New York.

  15. Internal performance of a hybrid axisymmetric/nonaxisymmetric convergent-divergent nozzle

    NASA Technical Reports Server (NTRS)

    Taylor, John G.

    1991-01-01

    An investigation was conducted in the static test facility of the Langley 16-foot transonic tunnel to determine the internal performance of a hybrid axisymmetric/nonaxisymmetric nozzle in forward-thrust mode. Nozzle cross-sections in the spherical convergent section were axisymmetric whereas cross-sections in the divergent flap area nonaxisymmetric (two-dimensional). Nozzle concepts simulating dry and afterburning power settings were investigated. Both subsonic cruise and supersonic cruise expansion ratios were tested for the dry power nozzle concepts. Afterburning power configurations were tested at an expansion ratio typical for subsonic acceleration. The spherical convergent flaps were designed in such a way that the transition from axisymmetric to nonaxisymmetric cross-section occurred in the region of the nozzle throat. Three different nozzle throat geometries were tested for each nozzle power setting. High-pressure air was used to simulate jet exhaust at nozzle pressure ratios up to 12.0.

  16. Anomalous TWTA output power spikes and their effect on a digital satellite communications system

    NASA Technical Reports Server (NTRS)

    May, Brian D.; Kerczewski, Robert J.; Svoboda, James S.

    1992-01-01

    Several 30 GHz, 60 W traveling wave tube amplifiers (TWTA) were manufactured for the NASA Lewis Research Center's High Burst Rate Link Evaluation Terminal Project. An unusual operating problem characterized by anomalous nonperiodic output power spikes, common to all of the TWTAs proved during testing to significantly affect the performance of a digitally-modulated data transmission test system. Modifications made to the TWTAs significantly curtailed the problem and allowed acceptable system performance to be obtained. This paper presents a discussion of the TWTA output power spike problem, possible causes of the problem, and the solutions implemented by the manufacturer which improved the TWTA performance to an acceptable level. The results of the testing done at NASA Lewis on the TWTAs both before and after the improvement made by Hughes are presented, and the effects of the output power spikes on the performance of the test system are discussed.

  17. Space power demonstrator engine, phase 1

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The design, analysis, and preliminary test results for a 25 kWe Free-Piston Stirling engine with integral linear alternators are described. The project is conducted by Mechanical Technology under the direction of LeRC as part of the SP-100 Nuclear Space Power Systems Program. The engine/alternator system is designed to demonstrate the following performance: (1) 25 kWe output at a specific weight less than 8 kg/kW; (2) 25 percent efficiency at a temperature ratio of 2.0; (3) low vibration (amplitude less than .003 in); (4) internal gas bearings (no wear, no external pump); and (5) heater temperature/cooler temperature from 630 to 315 K. The design approach to minimize vibration is a two-module engine (12.5 kWe per module) in a linearly-opposed configuration with a common expansion space. The low specific weight is obtained at high helium pressure (150 bar) and high frequency (105 Hz) and by using high magnetic strength (samarium cobalt) alternator magnets. Engine tests began in June 1985; 16 months following initiation of engine and test cell design. Hydrotest and consequent engine testing to date has been intentionally limited to half pressure, and electrical power output is within 15 to 20 percent of design predictions.

  18. Ambient Pressure Test Rig Developed for Testing Oil-Free Bearings in Alternate Gases and Variable Pressures

    NASA Technical Reports Server (NTRS)

    Bauman, Steven W.

    1990-01-01

    The Oil-Free Turbomachinery research team at the NASA Glenn Research Center is conducting research to develop turbomachinery systems that utilize high-speed, high temperature foil (air) bearings that do not require an oil lubrication system. Such systems combine the most advanced foil bearings from industry with NASA-developed hightemperature solid-lubricant technology. New applications are being pursued, such as Oil- Free turbochargers, auxiliary power units, and turbine propulsion systems for aircraft. An Oil-Free business jet engine, for example, would be simpler, lighter, more reliable, and less costly to purchase and maintain than current engines. Another application is NASA's Prometheus mission, where gas bearings will be required for the closed-cycle turbine based power-conversion system of a nuclear power generator for deep space. To support these applications, Glenn's Oil-Free Turbomachinery research team developed the Ambient Pressure Test Rig. Using this facility, researchers can load and heat a bearing and evaluate its performance with reduced air pressure to simulate high altitude conditions. For the nuclear application, the test chamber can be purged with gases such as helium to study foil gas bearing operation in working fluids other than air.

  19. Real-time high speed generator system emulation with hardware-in-the-loop application

    NASA Astrophysics Data System (ADS)

    Stroupe, Nicholas

    The emerging emphasis and benefits of distributed generation on smaller scale networks has prompted much attention and focus to research in this field. Much of the research that has grown in distributed generation has also stimulated the development of simulation software and techniques. Testing and verification of these distributed power networks is a complex task and real hardware testing is often desired. This is where simulation methods such as hardware-in-the-loop become important in which an actual hardware unit can be interfaced with a software simulated environment to verify proper functionality. In this thesis, a simulation technique is taken one step further by utilizing a hardware-in-the-loop technique to emulate the output voltage of a generator system interfaced to a scaled hardware distributed power system for testing. The purpose of this thesis is to demonstrate a new method of testing a virtually simulated generation system supplying a scaled distributed power system in hardware. This task is performed by using the Non-Linear Loads Test Bed developed by the Energy Conversion and Integration Thrust at the Center for Advanced Power Systems. This test bed consists of a series of real hardware developed converters consistent with the Navy's All-Electric-Ship proposed power system to perform various tests on controls and stability under the expected non-linear load environment of the Navy weaponry. This test bed can also explore other distributed power system research topics and serves as a flexible hardware unit for a variety of tests. In this thesis, the test bed will be utilized to perform and validate this newly developed method of generator system emulation. In this thesis, the dynamics of a high speed permanent magnet generator directly coupled with a micro turbine are virtually simulated on an FPGA in real-time. The calculated output stator voltage will then serve as a reference for a controllable three phase inverter at the input of the test bed that will emulate and reproduce these voltages on real hardware. The output of the inverter is then connected with the rest of the test bed and can consist of a variety of distributed system topologies for many testing scenarios. The idea is that the distributed power system under test in hardware can also integrate real generator system dynamics without physically involving an actual generator system. The benefits of successful generator system emulation are vast and lead to much more detailed system studies without the draw backs of needing physical generator units. Some of these advantages are safety, reduced costs, and the ability of scaling while still preserving the appropriate system dynamics. This thesis will introduce the ideas behind generator emulation and explain the process and necessary steps to obtaining such an objective. It will also demonstrate real results and verification of numerical values in real-time. The final goal of this thesis is to introduce this new idea and show that it is in fact obtainable and can prove to be a highly useful tool in the simulation and verification of distributed power systems.

  20. Space nuclear power systems; Proceedings of the 8th Symposium, Albuquerque, NM, Jan. 6-10, 1991. Pts. 1-3

    NASA Astrophysics Data System (ADS)

    El-Genk, Mohamed S.; Hoover, Mark D.

    1991-07-01

    The present conference discusses NASA mission planning for space nuclear power, lunar mission design based on nuclear thermal rockets, inertial-electrostatic confinement fusion for space power, nuclear risk analysis of the Ulysses mission, the role of the interface in refractory metal alloy composites, an advanced thermionic reactor systems design code, and space high power nuclear-pumped lasers. Also discussed are exploration mission enhancements with power-beaming, power requirement estimates for a nuclear-powered manned Mars rover, SP-100 reactor design, safety, and testing, materials compatibility issues for fabric composite radiators, application of the enabler to nuclear electric propulsion, orbit-transfer with TOPAZ-type power sources, the thermoelectric properties of alloys, ruthenium silicide as a promising thermoelectric material, and innovative space-saving device for high-temperature piping systems. The second volume of this conference discusses engine concepts for nuclear electric propulsion, nuclear technologies for human exploration of the solar system, dynamic energy conversion, direct nuclear propulsion, thermionic conversion technology, reactor and power system control, thermal management, thermionic research, effects of radiation on electronics, heat-pipe technology, radioisotope power systems, and nuclear fuels for power reactors. The third volume discusses space power electronics, space nuclear fuels for propulsion reactors, power systems concepts, space power electronics systems, the use of artificial intelligence in space, flight qualifications and testing, microgravity two-phase flow, reactor manufacturing and processing, and space and environmental effects. (For individual items see A93-13752 to A93-13937)

  1. Promising Results from Three NASA SBIR Solar Array Technology Development Programs

    NASA Technical Reports Server (NTRS)

    Eskenazi, Mike; White, Steve; Spence, Brian; Douglas, Mark; Glick, Mike; Pavlick, Ariel; Murphy, David; O'Neill, Mark; McDanal, A. J.; Piszczor, Michael

    2005-01-01

    Results from three NASA SBIR solar array technology programs are presented. The programs discussed are: 1) Thin Film Photovoltaic UltraFlex Solar Array; 2) Low Cost/Mass Electrostatically Clean Solar Array (ESCA); and 3) Stretched Lens Array SquareRigger (SLASR). The purpose of the Thin Film UltraFlex (TFUF) Program is to mature and validate the use of advanced flexible thin film photovoltaics blankets as the electrical subsystem element within an UltraFlex solar array structural system. In this program operational prototype flexible array segments, using United Solar amorphous silicon cells, are being manufactured and tested for the flight qualified UltraFlex structure. In addition, large size (e.g. 10 kW GEO) TFUF wing systems are being designed and analyzed. Thermal cycle and electrical test and analysis results from the TFUF program are presented. The purpose of the second program entitled, Low Cost/Mass Electrostatically Clean Solar Array (ESCA) System, is to develop an Electrostatically Clean Solar Array meeting NASA s design requirements and ready this technology for commercialization and use on the NASA MMS and GED missions. The ESCA designs developed use flight proven materials and processes to create a ESCA system that yields low cost, low mass, high reliability, high power density, and is adaptable to any cell type and coverglass thickness. All program objectives, which included developing specifications, creating ESCA concepts, concept analysis and trade studies, producing detailed designs of the most promising ESCA treatments, manufacturing ESCA demonstration panels, and LEO (2,000 cycles) and GEO (1,350 cycles) thermal cycling testing of the down-selected designs were successfully achieved. The purpose of the third program entitled, "High Power Platform for the Stretched Lens Array," is to develop an extremely lightweight, high efficiency, high power, high voltage, and low stowed volume solar array suitable for very high power (multi-kW to MW) applications. These objectives are achieved by combining two cutting edge technologies, the SquareRigger solar array structure and the Stretched Lens Array (SLA). The SLA SquareRigger solar array is termed SLASR. All program objectives, which included developing specifications, creating preliminary designs for a near-term SLASR, detailed structural, mass, power, and sizing analyses, fabrication and power testing of a functional flight-like SLASR solar blanket, were successfully achieved.

  2. Performance and Environmental Test Results of the High Voltage Hall Accelerator Engineering Development Unit

    NASA Technical Reports Server (NTRS)

    Kamhawi, Hani; Haag, Thomas; Huang, Wensheng; Shastry, Rohit; Pinero, Luis; Peterson, Todd; Mathers, Alex

    2012-01-01

    NASA Science Mission Directorate's In-Space Propulsion Technology Program is sponsoring the development of a 3.5 kW-class engineering development unit Hall thruster for implementation in NASA science and exploration missions. NASA Glenn and Aerojet are developing a high fidelity high voltage Hall accelerator that can achieve specific impulse magnitudes greater than 2,700 seconds and xenon throughput capability in excess of 300 kilograms. Performance, plume mappings, thermal characterization, and vibration tests of the high voltage Hall accelerator engineering development unit have been performed. Performance test results indicated that at 3.9 kW the thruster achieved a total thrust efficiency and specific impulse of 58%, and 2,700 sec, respectively. Thermal characterization tests indicated that the thruster component temperatures were within the prescribed material maximum operating temperature limits during full power thruster operation. Finally, thruster vibration tests indicated that the thruster survived the 3-axes qualification full-level random vibration test series. Pre and post-vibration test performance mappings indicated almost identical thruster performance. Finally, an update on the development progress of a power processing unit and a xenon feed system is provided.

  3. Results of an electrical power system fault study

    NASA Technical Reports Server (NTRS)

    Dugal-Whitehead, Norma R.; Johnson, Yvette B.

    1992-01-01

    NASA-Marshall conducted a study of electrical power system faults with a view to the development of AI control systems for a spacecraft power system breadboard. The results of this study have been applied to a multichannel high voltage dc spacecraft power system, the Large Autonomous Spacecraft Electrical Power System (LASEPS) breadboard. Some of the faults encountered in testing LASEPS included the shorting of a bus an a falloff in battery cell capacity.

  4. Algebra: Level II, Unit 8, Lesson 1; Powers and Roots: Lesson 2; Geometry: Lesson 3; Number Series: Lesson 4. Advanced General Education Program. A High School Self-Study Program.

    ERIC Educational Resources Information Center

    Manpower Administration (DOL), Washington, DC. Job Corps.

    This self-study program for high-school level contains lessons on: Algebra, Powers and Roots, Geometry, and Number Series. Each of the lessons concludes with a Mastery Test to be completed by the student. (DB)

  5. Ongoing Wear Test of a XIPS(c) 25-Centimeter Thruster Discharge Cathode

    NASA Technical Reports Server (NTRS)

    Polk, James E.; Goebel, Dan M.; Tighe, William

    2008-01-01

    The Xenon Ion Propulsion System (XIPS(c)) 25-cm thruster produced by L-3 Communications Electron Technologies, Inc. offers a number of potential benefits for planetary missions, including high efficiency and high Isp over a large power throttling range and availability from an active product line. The thruster is qualified for use on commercial communications satellites, which have requirements differing from those for typical planetary missions. In particular, deep space missions require longer service life over a broad range of throttling conditions. A XIPS(c) discharge cathode assembly is currently undergoing a long duration test to extend operating experience at the maximum power point and at throttled conditions unique to planetary mission applications. A total of 11080 hours have been accumulated at conditions corresponding to the full power engine operating point at 4.2 kWe and an intermediate power point at 2.76 kWe. Minor performance losses and cathode keeper erosion were observed at the full power point, but there were no changes in performance and negligible erosion at the intermediate power point.

  6. Experience of 12 kA / 16 V SMPS during the HTS Current Leads Test

    NASA Astrophysics Data System (ADS)

    Panchal, P.; Christian, D.; Panchal, R.; Sonara, D.; Purwar, G.; Garg, A.; Nimavat, H.; Singh, G.; Patel, J.; Tanna, V.; Pradhan, S.

    2017-04-01

    As a part of up gradation plans in SST-1 Tokamak, one pair of 3.3 kA rated prototype hybrid current leads were developed using Di-BSCCO as High Temperature Superconductors (HTS) and the copper heat exchanger. In order to validate the manufacturing procedure prior to go for series production of such current leads, it was recommended to test these current leads using dedicated and very reliable DC switch mode power supply (SMPS). As part of test facility, 12 kA, 16 VDC programmable SMPS was successfully installed, commissioned and tested. This power supply has special features such as modularity, N+1 redundancy, very low ripple voltage, precise current measurements with Direct Current Current Transformer, CC/CV modes with auto-crossover and auto-sequence programming. As a part of acceptance of this converter, A 5.8 mΩ water-cooled resistive dummy load and PLC based SCADA system is designed, developed for commissioning of power supply. The same power supply was used for the testing of the prototype HTS current leads. The paper describes the salient features and experience of state-of-art of power supply and results obtained from this converter during the HTS current leads test.

  7. UV lifetime demonstrator for space-based applications

    NASA Astrophysics Data System (ADS)

    Albert, Michael; Puffenburger, Kent; Schum, Tom; Fitzpatrick, Fran; Litvinovitch, Slava; Jones, Darrell; Rudd, Joseph; Hovis, Floyd

    2016-05-01

    A long-lived UV laser is an enabling technology for a number of high-priority, space-based lidar instruments. These include next generation cloud and aerosol lidars that incorporates a UV channel, direct detection 3-D wind lidars, and ozone DIAL (differential absorption lidar) systems. In previous SBIR funded work we developed techniques for increasing the survivability of components in high power UV lasers and demonstrated improved operational lifetimes. In this Phase III ESTO funded effort we are designing and building a TRL (Technology Readiness Level) 6 demonstrator that will have increased output power and a space-qualifiable package that is mechanically robust and thermally-stable. For full space compatibility, thermal control will be through pure conductive cooling. Contamination control processes and optical coatings will be chosen that are compatible with lifetimes in excess of 1 billion shots. The 1064nm output will be frequency tripled to provide greater than 100 mJ pulses of 355 nm light at 150 Hz. The laser module build was completed in the third quarter of 2015 at which time a series of life tests were initiated. The first phase of the lifetime testing is a 532 nm only test that is expected to complete in April 2016. The 532 nm lifetest will be followed by a 4 month half power UV life test and then a four month full power UV life test. The lifetime tests will be followed by thermal/vacuum (TVAC) and vibration testing to demonstrate that the laser optics module design is at TRL 6.

  8. Energy saver A-sector power test results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, P.; Flora, R.; Tool, G.

    1982-09-15

    The superconducting magnets and associated cryogenic components in A-sector represent the initial phase of installation of the Fermilab superconducting accelerator, designed to accelerate proton beams to energies of 1 TeV. Installation of the magnets, comprising one-eighth of the ring, was completed in December, 1981. Cooldown and power tests took place in the first half of 1982, concurrent with main ring use for 400 GeV high energy physics. The tests described in this paper involved 151 cryogenic components in the tunnel: 94 dipoles, 24 quadrupoles, 25 spool pieces, 3 feed cans, 4 turn-around boxes and 1 bypass. Refrigeration was supplied bymore » three satellite refrigerators, the Central Helium Liquefier, and two compressor buildings. The magnets were powered by a single power supply.« less

  9. Research on calorimeter for high-power microwave measurements.

    PubMed

    Ye, Hu; Ning, Hui; Yang, Wensen; Tian, Yanmin; Xiong, Zhengfeng; Yang, Meng; Yan, Feng; Cui, Xinhong

    2015-12-01

    Based on measurement of the volume increment of polar liquid that is a result of heating by absorbed microwave energy, two types of calorimeters with coaxial capacitive probes for measurement of high-power microwave energy are designed in this paper. The first is an "inline" calorimeter, which is placed as an absorbing load at the end of the output waveguide, and the second is an "offline" calorimeter that is placed 20 cm away from the radiation horn of the high-power microwave generator. Ethanol and high density polyethylene are used as the absorbing and housing materials, respectively. Results from both simulations and a "cold test" on a 9.3 GHz klystron show that the "inline" calorimeter has a measurement range of more than 100 J and an energy absorption coefficient of 93%, while the experimental results on a 9.3 GHz relativistic backward-wave oscillator show that the device's power capacity is approximately 0.9 GW. The same experiments were also carried out for the "offline" calorimeter, and the results indicate that it can be used to eliminate the effects of the shock of the solenoid on the measurement curves and that the device has a higher power capacity of 2.5 GW. The results of the numerical simulations, the "cold tests," and the experiments show good agreement.

  10. Development of a high power microwave thruster, with a magnetic nozzle, for space applications

    NASA Technical Reports Server (NTRS)

    Power, John L.; Chapman, Randall A.

    1989-01-01

    This paper describes the current development of a high-power microwave electrothermal thruster (MET) concept at the NASA Lewis Research Center. Such a thruster would be employed in space for applications such as orbit raining, orbit maneuvering, station change, and possibly trans-lunar or trans-planetary propulsion of spacecraft. The MET concept employs low frequency continuous wave (CW) microwave power to create and continuously pump energy into a flowing propellant gas at relative high pressure via a plasma discharge. The propellant is heated to very high bulk temperatures while passing through the plasma discharge region and then is expanded through a throat-nozzle assembly to produce thrust, as in a conventional rocket engine. Apparatus, which is described, is being assembled at NASA Lewis to test the MET concept to CW power levels of 30 kW at a frequency of 915 MHz. The microwave energy is applied in a resonant cavity applicator and is absorbed by a plasma discharge in the flowing propellant. The ignited plasma acts as a lossy load, and with optimal tuning, energy absorption efficiencies over 95 percent (based on the applied microwave power) are expected. Nitrogen, helium, and hydrogen will be tested as propellants in the MET, at discharge chamber pressures to 10 atm.

  11. Measurements of uranium mass confined in high density plasmas

    NASA Technical Reports Server (NTRS)

    Stoeffler, R. C.

    1976-01-01

    An X-ray absorption method for measuring the amount of uranium confined in high density, rf-heated uranium plasmas is described. A comparison of measured absorption of 8 keV X-rays with absorption calculated using Beer Law indicated that the method could be used to measure uranium densities from 3 times 10 to the 16th power atoms/cu cm to 5 times 10 to the 18th power atoms/cu cm. Tests were conducted to measure the density of uranium in an rf-heated argon plasma with UF6 infection and with the power to maintain the discharge supplied by a 1.2 MW rf induction heater facility. The uranium density was measured as the flow rate through the test chamber was varied. A maximum uranium density of 3.85 times 10 to the 17th power atoms/cu cm was measured.

  12. Specification and testing for power by wire aircraft

    NASA Technical Reports Server (NTRS)

    Hansen, Irving G.; Kenney, Barbara H.

    1993-01-01

    A power by wire aircraft is one in which all active functions other than propulsion are implemented electrically. Other nomenclature are 'all electric airplane,' or 'more electric airplane.' What is involved is the task of developing and certifying electrical equipment to replace existing hydraulics and pneumatics. When such functions, however, are primary flight controls which are implemented electrically, new requirements are imposed that were not anticipated by existing power system designs. Standards of particular impact are the requirements of ultra-high reliability, high peak transient bi-directional power flow, and immunity to electromagnetic interference and lightning. Not only must the electromagnetic immunity of the total system be verifiable, but box level tests and meaningful system models must be established to allow system evaluation. This paper discusses some of the problems, the system modifications involved, and early results in establishing wiring harness and interface susceptibility requirements.

  13. Anaerobic and Aerobic Performance of Elite Female and Male Snowboarders

    PubMed Central

    Żebrowska, Aleksandra; Żyła, Dorota; Kania, Damian; Langfort, Józef

    2012-01-01

    The physiological adaptation to training is specific to the muscle activity, dominant energy system involved, muscle groups trained, as well as intensity and volume of training. Despite increasing popularity of snowboarding only little scientific data is available on the physiological characteristics of female and male competitive snowboarders. Therefore, the purpose of this study was to compare the aerobic capacity and maximal anaerobic power of elite Polish snowboarders with untrained subjects. Ten snowboarders and ten aged matched students of Physical Education performed two exercise tests. First, a 30-second Wingate test was conducted and next, a cycle ergometer exercise test with graded intensity. In the first test, peak anaerobic power, the total work, relative peak power and relative mean power were measured. During the second test, relative maximal oxygen uptake and lactate threshold were evaluated. There were no significant differences in absolute and relative maximal oxygen uptake between snowboarders and the control group. Mean maximal oxygen uptake and lactate threshold were significantly higher in men than in women. Significant differences were found between trained men and women regarding maximal power and relative maximal power. The elite snowboarders demonstrated a high level of anaerobic power. The level of relative peak power in trained women correlated negatively with maximal oxygen uptake. In conclusion, our results seem to indicate that the demanding competition program of elite snowboarders provides a significant training stimulus mainly for anaerobic power with minor changes in anaerobic performance. PMID:23487498

  14. Test-retest reliability of resting-state magnetoencephalography power in sensor and source space.

    PubMed

    Martín-Buro, María Carmen; Garcés, Pilar; Maestú, Fernando

    2016-01-01

    Several studies have reported changes in spontaneous brain rhythms that could be used as clinical biomarkers or in the evaluation of neuropsychological and drug treatments in longitudinal studies using magnetoencephalography (MEG). There is an increasing necessity to use these measures in early diagnosis and pathology progression; however, there is a lack of studies addressing how reliable they are. Here, we provide the first test-retest reliability estimate of MEG power in resting-state at sensor and source space. In this study, we recorded 3 sessions of resting-state MEG activity from 24 healthy subjects with an interval of a week between each session. Power values were estimated at sensor and source space with beamforming for classical frequency bands: delta (2-4 Hz), theta (4-8 Hz), alpha (8-13 Hz), low beta (13-20 Hz), high beta (20-30 Hz), and gamma (30-45 Hz). Then, test-retest reliability was evaluated using the intraclass correlation coefficient (ICC). We also evaluated the relation between source power and the within-subject variability. In general, ICC of theta, alpha, and low beta power was fairly high (ICC > 0.6) while in delta and gamma power was lower. In source space, fronto-posterior alpha, frontal beta, and medial temporal theta showed the most reliable profiles. Signal-to-noise ratio could be partially responsible for reliability as low signal intensity resulted in high within-subject variability, but also the inherent nature of some brain rhythms in resting-state might be driving these reliability patterns. In conclusion, our results described the reliability of MEG power estimates in each frequency band, which could be considered in disease characterization or clinical trials. © 2015 Wiley Periodicals, Inc.

  15. Automated power distribution system hardware. [for space station power supplies

    NASA Technical Reports Server (NTRS)

    Anderson, Paul M.; Martin, James A.; Thomason, Cindy

    1989-01-01

    An automated power distribution system testbed for the space station common modules has been developed. It incorporates automated control and monitoring of a utility-type power system. Automated power system switchgear, control and sensor hardware requirements, hardware design, test results, and potential applications are discussed. The system is designed so that the automated control and monitoring of the power system is compatible with both a 208-V, 20-kHz single-phase AC system and a high-voltage (120 to 150 V) DC system.

  16. Kilovolt dc solid state remote power controller development

    NASA Technical Reports Server (NTRS)

    Mitchell, J. T.

    1982-01-01

    The experience gained in developing and applying solid state power controller (SSPC) technology at high voltage dc (HVDC) potentials and power levels of up to 25 kilowatts is summarized. The HVDC switching devices, power switching concepts, drive circuits, and very fast acting overcurrent protection circuits were analyzed. A 25A bipolar breadboard with Darlington connected switching transistor was built. Fault testing at 900 volts was included. A bipolar transistor packaged breadboard design was developed. Power MOSFET remote power controller (RPC) was designed.

  17. The Viking parachute qualification test technique.

    NASA Technical Reports Server (NTRS)

    Raper, J. L.; Lundstrom, R. R.; Michel, F. C.

    1973-01-01

    The parachute system for NASA's Viking '75 Mars lander was flight qualified in four high-altitude flight tests at the White Sands Missile range (WSMR). A balloon system lifted a full-scale simulated Viking spacecraft to an altitude where a varying number of rocket motors were used to propel the high drag, lifting test vehicle to test conditions which would simulate the range of entry conditions expected at Mars. A ground-commanded cold gas pointing system located on the balloon system provided powered vehicle azimuth control to insure that the flight trajectory remained within the WSMR boundaries. A unique ground-based computer-radar system was employed to monitor inflight performance of the powered vehicle and insure that command ignition of the parachute mortar occurred at the required test conditions of Mach number and dynamic pressure. Performance data were obtained from cameras, telemetry, and radar.

  18. Power processor for a 20CM ion thruster

    NASA Technical Reports Server (NTRS)

    Biess, J. J.; Schoenfeld, A. D.; Cohen, E.

    1973-01-01

    A power processor breadboard for the JPL 20CM Ion Engine was designed, fabricated, and tested to determine compliance with the electrical specification. The power processor breadboard used the silicon-controlled rectifier (SCR) series resonant inverter as the basic power stage to process all the power to the ion engine. The breadboard power processor was integrated with the JPL 20CM ion engine and complete testing was performed. The integration tests were performed without any silicon-controlled rectifier failure. This demonstrated the ruggedness of the series resonant inverter in protecting the switching elements during arcing in the ion engine. A method of fault clearing the ion engine and returning back to normal operation without elaborate sequencing and timing control logic was evolved. In this method, the main vaporizer was turned off and the discharge current limit was reduced when an overload existed on the screen/accelerator supply. After the high voltage returned to normal, both the main vaporizer and the discharge were returned to normal.

  19. Advanced Grid-Friendly Controls Demonstration Project for Utility-Scale PV Power Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gevorgian, Vahan; O'Neill, Barbara

    A typical photovoltaic (PV) power plant consists of multiple power electronic inverters and can contribute to grid stability and reliability through sophisticated 'grid-friendly' controls. The availability and dissemination of actual test data showing the viability of advanced utility-scale PV controls among all industry stakeholders can leverage PV's value from being simply an energy resource to providing additional ancillary services that range from variability smoothing and frequency regulation to power quality. Strategically partnering with a selected utility and/or PV power plant operator is a key condition for a successful demonstration project. The U.S. Department of Energy's (DOE's) Solar Energy Technologies Officemore » selected the National Renewable Energy Laboratory (NREL) to be a principal investigator in a two-year project with goals to (1) identify a potential partner(s), (2) develop a detailed scope of work and test plan for a field project to demonstrate the gird-friendly capabilities of utility-scale PV power plants, (3) facilitate conducting actual demonstration tests, and (4) disseminate test results among industry stakeholders via a joint NREL/DOE publication and participation in relevant technical conferences. The project implementation took place in FY 2014 and FY 2015. In FY14, NREL established collaborations with AES and First Solar Electric, LLC, to conduct demonstration testing on their utility-scale PV power plants in Puerto Rico and Texas, respectively, and developed test plans for each partner. Both Puerto Rico Electric Power Authority and the Electric Reliability Council of Texas expressed interest in this project because of the importance of such advanced controls for the reliable operation of their power systems under high penetration levels of variable renewable generation. During FY15, testing was completed on both plants, and a large amount of test data was produced and analyzed that demonstrates the ability of PV power plants to provide various types of new grid-friendly controls.« less

  20. Design, fabrication, and high-gradient testing of an X -band, traveling-wave accelerating structure milled from copper halves

    NASA Astrophysics Data System (ADS)

    Argyropoulos, Theodoros; Catalan-Lasheras, Nuria; Grudiev, Alexej; Mcmonagle, Gerard; Rodriguez-Castro, Enrique; Syrachev, Igor; Wegner, Rolf; Woolley, Ben; Wuensch, Walter; Zha, Hao; Dolgashev, Valery; Bowden, Gorden; Haase, Andrew; Lucas, Thomas Geoffrey; Volpi, Matteo; Esperante-Pereira, Daniel; Rajamäki, Robin

    2018-06-01

    A prototype 11.994 GHz, traveling-wave accelerating structure for the Compact Linear Collider has been built, using the novel technique of assembling the structure from milled halves. The use of milled halves has many advantages when compared to a structure made from individual disks. These include the potential for a reduction in cost, because there are fewer parts, as well as a greater freedom in choice of joining technology because there are no rf currents across the halves' joint. Here we present the rf design and fabrication of the prototype structure, followed by the results of the high-power test and post-test surface analysis. During high-power testing the structure reached an unloaded gradient of 100 MV /m at a rf breakdown rate of less than 1.5 ×10-5 breakdowns /pulse /m with a 200 ns pulse. This structure has been designed for the CLIC testing program but construction from halves can be advantageous in a wide variety of applications.

  1. Posttest data analysis of FIST experimental TRAC-BD1/MOD1 power transient experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wheatley, P.D.; Wagner, K.C.

    The FIST power transient test 6PMC2 was analyzed to further the understanding of the FIST facility and provide an assessment of TRAC-BD1/MOD1. FIST power transient 6PMC2 investigated the thermal-hydraulic response following inadvertent closure of the main steam isolation valve and the subsequent failure of the reactor to scram. Failure of the high pressure core spray system was also assumed, resulting in only the reactor core isolation cooling flow for inventory makeup during the transient. The experiment was a sensitivity study with relatively high core power and low makeup rates. This study provides one of the first opportunities to assess TRAC-BD1/MOD1more » under power transient and natural circulation conditions with data from a facility with prototypical BWR geometry. The power transient test was analyzed with emphasis on the following phenomena: (a) the system pressure response, (b) the natural circulation flows and rates, and (c) the heater rod cladding temperature response. Based on the results of this study, TRAC-BD1/MOD1 can be expected to calculate the thermal-hydraulic behavior of a BWR during a power transient.« less

  2. Thermal effects in an ultrafast BiB 3O 6 optical parametric oscillator at high average powers

    DOE PAGES

    Petersen, T.; Zuegel, J. D.; Bromage, J.

    2017-08-15

    An ultrafast, high-average-power, extended-cavity, femtosecond BiB 3O 6 optical parametric oscillator was constructed as a test bed for investigating the scalability of infrared parametric devices. Despite the high pulse energies achieved by this system, the reduction in slope efficiency near the maximum-available pump power prompted the investigation of thermal effects in the crystal during operation. Furthermore, the local heating effects in the crystal were used to determine the impact on both phase matching and thermal lensing to understand limitations that must be overcome to achieve microjoule-level pulse energies at high repetition rates.

  3. Thermal effects in an ultrafast BiB 3O 6 optical parametric oscillator at high average powers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petersen, T.; Zuegel, J. D.; Bromage, J.

    An ultrafast, high-average-power, extended-cavity, femtosecond BiB 3O 6 optical parametric oscillator was constructed as a test bed for investigating the scalability of infrared parametric devices. Despite the high pulse energies achieved by this system, the reduction in slope efficiency near the maximum-available pump power prompted the investigation of thermal effects in the crystal during operation. Furthermore, the local heating effects in the crystal were used to determine the impact on both phase matching and thermal lensing to understand limitations that must be overcome to achieve microjoule-level pulse energies at high repetition rates.

  4. Lightweight Solar Paddle with High Specific Power of 150 W/Kg

    NASA Astrophysics Data System (ADS)

    Shimazaki, Kazunori; Takahashi, Masato; Imaizumi, Mitsuru; Takamoto, Tatsuya; Ito, Takehiko; Nozaki, Yukishige; Kusawake, Hiroaki

    2014-08-01

    A lightweight solar paddle using space solar sheet (SSS) is currently being developed, which uses glass-type SSS (G-SSS) comprising InGaP/GaAs/InGaAs triple- junction high-efficiency thin-film solar cells. To avoid damage to the G-SSS due to vibration during launch, we adopted a new architecture on a panel. This panel employed a curved frame-type structure, on which the G-SSS is mounted and test models were manufactured to evaluate the vibration tolerance. The dimensions of the 1.0-cm-thick unit panel were about 1.0 × 1.0 m. Acoustic and sine vibration tests were performed on the model and the results demonstrated the high durability of the curved panel in an acoustic and vibration environments. The specific power of the solar paddle using the curved panel is estimated at approximately 150 W/kg at an array power of about 10 kW.

  5. A high-power microwave circular polarizer and its application on phase shifter.

    PubMed

    Shao, Hao; Hu, Yongmei; Chang, Chao; Guo, Letian

    2016-04-01

    A high-power waveguide dual circular polarizer was theoretically designed and proof-of-principle was experimentally tested. It consists of two incident rectangular waveguides with a perpendicular H-plane junction, one circular waveguide with a pair of trapezoidal grooves coupled in E-plane at the top, a spherical crown located at the bottom, and an iris at the perpendicular junction of two rectangular waveguides. When wave incidents at one of the two separated rectangular waveguides, it, respectively, generates a left-hand circular polarized wave or a right-hand circular polarized wave in the circular waveguide. By adding a dumbbell-like metal plug driven with a high speed servomotor, a movable short circuit is formed along the circular waveguide to adjust the output RF phase of the rectangular port, realizing a high-speed high-power phase shifter. The C-band high power microwave (HPM) experiments were carried out, and the power capacity of the HPM polarizer and phase shifter was demonstrated to reach gigawatt level.

  6. The Commercialization of the SiC Flame Sensor

    NASA Astrophysics Data System (ADS)

    Fedison, Jeffrey B.

    2002-03-01

    The technical and scientific steps required to produce large quantities of SiC flame sensors is described. The technical challenges required to understand, fabricate, test and package SiC photodiodes in 1990 were numerous since SiC device know how was embryonic. A sense of urgency for a timely replacement of the Geiger Muller gas discharge tube soon entered the scene. New dual fuel GE Power Systems gas turbines, which were designed to lean burn either natural gas or oil for low NOx emissions required a much higher sensitivity sensor. Joint work between GE CRD and Cree Research sponsored by the GE Aircraft Engine Division developed the know how for the fabrication of high sensitivity, high yield, reliable SiC photodiodes. Yield issues were uncovered and overcome. The urgency for system insertion required that SiC diode and sensor circuitry development needed to be carried out simultaneously with power plant field tests of laboratory or prototype sensor assemblies. The sensor and reliability specifications were stringent since the sensors installed on power plant turbine combustor walls are subjected to high levels of vibration, elevated temperatures, and high pressures. Furthermore a fast recovery time was required to sense flame out in spite of the fact that the amplifier circuit needed have high gain and high dynamic range. SiC diode technical difficulties were encountered and overcome. The science of hydrocarbon flames will also be described together with the fortunate overlap of the strong OH emission band with the SiC photodiode sensitivity versus wavelength characteristic. The extremely low dark current (<1pA/cm^2) afforded by the wide band gap and the 3eV sensitivity cutoff at 400nm made if possible to produce low amplifier offsets, high sensitivity and high dynamic range along with immunity to black body radiation from combustor walls. Field tests at power plants that had experienced turbine tripping, whenever oil fuel and/or oil with steam injection for power augmentation, were extremely encouraging. This warrantee problem previously due to the low sensitivity of the Geiger Muller tube was solved using the much higher sensitivity SiC detector. This sensitivity increase is partially due to the fact that the SiC photodiode “sees” the strong OH emission band whereas the Geiger Muller tube can only respond to the shorter wavelength CO emission band. Other successful field tests were observed and acclaimed by power plant operators, which for the first time could track mode switching and power level (flame intensity) because of the high dynamic range (>5000:1). The demand for this product thereupon rose dramatically. This success, the first for SiC devices other than that of SiC blue LEDs, is leading GE to implement this technology in other application fields.

  7. Critical need for MFE: the Alcator DX advanced divertor test facility

    NASA Astrophysics Data System (ADS)

    Vieira, R.; Labombard, B.; Marmar, E.; Irby, J.; Wolf, S.; Bonoli, P.; Fiore, C.; Granetz, R.; Greenwald, M.; Hutchinson, I.; Hubbard, A.; Hughes, J.; Lin, Y.; Lipschultz, B.; Parker, R.; Porkolab, M.; Reinke, M.; Rice, J.; Shiraiwa, S.; Terry, J.; Theiler, C.; Wallace, G.; White, A.; Whyte, D.; Wukitch, S.

    2013-10-01

    Three critical challenges must be met before a steady-state, power-producing fusion reactor can be realized: how to (1) safely handle extreme plasma exhaust power, (2) completely suppress material erosion at divertor targets and (3) do this while maintaining a burning plasma core. Advanced divertors such as ``Super X'' and ``X-point target'' may allow a fully detached, low temperature plasma to be produced in the divertor while maintaining a hot boundary layer around a clean plasma core - a potential game-changer for magnetic fusion. No facility currently exists to test these ideas at the required parallel heat flux densities. Alcator DX will be a national facility, employing the high magnetic field technology of Alcator combined with high-power ICRH and LHCD to test advanced divertor concepts at FNSF/DEMO power exhaust densities and plasma pressures. Its extended vacuum vessel contains divertor cassettes with poloidal field coils for conventional, snowflake, super-X and X-point target geometries. Divertor and core plasma performance will be explored in regimes inaccessible in conventional devices. Reactor relevant ICRF and LH drivers will be developed, utilizing high-field side launch platforms for low PMI. Alcator DX will inform the conceptual development and accelerate the readiness-for-deployment of next-step fusion facilities.

  8. The ETA-II linear induction accelerator and IMP wiggler: A high-average-power millimeter-wave free-electron-laser for plasma heating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, S.L.; Scharlemann, E.T.

    1992-05-01

    We have constructed a 140-GHz free-electron laser to generate high-average-power microwaves for heating the MTX tokamak plasma. A 5.5-m steady-state wiggler (intense Microwave Prototype-IMP) has been installed at the end of the upgraded 60-cell ETA-II accelerator, and is configured as an FEL amplifier for the output of a 140-GHz long-pulse gyrotron. Improvements in the ETA-II accelerator include a multicable-feed power distribution network, better magnetic alignment using a stretched-wire alignment technique (SWAT). and a computerized tuning algorithm that directly minimizes the transverse sweep (corkscrew motion) of the electron beam. The upgrades were first tested on the 20-cell, 3-MeV front end ofmore » ETA-II and resulted in greatly improved energy flatness and reduced corkscrew motion. The upgrades were then incorporated into the full 60-cell configuration of ETA-II, along with modifications to allow operation in 50-pulse bursts at pulse repetition frequencies up to 5 kHz. The pulse power modifications were developed and tested on the High Average Power Test Stand (HAPTS), and have significantly reduced the voltage and timing jitter of the MAG 1D magnetic pulse compressors. The 2-3 kA. 6-7 MeV beam from ETA-II is transported to the IMP wiggler, which has been reconfigured as a laced wiggler, with both permanent magnets and electromagnets, for high magnetic field operation. Tapering of the wiggler magnetic field is completely computer controlled and can be optimized based on the output power. The microwaves from the FEL are transmitted to the MTX tokamak by a windowless quasi-optical microwave transmission system. Experiments at MTX are focused on studies of electron-cyclotron-resonance heating (ECRH) of the plasma. We summarize here the accelerator and pulse power modifications, and describe the status of ETA-II, IMP, and MTX operations.« less

  9. GRC-2005-C-01066

    NASA Image and Video Library

    2001-07-28

    Photographic documentation of the High Power Engine Propulsion HiPEP after a duration test. Also photographed are the instrumentation and installation articles to reveal post test conditions such as corrosion and pitting.

  10. GRC-2005-C-01076

    NASA Image and Video Library

    2001-07-28

    Photographic documentation of the High Power Engine Propulsion HiPEP after a duration test. Also photographed are the instrumentation and installation articles to reveal post test conditions such as corrosion and pitting.

  11. GRC-2005-C-01036

    NASA Image and Video Library

    2001-07-28

    Photographic documentation of the High Power Engine Propulsion HiPEP after a duration test. Also photographed are the instrumentation and installation articles to reveal post test conditions such as corrosion and pitting.

  12. A Nuclear Cryogenic Propulsion Stage for Near-Term Space Missions

    NASA Technical Reports Server (NTRS)

    Houts, Michael G.; Kim, Tony; Emrich, William J.; Hickman, Robert R.; Broadway, Jeramie W.; Gerrish, Harold P.; Adams, Robert B.; Bechtel, Ryan D.; Borowski, Stanley K.; George, Jeffrey A.

    2013-01-01

    Development efforts in the United States have demonstrated the viability and performance potential of NTP systems. For example, Project Rover (1955 - 1973) completed 22 high power rocket reactor tests. Peak performances included operating at an average hydrogen exhaust temperature of 2550 K and a peak fuel power density of 5200 MW/m3 (Pewee test), operating at a thrust of 930 kN (Phoebus-2A test), and operating for 62.7 minutes on a single burn (NRXA6 test). Results from Project Rover indicated that an NTP system with a high thrust-toweight ratio and a specific impulse greater than 900 s would be feasible. Excellent results have also been obtained by Russia. Ternary carbide fuels developed in Russia may have the potential for providing even higher specific impulses.

  13. Sample reproducibility of genetic association using different multimarker TDTs in genome-wide association studies: characterization and a new approach.

    PubMed

    Abad-Grau, Mara M; Medina-Medina, Nuria; Montes-Soldado, Rosana; Matesanz, Fuencisla; Bafna, Vineet

    2012-01-01

    Multimarker Transmission/Disequilibrium Tests (TDTs) are very robust association tests to population admixture and structure which may be used to identify susceptibility loci in genome-wide association studies. Multimarker TDTs using several markers may increase power by capturing high-degree associations. However, there is also a risk of spurious associations and power reduction due to the increase in degrees of freedom. In this study we show that associations found by tests built on simple null hypotheses are highly reproducible in a second independent data set regardless the number of markers. As a test exhibiting this feature to its maximum, we introduce the multimarker 2-Groups TDT (mTDT(2G)), a test which under the hypothesis of no linkage, asymptotically follows a χ2 distribution with 1 degree of freedom regardless the number of markers. The statistic requires the division of parental haplotypes into two groups: disease susceptibility and disease protective haplotype groups. We assessed the test behavior by performing an extensive simulation study as well as a real-data study using several data sets of two complex diseases. We show that mTDT(2G) test is highly efficient and it achieves the highest power among all the tests used, even when the null hypothesis is tested in a second independent data set. Therefore, mTDT(2G) turns out to be a very promising multimarker TDT to perform genome-wide searches for disease susceptibility loci that may be used as a preprocessing step in the construction of more accurate genetic models to predict individual susceptibility to complex diseases.

  14. Sample Reproducibility of Genetic Association Using Different Multimarker TDTs in Genome-Wide Association Studies: Characterization and a New Approach

    PubMed Central

    Abad-Grau, Mara M.; Medina-Medina, Nuria; Montes-Soldado, Rosana; Matesanz, Fuencisla; Bafna, Vineet

    2012-01-01

    Multimarker Transmission/Disequilibrium Tests (TDTs) are very robust association tests to population admixture and structure which may be used to identify susceptibility loci in genome-wide association studies. Multimarker TDTs using several markers may increase power by capturing high-degree associations. However, there is also a risk of spurious associations and power reduction due to the increase in degrees of freedom. In this study we show that associations found by tests built on simple null hypotheses are highly reproducible in a second independent data set regardless the number of markers. As a test exhibiting this feature to its maximum, we introduce the multimarker -Groups TDT ( ), a test which under the hypothesis of no linkage, asymptotically follows a distribution with degree of freedom regardless the number of markers. The statistic requires the division of parental haplotypes into two groups: disease susceptibility and disease protective haplotype groups. We assessed the test behavior by performing an extensive simulation study as well as a real-data study using several data sets of two complex diseases. We show that test is highly efficient and it achieves the highest power among all the tests used, even when the null hypothesis is tested in a second independent data set. Therefore, turns out to be a very promising multimarker TDT to perform genome-wide searches for disease susceptibility loci that may be used as a preprocessing step in the construction of more accurate genetic models to predict individual susceptibility to complex diseases. PMID:22363405

  15. Analysis of messy data with heteroscedastic in mean models

    NASA Astrophysics Data System (ADS)

    Trianasari, Nurvita; Sumarni, Cucu

    2016-02-01

    In the analysis of the data, we often faced with the problem of data where the data did not meet some assumptions. In conditions of such data is often called data messy. This problem is a consequence of the data that generates outliers that bias or error estimation. To analyze the data messy, there are three approaches, namely standard analysis, transform data and data analysis methods rather than a standard. Simulations conducted to determine the performance of a third comparative test procedure on average often the model variance is not homogeneous. Data simulation of each scenario is raised as much as 500 times. Next, we do the analysis of the average comparison test using three methods, Welch test, mixed models and Welch-r test. Data generation is done through software R version 3.1.2. Based on simulation results, these three methods can be used for both normal and abnormal case (homoscedastic). The third method works very well on data balanced or unbalanced when there is no violation in the homogenity's assumptions variance. For balanced data, the three methods still showed an excellent performance despite the violation of the assumption of homogeneity of variance, with the requisite degree of heterogeneity is high. It can be shown from the level of power test above 90 percent, and the best to Welch method (98.4%) and the Welch-r method (97.8%). For unbalanced data, Welch method will be very good moderate at in case of heterogeneity positive pair with a 98.2% power. Mixed models method will be very good at case of highly heterogeneity was negative negative pairs with power. Welch-r method works very well in both cases. However, if the level of heterogeneity of variance is very high, the power of all method will decrease especially for mixed models methods. The method which still works well enough (power more than 50%) is Welch-r method (62.6%), and the method of Welch (58.6%) in the case of balanced data. If the data are unbalanced, Welch-r method works well enough in the case of highly heterogeneous positive positive or negative negative pairs, there power are 68.8% and 51% consequencly. Welch method perform well enough only in the case of highly heterogeneous variety of positive positive pairs with it is power of 64.8%. While mixed models method is good in the case of a very heterogeneous variety of negative partner with 54.6% power. So in general, when there is a variance is not homogeneous case, Welch method is applied to the data rank (Welch-r) has a better performance than the other methods.

  16. Development and Testing of a Laser-Powered Cryobot for Outer Planet Icy Moon Exploration

    NASA Astrophysics Data System (ADS)

    Siegel, V.; Stone, W.; Hogan, B.; Lelievre, S.; Flesher, C.

    2013-12-01

    Project VALKYRIE (Very-deep Autonomous Laser-powered Kilowatt-class Yo-yoing Robotic Ice Explorer) is a NASA-funded effort to develop the first laser powered cryobot - a self-contained intelligent ice penetrator capable of delivering science payloads through ice caps of the outer planet icy moons. The long range objective is to enable a full-scale Europa lander mission in which an autonomous life-searching underwater vehicle is transported by the cryobot and launched into the sub-surface Europan ocean. Mission readiness testing will involve an Antarctic sub-glacial lake cryobot sample return through kilometers of ice cap thickness. A key element of VALKYRIE's design is the use of a high energy laser as the primary power source. 1070 nm laser light is transmitted at a power level of 5 kW from a surface-based laser and injected into a custom-designed optical waveguide that is spooled out from the descending cryobot. Light exits the downstream end of the fiber, travels through diverging optics, and strikes a beam dump, which channels thermal power to hot water jets that melt the descent hole. Some beam energy is converted, via photovoltaic cells, to electricity for running onboard electronics and jet pumps. Since the vehicle can be sterilized prior to deployment and the melt path freezes behind it, preventing forward contamination, expansions on VALKYRIE concepts may enable cleaner and faster access to sub-glacial Antarctic lakes. Testing at Stone Aerospace between 2010 and 2013 has already demonstrated high power optical energy transfer over relevant (kilometer scale) distances as well as the feasibility of a vehicle-deployed optical waveguide (through which the power is transferred). The test vehicle is equipped with a forward-looking synthetic aperture radar (SAR) that can detect obstacles out to 1 kilometer from the vehicle. The initial ASTEP test vehicle will carry a science payload consisting of a DUV flow cytometer and a water sampling sub-system that will be triggered based on real-time analysis of the cytometer data. Results of laboratory test data and details of planned field campaigns will be discussed.

  17. High-power Laser Welding of Thick Steel-aluminum Dissimilar Joints

    NASA Astrophysics Data System (ADS)

    Lahdo, Rabi; Springer, André; Pfeifer, Ronny; Kaierle, Stefan; Overmeyer, Ludger

    According to the Intergovernmental Panel on Climate Change (IPCC), a worldwide reduction of CO2-emissions is indispensable to avoid global warming. Besides the automotive sector, lightweight construction is also of high interest for the maritime industry in order to minimize CO2-emissions. Using aluminum, the weight of ships can be reduced, ensuring lower fuel consumption. Therefore, hybrid joints of steel and aluminum are of great interest to the maritime industry. In order to provide an efficient lap joining process, high-power laser welding of thick steel plates (S355, t = 5 mm) and aluminum plates (EN AW-6082, t = 8 mm) is investigated. As the weld seam quality greatly depends on the amount of intermetallic phases within the joint, optimized process parameters and control are crucial. Using high-power laser welding, a tensile strength of 10 kN was achieved. Based on metallographic analysis, hardness tests, and tensile tests the potential of this joining method is presented.

  18. Research on the technical requirements standards of high efficiency precipitator in power industries for assessment

    NASA Astrophysics Data System (ADS)

    Jin, Huang; Ling, Lin; Jun, Guo; Jianguo, Li; Yongzhong, Wang

    2017-11-01

    Facing the increasingly severe situation of air pollution, China are now positively promoting the evaluation of high efficiency air pollution control equipments and the research of the relative national standards. This paper showed the significance and the effect of formulating the technical requirements of high efficiency precipitator equipments for assessment national standards in power industries as well as the research thoughts and principle of these standards. It introduce the qualitative and quantitative evaluation requirements of high efficiency precipitators using in power industries and the core technical content such as testing, calculating, evaluation methods and so on. The implementation of a series of national standards is in order to lead and promote the production and application of high efficiency precipitator equipments in the field of the prevention of air pollution in national power industries.

  19. Radioisotope powered AMTEC systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ivanenok, J.F. III; Sievers, R.K.

    1994-11-01

    Alkali metal thermal to electric converter (AMTEC) systems are being developed for high performance spacecraft power systems, including small, general purpose heat source (GPHS) powered systems. Several design concepts have been evaluated for the power range from 75 W to 1 kW. The specific power for these concepts has been found to be as high as 18-20 W/kg and 22 kW/m(exp 3). The projected area, including radiators, has been as low as 0.4 m(exp 2)/kW. AMTEC power systems are extremely attractive, relative to other current and projected power systems, because AMTEC offers high power density, low projected area, and lowmore » volume. Two AMTEC cell design types have been identified. A single-tube cell is already under development and a multitube cell design, to provide additional power system gains, has undergone proof-of-principle testing. Solar powered AMTEC (SAMTEC) systems are also being developed, and numerous terrestrial applications have been identified for which the same basic AMTEC cells being developed for radioisotope systems are also suitable. 35 refs.« less

  20. Detailed measurements of local thickness changes for U-7Mo dispersion fuel plates with Al-3.5Si matrix after irradiation at different powers in the RERTR-9B experiment

    NASA Astrophysics Data System (ADS)

    Keiser, Dennis D.; Williams, Walter; Robinson, Adam; Wachs, Dan; Moore, Glenn; Crawford, Doug

    2017-10-01

    The Materials Management and Minimization program is developing fuel designs to replace highly enriched fuel with fuels of low enrichment. Swelling is an important irradiation behavior that needs to be well understood. Data from high resolution thickness measurements performed on U-7Mo dispersion fuel plates with Al-Si alloy matrices that were irradiated at high power is sparse. This paper reports the results of detailed thickness measurements performed on two dispersion fuel plates that were irradiated at relatively high power to high fission densities in the Advanced Test Reactor in the same RERTR-9B experiment. Both plates were irradiated to similar fission densities, but one was irradiated at a higher power than the other. The goal of this work is to identify any differences in the swelling behavior when fuel plates are irradiated at different powers to the same fission densities. Based on the results of detailed thickness measurments, more swelling occurs when a U-7Mo dispersion fuel with Al-3.5Si matrix is irradiated to a high fission density at high power compared to one irradiated at a lower power to high fission density.

  1. Magnetoresistive Current Sensors for High Accuracy, High Bandwidth Current Measurement in Spacecraft Power Electronics

    NASA Astrophysics Data System (ADS)

    Slatter, Rolf; Goffin, Benoit

    2014-08-01

    The usage of magnetoresistive (MR) current sensors is increasing steadily in the field of power electronics. Current sensors must not only be accurate and dynamic, but must also be compact and robust. The MR effect is the basis for current sensors with a unique combination of precision and bandwidth in a compact package. A space-qualifiable magnetoresistive current sensor with high accuracy and high bandwidth is being jointly developed by the sensor manufacturer Sensitec and the spacecraft power electronics supplier Thales Alenia Space (T AS) Belgium. Test results for breadboards incorporating commercial-off-the-shelf (COTS) sensors are presented as well as an application example in the electronic control and power unit for the thrust vector actuators of the Ariane5-ME launcher.

  2. Eye safe high power laser diode in the 1410-1550nm range

    NASA Astrophysics Data System (ADS)

    Boucart, Julien; de Largy, Brian; Kearley, Mark; Lichtenstein, Norbert

    2010-02-01

    The demand for high power lasers emitting in the 14xx-15xxnm range is growing for applications in fields such as medical or homeland security. We demonstrate high power laser diodes with emission at 1430, 1470 and 1560 nm. Single multimode emitters at 1470nm emit about 3.5W in CW operation. Power conversion efficiency can reach values as high as 38.5%. With this base material, single and multi-emitter fiber coupled modules are built. Additionally, bars on passive and microchannel coolers are fabricated that deliver 25W and 38W respectively in CW mode, while obtaining more than 80 W in pulsed mode. All reliability tests show an outstanding stability of the material with no signs of wearout after 3750 hrs under strong acceleration conditions.

  3. Supercritical Carbon Dioxide Power Generation System Definition: Concept Definition and Capital Cost Estimate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stoddard, Larry; Galluzzo, Geoff; Andrew, Daniel

    The Department of Energy’s (DOE’s) Office of Renewable Power (ORP) has been tasked to provide effective program management and strategic direction for all of the DOE’s Energy Efficiency & Renewable Energy’s (EERE’s) renewable power programs. The ORP’s efforts to accomplish this mission are aligned with national energy policies, DOE strategic planning, EERE’s strategic planning, Congressional appropriation, and stakeholder advice. ORP is supported by three renewable energy offices, of which one is the Solar Energy Technology Office (SETO) whose SunShot Initiative has a mission to accelerate research, development and large scale deployment of solar technologies in the United States. SETO hasmore » a goal of reducing the cost of Concentrating Solar Power (CSP) by 75 percent of 2010 costs by 2020 to reach parity with base-load energy rates, and 30 percent further reductions by 2030. The SunShot Initiative is promoting the implementation of high temperature CSP with thermal energy storage allowing generation during high demand hours. The SunShot Initiative has funded significant research and development work on component testing, with attention to high temperature molten salts, heliostats, receiver designs, and high efficiency high temperature supercritical CO 2 (sCO2) cycles. DOE retained Black & Veatch to support SETO’s SunShot Initiative for CSP solar power tower technology in the following areas: 1. Concept definition, including costs and schedule, of a flexible test facility to be used to test and prove components in part to support financing. 2. Concept definition, including costs and schedule, of an integrated high temperature molten salt (MS) facility with thermal energy storage and with a supercritical CO 2 cycle generating approximately 10MWe. 3. Concept definition, including costs and schedule, of an integrated high temperature falling particle facility with thermal energy storage and with a supercritical CO 2 cycle generating approximately 10MWe. This report addresses the concept definition of the sCO2 power generation system, a sub-set of items 2 and 3 above. Other reports address the balance of items 1 to 3 above as well as the MS/sCO2 integrated 10MWe facility, Item 2.« less

  4. Acceleration ground test program to verify GAS payload No. 559 structure/support avionics and experiment structural integrity

    NASA Technical Reports Server (NTRS)

    Cassanto, John M.; Cassanto, Valerie A.

    1988-01-01

    Acceleration ground tests were conducted on the Get Away Special (GAS) payload 559 to verify the structural integrity of the structure/support avionics and two of the planned three flight experiments. The ITA (Integrated Test Area) Standardized Experiment Module (ISEM) structure was modified to accommodate the experiments for payload 559. The ISEM avionics consisted of a heavy duty sliver zinc power supply, three orthogonal-mounted low range microgravity accelerometers, a tri-axis high range accelerometer, a solid state recorder/programmer sequencer, and pressure and temperature sensors. The tests were conducted using the Gravitational Plant Physiology Laboratory Centrifuge of the University City Science Center in Philadelphia, PA. The launch-powered flight steady state acceleration profile of the shuttle was simulated from lift-off through jettison of the External Tank (3.0 g's). Additional tests were conducted at twice the nominal powered flight acceleration levels (6 g's) and an over-test condition of four times the powered flight loads to 12.6 g's. The present test program has demonstrated the value of conducting ground tests to verify GAS payload experiment integrity and operation before flying on the shuttle.

  5. Test facility for the evaluation of microwave transmission components

    NASA Astrophysics Data System (ADS)

    Fong, C. G.; Poole, B. R.

    1985-10-01

    A Low Power Test Facility (LPTF) was developed to evaluate the performance of Electron Cyclotron Resonance Heating (ECRH) microwave transmission components for the Mirror Fusion Test Facility (MFTF-B). The facility generates 26 to 60 GHz in modes of TE01, TE02, or TE03 launched at power levels of 1/2 milliwatt. The propagation of the RF as it radiates from either transmitting or secondary reflecting microwave transmission components is recorded by a discriminating crystal detector mechanically manipulated at constant radius in spherical coordinates. The facility is used to test, calibrate, and verify the design of overmoded, circular waveguide components, quasi-optical reflecting elements before high power use. The test facility consists of microwave sources and metering components, such as VSWR, power and frequency meters, a rectangular TE10 to circular TE01 mode transducer, mode filter, circular TE01 to 2.5 in. diameter overmoded waveguide with mode converters for combination of TE01 to TE03 modes. This assembly then connects to a circular waveguide launcher or the waveguide component under test.

  6. All-fiber linearly polarized high power 2-μm single mode Tm-fiber laser for plastic processing and Ho-laser pumping applications

    NASA Astrophysics Data System (ADS)

    Scholle, K.; Schäfer, M.; Lamrini, S.; Wysmolek, M.; Steinke, M.; Neumann, J.; Fuhrberg, P.

    2018-02-01

    In this paper we present a high power, polarized 2 μm Thulium-doped fiber laser with high beam quality. Such laser systems are ideally suited for the processing of plastic materials which are highly transparent in the visible and 1 μm wavelength range and for the pumping of laser sources for the mid-IR wavelength region. For most applications polarized lasers are beneficial, as they can be easily protected from back reflections and combined with other laser sources or power scaled by polarization combining. The Tm-doped fiber laser is pumped in an all-fiber configuration by using a fiber coupled pump diode emitting around 790 nm. This pumping scheme allows the exploitation of the crossrelaxation process to populate the upper laser level. A compact and robust laser configuration was achieved by using an all-fiber configuration with single mode fibers and fiber Bragg gratings (FBG). Different FBG pairs with wavelength around 2 μm were tested. To achieve stable polarized output power the fibers with the FBG were 90° twisted at the splices. Stable linearly polarized output power up to 38 W with an extinction ratio of up to 50:1 was observed. With respect to the diode output power an optical-to-optical efficiency of 51 % was reached with a correspondent slope efficiency of 52 %. The emission linewidth at maximum power was measured to be < 0.3 nm which is well suitable for Ho-laser pumping. First tests of the precise processing of highly transparent plastic materials demonstrate the potentials of these laser systems.

  7. High Current ESD Test of Advanced Triple Junction Solar Array Coupon

    NASA Technical Reports Server (NTRS)

    Wright, Kenneth H., Jr.; Schneider, Todd A.; Vaughn, Jason A.; Hoang, Bao; Wong, Frankie

    2014-01-01

    Testing was conducted on an Advanced Triple Junction (ATJ) coupon that was part of a risk reduction effort in the development of a high-powered solar array design by Space Systems Loral, LLC (SSL). The ATJ coupon was a small, 4-cell, two-string configuration of flight-type design that has served as the basic test coupon design used in previous SSL environmental aging campaigns. The objective of the present test was to evaluate the performance of the coupon after being subjected to induced electrostatic discharge (ESD) testing at two string voltages (100 V, 150 V) and four string currents (1.65 A, 2.0 A, 2.475 A, and 3.3 A). An ESD test circuit, unique to SSL solar array design, was built that simulates the effect of missing cells and strings in a full solar panel with special primary arc flashover circuitry. A total of 73 primary arcs were obtained that included 7 temporary sustained arcs (TSA) events. The durations of the TSAs ranged from 50 micro-seconds to 2.75 milli-seconds. All TSAs occurred at a string voltage of 150 V. Post-ESD functional testing showed that no degradation occurred due to the TSA events. These test results point to a robust design for application to a high-current, high-power mission.

  8. 14 CFR 23.203 - Turning flight and accelerated turning stalls.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... § 23.201(b), it must be possible to regain wings level flight by normal use of the flight controls, but... percent of maximum continuous power results in extreme nose-up attitudes, the test may be carried out with..., if the power-to-weight ratio at 75 percent of maximum continuous power results in nose-high attitudes...

  9. Highly Efficient Wireless Powering for Autonomous Structural Health Monitoring and Test/Evaluation Systems

    DTIC Science & Technology

    2016-07-27

    ADDRESS (ES) U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 Wireless Power Transfer , Structural Health Monitoring...efficient strongly coupled magnetic resonant systems, Wireless Power Transfer , (03 2014): 0. doi: 10.1017/wpt.2014.3 TOTAL: 1 Received Paper TOTAL...2016 Received Paper . Miniaturized Strongly Coupled Magnetic Resonant Systems for Wireless Power Transfer , 2016 IEEE Antennas Propagat. Society

  10. ACE I/D and ACTN3 R/X polymorphisms as potential factors in modulating exercise-related phenotypes in older women in response to a muscle power training stimuli.

    PubMed

    Pereira, Ana; Costa, Aldo M; Izquierdo, Mikel; Silva, António J; Bastos, Estela; Marques, Mário C

    2013-10-01

    Genetic variation of the human ACE I/D and ACTN3 R577X polymorphisms subsequent to 12 weeks of high-speed power training on maximal strength (1RM) of the arm and leg muscles, muscle power performance (counter-movement jump), and functional capacity (sit-to-stand test) was examined in older Caucasian women [n = 139; mean age 65.5 (8.2) years; 67.0 (10.0) kg and 1.57 (0.06) m]. Chelex 100 was used for DNA extraction, and genotype was determined by PCR-RFLP methods. Muscular strength, power, and functional testing were conducted at baseline (T1) and after 12 weeks (T2) of high-speed power training. At baseline, the ACE I/D and ACTN3 R/X polymorphisms were not associated with muscle function or muscularity phenotypes in older Caucasian women. After the 12-week high-speed training program, subjects significantly increased their muscular and functional capacity performance (p < 0.05). For both polymorphisms, significant genotype-training interaction (p < 0.05) was found in all muscular performance indices, except for 1RM leg extension in the ACE I/D (p = 0.187). Analyses of the combined effects between genotypes showed significant differences in all parameters (p < 0.05) in response to high-speed power training between the power (ACTN3 RR + RX & ACE DD) versus "non-power" muscularity-oriented genotypes (ACTN3 XX & ACE II + ID)]. Our data suggest that the ACE and ACTN3 genotypes (single or combined) exert a significant influence in the muscle phenotypes of older Caucasian women in response to high-speed power training. Thus, the ACE I/D and ACTN3 R/X polymorphisms are likely factors in modulating exercise-related phenotypes in older women, particularly in response to a resistance training stimuli.

  11. 2nd & 3rd Generation Vehicle Subsystems

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This paper contains viewgraph presentation on the "2nd & 3rd Generation Vehicle Subsystems" project. The objective behind this project is to design, develop and test advanced avionics, power systems, power control and distribution components and subsystems for insertion into a highly reliable and low-cost system for a Reusable Launch Vehicles (RLV). The project is divided into two sections: 3rd Generation Vehicle Subsystems and 2nd Generation Vehicle Subsystems. The following topics are discussed under the first section, 3rd Generation Vehicle Subsystems: supporting the NASA RLV program; high-performance guidance & control adaptation for future RLVs; Evolvable Hardware (EHW) for 3rd generation avionics description; Scaleable, Fault-tolerant Intelligent Network or X(trans)ducers (SFINIX); advance electric actuation devices and subsystem technology; hybrid power sources and regeneration technology for electric actuators; and intelligent internal thermal control. Topics discussed in the 2nd Generation Vehicle Subsystems program include: design, development and test of a robust, low-maintenance avionics with no active cooling requirements and autonomous rendezvous and docking systems; design and development of a low maintenance, high reliability, intelligent power systems (fuel cells and battery); and design of a low cost, low maintenance high horsepower actuation systems (actuators).

  12. Catastrophic optical bulk degradation (COBD) in high-power single- and multi-mode InGaAs-AlGaAs strained quantum well lasers

    NASA Astrophysics Data System (ADS)

    Sin, Yongkun; Lingley, Zachary; Brodie, Miles; Presser, Nathan; Moss, Steven C.

    2017-02-01

    High-power single-mode (SM) and multi-mode (MM) InGaAs-AlGaAs strained quantum well (QW) lasers are critical components for both telecommunications and space satellite communications systems. However, little has been reported on failure modes and degradation mechanisms of high-power SM and MM InGaAs-AlGaAs strained QW lasers although it is crucial to understand failure modes and underlying degradation mechanisms in developing these lasers that meet lifetime requirements for space satellite systems, where extremely high reliability of these lasers is required. Our present study addresses the aforementioned issues by performing long-term life-tests followed by failure mode analysis (FMA) and physics of failure investigation. We performed long-term accelerated life-tests on state-of-the-art SM and MM InGaAs-AlGaAs strained QW lasers under ACC (automatic current control) mode. Our life-tests have accumulated over 25,000 test hours for SM lasers and over 35,000 test hours for MM lasers. FMA was performed on failed SM lasers using electron beam induced current (EBIC). This technique allowed us to identify failure types by observing dark line defects. All the SM failures we studied showed catastrophic and sudden degradation and all of these failures were bulk failures. Our group previously reported that bulk failure or COBD (catastrophic optical bulk damage) is the dominant failure mode of MM InGaAs-AlGaAs strained QW lasers. Since degradation mechanisms responsible for COBD are still not well understood, we also employed other techniques including focused ion beam (FIB) processing and high-resolution TEM to further study dark line defects and dislocations in post-aged lasers. Our long-term life-test results and FMA results are reported.

  13. Simulation study of a high power density rectenna array for biomedical implantable devices

    NASA Astrophysics Data System (ADS)

    Day, John; Yoon, Hargsoon; Kim, Jaehwan; Choi, Sang H.; Song, Kyo D.

    2016-04-01

    The integration of wireless power transmission devices using microwaves into the biomedical field is close to a practical reality. Implanted biomedical devices need a long lasting power source or continuous power supply. Recent development of high efficiency rectenna technology enables continuous power supply to these implanted devices. Due to the size limit of most of medical devices, it is imperative to minimize the rectenna as well. The research reported in this paper reviews the effects of close packing the rectenna elements which show the potential of directly empowering the implanted devices, especially within a confined area. The rectenna array is tested in the X band frequency range.

  14. Research on laser detonation pulse circuit with low-power based on super capacitor

    NASA Astrophysics Data System (ADS)

    Wang, Hao-yu; Hong, Jin; He, Aifeng; Jing, Bo; Cao, Chun-qiang; Ma, Yue; Chu, En-yi; Hu, Ya-dong

    2018-03-01

    According to the demand of laser initiating device miniaturization and low power consumption of weapon system, research on the low power pulse laser detonation circuit with super capacitor. Established a dynamic model of laser output based on super capacitance storage capacity, discharge voltage and programmable output pulse width. The output performance of the super capacitor under different energy storage capacity and discharge voltage is obtained by simulation. The experimental test system was set up, and the laser diode of low power pulsed laser detonation circuit was tested and the laser output waveform of laser diode in different energy storage capacity and discharge voltage was collected. Experiments show that low power pulse laser detonation based on super capacitor energy storage circuit discharge with high efficiency, good transient performance, for a low power consumption requirement, for laser detonation system and low power consumption and provide reference light miniaturization of engineering practice.

  15. A powerful and robust test in genetic association studies.

    PubMed

    Cheng, Kuang-Fu; Lee, Jen-Yu

    2014-01-01

    There are several well-known single SNP tests presented in the literature for detecting gene-disease association signals. Having in place an efficient and robust testing process across all genetic models would allow a more comprehensive approach to analysis. Although some studies have shown that it is possible to construct such a test when the variants are common and the genetic model satisfies certain conditions, the model conditions are too restrictive and in general difficult to verify. In this paper, we propose a powerful and robust test without assuming any model restrictions. Our test is based on the selected 2 × 2 tables derived from the usual 2 × 3 table. By signals from these tables, we show through simulations across a wide range of allele frequencies and genetic models that this approach may produce a test which is almost uniformly most powerful in the analysis of low- and high-frequency variants. Two cancer studies are used to demonstrate applications of the proposed test. © 2014 S. Karger AG, Basel.

  16. Performance of a High-Fidelity 4kW-Class Engineering Model PPU and Integration with HiVHAc System

    NASA Technical Reports Server (NTRS)

    Pinero, Luis R.; Kamhawi, Hani; Shilo, Vlad

    2016-01-01

    The High Voltage Hall Accelerator (HiVHAc) propulsion system consists of a thruster, power processing unit (PPU), and propellant feed system. An engineering model PPU was developed by Colorado Power Electronics, Inc. funded by NASA's Small Business Innovative Research Program. This PPU uses an innovative 3-phase resonant converter to deliver 4 kW of discharge power over a wide range of input and output voltage conditions. The PPU includes a digital control interface unit that automatically controls the PPU and a xenon flow control module (XFCM). It interfaces with a control computer to receive highlevel commands and relay telemetry through a MIL-STD-1553B interface. The EM PPU was thoroughly tested at GRC for functionality and performance at temperature limits and demonstrated total efficiencies a high as 95 percent. Integrated testing of the unit was performed with the HiVHAc thruster and the XFCM to demonstrate closed-loop control of discharge current with anode flow. Initiation of the main discharge and power throttling were also successfully demonstrated and discharge oscillations were characterized.

  17. Development of a current collection loss management system for SDI homopolar power supplies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, D.W.

    1989-01-01

    High speed, high power density current collection systems have been identified as an enabling technology required to construct homopolar power supplies to meet SDI missions. This work is part of a three-year effort directed towards the analysis, experimental verification, and prototype construction of a current collection system designed to operate continuously at 2 kA/cm{sup 2}, at a rubbing speed of 200 m/s, and with acceptable losses in a space environment. To data, no system has achieved these conditions simultaneously. This is the annual report covering the second year period of performance on DOE contract DE-AC03-86SF16518. Major areas covered include design,more » construction and operation of a cryogenically cooled brush test rig, design and construction of a high speed brush test rig, optimization study for homopolar machines, loss analysis of the current collection system, and an application study which defines the air-core homopolar construction necessary to achieve the goal of 80--90 kW/kg generator power density. 17 figs., 2 tabs.« less

  18. RERTR-7 Irradiation Summary Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D. M. Perez; M. A. Lillo; G. S. Chang

    2011-12-01

    The Reduced Enrichment for Research and Test Reactor (RERTR) experiment RERTR-7A, was designed to test several modified fuel designs to target fission densities representative of a peak low enriched uranium (LEU) burnup in excess of 90% U-235 at peak experiment power sufficient to generate a peak surface heat flux of approximately 300 W/cm2. The RERTR-7B experiment was designed as a high power test of 'second generation' dispersion fuels at peak experiment power sufficient to generate a surface heat flux on the order of 230 W/cm2.1 The following report summarizes the life of the RERTR-7A and RERTR-7B experiments through end ofmore » irradiation, including as-run neutronic analyses, thermal analyses and hydraulic testing results.« less

  19. Irradiation performance of U-Mo monolithic fuel

    DOE PAGES

    Meyer, M. K.; Gan, J.; Jue, J. F.; ...

    2014-04-01

    High-performance research reactors require fuel that operates at high specific power to high fission density, but at relatively low temperatures. Research reactor fuels are designed for efficient heat rejection, and are composed of assemblies of thin-plates clad in aluminum alloy. The development of low-enriched fuels to replace high-enriched fuels for these reactors requires a substantially increased uranium density in the fuel to offset the decrease in enrichment. Very few fuel phases have been identified that have the required combination of very-high uranium density and stable fuel behavior at high burnup. U-Mo alloys represent the best known tradeoff in these properties.more » Testing of aluminum matrix U-Mo aluminum matrix dispersion fuel revealed a pattern of breakaway swelling behavior at intermediate burnup, related to the formation of a molybdenum stabilized high aluminum intermetallic phase that forms during irradiation. In the case of monolithic fuel, this issue was addressed by eliminating, as much as possible, the interfacial area between U-Mo and aluminum. Based on scoping irradiation test data, a fuel plate system composed of solid U-10Mo fuel meat, a zirconium diffusion barrier, and Al6061 cladding was selected for development. Developmental testing of this fuel system indicates that it meets core criteria for fuel qualification, including stable and predictable swelling behavior, mechanical integrity to high burnup, and geometric stability. In addition, the fuel exhibits robust behavior during power-cooling mismatch events under irradiation at high power.« less

  20. IRRADIATION PERFORMANCE OF U-Mo MONOLITHIC FUEL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    M.K. Meyer; J. Gan; J.-F. Jue

    2014-04-01

    High-performance research reactors require fuel that operates at high specific power to high fission density, but at relatively low temperatures. Research reactor fuels are designed for efficient heat rejection, and are composed of assemblies of thin-plates clad in aluminum alloy. The development of low-enriched fuels to replace high-enriched fuels for these reactors requires a substantially increased uranium density in the fuel to offset the decrease in enrichment. Very few fuel phases have been identified that have the required combination of very-high uranium density and stable fuel behavior at high burnup. UMo alloys represent the best known tradeoff in these properties.more » Testing of aluminum matrix U-Mo aluminum matrix dispersion fuel revealed a pattern of breakaway swelling behavior at intermediate burnup, related to the formation of a molybdenum stabilized high aluminum intermetallic phase that forms during irradiation. In the case of monolithic fuel, this issue was addressed by eliminating, as much as possible, the interfacial area between U-Mo and aluminum. Based on scoping irradiation test data, a fuel plate system composed of solid U-10Mo fuel meat, a zirconium diffusion barrier, and Al6061 cladding was selected for development. Developmental testing of this fuel system indicates that it meets core criteria for fuel qualification, including stable and predictable swelling behavior, mechanical integrity to high burnup, and geometric stability. In addition, the fuel exhibits robust behavior during power-cooling mismatch events under irradiation at high power.« less

  1. Fiber Fabry-Perot sensors for detection of partial discharges in power transformers.

    PubMed

    Yu, Bing; Kim, Dae Woong; Deng, Jiangdong; Xiao, Hai; Wang, Anbo

    2003-06-01

    A diaphragm-based interferometric fiberoptic sensor that uses a low-coherence light source was designed and tested for on-line detection of the acoustic waves generated by partial discharges inside high-voltage power transformers. The sensor uses a fused-silica diaphragm and a single-mode optical fiber encapsulated in a fused-silica glass tube to form an extrinsic Fabry-Perot interferometer, which is interrogated by low-coherence light. Test results indicate that these fiber optic acoustic sensors are capable of faithfully detecting acoustic signals propagating inside transformer oil with high sensitivity and wide bandwidth.

  2. Tabulated pressure measurements on a large subsonic transport model airplane with high bypass ratio, powered, fan jet engines

    NASA Technical Reports Server (NTRS)

    Flechner, S. G.; Patterson, J. C., Jr.

    1972-01-01

    An experimental wind-tunnel investigation to determine the aerodynamic interference and the jet-wake interference associated with the wing, pylon, and high-bypass-ratio, powered, fan-jet model engines has been conducted on a typical high-wing logistics transport airplane configuration. Pressures were measured on the wing and pylons and on the surfaces of the engine fan cowl, turbine cowl, and plug. Combinations of wing, pylons, engines, and flow-through nacelles were tested, and the pressure coefficients are presented in tabular form. Tests were conducted at Mach numbers from 0.700 to 0.825 and angles of attack from -2 to 4 deg.

  3. Direct conversion of light to radio frequency energy. [using photoklystrons for solar power satellites

    NASA Technical Reports Server (NTRS)

    Freeman, J. W.; Simons, S.

    1981-01-01

    A description is presented of the test results obtained with the latest models of the phototron. The phototron was conceived as a replacement for the high voltage solar cell-high power klystron combination for the solar power satellite concept. Physically, the phototron is a cylindrical evacuated glass tube with a photocathode, two grids, and a reflector electrode in a planar configuration. The phototron can be operated either in a biased mode where a low voltage is used to accelerate the electron beam produced by the photocathode or in an unbiased mode referred to as self-oscillation. The device is easily modulated by light input or voltage to broadcast in AM or FM. The range of operation of the present test model phototrons is from 2 to 200 MHz.

  4. Multi-kw dc power distribution system study program

    NASA Technical Reports Server (NTRS)

    Berkery, E. A.; Krausz, A.

    1974-01-01

    The first phase of the Multi-kw dc Power Distribution Technology Program is reported and involves the test and evaluation of a technology breadboard in a specifically designed test facility according to design concepts developed in a previous study on space vehicle electrical power processing, distribution, and control. The static and dynamic performance, fault isolation, reliability, electromagnetic interference characterisitics, and operability factors of high distribution systems were studied in order to gain a technology base for the use of high voltage dc systems in future aerospace vehicles. Detailed technical descriptions are presented and include data for the following: (1) dynamic interactions due to operation of solid state and electromechanical switchgear; (2) multiplexed and computer controlled supervision and checkout methods; (3) pulse width modulator design; and (4) cable design factors.

  5. Space Electronic Test Engineering

    NASA Technical Reports Server (NTRS)

    Chambers, Rodney D.

    2004-01-01

    The Space Power and Propulsion Test Engineering Branch at NASA Glenn Research center has the important duty of controlling electronic test engineering services. These services include test planning and early assessment of Space projects, management and/or technical support required to safely and effectively prepare the article and facility for testing, operation of test facilities, and validation/delivery of data to customer. The Space Electronic Test Engineering Branch is assigned electronic test engineering responsibility for the GRC Space Simulation, Microgravity, Cryogenic, and Combustion Test Facilities. While working with the Space Power and Propulsion Test Engineering Branch I am working on several different assignments. My primary assignment deals with an electrical hardware unit known as Sunny Boy. Sunny Boy is a DC load Bank that is designed for solar arrays in which it is used to convert DC power form the solar arrays into AC power at 60 hertz to pump back into the electricity grid. However, there are some researchers who decided that they would like to use the Sunny Boy unit in a space simulation as a DC load bank for a space shuttle or even the International Space Station hardware. In order to do so I must create a communication link between a computer and the Sunny Boy unit so that I can preset a few of the limits (such power, set & constant voltage levels) that Sunny Boy will need to operate using the applied DC load. Apart from this assignment I am also working on a hi-tech circuit that I need to have built at a researcher s request. This is a high voltage analog to digital circuit that will be used to record data from space ion propulsion rocket booster tests. The problem that makes building this circuit so difficult is that it contains high voltage we must find a way to lower the voltage signal before the data is transferred into the computer to be read. The solution to this problem was to transport the signal using infrared light which will lower the voltage signal down low enough so that it is harmless to a computer. Along with my involvement in the Space Power and Propulsion Test Engineering Branch, I am obligated to assist all other members of the branch in their work. This will help me to strengthen and extend my knowledge of Electrical Engineering.

  6. Power MEMS Development

    DTIC Science & Technology

    2010-08-31

    circuit breakers for testing and analysis in ONR laboratories. Task 1.2 Contributors: Sunny Kedia, Shinzo Onishi , Scott Samson, Drew Hanser Task 1.2...HEAT SINK FOR HIGH-POWER MEMS SWITCH APPLICATIONS (TASK 1.3) Contributors: Priscila Spagnol, Shinzo Onishi , Drew Hanser, Weidong Wang, Sunny Kedia

  7. Design of the ITER Electron Cyclotron Heating and Current Drive Waveguide Transmission Line

    NASA Astrophysics Data System (ADS)

    Bigelow, T. S.; Rasmussen, D. A.; Shapiro, M. A.; Sirigiri, J. R.; Temkin, R. J.; Grunloh, H.; Koliner, J.

    2007-11-01

    The ITER ECH transmission line system is designed to deliver the power, from twenty-four 1 MW 170 GHz gyrotrons and three 1 MW 127.5 GHz gyrotrons, to the equatorial and upper launchers. The performance requirements, initial design of components and layout between the gyrotrons and the launchers is underway. Similar 63.5 mm ID corrugated waveguide systems have been built and installed on several fusion experiments; however, none have operated at the high frequency and long-pulse required for ITER. Prototype components are being tested at low power to estimate ohmic and mode conversion losses. In order to develop and qualify the ITER components prior to procurement of the full set of 24 transmission lines, a 170 GHz high power test of a complete prototype transmission line is planned. Testing of the transmission line at 1-2 MW can be performed with a modest power (˜0.5 MW) tube with a low loss (10-20%) resonant ring configuration. A 140 GHz long pulse, 400 kW gyrotron will be used in the initial tests and a 170 GHz gyrotron will be used when it becomes available. Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U.S. Dept. of Energy under contract DE-AC05-00OR22725.

  8. Research on the EDM Technology for Micro-holes at Complex Spatial Locations

    NASA Astrophysics Data System (ADS)

    Y Liu, J.; Guo, J. M.; Sun, D. J.; Cai, Y. H.; Ding, L. T.; Jiang, H.

    2017-12-01

    For the demands on machining micro-holes at complex spatial location, several key technical problems are conquered such as micro-Electron Discharge Machining (micro-EDM) power supply system’s development, the host structure’s design and machining process technical. Through developing low-voltage power supply circuit, high-voltage circuit, micro and precision machining circuit and clearance detection system, the narrow pulse and high frequency six-axis EDM machining power supply system is developed to meet the demands on micro-hole discharging machining. With the method of combining the CAD structure design, CAE simulation analysis, modal test, ODS (Operational Deflection Shapes) test and theoretical analysis, the host construction and key axes of the machine tool are optimized to meet the position demands of the micro-holes. Through developing the special deionized water filtration system to make sure that the machining process is stable enough. To verify the machining equipment and processing technical developed in this paper through developing the micro-hole’s processing flow and test on the real machine tool. As shown in the final test results: the efficient micro-EDM machining pulse power supply system, machine tool host system, deionized filtration system and processing method developed in this paper meet the demands on machining micro-holes at complex spatial locations.

  9. Low power and type II errors in recent ophthalmology research.

    PubMed

    Khan, Zainab; Milko, Jordan; Iqbal, Munir; Masri, Moness; Almeida, David R P

    2016-10-01

    To investigate the power of unpaired t tests in prospective, randomized controlled trials when these tests failed to detect a statistically significant difference and to determine the frequency of type II errors. Systematic review and meta-analysis. We examined all prospective, randomized controlled trials published between 2010 and 2012 in 4 major ophthalmology journals (Archives of Ophthalmology, British Journal of Ophthalmology, Ophthalmology, and American Journal of Ophthalmology). Studies that used unpaired t tests were included. Power was calculated using the number of subjects in each group, standard deviations, and α = 0.05. The difference between control and experimental means was set to be (1) 20% and (2) 50% of the absolute value of the control's initial conditions. Power and Precision version 4.0 software was used to carry out calculations. Finally, the proportion of articles with type II errors was calculated. β = 0.3 was set as the largest acceptable value for the probability of type II errors. In total, 280 articles were screened. Final analysis included 50 prospective, randomized controlled trials using unpaired t tests. The median power of tests to detect a 50% difference between means was 0.9 and was the same for all 4 journals regardless of the statistical significance of the test. The median power of tests to detect a 20% difference between means ranged from 0.26 to 0.9 for the 4 journals. The median power of these tests to detect a 50% and 20% difference between means was 0.9 and 0.5 for tests that did not achieve statistical significance. A total of 14% and 57% of articles with negative unpaired t tests contained results with β > 0.3 when power was calculated for differences between means of 50% and 20%, respectively. A large portion of studies demonstrate high probabilities of type II errors when detecting small differences between means. The power to detect small difference between means varies across journals. It is, therefore, worthwhile for authors to mention the minimum clinically important difference for individual studies. Journals can consider publishing statistical guidelines for authors to use. Day-to-day clinical decisions rely heavily on the evidence base formed by the plethora of studies available to clinicians. Prospective, randomized controlled clinical trials are highly regarded as a robust study and are used to make important clinical decisions that directly affect patient care. The quality of study designs and statistical methods in major clinical journals is improving overtime, 1 and researchers and journals are being more attentive to statistical methodologies incorporated by studies. The results of well-designed ophthalmic studies with robust methodologies, therefore, have the ability to modify the ways in which diseases are managed. Copyright © 2016 Canadian Ophthalmological Society. Published by Elsevier Inc. All rights reserved.

  10. Durability and robustness of tubular molten carbonate fuel cells

    NASA Astrophysics Data System (ADS)

    Kawase, Makoto

    2017-12-01

    One anticipated system for high-efficiency power generation is the combination of syngas from gasification and high temperature fuel cells. The system uses a pressurization system, and it takes into account poisoning by impurities in the syngas. The durability and robustness of the fuel cells used in this system are an important issue for commercial applications. This study focuses on tubular molten carbonate fuel cells (MCFCs), which seem to be relatively durable compared with conventional planar-type MCFCs. Various power generation tests were performed in order to evaluate the durability and robustness of the tubular MCFCs. After continuous generation tests at 0.3 MPa, the cell voltage decay rate was found to be 0.8 mV/1000 h at 0.2 A/cm2. Moreover, it was found to be possible to generate power stably with fuel gas containing 20 ppm H2S. When the differential pressure between the anode and cathode was set to 0.1 MPa, the power generation tests were performed without gas leakage. In addition, starting (heating) and stopping (cooling) could be done in a short period, meaning that the cold start/stop characteristics are favorable. Therefore, the tubular MCFC was confirmed to have the durability necessary for a power generation system.

  11. Multi-hundred kilowatt roll ring assembly

    NASA Technical Reports Server (NTRS)

    Jacobson, Peter E.

    1985-01-01

    A program was completed to develop an evaluation unit of a high power rotary transfer device for potential application in a space environment. This device was configured around a Roll Ring concept which performs the same function as a slip ring/brush assembly with a rolling instead of sliding interface. An eight circuit Evaluation Unit (EU) and a portable Test Fixture (TF) were designed and fabricated. The EU was designed to transfer currents to 200 amperes at a potential of as high as 500 volts for an ultimate 100 kW/circuit transfer capability. The EU was evaluated in vacuum at dc transfer currents of 50 to 200 amperes at voltages to 10 volts and at 500 volts at 2 amperes. Power transfer to levels of 2 kW through each of the eight circuits was completed. Power transfer in vacuum at levels and efficiencies not previously achieved was demonstrated. The terminal-to-terminal resistance was measured to be greater than 0.42 milliohms which translates to an efficiency at 100 kW of 99.98 percent. The EU and TF have been delivered to the Lewis Research Center and are being prepared tor testing at increased power levels and for life testing, which will include both dc and ac power.

  12. Validity and reliability of the Hawaii anaerobic run test.

    PubMed

    Kimura, Iris F; Stickley, Christopher D; Lentz, Melissa A; Wages, Jennifer J; Yanagi, Kazuhiko; Hetzler, Ronald K

    2014-05-01

    This study examined the reliability and validity of the Hawaii anaerobic run test (HART) by comparing anaerobic capacity measures obtained to those during the Wingate Anaerobic Test (WAnT). Ninety-six healthy physically active volunteers (age, 22.0 ± 2.8 years; height, 163.9 ± 9.5 cm; body mass, 70.6 ± 14.7 kg; body fat %, 19.29 ± 5.39%) participated in this study. Each participant performed 2 anaerobic capacity tests: the WAnT and the HART by random assignment on separate days. The reliability of the HART was calculated from 2 separate trials of the test and then determined through intraclass correlation coefficients (ICCs). Blood samples were collected, and lactate was analyzed both pretest and posttest for each of the 2 exercise modes. Heart rate and rate of perceived exertion were also measured pre- and post-exercise. Hawaii anaerobic run test peak and mean momentum were calculated as body mass times highest or average split velocity, respectively. Intraclass correlation coefficients between trials of the HART for peak and mean momentum were 0.98 and 0.99, respectively (SEM = 18.8 and 25.7, respectively). Validity of the HART was established through comparison of momentum on the HART with power on the WAnT. High correlations were found between peak power and peak momentum (r = 0.88), as well as mean power and mean momentum (r = 0.94). The HART was considered to be a reliable test of anaerobic power. The HART was also determined to be a valid test of anaerobic power when compared with the WAnT. When testing healthy college-aged individuals, the HART offers an easy and inexpensive alternative maximal effort anaerobic power test to other established tests.

  13. Summary of Stirling Convertor Testing at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Schreiber, Jeffrey G.

    2006-01-01

    The NASA Glenn Research Center (GRC) has been testing free-piston Stirling convertors for potential use in radioisotope power systems. These convertors tend to be in the 35 to 80 W electric power output range. Tests at GRC have accumulated over 80,000 hr of operation. Test articles have been received from Infinia Corporation of Kennewick, Washington and from Sunpower of Athens, Ohio. Infinia designed and built the developmental Stirling Technology Demonstration Convertors (TDC) in addition to the more advanced Test Bed and Engineering Unit convertors. GRC has eight of the TDC's under test including two that operate in a thermal vacuum environment. Sunpower designed and developed the EE-35 and the Advanced Stirling Convertor (ASC). GRC has six of the EE- 35 s and is preparing for testing multiple ASC s. Free-piston Stirling convertors for radioisotope power systems make use of non-contacting operation that eliminates wear and is suited for long-term operation. Space missions with radioisotope power systems are often considered that extend from three to 14 years. One of the key capabilities of the GRC test facility is the ability to support continuous, unattended operation. Hardware, software, and procedures for preparing the test articles were developed to support these tests. These included the processing of the convertors for minimizing the contaminants in the working fluid, developing a helium charging system for filling and for gas sample analysis, and the development of new control software and a high-speed protection circuit to insure safe, round-the-clock operation. Performance data of Stirling convertors over time is required to demonstrate that a radioisotope power system is capable of providing reliable power for multi-year missions. This paper will discuss the status of Stirling convertor testing at GRC.

  14. Summary of Stirling Convertor Testing at GRC

    NASA Technical Reports Server (NTRS)

    Schreiber, Jeffrey G.

    2006-01-01

    The NASA Glenn Research Center (GRC) has been testing free-piston Stirling convertors for potential use in radioisotope power systems. These convertors tend to be in the 35 to 80 watt electric power output range. Tests at GRC have accumulated over 80,000 hours of operation. Test articles have been received from Infinia Corporation of Kennewick, WA and from Sunpower of Athens, OH. Infinia designed and built the developmental Stirling Technology Demonstration Convertors (TDC) in addition to the more advanced Test Bed and Engineering Unit convertors. GRC has eight of the TDC's under test including two that operate in a thermal vacuum environment. Sunpower designed and developed the EE- 35 and the Advanced Stirling Convertor (ASC). GRC has six of the EE-35's and is preparing for testing multiple ASC's. Free-piston Stirling convertors for radioisotope power systems make use of non-contacting operation that eliminates wear and is suited for longterm operation. Space missions with radioisotope power systems are often considered that extend from three to 14 years. One of the key capabilities of the GRC test facility is the ability to support continuous, unattended operation. Hardware, software, and procedures for preparing the test articles were developed to support these tests. These included the processing of the convertors for minimizing the contaminants in the working fluid, developing a helium charging system for filling and for gas sample analysis, and the development of new control software and a high-speed protection circuit to insure safe, round-the-clock operation. Performance data of Stirling convertors over time is required to demonstrate that a radioisotope power system is capable of providing reliable power for multi-year missions. This paper will discuss the status of Stirling convertor testing at GRC.

  15. Universal control and measuring system for modern classic and amorphous magnetic materials single/on-line strip testers

    NASA Astrophysics Data System (ADS)

    Zemánek, Ivan; Havlíček, Václav

    2006-09-01

    A new universal control and measuring system for classic and amorphous soft magnetic materials single/on-line strip testing has been developed at the Czech Technical University in Prague. The measuring system allows to measure magnetization characteristic and specific power losses of different tested materials (strips) at AC magnetization of arbitrary magnetic flux density waveform at wide range of frequencies 20 Hz-20 kHz. The measuring system can be used for both single strip testing in laboratories and on-line strip testing during the production process. The measuring system is controlled by two-stage master-slave control system consisting of the external PC (master) completed by three special A/D measuring plug-in boards, and local executing control unit (slave) with one-chip microprocessor 8051, connected with PC by the RS232 serial line. The "user friendly" powerful control software implemented on the PC and the effective program code for the microprocessor give possibility for full automatic measurement with high measuring power and high measuring accuracy.

  16. Ambiguity resolution for satellite Doppler positioning systems

    NASA Technical Reports Server (NTRS)

    Argentiero, P.; Marini, J.

    1979-01-01

    The implementation of satellite-based Doppler positioning systems frequently requires the recovery of transmitter position from a single pass of Doppler data. The least-squares approach to the problem yields conjugate solutions on either side of the satellite subtrack. It is important to develop a procedure for choosing the proper solution which is correct in a high percentage of cases. A test for ambiguity resolution which is the most powerful in the sense that it maximizes the probability of a correct decision is derived. When systematic error sources are properly included in the least-squares reduction process to yield an optimal solution the test reduces to choosing the solution which provides the smaller valuation of the least-squares loss function. When systematic error sources are ignored in the least-squares reduction, the most powerful test is a quadratic form comparison with the weighting matrix of the quadratic form obtained by computing the pseudoinverse of a reduced-rank square matrix. A formula for computing the power of the most powerful test is provided. Numerical examples are included in which the power of the test is computed for situations that are relevant to the design of a satellite-aided search and rescue system.

  17. Stirling System Modeling for Space Nuclear Power Systems

    NASA Technical Reports Server (NTRS)

    Lewandowski, Edward J.; Johnson, Paul K.

    2008-01-01

    A dynamic model of a high-power Stirling convertor has been developed for space nuclear power systems modeling. The model is based on the Component Test Power Convertor (CTPC), a 12.5-kWe free-piston Stirling convertor. The model includes the fluid heat source, the Stirling convertor, output power, and heat rejection. The Stirling convertor model includes the Stirling cycle thermodynamics, heat flow, mechanical mass-spring damper systems, and the linear alternator. The model was validated against test data. Both nonlinear and linear versions of the model were developed. The linear version algebraically couples two separate linear dynamic models; one model of the Stirling cycle and one model of the thermal system, through the pressure factors. Future possible uses of the Stirling system dynamic model are discussed. A pair of commercially available 1-kWe Stirling convertors is being purchased by NASA Glenn Research Center. The specifications of those convertors may eventually be incorporated into the dynamic model and analysis compared to the convertor test data. Subsequent potential testing could include integrating the convertors into a pumped liquid metal hot-end interface. This test would provide more data for comparison to the dynamic model analysis.

  18. Development and test of a 100 kVA superconducting transformer operated at 77 K

    NASA Astrophysics Data System (ADS)

    Kummeth, P.; Schlosser, R.; Massek, P.; Schmidt, H.; Albrecht, C.; Breitfelder, D.; Neumüller, H.-W.

    2000-05-01

    High-temperature superconducting (HTS) transformers are very promising candidates for application in electrical power engineering. Their main advantages are reduced size, weight, better efficiency and reduced potential fire and environmental hazards. We have designed, constructed and tested a 100 kVA HTS power transformer operated at 77 K. The nominal primary and secondary currents (voltages) are 18 A (5.6 kV) and 92 A (1.1 kV), respectively. No-load tests, short-circuit tests and load tests proved repeatedly that the transformer has the rated capacity. HTS winding losses of 20.6 W and iron losses of 403 W were measured.

  19. Parametric tests of a traction drive retrofitted to an automotive gas turbine

    NASA Technical Reports Server (NTRS)

    Rohn, D. A.; Lowenthal, S. H.; Anderson, N. E.

    1980-01-01

    The results of a test program to retrofit a high performance fixed ratio Nasvytis Multiroller Traction Drive in place of a helical gear set to a gas turbine engine are presented. Parametric tests up to a maximum engine power turbine speed of 45,500 rpm and to a power level of 11 kW were conducted. Comparisons were made to similar drives that were parametrically tested on a back-to-back test stand. The drive showed good compatibility with the gas turbine engine. Specific fuel consumption of the engine with the traction drive speed reducer installed was comparable to the original helical gearset equipped engine.

  20. Heatpipe power system and heatpipe bimodal system design and development options

    NASA Technical Reports Server (NTRS)

    Houts, M. G.; Poston, D. I.; Emrich, W. J., Jr.

    1997-01-01

    The Heatpipe Power System (HPS) is a potential, near-term, low-cost space fission power system. The Heatpipe Bimodal System (HBS) is a potential, near-term, low-cost space fission power and/or propulsion system. Both systems will be composed of independent modules, and all components operate within the existing databases. The HPS and HBS have relatively few system integration issues; thus, the successful development of a module is a significant step toward verifying system feasibility and performance estimates. A prototypic HPS module is being fabricated, and testing is scheduled to begin in November 1996. A successful test will provide high confidence that the HPS can achieve its predicted performance.

  1. [Motivation effect on EEG spectral power and heart rate parameters in students during examination stress].

    PubMed

    Dzhebrailova, T D; Korobeĭnikova, I I; Rudneva, L P

    2014-09-01

    EEG spectral power was calculated in 24 students (18-21 years) with different levels of motivation and anxiety (tested by Spielberger) in two experimental conditions: during the common educational process and the examination stress. Before examination tests, in subjects with high motivation and anxiety level the relative delta activity power increased in right frontal (F4) brain areas. In students with medium motivation immediately before an examination the relative beta2-activity power increased in right frontal (F4) brain areas. It is suggested that delta oscillati- ons reflect activity of the defensive motivational system, whereas beta2 oscillations may be associated with the achievement motivation.

  2. Examination of a pre-exercise, high energy supplement on exercise performance

    PubMed Central

    Hoffman, Jay R; Kang, Jie; Ratamess, Nicholas A; Hoffman, Mattan W; Tranchina, Christopher P; Faigenbaum, Avery D

    2009-01-01

    Background The purpose of this study was to examine the effect of a pre-exercise high energy drink on reaction time and anaerobic power in competitive strength/power athletes. In addition, the effect of the pre-exercise drink on subjective feelings of energy, fatigue, alertness and focus was also explored. Methods Twelve male strength/power athletes (21.1 ± 1.3 y; 179.8 ± 7.1 cm; 88.6 ± 12.1 kg; 17.6 ± 3.3% body fat) underwent two testing sessions administered in a randomized and double-blind fashion. During each session, subjects reported to the Human Performance Laboratory and were provided with either 120 ml of a high energy drink (SUP), commercially marketed as Redline Extreme® or 120 ml of a placebo (PL) that was similar in taste and appearance but contained no active ingredients. Following consumption of the supplement or placebo subjects rested quietly for 10-minutes prior to completing a survey and commencing exercise. The survey consisted of 4 questions asking each subject to describe their feelings of energy, fatigue, alertness and focus for that moment. Following the completion of the questionnaire subjects performed a 2-minute quickness and reaction test on the Makoto testing device (Makoto USA, Centennial CO) and a 20-second Wingate Anaerobic Power test. Following a 10-minute rest subjects repeated the testing sequence and after a similar rest period a third and final testing sequence was performed. The Makoto testing device consisted of subjects reacting to both a visual and auditory stimulus and striking one out of 30 potential targets on three towers. Results Significant difference in reaction performance was seen between SUP and PL in both average number of targets struck (55.8 ± 7.4 versus 51.9 ± 7.4, respectively) and percent of targets struck (71.9 ± 10.5% versus 66.8 ± 10.9%, respectively). No significant differences between trials were seen in any anaerobic power measure. Subjective feelings of energy (3.5 ± 0.5 versus 3.1 ± 0.5) and focus (3.8 ± 0.5 versus 3.3 ± 0.7) were significantly higher during SUP compared to PL, respectively. In addition, a trend towards an increase in average alertness (p = 0.06) was seen in SUP compared to P. Conclusion Results indicate a significant increase in reaction performance, with no effect on anaerobic power performance. In addition, ingestion of this supplement significantly improves subjective feelings of focus and energy in male strength/power athletes. PMID:19126213

  3. Telescoping Solar Array Concept for Achieving High Packaging Efficiency

    NASA Technical Reports Server (NTRS)

    Mikulas, Martin; Pappa, Richard; Warren, Jay; Rose, Geoff

    2015-01-01

    Lightweight, high-efficiency solar arrays are required for future deep space missions using high-power Solar Electric Propulsion (SEP). Structural performance metrics for state-of-the art 30-50 kW flexible blanket arrays recently demonstrated in ground tests are approximately 40 kW/cu m packaging efficiency, 150 W/kg specific power, 0.1 Hz deployed stiffness, and 0.2 g deployed strength. Much larger arrays with up to a megawatt or more of power and improved packaging and specific power are of interest to mission planners for minimizing launch and life cycle costs of Mars exploration. A new concept referred to as the Compact Telescoping Array (CTA) with 60 kW/cu m packaging efficiency at 1 MW of power is described herein. Performance metrics as a function of array size and corresponding power level are derived analytically and validated by finite element analysis. Feasible CTA packaging and deployment approaches are also described. The CTA was developed, in part, to serve as a NASA reference solar array concept against which other proposed designs of 50-1000 kW arrays for future high-power SEP missions could be compared.

  4. W5″ Test: A simple method for measuring mean power output in the bench press exercise.

    PubMed

    Tous-Fajardo, Julio; Moras, Gerard; Rodríguez-Jiménez, Sergio; Gonzalo-Skok, Oliver; Busquets, Albert; Mujika, Iñigo

    2016-11-01

    The aims of the present study were to assess the validity and reliability of a novel simple test [Five Seconds Power Test (W5″ Test)] for estimating the mean power output during the bench press exercise at different loads, and its sensitivity to detect training-induced changes. Thirty trained young men completed as many repetitions as possible in a time of ≈5 s at 25%, 45%, 65% and 85% of one-repetition maximum (1RM) in two test sessions separated by four days. The number of repetitions, linear displacement of the bar and time needed to complete the test were recorded by two independent testers, and a linear encoder was used as the criterion measure. For each load, the mean power output was calculated in the W5″ Test as mechanical work per time unit and compared with that obtained from the linear encoder. Subsequently, 20 additional subjects (10 training group vs. 10 control group) were assessed before and after completing a seven-week training programme designed to improve maximal power. Results showed that both assessment methods correlated highly in estimating mean power output at different loads (r range: 0.86-0.94; p < .01) and detecting training-induced changes (R(2): 0.78). Good to excellent intra-tester (intraclass correlation coefficient (ICC) range: 0.81-0.97) and excellent inter-tester (ICC range: 0.96-0.99; coefficient of variation range: 2.4-4.1%) reliability was found for all loads. The W5″ Test was shown to be a valid, reliable and sensitive method for measuring mean power output during the bench press exercise in subjects who have previous resistance training experience.

  5. Health responses to a new high-voltage power line route: design of a quasi-experimental prospective field study in the Netherlands

    PubMed Central

    2014-01-01

    Background New high-voltage power transmission lines will be introduced due to increasing demand for reliable and renewable energy supplies. Some residents associate non-specific health complaints with exposure to electromagnetic fields from nearby power lines. This study protocol describes the design and rationale of a prospective study investigating whether the introduction of a new power line triggers health responses in residents living nearby. Methods/Design The study is designed as a quasi-experimental field study with two pretests during the construction of a new power line route, and two posttests after it has been put into operation. Key outcomes are self-reported non-specific somatic and cognitive health complaints, and attribution of these health complaints to a power line. The main determinant is proximity to the new power line route. One member of every household (n = 2379) residing in close proximity (0-500 meters) to the overhead parts of a new power line route in the Netherlands is invited to participate, as well as a sample of household members (n = 2382) residing farther away (500-2000 meters). Multilevel analysis will be employed to test whether an increase in key outcome measures is related to proximity to the line. Longitudinal structural equation models will be applied to test to what extent health responses are mediated by psychosocial health mechanisms and moderated by negative oriented personality traits. Discussion This is the first study to investigate health responses to a new power line route in a prospective manner. The results will provide theoretical insight into psychosocial mechanisms operating during the introduction of an environmental health risk, and may offer suggestions to policymakers and other stakeholders for minimizing adverse health responses when introducing new high-voltage power lines. PMID:24606914

  6. Health responses to a new high-voltage power line route: design of a quasi-experimental prospective field study in the Netherlands.

    PubMed

    Porsius, Jarry T; Claassen, Liesbeth; Smid, Tjabe; Woudenberg, Fred; Timmermans, Danielle R M

    2014-03-07

    New high-voltage power transmission lines will be introduced due to increasing demand for reliable and renewable energy supplies. Some residents associate non-specific health complaints with exposure to electromagnetic fields from nearby power lines. This study protocol describes the design and rationale of a prospective study investigating whether the introduction of a new power line triggers health responses in residents living nearby. The study is designed as a quasi-experimental field study with two pretests during the construction of a new power line route, and two posttests after it has been put into operation. Key outcomes are self-reported non-specific somatic and cognitive health complaints, and attribution of these health complaints to a power line. The main determinant is proximity to the new power line route. One member of every household (n=2379) residing in close proximity (0-500 meters) to the overhead parts of a new power line route in the Netherlands is invited to participate, as well as a sample of household members (n=2382) residing farther away (500-2000 meters). Multilevel analysis will be employed to test whether an increase in key outcome measures is related to proximity to the line. Longitudinal structural equation models will be applied to test to what extent health responses are mediated by psychosocial health mechanisms and moderated by negative oriented personality traits. This is the first study to investigate health responses to a new power line route in a prospective manner. The results will provide theoretical insight into psychosocial mechanisms operating during the introduction of an environmental health risk, and may offer suggestions to policymakers and other stakeholders for minimizing adverse health responses when introducing new high-voltage power lines.

  7. Alkaline batteries for hybrid and electric vehicles

    NASA Astrophysics Data System (ADS)

    Haschka, F.; Warthmann, W.; Benczúr-Ürmössy, G.

    Forced by the USABC PNGV Program and the EZEV regulation in California, the development of hybrid vehicles become more strong. Hybrids offer flexible and unrestricted mobility, as well as pollution-free driving mode in the city. To achieve these requirements, high-power storage systems are demanded fulfilled by alkaline batteries (e.g., nickel/cadmium, nickel/metal hydride). DAUG has developed nickel/cadmium- and nickel/metal hydride cells in Fibre Technology of different performance types (up to 700 W/kg peak power) and proved in electric vehicles of different projects. A special bipolar cell design will meet even extreme high power requirements with more than 1000 W/kg peak power. The cells make use of the Recom design ensuring high power charge ability at low internal gas pressure. The paper presents laboratory test results of cells and batteries.

  8. A systematic review investigating measurement properties of physiological tests in rugby.

    PubMed

    Chiwaridzo, Matthew; Oorschot, Sander; Dambi, Jermaine M; Ferguson, Gillian D; Bonney, Emmanuel; Mudawarima, Tapfuma; Tadyanemhandu, Cathrine; Smits-Engelsman, Bouwien C M

    2017-01-01

    This systematic review was conducted with the first objective aimed at providing an overview of the physiological characteristics commonly evaluated in rugby and the corresponding tests used to measure each construct. Secondly, the measurement properties of all identified tests per physiological construct were evaluated with the ultimate purpose of identifying tests with strongest level of evidence per construct. The review was conducted in two stages. In all stages, electronic databases of EBSCOhost, Medline and Scopus were searched for full-text articles. Stage 1 included studies examining physiological characteristics in rugby. Stage 2 included studies evaluating measurement properties of all tests identified in Stage 1 either in rugby or related sports such as Australian Rules football and Soccer. Two independent reviewers screened relevant articles from titles and abstracts for both stages. Seventy studies met the inclusion criteria for Stage 1. The studies described 63 tests assessing speed (8), agility/change of direction speed (7), upper-body muscular endurance (8), upper-body muscular power (6), upper-body muscular strength (5), anaerobic endurance (4), maximal aerobic power (4), lower-body muscular power (3), prolonged high-intensity intermittent running ability/endurance (5), lower-body muscular strength (5), repeated high-intensity exercise performance (3), repeated-sprint ability (2), repeated-effort ability (1), maximal aerobic speed (1) and abdominal endurance (1). Stage 2 identified 20 studies describing measurement properties of 21 different tests. Only moderate evidence was found for the reliability of the 30-15 Intermittent Fitness. There was limited evidence found for the reliability and/or validity of 5 m, 10 m, 20 m speed tests, 505 test, modified 505 test, L run test, Sergeant Jump test and bench press repetitions-to-fatigue tests. There was no information from high-quality studies on the measurement properties of all the other tests identified in stage 1. A number of physiological characteristics are evaluated in rugby. Each physiological construct has multiple tests for measurement. However, there is paucity of information on measurement properties from high-quality studies for the tests. This raises questions about the usefulness and applicability of these tests in rugby and creates a need for high-quality future studies evaluating measurement properties of these physiological tests. PROSPERO CRD 42015029747.

  9. Design and experimental investigation of a cryogenic system for environmental test applications

    NASA Astrophysics Data System (ADS)

    Yan, Lutao; Li, Hong; Liu, Yue; Han, Che; Lu, Tian; Su, Yulei

    2015-04-01

    This paper is concerned with the design, development and performance testing of a cryogenic system for use in high cooling power instruments for ground-based environmental testing. The system provides a powerful tool for a combined environmental test that consists of high pressure and cryogenic temperatures. Typical cryogenic conditions are liquid hydrogen (LH2) and liquid oxygen (LO2), which are used in many fields. The cooling energy of liquid nitrogen (LN2) and liquid helium (LHe) is transferred to the specimen by a closed loop of helium cycle. In order to minimize the consumption of the LHe, the optimal design of heat recovery exchangers has been used in the system. The behavior of the system is discussed based on experimental data of temperature and pressure. The results show that the temperature range from room temperature to LN2 temperature can be achieved by using LN2, the pressurization process is stable and the high test pressure is maintained. Lower temperatures, below 77 K, can also be obtained with LHe cooling, the typical cooling time is 40 min from 90 K to 22 K. Stable temperatures of 22 K at the inlet of the specimen have been observed, and the system in this work can deliver to the load a cooling power of several hundred watts at a pressure of 0.58 MPa.

  10. Power control electronics for cryogenic instrumentation

    NASA Technical Reports Server (NTRS)

    Ray, Biswajit; Gerber, Scott S.; Patterson, Richard L.; Myers, Ira T.

    1995-01-01

    In order to achieve a high-efficiency high-density cryogenic instrumentation system, the power processing electronics should be placed in the cold environment along with the sensors and signal-processing electronics. The typical instrumentation system requires low voltage dc usually obtained from processing line frequency ac power. Switch-mode power conversion topologies such as forward, flyback, push-pull, and half-bridge are used for high-efficiency power processing using pulse-width modulation (PWM) or resonant control. This paper presents several PWM and multiresonant power control circuits, implemented using commercially available CMOS and BiCMOS integrated circuits, and their performance at liquid-nitrogen temperature (77 K) as compared to their room temperature (300 K) performance. The operation of integrated circuits at cryogenic temperatures results in an improved performance in terms of increased speed, reduced latch-up susceptibility, reduced leakage current, and reduced thermal noise. However, the switching noise increased at 77 K compared to 300 K. The power control circuits tested in the laboratory did successfully restart at 77 K.

  11. Agility performance in high-level junior basketball players: the predictive value of anthropometrics and power qualities.

    PubMed

    Sisic, Nedim; Jelicic, Mario; Pehar, Miran; Spasic, Miodrag; Sekulic, Damir

    2016-01-01

    In basketball, anthropometric status is an important factor when identifying and selecting talents, while agility is one of the most vital motor performances. The aim of this investigation was to evaluate the influence of anthropometric variables and power capacities on different preplanned agility performances. The participants were 92 high-level, junior-age basketball players (16-17 years of age; 187.6±8.72 cm in body height, 78.40±12.26 kg in body mass), randomly divided into a validation and cross-validation subsample. The predictors set consisted of 16 anthropometric variables, three tests of power-capacities (Sargent-jump, broad-jump and medicine-ball-throw) as predictors. The criteria were three tests of agility: a T-Shape-Test; a Zig-Zag-Test, and a test of running with a 180-degree turn (T180). Forward stepwise multiple regressions were calculated for validation subsamples and then cross-validated. Cross validation included correlations between observed and predicted scores, dependent samples t-test between predicted and observed scores; and Bland Altman graphics. Analysis of the variance identified centres being advanced in most of the anthropometric indices, and medicine-ball-throw (all at P<0.05); with no significant between-position-differences for other studied motor performances. Multiple regression models originally calculated for the validation subsample were then cross-validated, and confirmed for Zig-zag-Test (R of 0.71 and 0.72 for the validation and cross-validation subsample, respectively). Anthropometrics were not strongly related to agility performance, but leg length is found to be negatively associated with performance in basketball-specific agility. Power capacities are confirmed to be an important factor in agility. The results highlighted the importance of sport-specific tests when studying pre-planned agility performance in basketball. The improvement in power capacities will probably result in an improvement in agility in basketball athletes, while anthropometric indices should be used in order to identify those athletes who can achieve superior agility performance.

  12. High Temperature, High Power Piezoelectric Composite Transducers

    PubMed Central

    Lee, Hyeong Jae; Zhang, Shujun; Bar-Cohen, Yoseph; Sherrit, StewarT.

    2014-01-01

    Piezoelectric composites are a class of functional materials consisting of piezoelectric active materials and non-piezoelectric passive polymers, mechanically attached together to form different connectivities. These composites have several advantages compared to conventional piezoelectric ceramics and polymers, including improved electromechanical properties, mechanical flexibility and the ability to tailor properties by using several different connectivity patterns. These advantages have led to the improvement of overall transducer performance, such as transducer sensitivity and bandwidth, resulting in rapid implementation of piezoelectric composites in medical imaging ultrasounds and other acoustic transducers. Recently, new piezoelectric composite transducers have been developed with optimized composite components that have improved thermal stability and mechanical quality factors, making them promising candidates for high temperature, high power transducer applications, such as therapeutic ultrasound, high power ultrasonic wirebonding, high temperature non-destructive testing, and downhole energy harvesting. This paper will present recent developments of piezoelectric composite technology for high temperature and high power applications. The concerns and limitations of using piezoelectric composites will also be discussed, and the expected future research directions will be outlined. PMID:25111242

  13. A novel high-speed PLC communication modem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abraham, K.C.; Roy, S.

    1992-10-01

    In this paper an innovative design for power line carrier (PLC) communication using digitally modulated signals is presented. The major contribution consists of a new signal coupler to the power line that achieves a stable transmission bandwidth of 4 KHz on distribution lines over long distances. Preliminary field tests achieved half-duplex operation at 1.2 Kbaud over a distribution power line to the 120V network and back with a symbol error rate of about 2% using less than about 10 W of average transmitted power, which is considerably superior to the present state-of-the-art PLC modems. Full-duplex operation over 120/240V intra-building wiringmore » has also been field tested at 9.6 Kbaud over distances of 3000 ft. using 1W of average transmitted power.« less

  14. High energy density propulsion systems and small engine dynamometer

    NASA Astrophysics Data System (ADS)

    Hays, Thomas

    2009-07-01

    Scope and Method of Study. This study investigates all possible methods of powering small unmanned vehicles, provides reasoning for the propulsion system down select, and covers in detail the design and production of a dynamometer to confirm theoretical energy density calculations for small engines. Initial energy density calculations are based upon manufacturer data, pressure vessel theory, and ideal thermodynamic cycle efficiencies. Engine tests are conducted with a braking type dynamometer for constant load energy density tests, and show true energy densities in excess of 1400 WH/lb of fuel. Findings and Conclusions. Theory predicts lithium polymer, the present unmanned system energy storage device of choice, to have much lower energy densities than other conversion energy sources. Small engines designed for efficiency, instead of maximum power, would provide the most advantageous method for powering small unmanned vehicles because these engines have widely variable power output, loss of mass during flight, and generate rotational power directly. Theoretical predictions for the energy density of small engines has been verified through testing. Tested values up to 1400 WH/lb can be seen under proper operating conditions. The implementation of such a high energy density system will require a significant amount of follow-on design work to enable the engines to tolerate the higher temperatures of lean operation. Suggestions are proposed to enable a reliable, small-engine propulsion system in future work. Performance calculations show that a mature system is capable of month long flight times, and unrefueled circumnavigation of the globe.

  15. The Washback of the TOEFL iBT in Vietnam

    ERIC Educational Resources Information Center

    Barnes, Melissa

    2016-01-01

    Washback, or the influence of testing on teaching and learning, has received considerable attention in language testing research over the past twenty years. It is widely argued that testing, particularly high-stakes testing, exerts a powerful influence, whether intended or unintended, positive or negative, on both teachers and learners. This…

  16. System and component design and test of a 10 hp, 18,000 rpm AC dynamometer utilizing a high frequency AC voltage link, part 1

    NASA Technical Reports Server (NTRS)

    Lipo, Thomas A.; Alan, Irfan

    1991-01-01

    Hard and soft switching test results conducted with one of the samples of first generation MOS-controlled thyristor (MCTs) and similar test results with several different samples of second generation MCT's are reported. A simple chopper circuit is used to investigate the basic switching characteristics of MCT under hard switching and various types of resonant circuits are used to determine soft switching characteristics of MCT under both zero voltage and zero current switching. Next, operation principles of a pulse density modulated converter (PDMC) for three phase (3F) to 3F two-step power conversion via parallel resonant high frequency (HF) AC link are reviewed. The details for the selection of power switches and other power components required for the construction of the power circuit for the second generation 3F to 3F converter system are discussed. The problems encountered in the first generation system are considered. Design and performance of the first generation 3F to 3F power converter system and field oriented induction moter drive based upon a 3 kVA, 20 kHz parallel resonant HF AC link are described. Low harmonic current at the input and output, unity power factor operation of input, and bidirectional flow capability of the system are shown via both computer and experimental results. The work completed on the construction and testing of the second generation converter and field oriented induction motor drive based upon specifications for a 10 hp squirrel cage dynamometer and a 20 kHz parallel resonant HF AC link is discussed. The induction machine is designed to deliver 10 hp or 7.46 kW when operated as an AC-dynamo with power fed back to the source through the converter. Results presented reveal that the proposed power level requires additional energy storage elements to overcome difficulties with a peak link voltage variation problem that limits reaching to the desired power level. The power level test of the second generation converter after the addition of extra energy storage elements to the HF link are described. The importance of the source voltage level to achieve a better current regulation for the source side PDMC is also briefly discussed. The power levels achieved in the motoring mode of operation show that the proposed power levels achieved in the generating mode of operation can also be easily achieved provided that no mechanical speed limitation were present to drive the induction machine at the proposed power level.

  17. High Input Voltage Discharge Supply for High Power Hall Thrusters Using Silicon Carbide Devices

    NASA Technical Reports Server (NTRS)

    Pinero, Luis R.; Scheidegger, Robert J.; Aulsio, Michael V.; Birchenough, Arthur G.

    2014-01-01

    A power processing unit for a 15 kW Hall thruster is under development at NASA Glenn Research Center. The unit produces up to 400 VDC with two parallel 7.5 kW discharge modules that operate from a 300 VDC nominal input voltage. Silicon carbide MOSFETs and diodes were used in this design because they were the best choice to handle the high voltage stress while delivering high efficiency and low specific mass. Efficiencies in excess of 97 percent were demonstrated during integration testing with the NASA-300M 20 kW Hall thruster. Electromagnet, cathode keeper, and heater supplies were also developed and will be integrated with the discharge supply into a vacuum-rated brassboard power processing unit with full flight functionality. This design could be evolved into a flight unit for future missions that requires high power electric propulsion.

  18. Electrical, thermal and abusive tests on lithium thionyl chloride cells

    NASA Technical Reports Server (NTRS)

    Frank, H. A.

    1980-01-01

    Electrical characterizations, thermal characterizations, and outer limits tests of lithium thionyl chloride cells are discussed. Graphs of energy density vs power density and heat rate vs time are presented along with results of forced reversal and high rate discharge tests.

  19. Electrical, thermal and abusive tests on lithium thionyl chloride cells

    NASA Astrophysics Data System (ADS)

    Frank, H. A.

    1980-04-01

    Electrical characterizations, thermal characterizations, and outer limits tests of lithium thionyl chloride cells are discussed. Graphs of energy density vs power density and heat rate vs time are presented along with results of forced reversal and high rate discharge tests.

  20. Re-Verification of the IRHN57133SE and IRHN57250SE for Single Event Gate Rupture and Single Event Burnout

    NASA Technical Reports Server (NTRS)

    Scheick, Leif

    2010-01-01

    The vertical metal oxide semiconductor field-effect transistor (MOSFET) is a widely used power transistor onboard a spacecraft. The MOSFET is typically employed in power supplies and high current switching applications. Due to the inherent high electric fields in the device, power MOSFETs are sensitive to heavy ion irradiation and can fail catastrophically as a result of single event gate rupture (SEGR) or single event burnout (SEB). Manufacturers have designed radiation-hardened power MOSFETs for space applications. These radiation hardened devices are not immune to SEGR or SEB but, rather, can exhibit them at a much more damaging ion than their non-radiation hardened counterparts. See [1] through [5] for more information.This effort was to investigate the SEGR and SEB responses of two power MOSFETs from IR(the IRHN57133SE and the IRHN57250SE) that have recently been produced on a new fabrication line. These tests will serve as a limited verification of these parts, but it is acknowledged that further testing on the respective parts may be needed for some mission profiles.

  1. 78 FR 67348 - Invitation for Public Comment on Draft Test Plan for the High Burnup Dry Storage Cask Research...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-12

    ... will be executed will be added when Dominion Virginia Power, who is part of the Electric Power research... Electric Power Research Institute (EPRI) to document what is planned to be accomplished by the CDP. DOE is... Storage Cask Research and Development Project (CDP) AGENCY: Fuel Cycle Technologies, Office of Nuclear...

  2. Test Program for Stirling Radioisotope Generator Hardware at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Lewandowski, Edward J.; Bolotin, Gary S.; Oriti, Salvatore M.

    2015-01-01

    Stirling-based energy conversion technology has demonstrated the potential of high efficiency and low mass power systems for future space missions. This capability is beneficial, if not essential, to making certain deep space missions possible. Significant progress was made developing the Advanced Stirling Radioisotope Generator (ASRG), a 140-W radioisotope power system. A variety of flight-like hardware, including Stirling convertors, controllers, and housings, was designed and built under the ASRG flight development project. To support future Stirling-based power system development NASA has proposals that, if funded, will allow this hardware to go on test at the NASA Glenn Research Center. While future flight hardware may not be identical to the hardware developed under the ASRG flight development project, many components will likely be similar, and system architectures may have heritage to ASRG. Thus, the importance of testing the ASRG hardware to the development of future Stirling-based power systems cannot be understated. This proposed testing will include performance testing, extended operation to establish an extensive reliability database, and characterization testing to quantify subsystem and system performance and better understand system interfaces. This paper details this proposed test program for Stirling radioisotope generator hardware at NASA Glenn. It explains the rationale behind the proposed tests and how these tests will meet the stated objectives.

  3. Test Program for Stirling Radioisotope Generator Hardware at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Lewandowski, Edward J.; Bolotin, Gary S.; Oriti, Salvatore M.

    2014-01-01

    Stirling-based energy conversion technology has demonstrated the potential of high efficiency and low mass power systems for future space missions. This capability is beneficial, if not essential, to making certain deep space missions possible. Significant progress was made developing the Advanced Stirling Radioisotope Generator (ASRG), a 140-watt radioisotope power system. A variety of flight-like hardware, including Stirling convertors, controllers, and housings, was designed and built under the ASRG flight development project. To support future Stirling-based power system development NASA has proposals that, if funded, will allow this hardware to go on test at the NASA Glenn Research Center (GRC). While future flight hardware may not be identical to the hardware developed under the ASRG flight development project, many components will likely be similar, and system architectures may have heritage to ASRG. Thus the importance of testing the ASRG hardware to the development of future Stirling-based power systems cannot be understated. This proposed testing will include performance testing, extended operation to establish an extensive reliability database, and characterization testing to quantify subsystem and system performance and better understand system interfaces. This paper details this proposed test program for Stirling radioisotope generator hardware at NASA GRC. It explains the rationale behind the proposed tests and how these tests will meet the stated objectives.

  4. Pulsed power molten salt battery

    NASA Technical Reports Server (NTRS)

    Argade, Shyam D.

    1992-01-01

    It was concluded that carbon cathodes with chlorine work well. Lithium alloy chlorine at 450 C, 1 atm given high power capability, high energy density, DC + pulsing yields 600 pulses, no initial peak, and can go to red heat without burn-up. Electrochemical performance at the cell and cell stack level out under demanding test regime. Engineering and full prototype development for advancing this technology is warranted.

  5. Capabilities for managing high-volume production of electric engineering equipment at the Electrochemical Production Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Podlednev, V.M.

    1996-04-01

    The Electromechanical Production Plant is essentially a research center with experimental facilities and power full testing base. Major products of the plant today include heat pipes and devices of their basis of different functions and power from high temperature ranges to cryogenics. This report describes work on porous titanium and carbon-graphite current collectors, electrocatalyst synthesis, and electrocatalyst applications.

  6. The 1981 Goddard Space Flight Center Battery Workshop

    NASA Technical Reports Server (NTRS)

    Halpert, G. (Editor)

    1982-01-01

    Results of testing, analysis, and development of lithium, nickel-cadmium, and nickel-hydrogen batteries are reported. Focus is on the improvement of power systems in the areas of high capacity, high energy density, and long cycle and storage life. Applications of these batteries as spacecraft power supplies are discussed. Those spacecraft include deepspace probes, spacecraft in geostationary orbit, and large space systems in low-Earth orbit.

  7. A Comprehensive Investigation of Facility Effects on the Testing of High-Power Monolithic and Clustered Hall Thruster Systems

    DTIC Science & Technology

    2004-09-02

    path for developing high-power EP systems is somewhat certain given NASA’s recent success with its 70+ kW NASA-457M Hall thruster , it is clear that...current density distribution, and summarize findings from cold- and hot-flow pressure map data of our vacuum chamber for a number of Hall thruster mass flow rates.

  8. Technology Projections for Solar Dynamic Power

    NASA Technical Reports Server (NTRS)

    Mason, Lee S.

    1999-01-01

    Solar Dynamic power systems can offer many potential benefits to Earth orbiting satellites including high solar-to-electric efficiency, long life without performance degradation, and high power capability. A recent integrated system test of a 2 kilowatt SD power system in a simulated space environment has successfully demonstrated technology readiness for space flight. Conceptual design studies of SD power systems have addressed several potential mission applications: a 10 kilowatt LEO satellite, a low power Space Based Radar, and a 30 kilowatt GEO communications satellite. The studies show that with moderate component development, SD systems can exhibit excellent mass and deployed area characteristics. Using the conceptual design studies as a basis, a SD technology roadmap was generated which identifies the component advances necessary to assure SD systems a competitive advantage for future NASA, DOD, and commercial missions.

  9. Solid-State Powered X-band Accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Othman, Mohamed A.K.; Nann, Emilio A.; Dolgashev, Valery A.

    2017-03-06

    In this report we disseminate the hot test results of an X-band 100-W solid state amplifier chain for linear accelerator (linac) applications. Solid state power amplifiers have become increasingly attractive solutions for achieving high power in radar and maritime applications. Here the performance of solid state amplifiers when driving an RF cavity is investigated. Commercially available, matched and fully-packaged GaN on SiC HEMTs are utilized, comprising a wideband driver stage and two power stages. The amplifier chain has a high poweradded- efficiency and is able to supply up to ~1.2 MV/m field gradient at 9.2 GHz in a simple testmore » cavity, with a peak power exceeding 100 W. These findings set forth the enabling technology for solid-state powered linacs.« less

  10. Testing women's propensities to leave their abusive husbands using structural equation modeling.

    PubMed

    Choi, Myunghan; Belyea, Michael; Phillips, Linda R; Insel, Kathleen; Min, Sung-Kil

    2009-01-01

    Many Korean women are just beginning to recognize that what they considered to be normal treatment is actually domestic violence. Many are becoming more intolerant of the abuse and more likely to desire to leave an abusive relationship. The aim of this study was to test, using the framework of sociostructural and psychological-relational power (PRP), a model of Korean women's propensities to leave their abusive husbands. Multigroup structural equation modeling was used to test relationships between variables chosen from the sociostructural power and PRP to explain intolerance to abuse. Married Korean women (n = 184) who self-identified as being abused physically, psychologically, sexually, or financially participated in the study. The multigroup analysis revealed that the relationship of abuse and Hwa-Byung (a culture-bound syndrome that denotes Korean women's anger) with intolerance was supported for women with low education (defined as having an education of high school or less: < or =12 years); also for this group, particularly among the younger women, high power was related to high levels of reported abuse and abuse intolerance. For women in the high-education group (education beyond high school: > or =13 years), high power was related to abuse, Hwa-Byung, and abuse intolerance; age did not influence power. Overall, the multigroup model adequately fitted the sample data (chi2 = 92.057, degree of freedom = 50, p = .000; normal fit index = .926, comparative fix index = .964, root mean square error of approximation = .068, Hoelter's critical number = 152), demonstrating that education is a crucial moderator of Korean women's attitude toward the unacceptability of abuse and propensity to terminate the marriage. This study found support for a model of abuse intolerance using the framework of sociostructural power and PRP, primarily for the low-education group. Hwa-Byung was a mediating factor that contributed to intolerance to abuse in women with low education. This study highlights the importance of understanding the cultural assumptions that guide Korean women's beliefs and behaviors about abuse intolerance, suggesting that effective intervention programs should be specific to age and education, including a focus on resource availability, which could clarify the variations in Korean women's responses to abuse intolerance.

  11. Atmospheric propagation of high power laser radiation at different weather conditions

    NASA Astrophysics Data System (ADS)

    Pargmann, Carsten; Hall, Thomas; Duschek, Frank; Handke, Jürgen

    2016-05-01

    Applications based on the propagation of high power laser radiation through the atmosphere are limited in range and effect, due to weather dependent beam wandering, beam deterioration, and scattering processes. Security and defense related application examples are countermeasures against hostile projectiles and the powering of satellites and aircrafts. For an examination of the correlations between weather condition and laser beam characteristics DLR operates at Lampoldshausen a 130 m long free transmission laser test range. Sensors around this test range continuously monitor turbulence strength, visibility, precipitation, temperature, and wind speed. High power laser radiation is obtained by a TruDisk 6001 disk laser (Trumpf company) yielding a maximum output power of 6 kW at a wavelength of 1030 nm. The laser beam is expanded to 180 mm and focused along the beam path. Power and intensity distribution are measured before and after propagation, providing information about the atmospheric transmission and alterations of diameter and position of the laser beam. Backscattered laser light is acquired by a photo receiver. As a result, measurements performed at different weather conditions show a couple of correlations to the characteristics of the laser beam. The experimental results are compared to a numerical analysis. The calculations are based on the Maxwell wave equation in Fresnel approximation. The turbulence is considered by the introduction of phase screens and the "von Karman" spectrum.

  12. Traveling-wave tube reliability estimates, life tests, and space flight experience

    NASA Technical Reports Server (NTRS)

    Lalli, V. R.; Speck, C. E.

    1977-01-01

    Infant mortality, useful life, and wearout phase of twt life are considered. The performance of existing developmental tubes, flight experience, and sequential hardware testing are evaluated. The reliability history of twt's in space applications is documented by considering: (1) the generic parts of the tube in light of the manner in which their design and operation affect the ultimate reliability of the device, (2) the flight experience of medium power tubes, and (3) the available life test data for existing space-qualified twt's in addition to those of high power devices.

  13. High Peak Power Test and Evaluation of S-band Waveguide Switches

    NASA Astrophysics Data System (ADS)

    Nassiri, A.; Grelick, A.; Kustom, R. L.; White, M.

    1997-05-01

    The injector and source of particles for the Advanced Photon Source is a 2856-MHz S-band electron-positron linear accelerator (linac) which produces electrons with energies up to 650 MeV or positrons with energies up to 450 MeV. To improve the linac rf system availability, an additional modulator-klystron subsystem is being constructed to provide a switchable hot spare unit for each of the five exsisting S-band transmitters. The switching of the transmitters will require the use of SF6-pressurized S-band waveguide switches at a peak operating power of 35 MW. Such rf switches have been successfully operated at other accelerator facilities but at lower peak powers. A test stand has been set up at the Stanford Linear Accelerator Center (SLAC) Klystron Factory to conduct tests comparing the power handling characteristics of two WR-284 and one WR-340 switches. Test results are presented and their implications for the design of the switching system are discussed.

  14. Broadband low-dispersion low-nonlinearity photonic crystal fiber dedicated to near-infrared high-power femtosecond pulse delivery

    NASA Astrophysics Data System (ADS)

    Hoang, Van Thuy; Siwicki, Bartłomiej; Franczyk, Marcin; Stępniewski, Grzegorz; Van, Hieu Le; Long, Van Cao; Klimczak, Mariusz; Buczyński, Ryszard

    2018-05-01

    A low-dispersion and low-nonlinearity silica photonic crystal fiber is designed and developed. The investigated fiber is effectively single-mode and has low dispersion -20 to 40 ps/nm/km in the 1-1.7 μm wavelength range. The silica PCF can withstand a 1017 nm QCW laser beam with a maximum tested power of 9.1 W. The investigated PCF with NA = 0.15 is suggested as a promising medium for a high-power femtosecond undistorted pulse delivery in the near-infrared region.

  15. Concept Design Report for a Low draft Stabilized - High Speed Connector (LDS-HSC) Vessel for the ONR High Speed Sea Lift (HSSL) Program

    DTIC Science & Technology

    2007-04-30

    control of cushion air flow and, hence, control of cushion pressure fore and aft of the divider that provides significant dynamic control of ship pitch...fore and aft of the divider that provides significant dynamic control of ship pitch and heave in a seaway. All these modes of operation were tested by...Installed Power, SHP 402,306 Integrated Power System (IPS) featuring: * (6) 50 MW Rolls-Royce MT50 based Gensets Power Plant * Associated Conversion and

  16. Structure-property relationships in an Al matrix Ca nanofilamentary composite conductor with potential application in high-voltage power transmission

    NASA Astrophysics Data System (ADS)

    Tian, Liang

    This study investigated the processing-structure-properties relationships in an Al/Ca composites using both experiments and modeling/simulation. A particular focus of the project was understanding how the strength and electrical conductivity of the composite are related to its microstructure in the hope that a conducting material with light weight, high strength, and high electrical conductivity can be developed to produce overhead high-voltage power transmission cables. The current power transmission cables (e.g., Aluminum Conductor Steel Reinforced (ACSR)) have acceptable performance for high-voltage AC transmission, but are less well suited for high-voltage DC transmission due to the poorly conducting core materials that support the cable weight. This Al/Ca composite was produced by powder metallurgy and severe plastic deformation by extrusion and swaging. The fine Ca metal powders have been produced by centrifugal atomization with rotating liquid oil quench bath, and a detailed study about the atomization process and powder characteristics has been conducted. The microstructure of Al/Ca composite was characterized by electron microscopy. Microstructure changes at elevated temperature were characterized by thermal analysis and indirect resistivity tests. The strength and electrical conductivity were measured by tensile tests and four-point probe resistivity tests. Predicting the strength and electrical conductivity of the composite was done by micro-mechanics-based analytical modeling. Microstructure evolution was studied by mesoscale-thermodynamics-based phase field modeling and a preliminary atomistic molecular dynamics simulation. The application prospects of this composite was studied by an economic analysis. This study suggests that the Al/Ca (20 vol. %) composite shows promise for use as overhead power transmission cables. Further studies are needed to measure the corrosion resistance, fatigue properties and energized field performance of this composite.

  17. High repetition ration solid state switched CO2 TEA laser employed in industrial ultrasonic testing of aircraft parts

    NASA Astrophysics Data System (ADS)

    von Bergmann, Hubertus; Morkel, Francois; Stehmann, Timo

    2015-02-01

    Laser Ultrasonic Testing (UT) is an important technique for the non-destructive inspection of composite parts in the aerospace industry. In laser UT a high power, short pulse probe laser is scanned across the material surface, generating ultrasound waves which can be detected by a second low power laser system and are used to draw a defect map of the part. We report on the design and testing of a transversely excited atmospheric pressure (TEA) CO2 laser system specifically optimised for laser UT. The laser is excited by a novel solid-state switched pulsing system and utilises either spark or corona preionisation. It provides short output pulses of less than 100 ns at repetition rates of up to 1 kHz, optimised for efficient ultrasonic wave generation. The system has been designed for highly reliable operation under industrial conditions and a long term test with total pulse counts in excess of 5 billion laser pulses is reported.

  18. Design and test of a high power electromechanical actuator for thrust vector control

    NASA Technical Reports Server (NTRS)

    Cowan, J. R.; Myers, W. N.

    1992-01-01

    NASA-Marshall is involved in the development of electromechanical actuators (EMA) for thrust-vector control (TVC) system testing and implementation in spacecraft control/gimballing systems, with a view to the replacement of hydraulic hardware. TVC system control is furnished by solid state controllers and power supplies; a pair of resolvers supply position feedback to the controller for precise positioning. Performance comparisons between EMA and hydraulic TVC systems are performed.

  19. Compact RF ion source for industrial electrostatic ion accelerator

    NASA Astrophysics Data System (ADS)

    Kwon, Hyeok-Jung; Park, Sae-Hoon; Kim, Dae-Il; Cho, Yong-Sub

    2016-02-01

    Korea Multi-purpose Accelerator Complex is developing a single-ended electrostatic ion accelerator to irradiate gaseous ions, such as hydrogen and nitrogen, on materials for industrial applications. ELV type high voltage power supply has been selected. Because of the limited space, electrical power, and robust operation, a 200 MHz RF ion source has been developed. In this paper, the accelerator system, test stand of the ion source, and its test results are described.

  20. Compact RF ion source for industrial electrostatic ion accelerator.

    PubMed

    Kwon, Hyeok-Jung; Park, Sae-Hoon; Kim, Dae-Il; Cho, Yong-Sub

    2016-02-01

    Korea Multi-purpose Accelerator Complex is developing a single-ended electrostatic ion accelerator to irradiate gaseous ions, such as hydrogen and nitrogen, on materials for industrial applications. ELV type high voltage power supply has been selected. Because of the limited space, electrical power, and robust operation, a 200 MHz RF ion source has been developed. In this paper, the accelerator system, test stand of the ion source, and its test results are described.

  1. Design and test of a high power electromechanical actuator for thrust vector control

    NASA Astrophysics Data System (ADS)

    Cowan, J. R.; Myers, W. N.

    1992-07-01

    NASA-Marshall is involved in the development of electromechanical actuators (EMA) for thrust-vector control (TVC) system testing and implementation in spacecraft control/gimballing systems, with a view to the replacement of hydraulic hardware. TVC system control is furnished by solid state controllers and power supplies; a pair of resolvers supply position feedback to the controller for precise positioning. Performance comparisons between EMA and hydraulic TVC systems are performed.

  2. AN ASSESSMENT OF FLYWHEEL HIGH POWER ENERGY STORAGE TECHNOLOGY FOR HYBRID VEHICLES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, James Gerald

    2012-02-01

    An assessment has been conducted for the DOE Vehicle Technologies Program to determine the state of the art of advanced flywheel high power energy storage systems to meet hybrid vehicle needs for high power energy storage and energy/power management. Flywheel systems can be implemented with either an electrical or a mechanical powertrain. The assessment elaborates upon flywheel rotor design issues of stress, materials and aspect ratio. Twelve organizations that produce flywheel systems submitted specifications for flywheel energy storage systems to meet minimum energy and power requirements for both light-duty and heavy-duty hybrid applications of interest to DOE. The most extensivemore » experience operating flywheel high power energy storage systems in heavy-duty and light-duty hybrid vehicles is in Europe. Recent advances in Europe in a number of vehicle racing venues and also in road car advanced evaluations are discussed. As a frame of reference, nominal weight and specific power for non-energy storage components of Toyota hybrid electric vehicles are summarized. The most effective utilization of flywheels is in providing high power while providing just enough energy storage to accomplish the power assist mission effectively. Flywheels are shown to meet or exceed the USABC power related goals (discharge power, regenerative power, specific power, power density, weight and volume) for HEV and EV batteries and ultracapacitors. The greatest technical challenge facing the developer of vehicular flywheel systems remains the issue of safety and containment. Flywheel safety issues must be addressed during the design and testing phases to ensure that production flywheel systems can be operated with adequately low risk.« less

  3. Optimization and Analysis of a U-Shaped Linear Piezoelectric Ultrasonic Motor Using Longitudinal Transducers

    PubMed Central

    Yu, Hongpeng; Quan, Qiquan; Tian, Xinqi; Li, He

    2018-01-01

    A novel U-shaped piezoelectric ultrasonic motor that mainly focused on miniaturization and high power density was proposed, fabricated, and tested in this work. The longitudinal vibrations of the transducers were excited to form the elliptical movements on the driving feet. Finite element method (FEM) was used for design and analysis. The resonance frequencies of the selected vibration modes were tuned to be very close to each other with modal analysis and the movement trajectories of the driving feet were gained with transient simulation. The vibration modes and the mechanical output abilities were tested to evaluate the proposed motor further by a prototype. The maximum output speed was tested to be 416 mm/s, the maximum thrust force was 21 N, and the maximum output power was 5.453 W under frequency of 29.52 kHz and voltage of 100 Vrms. The maximum output power density of the prototype reached 7.59 W/kg, which was even greater than a previous similar motor under the exciting voltage of 200 Vrms. The proposed motor showed great potential for linear driving of large thrust force and high power density. PMID:29518963

  4. Evaluating the Thermal Damage Resistance of Reduced Graphene Oxide/Carbon Nanotube Hybrid Coatings

    NASA Astrophysics Data System (ADS)

    David, Lamuel; Feldman, Ari; Mansfield, Elisabeth; Lehman, John; Singh, Gurpreet; National Institute of Standards and Technology Collaboration

    2014-03-01

    Carbon nanotubes and graphene are known to exhibit some exceptional thermal (K ~ 2000 to 4400 W.m-1K-1 at 300K) and optical properties. Here, we demonstrate preparation and testing of multiwalled carbon nanotubes and chemically modified graphene-composite spray coatings for use on thermal detectors for high-power lasers. The synthesized nanocomposite material was tested by preparing spray coatings on aluminum test coupons used as a representation of the thermal detector's surface. These coatings were then exposed to increasing laser powers and extended exposure times to quantify their damage threshold and optical absorbance. The graphene/carbon nanotube (prepared at varying mass% of graphene in CNTs) coatings demonstrated significantly higher damage threshold values at 2.5 kW laser power (10.6 μm wavelength) than carbon paint or MWCNTs alone. Electron microscopy and Raman spectroscopy of irradiated specimens showed that the composite coating endured high laser-power densities (up to 2 kW.cm-2) without significant visual damage. This research is based on work supported by the National Science Foundation (Chemical, Bioengineering, Environmental, and Transport Systems Division), under grant no. 1335862 to G. Singh.

  5. Optimization and Analysis of a U-Shaped Linear Piezoelectric Ultrasonic Motor Using Longitudinal Transducers.

    PubMed

    Yu, Hongpeng; Quan, Qiquan; Tian, Xinqi; Li, He

    2018-03-07

    A novel U-shaped piezoelectric ultrasonic motor that mainly focused on miniaturization and high power density was proposed, fabricated, and tested in this work. The longitudinal vibrations of the transducers were excited to form the elliptical movements on the driving feet. Finite element method (FEM) was used for design and analysis. The resonance frequencies of the selected vibration modes were tuned to be very close to each other with modal analysis and the movement trajectories of the driving feet were gained with transient simulation. The vibration modes and the mechanical output abilities were tested to evaluate the proposed motor further by a prototype. The maximum output speed was tested to be 416 mm/s, the maximum thrust force was 21 N, and the maximum output power was 5.453 W under frequency of 29.52 kHz and voltage of 100 V rms . The maximum output power density of the prototype reached 7.59 W/kg, which was even greater than a previous similar motor under the exciting voltage of 200 V rms . The proposed motor showed great potential for linear driving of large thrust force and high power density.

  6. Real-world vehicle emission factors in Chinese metropolis city--Beijing.

    PubMed

    Wang, Qi-dong; He, Ke-bin; Huo, Hong; Lents, James

    2005-01-01

    The dynamometer tests with different driving cycles and the real-world tests are presented. Results indicated the pollutants emission factors and fuel consumption factor with ECE15 + EUDC driving cycle usually take the lowest value and with real world driving cycle occur the highest value, and different driving cycles will lead to significantly different vehicle emission factors with the same vehicle. Relative to the ECE15 + EUDC driving cycle, the increasing rate of pollutant emission factors of CO, NOx and HC are - 0.42-2.99, -0.32-0.81 and -0.11-11 with FTP75 testing, 0.11-1.29, -0.77-0.64 and 0.47-10.50 with Beijing 1997 testing and 0.25-1.83, 0.09-0.75 and - 0.58-1.50 with real world testing. Compared to the carburetor vehicles, the retrofit and MPI + TWC vehicles' pollution emissionfactors decrease with different degree. The retrofit vehicle (Santana) will reduce 4.44%-58.44% CO, -4.95%-36.79% NOx, -32.32%-33.89% HC, and -9.39%-14.29% fuel consumption, and especially that the MPI + TWC vehicle will decrease CO by 82.48%-91.76%, NOx by 44.87%-92.79%, HC by 90.00%-93.89% and fuel consumption by 5.44%-10.55%. Vehicles can cause pollution at a very high rate when operated in high power modes; however, they may not often operate in these high power modes. In analyzing vehicle emissions, it describes the fraction of time that vehicles operate in various power modes. In Beijing, vehicles spend 90% of their operation in low power modes or decelerating.

  7. Technical Errors May Affect Accuracy of Torque Limiter in Locking Plate Osteosynthesis.

    PubMed

    Savin, David D; Lee, Simon; Bohnenkamp, Frank C; Pastor, Andrew; Garapati, Rajeev; Goldberg, Benjamin A

    2016-01-01

    In locking plate osteosynthesis, proper surgical technique is crucial in reducing potential pitfalls, and use of a torque limiter makes it possible to control insertion torque. We conducted a study of the ways in which different techniques can alter the accuracy of torque limiters. We tested 22 torque limiters (1.5 Nm) for accuracy using hand and power tools under different rotational scenarios: hand power at low and high velocity and drill power at low and high velocity. We recorded the maximum torque reached after each torque-limiting event. Use of torque limiters under hand power at low velocity and high velocity resulted in significantly (P < .0001) different mean (SD) measurements: 1.49 (0.15) Nm and 3.73 (0.79) Nm. Use under drill power at controlled low velocity and at high velocity also resulted in significantly (P < .0001) different mean (SD) measurements: 1.47 (0.14) Nm and 5.37 (0.90) Nm. Maximum single measurement obtained was 9.0 Nm using drill power at high velocity. Locking screw insertion with improper technique may result in higher than expected torque and subsequent complications. For torque limiters, the most reliable technique involves hand power at slow velocity or drill power with careful control of insertion speed until 1 torque-limiting event occurs.

  8. Bias-field controlled phasing and power combination of gyromagnetic nonlinear transmission lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reale, D. V., E-mail: david.reale@ttu.edu; Bragg, J.-W. B.; Gonsalves, N. R.

    2014-05-15

    Gyromagnetic Nonlinear Transmission Lines (NLTLs) generate microwaves through the damped gyromagnetic precession of the magnetic moments in ferrimagnetic material, and are thus utilized as compact, solid-state, frequency agile, high power microwave (HPM) sources. The output frequency of a NLTL can be adjusted by control of the externally applied bias field and incident voltage pulse without physical alteration to the structure of the device. This property provides a frequency tuning capability not seen in many conventional e-beam based HPM sources. The NLTLs developed and tested are mesoband sources capable of generating MW power levels in the L, S, and C bandsmore » of the microwave spectrum. For an individual NLTL the output power at a given frequency is determined by several factors including the intrinsic properties of the ferrimagnetic material and the transmission line structure. Hence, if higher power levels are to be achieved, it is necessary to combine the outputs of multiple NLTLs. This can be accomplished in free space using antennas or in a transmission line via a power combiner. Using a bias-field controlled delay, a transient, high voltage, coaxial, three port, power combiner was designed and tested. Experimental results are compared with the results of a transient COMSOL simulation to evaluate combiner performance.« less

  9. Bias-field controlled phasing and power combination of gyromagnetic nonlinear transmission lines.

    PubMed

    Reale, D V; Bragg, J-W B; Gonsalves, N R; Johnson, J M; Neuber, A A; Dickens, J C; Mankowski, J J

    2014-05-01

    Gyromagnetic Nonlinear Transmission Lines (NLTLs) generate microwaves through the damped gyromagnetic precession of the magnetic moments in ferrimagnetic material, and are thus utilized as compact, solid-state, frequency agile, high power microwave (HPM) sources. The output frequency of a NLTL can be adjusted by control of the externally applied bias field and incident voltage pulse without physical alteration to the structure of the device. This property provides a frequency tuning capability not seen in many conventional e-beam based HPM sources. The NLTLs developed and tested are mesoband sources capable of generating MW power levels in the L, S, and C bands of the microwave spectrum. For an individual NLTL the output power at a given frequency is determined by several factors including the intrinsic properties of the ferrimagnetic material and the transmission line structure. Hence, if higher power levels are to be achieved, it is necessary to combine the outputs of multiple NLTLs. This can be accomplished in free space using antennas or in a transmission line via a power combiner. Using a bias-field controlled delay, a transient, high voltage, coaxial, three port, power combiner was designed and tested. Experimental results are compared with the results of a transient COMSOL simulation to evaluate combiner performance.

  10. Combined Heat and Power Systems Technology Development and Demonstration 370 kW High Efficiency Microturbine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    none,

    The C370 Program was awarded in October 2010 with the ambitious goal of designing and testing the most electrically efficient recuperated microturbine engine at a rated power of less than 500 kW. The aggressive targets for electrical efficiency, emission regulatory compliance, and the estimated price point make the system state-of-the-art for microturbine engine systems. These goals will be met by designing a two stage microturbine engine identified as the low pressure spool and high pressure spool that are based on derivative hardware of Capstone’s current commercially available engines. The development and testing of the engine occurred in two phases. Phasemore » I focused on developing a higher power and more efficient engine, that would become the low pressure spool which is based on Capstone’s C200 (200kW) engine architecture. Phase II integrated the low pressure spool created in Phase I with the high pressure spool, which is based on Capstone’s C65 (65 kW) commercially available engine. Integration of the engines, based on preliminary research, would allow the dual spool engine to provide electrical power in excess of 370 kW, with electrical efficiency approaching 42%. If both of these targets were met coupled with the overall CHP target of 85% total combined heating and electrical efficiency California Air Resources Board (CARB) level emissions, and a price target of $600 per kW, the system would represent a step change in the currently available commercial generation technology. Phase I of the C370 program required the development of the C370 low pressure spool. The goal was to increase the C200 engine power by a minimum of 25% — 250 kW — and efficiency from 32% to 37%. These increases in the C200 engine output were imperative to meet the power requirements of the engine when both spools were integrated. An additional benefit of designing and testing the C370 low pressure spool was the possibility of developing a stand-alone product for possible commercialization. The low pressure spool design activity focused on an aeropath derivative of the current C200 engine. The aeropath derivative included changes to the compressor section —compressor and inducer — and to the turbine nozzle. The increased power also necessitated a larger, more powerful generator and generator controller to support the increased power requirements. These two major design changes were completed by utilizing both advanced 3D modeling and computational fluid dynamics modelling. After design, modeling, and analysis, the decision was made to acquire and integrate the components for testing. The second task of Phase I was to integrate and test the components of the low pressure spool to validate power and efficiency. Acquisition of the components for the low pressure spool was completed utilizing Capstone’s current supplier base. Utilization of Capstone’s supply base for integration of the test article would allow — if the decision was made —expedited commercialization of the product. After integration of the engine components, the engine was tested and evaluated for performance and emissions. Test data analysis confirmed that the engine met all power and efficiency requirements and did so while maintaining CARB level emissions. The emissions were met without the use of any post processing or catalyst. After testing was completed, the DOE authorized — via a milestone review — proceeding to Phase II: the development of the integrated C370 engine. The C370 high pressure spool design activity required significant changes to the C65 engine architecture. The engine required a high power density generator, completely redesigned compressor stage, turbine section, recuperator, controls architecture, and intercooler stage asThe two most critical design challenges were the turbine section (the nozzle and turbine) and the controls architecture. The design and analysis of all of the components was completed and integrated into a system model. The system model — after numerous iterations — indicated that, once integrated, the engine will meet or exceed all system requirements. Unfortunately, the turbine section’s life requirements remain a technical challenge and will require continued refinement of the bi-metallic turbine wheel design and manufacturing approach to meet the life requirement at theses high temperatures. The current controls architecture requires substantial effort to develop a system capable of handling the high-speed, near real-time controls requirement, but it was determined not to be a technical roadblock for the project. The C370 Program has been a significant effort with state-of-the-art technical targets. The targets have pushed Capstone’s designers to the limits of current technology. The program has been fortunate to see many successes: the successful testing of the low pressure spool (C250), the development of new material processes, and the implementation of new design practices. The technology and practices learned during the program will be utilized in Capstone’s current product lines and future products. The C370 Program has been a resounding success on many fronts for the DOE and for Capstone.« less

  11. Power Systems Development Facility Gasification Test Campaing TC18

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Southern Company Services

    2005-08-31

    In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama, routinely demonstrates gasification technologies using various types of coals. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a KBR Transport Gasifier, a hot gas particulate control device (PCD), advanced syngas cleanup systems, and high pressure solids handling systems. This report details Test Campaign TC18 of the PSDF gasification process. Test campaign TC18 began on June 23, 2005, and ended on August 22, 2005, with the gasifiermore » train accumulating 1,342 hours of operation using Powder River Basin (PRB) subbituminous coal. Some of the testing conducted included commissioning of a new recycle syngas compressor for gasifier aeration, evaluation of PCD filter elements and failsafes, testing of gas cleanup technologies, and further evaluation of solids handling equipment. At the conclusion of TC18, the PSDF gasification process had been operated for more than 7,750 hours.« less

  12. Damage in Monolithic Thin-Film Photovoltaic Modules Due to Partial Shade

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silverman, Timothy J.; Mansfield, Lorelle; Repins, Ingrid

    2016-09-01

    The typical configuration of monolithic thin-film photovoltaic modules makes it possible for partial shade to place one or more cells in such a module in reverse bias. Reverse bias operation leads to high voltage, current density, and power density conditions, which can act as driving forces for failure. We showed that a brief outdoor shadow event can cause a 7% permanent loss in power. We applied an indoor partial shade durability test that moves beyond the standard hot spot endurance test by using more realistic mask and bias conditions and by carefully quantifying the permanent change in performance due tomore » the stress. With the addition of a pass criterion based on change in maximum power, this procedure will soon be proposed as a part of the module-type qualification test. All six commercial copper indium gallium diselenide and cadmium telluride modules we tested experienced permanent damage due to the indoor partial shade test, ranging from 4% to 14% loss in maximum power. We conclude by summarizing ways to mitigate partial shade stress at the cell, module, and system levels.« less

  13. Ejector-turbine studies and experimental data. Final report, August 1, 1979-October 31, 1982

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minardi, J.E.; Lawson, M.O.; Krolak, R.V.

    1982-11-01

    An innovative low-power Rankine turbine concept is described which promises competitive efficiencies, low cost, significant reduction in rpm, low maintenance, and long-life operation over similarly rated turbines. The cycle uses a highly efficient two-fluid ejector which greatly lowers the turbine inlet pressure and temperature. The two-fluid ejector cycle is shown by theoretical studies to be capable of transferring energy at efficiencies in excess of 90% from a high-power flux fluid medium to a low-power flux fluid medium. The volume flow of the thermodynamic fluid can be augmented by as much as one-hundred fold. For very low-power turbine applications this couldmore » result in far-more-favorable turbine sizes and rpm. One major application for this type turbine is the heating and cooling with heat pumps. The concept permits engine cycles that cover an extremely broad range of peak temperatures, including those corresponding to stoichiometric combustion of hydrocarbon fuels, waste heat sources, and solar. Actual test data indicated ejector efficiencies as high as 85%. A two-fluid, ejector turbine was designed and tested. The turbine achieved 94% of design power. Additional data indicated that the ejector attached to the turbine operated on the supersonic branch.« less

  14. 13kW Advanced Electric Propulsion Flight System Development and Qualification

    NASA Technical Reports Server (NTRS)

    Jackson, Jerry; Allen, May; Myers, Roger; Soendker, Erich; Welander, Benjamin; Tolentino, Artie; Hablitzel, Sam; Yeatts, Chyrl; Xu, Steven; Sheehan, Chris; hide

    2017-01-01

    The next phase of robotic and human deep space exploration missions is enhanced by high performance, high power solar electric propulsion systems for large-scale science missions and cargo transportation. Aerojet Rocketdynes Advanced Electric Propulsion System (AEPS) program is completing development, qualification and delivery of five flight 13.3kW EP systems to NASA. The flight AEPS includes a magnetically-shielded, long-life Hall thruster, power processing unit (PPU), xenon flow controller (XFC), and intrasystem harnesses. The Hall thruster, originally developed and demonstrated by NASAs Glenn Research Center and the Jet Propulsion Laboratory, operates at input powers up to 12.5kW while providing a specific impulse over 2600s at an input voltage of 600V. The power processor is designed to accommodate an input voltage range of 95 to 140V, consistent with operation beyond the orbit of Mars. The integrated system is continuously throttleable between 3 and 13.3kW. The program has completed the system requirement review; the system, thruster, PPU and XFC preliminary design reviews; development of engineering models, and initial system integration testing. This paper will present the high power AEPS capabilities, overall program and design status and the latest test results for the 13.3kW flight system development and qualification program.

  15. The Power Within: The Experimental Manipulation of Power Interacts with Trait BDD Symptoms to Predict Interoceptive Accuracy

    PubMed Central

    Kunstman, Jonathan W.; Clerkin, Elise M.; Palmer, Kateyln; Peters, M. Taylar; Dodd, Dorian R.; Smith, April R.

    2015-01-01

    Background and Objectives This study tested whether relatively low levels of interoceptive accuracy (IAcc) are associated with body dysmorphic disorder (BDD) symptoms. Additionally, given research indicating that power attunes individuals to their internal states, we sought to determine if state interoceptive accuracy could be improved through an experimental manipulation of power. Method Undergraduate women (N = 101) completed a baseline measure of interoceptive accuracy and then were randomized to a power or control condition. Participants were primed with power or a neutral control topic and then completed a post-manipulation measure of state IAcc. Trait BDD symptoms were assessed with a self-report measure. Results Controlling for baseline IAcc, within the control condition, there was a significant inverse relationship between trait BDD symptoms and interoceptive accuracy. Continuing to control for baseline IAcc, within the power condition, there was not a significant relationship between trait BDD symptoms and IAcc, suggesting that power may have attenuated this relationship. At high levels of BDD symptomology, there was also a significant simple effect of experimental condition, such that participants in the power (vs. control) condition had better interoceptive accuracy. These results provide initial evidence that power may positively impact interoceptive accuracy among those with high levels of BDD symptoms. Limitations This cross-sectional study utilized a demographically homogenous sample of women that reflected a broad range of symptoms; thus, although there were a number of participants reporting elevated BDD symptoms, these findings might not generalize to other populations or clinical samples. Conclusions . This study provides the first direct test of the relationship between trait BDD symptoms and IAcc, and provides preliminary evidence that among those with severe BDD symptoms, power may help connect individuals with their internal states. Future research testing the mechanisms linking BDD symptoms with IAcc, as well as how individuals can better connect with their internal experiences is needed. PMID:26295932

  16. The power within: The experimental manipulation of power interacts with trait BDD symptoms to predict interoceptive accuracy.

    PubMed

    Kunstman, Jonathan W; Clerkin, Elise M; Palmer, Kateyln; Peters, M Taylar; Dodd, Dorian R; Smith, April R

    2016-03-01

    This study tested whether relatively low levels of interoceptive accuracy (IAcc) are associated with body dysmorphic disorder (BDD) symptoms. Additionally, given research indicating that power attunes individuals to their internal states, we sought to determine if state interoceptive accuracy could be improved through an experimental manipulation of power.. Undergraduate women (N = 101) completed a baseline measure of interoceptive accuracy and then were randomized to a power or control condition. Participants were primed with power or a neutral control topic and then completed a post-manipulation measure of state IAcc. Trait BDD symptoms were assessed with a self-report measure. Controlling for baseline IAcc, within the control condition, there was a significant inverse relationship between trait BDD symptoms and interoceptive accuracy. Continuing to control for baseline IAcc, within the power condition, there was not a significant relationship between trait BDD symptoms and IAcc, suggesting that power may have attenuated this relationship. At high levels of BDD symptomology, there was also a significant simple effect of experimental condition, such that participants in the power (vs. control) condition had better interoceptive accuracy. These results provide initial evidence that power may positively impact interoceptive accuracy among those with high levels of BDD symptoms.. This cross-sectional study utilized a demographically homogenous sample of women that reflected a broad range of symptoms; thus, although there were a number of participants reporting elevated BDD symptoms, these findings might not generalize to other populations or clinical samples. This study provides the first direct test of the relationship between trait BDD symptoms and IAcc, and provides preliminary evidence that among those with severe BDD symptoms, power may help connect individuals with their internal states. Future research testing the mechanisms linking BDD symptoms with IAcc, as well as how individuals can better connect with their internal experiences is needed.. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Influence of Ramadan Fasting on Anaerobic Performance and Recovery Following Short time High Intensity Exercise.

    PubMed

    Karli, Umid; Guvenc, Alpay; Aslan, Alper; Hazir, Tahir; Acikada, Caner

    2007-01-01

    The aim of this study was to investigate the effects of Ramadan fasting on anaerobic power and capacity and the removal rate of lactate after short time high intensity exercise in power athletes. Ten male elite power athletes (2 wrestlers, 7 sprinters and 1 thrower, aged 20-24 yr, mean age 22.30 ± 1.25 yr) participated in this study. The subjects were tested three times [3 days before the beginning of Ramadan (Pre-RF), the last 3 days of Ramadan (End-RF) and the last 3 days of the 4(th) week after the end of Ramadan (After-RF)]. Anaerobic power and capacity were measured by using the Wingate Anaerobic Test (WAnT) at Pre-RF, End-RF and After- RF. Capillary blood samples for lactate analyses and heart rate recordings were taken at rest, immediately after WAnT and throughout the recovery period. Repeated measures of ANOVA indicated that there were no significant changes in body weight, body mass index, fat free mass, percentage of body fat, daily sleeping time and daily caloric intake associated with Ramadan fasting. No significant changes were found in total body water either, but urinary density measured at End-RF was significantly higher than After-RF. Similarity among peak HR and peak LA values at Pre-RF, End- RF and After-RF demonstrated that cardiovascular and metabolic stress caused by WAnT was not affected by Ramadan fasting. In addition, no influence of Ramadan fasting on anaerobic power and capacity and removal rate of LA from blood following high intensity exercise was observed. The results of this study revealed that if strength-power training is performed regularly and daily food intake, body fluid balance and daily sleeping time are maintained as before Ramadan, Ramadan fasting will not have adverse effects on body composition, anaerobic power and capacity, and LA metabolism during and after high intensity exercise in power athletes. Key pointsNo significant changes were assessed on body composition, daily sleeping time and caloric intake, and body fluid balance in regularly trained power athletes during Ramadan fasting.Ramadan fasting has no adverse effect on power outputs of short time high intensity exercise.No influence of Ramadan fasting on LA metabolism during high intensity exercise and passive recovery in regularly trained power athletes.

  18. Edge-Oriented Graphene on Carbon Nanofiber for High-Frequency Supercapacitors

    NASA Astrophysics Data System (ADS)

    Islam, Nazifah; Warzywoda, Juliusz; Fan, Zhaoyang

    2018-03-01

    High-frequency supercapacitors are being studied with the aim to replace the bulky electrolytic capacitors for current ripple filtering and other functions used in power systems. Here, 3D edge-oriented graphene (EOG) was grown encircling carbon nanofiber (CNF) framework to form a highly conductive electrode with a large surface area. Such EOG/CNF electrodes were tested in aqueous and organic electrolytes for high-frequency supercapacitor development. For the aqueous and the organic cell, the characteristic frequency at - 45° phase angle was found to be as high as 22 and 8.5 kHz, respectively. At 120 Hz, the electrode capacitance density was 0.37 and 0.16 mF cm-2 for the two cells. In particular, the 3 V high-frequency organic cell was successfully tested as filtering capacitor used in AC/DC converter, suggesting the promising potential of this technology for compact power supply design and other applications. [Figure not available: see fulltext.

  19. Compact rf polarizer and its application to pulse compression systems

    DOE PAGES

    Franzi, Matthew; Wang, Juwen; Dolgashev, Valery; ...

    2016-06-01

    We present a novel method of reducing the footprint and increasing the efficiency of the modern multi-MW rf pulse compressor. This system utilizes a high power rf polarizer to couple two circular waveguide modes in quadrature to a single resonant cavity in order to replicate the response of a traditional two cavity configuration using a 4-port hybrid. The 11.424 GHz, high-Q, spherical cavity has a 5.875 cm radius and is fed by the circularly polarized signal to simultaneously excite the degenerate TE 114 modes. The overcoupled spherical cavity has a Q 0 of 9.4×10 4 and coupling factor (β) ofmore » 7.69 thus providing a loaded quality factor Q L of 1.06×10 4 with a fill time of 150 ns. Cold tests of the polarizer demonstrated good agreement with the numerical design, showing transmission of -0.05 dB and reflection back to the input rectangular WR 90 waveguide less than -40 dB over a 100 MHz bandwidth. This novel rf pulse compressor was tested at SLAC using XL-4 Klystron that provided rf power up to 32 MW and generated peak output power of 205 MW and an average of 135 MW over the discharged signal. A general network analysis of the polarizer is discussed as well as the design and high power test of the rf pulse compressor.« less

  20. The Architecture Design of Detection and Calibration System for High-voltage Electrical Equipment

    NASA Astrophysics Data System (ADS)

    Ma, Y.; Lin, Y.; Yang, Y.; Gu, Ch; Yang, F.; Zou, L. D.

    2018-01-01

    With the construction of Material Quality Inspection Center of Shandong electric power company, Electric Power Research Institute takes on more jobs on quality analysis and laboratory calibration for high-voltage electrical equipment, and informationization construction becomes urgent. In the paper we design a consolidated system, which implements the electronic management and online automation process for material sampling, test apparatus detection and field test. In the three jobs we use QR code scanning, online Word editing and electronic signature. These techniques simplify the complex process of warehouse management and testing report transferring, and largely reduce the manual procedure. The construction of the standardized detection information platform realizes the integrated management of high-voltage electrical equipment from their networking, running to periodic detection. According to system operation evaluation, the speed of transferring report is doubled, and querying data is also easier and faster.

Top