Science.gov

Sample records for high power thin-gan

  1. High Power Hall Thrusters

    NASA Technical Reports Server (NTRS)

    Jankovsky, Robert; Tverdokhlebov, Sergery; Manzella, David

    1999-01-01

    The development of Hall thrusters with powers ranging from tens of kilowatts to in excess of one hundred kilowatts is considered based on renewed interest in high power. high thrust electric propulsion applications. An approach to develop such thrusters based on previous experience is discussed. It is shown that the previous experimental data taken with thrusters of 10 kW input power and less can be used. Potential mass savings due to the design of high power Hall thrusters are discussed. Both xenon and alternate thruster propellant are considered, as are technological issues that will challenge the design of high power Hall thrusters. Finally, the implications of such a development effort with regard to ground testing and spacecraft intecrati'on issues are discussed.

  2. CSTI High Capacity Power

    NASA Technical Reports Server (NTRS)

    Winter, Jerry M.

    1989-01-01

    The SP-100 program was established in 1983 by DOD, DOE, and NASA as a joint program to develop the technology necessary for space nuclear power systems for military and civil application. During FY-86 and 87, the NASA SP-100 Advanced Technology Program was devised to maintain the momentum of promising technology advancement efforts started during Phase 1 of SP-100 and to strengthen, in key areas, the chances for successful development and growth capability of space nuclear reactor power systems for future space applications. In FY-88, the Advanced Technology Program was incorporated into NASA's new Civil Space Technology Initiative (CSTI). The CSTI Program was established to provide the foundation for technology development in automation and robotics, information, propulsion, and power. The CSTI High Capacity Power Program builds on the technology efforts of the SP-100 program, incorporates the previous NASA SP-100 Advanced Technology project, and provides a bridge to NASA Project Pathfinder. The elements of CSTI High Capacity Power development include Conversion Systems, Thermal Management, Power Management, System Diagnostics, and Environmental Interactions. Technology advancement in all areas, including materials, is required to assure the high reliability and 7 to 10 year lifetime demanded for future space nuclear power systems. The overall program will develop and demonstrate the technology base required to provide a wide range of modular power systems as well as allowing mission independence from solar and orbital attitude requirements. Several recent advancements in CSTI High Capacity power development will be discussed.

  3. CSTI high capacity power

    SciTech Connect

    Winter, J.M.

    1994-09-01

    The SP-100 program was established in 1983 by DOD, DOE, and NASA as a joint program to develop the technology necessary for space nuclear power systems for military and civil application. During FY86 and 87, the NASA SP-100 Advanced Technology Program was devised to maintain the momentum of promising technology advancement efforts started during Phase I of SP-100 and to strengthen, in key areas, the chances for successful development and growth capability of space nuclear reactor power systems for future space applications. In FY88, the Advanced Technology Program was incorporated into NASA`s new Civil Space Technology Initiative (CSTI). The CSTI Program was established to provide the foundation for technology development in automation and robotics, information, propulsion, and power. The CSTI High Capacity Power Program builds on the technology efforts of the SP-100 program, incorporates the previous NASA SP-100 Advanced Technology project, and provides a bridge to NASA Project Pathfinder. The elements of CSTI High Capacity Power development include Conversion Systems, Thermal Management, Power Management, System Diagnostics, and Environmental Interactions. Technology advancement in all areas, including materials, is required to assure the high reliability and 7 to 10 year lifetime demanded for future space nuclear power systems. The overall program will develop and demonstrate the technology base required to provide a wide range of modular power systems as well as allowing mission independence from solar and orbital attitude requirements. Several recent advancements in CSTI High Capacity power development will be discussed.

  4. High power microwave generator

    DOEpatents

    Ekdahl, C.A.

    1983-12-29

    A microwave generator efficiently converts the energy of an intense relativistic electron beam (REB) into a high-power microwave emission using the Smith-Purcell effect which is related to Cerenkov radiation. Feedback for efficient beam bunching and high gain is obtained by placing a cylindrical Smith-Purcell transmission grating on the axis of a toroidal resonator. High efficiency results from the use of a thin cold annular highly-magnetized REB that is closely coupled to the resonant structure.

  5. High power microwave generator

    DOEpatents

    Ekdahl, Carl A.

    1986-01-01

    A microwave generator efficiently converts the energy of an intense relativistic electron beam (REB) into a high-power microwave emission using the Smith-Purcell effect which is related to Cerenkov radiation. Feedback for efficient beam bunching and high gain is obtained by placing a cylindrical Smith-Purcell transmission grating on the axis of a toroidal resonator. High efficiency results from the use of a thin cold annular highly-magnetized REB that is closely coupled to the resonant structure.

  6. High-power klystrons

    NASA Astrophysics Data System (ADS)

    Siambis, John G.; True, Richard B.; Symons, R. S.

    1994-05-01

    Novel emerging applications in advanced linear collider accelerators, ionospheric and atmospheric sensing and modification and a wide spectrum of industrial processing applications, have resulted in microwave tube requirements that call for further development of high power klystrons in the range from S-band to X-band. In the present paper we review recent progress in high power klystron development and discuss some of the issues and scaling laws for successful design. We also discuss recent progress in electron guns with potential grading electrodes for high voltage with short and long pulse operation via computer simulations obtained from the code DEMEOS, as well as preliminary experimental results. We present designs for high power beam collectors.

  7. High power density targets

    NASA Astrophysics Data System (ADS)

    Pellemoine, Frederique

    2013-12-01

    In the context of new generation rare isotope beam facilities based on high-power heavy-ion accelerators and in-flight separation of the reaction products, the design of the rare isotope production targets is a major challenge. In order to provide high-purity beams for science, high resolution is required in the rare isotope separation. This demands a small beam spot on the production target which, together with the short range of heavy ions in matter, leads to very high power densities inside the target material. This paper gives an overview of the challenges associated with this high power density, discusses radiation damage issues in targets exposed to heavy ion beams, and presents recent developments to meet some of these challenges through different projects: FAIR, RIBF and FRIB which is the most challenging. Extensive use of Finite Element Analysis (FEA) has been made at all facilities to specify critical target parameters and R&D work at FRIB successfully retired two major risks related to high-power density and heavy-ion induced radiation damage.

  8. High Power Cryogenic Targets

    SciTech Connect

    Gregory Smith

    2011-08-01

    The development of high power cryogenic targets for use in parity violating electron scattering has been a crucial ingredient in the success of those experiments. As we chase the precision frontier, the demands and requirements for these targets have grown accordingly. We discuss the state of the art, and describe recent developments and strategies in the design of the next generation of these targets.

  9. High power connection system

    DOEpatents

    Schaefer, Christopher E.; Beer, Robert C.; McCall, Mark D.

    2000-01-01

    A high power connection system adapted for automotive environments which provides environmental and EMI shielding includes a female connector, a male connector, and a panel mount. The female connector includes a female connector base and a snap fitted female connector cover. The male connector includes a male connector base and a snap fitted male connector cover. The female connector base has at least one female power terminal cavity for seatably receiving a respective female power terminal. The male connector base has at least one male power terminal cavity for seatably receiving a respective male power terminal. The female connector is covered by a cover seal and a conductive shroud. A pair of lock arms protrude outward from the front end of the male connector base, pass through the panel mount and interface with a lever of a lever rotatably connected to the shroud to thereby mechanically assist mating of the male and female connectors. Safety terminals in the male and female connectors provide a last-to-connect-first-to-break connection with an HVIL circuit.

  10. High Power Switching Transistor

    NASA Technical Reports Server (NTRS)

    Hower, P. L.; Kao, Y. C.; Carnahan, D. C.

    1983-01-01

    Improved switching transistors handle 400-A peak currents and up to 1,200 V. Using large diameter silicon wafers with twice effective area as D60T, form basis for D7 family of power switching transistors. Package includes npn wafer, emitter preform, and base-contact insert. Applications are: 25to 50-kilowatt high-frequency dc/dc inverters, VSCF converters, and motor controllers for electrical vehicles.

  11. High power arcjet

    NASA Technical Reports Server (NTRS)

    Goelz, T. M.; Auweter-Kurtz, M.; Kurtz, H. L.; Schrade, H. O.

    1992-01-01

    In this period a new mass flow controller was brought into the gas supply system, so that the upper limit for the mass flow rate could be increased up to 500 mg/s with hydrogen. A maximum specific impulse of 1500 s could be achieved with the high powered arcjet (HIPARC) at an efficiency of slightly better than 20 percent. Different nozzle throat diameters had been tested. The 100 kilo-watt input power limit was reached with the 4 mm nozzle throat diameter at a mass flow rate of 400 mg/s. Tests were carried out with different cathode gaps and with three different cathodes. In addition measurements of pressure and gas temperature were taken in the feed line in order to determine the pressure drop in the propellant injectors.

  12. High voltage power supply

    NASA Technical Reports Server (NTRS)

    Ruitberg, A. P.; Young, K. M. (Inventor)

    1985-01-01

    A high voltage power supply is formed by three discrete circuits energized by a battery to provide a plurality of concurrent output signals floating at a high output voltage on the order of several tens of kilovolts. In the first two circuits, the regulator stages are pulse width modulated and include adjustable ressistances for varying the duty cycles of pulse trains provided to corresponding oscillator stages while the third regulator stage includes an adjustable resistance for varying the amplitude of a steady signal provided to a third oscillator stage. In the first circuit, the oscillator, formed by a constant current drive network and a tuned resonant network included a step up transformer, is coupled to a second step up transformer which, in turn, supplies an amplified sinusoidal signal to a parallel pair of complementary poled rectifying, voltage multiplier stages to generate the high output voltage.

  13. HIGH POWER PULSED OSCILLATOR

    DOEpatents

    Singer, S.; Neher, L.K.

    1957-09-24

    A high powered, radio frequency pulse oscillator is described for generating trains of oscillations at the instant an input direct voltage is impressed, or immediately upon application of a light pulse. In one embodiment, the pulse oscillator comprises a photo-multiplier tube with the cathode connected to the first dynode by means of a resistor, and adjacent dynodes are connected to each other through adjustable resistors. The ohmage of the resistors progressively increases from a very low value for resistors adjacent the cathode to a high value adjacent the plate, the last dynode. Oscillation occurs with this circuit when a high negative voltage pulse is applied to the cathode and the photo cathode is bombarded. Another embodiment adds capacitors at the resistor connection points of the above circuit to increase the duration of the oscillator train.

  14. High Power Density Motors

    NASA Technical Reports Server (NTRS)

    Kascak, Daniel J.

    2004-01-01

    With the growing concerns of global warming, the need for pollution-free vehicles is ever increasing. Pollution-free flight is one of NASA's goals for the 21" Century. , One method of approaching that goal is hydrogen-fueled aircraft that use fuel cells or turbo- generators to develop electric power that can drive electric motors that turn the aircraft's propulsive fans or propellers. Hydrogen fuel would likely be carried as a liquid, stored in tanks at its boiling point of 20.5 K (-422.5 F). Conventional electric motors, however, are far too heavy (for a given horsepower) to use on aircraft. Fortunately the liquid hydrogen fuel can provide essentially free refrigeration that can be used to cool the windings of motors before the hydrogen is used for fuel. Either High Temperature Superconductors (HTS) or high purity metals such as copper or aluminum may be used in the motor windings. Superconductors have essentially zero electrical resistance to steady current. The electrical resistance of high purity aluminum or copper near liquid hydrogen temperature can be l/lOO* or less of the room temperature resistance. These conductors could provide higher motor efficiency than normal room-temperature motors achieve. But much more importantly, these conductors can carry ten to a hundred times more current than copper conductors do in normal motors operating at room temperature. This is a consequence of the low electrical resistance and of good heat transfer coefficients in boiling LH2. Thus the conductors can produce higher magnetic field strengths and consequently higher motor torque and power. Designs, analysis and actual cryogenic motor tests show that such cryogenic motors could produce three or more times as much power per unit weight as turbine engines can, whereas conventional motors produce only 1/5 as much power per weight as turbine engines. This summer work has been done with Litz wire to maximize the current density. The current is limited by the amount of heat it

  15. High power microwave generator

    DOEpatents

    Minich, Roger W.

    1988-01-01

    A device (10) for producing high-powered and coherent microwaves is described. The device comprises an evacuated, cylindrical, and hollow real cathode (20) that is driven to inwardly field emit relativistic electrons. The electrons pass through an internally disposed cylindrical and substantially electron-transparent cylindrical anode (24), proceed toward a cylindrical electron collector electrode (26), and form a cylindrical virtual cathode (32). Microwaves are produced by spatial and temporal oscillations of the cylindrical virtual cathode (32), and by electrons that reflex back and forth between the cylindrical virtual cathode (32) and the cylindrical real cathode (20).

  16. High Power Coax Window

    SciTech Connect

    Neubauer, M. L.; Dudas, A.; Sah, R.; Elliott, T. S.; Rimmer, R. A.; Stirbet, M. S.

    2010-05-23

    A su­per­con­duct­ing RF (SRF) power cou­pler ca­pa­ble of han­dling 500 kW CW RF power is re­quired for pre­sent and fu­ture stor­age rings and linacs. There are over 35 cou­pler de­signs for SRF cav­i­ties rang­ing in fre­quen­cy from 325 to 1500 MHz. Cou­pler win­dows vary from cylin­ders to cones to disks, and RF power cou­plers are lim­it­ed by the abil­i­ty of ce­ram­ic win­dows to with­stand the stress­es due to heat­ing and me­chan­i­cal flex­ure. We pro­pose a novel ro­bust co-ax­i­al SRF cou­pler de­sign which uses com­pressed win­dow tech­nol­o­gy. This tech­nol­o­gy will allow the use of high­ly ther­mal­ly con­duc­tive ma­te­ri­als for cryo­genic win­dows. Using com­pressed win­dow tech­niques on disk co-ax­i­al win­dows will make sig­nif­i­cant im­prove­ments in the power han­dling of SRF cou­plers. We pre­sent the bench test re­sults of two win­dow as­sem­blies back to back, as well as in­di­vid­u­al win­dow VSWR in EIA3.125 coax. A vac­u­um test as­sem­bly was made and the win­dows baked out at 155C. The pro­cess­es used to build win­dows is scal­able to larg­er di­am­e­ter coax and to high­er power lev­els.

  17. High power coaxial ubitron

    NASA Astrophysics Data System (ADS)

    Balkcum, Adam J.

    In the ubitron, also known as the free electron laser, high power coherent radiation is generated from the interaction of an undulating electron beam with an electromagnetic signal and a static periodic magnetic wiggler field. These devices have experimentally produced high power spanning the microwave to x-ray regimes. Potential applications range from microwave radar to the study of solid state material properties. In this dissertation, the efficient production of high power microwaves (HPM) is investigated for a ubitron employing a coaxial circuit and wiggler. Designs for the particular applications of an advanced high gradient linear accelerator driver and a directed energy source are presented. The coaxial ubitron is inherently suited for the production of HPM. It utilizes an annular electron beam to drive the low loss, RF breakdown resistant TE01 mode of a large coaxial circuit. The device's large cross-sectional area greatly reduces RF wall heat loading and the current density loading at the cathode required to produce the moderate energy (500 keV) but high current (1-10 kA) annular electron beam. Focusing and wiggling of the beam is achieved using coaxial annular periodic permanent magnet (PPM) stacks without a solenoidal guide magnetic field. This wiggler configuration is compact, efficient and can propagate the multi-kiloampere electron beams required for many HPM applications. The coaxial PPM ubitron in a traveling wave amplifier, cavity oscillator and klystron configuration is investigated using linear theory and simulation codes. A condition for the dc electron beam stability in the coaxial wiggler is derived and verified using the 2-1/2 dimensional particle-in-cell code, MAGIC. New linear theories for the cavity start-oscillation current and gain in a klystron are derived. A self-consistent nonlinear theory for the ubitron-TWT and a new nonlinear theory for the ubitron oscillator are presented. These form the basis for simulation codes which, along

  18. High power, high frequency component test facility

    NASA Technical Reports Server (NTRS)

    Roth, Mary Ellen; Krawczonek, Walter

    1990-01-01

    The NASA Lewis Research Center has available a high frequency, high power laboratory facility for testing various components of aerospace and/or terrestrial power systems. This facility is described here. All of its capabilities and potential applications are detailed.

  19. High power beam analysis

    NASA Astrophysics Data System (ADS)

    Aharon, Oren

    2014-02-01

    In various modern scientific and industrial laser applications, beam-shaping optics manipulates the laser spot size and its intensity distribution. However the designed laser spot frequently deviates from the design goal due to real life imperfections and effects, such as: input laser distortions, optical distortion, heating, overall instabilities, and non-linear effects. Lasers provide the ability to accurately deliver large amounts of energy to a target area with very high accuracy. Thus monitoring beam size power and beam location is of high importance for high quality results and repeatability. Depending on the combination of wavelength, beam size and pulse duration , laser energy is absorbed by the material surface, yielding into processes such as cutting, welding, surface treatment, brazing and many other applications. This article will cover the aspect of laser beam measurements, especially at the focal point where it matters the most. A brief introduction to the material processing interactions will be covered, followed by fundamentals of laser beam propagation, novel measurement techniques, actual measurement and brief conclusions.

  20. High-Efficiency Power Module

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N. (Inventor); Wintucky, Edwin G. (Inventor)

    2015-01-01

    One or more embodiments of the present invention pertain to an all solid-state microwave power module. The module includes a plurality of solid-state amplifiers configured to amplify a signal using a low power stage, a medium power stage, and a high power stage. The module also includes a power conditioner configured to activate a voltage sequencer (e.g., bias controller) when power is received from a power source. The voltage sequencer is configured to sequentially apply voltage to a gate of each amplifier and sequentially apply voltage to a drain of each amplifier.

  1. High-Efficiency Power Module

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N (Inventor); Wintucky, Edwin G (Inventor)

    2013-01-01

    One or more embodiments of the present invention pertain to an all solid-state microwave power module. The module includes a plurality of solid-state amplifiers configured to amplify a signal using a low power stage, a medium power stage, and a high power stage. The module also includes a power conditioner configured to activate a voltage sequencer (e.g., bias controller) when power is received from a power source. The voltage sequencer is configured to sequentially apply voltage to a gate of each amplifier and sequentially apply voltage to a drain of each amplifier.

  2. High power phase shifter

    SciTech Connect

    Foster, B.; Gonin, I.; Khabiboulline, T.; Makarov, A.; Solyak, N.; Terechkine, I.; Wildman, D.; /Fermilab

    2005-05-01

    One of the approaches to power distribution system of a superconducting proton linac under discussion at FNAL requires development of a fast-action, megawatt-range phase shifter. Using a couple of this kind of devices with a waveguide hybrid junction can allow independent control of phase and amplitude of RF power at the input of each superconducting cavity, which will result in significant saving in number of klystrons and modulators required for the accelerator. A prototype of a waveguide version of the shifter that uses Yttrium-Iron Garnet (YIG) blocks was developed and tested. This report presents design concept of the device, and main results of simulation and proof-of-principle tests.

  3. Single foreplane high power rectenna

    NASA Astrophysics Data System (ADS)

    Alden, A.; Ohno, T.

    1992-05-01

    A dual polarization rectenna capable of high power handling is described. It consists of contiguous dipoles and rectification units on a single substrate. High efficiencies comparable to previous linear and multiplane dual polarization devices have been achieved.

  4. High Power Proton Facilities

    NASA Astrophysics Data System (ADS)

    Nagaitsev, Sergei

    2015-04-01

    This presentation will provide an overview of the capabilities and challenges of high intensity proton accelerators, such as J-PARC, Fermilab MI, SNS, ISIS, PSI, ESS (in the future) and others. The presentation will focus on lessons learned, new concepts, beam loss mechanisms and methods to mitigate them.

  5. TRANSISTOR HIGH VOLTAGE POWER SUPPLY

    DOEpatents

    Driver, G.E.

    1958-07-15

    High voltage, direct current power supplies are described for use with battery powered nuclear detection equipment. The particular advantages of the power supply described, are increased efficiency and reduced size and welght brought about by the use of transistors in the circuit. An important feature resides tn the employment of a pair of transistors in an alternatefiring oscillator circuit having a coupling transformer and other circuit components which are used for interconnecting the various electrodes of the transistors.

  6. High power solid state lasers

    SciTech Connect

    Weber, H.

    1988-01-01

    These proceedings discuss the following subjects: trends in materials processing with laser radiation; slabs and high power systems; glasses and new crystals; solid state lasers at HOYA Corp.; lamps, resonators and transmission; glasses as active materials for high average power solid state lasers; flashlamp pumped GGG-crystals; alexandrite lasers; designing telescope resonators; mode operation of neodymium: YAG lasers; intracavity frequency doubling with KTP crystal and thermal effects in cylinder lasers.

  7. High average power pockels cell

    DOEpatents

    Daly, Thomas P.

    1991-01-01

    A high average power pockels cell is disclosed which reduces the effect of thermally induced strains in high average power laser technology. The pockels cell includes an elongated, substantially rectangular crystalline structure formed from a KDP-type material to eliminate shear strains. The X- and Y-axes are oriented substantially perpendicular to the edges of the crystal cross-section and to the C-axis direction of propagation to eliminate shear strains.

  8. Citizens protest high power lines

    SciTech Connect

    Ray, J.

    1980-04-01

    Survey report:Following an extensive public hearing in New York State concerning the health effects and safety of high voltage power lines, negotiations to establish a research program on the biological effects of the power lines' 60 Hz electric and magnetic fields have been concluded. The aim will be to determine the potential health risks to people who live and work along high voltage rights-of-way. The $5,000,000 program will be designed and administered by three New York State agencies: the Public Service Commission, the Dept. of Health, and the Power Authority. (3 photos)

  9. High power ferrite microwave switch

    NASA Technical Reports Server (NTRS)

    Bardash, I.; Roschak, N. K.

    1975-01-01

    A high power ferrite microwave switch was developed along with associated electronic driver circuits for operation in a spaceborne high power microwave transmitter in geostationary orbit. Three units were built and tested in a space environment to demonstrate conformance to the required performance characteristics. Each unit consisted of an input magic-tee hybrid, two non-reciprocal latching ferrite phase shifters, an out short-slot 3 db quadrature coupler, a dual driver electronic circuit, and input logic interface circuitry. The basic mode of operation of the high power ferrite microwave switch is identical to that of a four-port, differential phase shift, switchable circulator. By appropriately designing the phase shifters and electronic driver circuits to operate in the flux-transfer magnetization mode, power and temperature insensitive operation was achieved. A list of the realized characteristics of the developed units is given.

  10. High Power Amplifier and Power Supply

    NASA Technical Reports Server (NTRS)

    Duong, Johnny; Stride, Scot; Harvey, Wayne; Haque, Inam; Packard, Newton; Ng, Quintin; Ispirian, Julie Y.; Waian, Christopher; Janes, Drew

    2008-01-01

    A document discusses the creation of a high-voltage power supply (HVPS) that is able to contain voltages up to -20 kV, keep electrical field strengths to below 200 V/mil (approximately equal to 7.87 kV/mm), and can provide a 200-nanosecond rise/fall time focus modulator swinging between cathode potential of 16.3 kV and -19.3 kV. This HVPS can protect the 95-GHz, pulsed extended interaction klystron (EIK) from arcs/discharges from all sources, including those from within the EIK fs vacuum envelope. This innovation has a multi-winding pulse transformer design, which uses new winding techniques to provide the same delays and rise/fall times (less than 10 nanoseconds) at different potential levels ranging from -20 kV to -16 kV. Another feature involves a high-voltage printed-wiring board that was corona-free at -20 kV DC with a 3- kV AC swing. The corona-free multilayer high-voltage board is used to simulate fields of less than 200 V/mil (approximately equal to 7.87 kV/mm) at 20 kV DC. Drive techniques for the modulator FETs (field-effect transistors) (four to 10 in a series) were created to change states (3,000-V swing) without abrupt steps, while still maintaining required delays and transition times. The packing scheme includes a potting mold to house a ten-stage modulator in the space that, in the past, only housed a four-stage modulator. Problems keeping heat down were solved using aluminum oxide substrate in the high-voltage section to limit temperature rise to less than 10 while withstanding -20 kV DC voltage and remaining corona-free.

  11. Integrated high power VCSEL systems

    NASA Astrophysics Data System (ADS)

    Moench, Holger; Conrads, Ralf; Gronenborn, Stephan; Gu, Xi; Miller, Michael; Pekarski, Pavel; Pollmann-Retsch, Jens; Pruijmboom, Armand; Weichmann, Ulrich

    2016-03-01

    High power VCSEL systems are a novel laser source used for thermal treatment in industrial manufacturing. These systems will be applied in many applications, which have not used a laser source before. This is enabled by the unique combination of efficiency, compactness and robustness. High power VCSEL system technology encompasses elements far beyond the VCSEL chip itself: i.e. heat sinks, bonding technology and integrated optics. This paper discusses the optimization of these components and processes specifically for building high-power laser systems with VCSEL arrays. New approaches help to eliminate components and process steps and make the system more robust and easier to manufacture. New cooler concepts with integrated electrical and mechanical interfaces have been investigated and offer advantages for high power system design. The bonding process of chips on sub-mounts and coolers has been studied extensively and for a variety of solder materials. High quality of the interfaces as well as good reliability under normal operation and thermal cycling have been realized. A viable alternative to soldering is silver sintering. The very positive results which have been achieved with a variety of technologies indicate the robustness of the VCSEL chips and their suitability for high power systems. Beam shaping micro-optics can be integrated on the VCSEL chip in a wafer scale process by replication of lenses in a polymer layer. The performance of VCSEL arrays with integrated collimation lenses has been positively evaluated and the integrated chips are fully compatible with all further assembly steps. The integrated high power systems make the application even easier and more robust. New examples in laser material processing and pumping of solid state lasers are presented.

  12. High power switching and other high power devices

    NASA Astrophysics Data System (ADS)

    Gundersen, Martin

    1992-09-01

    High power thyratrons and devices such as high power microwave sources have cathode-related performance limits. Research is described of a simple, robust 'super-emissive' cathode that produces greater than 10,000 A/sq cm from a macroscopic area (approx. 1 sq cm), and operates with a low pressure (approx. 0.1 torr), spatially uniform glow plasma (density greater than 1015 cu cm). The cathode also can operate as a hollow cathode, and is at the heart of the operation of the pseudospark and back-lighted thyratron. The physics of this hollow and super-emissive cathode is very rich. The hollow cathode geometry traps electrons in the hollow cathode backspace. The lifetime of these electrons enables them to ionize a spatially homogeneous high density glow, and this hollow cathode mode of operation is responsible for certain types of electron and ion beam behavior. A plasma cathode sheath that is formed during this phase leads to super-emissive behavior, which is responsible for high current emission. Super-emissive cathode thyratron-type switches (with higher peak current, voltage, di/dt) being developed for pulsed power switching of lasers, accelerators, high current and high coulomb transfer, Marx bank operation, transfer of technology to commercial applications, high current electron beams, and millimeter wave generation (1 to 100 GHz) are described.

  13. Pulsed high-power beams

    SciTech Connect

    Reginato, L.L.; Birx, D.L.

    1988-06-01

    The marriage of induction linac technology with nonlinear magnetic modulators has produced some unique capabilities. It is now possible to produce short-pulse electron beams with average currents measured in amperes, at gradients approaching 1-MeV/m, and with power efficiencies exceeding 50%. A 70-Mev, 3-kA induction accelerator (ETA II) constructed at the Lawrence Livermore National Laboratory incorporates the pulse technology concepts that have evolved over the past several years. The ETA II is a linear induction accelerator and provides a test facility for demonstration of the high-average-power components and high-brightness sources used in such accelerators. The pulse drive for the accelerator is based on state-of-the-art magnetic pulse compressors with very high peak-power capability, repetition rates exceeding 1 kHz, and excellent reliability. 6 figs.

  14. High-Average Power Facilities

    SciTech Connect

    Dowell, David H.; Power, John G.; /Argonne

    2012-09-05

    There has been significant progress in the development of high-power facilities in recent years yet major challenges remain. The task of WG4 was to identify which facilities were capable of addressing the outstanding R&D issues presently preventing high-power operation. To this end, information from each of the facilities represented at the workshop was tabulated and the results are presented herein. A brief description of the major challenges is given, but the detailed elaboration can be found in the other three working group summaries.

  15. High power fast ramping power supplies

    SciTech Connect

    Marneris,I.; Bajon, E.; Bonati, R.; Sandberg, J.; Roser, T.; Tsoupas, N.

    2009-05-04

    Hundred megawatt level fast ramping power converters to drive proton and heavy ion machines are under research and development at accelerator facilities in the world. This is a leading edge technology. There are several topologies to achieve this power level. Their advantages and related issues will be discussed.

  16. High temperature, high power piezoelectric composite transducers.

    PubMed

    Lee, Hyeong Jae; Zhang, Shujun; Bar-Cohen, Yoseph; Sherrit, Stewart

    2014-08-08

    Piezoelectric composites are a class of functional materials consisting of piezoelectric active materials and non-piezoelectric passive polymers, mechanically attached together to form different connectivities. These composites have several advantages compared to conventional piezoelectric ceramics and polymers, including improved electromechanical properties, mechanical flexibility and the ability to tailor properties by using several different connectivity patterns. These advantages have led to the improvement of overall transducer performance, such as transducer sensitivity and bandwidth, resulting in rapid implementation of piezoelectric composites in medical imaging ultrasounds and other acoustic transducers. Recently, new piezoelectric composite transducers have been developed with optimized composite components that have improved thermal stability and mechanical quality factors, making them promising candidates for high temperature, high power transducer applications, such as therapeutic ultrasound, high power ultrasonic wirebonding, high temperature non-destructive testing, and downhole energy harvesting. This paper will present recent developments of piezoelectric composite technology for high temperature and high power applications. The concerns and limitations of using piezoelectric composites will also be discussed, and the expected future research directions will be outlined.

  17. High Temperature, High Power Piezoelectric Composite Transducers

    PubMed Central

    Lee, Hyeong Jae; Zhang, Shujun; Bar-Cohen, Yoseph; Sherrit, StewarT.

    2014-01-01

    Piezoelectric composites are a class of functional materials consisting of piezoelectric active materials and non-piezoelectric passive polymers, mechanically attached together to form different connectivities. These composites have several advantages compared to conventional piezoelectric ceramics and polymers, including improved electromechanical properties, mechanical flexibility and the ability to tailor properties by using several different connectivity patterns. These advantages have led to the improvement of overall transducer performance, such as transducer sensitivity and bandwidth, resulting in rapid implementation of piezoelectric composites in medical imaging ultrasounds and other acoustic transducers. Recently, new piezoelectric composite transducers have been developed with optimized composite components that have improved thermal stability and mechanical quality factors, making them promising candidates for high temperature, high power transducer applications, such as therapeutic ultrasound, high power ultrasonic wirebonding, high temperature non-destructive testing, and downhole energy harvesting. This paper will present recent developments of piezoelectric composite technology for high temperature and high power applications. The concerns and limitations of using piezoelectric composites will also be discussed, and the expected future research directions will be outlined. PMID:25111242

  18. High temperature, high power piezoelectric composite transducers.

    PubMed

    Lee, Hyeong Jae; Zhang, Shujun; Bar-Cohen, Yoseph; Sherrit, Stewart

    2014-01-01

    Piezoelectric composites are a class of functional materials consisting of piezoelectric active materials and non-piezoelectric passive polymers, mechanically attached together to form different connectivities. These composites have several advantages compared to conventional piezoelectric ceramics and polymers, including improved electromechanical properties, mechanical flexibility and the ability to tailor properties by using several different connectivity patterns. These advantages have led to the improvement of overall transducer performance, such as transducer sensitivity and bandwidth, resulting in rapid implementation of piezoelectric composites in medical imaging ultrasounds and other acoustic transducers. Recently, new piezoelectric composite transducers have been developed with optimized composite components that have improved thermal stability and mechanical quality factors, making them promising candidates for high temperature, high power transducer applications, such as therapeutic ultrasound, high power ultrasonic wirebonding, high temperature non-destructive testing, and downhole energy harvesting. This paper will present recent developments of piezoelectric composite technology for high temperature and high power applications. The concerns and limitations of using piezoelectric composites will also be discussed, and the expected future research directions will be outlined. PMID:25111242

  19. High power neutron production targets

    SciTech Connect

    Wender, S.

    1996-06-01

    The author describes issues of concern in the design of targets and associated systems for high power neutron production facilities. The facilities include uses for neutron scattering, accelerator driven transmutation, accelerator production of tritium, short pulse spallation sources, and long pulse spallation sources. Each of these applications requires a source with different design needs and consequently different implementation in practise.

  20. High power microwave simulator development

    NASA Astrophysics Data System (ADS)

    Benford, James

    1987-12-01

    Emerging applications for high power microwaves in defense necessitate the development of reliable GW level sources for simulation of effects. For broadband variable frequency survey work, the vircator (virtual cathode oscillator) was developed; this is a tunable RF source operating from the upper X band to below the L band range. For narrowband fixed frequency studies, a special magnetron was developed.

  1. High voltage power transistor development

    NASA Technical Reports Server (NTRS)

    Hower, P. L.

    1981-01-01

    Design considerations, fabrication procedures, and methods of evaluation for high-voltage power-transistor development are discussed. Technique improvements such as controlling the electric field at the surface and perserving lifetimes in the collector region which have advanced the state of the art in high-voltage transistors are discussed. These improvements can be applied directly to the development of 1200 volt, 200 ampere transistors.

  2. Hybrid high power femtosecond lasers

    NASA Astrophysics Data System (ADS)

    Resan, Bojan

    2016-03-01

    There is a growing demand for ultrafast laser systems with high average power and repetition rate. We present two hybrid master oscillator power amplifier (MOPA) architectures employing variety of available technologies to achieve 100 W average power femtosecond pulses. We achieved 120 W 820 fs pulses using solid-state oscillator and fiber amplifiers and chirped pulse amplification (CPA) technique (10 μJ pulse energy at 10 MHz and 100 μJ at 400 kHz). In the second experiment, we achieved 160 W 800 fs pulses in a compact system without the standard CPA using solidstate oscillator and single crystal fiber amplifiers. As currently every component experiences some limitations, it is a challenge to choose the optimal architecture with associated components to achieve a desired combination of laser output parameters.

  3. High frequency power distribution system

    NASA Technical Reports Server (NTRS)

    Patel, Mikund R.

    1986-01-01

    The objective of this project was to provide the technology of high frequency, high power transmission lines to the 100 kW power range at 20 kHz frequency. In addition to the necessary design studies, a 150 m long, 600 V, 60 A transmission line was built, tested and delivered for full vacuum tests. The configuration analysis on five alternative configurations resulted in the final selection of the three parallel Litz straps configuration, which gave a virtually concentric design in the electromagnetic sense. Low inductance, low EMI and flexibility in handling are the key features of this configuration. The final design was made after a parametric study to minimize the losses, weight and inductance. The construction of the cable was completed with no major difficulties. The R,L,C parameters measured on the cable agreed well with the calculated values. The corona tests on insulation samples showed a safety factor of 3.

  4. High power gas laser amplifier

    DOEpatents

    Leland, Wallace T.; Stratton, Thomas F.

    1981-01-01

    A high power output CO.sub.2 gas laser amplifier having a number of sections, each comprising a plurality of annular pumping chambers spaced around the circumference of a vacuum chamber containing a cold cathode, gridded electron gun. The electron beam from the electron gun ionizes the gas lasing medium in the sections. An input laser beam is split into a plurality of annular beams, each passing through the sections comprising one pumping chamber.

  5. High power, high beam quality regenerative amplifier

    DOEpatents

    Hackel, Lloyd A.; Dane, Clifford B.

    1993-01-01

    A regenerative laser amplifier system generates high peak power and high energy per pulse output beams enabling generation of X-rays used in X-ray lithography for manufacturing integrated circuits. The laser amplifier includes a ring shaped optical path with a limited number of components including a polarizer, a passive 90 degree phase rotator, a plurality of mirrors, a relay telescope, and a gain medium, the components being placed close to the image plane of the relay telescope to reduce diffraction or phase perturbations in order to limit high peak intensity spiking. In the ring, the beam makes two passes through the gain medium for each transit of the optical path to increase the amplifier gain to loss ratio. A beam input into the ring makes two passes around the ring, is diverted into an SBS phase conjugator and proceeds out of the SBS phase conjugator back through the ring in an equal but opposite direction for two passes, further reducing phase perturbations. A master oscillator inputs the beam through an isolation cell (Faraday or Pockels) which transmits the beam into the ring without polarization rotation. The isolation cell rotates polarization only in beams proceeding out of the ring to direct the beams out of the amplifier. The diffraction limited quality of the input beam is preserved in the amplifier so that a high power output beam having nearly the same diffraction limited quality is produced.

  6. High power, high beam quality regenerative amplifier

    DOEpatents

    Hackel, L.A.; Dane, C.B.

    1993-08-24

    A regenerative laser amplifier system generates high peak power and high energy per pulse output beams enabling generation of X-rays used in X-ray lithography for manufacturing integrated circuits. The laser amplifier includes a ring shaped optical path with a limited number of components including a polarizer, a passive 90 degree phase rotator, a plurality of mirrors, a relay telescope, and a gain medium, the components being placed close to the image plane of the relay telescope to reduce diffraction or phase perturbations in order to limit high peak intensity spiking. In the ring, the beam makes two passes through the gain medium for each transit of the optical path to increase the amplifier gain to loss ratio. A beam input into the ring makes two passes around the ring, is diverted into an SBS phase conjugator and proceeds out of the SBS phase conjugator back through the ring in an equal but opposite direction for two passes, further reducing phase perturbations. A master oscillator inputs the beam through an isolation cell (Faraday or Pockels) which transmits the beam into the ring without polarization rotation. The isolation cell rotates polarization only in beams proceeding out of the ring to direct the beams out of the amplifier. The diffraction limited quality of the input beam is preserved in the amplifier so that a high power output beam having nearly the same diffraction limited quality is produced.

  7. High Power Free Electron Lasers

    SciTech Connect

    George Neil

    2004-04-12

    FEL Oscillators have been around since 1977 providing not only a test bed for the physics of Free Electron Lasers and electron/photon interactions but as a workhorse of scientific research. The characteristics that have driven the development of these sources are the desire for high peak and average power, high pulse energies, wavelength tunability, timing flexibility, and wavelengths that are unavailable from more conventional laser sources. User programs have been performed using such sources encompassing medicine, biology, solid state research, atomic and molecular physics, effects of non-linear fields, surface science, polymer science, pulsed laser vapor deposition, to name just a few. Recently the incorporation of energy recovery systems has permitted extension of the average power capabilities to the kW level and beyond. Development of substantially higher power systems with applications in defense and security is believed feasible with modest R&D efforts applied to a few technology areas. This paper will discuss at a summary level the physics of such devices, survey existing and planned facilities, and touch on the applications that have driven the development of these popular light sources.

  8. High voltage DC power supply

    DOEpatents

    Droege, T.F.

    1989-12-19

    A high voltage DC power supply having a first series resistor at the output for limiting current in the event of a short-circuited output, a second series resistor for sensing the magnitude of output current, and a voltage divider circuit for providing a source of feedback voltage for use in voltage regulation is disclosed. The voltage divider circuit is coupled to the second series resistor so as to compensate the feedback voltage for a voltage drop across the first series resistor. The power supply also includes a pulse-width modulated control circuit, having dual clock signals, which is responsive to both the feedback voltage and a command voltage, and also includes voltage and current measuring circuits responsive to the feedback voltage and the voltage developed across the second series resistor respectively. 7 figs.

  9. High voltage DC power supply

    DOEpatents

    Droege, Thomas F.

    1989-01-01

    A high voltage DC power supply having a first series resistor at the output for limiting current in the event of a short-circuited output, a second series resistor for sensing the magnitude of output current, and a voltage divider circuit for providing a source of feedback voltage for use in voltage regulation is disclosed. The voltage divider circuit is coupled to the second series resistor so as to compensate the feedback voltage for a voltage drop across the first series resistor. The power supply also includes a pulse-width modulated control circuit, having dual clock signals, which is responsive to both the feedback voltage and a command voltage, and also includes voltage and current measuring circuits responsive to the feedback voltage and the voltage developed across the second series resistor respectively.

  10. High frequency, high power capacitor development

    NASA Technical Reports Server (NTRS)

    White, C. W.; Hoffman, P. S.

    1983-01-01

    A program to develop a special high energy density, high power transfer capacitor to operate at frequency of 40 kHz, 600 V rms at 125 A rms plus 600 V dc bias for space operation. The program included material evaluation and selection, a capacitor design was prepared, a thermal analysis performed on the design. Fifty capacitors were manufactured for testing at 10 kHz and 40 kHz for 50 hours at Industrial Electric Heating Co. of Columbus, Ohio. The vacuum endurance test used on environmental chamber and temperature plate furnished by Maxwell. The capacitors were energized with a special power conditioning apparatus developed by Industrial Electric Heating Co. Temperature conditions of the capacitors were monitored by IEHCo test equipment. Successful completion of the vacuum endurance test series confirmed achievement of the main goal of producing a capacitor or reliable operation at high frequency in an environment normally not hospitable to electrical and electronic components. The capacitor developed compared to a typical commercial capacitor at the 40 kHz level represents a decrease in size and weight by a factor of seven.

  11. High frequency, high power capacitor development

    NASA Astrophysics Data System (ADS)

    White, C. W.; Hoffman, P. S.

    1983-03-01

    A program to develop a special high energy density, high power transfer capacitor to operate at frequency of 40 kHz, 600 V rms at 125 A rms plus 600 V dc bias for space operation. The program included material evaluation and selection, a capacitor design was prepared, a thermal analysis performed on the design. Fifty capacitors were manufactured for testing at 10 kHz and 40 kHz for 50 hours at Industrial Electric Heating Co. of Columbus, Ohio. The vacuum endurance test used on environmental chamber and temperature plate furnished by Maxwell. The capacitors were energized with a special power conditioning apparatus developed by Industrial Electric Heating Co. Temperature conditions of the capacitors were monitored by IEHCo test equipment. Successful completion of the vacuum endurance test series confirmed achievement of the main goal of producing a capacitor or reliable operation at high frequency in an environment normally not hospitable to electrical and electronic components. The capacitor developed compared to a typical commercial capacitor at the 40 kHz level represents a decrease in size and weight by a factor of seven.

  12. High average power solid state laser power conditioning system

    SciTech Connect

    Steinkraus, R.F.

    1987-03-03

    The power conditioning system for the High Average Power Laser program at Lawrence Livermore National Laboratory (LLNL) is described. The system has been operational for two years. It is high voltage, high power, fault protected, and solid state. The power conditioning system drives flashlamps that pump solid state lasers. Flashlamps are driven by silicon control rectifier (SCR) switched, resonant charged, (LC) discharge pulse forming networks (PFNs). The system uses fiber optics for control and diagnostics. Energy and thermal diagnostics are monitored by computers.

  13. High power, high frequency, vacuum flange

    DOEpatents

    Felker, B.; McDaniel, M.R.

    1993-03-23

    An improved waveguide flange is disclosed for high power operation that helps prevent arcs from being initiated at the junctions between waveguide sections. The flanges at the end of the waveguide sections have counter bores surrounding the waveguide tubes. When the sections are bolted together the counter bores form a groove that holds a fully annealed copper gasket. Each counterbore has a beveled step that is specially configured to insure the gasket forms a metal-to-metal vacuum seal without gaps or sharp edges. The resultant inner surface of the waveguide is smooth across the junctions between waveguide sections, and arcing is prevented.

  14. High power, high frequency, vacuum flange

    DOEpatents

    Felker, Brian; McDaniel, Michael R.

    1993-01-01

    An improved waveguide flange is disclosed for high power operation that helps prevent arcs from being initiated at the junctions between waveguide sections. The flanges at the end of the waveguide sections have counterbores surrounding the waveguide tubes. When the sections are bolted together the counterbores form a groove that holds a fully annealed copper gasket. Each counterbore has a beveled step that is specially configured to insure the gasket forms a metal-to-metal vacuum seal without gaps or sharp edges. The resultant inner surface of the waveguide is smooth across the junctions between waveguide sections, and arcing is prevented.

  15. Improved Programmable High-Voltage Power Supply

    NASA Technical Reports Server (NTRS)

    Castell, Karen; Rutberg, Arthur

    1994-01-01

    Improved dc-to-dc converter functions as programmable high-voltage power supply with low-power-dissipation voltage regulator on high-voltage side. Design of power supply overcomes deficiencies of older designs. Voltage regulation with low power dissipation provided on high-voltage side.

  16. High-power pulsed lasers

    SciTech Connect

    Holzrichter, J.F.

    1980-04-02

    The ideas that led to the successful construction and operation of large multibeam fusion lasers at the Lawrence Livermore Laboratory are reviewed. These lasers are based on the use of Nd:glass laser materials. However, most of the concepts are applicable to any laser being designed for fusion experimentation. This report is a summary of lectures given by the author at the 20th Scottish University Summer School in Physics, on Laser Plasma Interaction. This report includes basic concepts of the laser plasma system, a discussion of lasers that are useful for short-pulse, high-power operation, laser design constraints, optical diagnostics, and system organization.

  17. Highly efficient welding power supply

    NASA Astrophysics Data System (ADS)

    Thommes, J. M.

    1980-09-01

    The results and findings of an energy efficient welding power development project are presented. The power source developed is to be used for electric arc welding processes in which 3.5 trillion Btu of energy can be saved annually. The power source developed incorporates the use of switch mode power supply techniques in order to convert industrial supply mains to appropriate welding voltages and currents. A series capacitor switch mode power circuit was the circuit technique chosen in order to optimize energy efficiency, costs, reliability, size/weight, and welding performance. Test results demonstrated an effective efficiency (taking into account idle power consumption) of 80 to 91 percent for the energy efficient power source while the conventional types of power sources tested ranged from 41 to 74 percent efficiency. Line power factor was also improved for the energy efficient power source. Field tests indicated additional refinements of weld process performance and power source audible noise emission reduction could be beneficial.

  18. High Power, High Voltage Electric Power System for Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Aintablian, Harry; Kirkham, Harold; Timmerman, Paul

    2006-01-01

    This paper provides an overview of the 30 KW, 600 V MRHE power subsystem. Descriptions of the power subsystem elements, the mode of power transfer, and power and mass estimates are presented. A direct-drive architecture for electric propulsion is considered which reduces mass and complexity. Solar arrays with concentrators are used for increased efficiency. Finally, the challenges due to the environment of a hypothetical lunar mission as well as due to the advanced technologies considered are outlined.

  19. High power thrust vector actuation

    NASA Astrophysics Data System (ADS)

    Kittock, M. J.

    1993-06-01

    Modern missile programs are frequently favoring electro-mechanical (EM) thrust vector actuation (TVA) over hydraulic for a variety of reasons. However, actuation system performance requirements are not relaxed for EM systems. Thus the development of EM systems with greater power output is required. The configuration of EM actuator studied consists of a DC brushless motor driving a spur gear train, which drives a ballscrew that converts rotary motion to rectilinear motion. This design produces an actuator with high levels of performance in a compact mechanical package. Design for manufacturability and assembly (DFMA) was part of the design process, resulting in an actuator that can be assembled easily and will operate reliably. This paper will discuss the mechanical details of the resultant actuator and report test results on a prototype derivative.

  20. Application of high power lasers to space power and propulsion

    NASA Technical Reports Server (NTRS)

    Nored, D. L.

    1976-01-01

    The transmission of laser power over long distances for applications such as direct conversion to propulsive thrust or electrical power is considered. Factors discussed include: problems inherent in transmitting, propagating, and receiving the laser beam over long ranges; high efficiency, closed-cycle, continuous wave operation; advancement of CO2 laser technology; and compatibility with photovoltaic power conversion devices.

  1. Optics assembly for high power laser tools

    DOEpatents

    Fraze, Jason D.; Faircloth, Brian O.; Zediker, Mark S.

    2016-06-07

    There is provided a high power laser rotational optical assembly for use with, or in high power laser tools for performing high power laser operations. In particular, the optical assembly finds applications in performing high power laser operations on, and in, remote and difficult to access locations. The optical assembly has rotational seals and bearing configurations to avoid contamination of the laser beam path and optics.

  2. High power laser apparatus and system

    NASA Technical Reports Server (NTRS)

    Evans, J. C., Jr.; Brandhorst, H. W., Jr. (Inventor)

    1975-01-01

    A high-power, continuous-wave laser was designed for use in power transmission and energy-collecting systems, and for producing incoherent light for pumping a laser material. The laser has a high repetitive pulsing rate per unit time, resulting in a high-power density beam. The laser is composed of xenon flash tubes powered by fast-charging capacitors flashed in succession by a high-speed motor connected to an automobile-type distributor.

  3. High power ion thruster performance

    NASA Technical Reports Server (NTRS)

    Rawlin, Vincent K.; Patterson, Michael J.

    1987-01-01

    The ion thruster is one of several forms of space electric propulsion being considered for use on future SP-100-based missions. One possible major mission ground rule is the use of a single Space Shuttle launch. Thus, the mass in orbit at the reactor activation altitude would be limited by the Shuttle mass constraints. When the spacecraft subsystem masses are subtracted from this available mass limit, a maximum propellant mass may be calculated. Knowing the characteristics of each type of electric thruster allows maximum values of total impulse, mission velocity increment, and thrusting time to be calculated. Because ion thrusters easily operate at high values of efficiency (60 to 70%) and specific impulse (3000 to 5000 sec), they can impart large values of total impulse to a spacecraft. They also can be operated with separate control of the propellant flow rate and exhaust velocity. This paper presents values of demonstrated and projected performance of high power ion thrusters used in an analysis of electric propulsion for an SP-100 based mission.

  4. High Power Photodetectors for Space Communications Applications

    NASA Technical Reports Server (NTRS)

    Mysoor, Narayan R.

    1995-01-01

    High power photodetectors in coplanar waveguide and distributed traveling-wave structures have been under development for communications applications. The distributed photodetectors demonstrated 70percent efficiency with a linear response up to 25 mW of optical power input.

  5. High voltage-high power components for large space power distribution systems

    NASA Technical Reports Server (NTRS)

    Renz, D. D.

    1984-01-01

    Space power components including a family of bipolar power switching transistors, fast switching power diodes, heat pipe cooled high frequency transformers and inductors, high frequency conduction cooled transformers, high power-high frequency capacitors, remote power controllers and rotary power transfer devices were developed. Many of these components such as the power switching transistors, power diodes and the high frequency capacitor are commercially available. All the other components were developed to the prototype level. The dc/dc series resonant converters were built to the 25 kW level.

  6. High power RF solid state power amplifier system

    NASA Technical Reports Server (NTRS)

    Sims, III, William Herbert (Inventor); Chavers, Donald Gregory (Inventor); Richeson, James J. (Inventor)

    2011-01-01

    A high power, high frequency, solid state power amplifier system includes a plurality of input multiple port splitters for receiving a high-frequency input and for dividing the input into a plurality of outputs and a plurality of solid state amplifier units. Each amplifier unit includes a plurality of amplifiers, and each amplifier is individually connected to one of the outputs of multiport splitters and produces a corresponding amplified output. A plurality of multiport combiners combine the amplified outputs of the amplifiers of each of the amplifier units to a combined output. Automatic level control protection circuitry protects the amplifiers and maintains a substantial constant amplifier power output.

  7. High-Power Electromagnetic Thruster Being Developed

    NASA Technical Reports Server (NTRS)

    LaPointe, Michael R.; Mikellides, Pavlos G.

    2001-01-01

    High-power electromagnetic thrusters have been proposed as primary in-space propulsion options for several bold new interplanetary and deep-space missions. As the lead center for electric propulsion, the NASA Glenn Research Center designs, develops, and tests high-power electromagnetic technologies to meet these demanding mission requirements. Two high-power thruster concepts currently under investigation by Glenn are the magnetoplasmadynamic (MPD) thruster and the Pulsed Inductive Thruster (PIT).

  8. Operation of high power converters in parallel

    NASA Technical Reports Server (NTRS)

    Decker, D. K.; Inouye, L. Y.

    1993-01-01

    High power converters that are used in space power subsystems are limited in power handling capability due to component and thermal limitations. For applications, such as Space Station Freedom, where multi-kilowatts of power must be delivered to user loads, parallel operation of converters becomes an attractive option when considering overall power subsystem topologies. TRW developed three different unequal power sharing approaches for parallel operation of converters. These approaches, known as droop, master-slave, and proportional adjustment, are discussed and test results are presented.

  9. A High Power Frequency Doubled Fiber Laser

    NASA Technical Reports Server (NTRS)

    Thompson, Robert J.; Tu, Meirong; Aveline, Dave; Lundblad, Nathan; Maleki, Lute

    2003-01-01

    This viewgraph presentation reports on the development of a high power 780 nm laser suitable for space applications of laser cooling. A possible solution is to use frequency doubling of high power 1560 nm telecom lasers. The presentation shows a diagram of the frequency conversion, and a graph of the second harmonic generation in one crystal, and the use of the cascading crystals. Graphs show the second harmonic power as a function of distance between crystals, second harmonic power vs. pump power, tunability of laser systems.

  10. Test facilities for high power electric propulsion

    NASA Technical Reports Server (NTRS)

    Sovey, James S.; Vetrone, Robert H.; Grisnik, Stanley P.; Myers, Roger M.; Parkes, James E.

    1991-01-01

    Electric propulsion has applications for orbit raising, maneuvering of large space systems, and interplanetary missions. These missions involve propulsion power levels from tenths to tens of megawatts, depending upon the application. General facility requirements for testing high power electric propulsion at the component and thrust systems level are defined. The characteristics and pumping capabilities of many large vacuum chambers in the United States are reviewed and compared with the requirements for high power electric propulsion testing.

  11. Photoconductive switching for high power microwave generation

    SciTech Connect

    Pocha, M.D.; Hofer, W.W.

    1990-10-01

    Photoconductive switching is a technology that is being increasingly applied to generation of high power microwaves. Two primary semiconductors used for these devices are silicon and gallium arsenide. Diamond is a promising future candidate material. This paper discusses the important material parameters and switching modes, critical issues for microwave generation, and future directions for this high power, photoconductive switching technology.

  12. High power laser perforating tools and systems

    SciTech Connect

    Zediker, Mark S; Rinzler, Charles C; Faircloth, Brian O; Koblick, Yeshaya; Moxley, Joel F

    2014-04-22

    ystems devices and methods for the transmission of 1 kW or more of laser energy deep into the earth and for the suppression of associated nonlinear phenomena. Systems, devices and methods for the laser perforation of a borehole in the earth. These systems can deliver high power laser energy down a deep borehole, while maintaining the high power to perforate such boreholes.

  13. High efficiency solar photovoltaic power module concept

    NASA Technical Reports Server (NTRS)

    Bekey, I.

    1978-01-01

    The investigation of a preliminary concept for high efficiency solar power generation in space is presented. The concept was a synergistic combination of spectral splitting, tailored bandgap cells, high concentration ratios, and cool cell areas.

  14. High temperature power electronics for space

    NASA Technical Reports Server (NTRS)

    Hammoud, Ahmad N.; Baumann, Eric D.; Myers, Ira T.; Overton, Eric

    1991-01-01

    A high temperature electronics program at NASA Lewis Research Center focuses on dielectric and insulating materials research, development and testing of high temperature power components, and integration of the developed components and devices into a demonstrable 200 C power system, such as inverter. An overview of the program and a description of the in-house high temperature facilities along with experimental data obtained on high temperature materials are presented.

  15. High Density Power Converters for Photovoltaic Power Management

    NASA Astrophysics Data System (ADS)

    Sangwan, Rahul

    In typical photovoltaic systems, PV cells are connected in series to achieve high output voltages, which decreases conduction losses and helps the downstream power electronics operate at higher efficiencies. A series connection means that the current through the string is limited by the worst case cell, substring, or module, which can result in suboptimal operation of the rest of the string. Given how even small shading can have a large effect on performance, there has been growing interest in the use of distributed power management architectures to mitigate losses from variation in PV systems. In particular, partial power processing converters have gained traction as a means to improve the performance of PV arrays with small, distributed converters that configure in parallel with PV cells. These converters can use low voltage components, only process a fraction of the total power allowing them to achieve higher efficiencies and power density and also have higher reliability. This work details the design and operation of a partial power processing converter implemented as a Resonant Switched Capacitor (ReSC) converter. An integrated circuit (IC) is designed in 0.18 mum CMOS process. Operation at high frequencies (20-50 MHz) allows high levels of integration with air core inductors directly attached to the die through a gold bump, solder reflow process. Test results for the IC are presented with power density and efficiency metrics. The IC is then used as a partial power processing converter to implement equalization with a specially constructed PV panel. The converter is shown to mitigate power loss due to mismatch.

  16. The NASA CSTI High Capacity Power Project

    NASA Technical Reports Server (NTRS)

    Winter, J.; Dudenhoefer, J.; Juhasz, A.; Schwarze, G.; Patterson, R.; Ferguson, D.; Schmitz, P.; Vandersande, J.

    1992-01-01

    The elements of the Civilian Space Technology Initiative (CSTI) High Capacity Power Project include Systems Analysis, Stirling Power Conversion, Thermoelectric Power Conversion, Thermal Management, Power Management, Systems Diagnostics, Environmental Interactions, and Material/Structural Development. The overall project will develop and demonstrate the technology base required to provide a wide range of modular power systems compatible with the SP-100 reactor which facilitates operation during lunar and planetary day/night cycles as well as allowing spacecraft operation at any attitude or distance from the sun. Significant accomplishments in all of the project elements are presented, along with revised goals and project timelines recently developed.

  17. Capacitors for aircraft high power

    NASA Astrophysics Data System (ADS)

    Parker, R. D.

    1980-04-01

    This report describes an exploratory program conducted to develop reliable lightweight pulse discharge capacitors for airborne application. The specific duty was a 1 minute burst every 2hours, and both low (50pps) and high (300pps) repetition rate service was to be considered. The energy density goals were 400 to 1100 J/kg with a 20 microsec capacitor current pulse width. A five layer polysulfone/kraft paper dielectric was selected for high rate service, while polyvinylidene fluoride/kraft paper was chosen for the low rate service. Both mineral oil and dioctylphthalate fluids were used. Tension controlled winding was used to eliminate failure producing folds. Reduced temperature drying further reduced wrinkles. Special filtration, purification, and cleaning produced very high resistivity fluids free from particles. A highly instrumented test bay accurately simulated a pulse forming network environment and allowed detailed and accurate testing. The best single section high rate results were 550 J/kg at 100,000 - 1,000,000 shot life at double the specified duty, while the best low rate results were slightly higher. Case weight minimization was stuided, and three prototype lightweight cases were built. Several techniques for smoothing rough capacitor foils were examined, and a flame technique was selected as being most easily implemented. Problems of terminating extended foils were examined, and a flame-spray method selected as most practical.

  18. High power ultrashort pulse lasers

    SciTech Connect

    Perry, M.D.

    1994-10-07

    Small scale terawatt and soon even petawatt (1000 terawatt) class laser systems are made possible by application of the chirped-pulse amplification technique to solid-state lasers combined with the availability of broad bandwidth materials. These lasers make possible a new class of high gradient accelerators based on the large electric fields associated with intense laser-plasma interactions or from the intense laser field directly. Here, we concentrate on the laser technology to produce these intense pulses. Application of the smallest of these systems to the production of high brightness electron sources is also introduced.

  19. HIGH AVERAGE POWER OPTICAL FEL AMPLIFIERS.

    SciTech Connect

    BEN-ZVI, ILAN, DAYRAN, D.; LITVINENKO, V.

    2005-08-21

    Historically, the first demonstration of the optical FEL was in an amplifier configuration at Stanford University [l]. There were other notable instances of amplifying a seed laser, such as the LLNL PALADIN amplifier [2] and the BNL ATF High-Gain Harmonic Generation FEL [3]. However, for the most part FELs are operated as oscillators or self amplified spontaneous emission devices. Yet, in wavelength regimes where a conventional laser seed can be used, the FEL can be used as an amplifier. One promising application is for very high average power generation, for instance FEL's with average power of 100 kW or more. The high electron beam power, high brightness and high efficiency that can be achieved with photoinjectors and superconducting Energy Recovery Linacs (ERL) combine well with the high-gain FEL amplifier to produce unprecedented average power FELs. This combination has a number of advantages. In particular, we show that for a given FEL power, an FEL amplifier can introduce lower energy spread in the beam as compared to a traditional oscillator. This properly gives the ERL based FEL amplifier a great wall-plug to optical power efficiency advantage. The optics for an amplifier is simple and compact. In addition to the general features of the high average power FEL amplifier, we will look at a 100 kW class FEL amplifier is being designed to operate on the 0.5 ampere Energy Recovery Linac which is under construction at Brookhaven National Laboratory's Collider-Accelerator Department.

  20. High Power Picosecond Laser Pulse Recirculation

    SciTech Connect

    Shverdin, M Y; Jovanovic, I; Semenov, V A; Betts, S M; Brown, C; Gibson, D J; Shuttlesworth, R M; Hartemann, F V; Siders, C W; Barty, C P

    2010-04-12

    We demonstrate a nonlinear crystal-based short pulse recirculation cavity for trapping the second harmonic of an incident high power laser pulse. This scheme aims to increase the efficiency and flux of Compton-scattering based light sources. We demonstrate up to 36x average power enhancement of frequency doubled sub-millijoule picosecond pulses, and 17x average power enhancement of 177 mJ, 10 ps, 10 Hz pulses.

  1. High-power picosecond laser pulse recirculation.

    PubMed

    Shverdin, M Y; Jovanovic, I; Semenov, V A; Betts, S M; Brown, C; Gibson, D J; Shuttlesworth, R M; Hartemann, F V; Siders, C W; Barty, C P J

    2010-07-01

    We demonstrate a nonlinear crystal-based short pulse recirculation cavity for trapping the second harmonic of an incident high-power laser pulse. This scheme aims to increase the efficiency and flux of Compton-scattering-based light sources. We demonstrate up to 40x average power enhancement of frequency-doubled submillijoule picosecond pulses, and 17x average power enhancement of 177 mJ, 10 ps, 10 Hz pulses.

  2. High-power picosecond laser pulse recirculation.

    PubMed

    Shverdin, M Y; Jovanovic, I; Semenov, V A; Betts, S M; Brown, C; Gibson, D J; Shuttlesworth, R M; Hartemann, F V; Siders, C W; Barty, C P J

    2010-07-01

    We demonstrate a nonlinear crystal-based short pulse recirculation cavity for trapping the second harmonic of an incident high-power laser pulse. This scheme aims to increase the efficiency and flux of Compton-scattering-based light sources. We demonstrate up to 40x average power enhancement of frequency-doubled submillijoule picosecond pulses, and 17x average power enhancement of 177 mJ, 10 ps, 10 Hz pulses. PMID:20596201

  3. Power processing units for high power solar electric propulsion

    NASA Technical Reports Server (NTRS)

    Frisbee, Robert H.; Das, Radhe S.; Krauthamer, Stanley

    1992-01-01

    An evaluation of high-power processing units (PPUs) for multimegawatt solar electric propulsion (SEP) vehicles using advanced ion thrusters is presented. Significant savings of scale are possible for PPUs used to supply power to ion thrusters operating at 0.1 to 1.5 MWe per thruster. The PPU specific mass is found to be strongly sensitive to variations in the ion thruster's power per thruster and moderately sensitive to variations in the thruster's screen voltage due to varying the I(sp) of the thruster. Each PPU consists of a dc-to-dc converter to increase the voltage from the 500 V dc of the photovoltaic power system to the 5 to 13 kV dc required by the ion thrusters.

  4. High voltage photovoltaic power converter

    DOEpatents

    Haigh, Ronald E.; Wojtczuk, Steve; Jacobson, Gerard F.; Hagans, Karla G.

    2001-01-01

    An array of independently connected photovoltaic cells on a semi-insulating substrate contains reflective coatings between the cells to enhance efficiency. A uniform, flat top laser beam profile is illuminated upon the array to produce electrical current having high voltage. An essentially wireless system includes a laser energy source being fed through optic fiber and cast upon the photovoltaic cell array to prevent stray electrical signals prior to use of the current from the array. Direct bandgap, single crystal semiconductor materials, such as GaAs, are commonly used in the array. Useful applications of the system include locations where high voltages are provided to confined spaces such as in explosive detonation, accelerators, photo cathodes and medical appliances.

  5. NASA GRC High Power Electromagnetic Thruster Program

    NASA Technical Reports Server (NTRS)

    LaPointe, Michael R.; Pensil, Eric J.

    2004-01-01

    High-power electromagnetic thrusters have been proposed as primary in-space propulsion options for several bold new interplanetary and deep-space missions. As the lead center for electric propulsion, the NASA Glenn Research Center designs, develops, and tests high-power electromagnetic technologies to meet these demanding mission requirements. Two high-power thruster concepts currently under investigation by Glenn are the magnetoplasmadynamic (MPD) thruster and the Pulsed Inductive Thruster (PIT). This paper describes the MPD thruster and the test facility.

  6. High Power Co-Axial Coupler

    SciTech Connect

    Neubauer, M.; Dudas, A.; Rimmer, Robert A.; Guo, Jiquan; Williams, R. Scott

    2013-12-01

    A very high power Coax RF Coupler (MW-Level) is very desirable for a number of accelerator and commercial applications. For example, the development of such a coupler operating at 1.5 GHz may permit the construction of a higher-luminosity version of the Electron-Ion Collider (EIC) being planned at JLab. Muons, Inc. is currently funded by a DOE STTR grant to develop a 1.5-GHz high-power doublewindowcoax coupler with JLab (about 150 kW). Excellent progress has been made on this R&D project, so we propose an extension of this development to build a very high power coax coupler (MW level peak power and a max duty factor of about 4%). The dimensions of the current coax coupler will be scaled up to provide higher power capability.

  7. High-efficiency solid state power amplifier

    NASA Technical Reports Server (NTRS)

    Wallis, Robert E. (Inventor); Cheng, Sheng (Inventor)

    2005-01-01

    A high-efficiency solid state power amplifier (SSPA) for specific use in a spacecraft is provided. The SSPA has a mass of less than 850 g and includes two different X-band power amplifier sections, i.e., a lumped power amplifier with a single 11-W output and a distributed power amplifier with eight 2.75-W outputs. These two amplifier sections provide output power that is scalable from 11 to 15 watts without major design changes. Five different hybrid microcircuits, including high-efficiency Heterostructure Field Effect Transistor (HFET) amplifiers and Monolithic Microwave Integrated Circuit (MMIC) phase shifters have been developed for use within the SSPA. A highly efficient packaging approach enables the integration of a large number of hybrid circuits into the SSPA.

  8. High-Speed, high-power, switching transistor

    NASA Technical Reports Server (NTRS)

    Carnahan, D.; Ohu, C. K.; Hower, P. L.

    1979-01-01

    Silicon transistor rate for 200 angstroms at 400 to 600 volts combines switching speed of transistors with ruggedness, power capacity of thyristor. Transistor introduces unique combination of increased power-handling capability, unusally low saturation and switching losses, and submicrosecond switching speeds. Potential applications include high power switching regulators, linear amplifiers, chopper controls for high frequency electrical vehicle drives, VLF transmitters, RF induction heaters, kitchen cooking ranges, and electronic scalpels for medical surgery.

  9. Coupling output of multichannel high power microwaves

    SciTech Connect

    Li Guolin; Shu Ting; Yuan Chengwei; Zhang Jun; Yang Jianhua; Jin Zhenxing; Yin Yi; Wu Dapeng; Zhu Jun; Ren Heming; Yang Jie

    2010-12-15

    The coupling output of multichannel high power microwaves is a promising technique for the development of high power microwave technologies, as it can enhance the output capacities of presently studied devices. According to the investigations on the spatial filtering method and waveguide filtering method, the hybrid filtering method is proposed for the coupling output of multichannel high power microwaves. As an example, a specific structure is designed for the coupling output of S/X/X band three-channel high power microwaves and investigated with the hybrid filtering method. In the experiments, a pulse of 4 GW X band beat waves and a pulse of 1.8 GW S band microwave are obtained.

  10. Coupling output of multichannel high power microwaves

    NASA Astrophysics Data System (ADS)

    Li, Guolin; Shu, Ting; Yuan, Chengwei; Zhang, Jun; Yang, Jianhua; Jin, Zhenxing; Yin, Yi; Wu, Dapeng; Zhu, Jun; Ren, Heming; Yang, Jie

    2010-12-01

    The coupling output of multichannel high power microwaves is a promising technique for the development of high power microwave technologies, as it can enhance the output capacities of presently studied devices. According to the investigations on the spatial filtering method and waveguide filtering method, the hybrid filtering method is proposed for the coupling output of multichannel high power microwaves. As an example, a specific structure is designed for the coupling output of S/X/X band three-channel high power microwaves and investigated with the hybrid filtering method. In the experiments, a pulse of 4 GW X band beat waves and a pulse of 1.8 GW S band microwave are obtained.

  11. High power millimeter wave source development program

    NASA Technical Reports Server (NTRS)

    George, T. V.

    1989-01-01

    High power millimeter wave sources for fusion program; ECH source development program strategy; and 1 MW, 140 GHz gyrotron experiment design philosophy are briefly outlined. This presentation is represented by viewgraphs only.

  12. High power density carbonate fuel cell

    SciTech Connect

    Yuh, C.; Johnsen, R.; Doyon, J.; Allen, J.

    1996-12-31

    Carbonate fuel cell is a highly efficient and environmentally clean source of power generation. Many organizations worldwide are actively pursuing the development of the technology. Field demonstration of multi-MW size power plant has been initiated in 1996, a step toward commercialization before the turn of the century, Energy Research Corporation (ERC) is planning to introduce a 2.85MW commercial fuel cell power plant with an efficiency of 58%, which is quite attractive for distributed power generation. However, to further expand competitive edge over alternative systems and to achieve wider market penetration, ERC is exploring advanced carbonate fuel cells having significantly higher power densities. A more compact power plant would also stimulate interest in new markets such as ships and submarines where space limitations exist. The activities focused on reducing cell polarization and internal resistance as well as on advanced thin cell components.

  13. High power regenerative laser amplifier

    DOEpatents

    Miller, John L.; Hackel, Lloyd A.; Dane, Clifford B.; Zapata, Luis E.

    1994-01-01

    A regenerative amplifier design capable of operating at high energy per pulse, for instance, from 20-100 Joules, at moderate repetition rates, for instance from 5-20 Hertz is provided. The laser amplifier comprises a gain medium and source of pump energy coupled with the gain medium; a Pockels cell, which rotates an incident beam in response to application of a control signal; an optical relay system defining a first relay plane near the gain medium and a second relay plane near the rotator; and a plurality of reflectors configured to define an optical path through the gain medium, optical relay and Pockels cell, such that each transit of the optical path includes at least one pass through the gain medium and only one pass through the Pockels cell. An input coupler, and an output coupler are provided, implemented by a single polarizer. A control circuit coupled to the Pockels cell generates the control signal in timed relationship with the input pulse so that the input pulse is captured by the input coupler and proceeds through at least one transit of the optical path, and then the control signal is applied to cause rotation of the pulse to a polarization reflected by the polarizer, after which the captured pulse passes through the gain medium at least once more and is reflected out of the optical path by the polarizer before passing through the rotator again to provide an amplified pulse.

  14. High power regenerative laser amplifier

    DOEpatents

    Miller, J.L.; Hackel, L.A.; Dane, C.B.; Zapata, L.E.

    1994-02-08

    A regenerative amplifier design capable of operating at high energy per pulse, for instance, from 20-100 Joules, at moderate repetition rates, for instance from 5-20 Hertz is provided. The laser amplifier comprises a gain medium and source of pump energy coupled with the gain medium; a Pockels cell, which rotates an incident beam in response to application of a control signal; an optical relay system defining a first relay plane near the gain medium and a second relay plane near the rotator; and a plurality of reflectors configured to define an optical path through the gain medium, optical relay and Pockels cell, such that each transit of the optical path includes at least one pass through the gain medium and only one pass through the Pockels cell. An input coupler, and an output coupler are provided, implemented by a single polarizer. A control circuit coupled to the Pockels cell generates the control signal in timed relationship with the input pulse so that the input pulse is captured by the input coupler and proceeds through at least one transit of the optical path, and then the control signal is applied to cause rotation of the pulse to a polarization reflected by the polarizer, after which the captured pulse passes through the gain medium at least once more and is reflected out of the optical path by the polarizer before passing through the rotator again to provide an amplified pulse. 7 figures.

  15. Spacecraft high-voltage power supply construction

    NASA Technical Reports Server (NTRS)

    Sutton, J. F.; Stern, J. E.

    1975-01-01

    The design techniques, circuit components, fabrication techniques, and past experience used in successful high-voltage power supplies for spacecraft flight systems are described. A discussion of the basic physics of electrical discharges in gases is included and a design rationale for the prevention of electrical discharges is provided. Also included are typical examples of proven spacecraft high-voltage power supplies with typical specifications for design, fabrication, and testing.

  16. High Voltage Power Transmission for Wind Energy

    NASA Astrophysics Data System (ADS)

    Kim, Young il

    The high wind speeds and wide available area at sea have recently increased the interests on offshore wind farms in the U.S.A. As offshore wind farms become larger and are placed further from the shore, the power transmission to the onshore grid becomes a key feature. Power transmission of the offshore wind farm, in which good wind conditions and a larger installation area than an onshore site are available, requires the use of submarine cable systems. Therefore, an underground power cable system requires unique design and installation challenges not found in the overhead power cable environment. This paper presents analysis about the benefit and drawbacks of three different transmission solutions: HVAC, LCC/VSC HVDC in the grid connecting offshore wind farms and also analyzed the electrical characteristics of underground cables. In particular, loss of HV (High Voltage) subsea power of the transmission cables was evaluated by the Brakelmann's theory, taking into account the distributions of current and temperature.

  17. Optical power splitter for splitting high power light

    DOEpatents

    English, Jr., Ronald E.; Christensen, John J.

    1995-01-01

    An optical power splitter for the distribution of high-power light energy has a plurality of prisms arranged about a central axis to form a central channel. The input faces of the prisms are in a common plane which is substantially perpendicular to the central axis. A beam of light which is substantially coaxial to the central axis is incident on the prisms and at least partially strikes a surface area of each prism input face. The incident beam also partially passes through the central channel.

  18. Optical power splitter for splitting high power light

    DOEpatents

    English, R.E. Jr.; Christensen, J.J.

    1995-04-18

    An optical power splitter for the distribution of high-power light energy has a plurality of prisms arranged about a central axis to form a central channel. The input faces of the prisms are in a common plane which is substantially perpendicular to the central axis. A beam of light which is substantially coaxial to the central axis is incident on the prisms and at least partially strikes a surface area of each prism input face. The incident beam also partially passes through the central channel. 5 figs.

  19. New, rugged, high power Cockcroft-Walton power supply

    SciTech Connect

    Hinkson, J.; Behrsing, G.; Hazelton, E.; Hearn, W.; Lancaster, H.

    1981-03-01

    A ten foot (3 m), ten-stage air-insulated Crockcroft-Walton power supply designed and built at LBL has been tested to 900 kV at the SuperHILAC. Operating at 80 kHz, the power supply features low ripple, moderate stored energy, 10 ma average current, and no bouncer requirement for pulsed loads. Other system features include: inexpensive generating voltmeters and a capacitive pick off for monitoring and regulation in lieu of costly resistance dividers, home-made semiconductor rectifier modules, excellent component protection against sparking, and easy maintenance. This report describes design, construction, and testing of the high voltage system.

  20. Cryogenic silicon photoconductive power switches for high-power applications

    SciTech Connect

    Petr, R.A.

    1987-01-01

    The silicon photoconductive power switch (PCPS) is an attractive switch technology because it is capable of switching extremely large energy pulses of short duration with good efficiency and precise timing control. At high operating frequencies, there are enormous advantages to be gained by operating at liquid nitrogen temperatures. For example, the mechanical properties of silicon at 77K are such that its power-dissipation limit due to stress fracture is an order of magnitude higher than at 300K. Also, its thermal conductivity is improved at lower temperatures. Another important characteristic of 77K silicon is that its optical absorption depth at 1.06um extends out to 13cm, as compared to 0.1cm at 300K. Important aspects of operating a cryogenic silicon PCPS at high average power levels are addressed here. Electrical and optical properties of silicon at both 77K and 300K are developed, along with its thermomechanical properties when switching high peak and average power. In addition, experimental data concerning PCPS electrical-switching characteristics, optical trigger uniformity, and thermal stress response during conduction are presented. Finally, a system study compares the silicon PCPS to the thyratron.

  1. The NASA CSTI High Capacity Power Project

    SciTech Connect

    Winter, J.; Dudenhoefer, J.; Juhasz, A.; Schwarze, G.; Patterson, R.; Ferguson, D.; Titran, R.; Schmitz, P.; Vandersande, J.

    1994-09-01

    The SP-100 Space Nuclear Power Program was established in 1983 by DOD, DOE, and NASA as a joint program to develop technology for military and civil applications. Starting in 1986, NASA has funded a technology program to maintain the momentum of promising aerospace technology advancement started during Phase I of SP-100 and to strengthen, in key areas, the changes for successful development and growth capability of space nuclear reactor power systems for a wide range of future space applications. The elements of the CSTI High Capacity Power Project include Systems Analysis, Stirling Power Conversion, Thermoelectric Power Conversion, Thermal Management, Power Management, Systems Diagnostics, Environmental Interactions, and Material/Structural Development. Technology advancement in all elements is required to provide the growth capability, high reliability and 7 to 10 year lifetime demanded for future space nuclear power systems. The overall project with develop and demonstrate the technology base required to provide a wide range of modular power systems compatible with the SP-100 reactor which facilitates operation during lunar and planetary day/night cycles as well as allowing spacecraft operation at any attitude or distance from the sun. Significant accomplishments in all of the project elements will be presented, along with revised goals and project timelines recently developed.

  2. The NASA CSTI high capacity power project

    NASA Technical Reports Server (NTRS)

    Winter, J.; Dudenhoefer, J.; Juhasz, A.; Schwarze, G.; Patterson, R.; Ferguson, D.; Titran, R.; Schmitz, P.; Vandersande, J.

    1992-01-01

    The SP-100 Space Nuclear Power Program was established in 1983 by DOD, DOE, and NASA as a joint program to develop technology for military and civil applications. Starting in 1986, NASA has funded a technology program to maintain the momentum of promising aerospace technology advancement started during Phase 1 of SP-100 and to strengthen, in key areas, the chances for successful development and growth capability of space nuclear reactor power systems for a wide range of future space applications. The elements of the Civilian Space Technology Initiative (CSTI) High Capacity Power Project include Systems Analysis, Stirling Power Conversion, Thermoelectric Power Conversion, Thermal Management, Power Management, Systems Diagnostics, Environmental Interactions, and Material/Structural Development. Technology advancement in all elements is required to provide the growth capability, high reliability and 7 to 10 year lifetime demanded for future space nuclear power systems. The overall project will develop and demonstrate the technology base required to provide a wide range of modular power systems compatible with the SP-100 reactor which facilitates operation during lunar and planetary day/night cycles as well as allowing spacecraft operation at any attitude or distance from the sun. Significant accomplishments in all of the project elements will be presented, along with revised goals and project timelines recently developed.

  3. Small high cooling power space cooler

    SciTech Connect

    Nguyen, T. V.; Raab, J.; Durand, D.; Tward, E.

    2014-01-29

    The small High Efficiency pulse tube Cooler (HEC) cooler, that has been produced and flown on a number of space infrared instruments, was originally designed to provide cooling of 10 W @ 95 K. It achieved its goal with >50% margin when limited by the 180 W output ac power of its flight electronics. It has also been produced in 2 stage configurations, typically for simultaneously cooling of focal planes to temperatures as low as 35 K and optics at higher temperatures. The need for even higher cooling power in such a low mass cryocooler is motivated by the advent of large focal plane arrays. With the current availability at NGAS of much larger power cryocooler flight electronics, reliable long term operation in space with much larger cooling powers is now possible with the flight proven 4 kg HEC mechanical cooler. Even though the single stage cooler design can be re-qualified for those larger input powers without design change, we redesigned both the linear and coaxial version passive pulse tube cold heads to re-optimize them for high power cooling at temperatures above 130 K while rejecting heat to 300 K. Small changes to the regenerator packing, the re-optimization of the tuned inertance and no change to the compressor resulted in the increased performance at 150 K. The cooler operating at 290 W input power achieves 35 W@ 150 K corresponding to a specific cooling power at 150 K of 8.25 W/W and a very high specific power of 72.5 W/Kg. At these powers the cooler still maintains large stroke, thermal and current margins. In this paper we will present the measured data and the changes to this flight proven cooler that were made to achieve this increased performance.

  4. Small high cooling power space cooler

    NASA Astrophysics Data System (ADS)

    Nguyen, T. V.; Raab, J.; Durand, D.; Tward, E.

    2014-01-01

    The small High Efficiency pulse tube Cooler (HEC) cooler, that has been produced and flown on a number of space infrared instruments, was originally designed to provide cooling of 10 W @ 95 K. It achieved its goal with >50% margin when limited by the 180 W output ac power of its flight electronics. It has also been produced in 2 stage configurations, typically for simultaneously cooling of focal planes to temperatures as low as 35 K and optics at higher temperatures. The need for even higher cooling power in such a low mass cryocooler is motivated by the advent of large focal plane arrays. With the current availability at NGAS of much larger power cryocooler flight electronics, reliable long term operation in space with much larger cooling powers is now possible with the flight proven 4 kg HEC mechanical cooler. Even though the single stage cooler design can be re-qualified for those larger input powers without design change, we redesigned both the linear and coaxial version passive pulse tube cold heads to re-optimize them for high power cooling at temperatures above 130 K while rejecting heat to 300 K. Small changes to the regenerator packing, the re-optimization of the tuned inertance and no change to the compressor resulted in the increased performance at 150 K. The cooler operating at 290 W input power achieves 35 W@ 150 K corresponding to a specific cooling power at 150 K of 8.25 W/W and a very high specific power of 72.5 W/Kg. At these powers the cooler still maintains large stroke, thermal and current margins. In this paper we will present the measured data and the changes to this flight proven cooler that were made to achieve this increased performance.

  5. Silver based batteries for high power applications

    NASA Astrophysics Data System (ADS)

    Karpinski, A. P.; Russell, S. J.; Serenyi, J. R.; Murphy, J. P.

    The present status of silver oxide-zinc technology and applications has been described by Karpinski et al. [A.P. Karpinski, B. Makovetski, S.J. Russell, J.R. Serenyi, D.C. Williams, Silver-Zinc: status of technology and applications, Journal of Power Sources, 80 (1999) 53-60], where the silver-zinc couple is still the preferred choice where high specific energy/energy density, coupled with high specific power/power density are important for high-rate, weight or size/configuration sensitive applications. Perhaps the silver oxide cathode can be considered one of the most versatile electrode materials. When coupled with other anodes and corresponding electrolyte management system, the silver electrode provides for a wide array of electrochemical systems that can be tailored to meet the most demanding, high power requirements. Besides zinc, the most notable include cadmium, iron, metal hydride, and hydrogen electrode for secondary systems, while primary systems include lithium and aluminum. Alloys including silver are also available, such as silver chloride, which when coupled with magnesium or aluminum are primarily used in many seawater applications. The selection and use of these couples is normally the result of a trade-off of many factors. These include performance, safety, risk, reliability, and cost. When high power is required, silver oxide-zinc, silver oxide-aluminum, and silver oxide-lithium are the most energetic. For moderate performance (i.e., lower power), silver oxide-zinc or silver-cadmium would be the system of choice. This paper summarizes the suitability of the silver-based couples, with an emphasis on the silver-zinc system, as primary or rechargeable power sources for high energy/power applications.

  6. High-Power, High-Temperature Superconductor Technology Development

    NASA Technical Reports Server (NTRS)

    Bhasin, Kul B.

    2005-01-01

    Since the first discovery of high-temperature superconductors (HTS) 10 years ago, the most promising areas for their applications in microwave systems have been as passive components for communication systems. Soon after the discovery, experiments showed that passive microwave circuits made from HTS material exceeded the performance of conventional devices for low-power applications and could be 10 times as small or smaller. However, for superconducting microwave components, high-power microwave applications have remained elusive until now. In 1996, DuPont and Com Dev Ltd. developed high-power superconducting materials and components for communication applications under a NASA Lewis Research Center cooperative agreement, NCC3-344 "High Power High Temperature Superconductor (HTS) Technology Development." The agreement was cost shared between the Defense Advanced Research Projects Agency's (DARPA) Technology Reinvestment Program Office and the two industrial partners. It has the following objectives: 1) Material development and characterization for high-power HTS applications; 2) Development and validation of generic high-power microwave components; 3) Development of a proof-of-concept model for a high-power six-channel HTS output multiplexer.

  7. Tapered fiber based high power random laser.

    PubMed

    Zhang, Hanwei; Du, Xueyuan; Zhou, Pu; Wang, Xiaolin; Xu, Xiaojun

    2016-04-18

    We propose a novel high power random fiber laser (RFL) based on tapered fiber. It can overcome the power scaling limitation of RFL while maintaining good beam quality to a certain extent. An output power of 26.5 W has been achieved in a half-open cavity with one kilometer long tapered fiber whose core diameter gradually changes from 8 μm to 20 μm. The steady-state light propagation equations have been modified by taking into account the effective core area to demonstrate the tapered RFL through numerical calculations. The numerical model effectively describes the power characteristics of the tapered fiber based RFL, and both the calculating and experimental results show higher power exporting potential compared with the conventional single mode RFL. PMID:27137338

  8. New applications for high average power beams

    NASA Astrophysics Data System (ADS)

    Neau, E. L.; Turman, B. N.; Patterson, E. L.

    1993-06-01

    The technology base formed by the development of high peak power simulators, laser drivers, FEL's, and ICF drivers from the early 60's through the late 80's is being extended to high average power short-pulse machines with the capabilities of supporting new types of manufacturing processes and performing new roles in environmental cleanup applications. This paper discusses a process for identifying and developing possible commercial applications, specifically those requiring very high average power levels of hundreds of kilowatts to perhaps megawatts. The authors discuss specific technology requirements and give examples of application development efforts. The application development work is directed at areas that can possibly benefit from the high specific energies attainable with short pulse machines.

  9. CLIC RF High Power Production Testing Program

    SciTech Connect

    Syratchev, I.; Riddone, G.; Tantawi, S.G.; /SLAC

    2011-11-02

    The CLIC Power Extraction and Transfer Structure (PETS) is a passive microwave device in which bunches of the drive beam interact with the impedance of the periodically loaded waveguide and generate RF power for the main linac accelerating structure. The demands on the high power production ({approx} 150 MW) and the needs to transport the 100 A drive beam for about 1 km without losses, makes the PETS design rather unique and the operation very challenging. In the coming year, an intense PETS testing program will be implemented. The target is to demonstrate the full performance of the PETS operation. The testing program overview and test results available to date are presented.

  10. A high-power xenon dimer excilamp

    NASA Astrophysics Data System (ADS)

    Lomaev, M. I.; Skakun, V. S.; Tarasenko, V. F.; Shitts, D. V.

    2006-06-01

    A high-power sealed-off excilamp operating on xenon dimers excited by a barrier discharge and emitting in the vacuum ultraviolet spectral range (λ ˜ 172 nm) has been designed, constructed, and tested. The lamp comprises six quartz tubes (emitters) and has a total radiating surface area of 20 × 20 = 400 cm2. The average output power density radiated from the surface of each emitter exceeds 120 mW/cm2. The total output power of the excilamp immediately upon discharge ignition exceeds 50 W.

  11. High Flux Isotope Reactor power upgrade status

    SciTech Connect

    Rothrock, R.B.; Hale, R.E.; Cheverton, R.D.

    1997-03-01

    A return to 100-MW operation is being planned for the High Flux Isotope Reactor (HFIR). Recent improvements in fuel element manufacturing procedures and inspection equipment will be exploited to reduce hot spot and hot streak factors sufficiently to permit the power upgrade without an increase in primary coolant pressure. Fresh fuel elements already fabricated for future use are being evaluated individually for power upgrade potential based on their measured coolant channel dimensions.

  12. Advances in industrial high-power lasers

    NASA Astrophysics Data System (ADS)

    Schlueter, Holger

    2005-03-01

    Four major types of laser sources are used for material processing. Excluding Excimer lasers, this paper focuses on advances in High Power CO2 lasers, Solid State Lasers and Diode Lasers. Because of their unrivaled cost to brightness relationship the fast axial flow CO2 laser remains unrivaled for flat-sheet laser cutting. Adding approximately a kW of output power ever four years, this laser type has been propelling the entire sheet metal fabrication industry for the last two decades. Very robust, diffusion cooled annular discharge CO2 lasers with 2kW output power have enabled robot mounted lasers for 3D applications. Solid State Lasers are chosen mainly because of the option of fiber delivery. Industrial applications still rely on lamp-pumped Nd:YAG lasers with guaranteed output powers of 4.5 kW at the workpiece. The introduction of the diode pumped Thin Disc Laser 4.5 kW laser enables new applications such as the Programmable Focus Optics. Pumping the Thin Disc Laser requires highly reliable High Power Diode Lasers. The necessary reliability can only be achieved in a modern, automated semiconductor manufacturing facility. For Diode Lasers, electro-optical efficiencies above 65% are as important as the passivation of the facets to avoid Burn-In power degradation.

  13. Optimizing the design of very high power, high performance converters

    SciTech Connect

    Edwards, R J; Tiagha, E A; Ganetis, G; Nawrocky, R J

    1980-01-01

    This paper describes how various technologies are used to achieve the desired performance in a high current magnet power converter system. It is hoped that the discussions of the design approaches taken will be applicable to other power supply systems where stringent requirements in stability, accuracy and reliability must be met.

  14. Review of High Power Pulse Transformer Design

    NASA Astrophysics Data System (ADS)

    Zhang, Zhao; Tan, Xiaohua

    Vacuum devices generally work under high power pulse voltage of order 103 V to 106 V, and this pulse voltage could be generated by high power pulse transformer. Relatively, pulse transformer has the advantages of compact structure and excellent repetitiveness. It is expected of short rise-time, wide pulse-width and high energy transferring efficiency in most applications. Aiming at this purpose, it is feasible to select magnetic core with high permeability and high saturation magnetic flux density, use closed core and take some special measures to diminish leakage inductance in the making-process. This paper is a brief summary of high power pulse transformer design. In this paper, the principle, types and characteristics specification of high power pulse transformer are presented, and the design methods of electrical, magnetic and structure parameters are summarized. The methods of shortening rise time, diminishing droop and expanding output pulse-width (electrical parameter design), testing magnetic core materials (magnetic parameter design) and minimizing leakage inductance (structure parameter design) are emphasized.

  15. High power diode laser Master Oscillator-Power Amplifier (MOPA)

    NASA Technical Reports Server (NTRS)

    Andrews, John R.; Mouroulis, P.; Wicks, G.

    1994-01-01

    High power multiple quantum well AlGaAs diode laser master oscillator - power amplifier (MOPA) systems were examined both experimentally and theoretically. For two pass operation, it was found that powers in excess of 0.3 W per 100 micrometers of facet length were achievable while maintaining diffraction-limited beam quality. Internal electrical-to-optical conversion efficiencies as high as 25 percent were observed at an internal amplifier gain of 9 dB. Theoretical modeling of multiple quantum well amplifiers was done using appropriate rate equations and a heuristic model of the carrier density dependent gain. The model gave a qualitative agreement with the experimental results. In addition, the model allowed exploration of a wider design space for the amplifiers. The model predicted that internal electrical-to-optical conversion efficiencies in excess of 50 percent should be achievable with careful system design. The model predicted that no global optimum design exists, but gain, efficiency, and optical confinement (coupling efficiency) can be mutually adjusted to meet a specific system requirement. A three quantum well, low optical confinement amplifier was fabricated using molecular beam epitaxial growth. Coherent beam combining of two high power amplifiers injected from a common master oscillator was also examined. Coherent beam combining with an efficiency of 93 percent resulted in a single beam having diffraction-limited characteristics. This beam combining efficiency is a world record result for such a system. Interferometric observations of the output of the amplifier indicated that spatial mode matching was a significant factor in the less than perfect beam combining. Finally, the system issues of arrays of amplifiers in a coherent beam combining system were investigated. Based upon experimentally observed parameters coherent beam combining could result in a megawatt-scale coherent beam with a 10 percent electrical-to-optical conversion efficiency.

  16. The Jefferson Lab High Power Light Source

    SciTech Connect

    James R. Boyce

    2006-01-01

    Jefferson Lab has designed, built and operated two high average power free-electron lasers (FEL) using superconducting RF (SRF) technology and energy recovery techniques. Between 1999-2001 Jefferson Lab operated the IR Demo FEL. This device produced over 2 kW in the mid-infrared, in addition to producing world record average powers in the visible (50 W), ultraviolet (10 W) and terahertz range (50 W) for tunable, short-pulse (< ps) light. This FEL was the first high power demonstration of an accelerator configuration that is being exploited for a number of new accelerator-driven light source facilities that are currently under design or construction. The driver accelerator for the IR Demo FEL uses an Energy Recovered Linac (ERL) configuration that improves the energy efficiency and lowers both the capital and operating cost of such devices by recovering most of the power in the spent electron beam after optical power is extracted from the beam. The IR Demo FEL was de-commissioned in late 2001 for an upgraded FEL for extending the IR power to over 10 kW and the ultraviolet power to over 1 kW. The FEL Upgrade achieved 10 kW of average power in the mid-IR (6 microns) in July of 2004, and its IR operation currently is being extended down to 1 micron. In addition, we have demonstrated the capability of on/off cycling and recovering over a megawatt of electron beam power without diminishing machine performance. A complementary UV FEL will come on-line within the next year. This paper presents a summary of the FEL characteristics, user community accomplishments with the IR Demo, and planned user experiments.

  17. High power infrared QCLs: advances and applications

    NASA Astrophysics Data System (ADS)

    Patel, C. Kumar N.

    2012-01-01

    QCLs are becoming the most important sources of laser radiation in the midwave infrared (MWIR) and longwave infrared (LWIR) regions because of their size, weight, power and reliability advantages over other laser sources in the same spectral regions. The availability of multiwatt RT operation QCLs from 3.5 μm to >16 μm with wall plug efficiency of 10% or higher is hastening the replacement of traditional sources such as OPOs and OPSELs in many applications. QCLs can replace CO2 lasers in many low power applications. Of the two leading groups in improvements in QCL performance, Pranalytica is the commercial organization that has been supplying the highest performance QCLs to various customers for over four year. Using a new QCL design concept, the non-resonant extraction [1], we have achieved CW/RT power of >4.7 W and WPE of >17% in the 4.4 μm - 5.0 μm region. In the LWIR region, we have recently demonstrated QCLs with CW/RT power exceeding 1 W with WPE of nearly 10 % in the 7.0 μm-10.0 μm region. In general, the high power CW/RT operation requires use of TECs to maintain QCLs at appropriate operating temperatures. However, TECs consume additional electrical power, which is not desirable for handheld, battery-operated applications, where system power conversion efficiency is more important than just the QCL chip level power conversion efficiency. In high duty cycle pulsed (quasi-CW) mode, the QCLs can be operated without TECs and have produced nearly the same average power as that available in CW mode with TECs. Multiwatt average powers are obtained even in ambient T>70°C, with true efficiency of electrical power-to-optical power conversion being above 10%. Because of the availability of QCLs with multiwatt power outputs and wavelength range covering a spectral region from ~3.5 μm to >16 μm, the QCLs have found instantaneous acceptance for insertion into multitude of defense and homeland security applications, including laser sources for infrared

  18. The NASA CSTI High Capacity Power Program

    SciTech Connect

    Winter, J.M.

    1994-09-01

    The SP-100 program was established in 1983 by DOD, DOE, and NASA as a joint program to develop the technology necessary for space nuclear power systems for military and civil applications. During 1986 and 1987, the NASA Advanced Technology Program was responsible for maintaining the momentum of promising technology advancement efforts started during Phase I of SP-100 and to strengthen, in key areas, the chances for successful development and growth capability of space nuclear reactor power systems for future space applications. In 1988, the NASA Advanced Technology Program was incorporated into NASA`s new Civil Space Technology Initiative (CSTI). The CSTI program was established to provide the foundation for technology development in automation and robotics, information, propulsion, and power. The CSTI High Capacity Power Program builds on the technology efforts of the SP-100 program, incorporates the previous NASA advanced technology project, and provides a bridge to the NASA exploration technology programs. The elements of CSTI high capacity power development include conversion systems - Stirling and thermoelectric, thermal management, power management, system diagnostics, and environmental interactions. Technology advancement in all areas, including materials, is required to provide the growth capability, high reliability and 7 to 10 years lifetime demanded for future space nuclear power systems. The overall program will develop and demonstrate the technology base required to provide a wide range of modular power systems while minimizing the impact of day/night operation as well as attitudes and distance from the Sun. Significant accomplishments in all of the program elements will be discussed, along with revised goals and project timelines recently developed.

  19. High-Performance Power-Semiconductor Packages

    NASA Technical Reports Server (NTRS)

    Renz, David; Hansen, Irving; Berman, Albert

    1989-01-01

    A 600-V, 50-A transistor and 1,200-V, 50-A diode in rugged, compact, lightweight packages intended for use in inverter-type power supplies having switching frequencies up to 20 kHz. Packages provide low-inductance connections, low loss, electrical isolation, and long-life hermetic seal. Low inductance achieved by making all electrical connections to each package on same plane. Also reduces high-frequency losses by reducing coupling into inherent shorted turns in packaging material around conductor axes. Stranded internal power conductors aid conduction at high frequencies, where skin effect predominates. Design of packages solves historical problem of separation of electrical interface from thermal interface of high-power semiconductor device.

  20. Ultra high vacuum broad band high power microwave window

    DOEpatents

    Nguyen-Tuong, V.; Dylla, H.F. III

    1997-11-04

    An improved high vacuum microwave window has been developed that utilizes high density polyethylene coated on two sides with SiOx, SiNx, or a combination of the two. The resultant low dielectric and low loss tangent window creates a low outgassing, low permeation seal through which broad band, high power microwave energy may be passed. No matching device is necessary and the sealing technique is simple. The features of the window are broad band transmission, ultra-high vacuum compatibility with a simple sealing technique, low voltage standing wave ratio, high power transmission and low cost. 5 figs.

  1. Ultra high vacuum broad band high power microwave window

    DOEpatents

    Nguyen-Tuong, Viet; Dylla, III, Henry Frederick

    1997-01-01

    An improved high vacuum microwave window has been developed that utilizes high density polyethylene coated on two sides with SiOx, SiNx, or a combination of the two. The resultant low dielectric and low loss tangent window creates a low outgassing, low permeation seal through which broad band, high power microwave energy may be passed. No matching device is necessary and the sealing technique is simple. The features of the window are broad band transmission, ultra-high vacuum compatibility with a simple sealing technique, low voltage standing wave ratio, high power transmission and low cost.

  2. High-frequency-link based power electronics in power systems

    NASA Astrophysics Data System (ADS)

    Sree, Hari

    Power quality has become a serious concern to many utility customers in recent times. Among the many power quality problems, voltage sags are one of the most common and most mischievous, affecting industrial and commercial customers. They are primarily caused by power system faults at the transmission and distribution level, and thus, are mostly unavoidable. Their effect depends on the equipment sensitivities to the magnitude and duration of these sags and each can cost an industry up to few million dollars. To counter these limitations, many solutions at the customer end have been proposed which include Constant Voltage Transformers (CVT's), UPS and line frequency transformer based Dynamic Voltage Restorer (DVR). These approaches have their respective limitations with regard to capabilities, size and cost. This research proposes a new approach to mitigating these voltage sags involving the use of high frequency transformer link. Suitable switching logic and control strategies have been implemented. The proposed approach in a one-phase application is verified with computer simulations and by a hardware proof-of-concept prototype. Application to three-phase system is verified through simulations. Application of high frequency transformers in other utility applications such as active filters and static compensators is also looked at.

  3. Technology development for high power induction accelerators

    SciTech Connect

    Birx, D.L.; Reginato, L.L.

    1985-06-11

    The marriage of Induction Linac technology with Nonlinear Magnetic Modulators has produced some unique capabilities. It appears possible to produce electron beams with average currents measured in amperes, at gradients exceeding 1 MeV/meter, and with power efficiencies approaching 50%. A 2 MeV, 5 kA electron accelerator has been constructed at the Lawrence Livermore National Laboratory (LLNL) to demonstrate these concepts and to provide a test facility for high brightness sources. The pulse drive for the accelerator is based on state-of-the-art magnetic pulse compressors with very high peak power capability, repetition rates exceeding a kilohertz and excellent reliability.

  4. High voltage solar cell power generating system

    NASA Technical Reports Server (NTRS)

    Levy, E., Jr.; Opjorden, R. W.; Hoffman, A. C.

    1974-01-01

    A laboratory solar power system regulated by on-panel switches has been delivered for operating high power (3 kW), high voltage (15,000 volt) loads (communication tubes, ion thrusters). The modular system consists of 26 solar arrays, each with an integral light source and cooling system. A typical array contains 2,560 series-connected cells. Each light source consists of twenty 500-watt tungsten iodide lamps providing plus or minus 5 percent uniformity at one solar constant. An array temperature of less than 40 C is achieved using an infrared filter, a water-cooled plate, a vacuum hold-down system, and air flushing.

  5. High Average Power, High Energy Short Pulse Fiber Laser System

    SciTech Connect

    Messerly, M J

    2007-11-13

    Recently continuous wave fiber laser systems with output powers in excess of 500W with good beam quality have been demonstrated [1]. High energy, ultrafast, chirped pulsed fiber laser systems have achieved record output energies of 1mJ [2]. However, these high-energy systems have not been scaled beyond a few watts of average output power. Fiber laser systems are attractive for many applications because they offer the promise of high efficiency, compact, robust systems that are turn key. Applications such as cutting, drilling and materials processing, front end systems for high energy pulsed lasers (such as petawatts) and laser based sources of high spatial coherence, high flux x-rays all require high energy short pulses and two of the three of these applications also require high average power. The challenge in creating a high energy chirped pulse fiber laser system is to find a way to scale the output energy while avoiding nonlinear effects and maintaining good beam quality in the amplifier fiber. To this end, our 3-year LDRD program sought to demonstrate a high energy, high average power fiber laser system. This work included exploring designs of large mode area optical fiber amplifiers for high energy systems as well as understanding the issues associated chirped pulse amplification in optical fiber amplifier systems.

  6. E3000 High Power SADM development

    NASA Astrophysics Data System (ADS)

    Bamford, Steve G.; McMahon, Paul

    2003-09-01

    Astrium UK has been actively involved in the study, design, development, manufacture and test of Solar Array Drive Mechanisms (SADMs) and Bearing and Power Transfer Assemblies (BAPTAs) since the early 1970s having delivered 105 of these mechanisms to 22 spacecraft programs. As a result Astrium UK has accumulated in excess of 700 years of failure free SADM operation in-orbit. During that period power transfer requirements have grown steadily from below 1kW to 9.9kW and beyond. With this increase in power handling capability comes the associated problem of handling and dissipating the heat being generated within the SADM. The Eurostar 2000 family of SADMs were designed to handle up to 5.6kW for the E2000 family of spacecraft but the High Power SADM was conceived to meet the needs of the much bigger Eurostar 3000 family of spacecraft that could potentially grow to 15kW.

  7. High efficiency low cost solar cell power

    NASA Technical Reports Server (NTRS)

    Bekey, I.; Blocker, W.

    1978-01-01

    A concept for generating high-efficiency, low-cost, solar-cell power is outlined with reference to solar cell parameters, optical concentrators, and thermal control procedures. A design for a 12.5-kw power module for space operation is discussed noting the optical system, spectrum splitter, light conversion system, cell cooling, power conditioner, and tracking mechanism. It is found that for an unconcentrated array, efficiency approaches 60% when ten or more bandgaps are used. For a 12-band system, a computer program distributed bandgaps for maximum efficiency and equal cell currents. Rigid materials and thin films have been proposed for optical components and prisms, gratings, and dichroic mirrors have been recommended for spectrum splitting. Various radiator concepts are noted including that of Weatherston and Smith (1960) and Hedgepeth and Knapp (1978). The concept may be suitable for the Solar Power Satellite.

  8. Ionospheric Stimulation By High Power Radio Waves

    NASA Astrophysics Data System (ADS)

    Minami, S.; Nishino, M.; Suzuki, Y.; Sato, S.; Tanikawa, T.; Nakamura, Y.; Wong, A. Y.

    1999-01-01

    We have performed an experiment to artificially stimulate the ionosphere using higher power radio waves at the HIPAS (High Power Auroral Stimulation) facility in Alaska. A radio transmission of 2.85 MHz was made at 80 MW (ERP). Diagnostics were made at the other site located 35 km from the transmission site. The results of cross-correlating the excited HF wave and observed with an 8 channel, 30 MHz scanning cosmic radio noise absorption records revealed the excited height of 90 km. Also atmospheric pressure waves observed on the ground show evident propagation of pressure waves which are generated in the ionosphere by the high-power HF wave. The results determine the excitation height of 90 km in the ionosphere and show evidence of the pressure wave coupling between the ionosphere and the lower atmosphere for periods of 10 min

  9. Power Budget Analysis for High Altitude Airships

    NASA Technical Reports Server (NTRS)

    Choi, Sang H.; Elliott, James R.; King, Glen C.

    2006-01-01

    The High Altitude Airship (HAA) has various potential applications and mission scenarios that require onboard energy harvesting and power distribution systems. The energy source considered for the HAA s power budget is solar photon energy that allows the use of either photovoltaic (PV) cells or advanced thermoelectric (ATE) converters. Both PV cells and an ATE system utilizing high performance thermoelectric materials were briefly compared to identify the advantages of ATE for HAA applications in this study. The ATE can generate a higher quantity of harvested energy than PV cells by utilizing the cascaded efficiency of a three-staged ATE in a tandem mode configuration. Assuming that each stage of ATE material has the figure of merit of 5, the cascaded efficiency of a three-staged ATE system approaches the overall conversion efficiency greater than 60%. Based on this estimated efficiency, the configuration of a HAA and the power utility modules are defined.

  10. High-average-power exciplex laser system

    NASA Astrophysics Data System (ADS)

    Sentis, M.

    The LUX high-average-power high-PRF exciplex laser (EL) system being developed at the Institut de Mecanique des Fluides de Marseille is characterized, and some preliminary results are presented. The fundamental principles and design criteria of ELs are reviewed, and the LUX components are described and illustrated, including a closed-circuit subsonic wind tunnel and a 100-kW-average power 1-kHz-PRF power pulser providing avalanche-discharge preionization by either an electron beam or an X-ray beam. Laser energy of 50 mJ has been obtained at wavelength 308 nm in the electron-beam mode (14.5 kV) using a 5300/190/10 mixture of Ne/Xe/HCl at pressure 1 bar.

  11. Continuous high-power gas lasers

    NASA Technical Reports Server (NTRS)

    Hertzberg, A.

    1979-01-01

    High power gas laser concepts are discussed with emphasis on the role that fluid mechanics has played in their development. Consideration is given to three types of systems: gasdynamic lasers, HF supersonic diffusion lasers, and electric discharge lasers. Flow effects and aerodynamic windows in such lasers are briefly described. Future directions of research are outlined.

  12. CHALLENGES FACING HIGH POWER PROTON ACCELERATORS

    SciTech Connect

    Plum, Michael A

    2013-01-01

    This presentation will provide an overview of the challenges of high power proton accelerators such as SNS, J-PARC, etc., and what we have learned from recent experiences. Beam loss mechanisms and methods to mitigate beam loss will also be discussed.

  13. Targets for high power neutral beams

    SciTech Connect

    Kim, J.

    1980-01-01

    Stopping high-power, long-pulse beams is fast becoming an engineering challenge, particularly in neutral beam injectors for heating magnetically confined plasmas. A brief review of neutral beam target technology is presented along with heat transfer calculations for some selected target designs.

  14. BEAM INSTRUMENTATION FOR HIGH POWER HADRON BEAMS

    SciTech Connect

    Aleksandrov, Alexander V

    2013-01-01

    This presentation will describe developments in the beam diagnostics which support the understanding and operation of high power hadron accelerators. These include the measurement of large dynamic range transverse and longitudinal beam profiles, beam loss detection, and non-interceptive diagnostics.

  15. High power diode pumped alkali vapor lasers

    NASA Astrophysics Data System (ADS)

    Zweiback, J.; Krupke, B.

    2008-05-01

    Diode pumped alkali lasers have developed rapidly since their first demonstration. These lasers offer a path to convert highly efficient, but relatively low brightness, laser diodes into a single high power, high brightness beam. General Atomics has been engaged in the development of DPALs with scalable architectures. We have examined different species and pump characteristics. We show that high absorption can be achieved even when the pump source bandwidth is several times the absorption bandwidth. In addition, we present experimental results for both potassium and rubidium systems pumped with a 0.2 nm bandwidth alexandrite laser. These data show slope efficiencies of 67% and 72% respectively.

  16. High power Ka band TWT amplifier

    SciTech Connect

    Golkowski, C.; Ivers, J.D.; Nation, J.A.; Wang, P.; Schachter, L.

    1999-07-01

    Two high power 35 GHz TWT amplifiers driven by a relativistic pencil, 850 kV, 200A electron beam have been assembled and tested. The first had a dielectric slow wave structure and was primarily used to develop diagnostics, and to gain experience in working with high power systems in Ka band. The source of the input power for the amplifier was a magnetron producing a 30 kW, 200ns long pulse of which 10 kW as delivered to the experiment. The 30 cm long dielectric (Teflon) amplifier produced output power levels of about 1 MW with a gain of about 23 dB. These results are consistent with expectations from PIC code simulations for this arrangement. The second amplifier, which is a single stage disk loaded slow wave structure, has been designed. It consists of one hundred uniform cells with two sets of ten tapered calls at the ends to lower the reflection coefficient. The phase advance per cell is {pi}/2. The amplifier passband extends from 28 to 40 GHz. It is designed to increase the output power to about 20 MW. The amplifier is in construction and will be tested in the near future. Details of the design of both systems will be provided and initial results from the new amplifier presented.

  17. High-Power, High-Thrust Ion Thruster (HPHTion)

    NASA Technical Reports Server (NTRS)

    Peterson, Peter Y.

    2015-01-01

    Advances in high-power photovoltaic technology have enabled the possibility of reasonably sized, high-specific power solar arrays. At high specific powers, power levels ranging from 50 to several hundred kilowatts are feasible. Ion thrusters offer long life and overall high efficiency (typically greater than 70 percent efficiency). In Phase I, the team at ElectroDynamic Applications, Inc., built a 25-kW, 50-cm ion thruster discharge chamber and fabricated a laboratory model. This was in response to the need for a single, high-powered engine to fill the gulf between the 7-kW NASA's Evolutionary Xenon Thruster (NEXT) system and a notional 25-kW engine. The Phase II project matured the laboratory model into a protoengineering model ion thruster. This involved the evolution of the discharge chamber to a high-performance thruster by performance testing and characterization via simulated and full beam extraction testing. Through such testing, the team optimized the design and built a protoengineering model thruster. Coupled with gridded ion thruster technology, this technology can enable a wide range of missions, including ambitious near-Earth NASA missions, Department of Defense missions, and commercial satellite activities.

  18. High power bipolar lead-acid batteries

    NASA Technical Reports Server (NTRS)

    Halpert, Gerald; Attia, Alan

    1991-01-01

    The Jet Propulsion Laboratory (JPL), with interest in advanced energy storage systems, is involved in the development of a unique lead acid battery design. This battery utilizes the same combination of lead and lead dioxide active materials present in the automobile starting battery. However, it can provide 2 to 10 times the power while minimizing volume and weight. The typical starting battery is described as a monopolar type using one current collector for both the positive and negative plate of adjacent cells. Specific power as high as 2.5 kW/kg was projected for 30 second periods with as many as 2000 recharge cycles.

  19. Scaling blackbody laser to high powers

    NASA Technical Reports Server (NTRS)

    Deyoung, R. J.

    1985-01-01

    Lasers pumped by solar heated blackbody cavities have potential for multimegawatt power beaming in space. There are two basic types of blackbody lasers; cavity pumped and transfer system. The transfer system is judged to be more readily scalable to high power. In this system, either N2 or CO is heated by the blackbody cavity then transferred into the laser cavity where CO2 is injected. The N2-CO2 system was demonstrated, but probably has lower efficiency than the CO-CO system. The characteristics of potential transfer laser systems are outlined.

  20. High-power Ka-band amplifier

    NASA Technical Reports Server (NTRS)

    Cormier, R.

    1993-01-01

    Development of a high-power tube suitable to power a Ka-band (34.5-GHz) antenna transmitter located at the Goldstone, California, tracking station is continuing. The University of Maryland Laboratory for Plasma Research and JPL are conducting a joint effort to test the feasibility of phase locking a second-harmonic gyrotron both by direct injection at the output cavity and by using a priming cavity to bunch the electrons in the beam. This article describes several design options and the results of computer simulation testing.

  1. High Efficiency Microwave Power Amplifier (HEMPA) Design

    NASA Technical Reports Server (NTRS)

    Sims, W. Herbert

    2004-01-01

    This paper will focus on developing an exotic switching technique that enhances the DC-to-RF conversion efficiency of microwave power amplifiers. For years, switching techniques implemented in the 10 kHz to 30 MHz region have resulted in DC-to-RF conversion efficiencies of 90-95-percent. Currently amplifier conversion efficiency, in the 2-3 GHz region approaches, 10-20-percent. Using a combination of analytical modeling and hardware testing, a High Efficiency Microwave Power Amplifier was built that demonstrated conversion efficiencies four to five times higher than current state of the art.

  2. High Power MPD Thruster Performance Measurements

    NASA Technical Reports Server (NTRS)

    LaPointe, Michael R.; Strzempkowski, Eugene; Pencil, Eric

    2004-01-01

    High power magnetoplasmadynamic (MPD) thrusters are being developed as cost effective propulsion systems for cargo transport to lunar and Mars bases, crewed missions to Mars and the outer planets, and robotic deep space exploration missions. Electromagnetic MPD thrusters have demonstrated, at the laboratory level, the ability to process megawatts of electrical power while providing significantly higher thrust densities than electrostatic electric propulsion systems. The ability to generate higher thrust densities permits a reduction in the number of thrusters required to perform a given mission, and alleviates the system complexity associated with multiple thruster arrays. The specific impulse of an MPD thruster can be optimized to meet given mission requirements, from a few thousand seconds with heavier gas propellants up to 10,000 seconds with hydrogen propellant. In support of programs envisioned by the NASA Office of Exploration Systems, Glenn Research Center is developing and testing quasi-steady MW-class MPD thrusters as a prelude to steady state high power thruster tests. This paper provides an overview of the GRC high power pulsed thruster test facility, and presents preliminary performance data for a quasi-steady baseline MPD thruster geometry.

  3. High-power, high-intensity laser propagation and interactions

    SciTech Connect

    Sprangle, Phillip; Hafizi, Bahman

    2014-05-15

    This paper presents overviews of a number of processes and applications associated with high-power, high-intensity lasers, and their interactions. These processes and applications include: free electron lasers, backward Raman amplification, atmospheric propagation of laser pulses, laser driven acceleration, atmospheric lasing, and remote detection of radioactivity. The interrelated physical mechanisms in the various processes are discussed.

  4. MULTIPULSE - high resolution and high power in one TDEM system

    NASA Astrophysics Data System (ADS)

    Chen, Tianyou; Hodges, Greg; Miles, Philip

    2015-09-01

    An airborne time domain electromagnetic (TEM) system with high resolution and great depth of exploration is desired for geological mapping as well as for mineral exploration. The MULTIPULSE technology enables an airborne TEM system to transmit a high power pulse (a half-sine, for instance) and one or multiple low power pulse(s) (trapezoid or square) within a half-cycle. The high power pulse ensures good depth of exploration and the low power pulse allows a fast transmitter current turn off and earlier off-time measurement thus providing higher frequency signals, which allows higher near-surface resolution and better sensitivity to weak conductors. The power spectrum of the MULTIPULSE waveform comprising a half-sine and a trapezoid pulse clearly shows increased power in the higher frequency range (> ~2.3 kHz) compared to that of a single half-sine waveform. The addition of the low power trapezoid pulse extends the range of the sensitivity 10-fold towards the weak conductors, expanding the geological conductivity range of a system and increasing the scope of its applications. The MULTIPULSE technology can be applied to standard single-pulse airborne TEM systems on both helicopter and fixed-wing. We field tested the HELITEM MULTIPULSE system over a wire-loop in Iroquois Falls, demonstrating the different sensitivity of the high and low power pulses to the overburden and the wire-loop. We also tested both HELITEM and GEOTEM MULTIPULSE systems over a layered oil sand geologic setting in Fort McMurray, Alberta, Canada. The results show comparable shallow geologic resolution of the MULTIPULSE to that of the RESOLVE system while maintaining superior depth of exploration, confirming the increased geological conductivity range of a system employing MULTIPULSE compared to the standard single-pulse systems.

  5. High average power linear induction accelerator development

    SciTech Connect

    Bayless, J.R.; Adler, R.J.

    1987-07-01

    There is increasing interest in linear induction accelerators (LIAs) for applications including free electron lasers, high power microwave generators and other types of radiation sources. Lawrence Livermore National Laboratory has developed LIA technology in combination with magnetic pulse compression techniques to achieve very impressive performance levels. In this paper we will briefly discuss the LIA concept and describe our development program. Our goals are to improve the reliability and reduce the cost of LIA systems. An accelerator is presently under construction to demonstrate these improvements at an energy of 1.6 MeV in 2 kA, 65 ns beam pulses at an average beam power of approximately 30 kW. The unique features of this system are a low cost accelerator design and an SCR-switched, magnetically compressed, pulse power system. 4 refs., 7 figs.

  6. High power density solid oxide fuel cells

    DOEpatents

    Pham, Ai Quoc; Glass, Robert S.

    2004-10-12

    A method for producing ultra-high power density solid oxide fuel cells (SOFCs). The method involves the formation of a multilayer structure cells wherein a buffer layer of doped-ceria is deposited intermediate a zirconia electrolyte and a cobalt iron based electrode using a colloidal spray deposition (CSD) technique. For example, a cobalt iron based cathode composed of (La,Sr)(Co,Fe)O (LSCF) may be deposited on a zirconia electrolyte via a buffer layer of doped-ceria deposited by the CSD technique. The thus formed SOFC have a power density of 1400 mW/cm.sup.2 at 600.degree. C. and 900 mW/cm.sup.2 at 700.degree. C. which constitutes a 2-3 times increased in power density over conventionally produced SOFCs.

  7. High power performance limits of fiber components

    NASA Astrophysics Data System (ADS)

    Holehouse, Nigel; Magné, Julien; Auger, Mathieu

    2015-03-01

    High power combiners are essential for practical fiber lasers, recent developments in pump technology has increased the available brightness and power of pumps significantly, enabling multi kW lasers and pushing combiner designs to new limits. I will present the challenges, measurements and some solutions to these issues. Traditional calculations for combiners underestimate the issues associated with the `tails' of the pump NA distribution, losses in fully filled combiners increase rapidly as pump NA blooms, and subsequent heating effects dominate the combiner's power handling. Acrylate coated pump fibers are reaching their limits and devices and measurements on double clad pump combiners with losses <0.05dB, will be presented enabling multi kW operation, The use of triple clad fibers in the gain section will discussed as a solution for multi kW applications. Results on ultra-low background loss FBG's will be presented, along with developed measurement techniques.

  8. High thermal power density heat transfer

    SciTech Connect

    Morris, J.F.

    1980-10-01

    Heat from a high temperature heat pipe is transferred through a vacuum or a gap filled with electrically nonconducting gas to a cooler heat pipe. The first heat pipe is used to cool the nuclear reactor while the second heat pipe is connected thermally and electrically to a thermionic converter. If the receiver requires greater thermal power density, geometries are used with larger heat pipe areas for transmitting and receiving energy than the area for conducting the heat to the thermionic converter. In this way the heat pipe capability for increasing thermal power densities compensates for the comparatively low thermal power densities through the electrically non-conducting gap between the two heat pipes.

  9. High-altitude solar power platform

    SciTech Connect

    Bailey, M.D.; Bower, M.V.

    1992-04-01

    Solar power is a preeminent alternative to conventional aircraft propulsion. With the continued advances in solar cells, fuel cells, and composite materials technology, the solar powered airplane is no longer a simple curiosity constrained to flights of several feet in altitude or minutes of duration. A high altitude solar powered platform (HASPP) has several potential missions, including communications and agriculture. In remote areas, a HASPP could be used as a communication link. In large farming areas, a HASPP could perform remote sensing of crops. The impact of HASPP in continuous flight for one year on agricultural monitoring mission is presented. This mission provides farmers with near real-time data twice daily from an altitude which allows excellant resolution on water conditions, crop diseases, and insect infestation. Accurate, timely data will enable farmers to increase their yield and efficiency. A design for HASPP for the foregoing mission is presented. In the design power derived from solar cells covering the wings is used for propulsion, avionics, and sensors. Excess power produced midday will be stored in fuel cells for use at night to maintain altitude and course.

  10. High Power UV LED Industrial Curing Systems

    SciTech Connect

    Karlicek, Robert, F., Jr; Sargent, Robert

    2012-05-14

    UV curing is a green technology that is largely underutilized because UV radiation sources like Hg Lamps are unreliable and difficult to use. High Power UV LEDs are now efficient enough to replace Hg Lamps, and offer significantly improved performance relative to Hg Lamps. In this study, a modular, scalable high power UV LED curing system was designed and tested, performing well in industrial coating evaluations. In order to achieve mechanical form factors similar to commercial Hg Lamp systems, a new patent pending design was employed enabling high irradiance at long working distances. While high power UV LEDs are currently only available at longer UVA wavelengths, rapid progress on UVC LEDs and the development of new formulations designed specifically for use with UV LED sources will converge to drive more rapid adoption of UV curing technology. An assessment of the environmental impact of replacing Hg Lamp systems with UV LED systems was performed. Since UV curing is used in only a small portion of the industrial printing, painting and coating markets, the ease of use of UV LED systems should increase the use of UV curing technology. Even a small penetration of the significant number of industrial applications still using oven curing and drying will lead to significant reductions in energy consumption and reductions in the emission of green house gases and solvent emissions.

  11. High power THz sources for nonlinear imaging

    NASA Astrophysics Data System (ADS)

    Tekavec, Patrick F.; Kozlov, Vladimir G.

    2014-02-01

    Many biological and chemical compounds have unique absorption features in the THz (0.1 - 10 THz) region, making the use of THz waves attractive for imaging in defense, security, biomedical imaging, and monitoring of industrial processes. Unlike optical radiation, THz frequencies can pass through many substances such as paper, clothing, ceramic, etc. with little attenuation. The use of currently available THz systems is limited by lack of highpower, sources as well as sensitive detectors and detector arrays operating at room temperature. Here we present a novel, high power THz source based on intracavity downconverison of optical pulses. The source delivers 6 ps pulses at 1.5 THz, with an average power of >300 μW and peak powers >450 mW. We propose an imaging method based on frequency upconverison that is ideally suited to use the narrow bandwidth and high peak powers produced by the source. By upconverting the THz image to the infrared, commercially available detectors can be used for real time imaging.

  12. High power THz sources for nonlinear imaging

    SciTech Connect

    Tekavec, Patrick F.; Kozlov, Vladimir G.

    2014-02-18

    Many biological and chemical compounds have unique absorption features in the THz (0.1 - 10 THz) region, making the use of THz waves attractive for imaging in defense, security, biomedical imaging, and monitoring of industrial processes. Unlike optical radiation, THz frequencies can pass through many substances such as paper, clothing, ceramic, etc. with little attenuation. The use of currently available THz systems is limited by lack of highpower, sources as well as sensitive detectors and detector arrays operating at room temperature. Here we present a novel, high power THz source based on intracavity downconverison of optical pulses. The source delivers 6 ps pulses at 1.5 THz, with an average power of >300 μW and peak powers >450 mW. We propose an imaging method based on frequency upconverison that is ideally suited to use the narrow bandwidth and high peak powers produced by the source. By upconverting the THz image to the infrared, commercially available detectors can be used for real time imaging.

  13. On life assessment of high reliability high power optical switch

    NASA Astrophysics Data System (ADS)

    Xu, Yuanjian; Chu, Peter

    2014-09-01

    High data rate and long range free space lasercom links require multi-watt optical transmitter power, which creates a need for high power redundancy switches to ensure high payload reliability. A high power optical switch (HPOS) with less than 0.15 dB loss and capable of switching more than 40 watts of optical power in a single mode fiber has been previously demonstrated in the Transformational Satellite Communication System program. Prototype switches, in either 1x2 or 2x2 configuration, have been subjected to pyro-shock test, vibration test, and vacuum operation. These switches showed no performance degradation as a result of these tests. Three prototypes went through 60,000 35-watt switching cycles and over 30 million low power switching cycles, and the switches showed no mechanical failure. The HPOS life is about 3.2 million switching cycles with a definition of 3-dB degradation in on/off extinction ratio, which is well suited for space applications.

  14. High power, high efficiency diode pumped Raman fiber laser

    NASA Astrophysics Data System (ADS)

    Glick, Yaakov; Fromzel, Viktor; Zhang, Jun; Dahan, Asaf; Ter-Gabrielyan, Nikolay; Pattnaik, Radha K.; Dubinskii, Mark

    2016-06-01

    We demonstrate a high power high efficiency Raman fiber laser pumped directly by a laser diode module at 976 nm. 80 Watts of CW power were obtained at a wavelength of 1020 nm with an optical-to-optical efficiency of 53%. When working quasi-CW, at a duty cycle of 30%, 85 W of peak power was produced with an efficiency of 60%. A commercial graded-index (GRIN) core fiber acts as the Raman fiber in a power oscillator configuration, which includes spectral selection to prevent generation of the 2nd Stokes. In addition, significant brightness enhancement of the pump beam is attained due to the Raman gain distribution profile in the GRIN fiber. To the best of our knowledge, this is the highest power Raman fiber laser directly pumped by laser diodes, which also exhibits a record efficiency for such a laser. In addition, it is the highest power Raman fiber laser (regardless of pumping source) demonstrated based on a GRIN fiber.

  15. Industrial Applications of High Power Ultrasonics

    NASA Astrophysics Data System (ADS)

    Patist, Alex; Bates, Darren

    Since the change of the millennium, high-power ultrasound has become an alternative food processing technology applicable to large-scale commercial applications such as emulsification, homogenization, extraction, crystallization, dewatering, low-temperature pasteurization, degassing, defoaming, activation and inactivation of enzymes, particle size reduction, extrusion, and viscosity alteration. This new focus can be attributed to significant improvements in equipment design and efficiency during the late 1990 s. Like most innovative food processing technologies, high-power ultrasonics is not an off-the-shelf technology, and thus requires careful development and scale-up for each and every application. The objective of this chapter is to present examples of ultrasonic applications that have been successful at the commercialization stage, advantages, and limitations, as well as key learnings from scaling up an innovative food technology in general.

  16. Power Supplies for High Energy Particle Accelerators

    NASA Astrophysics Data System (ADS)

    Dey, Pranab Kumar

    2016-06-01

    The on-going research and the development projects with Large Hadron Collider at CERN, Geneva, Switzerland has generated enormous enthusiasm and interest amongst all to know about the ultimate findings on `God's Particle'. This paper has made an attempt to unfold the power supply requirements and the methodology adopted to provide the stringent demand of such high energy particle accelerators during the initial stages of the search for the ultimate particles. An attempt has also been made to highlight the present status on the requirement of power supplies in some high energy accelerators with a view that, precautionary measures can be drawn during design and development from earlier experience which will be of help for the proposed third generation synchrotron to be installed in India at a huge cost.

  17. Feedthrough terminal for high-power cell

    DOEpatents

    Kaun, T.D.

    1982-05-28

    A feedthrough terminal for a high power electrochemical storage cell providing low resistance coupling to the conductive elements therein while isolating the terminal electrode from the highly corrosive environment within the cell is disclosed. A large diameter, cylindrical copper electrode is enclosed in a stainless steel tube with a BN powder feedthrough seal maintained around the stainless steel tube by means of facing insulative bushings and an outer sleeve. One end of the copper conductor is silver-brazed directly to a flat, butterfly bus bar within the cell, with the adjacent end of the surrounding outer feedthrough sleeve welded to the bus bar. A threaded seal is fixedly positioned on a distal portion of the stainless steel tube immediately adjacent the distal insulative bushing so as to compress the feedthrough seal in tight fitting relation around the stainless steel tube in providing a rugged, leak-proof electrical feedthrough terminal for the power cell.

  18. New high power linacs and beam physics

    SciTech Connect

    Wangler, T.P.; Gray, E.R.; Nath, S.; Crandall, K.R.; Hasegawa, K.

    1997-08-01

    New high-power proton linacs must be designed to control beam loss, which can lead to radioactivation of the accelerator. The threat of beam loss is increased significantly by the formation of beam halo. Numerical simulation studies have identified the space-charge interactions, especially those that occur in rms mismatched beams, as a major concern for halo growth. The maximum-amplitude predictions of the simulation codes must be subjected to independent tests to confirm the validity of the results. Consequently, the authors compare predictions from the particle-core halo models with computer simulations to test their understanding of the halo mechanisms that are incorporated in the computer codes. They present and discuss scaling laws that provide guidance for high-power linac design.

  19. Crystal fibers for high power lasers

    NASA Astrophysics Data System (ADS)

    Kim, W.; Florea, C.; Gibson, D.; Peele, J.; Askins, C.; Shaw, B.; Bowman, S.; O'Connor, S.; Bayya, S.; Aggarwal, I.; Sanghera, J. S.

    2013-02-01

    In this paper, we present our recent progress in developing single crystal fibers for high power single frequency fiber lasers. The optical, spectral and morphological properties as well as the loss and gain measured from these crystal fibers drawn by Laser Heated Pedestal Growth (LHPG) system are also discussed. Results on application of various cladding materials on the crystal core and the methods of fiber end-face polishing are also presented.

  20. Gate Drive For High Speed, High Power IGBTs

    SciTech Connect

    Nguyen, M.N.; Cassel, R.L.; de Lamare, J.E.; Pappas, G.C.; /SLAC

    2007-06-18

    A new gate drive for high-voltage, high-power IGBTs has been developed for the SLAC NLC (Next Linear Collider) Solid State Induction Modulator. This paper describes the design and implementation of a driver that allows an IGBT module rated at 800A/3300V to switch up to 3000A at 2200V in 3{micro}S with a rate of current rise of more than 10000A/{micro}S, while still being short circuit protected. Issues regarding fast turn on, high de-saturation voltage detection, and low short circuit peak current will be presented. A novel approach is also used to counter the effect of unequal current sharing between parallel chips inside most high-power IGBT modules. It effectively reduces the collector-emitter peak current, and thus protects the IGBT from being destroyed during soft short circuit conditions at high di/dt.

  1. High peak power diode stacks for high energy lasers

    NASA Astrophysics Data System (ADS)

    Negoita, Viorel C.; Vethake, Thilo; Jiang, John; Roff, Robert; Shih, Ming; Duck, Richard; Bauer, Marc; Mite, Roberto; Boucke, Konstantin; Treusch, Georg

    2015-02-01

    High energy solid state lasers are being developed for fusion experiments and other research applications where high energy per pulse is required but the repetition rate is rather low, around 10Hz. We report our results on high peak power diode laser stacks used as optical pumps for these lasers. The stacks are based on 10 mm bars with 4 mm cavity length and 55% fill factor, with peak power exceeding 500 W per bar. These bars are stacked and mounted on a cooler which provides backside cooling and electrical insulation. Currently we mount 25 bars per cooler for a nominal peak power of 12.5 kW, but in principle the mounting scheme can be scaled to a different number of devices depending on the application. Pretesting of these bars before soldering on the cooler enables us to select devices with similar wavelength and thus we maintain tight control of the spectral width (FWHM less than 6 nm). Fine adjustments of the centroid wavelength can be done by means of temperature of the cooling fluid or bias current. The available wavelength range spans from 880 nm to 1000 nm, and the wavelength of the entire assembly of stacks can be controlled to within 0.5 nm of the target value, which makes these stacks suitable for pumping a variety of gain media. The devices are fast axis collimated, with over 95% power being collimated in 6 mrad (full angle). The slow axis divergence is 9° (full angle) for 95% power content.

  2. The future of high power laser techniques

    NASA Astrophysics Data System (ADS)

    Poprawe, Reinhart; Loosen, Peter; Hoffmann, Hans-Dieter

    2007-05-01

    High Power Lasers have been used for years in corresponding applications. Constantly new areas and new processes have been demonstrated, developed and transferred to fruitful use in industry. With the advent of diode pumped solid state lasers in the multi-kW-power regime at beam qualities not far away from the diffraction limit, a new area of applicability has opened. In welding applications speeds could be increased and systems could be developed with higher efficiently leading also to new perspectives for increased productivity, e.g. in combined processing. Quality control is increasingly demanded by the applying industries, however applications still are rare. Higher resolution of coaxial process control systems in time and space combined with new strategies in signal processing could give rise to new applications. The general approach described in this paper emphasizes the fact, that laser applications can be developed more efficiently, more precisely and with higher quality, if the laser radiation is tailored properly to the corresponding application. In applying laser sources, the parameter ranges applicable are by far wider and more flexible compared to heat, mechanical or even electrical energy. The time frame ranges from several fs to continuous wave and this spans approximately 15 orders of magnitude. Spacewise, the foci range from several µm to cm and the resulting intensities suitable for materials processing span eight orders of magnitude from 10 3 to 10 11 W/cm2. In addition to space (power, intensity) and time (pulse) the wavelength can be chosen as a further parameter of optimization. As a consequence, the resulting new applications are vast and can be utilized in almost every market segment of our global economy (Fig. 1). In the past and only partly today, however, this flexibility of laser technology is not exploited in full in materials processing, basically because in the high power regime the lasers with tailored beam properties are not

  3. High power RF klystrons for linear accelerators

    NASA Astrophysics Data System (ADS)

    Konrad, G. T.

    1984-05-01

    Design criteria and operating experience for two klystrons of differing power are described. A one-dimensional large signal code was used to design the tubes. Calculated operating parameters obtained from this code are presented. Based on standard klystron experience at SLAC high voltage breakdown, instabilities and RF window breakdown were expected to be problem areas. Current experience in these areas on the tube designs are summarized. In the case of the SLC klystron 50 MW at rated average power has been obtained at 315 kV with an efficiency of 45%. The fault rate has been found to be as low as one fault per 8 hour shift. The first 150 MW klystron had a conventional output cavity and produced 105 MW at the design beam voltage of 450 kV. At 475 kV a power of 122 MW with an efficiency of 43% were obtained. Design changes to obtain higher power and efficiency are incorporated in the second 150 MW tube and projections are made for future tubes.

  4. Piezoelectric transformer and modular connections for high power and high voltage power supplies

    NASA Technical Reports Server (NTRS)

    Vazquez Carazo, Alfredo (Inventor)

    2006-01-01

    A modular design for combining piezoelectric transformers is provided for high voltage and high power conversion applications. The input portions of individual piezoelectric transformers are driven for a single power supply. This created the vibration and the conversion of electrical to electrical energy from the input to the output of the transformers. The output portions of the single piezoelectric transformers are combining in series and/or parallel to provide multiple outputs having different rating of voltage and current.

  5. High-Efficiency Microwave Power Amplifier

    NASA Technical Reports Server (NTRS)

    Sims, Williams H.

    2005-01-01

    A high-efficiency power amplifier that operates in the S band (frequencies of the order of a few gigahertz) utilizes transistors operating under class-D bias and excitation conditions. Class-D operation has been utilized at lower frequencies, but, until now, has not been exploited in the S band. Nominally, in class D operation, a transistor is switched rapidly between "on" and "off" states so that at any given instant, it sustains either high current or high voltage, but not both at the same time. In the ideal case of zero "on" resistance, infinite "off" resistance, zero inductance and capacitance, and perfect switching, the output signal would be a perfect square wave. Relative to the traditional classes A, B, and C of amplifier operation, class D offers the potential to achieve greater power efficiency. In addition, relative to class-A amplifiers, class-D amplifiers are less likely to go into oscillation. In order to design this amplifier, it was necessary to derive mathematical models of microwave power transistors for incorporation into a larger mathematical model for computational simulation of the operation of a class-D microwave amplifier. The design incorporates state-of-the-art switching techniques applicable only in the microwave frequency range. Another major novel feature is a transmission-line power splitter/combiner designed with the help of phasing techniques to enable an approximation of a square-wave signal (which is inherently a wideband signal) to propagate through what would, if designed in a more traditional manner, behave as a more severely band-limited device (see figure). The amplifier includes an input, a driver, and a final stage. Each stage contains a pair of GaAs-based field-effect transistors biased in class D. The input signal can range from -10 to +10 dBm into a 50-ohm load. The table summarizes the performances of the three stages

  6. High Energy Density Sciences with High Power Lasers at SACLA

    NASA Astrophysics Data System (ADS)

    Kodama, Ryosuke

    2013-10-01

    One of the interesting topics on high energy density sciences with high power lasers is creation of extremely high pressures in material. The pressures of more than 0.1 TPa are the energy density corresponding to the chemical bonding energy, resulting in expectation of dramatic changes in the chemical reactions. At pressures of more than TPa, most of material would be melted on the shock Hugoniot curve. However, if the temperature is less than 1eV or lower than a melting point at pressures of more than TPa, novel solid states of matter must be created through a pressured phase transition. One of the interesting materials must be carbon. At pressures of more than TPa, the diamond structure changes to BC and cubic at more than 3TPa. To create such novel states of matter, several kinds of isentropic-like compression techniques are being developed with high power lasers. To explore the ``Tera-Pascal Science,'' now we have a new tool which is an x-ray free electron laser as well as high power lasers. The XFEL will clear the details of the HED states and also efficiently create hot dense matter. We have started a new project on high energy density sciences using an XFEL (SACLA) in Japan, which is a HERMES (High Energy density Revolution of Matter in Extreme States) project.

  7. The repetitive high energy pulsed power module

    SciTech Connect

    Harjes, H.C.; Reed, K.W.; Buttram, M.T.; Turman, B.N.; Neau, E.L.; Martinez, L.; Adcock, J.; Weinbrecht, E.A.; Mann, G.A.; Morgan, F.A.; Laderach, G.E.; Pena, G.; Butler, M.; Schneider, L.X.; Wavrik, R.W.; Penn, K.J.; Weber, G.J.

    1990-01-01

    High average power magnetic pulse compression systems are being considered for use in several applications. One of the key issues in the design of a pulsed power driver for these applications is component reliability, efficiency, and lifetime. In the Repetitive High Energy Pulsed Power (RHEPP) module, pulse compression is done exclusively with magnetic switches (saturable reactors) because such switches have the potential of performing efficiently and reliably for >10{sup 10} shots. The objective of the RHEPP project is to explore the feasibility of using magnetic pulse compression technology in continuous high average power applications. The RHEPP system consists of a compressor which drives a linear induction voltage adder with a diode load. Prime power for the module is supplied by a 600 kW, 120 Hz, alternator (furnished by Westinghouse Electric Corporation). At present, construction and initial testing in a bipolar mode of the first two stages of the compressor has been completed. This system has operated for a total of 332 minutes (4.8 {times} 10{sup 6} pulses) at full power (600 kW) with an efficiency of 94+/{minus}3%. The first stage magnetic switch (MS1) has a pulse compression factor of 8.4 (4.2 ms to 500 {mu}s time to peak). It has two, parallel connected, 67 turn copper coils and a 760 kg core of 2 mil silicon steel with a magnetic cross sectional area of 0. 065 m{sup 2}. The second stage magnetic switch (MS2) has a pulse compression factor of 3 (500 {mu}s to 170 {mu}s). It has two, parallel connected, 36 turn copper coils and a 361 kg core of field annealed 2605CO Metglas with a magnetic area of 0.019 m{sup 2}. A discussion of RHEPP compressor design effort and its baseline design is given. In addition, initial results from the operation of the first two stages are presented. 11 refs., 8 figs., 4 tabs.

  8. High-power LEDs for plant cultivation

    NASA Astrophysics Data System (ADS)

    Tamulaitis, Gintautas; Duchovskis, Pavelas; Bliznikas, Zenius; Breive, Kestutis; Ulinskaite, Raimonda; Brazaityte, Ausra; Novickovas, Algirdas; Zukauskas, Arturas; Shur, Michael S.

    2004-10-01

    We report on high-power solid-state lighting facility for cultivation of greenhouse vegetables and on the results of the study of control of photosynthetic activity and growth morphology of radish and lettuce imposed by variation of the spectral composition of illumination. Experimental lighting modules (useful area of 0.22 m2) were designed based on 4 types of high-power light-emitting diodes (LEDs) with emission peaked in red at the wavelengths of 660 nm and 640 nm (predominantly absorbed by chlorophyll a and b for photosynthesis, respectively), in blue at 455 nm (phototropic function), and in far-red at 735 nm (important for photomorphology). Morphological characteristics, chlorophyll and phytohormone concentrations in radish and lettuce grown in phytotron chambers under lighting with different spectral composition of the LED-based illuminator and under illumination by high pressure sodium lamps with an equivalent photosynthetic photon flux density were compared. A well-balanced solid-state lighting was found to enhance production of green mass and to ensure healthy morphogenesis of plants compared to those grown using conventional lighting. We observed that the plant morphology and concentrations of morphologically active phytohormones is strongly affected by the spectral composition of light in the red region. Commercial application of the LED-based illumination for large-scale plant cultivation is discussed. This technology is favorable from the point of view of energy consumption, controllable growth, and food safety but is hindered by high cost of the LEDs. Large scale manufacturing of high-power red AlInGaP-based LEDs emitting at 650 nm and a further decrease of the photon price for the LEDs emitting in the vicinity of the absorption peak of chlorophylls have to be achieved to promote horticulture applications.

  9. Transportable high-energy high-power generator.

    PubMed

    Novac, B M; Smith, I R; Senior, P; Parker, M; Louverdis, G

    2010-05-01

    High-power applications sometimes require a transportable, simple, and robust gigawatt pulsed power generator, and an analysis of various possible approaches shows that one based on a twin exploding wire array is extremely advantageous. A generator based on this technology and used with a high-energy capacitor bank has recently been developed at Loughborough University. An H-configuration circuit is used, with one pair of diagonally opposite arms each comprising a high-voltage ballast inductor and the other pair exploding wire arrays capable of generating voltages up to 300 kV. The two center points of the H configuration provide the output to the load, which is coupled through a high-voltage self-breakdown spark gap, with the entire autonomous source being housed in a metallic container. Experimentally, a load resistance of a few tens of Ohms is provided with an impulse of more than 300 kV, having a rise time of about 140 ns and a peak power of over 1.7 GW. Details of the experimental arrangement and typical results are presented and diagnostic measurements of the current and voltage output are shown to compare well with theoretical predictions based on detailed numerical modeling. Finally, the next stage toward developing a more powerful and energetic transportable source is outlined. PMID:20515165

  10. Optimized VCSELs for high-power arrays

    NASA Astrophysics Data System (ADS)

    Moench, Holger; Kolb, Johanna S.; Engelhardt, Andreas P.; Gerlach, Philipp; Jaeger, Roland; Pollmann-Retsch, Jens; Weichmann, Ulrich; Witzigmann, Bernd

    2014-02-01

    High-power VCSEL systems with multi kilowatt output power require a good electro-optical efficiency at the point of operation i.e. at elevated temperature. The large number of optimization parameters can be structured in a way that separates system and assembly considerations from the minimization of electrical and optical losses in the epitaxially grown structure. Temperature dependent functions for gain parameters, internal losses and injection efficiency are derived from a fit to experimental data. The empirical description takes into account diameter dependent effects like current spreading or temperature dependent ones like voltage drops over hetero-interfaces in the DBR mirrors. By evaluating experimental measurements of the light output and voltage characteristics over a large range of temperature and diameter, wafer-characteristic parameters are extracted allowing to predict the performance of VCSELs made from this material in any array and assembly configuration. This approach has several beneficial outcomes: Firstly, it gives a general description of a VCSEL independent of its geometry, mounting and detuning, secondly, insights into the structure and the underlying physics can be gained that lead to the improvement potential of the structure and thirdly the performance of the structure in arrays and modules can be predicted. Experimental results validate the approach and demonstrate the significantly improved VCSEL efficiency and the benefit in high power systems.

  11. High-power LED package requirements

    NASA Astrophysics Data System (ADS)

    Wall, Frank; Martin, Paul S.; Harbers, Gerard

    2004-01-01

    Power LEDs have evolved from simple indicators into illumination devices. For general lighting applications, where the objective is to light up an area, white LED arrays have been utilized to serve that function. Cost constraints will soon drive the industry to provide a discrete lighting solution. Early on, that will mean increasing the power densities while quantum efficiencies are addressed. For applications such as automotive headlamps & projection, where light needs to be tightly collimated, or controlled, arrays of die or LEDs will not be able to satisfy the requirements & limitations defined by etendue. Ultimately, whether a luminaire requires a small source with high luminance, or light spread over a general area, economics will force the evolution of the illumination LED into a compact discrete high power package. How the customer interfaces with this new package should be an important element considered early on in the design cycle. If an LED footprint of adequate size is not provided, it may prove impossible for the customer, or end user, to get rid of the heat in a manner sufficient to prevent premature LED light output degradation. Therefore it is critical, for maintaining expected LED lifetime & light output, that thermal performance parameters be defined, by design, at the system level, which includes heat sinking methods & interface materials or methdology.

  12. Deformable mirror for high power laser applications

    NASA Astrophysics Data System (ADS)

    Mrň; a, Libor; Sarbort, Martin; Hola, Miroslava

    2015-01-01

    The modern trend in high power laser applications such as welding, cutting and surface hardening lies in the use of solid-state lasers. The output beam of these lasers is characterized by a Gaussian intensity distribution. However, the laser beams with different intensity distributions, e.g. top-hat, are preferable in various applications. In this paper we present a new type of deformable mirror suitable for the corresponding laser beam shaping. The deformation of the mirror is achieved by an underlying array of actuators and a pressurized coolant that also provides the necessary cooling. We describe the results of the surface shape measurement using a 3D scanner for different settings of actuators. Further, we show the achieved intensity distributions measured by a beam profiler for a low power laser beam reflected from the mirror.

  13. Industrial application of high power disk lasers

    NASA Astrophysics Data System (ADS)

    Brockmann, Rüdiger; Havrilla, David

    2008-02-01

    Laser welding has become one of the fastest growing areas for industrial laser applications. The increasing cost effectiveness of the laser process is enabled by the development of new highly efficient laser sources, such as the Disk laser, coupled with decreasing cost per Watt. TRUMPF introduced the Disk laser several years ago, and today it has become the most reliable laser tool on the market. The excellent beam quality and output powers of up to 10 kW enable its application in the automotive industry as well as in the range of thick plate welding, such as heavy construction and ship building. This serves as an overview of the most recent developments on the TRUMPF Disk laser and its industrial applications like cutting, welding, remote welding and hybrid welding, too. The future prospects regarding increased power and even further improved productivity and economics are presented.

  14. Digitally Controlled High Availability Power Supply

    SciTech Connect

    MacNair, David; /SLAC

    2008-09-25

    This paper reports the design and test results on novel topology, high-efficiency, and low operating temperature, 1,320-watt power modules for high availability power supplies. The modules permit parallel operation for N+1 redundancy with hot swap capability. An embedded DSP provides intelligent start-up and shutdown, output regulation, general control and fault detection. PWM modules in the DSP drive the FET switches at 20 to 100 kHz. The DSP also ensures current sharing between modules, synchronized switching, and soft start up for hot swapping. The module voltage and current have dedicated ADCs (>200 kS/sec) to provide pulse-by-pulse output control. A Dual CAN bus interface provides for low cost redundant control paths. Over-rated module components provide high reliability and high efficiency at full load. Low on-resistance FETs replace conventional diodes in the buck regulator. Saturable inductors limit the FET reverse diode current during switching. The modules operate in a two-quadrant mode, allowing bipolar output from complimentary module groups. Controllable, low resistance FETs at the input and output provide fault isolation and allow module hot swapping.

  15. Economic comparison of power factor correction by capacitors and high power factor/high-efficiency motors

    SciTech Connect

    Slack, K.D.; Capehart, B.L.

    1998-12-01

    The traditional approach to power factor correction in a facility is to add capacitors to individual loads such as motors and fluorescent lighting circuits, to add a capacitor bank with switching to a major distribution panel, or to add a capacitor bank with switching to the power input panel from the utility lines. Recently it has been shown that careful selection of high-efficiency motors for a facility can result in new motors with a significantly higher power factor than the motors they replaced. This article compares and discusses the cost-effectiveness of installing capacitors on individual motors with the cost-effectiveness of installing high-efficiency, high power factor motors.

  16. The JLab high power ERL light source

    SciTech Connect

    G.R. Neil; C. Behre; S.V. Benson; M. Bevins; G. Biallas; J. Boyce; J. Coleman; L.A. Dillon-Townes; D. Douglas; H.F. Dylla; R. Evans; A. Grippo; D. Gruber; J. Gubeli; D. Hardy; C. Hernandez-Garcia; K. Jordan; M.J. Kelley; L. Merminga; J. Mammosser; W. Moore; N. Nishimori; E. Pozdeyev; J. Preble; R. Rimmer; Michelle D. Shinn; T. Siggins; C. Tennant; R. Walker; G.P. Williams and S. Zhang

    2005-03-19

    A new THz/IR/UV photon source at Jefferson Lab is the first of a new generation of light sources based on an Energy-Recovered, (superconducting) Linac (ERL). The machine has a 160 MeV electron beam and an average current of 10 mA in 75 MHz repetition rate hundred femtosecond bunches. These electron bunches pass through a magnetic chicane and therefore emit synchrotron radiation. For wavelengths longer than the electron bunch the electrons radiate coherently a broadband THz {approx} half cycle pulse whose average brightness is > 5 orders of magnitude higher than synchrotron IR sources. Previous measurements showed 20 W of average power extracted[1]. The new facility offers simultaneous synchrotron light from the visible through the FIR along with broadband THz production of 100 fs pulses with >200 W of average power. The FELs also provide record-breaking laser power [2]: up to 10 kW of average power in the IR from 1 to 14 microns in 400 fs pulses at up to 74.85 MHz repetition rates and soon will produce similar pulses of 300-1000 nm light at up to 3 kW of average power from the UV FEL. These ultrashort pulses are ideal for maximizing the interaction with material surfaces. The optical beams are Gaussian with nearly perfect beam quality. See www.jlab.org/FEL for details of the operating characteristics; a wide variety of pulse train configurations are feasible from 10 microseconds long at high repetition rates to continuous operation. The THz and IR system has been commissioned. The UV system is to follow in 2005. The light is transported to user laboratories for basic and applied research. Additional lasers synchronized to the FEL are also available. Past activities have included production of carbon nanotubes, studies of vibrational relaxation of interstitial hydrogen in silicon, pulsed laser deposition and ablation, nitriding of metals, and energy flow in proteins. This paper will present the status of the system and discuss some of the discoveries we have made

  17. Microstructured fibers for high power applications

    NASA Astrophysics Data System (ADS)

    Baggett, J. C.; Petrovich, M. N.; Hayes, J. R.; Finazzi, V.; Poletti, F.; Amezcua, R.; Broderick, N. G. R.; Richardson, D. J.; Monro, T. M.; Salter, P. L.; Proudley, G.; O'Driscoll, E. J.

    2005-10-01

    Fiber delivery of intense laser radiation is important for a broad range of application sectors, from medicine through to industrial laser processing of materials, and offers many practical system design and usage benefits relative to free space solutions. Optical fibers for high power transmission applications need to offer low optical nonlinearity and high damage thresholds. Single-mode guidance is also often a fundamental requirement for the many applications in which good beam quality is critical. In recent years, microstructured fiber technology has revolutionized the dynamic field of optical fibers, bringing with them a wide range of novel optical properties. These fibers, in which the cladding region is peppered with many small air holes, are separated into two distinct categories, defined by the way in which they guide light: (1) index-guiding holey fibers (HFs), in which the core is solid and light is guided by a modified form of total internal reflection, and (2) photonic band-gap fibers (PBGFs) in which guidance in a hollow core can be achieved via photonic band-gap effects. Both of these microstructured fiber types offer attractive qualities for beam delivery applications. For example, using HF technology, large-mode-area, pure silica fibers with robust single-mode guidance over broad wavelength ranges can be routinely fabricated. In addition, the ability to guide light in an air-core within PBGFs presents obvious power handling advantages. In this paper we review the fundamentals and current status of high power, high brightness, beam delivery in HFs and PBGFs, and speculate as to future prospects.

  18. High power time domain terahertz spectroscopy

    NASA Astrophysics Data System (ADS)

    Graber, Benjamin

    Terahertz (THz) has become a strong area for scientific research and commercial application in recent years. This research group has redesigned and optimized a THz photoconductive antenna, which currently operates with approximately 10x the power of a commercial antenna. It has been determined by this research that the THz signal emitted from a photoconductive antenna consists of coherent and incoherent signals. In addition to the improvement of the THz photoconductive antenna, I have optimized an electro optic THz detection system by characterizing the field dependency of an electro optic crystal, which enabled me to estimate the THz electric field strength. The high power THz source and optimized detection system were combined into a high power, high resolution time domain THz spectrometer. This spectrometer was used to conduct original measurements of the THz spectrum of water vapor, ionized air, and various chemical vapor including explosives. Most of these measurements were only possible with our improved THz spectrometer. In order to understand ionized air, an additional study was carried out to explore the ionization of several gases (e.g. N2, O2, Ar, CO2, and water vapor) which were ionized by radioactive isotopes. This unique study found that in addition to dose rate, the gamma energy of the radioactive isotopes and the sequential ionization levels of gases affect the equilibrium ion densities of these gases. This effect was especially pronounced for argon gas. The study of ion dynamics in gases has lead to the development of a prototype for stand-off detection and identification of radioactive isotopes. This prototype, despite being simple in design, can detect isotopes faster and more cheaply than a conventional gamma ray spectrometer. Throughout this thesis research I have successfully developed a high power, high resolution terahertz spectrometer and demonstrated that with the spectrometer I could identify characteristic resonances of water vapor, some

  19. Power management systems for sediment microbial fuel cells in high power and continuous power applications

    NASA Astrophysics Data System (ADS)

    Donovan, Conrad Koble

    The objective of this dissertation was to develop power management systems (PMS) for sediment microbial fuel cells (SFMCs) for high power and continuous applications. The first part of this dissertation covers a new method for testing the performance of SMFCs. This device called the microbial fuel cell tester was developed to automatically test power generation of PMS. The second part focuses on a PMS capable of delivering high power in burst mode. This means that for a small amount of time a large amount of power up to 2.5 Watts can be delivered from a SMFC only generating mW level power. The third part is aimed at developing a multi-potentiostat laboratory tool that measures the performance at fixed cell potentials of microbial fuel cells so that I can optimize them for use with the PMS. This tool is capable of controlling the anode potential or cathode potential and measuring current of six separate SMFCs simultaneously. By operating multiple potentiostats, I was able to run experiments that find ideal operating conditions for the sediment microbial fuel cells, and also I can optimize the power management system for these conditions. The fourth part of the dissertation is targeting a PMS that was able to operate a sensor continuously which was powered by an SMFC. In pervious applications involving SMFCs, the PMS operated in batch mode. In this PMS, the firmware on the submersible ultrasonic receiver (SUR) was modified for use with my PMS. This integration of PMS and SUR allowed for the continuous operation of the SUR without using a battery. Finally, the last part of the dissertation recommends a scale-up power management system to overcome the linearity scale up issue of SMFCs as future work. Concluding remarks are also added to summarize the goal and focus of this dissertation.

  20. Low power, scalable multichannel high voltage controller

    DOEpatents

    Stamps, James Frederick; Crocker, Robert Ward; Yee, Daniel Dadwa; Dils, David Wright

    2006-03-14

    A low voltage control circuit is provided for individually controlling high voltage power provided over bus lines to a multitude of interconnected loads. An example of a load is a drive for capillary channels in a microfluidic system. Control is distributed from a central high voltage circuit, rather than using a number of large expensive central high voltage circuits to enable reducing circuit size and cost. Voltage is distributed to each individual load and controlled using a number of high voltage controller channel switches connected to high voltage bus lines. The channel switches each include complementary pull up and pull down photo isolator relays with photo isolator switching controlled from the central high voltage circuit to provide a desired bus line voltage. Switching of the photo isolator relays is further controlled in each channel switch using feedback from a resistor divider circuit to maintain the bus voltage swing within desired limits. Current sensing is provided using a switched resistive load in each channel switch, with switching of the resistive loads controlled from the central high voltage circuit.

  1. Low power, scalable multichannel high voltage controller

    DOEpatents

    Stamps, James Frederick; Crocker, Robert Ward; Yee, Daniel Dadwa; Dils, David Wright

    2008-03-25

    A low voltage control circuit is provided for individually controlling high voltage power provided over bus lines to a multitude of interconnected loads. An example of a load is a drive for capillary channels in a microfluidic system. Control is distributed from a central high voltage circuit, rather than using a number of large expensive central high voltage circuits to enable reducing circuit size and cost. Voltage is distributed to each individual load and controlled using a number of high voltage controller channel switches connected to high voltage bus lines. The channel switches each include complementary pull up and pull down photo isolator relays with photo isolator switching controlled from the central high voltage circuit to provide a desired bus line voltage. Switching of the photo isolator relays is further controlled in each channel switch using feedback from a resistor divider circuit to maintain the bus voltage swing within desired limits. Current sensing is provided using a switched resistive load in each channel switch, with switching of the resistive loads controlled from the central high voltage circuit.

  2. Hybrid high power femtosecond laser system

    NASA Astrophysics Data System (ADS)

    Trunov, V. I.; Petrov, V. V.; Pestryakov, E. V.; Kirpichnikov, A. V.

    2006-01-01

    Design of a high-power femtosecond laser system based on hybrid chirped pulse amplification (CPA) technique developed by us is presented. The goal of the hybrid principle is the use of the parametric and laser amplification methods in chirped pulse amplifiers. It makes it possible to amplify the low-cycle pulses with a duration of <= fs to terawatt power with a high contrast and high conversion efficiency of the pump radiation. In a created system the Ti:Sapphire laser with 10 fs pulses at 810 nm and output energy about 1-3 nJ will be used like seed source. The oscillator pulses were stretched to duration of about 500 ps by an all-reflective grating stretcher. Then the stretched pulses are injected into a nondegenerate noncollinear optical parametric amplifier (NOPA) on the two BBO crystals. After amplification in NOPA the residual pump was used in a bow-tie four pass amplifier with hybrid active medium (based on Al II0 3:Ti 3+ and BeAl IIO 4:Ti 3+ crystals). The final stage of the amplification system consists of two channels, namely NIR (820 nm) and short-VIS (410 nm). Numerical simulation has shown that the terawatt level of output power can be achieved also in a short-VIS channel at the pumping of the double-crystal BBO NOPA by the radiation of the fourth harmonic of the Nd:YAG laser at 266 nm. Experimentally parametric amplification in BBO crystals of 30-50 fs pulses were investigated and optimized using SPIDER technique and single-shot autocomelator for the realization of shortest duration 40 fs.

  3. High frequency inductive lamp and power oscillator

    DOEpatents

    MacLennan, Donald A.; Turner, Brian P.; Dolan, James T.; Kirkpatrick, Douglas A.; Leng, Yongzhang

    2000-01-01

    A high frequency inductively coupled electrodeless lamp includes an excitation coil with an effective electrical length which is less than one half wavelength of a driving frequency applied thereto, preferably much less. The driving frequency may be greater than 100 MHz and is preferably as high as 915 MHz. Preferably, the excitation coil is configured as a non-helical, semi-cylindrical conductive surface having less than one turn, in the general shape of a wedding ring. At high frequencies, the current in the coil forms two loops which are spaced apart and parallel to each other. Configured appropriately, the coil approximates a Helmholtz configuration. The lamp preferably utilizes an bulb encased in a reflective ceramic cup with a pre-formed aperture defined therethrough. The ceramic cup may include structural features to aid in alignment and/or a flanged face to aid in thermal management. The lamp head is preferably an integrated lamp head comprising a metal matrix composite surrounding an insulating ceramic with the excitation integrally formed on the ceramic. A novel solid-state oscillator preferably provides RF power to the lamp. The oscillator is a single active element device capable of providing over 70 watts of power at over 70% efficiency. Various control circuits may be employed to match the driving frequency of the oscillator to a plurality of tuning states of the lamp.

  4. High frequency inductive lamp and power oscillator

    DOEpatents

    MacLennan, Donald A.; Dymond, Jr., Lauren E.; Gitsevich, Aleksandr; Grimm, William G.; Kipling, Kent; Kirkpatrick, Douglas A.; Ola, Samuel A.; Simpson, James E.; Trimble, William C.; Tsai, Peter; Turner, Brian P.

    2001-01-01

    A high frequency inductively coupled electrodeless lamp includes an excitation coil with an effective electrical length which is less than one half wavelength of a driving frequency applied thereto, preferably much less. The driving frequency may be greater than 100 MHz and is preferably as high as 915 MHz. Preferably, the excitation coil is configured as a non-helical, semi-cylindrical conductive surface having less than one turn, in the general shape of a wedding ring. At high frequencies, the current in the coil forms two loops which are spaced apart and parallel to each other. Configured appropriately, the coil approximates a Helmholtz configuration. The lamp preferably utilizes an bulb encased in a reflective ceramic cup with a pre-formed aperture defined therethrough. The ceramic cup may include structural features to aid in alignment and I or a flanged face to aid in thermal management. The lamp head is preferably an integrated lamp head comprising a metal matrix composite surrounding an insulating ceramic with the excitation integrally formed on the ceramic. A novel solid-state oscillator preferably provides RF power to the lamp. The oscillator is a single active element device capable of providing over 70 watts of power at over 70% efficiency. Various control circuits may be employed to adjust the driving frequency of the oscillator.

  5. High power radio frequency attenuation device

    DOEpatents

    Kerns, Quentin A.; Miller, Harold W.

    1984-01-01

    A resistor device for attenuating radio frequency power includes a radio frequency conductor connected to a series of fins formed of high relative magnetic permeability material. The fins are dimensional to accommodate the skin depth of the current conduction therethrough, as well as an inner heat conducting portion where current does not travel. Thermal connections for air or water cooling are provided for the inner heat conducting portions of each fin. Also disclosed is a resistor device to selectively alternate unwanted radio frequency energy in a resonant cavity.

  6. Photovoltaics for high capacity space power systems

    NASA Technical Reports Server (NTRS)

    Flood, Dennis J.

    1988-01-01

    The anticipated energy requirements of future space missions will grow by factors approaching 100 or more, particularly as a permanent manned presence is established in space. The advances that can be expected in solar array performance and lifetime, when coupled with advanced, high energy density storage batteries and/or fuel cells, will continue to make photovoltaic energy conversion a viable power generating option for the large systems of the future. The specific technologies required to satisfy any particular set of power requirements will vary from mission to mission. Nonetheless, in almost all cases the technology push will be toward lighter weight and higher efficiency, whether of solar arrays of storage devices. This paper will describe the content and direction of the current NASA program in space photovoltaic technology. The paper will also discuss projected system level capabilities of photovoltaic power systems in the context of some of the new mission opportunities under study by NASA, such as a manned lunar base, and a manned visit to Mars.

  7. Photovoltaics for high capacity space power systems

    NASA Technical Reports Server (NTRS)

    Flood, Dennis J.

    1988-01-01

    The anticipated energy requirements of future space missions will grow by factors approaching 100 or more, particularly as a permanent manned presence is established in space. The advances that can be expected in solar array performance and lifetime, when coupled with advanced, high energy density storage batteries and/or fuel cells, will continue to make photovoltaic energy conversion a viable power generating option for the large systems of the future. The specific technologies required to satisfy any particular set of power requirements will vary from mission to mission. Nonetheless, in almost all cases the technology push will be toward lighter weight and higher efficiency, whether of solar arrays or storage devices. This paper will describe the content and direction of the current NASA program in space photovoltaic technology. The paper will also discuss projected system level capabilities of photovoltaic power systems in the context of some of the new mission opportunities under study by NASA, such as a manned lunar base, and a manned visit to Mars.

  8. Recent progress in high power ultrafast MIXSELs

    NASA Astrophysics Data System (ADS)

    Alfieri, C. G. E.; Waldburger, D.; Link, S. M.; Gini, E.; Golling, M.; Tilma, B. W.; Mangold, M.; Keller, U.

    2016-03-01

    The modelocked integrated external-cavity surface emitting laser (MIXSEL) is the most compact technology of ultrafast semiconductor disk laser, combining in the same epitaxial structure an active region and a saturable absorber for stable and self-starting passive modelocking in a linear straight cavity. Here we present the first MIXSEL structure able to produce sub-300-fs pulses at an average output power of 235 mW and 3.35 GHz pulse repetition rate, resulting in a record-high peak power of 240 W. At 10 GHz repetition rate the same MIXSEL generated 279-fs pulses with 310 mW of average output power. An optimized antireflection coating for dispersion minimization together with a reduced field enhancement inside the structure enabled the sensible improvement and the record performances of this novel MIXSEL. Furthermore, thanks to the development of suitable saturable absorbers with fast recovery dynamics and low saturation fluence, we demonstrate the first entirely MOVPE-grown MIXSEL.

  9. High-power, light-weight power conditioning

    NASA Astrophysics Data System (ADS)

    Gilmour, A. S., Jr.

    1991-12-01

    After a review of light-weight transformer efforts in the US, a weight analysis is carried out. From basic transformer relations and geometrical considerations it is shown how transformer specific power should scale with power and frequency. The result compares well with design results for frequency scaling but not for power scaling. After refinements for variations of voltage, cooling technique, power (while voltage is held constant) and current density, an algorithm is presented that agrees well with the results of adiabatic transformer designs and with vapor cooled transformer designs. Transformer specific powers as low as 0.01 kg/kW are predicted at an operating frequency of 20 kHz. Caution is advised in the use of the algorithm because few of the transformers with which the algorithm is compared have actually been considered. The SDI/AF/NASA megawatt converter program is discussed, and results of Phase I are summarized.

  10. High Power Microwaves for Accelerator Applications*

    NASA Astrophysics Data System (ADS)

    Hirshfield, J. L.

    2004-05-01

    Realization of a future high-energy electron-positron collider rests upon many technological advancements, among which are high-power microwave amplifiers, and rf pulse compressors. In one scenario for the 0.5 TeV NLC, each linac requires about 1000, 75 MW, 11.4 GHz amplifiers furnishing peak powers of 75 MW in 1.6 mcs pulses at 120 Hz pps. Pulse compression to 0.4 mcs would result in a total rf peak power of over 400 GW. After a decade of intense development, SLAC has evidently reached the amplifier goal with the XP3 PPM klystron. Dual-mode double-delay-line pulse compression has demonstrated 4:1 compression to a peak output of 500 MW. These achievements help provide technological justification for NLC. Further justification rests with NLC's capability for a subsequent energy upgrade to 1.0-1.5 TeV. Nascent microwave technologies for the energy upgrade are discussed. These include an X-band magnicon, with double the output of a SLAC klystron: peak and average powers are predicted to reach 155 MW and 60 kW. Each magnicon could replace two SLAC klystrons, and operate with twice the pulse width. Therefore, an 8:1 pulse compressor is required. Active, efficient, rf pulse compression, with switching during the rf pulse could be provided by an externally-varied semiconductor, plasma, or ferroelectric switching element. Demonstration of an X-band magnicon, and of 10:1 X-band pulse compression using plasma switches is described. Prospects for higher efficiency rf pulse compression using ferroelectric switching elements is also described. A scenario for obtaining an energy upgrade to 2.0 TeV is outlined, based on use of 34-GHz technology in the inner halves of each linac. This option rests upon development of a 34-GHz magnicon amplifier, first results with which are described. *Sponsored by DoE, Division of High Energy Physics.

  11. Developing a portable high-power microwave (HPM) prototype

    NASA Astrophysics Data System (ADS)

    Simmons, Gene

    1993-07-01

    Certain high power microwave (HPM) applications require output power in the range of only a few hundred megawatts effective radiated power (ERP) in a portable configuration. This paper describes a portable HPM device prototype that was developed, demonstrated, and evaluated.

  12. Fibrous zinc anodes for high power batteries

    NASA Astrophysics Data System (ADS)

    Zhang, X. Gregory

    This paper introduces newly developed solid zinc anodes using fibrous material for high power applications in alkaline and large size zinc-air battery systems. The improved performance of the anodes in these two battery systems is demonstrated. The possibilities for control of electrode porosity and for anode/battery design using fibrous materials are discussed in light of experimental data. Because of its mechanical integrity and connectivity, the fibrous solid anode has good electrical conductivity, mechanical stability, and design flexibility for controlling mass distribution, porosity and effective surface area. Experimental data indicated that alkaline cells made of such anodes can have a larger capacity at high discharging currents than commercially available cells. It showed even greater improvement over commercial cells with a non-conventional cell design. Large capacity anodes for a zinc-air battery have also been made and have shown excellent material utilization at various discharge rates. The zinc-air battery was used to power an electric bicycle and demonstrated good results.

  13. High-Power Ion Thruster Technology

    NASA Technical Reports Server (NTRS)

    Beattie, J. R.; Matossian, J. N.

    1996-01-01

    Performance data are presented for the NASA/Hughes 30-cm-diam 'common' thruster operated over the power range from 600 W to 4.6 kW. At the 4.6-kW power level, the thruster produces 172 mN of thrust at a specific impulse of just under 4000 s. Xenon pressure and temperature measurements are presented for a 6.4-mm-diam hollow cathode operated at emission currents ranging from 5 to 30 A and flow rates of 4 sccm and 8 sccm. Highly reproducible results show that the cathode temperature is a linear function of emission current, ranging from approx. 1000 C to 1150 C over this same current range. Laser-induced fluorescence (LIF) measurements obtained from a 30-cm-diam thruster are presented, suggesting that LIF could be a valuable diagnostic for real-time assessment of accelerator-arid erosion. Calibration results of laminar-thin-film (LTF) erosion badges with bulk molybdenum are presented for 300-eV xenon, krypton, and argon sputtering ions. Facility-pressure effects on the charge-exchange ion current collected by 8-cm-diam and 30-cm-diam thrusters operated on xenon propellant are presented to show that accel current is nearly independent of facility pressure at low pressures, but increases rapidly under high-background-pressure conditions.

  14. High power, electrically tunable quantum cascade lasers

    NASA Astrophysics Data System (ADS)

    Slivken, Steven; Razeghi, Manijeh

    2016-02-01

    Mid-infrared laser sources (3-14 μm wavelengths) which have wide spectral coverage and high output power are attractive for many applications. This spectral range contains unique absorption fingerprints of most molecules, including toxins, explosives, and nerve agents. Infrared spectroscopy can also be used to detect important biomarkers, which can be used for medical diagnostics by means of breath analysis. The challenge is to produce a broadband midinfrared source which is small, lightweight, robust, and inexpensive. We are currently investigating monolithic solutions using quantum cascade lasers. A wide gain bandwidth is not sufficient to make an ideal spectroscopy source. Single mode output with rapid tuning is desirable. For dynamic wavelength selection, our group is developing multi-section laser geometries with wide electrical tuning (hundreds of cm-1). These devices are roughly the same size as a traditional quantum cascade lasers, but tuning is accomplished without any external optical components. When combined with suitable amplifiers, these lasers are capable of multi-Watt single mode output powers. This manuscript will describe our current research efforts and the potential for high performance, broadband electrical tuning with the quantum cascade laser.

  15. Early history of high-power lasers

    NASA Astrophysics Data System (ADS)

    Sutton, George W.

    2002-02-01

    This paper gives the history of the invention and development of early high power lasers, to which the author contributed and had personal knowledge. The earliest hint that a high power laser could be built came from the electric CO2-N2-He laser of Javan. It happened that the director of the Avco-Everett Research Laboratory had written his Ph.D. dissertation on the deactivation of the vibrational excitation of N2 in an expanding flow under Edward Teller, then at Columbia Univ. The director then started an in-house project to determine if gain could be achieved in a mixture similar to Javan's by means of a shock tunnel where a shock heated mixture of N2, CO2, and He gas was expanded through a supersonic nozzle into a cavity. This concept was named by the author as the gasdynamic laser (GDL). The paper traces the history of the initial gain measurements, the Mark II laser, the RASTA laser, the Tri-Service laser, its troubles and solutions, the United Technology's XLD gasdynamic laser, and their ALL laser. The history of the coastal Crusader will also be mentioned. Also discussed are the early experiments on a combustion-driven chemical laser, and its subsequent rejection by the director.

  16. Digitally Controlled High Availability Power Supply

    SciTech Connect

    MacNair, David; /SLAC

    2009-05-07

    This paper will report on the test results of a prototype 1320 watt power module for a high availability power supply. The module will allow parallel operation for N+1 redundancy with hot swap capability. The two quadrant output of each module allows pairs of modules to provide a 4 quadrant (bipolar) operation. Each module employs a novel 4 FET buck regulator arranged in a bridge configuration. Each side of the bridge alternately conducts through a small saturable ferrite that limits the reverse current in the FET body diode during turn off. This allows hard switching of the FETs with low switching losses. The module is designed with over-rated components to provide high reliability and better then 97% efficiency at full load. The modules use a Microchip DSP for control, monitoring, and fault detection. The switching FETS are driven by PWM modules in the DSP at 60 KHz. A Dual CAN bus interface provides for low cost redundant control paths. The DSP will also provide current sharing between modules, synchronized switching, and soft start up for hot swapping. The input and output of each module have low resistance FETs to allow hot swapping and isolation of faulted units.

  17. High Power ECR Ion Thruster Discharge Characterization

    NASA Technical Reports Server (NTRS)

    Foster, John E.; Kamhawi, Hani; Haag, Thomas; Carpenter, Christian; Williams, George W.

    2006-01-01

    Electron cyclotron resonance (ECR) based ion thrusters with carbon based ion optics can potentially satisfy lifetime requirements for long duration missions (approximately 10 years) because grid erosion and cathode insert depletion issues are virtually eliminated. Though the ECR plasma discharge has been found to typically operate at slightly higher discharge losses than conventional DC ion thrusters (for high total thruster power applications), the discharge power fraction is small (less than 1 percent at 25 kW). In this regard, the benefits of increased life, low discharge plasma potentials, and reduced complexity are welcome tradeoffs for the associated discharge efficiency decrease. Presented here are results from discharge characterization of a large area ECR plasma source for gridded ion thruster applications. These measurements included load matching efficacy, bulk plasma properties via Langmuir probe, and plasma uniformity as measured using current probes distributed at the exit plane. A high degree of plasma uniformity was observed (flatness greater than 0.9). Additionally, charge state composition was qualitatively evaluated using emission spectroscopy. Plasma induced emission was dominated by xenon ion lines. No doubly charged xenon ions were detected.

  18. High-Power Options for LANSCE

    SciTech Connect

    Garnett, Robert W.

    2011-01-01

    The LANSCE linear accelerator at Los Alamos National Laboratory has a long history of successful beam operations at 800 kW. We have recently studied options for restoration of high-power operations including approaches for increasing the performance to multi-MW levels. In this paper we will discuss the results of this study including the present limitations of the existing accelerating structures at LANSCE, and the high-voltage and RF systems that drive them. Several options will be discussed and a preferred option will be presented that will enable the first in a new generation of scientific facilities for the materials community. The emphasis of this new facility is 'Matter-Radiation Interactions in Extremes' (MaRIE) which will be used to discover and design the advanced materials needed to meet 21st century national security and energy security challenges.

  19. 14 CFR 101.25 - Operating limitations for Class 2-High Power Rockets and Class 3-Advanced High Power Rockets.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Power Rockets and Class 3-Advanced High Power Rockets. 101.25 Section 101.25 Aeronautics and Space... OPERATING RULES MOORED BALLOONS, KITES, AMATEUR ROCKETS AND UNMANNED FREE BALLOONS Amateur Rockets § 101.25 Operating limitations for Class 2-High Power Rockets and Class 3-Advanced High Power Rockets. When...

  20. 14 CFR 101.25 - Operating limitations for Class 2-High Power Rockets and Class 3-Advanced High Power Rockets.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Power Rockets and Class 3-Advanced High Power Rockets. 101.25 Section 101.25 Aeronautics and Space... OPERATING RULES MOORED BALLOONS, KITES, AMATEUR ROCKETS AND UNMANNED FREE BALLOONS Amateur Rockets § 101.25 Operating limitations for Class 2-High Power Rockets and Class 3-Advanced High Power Rockets. When...

  1. 14 CFR 101.25 - Operating limitations for Class 2-High Power Rockets and Class 3-Advanced High Power Rockets.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Power Rockets and Class 3-Advanced High Power Rockets. 101.25 Section 101.25 Aeronautics and Space... OPERATING RULES MOORED BALLOONS, KITES, AMATEUR ROCKETS AND UNMANNED FREE BALLOONS Amateur Rockets § 101.25 Operating limitations for Class 2-High Power Rockets and Class 3-Advanced High Power Rockets. When...

  2. 14 CFR 101.25 - Operating limitations for Class 2-High Power Rockets and Class 3-Advanced High Power Rockets.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Power Rockets and Class 3-Advanced High Power Rockets. 101.25 Section 101.25 Aeronautics and Space... OPERATING RULES MOORED BALLOONS, KITES, AMATEUR ROCKETS AND UNMANNED FREE BALLOONS Amateur Rockets § 101.25 Operating limitations for Class 2-High Power Rockets and Class 3-Advanced High Power Rockets. When...

  3. 14 CFR 101.25 - Operating limitations for Class 2-High Power Rockets and Class 3-Advanced High Power Rockets.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Power Rockets and Class 3-Advanced High Power Rockets. 101.25 Section 101.25 Aeronautics and Space... OPERATING RULES MOORED BALLOONS, KITES, AMATEUR ROCKETS AND UNMANNED FREE BALLOONS Amateur Rockets § 101.25 Operating limitations for Class 2-High Power Rockets and Class 3-Advanced High Power Rockets. When...

  4. High-Voltage, High-Power Gaseous Electronics Switch For Electric Grid Power Conversion

    NASA Astrophysics Data System (ADS)

    Sommerer, Timothy J.

    2014-05-01

    We are developing a high-voltage, high-power gas switch for use in low-cost power conversion terminals on the electric power grid. Direct-current (dc) power transmission has many advantages over alternating current (ac) transmission, but at present the high cost of ac-dc power interconversion limits the use of dc. The gas switch we are developing conducts current through a magnetized cold cathode plasma in hydrogen or helium to reach practical current densities > 1 A/cm2. Thermal and sputter damage of the cathode by the incident ion flux is a major technical risk, and is being addressed through use of a ``self-healing'' liquid metal cathode (eg, gallium). Plasma conditions and cathode sputtering loss are estimated by analyzing plasma spectral emission. A particle-in-cell plasma model is used to understand various aspects of switch operation, including the conduction phase (where plasma densities can exceed 1013 cm-3), the switch-open phase (where the high-voltage must be held against gas breakdown on the left side of Paschen's curve), and the switching transitions (especially the opening process, which is initiated by forming an ion-matrix sheath adjacent to a control grid). The information, data, or work presented herein was funded in part by the Advanced Research Projects Agency-Energy (ARPA-E), U.S. Department of Energy, under Award Number DE-AR0000298.

  5. High-temperature alloys for high-power thermionic systems

    SciTech Connect

    Shin, Kwang S.; Jacobson, D.L.; D'cruz, L.; Luo, Anhua; Chen, Bor-Ling.

    1990-08-01

    The need for structural materials with useful strength above 1600 k has stimulated interest in refractory-metal alloys. Tungsten possesses an extreme high modulus of elasticity as well as the highest melting temperature among metals, and hence is being considered as one of the most promising candidate materials for high temperature structural applications such as space nuclear power systems. This report is divided into three chapters covering the following: (1) the processing of tungsten base alloys; (2) the tensile properties of tungsten base alloys; and (3) creep behavior of tungsten base alloys. Separate abstracts were prepared for each chapter. (SC)

  6. High-Power Magnetoplasmadynamic Thruster Being Developed

    NASA Technical Reports Server (NTRS)

    LaPointe, Michael R.

    2001-01-01

    High-power electromagnetic thrusters have been proposed as primary in-space propulsion options for several of the bold new interplanetary and deep space missions envisioned by the Human Exploration and Development of Space (HEDS) Strategic Enterprise. As the lead center for electric propulsion, the NASA Glenn Research Center is actively involved in the design, development, and testing of high-power electromagnetic technologies to meet these demanding mission requirements. One concept of particular interest is the magnetoplasmadynamic (MPD) thruster, shown schematically in the preceding figure. In its basic form, the MPD thruster consists of a central cathode surrounded by a concentric cylindrical anode. A high-current arc is struck between the anode and cathode, which ionizes and accelerates a gas (plasma) propellant. In the self-field version of the thruster, an azimuthal magnetic field generated by the current returning through the cathode interacts with the radial discharge current flowing through the plasma to produce an axial electromagnetic body force, providing thrust. In applied field-versions of the thruster, a magnetic field coil surrounding the anode is used to provide additional radial and axial magnetic fields that can help stabilize and accelerate the plasma propellant. The following figure shows an experimental megawatt-class MPD thruster developed at Glenn. The MPD thruster is fitted inside a magnetic field coil, which in turn is mounted on a thrust stand supported by thin metal flexures. A calibrated position transducer is used to determine the force provided by the thruster as a function of thrust stand displacement. Power to the thruster is supplied by a 250-kJ capacitor bank, which provides up to 30- MW to the thruster for a period of 2 msec. This short period of time is sufficient to establish thruster performance similar to steady-state operation, and it allows a number of thruster designs to be quickly and economically evaluated. In concert

  7. Improved Collectors for High Power Gyrotrons

    SciTech Connect

    Ives, R. Lawrence; Singh, Amarjit; Read, Michael; Borchard, Phillipp; Neilson, Jeff

    2009-05-20

    High power gyrotrons are used for electron cyclotron heating, current drive and parasitic mode suppression in tokamaks for fusion energy research. These devices are crucial for successful operation of many research programs around the world, including the ITER program currently being constructed in France. Recent gyrotron failures resulted from cyclic fatigue of the copper material used to fabricated the collectors. The techniques used to collect the spent beam power is common in many gyrotrons produced around the world. There is serious concern that these tubes may also be at risk from cyclic fatigue. This program addresses the cause of the collector failure. The Phase I program successfully demonstrated feasibility of a mode of operation that eliminates the cyclic operation that caused the failure. It also demonstrated that new material can provide increased lifetime under cyclic operation that could increase the lifetime by more than on order of magnitude. The Phase II program will complete that research and develop a collector that eliminates the fatigue failures. Such a design would find application around the world.

  8. High Power Flex-Propellant Arcjet Performance

    NASA Technical Reports Server (NTRS)

    Litchford, Ron J.

    2011-01-01

    implied nearly frozen flow in the nozzle and yielded performance ranges of 800-1100 sec for hydrogen and 400-600 sec for ammonia. Inferred thrust-to-power ratios were in the range of 30-10 lbf/MWe for hydrogen and 60-20 lbf/MWe for ammonia. Successful completion of this test series represents a fundamental milestone in the progression of high power arcjet technology, and it is hoped that the results may serve as a reliable touchstone for the future development of MW-class regeneratively-cooled flex-propellant plasma rockets.

  9. Frequency stable high power lasers in space

    NASA Technical Reports Server (NTRS)

    Byer, Robert L.

    1989-01-01

    The concept of a laser heterodyne gravity wave antenna that would operate in solar orbit with a one million kilometer path length is discussed. Laser technology that would be appropriate for operation of this space-based gravity wave detector is also discussed. The rapid progress in diode laser coupled with the energy storage and potentially sub-Hertz linewidths of solid state lasers, and the possibility of efficient frequency conversion by nonlinear optical techniques defines a technology that is appropriate for laser interferometry in space. The present status of diode-laser-pumped, solid state lasers is summarized and future progress is projected in areas of linewidth control, high average power, operating efficiency, and operational lifetimes that are essential for space-based applications.

  10. Modulation instability in high power laser amplifiers.

    PubMed

    Rubenchik, Alexander M; Turitsyn, Sergey K; Fedoruk, Michail P

    2010-01-18

    The modulation instability (MI) is one of the main factors responsible for the degradation of beam quality in high-power laser systems. The so-called B-integral restriction is commonly used as the criteria for MI control in passive optics devices. For amplifiers the adiabatic model, assuming locally the Bespalov-Talanov expression for MI growth, is commonly used to estimate the destructive impact of the instability. We present here the exact solution of MI development in amplifiers. We determine the parameters which control the effect of MI in amplifiers and calculate the MI growth rate as a function of those parameters. The safety range of operational parameters is presented. The results of the exact calculations are compared with the adiabatic model, and the range of validity of the latest is determined. We demonstrate that for practical situations the adiabatic approximation noticeably overestimates MI. The additional margin of laser system design is quantified.

  11. High power phase conjugated solid state lasers

    SciTech Connect

    Hackel, L.A.; Dane, C.B.; Zapata, L.E.; Hermann, M.R.

    1994-07-01

    Three laser systems that are being developed for use in x-ray generation which incorporate SBS phase conjugate mirrors are described. A 25J/pulse Nd:glass laser is being developed for commercial proximity print x-ray lithography; a 0.5J/pulse, 1.3 kHz pulse repetition frequency laser is being built for soft x-ray projection lithography; and a 1 kJ/pulse laser driver for a table top x-ray laser has been designed. The results of prototypical experimental investigations are presented and the basic design principles for high average power phase conjugated laser systems shared by each of these lasers are discussed.

  12. Multiphoton imaging with high peak power VECSELs

    NASA Astrophysics Data System (ADS)

    Mirkhanov, Shamil; Quarterman, Adrian H.; Swift, Samuel; Praveen, Bavishna B.; Smyth, Conor J. C.; Wilcox, Keith G.

    2016-03-01

    Multiphoton imaging (MMPI) has become one of thee key non-invasive light microscopy techniques. This technique allows deep tissue imaging with high resolution and less photo-damage than conventional confocal microscopy. MPI is type of laser-scanning microscopy that employs localized nonlinear excitation, so that fluorescence is excited only with is scanned focal volume. For many years, Ti: sapphire femtosecond lasers have been the leading light sources for MPI applications. However, recent developments in laser sources and new types of fluorophores indicate that longer wavelength excitation could be a good alternative for these applications. Mode-locked VECSEELs have the potential to be low cost, compact light sources for MPI systems, with the additional advantage of broad wavelength coverage through use of different semiconductor material systems. Here, we use a femtosecond fibber laser to investigate the effect average power and repetition rate has on MPI image quality, to allow us to optimize our mode-locked VVECSELs for MPI.

  13. High power solid state laser modulator

    DOEpatents

    Birx, Daniel L.; Ball, Don G.; Cook, Edward G.

    2004-04-27

    A multi-stage magnetic modulator provides a pulse train of .+-.40 kV electrical pulses at a 5-7 kHz repetition rate to a metal vapor laser. A fractional turn transformer steps up the voltage by a factor of 80 to 1 and magnetic pulse compression is used to reduce the pulse width of the pulse train. The transformer is fabricated utilizing a rod and plate stack type of construction to achieve a high packing factor. The pulses are controlled by an SCR stack where a plurality of SCRs are electrically connected in parallel, each SCR electrically connected to a saturable inductor, all saturable inductors being wound on the same core of magnetic material for enhanced power handling characteristics.

  14. Facet engineering of high power single emitters

    NASA Astrophysics Data System (ADS)

    Yanson, Dan; Levi, Moshe; Shamay, Moshe; Tesler, Renana; Rappaport, Noam; Don, Yaroslav; Karni, Yoram; Schnitzer, Itzhak; Sicron, Noam; Shusterman, Sergey

    2011-03-01

    The ever increasing demand for high-power, high-reliability operation of single emitters at 9xx nm wavelengths requires the development of laser diodes with improved facet regions immune to both catastrophic and wear-out failure modes. In our study, we have evaluated several laser facet definition technologies in application to 90 micron aperture single emitters in asymmetric design (In)GaAs/AlGaAs based material emitting at 915, 925 and 980nm. A common epitaxy and emitter design makes for a straightforward comparison of the facet technologies investigated. Our study corroborates a clear trend of increasing difficulty in obtaining reliable laser operation from 980nm down to 915nm. At 980nm, one can employ dielectric facet passivation with a pre-clean cycle delivering a device lifetime in excess of 3,000 hours at increasing current steps. At 925nm, quantum-well intermixing can be used to define non-absorbing mirrors giving good device reliability, albeit with a large efficiency penalty. Vacuum cleaved emitters have delivered excellent reliability at 915nm, and can be expected to perform just as well at 925 and 980nm. Epitaxial regrowth of laser facets is under development and has yet to demonstrate an appreciable reliability improvement. Only a weak correlation between start-of-life catastrophic optical mirror damage (COMD) levels and reliability was established. The optimized facet design has delivered maximum powers in excess of 19 MW/sq.cm (rollover limited) and product-grade 980nm single emitters with a slope efficiency of >1 W/A and a peak efficiency of >60%. The devices have accumulated over 1,500 hours of CW operation at 11W. A fiber-coupled device emits 10W ex-fiber with 47% efficiency.

  15. Design Considerations for High Temperature Power Inductors

    NASA Technical Reports Server (NTRS)

    Niedra, Janis M.

    2005-01-01

    A uniform B-field approximation model is used to develop design formulas for single-layer wound, toroidal core, ac power inductors that must handle a specified current. Such a geometry is well suited for high temperature, high frequency inductors, where removal of heat from the core becomes critical. Explicit expressions are derived for core radii, core and winding volumes, winding turns and core permeability as functions of a dimensional scaling ratio (S). A limit on the maximum allowed core B-field leads to the result that the minimum core volume is proportional to the permeability, which has a lower bound. Plots versus S are provided for a specific case, to show that good designs can be picked in the overlap regions around the minima in mass and overall size, where the mass and size are relatively flat. Data to 250 C are presented for an MPP core based inductor to show that a quasi-linear, high temperature inductor can be constructed with available materials. A similar development is applied to a toroidal air-core geometry, showing that for the same ratings, such an inductor is considerably bigger and more massive, at least in the single-layer version.

  16. High Power High Efficiency Ka-Band Power Combiners for Solid-State Devices

    NASA Technical Reports Server (NTRS)

    Freeman, Jon C.; Wintucky, Edwin G.; Chevalier, Christine T.

    2006-01-01

    Wide-band power combining units for Ka-band are simulated for use as MMIC amplifier applications. Short-slot couplers as well as magic-tees are the basic elements for the combiners. Wide bandwidth (5 GHz) and low insertion (approx.0.2 dB) and high combining efficiencies (approx.90 percent) are obtained.

  17. Electric Power Demand and Emerging Technology in Highly-sophisticated Electric Power Systems

    NASA Astrophysics Data System (ADS)

    Matsumoto, Satoshi; Hikita, Masayuki

    In the last few years, the increase of the electric power demand has been remarkable, especially in Asia district. In such trend, the electric power system of Japan has been supplied with high quality, high reliability and highly-stabilized electric power. This is supported by highly-sophisticated electric power system which prides oneself on high voltage and large capacity. In this paper, outlines of these technologies are described. And, newest technology trends such as electric power liberalization, innovation of dispersed power source, effective utilization of natural energy are also explained. In addition, the global standards are important to make the technological level of Japan to be the world one in future.

  18. High average power switching in diamond

    SciTech Connect

    Hofer, W.W.; Schoenbach, K.H.

    1992-06-01

    Diamond has many properties which make it ideal for a high power solid-state switch. The crystal structure of diamond is relatively well characterized. It is a semiconductor with a band-gap of 5.5 eV at 300{degree}K. The high band-gap of diamond results in a small dark current compared to Si or GaAs. As a result the breakdown field or holding voltage is very high, 1--10 MV/cm. The electron and hole mobility are approximately 2000 cm{sup 2}/v-sec. At room temperature, diamond has the highest thermal conductivity of any solid, 20 W/{degree}K -cm, about five times that of copper. This is ideal for switching because heat dissipation and thermal runaway problems are greatly mitigated. Our switch concept uses a low current (high power on-off switch. Steady advancements in CVD polycrystalline and single crystal diamond help make this possible.

  19. High average power switching in diamond

    SciTech Connect

    Hofer, W.W. ); Schoenbach, K.H. )

    1992-06-01

    Diamond has many properties which make it ideal for a high power solid-state switch. The crystal structure of diamond is relatively well characterized. It is a semiconductor with a band-gap of 5.5 eV at 300[degree]K. The high band-gap of diamond results in a small dark current compared to Si or GaAs. As a result the breakdown field or holding voltage is very high, 1--10 MV/cm. The electron and hole mobility are approximately 2000 cm[sup 2]/v-sec. At room temperature, diamond has the highest thermal conductivity of any solid, 20 W/[degree]K -cm, about five times that of copper. This is ideal for switching because heat dissipation and thermal runaway problems are greatly mitigated. Our switch concept uses a low current (high power on-off switch. Steady advancements in CVD polycrystalline and single crystal diamond help make this possible.

  20. Method and apparatus for improved high power impulse magnetron sputtering

    DOEpatents

    Anders, Andre

    2013-11-05

    A high power impulse magnetron sputtering apparatus and method using a vacuum chamber with a magnetron target and a substrate positioned in the vacuum chamber. A field coil being positioned between the magnetron target and substrate, and a pulsed power supply and/or a coil bias power supply connected to the field coil. The pulsed power supply connected to the field coil, and the pulsed power supply outputting power pulse widths of greater that 100 .mu.s.

  1. On reactive high power impulse magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Gudmundsson, J. T.

    2016-01-01

    High power impulse magnetron sputtering (HiPIMS) is an ionized physical vapor deposition (IPVD) technique that is particularly promising for reactive sputtering applications. However, there are few issues that have to be resolved before the full potential of this technique can be realized. Here we give an overview of the key experimental findings for the reactive HiPIMS discharge. An increase in the discharge current is commonly observed with increased partial pressure of the reactive gas or decreased repetition pulse frequency. There are somewhat conflicting claims regarding the hysteresis effect in the reactive HiPIMS discharge as some report reduction or elimination of the hysteresis effect while others claim a feedback control is essential. The ion energy distribution of the metal ion and the atomic ion of the reactive gas are similar and extend to very high energies while the ion energy distribution of the working gas and the molecular ion of the reactive gas are similar and are much less energetic.

  2. High power linear pulsed beam annealer

    DOEpatents

    Strathman, Michael D.; Sadana, Devendra K.; True, Richard B.

    1983-01-01

    A high power pulsed electron beam is produced in a system comprised of an electron gun having a heated cathode, control grid, focus ring, and a curved drift tube. The drift tube is maintained at a high positive voltage with respect to the cathode to accelerate electrons passing through the focus ring and to thereby eliminate space charge. A coil surrounding the curved drift tube provides a magnetic field which maintains the electron beam focused about the axis of the tube and imparts motion on electrons in a spiral path for shallow penetration of the electrons into a target. The curvature of the tube is selected so there is no line of sight between the cathode and a target holder positioned within a second drift tube spaced coaxially from the curved tube. The second tube and the target holder are maintained at a reference voltage that decelerates the electrons. A second coil surrounding the second drift tube maintains the electron beam focused about the axis of the second drift tube and compresses the electron beam to the area of the target. The target holder can be adjusted to position the target where the cross section of the beam matches the area of the target.

  3. Concept of electric propulsion realization for high power space tug

    NASA Astrophysics Data System (ADS)

    Zakharenkov, L. E.; Semenkin, A. V.; Solodukhin, A. E.

    2016-07-01

    Popular at the beginning of the Space Age, ambitious projects aimed at Moon, Mars, and other space objects exploration, have returned with new technology and design level. High power space tug with electric propulsion system (EPS) is mainly considered as a transport vehicle for such missions. Modern high power space tugs projects as well as their spacecraft (SC) power and propulsion systems are reviewed in the paper. The main technologies and design solutions needed for high-power EPS realization are considered.

  4. Anode arc motion in high power arcjets

    NASA Technical Reports Server (NTRS)

    Harris, W. J.; O'Hair, E. A.; Hatfield, L. L.; Kristiansen, M.; Mankins, J. S.

    1992-01-01

    The long-term operational lifetime of most medium to high power arcjets is currently limited by the rapid deterioration of the arcjet electrodes. To a large extent, the rate of this deterioration is related to the motion of the arc discharge on the electrode surfaces. This paper details a series of experiments aimed at studying the temporal behavior of dc arcs on a water-cooled radially-segmented 30 kW class arcjet anode. The experimental anode used for these tests was made of copper, and was divided into four equivalent radial segments which were electrically isolated with aluminum oxide gaskets. The current carried by each segment was measured independently using four calibrated resistive shunts, and was analyzed by digital computer. The tests were limited to nitrogen propellant over a current range of 100-250 A dc. Results show that for the range of total currents considered here, the current distribution in the segmented arcjet anode is generally asymmetric, exhibiting random fluctuations over a wide range of frequencies.

  5. Anode arc motion in high power arcjets

    NASA Astrophysics Data System (ADS)

    Harris, W. J.; O'Hair, E. A.; Hatfield, L. L.; Kristiansen, M.; Mankins, J. S.

    1992-07-01

    The long-term operational lifetime of most medium to high power arcjets is currently limited by the rapid deterioration of the arcjet electrodes. To a large extent, the rate of this deterioration is related to the motion of the arc discharge on the electrode surfaces. This paper details a series of experiments aimed at studying the temporal behavior of dc arcs on a water-cooled radially-segmented 30 kW class arcjet anode. The experimental anode used for these tests was made of copper, and was divided into four equivalent radial segments which were electrically isolated with aluminum oxide gaskets. The current carried by each segment was measured independently using four calibrated resistive shunts, and was analyzed by digital computer. The tests were limited to nitrogen propellant over a current range of 100-250 A dc. Results show that for the range of total currents considered here, the current distribution in the segmented arcjet anode is generally asymmetric, exhibiting random fluctuations over a wide range of frequencies.

  6. The SPES High Power ISOL production target

    NASA Astrophysics Data System (ADS)

    Andrighetto, A.; Corradetti, S.; Ballan, M.; Borgna, F.; Manzolaro, M.; Scarpa, D.; Monetti, A.; Rossignoli, M.; Silingardi, R.; Mozzi, A.; Vivian, G.; Boratto, E.; De Ruvo, L.; Sattin, N.; Meneghetti, G.; Oboe, R.; Guerzoni, M.; Margotti, A.; Ferrari, M.; Zenoni, A.; Prete, G.

    2016-11-01

    SPES (Selective Production of Exotic Species) is a facility under construction at INFN-LNL (Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali di Legnaro), aimed to produce intense neutron-rich radioactive ion beams (RIBs). These will be obtained using the ISOL (Isotope Separation On-Line) method, bombarding a uranium carbide target with a proton beam of 40MeV energy and currents up to 200μA. The target configuration was designed to obtain a high number of fissions, up to 1013 per second, low power deposition and fast release of the produced isotopes. The exotic isotopes generated in the target are ionized, mass separated and re-accelerated by the ALPI superconducting LINAC at energies of 10AMeV and higher, for masses in the region of A = 130 amu , with an expected rate on the secondary target up to 109 particles per second. In this work, recent results on the R&D activities regarding the SPES RIB production target-ion source system are reported.

  7. Complete low power controller for high voltage power systems

    SciTech Connect

    Sumner, R.; Blanar, G.

    1997-12-31

    The MHV100 is a custom CMOS integrated circuit, developed for the AMS experiment. It provides complete control for a single channel high voltage (HV) generator and integrates all the required digital communications, D to A and A to D converters, the analog feedback loop and output drivers. This chip has been designed for use in both distributed high voltage systems or for low cost single channel high voltage systems. The output voltage and current range is determined by the external components.

  8. Design concept and performance considerations for fast high power semiconductor switching for high repetition rate and high power excimer laser

    NASA Astrophysics Data System (ADS)

    Goto, Tatsumi; Kakizaki, Kouji; Takagi, Shigeyuki; Satoh, Saburoh; Shinohe, Takashi; Ohashi, Hiromichi; Endo, Fumihiko; Okamura, Katsuya; Ishii, Akira; Teranishi, Tsuneharu; Yasuoka, Koichi

    1997-07-01

    A semiconductor switching power supply has been developed, in which a novel structure semiconductor device, metal-oxide-semiconductor assisted gate-triggered thyristor (MAGT) was incorporated with a single stage magnetic pulse compression circuit (MPC). The MAGT was specially designed to directly replace thyratrons in a power supply for a high repetition rate laser. Compared with conventional high power semiconductor switching devices, it was designed to enable a fast switching, retaining a high blocking voltage and to extremely reduce the transient turn-on power losses, enduring a higher peak current. A maximum peak current density of 32 kA/cm2 and a current density risetime rate di/dt of 142 kA/(cm2×μs) were obtained at the chip area with an applied anode voltage of 1.5 kV. A MAGT switching unit connecting 32 MAGTs in series was capable of switching on more than 25 kV-300 A at a repetition rate of 5 kHz, which, coupled with the MPC, was equivalent to the capability of a high power thyratron. A high repetition rate and high power XeCl excimer laser was excited by the power supply. The results confirmed the stable laser operation of a repetition rate of up to 5 kHz, the world record to our knowledge. An average output power of 0.56 kW was obtained at 5 kHz where the shortage of the total discharge current was subjoined by a conventional power supply with seven parallel switching thyratrons, simultaneously working, for the MAGT power supply could not switch a greater current than that switched by one thyratron. It was confirmed by those excitations that the MAGT unit with the MPC could replace a high power commercial thyratron directly for excimer lasers. The switching stability was significantly superior to that of the thyratron in a high repetition rate region, judging from the discharge current wave forms. It should be possible for the MAGT unit, in the future, to directly switch the discharge current within a rise time of 0.1 μs with a magnetic assist.

  9. Operation of high power converters in parallel

    NASA Technical Reports Server (NTRS)

    Decker, D. K.; Inouye, L. Y.

    1992-01-01

    Three different unequal power sharing approaches for parallel operation of converters - droop, master-slave, and proportional adjustment - are discussed. The approaches have been incorporated in the breadboard dc-dc converter units used in the space station power management and distribution dc test bed at the Lewis Research Center, where the system operation has been verified.

  10. High-power converters for space applications

    NASA Technical Reports Server (NTRS)

    Park, J. N.; Cooper, Randy

    1991-01-01

    Phase 1 was a concept definition effort to extend space-type dc/dc converter technology to the megawatt level with a weight of less than 0.1 kg/kW (220 lb./MW). Two system designs were evaluated in Phase 1. Each design operates from a 5 kV stacked fuel cell source and provides a voltage step-up to 100 kV at 10 A for charging capacitors (100 pps at a duty cycle of 17 min on, 17 min off). Both designs use an MCT-based, full-bridge inverter, gaseous hydrogen cooling, and crowbar fault protection. The GE-CRD system uses an advanced high-voltage transformer/rectifier filter is series with a resonant tank circuit, driven by an inverter operating at 20 to 50 kHz. Output voltage is controlled through frequency and phase shift control. Fast transient response and stability is ensured via optimal control. Super-resonant operation employing MCTs provides the advantages of lossless snubbing, no turn-on switching loss, use of medium-speed diodes, and intrinsic current limiting under load-fault conditions. Estimated weight of the GE-CRD system is 88 kg (1.5 cu ft.). Efficiency of 94.4 percent and total system loss is 55.711 kW operating at 1 MW load power. The Maxwell system is based on a resonance transformer approach using a cascade of five LC resonant sections at 100 kHz. The 5 kV bus is converted to a square wave, stepped-up to a 100 kV sine wave by the LC sections, rectified, and filtered. Output voltage is controlled with a special series regulator circuit. Estimated weight of the Maxwell system is 83.8 kg (4.0 cu ft.). Efficiency is 87.2 percent and total system loss is 146.411 kW operating at 1 MW load power.

  11. High-power converters for space applications

    NASA Astrophysics Data System (ADS)

    Park, J. N.; Cooper, Randy

    1991-06-01

    Phase 1 was a concept definition effort to extend space-type dc/dc converter technology to the megawatt level with a weight of less than 0.1 kg/kW (220 lb./MW). Two system designs were evaluated in Phase 1. Each design operates from a 5 kV stacked fuel cell source and provides a voltage step-up to 100 kV at 10 A for charging capacitors (100 pps at a duty cycle of 17 min on, 17 min off). Both designs use an MCT-based, full-bridge inverter, gaseous hydrogen cooling, and crowbar fault protection. The GE-CRD system uses an advanced high-voltage transformer/rectifier filter is series with a resonant tank circuit, driven by an inverter operating at 20 to 50 kHz. Output voltage is controlled through frequency and phase shift control. Fast transient response and stability is ensured via optimal control. Super-resonant operation employing MCTs provides the advantages of lossless snubbing, no turn-on switching loss, use of medium-speed diodes, and intrinsic current limiting under load-fault conditions. Estimated weight of the GE-CRD system is 88 kg (1.5 cu ft.). Efficiency of 94.4 percent and total system loss is 55.711 kW operating at 1 MW load power. The Maxwell system is based on a resonance transformer approach using a cascade of five LC resonant sections at 100 kHz. The 5 kV bus is converted to a square wave, stepped-up to a 100 kV sine wave by the LC sections, rectified, and filtered. Output voltage is controlled with a special series regulator circuit. Estimated weight of the Maxwell system is 83.8 kg (4.0 cu ft.). Efficiency is 87.2 percent and total system loss is 146.411 kW operating at 1 MW load power.

  12. High-power semiconductor separate-confinement double heterostructure lasers

    SciTech Connect

    Tarasov, I S

    2010-10-15

    The review is devoted to high-power semiconductor lasers. Historical reference is presented, physical and technological foundations are considered, and the concept of high-power semiconductor lasers is formulated. Fundamental and technological reasons limiting the optical power of a semiconductor laser are determined. The results of investigations of cw and pulsed high-power semiconductor lasers are presented. Main attention is paid to inspection of the results of experimental studies of single high-power semiconductor lasers. The review is mainly based on the data obtained in the laboratory of semiconductor luminescence and injection emitters at the A.F. Ioffe Physicotechnical Institute. (review)

  13. Laboratory Astrophysics on High Power Lasers and Pulsed Power Facilities

    SciTech Connect

    Remington, B A

    2002-02-05

    Over the past decade a new genre of laboratory astrophysics has emerged, made possible by the new high energy density (HED) experimental facilities, such as large lasers, z-pinch generators, and high current particle accelerators. (Remington, 1999; 2000; Drake, 1998; Takabe, 2001) On these facilities, macroscopic collections of matter can be created in astrophysically relevant conditions, and its collective properties measured. Examples of processes and issues that can be experimentally addressed include compressible hydrodynamic mixing, strong shock phenomena, radiative shocks, radiation flow, high Mach-number jets, complex opacities, photoionized plasmas, equations of state of highly compressed matter, and relativistic plasmas. These processes are relevant to a wide range of astrophysical phenomena, such as supernovae and supernova remnants, astrophysical jets, radiatively driven molecular clouds, accreting black holes, planetary interiors, and gamma-ray bursts. These phenomena will be discussed in the context of laboratory astrophysics experiments possible on existing and future HED facilities.

  14. Advanced high-power transfer through rotary interfaces

    NASA Technical Reports Server (NTRS)

    Jacobson, P.

    1984-01-01

    A roll-ring design that is uniquely suited for rotary signal/power transfer in space applications is described. Two high-power configurations of the roll ring were developed. Present lab-proven hardware is available with power transfer capability of 2 kW at 200 amps and higher power units with 100-kW capability are in the design stage. Theoretical analysis indicated that power levels of kW are possible.

  15. Thermoelectric Powered High Temperature Wireless Sensing

    NASA Astrophysics Data System (ADS)

    Kucukkomurler, Ahmet

    This study describes use of a thermoelectric power converter to transform waste heat into electrical energy to power an RF receiver and transmitter, for use in harsh environment wireless temperature sensing and telemetry. The sensing and transmitting module employs a DS-1820 low power digital temperature sensor to perform temperature to voltage conversion, an ATX-34 RF transmitter, an ARX-34 RF receiver module, and a PIC16f84A microcontroller to synchronize data communication between them. The unit has been tested in a laboratory environment, and promising results have been obtained for an actual automotive wireless under hood temperature sensing and telemetry implementation.

  16. High power densities from high-temperature material interactions

    SciTech Connect

    Morris, J.F.

    1981-01-01

    Thermionic energy conversion (TEC) and metallic-fluid heat pipes (MFHPs) offer important and unique advantages in terrestrial and space energy processing. And they are well suited to serve together synergistically. TEC and MFHPs operate through working-fluid vaporization, condensation cycles that accept great thermal power densities at high temperatures. TEC and MFHPs have apparently simple, isolated performance mechanisms that are somewhat similar. And they also have obviously difficult, complected material problems that again are somewhat similar. Intensive investigation reveals that aspects of their operating cycles and material problems tend to merge: high-temperature material effects determine the level and lifetime of performance. Simplified equations verify the preceding statement for TEC and MFHPs. Material properties and interactions exert primary influences on operational effectiveness. And thermophysicochemical stabilities dictate operating temperatures which regulate the thermoemissive currents of TEC and the vaporization flow rates of MFHPs. Major high-temperature material problems of TEC and MFHPs have been solved. These solutions lead to productive, cost-effective applications of current TEC and MFHPs - and point to significant improvements with anticipated technological gains.

  17. A High Power Frequency Doubled Fiber Laser

    NASA Technical Reports Server (NTRS)

    Thompson, Rob; Tu, Meirong; Aveline, Dave; Lundblad, Nathan; Maleki, Lute

    2003-01-01

    This slide presentation reviews the power frequencies for the doubled fiber laser. It includes information on the 780 nm laser, second harmonic generation in one crystal, cascading crystals, the tenability of laser systems, laser cooling, and directions for future work.

  18. Advances in bonding technology for high power diode laser bars

    NASA Astrophysics Data System (ADS)

    Wang, Jingwei; Li, Xiaoning; Hou, Dong; Feng, Feifei; Liu, Yalong; Liu, Xingsheng

    2015-02-01

    Due to their high electrical-optical conversion efficiency, compact size and long lifetime, high power diode lasers have found increased applications in many fields. As the improvement of device technology, high power diode laser bars with output power of tens or hundreds watts have been commercially available. With the increase of high current and output power, the reliability and lifetime of high power diode laser bars becomes a challenge, especially under harsh working conditions and hard-pulse operations. The bonding technology is still one of the bottlenecks of the advancement of high power diode laser bars. Currently, materials used in bonding high power diode laser bars are commonly indium and goldtin solders. Experimental and field application results indicates that the lifetime and reliability of high power diode laser bars bonded by gold-tin solder is much better than that bonded by indium solder which is prone to thermal fatigue, electro-migration and oxidization. In this paper, we review the bonding technologies for high power diode laser bars and present the advances in bonding technology for single bars, horizontal bar arrays and vertical bar stacks. We will also present the challenges and issues in bonding technology for high power diode laser bars and discuss some approaches and strategies in addressing the challenges and issues.

  19. Test Results From a High Power Linear Alternator Test Rig

    NASA Technical Reports Server (NTRS)

    Birchenough, Arthur G.; Hervol, David S.; Gardner, Brent G.

    2010-01-01

    Stirling cycle power conversion is an enabling technology that provides high thermodynamic efficiency but also presents unique challenges with regard to electrical power generation, management, and distribution. The High Power Linear Alternator Test Rig (HPLATR) located at the NASA Glenn Research Center (GRC) in Cleveland, Ohio is a demonstration test bed that simulates electrical power generation from a Stirling engine driven alternator. It implements the high power electronics necessary to provide a well regulated DC user load bus. These power electronics use a novel design solution that includes active rectification and power factor control, active ripple suppression, along with a unique building block approach that permits the use of high voltage or high current alternator designs. This report describes the HPLATR, the test program, and the operational results.

  20. Test Results from a High Power Linear Alternator Test Rig

    NASA Technical Reports Server (NTRS)

    Birchenough, Arthur G.; Hervol, David S.; Gardner, Brent G.

    2010-01-01

    Stirling cycle power conversion is an enabling technology that provides high thermodynamic efficiency but also presents unique challenges with regard to electrical power generation, management, and distribution. The High Power Linear Alternator Test Rig (HPLATR) located at the NASA Glenn Research Center (GRC) in Cleveland, OH is a demonstration test bed that simulates electrical power generation from a Stirling engine driven alternator. It implements the high power electronics necessary to provide a well regulated DC user load bus. These power electronics use a novel design solution that includes active rectification and power factor control, active ripple suppression, along with a unique building block approach that permits the use of high voltage or high current alternator designs. This presentation describes the HPLATR, the test program, and the operational results.

  1. POWOW: A Modular, High Power Spacecraft Concept

    NASA Technical Reports Server (NTRS)

    Brandhorst, Henry W., Jr.

    2000-01-01

    A robust space infrastructure encompasses a broad range of mission needs along with an imperative to reduce costs of satellites meeting those needs. A critical commodity for science, commercial and civil satellites is power at an affordable cost. The POWOW (POwer WithOut Wires) spacecraft concept was created to provide, at one end of the scale, multi-megawatts of power yet also be composed of modules that can meet spacecraft needs in the kilowatt range. With support from the NASA-sponsored Space Solar Power Exploratory Research and Technology Program, the POWOW spacecraft concept was designed to meet Mars mission needs - while at the same time having elements applicable to a range of other missions. At Mars, the vehicle would reside in an aerosynchronous orbit and beam power to a variety of locations on the surface. It is the purpose of this paper to present the latest concept design results. The Space Power Institute along with four companies: Able Engineering, Inc., Entech, Inc., Primex Aerospace Co., and TECSTAR have produced a modular, power-rich electrically propelled spacecraft design that meets these requirements. In addition, it also meets a range of civil and commercial needs. The spacecraft design is based on multijunction Ill-V solar cells, the new Stretched Lens Aurora (SLA) module, a lightweight array design based on a multiplicity of 8 kW end-of-life subarrays and electric thrusters. The solar cells have excellent radiation resistance and efficiencies above 30%. The SLA has a concentration ratio up to 15x while maintaining an operating temperature of 80 C. The design of the 8 kW array building block will be presented and its applicability to commercial and government missions will be discussed. Electric propulsion options include Hall, MPD and ion thrusters of various power levels and trade studies have been conducted to define the most advantageous options. The present baseline spacecraft design providing 900 kW using technologies expected to be

  2. High-voltage, high-power, solid-state remote power controllers for aerospace applications

    NASA Technical Reports Server (NTRS)

    Sturman, J. C.

    1985-01-01

    Two general types of remote power controller (RPC) that combine the functions of a circuit breaker and a switch were developed for use in direct-current (dc) aerospace systems. Power-switching devices used in these designs are the relatively new gate-turnoff thyristor (GTO) and poweer metal-oxide-semiconductor field-effect transistors (MOSFET). The various RPC's can switch dc voltages to 1200 V and currents to 100 A. Seven different units were constructed and subjected to comprehensive laboratory and thermal vacuum testing. Two of these were dual units that switch both positive and negative voltages simultaneously. The RPC's using MOSFET's have slow turnon and turnoff times to limit voltage spiking from high di/dt. The GTO's have much faster transition times. All RPC's have programmable overload tripout and microsecond tripout for large overloads. The basic circuits developed can be used to build switchgear limited only by the ratings of the switching device used.

  3. High Efficiency Microwave Power Amplifier: From the Lab to Industry

    NASA Technical Reports Server (NTRS)

    Sims, William Herbert, III; Bell, Joseph L. (Technical Monitor)

    2001-01-01

    Since the beginnings of space travel, various microwave power amplifier designs have been employed. These included Class-A, -B, and -C bias arrangements. However, shared limitation of these topologies is the inherent high total consumption of input power associated with the generation of radio frequency (RF)/microwave power. The power amplifier has always been the largest drain for the limited available power on the spacecraft. Typically, the conversion efficiency of a microwave power amplifier is 10 to 20%. For a typical microwave power amplifier of 20 watts, input DC power of at least 100 watts is required. Such a large demand for input power suggests that a better method of RF/microwave power generation is required. The price paid for using a linear amplifier where high linearity is unnecessary includes higher initial and operating costs, lower DC-to-RF conversion efficiency, high power consumption, higher power dissipation and the accompanying need for higher capacity heat removal means, and an amplifier that is more prone to parasitic oscillation. The first use of a higher efficiency mode of power generation was described by Baxandall in 1959. This higher efficiency mode, Class-D, is achieved through distinct switching techniques to reduce the power losses associated with switching, conduction, and gate drive losses of a given transistor.

  4. High power single-frequency Innoslab amplifier.

    PubMed

    Han, Ke-Zhen; Ning, Jian; Zhang, Bai-Tao; Wang, Yi-Ran; Zhang, Hai-Kun; Nie, Hong-Kun; Sun, Xiao-Li; He, Jing-Liang

    2016-07-10

    A laser diode array (LDA) end-pumped continuous-wave single-frequency Innoslab amplifier has been demonstrated. The Gaussian ray bundle method was used to model the light propagation in the Innoslab amplifier for the first time to the best of our knowledge. With discrete reflectors, the maximum output of 60 W with a linewidth of 44 MHz was achieved under the pump power of 245 W, corresponding to the optical-optical efficiency of 24.5%. The beam quality factor M2 at the output power of 51 W in the horizontal and vertical direction was measured to be 1.4 and 1.3, respectively. The long-term power instability in 2 h was less than 0.25%. PMID:27409308

  5. High power density thermophotovoltaic energy conversion

    NASA Astrophysics Data System (ADS)

    Noreen, Darryl L.; Du, Honghua

    1995-01-01

    R&D Technologies is developing thermophotovoltaic (TPV) technology based on the use of porous/fibrous ceramic broadband-type emitter designs that utilize recuperative or regenerative techniques to improve thermal efficiency and power density. This paper describes preliminary estimates of what will be required to accomplish sufficient power density to develop a practical, commercially-viable TPV generator. It addresses the needs for improved, thermal shock-resistant, long-life porous/fibrous ceramic emitters and provides information on the photocell technology required to achieve acceptable power density in broadband-type (with selective filter) TPV systems. TPV combustors/systems operating at a temperature of 1500 °C with a broadband-type emitter is proposed as a viable starting point for cost-effective TPV conversion. Based on current projections for photocell cost, system power densities of 7.5-10 watts per square centimeter of emitter area will be required for TPV to become a commercially viable technology.

  6. Radio Sounding Science at High Powers

    NASA Technical Reports Server (NTRS)

    Green, J. L.; Reinisch, B. W.; Song, P.; Fung, S. F.; Benson, R. F.; Taylor, W. W. L.; Cooper, J. F.; Garcia, L.; Markus, T.; Gallagher, D. L.

    2004-01-01

    Future space missions like the Jupiter Icy Moons Orbiter (JIMO) planned to orbit Callisto, Ganymede, and Europa can fully utilize a variable power radio sounder instrument. Radio sounding at 1 kHz to 10 MHz at medium power levels (10 W to kW) will provide long-range magnetospheric sounding (several Jovian radii) like those first pioneered by the radio plasma imager instrument on IMAGE at low power (less than l0 W) and much shorter distances (less than 5 R(sub E)). A radio sounder orbiting a Jovian icy moon would be able to globally measure time-variable electron densities in the moon ionosphere and the local magnetospheric environment. Near-spacecraft resonance and guided echoes respectively allow measurements of local field magnitude and local field line geometry, perturbed both by direct magnetospheric interactions and by induced components from subsurface oceans. JIMO would allow radio sounding transmissions at much higher powers (approx. 10 kW) making subsurface sounding of the Jovian icy moons possible at frequencies above the ionosphere peak plasma frequency. Subsurface variations in dielectric properties, can be probed for detection of dense and solid-liquid phase boundaries associated with oceans and related structures in overlying ice crusts.

  7. High power gas laser - Applications and future developments

    NASA Technical Reports Server (NTRS)

    Hertzberg, A.

    1977-01-01

    Fast flow can be used to create the population inversion required for lasing action, or can be used to improve laser operation, for example by the removal of waste heat. It is pointed out that at the present time all lasers which are capable of continuous high-average power employ flow as an indispensable aspect of operation. High power laser systems are discussed, taking into account the gasdynamic laser, the HF supersonic diffusion laser, and electric discharge lasers. Aerodynamics and high power lasers are considered, giving attention to flow effects in high-power gas lasers, aerodynamic windows and beam manipulation, and the Venus machine. Applications of high-power laser technology reported are related to laser material working, the employment of the laser in controlled fusion machines, laser isotope separation and photochemistry, and laser power transmission.

  8. High Performance Power Module for Hall Effect Thrusters

    NASA Technical Reports Server (NTRS)

    Pinero, Luis R.; Peterson, Peter Y.; Bowers, Glen E.

    2002-01-01

    Previous efforts to develop power electronics for Hall thruster systems have targeted the 1 to 5 kW power range and an output voltage of approximately 300 V. New Hall thrusters are being developed for higher power, higher specific impulse, and multi-mode operation. These thrusters require up to 50 kW of power and a discharge voltage in excess of 600 V. Modular power supplies can process more power with higher efficiency at the expense of complexity. A 1 kW discharge power module was designed, built and integrated with a Hall thruster. The breadboard module has a power conversion efficiency in excess of 96 percent and weighs only 0.765 kg. This module will be used to develop a kW, multi-kW, and high voltage power processors.

  9. High Efficiency Thermoelectric Radioisotope Power Systems

    NASA Technical Reports Server (NTRS)

    El-Genk, Mohamed; Saber, Hamed; Caillat, Thierry

    2004-01-01

    The work performed and whose results presented in this report is a joint effort between the University of New Mexico s Institute for Space and Nuclear Power Studies (ISNPS) and the Jet Propulsion Laboratory (JPL), California Institute of Technology. In addition to the development, design, and fabrication of skutterudites and skutterudites-based segmented unicouples this effort included conducting performance tests of these unicouples for hundreds of hours to verify theoretical predictions of the conversion efficiency. The performance predictions of these unicouples are obtained using 1-D and 3-D models developed for that purpose and for estimating the actual performance and side heat losses in the tests conducted at ISNPS. In addition to the performance tests, the development of the 1-D and 3-D models and the development of Advanced Radioisotope Power systems for Beginning-Of-Life (BOM) power of 108 We are carried out at ISNPS. The materials synthesis and fabrication of the unicouples are carried out at JPL. The research conducted at ISNPS is documented in chapters 2-5 and that conducted at JP, in documented in chapter 5. An important consideration in the design and optimization of segmented thermoelectric unicouples (STUs) is determining the relative lengths, cross-section areas, and the interfacial temperatures of the segments of the different materials in the n- and p-legs. These variables are determined using a genetic algorithm (GA) in conjunction with one-dimensional analytical model of STUs that is developed in chapter 2. Results indicated that when optimized for maximum conversion efficiency, the interfacial temperatures between various segments in a STU are close to those at the intersections of the Figure-Of-Merit (FOM), ZT, curves of the thermoelectric materials of the adjacent segments. When optimizing the STUs for maximum electrical power density, however, the interfacial temperatures are different from those at the intersections of the ZT curves, but

  10. E-beam high voltage switching power supply

    DOEpatents

    Shimer, D.W.; Lange, A.C.

    1996-10-15

    A high-power power supply produces a controllable, constant high voltage output under varying and arcing loads. The power supply includes a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, an output rectifier for producing a dc voltage at the output of each module, and a current sensor for sensing output current. The power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle and circuitry is provided for sensing incipient arc currents at the output of the power supply to simultaneously decouple the power supply circuitry from the arcing load. The power supply includes a plurality of discrete switching type dc--dc converter modules. 5 figs.

  11. E-beam high voltage switching power supply

    DOEpatents

    Shimer, Daniel W.; Lange, Arnold C.

    1996-01-01

    A high-power power supply produces a controllable, constant high voltage put under varying and arcing loads. The power supply includes a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, an output rectifier for producing a dc voltage at the output of each module, and a current sensor for sensing output current. The power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle and circuitry is provided for sensing incipient arc currents at the output of the power supply to simultaneously decouple the power supply circuitry from the arcing load. The power supply includes a plurality of discrete switching type dc--dc converter modules.

  12. Studies of basic mechanisms in high pressure gases: Applications to high efficiency high power lasers

    NASA Technical Reports Server (NTRS)

    Verdeyen, J. T.; Cherrington, B. E.; Leslie, S. G.; Millar, W. S.; Edwards, B. E.

    1976-01-01

    A high power pulsed dye laser was used to optically excite high pressure cesium-xenon mixtures and the resulting measurements are presented. A microwave discharge in rubidium at relatively high xenon pressure was achieved. Preliminary studies of cadium-rare gas mixtures are discussed and a detailed description of the entire experimental apparatus is given.

  13. Power affects performance when the pressure is on: evidence for low-power threat and high-power lift.

    PubMed

    Kang, Sonia K; Galinsky, Adam D; Kray, Laura J; Shirako, Aiwa

    2015-05-01

    The current research examines how power affects performance in pressure-filled contexts. We present low-power-threat and high-power-lift effects, whereby performance in high-stakes situations suffers or is enhanced depending on one's power; that is, the power inherent to a situational role can produce effects similar to stereotype threat and lift. Three negotiations experiments demonstrate that role-based power affects outcomes but only when the negotiation is diagnostic of ability and, therefore, pressure-filled. We link these outcomes conceptually to threat and lift effects by showing that (a) role power affects performance more strongly when the negotiation is diagnostic of ability and (b) underperformance disappears when the low-power negotiator has an opportunity to self-affirm. These results suggest that stereotype threat and lift effects may represent a more general phenomenon: When the stakes are raised high, relative power can act as either a toxic brew (stereotype/low-power threat) or a beneficial elixir (stereotype/high-power lift) for performance.

  14. Output beam analysis of high power COIL

    NASA Astrophysics Data System (ADS)

    Yu, Deli; Sang, Fengting; Jin, Yuqi; Sun, Yizhu

    2003-03-01

    As the output power of a chemical oxygen iodine laser (COIL) increases, the output laser beam instability appears as the far-field beam spot drift and deformation for the large Fresnel number unstable resonator. In order to interpret this phenomenon, an output beam mode simulation code was developed with the fast Fourier transform method. The calculation results show that the presence of the nonuniform gain in COIL produces a skewed output intensity distribution, which causes the mirror tilt and bulge due to the thermal expansion. With the output power of COIL increases, the mirror surfaces, especially the back surface of the scraper mirror, absorb more and more heat, which causes the drift and deformation of far field beam spot seriously. The initial misalignment direction is an important factor for the far field beam spot drifting and deformation.

  15. Trends in high-power ultrafast lasers

    NASA Astrophysics Data System (ADS)

    Saraceno, Clara; Emaury, Florian; Diebold, Andreas; Graumann, Ivan; Golling, Matthias; Keller, Ursula

    2016-05-01

    Ultrafast laser sources are one of the main achievements of the past decades. Finding new avenues to obtain higher average powers and pulse energies from these sources is currently a topic of important research efforts both for scientific and industrial applications. SESAM modelocked thin-disk lasers are one of the most promising laser technology to reach this goal from table-top systems: recently, average powers of 275 W and pulse energies of 80 μJ were demonstrated directly from a modelocked oscillators without additional external amplification. In this presentation, we will review the current state-of-the art of such table-top systems and present guidelines for future kilowatt-class systems.

  16. High-power hydrogen arcjet performance

    NASA Technical Reports Server (NTRS)

    Haag, Thomas W.; Curran, Francis M.

    1991-01-01

    A hydrogen arcjet was operated at power levels ranging from 5 to 30 kW with three different nozzle geometries. Test results using all three nozzle geometries are reported and include variations of specific impulse with flow rate, and thrust with power. Geometric variables investigated included constrictor diameter, length, and diverging exit angle. The nozzle with a constrictor diameter of 1.78 mm and divergence angle of 20 degrees was found to give the highest performance. A specific impulse of 1460 s was attained with this nozzle at a thrust efficiency of 29.8 percent. The best efficiency measured was 34.4 percent at a specific impulse of 1045 s. Post test examination of the cathode showed erosion after 28 hours of operation to be small, and limited to the conical tip where steady state arc attachment occurred. Each nozzle was tested to destruction.

  17. High-power hydrogen arcjet performance

    NASA Technical Reports Server (NTRS)

    Haag, Thomas W.; Curran, Francis M.

    1991-01-01

    A hydrogen arcjet was operated at power levels ranging from 5 to 30 kW with three different nozzle geometries. Test results using all three nozzle geometries are reported and include variations of specific impulse with flow rate, and thrust with power. Geometric variables investigated included constrictor diameter, length, and diverging exit angle. The nozzle with a constrictor diameter of 1.78 mm and divergence angle of 20 deg was found to give the highest performance. A specific impulse of 1460 s was attained with this nozzle at a thrust efficiency of 29.8 percent. The best efficiency measured was 34.4 percent at a specific impulse of 1045 s. Post test examination of the cathode showed erosion after 28 hours of operation to be small, and limited to the conical tip where steady state arc attachment occurred. Each nozzle was tested to destruction.

  18. High Power Co-Axial Coupler

    SciTech Connect

    Johnson, Rolland; Neubauer, Michael

    2013-08-14

    A superconducting RF (SRF) power coupler capable of handling 500 kW CW RF power at 750 MHz is required for present and future storage rings and linacs. There are over 35 coupler designs for SRF cavities ranging in frequency from 325 to 1500 MHz. Coupler windows vary from cylinders to cones to disks and RF power couplers will always be limited by the ability of ceramic windows and their matching systems to withstand the stresses due to non-uniform heating from dielectric and wall losses, multipactor, and mechanical flexure. In the Phase II project, we built a double window coaxial system with materials that would not otherwise be useable due to individual VSWRs. Double window systems can be operated such that one is cold (LN2) and one is warm. They can have different materials and still have a good match without using matching elements that create problematic multipactor bands. The match of the two windows will always result from the cancellation of the two window’s reflections when they are located approximately a quarter wavelength apart or multiples of a quarter wavelength. The window assemblies were carefully constructed to put the window material and its braze joint in compression at all times. This was done using explosion bonding techniques which allow for inexpensive fabrication of the vacuum / compression ring out of stainless steel with copper plating applied to the inner surface. The EIA 3-1/8” double window assembly was then successfully baked out and tested to 12 kW in a 3-1/8” co-axial system. The thermal gradient across the window was measured to be 90 C which represents about 15 ksi tensile stress in an uncompressed window. In our design the compression was calculated to be about 25 ksi, so the net compressive force was 5 ksi at full power.

  19. Multikilowatt Power Module Designed and Fabricated for High-Power Hall Thrusters

    NASA Technical Reports Server (NTRS)

    Pinero, Luis R.

    2004-01-01

    Previous efforts to develop power processing units (PPUs) for Hall thruster systems were targeted for the 1- to 5-kW power range and an output voltage of approximately 300 V. The NASA Glenn Research Center is developing new high-power Hall thrusters with a favorable combination of thrust, specific impulse, and efficiency to enable Earth-orbiting and Mars missions. These thrusters require up to 100 kW of power and a discharge voltage in excess of 800 V.

  20. Multi-Kilowatt Power Module for High-Power Hall Thrusters

    NASA Technical Reports Server (NTRS)

    Pinero, Luis R.; Bowers, Glen E.

    2005-01-01

    Future NASA missions will require high-performance electric propulsion systems. Hall thrusters are being developed at NASA Glenn for high-power, high-specific impulse operation. These thrusters operate at power levels up to 50 kW of power and discharge voltages in excess of 600 V. A parallel effort is being conducted to develop power electronics for these thrusters that push the technology beyond the 5kW state-of-the-art power level. A 10 kW power module was designed to produce an output of 500 V and 20 A from a nominal 100 V input. Resistive load tests revealed efficiencies in excess of 96 percent. Load current share and phase synchronization circuits were designed and tested that will allow connecting multiple modules in parallel to process higher power.

  1. High-power MUTC photodetectors for RF photonic links

    NASA Astrophysics Data System (ADS)

    Estrella, Steven; Johansson, Leif A.; Mashanovitch, Milan L.; Beling, Andreas

    2016-02-01

    High power photodiodes are needed for a range of applications. The high available power conversion efficiency makes these ideal for antenna remoting applications, including high power, low duty-cycle RF pulse generation. The compact footprint and fiber optic input allow densely packed RF aperture arrays with low cross-talk for phased high directionality emitters. Other applications include linear RF photonic links and other high dynamic range optical systems. Freedom Photonics has developed packaged modified uni-traveling carrier (MUTC) photodetectors for high-power applications. Both single and balanced photodetector pairs are mounted on a ceramic carrier, and packaged in a compact module optimized for high power operation. Representative results include greater than 100 mA photocurrent, >100m W generated RF power and >20 GHz bandwidth. In this paper, we evaluate the saturation and bandwidth of these single ended and balanced photodetectors for detector diameter in the 16 μm to 34 μm range. Packaged performance is compared to chip performance. Further new development towards the realization of <100GHz packaged photodetector modules with optimized high power performance is described. Finally, incorporation of these photodetector structures in novel photonic integrated circuits (PICs) for high optical power application areas is outlined.

  2. A portable high power microwave source with permanent magnets

    NASA Astrophysics Data System (ADS)

    Li, Wei; Zhang, Jun; Li, Zhi-qiang; Yang, Jian-Hua

    2016-06-01

    A high power microwave source with permanent magnets is proposed in this paper. The source has the length 330 mm, maximum diameter 350 mm, and total weight 50 kg, including 25 kg of permanent magnets. 1 GW of microwave power with Gaussian radiation pattern and 24% of microwave power generation efficiency in a pulse duration of 75 ns are obtained in the experiment. Operating frequency of the source is 2.32 GHz. Such a small size, light weight, and highly stable in operation source will be used in portable repetitive high power microwave generation systems.

  3. High Input Voltage, Silicon Carbide Power Processing Unit Performance Demonstration

    NASA Technical Reports Server (NTRS)

    Bozak, Karin E.; Pinero, Luis R.; Scheidegger, Robert J.; Aulisio, Michael V.; Gonzalez, Marcelo C.; Birchenough, Arthur G.

    2015-01-01

    A silicon carbide brassboard power processing unit has been developed by the NASA Glenn Research Center in Cleveland, Ohio. The power processing unit operates from two sources - a nominal 300-Volt high voltage input bus and a nominal 28-Volt low voltage input bus. The design of the power processing unit includes four low voltage, low power supplies that provide power to the thruster auxiliary supplies, and two parallel 7.5 kilowatt power supplies that are capable of providing up to 15 kilowatts of total power at 300-Volts to 500-Volts to the thruster discharge supply. Additionally, the unit contains a housekeeping supply, high voltage input filter, low voltage input filter, and master control board, such that the complete brassboard unit is capable of operating a 12.5 kilowatt Hall Effect Thruster. The performance of unit was characterized under both ambient and thermal vacuum test conditions, and the results demonstrate the exceptional performance with full power efficiencies exceeding 97. With a space-qualified silicon carbide or similar high voltage, high efficiency power device, this design could evolve into a flight design for future missions that require high power electric propulsion systems.

  4. High power couplers for Project X

    SciTech Connect

    Kazakov, S.; Champion, M.S.; Yakovlev, V.P.; Kramp, M.; Pronitchev, O.; Orlov, Y.; /Fermilab

    2011-03-01

    Project X, a multi-megawatt proton source under development at Fermi National Accelerator Laboratory. The key element of the project is a superconducting (SC) 3GV continuous wave (CW) proton linac. The linac includes 5 types of SC accelerating cavities of two frequencies.(325 and 650MHz) The cavities consume up to 30 kW average RF power and need proper main couplers. Requirements and approach to the coupler design are discussed in the report. New cost effective schemes are described. Results of electrodynamics and thermal simulations are presented.

  5. High density operation for reactor-relevant power exhaust

    NASA Astrophysics Data System (ADS)

    Wischmeier, M.

    2015-08-01

    With increasing size of a tokamak device and associated fusion power gain an increasing power flux density towards the divertor needs to be handled. A solution for handling this power flux is crucial for a safe and economic operation. Using purely geometric arguments in an ITER-like divertor this power flux can be reduced by approximately a factor 100. Based on a conservative extrapolation of current technology for an integrated engineering approach to remove power deposited on plasma facing components a further reduction of the power flux density via volumetric processes in the plasma by up to a factor of 50 is required. Our current ability to interpret existing power exhaust scenarios using numerical transport codes is analyzed and an operational scenario as a potential solution for ITER like divertors under high density and highly radiating reactor-relevant conditions is presented. Alternative concepts for risk mitigation as well as strategies for moving forward are outlined.

  6. Pulse wireless photonic power transfer at high irradiance

    NASA Astrophysics Data System (ADS)

    Dhadwal, Harbans S.; Rastegar, Jahangir; Kwok, Philip

    2014-06-01

    Photonic power conversion combined with a high power laser diode, is a high efficiency solution for rapid, wireless transfer of power to dormant sensors, which have sporadic need for electrical power. In particular, these devices replace, thermal/inductive power sources inside a munition shell, leading to a safe non-radiating environment. Experimental results with a 25 F double-layer, super-capacitor, indicate that the surface irradiance and laser power both determine the minimum energy transfer time. At a power level of 4 W, the energy transfer rate reduces from a 1 J/s to 0.35 J/s as the irradiance level changes from 1125 suns to 63 suns.

  7. 3-D Printed High Power Microwave Magnetrons

    NASA Astrophysics Data System (ADS)

    Jordan, Nicholas; Greening, Geoffrey; Exelby, Steven; Gilgenbach, Ronald; Lau, Y. Y.; Hoff, Brad

    2015-11-01

    The size, weight, and power requirements of HPM systems are critical constraints on their viability, and can potentially be improved through the use of additive manufacturing techniques, which are rapidly increasing in capability and affordability. Recent experiments on the UM Recirculating Planar Magnetron (RPM), have explored the use of 3-D printed components in a HPM system. The system was driven by MELBA-C, a Marx-Abramyan system which delivers a -300 kV voltage pulse for 0.3-1.0 us, with a 0.15-0.3 T axial magnetic field applied by a pair of electromagnets. Anode blocks were printed from Water Shed XC 11122 photopolymer using a stereolithography process, and prepared with either a spray-coated or electroplated finish. Both manufacturing processes were compared against baseline data for a machined aluminum anode, noting any differences in power output, oscillation frequency, and mode stability. Evolution and durability of the 3-D printed structures were noted both visually and by tracking vacuum inventories via a residual gas analyzer. Research supported by AFOSR (grant #FA9550-15-1-0097) and AFRL.

  8. Wireless power transfer and fault diagnosis of high-voltage power line via robotic bird

    NASA Astrophysics Data System (ADS)

    Liu, Chunhua; Chau, K. T.; Zhang, Zhen; Qiu, Chun; Li, Wenlong; Ching, T. W.

    2015-05-01

    This paper presents a new idea of wireless power transfer (WPT) and fault diagnosis (FD) of high-voltage power line via robotic bird. The key is to present the conceptual robotic bird with WPT coupling coil for detecting and capturing the energy from the high-voltage power line. If the power line works in normal condition, the robotic bird is able to stand on the power line and extract energy from it. If fault occurs on the power line, the corresponding magnetic field distribution will become different from that in the normal situation. By analyzing the magnetic field distribution of the power line, the WPT to the robotic bird and the FD by the robotic bird are performed and verified.

  9. High efficiency fuel cell/advanced turbine power cycles

    SciTech Connect

    Morehead, H.

    1995-10-19

    An outline of the Westinghouse high-efficiency fuel cell/advanced turbine power cycle is presented. The following topics are discussed: The Westinghouse SOFC pilot manufacturing facility, cell scale-up plan, pressure effects on SOFC power and efficiency, sureCell versus conventional gas turbine plants, sureCell product line for distributed power applications, 20 MW pressurized-SOFC/gas turbine power plant, 10 MW SOFC/CT power plant, sureCell plant concept design requirements, and Westinghouse SOFC market entry.

  10. High Input Voltage, Silicon Carbide Power Processing Unit Performance Demonstration

    NASA Technical Reports Server (NTRS)

    Bozak, Karin E.; Pinero, Luis R.; Scheidegger, Robert J.; Aulisio, Michael V.; Gonzalez, Marcelo C.; Birchenough, Arthur G.

    2015-01-01

    A silicon carbide brassboard power processing unit has been developed by the NASA Glenn Research Center in Cleveland, Ohio. The power processing unit operates from two sources: a nominal 300 Volt high voltage input bus and a nominal 28 Volt low voltage input bus. The design of the power processing unit includes four low voltage, low power auxiliary supplies, and two parallel 7.5 kilowatt (kW) discharge power supplies that are capable of providing up to 15 kilowatts of total power at 300 to 500 Volts (V) to the thruster. Additionally, the unit contains a housekeeping supply, high voltage input filter, low voltage input filter, and master control board, such that the complete brassboard unit is capable of operating a 12.5 kilowatt Hall effect thruster. The performance of the unit was characterized under both ambient and thermal vacuum test conditions, and the results demonstrate exceptional performance with full power efficiencies exceeding 97%. The unit was also tested with a 12.5kW Hall effect thruster to verify compatibility and output filter specifications. With space-qualified silicon carbide or similar high voltage, high efficiency power devices, this would provide a design solution to address the need for high power electric propulsion systems.

  11. Design Of High Power CO2 TEA Lasers And Applications

    NASA Astrophysics Data System (ADS)

    Von Bergmann, H. M.

    2008-09-01

    There are a number of key technologies involved in the successful design and construction of high power, Carbon Dioxide TEA lasers (Transverse Excitation Atmospheric). These include uniform field electrodes, excitation circuit design including high voltage switching, discharge preionisation and for high repetition, high power applications fast transverse gas flow and the management of acoustic waves. This paper provides a summary of the design aspects of high repetition rate, high average power CO2 TEA lasers. Experimental data measured on high power CO2 TEA laser systems delivering average outputs of several kW and kHz repetition rates will be reported showing the detrimental effect of acoustic waves on laser performance and the improvement that can be achieved through effective acoustic damping measures.

  12. Overview on the high power excimer laser technology

    NASA Astrophysics Data System (ADS)

    Liu, Jingru

    2013-05-01

    High power excimer laser has essential applications in the fields of high energy density physics, inertial fusion energy and industry owing to its advantages such as short wavelength, high gain, wide bandwidth, energy scalable and repetition operating ability. This overview is aimed at an introduction and evaluation of enormous endeavor of the international high power excimer laser community in the last 30 years. The main technologies of high power excimer laser are reviewed, which include the pumping source technology, angular multiplexing and pulse compressing, beam-smoothing and homogenous irradiation, high efficiency and repetitive operation et al. A high power XeCl laser system developed in NINT of China is described in detail.

  13. High power rf klystrons for linear accelerators

    SciTech Connect

    Konrad, G.T.

    1984-04-01

    Recent klystron developments at SLAC are described. The standard 40 MW klyston, which typically operates at 35 MW on the SLAC linac, is the starting point for the push to higher peak and average power. The standard tube is capable of a 2.5 ..mu..s rf pulse width at 360 pps. For the SLC a 50 MW klystron capable of 5 ..mu..s pulse width at 180 pps is under development. Another tube currently being worked on is a 150 MW klystron capable of 1 ..mu..s rf and 180 pps. Design criteria and actual operating experience for both developmental tubes are described. 10 references, 11 figures, 3 tables.

  14. High power UV and VUV pulsed excilamps

    NASA Astrophysics Data System (ADS)

    Tarasenko, V.; Erofeev, M.; Lomaev, M.; Rybka, D.

    2008-07-01

    Emission characteristics of a nanosecond discharge in inert gases and its halogenides without preionization of the gap from an auxiliary source have been investigated. A volume discharge, initiated by an avalanche electron beam (VDIAEB) was realized at pressures up to 12 atm. In xenon at pressure of 1.2 atm, the energy of spontaneous radiation in the full solid angle was sim 45 mJ/cm^3, and the FWHM of a radiation pulse was sim 110 ns. The spontaneous radiation power rise in xenon was observed at pressures up to 12 atm. Pulsed radiant exitance of inert gases halogenides excited by VDIAEB was sim 4.5 kW/cm^2 at efficiency up to 5.5 %.

  15. High power laser and cathode structure thereof

    SciTech Connect

    Nam, K. H.; Seguin, H. J.; Tulip, J.

    1981-09-08

    A cathode structure for gas lasers is disclosed that is comprised of a flat plate of non-conducting material positioned in the laser in spaced relation to the laser anode to define a discharge region therebetween, a two-dimensional array of metal sub-electrode rods passing through the plate and having their upper ends lying flush with the surface of the plate, a block of dielectric material positioned below the plate and containing a series of transverse channels therein, electric current conductors lying in the channels and adapted for connection to a power supply, the lower ends of the said rods passing through openings in the block into the channels to define a predetermined uniform gap between the ends of the rods and the electrical conductor, and a liquid electrolyte solution filling the channels and electrically connecting the sub-electrode rods and the conductors.

  16. Low Power, High Voltage Power Supply with Fast Rise/Fall Time

    NASA Technical Reports Server (NTRS)

    Bearden, Douglas B. (Inventor)

    2007-01-01

    A low power, high voltage power supply system includes a high voltage power supply stage and a preregulator for programming the power supply stage so as to produce an output voltage which is a predetermined fraction of a desired voltage level. The power supply stage includes a high voltage, voltage doubler stage connected to receive the output voltage from the preregulator and for, when activated, providing amplification of the output voltage to the desired voltage level. A first feedback loop is connected between the output of the preregulator and an input of the preregulator while a second feedback loop is connected between the output of the power supply stage and the input of the preregulator.

  17. Low power, high voltage power supply with fast rise/fall time

    NASA Technical Reports Server (NTRS)

    Bearden, Douglas B. (Inventor)

    2007-01-01

    A low power, high voltage power supply system includes a high voltage power supply stage and a preregulator for programming the power supply stage so as to produce an output voltage which is a predetermined fraction of a desired voltage level. The power supply stage includes a high voltage, voltage doubler stage connected to receive the output voltage from the preregulator and for, when activated, providing amplification of the output voltage to the desired voltage level. A first feedback loop is connected between the output of the preregulator and an input of the preregulator while a second feedback loop is connected between the output of the power supply stage and the input of the preregulator.

  18. High power industrial picosecond laser from IR to UV

    NASA Astrophysics Data System (ADS)

    Saby, Julien; Sangla, Damien; Pierrot, Simonette; Deslandes, Pierre; Salin, François

    2013-02-01

    Many industrial applications such as glass cutting, ceramic micro-machining or photovoltaic processes require high average and high peak power Picosecond pulses. The main limitation for the expansion of the picosecond market is the cost of high power picosecond laser sources, which is due to the complexity of the architecture used for picosecond pulse amplification, and the difficulty to keep an excellent beam quality at high average power. Amplification with fibers is a good technology to achieve high power in picosecond regime but, because of its tight confinement over long distances, light undergoes dramatic non linearities while propagating in fibers. One way to avoid strong non linearities is to increase fiber's mode area. Nineteen missing holes fibers offering core diameter larger than 80μm have been used over the past few years [1-3] but it has been shown that mode instabilities occur at approximately 100W average output power in these fibers [4]. Recently a new fiber design has been introduced, in which HOMs are delocalized from the core to the clad, preventing from HOMs amplification [5]. In these so-called Large Pitch Fibers, threshold for mode instabilities is increased to 294W offering robust single-mode operation below this power level [6]. We have demonstrated a high power-high efficiency industrial picosecond source using single-mode Large Pitch rod-type fibers doped with Ytterbium. Large Pitch Rod type fibers can offer a unique combination of single-mode output with a very large mode area from 40 μm up to 100μm and very high gain. This enables to directly amplify a low power-low energy Mode Locked Fiber laser with a simple amplification architecture, achieving very high power together with singlemode output independent of power level or repetition rate.

  19. A sensitive and high dynamic range cw laser power meter

    NASA Astrophysics Data System (ADS)

    Krishnan, S.; Bindra, K. S.; Oak, S. M.

    2008-12-01

    We report the design of a cost effective, highly sensitive cw laser power meter with a large dynamic range based on a photodiode. The power meter consists of a photodiode, a current to voltage converter circuit, an offset balancing circuit, a microcontroller, an analog to digital converter, reed relays, and an alphanumeric liquid crystal display. The power meter can record absolute laser power levels as low as 1 pW. The dynamic range measured with a cw laser at a wavelength of 532 nm is 8×1010. The high sensitivity and large dynamic range are achieved by the implementation of an analog background balancing circuit and autoranging.

  20. High-accuracy instrument for measuring high-power laser beams

    NASA Astrophysics Data System (ADS)

    Wang, Weiping; Xiong, Limin

    1998-08-01

    Some methods are introduced in the paper, to reduce the damage to the detector as the laser power is high as 10 kw. To measure the high-power laser accurately, several couples of pieces having high transmittance, low thermal effect, and low reflectivity are used to measure the high-power laser mode accurately. The beam cutter with a slit of 0.01 mm width is used to measure the high-power beam divergence, and the reflective method is used to measure the high-power laser polarization. Directness, simplicity and effectiveness, are the designed considerations in the paper, as these factors contribute to advancing the instrument's accuracy.

  1. Titanium-Alloy Power Capacitor: High-Power Titanate Capacitor for Power Electronics

    SciTech Connect

    2010-09-01

    ADEPT Project: There is a constant demand for better performing, more compact, lighter weight, and lower cost electronic devices. Unfortunately, the materials traditionally used to make components for electronic devices have reached their limits. Case Western is developing capacitors made of new materials that could be used to produce the next generation of compact and efficient high-powered consumer electronics and electronic vehicles. A capacitor is an important component of an electronic device. It stores an electric charge and then discharges it into an electrical circuit in the device. Case Western is creating its capacitors from titanium, an abundant material extracted from ore which can be found in the U.S. Case Western's capacitors store electric charges on the surfaces of films, which are grown on a titanium alloy electrode that is formed as a spinal column with attached branches. The new material and spine design make the capacitor smaller and lighter than traditional capacitors, and they enable the component to store 300% more energy than capacitors of the same weight made of tantalum, the current industry standard. Case Western's titanium-alloy capacitors also spontaneously self-repair, which prolongs their life.

  2. Improved Spatial Filter for high power Lasers

    SciTech Connect

    Estabrook, Kent G.; Celliers, Peter M.; Murray, James E.; DaSilva, Luiz; MacGowan, Brian J.; Rubenchik, Alexander M.; Manes, Kenneth R.; Drake, Robert P.; Afeyan, Bedros

    1998-06-01

    A new pinhole architecture incorporates features intended to reduce the rate of plasma generation in a spatial filter for high-energy laser pulse beams. An elongated pinhole aperture is provided in an apertured body for rejecting off-axis rays of the laser pulse beam. The internal surface of the elongated aperture has a diameter which progressively tapers from a larger entrance cross-sectional area at an inlet to a smaller output cross-sectional area at an outlet. The tapered internal surface causes off-axis rays to be refracted in a low density plasma layer that forms on the internal surface or specularly reflected at grazing incidence from the internal surface. Off-axis rays of the high-energy pulse beam are rejected by this design. The external surface of the apertured body adjacent to the larger entrance cross-sectional area at the inlet to the elongated aperture is angled obliquely with respect to the to direction of the path of the high-energy laser pulse beam to backscatter off-axis rays away from the high-energy pulse beam. The aperture is formed as a truncated cone or alternatively with a tapered square cross-section. The internal surface of the aperture is coated with an ablative material, preferably high-density material which can be deposited with an exploding wire.

  3. Development of high frequency low weight power magnetics for aerospace power systems

    NASA Technical Reports Server (NTRS)

    Schwarze, G. E.

    1984-01-01

    A dominant design consideration in the development of space type power mangetic devices is the application of reliable thermal control methods to prevent device failure which is due to excessive temperature rises and hot temperatures in critical areas. The resultant design must also yield low weight, high efficiency, high reliability and maintainability, and long life. The weight savings and high efficiency that results by going to high frequency and unique thermal control techniques is demonstrated by the development of a 25 kVA, 20 kHz space type transformer under the power magnetics technology program. Work in the area of power rotary transformer is also discussed.

  4. High-powered vehicle drive train

    SciTech Connect

    Kraus, C.E.

    1987-09-15

    This patent describes a vehicle comprising: an engine having an infinitely variable transmission operatively coupled for transmitting engine power to the transmission's input shaft with the transmission output shaft being operatively connected to the vehicle's drive wheels. The transmission comprising a planetary drive structure includes a drive ring gear carrying a first gear in engagement with a drive gear on the input shaft for rotation of the drive ring gear with the input shaft, a central sun gear and planetary gear members disposed in the annular space between, and in engagement with the drive ring gear and the sun gear and rotatably supported on a planetary carrier. The carrier is supported for rotation with the transmission output shaft and an infinitely variable toroidal traction roller transmission structure including two parallel toridal transmissions having a central input toric disc structure common to both toroidal transmissions and operatively connected to the input shaft. The output toric discs being mounted on a shaft associated with the sun gear of the planetary drive.

  5. A high power spacecraft thermal management system

    NASA Technical Reports Server (NTRS)

    Ku, J.; Kroliczek, E. J.; Mccabe, M. E., Jr.; Benner, S. M.

    1988-01-01

    This paper describes the design and test results of an ammonia hybrid capillary pumped loop thermal control system. As a hytbrid, the system can operate as either a passive, capillary pumped loop, or, as a mechanically pumped system. The system is comprised of an evaporator section, a condenser section, 10 meters of liquid and vapor transport lines, a mechanical pump, and a reservoir. In the evaporator section, four capillary pumps are each integrated into three cold plates. The mechanical pump is installed in the liquid line and is in series with the capillary pumps. Testing has demonstrated that in the capillary pumped mode, the HPSTM can acquire and transport a total heat load of between 120 W and 24 kW, with a maximum heat flux density of 4.3 W/sq cm in the evaporator section. In the mechanically pumped configuration, a heat acquisition potential of 50 kW (9 W/sq cm heat flux density) has been demonstrated. The hybrid system still retains the proven capillary capabilities of temperature control, heat load sharing and fluid flow control between evaporator plates, rapid power cycling, and pressure priming recovery of deprimed evaporators.

  6. High power and high energy electrodes using carbon nanotubes

    SciTech Connect

    Martini, Fabrizio; Brambilla, Nicolo Michele; Signorelli, Riccardo

    2015-04-07

    An electrode useful in an energy storage system, such as a capacitor, includes an electrode that includes at least one to a plurality of layers of compressed carbon nanotube aggregate. Methods of fabrication are provided. The resulting electrode exhibits superior electrical performance in terms of gravimetric and volumetric power density.

  7. Modular high voltage power supply for chemical analysis

    SciTech Connect

    Stamps, James F.; Yee, Daniel D.

    2010-05-04

    A high voltage power supply for use in a system such as a microfluidics system, uses a DC-DC converter in parallel with a voltage-controlled resistor. A feedback circuit provides a control signal for the DC-DC converter and voltage-controlled resistor so as to regulate the output voltage of the high voltage power supply, as well as, to sink or source current from the high voltage supply.

  8. Modular high voltage power supply for chemical analysis

    DOEpatents

    Stamps, James F.; Yee, Daniel D.

    2007-01-09

    A high voltage power supply for use in a system such as a microfluidics system, uses a DC--DC converter in parallel with a voltage-controlled resistor. A feedback circuit provides a control signal for the DC--DC converter and voltage-controlled resistor so as to regulate the output voltage of the high voltage power supply, as well as, to sink or source current from the high voltage supply.

  9. Modular high voltage power supply for chemical analysis

    SciTech Connect

    Stamps, James F.; Yee, Daniel D.

    2008-07-15

    A high voltage power supply for use in a system such as a microfluidics system, uses a DC-DC converter in parallel with a voltage-controlled resistor. A feedback circuit provides a control signal for the DC-DC converter and voltage-controlled resistor so as to regulate the output voltage of the high voltage power supply, as well as, to sink or source current from the high voltage supply.

  10. GaN High Power Devices

    SciTech Connect

    PEARTON,S.J.; REN,F.; ZHANG,A.P.; DANG,G.; CAO,X.A.; LEE,K.P.; CHO,H.; GILA,B.P.; JOHNSON,J.W.; MONIER,C.; ABERNATHY,C.R.; HAN,JUNG; BACA,ALBERT G.; CHYI,J.-I.; LEE,C.-M.; NEE,T.-E.; CHUO,C.-C.; CHI,G.C.; CHU,S.N.G.

    2000-07-17

    A brief review is given of recent progress in fabrication of high voltage GaN and AlGaN rectifiers, GaN/AlGaN heterojunction bipolar transistors, GaN heterostructure and metal-oxide semiconductor field effect transistors. Improvements in epitaxial layer quality and in fabrication techniques have led to significant advances in device performance.

  11. PULSED POWER APPLICATIONS IN HIGH INTENSITY PROTON RINGS.

    SciTech Connect

    ZHANG, S.Y.; SANDBERG, J.; ET AL.

    2005-05-16

    Pulsed power technology has been applied in particle accelerators and storage rings for over four decades. It is most commonly used in injection, extraction, beam manipulation, source, and focusing systems. These systems belong to the class of repetitive pulsed power. In this presentation, we review and discuss the history, present status, and future challenge of pulsed power applications in high intensity proton accelerators and storage rings.

  12. Method and apparatus for tuning high power lasers

    DOEpatents

    Hutchinson, Donald P.; Vandersluis, Kenneth L.

    1977-04-19

    This invention relates to high power gas lasers that are adapted to be tuned to a desired lasing wavelength through the use of a gas cell to lower the gain at a natural lasing wavelength and "seeding" the laser with a beam from a low power laser which is lasing at the desired wavelength. This tuning is accomplished with no loss of power and produces a pulse with an altered pulse shape. It is potentially applicable to all gas lasers.

  13. High Power Silicon Carbide (SiC) Power Processing Unit Development

    NASA Technical Reports Server (NTRS)

    Scheidegger, Robert J.; Santiago, Walter; Bozak, Karin E.; Pinero, Luis R.; Birchenough, Arthur G.

    2015-01-01

    NASA GRC successfully designed, built and tested a technology-push power processing unit for electric propulsion applications that utilizes high voltage silicon carbide (SiC) technology. The development specifically addresses the need for high power electronics to enable electric propulsion systems in the 100s of kilowatts. This unit demonstrated how high voltage combined with superior semiconductor components resulted in exceptional converter performance.

  14. High power CO lasers and their application potential

    NASA Astrophysics Data System (ADS)

    Maisenhaelder, F.

    1989-06-01

    Industrial applications of high-power CO lasers are examined. The characteristics specific to CO lasers are briefly reviewed, and applications where the CO laser seems to promise wavelength-related advantages over other lasers are examined. Experimentally demonstrated applications in the drilling and cutting of metals, isotope separation and photochemistry, and laser medicine are addressed, Developments in the high power range in Japan, Soviet Union, and Germany are described, and a comparison is made between high power CO and CO2 gas lasers for civil applications.

  15. OPERATIONAL ASPECTS OF HIGH POWER ENERGY RECOVERY LINACS

    SciTech Connect

    Stephen Benson; David Douglas; Pavel Evtushenko; Kevin Jordan; George Neil; Paul Powers

    2006-08-21

    We have been operating a high-power energy-recovery linac (ERL) at Jefferson Lab for several years. In the process we have learned quite a bit about both technical and physics limitations in high power ERLs. Several groups are now considering new ERLs that greatly increase either the energy, the current or both. We will present some of our findings on what to consider when designing, building, and operating a high power ERL. Our remarks for this paper are limited to lattice design and setup, magnets, vacuum chamber design, diagnostics, and beam stability.

  16. High performance protection circuit for power electronics applications

    SciTech Connect

    Tudoran, Cristian D. Dădârlat, Dorin N.; Toşa, Nicoleta; Mişan, Ioan

    2015-12-23

    In this paper we present a high performance protection circuit designed for the power electronics applications where the load currents can increase rapidly and exceed the maximum allowed values, like in the case of high frequency induction heating inverters or high frequency plasma generators. The protection circuit is based on a microcontroller and can be adapted for use on single-phase or three-phase power systems. Its versatility comes from the fact that the circuit can communicate with the protected system, having the role of a “sensor” or it can interrupt the power supply for protection, in this case functioning as an external, independent protection circuit.

  17. High performance protection circuit for power electronics applications

    NASA Astrophysics Data System (ADS)

    Tudoran, Cristian D.; Dǎdârlat, Dorin N.; Toşa, Nicoleta; Mişan, Ioan

    2015-12-01

    In this paper we present a high performance protection circuit designed for the power electronics applications where the load currents can increase rapidly and exceed the maximum allowed values, like in the case of high frequency induction heating inverters or high frequency plasma generators. The protection circuit is based on a microcontroller and can be adapted for use on single-phase or three-phase power systems. Its versatility comes from the fact that the circuit can communicate with the protected system, having the role of a "sensor" or it can interrupt the power supply for protection, in this case functioning as an external, independent protection circuit.

  18. High Power Helicon Plasma Source for Plasma Processing

    NASA Astrophysics Data System (ADS)

    Prager, James; Ziemba, Timothy; Miller, Kenneth E.

    2015-09-01

    Eagle Harbor Technologies (EHT), Inc. is developing a high power helicon plasma source. The high power nature and pulsed neutral gas make this source unique compared to traditional helicon source. These properties produce a plasma flow along the magnetic field lines, and therefore allow the source to be decoupled from the reaction chamber. Neutral gas can be injected downstream, which allows for precision control of the ion-neutral ratio at the surface of the sample. Although operated at high power, the source has demonstrated very low impurity production. This source has applications to nanoparticle productions, surface modification, and ionized physical vapor deposition.

  19. High-Frequency ac Power-Distribution System

    NASA Technical Reports Server (NTRS)

    Hansen, Irving G.; Mildice, James

    1987-01-01

    Loads managed automatically under cycle-by-cycle control. 440-V rms, 20-kHz ac power system developed. System flexible, versatile, and "transparent" to user equipment, while maintaining high efficiency and low weight. Electrical source, from dc to 2,200-Hz ac converted to 440-V rms, 20-kHz, single-phase ac. Power distributed through low-inductance cables. Output power either dc or variable ac. Energy transferred per cycle reduced by factor of 50. Number of parts reduced by factor of about 5 and power loss reduced by two-thirds. Factors result in increased reliability and reduced costs. Used in any power-distribution system requiring high efficiency, high reliability, low weight, and flexibility to handle variety of sources and loads.

  20. Lamp for generating high power ultraviolet radiation

    DOEpatents

    Morgan, Gary L.; Potter, James M.

    2001-01-01

    The apparatus is a gas filled ultraviolet generating lamp for use as a liquid purifier. The lamp is powred by high voltage AC, but has no metallic electrodes within or in contact with the gas enclosure which is constructed as two concentric quartz cylinders sealed together at their ends with the gas fill between the cylinders. Cooling liquid is pumped through the volume inside the inner quartz cylinder where an electrically conductive pipe spaced from the inner cylinder is used to supply the cooling liquid and act as the high voltage electrode. The gas enclosure is enclosed within but spaced from a metal housing which is connected to operate as the ground electrode of the circuit and through which the treated fluid flows. Thus, the electrical circuit is from the central pipe, and through the cooling liquid, the gas enclosure, the treated liquid on the outside of the outer quartz cylinder, and to the housing. The high voltage electrode is electrically isolated from the source of cooling liquid by a length of insulated hose which also supplies the cooling liquid.

  1. High power density reactors based on direct cooled particle beds

    NASA Astrophysics Data System (ADS)

    Powell, J. R.; Horn, F. L.

    Reactors based on direct cooled High Temperature Gas Cooled Reactor (HTGR) type particle fuel are described. The small diameter particle fuel is packed between concentric porous cylinders to make annular fuel elements, with the inlet coolant gas flowing inwards. Hot exit gas flows out along the central channel of each element. Because of the very large heat transfer area in the packed beds, power densities in particle bed reactors (PBRs) are extremely high resulting in compact, lightweight systems. Coolant exit temperatures are high, because of the ceramic fuel temperature capabilities, and the reactors can be ramped to full power and temperature very rapidly. PBR systems can generate very high burst power levels using open cycle hydrogen coolant, or high continuous powers using closed cycle helium coolant. PBR technology is described and development requirements assessed.

  2. Real-time power measurement and control for high power diode laser

    NASA Astrophysics Data System (ADS)

    Qin, Wen-bin; Liu, You-qiang; Cao, Yin-hua; Wang, Zhi-yong

    2011-06-01

    As the continual improvement of technology and beam quality, diode laser, with poor beam quality, no longer just apply to pump solid-state laser. As a kind of implement of laser materials processing, high-power diode laser has been used in manufacture, as a brand new means of laser processing. Due to the influence of inevitable unstable factors, for example, the temperature of water-cooler, the current of power supply, etc, the output power of diode laser will be unstable. And laser output power, as an important parameter, frequently affects the performance of the laser beam and the experimental results of processing, especially in the laser materials processing. Therefore, researching the real-time power measurement and control of high power diode laser has great significance, and for diode laser, it would improve performance of itself. To achieve the purpose of real-time detection, traditional measuring method, placing a power sensor behind the total-reflection mirror of laser resonant cavity, is mainly applied in the system of gas laser and solid-state laser. However, Owing to the high integration level of diode laser, traditional measuring method can't be adopted. A technique for real-time measure output power of high power diode laser is developed to improve quality of the laser in this paper. A lens placed at an angle of 45° in the system was used to sample output light of laser, and a piece of ground glass was used to uniform the beam power density, then the photoelectric detector received an optic signal and converted it into electric signal. This feeble signal was processed by amplification circuit with a filter. Finally, this detected electric signal was applied to accomplish the closed-loop control of power. The performance of power measurement and control system was tested with the 300W diode laser, and the measuring inaccuracy achieved was less than +/-1%.

  3. High power single frequency solid state master oscillator power amplifier for gravitational wave detection.

    PubMed

    Basu, Chandrajit; Wessels, Peter; Neumann, Jörg; Kracht, Dietmar

    2012-07-15

    High power single frequency, single mode, linearly polarized laser output at the 1 μm regime is in demand for the interferometric gravitational wave detectors (GWDs). A robust single frequency solid state master oscillator power amplifier (MOPA) is a promising candidate for such applications. We present a single frequency solid state multistage MOPA system delivering 177 W of linearly polarized output power at 1 μm with 83.5% TEM(00) mode content.

  4. Progress in high-power high-speed VCSEL arrays

    NASA Astrophysics Data System (ADS)

    Carson, Richard F.; Warren, Mial E.; Dacha, Preethi; Wilcox, Thomas; Maynard, John G.; Abell, David J.; Otis, Kirk J.; Lott, James A.

    2016-03-01

    Flip-chip bonding enables a unique architecture for two-dimensional arrays of VCSELs. Such arrays feature scalable power outputs and the capability to separately address sub-array regions while maintaining fast turn-on and turn-off response times. These substrate-emitting VCSEL arrays can also make use of integrated micro-lenses for beam shaping and directional control. Advances in the performance of these laser arrays will be reviewed and emerging applications are discussed.

  5. Overview of the NASA high power laser program

    NASA Technical Reports Server (NTRS)

    Lundholm, J. G.

    1976-01-01

    The overall objectives of the NASA High Power Laser Program are reviewed along with their structure and center responsibilities. Present and future funding, laser power transmission in space, selected program highlights, the research and technology schedule, and the expected pace of the program are briefly considered.

  6. Electron accleration using high power laser

    NASA Astrophysics Data System (ADS)

    Najmudin, Zulfikar

    1998-04-01

    The 30 TW Nd:Glass Vulcan laser has been used to extensively study the Forward Raman Scatter instability in plasmas. This instability is of interest since it produces large amplitude relativistic plasma waves, which can trap and accelerate plasma electrons to high energies. Recently we have accelerated particles up to 100 MeV with this process. This is beyond the expected classical dephasing energy, for the plasma waves in our experiment which have a Lorentz factor γ ≈ 7. The greater acceleration has been attributed to the dynamics of the beam loading process of the plasma waves due to wavebreaking. By imaging the small angle Thomson scattered light from an orthogonally injected probe beam, we observe the dimensions of the accelerating plasma wave. It is seen that electron energies are almost independent of the length of the plasma wave. This is because the dephasing length is of the order of the Rayleigh length (≈ 100 μm). However the plasma wave is seen to extend to lengths as great as 3.5 mm. This is indicative of a high intensity being present throughout the length of the gas jet used, and indicates the presence of channelling of the laser beam. However the unstable nature of FRS, means that it is unsuitable for next generation high energy particle acclerators. For this we require much more controllable acceleration over greater distances. This can be achieved with the laser wakefield accelerator. For this purpose we have also been performing experiments at the LULI short pulse facility at Ecole Polytechnique. In these experiments we have been able to accelerate large numbers of injected electrons at 3 MeV to 4 MeV and above, after carefully taking into consideration sources of noise.

  7. Overview of space power electronic's technology under the CSTI High Capacity Power Program

    NASA Technical Reports Server (NTRS)

    Schwarze, Gene E.

    1994-01-01

    The Civilian Space Technology Initiative (CSTI) is a NASA Program targeted at the development of specific technologies in the areas of transportation, operations and science. Each of these three areas consists of major elements and one of the operation's elements is the High Capacity Power element. The goal of this element is to develop the technology base needed to meet the long duration, high capacity power requirements for future NASA initiatives. The High Capacity Power element is broken down into several subelements that includes energy conversion in the areas of the free piston Stirling power converter and thermoelectrics, thermal management, power management, system diagnostics, and environmental compatibility and system's lifetime. A recent overview of the CSTI High capacity Power element and a description of each of the program's subelements is given by Winter (1989). The goals of the Power Management subelement are twofold. The first is to develop, test, and demonstrate high temperature, radiation-resistant power and control components and circuits that will be needed in the Power Conditioning, Control and Transmission (PCCT) subsystem of a space nuclear power system. The results obtained under this goal will also be applicable to the instrumentation and control subsystem of a space nuclear reactor. These components and circuits must perform reliably for lifetimes of 7-10 years. The second goal is to develop analytical models for use in computer simulations of candidate PCCT subsystems. Circuits which will be required for a specific PCCT subsystem will be designed and built to demonstrate their performance and, also, to validate the analytical models and simulations. The tasks under the Power Management subelement will now be described in terms of objectives, approach and present status of work.

  8. High-power arrays of quantum cascade laser master-oscillator power-amplifiers.

    PubMed

    Rauter, Patrick; Menzel, Stefan; Goyal, Anish K; Wang, Christine A; Sanchez, Antonio; Turner, George; Capasso, Federico

    2013-02-25

    We report on multi-wavelength arrays of master-oscillator power-amplifier quantum cascade lasers operating at wavelengths between 9.2 and 9.8 μm. All elements of the high-performance array feature longitudinal (spectral) as well as transverse single-mode emission at peak powers between 2.7 and 10 W at room temperature. The performance of two arrays that are based on different seed-section designs is thoroughly studied and compared. High output power and excellent beam quality render the arrays highly suitable for stand-off spectroscopy applications.

  9. Development of High-Power Hall Thruster Power Processing Units at NASA GRC

    NASA Technical Reports Server (NTRS)

    Pinero, Luis R.; Bozak, Karin E.; Santiago, Walter; Scheidegger, Robert J.; Birchenough, Arthur G.

    2015-01-01

    NASA GRC successfully designed, built and tested four different power processor concepts for high power Hall thrusters. Each design satisfies unique goals including the evaluation of a novel silicon carbide semiconductor technology, validation of innovative circuits to overcome the problems with high input voltage converter design, development of a direct-drive unit to demonstrate potential benefits, or simply identification of lessonslearned from the development of a PPU using a conventional design approach. Any of these designs could be developed further to satisfy NASA's needs for high power electric propulsion in the near future.

  10. Advanced high temperature thermoelectrics for space power

    NASA Technical Reports Server (NTRS)

    Lockwood, A.; Ewell, R.; Wood, C.

    1981-01-01

    Preliminary results from a spacecraft system study show that an optimum hot junction temperature is in the range of 1500 K for advanced nuclear reactor technology combined with thermoelectric conversion. Advanced silicon germanium thermoelectric conversion is feasible if hot junction temperatures can be raised roughly 100 C or if gallium phosphide can be used to improve the figure of merit, but the performance is marginal. Two new classes of refractory materials, rare earth sulfides and boron-carbon alloys, are being investigated to improve the specific weight of the generator system. Preliminary data on the sulfides have shown very high figures of merit over short temperature ranges. Both n- and p-type doping have been obtained. Pure boron-carbide may extrapolate to high figure of merit at temperatures well above 1500 K but not lower temperature; n-type conduction has been reported by others, but not yet observed in the JPL program. Inadvertant impurity doping may explain the divergence of results reported.

  11. Silicon-Carbide Power MOSFET Performance in High Efficiency Boost Power Processing Unit for Extreme Environments

    NASA Technical Reports Server (NTRS)

    Ikpe, Stanley A.; Lauenstein, Jean-Marie; Carr, Gregory A.; Hunter, Don; Ludwig, Lawrence L.; Wood, William; Del Castillo, Linda Y.; Fitzpatrick, Fred; Chen, Yuan

    2016-01-01

    Silicon-Carbide device technology has generated much interest in recent years. With superior thermal performance, power ratings and potential switching frequencies over its Silicon counterpart, Silicon-Carbide offers a greater possibility for high powered switching applications in extreme environment. In particular, Silicon-Carbide Metal-Oxide- Semiconductor Field-Effect Transistors' (MOSFETs) maturing process technology has produced a plethora of commercially available power dense, low on-state resistance devices capable of switching at high frequencies. A novel hard-switched power processing unit (PPU) is implemented utilizing Silicon-Carbide power devices. Accelerated life data is captured and assessed in conjunction with a damage accumulation model of gate oxide and drain-source junction lifetime to evaluate potential system performance at high temperature environments.

  12. High Power Local Oscillator Sources for 1-2 THz

    NASA Technical Reports Server (NTRS)

    Mehdi, Imran; Thomas, Bertrand; Lin, Robert; Maestrini, Alain; Ward, John; Schlecht, Erich; Gill, John; Lee, Choonsup; Chattopadhyay, Goutam; Maiwald, Frank

    2010-01-01

    Recent results from the Heterodyne Instrument for Far-Infrared (HIFI) on the Herschel Space Telescope have confirmed the usefulness of high resolution spectroscopic data for a better understanding of our Universe. This paper will explore the current status of tunable local oscillator sources beyond HIFI and provide demonstration of how power combining of GaAs Schottky diodes can be used to increase both power and upper operating frequency for heterodyne receivers. Availability of power levels greater than 1 watt in the W-band now makes it possible to design a 1900 GHz source with more than 100 microwatts of expected output power.

  13. High-power lasers for directed-energy applications.

    PubMed

    Sprangle, Phillip; Hafizi, Bahman; Ting, Antonio; Fischer, Richard

    2015-11-01

    In this article, we review and discuss the research programs at the Naval Research Laboratory (NRL) on high-power lasers for directed-energy (DE) applications in the atmosphere. Physical processes affecting propagation include absorption/scattering, turbulence, and thermal blooming. The power levels needed for DE applications require combining a number of lasers. In atmospheric turbulence, there is a maximum intensity that can be placed on a target that is independent of the initial beam spot size and laser beam quality. By combining a number of kW-class fiber lasers, scientists at the NRL have successfully demonstrated high-power laser propagation in a turbulent atmosphere and wireless recharging. In the NRL experiments, four incoherently combined fiber lasers having a total power of 5 kW were propagated to a target 3.2 km away. These successful high-power experiments in a realistic atmosphere formed the basis of the Navy's Laser Weapon System. We compare the propagation characteristics of coherently and incoherently combined beams without adaptive optics. There is little difference in the energy on target between coherently and incoherently combined laser beams for multi-km propagation ranges and moderate to high levels of turbulence. Unlike incoherent combining, coherent combining places severe constraints on the individual lasers. These include the requirement of narrow power spectral linewidths in order to have long coherence times as well as polarization alignment of all the lasers. These requirements are extremely difficult for high-power lasers. PMID:26560609

  14. HIGH POWER BEAM DUMP AND TARGET / ACCELERATOR INTERFACE PROCEDURES

    SciTech Connect

    Blokland, Willem; Plum, Michael A; Peters, Charles C; Brown, David L; Galambos, John D

    2013-01-01

    Satisfying operational procedures and limits for the beam target interface is a critical concern for high power operation at spallation neutron sources. At the Oak Ridge Spallation Neutron Source (SNS) a number of protective measures are instituted to ensure that the beam position, beam size and peak intensity are within acceptable limits at the target and high power Ring Injection Dump (RID). The high power beam dump typically handles up to 50 100 kW of beam power and its setup is complicated by the fact that there are two separate beam components simultaneously directed to the dump. The beam on target is typically in the 800-1000 kW average power level, delivered in sub- s 60 Hz pulses. Setup techniques using beam measurements to quantify the beam parameters at the target and dump will be described. However, not all the instrumentation used for the setup and initial qualification is available during high power operation. Additional techniques are used to monitor the beam during high power operation to ensure the setup conditions are maintained, and these are also described.

  15. High-power lasers for directed-energy applications.

    PubMed

    Sprangle, Phillip; Hafizi, Bahman; Ting, Antonio; Fischer, Richard

    2015-11-01

    In this article, we review and discuss the research programs at the Naval Research Laboratory (NRL) on high-power lasers for directed-energy (DE) applications in the atmosphere. Physical processes affecting propagation include absorption/scattering, turbulence, and thermal blooming. The power levels needed for DE applications require combining a number of lasers. In atmospheric turbulence, there is a maximum intensity that can be placed on a target that is independent of the initial beam spot size and laser beam quality. By combining a number of kW-class fiber lasers, scientists at the NRL have successfully demonstrated high-power laser propagation in a turbulent atmosphere and wireless recharging. In the NRL experiments, four incoherently combined fiber lasers having a total power of 5 kW were propagated to a target 3.2 km away. These successful high-power experiments in a realistic atmosphere formed the basis of the Navy's Laser Weapon System. We compare the propagation characteristics of coherently and incoherently combined beams without adaptive optics. There is little difference in the energy on target between coherently and incoherently combined laser beams for multi-km propagation ranges and moderate to high levels of turbulence. Unlike incoherent combining, coherent combining places severe constraints on the individual lasers. These include the requirement of narrow power spectral linewidths in order to have long coherence times as well as polarization alignment of all the lasers. These requirements are extremely difficult for high-power lasers.

  16. Atmospheric propagation and combining of high-power lasers.

    PubMed

    Nelson, W; Sprangle, P; Davis, C C

    2016-03-01

    In this paper, we analyze beam combining and atmospheric propagation of high-power lasers for directed-energy (DE) applications. The large linewidths inherent in high-power fiber and slab lasers cause random phase and intensity fluctuations that occur on subnanosecond time scales. Coherently combining these high-power lasers would involve instruments capable of precise phase control and operation at rates greater than ∼10  GHz. To the best of our knowledge, this technology does not currently exist. This presents a challenging problem when attempting to phase lock high-power lasers that is not encountered when phase locking low-power lasers, for example, at milliwatt power levels. Regardless, we demonstrate that even if instruments are developed that can precisely control the phase of high-power lasers, coherent combining is problematic for DE applications. The dephasing effects of atmospheric turbulence typically encountered in DE applications will degrade the coherent properties of the beam before it reaches the target. Through simulations, we find that coherent beam combining in moderate turbulence and over multikilometer propagation distances has little advantage over incoherent combining. Additionally, in cases of strong turbulence and multikilometer propagation ranges, we find nearly indistinguishable intensity profiles and virtually no difference in the energy on the target between coherently and incoherently combined laser beams. Consequently, we find that coherent beam combining at the transmitter plane is ineffective under typical atmospheric conditions.

  17. Atmospheric propagation and combining of high-power lasers.

    PubMed

    Nelson, W; Sprangle, P; Davis, C C

    2016-03-01

    In this paper, we analyze beam combining and atmospheric propagation of high-power lasers for directed-energy (DE) applications. The large linewidths inherent in high-power fiber and slab lasers cause random phase and intensity fluctuations that occur on subnanosecond time scales. Coherently combining these high-power lasers would involve instruments capable of precise phase control and operation at rates greater than ∼10  GHz. To the best of our knowledge, this technology does not currently exist. This presents a challenging problem when attempting to phase lock high-power lasers that is not encountered when phase locking low-power lasers, for example, at milliwatt power levels. Regardless, we demonstrate that even if instruments are developed that can precisely control the phase of high-power lasers, coherent combining is problematic for DE applications. The dephasing effects of atmospheric turbulence typically encountered in DE applications will degrade the coherent properties of the beam before it reaches the target. Through simulations, we find that coherent beam combining in moderate turbulence and over multikilometer propagation distances has little advantage over incoherent combining. Additionally, in cases of strong turbulence and multikilometer propagation ranges, we find nearly indistinguishable intensity profiles and virtually no difference in the energy on the target between coherently and incoherently combined laser beams. Consequently, we find that coherent beam combining at the transmitter plane is ineffective under typical atmospheric conditions. PMID:26974640

  18. 8. HIGH POWER SPRAY IN MEN'S PACK ROOM. Hot ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. HIGH POWER SPRAY IN MEN'S PACK ROOM. - Hot Springs National Park Bathhouse Row, Maurice Bathhouse: Mechanical & Piping Systems, State Highway 7, 1 mile north of U.S. Highway 70, Hot Springs, Garland County, AR

  19. 9. HIGH POWER SPRAY IN MEN'S STEAM ROOM. Hot ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. HIGH POWER SPRAY IN MEN'S STEAM ROOM. - Hot Springs National Park, Bathhouse Row, Fordyce Bathhouse: Mechanical & Piping Systems, State Highway 7, 1 mile north of U.S. Highway 70, Hot Springs, Garland County, AR

  20. Bipolar rechargeable lithium battery for high power applications

    NASA Technical Reports Server (NTRS)

    Hossain, Sohrab; Kozlowski, G.; Goebel, F.

    1993-01-01

    Viewgraphs of a discussion on bipolar rechargeable lithium battery for high power applications are presented. Topics covered include cell chemistry, electrolytes, reaction mechanisms, cycling behavior, cycle life, and cell assembly.

  1. The Jefferson Lab High Power THz User Facility

    SciTech Connect

    John Klopf; Amelia Greer; Joseph Gubeli; George Neil; Michelle D. Shinn; Timothy Siggins; David W. Waldman; Gwyn Williams; Alan Todd; Vincent Christina; Oleg Chubar

    2007-04-27

    We describe here, a high power (100 Watt average, 10 MW peak) broadband THz facility based on emission from sub-picosecond bunches of relativistic electrons and the beam transport system that delivers this beam in to a user laboratory.

  2. Thermal Regime of High-power Laser Diodes

    NASA Astrophysics Data System (ADS)

    Bezotosnyi, V. V.; Krokhin, O. N.; Oleshchenko, V. A.; Pevtsov, V. F.; Popov, Yu. M.; Cheshev, E. A.

    We discuss the design and application perspectives of different crystal, ceramic and composite-type submounts with thermo-compensating properties as well as submounts from materials with high thermal conductivity for overcoming thermal problem in high-power laser diodes (LD) and improving thermal management of other high-power optoelectronic and electronic semiconductor devices. Thermal fields in high-power laser diodes were calculated in 3 D thermal model at CW operation for some heatsink designs taking into account the experimental dependence of laser total efficiency against pumping current in order to extend the range of reliable operation up to thermal loads 20-30 W and corresponding output optical power up to 15-20 W for 100 μm stripe laser diodes.

  3. Social power and recognition of emotional prosody: High power is associated with lower recognition accuracy than low power.

    PubMed

    Uskul, Ayse K; Paulmann, Silke; Weick, Mario

    2016-02-01

    Listeners have to pay close attention to a speaker's tone of voice (prosody) during daily conversations. This is particularly important when trying to infer the emotional state of the speaker. Although a growing body of research has explored how emotions are processed from speech in general, little is known about how psychosocial factors such as social power can shape the perception of vocal emotional attributes. Thus, the present studies explored how social power affects emotional prosody recognition. In a correlational study (Study 1) and an experimental study (Study 2), we show that high power is associated with lower accuracy in emotional prosody recognition than low power. These results, for the first time, suggest that individuals experiencing high or low power perceive emotional tone of voice differently.

  4. Phosphate glass useful in high power lasers

    DOEpatents

    Hayden, Joseph S.; Sapak, David L.; Ward, Julia M.

    1990-01-01

    A low- or no-silica phosphate glass useful as a laser medium and having a high thermal conductivity, K.sub.90.degree. C. >0.8 W/mK, and a low coefficient of thermal expansion, .alpha..sub.20.degree.-40.degree. C. <80.times.10.sup.-7 /.degree.C., consists essentially of (on a batch composition basis): the amounts of Li.sub.2 O and Na.sub.2 O providing an average alkali metal ionic radius sufficiently low whereby said glass has K.sub.90.degree. C. >0.8 W/mK and .alpha..sub.20.degree.-40.degree. C. <80.times.10.sup.-7 /.degree.C., and wherein, when the batch composition is melted in contact with a silica-containing surface, the final glass composition contains at most about 3.5 mole % of additional silica derived from such contact during melting. The Nd.sub.2 O.sub.3 can be replaced by other lasing species.

  5. High Power Co-Axial SRF Coupler

    SciTech Connect

    M.L. Neubauer, R.A. Rimmer

    2009-05-01

    There are over 35 coupler designs for SRF cavities ranging in frequency from 325 to 1500 MHz. Two-thirds of these designs are coaxial couplers using disk or cylindrical ceramics in various combinations and configurations. While it is well known that dielectric losses go down by several orders of magnitude at cryogenic temperatures, it not well known that the thermal conductivity also goes down, and it is the ratio of thermal conductivity to loss tangent (SRF ceramic Quality Factor) and ceramic volume which will determine the heat load of any given design. We describe a novel robust co-axial SRF coupler design which uses compressed window technology. This technology will allow the use of highly thermally conductive materials for cryogenic windows. The mechanical designs will fit into standard-sized ConFlat® flanges for ease of assembly. Two windows will be used in a coaxial line. The distance between the windows is adjusted to cancel their reflections so that the same window can be used in many different applications at various frequencies.

  6. Flow lasers. [fluid mechanics of high power continuous output operations

    NASA Technical Reports Server (NTRS)

    Christiansen, W. H.; Russell, D. A.; Hertzberg, A.

    1975-01-01

    The present work reviews the fluid-mechanical aspects of high-power continuous-wave (CW) lasers. The flow characteristics of these devices appear as classical fluid-mechanical phenomena recast in a complicated interactive environment. The fundamentals of high-power lasers are reviewed, followed by a discussion of the N2-CO2 gas dynamic laser. Next, the HF/DF supersonic diffusion laser is described, and finally the CO electrical-discharge laser is discussed.

  7. High power laser downhole cutting tools and systems

    SciTech Connect

    Zediker, Mark S; Rinzler, Charles C; Faircloth, Brian O; Koblick, Yeshaya; Moxley, Joel F

    2015-01-20

    Downhole cutting systems, devices and methods for utilizing 10 kW or more laser energy transmitted deep into the earth with the suppression of associated nonlinear phenomena. Systems and devices for the laser cutting operations within a borehole in the earth. These systems and devices can deliver high power laser energy down a deep borehole, while maintaining the high power to perform cutting operations in such boreholes deep within the earth.

  8. Beam-path conditioning for high-power laser systems

    SciTech Connect

    Stephens, T.; Johnson, D.; Languirand, M.

    1990-01-01

    Heating of mirrors and windows by high-power radiation from a laser transmitter produces turbulent density gradients in the gas near the optical surfaces. If the gradients are left uncontrolled, the resulting phase errors reduce the intensity on the target and degrade the signal returned to a receiver. Beam path conditioning maximizes the efficiency of the optical system by alleviating thermal turbulence within the beam path. Keywords: High power radiation, Beam path, Optical surface, Laser beams, Reprints. (JHD)

  9. High power laser workover and completion tools and systems

    SciTech Connect

    Zediker, Mark S; Rinzler, Charles C; Faircloth, Brian O; Koblick, Yeshaya; Moxley, Joel F

    2014-10-28

    Workover and completion systems, devices and methods for utilizing 10 kW or more laser energy transmitted deep into the earth with the suppression of associated nonlinear phenomena. Systems and devices for the laser workover and completion of a borehole in the earth. These systems and devices can deliver high power laser energy down a deep borehole, while maintaining the high power to perform laser workover and completion operations in such boreholes deep within the earth.

  10. Apparatus for advancing a wellbore using high power laser energy

    DOEpatents

    Zediker, Mark S.; Land, Mark S.; Rinzler, Charles C.; Faircloth, Brian O.; Koblick, Yeshaya; Moxley, Joel F.

    2014-09-02

    Delivering high power laser energy to form a borehole deep into the earth using laser energy. Down hole laser tools, laser systems and laser delivery techniques for advancement, workover and completion activities. A laser bottom hole assembly (LBHA) for the delivery of high power laser energy to the surfaces of a borehole, which assembly may have laser optics, a fluid path for debris removal and a mechanical means to remove earth.

  11. High-Power Liquid-Metal Heat-Transfer Loop

    NASA Technical Reports Server (NTRS)

    Bhandari, Pradeep; Fujita, Toshio

    1991-01-01

    Proposed closed-loop system for transfer of thermal power operates at relatively high differential pressure between vapor and liquid phases of liquid-metal working fluid. Resembles "capillary-pumped" liquid-metal heat-transfer loop except electric field across permselective barrier of beta alumina keeps liquid and vapor separate at heat-input end. Increases output thermal power, contains no moving parts, highly reliable and well suited to long-term unattended operation.

  12. Brayton Power Conversion Unit Tested: Provides a Path to Future High-Power Electric Propulsion Missions

    NASA Technical Reports Server (NTRS)

    Mason, Lee S.

    2003-01-01

    Closed-Brayton-cycle conversion technology has been identified as an excellent candidate for nuclear electric propulsion (NEP) power conversion systems. Advantages include high efficiency, long life, and high power density for power levels from about 10 kWe to 1 MWe, and beyond. An additional benefit for Brayton is the potential for the alternator to deliver very high voltage as required by the electric thrusters, minimizing the mass and power losses associated with the power management and distribution (PMAD). To accelerate Brayton technology development for NEP, the NASA Glenn Research Center is developing a low-power NEP power systems testbed that utilizes an existing 2- kWe Brayton power conversion unit (PCU) from previous solar dynamic technology efforts. The PCU includes a turboalternator, a recuperator, and a gas cooler connected by gas ducts. The rotating assembly is supported by gas foil bearings and consists of a turbine, a compressor, a thrust rotor, and an alternator on a single shaft. The alternator produces alternating-current power that is rectified to 120-V direct-current power by the PMAD unit. The NEP power systems testbed will be utilized to conduct future investigations of operational control methods, high-voltage PMAD, electric thruster interactions, and advanced heat rejection techniques. The PCU was tested in Glenn s Vacuum Facility 6. The Brayton PCU was modified from its original solar dynamic configuration by the removal of the heat receiver and retrofitting of the electrical resistance gas heater to simulate the thermal input of a steady-state nuclear source. Then, the Brayton PCU was installed in the 3-m test port of Vacuum Facility 6, as shown. A series of tests were performed between June and August of 2002 that resulted in a total PCU operational time of about 24 hr. An initial test sequence on June 17 determined that the reconfigured unit was fully operational. Ensuing tests provided the operational data needed to characterize PCU

  13. Optical power supply unit utilizing high power laser diode module developed for fiber laser pumping

    NASA Astrophysics Data System (ADS)

    Sakamoto, Akira; Kiyoyama, Wataru; Yamauchi, Ryozo

    2014-05-01

    High power laser diode developed for fiber laser pumping is evaluated as a light source for an optical power supply unit. The output power of the newly developed laser diode module exceeds 15 W with 105 μm core fiber. It is estimated that more than 1600 mW power supply can be achieved with the single emitter laser diode module and a polycrystalline silicon cell over 1 km away from the light source. This unit can be used for sensor nodes in the fiber sensor network.

  14. Phosphate glass useful in high power lasers

    DOEpatents

    Hayden, J.S.; Sapak, D.L.; Ward, J.M.

    1990-05-29

    A low- or no-silica phosphate glass useful as a laser medium and having a high thermal conductivity, K[sub 90 C] > 0.8 W/mK, and a low coefficient of thermal expansion, [alpha][sub 20--40 C] < 80[times]10[sup [minus]7]/C, consists essentially of (on a batch composition basis Mole %): P[sub 2]O[sub 5], 45-70; Li[sub 2]O, 15-35; Na[sub 2]O, 0-10; Al[sub 2]O[sub 3], 10-15; Nd[sub 2]O[sub 3], 0.01-6; La[sub 2]O[sub 3], 0-6; SiO[sub 2], 0-8; B[sub 2]O[sub 3], 0-8; MgO, 0-18; CaO, 0-15; SrO, 0-9; BaO, 0-9; ZnO, 0-15; the amounts of Li[sub 2]O and Na[sub 2]O providing an average alkali metal ionic radius sufficiently low whereby said glass has K[sub 90 C] > 0.8 W/mK and [alpha][sub 20--40 C] < 80[times]10[sup [minus]7]/C, and wherein, when the batch composition is melted in contact with a silica-containing surface, the final glass composition contains at most about 3.5 mole % of additional silica derived from such contact during melting. The Nd[sub 2]O[sub 3] can be replaced by other lasing species. 3 figs.

  15. Power Technology (Energy/Power). Industrial Arts, Senior High--Level II. North Dakota Senior High Industrial Arts Curriculum Guides.

    ERIC Educational Resources Information Center

    Lawrence, Allen; And Others

    This course guide for a power technology course is one of four developed for the energy/power area in the North Dakota senior high industrial arts education program. (Eight other guides are available for two other areas of Industrial Arts--graphic communications and production.) Part 1 provides such introductory information as a definition and…

  16. High average power scaleable thin-disk laser

    DOEpatents

    Beach, Raymond J.; Honea, Eric C.; Bibeau, Camille; Payne, Stephen A.; Powell, Howard; Krupke, William F.; Sutton, Steven B.

    2002-01-01

    Using a thin disk laser gain element with an undoped cap layer enables the scaling of lasers to extremely high average output power values. Ordinarily, the power scaling of such thin disk lasers is limited by the deleterious effects of amplified spontaneous emission. By using an undoped cap layer diffusion bonded to the thin disk, the onset of amplified spontaneous emission does not occur as readily as if no cap layer is used, and much larger transverse thin disks can be effectively used as laser gain elements. This invention can be used as a high average power laser for material processing applications as well as for weapon and air defense applications.

  17. Active high-power RF switch and pulse compression system

    DOEpatents

    Tantawi, Sami G.; Ruth, Ronald D.; Zolotorev, Max

    1998-01-01

    A high-power RF switching device employs a semiconductor wafer positioned in the third port of a three-port RF device. A controllable source of directed energy, such as a suitable laser or electron beam, is aimed at the semiconductor material. When the source is turned on, the energy incident on the wafer induces an electron-hole plasma layer on the wafer, changing the wafer's dielectric constant, turning the third port into a termination for incident RF signals, and. causing all incident RF signals to be reflected from the surface of the wafer. The propagation constant of RF signals through port 3, therefore, can be changed by controlling the beam. By making the RF coupling to the third port as small as necessary, one can reduce the peak electric field on the unexcited silicon surface for any level of input power from port 1, thereby reducing risk of damaging the wafer by RF with high peak power. The switch is useful to the construction of an improved pulse compression system to boost the peak power of microwave tubes driving linear accelerators. In this application, the high-power RF switch is placed at the coupling iris between the charging waveguide and the resonant storage line of a pulse compression system. This optically controlled high power RF pulse compression system can handle hundreds of Megawatts of power at X-band.

  18. On-Chip Power-Combining for High-Power Schottky Diode-Based Frequency Multipliers

    NASA Technical Reports Server (NTRS)

    Chattopadhyay, Goutam; Mehdi, Imran; Schlecht, Erich T.; Lee, Choonsup; Siles, Jose V.; Maestrini, Alain E.; Thomas, Bertrand; Jung, Cecile D.

    2013-01-01

    A 1.6-THz power-combined Schottky frequency tripler was designed to handle approximately 30 mW input power. The design of Schottky-based triplers at this frequency range is mainly constrained by the shrinkage of the waveguide dimensions with frequency and the minimum diode mesa sizes, which limits the maximum number of diodes that can be placed on the chip to no more than two. Hence, multiple-chip power-combined schemes become necessary to increase the power-handling capabilities of high-frequency multipliers. The design presented here overcomes difficulties by performing the power-combining directly on-chip. Four E-probes are located at a single input waveguide in order to equally pump four multiplying structures (featuring two diodes each). The produced output power is then recombined at the output using the same concept.

  19. Beyond blue pico laser: development of high power blue and low power direct green

    NASA Astrophysics Data System (ADS)

    Vierheilig, Clemens; Eichler, Christoph; Tautz, Sönke; Lell, Alfred; Müller, Jens; Kopp, Fabian; Stojetz, Bernhard; Hager, Thomas; Brüderl, Georg; Avramescu, Adrian; Lermer, Teresa; Ristic, Jelena; Strauss, Uwe

    2012-03-01

    There is a big need on R&D concerning visible lasers for projection applications. The pico-size mobile projection on the one hand awaits the direct green lasers with sufficiently long lifetimes at optical powers above 50mW. In this paper we demonstrate R&D-samples emitting at 519nm with lifetimes up to 10.000 hours. The business projection on the other hand requires high power operation and already uses blue lasers and phosphor conversion, but there is a strong demand for higher power levels. We investigate the power limits of R&D laser structures. In continuous wave operation, the power is limited by thermal roll-over. With an excellent power conversion efficiency of up to 29% the thermal roll-over is as high as 2.5W for a single emitter in TO56 can. We do not observe significant leakage at high currents. Driven in short pulse operation to prevent the laser from self heating, linear laser characteristics of optical power versus electrical current are observed up to almost 8W of optical power.

  20. Compact high voltage, high peak power, high frequency transformer for converter type modulator applications.

    PubMed

    Reghu, T; Mandloi, V; Shrivastava, Purushottam

    2016-04-01

    The design and development of a compact high voltage, high peak power, high frequency transformer for a converter type modulator of klystron amplifiers is presented. The transformer has been designed to operate at a frequency of 20 kHz and at a flux swing of ±0.6 T. Iron (Fe) based nanocrystalline material has been selected as a core for the construction of the transformer. The transformer employs a specially designed solid Teflon bobbin having 120 kV insulation for winding the high voltage secondary windings. The flux swing of the core has been experimentally found by plotting the hysteresis loop at actual operating conditions. Based on the design, a prototype transformer has been built which is per se a unique combination of high voltage, high frequency, and peak power specifications. The transformer was able to provide 58 kV (pk-pk) at the secondary with a peak power handling capability of 700 kVA. The transformation ratio was 1:17. The performance of the transformer is also presented and discussed.

  1. Compact high voltage, high peak power, high frequency transformer for converter type modulator applications

    NASA Astrophysics Data System (ADS)

    Reghu, T.; Mandloi, V.; Shrivastava, Purushottam

    2016-04-01

    The design and development of a compact high voltage, high peak power, high frequency transformer for a converter type modulator of klystron amplifiers is presented. The transformer has been designed to operate at a frequency of 20 kHz and at a flux swing of ±0.6 T. Iron (Fe) based nanocrystalline material has been selected as a core for the construction of the transformer. The transformer employs a specially designed solid Teflon bobbin having 120 kV insulation for winding the high voltage secondary windings. The flux swing of the core has been experimentally found by plotting the hysteresis loop at actual operating conditions. Based on the design, a prototype transformer has been built which is per se a unique combination of high voltage, high frequency, and peak power specifications. The transformer was able to provide 58 kV (pk-pk) at the secondary with a peak power handling capability of 700 kVA. The transformation ratio was 1:17. The performance of the transformer is also presented and discussed.

  2. Compact high voltage, high peak power, high frequency transformer for converter type modulator applications.

    PubMed

    Reghu, T; Mandloi, V; Shrivastava, Purushottam

    2016-04-01

    The design and development of a compact high voltage, high peak power, high frequency transformer for a converter type modulator of klystron amplifiers is presented. The transformer has been designed to operate at a frequency of 20 kHz and at a flux swing of ±0.6 T. Iron (Fe) based nanocrystalline material has been selected as a core for the construction of the transformer. The transformer employs a specially designed solid Teflon bobbin having 120 kV insulation for winding the high voltage secondary windings. The flux swing of the core has been experimentally found by plotting the hysteresis loop at actual operating conditions. Based on the design, a prototype transformer has been built which is per se a unique combination of high voltage, high frequency, and peak power specifications. The transformer was able to provide 58 kV (pk-pk) at the secondary with a peak power handling capability of 700 kVA. The transformation ratio was 1:17. The performance of the transformer is also presented and discussed. PMID:27131709

  3. A High Power Test Method for Pattern Magnet Power Supplies with Capacitor Banks

    NASA Astrophysics Data System (ADS)

    Kurimoto, Yoshinori; Morita, Yuichi; Sagawa, Ryu; Shimogawa, Tetsushi; Miura, Kazuki

    In the J-PARC Main Ring (MR), we plan to increase the beam intensity from 230 to 750 kW. To achieve this, the synchrotron repetition period must be shortened from 2.48 s to approximately 1 s using new power supplies for the main magnets. We are currently researching and developing new power supplies with large capacitor banks. Such banks are needed to reduce the power variation at the main grid in the J-PARC site for future operations with shorter repetition periods. However, it is very difficult to test the new power supplies at their rated power before installation. This is because the power handled by the power supplies used for the J-PARC MR main magnets is too high to be tested in factories or laboratories. To overcome this problem, we suggest a test method involving the use of two capacitor banks. In this method, two power supplies and a small inductive load are connected between two capacitor banks. By controlling the energy flow between the two capacitor banks in this setup, the received power and inductive load can be kept very small. This article describes the details of the control method and the results of the test experiment using a mini-model power supply.

  4. High-power laser source evaluation

    SciTech Connect

    Back, C. A.; Decker, C. D.; Davis, J. F.; Dixit, S.; Grun, J.; Managan, R. A.; Serduke, F. J. D.; Simonson, G. F.; Suter, L. J.; Wuest, C. R.; Ze, F.

    1998-07-01

    Robust Nuclear-Weapons-Effects Testing (NWET) capability will be needed for the foreseeable future to ensure the performance and reliability, in nuclear environments, of the evolving U.S. stockpile of weapons and other assets. Ongoing research on the use of high-energy lasers to generate environments of utility in nuclear weapon radiation effects simulations is addressed in the work described in this report. Laser-driven hohlraums and a variety of other targets have been considered in an effort to develop NWET capability of the highest possible fidelity in above-ground experiments. The envelope of large-system test needs is shown as the gray region in fig. 1. It does not represent the spectrum of any device; it is just the envelope of the spectral region of outputs from a number of possible devices. It is a goal of our laser-only and ignition-capsule source development work to generate x rays that fall somewhere in this envelope. One of the earlier appearances of this envelope is in ref. 1. The Defense Special Weapons Agency provided important support for the work described herein. A total of $520K was provided in the 1997 IACROs 97-3022 for Source Development and 97-3048 for Facilitization. The period of performance specified in the Statement of Work ran from 28 February 1997 until 30 November 1997. This period was extended, by agreement with DSWA, for two reasons: 1) despite the stated period of performance, funds were not available at LLNL to begin this work until somewhat later in the fiscal year, and 2) we agreed to stretch the current resources until follow-on funds were in hand, to minimize effects of ramping down and up again. The tasks addressed in this report are the following: 1) Non-ignition-source model benchmarking and design. This involves analysis of existing and new data on laser-only sources to benchmark LASNEX predictions 2) Non-ignition-source development experiments 3) Ignition capsule design to improve total x-ray output and simplify target

  5. Design of Instantaneous High Power Supply System with power distribution management for portable military devices

    NASA Astrophysics Data System (ADS)

    Kwak, Kiho; Kwak, Dongmin; Yoon, Joohong

    2015-08-01

    A design of an Instantaneous High Power Supply System (IHPSS) with a power distribution management (PDM) for portable military devices is newly addressed. The system includes a power board and a hybrid battery that can not only supply instantaneous high power but also maintain stable operation at critical low temperature (-30 °C). The power leakage and battery overcharge are effectively prevented by the optimal PDM. The performance of the proposed system under the required pulse loads and the operating conditions of a Korean Advanced Combat Rifle employed in the battlefield is modeled with simulations and verified experimentally. The system with the IHPSS charged the fuse setter with 1.7 times higher voltage (8.6 V) than the one without (5.4 V) under the pulse discharging rate (1 A at 0.5 duty, 1 ms) for 500 ms.

  6. Pulsed power drivers for ICF and high energy density physics

    NASA Astrophysics Data System (ADS)

    Ramirez, Juan J.; Matzen, M. Keith; McDaniel, Dillon H.

    Nanosecond Pulsed Power Science and Technology has its origins in the 1960s and over the past decade has matured into a flexible and robust discipline capable of addressing key physics issues of importance to Inertial Confinement Fusion (ICF) and high Energy Density Physics. The major leverage provided by pulsed power is its ability to generate and deliver high energy and high power at low cost and high efficiency. A low-cost, high-efficiency driver is important because of the very large capital investment required for multi-megajoule ignition-class systems. High efficiency is of additional importance for a commercially viable inertial fusion energy option. Nanosecond pulsed power has been aggressively and successfully developed at Sandia over the past twenty years. This effort has led to the development of unique multi-purpose facilities supported by highly capable diagnostic, calculational and analytic capabilities. The Sandia Particle-beam Fusion Program has evolved as part of an integrated national ICF Program. It applies the low-cost, high-efficiency leverage provided by nanosecond pulsed power systems to the longer-term goals of the national program, i.e., the Laboratory Microfusion Facility and Inertial Fusion Energy. A separate effort has led to the application of nanosecond pulsed power to the generation of intense, high-energy laboratory x-ray sources for application to x-ray laser and radiation effects science research. Saturn is the most powerful of these sources to date. It generates (approximately) 500 kilojoules of x-rays from a magnetically driven implosion (Z-pinch). This paper describes results of x-ray physics experiments performed on Saturn, plans for a new Z-pinch drive capability for PBFA-2, and a design concept for the proposed (approximately) 15 MJ Jupiter facility. The opportunities for ICF-relevant research using these facilities will also be discussed.

  7. Concentric Parallel Combining Balun for Millimeter-Wave Power Amplifier in Low-Power CMOS with High-Power Density

    NASA Astrophysics Data System (ADS)

    Han, Jiang-An; Kong, Zhi-Hui; Ma, Kaixue; Yeo, Kiat Seng; Lim, Wei Meng

    2016-11-01

    This paper presents a novel balun for a millimeter-wave power amplifier (PA) design to achieve high-power density in a 65-nm low-power (LP) CMOS process. By using a concentric winding technique, the proposed parallel combining balun with compact size accomplishes power combining and unbalance-balance conversion concurrently. For calculating its power combination efficiency in the condition of various amplitude and phase wave components, a method basing on S-parameters is derived. Based on the proposed parallel combining balun, a fabricated 60-GHz industrial, scientific, and medical (ISM) band PA with single-ended I/O achieves an 18.9-dB gain and an 8.8-dBm output power at 1-dB compression and 14.3-dBm saturated output power ( P sat) at 62 GHz. This PA occupying only a 0.10-mm2 core area has demonstrated a high-power density of 269.15 mW/mm2 in 65 nm LP CMOS.

  8. Concentric Parallel Combining Balun for Millimeter-Wave Power Amplifier in Low-Power CMOS with High-Power Density

    NASA Astrophysics Data System (ADS)

    Han, Jiang-An; Kong, Zhi-Hui; Ma, Kaixue; Yeo, Kiat Seng; Lim, Wei Meng

    2016-07-01

    This paper presents a novel balun for a millimeter-wave power amplifier (PA) design to achieve high-power density in a 65-nm low-power (LP) CMOS process. By using a concentric winding technique, the proposed parallel combining balun with compact size accomplishes power combining and unbalance-balance conversion concurrently. For calculating its power combination efficiency in the condition of various amplitude and phase wave components, a method basing on S-parameters is derived. Based on the proposed parallel combining balun, a fabricated 60-GHz industrial, scientific, and medical (ISM) band PA with single-ended I/O achieves an 18.9-dB gain and an 8.8-dBm output power at 1-dB compression and 14.3-dBm saturated output power (P sat) at 62 GHz. This PA occupying only a 0.10-mm2 core area has demonstrated a high-power density of 269.15 mW/mm2 in 65 nm LP CMOS.

  9. Nanosecond high-power dense microplasma switch for visible light

    SciTech Connect

    Bataller, A. Koulakis, J.; Pree, S.; Putterman, S.

    2014-12-01

    Spark discharges in high-pressure gas are known to emit a broadband spectrum during the first 10 s of nanoseconds. We present calibrated spectra of high-pressure discharges in xenon and show that the resulting plasma is optically thick. Laser transmission data show that such a body is opaque to visible light, as expected from Kirchoff's law of thermal radiation. Nanosecond framing images of the spark absorbing high-power laser light are presented. The sparks are ideal candidates for nanosecond, high-power laser switches.

  10. Nanosecond high-power dense microplasma switch for visible light

    NASA Astrophysics Data System (ADS)

    Bataller, A.; Koulakis, J.; Pree, S.; Putterman, S.

    2014-12-01

    Spark discharges in high-pressure gas are known to emit a broadband spectrum during the first 10 s of nanoseconds. We present calibrated spectra of high-pressure discharges in xenon and show that the resulting plasma is optically thick. Laser transmission data show that such a body is opaque to visible light, as expected from Kirchoff's law of thermal radiation. Nanosecond framing images of the spark absorbing high-power laser light are presented. The sparks are ideal candidates for nanosecond, high-power laser switches.

  11. The High Power Electric Propulsion (HiPEP) Ion Thruster

    NASA Technical Reports Server (NTRS)

    Foster, John E.; Haag, Tom; Patterson, Michael; Williams, George J., Jr.; Sovey, James S.; Carpenter, Christian; Kamhawi, Hani; Malone, Shane; Elliot, Fred

    2004-01-01

    Practical implementation of the proposed Jupiter Icy Moon Orbiter (JIMO) mission, which would require a total delta V of approximately 38 km/s, will require the development of a high power, high specific impulse propulsion system. Initial analyses show that high power gridded ion thrusters could satisfy JIMO mission requirements. A NASA GRC-led team is developing a large area, high specific impulse, nominally 25 kW ion thruster to satisfy both the performance and the lifetime requirements for this proposed mission. The design philosophy and development status as well as a thruster performance assessment are presented.

  12. Newly developed high-power laser diode bars

    NASA Astrophysics Data System (ADS)

    Kageyama, Nobuto; Morita, Takenori; Torii, Kousuke; Takauji, Motoki; Nagakura, Takehito; Maeda, Junya; Miyajima, Hirofumi; Yoshida, Harumasa

    2012-03-01

    High Power Laser Diode (LD) modules are widely used as high-brightness light sources for pumping solid-state lasers and for direct diode laser processing utilizing a compact feature. The LD bars installed in modules are required with higher output power, efficiency and beam quality. We have optimized the LD bar structure for high output power and efficient operation. The water-cooled heat sink has been designed for excellent thermal performance as well as long-term stable cooling performance. We have also developed the thermal expansion controlled assembly technique to suppress the "smile". As a result, we have achieved an output power of over 200 W and a conversion efficiency of 58% from 940 nm LD bars under continuous wave (CW) operation with very low smile of 0.8 μm.

  13. Klamath Falls: High-Power Acoustic Well Stimulation Technology

    SciTech Connect

    Black, Brian

    2006-07-24

    Acoustic well stimulation (AWS) technology uses high-power sonic waves from specific frequency spectra in an attempt to stimulate production in a damaged or low-production wellbore. AWS technology is one of the most promising technologies in the oil and gas industry, but it has proven difficult for the industry to develop an effective downhole prototype. This collaboration between Klamath Falls Inc. and the Rocky Mountain Oilfield Testing Center (RMOTC) included a series of tests using high-power ultrasonic tools to stimulate oil and gas production. Phase I testing was designed and implemented to verify tool functionality, power requirements, and capacity of high-power AWS tools. The purpose of Phase II testing was to validate the production response of wells with marginal production rates to AWS stimulation and to capture and identify any changes in the downhole environment after tool deployment. This final report presents methodology and results.

  14. High power continuous-wave Alexandrite laser with green pump

    NASA Astrophysics Data System (ADS)

    Ghanbari, Shirin; Major, Arkady

    2016-07-01

    We report on a continuous-wave (CW) Alexandrite (Cr:BeAl2O4) laser, pumped by a high power green source at 532 nm with a diffraction limited beam. An output power of 2.6 W at 755 nm, a slope efficiency of 26%, and wavelength tunability of 85 nm have been achieved using 11 W of green pump. To the best of our knowledge, this is the highest CW output power of a high brightness laser pumped Alexandrite laser reported to date. The results obtained in this experiment can lead to the development of a high power tunable CW and ultrafast sources of the near-infrared or ultraviolet radiation through frequency conversion.

  15. High-power slim-hole drilling system

    SciTech Connect

    Cohen, J.H.

    1995-07-01

    The objective of this project is to implement new high-power slim-hole motors and bits into field gas well drilling applications. Development of improved motors and bits is critical because rotating time constitutes the major cost of drilling gas wells. Conventional motors drill most formations 2 to 3 times faster than rotary continuous coring systems due to greater power transfer to the drill bit. New high-power motors and large-cutter TSP bits being developed by Maurer Engineering, Inc. (MEI) drill 2 to 3 times faster than conventional motors. These slim-hole high-power motors and bits, which are ready for field testing on this DOE project, should reduce drilling costs by 20 to 40 percent in many areas. The objective of Phase I is to design, manufacture and laboratory test improved high-power slim-hole motors and large-cutter TSP bits. This work will be done in preparation for Phase II field tests. The objective of Phase II will be to field test the high-power motors and bits in Amoco`s Catoosa shallow-test well near Tulsa, OK, and in deep gas wells. The goal will be to drill 2 to 3 times faster than conventional motors and to reduce the drilling costs by 20 to 40 percent over the intervals drilled.

  16. Global assessment of high-altitude wind power

    NASA Astrophysics Data System (ADS)

    Archer, C. L.; Caldeira, K.

    2008-12-01

    Wind speed generally increases with altitude to the tropopause; hence, the power available in high-altitude winds is enormous, especially near the jet streams. We assess for the first time the available wind power resource worldwide at altitudes between 500 and 12,000 m. The highest wind power densities are found near 10,000 m over Japan and eastern China, the eastern coast of the United States, southern Australia, and north-eastern Africa. Below 1000 m, the best locations are the southern tip of South America, the coasts along the northern Pacific and Atlantic oceans, the central-eastern coast of Africa, and the north-eastern coast of South America. Because jet streams vary locally and seasonally, however, the high-altitude wind power resource is less steady than needed for baseload power. However, dynamically reaching the height with the highest winds, increasing the area covered with high-altitude devices, and using batteries for storage can effectively reduce intermittency. When high-altitude wind power devices are distributed uniformly throughout the entire atmosphere, numerical simulations show negligible effects on the global climate for low densities, but surface cooling, decreased precipitation, and greater sea ice cover for high densities.

  17. Advanced, High Power, Next Scale, Wave Energy Conversion Device

    SciTech Connect

    Mekhiche, Mike; Dufera, Hiz; Montagna, Deb

    2012-10-29

    The project conducted under DOE contract DE‐EE0002649 is defined as the Advanced, High Power, Next Scale, Wave Energy Converter. The overall project is split into a seven‐stage, gated development program. The work conducted under the DOE contract is OPT Stage Gate III work and a portion of Stage Gate IV work of the seven stage product development process. The project effort includes Full Concept Design & Prototype Assembly Testing building on our existing PowerBuoy technology to deliver a device with much increased power delivery. Scaling‐up from 150kW to 500kW power generating capacity required changes in the PowerBuoy design that addressed cost reduction and mass manufacturing by implementing a Design for Manufacturing (DFM) approach. The design changes also focused on reducing PowerBuoy Installation, Operation and Maintenance (IO&M) costs which are essential to reducing the overall cost of energy. In this design, changes to the core PowerBuoy technology were implemented to increase capability and reduce both CAPEX and OPEX costs. OPT conceptually envisaged moving from a floating structure to a seabed structure. The design change from a floating structure to seabed structure would provide the implementation of stroke‐ unlimited Power Take‐Off (PTO) which has a potential to provide significant power delivery improvement and transform the wave energy industry if proven feasible.

  18. High power, electron-beam induced switching in diamond

    SciTech Connect

    Scarpetti, R.D.; Hofer, W.W.; Kania, D.R.; Schoenbach, K.H.; Joshi, R.P.; Molina, C.; Brinkmann, R.P.

    1993-07-01

    We are developing a high voltage, high average power, electron-beam controlled diamond switch that could significantly impact high power solid-state electronics in industrial and defense applications. An electron-beam controlled thin-film diamond could switch well over 100 kW average power at MHz frequencies, greater than 5 kV, and with high efficiency. This performance is due to the excellent thermal and electronic properties of diamond, the high efficiency achieved with electron beam control, and the demonstrated effectiveness of microchannel cooling. Our electron beam penetration depth measurements agree with our Monte-Carlo calculations. We have not observed electron beam damage in diamond for beam energies up to 150 keV. In this paper we describe our experimental and calculational results and research objectives.

  19. E-beam high voltage switching power supply

    DOEpatents

    Shimer, Daniel W.; Lange, Arnold C.

    1997-01-01

    A high power, solid state power supply is described for producing a controllable, constant high voltage output under varying and arcing loads suitable for powering an electron beam gun or other ion source. The present power supply is most useful for outputs in a range of about 100-400 kW or more. The power supply is comprised of a plurality of discrete switching type dc-dc converter modules, each comprising a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, and an output rectifier for producing a dc voltage at the output of each module. The inputs to the converter modules are fed from a common dc rectifier/filter and are linked together in parallel through decoupling networks to suppress high frequency input interactions. The outputs of the converter modules are linked together in series and connected to the input of the transmission line to the load through a decoupling and line matching network. The dc-dc converter modules are phase activated such that for n modules, each module is activated equally 360.degree./n out of phase with respect to a successive module. The phased activation of the converter modules, combined with the square current waveforms out of the step up transformers, allows the power supply to operate with greatly reduced output capacitance values which minimizes the stored energy available for discharge into an electron beam gun or the like during arcing. The present power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle using simulated voltage feedback signals and voltage feedback loops. Circuitry is also provided for sensing incipient arc currents reflected at the output of the power supply and for simultaneously decoupling the power supply circuitry from the arcing load.

  20. E-beam high voltage switching power supply

    DOEpatents

    Shimer, D.W.; Lange, A.C.

    1997-03-11

    A high power, solid state power supply is described for producing a controllable, constant high voltage output under varying and arcing loads suitable for powering an electron beam gun or other ion source. The present power supply is most useful for outputs in a range of about 100-400 kW or more. The power supply is comprised of a plurality of discrete switching type dc-dc converter modules, each comprising a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, and an output rectifier for producing a dc voltage at the output of each module. The inputs to the converter modules are fed from a common dc rectifier/filter and are linked together in parallel through decoupling networks to suppress high frequency input interactions. The outputs of the converter modules are linked together in series and connected to the input of the transmission line to the load through a decoupling and line matching network. The dc-dc converter modules are phase activated such that for n modules, each module is activated equally 360{degree}/n out of phase with respect to a successive module. The phased activation of the converter modules, combined with the square current waveforms out of the step up transformers, allows the power supply to operate with greatly reduced output capacitance values which minimizes the stored energy available for discharge into an electron beam gun or the like during arcing. The present power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle using simulated voltage feedback signals and voltage feedback loops. Circuitry is also provided for sensing incipient arc currents reflected at the output of the power supply and for simultaneously decoupling the power supply circuitry from the arcing load. 7 figs.

  1. High repetition rate (100 Hz), high peak power, high contrast femtosecond laser chain

    NASA Astrophysics Data System (ADS)

    Clady, R.; Tcheremiskine, V.; Azamoum, Y.; Ferré, A.; Charmasson, L.; Utéza, O.; Sentis, M.

    2016-03-01

    High intensity femtosecond laser are now routinely used to produce energetic particles and photons via interaction with solid targets. However, the relatively low conversion efficiency of such processes requires the use of high repetition rate laser to increase the average power of the laser-induced secondary source. Furthermore, for high intensity laser-matter interaction, a high temporal contrast is of primary importance as the presence of a ns ASE pedestal (Amplified Spontaneous Emission) and/or various prepulses may significantly affect the governing interaction processes by creating a pre-plasma on the target surface. We present the characterization of a laser chain based on Ti:Sa technology and CPA technique, which presents unique laser characteristics : a high repetition rate (100 Hz), a high peak power (>5 TW) and a high contrast ratio (ASE<10-10) obtained thanks to a specific design with 3 saturable absorbers inserted in the amplification chain. A deformable mirror placed before the focusing parabolic mirror should allow us to focus the beam almost at the limit of diffraction. In these conditions, peak intensity above 1019W.cm-2 on target could be achieved at 100 Hz, allowing the study of relativistic optics at a high repetition rate.

  2. Improving Switching Performance of Power MOSFETs Used in High Rep-Rate, Short Pulse, High-Power Pulsers

    SciTech Connect

    Cook, E G

    2006-09-19

    As their switching and power handling characteristics improve, solid-state devices are finding new applications in pulsed power. This is particularly true of applications that require fast trains of short duration pulses. High voltage (600-1200V) MOSFETs are especially well suited for use in these systems, as they can switch at significant peak power levels and are easily gated on and off very quickly. MOSFET operation at the shortest pulse durations is not constrained by the intrinsic capabilities of the MOSFET, but rather by the capabilities of the gate drive circuit and the system physical layout. This project sought to improve MOSFET operation in a pulsed power context by addressing these issues. The primary goal of this project is to improve the switching performance of power MOSFETs for use in high rep-rate, short pulse, high-power applications by improving the design of the gate drive circuits and the circuit layouts used in these systems. This requires evaluation of new commercial gate drive circuits and upgrading the designs of LLNL-developed circuits. In addition, these circuits must be tested with the fastest available high-voltage power MOSFETs.

  3. High power, high efficiency millimeter wavelength traveling wave tubes for high rate communications from deep space

    NASA Technical Reports Server (NTRS)

    Dayton, James A., Jr.

    1991-01-01

    The high-power transmitters needed for high data rate communications from deep space will require a new class of compact, high efficiency traveling wave tubes (TWT's). Many of the recent TWT developments in the microwave frequency range are generically applicable to mm wave devices, in particular much of the technology of computer aided design, cathodes, and multistage depressed collectors. However, because TWT dimensions scale approximately with wavelength, mm wave devices will be physically much smaller with inherently more stringent fabrication tolerances and sensitivity to thermal dissipation.

  4. Evaluation of a high power inverter for potential space applications

    NASA Technical Reports Server (NTRS)

    Guynes, B. V.; Lanier, J. R., Jr.

    1976-01-01

    The ADM-006 inverter discussed utilizes a unique method of using power switching circuits to produce three-phase low harmonic content voltages without any significant filtering. This method is referred to as the power center approach to inverter design and is explained briefly. The results are presented of tests performed by MSFC to evaluate inverter performance, especially when required to provide power to nonlinear loads such as half or full wave rectified loads with capacitive filtering. Test preocedures and results are described. These tests show that the power center inverter essentially met or exceeded all of claims excluding voltage regulation (3.9 percent versus specified 3.3 percent) and would be a good candidate for high power inverter applications such as may be found on Space Station, Spacelab, etc.

  5. HIGH EFFICIENCY FOSSIL POWER PLANT (HEFPP) CONCEPTUALIZATION PROGRAM

    SciTech Connect

    J.L. Justice

    1999-03-25

    This study confirms the feasibility of a natural gas fueled, 20 MW M-C Power integrated pressurized molten carbonate fuel cell combined in a topping cycle with a gas turbine generator plant. The high efficiency fossil power plant (HEFPP) concept has a 70% efficiency on a LHV basis. The study confirms the HEFPP has a cost advantage on a cost of electricity basis over the gas turbine based combined cycle plants in the 20 MW size range. The study also identifies the areas of further development required for the fuel cell, gas turbine generator, cathode blower, inverter, and power module vessel. The HEFPP concept offers an environmentally friendly power plant with minuscule emission levels when compared with the combined cycle power plant.

  6. High-energy, high-power, long-life battery

    NASA Technical Reports Server (NTRS)

    Abens, S. G.

    1969-01-01

    High-energy-density primary battery achieves energy densities of up to 130 watt hrs./lb. The electrochemical couple consists of a lithium anode, a copper-fluoride cathode, and uses methyl formate/lithium hexafluoroarsenate for the electrolyte. Once achieved, battery life is approximately 30 hours.

  7. GaN Electronics For High Power, High Temperature Applications

    SciTech Connect

    PEARTON,S.J.; REN,F.; ZHANG,A.P.; DANG,G.; CAO,X.A.; LEE,K.P.; CHO,H.; GILA,B.P.; JOHNSON,J.W.; MONIER,C.; ABERNATHY,C.R.; HAN,JUNG; BACA,ALBERT G.; CHYI,J.-I.; LEE,C.-M.; NEE,T.-E.; CHUO,C.-C.; CHU,S.N.G.

    2000-06-12

    A brief review is given of recent progress in fabrication of high voltage GaN and AlGaN rectifiers. GaN/AlGaN heterojunction bipolar transistors and GaN metal-oxide semiconductor field effect transistors. Improvements in epitaxial layer quality and in fabrication techniques have led to significant advances in device performance.

  8. High Power Operation of the JLab IR FEL Driver Accelerator

    SciTech Connect

    Kevin Beard; Stephen Benson; George Biallas; James Boyce; Donald Bullard; James Coleman; David Douglas; H. Dylla; Richard Evans; Pavel Evtushenko; Christopher Gould; Albert Grippo; Joseph Gubeli; David Hardy; Carlos Hernandez-Garcia; J. Hovater; Kevin Jordan; John Klopf; Rui Li; Steven Moore; George Neil; Benard Poelker; Thomas Powers; Joseph Preble; Robert Rimmer; Daniel Sexton; Michelle D. Shinn; Christopher Tennant; Richard Walker; Gwyn Williams; Shukui Zhang

    2007-08-01

    Operation of the JLab IR Upgrade FEL at CW powers in excess of 10 kW requires sustained production of high electron beam powers by the driver ERL. This in turn demands attention to numerous issues and effects, including: cathode lifetime; control of beamline and RF system vacuum during high current operation; longitudinal space charge; longitudinal and transverse matching of irregular/large volume phase space distributions; halo management; management of remnant dispersive effects; resistive wall, wake-field, and RF heating of beam vacuum chambers; the beam break up instability; the impact of coherent synchrotron radiation (both on beam quality and the performance of laser optics); magnetic component stability and reproducibility; and RF stability and reproducibility. We discuss our experience with these issues and describe the modus vivendi that has evolved during prolonged high current, high power beam and laser operation.

  9. Optical transcutaneous link for low power, high data rate telemetry.

    PubMed

    Liu, Tianyi; Bihr, Ulrich; Anis, Syed M; Ortmanns, Maurits

    2012-01-01

    A low power and high data rate wireless optical link for implantable data transmission is presented in this paper. In some neural prosthetic applications particularly in regard to neural recording system, there is a demand for high speed communication between an implanted device and an external device. An optical transcutaneous link is a promising implantable telemetry solution, since it shows lower power requirements than RF telemetry. In this paper, this advantage is further enhanced by using a modified on-off keying and a simple custom designed low power VCSEL driver. This transmitter achieves an optical transcutaneous link capable of transmitting data at 50 Mbps through the 4 mm tissue, with a tolerance of 2 mm misalignment and a BER of less than 10(-5), while the power consumption is only 4.1 mW or less. PMID:23366690

  10. High Power Laser Hybrid Welding - Challenges and Perspectives

    NASA Astrophysics Data System (ADS)

    Nielsen, Steen Erik

    High power industrial lasers at power levels up to 100 kW is now available on the market. Therefore, welding of thicker materials has become of interest for the heavy metal industry e.g. shipyards and wind mill producers. Further, the power plant industry, producers of steel pipes, heavy machinery and steel producers are following this new technology with great interest. At Lindø Welding Technology (LWT), which is a subsidiary to FORCE Technology, a 32-kwatt disc laser is installed. At this laser facility, welding procedures related to thick section steel applications are developed. Material thicknesses between 40 and 100 mm are currently of interest. This paper describes some of the challenges that are related to the development of the high power hybrid laser welding process as well as to the perspectives for the technology as a production tool for the heavy metal industry.

  11. High-Frequency Power Gain in the Mammalian Cochlea

    NASA Astrophysics Data System (ADS)

    Maoiléidigh, Dáibhid Ó.; Hudspeth, A. J.

    2011-11-01

    Amplification in the mammalian inner ear is thought to result from a nonlinear active process known as the cochlear amplifier. Although there is much evidence that outer hair cells (OHCs) play a central role in the cochlear amplifier, the mechanism of amplification remains uncertain. In non-mammalian ears hair bundles can perform mechanical work and account for the active process in vitro, yet in the mammalian cochlea membrane-based electromotility is required for amplification in vivo. A key issue is how OHCs conduct mechanical power amplification at high frequencies. We present a physical model of a segment of the mammalian cochlea that can amplify the power of external signals. In this representation both electromotility and active hair-bundle motility are required for mechanical power gain at high frequencies. We demonstrate how the endocochlear potential, the OHC resting potential, Ca2+ gradients, and ATP-fueled myosin motors serve as the energy sources underlying mechanical power gain in the cochlear amplifier.

  12. High Temperature Boost (HTB) Power Processing Unit (PPU) Formulation Study

    NASA Technical Reports Server (NTRS)

    Chen, Yuan; Bradley, Arthur T.; Iannello, Christopher J.; Carr, Gregory A.; Mohammad, Mojarradi M.; Hunter, Don J.; DelCastillo, Linda; Stell, Christopher B.

    2013-01-01

    This technical memorandum is to summarize the Formulation Study conducted during fiscal year 2012 on the High Temperature Boost (HTB) Power Processing Unit (PPU). The effort is authorized and supported by the Game Changing Technology Division, NASA Office of the Chief Technologist. NASA center participation during the formulation includes LaRC, KSC and JPL. The Formulation Study continues into fiscal year 2013. The formulation study has focused on the power processing unit. The team has proposed a modular, power scalable, and new technology enabled High Temperature Boost (HTB) PPU, which has 5-10X improvement in PPU specific power/mass and over 30% in-space solar electric system mass saving.

  13. A Lemon Cell Battery for High-Power Applications

    NASA Astrophysics Data System (ADS)

    Muske, Kenneth R.; Nigh, Christopher W.; Weinstein, Randy D.

    2007-04-01

    This article discusses the development of a lemon cell battery for high-power applications. The target application is the power source of a dc electric motor for a model car constructed by first-year engineering students as part of their introductory course design project and competition. The battery is composed of a series of lemon juice cells made from UV vis cuvets that use a magnesium anode and copper cathode. Dilution of the lemon juice to reduce the rate of corrosion of the magnesium anode and the addition of table salt to reduce the internal resistance of the cell are examined. Although our specific interest is the use of this lemon cell battery to run an electric dc motor, high-power applications such as radios, portable cassette or CD players, and other battery-powered toys are equally appropriate for demonstration and laboratory purposes using this battery.

  14. Waveguide Power Combiner Demonstration for Multiple High Power Millimeter Wave TWTAs

    NASA Technical Reports Server (NTRS)

    Wintucky, Edwin G.; Simons, Rainee N.; Lesny, Gary G.; Glass, Jeffrey L.

    2004-01-01

    NASA is presently developing nuclear reactor technologies, under Project Prometheus, which will provide spacecraft with greatly increased levels of sustained onboard power and thereby dramatically enhance the capability for future deep space exploration. The first mission planned for use of this high power technology is the Jupiter Icy Moons Orbiter (JIMO). In addition to electric propulsion and science, there will also be unprecedented onboard power available for deep space communications. A 32 GHz transmitter with 1 kW of RF output power is being considered to enable the required very high data transmission rates. One approach to achieving the 1 kW RF power, now being investigated at NASA GRC, is the possible power combining of a number of 100-1 50 W TWTs now under development. The work presented here is the results of a proof-of-concept demonstration of the power combining Ka-band waveguide circuit design and test procedure using two Ka- band TWTAs (Varian model VZA6902V3 and Logimetrics model A440/KA-1066), both of which were previously employed in data uplink evaluation terminals at 29.36 GHz for the NASA Advanced Communications Technology Satellite (ACTS) program. The characterization of the individual TWTAs and power combining demonstration were done over a 500 MHz bandwidth from 29.1 to 29.6 GHz to simulate the Deep Space Network (DSN) bandwidth of 3 1.8 to 32.3 GHz. Figures 1-3 show some of the power transfer and gain measurements of the TWTAs using a swept signal generator (Agilent 83640b) for the RF input. The input and output powers were corrected for circuit insertion losses due to the waveguide components. The RF saturated powers of both ACTS TWTAs were on the order of 120 W, which is comparable to the expected output powers of the 32 GHz TWTs. Additional results for the individual TWTAs will be presented (AM/AM, AM/PM conversion and gain compression), some of which were obtained from swept frequency and power measurements using a vector network

  15. Observations of clear air turbulence by high power radar.

    PubMed

    Browning, K A; Watkins, C D

    1970-07-18

    Clear air turbulence is a hazard to aviation and is thought to have important effects on atmospheric dynamics. This article describes the structure and evolution of clear air turbulence at high altitudes as revealed by a high power radar and vertical soundings of wind and temperature.

  16. Air Cooling for High Temperature Power Electronics (Presentation)

    SciTech Connect

    Waye, S.; Musselman, M.; King, C.

    2014-09-01

    Current emphasis on developing high-temperature power electronics, including wide-bandgap materials such as silicon carbide and gallium nitride, increases the opportunity for a completely air-cooled inverter at higher powers. This removes the liquid cooling system for the inverter, saving weight and volume on the liquid-to-air heat exchanger, coolant lines, pumps, and coolant, replacing them with just a fan and air supply ducting. We investigate the potential for an air-cooled heat exchanger from a component and systems-level approach to meet specific power and power density targets. A proposed baseline air-cooled heat exchanger design that does not meet those targets was optimized using a parametric computational fluid dynamics analysis, examining the effects of heat exchanger geometry and device location, fixing the device heat dissipation and maximum junction temperature. The CFD results were extrapolated to a full inverter, including casing, capacitor, bus bar, gate driver, and control board component weights and volumes. Surrogate ducting was tested to understand the pressure drop and subsequent system parasitic load. Geometries that met targets with acceptable loads on the system were down-selected for experimentation. Nine baseline configuration modules dissipated the target heat dissipation, but fell below specific power and power density targets. Six optimized configuration modules dissipated the target heat load, exceeding the specific power and power density targets. By maintaining the same 175 degrees C maximum junction temperature, an optimized heat exchanger design and higher device heat fluxes allowed a reduction in the number of modules required, increasing specific power and power density while still maintaining the inverter power.

  17. High power RF systems for the BNL ERL project

    SciTech Connect

    Zaltsman, A.; Lambiase, R.

    2011-03-28

    The Energy Recovery Linac (ERL) project, now under construction at Brookhaven National Laboratory, requires two high power RF systems. The first RF system is for the 703.75 MHz superconducting electron gun. The RF power from this system is used to drive nearly half an Ampere of beam current to 2 MeV. There is no provision to recover any of this energy so the minimum amplifier power is 1 MW. It consists of 1 MW CW klystron, transmitter and power supplies, 1 MW circulator, 1 MW dummy load and a two-way power splitter. The second RF system is for the 703.75 MHz superconducting cavity. The system accelerates the beam to 54.7 MeV and recovers this energy. It will provide up to 50 kW of CW RF power to the cavity. It consists of 50 kW transmitter, circulator, and dummy load. This paper describes the two high power RF systems and presents the test data for both.

  18. R&D ERL: High power RF systems

    SciTech Connect

    Zaltsman, A.

    2010-01-15

    The Energy Recovery Linac (ERL) project, now under construction at Brookhaven National Laboratory, requires two high power RF systems. The first RF system is for the 703.75 MHz superconducting electron gun. The RF power from this system is used to drive nearly half an Ampere of beam current to 2.5 MeV. There is no provision to recover any of this energy so the minimum amplifier power is 1 MW. It consists of 1 MW CW klystron, transmitter and power supplies, 1 MW circulator, 1 MW dummy load and a two-way power splitter. The second RF system is for the 703.75 MHz superconducting cavity. The system accelerates the beam to 54.7 MeV and recovers this energy. It will provide up to 50 kW of CW RF power to the cavity. It consists of 50 kW transmitter, circulator, and dummy load. This paper describes the two high power RF systems and presents the test data for both.

  19. High-Power Microwave Switch Employing Electron Beam Triggering

    SciTech Connect

    Hirshfield, Jay L

    2012-09-19

    A high-power active microwave pulse compressor is described that modulates the quality factor Q of the energy storage cavity by a new means involving mode conversion controlled by a triggered electron-beam discharge through a switch cavity. The electron beam is emitted from a diamond-coated molybdenum cathode. This report describes the principle of operation, the design of the switch, the configuration used for the test, and the experimental results. The pulse compressor produced output pulses with 140 - 165 MW peak power, power gain of 16 - 20, and pulse duration of 16 - 20 ns at a frequency of 11.43 GHz.

  20. High-power phase locking of a fiber amplifier array

    NASA Astrophysics Data System (ADS)

    Shay, T. M.; Baker, J. T.; Sanchez, A. D.; Robin, C. A.; Vergien, C. L.; Zeringue, C.; Gallant, D.; Lu, Chunte A.; Pulford, Benjamin; Bronder, T. J.; Lucero, Arthur

    2009-02-01

    We report high power phase locked fiber amplifier array using the Self-Synchronous Locking of Optical Coherence by Single-detector Electronic-frequency Tagging technique. We report the first experimental results for a five element amplifier array with a total locked power of more than 725-W. We will report on experimental measurements of the phase fluctuations versus time when the control loop is closed. The rms phase error was measured to be λ/60. Recent results will be reported. To the best of the authors' knowledge this is the highest fiber laser power to be coherently combined.

  1. High power rapidly tunable system for laser cooling.

    PubMed

    Valenzuela, V M; Hernández, L; Gomez, E

    2012-01-01

    We present a laser configuration capable of fast frequency changes with a high power output and a large tuning range. The system integrates frequency tuning with an acousto-optic modulator with a double pass tapered amplifier. A compensation circuit keeps the seed power constant and prevents damage to the amplifier. A single mode fiber decouples the modulation and amplification sections and keeps the alignment fixed. The small power required to saturate the amplifier makes the system very reliable. We use the system to obtain a dipole trap that we image using a beam derived from the same configuration. PMID:22299990

  2. Inductive High Power Transfer Technologies for Electric Vehicles

    NASA Astrophysics Data System (ADS)

    Madzharov, Nikolay D.; Tonchev, Anton T.

    2014-03-01

    Problems associated with "how to charge the battery pack of the electric vehicle" become more important every passing day. Most logical solution currently is the non-contact method of charge, possessing a number of advantages over standard contact methods for charging. This article focuses on methods for Inductive high power contact-less transfer of energy at relatively small distances, their advantages and disadvantages. Described is a developed Inductive Power Transfer (IPT) system for fast charging of electric vehicles with nominal power of 30 kW over 7 to 9 cm air gap.

  3. High thermal power density heat transfer. [thermionic converters

    NASA Technical Reports Server (NTRS)

    Morris, J. F. (Inventor)

    1980-01-01

    Heat from a high temperature heat pipe is transferred through a vacuum or a gap filled with electrically nonconducting gas to a cooler heat pipe. The heat pipe is used to cool the nuclear reactor while the heat pipe is connected thermally and electrically to a thermionic converter. If the receiver requires greater thermal power density, geometries are used with larger heat pipe areas for transmitting and receiving energy than the area for conducting the heat to the thermionic converter. In this way the heat pipe capability for increasing thermal power densities compensates for the comparatively low thermal power densities through the electrically non-conducting gap between the two heat pipes.

  4. An 8-18 GHz broadband high power amplifier

    NASA Astrophysics Data System (ADS)

    Lifa, Wang; Ruixia, Yang; Jingfeng, Wu; Yanlei, Li

    2011-11-01

    An 8-18 GHz broadband high power amplifier (HPA) with a hybrid integrated circuit (HIC) is designed and fabricated. This HPA is achieved with the use of a 4-fingered micro-strip Lange coupler in a GaAs MMIC process. In order to decrease electromagnetic interference, a multilayer AlN material with good heat dissipation is adopted as the carrier of the power amplifier. When the input power is 25 dBm, the saturated power of the continuous wave (CW) outputted by the power amplifier is more than 39 dBm within the frequency range of 8-13 GHz, while it is more than 38.6 dBm within other frequency ranges. We obtain the peak power output, 39.4 dBm, at the frequency of 11.9 GHz. In the whole frequency band, the power-added efficiency is more than 18%. When the input power is 18 dBm, the small signal gain is 15.7 ± 0.7 dB. The dimensions of the HPA are 25 × 15 × 1.5 mm3.

  5. High-power laser diodes at various wavelengths

    SciTech Connect

    Emanuel, M.A.

    1997-02-19

    High power laser diodes at various wavelengths are described. First, performance and reliability of an optimized large transverse mode diode structure at 808 and 941 nm are presented. Next, data are presented on a 9.5 kW peak power array at 900 nm having a narrow emission bandwidth suitable for pumping Yb:S-FAP laser materials. Finally, results on a fiber-coupled laser diode array at {approx}730 nm are presented.

  6. High-Power Prismatic Devices for Oblique Peripheral Prisms

    PubMed Central

    Peli, Eli; Bowers, Alex R.; Keeney, Karen; Jung, Jae-Hyun

    2016-01-01

    ABSTRACT Purpose Horizontal peripheral prisms for hemianopia provide field expansion above and below the horizontal meridian; however, there is a vertical gap leaving the central area (important for driving) without expansion. In the oblique design, tilting the bases of both prism segments toward the horizontal meridian moves the field expansion area vertically and centrally (closing the central gap) while the prisms remain in the peripheral location. However, tilting the prisms results also in a reduction of the lateral field expansion. Higher prism powers are needed to counter this effect. Methods We developed, implemented, and tested a series of designs aimed at increasing the prism power to reduce the central gap while maintaining wide lateral expansion. The designs included inserting the peripheral prisms into carrier lenses that included yoked prism in the opposite direction, combination of two Fresnel segments attached at the base and angled to each other (bi-part prisms), and creating Fresnel prism–like segments from nonparallel periscopic mirror pairs (reflective prisms). Results A modest increase in lateral power was achieved with yoked-prism carriers. Bi-part combination of 36Δ Fresnel segments provided high power with some reduction in image quality. Fresnel reflective prism segments have potential for high power with superior optical quality but may be limited in field extent or by interruptions of the expanded field. Extended apical scotomas, even with unilateral fitting, may limit the utility of very high power prisms. The high-power bi-part and reflective prisms enable a wider effective eye scanning range (more than 15 degrees) into the blind hemifield. Conclusions Conventional prisms of powers higher than the available 57Δ are limited by the binocular impact of a wider apical scotoma and a reduced effective eye scanning range to the blind side. The various designs that we developed may overcome these limitations and find use in various other

  7. RF Input Power Couplers for High Current SRF Applications

    SciTech Connect

    Khan, V. F.; Anders, W.; Burrill, Andrew; Knobloch, Jens; Kugeler, Oliver; Neumann, Axel; Wang, Haipeng

    2014-12-01

    High current SRF technology is being explored in present day accelerator science. The bERLinPro project is presently being built at HZB to address the challenges involved in high current SRF machines with the goal of generating and accelerating a 100 mA electron beam to 50 MeV in continuous wave (cw) mode at 1.3 GHz. One of the main challenges in this project is that of handling the high input RF power required for the photo-injector as well as booster cavities where there is no energy recovery process. A high power co-axial input power coupler is being developed to be used for the photo-injector and booster cavities at the nominal beam current. The coupler is based on the KEK–cERL design and has been modified to minimise the penetration of the coupler tip in the beam pipe without compromising on beam-power coupling (Qext ~105). Herein we report on the RF design of the high power (115 kW per coupler, dual couplers per cavity) bERLinPro (BP) coupler along with initial results on thermal calculations. We summarise the RF conditioning of the TTF-III couplers (modified for cw operation) performed in the past at BESSY/HZB. A similar conditioning is envisaged in the near future for the low current SRF photo-injector and the bERLinPro main linac cryomodule.

  8. High-Temperature, Wirebondless, Ultracompact Wide Bandgap Power Semiconductor Modules

    NASA Technical Reports Server (NTRS)

    Elmes, John

    2015-01-01

    Silicon carbide (SiC) and other wide bandgap semiconductors offer great promise of high power rating, high operating temperature, simple thermal management, and ultrahigh power density for both space and commercial power electronic systems. However, this great potential is seriously limited by the lack of reliable high-temperature device packaging technology. This Phase II project developed an ultracompact hybrid power module packaging technology based on the use of double lead frames and direct lead frame-to-chip transient liquid phase (TLP) bonding that allows device operation up to 450 degC. The new power module will have a very small form factor with 3-5X reduction in size and weight from the prior art, and it will be capable of operating from 450 degC to -125 degC. This technology will have a profound impact on power electronics and energy conversion technologies and help to conserve energy and the environment as well as reduce the nation's dependence on fossil fuels.

  9. Power Enhancement in High Dimensional Cross-Sectional Tests

    PubMed Central

    Fan, Jianqing; Liao, Yuan; Yao, Jiawei

    2016-01-01

    We propose a novel technique to boost the power of testing a high-dimensional vector H : θ = 0 against sparse alternatives where the null hypothesis is violated only by a couple of components. Existing tests based on quadratic forms such as the Wald statistic often suffer from low powers due to the accumulation of errors in estimating high-dimensional parameters. More powerful tests for sparse alternatives such as thresholding and extreme-value tests, on the other hand, require either stringent conditions or bootstrap to derive the null distribution and often suffer from size distortions due to the slow convergence. Based on a screening technique, we introduce a “power enhancement component”, which is zero under the null hypothesis with high probability, but diverges quickly under sparse alternatives. The proposed test statistic combines the power enhancement component with an asymptotically pivotal statistic, and strengthens the power under sparse alternatives. The null distribution does not require stringent regularity conditions, and is completely determined by that of the pivotal statistic. As specific applications, the proposed methods are applied to testing the factor pricing models and validating the cross-sectional independence in panel data models. PMID:26778846

  10. Lightning control system using high power microwave FEL

    SciTech Connect

    Shiho, M.; Watanbe, A.; Kawasaki, S.

    1995-12-31

    A research project for developing a thunder lightning control system using an induction linac based high power microwave free electron laser (FEL) started at JAERI The system will produce weakly ionized plasma rod in the atmosphere by high power microwaves and control a lightning path, away from , e. g., nuclear power stations and rocket launchers. It has been known that about MW/cm{sup 2} power density is enough for the atmospheric breakdown in the microwave region, and which means high power microwave FEL with GW level output power is feasible for atmospheric breakdown, and accordingly is feasible for thunder lightning control tool with making a conductive plasma channel in the atmosphere. From the microwave attenuation consideration in the atmosphere, FEL of 35GHz(0.13dB/km), 90GHz(0.35dB/km), 140GHz(1.7dB/km), and of 270 GHz(4.5dB/km) are the best candidates for the system. Comparing with other proposed lightning control system using visible or ultraviolet laser, the system using microwave has an advantage that microwave suffers smaller attenuation by rain or snow which always exist in the real atmospheric circumstances when lightning occurs.

  11. Power Systems Development Facility: High Temperature, High Pressure Filtration in Gasification Operation

    SciTech Connect

    Martin, R.A.; Guan, X.; Gardner, B.; Hendrix, H.

    2002-09-18

    High temperature, high pressure gas filtration is a fundamental component of several advanced coal-fired power systems. This paper discusses the hot-gas filter vessel operation in coal gasification mode at the Power Systems Development Facility (PSDF). The PSDF, near Wilsonville, Alabama, is funded by the U.S. Department of Energy (DOE), Southern Company, and other industrial participants currently including the Electric Power Research Institute, Siemens Westinghouse Power Corporation, Kellogg Brown & Root Inc. (KBR), and Peabody Energy. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems designed at sufficient size to provide data for commercial scale-up.

  12. High voltage generator circuit with low power and high efficiency applied in EEPROM

    NASA Astrophysics Data System (ADS)

    Yan, Liu; Shilin, Zhang; Yiqiang, Zhao

    2012-06-01

    This paper presents a low power and high efficiency high voltage generator circuit embedded in electrically erasable programmable read-only memory (EEPROM). The low power is minimized by a capacitance divider circuit and a regulator circuit using the controlling clock switch technique. The high efficiency is dependent on the zero threshold voltage (Vth) MOSFET and the charge transfer switch (CTS) charge pump. The proposed high voltage generator circuit has been implemented in a 0.35 μm EEPROM CMOS process. Measured results show that the proposed high voltage generator circuit has a low power consumption of about 150.48 μW and a higher pumping efficiency (83.3%) than previously reported circuits. This high voltage generator circuit can also be widely used in low-power flash devices due to its high efficiency and low power dissipation.

  13. Basic research on pulsed power for narrowband high-power microwave sources

    NASA Astrophysics Data System (ADS)

    Schamiloglu, Edl; Schoenbach, Karl H.; Vidmar, Robert

    2002-06-01

    Relativistic, intense beam-driven High Power Microwave (HPM) sources emerged as consequence of the development of pulsed power. In this context, pulsed power refers to components of a system following the prime power source, and before the load, which is typically an electron beam diode. Progress in fielding HPM sources on mobile platforms requires developing more compact pulsed power drivers. The Air Force Office of Scientific Research is sponsoring, using resources allocated by DDR&E, a Multidisciplinary University Research Initiative (MURI) program to study basic phenomena and processes that can lead to the design of more compact pulsed power systems. The University of New Mexico is leading a consortium, uniting researchers at Old Dominion University and the University of Nevada-Reno, to study basic phenomena relating to breakdown in solid and liquid dielectrics, high dielectric constant ceramics for use in compact, folded Blumlein transmission lines, gas switches, thermal management in compact pulsed power systems, among other topics. This paper describes the research activities on this program that are being performed in the initial year.

  14. Power Requirements Determined for High-Power-Density Electric Motors for Electric Aircraft Propulsion

    NASA Technical Reports Server (NTRS)

    Johnson, Dexter; Brown, Gerald V.

    2005-01-01

    Future advanced aircraft fueled by hydrogen are being developed to use electric drive systems instead of gas turbine engines for propulsion. Current conventional electric motor power densities cannot match those of today s gas turbine aircraft engines. However, if significant technological advances could be made in high-power-density motor development, the benefits of an electric propulsion system, such as the reduction of harmful emissions, could be realized.

  15. Conceptual definition of a high voltage power supply test facility

    NASA Technical Reports Server (NTRS)

    Biess, John J.; Chu, Teh-Ming; Stevens, N. John

    1989-01-01

    NASA Lewis Research Center is presently developing a 60 GHz traveling wave tube for satellite cross-link communications. The operating voltage for this new tube is - 20 kV. There is concern about the high voltage insulation system and NASA is planning a space station high voltage experiment that will demonstrate both the 60 GHz communications and high voltage electronics technology. The experiment interfaces, requirements, conceptual design, technology issues and safety issues are determined. A block diagram of the high voltage power supply test facility was generated. It includes the high voltage power supply, the 60 GHz traveling wave tube, the communications package, the antenna package, a high voltage diagnostics package and a command and data processor system. The interfaces with the space station and the attached payload accommodations equipment were determined. A brief description of the different subsystems and a discussion of the technology development needs are presented.

  16. Modular High-Energy Systems for Solar Power Satellites

    NASA Technical Reports Server (NTRS)

    Howell, Joe T.; Carrington, Connie K.; Marzwell, Neville I.; Mankins, John C.

    2006-01-01

    Modular High-Energy Systems are Stepping Stones to provide capabilities for energy-rich infrastructure located in space to support a variety of exploration scenarios as well as provide a supplemental source of energy during peak demands to ground grid systems. Abundant renewable energy at lunar or other locations could support propellant production and storage in refueling scenarios that enable affordable exploration. Renewable energy platforms in geosynchronous Earth orbits can collect and transmit power to satellites, or to Earth-surface locations. Energy-rich space technologies also enable the use of electric-powered propulsion systems that could efficiently deliver cargo and exploration facilities to remote locations. A first step to an energy-rich space infrastructure is a 100-kWe class solar-powered platform in Earth orbit. The platform would utilize advanced technologies in solar power collection and generation, power management and distribution, thermal management, electric propulsion, wireless avionics, autonomous in space rendezvous and docking, servicing, and robotic assembly. It would also provide an energy-rich free-flying platform to demonstrate in space a portfolio of technology flight experiments. This paper summary a preliminary design concept for a 100-kWe solar-powered satellite system to demonstrate in-flight a variety of advanced technologies, each as a separate payload. These technologies include, but are not limited to state-of-the-art solar concentrators, highly efficient multi-junction solar cells, integrated thermal management on the arrays, and innovative deployable structure design and packaging to enable the 100-kW satellite feasible to launch on one existing launch vehicle. Higher voltage arrays and power distribution systems (PDS) reduce or eliminate the need for massive power converters, and could enable direct-drive of high-voltage solar electric thrusters.

  17. Programmatic status of NASA's CSTI high capacity power Stirling space power converter program

    NASA Technical Reports Server (NTRS)

    Dudenhoefer, James E.

    1990-01-01

    An overview is presented of the NASA Lewis Research Center Free-Piston Stirling Space Power Converter Technology Development Program. This work is being conducted under NASA's Civil Space Technology Initiative (CSTI). The goal of the CSTI High Capacity Power element is to develop the technology base needed to meet the long duration, high capacity power requirements for future NASA space initiatives. Efforts are focused upon increasing system thermal and electric energy conversion efficiency at least fivefold over current SP-100 technology, and on achieving systems that are compatible with space nuclear reactors. The status of test activities with the Space Power Research Engine (SPRE) is discussed. Design deficiencies are gradually being corrected and the power converter is now outputting 11.5 kWe at a temperature ratio of 2 (design output is 12.5 kWe). Detail designs were completed for the 1050 K Component Test Power Converter (CTPC). The success of these and future designs is dependent upon supporting research and technology efforts including heat pipes, gas bearings, superalloy joining technologies and high efficiency alternators. An update of progress in these technologies is provided.

  18. Programmatic status of NASA's CSTI High Capacity Power Stirling Space Power Converter Program

    NASA Technical Reports Server (NTRS)

    Dudenhoefer, James E.

    1990-01-01

    An overview is presented of the NASA Lewis Research Center Free-Piston Stirling Space Power Converter Technology Department Program. This work is being conducted under NASA's Civil Space Technology Initiative (CSTI). The goal of the CSTI High Capacity Power element is to develop the technology base needed to meet the long duration, high capacity power requirements for future NASA space initiatives. Efforts are focused upon increasing system thermal and electric energy conversion efficiency at least fivefold over current SP-100 technology, and on achieving systems that are compatible with space nuclear reactors. The status of test activities with the Space Power Research Engine (SPRE) is discussed. Design deficiencies are gradually being corrected and the power converter is now outputting 11.5 kWe at a temperature ratio of 2 (design output is 12.5 kWe). Detail designs were completed for the 1050 K Component Test Power Converter (CTPC). The success of these and future designs is dependent upon supporting research and technology efforts including heat pipes, gas bearings, superalloy joining technologies and high efficiency alternators. An update of progress in these technologies is provided.

  19. High power microwave components for space communications satellite

    NASA Technical Reports Server (NTRS)

    Jankowski, H.; Geia, A.

    1972-01-01

    Analyzed, developed, and tested were high power microwave components for communications satellites systems. Included were waveguide and flange configurations with venting, a harmonic filter, forward and reverse power monitors, electrical fault sensors, and a diplexer for two channel simultaneous transmission. The assembly of 8.36 GHz components was bench tested, and then operated for 60 hours at 3.5 kW CW in a high vacuum. The diplexer was omitted from this test pending a modification of its end irises. An RF leakage test showed only that care is required at flange junctions; all other components were RF tight. Designs were extrapolated for 12 GHz and 2.64 GHz high power satellite systems.

  20. High-power laser chains used for laser isotope separation

    NASA Astrophysics Data System (ADS)

    Lompre, Louis A.

    2000-01-01

    Since 1985, France has chosen to focus on the selective photo-ionization process called SILVA for uranium enrichment. The general SILVA schedule has led to the construction of a pilot facility called ASTER, aimed to a general assessment of SILVA. It utilizes a mid power dye laser chain pumped by copper vapor laser chains. An alternative solution to pump dye laser is under development. It is based on high-power diode-pumped frequency doubled Nd:YAG modules. Performances as high as 150 Watts, at 532 nm, 10 kHz and pulse duration shorter than 75 ns have been obtained. The electrical efficiency overpasses 5 percent. The paper will give a description of the high power laser chains used or proposed for laser isotope separation.

  1. Stretchers and compressors for ultra-high power laser systems

    SciTech Connect

    Yakovlev, I V

    2014-05-30

    This review is concerned with pulse stretchers and compressors as key components of ultra-high power laser facilities that take advantage of chirped-pulse amplification. The potentialities, characteristics, configurations and methods for the matching and alignment of these devices are examined, with particular attention to the history of the optics of ultra-short, ultra-intense pulses before and after 1985, when the chirped-pulse amplification method was proposed, which drastically changed the view of the feasibility of creating ultra-high power laser sources. The review is intended primarily for young scientists and experts who begin to address the amplification and compression of chirped pulses, experts in laser optics and all who are interested in scientific achievements in the field of ultra-high power laser systems. (review)

  2. High Power Fiber Lasers and Applications to Manufacturing

    NASA Astrophysics Data System (ADS)

    Richardson, Martin; McComb, Timothy; Sudesh, Vikas

    2008-09-01

    We summarize recent developments in high power fiber laser technologies and discuss future trends, particularly in their current and future use in manufacturing technologies. We will also describe our current research programs in fiber laser development, ultra-fast and new lasers, and will mention the expectations in these areas for the new Townes Laser Institute. It will focus on new core laser technologies and their applications in medical technologies, advanced manufacturing technologies and defense applications. We will describe a program on large mode area fiber development that includes results with the new gain-guiding approach, as well as high power infra-red fiber lasers. We will review the opportunities for high power fiber lasers in various manufacturing technologies and illustrate this with applications we are pursuing in the areas of femtosecond laser applications, advanced lithographies, and mid-IR technologies.

  3. Possibility of a high-power, high-gain amplifier FEL

    SciTech Connect

    Nguyen, D. C.; Freund, H. P.

    2002-01-01

    High-gain amplifier FEL offer many unique advantages such as robust operation without a high-Q optical cavity and potentially high extraction eaciencies with the use of tapered wigglers. Although a high average power, cw amplifier FEL has not been demonstrated, many key physics issues such as electron beam brightness requirements, single-pass gains, saturation, etc. have been resolved. In this paper, we study the feasibility of a high-power FEL based on the high-gain amplifier concept. We show that with suitable electron beam parameters, i.e. high peak current, low emittance, low energy spread, and sufficient tapered wiggler length, peak output power of 1 QW and optical pulse energy of 8 mJ can be achieved. We also outline a possible configuration of a high-power, high-gain amplifier FEL with energy recovery.

  4. High-level power analysis and optimization techniques

    NASA Astrophysics Data System (ADS)

    Raghunathan, Anand

    1997-12-01

    This thesis combines two ubiquitous trends in the VLSI design world--the move towards designing at higher levels of design abstraction, and the increasing importance of power consumption as a design metric. Power estimation and optimization tools are becoming an increasingly important part of design flows, driven by a variety of requirements such as prolonging battery life in portable computing and communication devices, thermal considerations and system cooling and packaging costs, reliability issues (e.g. electromigration, ground bounce, and I-R drops in the power network), and environmental concerns. This thesis presents a suite of techniques to automatically perform power analysis and optimization for designs at the architecture or register-transfer, and behavior or algorithm levels of the design hierarchy. High-level synthesis refers to the process of synthesizing, from an abstract behavioral description, a register-transfer implementation that satisfies the desired constraints. High-level synthesis tools typically perform one or more of the following tasks: transformations, module selection, clock selection, scheduling, and resource allocation and assignment (also called resource sharing or hardware sharing). High-level synthesis techniques for minimizing the area, maximizing the performance, and enhancing the testability of the synthesized designs have been investigated. This thesis presents high-level synthesis techniques that minimize power consumption in the synthesized data paths. This thesis investigates the effects of resource sharing on the power consumption in the data path, provides techniques to efficiently estimate power consumption during resource sharing, and resource sharing algorithms to minimize power consumption. The RTL circuit that is obtained from the high-level synthesis process can be further optimized for power by applying power-reducing RTL transformations. This thesis presents macro-modeling and estimation techniques for switching

  5. Optical design of a high power fiber optic coupler

    SciTech Connect

    English, R.E. Jr.; Halpin, J.M.; House, F.A.; Paris, R.D.

    1991-06-19

    Fiber optic beam delivery systems are replacing conventional mirror delivery systems for many reasons (e.g., system flexibility and redundancy, stability, and ease of alignment). Commercial products are available that use of fiber optic delivery for laser surgery and materials processing. Also, pump light of dye lasers can be delivered by optical fibers. Many laser wavelengths have been transported via optical fibers; high power delivery has been reported for argon, Nd:YAG, and excimer. We have been developing fiber optic beam delivery systems for copper vapor laser light; many of the fundamental properties of these systems are applicable to other high power delivery applications. A key element of fiber optic beam delivery systems is the coupling of laser light into the optical fiber. For our application this optical coupler must be robust to a range of operating parameters and laser characteristics. We have access to a high power copper vapor laser beam that is generated by a master oscillator/power amplifier (MOPA) chain comprised of three amplifiers. The light has a pulse width of 40--50 nsec with a repetition rate of about 4 kHz. The average power (nominal) to be injected into a fiber is 200 W. (We will refer to average power in this paper.) In practice, the laser beam's direction and collimation change with time. These characteristics plus other mechanical and operational constraints make it difficult for our coupler to be opto-mechanically referenced to the laser beam. We describe specifications, design, and operation of an optical system that couples a high-power copper vapor laser beam into a large core, multimode fiber. The approach used and observations reported are applicable to fiber optic delivery applications. 6 refs., 6 figs.

  6. Soft Magnetic Materials in High-Frequency, High-Power Conversion Applications

    SciTech Connect

    Leary, AM; Ohodnicki, PR; McHenry, ME

    2012-07-04

    Advanced soft magnetic materials are needed to match high-power density and switching frequencies made possible by advances in wide band-gap semiconductors. Magnetics capable of operating at higher operating frequencies have the potential to greatly reduce the size of megawatt level power electronics. In this article, we examine the role of soft magnetic materials in high-frequency power applications and we discuss current material's limitations and highlight emerging trends in soft magnetic material design for high-frequency and power applications using the materials paradigm of synthesis -> structure -> property -> performance relationships.

  7. Science opportunities at high power accelerators like APT

    SciTech Connect

    Browne, J.C.

    1996-12-31

    This paper presents applications of high power RF proton linear accelerators to several fields. Radioisotope production is an area in which linacs have already provided new isotopes for use in medical and industrial applications. A new type of spallation neutron source, called a long-pulse spallation source (LPSS), is discussed for application to neutron scattering and to the production and use of ultra-cold neutrons (UCN). The concept of an accelerator-driven, transmutation of nuclear waste system, based on high power RF linac technology, is presented along with its impact on spent nuclear fuels.

  8. High-power synchronously pumped femtosecond Raman fiber laser.

    PubMed

    Churin, D; Olson, J; Norwood, R A; Peyghambarian, N; Kieu, K

    2015-06-01

    We report a high-power synchronously pumped femtosecond Raman fiber laser operating in the normal dispersion regime. The Raman laser is pumped by a picosecond Yb(3+)-doped fiber laser. It produces highly chirped pulses with energy up to 18 nJ, average power of 0.76 W and 88% efficiency. The pulse duration is measured to be 147 fs after external compression. We observed two different regimes of operation of the laser: coherent and noise-like regime. Both regimes were experimentally characterized. Numerical simulations are in a good agreement with experimental results. PMID:26030549

  9. High-power FEL design issues - a critical review

    SciTech Connect

    Litvinenko, V.N.; Madey, J.M.J.; O`Shea, P.G.

    1995-12-31

    The high-average power capability of FELs has been much advertised but little realized. In this paper we provide a critical analysis of the technological and economic issues associated with high-average power FEL operation from the UV to near IR. The project of IR FEL for the Siberian Center of photochemical researches is described. The distinguished features of this project are the use of the race-track microtron-recuperator and the {open_quotes}electron output of radiation{close_quotes}. The building for the machine is under reconstruction now. About half of hardware has been manufactured. The assembly of installation began.

  10. Low cost high power GaSB photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Fraas, Lewis M.; Huang, Han X.; Ye, Shi-Zhong; Hui, She; Avery, James; Ballantyne, Russell

    1997-03-01

    High power density and high capacity factor are important attributes of a thermophotovoltaics (TPV) system and GaSb cells are enabling for TPV systems. A TPV cogeneration unit at an off grid site will compliment solar arrays producing heat and electricity on cloudy days with the solar arrays generating electricity on sunny days. Herein, we project that GaSb cells generating 2 Watts each can be made in 1 MW quantities at 4 per cell. This will allow TPV circuits to be made at 2 per Watt. At this cost, the off-grid cogeneration and self-powered furnace markets will be viable.

  11. Low cost high power GaSb thermophotovoltaic cells

    NASA Astrophysics Data System (ADS)

    Fraas, Lewis M.; Huang, Han X.; Ye, Shi-Zhong; Avery, James; Ballantyne, Russell

    1997-04-01

    High power density and high capacity factor are important attributes of a TPV system and GaSb cells are enabling for TPV systems. A TPV cogeneration unit at an off grid site will compliment solar arrays producing heat and electricity on cloudy days with the solar arrays generating electricity on sunny days. Herein, we project that GaSb cells generating 2 Watts each can be made in 1 MW quantities at 4 per cell. This will allow TPV circuits to be made at 2 per Watt. At this cost, the off-grid cogeneration and self-powered furnace markets will be viable.

  12. High power tandem-pumped thulium-doped fiber laser.

    PubMed

    Wang, Yao; Yang, Jianlong; Huang, Chongyuan; Luo, Yongfeng; Wang, Shiwei; Tang, Yulong; Xu, Jianqiu

    2015-02-01

    We propose a cascaded tandem pumping technique and show its high power and high efficient operation in the 2-μm wavelength region, opening up a new way to scale the output power of the 2-μm fiber laser to new levels (e.g. 10 kW). Using a 1942 nm Tm(3+) fiber laser as the pump source with the co- (counter-) propagating configuration, the 2020 nm Tm(3+) fiber laser generates 34.68 W (35.15W) of output power with 84.4% (86.3%) optical-to-optical efficiency and 91.7% (92.4%) slope efficiency, with respect to launched pump power. It provides the highest slope efficiency reported for 2-μm Tm(3+)-doped fiber lasers, and the highest output power for all-fiber tandem-pumped 2-μm fiber oscillators. This system fulfills the complete structure of the proposed cascaded tandem pumping technique in the 2-μm wavelength region (~1900 nm → ~1940 nm → ~2020 nm). Numerical analysis is also carried out to show the power scaling capability and efficiency of the cascaded tandem pumping technique. PMID:25836159

  13. High power diode lasers for solid-state laser pumps

    NASA Technical Reports Server (NTRS)

    Linden, Kurt J.; Mcdonnell, Patrick N.

    1994-01-01

    The development and commercial application of high power diode laser arrays for use as solid-state laser pumps is described. Such solid-state laser pumps are significantly more efficient and reliable than conventional flash-lamps. This paper describes the design and fabrication of diode lasers emitting in the 780 - 900 nm spectral region, and discusses their performance and reliability. Typical measured performance parameters include electrical-to-optical power conversion efficiencies of 50 percent, narrow-band spectral emission of 2 to 3 nm FWHM, pulsed output power levels of 50 watts/bar with reliability values of over 2 billion shots to date (tests to be terminated after 10 billion shots), and reliable operation to pulse lengths of 1 ms. Pulse lengths up to 5 ms have been demonstrated at derated power levels, and CW performance at various power levels has been evaluated in a 'bar-in-groove' laser package. These high-power 1-cm stacked-bar arrays are now being manufactured for OEM use. Individual diode laser bars, ready for package-mounting by OEM customers, are being sold as commodity items. Commercial and medical applications of these laser arrays include solid-state laser pumping for metal-working, cutting, industrial measurement and control, ranging, wind-shear/atmospheric turbulence detection, X-ray generation, materials surface cleaning, microsurgery, ophthalmology, dermatology, and dental procedures.

  14. High Power RF Test Facility at the SNS

    SciTech Connect

    Y.W. Kang; D.E. Anderson; I.E. Campisi; M. Champion; M.T. Crofford; R.E. Fuja; P.A. Gurd; S. Hasan; K.-U. Kasemir; M.P. McCarthy; D. Stout; J.Y. Tang; A.V. Vassioutchenko; M. Wezensky; G.K. Davis; M. A. Drury; T. Powers; M. Stirbet

    2005-05-16

    RF Test Facility has been completed in the SNS project at ORNL to support test and conditioning operation of RF subsystems and components. The system consists of two transmitters for two klystrons powered by a common high voltage pulsed converter modulator that can provide power to two independent RF systems. The waveguides are configured with WR2100 and WR1150 sizes for presently used frequencies: 402.5 MHz and 805 MHz. Both 402.5 MHz and 805 MHz systems have circulator protected klystrons that can be powered by the modulator capable of delivering 11 MW peak and 1 MW average power. The facility has been equipped with computer control for various RF processing and complete dual frequency operation. More than forty 805 MHz fundamental power couplers for the SNS superconducting linac (SCL) cavities have been RF conditioned in this facility. The facility provides more than 1000 ft2 floor area for various test setups. The facility also has a shielded cave area that can support high power tests of normal conducting and superconducting accelerating cavities and components.

  15. High power diode lasers for solid-state laser pumps

    NASA Astrophysics Data System (ADS)

    Linden, Kurt J.; McDonnell, Patrick N.

    1994-02-01

    The development and commercial application of high power diode laser arrays for use as solid-state laser pumps is described. Such solid-state laser pumps are significantly more efficient and reliable than conventional flash-lamps. This paper describes the design and fabrication of diode lasers emitting in the 780 - 900 nm spectral region, and discusses their performance and reliability. Typical measured performance parameters include electrical-to-optical power conversion efficiencies of 50 percent, narrow-band spectral emission of 2 to 3 nm FWHM, pulsed output power levels of 50 watts/bar with reliability values of over 2 billion shots to date (tests to be terminated after 10 billion shots), and reliable operation to pulse lengths of 1 ms. Pulse lengths up to 5 ms have been demonstrated at derated power levels, and CW performance at various power levels has been evaluated in a 'bar-in-groove' laser package. These high-power 1-cm stacked-bar arrays are now being manufactured for OEM use. Individual diode laser bars, ready for package-mounting by OEM customers, are being sold as commodity items. Commercial and medical applications of these laser arrays include solid-state laser pumping for metal-working, cutting, industrial measurement and control, ranging, wind-shear/atmospheric turbulence detection, X-ray generation, materials surface cleaning, microsurgery, ophthalmology, dermatology, and dental procedures.

  16. High-power UV-B LEDs with long lifetime

    NASA Astrophysics Data System (ADS)

    Rass, Jens; Kolbe, Tim; Lobo-Ploch, Neysha; Wernicke, Tim; Mehnke, Frank; Kuhn, Christian; Enslin, Johannes; Guttmann, Martin; Reich, Christoph; Mogilatenko, Anna; Glaab, Johannes; Stoelmacker, Christoph; Lapeyrade, Mickael; Einfeldt, Sven; Weyers, Markus; Kneissl, Michael

    2015-03-01

    UV light emitters in the UV-B spectral range between 280 nm and 320 nm are of great interest for applications such as phototherapy, gas sensing, plant growth lighting, and UV curing. In this paper we present high power UV-B LEDs grown by MOVPE on sapphire substrates. By optimizing the heterostructure design, growth parameters and processing technologies, significant progress was achieved with respect to internal efficiency, injection efficiency and light extraction. LED chips emitting at 310 nm with maximum output powers of up to 18 mW have been realized. Lifetime measurements show approximately 20% decrease in emission power after 1,000 operating hours at 100 mA and 5 mW output power and less than 30% after 3,500 hours of operation, thus indicating an L50 lifetime beyond 10,000 hours.

  17. Plasma Switch for High-Power Active Pulse Compressor

    SciTech Connect

    Hirshfield, Jay L.

    2013-11-04

    Results are presented from experiments carried out at the Naval Research Laboratory X-band magnicon facility on a two-channel X-band active RF pulse compressor that employed plasma switches. Experimental evidence is shown to validate the basic goals of the project, which include: simultaneous firing of plasma switches in both channels of the RF circuit, operation of quasi-optical 3-dB hybrid directional coupler coherent superposition of RF compressed pulses from both channels, and operation of the X-band magnicon directly in the RF pulse compressor. For incident 1.2 ?s pulses in the range 0.63 ? 1.35 MW, compressed pulses of peak powers 5.7 ? 11.3 MW were obtained, corresponding to peak power gain ratios of 8.3 ? 9.3. Insufficient bakeout and conditioning of the high-power RF circuit prevented experiments from being conducted at higher RF input power levels.

  18. High power density yeast catalyzed microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Ganguli, Rahul

    Microbial fuel cells leverage whole cell biocatalysis to convert the energy stored in energy-rich renewable biomolecules such as sugar, directly to electrical energy at high efficiencies. Advantages of the process include ambient temperature operation, operation in natural streams such as wastewater without the need to clean electrodes, minimal balance-of-plant requirements compared to conventional fuel cells, and environmentally friendly operation. These make the technology very attractive as portable power sources and waste-to-energy converters. The principal problem facing the technology is the low power densities compared to other conventional portable power sources such as batteries and traditional fuel cells. In this work we examined the yeast catalyzed microbial fuel cell and developed methods to increase the power density from such fuel cells. A combination of cyclic voltammetry and optical absorption measurements were used to establish significant adsorption of electron mediators by the microbes. Mediator adsorption was demonstrated to be an important limitation in achieving high power densities in yeast-catalyzed microbial fuel cells. Specifically, the power densities are low for the length of time mediator adsorption continues to occur. Once the mediator adsorption stops, the power densities increase. Rotating disk chronoamperometry was used to extract reaction rate information, and a simple kinetic expression was developed for the current observed in the anodic half-cell. Since the rate expression showed that the current was directly related to microbe concentration close to the electrode, methods to increase cell mass attached to the anode was investigated. Electrically biased electrodes were demonstrated to develop biofilm-like layers of the Baker's yeast with a high concentration of cells directly connected to the electrode. The increased cell mass did increase the power density 2 times compared to a non biofilm fuel cell, but the power density

  19. Recent advances in phosphate laser glasses for high power applications

    SciTech Connect

    Campbell, J.H.

    1996-05-14

    Recent advances in Nd-doped phosphate laser glasses for high-peak-power and high-average-power applications are reviewed. Compositional studies have progressed to the point that glasses can be tailored to have specific properties for specific applications. Non-radiative relaxation effects can be accurately modeled and empirical expressions have been developed to evaluate both intrinsic (structural) and extrinsic (contamination induced) relaxation effects. Losses due to surface scattering and bulk glass absorption have been carefully measured and can be accurately predicted. Improvements in processing have lead to high damage threshold (e.g. Pt inclusion free) and high thermal shock resistant glasses with improved edge claddings. High optical quality pieces up to 79 x 45 x 4cm{sup 3} have been made and methods for continuous melting laser glass are under development.

  20. Completely monolithic linearly polarized high-power fiber laser oscillator

    NASA Astrophysics Data System (ADS)

    Belke, Steffen; Becker, Frank; Neumann, Benjamin; Ruppik, Stefan; Hefter, Ulrich

    2014-03-01

    We have demonstrated a linearly polarized cw all-in-fiber oscillator providing 1 kW of output power and a polarization extinction ratio (PER) of up to 21.7 dB. The design of the laser oscillator is simple and consists of an Ytterbium-doped polarization maintaining large mode area (PLMA) fiber and suitable fiber Bragg gratings (FBG) in matching PLMA fibers. The oscillator has nearly diffraction-limited beam quality (M² < 1.2). Pump power is delivered via a high power 6+1:1 pump coupler. The slope efficiency of the laser is 75 %. The electro/optical efficiency of the complete laser system is ~30 % and hence in the range of Rofin's cw non-polarized fiber lasers. Choosing an adequate bending diameter for the Yb-doped PLMA fiber, one polarization mode as well as higher order modes are sufficiently supressed1. Resulting in a compact and robust linearly polarized high power single mode laser without external polarizing components. Linearly polarized lasers are well established for one dimensional cutting or welding applications. Using beam shaping optics radially polarized laser light can be generated to be independent from the angle of incident to the processing surface. Furthermore, high power linearly polarized laser light is fundamental for nonlinear frequency conversion of nonlinear materials.

  1. Two photon absorption in high power broad area laser diodes

    NASA Astrophysics Data System (ADS)

    Dogan, Mehmet; Michael, Christopher P.; Zheng, Yan; Zhu, Lin; Jacob, Jonah H.

    2014-03-01

    Recent advances in thermal management and improvements in fabrication and facet passivation enabled extracting unprecedented optical powers from laser diodes (LDs). However, even in the absence of thermal roll-over or catastrophic optical damage (COD), the maximum achievable power is limited by optical non-linear effects. Due to its non-linear nature, two-photon absorption (TPA) becomes one of the dominant factors that limit efficient extraction of laser power from LDs. In this paper, theoretical and experimental analysis of TPA in high-power broad area laser diodes (BALD) is presented. A phenomenological optical extraction model that incorporates TPA explains the reduction in optical extraction efficiency at high intensities in BALD bars with 100μm-wide emitters. The model includes two contributions associated with TPA: the straightforward absorption of laser photons and the subsequent single photon absorption by the holes and electrons generated by the TPA process. TPA is a fundamental limitation since it is inherent to the LD semiconductor material. Therefore scaling the LDs to high power requires designs that reduce the optical intensity by increasing the mode size.

  2. Ion-implanted high microwave power indium phosphide transistors

    NASA Technical Reports Server (NTRS)

    Biedenbender, Michael D.; Kapoor, Vik J.; Messick, Louis J.; Nguyen, Richard

    1989-01-01

    Encapsulated rapid thermal annealing (RTA) has been used in the fabrication of InP power MISFETs with ion-implanted source, drain, and active-channel regions. The MISFETs had a gate length of 1.4 microns. Six to ten gate fingers per device, with individual gate finger widths of 100 or 125 microns, were used to make MISFETs with total gate widths of 0.75, 0.8, or 1 mm. The source and drain contact regions and the channel region of the MISFETs were fabricated using Si implants in InP at energies from 60 to 360 keV with doses of (1-560) x 10 to the 12th/sq cm. The implants were activated using RTA at 700 C for 30 sec in N2 or H2 ambients using an Si3N4 encapsulant. The high-power high-efficiency MISFETs were characterized at 9.7 GHz, and the output microwave power density for the RTA conditions used was as high as 2.4 W/mm. For a 1-W input at 9.7 GHz gains up to 3.7 dB were observed, with an associated power-added efficiency of 29 percent and output power density 70 percent greater than that of GaAs MESFETs.

  3. Cascaded combiners for a high power CW fiber laser

    NASA Astrophysics Data System (ADS)

    Tan, Qirui; Ge, Tingwu; Zhang, Xuexia; Wang, Zhiyong

    2016-02-01

    We report cascaded combiners for a high power continuous wave (CW) fiber laser in this paper. The cascaded combiners are fabricated with an improved lateral splicing process. During the fusing process, there is no stress or tension between the pump fiber and the double-cladding fiber. Thus, the parameters of the combiner are better than those that have been reported. The coupling efficiency is 98.5%, and the signal insertion loss is 1%. The coupling efficiency of the cascaded combiners is 97.5%. The pump lights are individually coupled into the double-cladding fiber via five combiners. The thermal effects cannot cause damage to the combiners and the cascaded combiners can operate stably in high power CW fiber lasers. We also develop a high power CW fiber laser that generates a maximum 780 W of CW signal power at 1080 nm with 71% optical-to-optical conversion efficiency. The fiber laser is pumped via five intra-cavity cascaded combiners and five extra-cavity cascaded combiners with a maximum pump power of 1096 W and a pump wavelength of 975 nm.

  4. Eyeglasses-powered, contact lens-like platform with high power transfer efficiency.

    PubMed

    Kim, Young-Joon; Maeng, Jimin; Irazoqui, Pedro P

    2015-08-01

    We present a contact lens-like platform that is wirelessly powered by an external coil embedded in eyeglasses via magnetic resonance coupling at 13.56 MHz. The platform is composed of a transparent parylene film as a host substrate, an embedded spiral inductor as a power receiving coil, and metal interconnects for additional electronics. A multilayer thin-film parylene packaging process is used to meet the form factor of a contact lens. A 36 μm-thick metal plating technique is employed on a parylene film to enhance the quality factor (Q) of the receiving coil (Q = 27.3 at 13.56 MHz). The power transfer method and techniques to compensate for coil misalignment are demonstrated on a pig eye, achieving a power transfer efficiency of 17.5 % at a 20-mm powering distance. The effect of tissue on the coil and the power transfer efficiency is examined. The high power transfer efficiency along with the wearable prototype demonstrated herein make promising progress toward smart contact lens in ocular diagnostics. PMID:26149695

  5. High-power MIXSEL: an integrated ultrafast semiconductor laser with 6.4 W average power.

    PubMed

    Rudin, B; Wittwer, V J; Maas, D J H C; Hoffmann, M; Sieber, O D; Barbarin, Y; Golling, M; Südmeyer, T; Keller, U

    2010-12-20

    High-power ultrafast lasers are important for numerous industrial and scientific applications. Current multi-watt systems, however, are based on relatively complex laser concepts, for example using additional intracavity elements for pulse formation. Moving towards a higher level of integration would reduce complexity, packaging, and manufacturing cost, which are important requirements for mass production. Semiconductor lasers are well established for such applications, and optically-pumped vertical external cavity surface emitting lasers (VECSELs) are most promising for higher power applications, generating the highest power in fundamental transverse mode (>20 W) to date. Ultrashort pulses have been demonstrated using passive modelocking with a semiconductor saturable absorber mirror (SESAM), achieving for example 2.1-W average power, sub-100-fs pulse duration, and 50-GHz pulse repetition rate. Previously the integration of both the gain and absorber elements into a single wafer was demonstrated with the MIXSEL (modelocked integrated external-cavity surface emitting laser) but with limited average output power (<200 mW). We have demonstrated the power scaling concept of the MIXSEL using optimized quantum dot saturable absorbers in an antiresonant structure design combined with an improved thermal management by wafer removal and mounting of the 8-µm thick MIXSEL structure directly onto a CVD-diamond heat spreader. The simple straight cavity with only two components has generated 28-ps pulses at 2.5-GHz repetition rate and an average output power of 6.4 W, which is higher than for any other modelocked semiconductor laser. PMID:21197032

  6. High efficiency GaP power conversion for Betavoltaic applications

    NASA Technical Reports Server (NTRS)

    Sims, Paul E.; Dinetta, Louis C.; Barnett, Allen M.

    1994-01-01

    AstroPower is developing a gallium phosphide (GaP) based energy converter optimized for radio luminescent light-based power supplies. A 'two-step' or 'indirect' process is used where a phosphor is excited by radioactive decay products to produce light that is then converted to electricity by a photovoltaic energy converter. This indirect conversion of beta-radiation to electrical energy can be realized by applying recent developments in tritium based radio luminescent (RL) light sources in combination with the high conversion efficiencies that can be achieved under low illumination with low leakage, gallium phosphide based devices. This tritium to light approach is inherently safer than battery designs that incorporate high activity radionuclides because the beta particles emitted by tritium are of low average energy and are easily stopped by a thin layer of glass. GaP layers were grown by liquid phase epitaxy and p/n junction devices were fabricated and characterized for low light intensity power conversion. AstroPower has demonstrated the feasibility of the GaP based energy converter with the following key results: 23.54 percent conversion efficiency under 968 muW/sq cm 440 nm blue light, 14.59 percent conversion efficiency for 2.85 muW/sq cm 440 nm blue light, and fabrication of working 5 V array. We have also determined that at least 20 muW/sq cm optical power is available for betavoltaic power systems. Successful developments of this device is an enabling technology for low volume, safe, high voltage, milliwatt power supplies with service lifetimes in excess of 12 years.

  7. High Efficiency Ka-Band Solid State Power Amplifier Waveguide Power Combiner

    NASA Technical Reports Server (NTRS)

    Wintucky, Edwin G.; Simons, Rainee N.; Chevalier, Christine T.; Freeman, Jon C.

    2010-01-01

    A novel Ka-band high efficiency asymmetric waveguide four-port combiner for coherent combining of two Monolithic Microwave Integrated Circuit (MMIC) Solid State Power Amplifiers (SSPAs) having unequal outputs has been successfully designed, fabricated and characterized over the NASA deep space frequency band from 31.8 to 32.3 GHz. The measured combiner efficiency is greater than 90 percent, the return loss greater than 18 dB and input port isolation greater than 22 dB. The manufactured combiner was designed for an input power ratio of 2:1 but can be custom designed for any arbitrary power ratio. Applications considered are NASA s space communications systems needing 6 to 10 W of radio frequency (RF) power. This Technical Memorandum (TM) is an expanded version of the article recently published in Institute of Engineering and Technology (IET) Electronics Letters.

  8. Impurity levels and power loading in the PDX tokamak with high power neutral beam injection

    SciTech Connect

    Fonck, R.J.; Bell, M.; Bol, K.

    1982-10-01

    The PDX tokamak provides an experimental facility for the direct comparison of various impurity control techniques under reactor-like conditions. Four neutral beam lines can inject up to 6 MW for 300 ms. Carbon rail limiter discharges have been used to test the effectiveness of perpendicular injection, but non-disruptive full power operation for > 100 ms is difficult without extensive conditioning. Initial tests of a toroidal bumper limiter indicate reduced power loading and roughly similar impurity levels compared to the carbon rail limiter discharges. Poloidal divertor discharges with up to 5 MW of injected power are cleaner than similar circular discharges, and the power is deposited in a remote divertor chamber. High density divertor operation indicates a reduction of impurity flow velocity in the divertor and enhanced recycling in the divertor region during neutral injection.

  9. Impurity levels and power loading in the pdx tokamak with high power neutral beam injection

    NASA Astrophysics Data System (ADS)

    Fonck, R. J.; Bell, M.; Bol, K.; Brau, K.; Budny, R.; Cecchi, J. L.; Cohen, S.; Davis, S.; Dylla, H. F.; Goldston, R.; Grek, B.; Hawryluk, R. J.; Hirschberg, J.; Johnson, D.; Hülse, R.; Kaita, R.; Kaye, S.; Knize, R. J.; Kugel, H.; Manos, D.; Mansfield, D.; Mcguire, K.; Mueller, D.; Oasa, K.; Okabayashi, M.; Owens, D. K.; Ramette, J.; Reeves, R.; Reusch, M.; Schmidt, G.; sesnic, S.; Suckewer, S.; Takahashi, H.; Tenney, F.; Thomas, P.; Ulrickson, M.; Yelle, R.

    1982-12-01

    The PDX tokamak provides an experimental facility for the direct comparison of various impurity control techniques under reactor-like conditions. Four neutral beam lines inject > 6 MW for 300 ms. Carbon rail limiter discharges have been used to test the effectiveness of perpendicular injection, but non-disruptive full power operation for > 100 ms is difficult without extensive conditioning. Initial tests of a toroidal bumper limiter indicate reduced power loading and roughly similar impurity levels compared to the carbon rail limiter discharges. Poloidal divertor discharges with up to 5 MW of injected power are cleaner than similar circular discharges, and the power is deposited in a remote divertor chamber. High density divertor operation indicates a reduction of impurity flow velocity in the divertor and enhanced recycling in the divertor region during neutral injection.

  10. Power combination of a self-coherent high power microwave source

    SciTech Connect

    Yan, Xiaolu Zhang, Xiaoping; Li, Yangmei; Dang, Fangchao; Zhang, Jun

    2015-09-15

    In our previous work, generating two phase-locked high power microwaves (HPMs) in a single self-coherent HPM device has been demonstrated. In this paper, after optimizing the structure of the previous self-coherent source, we design a power combiner with a folded phase-adjustment waveguide to realize power combination between its two sub-sources. Further particle-in-cell simulation of the combined source shows that when the diode voltage is 687 kV and the axial magnetic field is 0.8 T, a combined output microwave with 3.59 GW and 9.72 GHz is generated. The impedance of the combined device is 36 Ω and the total power conversion efficiency is 28%.

  11. Designing high power targets with computational fluid dynamics (CFD)

    SciTech Connect

    Covrig, S. D.

    2013-11-07

    High power liquid hydrogen (LH2) targets, up to 850 W, have been widely used at Jefferson Lab for the 6 GeV physics program. The typical luminosity loss of a 20 cm long LH2 target was 20% for a beam current of 100 μA rastered on a square of side 2 mm on the target. The 35 cm long, 2500 W LH2 target for the Qweak experiment had a luminosity loss of 0.8% at 180 μA beam rastered on a square of side 4 mm at the target. The Qweak target was the highest power liquid hydrogen target in the world and with the lowest noise figure. The Qweak target was the first one designed with CFD at Jefferson Lab. A CFD facility is being established at Jefferson Lab to design, build and test a new generation of low noise high power targets.

  12. Designing high power targets with computational fluid dynamics (CFD)

    SciTech Connect

    Covrig, Silviu D.

    2013-11-01

    High power liquid hydrogen (LH2) targets, up to 850 W, have been widely used at Jefferson Lab for the 6 GeV physics program. The typical luminosity loss of a 20 cm long LH2 target was 20% for a beam current of 100 {micro}A rastered on a square of side 2 mm on the target. The 35 cm long, 2500 W LH2 target for the Qweak experiment had a luminosity loss of 0.8% at 180 {micro}A beam rastered on a square of side 4 mm at the target. The Qweak target was the highest power liquid hydrogen target in the world and with the lowest noise figure. The Qweak target was the first one designed with CFD at Jefferson Lab. A CFD facility is being established at Jefferson Lab to design, build and test a new generation of low noise high power targets.

  13. Inductance effects in the high-power transmitter crowbar system

    NASA Technical Reports Server (NTRS)

    Daeges, J.; Bhanji, A.

    1987-01-01

    The effective protection of a klystron in a high-power transmitter requires the diversion of all stored energy in the protected circuit through an alternate low-impedance path, the crowbar, such that less than 1 joule of energy is dumped into the klystron during an internal arc. A scheme of adding a bypass inductor in the crowbar-protected circuit of the high-power transmitter was tested using computer simulations and actual measurements under a test load. Although this scheme has several benefits, including less power dissipation in the resistor, the tests show that the presence of inductance in the portion of the circuit to be protected severely hampers effective crowbar operation.

  14. Portable thermo-powered high-throughput visual electrochemiluminescence sensor.

    PubMed

    Hao, Nan; Xiong, Meng; Zhang, Jia-dong; Xu, Jing-Juan; Chen, Hong-Yuan

    2013-12-17

    This paper describes a portable thermo-powered high-throughput visual electrochemiluminescence (ECL) sensor for the first time. This sensor is composed of a tiny power supply device based on thermal-electrical conversion and a facile prepared array electrode. The ECL detection could be conducted with thermo-power, which is easily accessible. For example, hot water, a bonfire, or a lighted candle enables the detection to be conducted. And the assay can be directly monitored by the naked eye semiquantitatively or smart phones quantitatively. Combined with transparent electrode and array microreactors, a portable high-throughput sensor was achieved. The portable device, avoiding the use of an electrochemical workstation to generate potential and a photomultiplier tube to receive the signal, is not only a valuable addition for traditional methods but also a suitable device for field operation or point-of-care testing. PMID:24215560

  15. Spacecraft Power Beaming Using High-Energy Lasers, Experimental Validation

    NASA Astrophysics Data System (ADS)

    Michael, Sherif

    2008-04-01

    The lifetime of many spacecrafts are often limited by degradation of their electrical power subsystem, e.g. radiation-damaged solar arrays or failed batteries. Being able to beam power from terrestrial sites using high energy lasers, could alleviate this limitation, extending the lifetime of billions of dollars of satellite assets, as well as providing additional energy for electric propulsion that can be used for stationkeeping and orbital changes. In addition, extensive research at the Naval Postgraduate School (NPS) has shown the potential for annealing damaged solar cells using lasers. This paper describes that research and a proposed experiment to demonstrate the relevant concepts of high energy laser power beaming to an NPS-built and operated satellite. Preliminary results of ground experiment of laser illuminations of some of the solar panels of one of the spacecrafts are also presented.

  16. Thermal effects in high average power optical parametric amplifiers.

    PubMed

    Rothhardt, Jan; Demmler, Stefan; Hädrich, Steffen; Peschel, Thomas; Limpert, Jens; Tünnermann, Andreas

    2013-03-01

    Optical parametric amplifiers (OPAs) have the reputation of being average power scalable due to the instantaneous nature of the parametric process (zero quantum defect). This Letter reveals serious challenges originating from thermal load in the nonlinear crystal caused by absorption. We investigate these thermal effects in high average power OPAs based on beta barium borate. Absorption of both pump and idler waves is identified to contribute significantly to heating of the nonlinear crystal. A temperature increase of up to 148 K with respect to the environment is observed and mechanical tensile stress up to 40 MPa is found, indicating a high risk of crystal fracture under such conditions. By restricting the idler to a wavelength range far from absorption bands and removing the crystal coating we reduce the peak temperature and the resulting temperature gradient significantly. Guidelines for further power scaling of OPAs and other nonlinear devices are given.

  17. Aerodynamic characteristics of a propeller powered high lift semispan wing

    NASA Technical Reports Server (NTRS)

    Takallu, M. A.; Gentry, G. L., Jr.

    1992-01-01

    An experimental investigation was conducted on the engine/airframe integration aerodynamics for potential high-lift aircraft configurations. The model consisted of a semispan wing with a double-isolated flap system and a Krueger leading edge device. The advanced propeller and the powered nacelle were tested and aerodynamic characteristics of the combined system are presented. It was found that the lift coefficient of the powered wing could be increased by the propeller slipstream when the rotational speed was increased and high-lift devices were deployed. Moving the nacelle/propeller closer to the wing in the vertical direction indicated higher lift augmentation than a shift in the longitudinal direction. A pitch-down nacelle inclination enhanced the lift performance of the system much better than vertical and horizontal variation of the nacelle locations and showed that the powered wing can sustain higher angles of attack near maximum lift performance.

  18. Thermal effects in high average power optical parametric amplifiers.

    PubMed

    Rothhardt, Jan; Demmler, Stefan; Hädrich, Steffen; Peschel, Thomas; Limpert, Jens; Tünnermann, Andreas

    2013-03-01

    Optical parametric amplifiers (OPAs) have the reputation of being average power scalable due to the instantaneous nature of the parametric process (zero quantum defect). This Letter reveals serious challenges originating from thermal load in the nonlinear crystal caused by absorption. We investigate these thermal effects in high average power OPAs based on beta barium borate. Absorption of both pump and idler waves is identified to contribute significantly to heating of the nonlinear crystal. A temperature increase of up to 148 K with respect to the environment is observed and mechanical tensile stress up to 40 MPa is found, indicating a high risk of crystal fracture under such conditions. By restricting the idler to a wavelength range far from absorption bands and removing the crystal coating we reduce the peak temperature and the resulting temperature gradient significantly. Guidelines for further power scaling of OPAs and other nonlinear devices are given. PMID:23455291

  19. Design considerations on a high-power VUV FEL

    SciTech Connect

    Ciocci, F.; Dattoli, G.; Angelis, A. De; Garosi, F.; Giannessi, L.; Torre, A.; Faatz, B.; Ottaviani, P.L.

    1995-07-01

    The authors explore the feasibility conditions of a high-power FEL operating in the VUV region (below 100 nm) and exploiting a coupled oscillator triplicator configuration. A high quality beam from a linac is passed through a FEL oscillator and produces laser radiation at 240 nm. The same beam is extracted and then injected into a second undulator tuned at the third harmonic of the first. The bunching produced in the oscillator allows the start up of the laser signal in the second section which operates as an amplifier. The authors discuss the dynamical behavior of the system and the dependence of the output power on the characteristics of the e-beam and of the oscillator. The possibility of enhancing the output power, adding a tapered section to the second undulator, is finally analyzed.

  20. High-Power Microwave Transmission and Mode Conversion Program

    SciTech Connect

    Vernon, Ronald J.

    2015-08-14

    This is a final technical report for a long term project to develop improved designs and design tools for the microwave hardware and components associated with the DOE Plasma Fusion Program. We have developed basic theory, software, fabrication techniques, and low-power measurement techniques for the design of microwave hardware associated gyrotrons, microwave mode converters and high-power microwave transmission lines. Specifically, in this report we discuss our work on designing quasi-optical mode converters for single and multiple frequencies, a new method for the analysis of perturbed-wall waveguide mode converters, perturbed-wall launcher design for TE0n mode gyrotrons, quasi-optical traveling-wave resonator design for high-power testing of microwave components, and possible improvements to the HSX microwave transmission line.

  1. Advanced Rock Drilling Technologies Using High Laser Power

    NASA Astrophysics Data System (ADS)

    Buckstegge, Frederik; Michel, Theresa; Zimmermann, Maik; Roth, Stephan; Schmidt, Michael

    Drilling through hard rock formations causes high mechanical wear and most often environmental disturbance. For the realization of an Advanced Adiabatic Compressed Air Energy Storage (AA-CAES) power plant a new and efficient method for tunneling utilising laser technology to support mechanical ablation of rock formations will be developed. Laser irradiation of inhomogeneous rock surfaces causes irregular thermal expansion leading to the formation of cracks and splintering as well as melting and slag-formation. This study focuses on the interaction of laser irradiation with calcite, porphyrite and siderite rock formations. A high power disc laser system at 1030nm wavelength is used to investigate the specific energy necessary to remove a unit volume depending on interaction times and applied power. Specific energies have been measured and an increase of fragility and brittleness of the rock surface has been observed.

  2. Cryogenic ultra-high power infrared diode laser bars

    NASA Astrophysics Data System (ADS)

    Crump, Paul; Frevert, C.; Hösler, H.; Bugge, F.; Knigge, S.; Pittroff, W.; Erbert, G.; Tränkle, G.

    2014-02-01

    GaAs-based high power diode lasers are the most efficient source of optical energy, and are in wide use in industrial applications, either directly or as pump sources for other laser media. Increased output power per laser is required to enable new applications (increased optical power density) and to reduce cost (more output per component leads to lower cost in $/W). For example, laser bars in the 9xx nm wavelength range with the very highest power and efficiency are needed as pump sources for many high-energy-class solid-state laser systems. We here present latest performance progress using a novel design approach that leverages operation at temperatures below 0°C for increases in bar power and efficiency. We show experimentally that operation at -55°C increases conversion efficiency and suppresses thermal rollover, enabling peak quasi-continuous wave bar powers of Pout > 1.6 kW to be achieved (1.2 ms, 10 Hz), limited by the available current. The conversion efficiency at 1.6 kW is 53%. Following on from this demonstration work, the key open challenge is to develop designs that deliver higher efficiencies, targeting > 80% at 1.6 kW. We present an analysis of the limiting factors and show that low electrical resistance is crucial, meaning that long resonators and high fill factor are needed. We review also progress in epitaxial design developments that leverage low temperatures to enable both low resistance and high optical performance. Latest results will be presented, summarizing the impact on bar performance and options for further improvements to efficiency will also be reviewed.

  3. Device for wavefront correction in an ultra high power laser

    DOEpatents

    Ault, Earl R.; Comaskey, Brian J.; Kuklo, Thomas C.

    2002-01-01

    A system for wavefront correction in an ultra high power laser. As the laser medium flows past the optical excitation source and the fluid warms its index of refraction changes creating an optical wedge. A system is provided for correcting the thermally induced optical phase errors.

  4. Applying AVIP to high voltage power supply designs

    NASA Astrophysics Data System (ADS)

    Dunbar, William; Rugama, Jose A.

    Several avionic integrity program (AVIP) requirements are described and applied to high-voltage power supply (HVPS) designs. The requirements are: environment, materials characterization, design criteria, durability, manufacturing/process controls, and testing. Related integrity design topics dealing with HVPS failures, insulating material properties, packaging, and fatigue life predictions are also discussed.

  5. Living and Working Safely Around High-Voltage Power Lines.

    SciTech Connect

    United States. Bonneville Power Administration.

    2001-06-01

    High-voltage transmission lines can be just as safe as the electrical wiring in the homes--or just as dangerous. The crucial factor is ourselves: they must learn to behave safely around them. This booklet is a basic safety guide for those who live and work around power lines. It deals primarily with nuisance shocks due to induced voltages, and with potential electric shock hazards from contact with high-voltage lines. References on possible long-term biological effects of transmission lines are shown. In preparing this booklet, the Bonneville Power Administration has drawn on more than 50 years of experience with high-voltage transmission. BPA operates one of the world`s largest networks of long-distance, high-voltage lines. This system has more than 400 substations and about 15,000 miles of transmission lines, almost 4,400 miles of which are operated at 500,000 volts.

  6. Effectiveness of High Schools in Australia: Holding Power and Achievement.

    ERIC Educational Resources Information Center

    Ainley, John; Sheret, Michael

    High schools in Australia are increasingly expected to be effective in holding students at school to year 12 as well as in promoting achievement. Analysis of quantitative data gathered as part of a longitudinal study of 22 New South Wales (Australia) schools shows that schools differ in their holding power as well as in the achievement levels of…

  7. Exploring Solar Power at Zion-Benton High

    ERIC Educational Resources Information Center

    Kasper, Rick

    1978-01-01

    Developed to provide students with actual hands-on experience in constructing energy-efficient homes and to increase the community's and students' knowledge of solar power as an alternate source of energy, a building trades program at a high school in Zion, Illinois has its students building single-family solar energy homes. (BM)

  8. High Power Electric Propulsion for Deep Space Missions

    NASA Technical Reports Server (NTRS)

    Polk, Jay

    2011-01-01

    Slide presentation reviews: (1) An Electric Propulsion Primer (2) The Flexible Path and the Electric Path (2a) A New Plan for Human Exploration (2b)The Role of Electric Propulsion (3) High Power Electric Thrusters (3a)Hall Thrusters (3b) Magnetoplasmadynamic Thrusters (4)Challenges for the Next Generation of Advanced Propulsion Technologist

  9. High-power slim-hole drilling system

    SciTech Connect

    Cohen, J.H.; Maurer, W.C.; Leitko, C.E.

    1995-12-31

    Economic conditions in the oil and gas industry have encouraged the use of new methods to reduce drilling costs. Slim-hole drilling, abandoned in the past, has found new life because it offers savings by reducing equipment size, tubular products, and environmental impact. A new high-power slim-hole drilling system has been developed that overcomes many of the problems that led to the abandonment of slim holes in the past. This new system is composed of a new high-power positive-displacement motor and new TSP bits developed to run at high horsepowers and produce high drilling rates, The new slim-hole system has the potential for reducing drilling costs by 40 to 60 percent.

  10. High School Principals as Leaders: Styles and Sources of Power

    ERIC Educational Resources Information Center

    Brinia, Vasiliki; Papantoniou, Eva

    2016-01-01

    Purpose: The purpose of this paper is to present the characteristics of leadership (style adopted, sources of power exercised and factors affecting leadership) of high school principals in Greece. Design/Methodology/Approach: In total, 235 school principals were surveyed using questionnaires. These questionnaires assessed how often they adopted…

  11. Target R and D for high power proton beam applications

    SciTech Connect

    Fabich, A.

    2008-02-21

    High power targets are one of the major issues in an accelerator complex for future HEP physic studies. The paper will review status of studies worldwide. It will focus on the status of the MERIT mercury-jet target experiment at CERN.

  12. High Resolution PV Power Modeling for Distribution Circuit Analysis

    SciTech Connect

    Norris, B. L.; Dise, J. H.

    2013-09-01

    NREL has contracted with Clean Power Research to provide 1-minute simulation datasets of PV systems located at three high penetration distribution feeders in the service territory of Southern California Edison (SCE): Porterville, Palmdale, and Fontana, California. The resulting PV simulations will be used to separately model the electrical circuits to determine the impacts of PV on circuit operations.

  13. High power narrowband 589 nm frequency doubled fibre laser source.

    PubMed

    Taylor, Luke; Feng, Yan; Calia, Domenico Bonaccini

    2009-08-17

    We demonstrate high-power high-efficiency cavity-enhanced second harmonic generation of an in-house built ultra-high spectral density (SBS-suppressed) 1178 nm narrowband Raman fibre amplifier. Up to 14.5 W 589 nm CW emission is achieved with linewidth Delta nu(589) < 7 MHz in a diffraction-limited beam, with peak external conversion efficiency of 86%. The inherently high spectral and spatial qualities of the 589 nm source are particularly suited to both spectroscopic and Laser Guide Star applications, given the seed laser can be easily frequency-locked to the Na D(2a) emission line. Further, we expect the technology to be extendable, at similar or higher powers, to wavelengths limited only by the seed-pump-pair availability. PMID:19687946

  14. In-volume heating using high-power laser diodes

    NASA Astrophysics Data System (ADS)

    Denisenkov, Valentin S.; Kiyko, Vadim V.; Vdovin, Gleb V.

    2015-03-01

    High-power lasers are useful instruments suitable for applications in various fields; the most common industrial applications include cutting and welding. We propose a new application of high-power laser diodes as in-bulk heating source for food industry. Current heating processes use surface heating with different approaches to make the heat distribution more uniform and the process more efficient. High-power lasers can in theory provide in-bulk heating which can sufficiently increase the uniformity of heat distribution thus making the process more efficient. We chose two media (vegetable fat and glucose) for feasibility experiments. First, we checked if the media have necessary absorption coefficients on the wavelengths of commercially available laser diodes (940-980 nm). This was done using spectrophotometer at 700-1100 nm which provided the dependences of transmission from the wavelength. The results indicate that vegetable fat has noticeable transmission dip around 925 nm and glucose has sufficient dip at 990 nm. Then, after the feasibility check, we did numerical simulation of the heat distribution in bulk using finite elements method. Based on the results, optimal laser wavelength and illuminator configuration were selected. Finally, we carried out several pilot experiments with high-power diodes heating the chosen media.

  15. High efficiency solar cells for laser power beaming applications

    NASA Technical Reports Server (NTRS)

    Jain, Raj K.; Landis, G. A.

    1995-01-01

    Understanding solar cell response to pulsed laser outputs is important for the evaluation of power beaming applications. The time response of high efficiency GaAs and silicon solar cells to a 25 nS monochromatic pulse input is described. The PC-1D computer code is used to analyze the cell current during and after the pulse for various conditions.

  16. Single-stage electronic ballast with high-power factor

    NASA Astrophysics Data System (ADS)

    Park, Chun-Yoon; Kwon, Jung-Min; Kwon, Bong-Hwan

    2014-03-01

    This article proposes a single-stage electronic ballast circuit with high-power factor. The proposed circuit was derived by sharing the switches of the power factor correction (PFC) and the half-bridge LCC resonant inverter. This integration of switches forms the proposed single-stage electronic ballast, which provides an almost unity power factor and a ripple-free input current by using a coupled inductor without increasing the voltage stress. In addition, it realises zero-voltage-switching (ZVS) by employing the self-oscillation technique. The saturable transformer constituting the self-oscillating drive limits the lamp current and dominates the switching frequency of the ballast. Therefore, the proposed single-stage ballast has the advantage of high-power factor, high efficiency, low cost and high reliability. Steady-state analysis of the PFC and the half-bridge LCC resonant inverter are described. The results of experiments performed using a 30 W fluorescent lamp are also presented to confirm the performance of the proposed ballast.

  17. High power narrowband 589 nm frequency doubled fibre laser source.

    PubMed

    Taylor, Luke; Feng, Yan; Calia, Domenico Bonaccini

    2009-08-17

    We demonstrate high-power high-efficiency cavity-enhanced second harmonic generation of an in-house built ultra-high spectral density (SBS-suppressed) 1178 nm narrowband Raman fibre amplifier. Up to 14.5 W 589 nm CW emission is achieved with linewidth Delta nu(589) < 7 MHz in a diffraction-limited beam, with peak external conversion efficiency of 86%. The inherently high spectral and spatial qualities of the 589 nm source are particularly suited to both spectroscopic and Laser Guide Star applications, given the seed laser can be easily frequency-locked to the Na D(2a) emission line. Further, we expect the technology to be extendable, at similar or higher powers, to wavelengths limited only by the seed-pump-pair availability.

  18. Modeling of high power ICRF heating experiments on TFTR

    SciTech Connect

    Phillips, C.K.; Wilson, J.R.; Bell, M.; Fredrickson, E.; Hosea, J.C.; Majeski, R.; Ramsey, A.; Rogers, J.H.; Schilling, G.; Skinner, C.; Stevens, J.E.; Taylor, G.; Wong, K.L.; Khudaleev, A.; Petrov, M.P.; Murakami, M.

    1993-04-01

    Over the past two years, ICRF heating experiments have been performed on TFTR in the hydrogen minority heating regime with power levels reaching 11.2 MW in helium-4 majority plasmas and 8.4 MW in deuterium majority plasmas. For these power levels, the minority hydrogen ions, which comprise typically less than 10% of the total electron density, evolve into la very energetic, anisotropic non-Maxwellian distribution. Indeed, the excess perpendicular stored energy in these plasmas associated with the energetic minority tail ions is often as high as 25% of the total stored energy, as inferred from magnetic measurements. Enhanced losses of 0.5 MeV protons consistent with the presence of an energetic hydrogen component have also been observed. In ICRF heating experiments on JET at comparable and higher power levels and with similar parameters, it has been suggested that finite banana width effects have a noticeable effect on the ICRF power deposition. In particular, models indicate that finite orbit width effects lead to a reduction in the total stored energy and of the tail energy in the center of the plasma, relative to that predicted by the zero banana width models. In this paper, detailed comparisons between the calculated ICRF power deposition profiles and experimentally measured quantities will be presented which indicate that significant deviations from the zero banana width models occur even for modest power levels (P{sub rf} {approximately} 6 MW) in the TFTR experiments.

  19. Modeling of high power ICRF heating experiments on TFTR

    SciTech Connect

    Phillips, C.K.; Wilson, J.R.; Bell, M.; Fredrickson, E.; Hosea, J.C.; Majeski, R.; Ramsey, A.; Rogers, J.H.; Schilling, G.; Skinner, C.; Stevens, J.E.; Taylor, G.; Wong, K.L. . Plasma Physics Lab.); Khudaleev, A.; Petrov, M.P. ); Murakami, M. )

    1993-01-01

    Over the past two years, ICRF heating experiments have been performed on TFTR in the hydrogen minority heating regime with power levels reaching 11.2 MW in helium-4 majority plasmas and 8.4 MW in deuterium majority plasmas. For these power levels, the minority hydrogen ions, which comprise typically less than 10% of the total electron density, evolve into la very energetic, anisotropic non-Maxwellian distribution. Indeed, the excess perpendicular stored energy in these plasmas associated with the energetic minority tail ions is often as high as 25% of the total stored energy, as inferred from magnetic measurements. Enhanced losses of 0.5 MeV protons consistent with the presence of an energetic hydrogen component have also been observed. In ICRF heating experiments on JET at comparable and higher power levels and with similar parameters, it has been suggested that finite banana width effects have a noticeable effect on the ICRF power deposition. In particular, models indicate that finite orbit width effects lead to a reduction in the total stored energy and of the tail energy in the center of the plasma, relative to that predicted by the zero banana width models. In this paper, detailed comparisons between the calculated ICRF power deposition profiles and experimentally measured quantities will be presented which indicate that significant deviations from the zero banana width models occur even for modest power levels (P[sub rf] [approximately] 6 MW) in the TFTR experiments.

  20. Development of adaptive resonator techniques for high-power lasers

    SciTech Connect

    An, J; Brase, J; Carrano, C; Dane, C B; Flath, L; Fochs, S; Hurd, R; Kartz, M; Sawvel, R

    1999-07-12

    The design of an adaptive wavefront control system for a high-power Nd:Glass laser will be presented. Features of this system include: an unstable resonator in confocal configuration, a multi-module slab amplifier, and real-time intracavity adaptive phase control using deformable mirrors and high-speed wavefront sensors. Experimental results demonstrate the adaptive correction of an aberrated passive resonator (no gain).

  1. Coherent beam combiner for a high power laser

    DOEpatents

    Dane, C. Brent; Hackel, Lloyd A.

    2002-01-01

    A phase conjugate laser mirror employing Brillouin-enhanced four wave mixing allows multiple independent laser apertures to be phase locked producing an array of diffraction-limited beams with no piston phase errors. The beam combiner has application in laser and optical systems requiring high average power, high pulse energy, and low beam divergence. A broad range of applications exist in laser systems for industrial processing, especially in the field of metal surface treatment and laser shot peening.

  2. First observations of power MOSFET burnout with high energy neutrons

    SciTech Connect

    Oberg, D.L.; Wert, J.L.; Normand, E.; Majewski, P.P.; Wender, S.A.

    1996-12-01

    Single event burnout was seen in power MOSFETs exposed to high energy neutrons. Devices with rated voltage {ge}400 volts exhibited burnout at substantially less than the rated voltage. Tests with high energy protons gave similar results. Burnout was also seen in limited tests with lower energy protons and neutrons. Correlations with heavy-ion data are discussed. Accelerator proton data gave favorable comparisons with burnout rates measured on the APEX spacecraft. Implications for burnout at lower altitudes are also discussed.

  3. High power testing of a 17 GHz photocathode RF gun

    SciTech Connect

    Chen, S.C.; Danly, B.G.; Gonichon, J.

    1995-12-31

    The physics and technological issues involved in high gradient particle acceleration at high microwave (RF) frequencies are under study at MIT. The 17 GHz photocathode RF gun has a 1 1/2 cell ({pi} mode) room temperature cooper cavity. High power tests have been conducted at 5-10 MW levels with 100 ns pulses. A maximum surface electric field of 250 MV/m was achieved. This corresponds to an average on-axis gradient of 150 MeV/m. The gradient was also verified by a preliminary electron beam energy measurement. Even high gradients are expected in our next cavity design.

  4. High temperature superconductivity technology for advanced space power systems

    NASA Technical Reports Server (NTRS)

    Faymon, Karl A.; Myers, Ira T.; Connolly, Denis J.

    1990-01-01

    In 1987, the Lewis Research center of the NASA and the Argonne National Laboratory of the Department of Energy joined in a cooperative program to identify and assess high payoff space and aeronautical applications of high temperature superconductivity (HTSC). The initial emphasis of this effort was limited, and those space power related applications which were considered included microwave power transmission and magnetic energy storage. The results of these initial studies were encouraging and indicated the need of further studies. A continuing collaborative program with Argonne National Laboratory has been formulated and the Lewis Research Center is presently structuring a program to further evaluate HTSC, identify applications and define the requisite technology development programs for space power systems. This paper discusses some preliminary results of the previous evaluations in the area of space power applications of HTSC which were carried out under the joint NASA-DOE program, the future NASA-Lewis proposed program, its thrusts, and its intended outputs and give general insights on the anticipated impact of HTSC for space power applications of the future.

  5. Direct fuel cell - A high proficiency power generator for biofuels

    SciTech Connect

    Patel, P.S.; Steinfeld, G.; Baker, B.S.

    1994-12-31

    Conversion of renewable bio-based resources into energy offers significant benefits for our environment and domestic economic activity. It also improves national security by displacing fossil fuels. However, in the current economic environment, it is difficult for biofuel systems to compete with other fossil fuels. The biomass-fired power plants are typically smaller than 50 MW, lower in electrical efficiencies (<25%) and experience greater costs for handling and transporting the biomass. When combined with fuel cells such as the Direct Fuel Cell (DFC), biofuels can produce power more efficiently with negligible environmental impact. Agricultural and other waste biomass can be converted to ethanol or methane-rich biofuels for power generation use in the DFC. These DFC power plants are modular and factory assembled. Due to their electrochemical (non-combustion) conversion process, these plants are environmentally friendly, highly efficient and potentially cost effective, even in sizes as small as a few meagawatts. They can be sited closer to the source of the biomass to minimize handling and transportation costs. The high-grade waste heat available from DFC power plants makes them attractive in cogeneration applications for farming and rural communities. The DFC potentially opens up new markets for biofuels derived from wood, grains and other biomass waste products.

  6. Novel fiber-MOPA-based high power blue laser

    NASA Astrophysics Data System (ADS)

    Engin, Doruk; Fouron, Jean-Luc; Chen, Youming; Huffman, Andromeda; Fitzpatrick, Fran; Burnham, Ralph; Gupta, Shantanu

    2012-06-01

    5W peak power at 911 nm is demonstrated with a pulsed Neodymium (Nd) doped fiber master oscillator power amplifier (MOPA). This result is the first reported high gain (16dB) fiber amplifier operation at 911nm. Pulse repetition frequency (PRF) and duty-cycle dependence of the all fiber system is characterized. Negligible performance degreadation is observed down to 1% duty cycle and 10 kHz PRF, where 2.5μJ of pulse energy is achieved. Continuous wave (CW) MOPA experiments achieved 55mW average power and 9dB gain with 15% optical to optical (o-o) efficiency. Excellent agreement is established between dynammic fiber MOPA simulation tool and experimental results in predicting output amplified spontaneous emission (ase) and signal pulse shapes. Using the simulation tool robust Stimulated Brillion Scattering (SBS) free operation is predicted out of a two stage all fiber system that generates over 10W's of peak power with 500 MHz line-width. An all fiber 911 nm pulsed laser source with >10W of peak power is expected to increase reliability and reduce complexity of high energy 455 nm laser system based on optical parametric amplification for udnerwater applications. The views expressed are thos of the author and do not reflect the official policy or position of the Department of Defense or the U.S. Government.

  7. High-Performance, Wide-Bandgap Power Electronics

    NASA Astrophysics Data System (ADS)

    McNutt, Ty; Passmore, Brandon; Fraley, John; McPherson, Brice; Shaw, Robert; Olejniczak, Kraig; Lostetter, Alex

    2014-12-01

    APEI has developed high-performance electronics to exploit the unique capabilities of wide-bandgap devices. Crucial enabling features include high current density, fast switching speed, high-voltage (>10 kV) blocking, high-temperature operation (>200°C), and inherent radiation tolerance, features which have the potential to completely revolutionize existing electronics, from milliwatt to megawatt levels, and enable operation in new environments. Full realization of these extraordinary capabilities led to significant challenges in package and system design, including high electric fields, high power density, high d i/d t's and d v/d t's, and high temperatures. Because of the limitations of traditional design methods and traditional electronics, designers unknowingly lack understanding of packaging material thermal properties at temperature extremes, of package-fabrication techniques, and of the inability to operate continuously at elevated temperatures, and use a set of qualification standards designed for lower-temperature, previous generation technology.

  8. Coal-fired high performance power generating system. Final report

    SciTech Connect

    1995-08-31

    As a result of the investigations carried out during Phase 1 of the Engineering Development of Coal-Fired High-Performance Power Generation Systems (Combustion 2000), the UTRC-led Combustion 2000 Team is recommending the development of an advanced high performance power generation system (HIPPS) whose high efficiency and minimal pollutant emissions will enable the US to use its abundant coal resources to satisfy current and future demand for electric power. The high efficiency of the power plant, which is the key to minimizing the environmental impact of coal, can only be achieved using a modern gas turbine system. Minimization of emissions can be achieved by combustor design, and advanced air pollution control devices. The commercial plant design described herein is a combined cycle using either a frame-type gas turbine or an intercooled aeroderivative with clean air as the working fluid. The air is heated by a coal-fired high temperature advanced furnace (HITAF). The best performance from the cycle is achieved by using a modern aeroderivative gas turbine, such as the intercooled FT4000. A simplified schematic is shown. In the UTRC HIPPS, the conversion efficiency for the heavy frame gas turbine version will be 47.4% (HHV) compared to the approximately 35% that is achieved in conventional coal-fired plants. This cycle is based on a gas turbine operating at turbine inlet temperatures approaching 2,500 F. Using an aeroderivative type gas turbine, efficiencies of over 49% could be realized in advanced cycle configuration (Humid Air Turbine, or HAT). Performance of these power plants is given in a table.

  9. Conversion Tower for Dispatchable Solar Power: High-Efficiency Solar-Electric Conversion Power Tower

    SciTech Connect

    2012-01-11

    HEATS Project: Abengoa Solar is developing a high-efficiency solar-electric conversion tower to enable low-cost, fully dispatchable solar energy generation. Abengoa’s conversion tower utilizes new system architecture and a two-phase thermal energy storage media with an efficient supercritical carbon dioxide (CO2) power cycle. The company is using a high-temperature heat-transfer fluid with a phase change in between its hot and cold operating temperature. The fluid serves as a heat storage material and is cheaper and more efficient than conventional heat-storage materials, like molten salt. It also allows the use of a high heat flux solar receiver, advanced high thermal energy density storage, and more efficient power cycles.

  10. Performance of improved magnetostrictive vibrational power generator, simple and high power output for practical applications

    SciTech Connect

    Ueno, Toshiyuki

    2015-05-07

    Vibration based power generation technology is utilized effectively in various fields. Author has invented novel vibrational power generation device using magnetostrictive material. The device is based on parallel beam structure consisting of a rod of iron-gallium alloy wound with coil and yoke accompanied with permanent magnet. When bending force is applied on the tip of the device, the magnetization inside the rod varies with induced stress due to the inverse magnetostrictive effect. In vibration, the time variation of the magnetization generates voltage on the wound coil. The magnetostrictive type is advantageous over conventional such using piezoelectric or moving magnet types in high efficiency and high robustness, and low electrical impedance. Here, author has established device configuration, simple, rigid, and high power output endurable for practical applications. In addition, the improved device is lower cost using less volume of Fe-Ga and permanent magnet compared to our conventional, and its assembly by soldering is easy and fast suitable for mass production. Average power of 3 mW/cm{sup 3} under resonant vibration of 212 Hz and 1.2 G was obtained in miniature prototype using Fe-Ga rod of 2 × 0.5× 7 mm{sup 3}. Furthermore, the damping effect was observed, which demonstrates high energy conversion of the generator.

  11. Electron beam diagnostic for profiling high power beams

    DOEpatents

    Elmer, John W.; Palmer, Todd A.; Teruya, Alan T.

    2008-03-25

    A system for characterizing high power electron beams at power levels of 10 kW and above is described. This system is comprised of a slit disk assembly having a multitude of radial slits, a conducting disk with the same number of radial slits located below the slit disk assembly, a Faraday cup assembly located below the conducting disk, and a start-stop target located proximate the slit disk assembly. In order to keep the system from over-heating during use, a heat sink is placed in close proximity to the components discussed above, and an active cooling system, using water, for example, can be integrated into the heat sink. During use, the high power beam is initially directed onto a start-stop target and after reaching its full power is translated around the slit disk assembly, wherein the beam enters the radial slits and the conducting disk radial slits and is detected at the Faraday cup assembly. A trigger probe assembly can also be integrated into the system in order to aid in the determination of the proper orientation of the beam during reconstruction. After passing over each of the slits, the beam is then rapidly translated back to the start-stop target to minimize the amount of time that the high power beam comes in contact with the slit disk assembly. The data obtained by the system is then transferred into a computer system, where a computer tomography algorithm is used to reconstruct the power density distribution of the beam.

  12. A high power ZnO thin film piezoelectric generator

    NASA Astrophysics Data System (ADS)

    Qin, Weiwei; Li, Tao; Li, Yutong; Qiu, Junwen; Ma, Xianjun; Chen, Xiaoqiang; Hu, Xuefeng; Zhang, Wei

    2016-02-01

    A highly efficient and large area piezoelectric ZnO thin film nanogenerator (NG) was fabricated. The ZnO thin film was deposited onto a Si substrate by pulsed laser ablation at a substrate temperature of 500 °C. The deposited ZnO film exhibited a preferred c-axis orientation and a high piezoelectric value of 49.7 pm/V characterized using Piezoelectric Force Microscopy (PFM). Thin films of ZnO were patterned into rectangular power sources with dimensions of 0.5 × 0.5 cm2 with metallic top and bottom electrodes constructed via conventional semiconductor lithographic patterning processes. The NG units were subjected to periodic bending/unbending motions produced by mechanical impingement at a fixed frequency of 100 Hz at a pressure of 0.4 kg/cm2. The output electrical voltage, current density, and power density generated by one ZnO NG were recorded. Values of ∼95 mV, 35 μA cm-2 and 5.1 mW cm-2 were recorded. The level of power density is typical to that produced by a PZT NG on a flexible substrate. Higher energy NG sources can be easily created by adding more power units either in parallel or in series. The thin film ZnO NG technique is highly adaptable with current semiconductor processes, and as such, is easily integrated with signal collecting circuits that are compatible with mass production. A typical application would be using the power harvested from irregular human foot motions to either to operate blue LEDs directly or to drive a sensor network node in mille-power level without any external electric source and circuits.

  13. Frequency stabilization of a high power argon laser.

    NASA Technical Reports Server (NTRS)

    Hohimer, J. P.; Tittel, F. K.; Kelly, R. C.

    1972-01-01

    A technique for frequency stabilizing a high power, single frequency argon laser is described which offers certain advantages over those that have already been reported. This system is capable of maintaining a relative short term frequency stability of the order of plus or minus two parts in one billion and a long term stability (2 hr) of about plus or minus five parts in one billion for the 5145-A line at a power level of 750 mW. This short and long term stability is achieved by means of a multiple feedback loop composed of an optical cavity discriminator which is stabilized against an iodine vapor absorption line.

  14. High-output-power polarization-insensitive SOA

    NASA Astrophysics Data System (ADS)

    Morito, Ken

    2002-05-01

    An 1550 nm semiconductor optical amplifier (SOA) with a very thin tensile-strained bulk active layer and active width-tapered spot-size converters was developed. The SOA module exhibited a record high saturation output power of +17 dBm together with a low noise figure of 7 dB, large gain of 19 dB and small polarization sensitivity of 0.2 dB. A good eye pattern without waveform distortion due to the pattern effect was obtained for amplified 10 Gb/s NRZ signals up to an average output power of +12 dBm.

  15. Thermal management system options for high power space platforms

    NASA Technical Reports Server (NTRS)

    Sadunas, J. A.; Lehtinen, A.; Parish, R.

    1985-01-01

    Thermal Management System (TMS) design options for a high power (75kWe), low earth orbit, multimodule space platform were investigated. The approach taken was to establish a baseline TMS representative of current technology, and to make incremental improvements through successive subsystem trades that lead to a candidate TMS. The TMS trades included centralized and decentralized transport, single-phase and two-phase transport, alternate working fluids, liquid loop and heat pipe radiators, deployed fixed, body mounted and steerable radiators, and thermal storage. The subsystem options were evaluated against criteria such as weight, TMS power requirement, reliability, system isothermality penalty, and growth potential.

  16. Optical Emission Characterization of High-Power Hall Thruster Wear

    NASA Technical Reports Server (NTRS)

    WIlliams, George J.; Kamhawi, Hani

    2013-01-01

    Optical emission spectroscopy is employed to correlate BN insulator erosion with high-power operation of the NASA 300M Hall-effect thruster. Actinometry leveraging excited xenon states is used to normalize the emission spectra of ground state boron as a function of thruster operating condition. Trends in the strength of the boron signal are correlated with thruster power, discharge voltage, discharge current and magnetic field strength. The boron signals are shown to trend with discharge current and show weak dependence on discharge voltage. The trends are consistent with data previously collected on the NASA 300M and NASA 457M thrusters but are different from conventional wisdom.

  17. Modular, high power, variable R dynamic electrical load simulator

    NASA Technical Reports Server (NTRS)

    Joncas, K. P.

    1974-01-01

    The design of a previously developed basic variable R load simulator was entended to increase its power dissipation and transient handling capabilities. The delivered units satisfy all design requirements, and provides for a high power, modular simulation capability uniquely suited to the simulation of complex load responses. In addition to presenting conclusions and recommendations and pertinent background information, the report covers program accomplishments; describes the simulator basic circuits, transfer characteristic, protective features, assembly, and specifications; indicates the results of simulator evaluation, including burn-in and acceptance testing; provides acceptance test data; and summarizes the monthly progress reports.

  18. 2250-MHz High Efficiency Microwave Power Amplifier (HEMPA)

    NASA Technical Reports Server (NTRS)

    Sims, W. Herbert; Bell, Joseph L. (Technical Monitor)

    2001-01-01

    Tnis paper will focus on developing an exotic switching technique that enhances the DC-to-RF conversion efficiency of microwave power amplifiers. For years, switching techniques implemented in the 10 kHz to 30 MHz region have resulted in DC-to-RF conversion efficiencies of 90-95-percent. Currently amplifier conversion efficiency, in the 2-3 GHz region approaches, 10-20-percent. Using a combination of analytical modeling and hardware testing, a High Efficiency Microwave Power Amplifier was built that demonstrated conversion efficiencies four to five times higher than current state of the art.

  19. Diversion assumptions for high-powered research reactors

    SciTech Connect

    Binford, F.T.

    1984-01-01

    This study deals with diversion assumptions for high-powered research reactors -- specifically, MTR fuel; pool- or tank-type research reactors with light-water moderator; and water, beryllium, or graphite reflectors, and which have a power level of 25 MW(t) or more. The objective is to provide assistance to the IAEA in documentation of criteria and inspection observables related to undeclared plutonium production in the reactors described above, including: criteria for undeclared plutonium production, necessary design information for implementation of these criteria, verification guidelines including neutron physics and heat transfer, and safeguards measures to facilitate the detection of undeclared plutonium production at large research reactors.

  20. Contact diode laser: high power application through fiberoptic cutting tips.

    PubMed

    Wafapoor, H; Peyman, G A; Moritera, T

    1994-01-01

    Diode laser energy has been applied through a fiberoptic probe using a power setting of 2.5 watts (W) in the continuous mode. In this study we employed high-power diode laser energy (4 to 12 W, continuous wave) to incise ocular tissue through a fiberoptic probe using 100 microns and 300 microns tips. The retina was photocoagulated with a 300 microns orb tip. No bleeding occurred at the incision sites. Histologic evaluation revealed coagulation into the healthy tissue ranging from 10 to 50 microns.

  1. Effect of the target power density on high-power impulse magnetron sputtering of copper

    NASA Astrophysics Data System (ADS)

    Kozák, Tomáš

    2012-04-01

    We present a model analysis of high-power impulse magnetron sputtering of copper. We use a non-stationary global model based on the particle and energy conservation equations in two zones (the high density plasma ring above the target racetrack and the bulk plasma region), which makes it possible to calculate time evolutions of the averaged process gas and target material neutral and ion densities, as well as the fluxes of these particles to the target and substrate during a pulse period. We study the effect of the increasing target power density under conditions corresponding to a real experimental system. The calculated target current waveforms show a long steady state and are in good agreement with the experimental results. For an increasing target power density, an analysis of the particle densities shows a gradual transition to a metal dominated discharge plasma with an increasing degree of ionization of the depositing flux. The average fraction of target material ions in the total ion flux onto the substrate is more than 90% for average target power densities higher than 500 W cm-2 in a pulse. The average ionized fraction of target material atoms in the flux onto the substrate reaches 80% for a maximum average target power density of 3 kW cm-2 in a pulse.

  2. A High Power Density Power System Electronics for NASA's Lunar Reconnaissance Orbiter

    NASA Technical Reports Server (NTRS)

    Hernandez-Pellerano, A.; Stone, R.; Travis, J.; Kercheval, B.; Alkire, G.; Ter-Minassian, V.

    2009-01-01

    A high power density, modular and state-of-the-art Power System Electronics (PSE) has been developed for the Lunar Reconnaissance Orbiter (LRO) mission. This paper addresses the hardware architecture and performance, the power handling capabilities, and the fabrication technology. The PSE was developed by NASA s Goddard Space Flight Center (GSFC) and is the central location for power handling and distribution of the LRO spacecraft. The PSE packaging design manages and distributes 2200W of solar array input power in a volume less than a cubic foot. The PSE architecture incorporates reliable standard internal and external communication buses, solid state circuit breakers and LiIon battery charge management. Although a single string design, the PSE achieves high reliability by elegantly implementing functional redundancy and internal fault detection and correction. The PSE has been environmentally tested and delivered to the LRO spacecraft for the flight Integration and Test. This modular design is scheduled to flight in early 2009 on board the LRO and Lunar Crater Observation and Sensing Satellite (LCROSS) spacecrafts and is the baseline architecture for future NASA missions such as Global Precipitation Measurement (GPM) and Magnetospheric MultiScale (MMS).

  3. Potential of high-average-power solid state lasers

    SciTech Connect

    Emmett, J.L.; Krupke, W.F.; Sooy, W.R.

    1984-09-25

    We discuss the possibility of extending solid state laser technology to high average power and of improving the efficiency of such lasers sufficiently to make them reasonable candidates for a number of demanding applications. A variety of new design concepts, materials, and techniques have emerged over the past decade that, collectively, suggest that the traditional technical limitations on power (a few hundred watts or less) and efficiency (less than 1%) can be removed. The core idea is configuring the laser medium in relatively thin, large-area plates, rather than using the traditional low-aspect-ratio rods or blocks. This presents a large surface area for cooling, and assures that deposited heat is relatively close to a cooled surface. It also minimizes the laser volume distorted by edge effects. The feasibility of such configurations is supported by recent developments in materials, fabrication processes, and optical pumps. Two types of lasers can, in principle, utilize this sheet-like gain configuration in such a way that phase and gain profiles are uniformly sampled and, to first order, yield high-quality (undistorted) beams. The zig-zag laser does this with a single plate, and should be capable of power levels up to several kilowatts. The disk laser is designed around a large number of plates, and should be capable of scaling to arbitrarily high power levels.

  4. Research on calorimeter for high-power microwave measurements.

    PubMed

    Ye, Hu; Ning, Hui; Yang, Wensen; Tian, Yanmin; Xiong, Zhengfeng; Yang, Meng; Yan, Feng; Cui, Xinhong

    2015-12-01

    Based on measurement of the volume increment of polar liquid that is a result of heating by absorbed microwave energy, two types of calorimeters with coaxial capacitive probes for measurement of high-power microwave energy are designed in this paper. The first is an "inline" calorimeter, which is placed as an absorbing load at the end of the output waveguide, and the second is an "offline" calorimeter that is placed 20 cm away from the radiation horn of the high-power microwave generator. Ethanol and high density polyethylene are used as the absorbing and housing materials, respectively. Results from both simulations and a "cold test" on a 9.3 GHz klystron show that the "inline" calorimeter has a measurement range of more than 100 J and an energy absorption coefficient of 93%, while the experimental results on a 9.3 GHz relativistic backward-wave oscillator show that the device's power capacity is approximately 0.9 GW. The same experiments were also carried out for the "offline" calorimeter, and the results indicate that it can be used to eliminate the effects of the shock of the solenoid on the measurement curves and that the device has a higher power capacity of 2.5 GW. The results of the numerical simulations, the "cold tests," and the experiments show good agreement. PMID:26724055

  5. Overview of High Power Vacuum Dry RF Load Designs

    SciTech Connect

    Krasnykh, Anatoly

    2015-08-27

    A specific feature of RF linacs based on the pulsed traveling wave (TW) mode of operation is that only a portion of the RF energy is used for the beam acceleration. The residual RF energy has to be terminated into an RF load. Higher accelerating gradients require higher RF sources and RF loads, which can stably terminate the residual RF power. RF feeders (from the RF source though the accelerating section to the load) are vacuumed to transmit multi-megawatt high power RF. This overview will outline vacuumed RF loads only. A common method to terminate multi-MW RF power is to use circulated water (or other liquid) as an absorbing medium. A solid dielectric interface (a high quality ceramic) is required to separate vacuum and liquid RF absorber mediums. Using such RF load approaches in TW linacs is troubling because there is a fragile ceramic window barrier and a failure could become catastrophic for linac vacuum and RF systems. Traditional loads comprising of a ceramic disk have limited peak and average power handling capability and are therefore not suitable for high gradient TW linacs. This overview will focus on ''vacuum dry'' or ''all-metal'' loads that do not employ any dielectric interface between vacuum and absorber. The first prototype is an original design of RF loads for the Stanford Two-Mile Accelerator.

  6. Research on calorimeter for high-power microwave measurements

    NASA Astrophysics Data System (ADS)

    Ye, Hu; Ning, Hui; Yang, Wensen; Tian, Yanmin; Xiong, Zhengfeng; Yang, Meng; Yan, Feng; Cui, Xinhong

    2015-12-01

    Based on measurement of the volume increment of polar liquid that is a result of heating by absorbed microwave energy, two types of calorimeters with coaxial capacitive probes for measurement of high-power microwave energy are designed in this paper. The first is an "inline" calorimeter, which is placed as an absorbing load at the end of the output waveguide, and the second is an "offline" calorimeter that is placed 20 cm away from the radiation horn of the high-power microwave generator. Ethanol and high density polyethylene are used as the absorbing and housing materials, respectively. Results from both simulations and a "cold test" on a 9.3 GHz klystron show that the "inline" calorimeter has a measurement range of more than 100 J and an energy absorption coefficient of 93%, while the experimental results on a 9.3 GHz relativistic backward-wave oscillator show that the device's power capacity is approximately 0.9 GW. The same experiments were also carried out for the "offline" calorimeter, and the results indicate that it can be used to eliminate the effects of the shock of the solenoid on the measurement curves and that the device has a higher power capacity of 2.5 GW. The results of the numerical simulations, the "cold tests," and the experiments show good agreement.

  7. 4-GHz high-efficiency broadband FET power amplifiers

    NASA Astrophysics Data System (ADS)

    Chou, S.; Chang, C.

    1982-11-01

    The development and performance of a 4-GHz high-efficiency broadband FET power amplifier module for use in communications satellite transponders is discussed. The design, which is based on the parameters of a commercially available 7.2-mm multicell FET device, was optimized by the use of a CAD program, with broader bandwidth achieved by the addition of two open stubs to the input matching circuit. Six single-ended amplifier modules have been fabricated, tuned and tested, two being high-gain, 17.5% bandwidth designs and four being lower-gain, 25% bandwidth designs. The higher-gain modules, with a 0.5-dB bandwidth of 700 MHz (3.6 to 4.3 GHz) show a 6-dB gain and 3.23-W output power at the maximum efficiency of 48.6%, while broadband modules (0.5-dB bandwidth 900 MHz) deliver 5-W RF power at the maximum efficiency of 36%. The high-performance amplifiers may thus be used in satellite solid-state power amplifiers as replacements for traveling wave tubes.

  8. Design Challenges in High Power Free-electron Laser Oscillators

    SciTech Connect

    S.V. Benson

    2005-08-21

    Several FELs have now demonstrated high power lasing and several projects are under construction to deliver higher power or shorter wavelengths. This presentation will summarize progress in upgrading FEL oscillators towards higher power and will discuss some of the challenges these projects face. The challenges fall into three categories: 1. energy recovery with large exhaust energy spread, 2. output coupling and maintaining mirror figure in the presence of high intracavity power loading, and 3. high current operation in an energy recovery linac (ERL). Progress in all three of these areas has been made in the last year. Energy recovery of over 12% of exhaust energy spread has been demonstrated and designs capable of accepting even larger energy spreads have been proposed. Cryogenic transmissive output couplers for narrow band operation and both hole and scraper output coupling have been developed. Investigation of short Rayleigh range operation has started as well. Energy recovery of over 20 mA CW has been demonstrated and several methods of mitigating transverse beam breakup instabilities were demonstrated. This talk will summarize these achievements and give a roadmap of where the field is headed.

  9. Research on calorimeter for high-power microwave measurements

    SciTech Connect

    Ye, Hu; Ning, Hui; Yang, Wensen; Tian, Yanmin; Xiong, Zhengfeng; Yang, Meng; Yan, Feng; Cui, Xinhong

    2015-12-15

    Based on measurement of the volume increment of polar liquid that is a result of heating by absorbed microwave energy, two types of calorimeters with coaxial capacitive probes for measurement of high-power microwave energy are designed in this paper. The first is an “inline” calorimeter, which is placed as an absorbing load at the end of the output waveguide, and the second is an “offline” calorimeter that is placed 20 cm away from the radiation horn of the high-power microwave generator. Ethanol and high density polyethylene are used as the absorbing and housing materials, respectively. Results from both simulations and a “cold test” on a 9.3 GHz klystron show that the “inline” calorimeter has a measurement range of more than 100 J and an energy absorption coefficient of 93%, while the experimental results on a 9.3 GHz relativistic backward-wave oscillator show that the device’s power capacity is approximately 0.9 GW. The same experiments were also carried out for the “offline” calorimeter, and the results indicate that it can be used to eliminate the effects of the shock of the solenoid on the measurement curves and that the device has a higher power capacity of 2.5 GW. The results of the numerical simulations, the “cold tests,” and the experiments show good agreement.

  10. Transient Plasma Photonic Crystals for High-Power Lasers.

    PubMed

    Lehmann, G; Spatschek, K H

    2016-06-01

    A new type of transient photonic crystals for high-power lasers is presented. The crystal is produced by counterpropagating laser beams in plasma. Trapped electrons and electrically forced ions generate a strong density grating. The lifetime of the transient photonic crystal is determined by the ballistic motion of ions. The robustness of the photonic crystal allows one to manipulate high-intensity laser pulses. The scheme of the crystal is analyzed here by 1D Vlasov simulations. Reflection or transmission of high-power laser pulses are predicted by particle-in-cell simulations. It is shown that a transient plasma photonic crystal may act as a tunable mirror for intense laser pulses. Generalizations to 2D and 3D configurations are possible. PMID:27314721

  11. HIGH POWER OPERATIONS AT THE LOW ENERGY DEMONSTRATION ACCELERATOR (LEDA)

    SciTech Connect

    M. DURAN; V. R. HARRIS

    2001-01-01

    Recently, the Low-Energy Demonstration Accelerator (LEDA) portion of the Accelerator Production of Tritium (APT) project reached its 100-mA, 8-hr continuous wave (CW) beam operation milestone. The LEDA accelerator is a prototype of the low-energy front-end of the linear accelerator (linac) that would have been used in an APT plant. LEDA consists of a 75-keV proton injector, 6.7-MeV, 350-MHz CW radio-frequency quadrupole (RFQ) with associated high-power and low-level RF systems, a short high-energy beam transport (HEBT) and high-power (670-kW CW) beam dump. Details of the LEDA design features will be discussed along with the operational health physics experiences that occurred during the LEDA commissioning phase.

  12. High-Power Ka-Band Window and Resonant Ring

    SciTech Connect

    Jay L. Hirshfield

    2006-11-29

    A stand-alone 200 MW rf test station is needed for carrying out development of accelerator structures and components for a future high-gradient multi-TeV collider, such as CLIC. A high-power rf window is needed to isolate the test station from a structure element under test. This project aimed to develop such a window for use at a frequency in the range 30-35 GHz, and to also develop a high-power resonant ring for testing the window. During Phase I, successful conceptual designs were completed for the window and the resonant ring, and cold tests of each were carried out that confirmed the designs.

  13. Transient Plasma Photonic Crystals for High-Power Lasers

    NASA Astrophysics Data System (ADS)

    Lehmann, G.; Spatschek, K. H.

    2016-06-01

    A new type of transient photonic crystals for high-power lasers is presented. The crystal is produced by counterpropagating laser beams in plasma. Trapped electrons and electrically forced ions generate a strong density grating. The lifetime of the transient photonic crystal is determined by the ballistic motion of ions. The robustness of the photonic crystal allows one to manipulate high-intensity laser pulses. The scheme of the crystal is analyzed here by 1D Vlasov simulations. Reflection or transmission of high-power laser pulses are predicted by particle-in-cell simulations. It is shown that a transient plasma photonic crystal may act as a tunable mirror for intense laser pulses. Generalizations to 2D and 3D configurations are possible.

  14. High-Power Krypton Hall Thruster Technology Being Developed for Nuclear-Powered Applications

    NASA Technical Reports Server (NTRS)

    Jacobson, David T.; Manzella, David H.

    2004-01-01

    The NASA Glenn Research Center has been performing research and development of moderate specific impulse, xenon-fueled, high-power Hall thrusters for potential solar electric propulsion applications. These applications include Mars missions, reusable tugs for low-Earth-orbit to geosynchronous-Earth-orbit transportation, and missions that require transportation to libration points. This research and development effort resulted in the design and fabrication of the NASA-457M Hall thruster that has been tested at input powers up to 95 kW. During project year 2003, NASA established Project Prometheus to develop technology in the areas of nuclear power and propulsion, which are enabling for deep-space science missions. One of the Project-Prometheus-sponsored Nuclear Propulsion Research tasks is to investigate alternate propellants for high-power Hall thruster electric propulsion. The motivation for alternate propellants includes the disadvantageous cost and availability of xenon propellant for extremely large scale, xenon-fueled propulsion systems and the potential system performance benefits of using alternate propellants. The alternate propellant krypton was investigated because of its low cost relative to xenon. Krypton propellant also has potential performance benefits for deep-space missions because the theoretical specific impulse for a given voltage is 20 percent higher than for xenon because of krypton's lower molecular weight. During project year 2003, the performance of the high-power NASA-457M Hall thruster was measured using krypton as the propellant at power levels ranging from 6.4 to 72.5 kW. The thrust produced ranged from 0.3 to 2.5 N at a discharge specific impulse up to 4500 sec.

  15. Innovation on high-power long-pulse gyrotrons

    NASA Astrophysics Data System (ADS)

    Litvak, Alexander; Sakamoto, Keishi; Thumm, Manfred

    2011-12-01

    Progress in the worldwide development of high-power gyrotrons for magnetic confinement fusion plasma applications is described. After technology breakthroughs in research on gyrotron components in the 1990s, significant progress has been achieved in the last decade, in particular, in the field of long-pulse and continuous wave (CW) gyrotrons for a wide range of frequencies. At present, the development of 1 MW-class CW gyrotrons has been very successful; these are applicable for self-ignition experiments on fusion plasmas and their confinement in the tokamak ITER, for long-pulse confinement experiments in the stellarator Wendelstein 7-X (W7-X) and for EC H&CD in the future tokamak JT-60SA. For this progress in the field of high-power long-pulse gyrotrons, innovations such as the realization of high-efficiency stable oscillation in very high order cavity modes, the use of single-stage depressed collectors for energy recovery, highly efficient internal quasi-optical mode converters and synthetic diamond windows have essentially contributed. The total tube efficiencies are around 50% and the purity of the fundamental Gaussian output mode is 97% and higher. In addition, activities for advanced gyrotrons, e.g. a 2 MW gyrotron using a coaxial cavity, multi-frequency 1 MW gyrotrons and power modulation technology, have made progress.

  16. High power 303 GHz gyrotron for CTS in LHD

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Y.; Kasa, J.; Saito, T.; Tatematsu, Y.; Kotera, M.; Kubo, S.; Shimozuma, T.; Tanaka, K.; Nishiura, M.

    2015-10-01

    A high-power pulsed gyrotron is under development for 300 GHz-band collective Thomson scattering (CTS) diagnostics in the Large Helical Device (LHD). High-density plasmas in the LHD require a probe wave with power exceeding 100 kW in the sub-terahertz region to obtain sufficient signal intensity and large scattering angles. At the same time, the frequency bandwidth should be less than several tens of megahertz to protect the CTS receiver using a notch filter against stray radiations. Moreover, duty cycles of ~ 10% are desired for the time domain analysis of the CTS spectrum. At present, a 77 GHz gyrotron for electron cyclotron heating is used as a CTS wave source in the LHD. However, the use of such a low-frequency wave suffers from refraction, cutoff and absorption at the electron cyclotron resonance layer. Additionally, the signal detection is severely affected by background noise from electron cyclotron emission. To resolve those problems, high-power gyrotrons in the 300 GHz range have been developed. In this frequency range, avoiding mode competition is critical to realizing high-power and stable oscillation. A moderately over-moded cavity was investigated to isolate a desired mode from neighbouring modes. After successful tests with a prototype tube, the practical one was constructed with a cavity for TE22,2 operation mode, a triode electron gun forming intense laminar electron beams, and an internal mode convertor. We have experimentally confirmed single mode oscillation of the TE22,2 mode at the frequency of 303.3 GHz. The spectrum peak is sufficiently narrow. The output power of 290 kW has been obtained at the moment.

  17. High-power diode lasers and their direct industrial applications

    NASA Astrophysics Data System (ADS)

    Loosen, Peter; Treusch, Hans-Georg; Haas, C. R.; Gardenier, U.; Weck, Manfred; Sinnhoff, V.; Kasperowski, S.; vor dem Esche, R.

    1995-04-01

    The paper summarizes activities of the two Fraunhofer-Institutes ILT and IPT concerning the development of high-power laser-diode stacks and their direct industrial applications. With microchannel coolers in copper technology and ultra-precision machined micro-optics a stack of 330 - 400 W total power with a maximum intensity of the focused beam of 2 104 W/cm2 has been built and tested in first applications. By further improvements of the lens-fabrication and -alignment technology as well as increase of the number of stacked diodes an output power in the kW-range and intensities up to about 105 W/cm2 shall be achieved in the near future. Applications of such laser sources in surface technology, in the processing of plastics, in laser-assisted machining and in brazing are discussed.

  18. High power Nd:YAG spinning disk laser.

    PubMed

    Ongstad, Andrew P; Guy, Matthew; Chavez, Joeseph R

    2016-01-11

    We report on a high power Nd:YAG spinning disk laser. The eight cm diameter disk generated 200 W CW output with 323 W of absorbed pump in a near diffraction-limited beam. The power conversion efficiency was 64%. The pulsed result, 5 ms pulses at 10 Hz PRF, was nearly identical to the CW result indicating good thermal management. Rotated at 1200-1800 RPM with He impingement cooling the disk temperature increased by only 17 °C reaching a maximum temperature of ~31 °C. The thermal dissipation per unit of output power was 0.61 watt of heat generated per watt of laser output, which is below the typical range of 0.8-1.1 for 808 nm diode pumped Nd:YAG lasers. PMID:26832242

  19. Power/energy use cases for high performance computing.

    SciTech Connect

    Laros, James H.,; Kelly, Suzanne M; Hammond, Steven; Elmore, Ryan; Munch, Kristin

    2013-12-01

    Power and Energy have been identified as a first order challenge for future extreme scale high performance computing (HPC) systems. In practice the breakthroughs will need to be provided by the hardware vendors. But to make the best use of the solutions in an HPC environment, it will likely require periodic tuning by facility operators and software components. This document describes the actions and interactions needed to maximize power resources. It strives to cover the entire operational space in which an HPC system occupies. The descriptions are presented as formal use cases, as documented in the Unified Modeling Language Specification [1]. The document is intended to provide a common understanding to the HPC community of the necessary management and control capabilities. Assuming a common understanding can be achieved, the next step will be to develop a set of Application Programing Interfaces (APIs) to which hardware vendors and software developers could utilize to steer power consumption.

  20. High average power supercontinuum generation in a fluoroindate fiber

    NASA Astrophysics Data System (ADS)

    Swiderski, J.; Théberge, F.; Michalska, M.; Mathieu, P.; Vincent, D.

    2014-01-01

    We report the first demonstration of Watt-level supercontinuum (SC) generation in a step-index fluoroindate (InF3) fiber pumped by a 1.55 μm fiber master-oscillator power amplifier (MOPA) system. The SC is generated in two steps: first ˜1 ns amplified laser diode pulses are broken up into soliton-like sub-pulses leading to initial spectrum extension and then launched into a fluoride fiber to obtain further spectral broadening. The pump MOPA system can operate at a changeable repetition frequency delivering up to 19.2 W of average power at 2 MHz. When the 8-m long InF3 fiber was pumped with 7.54 W at 420 kHz, output average SC power as high as 2.09 W with 27.8% of slope efficiency was recorded. The achieved SC spectrum spread from 1 to 3.05 μm.