Sample records for high precision analyses

  1. High Precision Isotope Analyses Using Multi-Collector SIMS: Applications to Earth and Planetary Science.

    NASA Astrophysics Data System (ADS)

    Kita, N. T.; Ushikubo, T.; Valley, J. W.

    2008-05-01

    The CAMECA IMS-1280 large radius, multicollector ion microprobe at the Wisc-SIMS National Facility is capable of high accuracy and precision for in situ analysis of isotope ratios. With improved hardware stability and software capability, high precision isotope analyses are routinely performed, typically 5 min per spot. We have developed analytical protocols for stable isotope analyses of oxygen, carbon, Mg, Si and Sulfur using multi-collector Faraday Cups (MCFC) and achieved precision of 0.1-0.2 ‰ (1SD) from a typically 10μm spot analyses. A number of isotopically homogeneous mineral standards have been prepared and calibrated in order to certify the accuracy of analyses in the same level. When spatial resolution is critical, spot size is reduced down to sub- μm for δ 18O to obtain better than 0.5‰ (1SD) precision by using electron multiplier (EM) on multi-collection system. Multi-collection EM analysis is also applied at 10 ppm level to Li isotope ratios in zircon with precision better than 2‰ (1SD). A few applications will be presented. (1) Oxygen three isotope analyses of chondrules in ordinary chondrites revealed both mass dependent and mass independent oxygen isotope fractionations among chondrules as well as within individual chondrules. The results give constraints on the process of chondrule formation and origin of isotope reservoirs in the early solar system. (2) High precision 26Al-26Mg (half life of 0.73 Ma) chronology is applied to zoned melilite and anorthite from Ca, Al-rich inclusions (CAI) in Leoville meteorite, and a well-defined internal isochron is obtained. The results indicate the Al- Mg system was remained closed within 40ky of the crystallization of melilite and anorthite in this CAI. (3) Sub- μm spot analyses of δ18O in isotopically zoned zircon from high-grade metamorphism reveals a diffusion profile of ~6‰ over 2μm, indicating slow diffusion of oxygen in zircon. This result also implies that old Archean detrital zircons (> 4Ga) might preserve their primary oxygen isotopic records, which allows us to trace the geological processes of the early earth [1]. Lithium isotope analyses of pre- 4Ga zircon from Jack Hills show high Li abundance and low δ 7Li, indicating existence of highly weathered crustal material as early as 4.3Ga. In conclusion, these new techniques allow us to study small natural variations of stable isotopes at μm-scale that permit exciting and fundamental research where samples are small, precious, or zoned. [1] Page FZ et al. (2007) Am Min 92, 1772-1775.

  2. The use of secondary ion mass spectrometry in forensic analyses of ultra-small samples

    NASA Astrophysics Data System (ADS)

    Cliff, John

    2010-05-01

    It is becoming increasingly important in forensic science to perform chemical and isotopic analyses on very small sample sizes. Moreover, in some instances the signature of interest may be incorporated in a vast background making analyses impossible by bulk methods. Recent advances in instrumentation make secondary ion mass spectrometry (SIMS) a powerful tool to apply to these problems. As an introduction, we present three types of forensic analyses in which SIMS may be useful. The causal organism of anthrax (Bacillus anthracis) chelates Ca and other metals during spore formation. Thus, the spores contain a trace element signature related to the growth medium that produced the organisms. Although other techniques have been shown to be useful in analyzing these signatures, the sample size requirements are generally relatively large. We have shown that time of flight SIMS (TOF-SIMS) combined with multivariate analysis, can clearly separate Bacillus sp. cultures prepared in different growth media using analytical spot sizes containing approximately one nanogram of spores. An important emerging field in forensic analysis is that of provenance of fecal pollution. The strategy of choice for these analyses-developing host-specific nucleic acid probes-has met with considerable difficulty due to lack of specificity of the probes. One potentially fruitful strategy is to combine in situ nucleic acid probing with high precision isotopic analyses. Bulk analyses of human and bovine fecal bacteria, for example, indicate a relative difference in d13C content of about 4 per mil. We have shown that sample sizes of several nanograms can be analyzed with the IMS 1280 with precisions capable of separating two per mil differences in d13C. The NanoSIMS 50 is capable of much better spatial resolution than the IMS 1280, albeit at a cost of analytical precision. Nevertheless we have documented precision capable of separating five per mil differences in d13C using analytical spots containing less than 300 picograms of bacteria. Perhaps the most successful application of SIMS for forensic purposes to date is in the field of nuclear forensics. An example that has been used by laboratories associated with the International Atomic Energy Agency is the examination of environmental samples for enriched uranium particles indicative of clandestine weapons production activities.. The analytical challenge in these types of measurements is to search complex environmental matrices for U-bearing particles which must then be analyzed for 234U, 235U, and 236U content with high precision and accuracy. Older-generation SIMS instruments were hampered by small geometries that made resolution of significant interferences problematic. In addition, automated particle search software was proprietary and difficult to obtain. With the development of new search software, the IMS 1280 is capable of searching a sample in a matter of hours, flagging U-bearing particles for later analyses, and providing a rough 235U content. Particles of interest can be revisited for high precision analyses, and all U-isotopes can be measured simultaneously in multicollector mode, dramatically improving analysis time and internal precision. Further, the large geometry of the instrument allows complete resolution of isobaric interferences that have traditionally limited SIMS analyses of difficult samples. Examples of analyses of micron-sized standard particles indicate that estimates of 235U enrichment can be obtained with an external relative precision of 0.1% and 234U and 236U contents can be obtained with a relative precision of less than 1%. Analyses of 'real' samples show a dramatic improvement in the data quality obtained compared with small-geometry SIMS instruments making SIMS the method of choice for these high-profile samples when accurate, precise, and rapid results are required.

  3. Ion microprobe measurement of strontium isotopes in calcium carbonate with application to salmon otoliths

    USGS Publications Warehouse

    Weber, P.K.; Bacon, C.R.; Hutcheon, I.D.; Ingram, B.L.; Wooden, J.L.

    2005-01-01

    The ion microprobe has the capability to generate high resolution, high precision isotopic measurements, but analysis of the isotopic composition of strontium, as measured by the 87Sr/ 86Sr ratio, has been hindered by isobaric interferences. Here we report the first high precision measurements of 87Sr/ 86Sr by ion microprobe in calcium carbonate samples with moderate Sr concentrations. We use the high mass resolving power (7000 to 9000 M.R.P.) of the SHRIMP-RG ion microprobe in combination with its high transmission to reduce the number of interfering species while maintaining sufficiently high count rates for precise isotopic measurements. The isobaric interferences are characterized by peak modeling and repeated analyses of standards. We demonstrate that by sample-standard bracketing, 87Sr/86Sr ratios can be measured in inorganic and biogenic carbonates with Sr concentrations between 400 and 1500 ppm with ???2??? external precision (2??) for a single analysis, and subpermil external precision with repeated analyses. Explicit correction for isobaric interferences (peak-stripping) is found to be less accurate and precise than sample-standard bracketing. Spatial resolution is ???25 ??m laterally and 2 ??m deep for a single analysis, consuming on the order of 2 ng of material. The method is tested on otoliths from salmon to demonstrate its accuracy and utility. In these growth-banded aragonitic structures, one-week temporal resolution can be achieved. The analytical method should be applicable to other calcium carbonate samples with similar Sr concentrations. Copyright ?? 2005 Elsevier Ltd.

  4. High Precision Oxygen Three Isotope Analysis of Wild-2 Particles and Anhydrous Chondritic Interplanetary Dust Particles

    NASA Technical Reports Server (NTRS)

    Nakashima, D.; Ushikubo, T.; Zolensky, Michael E.; Weisberg, M. K.; Joswiak, D. J.; Brownlee, D. E.; Matrajt, G.; Kita, N. T.

    2011-01-01

    One of the most important discoveries from comet Wild-2 samples was observation of crystalline silicate particles that resemble chondrules and CAIs in carbonaceous chondrites. Previous oxygen isotope analyses of crystalline silicate terminal particles showed heterogeneous oxygen isotope ratios with delta(sup 18)O to approx. delta(sup 17)O down to -50% in the CAI-like particle Inti, a relict olivine grain in Gozen-sama, and an olivine particle. However, many Wild-2 particles as well as ferromagnesian silicates in anhydrous interplanetary dust particles (IDPs) showed Delta(sup 17)O values that cluster around -2%. In carbonaceous chondrites, chondrules seem to show two major isotope reservoirs with Delta(sup 17)O values at -5% and -2%. It was suggested that the Delta(sup 17)O = -2% is the common oxygen isotope reservoir for carbonaceous chondrite chondrules and cometary dust, from the outer asteroid belt to the Kuiper belt region. However, a larger dataset with high precision isotope analyses (+/-1-2%) is still needed to resolve the similarities or distinctions among Wild-2 particles, IDPs and chondrules in meteorites. We have made signifi-cant efforts to establish routine analyses of small particles (< or =10micronsm) at 1-2% precision using IMS-1280 at WiscSIMS laboratory. Here we report new results of high precision oxygen isotope analyses of Wild-2 particles and anhydrous chondritic IDPs, and discuss the relationship between the cometary dust and carbonaceous chondrite chondrules.

  5. Spatial distribution, sampling precision and survey design optimisation with non-normal variables: The case of anchovy (Engraulis encrasicolus) recruitment in Spanish Mediterranean waters

    NASA Astrophysics Data System (ADS)

    Tugores, M. Pilar; Iglesias, Magdalena; Oñate, Dolores; Miquel, Joan

    2016-02-01

    In the Mediterranean Sea, the European anchovy (Engraulis encrasicolus) displays a key role in ecological and economical terms. Ensuring stock sustainability requires the provision of crucial information, such as species spatial distribution or unbiased abundance and precision estimates, so that management strategies can be defined (e.g. fishing quotas, temporal closure areas or marine protected areas MPA). Furthermore, the estimation of the precision of global abundance at different sampling intensities can be used for survey design optimisation. Geostatistics provide a priori unbiased estimations of the spatial structure, global abundance and precision for autocorrelated data. However, their application to non-Gaussian data introduces difficulties in the analysis in conjunction with low robustness or unbiasedness. The present study applied intrinsic geostatistics in two dimensions in order to (i) analyse the spatial distribution of anchovy in Spanish Western Mediterranean waters during the species' recruitment season, (ii) produce distribution maps, (iii) estimate global abundance and its precision, (iv) analyse the effect of changing the sampling intensity on the precision of global abundance estimates and, (v) evaluate the effects of several methodological options on the robustness of all the analysed parameters. The results suggested that while the spatial structure was usually non-robust to the tested methodological options when working with the original dataset, it became more robust for the transformed datasets (especially for the log-backtransformed dataset). The global abundance was always highly robust and the global precision was highly or moderately robust to most of the methodological options, except for data transformation.

  6. Study on high-precision measurement of long radius of curvature

    NASA Astrophysics Data System (ADS)

    Wu, Dongcheng; Peng, Shijun; Gao, Songtao

    2016-09-01

    It is hard to get high-precision measurement of the radius of curvature (ROC), because of many factors that affect the measurement accuracy. For the measurement of long radius of curvature, some factors take more important position than others'. So, at first this paper makes some research about which factor is related to the long measurement distance, and also analyse the uncertain of the measurement accuracy. At second this article also study the influence about the support status and the adjust error about the cat's eye and confocal position. At last, a 1055micrometer radius of curvature convex is measured in high-precision laboratory. Experimental results show that the proper steady support (three-point support) can guarantee the high-precision measurement of radius of curvature. Through calibrating the gain of cat's eye and confocal position, is useful to ensure the precise position in order to increase the measurement accuracy. After finish all the above process, the high-precision long ROC measurement is realized.

  7. Value of Sample Return and High Precision Analyses: Need for A Resource of Compelling Stories, Metaphors and Examples for Public Speakers

    NASA Technical Reports Server (NTRS)

    Allton, J. H.

    2017-01-01

    There is widespread agreement among planetary scientists that much of what we know about the workings of the solar system comes from accurate, high precision measurements on returned samples. Precision is a function of the number of atoms the instrumentation is able to count. Accuracy depends on the calibration or standardization technique. For Genesis, the solar wind sample return mission, acquiring enough atoms to ensure precise SW measurements and then accurately quantifying those measurements were steps known to be non-trivial pre-flight. The difficulty of precise and accurate measurements on returned samples, and why they cannot be made remotely, is not communicated well to the public. In part, this is be-cause "high precision" is abstract and error bars are not very exciting topics. This paper explores ideas for collecting and compiling compelling metaphors and colorful examples as a resource for planetary science public speakers.

  8. Reconciling evidence-based medicine and precision medicine in the era of big data: challenges and opportunities.

    PubMed

    Beckmann, Jacques S; Lew, Daniel

    2016-12-19

    This era of groundbreaking scientific developments in high-resolution, high-throughput technologies is allowing the cost-effective collection and analysis of huge, disparate datasets on individual health. Proper data mining and translation of the vast datasets into clinically actionable knowledge will require the application of clinical bioinformatics. These developments have triggered multiple national initiatives in precision medicine-a data-driven approach centering on the individual. However, clinical implementation of precision medicine poses numerous challenges. Foremost, precision medicine needs to be contrasted with the powerful and widely used practice of evidence-based medicine, which is informed by meta-analyses or group-centered studies from which mean recommendations are derived. This "one size fits all" approach can provide inadequate solutions for outliers. Such outliers, which are far from an oddity as all of us fall into this category for some traits, can be better managed using precision medicine. Here, we argue that it is necessary and possible to bridge between precision medicine and evidence-based medicine. This will require worldwide and responsible data sharing, as well as regularly updated training programs. We also discuss the challenges and opportunities for achieving clinical utility in precision medicine. We project that, through collection, analyses and sharing of standardized medically relevant data globally, evidence-based precision medicine will shift progressively from therapy to prevention, thus leading eventually to improved, clinician-to-patient communication, citizen-centered healthcare and sustained well-being.

  9. Strategy for Realizing High-Precision VUV Spectro-Polarimeter

    NASA Astrophysics Data System (ADS)

    Ishikawa, R.; Narukage, N.; Kubo, M.; Ishikawa, S.; Kano, R.; Tsuneta, S.

    2014-12-01

    Spectro-polarimetric observations in the vacuum ultraviolet (VUV) range are currently the only means to measure magnetic fields in the upper chromosphere and transition region of the solar atmosphere. The Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP) aims to measure linear polarization at the hydrogen Lyman- α line (121.6 nm). This measurement requires a polarization sensitivity better than 0.1 %, which is unprecedented in the VUV range. We here present a strategy with which to realize such high-precision spectro-polarimetry. This involves the optimization of instrument design, testing of optical components, extensive analyses of polarization errors, polarization calibration of the instrument, and calibration with onboard data. We expect that this strategy will aid the development of other advanced high-precision polarimeters in the UV as well as in other wavelength ranges.

  10. Intercomparison of CO 2 measurements

    NASA Astrophysics Data System (ADS)

    Poisson, A.; Culkin, F.; Ridout, P.

    1990-10-01

    Seawater samples, of four different salinities, were analysed for total alkalinity, total CO 2, pH and pCO 2 by up to 12 laboratories. The results showthat although most laboratories are capable of high precision in these determinations, there is an unacceptably high disagreement between their analyses of the same samples. For global programmes involving studies of the CO 2 system in seawater, it is strongly recommended that standard reference materials be made widely available.

  11. Spectrum syntheses of high-resolution integrated light spectra of Galactic globular clusters

    NASA Astrophysics Data System (ADS)

    Sakari, Charli M.; Shetrone, Matthew; Venn, Kim; McWilliam, Andrew; Dotter, Aaron

    2013-09-01

    Spectrum syntheses for three elements (Mg, Na and Eu) in high-resolution integrated light spectra of the Galactic globular clusters 47 Tuc, M3, M13, NGC 7006 and M15 are presented, along with calibration syntheses of the solar and Arcturus spectra. Iron abundances in the target clusters are also derived from integrated light equivalent width analyses. Line profiles in the spectra of these five globular clusters are well fitted after careful consideration of the atomic and molecular spectral features, providing levels of precision that are better than equivalent width analyses of the same integrated light spectra, and that are comparable to the precision in individual stellar analyses. The integrated light abundances from the 5528 and 5711 Å Mg I lines, the 6154 and 6160 Å Na I lines, and the 6645 Å Eu II line fall within the observed ranges from individual stars; however, these integrated light abundances do not always agree with the average literature abundances. Tests with the second parameter clusters M3, M13 and NGC 7006 show that assuming an incorrect horizontal branch morphology is likely to have only a small ( ≲ 0.06 dex) effect on these Mg, Na and Eu abundances. These tests therefore show that integrated light spectrum syntheses can be applied to unresolved globular clusters over a wide range of metallicities and horizontal branch morphologies. Such high precision in integrated light spectrum syntheses is valuable for interpreting the chemical abundances of globular cluster systems around other galaxies.

  12. 40 CFR 260.11 - References.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Hydrocarbon Fuels by Bomb Calorimeter (High-Precision Method),” IBR approved for §§ 264.1033, 265.1033. (5... Methods for Preparing Refuse-Derived Fuel (RDF) Samples for Analyses of Metals,” Test Method C—Bomb, Acid...

  13. Trace element analysis by EPMA in geosciences: detection limit, precision and accuracy

    NASA Astrophysics Data System (ADS)

    Batanova, V. G.; Sobolev, A. V.; Magnin, V.

    2018-01-01

    Use of the electron probe microanalyser (EPMA) for trace element analysis has increased over the last decade, mainly because of improved stability of spectrometers and the electron column when operated at high probe current; development of new large-area crystal monochromators and ultra-high count rate spectrometers; full integration of energy-dispersive / wavelength-dispersive X-ray spectrometry (EDS/WDS) signals; and the development of powerful software packages. For phases that are stable under a dense electron beam, the detection limit and precision can be decreased to the ppm level by using high acceleration voltage and beam current combined with long counting time. Data on 10 elements (Na, Al, P, Ca, Ti, Cr, Mn, Co, Ni, Zn) in olivine obtained on a JEOL JXA-8230 microprobe with tungsten filament show that the detection limit decreases proportionally to the square root of counting time and probe current. For all elements equal or heavier than phosphorus (Z = 15), the detection limit decreases with increasing accelerating voltage. The analytical precision for minor and trace elements analysed in olivine at 25 kV accelerating voltage and 900 nA beam current is 4 - 18 ppm (2 standard deviations of repeated measurements of the olivine reference sample) and is similar to the detection limit of corresponding elements. To analyse trace elements accurately requires careful estimation of background, and consideration of sample damage under the beam and secondary fluorescence from phase boundaries. The development and use of matrix reference samples with well-characterised trace elements of interest is important for monitoring and improving of the accuracy. An evaluation of the accuracy of trace element analyses in olivine has been made by comparing EPMA data for new reference samples with data obtained by different in-situ and bulk analytical methods in six different laboratories worldwide. For all elements, the measured concentrations in the olivine reference sample were found to be identical (within internal precision) to reference values, suggesting that achieved precision and accuracy are similar. The spatial resolution of EPMA in a silicate matrix, even at very extreme conditions (accelerating voltage 25 kV), does not exceed 7 - 8 μm and thus is still better than laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) or secondary ion mass spectrometry (SIMS) of similar precision. These make the electron microprobe an indispensable method with applications in experimental petrology, geochemistry and cosmochemistry.

  14. Si Isotopes in Enstatite Chondrites: Implications to Accretion and Differentiation Event of the Earth

    NASA Astrophysics Data System (ADS)

    Sikdar, J.; Rai, V. K.

    2018-05-01

    The abstract summarizes the recent results on high precision Si isotope analyses in various micro milled components of Enstatite chondrites with implications towards the accretion and primary differentiation event of the Earth.

  15. Mineral element analyses of switchgrass biomass: comparison of the accuracy and precision of laboratories

    USDA-ARS?s Scientific Manuscript database

    Mineral concentration of plant biomass can affect its use in thermal conversion to energy. The objective of this study was to compare the precision and accuracy of university and private laboratories that conduct mineral analyses of plant biomass on a fee basis. Accuracy and precision of the laborat...

  16. Thermoresponsive release of viable microfiltrated Circulating Tumor Cells (CTCs) for precision medicine applications

    PubMed Central

    Ao, Zheng; Parasido, Erika; Rawal, Siddarth; Williams, Anthony; Schlegel, Richard; Liu, Stephen; Albanese, Chris; Cote, Richard J.; Agarwal, Ashutosh; Datar, Ram H.

    2015-01-01

    Stimulus responsive release of Circulating Tumor Cells (CTCs), with high recovery rates from their capture platform, is highly desirable for off-chip analyses. Here, we present a temperature responsive polymer coating method to achieve both release as well as culture of viable CTCs captured from patient blood samples. PMID:26426331

  17. Selected isotope ratio measurements of light metallic elements (Li, Mg, Ca, and Cu) by multiple collector ICP-MS

    PubMed Central

    Platzner, Thomas I.; Segal, Irina

    2007-01-01

    The unique capabilities of multiple collector inductively coupled mass spectrometry (MC-ICP-MS) for high precision isotope ratio measurements in light elements as Li, Mg, Ca, and Cu are reviewed in this paper. These elements have been intensively studied at the Geological Survey of Israel (GSI) and other laboratories over the past few years, and the methods used to obtain high precision isotope analyses are discussed in detail. The scientific study of isotopic fractionation of these elements is significant for achieving a better understanding of geochemical and biochemical processes in nature and the environment. PMID:17962922

  18. Spectrum radial velocity analyser (SERVAL). High-precision radial velocities and two alternative spectral indicators

    NASA Astrophysics Data System (ADS)

    Zechmeister, M.; Reiners, A.; Amado, P. J.; Azzaro, M.; Bauer, F. F.; Béjar, V. J. S.; Caballero, J. A.; Guenther, E. W.; Hagen, H.-J.; Jeffers, S. V.; Kaminski, A.; Kürster, M.; Launhardt, R.; Montes, D.; Morales, J. C.; Quirrenbach, A.; Reffert, S.; Ribas, I.; Seifert, W.; Tal-Or, L.; Wolthoff, V.

    2018-01-01

    Context. The CARMENES survey is a high-precision radial velocity (RV) programme that aims to detect Earth-like planets orbiting low-mass stars. Aims: We develop least-squares fitting algorithms to derive the RVs and additional spectral diagnostics implemented in the SpEctrum Radial Velocity AnaLyser (SERVAL), a publicly available python code. Methods: We measured the RVs using high signal-to-noise templates created by coadding all available spectra of each star. We define the chromatic index as the RV gradient as a function of wavelength with the RVs measured in the echelle orders. Additionally, we computed the differential line width by correlating the fit residuals with the second derivative of the template to track variations in the stellar line width. Results: Using HARPS data, our SERVAL code achieves a RV precision at the level of 1 m/s. Applying the chromatic index to CARMENES data of the active star YZ CMi, we identify apparent RV variations induced by stellar activity. The differential line width is found to be an alternative indicator to the commonly used full width half maximum. Conclusions: We find that at the red optical wavelengths (700-900 nm) obtained by the visual channel of CARMENES, the chromatic index is an excellent tool to investigate stellar active regions and to identify and perhaps even correct for activity-induced RV variations.

  19. Precision Health Economics and Outcomes Research to Support Precision Medicine: Big Data Meets Patient Heterogeneity on the Road to Value.

    PubMed

    Chen, Yixi; Guzauskas, Gregory F; Gu, Chengming; Wang, Bruce C M; Furnback, Wesley E; Xie, Guotong; Dong, Peng; Garrison, Louis P

    2016-11-02

    The "big data" era represents an exciting opportunity to utilize powerful new sources of information to reduce clinical and health economic uncertainty on an individual patient level. In turn, health economic outcomes research (HEOR) practices will need to evolve to accommodate individual patient-level HEOR analyses. We propose the concept of "precision HEOR", which utilizes a combination of costs and outcomes derived from big data to inform healthcare decision-making that is tailored to highly specific patient clusters or individuals. To explore this concept, we discuss the current and future roles of HEOR in health sector decision-making, big data and predictive analytics, and several key HEOR contexts in which big data and predictive analytics might transform traditional HEOR into precision HEOR. The guidance document addresses issues related to the transition from traditional to precision HEOR practices, the evaluation of patient similarity analysis and its appropriateness for precision HEOR analysis, and future challenges to precision HEOR adoption. Precision HEOR should make precision medicine more realizable by aiding and adapting healthcare resource allocation. The combined hopes for precision medicine and precision HEOR are that individual patients receive the best possible medical care while overall healthcare costs remain manageable or become more cost-efficient.

  20. Precision Health Economics and Outcomes Research to Support Precision Medicine: Big Data Meets Patient Heterogeneity on the Road to Value

    PubMed Central

    Chen, Yixi; Guzauskas, Gregory F.; Gu, Chengming; Wang, Bruce C. M.; Furnback, Wesley E.; Xie, Guotong; Dong, Peng; Garrison, Louis P.

    2016-01-01

    The “big data” era represents an exciting opportunity to utilize powerful new sources of information to reduce clinical and health economic uncertainty on an individual patient level. In turn, health economic outcomes research (HEOR) practices will need to evolve to accommodate individual patient–level HEOR analyses. We propose the concept of “precision HEOR”, which utilizes a combination of costs and outcomes derived from big data to inform healthcare decision-making that is tailored to highly specific patient clusters or individuals. To explore this concept, we discuss the current and future roles of HEOR in health sector decision-making, big data and predictive analytics, and several key HEOR contexts in which big data and predictive analytics might transform traditional HEOR into precision HEOR. The guidance document addresses issues related to the transition from traditional to precision HEOR practices, the evaluation of patient similarity analysis and its appropriateness for precision HEOR analysis, and future challenges to precision HEOR adoption. Precision HEOR should make precision medicine more realizable by aiding and adapting healthcare resource allocation. The combined hopes for precision medicine and precision HEOR are that individual patients receive the best possible medical care while overall healthcare costs remain manageable or become more cost-efficient. PMID:27827859

  1. Cognitive and Neural Bases of Skilled Performance.

    DTIC Science & Technology

    1987-10-04

    advantage is that this method is not computationally demanding, and model -specific analyses such as high -precision source localization with realistic...and a two- < " high -threshold model satisfy theoretical and pragmatic independence. Discrimination and bias measures from these two models comparing...recognition memory of patients with dementing diseases, amnesics, and normal controls. We found the two- high -threshold model to be more sensitive Lloyd

  2. Performance of Stratified and Subgrouped Disproportionality Analyses in Spontaneous Databases.

    PubMed

    Seabroke, Suzie; Candore, Gianmario; Juhlin, Kristina; Quarcoo, Naashika; Wisniewski, Antoni; Arani, Ramin; Painter, Jeffery; Tregunno, Philip; Norén, G Niklas; Slattery, Jim

    2016-04-01

    Disproportionality analyses are used in many organisations to identify adverse drug reactions (ADRs) from spontaneous report data. Reporting patterns vary over time, with patient demographics, and between different geographical regions, and therefore subgroup analyses or adjustment by stratification may be beneficial. The objective of this study was to evaluate the performance of subgroup and stratified disproportionality analyses for a number of key covariates within spontaneous report databases of differing sizes and characteristics. Using a reference set of established ADRs, signal detection performance (sensitivity and precision) was compared for stratified, subgroup and crude (unadjusted) analyses within five spontaneous report databases (two company, one national and two international databases). Analyses were repeated for a range of covariates: age, sex, country/region of origin, calendar time period, event seriousness, vaccine/non-vaccine, reporter qualification and report source. Subgroup analyses consistently performed better than stratified analyses in all databases. Subgroup analyses also showed benefits in both sensitivity and precision over crude analyses for the larger international databases, whilst for the smaller databases a gain in precision tended to result in some loss of sensitivity. Additionally, stratified analyses did not increase sensitivity or precision beyond that associated with analytical artefacts of the analysis. The most promising subgroup covariates were age and region/country of origin, although this varied between databases. Subgroup analyses perform better than stratified analyses and should be considered over the latter in routine first-pass signal detection. Subgroup analyses are also clearly beneficial over crude analyses for larger databases, but further validation is required for smaller databases.

  3. Time to Go Beyond Triple-Gauge-Boson-Coupling Interpretation of W Pair Production.

    PubMed

    Zhang, Zhengkang

    2017-01-06

    W boson pair production processes at e^{+}e^{-} and pp colliders have been conventionally interpreted as measurements of WWZ and WWγ triple gauge couplings (TGCs). Such an interpretation is based on the assumption that new physics effects other than anomalous TGCs are negligible. While this "TGC dominance assumption" was well motivated and useful at LEP2 thanks to precision electroweak constraints, it is already challenged by recent LHC data. In fact, contributions from anomalous Z boson couplings that are allowed by electroweak precision data but neglected in LHC analyses, which are enhanced at high energy, can even dominate over those from the anomalous TGCs considered. This limits the generality of the anomalous TGC constraints derived in current analyses and necessitates extension of the analysis framework and a change of physics interpretation. The issue will persist as we continue to explore the high-energy frontier. We clarify and analyze the situation in the effective field theory framework, which provides a useful organizing principle for understanding standard model deviations in the high-energy regime.

  4. Can we use high precision metal isotope analysis to improve our understanding of cancer?

    PubMed

    Larner, Fiona

    2016-01-01

    High precision natural isotope analyses are widely used in geosciences to trace elemental transport pathways. The use of this analytical tool is increasing in nutritional and disease-related research. In recent months, a number of groups have shown the potential this technique has in providing new observations for various cancers when applied to trace metal metabolism. The deconvolution of isotopic signatures, however, relies on mathematical models and geochemical data, which are not representative of the system under investigation. In addition to relevant biochemical studies of protein-metal isotopic interactions, technological development both in terms of sample throughput and detection sensitivity of these elements is now needed to translate this novel approach into a mainstream analytical tool. Following this, essential background healthy population studies must be performed, alongside observational, cross-sectional disease-based studies. Only then can the sensitivity and specificity of isotopic analyses be tested alongside currently employed methods, and important questions such as the influence of cancer heterogeneity and disease stage on isotopic signatures be addressed.

  5. High-Precision Isotope Ratio Measurements of Sub-Picogram Actinide Samples

    NASA Astrophysics Data System (ADS)

    Pollington, A. D.; Kinman, W.

    2016-12-01

    One of the most exciting trends in analytical geochemistry over the past decade is the push towards smaller and smaller sample sizes while simultaneously achieving high precision isotope ratio measurements. This trend has been driven by advances in clean chemistry protocols, and by significant breakthroughs in mass spectrometer ionization efficiency and detector quality (stability and noise for low signals). In this presentation I will focus on new techniques currently being developed at Los Alamos National Laboratory for the characterization of ultra-small samples (pg, fg, ag), with particular focus on actinide measurements by MC-ICP-MS. Analyses of U, Pu, Th and Am are routinely carried out in our facility using multi-ion counting techniques. I will describe some of the challenges associated with using exclusively ion counting methods (e.g., stability, detector cross calibration, etc.), and how we work to mitigate them. While the focus of much of the work currently being carried out is in the broad field of nuclear forensics and safeguards, the techniques that are being developed are directly applicable to many geologic questions that require analyses of small samples of U and Th, for example. In addition to the description of the technique development, I will present case studies demonstrating the precision and accuracy of the method as applied to real-world samples.

  6. Mass spectrometric measurements of the isotopic anatomies of molecules (Invited)

    NASA Astrophysics Data System (ADS)

    Eiler, J. M.; Krumwiede, D.; Schlueter, H.

    2013-12-01

    Site-specific and multiple isotopic substitutions in molecular structures potentially provide an extraordinarily rich set of constraints on their sources, conditions of formation, reaction and transport histories, and perhaps other issues. Examples include carbonate ';clumped isotope' thermometry, clumped isotope measurements of CO2, O2, and, recently, methane, ethane and N2O; site-specific 15N measurements in N2O and 13C and D analyses of fatty acids, sugars, cellulose, food products, and, recently, n-alkanes. Extension of the principles behind these tools to the very large number of isotopologues of complex molecules could potentially lead to new uses of isotope chemistry, similar to proteomics, metabolomics and genomics in their complexity and depth of detail (';isotomics'?). Several technologies are potentially useful for this field, including ';SNIF-NMR', gas source mass spectrometry and IR absorption spectroscopy. However, all well established methods have restrictive limits in the sizes of samples, types of analyzes, and the sorts of isotopologues that can be measured with useful precision. We will present an overview of several emerging instruments and techniques of high-resolution gas source mass spectrometry that may enable study of a large proportion of the isotopologues of a wide range of volatile and semi-volatile compounds, including many organics, with precisions and sample sizes suitable for a range of applications. A variety of isotopologues can be measured by combining information from the Thermo 253 Ultra (a new high resolution, multi-collector gas source mass spectrometer) and the Thermo DFS (a very high resolution single collector, but used here on a novel mode to achieve ~per mil precision ratio measurements), sometimes supplemented by conventional bulk isotopic measurements. It is possible to design methods in which no one of these sources of data meaningfully constrain abundances of specific isotopologues, but their combination fully and precisely constrains a large number. We have assembled a suite of instruments (including the prototype of the Ultra, and a modified version of the DFS that is capable of dual inlet analyses) that make it logistically straightforward to perform such multi-instrument analyses. Examples will be presented documenting the accuracy of these techniques for systems that are independently well known (e.g., isotopologues of methane), and the precision and internal consistency of results for larger, more complex molecules (e.g., a suite of singly and doubly substituted isotopologues of hexane and other moderate-molecular-weight organics).

  7. 40 CFR Appendix D to Part 136 - Precision and Recovery Statements for Methods for Measuring Metals

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Accuracy Section with the following: Precision and Accuracy An interlaboratory study on metal analyses by... details are found in “USEPA Method Study 7, Analyses for Trace Methods in water by Atomic Absorption... study on metal analyses by this method was conducted by the Quality Assurance Branch (QAB) of the...

  8. Biofilm development of an opportunistic model bacterium analysed at high spatiotemporal resolution in the framework of a precise flow cell

    PubMed Central

    Lim, Chun Ping; Mai, Phuong Nguyen Quoc; Roizman Sade, Dan; Lam, Yee Cheong; Cohen, Yehuda

    2016-01-01

    Life of bacteria is governed by the physical dimensions of life in microscales, which is dominated by fast diffusion and flow at low Reynolds numbers. Microbial biofilms are structurally and functionally heterogeneous and their development is suggested to be interactively related to their microenvironments. In this study, we were guided by the challenging requirements of precise tools and engineered procedures to achieve reproducible experiments at high spatial and temporal resolutions. Here, we developed a robust precise engineering approach allowing for the quantification of real-time, high-content imaging of biofilm behaviour under well-controlled flow conditions. Through the merging of engineering and microbial ecology, we present a rigorous methodology to quantify biofilm development at resolutions of single micrometre and single minute, using a newly developed flow cell. We designed and fabricated a high-precision flow cell to create defined and reproducible flow conditions. We applied high-content confocal laser scanning microscopy and developed image quantification using a model biofilm of a defined opportunistic strain, Pseudomonas putida OUS82. We observed complex patterns in the early events of biofilm formation, which were followed by total dispersal. These patterns were closely related to the flow conditions. These biofilm behavioural phenomena were found to be highly reproducible, despite the heterogeneous nature of biofilm. PMID:28721252

  9. Development of a 0.5m clear aperture Cassegrain type collimator telescope

    NASA Astrophysics Data System (ADS)

    Ekinci, Mustafa; Selimoǧlu, Özgür

    2016-07-01

    Collimator is an optical instrument used to evaluate performance of high precision instruments, especially space-born high resolution telescopes. Optical quality of the collimator telescope needs to be better than the instrument to be measured. This requirement leads collimator telescope to be a very precise instrument with high quality mirrors and a stable structure to keep it operational under specified conditions. In order to achieve precision requirements and to ensure repeatability of the mounts for polishing and metrology, opto-mechanical principles are applied to mirror mounts. Finite Element Method is utilized to simulate gravity effects, integration errors and temperature variations. Finite element analyses results of deformed optical surfaces are imported to optical domain by using Zernike polynomials to evaluate the design against specified WFE requirements. Both mirrors are aspheric and made from Zerodur for its stability and near zero CTE, M1 is further light-weighted. Optical quality measurements of the mirrors are achieved by using custom made CGHs on an interferometric test setup. Spider of the Cassegrain collimator telescope has a flexural adjustment mechanism driven by precise micrometers to overcome tilt errors originating from finite stiffness of the structure and integration errors. Collimator telescope is assembled and alignment methods are proposed.

  10. High-Precision In Situ 87Sr/86Sr Analyses through Microsampling on Solid Samples: Applications to Earth and Life Sciences

    PubMed Central

    Di Salvo, Sara; Casalini, Martina; Marchionni, Sara; Adani, Teresa; Ulivi, Maurizio; Tommasini, Simone; Avanzinelli, Riccardo; Mazza, Paul P. A.; Francalanci, Lorella

    2018-01-01

    An analytical protocol for high-precision, in situ microscale isotopic investigations is presented here, which combines the use of a high-performing mechanical microsampling device and high-precision TIMS measurements on micro-Sr samples, allowing for excellent results both in accuracy and precision. The present paper is a detailed methodological description of the whole analytical procedure from sampling to elemental purification and Sr-isotope measurements. The method offers the potential to attain isotope data at the microscale on a wide range of solid materials with the use of minimally invasive sampling. In addition, we present three significant case studies for geological and life sciences, as examples of the various applications of microscale 87Sr/86Sr isotope ratios, concerning (i) the pre-eruptive mechanisms triggering recent eruptions at Nisyros volcano (Greece), (ii) the dynamics involved with the initial magma ascent during Eyjafjallajökull volcano's (Iceland) 2010 eruption, which are usually related to the precursory signals of the eruption, and (iii) the environmental context of a MIS 3 cave bear, Ursus spelaeus. The studied cases show the robustness of the methods, which can be also be applied in other areas, such as cultural heritage, archaeology, petrology, and forensic sciences. PMID:29850369

  11. Investigation of Space Interferometer Control Using Imaging Sensor Output Feedback

    NASA Technical Reports Server (NTRS)

    Leitner, Jesse A.; Cheng, Victor H. L.

    2003-01-01

    Numerous space interferometry missions are planned for the next decade to verify different enabling technologies towards very-long-baseline interferometry to achieve high-resolution imaging and high-precision measurements. These objectives will require coordinated formations of spacecraft separately carrying optical elements comprising the interferometer. High-precision sensing and control of the spacecraft and the interferometer-component payloads are necessary to deliver sub-wavelength accuracy to achieve the scientific objectives. For these missions, the primary scientific product of interferometer measurements may be the only source of data available at the precision required to maintain the spacecraft and interferometer-component formation. A concept is studied for detecting the interferometer's optical configuration errors based on information extracted from the interferometer sensor output. It enables precision control of the optical components, and, in cases of space interferometers requiring formation flight of spacecraft that comprise the elements of a distributed instrument, it enables the control of the formation-flying vehicles because independent navigation or ranging sensors cannot deliver the high-precision metrology over the entire required geometry. Since the concept can act on the quality of the interferometer output directly, it can detect errors outside the capability of traditional metrology instruments, and provide the means needed to augment the traditional instrumentation to enable enhanced performance. Specific analyses performed in this study include the application of signal-processing and image-processing techniques to solve the problems of interferometer aperture baseline control, interferometer pointing, and orientation of multiple interferometer aperture pairs.

  12. Strategies for In situ and Sample Return Analyses

    NASA Astrophysics Data System (ADS)

    Papanastassiou, D. A.

    2006-12-01

    There is general agreement that planetary exploration proceeds from orbital reconnaissance of a planet, to surface and near-surface in situ exploration, to sample return missions, which bring back samples for investigations in terrestrial laboratories, using the panoply of state-of-the-art analytical techniques. The applicable techniques may depend on the nature of the returned material and complementary and multi- disciplinary techniques can be used to best advantage. High precision techniques also serve to provide the "ground truth" and calibrate past and future orbital and in situ measurements on a planet. It is also recognized that returned samples may continue to be analyzed by novel techniques as the techniques become developed, in part to address specific characteristics of returned samples. There are geophysical measurements such as those of the moment of inertia of a planet, seismic activity, and surface morphology that depend on orbital and in-situ science. Other characteristics, such as isotopic ages and isotopic compositions (e.g., initial Sr and Nd) as indicators of planetary mantle or crust evolution and sample provenance require returned samples. In situ analyses may be useful for preliminary characterization and for optimization of sample selection for sample return. In situ analyses by Surveyor on the Moon helped identify the major element chemistry of lunar samples and the need for high precision mass spectrometry (e. g., for Rb-Sr ages, based on extremely low alkali contents). The discussion of in-situ investigations vs. investigations on returned samples must be directly related to available instrumentation and to instrumentation that can be developed in the foreseeable future. The discussion of choices is not a philosophical but instead a very practical issue: what precision is required for key investigations and what is the instrumentation that meets or exceeds the required precision. This must be applied to potential in situ instruments and to laboratory instruments. Age determinations and use of isotopes for deciphering planetary evolution are viewed as off-limits for in-situ determinations, as they require: a) typically high precision mass spectrometry (at 0.01% and below); b) the determination of parent-daughter element ratios at least at the percent level; c) the measurement of coexisting minerals (for internal isochron determinations); d) low contamination (e. g., for U-Pb and Pb-Pb); and e) removal of adhering phases and contaminants, not related to the samples to be analyzed. Total K-Ar age determinations are subject to fewer requirements and may be feasible, in situ, but in the absence of neutron activation, as required for 39Ar-40Ar, the expected precision is at the level of ~20%, with trapped Ar in the samples introducing further uncertainty. Precision of 20% for K-Ar may suffice to address some key cratering rate uncertainties on Mars, especially as applicable to the Middle Amazonian(1). For in situ, the key issues, which must be addressed for all measurements are: what precision is required and are there instruments available, at the required precision levels. These issues must be addressed many years before a mission gets defined. Low precision instruments on several in situ missions that do not address key scientific questions may in fact be more expensive, in their sum, than a sample return mission. In summary, all missions should undergo similar intense scrutiny with regard to desired science and feasibility, based on available instrumentation (with demonstrated and known capabilities) and cost. 1. P. T. Doran et al. (2004) Earth Sci. Rev. 67, 313-337.

  13. A Reassessment of the Precision of Carbonate Clumped Isotope Measurements: Implications for Calibrations and Paleoclimate Reconstructions

    NASA Astrophysics Data System (ADS)

    Fernandez, Alvaro; Müller, Inigo A.; Rodríguez-Sanz, Laura; van Dijk, Joep; Looser, Nathan; Bernasconi, Stefano M.

    2017-12-01

    Carbonate clumped isotopes offer a potentially transformational tool to interpret Earth's history, but the proxy is still limited by poor interlaboratory reproducibility. Here, we focus on the uncertainties that result from the analysis of only a few replicate measurements to understand the extent to which unconstrained errors affect calibration relationships and paleoclimate reconstructions. We find that highly precise data can be routinely obtained with multiple replicate analyses, but this is not always done in many laboratories. For instance, using published estimates of external reproducibilities we find that typical clumped isotope measurements (three replicate analyses) have margins of error at the 95% confidence level (CL) that are too large for many applications. These errors, however, can be systematically reduced with more replicate measurements. Second, using a Monte Carlo-type simulation we demonstrate that the degree of disagreement on published calibration slopes is about what we should expect considering the precision of Δ47 data, the number of samples and replicate analyses, and the temperature range covered in published calibrations. Finally, we show that the way errors are typically reported in clumped isotope data can be problematic and lead to the impression that data are more precise than warranted. We recommend that uncertainties in Δ47 data should no longer be reported as the standard error of a few replicate measurements. Instead, uncertainties should be reported as margins of error at a specified confidence level (e.g., 68% or 95% CL). These error bars are a more realistic indication of the reliability of a measurement.

  14. Hydroacoustic detection of dumped ammunition in the Ocean with multibeam snippet backscatter analyses. A case study from the 'Kolberger Heide' ammunition dump site (Baltic Sea, Germany)

    NASA Astrophysics Data System (ADS)

    Kunde, Tina; Schneider von Deimling, Jens

    2016-04-01

    Dumped ammunition in the sea is a matter of great concern in terms of safe navigation and environmental threads. Because corrosion of the dumped ammunition's hull is ongoing, future contamination of the ambient water by their toxic interior is likely to occur. The location of such dump sites is approximately known from historical research and ship log book analyses. Subsequent remote sensing of ammunition dumping sites (e.g. mines) on the seafloor is preferentially performed with hydro-acoustic methods such as high resolution towed side scan or by the sophisticated synthetic aperture sonar approach with autonomous underwater vehicles. However, these are time consuming and expensive procedures, while determining the precise position of individual mines remains a challenging task. To mitigate these shortcomings we suggest using ship-born high-frequency multibeam sonar in shallow water to address the task of mine detection and precise localization on the seabed. Multibeam sonar systems have improved their potential in regard to backscatter analyses significantly over the past years and nowadays present fast and accurate tools for shallow water surveying to (1) detect mines in multibeam snippet backscatter data (2) determine their precise location with high accuracy intertial navigation systems. A case study was performed at the prominent ammunition dumping site 'Kolberger Heide' (Baltic Sea, Germany) in the year 2014 using a modern hydro-acoustic multibeam echosounder system with 200-400 kHz (KONGSBERG EM2040c). With an average water depth of not even 20 m and the proximity to the shore line and dense waterways, this investigated area requires permanent navigational care. Previously, the study area was surveyed by the Navy with the very sophisticated HUGIN AUV equipped with a synthetic aperture sonar with best resolution by current technology. Following an evaluation of the collected data, various ammunition bodies on the sea floor could be clearly detected. Analyses of our shipborn multibeam snippet backscatter data now show the feasibility to detect the majority of such ammunition bodies by their distinct snippet backscatter anomaly and shape. By the use of SAPOS correction data, the navigation data of the appropriated multibeam echosounder was postprocessed, which leads to an absolute accuracy of the ammunition bodies of 0.1 m laterally. Thus, the multibeam dataset represents a study providing both, detection and precise positioning of individual mines on the seabed. Apart from the much greater efficiency of multibeam mapping sonar over towed sidescan, precise localization is important for future management of mines, may it be in regard to their dellaboration, or to evaluate if future sediment mass movement (sediment waves) may cover and obscure the ammunition bodies in the future.

  15. Identification of Tool Wear when Machining of Austenitic Steels and Titatium by Miniature Machining

    NASA Astrophysics Data System (ADS)

    Pilc, Jozef; Kameník, Roman; Varga, Daniel; Martinček, Juraj; Sadilek, Marek

    2016-12-01

    Application of miniature machining is currently rapidly increasing mainly in biomedical industry and machining of hard-to-machine materials. Machinability of materials with increased level of toughness depends on factors that are important in the final state of surface integrity. Because of this, it is necessary to achieve high precision (varying in microns) in miniature machining. If we want to guarantee machining high precision, it is necessary to analyse tool wear intensity in direct interaction with given machined materials. During long-term cutting process, different cutting wedge deformations occur, leading in most cases to a rapid wear and destruction of the cutting wedge. This article deal with experimental monitoring of tool wear intensity during miniature machining.

  16. High-precision measurements of cementless acetabular components using model-based RSA: an experimental study.

    PubMed

    Baad-Hansen, Thomas; Kold, Søren; Kaptein, Bart L; Søballe, Kjeld

    2007-08-01

    In RSA, tantalum markers attached to metal-backed acetabular cups are often difficult to detect on stereo radiographs due to the high density of the metal shell. This results in occlusion of the prosthesis markers and may lead to inconclusive migration results. Within the last few years, new software systems have been developed to solve this problem. We compared the precision of 3 RSA systems in migration analysis of the acetabular component. A hemispherical and a non-hemispherical acetabular component were mounted in a phantom. Both acetabular components underwent migration analyses with 3 different RSA systems: conventional RSA using tantalum markers, an RSA system using a hemispherical cup algorithm, and a novel model-based RSA system. We found narrow confidence intervals, indicating high precision of the conventional marker system and model-based RSA with regard to migration and rotation. The confidence intervals of conventional RSA and model-based RSA were narrower than those of the hemispherical cup algorithm-based system regarding cup migration and rotation. The model-based RSA software combines the precision of the conventional RSA software with the convenience of the hemispherical cup algorithm-based system. Based on our findings, we believe that these new tools offer an improvement in the measurement of acetabular component migration.

  17. One novel type of miniaturization FBG rotation angle sensor with high measurement precision and temperature self-compensation

    NASA Astrophysics Data System (ADS)

    Jiang, Shanchao; Wang, Jing; Sui, Qingmei

    2018-03-01

    In order to achieve rotation angle measurement, one novel type of miniaturization fiber Bragg grating (FBG) rotation angle sensor with high measurement precision and temperature self-compensation is proposed and studied in this paper. The FBG rotation angle sensor mainly contains two core sensitivity elements (FBG1 and FBG2), triangular cantilever beam, and rotation angle transfer element. In theory, the proposed sensor can achieve temperature self-compensation by complementation of the two core sensitivity elements (FBG1 and FBG2), and it has a boundless angel measurement range with 2π rad period duo to the function of the rotation angle transfer element. Based on introducing the joint working processes, the theory calculation model of the FBG rotation angel sensor is established, and the calibration experiment on one prototype is also carried out to obtain its measurement performance. After experimental data analyses, the measurement precision of the FBG rotation angle sensor prototype is 0.2 ° with excellent linearity, and the temperature sensitivities of FBG1 and FBG2 are 10 pm/° and 10.1 pm/°, correspondingly. All these experimental results confirm that the FBG rotation angle sensor can achieve large-range angle measurement with high precision and temperature self-compensation.

  18. High-resolution U-series dates from the Sima de los Huesos hominids yields 600 +∞-66: implications for the evolution of the early Neanderthal lineage

    USGS Publications Warehouse

    Bischoff, James L.; Williams, Ross W.; Rosenbauer, Robert J.; Aramburu, Arantza; Arsuaga, Juan Luis; Garcia, Nuria; Cuenca-Bescos, Gloria

    2007-01-01

    The Sima de los Huesos site of the Atapuerca complex near Burgos, Spain contains the skeletal remains of at least 28 individuals in a mud-breccia underlying an accumulation of the Middle Pleistocene cave bear (Ursus deningeri). We report here on new high-precision dates on the recently discovered speleothem SRA-3 overlaying human bones within the Sima de los Huesos. Earlier analyses of this speleothem by TIMS (thermal-ionization mass-spectrometry) showed the lower part to be indistinguishable from internal isotopic equilibrium at the precision of the TIMS instrumentation used, yielding minimum age of 350 kyr (kyr = 103 yr before present). Reanalysis of six samples of SRA-3 by inductively-coupled plasma-multicollector mass-spectrometry (ICP-MS) produced high-precision analytical results allowing calculation of finite dates. The new dates cluster around 600 kyr. A conservative conclusion takes the lower error limit ages as the minimum age of the speleothem, or 530 kyr. This places the SH hominids at the very beginnings of the Neandertal evolutionary lineage.

  19. The structure of the proton in the LHC precision era

    NASA Astrophysics Data System (ADS)

    Gao, Jun; Harland-Lang, Lucian; Rojo, Juan

    2018-05-01

    We review recent progress in the determination of the parton distribution functions (PDFs) of the proton, with emphasis on the applications for precision phenomenology at the Large Hadron Collider (LHC). First of all, we introduce the general theoretical framework underlying the global QCD analysis of the quark and gluon internal structure of protons. We then present a detailed overview of the hard-scattering measurements, and the corresponding theory predictions, that are used in state-of-the-art PDF fits. We emphasize here the role that higher-order QCD and electroweak corrections play in the description of recent high-precision collider data. We present the methodology used to extract PDFs in global analyses, including the PDF parametrization strategy and the definition and propagation of PDF uncertainties. Then we review and compare the most recent releases from the various PDF fitting collaborations, highlighting their differences and similarities. We discuss the role that QED corrections and photon-initiated contributions play in modern PDF analysis. We provide representative examples of the implications of PDF fits for high-precision LHC phenomenological applications, such as Higgs coupling measurements and searches for high-mass New Physics resonances. We conclude this report by discussing some selected topics relevant for the future of PDF determinations, including the treatment of theoretical uncertainties, the connection with lattice QCD calculations, and the role of PDFs at future high-energy colliders beyond the LHC.

  20. Technical note: Coupling infrared gas analysis and cavity ring down spectroscopy for autonomous, high-temporal-resolution measurements of DIC and δ13C-DIC

    NASA Astrophysics Data System (ADS)

    Call, Mitchell; Schulz, Kai G.; Carvalho, Matheus C.; Santos, Isaac R.; Maher, Damien T.

    2017-03-01

    A new approach to autonomously determine concentrations of dissolved inorganic carbon (DIC) and its carbon stable isotope ratio (δ13C-DIC) at high temporal resolution is presented. The simple method requires no customised design. Instead it uses two commercially available instruments currently used in aquatic carbon research. An inorganic carbon analyser utilising non-dispersive infrared detection (NDIR) is coupled to a Cavity Ring-down Spectrometer (CRDS) to determine DIC and δ13C-DIC based on the liberated CO2 from acidified aliquots of water. Using a small sample volume of 2 mL, the precision and accuracy of the new method was comparable to standard isotope ratio mass spectrometry (IRMS) methods. The system achieved a sampling resolution of 16 min, with a DIC precision of ±1.5 to 2 µmol kg-1 and δ13C-DIC precision of ±0.14 ‰ for concentrations spanning 1000 to 3600 µmol kg-1. Accuracy of 0.1 ± 0.06 ‰ for δ13C-DIC based on DIC concentrations ranging from 2000 to 2230 µmol kg-1 was achieved during a laboratory-based algal bloom experiment. The high precision data that can be autonomously obtained by the system should enable complex carbonate system questions to be explored in aquatic sciences using high-temporal-resolution observations.

  1. Using experimental design and spatial analyses to improve the precision of NDVI estimates in upland cotton field trials

    USDA-ARS?s Scientific Manuscript database

    Controlling for spatial variability is important in high-throughput phenotyping studies that enable large numbers of genotypes to be evaluated across time and space. In the current study, we compared the efficacy of different experimental designs and spatial models in the analysis of canopy spectral...

  2. Development and validation of a new method to simultaneously quantify triazoles in plasma spotted on dry sample spot devices and analysed by HPLC-MS.

    PubMed

    Baietto, Lorena; D'Avolio, Antonio; Marra, Cristina; Simiele, Marco; Cusato, Jessica; Pace, Simone; Ariaudo, Alessandra; De Rosa, Francesco Giuseppe; Di Perri, Giovanni

    2012-11-01

    Therapeutic drug monitoring (TDM) of triazoles is widely used in clinical practice to optimize therapy. TDM is limited by technical problems and cost considerations, such as sample storage and dry-ice shipping. We aimed to develop and validate a new method to analyse itraconazole, posaconazole and voriconazole in plasma spotted on dry sample spot devices (DSSDs) and to quantify them by an HPLC system. Extraction from DSSDs was done using n-hexane/ethyl acetate and ammonia solution. Samples were analysed using HPLC with mass spectrometry (HPLC-MS). Accuracy and precision were assayed by inter- and intra-day validation. The stability of triazoles in plasma spotted on DSSDs was investigated at room temperature for 1 month. The method was compared with a validated standard HPLC method for quantification of triazoles in human plasma. Mean inter- and intra-day accuracy and precision were <15% for all compounds. Triazoles were stable for 2 weeks at room temperature. The method was linear (r(2) > 0.999) in the range 0.031-8 mg/L for itraconazole and posaconazole, and 0.058-15 mg/L for voriconazole. High sensitivity was observed; limits of detection were 0.008, 0.004 and 0.007 mg/L for itraconazole, posaconazole and voriconazole, respectively. A high degree of correlation (r(2) > 0.94) was obtained between the DSSD method and the standard method of analysis. The method that we developed and validated to quantify triazoles in human plasma spotted on DSSDs is accurate and precise. It overcomes problems related to plasma sample storage and shipment, allowing TDM to be performed in a cheaper and safer manner.

  3. Application of 1013 ohm Faraday cup current amplifiers for boron isotopic analyses by solution mode and laser ablation multicollector inductively coupled plasma mass spectrometry.

    PubMed

    Lloyd, Nicholas S; Sadekov, Aleksey Yu; Misra, Sambuddha

    2018-01-15

    Boron isotope ratios (δ 11 B values) are used as a proxy for seawater paleo-pH, amongst several other applications. The analytical precision can be limited by the detection of low intensity ion beams from limited sample amounts. High-gain amplifiers offer improvements in signal/noise ratio and can be used to increase measurement precision and reduce sample amounts. 10 13 ohm amplifier technology has previously been applied to several radiogenic systems, but has thus far not been applied to non-traditional stable isotopes. Here we apply 10 13 ohm amplifier technology for the measurement of boron isotope ratios using solution mode MC-ICP-MS and laser ablation mode (LA-)MC-ICP-MS techniques. Precision is shown for reference materials as well as for low-volume foraminifera samples. The baseline uncertainty for a 0.1 pA 10 B + ion beam is reduced to <0.1 ‰ for a typical measurement period. The external precision is better than 0.2 ‰ (2SD) for δ 11 B measurements for solution samples containing as little as 0.8 ng total boron. For in situ microanalyses with LA-MC-ICP-MS, the external precision of 11 B/ 10 B from an in-house calcite standard was 1 ‰ (2SD) for individual spot analyses, and 0.3 ‰ for the mean of ≥10 replicate spot analyses. 10 13 ohm amplifier technology is demonstrated to offer advantages for the determination of δ 11 B values by both MC-ICP-MS and LA-MC-ICP-MS for small samples of biogenic carbonates, such as foraminifera shells. 10 13 ohm amplifier technology will also be of benefit to other non-traditional stable isotope measurements. Copyright © 2017 John Wiley & Sons, Ltd.

  4. O1.3. A COMPUTATIONAL TRIAL-BY-TRIAL EEG ANALYSIS OF HIERARCHICAL PRECISION-WEIGHTED PREDICTION ERRORS

    PubMed Central

    Tomiello, Sara; Schöbi, Dario; Weber, Lilian; Haker, Helene; Sandra, Iglesias; Stephan, Klaas Enno

    2018-01-01

    Abstract Background Action optimisation relies on learning about past decisions and on accumulated knowledge about the stability of the environment. In Bayesian models of learning, belief updating is informed by multiple, hierarchically related, precision-weighted prediction errors (pwPEs). Recent work suggests that hierarchically different pwPEs may be encoded by specific neurotransmitters such as dopamine (DA) and acetylcholine (ACh). Abnormal dopaminergic and cholinergic modulation of N-methyl-D-aspartate (NMDA) receptors plays a central role in the dysconnection hypothesis, which considers impaired synaptic plasticity a central mechanisms in the pathophysiology of schizophrenia. Methods To probe the dichotomy between DA and ACh and to investigate timing parameters of pwPEs, we tested 74 healthy male volunteers performing a probabilistic reward associative learning task in which the contingency between cues and rewards changed over 160 trials between 0.8 and 0.2. Furthermore, the current study employed pharmacological interventions (amisulpride / biperiden / placebo) and genetic analyses (COMT and ChAT) to probe DA and ACh modulation of these computational quantities. The study was double-blind and between-subject. We inferred, from subject-specific behavioural data, a low-level choice PE about the reward outcome, a high-level PE about the probability of the outcome as well as the respective precision-weights (uncertainties) and used them, in a trial-by-trial analysis, to explain electroencephalogram (EEG) signals (64 channels). Behavioural data was modelled implementing three versions of the Hierarchical Gaussian Filter (HGF), a Rescorla-Wagner model, and a Sutton model with a dynamic learning rate. The computational trajectories of the winning model were used as regressors in single-subject trial-by-trial GLM analyses at the sensor level. The resulting parameter estimates were entered into 2nd-level ANOVAs. The reported results were family-wise error corrected at the peak-level (p<0.05) across the whole brain and time window (outcome phase: 0 - 500ms). Results A three-level HGF best explained the data and was used to compute the computational regressors for EEG analyses. We found a significant interaction between pharmacology and COMT for the high-level precision-weight (uncertainty). Specifically: - At 276 ms after outcome presentation the difference between Met/Met and Val/Met was more positive for amisulpride than for biperiden over occipital electrodes. - At 274ms and 278 ms after outcome presentation the difference between Met/Met and Val/Met was more negative over fronto-temporal electrodes for amisulpride than for placebo, and for amisulpride than for biperiden, respectively. No significant results were detected for the other computational quantities or for the ChAT gene. Discussion The differential effects of pharmacology on the processing of high-level precision-weight (uncertainty) were modulated by the DA-related gene COMT. Previous results linked high-level PEs to the cholinergic basal forebrain. One possible explanation for the current results is that high-level computational quantities are represented in cholinergic regions, which in turn are influenced by dopaminergic projections. In order to disentangle dopaminergic and cholinergic effects on synaptic plasticity further analyses will concentrate on biophysical models (e.g. DCM). This may prove useful in detecting pathophysiological subgroups and might therefore be of high relevance in a clinical setting.

  5. Very high precision and accuracy analysis of triple isotopic ratios of water. A critical instrumentation comparison study.

    NASA Astrophysics Data System (ADS)

    Gkinis, Vasileios; Holme, Christian; Morris, Valerie; Thayer, Abigail Grace; Vaughn, Bruce; Kjaer, Helle Astrid; Vallelonga, Paul; Simonsen, Marius; Jensen, Camilla Marie; Svensson, Anders; Maffrezzoli, Niccolo; Vinther, Bo; Dallmayr, Remi

    2017-04-01

    We present a performance comparison study between two state of the art Cavity Ring Down Spectrometers (Picarro L2310-i, L2140-i). The comparison took place during the Continuous Flow Analysis (CFA) campaign for the measurement of the Renland ice core, over a period of three months. Instant and complete vaporisation of the ice core melt stream, as well as of in-house water reference materials is achieved by accurate control of microflows of liquid into a homemade calibration system by following simple principles of the Hagen-Poiseuille law. Both instruments share the same vaporisation unit in a configuration that minimises sample preparation discrepancies between the two analyses. We describe our SMOW-SLAP calibration and measurement protocols for such a CFA application and present quality control metrics acquired during the full period of the campaign on a daily basis. The results indicate an unprecedented performance for all 3 isotopic ratios (δ2H, δ17O, δ18O ) in terms of precision, accuracy and resolution. We also comment on the precision and accuracy of the second order excess parameters of HD16O and H217O over H218O (Dxs, Δ17O ). To our knowledge these are the first reported CFA measurements at this level of precision and accuracy for all three isotopic ratios. Differences on the performance of the two instruments are carefully assessed during the measurement and reported here. Our quality control protocols extend to the area of low water mixing ratios, a regime in which often atmospheric vapour measurements take place and Cavity Ring Down Analysers show a poorer performance due to the lower signal to noise ratios. We address such issues and propose calibration protocols from which water vapour isotopic analyses can benefit from.

  6. Accuracy and precision of loadsol® insole force-sensors for the quantification of ground reaction force-based biomechanical running parameters.

    PubMed

    Seiberl, Wolfgang; Jensen, Elisabeth; Merker, Josephine; Leitel, Marco; Schwirtz, Ansgar

    2018-05-29

    Force plates represent the "gold standard" in measuring running kinetics to predict performance or to identify the sources of running-related injuries. As these measurements are generally limited to laboratory analyses, wireless high-quality sensors for measuring in the field are needed. This work analysed the accuracy and precision of a new wireless insole forcesensor for quantifying running-related kinetic parameters. Vertical ground reaction force (GRF) was simultaneously measured with pit-mounted force plates (1 kHz) and loadsol ® sensors (100 Hz) under unshod forefoot and rearfoot running-step conditions. GRF data collections were repeated four times, each separated by 30 min treadmill running, to test influence of extended use. A repeated-measures ANOVA was used to identify differences between measurement devices. Additionally, mean bias and Bland-Altman limits of agreement (LoA) were calculated. We found a significant difference (p < .05) in ground contact time, peak force, and force rate, while there was no difference in parameters impulse, time to peak, and negative force rate. There was no influence of time point of measurement. The mean bias of ground contact time, impulse, peak force, and time to peak ranged between 0.6% and 3.4%, demonstrating high accuracy of loadsol ® devices for these parameters. For these same parameters, the LoA analysis showed that 95% of all measurement differences between insole and force plate measurements were less than 12%, demonstrating high precision of the sensors. However, highly dynamic behaviour of GRF, such as force rate, is not yet sufficiently resolved by the insole devices, which is likely explained by the low sampling rate.

  7. Mobile mapping of methane emissions and isoscapes

    NASA Astrophysics Data System (ADS)

    Takriti, Mounir; Ward, Sue; Wynn, Peter; Elias, Dafydd; McNamara, Niall

    2017-04-01

    Methane (CH4) is a potent greenhouse gas emitted from a variety of natural and anthropogenic sources. It is crucial to accurately and efficiently detect CH4 emissions and identify their sources to improve our understanding of changing emission patterns as well as to identify ways to curtail their release into the atmosphere. However, using established methods this can be challenging as well as time and resource intensive due to the temporal and spatial heterogeneity of many sources. To address this problem, we have developed a vehicle mounted mobile system that combines high precision CH4 measurements with isotopic mapping and dual isotope source characterisation. We here present details of the development and testing of a unique system for the detection and isotopic analysis of CH4 plumes built around a Picarro isotopic (13C/12C) gas analyser and a high precision Los Gatos greenhouse gas analyser. Combined with micrometeorological measurements and a mechanism for collecting discrete samples for high precision dual isotope (13C/12C, 2H/1H) analysis the system enables mapping of concentrations as well as directional and isotope based source verification. We then present findings from our mobile methane surveys around the North West of England. This area includes a variety of natural and anthropogenic methane sources within a relatively small geographical area, including livestock farming, urban and industrial gas infrastructure, landfills and waste water treatment facilities, and wetlands. We show that the system was successfully able to locate leaks from natural gas infrastructure and emissions from agricultural activities and to distinguish isotope signatures from these sources.

  8. Measuring the apparent diffusion coefficient in primary rectal tumors: is there a benefit in performing histogram analyses?

    PubMed

    van Heeswijk, Miriam M; Lambregts, Doenja M J; Maas, Monique; Lahaye, Max J; Ayas, Z; Slenter, Jos M G M; Beets, Geerard L; Bakers, Frans C H; Beets-Tan, Regina G H

    2017-06-01

    The apparent diffusion coefficient (ADC) is a potential prognostic imaging marker in rectal cancer. Typically, mean ADC values are used, derived from precise manual whole-volume tumor delineations by experts. The aim was first to explore whether non-precise circular delineation combined with histogram analysis can be a less cumbersome alternative to acquire similar ADC measurements and second to explore whether histogram analyses provide additional prognostic information. Thirty-seven patients who underwent a primary staging MRI including diffusion-weighted imaging (DWI; b0, 25, 50, 100, 500, 1000; 1.5 T) were included. Volumes-of-interest (VOIs) were drawn on b1000-DWI: (a) precise delineation, manually tracing tumor boundaries (2 expert readers), and (b) non-precise delineation, drawing circular VOIs with a wide margin around the tumor (2 non-experts). Mean ADC and histogram metrics (mean, min, max, median, SD, skewness, kurtosis, 5th-95th percentiles) were derived from the VOIs and delineation time was recorded. Measurements were compared between the two methods and correlated with prognostic outcome parameters. Median delineation time reduced from 47-165 s (precise) to 21-43 s (non-precise). The 45th percentile of the non-precise delineation showed the best correlation with the mean ADC from the precise delineation as the reference standard (ICC 0.71-0.75). None of the mean ADC or histogram parameters showed significant prognostic value; only the total tumor volume (VOI) was significantly larger in patients with positive clinical N stage and mesorectal fascia involvement. When performing non-precise tumor delineation, histogram analysis (in specific 45th ADC percentile) may be used as an alternative to obtain similar ADC values as with precise whole tumor delineation. Histogram analyses are not beneficial to obtain additional prognostic information.

  9. The potamochemical symphony: new progress in the high-frequency acquisition of stream chemical data

    NASA Astrophysics Data System (ADS)

    Floury, Paul; Gaillardet, Jérôme; Gayer, Eric; Bouchez, Julien; Tallec, Gaëlle; Ansart, Patrick; Koch, Frédéric; Gorge, Caroline; Blanchouin, Arnaud; Roubaty, Jean-Louis

    2017-12-01

    Our understanding of hydrological and chemical processes at the catchment scale is limited by our capacity to record the full breadth of the information carried by river chemistry, both in terms of sampling frequency and precision. Here, we present a proof-of-concept study of a lab in the field called the River Lab (RL), based on the idea of permanently installing a suite of laboratory instruments in the field next to a river. Housed in a small shed, this set of instruments performs analyses at a frequency of one every 40 min for major dissolved species (Na+, K+, Mg2+, Ca2+, Cl-, SO42-, NO3-) through continuous sampling and filtration of the river water using automated ion chromatographs. The RL was deployed in the Orgeval Critical Zone Observatory, France for over a year of continuous analyses. Results show that the RL is able to capture long-term fine chemical variations with no drift and a precision significantly better than conventionally achieved in the laboratory (up to ±0.5 % for all major species for over a day and up to 1.7 % over 2 months). The RL is able to capture the abrupt changes in dissolved species concentrations during a typical 6-day rain event, as well as daily oscillations during a hydrological low-flow period of summer drought. Using the measured signals as a benchmark, we numerically assess the effects of a lower sampling frequency (typical of conventional field sampling campaigns) and of a lower precision (typically reached in the laboratory) on the hydrochemical signal. The high-resolution, high-precision measurements made possible by the RL open new perspectives for understanding critical zone hydro-bio-geochemical cycles. Finally, the RL also offers a solution for management agencies to monitor water quality in quasi-real time.

  10. Pristine Survey : High-Resolution Spectral Analyses of New Metal-poor Stars

    NASA Astrophysics Data System (ADS)

    Venn, Kim; Starkenburg, Else; Martin, Nicolas; Kielty, Collin; Youakim, Kris; Arnetsen, Anke

    2018-06-01

    The Pristine survey (Starkenburg et al. 2017) is a new and very successful metal-poor star survey. Combining high-quality narrow-band CaHK CFHT/MegaCam photometry with existing broadband photometry from SDSS, then very metal-poor stars have been found as confirmed from low-resolution spectroscopy (Youakim et al. 2017). Furthermore, we have extended this survey towards the Galactic bulge in a pilot program to test the capabilities in the highly crowded and (inhomogeneously) extincted bulge (Arentsen et al. 2018). High resolution spectral follow-up analyses have been initiated at the CFHT with Espadons (V<15) and the Gemini/GRACES long optical fibre that also feeds the Espadons spectrograph (15

  11. Preliminary Figures of Merit for Isotope Ratio Measurements: The Liquid Sampling-Atmospheric Pressure Glow Discharge Microplasma Ionization Source Coupled to an Orbitrap Mass Analyzer

    NASA Astrophysics Data System (ADS)

    Hoegg, Edward D.; Barinaga, Charles J.; Hager, George J.; Hart, Garret L.; Koppenaal, David W.; Marcus, R. Kenneth

    2016-08-01

    In order to meet a growing need for fieldable mass spectrometer systems for precise elemental and isotopic analyses, the liquid sampling-atmospheric pressure glow discharge (LS-APGD) has a number of very promising characteristics. One key set of attributes that await validation deals with the performance characteristics relative to isotope ratio precision and accuracy. Owing to its availability and prior experience with this research team, the initial evaluation of isotope ratio (IR) performance was performed on a Thermo Scientific Exactive Orbitrap instrument. While the mass accuracy and resolution performance for Orbitrap analyzers are well-documented, no detailed evaluations of the IR performance have been published. Efforts described here involve two variables: the inherent IR precision and accuracy delivered by the LS-APGD microplasma and the inherent IR measurement qualities of Orbitrap analyzers. Important to the IR performance, the various operating parameters of the Orbitrap sampling interface, high-energy collisional dissociation (HCD) stage, and ion injection/data acquisition have been evaluated. The IR performance for a range of other elements, including natural, depleted, and enriched uranium isotopes was determined. In all cases, the precision and accuracy are degraded when measuring low abundance (<0.1% isotope fractions). In the best case, IR precision on the order of 0.1% RSD can be achieved, with values of 1%-3% RSD observed for low-abundance species. The results suggest that the LS-APGD is a promising candidate for field deployable MS analysis and that the high resolving powers of the Orbitrap may be complemented with a here-to-fore unknown capacity to deliver high-precision IRs.

  12. The ultrahigh precision form measurement of small, steep-sided aspheric moulds, incorporating novel hardware and software developments; Technical Digest

    NASA Astrophysics Data System (ADS)

    Mills, M. W.; Hutchinson, Matthew J.

    2005-05-01

    A variety of consumer applications, eg cellphone camera lenses, optical storage devices, digital cameras, etc, are driving the demand for small, high aspheric departure rotationally-symmetric moulded optics, manufactured both in polymer and glass materials. The mould tools for such components are manufactured by ultra-high precision techniques such as single point diamond turning and ultra-precision grinding, and must be accurate to <1/10μm levels for form, and exhibit nanometric surface finish quality. The aspheric forms of such components' optical surfaces exhibit high departure from best-fit sphere towards their outer edge, which renders this outer region especially critical for optical performance. The high slope of these components at the clear aperture has caused some restrictions on the use of profilometry in the measurement of form across their full diameter. Taylor Hobson designs and manufactures a range of ultra-precision profilometers for use in such industries as aspheric optics fabrication. In order to address the issues described, a new measurement system, Taylor Hobson Form Talysurf PGI 1250, has been developed, which contains new Aspheric Data Fusion Software, as well as Asphero-Diffractive Analysis Software, allowing the entire diametric profile to be analysed to the desired level of accuracy. This development removes the previous limitation of maximum slope for this type of measurement, thus enabling better quality control of high slope, high aspheric departure optics. Measurement data from the Form Talysurf PGI 1250 can be fed back directly to the machine tool, in order to optimize the form of the optical mould.

  13. The ultrahigh precision form measurement of small, steep-sided aspheric moulds, incorporating novel hardware and software developments; Technical Digest

    NASA Astrophysics Data System (ADS)

    Mills, M. W.; Hutchinson, Matthew J.

    2005-05-01

    A variety of consumer applications, eg cellphone camera lenses, optical storage devices, digital cameras, etc, are driving the demand for small, high aspheric departure rotationally-symmetric moulded optics, manufactured both in polymer and glass materials. The mould tools for such components are manufactured by ultra-high precision techniques such as single point diamond turning and ultra-precision grinding, and must be accurate to <1/10μm levels for form, and exhibit nanometric surface finish quality. The aspheric forms of such components" optical surfaces exhibit high departure from best-fit sphere towards their outer edge, which renders this outer region especially critical for optical performance. The high slope of these components at the clear aperture has caused some restrictions on the use of profilometry in the measurement of form across their full diameter. Taylor Hobson designs and manufactures a range of ultra-precision profilometers for use in such industries as aspheric optics fabrication. In order to address the issues described, a new measurement system, Taylor Hobson Form Talysurf PGI 1250, has been developed, which contains new Aspheric Data Fusion Software, as well as Asphero-Diffractive Analysis Software, allowing the entire diametric profile to be analysed to the desired level of accuracy. This development removes the previous limitation of maximum slope for this type of measurement, thus enabling better quality control of high slope, high aspheric departure optics. Measurement data from the Form Talysurf PGI 1250 can be fed back directly to the machine tool, in order to optimize the form of the optical mould.

  14. Isotopic Analysis of Plutonium by Optical Spectroscopy; ANALYSE ISOTOPIQUE DU PLUTONIUM PAR SPECTROSCOPIE OPTIQUE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Artaud, J.; Chaput, M.; Gerstenkorn, S.

    1961-01-01

    Isotopic analyses of mixtures of plutonium-239 and -240 were carried out by means of the photoelectric spectrometer, the source being a hollow cathode cooled by liquid nitrogen. The relative precision is of the order of 2%, for samples containieg 3% of Pu/sup 240/. The study of the reproductibility of the measurements should make it possible to increase the precision; the relative precision which can be expected from the method should be 1% for mixtures containing 1% of Pu/sup 240/. (auth)

  15. AMMI adjustment for statistical analysis of an international wheat yield trial.

    PubMed

    Crossa, J; Fox, P N; Pfeiffer, W H; Rajaram, S; Gauch, H G

    1991-01-01

    Multilocation trials are important for the CIMMYT Bread Wheat Program in producing high-yielding, adapted lines for a wide range of environments. This study investigated procedures for improving predictive success of a yield trial, grouping environments and genotypes into homogeneous subsets, and determining the yield stability of 18 CIMMYT bread wheats evaluated at 25 locations. Additive Main effects and Multiplicative Interaction (AMMI) analysis gave more precise estimates of genotypic yields within locations than means across replicates. This precision facilitated formation by cluster analysis of more cohesive groups of genotypes and locations for biological interpretation of interactions than occurred with unadjusted means. Locations were clustered into two subsets for which genotypes with positive interactions manifested in high, stable yields were identified. The analyses highlighted superior selections with both broad and specific adaptation.

  16. Engineering analyses of large precision cathode strip chambers for GEM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horvath, J.A.; Belser, F.C.; Pratuch, S.M.

    Structural analyses of large precision cathode strip chambers performed up to the date of this publication are documented. Mechanical property data for typical chamber materials are included. This information, originally intended to be an appendix to the {open_quotes}CSC Structural Design Bible,{close_quotes} is presented as a guide for future designers of large chambers.

  17. Instrument Pointing Control System for the Stellar Interferometry Mission - Planet Quest

    NASA Technical Reports Server (NTRS)

    Brugarolas, Paul B.; Kang, Bryan

    2006-01-01

    This paper describes the high precision Instrument Pointing Control System (PCS) for the Stellar Interferometry Mission (SIM) - Planet Quest. The PCS system provides front-end pointing, compensation for spacecraft motion, and feedforward stabilization, which are needed for proper interference. Optical interferometric measurements require very precise pointing (0.03 as, 1-(sigma) radial) for maximizing the interference pattern visibility. This requirement is achieved by fine pointing control of articulating pointing mirrors with feedback from angle tracking cameras. The overall pointing system design concept is presentcd. Functional requirements and an acquisition concept are given. Guide and Science pointing control loops are discussed. Simulation analyses demonstrate the feasibility of the design.

  18. Quantitative morphometrical characterization of human pronuclear zygotes.

    PubMed

    Beuchat, A; Thévenaz, P; Unser, M; Ebner, T; Senn, A; Urner, F; Germond, M; Sorzano, C O S

    2008-09-01

    Identification of embryos with high implantation potential remains a challenge in in vitro fertilization (IVF). Subjective pronuclear (PN) zygote scoring systems have been developed for that purpose. The aim of this work was to provide a software tool that enables objective measuring of morphological characteristics of the human PN zygote. A computer program was created to analyse zygote images semi-automatically, providing precise morphological measurements. The accuracy of this approach was first validated by comparing zygotes from two different IVF centres with computer-assisted measurements or subjective scoring. Computer-assisted measurement and subjective scoring were then compared for their ability to classify zygotes with high and low implantation probability by using a linear discriminant analysis. Zygote images coming from the two IVF centres were analysed with the software, resulting in a series of precise measurements of 24 variables. Using subjective scoring, the cytoplasmic halo was the only feature which was significantly different between the two IVF centres. Computer-assisted measurements revealed significant differences between centres in PN centring, PN proximity, cytoplasmic halo and features related to nucleolar precursor bodies distribution. The zygote classification error achieved with the computer-assisted measurements (0.363) was slightly inferior to that of the subjective ones (0.393). A precise and objective characterization of the morphology of human PN zygotes can be achieved by the use of an advanced image analysis tool. This computer-assisted analysis allows for a better morphological characterization of human zygotes and can be used for classification.

  19. A high precision method for length-based separation of carbon nanotubes using bio-conjugation, SDS-PAGE and silver staining.

    PubMed

    Borzooeian, Zahra; Taslim, Mohammad E; Ghasemi, Omid; Rezvani, Saina; Borzooeian, Giti; Nourbakhsh, Amirhasan

    2018-01-01

    Parametric separation of carbon nanotubes, especially based on their length is a challenge for a number of nano-tech researchers. We demonstrate a method to combine bio-conjugation, SDS-PAGE, and silver staining in order to separate carbon nanotubes on the basis of length. Egg-white lysozyme, conjugated covalently onto the single-walled carbon nanotubes surfaces using carbodiimide method. The proposed conjugation of a biomolecule onto the carbon nanotubes surfaces is a novel idea and a significant step forward for creating an indicator for length-based carbon nanotubes separation. The conjugation step was followed by SDS-PAGE and the nanotube fragments were precisely visualized using silver staining. This high precision, inexpensive, rapid and simple separation method obviates the need for centrifugation, additional chemical analyses, and expensive spectroscopic techniques such as Raman spectroscopy to visualize carbon nanotube bands. In this method, we measured the length of nanotubes using different image analysis techniques which is based on a simplified hydrodynamic model. The method has high precision and resolution and is effective in separating the nanotubes by length which would be a valuable quality control tool for the manufacture of carbon nanotubes of specific lengths in bulk quantities. To this end, we were also able to measure the carbon nanotubes of different length, produced from different sonication time intervals.

  20. Rapid measurement of human milk macronutrients in the neonatal intensive care unit: accuracy and precision of fourier transform mid-infrared spectroscopy.

    PubMed

    Smilowitz, Jennifer T; Gho, Deborah S; Mirmiran, Majid; German, J Bruce; Underwood, Mark A

    2014-05-01

    Although it is well established that human milk varies widely in macronutrient content, it remains common for human milk fortification for premature infants to be based on historic mean values. As a result, those caring for premature infants often underestimate protein intake. Rapid precise measurement of human milk protein, fat, and lactose to allow individualized fortification has been proposed for decades but remains elusive due to technical challenges. This study aimed to evaluate the accuracy and precision of a Fourier transform (FT) mid-infrared (IR) spectroscope in the neonatal intensive care unit to measure human milk fat, total protein, lactose, and calculated energy compared with standard chemical analyses. One hundred sixteen breast milk samples across lactation stages from women who delivered at term (n = 69) and preterm (n = 5) were analyzed with the FT mid-IR spectroscope and with standard chemical methods. Ten of the samples were tested in replicate using the FT mid-IR spectroscope to determine repeatability. The agreement between the FT mid-IR spectroscope analysis and reference methods was high for protein and fat and moderate for lactose and energy. The intra-assay coefficients of variation for all outcomes were less than 3%. The FT mid-IR spectroscope demonstrated high accuracy in measurement of total protein and fat of preterm and term milk with high precision.

  1. Determination of alpha-hydroxy acids in cosmetic products by high-performance liquid chromatography with a narrow-bore column.

    PubMed

    Nicoletti, I; Corradini, C; Cogliandro, E; Cavazza, A

    1999-08-01

    This paper reports the results of a study carried out to develop a simple, rapid and sensitive method for the separation, identification and quantitative measurement of alpha-hydroxy acids in commercial cosmetics using high-performance liquid chromatography (HPLC). This method is successfully applied to the simultaneous identification and quantitative determination of glycolic, lactic, malic, tartaric and citric acids employing a reversed phase narrow-bore column under isocratic condition and UV detection. The method is validated by determining the precision of replicate analyses and accuracy by analyzing samples with and without adding know amount of the alpha-hydroxy acids. The procedure is suitable for routine analyses of commercial cosmetics.

  2. Precision and Error of Three-dimensional Phenotypic Measures Acquired from 3dMD Photogrammetric Images

    PubMed Central

    Aldridge, Kristina; Boyadjiev, Simeon A.; Capone, George T.; DeLeon, Valerie B.; Richtsmeier, Joan T.

    2015-01-01

    The genetic basis for complex phenotypes is currently of great interest for both clinical investigators and basic scientists. In order to acquire a thorough understanding of the translation from genotype to phenotype, highly precise measures of phenotypic variation are required. New technologies, such as 3D photogrammetry are being implemented in phenotypic studies due to their ability to collect data rapidly and non-invasively. Before these systems can be broadly implemented the error associated with data collected from images acquired using these technologies must be assessed. This study investigates the precision, error, and repeatability associated with anthropometric landmark coordinate data collected from 3D digital photogrammetric images acquired with the 3dMDface System. Precision, error due to the imaging system, error due to digitization of the images, and repeatability are assessed in a sample of children and adults (N=15). Results show that data collected from images with the 3dMDface System are highly repeatable and precise. The average error associated with the placement of landmarks is sub-millimeter; both the error due to digitization and to the imaging system are very low. The few measures showing a higher degree of error include those crossing the labial fissure, which are influenced by even subtle movement of the mandible. These results suggest that 3D anthropometric data collected using the 3dMDface System are highly reliable and therefore useful for evaluation of clinical dysmorphology and surgery, analyses of genotype-phenotype correlations, and inheritance of complex phenotypes. PMID:16158436

  3. JPRS Report, China.

    DTIC Science & Technology

    1989-01-30

    absolutely forbid the dealing of retaliatory blows to those of the masses who give their opinions. Fifth, on the basis of their analyses they pass on...Timber Artificial Board Cement Plate Glass Power Equipment Machine Tool Precision Machine Tool Large Machine Tool Automobile Truck Tractor Small...the State Bureau of Building Materials Industry said that the industry must manufacture more varieties of high quality cement, glass , pottery, and

  4. Ramped PyrOx 14C With a Twist: Improving Radiocarbon Chronologies on Highly Detrital Marginal Antarctic Sediments

    NASA Astrophysics Data System (ADS)

    Subt, C.; Yoon, H.; Yoo, K. C.; Lee, J. I.; Domack, E. W.; Rosenheim, B. E.

    2016-02-01

    Highly detrital sediments can be difficult to date when the detritus includes material similar to that from which dates are sought. For radiocarbon dating, samples with a high degree of pre-aged detrital carbon contamination necessitate measurement of a very small portion of the sample to remove that contamination from the targeted component, even when using advanced techniques such as Ramped PyrOx (RP) 14C dating. Here we present three case studies of alternative RP approaches, producing accurate and precise chronologies for highly detrital sediments near the Larsen C ice shelf, near the Drygalski Ice Tongue in Ross Sea, and in Lapeyrère Bay, Anvers Island. For sediments where the proportion of organic carbon that was modern at the time of deposition is too small for a traditional AMS analysis after RP treatment, we have developed an innovative multiple RP analyses approach to minimize the cost in precision from using smaller temperature intervals, while maximizing the benefit in accuracy. Resulting sub ice-shelf chronologies show vastly improved dates down-core, significantly younger than the equivalent 14C chronology from the bulk acid insoluble organic (AIO) carbon with increasing ages down-core. By comparison, bulk AIO 14C dates in the study areas are not only older, but are subject to age reversals and nearly constant ages that make sedimentation rates impossible to resolve. Using our new approaches, we can reduce pre-aged carbon contamination in Lapeyrère Bay, and date sediments within layers of siliceous mud and ooze in the Ross Sea, and near the Larsen C ice shelf. Improved accuracy for 14C dates of highly detrital sediments can sometimes require the incorporation of a larger blank correction to account for multiple analyses, decreasing the precision. Application of this method refines ages of hard-to-date sediments, removing limits on what to include in a regional approach to chronicle ice shelf collapse.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoegg, Edward D.; Barinaga, Charles J.; Hager, George J.

    ABSTRACT In order to meet a growing need for fieldable mass spectrometer systems for precise elemental and isotopic analyses, the liquid sampling-atmospheric pressure glow discharge (LS-APGD) has a number of very promising characteristics. One key set of attributes that await validation deals with the performance characteristics relative to isotope ratio precision and accuracy. Due to its availability and prior experience with this research team, the initial evaluation of isotope ratio (IR) performance was performed on a Thermo Scientific Exactive Orbitrap instrument. While the mass accuracy and resolution performance for orbitrap analyzers are very well documented, no detailed evaluations of themore » IR performance have been published. Efforts described here involve two variables: the inherent IR precision and accuracy delivered by the LSAPGD microplasma and the inherent IR measurement qualities of orbitrap analyzers. Important to the IR performance, the various operating parameters of the orbitrap sampling interface, HCD dissociation stage, and ion injection/data acquisition have been evaluated. The IR performance for a range of other elements, including natural, depleted, and enriched uranium isotopes was determined. In all cases the precision and accuracy are degraded when measuring low abundance (<0.1% isotope fractions). In the best case, IR precision on the order of 0.1 %RSD can be achieved, with values of 1-3 %RSD observed for low-abundance species. The results suggest that the LSAPGD is a very good candidate for field deployable MS analysis and that the high resolving powers of the orbitrap may be complemented with a here-to-fore unknown capacity to deliver high-precision isotope ratios.« less

  6. Principles of precision medicine in stroke.

    PubMed

    Hinman, Jason D; Rost, Natalia S; Leung, Thomas W; Montaner, Joan; Muir, Keith W; Brown, Scott; Arenillas, Juan F; Feldmann, Edward; Liebeskind, David S

    2017-01-01

    The era of precision medicine has arrived and conveys tremendous potential, particularly for stroke neurology. The diagnosis of stroke, its underlying aetiology, theranostic strategies, recurrence risk and path to recovery are populated by a series of highly individualised questions. Moreover, the phenotypic complexity of a clinical diagnosis of stroke makes a simple genetic risk assessment only partially informative on an individual basis. The guiding principles of precision medicine in stroke underscore the need to identify, value, organise and analyse the multitude of variables obtained from each individual to generate a precise approach to optimise cerebrovascular health. Existing data may be leveraged with novel technologies, informatics and practical clinical paradigms to apply these principles in stroke and realise the promise of precision medicine. Importantly, precision medicine in stroke will only be realised once efforts to collect, value and synthesise the wealth of data collected in clinical trials and routine care starts. Stroke theranostics, the ultimate vision of synchronising tailored therapeutic strategies based on specific diagnostic data, demand cerebrovascular expertise on big data approaches to clinically relevant paradigms. This review considers such challenges and delineates the principles on a roadmap for rational application of precision medicine to stroke and cerebrovascular health. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  7. PAH detection in Quercus robur leaves and Pinus pinaster needles: A fast method for biomonitoring purpose.

    PubMed

    De Nicola, F; Concha Graña, E; Aboal, J R; Carballeira, A; Fernández, J Á; López Mahía, P; Prada Rodríguez, D; Muniategui Lorenzo, S

    2016-06-01

    Due to the complexity and heterogeneity of plant matrices, new procedure should be standardized for each single biomonitor. Thus, here is described a matrix solid-phase dispersion extraction method, previously used for moss samples, improved and modified for the analyses of PAHs in Quercus robur leaves and Pinus pinaster needles, species widely used in biomonitoring studies across Europe. The improvements compared to the previous procedure are the use of Florisil added with further clean-up sorbents, 10% deactivated silica for pine needles and PSA for oak leaves, being these matrices rich in interfering compounds, as shown by the gas chromatography-mass spectrometry analyses acquired in full scan mode. Good trueness, with values in the range 90-120% for the most of compounds, high precision (intermediate precision between 2% and 12%) and good sensitivity using only 250mg of samples (limits of quantification lower than 3 and 1.5ngg(-1), respectively for pine and oak) were achieved by the selected procedures. These methods proved to be reliable for PAH analyses and, having advantage of fastness, can be used in biomonitoring studies of PAH air contamination. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Validation of the sperm class analyser CASA system for sperm counting in a busy diagnostic semen analysis laboratory.

    PubMed

    Dearing, Chey G; Kilburn, Sally; Lindsay, Kevin S

    2014-03-01

    Sperm counts have been linked to several fertility outcomes making them an essential parameter of semen analysis. It has become increasingly recognised that Computer-Assisted Semen Analysis (CASA) provides improved precision over manual methods but that systems are seldom validated robustly for use. The objective of this study was to gather the evidence to validate or reject the Sperm Class Analyser (SCA) as a tool for routine sperm counting in a busy laboratory setting. The criteria examined were comparison with the Improved Neubauer and Leja 20-μm chambers, within and between field precision, sperm concentration linearity from a stock diluted in semen and media, accuracy against internal and external quality material, assessment of uneven flow effects and a receiver operating characteristic (ROC) analysis to predict fertility in comparison with the Neubauer method. This work demonstrates that SCA CASA technology is not a standalone 'black box', but rather a tool for well-trained staff that allows rapid, high-number sperm counting providing errors are identified and corrected. The system will produce accurate, linear, precise results, with less analytical variance than manual methods that correlate well against the Improved Neubauer chamber. The system provides superior predictive potential for diagnosing fertility problems.

  9. Potassium Stable Isotopic Compositions Measured by High-Resolution MC-ICP-MS

    NASA Technical Reports Server (NTRS)

    Morgan, Leah E.; Lloyd, Nicholas S.; Ellam, Robert M.; Simon, Justin I.

    2012-01-01

    Potassium isotopic (K-41/K-39) compositions are notoriously difficult to measure. TIMS measurements are hindered by variable fractionation patterns throughout individual runs and too few isotopes to apply an internal spike method for instrumental mass fractionation corrections. Internal fractionation corrections via the K-40/K-39 ratio can provide precise values but assume identical K-40/K-39 ratios (e.g. 0.05% (1sigma) in [1]); this is appropriate in some cases (e.g. identifying excess K-41) but not others (e.g., determining mass fractionation effects and metrologically traceable isotopic abundances). SIMS analyses have yielded measurements with 0.25% precisions (1sigma) [2]. ICP-MS analyses are significantly affected by interferences from molecular species such as Ar-38H(+) and Ar-40H(+) and instrument mass bias. Single collector ICP-MS instruments in "cold plasma" mode have yielded uncertainties as low as 2% (1sigma, e.g. [3]). Although these precisions may be acceptable for some concentration determinations, they do not resolve isotopic variation in terrestrial materials. Here we present data from a series of measurements made on the Thermo Scientific NEPTUNE Plus multi-collector ICP-MS that demonstrate the ability to make K-41/K-39 ratio measurements with 0.07% precisions (1sigma). These data, collected on NIST K standards, indicate the potential for MC-ICP-MS measurements to look for K isotopic variations at the sub-permil level. The NEPTUNE Plus can sufficiently resolve 39K and 41K from the interfering 38ArH+ and 40ArH+ peaks in wet cold plasma and high-resolution mode. Measurements were made on small but flat, interference-free, plateaus (ca. 50 ppm by mass width for K-41). Although ICP-MS does not yield accurate K-41/K-39 values due to significant instrumental mass fractionation (ca. 6%), this bias can be sufficiently stable over the time required for several measurements so that relative K-41/K-39 values can be precisely determined via sample-standard bracketing. As cold plasma conditions can amplify matrix effects, experiments were conducted to test the matrix tolerance of measurements; the use of clean, matrix-matched samples and standards is critical. Limitations of the cold-plasma high-resolution MC-ICP-MS methodology with respect to matrix tolerance are discussed and compared with the limitations of TIMS methodologies.

  10. High-precision horizontally directed force measurements for high dead loads based on a differential electromagnetic force compensation system

    NASA Astrophysics Data System (ADS)

    Vasilyan, Suren; Rivero, Michel; Schleichert, Jan; Halbedel, Bernd; Fröhlich, Thomas

    2016-04-01

    In this paper, we present an application for realizing high-precision horizontally directed force measurements in the order of several tens of nN in combination with high dead loads of about 10 N. The set-up is developed on the basis of two identical state-of-the-art electromagnetic force compensation (EMFC) high precision balances. The measurement resolution of horizontally directed single-axis quasi-dynamic forces is 20 nN over the working range of  ±100 μN. The set-up operates in two different measurement modes: in the open-loop mode the mechanical deflection of the proportional lever is an indication of the acting force, whereas in the closed-loop mode it is the applied electric current to the coil inside the EMFC balance that compensates deflection of the lever to the offset zero position. The estimated loading frequency (cutoff frequency) of the set-up in the open-loop mode is about 0.18 Hz, in the closed-loop mode it is 0.7 Hz. One of the practical applications that the set-up is suitable for is the flow rate measurements of low electrically conducting electrolytes by applying the contactless technique of Lorentz force velocimetry. Based on a previously developed set-up which uses a single EMFC balance, experimental, theoretical and numerical analyses of the thermo-mechanical properties of the supporting structure are presented.

  11. The Geoscience Laser Altimetry/Ranging System (GLARS)

    NASA Technical Reports Server (NTRS)

    Cohen, S. C.; Degnan, J. J.; Bufton, J. L.; Garvin, J. B.; Abshire, J. B.

    1986-01-01

    The Geoscience Laser Altimetry Ranging System (GLARS) is a highly precise distance measurement system to be used for making extremely accurate geodetic observations from a space platform. It combines the attributes of a pointable laser ranging system making observations to cube corner retroreflectors placed on the ground with those of a nadir looking laser altimeter making height observations to ground, ice sheet, and oceanic surfaces. In the ranging mode, centimeter-level precise baseline and station coordinate determinations will be made on grids consisting of 100 to 200 targets separated by distances from a few tens of kilometers to about 1000 km. These measurements will be used for studies of seismic zone crustal deformations and tectonic plate motions. Ranging measurements will also be made to a coarser, but globally distributed array of retroreflectors for both precise geodetic and orbit determination applications. In the altimetric mode, relative height determinations will be obtained with approximately decimeter vertical precision and 70 to 100 meter horizontal resolution. The height data will be used to study surface topography and roughness, ice sheet and lava flow thickness, and ocean dynamics. Waveform digitization will provide a measure of the vertical extent of topography within each footprint. The planned Earth Observing System is an attractive candidate platform for GLARS since the GLAR data can be used both for direct analyses and for highly precise orbit determination needed in the reduction of data from other sensors on the multi-instrument platform. (1064, 532, and 355 nm)Nd:YAG laser meets the performance specifications for the system.

  12. Direct high-precision measurement of the magnetic moment of the proton.

    PubMed

    Mooser, A; Ulmer, S; Blaum, K; Franke, K; Kracke, H; Leiteritz, C; Quint, W; Rodegheri, C C; Smorra, C; Walz, J

    2014-05-29

    One of the fundamental properties of the proton is its magnetic moment, µp. So far µp has been measured only indirectly, by analysing the spectrum of an atomic hydrogen maser in a magnetic field. Here we report the direct high-precision measurement of the magnetic moment of a single proton using the double Penning-trap technique. We drive proton-spin quantum jumps by a magnetic radio-frequency field in a Penning trap with a homogeneous magnetic field. The induced spin transitions are detected in a second trap with a strong superimposed magnetic inhomogeneity. This enables the measurement of the spin-flip probability as a function of the drive frequency. In each measurement the proton's cyclotron frequency is used to determine the magnetic field of the trap. From the normalized resonance curve, we extract the particle's magnetic moment in terms of the nuclear magneton: μp = 2.792847350(9)μN. This measurement outperforms previous Penning-trap measurements in terms of precision by a factor of about 760. It improves the precision of the forty-year-old indirect measurement, in which significant theoretical bound state corrections were required to obtain µp, by a factor of 3. By application of this method to the antiproton magnetic moment, the fractional precision of the recently reported value can be improved by a factor of at least 1,000. Combined with the present result, this will provide a stringent test of matter/antimatter symmetry with baryons.

  13. Performance evaluation of the automated nucleated red blood cell enumeration on Sysmex XN analyser.

    PubMed

    Tantanate, C; Klinbua, C

    2015-06-01

    Presence of peripheral blood nucleated red blood cell (NRBC) is associated with pathological conditions and leads to the overestimation of white blood cell count in automated haematology analysers (HA). The authors evaluated NRBC enumeration by a new HA Sysmex XN (XN) to demonstrate the precision and comparability to manual count (MC) at the various NRBC values. Specimens with initially NRBC positive were included. For precision assessment, 8 levels of NRBCs were repeatedly analysed. For comparison study, 234 specimens were analysed by both XN and MC. For precision study, the percentage of coefficient of variation ranged from 14% to 45.6% and 1.2% to 4.4% for MC and XN, respectively. For comparison study between XN and MC, NRBCs ranged from 0% to 612.5%. Regression analysis demonstrated an r(2) of 0.98. The mean bias of 14.1% with 95% limits of agreement between -48.76% and 76.95% was found. The NRBC counts from XN appeared to be more in accordance with MC when the NRBCs were lower than 200% with the concordance rate of 94.2%. The automated NRBC enumeration by XN was precise and could replace the traditional MC, especially for the specimens with NRBCs lower than 200%. © 2014 John Wiley & Sons Ltd.

  14. The double-edged sword of high-precision U-Pb geochronology or be careful what you wish for. (Invited)

    NASA Astrophysics Data System (ADS)

    Bowring, S. A.

    2010-12-01

    Over the past two decades, U-Pb geochronology by ID-TIMS has been refined to achieve internal (analytical) uncertainties on a single grain analysis of ± ~ 0.1-0.2%, and 0.05% or better on weighted mean dates. This level of precision enables unprecedented evaluation of the rates and durations of geological processes, from magma chamber evolution to mass extinctions and recoveries. The increased precision, however, exposes complexity in magmatic/volcanic systems and highlights the importance of corrections related to disequilibrium partitioning of intermediate daughter products, and raises questions as to how best to interpret the complex spectrum of dates characteristic of many volcanic rocks. In addition, the increased precision requires renewed emphasis on the accuracy of U decay constants, the isotopic composition of U, the calibration of isotopic tracers, and the accurate propagation of uncertainties It is now commonplace in the high precision dating of volcanic ash-beds to analyze 5-20 single grains of zircon in an attempt to resolve the eruption/depositional age. Data sets with dispersion far in excess of analytical uncertainties are interpreted to reflect Pb-loss, inheritance, and protracted crystallization, often supported with zircon chemistry. In most cases, a weighted mean of the youngest reproducible dates is interpreted as the time of eruption/deposition. Crystallization histories of silicic magmatic systems recovered from plutonic rocks may also be protracted, though may not be directly applicable to silicic eruptions; each sample must be evaluated independently. A key to robust interpretations is the integration high-spatial resolution zircon trace element geochemistry with high-precision ID-TIMS analyses. The EARTHTIME initiative has focused on many of these issues, and the larger subject of constructing a timeline for earth history using both U-Pb and Ar-Ar chronometers. Despite continuing improvements in both, comparing dates for the same rock with both chronometers is not straightforward. Compelling issues range from pre-eruptive magma chamber residence, recognizing open system behavior, accurately correcting for disequilibrium amounts of 230Th and 231Pa, precise and accurate dates of fluence monitors for 40Ar/39Ar, and inter-laboratory biases. At present, despite the level of internal precision achievable by each technique, obstacles remain to combining both chronometers.

  15. Reporting of Uncertainty at the 2013 Annual Meeting of the American Society for Radiation Oncology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, W. Robert, E-mail: w.robert.lee@duke.edu

    Purpose: The annual meeting of the American Society for Radiation Oncology (ASTRO) is designed to disseminate new scientific findings and technical advances to professionals. Best practices of scientific dissemination require that some level of uncertainty (or imprecision) is provided. Methods and Materials: A total of 279 scientific abstracts were selected for oral presentation in a clinical session at the 2013 ASTRO Annual Meeting. A random sample of these abstracts was reviewed to determine whether a 95% confidence interval (95% CI) or analogous measure of precision was provided for time-to-event analyses. Results: A sample of 140 abstracts was reviewed. Of themore » 65 abstracts with Kaplan-Meier or cumulative incidence analyses, 6 included some measure of precision (6 of 65 = 9%; 95% CI, 2-16). Of the 43 abstracts reporting ratios for time-to-event analyses (eg, hazard ratio, risk ratio), 22 included some measure of precision (22 of 43 = 51%; 95% CI, 36-66). Conclusions: Measures of precision are not provided in a significant percentage of abstracts selected for oral presentation at the Annual Meeting of ASTRO.« less

  16. Automated Sample Preparation for Radiogenic and Non-Traditional Metal Isotopes: Removing an Analytical Barrier for High Sample Throughput

    NASA Astrophysics Data System (ADS)

    Field, M. Paul; Romaniello, Stephen; Gordon, Gwyneth W.; Anbar, Ariel D.; Herrmann, Achim; Martinez-Boti, Miguel A.; Anagnostou, Eleni; Foster, Gavin L.

    2014-05-01

    MC-ICP-MS has dramatically improved the analytical throughput for high-precision radiogenic and non-traditional isotope ratio measurements, compared to TIMS. The generation of large data sets, however, remains hampered by tedious manual drip chromatography required for sample purification. A new, automated chromatography system reduces the laboratory bottle neck and expands the utility of high-precision isotope analyses in applications where large data sets are required: geochemistry, forensic anthropology, nuclear forensics, medical research and food authentication. We have developed protocols to automate ion exchange purification for several isotopic systems (B, Ca, Fe, Cu, Zn, Sr, Cd, Pb and U) using the new prepFAST-MC™ (ESI, Nebraska, Omaha). The system is not only inert (all-flouropolymer flow paths), but is also very flexible and can easily facilitate different resins, samples, and reagent types. When programmed, precise and accurate user defined volumes and flow rates are implemented to automatically load samples, wash the column, condition the column and elute fractions. Unattended, the automated, low-pressure ion exchange chromatography system can process up to 60 samples overnight. Excellent reproducibility, reliability, recovery, with low blank and carry over for samples in a variety of different matrices, have been demonstrated to give accurate and precise isotopic ratios within analytical error for several isotopic systems (B, Ca, Fe, Cu, Zn, Sr, Cd, Pb and U). This illustrates the potential of the new prepFAST-MC™ (ESI, Nebraska, Omaha) as a powerful tool in radiogenic and non-traditional isotope research.

  17. Differential computation method used to calibrate the angle-centroid relationship in coaxial reverse Hartmann test

    NASA Astrophysics Data System (ADS)

    Li, Xinji; Hui, Mei; Zhao, Zhu; Liu, Ming; Dong, Liquan; Kong, Lingqin; Zhao, Yuejin

    2018-05-01

    A differential computation method is presented to improve the precision of calibration for coaxial reverse Hartmann test (RHT). In the calibration, the accuracy of the distance measurement greatly influences the surface shape test, as demonstrated in the mathematical analyses. However, high-precision absolute distance measurement is difficult in the calibration. Thus, a differential computation method that only requires the relative distance was developed. In the proposed method, a liquid crystal display screen successively displayed two regular dot matrix patterns with different dot spacing. In a special case, images on the detector exhibited similar centroid distributions during the reflector translation. Thus, the critical value of the relative displacement distance and the centroid distributions of the dots on the detector were utilized to establish the relationship between the rays at certain angles and the detector coordinates. Experiments revealed the approximately linear behavior of the centroid variation with the relative displacement distance. With the differential computation method, we increased the precision of traditional calibration 10-5 rad root mean square. The precision of the RHT was increased by approximately 100 nm.

  18. The precision of wet atmospheric deposition data from national atmospheric deposition program/national trends network sites determined with collocated samplers

    USGS Publications Warehouse

    Nilles, M.A.; Gordon, J.D.; Schroder, L.J.

    1994-01-01

    A collocated, wet-deposition sampler program has been operated since October 1988 by the U.S. Geological Survey to estimate the overall sampling precision of wet atmospheric deposition data collected at selected sites in the National Atmospheric Deposition Program and National Trends Network (NADP/NTN). A duplicate set of wet-deposition sampling instruments was installed adjacent to existing sampling instruments at four different NADP/NTN sites for each year of the study. Wet-deposition samples from collocated sites were collected and analysed using standard NADP/NTN procedures. Laboratory analyses included determinations of pH, specific conductance, and concentrations of major cations and anions. The estimates of precision included all variability in the data-collection system, from the point of sample collection through storage in the NADP/NTN database. Sampling precision was determined from the absolute value of differences in the analytical results for the paired samples in terms of median relative and absolute difference. The median relative difference for Mg2+, Na+, K+ and NH4+ concentration and deposition was quite variable between sites and exceeded 10% at most sites. Relative error for analytes whose concentrations typically approached laboratory method detection limits were greater than for analytes that did not typically approach detection limits. The median relative difference for SO42- and NO3- concentration, specific conductance, and sample volume at all sites was less than 7%. Precision for H+ concentration and deposition ranged from less than 10% at sites with typically high levels of H+ concentration to greater than 30% at sites with low H+ concentration. Median difference for analyte concentration and deposition was typically 1.5-2-times greater for samples collected during the winter than during other seasons at two northern sites. Likewise, the median relative difference in sample volume for winter samples was more than double the annual median relative difference at the two northern sites. Bias accounted for less than 25% of the collocated variability in analyte concentration and deposition from weekly collocated precipitation samples at most sites.A collocated, wet-deposition sampler program has been operated since OCtober 1988 by the U.S Geological Survey to estimate the overall sampling precision of wet atmospheric deposition data collected at selected sites in the National Atmospheric Deposition Program and National Trends Network (NADP/NTN). A duplicate set of wet-deposition sampling instruments was installed adjacent to existing sampling instruments four different NADP/NTN sites for each year of the study. Wet-deposition samples from collocated sites were collected and analysed using standard NADP/NTN procedures. Laboratory analyses included determinations of pH, specific conductance, and concentrations of major cations and anions. The estimates of precision included all variability in the data-collection system, from the point of sample collection through storage in the NADP/NTN database.

  19. Mars Atmospheric Escape Recorded by H, C and O Isotope Ratios in Carbon Dioxide and Water Measured by the Sam Tunable Laser Spectrometer on the Curiosity Rover

    NASA Technical Reports Server (NTRS)

    Webster, C. R.; Mahaffy, P. R.; Leshin, L. A.; Atreya, S. K.; Flesch, G. J.; Stern, J.; Christensen, L. E.; Vasavada, A. R.; Owen, T.; Niles, P. B.; hide

    2013-01-01

    Stable isotope ratios in C, H, N, O and S are powerful indicators of a wide variety of planetary geophysical processes that can identify origin, transport, temperature history, radiation exposure, atmospheric escape, environmental habitability and biological activity [2]. For Mars, measurements to date have indicated enrichment in all the heavier isotopes consistent with atmospheric escape processes, but with uncertainty too high to tie the results with the more precise isotopic ratios achieved from SNC meteoritic analyses. We will present results to date of H, C and O isotope ratios in CO2 and H2O made to high precision (few per mil) using the Tunable Laser Spectrometer (TLS) that is part of the Sample Analysis at Mars (SAM) instrument suite on MSL s Curiosity Rover.

  20. Nucleon Charges from 2+1+1-flavor HISQ and 2+1-flavor clover lattices

    DOE PAGES

    Gupta, Rajan

    2016-07-24

    Precise estimates of the nucleon charges g A, g S and g T are needed in many phenomenological analyses of SM and BSM physics. In this talk, we present results from two sets of calculations using clover fermions on 9 ensembles of 2+1+1-flavor HISQ and 4 ensembles of 2+1-flavor clover lattices. In addition, we show that high statistics can be obtained cost-effectively using the truncated solver method with bias correction and the coherent source sequential propagator technique. By performing simulations at 4–5 values of the source-sink separation t sep, we demonstrate control over excited-state contamination using 2- and 3-state fits.more » Using the high-precision 2+1+1-flavor data, we perform a simultaneous fit in a, M π and M πL to obtain our final results for the charges.« less

  1. Can the prevalence of high blood drug concentrations in a population be estimated by analysing oral fluid? A study of tetrahydrocannabinol and amphetamine.

    PubMed

    Gjerde, Hallvard; Verstraete, Alain

    2010-02-25

    To study several methods for estimating the prevalence of high blood concentrations of tetrahydrocannabinol and amphetamine in a population of drug users by analysing oral fluid (saliva). Five methods were compared, including simple calculation procedures dividing the drug concentrations in oral fluid by average or median oral fluid/blood (OF/B) drug concentration ratios or linear regression coefficients, and more complex Monte Carlo simulations. Populations of 311 cannabis users and 197 amphetamine users from the Rosita-2 Project were studied. The results of a feasibility study suggested that the Monte Carlo simulations might give better accuracies than simple calculations if good data on OF/B ratios is available. If using only 20 randomly selected OF/B ratios, a Monte Carlo simulation gave the best accuracy but not the best precision. Dividing by the OF/B regression coefficient gave acceptable accuracy and precision, and was therefore the best method. None of the methods gave acceptable accuracy if the prevalence of high blood drug concentrations was less than 15%. Dividing the drug concentration in oral fluid by the OF/B regression coefficient gave an acceptable estimation of high blood drug concentrations in a population, and may therefore give valuable additional information on possible drug impairment, e.g. in roadside surveys of drugs and driving. If good data on the distribution of OF/B ratios are available, a Monte Carlo simulation may give better accuracy. 2009 Elsevier Ireland Ltd. All rights reserved.

  2. Separation of Platinum from Palladium and Iridium in Iron Meteorites and Accurate High-Precision Determination of Platinum Isotopes by Multi-Collector ICP-MS.

    PubMed

    Hunt, Alison C; Ek, Mattias; Schönbächler, Maria

    2017-12-01

    This study presents a new measurement procedure for the isolation of Pt from iron meteorite samples. The method also allows for the separation of Pd from the same sample aliquot. The separation entails a two-stage anion-exchange procedure. In the first stage, Pt and Pd are separated from each other and from major matrix constituents including Fe and Ni. In the second stage, Ir is reduced with ascorbic acid and eluted from the column before Pt collection. Platinum yields for the total procedure were typically 50-70%. After purification, high-precision Pt isotope determinations were performed by multi-collector ICP-MS. The precision of the new method was assessed using the IIAB iron meteorite North Chile. Replicate analyses of multiple digestions of this material yielded an intermediate precision for the measurement results of 0.73 for ε 192 Pt, 0.15 for ε 194 Pt and 0.09 for ε 196 Pt (2 standard deviations). The NIST SRM 3140 Pt solution reference material was passed through the measurement procedure and yielded an isotopic composition that is identical to the unprocessed Pt reference material. This indicates that the new technique is unbiased within the limit of the estimated uncertainties. Data for three iron meteorites support that Pt isotope variations in these samples are due to exposure to galactic cosmic rays in space.

  3. Acceleration Disturbances onboard of Geodetic Precision Space Laboratories

    NASA Astrophysics Data System (ADS)

    Peterseim, Nadja; Jakob, Flury; Schlicht, Anja

    Bartlomiej Oszczak, b@dgps.pl University of Warmia and Mazury in Olsztyn, Poland, Olsztyn, Poland Olga Maciejczyk, omaciejczyk@gmail.com Poland In this paper there is presented the study on the parameters of the ASG-EUPOS real-time RTK service NAWGEO such as: accuracy, availability, integrity and continuity. Author's model is used for tests. These parameters enable determination of the quality of received information and practical applications of the service. Paper includes also the subject related to the NAWGEO service and algorithms used in determination of mentioned parameters. The results of accuracy and precision analyses and study on availability demonstrated that NAWGEO service enables a user a position determination with a few centimeters accuracy with high probability in any moment of time.

  4. CTD² in Action: Translating High-Content Genomic Data into New Therapies | Office of Cancer Genomics

    Cancer.gov

    Large-scale molecular analyses have provided an unprecedented global view of the molecular defects in cancers and promise to revolutionize precision cancer medicine by guiding the development of therapies that are matched to genomic alterations in tumors. Cancer is a heterogeneous disease which explains why there are varying responses to therapy. This heterogeneity poses a daunting challenge for clinicians managing a patient’s disease.

  5. Fully Nonlinear Modeling and Analysis of Precision Membranes

    NASA Technical Reports Server (NTRS)

    Pai, P. Frank; Young, Leyland G.

    2003-01-01

    High precision membranes are used in many current space applications. This paper presents a fully nonlinear membrane theory with forward and inverse analyses of high precision membrane structures. The fully nonlinear membrane theory is derived from Jaumann strains and stresses, exact coordinate transformations, the concept of local relative displacements, and orthogonal virtual rotations. In this theory, energy and Newtonian formulations are fully correlated, and every structural term can be interpreted in terms of vectors. Fully nonlinear ordinary differential equations (ODES) governing the large static deformations of known axisymmetric membranes under known axisymmetric loading (i.e., forward problems) are presented as first-order ODES, and a method for obtaining numerically exact solutions using the multiple shooting procedure is shown. A method for obtaining the undeformed geometry of any axisymmetric membrane with a known inflated geometry and a known internal pressure (i.e., inverse problems) is also derived. Numerical results from forward analysis are verified using results in the literature, and results from inverse analysis are verified using known exact solutions and solutions from the forward analysis. Results show that the membrane theory and the proposed numerical methods for solving nonlinear forward and inverse membrane problems are accurate.

  6. Pyroxene-melt equilibria. [for lunar maria basalts

    NASA Technical Reports Server (NTRS)

    Nielsen, R. L.; Drake, M. J.

    1979-01-01

    A thermodynamic analysis of pyroxene-melt equilibria is performed through use of a literature survey of analyses of high-Ca pyroxene and coexisting silicate melt pairs and analyses of low-Ca pyroxene silicate melt pairs. Reference is made to a modified version of a model developed by Bottinga and Weill (1972) which more successfully accounts for variations in melt composition than does a model which considers the melt to be composed of simple oxides which mix ideally. By using a variety of pyroxene melt relations, several pyroxene-melt and low-Ca pyroxene-high-Ca pyroxene geothermometers are developed which have internally consistant precisions of approximately + or - 20 C. Finally, it is noted that these equations may have application in modeling the evolution of mineral compositions during differentiation of basaltic magmas.

  7. A robust internal control for high-precision DNA methylation analyses by droplet digital PCR.

    PubMed

    Pharo, Heidi D; Andresen, Kim; Berg, Kaja C G; Lothe, Ragnhild A; Jeanmougin, Marine; Lind, Guro E

    2018-01-01

    Droplet digital PCR (ddPCR) allows absolute quantification of nucleic acids and has potential for improved non-invasive detection of DNA methylation. For increased precision of the methylation analysis, we aimed to develop a robust internal control for use in methylation-specific ddPCR. Two control design approaches were tested: (a) targeting a genomic region shared across members of a gene family and (b) combining multiple assays targeting different pericentromeric loci on different chromosomes. Through analyses of 34 colorectal cancer cell lines, the performance of the control assay candidates was optimized and evaluated, both individually and in various combinations, using the QX200™ droplet digital PCR platform (Bio-Rad). The best-performing control was tested in combination with assays targeting methylated CDO1 , SEPT9 , and VIM . A 4Plex panel consisting of EPHA3 , KBTBD4 , PLEKHF1 , and SYT10 was identified as the best-performing control. The use of the 4Plex for normalization reduced the variability in methylation values, corrected for differences in template amount, and diminished the effect of chromosomal aberrations. Positive Droplet Calling (PoDCall), an R-based algorithm for standardized threshold determination, was developed, ensuring consistency of the ddPCR results. Implementation of a robust internal control, i.e., the 4Plex, and an algorithm for automated threshold determination, PoDCall, in methylation-specific ddPCR increase the precision of DNA methylation analysis.

  8. Phosphorus Concentrations in Stream-Water and Reference Samples - An Assessment of Laboratory Comparability

    USGS Publications Warehouse

    McHale, Michael R.; McChesney, Dennis

    2007-01-01

    In 2003, a study was conducted to evaluate the accuracy and precision of 10 laboratories that analyze water-quality samples for phosphorus concentrations in the Catskill Mountain region of New York State. Many environmental studies in this region rely on data from these different laboratories for water-quality analyses, and the data may be used in watershed modeling and management decisions. Therefore, it is important to determine whether the data reported by these laboratories are of comparable accuracy and precision. Each laboratory was sent 12 samples for triplicate analysis for total phosphorus, total dissolved phosphorus, and soluble reactive phosphorus. Eight of these laboratories reported results that met comparability criteria for all samples; the remaining two laboratories met comparability criteria for only about half of the analyses. Neither the analytical method used nor the sample concentration ranges appeared to affect the comparability of results. The laboratories whose results were comparable gave consistently comparable results throughout the concentration range analyzed, and the differences among methods did not diminish comparability. All laboratories had high data precision as indicated by sample triplicate results. In addition, the laboratories consistently reported total phosphorus values greater than total dissolved phosphorus values, and total dissolved phosphorus values greater than soluble reactive phosphorus values, as would be expected. The results of this study emphasize the importance of regular laboratory participation in sample-exchange programs.

  9. Delta14 CO2 Atmospheric Record from Schauinsland, Germany

    DOE Data Explorer

    Levin, Ingeborg [Institut fur Umweltphysik, University of Heidelberg, Heidelberg, Germany; Kromer, Bernd [Institut fur Umweltphysik, University of Heidelberg, Heidelberg, Germany

    1997-01-01

    All air samples at Schauinsland have been collected from a ventilated intake stack approximately 7m above the ground. Bi-weekly integrated CO2 samples from about 15-20 m3 of air have been continuously collected by dynamic quantitative absorption in carbonate-free sodium hydroxide (NaOH) solution. Air has been pumped through a rotating glass tube filled with a packed bed of Raschig rings (hard glass) to enlarge the surface of the absorbing NaOH solution (200 ml of 4 normal NaOH). The CO2 absorption is quantitative and samples represent mean values of 10 days to 2 weeks. In the laboratory, the samples are extracted from the NaOH solution in a vacuum system by adding hydrochloric or sulfuric acid. 13C analyses of the CO2 are by mass spectrometry and 14C analyses are by high precision proportional counting, after purification of the CO2 sample over charcoal (Schoch et al. 1980, Kromer and Münnich 1992). δ13C values are given relative to the V-PDB standard (Hut 1987) with the overall precision of a single analysis reported to be +/- 0.15 per mil (Levin and Kromer 1997). δ14C data are given relative to the NIST oxalic acid activity corrected for decay (Stuiver and Polach 1977) with the precision of a single δ14C measurement reported to be +/- 3-5 per mil (Levin and Kromer 1997).

  10. High Spatiotemporal Resolution ECoG Recording of Somatosensory Evoked Potentials with Flexible Micro-Electrode Arrays.

    PubMed

    Kaiju, Taro; Doi, Keiichi; Yokota, Masashi; Watanabe, Kei; Inoue, Masato; Ando, Hiroshi; Takahashi, Kazutaka; Yoshida, Fumiaki; Hirata, Masayuki; Suzuki, Takafumi

    2017-01-01

    Electrocorticogram (ECoG) has great potential as a source signal, especially for clinical BMI. Until recently, ECoG electrodes were commonly used for identifying epileptogenic foci in clinical situations, and such electrodes were low-density and large. Increasing the number and density of recording channels could enable the collection of richer motor/sensory information, and may enhance the precision of decoding and increase opportunities for controlling external devices. Several reports have aimed to increase the number and density of channels. However, few studies have discussed the actual validity of high-density ECoG arrays. In this study, we developed novel high-density flexible ECoG arrays and conducted decoding analyses with monkey somatosensory evoked potentials (SEPs). Using MEMS technology, we made 96-channel Parylene electrode arrays with an inter-electrode distance of 700 μm and recording site area of 350 μm 2 . The arrays were mainly placed onto the finger representation area in the somatosensory cortex of the macaque, and partially inserted into the central sulcus. With electrical finger stimulation, we successfully recorded and visualized finger SEPs with a high spatiotemporal resolution. We conducted offline analyses in which the stimulated fingers and intensity were predicted from recorded SEPs using a support vector machine. We obtained the following results: (1) Very high accuracy (~98%) was achieved with just a short segment of data (~15 ms from stimulus onset). (2) High accuracy (~96%) was achieved even when only a single channel was used. This result indicated placement optimality for decoding. (3) Higher channel counts generally improved prediction accuracy, but the efficacy was small for predictions with feature vectors that included time-series information. These results suggest that ECoG signals with high spatiotemporal resolution could enable greater decoding precision or external device control.

  11. High Spatiotemporal Resolution ECoG Recording of Somatosensory Evoked Potentials with Flexible Micro-Electrode Arrays

    PubMed Central

    Kaiju, Taro; Doi, Keiichi; Yokota, Masashi; Watanabe, Kei; Inoue, Masato; Ando, Hiroshi; Takahashi, Kazutaka; Yoshida, Fumiaki; Hirata, Masayuki; Suzuki, Takafumi

    2017-01-01

    Electrocorticogram (ECoG) has great potential as a source signal, especially for clinical BMI. Until recently, ECoG electrodes were commonly used for identifying epileptogenic foci in clinical situations, and such electrodes were low-density and large. Increasing the number and density of recording channels could enable the collection of richer motor/sensory information, and may enhance the precision of decoding and increase opportunities for controlling external devices. Several reports have aimed to increase the number and density of channels. However, few studies have discussed the actual validity of high-density ECoG arrays. In this study, we developed novel high-density flexible ECoG arrays and conducted decoding analyses with monkey somatosensory evoked potentials (SEPs). Using MEMS technology, we made 96-channel Parylene electrode arrays with an inter-electrode distance of 700 μm and recording site area of 350 μm2. The arrays were mainly placed onto the finger representation area in the somatosensory cortex of the macaque, and partially inserted into the central sulcus. With electrical finger stimulation, we successfully recorded and visualized finger SEPs with a high spatiotemporal resolution. We conducted offline analyses in which the stimulated fingers and intensity were predicted from recorded SEPs using a support vector machine. We obtained the following results: (1) Very high accuracy (~98%) was achieved with just a short segment of data (~15 ms from stimulus onset). (2) High accuracy (~96%) was achieved even when only a single channel was used. This result indicated placement optimality for decoding. (3) Higher channel counts generally improved prediction accuracy, but the efficacy was small for predictions with feature vectors that included time-series information. These results suggest that ECoG signals with high spatiotemporal resolution could enable greater decoding precision or external device control. PMID:28442997

  12. Sensitive and selective determination of methylenedioxylated amphetamines by high-performance liquid chromatography with fluorimetric detection.

    PubMed

    Sadeghipour, F; Veuthey, J L

    1997-11-07

    A rapid, sensitive and selective liquid chromatographic method with fluorimetric detection was developed for the separation and quantification of four methylenedioxylated amphetamines without interference of other drugs of abuse and common substances found in illicit tablets. The method was validated by examining linearity, precision and accuracy as well as detection and quantification limits. Methylenedioxylated amphetamines were quantified in eight tablets from illicit drug seizures and results were quantitatively compared to HPLC-UV analyses. To demonstrate the better sensitivity of the fluorimetric detection, methylenedioxylated amphetamines were analyzed in serum after a liquid-liquid extraction procedure and results were also compared to HPLC-UV analyses.

  13. Totomatix: a novel automatic set-up to control diurnal, diel and long-term plant nitrate nutrition

    PubMed Central

    Adamowicz, Stéphane; Le Bot, Jacques; Huanosto Magaña, Ruth; Fabre, José

    2012-01-01

    Background Stand-alone nutritional set-ups are useful tools to grow plants at defined nutrient availabilities and to measure nutrient uptake rates continuously, in particular that for nitrate. Their use is essential when the measurements are meant to cover long time periods. These complex systems have, however, important drawbacks, including poor long-term reliability and low precision at high nitrate concentration. This explains why the information dealing with diel dynamics of nitrate uptake rate is scarce and concerns mainly young plants grown at low nitrate concentration. Scope The novel system detailed in this paper has been developed to allow versatile use in growth rooms, greenhouses or open fields at nitrate concentrations ranging from a few micro- to several millimoles per litres. The system controls, at set frequencies, the solution nitrate concentration, pH and volumes. Nitrate concentration is measured by spectral deconvolution of UV spectra. The main advantages of the set-up are its low maintenance (weekly basis), an ability to diagnose interference or erroneous analyses and high precision of nitrate concentration measurements (0·025 % at 3 mm). The paper details the precision of diurnal nitrate uptake rate measurements, which reveals sensitivity to solution volume at low nitrate concentration, whereas at high concentration, it is mostly sensitive to the precision of volume estimates. Conclusions This novel set-up allows us to measure and characterize the dynamics of plant nitrate nutrition at high temporal resolution (minutes to hours) over long-term experiments (up to 1 year). It is reliable and also offers a novel method to regulate up to seven N treatments by adjusting the daily uptake of test plants relative to controls, in variable environments such as open fields and glasshouses. PMID:21985796

  14. Effects of Simple Leaching of Crushed and Powdered Materials on High-precision Pb Isotope Analyses

    NASA Astrophysics Data System (ADS)

    Todd, E.; Stracke, A.

    2013-12-01

    We present new results of simple leaching experiments on the Pb isotope composition of USGS standard reference material powders and on ocean island basalt whole rock splits and powders. Rock samples were leached with 6N HCl in two steps, first hot and then in an ultrasonic bath, and washed with ultrapure H2O before conventional sample digestion and chromatographic purification of Pb. Pb isotope analyses were determined with Tl-doped MC-ICP-MS. Intra- and inter-session analytical reproducibility of repeated analyses of both synthetic Pb solutions and Pb from single digests of chemically processed natural samples were generally < 100 ppm (2 S.D.). The comparison of leached and unleached samples shows that leaching reliably removes variable amounts of different contaminants for different starting materials. For repeated digests of a single sample, the leached samples reproduce better than the unleached ones, showing that leaching effectively removes heterogeneously distributed extraneous Pb. However, the reproducibility of repeated digests of variably contaminated natural samples is up to an order of magnitude worse than the analytical reproducibility of ca. 100 ppm. More complex leaching methods (e.g., Nobre Silva et al., 2009) yield Pb isotope ratios within error of and with similar reproducibility to our method, showing that the simple leaching method is reliable. The remaining Pb isotope heterogeneity of natural samples, which typically exceeds 100 ppm, is thus attributed to inherent isotopic sample heterogeneity. Tl-doped MC-ICP-MS Pb ratio determination is therefore a sufficiently precise method for Pb isotope analyses in natural rocks. More precise Pb double- or triple-spike methods (e.g., Galer, 1999; Thirlwall, 2000), may exploit their full potential only in cases where natural isotopic sample heterogeneity is demonstrably negligible. References: Galer, S., 1999, Chem. Geol. 157, 255-274. Nobre Silva, et al. 2009, Geochemistry Geophysics Geosystems 10, Q08012. Thirlwall, M.F., 2000, Chem. Geol. 163, 299-322.

  15. Spectroscopic diagnostics of solar flares

    NASA Astrophysics Data System (ADS)

    Bely-Dubau, F.; Dubau, J.; Faucher, P.; Loulergue, M.; Steenman-Clarke, L.

    Observations made with the X-ray polychromator (XRP) on board the Solar Maximum Mission satellite were analyzed. Data from the bent crystal spectrometer portion of the XRP experiment, in the spectral domain 1 to 3 A, with high spectral and temporal resolution, were used. Results for the spectrum analysis of iron are given. The possibility of polarization effects is considered. Although it is demonstrated that hyperfine analyses of a given spectrum are obtainable, provided calculations include large quantities of high precision atomic data, the interpretation is limited by the hypothesis of homogeneity of the emitting plasma.

  16. Microfluidics for Single-Cell Genetic Analysis

    PubMed Central

    Thompson, A. M.; Paguirigan, A. L.; Kreutz, J. E.; Radich, J. P.; Chiu, D. T.

    2014-01-01

    The ability to correlate single-cell genetic information to cellular phenotypes will provide the kind of detailed insight into human physiology and disease pathways that is not possible to infer from bulk cell analysis. Microfluidic technologies are attractive for single-cell manipulation due to precise handling and low risk of contamination. Additionally, microfluidic single-cell techniques can allow for high-throughput and detailed genetic analyses that increase accuracy and decreases reagent cost compared to bulk techniques. Incorporating these microfluidic platforms into research and clinical laboratory workflows can fill an unmet need in biology, delivering the highly accurate, highly informative data necessary to develop new therapies and monitor patient outcomes. In this perspective, we describe the current and potential future uses of microfluidics at all stages of single-cell genetic analysis, including cell enrichment and capture, single-cell compartmentalization and manipulation, and detection and analyses. PMID:24789374

  17. Using kinematic reduction for studying grasping postures. An application to power and precision grasp of cylinders.

    PubMed

    Jarque-Bou, N; Gracia-Ibáñez, V; Sancho-Bru, J L; Vergara, M; Pérez-González, A; Andrés, F J

    2016-09-01

    The kinematic analysis of human grasping is challenging because of the high number of degrees of freedom involved. The use of principal component and factorial analyses is proposed in the present study to reduce the hand kinematics dimensionality in the analysis of posture for ergonomic purposes, allowing for a comprehensive study without losing accuracy while also enabling velocity and acceleration analyses to be performed. A laboratory study was designed to analyse the effect of weight and diameter in the grasping posture for cylinders. This study measured the hand posture from six subjects when transporting cylinders of different weights and diameters with precision and power grasps. The hand posture was measured using a Vicon(®) motion-tracking system, and the principal component analysis was applied to reduce the kinematics dimensionality. Different ANOVAs were performed on the reduced kinematic variables to check the effect of weight and diameter of the cylinders, as well as that of the subject. The results show that the original twenty-three degrees of freedom of the hand were reduced to five, which were identified as digit arching, closeness, palmar arching, finger adduction and thumb opposition. Both cylinder diameter and weight significantly affected the precision grasping posture: diameter affects closeness, palmar arching and opposition, while weight affects digit arching, palmar arching and closeness. The power-grasping posture was mainly affected by the cylinder diameter, through digit arching, closeness and opposition. The grasping posture was largely affected by the subject factor and this effect couldn't be attributed only to hand size. In conclusion, this kinematic reduction allowed identifying the effect of the diameter and weight of the cylinders in a comprehensive way, being diameter more important than weight. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Measurement of immature platelets with Abbott CD-Sapphire and Sysmex XE-5000 in haematology and oncology patients.

    PubMed

    Meintker, Lisa; Haimerl, Maria; Ringwald, Jürgen; Krause, Stefan W

    2013-11-01

    Measurement of immature platelets was introduced into routine diagnostics by Sysmex as immature platelet fraction (IPF) some years ago and recently by Abbott as reticulated platelet fraction (rPT). Here, we compare both methods. We evaluated the precision and agreement of these parameters between Sysmex XE-5000 and Abbott CD-Sapphire in three distinct thrombocytopaenic cohorts: 30 patients with beginning thrombocytopaenia and 64 patients with recovering platelets (PLT) after chemotherapy, 16 patients with immune thrombocytopaenia (ITP) or heparin-induced thrombocytopaenia type 2 (HIT) and 110 additional normal controls. Furthermore, we analysed, how IPF/rPT differed between these thrombocytopaenic cohorts and controls. Both analysers demonstrated acceptable overall precision (repeatability) of IPF/rPT with lower precision at low PLT counts. IPF/rPT artificially increased during storage of blood samples overnight. Inter-instrument comparison showed a moderate correlation (Pearson r²=0.38) and a systematic bias of 1.04 towards higher IPF-values with the XE-5000. IPF/rPT was highest in recovering thrombopoesis after chemotherapy and moderately increased in ITP/HIT. The normal range deduced from control samples was much narrower with CD-Sapphire (1.0%-3.8%, established here for the first time) in comparison to XE-5000 (0.8%-7.9%) leading to a smaller overlap of samples with increased PLT turnover and normal controls. IPF and rPT both give useful information on PLT turnover, although the two analysers only show a moderate inter-instrument correlation and have different reference ranges. A better separation of patient groups with high PLT turnover like ITP/HIT from normal controls is obtained by CD-Sapphire.

  19. Evaluating the provenance of Permian-Triassic and Palaeocene-Eocene ash beds by high precision U-Pb and Lu-Hf isotopic analyses of zircons: linking local sedimentary records to global events

    NASA Astrophysics Data System (ADS)

    Eivind Augland, Lars; Jones, Morgan; Planke, Sverre; Svensen, Henrik; Tegner, Christian

    2016-04-01

    Zircons are a powerful tool in geochronology and isotope geochemistry, as their affinity for U and Hf in the crystal structure and the low initial Pb and Lu allow for precise and accurate dating by U-Pb ID-TIMS and precise and accurate determination of initial Hf isotopic composition by solution MC-ICP-MS analysis. The U-Pb analyses provide accurate chronostratigraphic controls on the sedimentary successions and absolute age frames for the biotic evolution across geological boundaries. Moreover, the analyses of Lu-Hf by solution MC-ICP-MS after Hf-purification column chemistry provide a powerful and robust fingerprinting tool to test the provenance of individual ash beds. Here we focus on ash beds from Permian-Triassic and Palaeocene successions in Svalbard and from the Palaeocene-Eocene Thermal Maximum (PETM) in Fur, Denmark. Used in combination with whole rock geochemistry from the ash layers and the available geochemical and isotopic data from potential source volcanoes, these data are used to evaluate the provenance of the Permian-Triassic and Palaeocene ashes preserved in Svalbard and PETM ashes in Denmark. If explosive eruptions from volcanic centres such as the Siberian Traps and the North Atlantic Igneous Province (NAIP) can be traced to distal basins as ash layers, they provide robust tests of hypotheses of global synchronicity of environmental changes and biotic crises. In addition, the potential correlation of ash layers with source volcanoes will aid in constraining the extent of explosive volcanism in the respective volcanic centres. The new integrated data sets will also contribute to establish new reference sections for the study of these boundary events when combined with stable isotope data and biostratigraphy.

  20. Gravitational Lensing 2.0

    NASA Astrophysics Data System (ADS)

    Wittman, David M.; Benson, Bryant

    2018-06-01

    Weak lensing analyses use the image---the intensity field---of a distant galaxy to infer gravitational effects on that line of sight. What if we analyze the velocity field instead? We show that lensing imprints much more information onto a highly ordered velocity field, such as that of a rotating disk galaxy, than onto an intensity field. This is because shuffling intensity pixels yields a post-lensed image quite similar to an unlensed galaxy with a different orientation, a problem known as "shape noise." We show that velocity field analysis can eliminate shape noise and yield much more precise lensing constraints. Furthermore, convergence as well as shear can be constrained using the same target, and there is no need to assume the weak lensing limit of small convergence. We present Fisher matrix forecasts of the precision achievable with this method. Velocity field observations are expensive, so we derive guidelines for choosing suitable targets by exploring how precision varies with source parameters such as inclination angle and redshift. Finally, we present simulations that support our Fisher matrix forecasts.

  1. A volcanic connection between the Pennsylvanian of the Mid-Continent and Appalachian regions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lyons, P.C.; Congdon, R.D.; Outerbridge, W.F.

    1993-02-01

    Until now, it has not been possible to find key beds that precisely connect the Pennsylvanian section in the Mid-Continent and Appalachian regions. Altered volcanic ash deposits (tonsteins) offer the potential for high-precision stratigraphic correlation. The Fire Clay tonstein which is chemically distinct from the other five Middle Pennsylvanian tonstein beds in the central Appalachian basin, has a unimodal, rhyolitic fingerprint'' based on glass-inclusion data (n = 109) from volcanic quartz. This tonstein has been correlated over a distance of about 400 km in KY, WV, VA, and TN. Analyses of glass inclusions (n = 12) in volcanic quartz frommore » a mixed-layer (illite/smectite) tonstein (K-bentonite) from near the Morrowan-Atokan boundary, recovered from cuttings in Arkansas wells (Phillips Petroleum Co., [number sign]2, Johnson City; Carter Oil Co., [number sign]1 Williams, Conway City), are identical, within the limits of analytical precision, to those from the Fire Clay tonstein.« less

  2. Research regarding the influence of driving-wires length change on positioning precision of a robotic arm

    NASA Astrophysics Data System (ADS)

    Ciofu, C.; Stan, G.

    2016-08-01

    The paper emphasise positioning precision of an elephant's trunk robotic arm which has joints driven by wires with variable length while operating The considered 5 degrees of freedom robotic arm has a particular structure of joint that makes possible inner actuation with wire-driven mechanism. We analyse solely the length change of wires as a consequence due inner winding and unwinding on joints for certain values of rotational angles. Variations in wires length entail joint angular displacements. We analyse positioning precision by taking into consideration equations from inverse kinematics of the elephant's trunk robotic arm. The angular displacements of joints are considered into computational method after partial derivation of positioning equations. We obtain variations of wires length at about tenths of micrometers. These variations employ angular displacements which are about minutes of sexagesimal degree and, thus, define positioning precision of elephant's trunk robotic arms. The analytical method is used for determining aftermath design structure of an elephant's trunk robotic arm with inner actuation through wires on positioning precision. Thus, designers could take suitable decisions on accuracy specifications limits of the robotic arm.

  3. A comparison of technical replicate (cuts) effect on lamb Warner-Bratzler shear force measurement precision.

    PubMed

    Holman, B W B; Alvarenga, T I R C; van de Ven, R J; Hopkins, D L

    2015-07-01

    The Warner-Bratzler shear force (WBSF) of 335 lamb m. longissimus lumborum (LL) caudal and cranial ends was measured to examine and simulate the effect of replicate number (r: 1-8) on the precision of mean WBSF estimates and to compare LL caudal and cranial end WBSF means. All LL were sourced from two experimental flocks as part of the Information Nucleus slaughter programme (CRC for Sheep Industry Innovation) and analysed using a Lloyd Texture analyser with a Warner-Bratzler blade attachment. WBSF data were natural logarithm (ln) transformed before statistical analysis. Mean ln(WBSF) precision improved as r increased; however the practical implications support an r equal to 6, as precision improves only marginally with additional replicates. Increasing LL sample replication results in better ln(WBSF) precision compared with increasing r, provided that sample replicates are removed from the same LL end. Cranial end mean WBSF was 11.2 ± 1.3% higher than the caudal end. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  4. A Portable FTIR Analyser for Field Measurements of Trace Gases and their Isotopologues: CO2, CH4, N2O, CO, del13C in CO2 and delD in water vapour

    NASA Astrophysics Data System (ADS)

    Griffith, D. W.; Bryant, G. R.; Deutscher, N. M.; Wilson, S. R.; Kettlewell, G.; Riggenbach, M.

    2007-12-01

    We describe a portable Fourier Transform InfraRed (FTIR) analyser capable of simultaneous high precision analysis of CO2, CH4, N2O and CO in air, as well as δ13C in CO2 and δD in water vapour. The instrument is based on a commercial 1 cm-1 resolution FTIR spectrometer fitted with a mid-IR globar source, 26 m multipass White cell and thermoelectrically-cooled MCT detector operating between 2000 and 7500 cm-1. Air is passed through the cell and analysed in real time without any pre-treatment except for (optional) drying. An inlet selection manifold allows automated sequential analysis of samples from one or more inlet lines, with typical measurement times of 1-10 minutes per sample. The spectrometer, inlet sampling sequence, real-time quantitative spectrum analysis, data logging and display are all under the control of a single program running on a laptop PC, and can be left unattended for continuous measurements over periods of weeks to months. Selected spectral regions of typically 100-200 cm-1 width are analysed by a least squares fitting technique to retrieve concentrations of trace gases, 13CO2 and HDO. Typical precision is better than 0.1% without the need for calibration gases. Accuracy is similar if measurements are referenced to calibration standard gases. δ13C precision is typically around 0.1‰, and for δD it is 1‰. Applications of the analyser include clean and polluted air monitoring, tower-based flux measurements such as flux gradient or integrated horizontal flux measurements, automated soil chambers, and field-based measurements of isotopic fractionation in soil-plant-atmosphere systems. The simultaneous multi-component advantages can be exploited in tracer-type emission measurements, for example of CH4 from livestock using a co-released tracer gas and downwind measurement. We have also developed an open path variant especially suited to tracer release studies and measurements of NH3 emissions from agricultural sources. An illustrative selection of applications will be presented.

  5. Precise and accurate in situ Pb-Pb dating of apatite, monazite, and sphene by laser ablation multiple-collector ICP-MS

    NASA Astrophysics Data System (ADS)

    Willigers, B. J. A.; Baker, J. A.; Krogstad, E. J.; Peate, D. W.

    2002-03-01

    To evaluate in situ Pb dating by laser ablation multiple-collector inductively coupled plasma mass spectrometry (LA-MC-ICP-MS), we analysed apatite, sphene, and monazite from Paleoproterozoic metamorphic rocks from West Greenland. Pb isotope ratios were also determined in the National Institute of Standards and Technology (NIST) 610 glass standard and were corrected for mass fractionation by reference to the measured thallium isotope ratio. The NIST 610 glass was used to monitor Pb isotope mass fractionation in the low Tl/Pb accessory minerals. Replicate analyses of the glass (1 to 2 min) yielded ratios with an external reproducibility comparable to conventional analyses of standard reference material 981 by thermal ionisation mass spectrometry (TIMS). Mineral grains were generally analysed with a 100-μm laser beam, although some monazite crystals were analysed at smaller spot sizes (10 and 25 μm). The common Pb isotope ratios required for age calculations were either measured on coexisting plagioclase by LA-MC-ICP-MS or could be ignored, as individual crystals exhibit sufficient Pb isotopic heterogeneity to perform isochron calculations on replicate analyses of single crystals. Mean mineral ages with the 204Pb ion beam measured in the multiplier were as follows: apatite, 1715 ± 23 m.y.; sphene, 1789 ± 11 m.y.; and monazite, 1783 to 1888 m.y., with relative uncertainties on individual monazite ages of <0.2% but highly reproducible age determinations on single monazite crystals (≪1%). Isochron ages calculated from several mineral analyses without assumption of common Pb also yield precise age determinations. Apatite and monazite Pb ages determined by in situ Pb isotope analysis are identical to those determined by conventional TIMS analysis of bulk mineral separates, and the analytical uncertainties of these short laser analyses with no prior mechanical or chemical separation are comparable to those obtained by TIMS. Detailed examination of the sphene in situ age data does, however, show a small discrepancy between the LA-MC-ICP-MS and TIMS ages (˜1% younger). High-resolution mass scans of the sphene during ablation clearly showed several small and as yet unidentified isobaric interferences that overlap with the 207Pb peak at the resolution conditions for measurement of isotope ratios. These might account for the age discrepancy between the LA-MC-ICP-MS and TIMS sphene ages. LA-MC-ICP-MS is a rapid, accurate, and precise method for in situ determination of Pb isotope ratios that can be used for geochronological studies in a manner similar to an ion microprobe, albeit currently at a somewhat degraded spatial resolution. Further modifications to the LA-MC-ICP-MS system, such as improved sensitivity, ion transmission, and LA methodology, may lead to this type of instrument becoming the method of choice for many types of in situ Pb isotope dating.

  6. U-Pb SHRIMP dating of uraniferous opals

    USGS Publications Warehouse

    Nemchin, A.A.; Neymark, L.A.; Simons, S.L.

    2006-01-01

    U-Pb and U-series analyses of four U-rich opal samples using sensitive high-resolution ion microprobe (SHRIMP) demonstrate the potential of this technique for the dating of opals with ages ranging from several tens of thousand years to millions of years. The major advantages of the technique, compared to the conventional thermal ionisation mass spectrometry (TIMS), are the high spatial resolution (???20 ??m), the ability to analyse in situ all isotopes required to determine both U-Pb and U-series ages, and a relatively short analysis time which allows obtaining a growth rate of opal as a result of a single SHRIMP session. There are two major limitations to this method, determined by both current level of development of ion probes and understanding of ion sputtering processes. First, sufficient secondary ion beam intensities can only be obtained for opal samples with U concentrations in excess of ???20 ??g/g. However, this restriction still permits dating of a large variety of opals. Second, U-Pb ratios in all analyses drifted with time and were only weakly correlated with changes in other ratios (such as U/UO). This drift, which is difficult to correct for, remains the main factor currently limiting the precision and accuracy of the U-Pb SHRIMP opal ages. Nevertheless, an assumption of similar behaviour of standard and unknown opals under similar analytical conditions allowed successful determination of ages with precisions of ???10% for the samples investigated in this study. SHRIMP-based U-series and U-Pb ages are consistent with TIMS dating results of the same materials and known geological timeframes. ?? 2005 Elsevier B.V. All rights reserved.

  7. Assessment of Hammocks (Petenes) Resilience to Sea Level Rise Due to Climate Change in Mexico

    PubMed Central

    Posada Vanegas, Gregorio; de Jong, Bernardus H. J.

    2016-01-01

    There is a pressing need to assess resilience of coastal ecosystems against sea level rise. To develop appropriate response strategies against future climate disturbances, it is important to estimate the magnitude of disturbances that these ecosystems can absorb and to better understand their underlying processes. Hammocks (petenes) coastal ecosystems are highly vulnerable to sea level rise linked to climate change; their vulnerability is mainly due to its close relation with the sea through underground drainage in predominantly karstic soils. Hammocks are biologically important because of their high diversity and restricted distribution. This study proposes a strategy to assess resilience of this coastal ecosystem when high-precision data are scarce. Approaches and methods used to derive ecological resilience maps of hammocks are described and assessed. Resilience models were built by incorporating and weighting appropriate indicators of persistence to assess hammocks resilience against flooding due to climate change at “Los Petenes Biosphere Reserve”, in the Yucatán Peninsula, Mexico. According to the analysis, 25% of the study area is highly resilient (hot spots), whereas 51% has low resilience (cold spots). The most significant hot spot clusters of resilience were located in areas distant to the coastal zone, with indirect tidal influence, and consisted mostly of hammocks surrounded by basin mangrove and floodplain forest. This study revealed that multi-criteria analysis and the use of GIS for qualitative, semi-quantitative and statistical spatial analyses constitute a powerful tool to develop ecological resilience maps of coastal ecosystems that are highly vulnerable to sea level rise, even when high-precision data are not available. This method can be applied in other sites to help develop resilience analyses and decision-making processes for management and conservation of coastal areas worldwide. PMID:27611802

  8. Assessment of Hammocks (Petenes) Resilience to Sea Level Rise Due to Climate Change in Mexico.

    PubMed

    Hernández-Montilla, Mariana C; Martínez-Morales, Miguel Angel; Posada Vanegas, Gregorio; de Jong, Bernardus H J

    2016-01-01

    There is a pressing need to assess resilience of coastal ecosystems against sea level rise. To develop appropriate response strategies against future climate disturbances, it is important to estimate the magnitude of disturbances that these ecosystems can absorb and to better understand their underlying processes. Hammocks (petenes) coastal ecosystems are highly vulnerable to sea level rise linked to climate change; their vulnerability is mainly due to its close relation with the sea through underground drainage in predominantly karstic soils. Hammocks are biologically important because of their high diversity and restricted distribution. This study proposes a strategy to assess resilience of this coastal ecosystem when high-precision data are scarce. Approaches and methods used to derive ecological resilience maps of hammocks are described and assessed. Resilience models were built by incorporating and weighting appropriate indicators of persistence to assess hammocks resilience against flooding due to climate change at "Los Petenes Biosphere Reserve", in the Yucatán Peninsula, Mexico. According to the analysis, 25% of the study area is highly resilient (hot spots), whereas 51% has low resilience (cold spots). The most significant hot spot clusters of resilience were located in areas distant to the coastal zone, with indirect tidal influence, and consisted mostly of hammocks surrounded by basin mangrove and floodplain forest. This study revealed that multi-criteria analysis and the use of GIS for qualitative, semi-quantitative and statistical spatial analyses constitute a powerful tool to develop ecological resilience maps of coastal ecosystems that are highly vulnerable to sea level rise, even when high-precision data are not available. This method can be applied in other sites to help develop resilience analyses and decision-making processes for management and conservation of coastal areas worldwide.

  9. Technical note: Aerosol light absorption measurements with a carbon analyser - Calibration and precision estimates

    NASA Astrophysics Data System (ADS)

    Ammerlaan, B. A. J.; Holzinger, R.; Jedynska, A. D.; Henzing, J. S.

    2017-09-01

    Equivalent Black Carbon (EBC) and Elemental Carbon (EC) are different mass metrics to quantify the amount of combustion aerosol. Both metrics have their own measurement technique. In state-of-the-art carbon analysers, optical measurements are used to correct for organic carbon that is not evolving because of pyrolysis. These optical measurements are sometimes used to apply the technique of absorption photometers. Here, we use the transmission measurements of our carbon analyser for simultaneous determination of the elemental carbon concentration and the absorption coefficient. We use MAAP data from the CESAR observatory, the Netherlands, to correct for aerosol-filter interactions by linking the attenuation coefficient from the carbon analyser to the absorption coefficient measured by the MAAP. Application of the calibration to an independent data set of MAAP and OC/EC observations for the same location shows that the calibration is applicable to other observation periods. Because of simultaneous measurements of light absorption properties of the aerosol and elemental carbon, variation in the mass absorption efficiency (MAE) can be studied. We further show that the absorption coefficients and MAE in this set-up are determined within a precision of 10% and 12%, respectively. The precisions could be improved to 4% and 8% when the light transmission signal in the carbon analyser is very stable.

  10. Precise CCD positions of Himalia using Gaia DR1 in 2015-2016

    NASA Astrophysics Data System (ADS)

    Peng, H. W.; Peng, Q. Y.; Wang, N.

    2017-05-01

    In order to obtain high-precision CCD positions of Himalia, the sixth Jovian satellite, a total of 598 CCD observations have been obtained during the years 2015-2016. The observations were made by using the 2.4 and 1 m telescopes administered by Yunnan Observatories over 27 nights. Several factors that would influence the positional precision of Himalia were analysed, including the reference star catalogue used, the geometric distortion and the phase effect. By taking advantage of its unprecedented positional precision, the recently released catalogue Gaia Data Release 1 was chosen to match reference stars in the CCD frames of both Himalia and open clusters, which were observed for deriving the geometric distortion. The latest version of sofa library was used to calculate the positions of reference stars. The theoretical positions of Himalia were retrieved from the Jet Propulsion Laboratory Horizons System that includes the satellite ephemeris JUP300, while the positions of Jupiter were based on the planetary ephemeris DE431. Our results showed that the means of observed minus computed (O - C) residuals are 0.071 and -0.001 arcsec in right ascension and declination, respectively. Their standard deviations are estimated at about 0.03 arcsec in each direction.

  11. SU (2) lattice gauge theory simulations on Fermi GPUs

    NASA Astrophysics Data System (ADS)

    Cardoso, Nuno; Bicudo, Pedro

    2011-05-01

    In this work we explore the performance of CUDA in quenched lattice SU (2) simulations. CUDA, NVIDIA Compute Unified Device Architecture, is a hardware and software architecture developed by NVIDIA for computing on the GPU. We present an analysis and performance comparison between the GPU and CPU in single and double precision. Analyses with multiple GPUs and two different architectures (G200 and Fermi architectures) are also presented. In order to obtain a high performance, the code must be optimized for the GPU architecture, i.e., an implementation that exploits the memory hierarchy of the CUDA programming model. We produce codes for the Monte Carlo generation of SU (2) lattice gauge configurations, for the mean plaquette, for the Polyakov Loop at finite T and for the Wilson loop. We also present results for the potential using many configurations (50,000) without smearing and almost 2000 configurations with APE smearing. With two Fermi GPUs we have achieved an excellent performance of 200× the speed over one CPU, in single precision, around 110 Gflops/s. We also find that, using the Fermi architecture, double precision computations for the static quark-antiquark potential are not much slower (less than 2× slower) than single precision computations.

  12. Applications of RNA Indexes for Precision Oncology in Breast Cancer.

    PubMed

    Ma, Liming; Liang, Zirui; Zhou, Hui; Qu, Lianghu

    2018-05-09

    Precision oncology aims to offer the most appropriate treatments to cancer patients mainly based on their individual genetic information. Genomics has provided numerous valuable data on driver mutations and risk loci; however, it remains a formidable challenge to transform these data into therapeutic agents. Transcriptomics describes the multifarious expression patterns of both mRNAs and non-coding RNAs (ncRNAs), which facilitates the deciphering of genomic codes. In this review, we take breast cancer as an example to demonstrate the applications of these rich RNA resources in precision medicine exploration. These include the use of mRNA profiles in triple-negative breast cancer (TNBC) subtyping to inform corresponding candidate targeted therapies; current advancements and achievements of high-throughput RNA interference (RNAi) screening technologies in breast cancer; and microRNAs as functional signatures for defining cell identities and regulating the biological activities of breast cancer cells. We summarize the benefits of transcriptomic analyses in breast cancer management and propose that unscrambling the core signaling networks of cancer may be an important task of multiple-omic data integration for precision oncology. Copyright © 2018 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  13. ACTRIS Aerosol, Clouds and Trace Gases Research Infrastructure

    NASA Astrophysics Data System (ADS)

    Pappalardo, Gelsomina

    2018-04-01

    The Aerosols, Clouds and Trace gases Research Infrastructure (ACTRIS) is a distributed infrastructure dedicated to high-quality observation of aerosols, clouds, trace gases and exploration of their interactions. It will deliver precision data, services and procedures regarding the 4D variability of clouds, short-lived atmospheric species and the physical, optical and chemical properties of aerosols to improve the current capacity to analyse, understand and predict past, current and future evolution of the atmospheric environment.

  14. Optimization Techniques for Improving the Precision of Isotopic Analysis by Thermal Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Wang, G. Q.; Xu, J. F.; Wu-Yang, S. Q.

    2016-12-01

    Operation of instruments and preparation of samples are also significant factors that can affect the precision of TIMS analyses, in addition to instrument hardware. We have reviewed the isotopic data of several standard materials at our TIMS lab for 5 years. It is suggested that several optimization techniques should be used in order to obtain high-precision isotopic ratio data: (1) It is important to choose a suitable filament material for isotopic measurements. We have established that W filament is likely the most efficient for ionizing Sr when selecting from W, Re, and Ta; meanwhile, Re filament can produce a higher intensity for Nd isotopes than W and Ta filament can. It is concluded that the best TIMS signals are obtained for Sr using W signal-filaments and for Nd using Re double-filaments. (2) The preparation of the activator plays a key role in the analysis of some isotopic ratios. This study indicates that choosing a suitable activator can greatly elevate the precision of 206Pb/204Pb ratios during Pb isotopic measurements. We have suggested a new scheme to make an activator by using a mixture of 10% Si-gel + 7.5% H3PO3 + 82.5% H2O (weight %). (3) It is necessary to re-set the cup configuration to avoid cup degradation when operating for a long period of time (a year or more). We propose a new cup configuration to avoid this disadvantage during Sr isotopic analyses. (4) The contamination of 187Re and 185Re after using Re-filament could be eliminated by cleaning the ion source and baking the source housing.

  15. Analytical solutions of the Schroedinger equation for a two-dimensional exciton in magnetic field of arbitrary strength

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoang-Do, Ngoc-Tram; Hoang, Van-Hung; Le, Van-Hoang

    2013-05-15

    The Feranchuk-Komarov operator method is developed by combining with the Levi-Civita transformation in order to construct analytical solutions of the Schroedinger equation for a two-dimensional exciton in a uniform magnetic field of arbitrary strength. As a result, analytical expressions for the energy of the ground and excited states are obtained with a very high precision of up to four decimal places. Especially, the precision is uniformly stable for the whole range of the magnetic field. This advantage appears due to the consideration of the asymptotic behaviour of the wave-functions in strong magnetic field. The results could be used for variousmore » physical analyses and the method used here could also be applied to other atomic systems.« less

  16. Identification of young stellar variables with KELT for K2 - II. The Upper Scorpius association

    NASA Astrophysics Data System (ADS)

    Ansdell, Megan; Oelkers, Ryan J.; Rodriguez, Joseph E.; Gaidos, Eric; Somers, Garrett; Mamajek, Eric; Cargile, Phillip A.; Stassun, Keivan G.; Pepper, Joshua; Stevens, Daniel J.; Beatty, Thomas G.; Siverd, Robert J.; Lund, Michael B.; Kuhn, Rudolf B.; James, David; Gaudi, B. Scott

    2018-01-01

    High-precision photometry from space-based missions such as K2 and Transiting Exoplanet Survey Satellite enables detailed studies of young star variability. However, because space-based observing campaigns are often short (e.g. 80 d for K2), complementary long-baseline photometric surveys are critical for obtaining a complete understanding of young star variability, which can change on time-scales of minutes to years. We therefore present and analyse light curves of members of the Upper Scorpius association made over 5.5 yr by the ground-based Kilodegree Extremely Little Telescope (KELT), which complement the high-precision observations of this region taken by K2 during its Campaigns 2 and 15. We show that KELT data accurately identify the periodic signals found with high-precision K2 photometry, demonstrating the power of ground-based surveys in deriving stellar rotation periods of young stars. We also use KELT data to identify sources exhibiting variability that is likely related to circumstellar material and/or stellar activity cycles; these signatures are often unseen in the short-term K2 data, illustrating the importance of long-term monitoring surveys for studying the full range of young star variability. We provide the KELT light curves as electronic tables in an ongoing effort to establish legacy time series data sets for young stellar clusters.

  17. The mass and age of the first SONG target: the red giant 46 LMi

    NASA Astrophysics Data System (ADS)

    Frandsen, S.; Fredslund Andersen, M.; Brogaard, K.; Jiang, C.; Arentoft, T.; Grundahl, F.; Kjeldsen, H.; Christensen-Dalsgaard, J.; Weiss, E.; Pallé, P.; Antoci, V.; Kjærgaard, P.; Sørensen, A. N.; Skottfelt, J.; Jørgensen, U. G.

    2018-05-01

    Context. The Stellar Observation Network Group (SONG) is an initiative to build a worldwide network of 1m telescopes with high-precision radial-velocity spectrographs. Here we analyse the first radial-velocity time series of a red-giant star measured by the SONG telescope at Tenerife. The asteroseismic results demonstrate a major increase in the achievable precision of the parameters for red-giant stars obtainable from ground-based observations. Reliable tests of the validity of these results are needed, however, before the accuracy of the parameters can be trusted. Aims: We analyse the first SONG time series for the star 46 LMi, which has a precise parallax and an angular diameter measured from interferometry, and therefore a good determination of the stellar radius. We use asteroseismic scaling relations to obtain an accurate mass, and modelling to determine the age. Methods: A 55-day time series of high-resolution, high S/N spectra were obtained with the first SONG telescope. We derive the asteroseismic parameters by analysing the power spectrum. To give a best guess on the large separation of modes in the power spectrum, we have applied a new method which uses the scaling of Kepler red-giant stars to 46 LMi. Results: Several methods have been applied: classical estimates, seismic methods using the observed time series, and model calculations to derive the fundamental parameters of 46 LMi. Parameters determined using the different methods are consistent within the uncertainties. We find the following values for the mass M (scaling), radius R (classical), age (modelling), and surface gravity (combining mass and radius): M = 1.09 ± 0.04M⊙, R = 7.95 ± 0.11R⊙ age t = 8.2 ± 1.9 Gy, and logg = 2.674 ± 0.013. Conclusions: The exciting possibilities for ground-based asteroseismology of solar-like oscillations with a fully robotic network have been illustrated with the results obtained from just a single site of the SONG network. The window function is still a severe problem which will be solved when there are more nodes in the network. Based on observations made with the Hertzsprung SONG telescope operated at the Spanish Observatorio del Teide on the island of Tenerife by the Aarhus and Copenhagen Universities and by the Instituto de Astrofísica de Canarias.

  18. Quantitative aspects of inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Bulska, Ewa; Wagner, Barbara

    2016-10-01

    Accurate determination of elements in various kinds of samples is essential for many areas, including environmental science, medicine, as well as industry. Inductively coupled plasma mass spectrometry (ICP-MS) is a powerful tool enabling multi-elemental analysis of numerous matrices with high sensitivity and good precision. Various calibration approaches can be used to perform accurate quantitative measurements by ICP-MS. They include the use of pure standards, matrix-matched standards, or relevant certified reference materials, assuring traceability of the reported results. This review critically evaluates the advantages and limitations of different calibration approaches, which are used in quantitative analyses by ICP-MS. Examples of such analyses are provided. This article is part of the themed issue 'Quantitative mass spectrometry'.

  19. A New Precision Measurement of the Small-scale Line-of-sight Power Spectrum of the Lyα Forest

    NASA Astrophysics Data System (ADS)

    Walther, Michael; Hennawi, Joseph F.; Hiss, Hector; Oñorbe, Jose; Lee, Khee-Gan; Rorai, Alberto; O’Meara, John

    2018-01-01

    We present a new measurement of the Lyα forest power spectrum at 1.8 < z < 3.4 using 74 Keck/HIRES and VLT/UVES high-resolution, high-signal-to-noise-ratio quasar spectra. We developed a custom pipeline to measure the power spectrum and its uncertainty, which fully accounts for finite resolution and noise and corrects for the bias induced by masking missing data, damped Lyα absorption systems, and metal absorption lines. Our measurement results in unprecedented precision on the small-scale modes k> 0.02 {{s}} {{km}}-1, inaccessible to previous SDSS/BOSS analyses. It is well known that these high-k modes are highly sensitive to the thermal state of the intergalactic medium, but contamination by narrow metal lines is a significant concern. We quantify the effect of metals on the small-scale power and find a modest effect on modes with k< 0.1 {{s}} {{km}}-1. As a result, by masking metals and restricting to k< 0.1 {{s}} {{km}}-1, their impact is completely mitigated. We present an end-to-end Bayesian forward-modeling framework whereby mock spectra with the same noise, resolution, and masking as our data are generated from Lyα forest simulations. These mock spectra are used to build a custom emulator, enabling us to interpolate between a sparse grid of models and perform Markov chain Monte Carlo fits. Our results agree well with BOSS on scales k< 0.02 {{s}} {{km}}-1, where the measurements overlap. The combination of the percent-level low-k precision of BOSS with our 5%–15% high-k measurements results in a powerful new data set for precisely constraining the thermal history of the intergalactic medium, cosmological parameters, and the nature of dark matter. The power spectra and their covariance matrices are provided as electronic tables.

  20. High-precision radiocarbon dating and historical biblical archaeology in southern Jordan

    PubMed Central

    Levy, Thomas E.; Higham, Thomas; Bronk Ramsey, Christopher; Smith, Neil G.; Ben-Yosef, Erez; Robinson, Mark; Münger, Stefan; Knabb, Kyle; Schulze, Jürgen P.; Najjar, Mohammad; Tauxe, Lisa

    2008-01-01

    Recent excavations and high-precision radiocarbon dating from the largest Iron Age (IA, ca. 1200–500 BCE) copper production center in the southern Levant demonstrate major smelting activities in the region of biblical Edom (southern Jordan) during the 10th and 9th centuries BCE. Stratified radiocarbon samples and artifacts were recorded with precise digital surveying tools linked to a geographic information system developed to control on-site spatial analyses of archaeological finds and model data with innovative visualization tools. The new radiocarbon dates push back by 2 centuries the accepted IA chronology of Edom. Data from Khirbat en-Nahas, and the nearby site of Rujm Hamra Ifdan, demonstrate the centrality of industrial-scale metal production during those centuries traditionally linked closely to political events in Edom's 10th century BCE neighbor ancient Israel. Consequently, the rise of IA Edom is linked to the power vacuum created by the collapse of Late Bronze Age (LB, ca. 1300 BCE) civilizations and the disintegration of the LB Cypriot copper monopoly that dominated the eastern Mediterranean. The methodologies applied to the historical IA archaeology of the Levant have implications for other parts of the world where sacred and historical texts interface with the material record. PMID:18955702

  1. ICSH recommendations for assessing automated high-performance liquid chromatography and capillary electrophoresis equipment for the quantitation of HbA2.

    PubMed

    Stephens, A D; Colah, R; Fucharoen, S; Hoyer, J; Keren, D; McFarlane, A; Perrett, D; Wild, B J

    2015-10-01

    Automated high performance liquid chromatography and Capillary electrophoresis are used to quantitate the proportion of Hemoglobin A2 (HbA2 ) in blood samples order to enable screening and diagnosis of carriers of β-thalassemia. Since there is only a very small difference in HbA2 levels between people who are carriers and people who are not carriers such analyses need to be both precise and accurate. This paper examines the different parameters of such equipment and discusses how they should be assessed. © 2015 John Wiley & Sons Ltd.

  2. Multi-Scale Modeling to Improve Single-Molecule, Single-Cell Experiments

    NASA Astrophysics Data System (ADS)

    Munsky, Brian; Shepherd, Douglas

    2014-03-01

    Single-cell, single-molecule experiments are producing an unprecedented amount of data to capture the dynamics of biological systems. When integrated with computational models, observations of spatial, temporal and stochastic fluctuations can yield powerful quantitative insight. We concentrate on experiments that localize and count individual molecules of mRNA. These high precision experiments have large imaging and computational processing costs, and we explore how improved computational analyses can dramatically reduce overall data requirements. In particular, we show how analyses of spatial, temporal and stochastic fluctuations can significantly enhance parameter estimation results for small, noisy data sets. We also show how full probability distribution analyses can constrain parameters with far less data than bulk analyses or statistical moment closures. Finally, we discuss how a systematic modeling progression from simple to more complex analyses can reduce total computational costs by orders of magnitude. We illustrate our approach using single-molecule, spatial mRNA measurements of Interleukin 1-alpha mRNA induction in human THP1 cells following stimulation. Our approach could improve the effectiveness of single-molecule gene regulation analyses for many other process.

  3. Tree imbalance causes a bias in phylogenetic estimation of evolutionary timescales using heterochronous sequences.

    PubMed

    Duchêne, David; Duchêne, Sebastian; Ho, Simon Y W

    2015-07-01

    Phylogenetic estimation of evolutionary timescales has become routine in biology, forming the basis of a wide range of evolutionary and ecological studies. However, there are various sources of bias that can affect these estimates. We investigated whether tree imbalance, a property that is commonly observed in phylogenetic trees, can lead to reduced accuracy or precision of phylogenetic timescale estimates. We analysed simulated data sets with calibrations at internal nodes and at the tips, taking into consideration different calibration schemes and levels of tree imbalance. We also investigated the effect of tree imbalance on two empirical data sets: mitogenomes from primates and serial samples of the African swine fever virus. In analyses calibrated using dated, heterochronous tips, we found that tree imbalance had a detrimental impact on precision and produced a bias in which the overall timescale was underestimated. A pronounced effect was observed in analyses with shallow calibrations. The greatest decreases in accuracy usually occurred in the age estimates for medium and deep nodes of the tree. In contrast, analyses calibrated at internal nodes did not display a reduction in estimation accuracy or precision due to tree imbalance. Our results suggest that molecular-clock analyses can be improved by increasing taxon sampling, with the specific aims of including deeper calibrations, breaking up long branches and reducing tree imbalance. © 2014 John Wiley & Sons Ltd.

  4. In vivo precision of the GE Lunar iDXA densitometer for the measurement of total-body, lumbar spine, and femoral bone mineral density in adults.

    PubMed

    Hind, Karen; Oldroyd, Brian; Truscott, John G

    2010-01-01

    Knowledge of precision is integral to the monitoring of bone mineral density (BMD) changes using dual-energy X-ray absorptiometry (DXA). We evaluated the precision for bone measurements acquired using a GE Lunar iDXA (GE Healthcare, Waukesha, WI) in self-selected men and women, with mean age of 34.8 yr (standard deviation [SD]: 8.4; range: 20.1-50.5), heterogeneous in terms of body mass index (mean: 25.8 kg/m(2); SD: 5.1; range: 16.7-42.7 kg/m(2)). Two consecutive iDXA scans (with repositioning) of the total body, lumbar spine, and femur were conducted within 1h, for each subject. The coefficient of variation (CV), the root-mean-square (RMS) averages of SDs of repeated measurements, and the corresponding 95% least significant change were calculated. Linear regression analyses were also undertaken. We found a high level of precision for BMD measurements, particularly for scans of the total body, lumbar spine, and total hip (RMS: 0.007, 0.004, and 0.007 g/cm(2); CV: 0.63%, 0.41%, and 0.53%, respectively). Precision error for the femoral neck was higher but still represented good reproducibility (RMS: 0.014 g/cm(2); CV: 1.36%). There were associations between body size and total-body BMD and total-hip BMD SD precisions (r=0.534-0.806, p<0.05) in male subjects. Regression parameters showed good association between consecutive measurements for all body sites (r(2)=0.98-0.99). The Lunar iDXA provided excellent precision for BMD measurements of the total body, lumbar spine, femoral neck, and total hip. Copyright © 2010 The International Society for Clinical Densitometry. Published by Elsevier Inc. All rights reserved.

  5. Spatial variability effects on precision and power of forage yield estimation

    USDA-ARS?s Scientific Manuscript database

    Spatial analyses of yield trials are important, as they adjust cultivar means for spatial variation and improve the statistical precision of yield estimation. While the relative efficiency of spatial analysis has been frequently reported in several yield trials, its application on long-term forage y...

  6. Potential for long-term, high-frequency, high-precision methane isotope measurements to improve UK emissions estimates

    NASA Astrophysics Data System (ADS)

    Rennick, Chris; Bausi, Francesco; Arnold, Tim

    2017-04-01

    On the global scale methane (CH4) concentrations have more than doubled over the last 150 years, and the contribution to the enhanced greenhouse effect is almost half of that due to the increase in carbon dioxide (CO2) over the same period. Microbial, fossil fuel, biomass burning and landfill are dominant methane sources with differing annual variabilities; however, in the UK for example, mixing ratio measurements from a tall tower network and regional scale inversion modelling have thus far been unable to disaggregate emissions from specific source categories with any significant certainty. Measurement of the methane isotopologue ratios will provide the additional information needed for more robust sector attribution, which will be important for directing policy action Here we explore the potential for isotope ratio measurements to improve the interpretation of atmospheric mixing ratios beyond calculation of total UK emissions, and describe current analytical work at the National Physical Laboratory that will realise deployment of such measurements. We simulate isotopic variations at the four UK greenhouse gas tall tower network sites to understand where deployment of the first isotope analyser would be best situated. We calculate the levels of precision needed in both δ-13C and δ-D in order to detect particular scenarios of emissions. Spectroscopic measurement in the infrared by quantum cascade laser (QCL) absorption is a well-established technique to quantify the mixing ratios of trace species in atmospheric samples and, as has been demonstrated in 2016, if coupled to a suitable preconcentrator then high-precision measurements are possible. The current preconcentration system under development at NPL is designed to make the highest precision measurements yet of the standard isotope ratios via a new large-volume cryogenic trap design and controlled thermal desorption into a QCL spectrometer. Finally we explore the potential for the measurement of clumped isotopes at high frequency and precision. The doubly-substituted 13CH3D isotopologue is a tracer for methane formed at geological temperatures, and will provide additional information for identification of these sources.

  7. Improved Precision and Accuracy of Quantification of Rare Earth Element Abundances via Medium-Resolution LA-ICP-MS.

    PubMed

    Funderburg, Rebecca; Arevalo, Ricardo; Locmelis, Marek; Adachi, Tomoko

    2017-11-01

    Laser ablation ICP-MS enables streamlined, high-sensitivity measurements of rare earth element (REE) abundances in geological materials. However, many REE isotope mass stations are plagued by isobaric interferences, particularly from diatomic oxides and argides. In this study, we compare REE abundances quantitated from mass spectra collected with low-resolution (m/Δm = 300 at 5% peak height) and medium-resolution (m/Δm = 2500) mass discrimination. A wide array of geological samples was analyzed, including USGS and NIST glasses ranging from mafic to felsic in composition, with NIST 610 employed as the bracketing calibrating reference material. The medium-resolution REE analyses are shown to be significantly more accurate and precise (at the 95% confidence level) than low-resolution analyses, particularly in samples characterized by low (<μg/g levels) REE abundances. A list of preferred mass stations that are least susceptible to isobaric interferences is reported. These findings impact the reliability of REE abundances derived from LA-ICP-MS methods, particularly those relying on mass analyzers that do not offer tuneable mass-resolution and/or collision cell technologies that can reduce oxide and/or argide formation. Graphical Abstract ᅟ.

  8. Improved Precision and Accuracy of Quantification of Rare Earth Element Abundances via Medium-Resolution LA-ICP-MS

    NASA Astrophysics Data System (ADS)

    Funderburg, Rebecca; Arevalo, Ricardo; Locmelis, Marek; Adachi, Tomoko

    2017-07-01

    Laser ablation ICP-MS enables streamlined, high-sensitivity measurements of rare earth element (REE) abundances in geological materials. However, many REE isotope mass stations are plagued by isobaric interferences, particularly from diatomic oxides and argides. In this study, we compare REE abundances quantitated from mass spectra collected with low-resolution (m/Δm = 300 at 5% peak height) and medium-resolution (m/Δm = 2500) mass discrimination. A wide array of geological samples was analyzed, including USGS and NIST glasses ranging from mafic to felsic in composition, with NIST 610 employed as the bracketing calibrating reference material. The medium-resolution REE analyses are shown to be significantly more accurate and precise (at the 95% confidence level) than low-resolution analyses, particularly in samples characterized by low (<μg/g levels) REE abundances. A list of preferred mass stations that are least susceptible to isobaric interferences is reported. These findings impact the reliability of REE abundances derived from LA-ICP-MS methods, particularly those relying on mass analyzers that do not offer tuneable mass-resolution and/or collision cell technologies that can reduce oxide and/or argide formation.

  9. Publication bias in dermatology systematic reviews and meta-analyses.

    PubMed

    Atakpo, Paul; Vassar, Matt

    2016-05-01

    Systematic reviews and meta-analyses in dermatology provide high-level evidence for clinicians and policy makers that influence clinical decision making and treatment guidelines. One methodological problem with systematic reviews is the under representation of unpublished studies. This problem is due in part to publication bias. Omission of statistically non-significant data from meta-analyses may result in overestimation of treatment effect sizes which may lead to clinical consequences. Our goal was to assess whether systematic reviewers in dermatology evaluate and report publication bias. Further, we wanted to conduct our own evaluation of publication bias on meta-analyses that failed to do so. Our study considered systematic reviews and meta-analyses from ten dermatology journals from 2006 to 2016. A PubMed search was conducted, and all full-text articles that met our inclusion criteria were retrieved and coded by the primary author. 293 articles were included in our analysis. Additionally, we formally evaluated publication bias in meta-analyses that failed to do so using trim and fill and cumulative meta-analysis by precision methods. Publication bias was mentioned in 107 articles (36.5%) and was formally evaluated in 64 articles (21.8%). Visual inspection of a funnel plot was the most common method of evaluating publication bias. Publication bias was present in 45 articles (15.3%), not present in 57 articles (19.5%) and not determined in 191 articles (65.2%). Using the trim and fill method, 7 meta-analyses (33.33%) showed evidence of publication bias. Although the trim and fill method only found evidence of publication bias in 7 meta-analyses, the cumulative meta-analysis by precision method found evidence of publication bias in 15 meta-analyses (71.4%). Many of the reviews in our study did not mention or evaluate publication bias. Further, of the 42 articles that stated following PRISMA reporting guidelines, 19 (45.2%) evaluated for publication bias. In comparison to other studies, we found that systematic reviews in dermatology were less likely to evaluate for publication bias. Evaluating and reporting the likelihood of publication bias should be standard practice in systematic reviews when appropriate. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  10. The GMT-Consortium Large Earth Finder (G-CLEF) : An Optical Echelle Spectrograph for the Giant Magellan Telescope (GMT) with Multi-Object Spectroscopy (MOS) Capability

    NASA Astrophysics Data System (ADS)

    Szentgyorgyi, Andrew

    2017-09-01

    "The GMT-Consortium Large Earth Finder (G-CLEF) is an optical band echelle spectrograph that has been selected as the first light instrument for the Giant Magellan Telescope (GMT). G-CLEF is a general purpose, high dispersion instrument that is fiber fed and capable of extremely precise radial velocity (PRV) measurements. G-CLEF will have a novel multi-object spectroscopy (MOS) capability that will be useful for a number of exoplanet science programs. I describe the general properties of G-CLEF and the systems engineering analyses, especially for PRV, that drove the current G-CLEF design. The requirements for calibration of the MOS channel are presented along with several novel approaches for achieving moderate radial velocity precision in the MOS mode."

  11. Cathodoluminescence zoning and minor elements in forsterites from the Murchison (C2) and Allende (C3V) carbonaceous chondrites

    NASA Technical Reports Server (NTRS)

    Steele, I. M.; Smith, J. V.; Skirius, C.

    1985-01-01

    Cathodoluminescence has been applied to look for textural features of olivine in carbonaceous meteorites relevant to the unresolved dispute over the origin of the olivine, whether from a vapor or a liquid. Cathodoluminescence photographs of forsterite grains in Murchison (C2) and Allende (C3) meteorites presented here reveal a blue core with planar boundaries to a red or dark rim. High-precision electron microprobe analyses have been performed which reveal unusually large amounts of the 'minor' elements Al, Ti, and Ca in the blue cores of these forsterites, suggesting formation by crystallization at high temperatures from a source rich in these metals. Following conclusions drawn from previous analyses of olivine in meteorites, it is argued that the minor element signature should be able to characterize olivines in micrometeorites and in deep-sea particles.

  12. A new method for stable lead isotope extraction from seawater.

    PubMed

    Zurbrick, Cheryl M; Gallon, Céline; Flegal, A Russell

    2013-10-24

    A new technique for stable lead (Pb) isotope extraction from seawater is established using Toyopearl AF-Chelate 650M(®) resin (Tosoh Bioscience LLC). This new method is advantageous because it is semi-automated and relatively fast; in addition it introduces a relatively low blank by minimizing the volume of chemicals used in the extraction. Subsequent analyses by HR ICP-MS have a good relative external precision (2σ) of 3.5‰ for (206)Pb/(207)Pb, while analyses by MC-ICP-MS have a better relative external precision of 0.6‰. However, Pb sample concentrations limit MC-ICP-MS analyses to (206)Pb, (207)Pb, and (208)Pb. The method was validated by processing the common Pb isotope reference material NIST SRM-981 and several GEOTRACES intercalibration samples, followed by analyses by HR ICP-MS, all of which showed good agreement with previously reported values. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Evaluation of the precision of contrast sensitivity function assessment on a tablet device

    PubMed Central

    Dorr, Michael; Lesmes, Luis A.; Elze, Tobias; Wang, Hui; Lu, Zhong-Lin; Bex, Peter J.

    2017-01-01

    The contrast sensitivity function (CSF) relates the visibility of a spatial pattern to both its size and contrast, and is therefore a more comprehensive assessment of visual function than acuity, which only determines the smallest resolvable pattern size. Because of the additional dimension of contrast, estimating the CSF can be more time-consuming. Here, we compare two methods for rapid assessment of the CSF that were implemented on a tablet device. For a single-trial assessment, we asked 63 myopes and 38 emmetropes to tap the peak of a “sweep grating” on the tablet’s touch screen. For a more precise assessment, subjects performed 50 trials of the quick CSF method in a 10-AFC letter recognition task. Tests were performed with and without optical correction, and in monocular and binocular conditions; one condition was measured twice to assess repeatability. Results show that both methods are highly correlated; using both common and novel measures for test-retest repeatability, however, the quick CSF delivers more precision with testing times of under three minutes. Further analyses show how a population prior can improve convergence rate of the quick CSF, and how the multi-dimensional output of the quick CSF can provide greater precision than scalar outcome measures. PMID:28429773

  14. pGlyco 2.0 enables precision N-glycoproteomics with comprehensive quality control and one-step mass spectrometry for intact glycopeptide identification.

    PubMed

    Liu, Ming-Qi; Zeng, Wen-Feng; Fang, Pan; Cao, Wei-Qian; Liu, Chao; Yan, Guo-Quan; Zhang, Yang; Peng, Chao; Wu, Jian-Qiang; Zhang, Xiao-Jin; Tu, Hui-Jun; Chi, Hao; Sun, Rui-Xiang; Cao, Yong; Dong, Meng-Qiu; Jiang, Bi-Yun; Huang, Jiang-Ming; Shen, Hua-Li; Wong, Catherine C L; He, Si-Min; Yang, Peng-Yuan

    2017-09-05

    The precise and large-scale identification of intact glycopeptides is a critical step in glycoproteomics. Owing to the complexity of glycosylation, the current overall throughput, data quality and accessibility of intact glycopeptide identification lack behind those in routine proteomic analyses. Here, we propose a workflow for the precise high-throughput identification of intact N-glycopeptides at the proteome scale using stepped-energy fragmentation and a dedicated search engine. pGlyco 2.0 conducts comprehensive quality control including false discovery rate evaluation at all three levels of matches to glycans, peptides and glycopeptides, improving the current level of accuracy of intact glycopeptide identification. The N-glycoproteome of samples metabolically labeled with 15 N/ 13 C were analyzed quantitatively and utilized to validate the glycopeptide identification, which could be used as a novel benchmark pipeline to compare different search engines. Finally, we report a large-scale glycoproteome dataset consisting of 10,009 distinct site-specific N-glycans on 1988 glycosylation sites from 955 glycoproteins in five mouse tissues.Protein glycosylation is a heterogeneous post-translational modification that generates greater proteomic diversity that is difficult to analyze. Here the authors describe pGlyco 2.0, a workflow for the precise one step identification of intact N-glycopeptides at the proteome scale.

  15. SU (2) lattice gauge theory simulations on Fermi GPUs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cardoso, Nuno, E-mail: nunocardoso@cftp.ist.utl.p; Bicudo, Pedro, E-mail: bicudo@ist.utl.p

    2011-05-10

    In this work we explore the performance of CUDA in quenched lattice SU (2) simulations. CUDA, NVIDIA Compute Unified Device Architecture, is a hardware and software architecture developed by NVIDIA for computing on the GPU. We present an analysis and performance comparison between the GPU and CPU in single and double precision. Analyses with multiple GPUs and two different architectures (G200 and Fermi architectures) are also presented. In order to obtain a high performance, the code must be optimized for the GPU architecture, i.e., an implementation that exploits the memory hierarchy of the CUDA programming model. We produce codes formore » the Monte Carlo generation of SU (2) lattice gauge configurations, for the mean plaquette, for the Polyakov Loop at finite T and for the Wilson loop. We also present results for the potential using many configurations (50,000) without smearing and almost 2000 configurations with APE smearing. With two Fermi GPUs we have achieved an excellent performance of 200x the speed over one CPU, in single precision, around 110 Gflops/s. We also find that, using the Fermi architecture, double precision computations for the static quark-antiquark potential are not much slower (less than 2x slower) than single precision computations.« less

  16. 234U/238U as a ground-water tracer, SW Nevada-SE California

    USGS Publications Warehouse

    Ludwig, K. R.; Peterman, Z.E.; Simmons, K.R.; Gutentag, E.D.

    1993-01-01

    The 234U/238U ratio of uranium in oxidizing ground waters is potentially an excellent ground-water tracer because of its high solubility and insensitivity to chemical reactions. Moreover, recent advances in analytical capability have made possible very precise uranium-isotopic analyses on modest (approx.100 ml) amounts of normal ground water. Preliminary results on waters from SW Nevada/Se California indicate two main mixing trends, but in detail indicate significant complexity requiring three or more main components.

  17. High-precision U-Pb geochronologic constraints on the Late Cretaceous terrestrial cyclostratigraphy and geomagnetic polarity from the Songliao Basin, Northeast China

    NASA Astrophysics Data System (ADS)

    Wang, Tiantian; Ramezani, Jahandar; Wang, Chengshan; Wu, Huaichun; He, Huaiyu; Bowring, Samuel A.

    2016-07-01

    The Cretaceous continental sedimentary records are essential to our understanding of how the terrestrial geologic and ecologic systems responded to past climate fluctuations under greenhouse conditions and our ability to forecast climate change in the future. The Songliao Basin of Northeast China preserves a near-complete, predominantly lacustrine, Cretaceous succession, with sedimentary cyclicity that has been tied to Milankocitch forcing of the climate. Over 900 meters of drill-core recovered from the Upper Cretaceous (Turonian to Campanian) of the Songliao Basin has provided a unique opportunity for detailed analyses of its depositional and paleoenvironmental records through integrated and high-resolution cyclostratigraphic, magnetostratigraphic and geochronologic investigations. Here we report high-precision U-Pb zircon dates (CA-ID-TIMS method) from four interbedded bentonites from the drill-core that offer substantial improvements in accuracy, and a ten-fold enhancement in precision, compared to the previous U-Pb SIMS geochronology, and allow a critical evaluation of the Songliao astrochronological time scale. The results indicate appreciable deviations of the astrochronologic model from the absolute radioisotope geochronology, which more likely reflect cyclostratigraphic tuning inaccuracies and omitted cycles due to depositional hiatuses, rather than suspected limitations of astronomical models applied to distant geologic time. Age interpolation based on our new high-resolution geochronologic framework and the calibrated cyclostratigraphy places the end of the Cretaceous Normal Superchon (C34n-C33r chron boundary) in the Songliao Basin at 83.07 ± 0.15 Ma. This date also serves as a new and improved estimate for the global Santonian-Campanian stage boundary.

  18. Impulsivity modulates performance under response uncertainty in a reaching task.

    PubMed

    Tzagarakis, C; Pellizzer, G; Rogers, R D

    2013-03-01

    We sought to explore the interaction of the impulsivity trait with response uncertainty. To this end, we used a reaching task (Pellizzer and Hedges in Exp Brain Res 150:276-289, 2003) where a motor response direction was cued at different levels of uncertainty (1 cue, i.e., no uncertainty, 2 cues or 3 cues). Data from 95 healthy adults (54 F, 41 M) were analysed. Impulsivity was measured using the Barratt Impulsiveness Scale version 11 (BIS-11). Behavioral variables recorded were reaction time (RT), errors of commission (referred to as 'early errors') and errors of precision. Data analysis employed generalised linear mixed models and generalised additive mixed models. For the early errors, there was an interaction of impulsivity with uncertainty and gender, with increased errors for high impulsivity in the one-cue condition for women and the three-cue condition for men. There was no effect of impulsivity on precision errors or RT. However, the analysis of the effect of RT and impulsivity on precision errors showed a different pattern for high versus low impulsives in the high uncertainty (3 cue) condition. In addition, there was a significant early error speed-accuracy trade-off for women, primarily in low uncertainty and a 'reverse' speed-accuracy trade-off for men in high uncertainty. These results extend those of past studies of impulsivity which help define it as a behavioural trait that modulates speed versus accuracy response styles depending on environmental constraints and highlight once more the importance of gender in the interplay of personality and behaviour.

  19. High precision tungsten isotope analysis using MC-ICP-MS and application for terrestrial samples

    NASA Astrophysics Data System (ADS)

    Suzuki, K.; Takamasa, A.

    2017-12-01

    Tungsten has five isotopes (M = 180, 182, 183, 184, 186), and 182W isotope is a rediogenic isotope produced by b-decay of 182Hf. Its half life is short (8.9 m.y.), and 182W isotope has been investigated to understand the early Earth geochemical evolution. Both Hf and W are highly refractory elements. As Hf is a lithophile and W is a siderophile elements, 182Hf-182W system could give constraints on metal-silicate (core-mantle) differentiation such as especially early Earth system because of its larege fractionation betwenn core-mantle and short half life. Improvement of analytical techniques of W isotope analyses leads to findings of W isotope anomaly (mostly positive) in old komatiites (2.4 - 3.8 Ga) and young volcanic rocks (12 Ma Ontong Java Plateau and 6 Ma Baffin Bay). In our study, high-precision W isotope ratio measurement with MC-ICP-MS (Thermo co. Ltd., NEPTUNE PLUS). We have measured W standard solution (SRM 3163) and obtained the isotopic compositions with an precision of ± 5ppm. However, the standard solution, which separated by cation or anion exchange resin, has systematical 183W/184W drift to -5ppm. These phenomena was also reported by Willbold et al. (2011). Therefore, we used the standard solution for correction of isotopic fractionation of samples which was processed by the same method as that of the samples. We will present the data of terrestrial samples obtained by the technique dveloped in this study.

  20. Inadequacy, Impurity and Infidelity; Modifying the Modified Brendel Alpha-Cellulose Extraction Method for Resinous Woods in Stable Isotope Dendroclimatology

    NASA Astrophysics Data System (ADS)

    Brookman, T. H.; Whittaker, T. E.; King, P. L.; Horton, T. W.

    2011-12-01

    Stable isotope dendroclimatology is a burgeoning field in palaeoclimate science due to its unique potential to contribute (sub)annually resolved climate records, over millennial timescales, to the terrestrial palaeoclimate record. Until recently the time intensive methods precluded long-term climate reconstructions. Advances in continuous-flow mass spectrometry and isolation methods for α-cellulose (ideal for palaeoclimate studies as, unlike other wood components, it retains its initial isotopic composition) have made long-term, calendar dated palaeoclimate reconstructions a viable proposition. The Modified Brendel (mBrendel) α-cellulose extraction method is a fast, cost-effective way of preparing whole-wood samples for stable oxygen and carbon isotope analysis. However, resinous woods often yield incompletely processed α-cellulose using the standard mBrendel approach. As climate signals may be recorded by small (<1%) isotopic shifts it is important to investigate if incomplete processing affects the accuracy and precision of tree-ring isotopic records. In an effort to address this methodological issue, we investigated three highly resinous woods: kauri (Agathis australis), ponderosa pine (Pinus ponderosa) and huon pine (Lagarastrobus franklinii). Samples of each species were treated with 16 iterations of the mBrendel, varying reaction temperature, time and reagent volumes. Products were investigated using microscopic and bulk transmission Fourier Transform infrared spectroscopy (FITR) to reveal variations in the level of processing; poorly-digested fibres display a peak at 1520cm-1 suggesting residual lignin and a peak at ~1600cm-1 in some samples suggests retained resin. Despite the different levels of purity, replicate analyses of samples processed by high temperature digestion yielded consistent δ18O within and between experiments. All α-cellulose samples were 5-7% enriched compared to the whole-wood, suggesting that even incomplete processing at high temperature can provide acceptable δ18O analytical external precision. For kauri, short, lower temperature extractions produced α-cellulose with δ18O consistently ~1% lower than longer, higher temperature kauri experiments. These findings suggest that temperature and time are significant variables that influence the analytical precision of α-cellulose stable isotope analysis and that resinous hardwoods (e.g. kauri) may require longer and/or hotter digestions than softwoods. The effects of mBrendel variants on the carbon isotope ratio precision of α-cellulose extracts will also be presented. Our findings indicate that the standard mBrendel α-cellulose extraction method may not fully remove lignins and resins depending on the type of wood being analysed. Residual impurities can decrease analytical precision and accuracy. Fortunately, FTIR analysis prior to isotopic analysis is a relatively fast and cost effective way to determine α-cellulose extract purity, ultimately improving the data quality, accuracy and utility of tree-ring based stable isotopic climate records.

  1. Quantitative aspects of inductively coupled plasma mass spectrometry

    PubMed Central

    Wagner, Barbara

    2016-01-01

    Accurate determination of elements in various kinds of samples is essential for many areas, including environmental science, medicine, as well as industry. Inductively coupled plasma mass spectrometry (ICP-MS) is a powerful tool enabling multi-elemental analysis of numerous matrices with high sensitivity and good precision. Various calibration approaches can be used to perform accurate quantitative measurements by ICP-MS. They include the use of pure standards, matrix-matched standards, or relevant certified reference materials, assuring traceability of the reported results. This review critically evaluates the advantages and limitations of different calibration approaches, which are used in quantitative analyses by ICP-MS. Examples of such analyses are provided. This article is part of the themed issue ‘Quantitative mass spectrometry’. PMID:27644971

  2. DNA-Guided Precision Medicine for Cancer: A Case of Irrational Exuberance?

    PubMed

    Voest, Emile E; Bernards, Rene

    2016-02-01

    Precision treatment with targeted cancer drugs requires the selection of patients who are most likely to benefit from a given therapy. We argue here that the use of a combination of both DNA and transcriptome analyses will significantly improve drug response prediction. ©2016 American Association for Cancer Research.

  3. Cancer Precision Medicine: Why More Is More and DNA Is Not Enough.

    PubMed

    Schütte, Moritz; Ogilvie, Lesley A; Rieke, Damian T; Lange, Bodo M H; Yaspo, Marie-Laure; Lehrach, Hans

    2017-01-01

    Every tumour is different. They arise in patients with different genomes, from cells with different epigenetic modifications, and by random processes affecting the genome and/or epigenome of a somatic cell, allowing it to escape the usual controls on its growth. Tumours and patients therefore often respond very differently to the drugs they receive. Cancer precision medicine aims to characterise the tumour (and often also the patient) to be able to predict, with high accuracy, its response to different treatments, with options ranging from the selective characterisation of a few genomic variants considered particularly important to predict the response of the tumour to specific drugs, to deep genome analysis of both tumour and patient, combined with deep transcriptome analysis of the tumour. Here, we compare the expected results of carrying out such analyses at different levels, from different size panels to a comprehensive analysis incorporating both patient and tumour at the DNA and RNA levels. In doing so, we illustrate the additional power gained by this unusually deep analysis strategy, a potential basis for a future precision medicine first strategy in cancer drug therapy. However, this is only a step along the way of increasingly detailed molecular characterisation, which in our view will, in the future, introduce additional molecular characterisation techniques, including systematic analysis of proteins and protein modification states and different types of metabolites in the tumour, systematic analysis of circulating tumour cells and nucleic acids, the use of spatially resolved analysis techniques to address the problem of tumour heterogeneity as well as the deep analyses of the immune system of the patient to, e.g., predict the response of the patient to different types of immunotherapy. Such analyses will generate data sets of even greater complexity, requiring mechanistic modelling approaches to capture enough of the complex situation in the real patient to be able to accurately predict his/her responses to all available therapies. © 2017 S. Karger AG, Basel.

  4. Modeling and Positioning of a PZT Precision Drive System.

    PubMed

    Liu, Che; Guo, Yanling

    2017-11-08

    The fact that piezoelectric ceramic transducer (PZT) precision drive systems in 3D printing are faced with nonlinear problems with respect to positioning, such as hysteresis and creep, has had an extremely negative impact on the precision of laser focusing systems. To eliminate the impact of PZT nonlinearity during precision drive movement, mathematical modeling and theoretical analyses of each module comprising the system were carried out in this study, a micro-displacement measurement circuit based on Position Sensitive Detector (PSD) is constructed, followed by the establishment of system closed-loop control and creep control models. An XL-80 laser interferometer (Renishaw, Wotton-under-Edge, UK) was used to measure the performance of the precision drive system, showing that system modeling and control algorithms were correct, with the requirements for precision positioning of the drive system satisfied.

  5. Modeling and Positioning of a PZT Precision Drive System

    PubMed Central

    Liu, Che; Guo, Yanling

    2017-01-01

    The fact that piezoelectric ceramic transducer (PZT) precision drive systems in 3D printing are faced with nonlinear problems with respect to positioning, such as hysteresis and creep, has had an extremely negative impact on the precision of laser focusing systems. To eliminate the impact of PZT nonlinearity during precision drive movement, mathematical modeling and theoretical analyses of each module comprising the system were carried out in this study, a micro-displacement measurement circuit based on Position Sensitive Detector (PSD) is constructed, followed by the establishment of system closed-loop control and creep control models. An XL-80 laser interferometer (Renishaw, Wotton-under-Edge, UK) was used to measure the performance of the precision drive system, showing that system modeling and control algorithms were correct, with the requirements for precision positioning of the drive system satisfied. PMID:29117140

  6. Linearity, Bias, and Precision of Hepatic Proton Density Fat Fraction Measurements by Using MR Imaging: A Meta-Analysis.

    PubMed

    Yokoo, Takeshi; Serai, Suraj D; Pirasteh, Ali; Bashir, Mustafa R; Hamilton, Gavin; Hernando, Diego; Hu, Houchun H; Hetterich, Holger; Kühn, Jens-Peter; Kukuk, Guido M; Loomba, Rohit; Middleton, Michael S; Obuchowski, Nancy A; Song, Ji Soo; Tang, An; Wu, Xinhuai; Reeder, Scott B; Sirlin, Claude B

    2018-02-01

    Purpose To determine the linearity, bias, and precision of hepatic proton density fat fraction (PDFF) measurements by using magnetic resonance (MR) imaging across different field strengths, imager manufacturers, and reconstruction methods. Materials and Methods This meta-analysis was performed in accordance with Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. A systematic literature search identified studies that evaluated the linearity and/or bias of hepatic PDFF measurements by using MR imaging (hereafter, MR imaging-PDFF) against PDFF measurements by using colocalized MR spectroscopy (hereafter, MR spectroscopy-PDFF) or the precision of MR imaging-PDFF. The quality of each study was evaluated by using the Quality Assessment of Studies of Diagnostic Accuracy 2 tool. De-identified original data sets from the selected studies were pooled. Linearity was evaluated by using linear regression between MR imaging-PDFF and MR spectroscopy-PDFF measurements. Bias, defined as the mean difference between MR imaging-PDFF and MR spectroscopy-PDFF measurements, was evaluated by using Bland-Altman analysis. Precision, defined as the agreement between repeated MR imaging-PDFF measurements, was evaluated by using a linear mixed-effects model, with field strength, imager manufacturer, reconstruction method, and region of interest as random effects. Results Twenty-three studies (1679 participants) were selected for linearity and bias analyses and 11 studies (425 participants) were selected for precision analyses. MR imaging-PDFF was linear with MR spectroscopy-PDFF (R 2 = 0.96). Regression slope (0.97; P < .001) and mean Bland-Altman bias (-0.13%; 95% limits of agreement: -3.95%, 3.40%) indicated minimal underestimation by using MR imaging-PDFF. MR imaging-PDFF was precise at the region-of-interest level, with repeatability and reproducibility coefficients of 2.99% and 4.12%, respectively. Field strength, imager manufacturer, and reconstruction method each had minimal effects on reproducibility. Conclusion MR imaging-PDFF has excellent linearity, bias, and precision across different field strengths, imager manufacturers, and reconstruction methods. © RSNA, 2017 Online supplemental material is available for this article. An earlier incorrect version of this article appeared online. This article was corrected on October 2, 2017.

  7. Interlaboratory comparability, bias, and precision for four laboratories measuring analytes in wet deposition, October 1983-December 1984

    USGS Publications Warehouse

    Brooks, Myron H.; Schroder, LeRoy J.; Willoughby, Timothy C.

    1987-01-01

    Four laboratories involved in the routine analysis of wet-deposition samples participated in an interlaboratory comparison program managed by the U.S. Geological Survey. The four participants were: Illinois State Water Survey central analytical laboratory in Champaign, Illinois; U.S. Geological Survey national water-quality laboratories in Atlanta, Georgia, and Denver, Colorado; and Inland Waters Directorate national water-quality laboratory in Burlington, Ontario, Canada. Analyses of interlaboratory samples performed by the four laboratories from October 1983 through December 1984 were compared.Participating laboratories analyzed three types of interlaboratory samples--natural wet deposition, simulated wet deposition, and deionized water--for pH and specific conductance, and for dissolved calcium, magnesium, sodium, sodium, potassium, chloride, sulfate, nitrate, ammonium, and orthophosphate. Natural wet-deposition samples were aliquots of actual wet-deposition samples. Analyses of these samples by the four laboratories were compared using analysis of variance. Test results indicated that pH, calcium, nitrate, and ammonium results were not directly comparable among the four laboratories. Statistically significant differences between laboratory results probably only were meaningful for analyses of dissolved calcium. Simulated wet-deposition samples with known analyte concentrations were used to test each laboratory for analyte bias. Laboratory analyses of calcium, magnesium, sodium, potassium, chloride, sulfate, and nitrate were not significantly different from the known concentrations of these analytes when tested using analysis of variance. Deionized-water samples were used to test each laboratory for reporting of false positive values. The Illinois State Water Survey Laboratory reported the smallest percentage of false positive values for most analytes. Analyte precision was estimated for each laboratory from results of replicate measurements. In general, the Illinois State Water Survey laboratory achieved the greatest precision, whereas the U.S. Geological Survey laboratories achieved the least precision.

  8. N-of-1-pathways MixEnrich: advancing precision medicine via single-subject analysis in discovering dynamic changes of transcriptomes.

    PubMed

    Li, Qike; Schissler, A Grant; Gardeux, Vincent; Achour, Ikbel; Kenost, Colleen; Berghout, Joanne; Li, Haiquan; Zhang, Hao Helen; Lussier, Yves A

    2017-05-24

    Transcriptome analytic tools are commonly used across patient cohorts to develop drugs and predict clinical outcomes. However, as precision medicine pursues more accurate and individualized treatment decisions, these methods are not designed to address single-patient transcriptome analyses. We previously developed and validated the N-of-1-pathways framework using two methods, Wilcoxon and Mahalanobis Distance (MD), for personal transcriptome analysis derived from a pair of samples of a single patient. Although, both methods uncover concordantly dysregulated pathways, they are not designed to detect dysregulated pathways with up- and down-regulated genes (bidirectional dysregulation) that are ubiquitous in biological systems. We developed N-of-1-pathways MixEnrich, a mixture model followed by a gene set enrichment test, to uncover bidirectional and concordantly dysregulated pathways one patient at a time. We assess its accuracy in a comprehensive simulation study and in a RNA-Seq data analysis of head and neck squamous cell carcinomas (HNSCCs). In presence of bidirectionally dysregulated genes in the pathway or in presence of high background noise, MixEnrich substantially outperforms previous single-subject transcriptome analysis methods, both in the simulation study and the HNSCCs data analysis (ROC Curves; higher true positive rates; lower false positive rates). Bidirectional and concordant dysregulated pathways uncovered by MixEnrich in each patient largely overlapped with the quasi-gold standard compared to other single-subject and cohort-based transcriptome analyses. The greater performance of MixEnrich presents an advantage over previous methods to meet the promise of providing accurate personal transcriptome analysis to support precision medicine at point of care.

  9. Measurement and image processing evaluation of surface modifications of dental implants G4 pure titanium created by different techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bulutsuz, A. G., E-mail: asligunaya@gmail.com; Demircioglu, P., E-mail: pinar.demircioglu@adu.edu.tr; Bogrekci, I., E-mail: ismail.bogrekci@adu.edu.tr

    Foreign substances and organic tissue interaction placed into the jaw in order to eliminate tooth loss involves a highly complex process. Many biological reactions take place as well as the biomechanical forces that influence this formation. Osseointegration denotes to the direct structural and functional association between the living bone and the load-bearing artificial implant's surface. Taking into consideration of the requirements in the manufacturing processes of the implants, surface characterizations with high precise measurement techniques are investigated and thus long-term success of dental implant is emphasized on the importance of these processes in this study. In this research, the detailedmore » surface characterization was performed to identify the dependence of the manufacturing techniques on the surface properties by using the image processing methods and using the scanning electron microscope (SEM) for morphological properties in 3D and Taylor Hobson stylus profilometer for roughness properties in 2D. Three implant surfaces fabricated by different manufacturing techniques were inspected, and a machined surface was included into the study as a reference specimen. The results indicated that different surface treatments were strongly influenced surface morphology. Thus 2D and 3D precise inspection techniques were highlighted on the importance for surface characterization. Different image analyses techniques such as Dark-light technique were used to verify the surface measurement results. The computational phase was performed using image processing toolbox in Matlab with precise evaluation of the roughness for the implant surfaces. The relationship between the number of black and white pixels and surface roughness is presented. FFT image processing and analyses results explicitly imply that the technique is useful in the determination of surface roughness. The results showed that the number of black pixels in the image increases with increase in surface roughness.« less

  10. Determination of MDMA, MDEA and MDA in urine by high performance liquid chromatography with fluorescence detection.

    PubMed

    da Costa, José Luiz; da Matta Chasin, Alice Aparecida

    2004-11-05

    This paper describes the development and validation of analytical methodology for the determination of the use of MDMA, MDEA and MDA in urine. After a simple liquid extraction, the analyses were carried out on a high performance liquid chromatography (HPLC) in an octadecyl column, with fluorescence detection. The mobile phase using a sodium dodecyl sulfate ion-pairing reagent allows good separation and efficiency. The method showed good linearity and precision. Recovery was between 85 and 102% and detection limits were 10, 15 and 20 ng/ml for MDA, MDMA and MDEA, respectively. No interfering substances were detected with fluorescence detection.

  11. Benchmark studies of induced radioactivity produced in LHC materials, Part I: Specific activities.

    PubMed

    Brugger, M; Khater, H; Mayer, S; Prinz, A; Roesler, S; Ulrici, L; Vincke, H

    2005-01-01

    Samples of materials which will be used in the LHC machine for shielding and construction components were irradiated in the stray radiation field of the CERN-EU high-energy reference field facility. After irradiation, the specific activities induced in the various samples were analysed with a high-precision gamma spectrometer at various cooling times, allowing identification of isotopes with a wide range of half-lives. Furthermore, the irradiation experiment was simulated in detail with the FLUKA Monte Carlo code. A comparison of measured and calculated specific activities shows good agreement, supporting the use of FLUKA for estimating the level of induced activity in the LHC.

  12. A suite of microplate reader-based colorimetric methods to quantify ammonium, nitrate, orthophosphate and silicate concentrations for aquatic nutrient monitoring.

    PubMed

    Ringuet, Stephanie; Sassano, Lara; Johnson, Zackary I

    2011-02-01

    A sensitive, accurate and rapid analysis of major nutrients in aquatic systems is essential for monitoring and maintaining healthy aquatic environments. In particular, monitoring ammonium (NH(4)(+)) concentrations is necessary for maintenance of many fish stocks, while accurate monitoring and regulation of ammonium, orthophosphate (PO(4)(3-)), silicate (Si(OH)(4)) and nitrate (NO(3)(-)) concentrations are required for regulating algae production. Monitoring of wastewater streams is also required for many aquaculture, municipal and industrial wastewater facilities to comply with local, state or federal water quality effluent regulations. Traditional methods for quantifying these nutrient concentrations often require laborious techniques or expensive specialized equipment making these analyses difficult. Here we present four alternative microcolorimetric assays that are based on a standard 96-well microplate format and microplate reader that simplify the quantification of each of these nutrients. Each method uses small sample volumes (200 µL), has a detection limit ≤ 1 µM in freshwater and ≤ 2 µM in saltwater, precision of at least 8% and compares favorably with standard analytical procedures. Routine use of these techniques in the laboratory and at an aquaculture facility to monitor nutrient concentrations associated with microalgae growth demonstrates that they are rapid, accurate and highly reproducible among different users. These techniques offer an alternative to standard nutrient analyses and because they are based on the standard 96-well format, they significantly decrease the cost and time of processing while maintaining high precision and sensitivity.

  13. Evaluating and Refining the Construct of Sexual Quality With Item Response Theory: Development of the Quality of Sex Inventory.

    PubMed

    Shaw, Amanda M; Rogge, Ronald D

    2016-02-01

    This study took a critical look at the construct of sexual quality. The 65 items of four well-validated self-report measures of sexual satisfaction (the Index of Sexual Satisfaction [ISS], Hudson, Harrison, & Crosscup, 1981; the Global Measure of Sexual Satisfaction [GMSEX], Lawrance & Byers, 1995; the Pinney Sexual Satisfaction Inventory [PSSI], Pinney, Gerrard, & Denney, 1987; the Young Sexual Satisfaction Scale [YSSS], Young, Denny, Luquis, & Young, 1998) and an additional 74 potential sexual quality items were given to 3060 online participants. Using Item Response Theory (IRT), we demonstrated that the ISS, YSSS, and PSSI scales provided suboptimal levels of precision in assessing sexual quality, particularly given the length of those scales. Exploratory factor analyses, IRT, differential item functioning analyses, and longitudinal responsiveness analyses were used to develop and evaluate the Quality of Sex Inventory. Results suggested that, in comparison to existing scales, the QSI (1) offers investigators and clinicians more theoretically focused scales, (2) distinguishes sexual satisfaction from sexual dissatisfaction, and (3) offers greater precision and power for detecting differences with (4) comparably high levels of responsiveness for detecting change over time despite being notably shorter than most of the existing scales. The QSI-satisfaction subscales demonstrated strong convergent validity with other measures of sexual satisfaction and excellent construct validity with anchor scales from the nomological net surrounding that construct, suggesting that they continue to assess the same theoretical construct as prior scales. Implications for research are discussed.

  14. Precision of MRI-based body composition measurements of postmenopausal women

    PubMed Central

    Romu, Thobias; Thorell, Sofia; Lindblom, Hanna; Berin, Emilia; Holm, Anna-Clara Spetz; Åstrand, Lotta Lindh; Karlsson, Anette; Borga, Magnus; Hammar, Mats; Leinhard, Olof Dahlqvist

    2018-01-01

    Objectives To determine precision of magnetic resonance imaging (MRI) based fat and muscle quantification in a group of postmenopausal women. Furthermore, to extend the method to individual muscles relevant to upper-body exercise. Materials and methods This was a sub-study to a randomized control trial investigating effects of resistance training to decrease hot flushes in postmenopausal women. Thirty-six women were included, mean age 56 ± 6 years. Each subject was scanned twice with a 3.0T MR-scanner using a whole-body Dixon protocol. Water and fat images were calculated using a 6-peak lipid model including R2*-correction. Body composition analyses were performed to measure visceral and subcutaneous fat volumes, lean volumes and muscle fat infiltration (MFI) of the muscle groups’ thigh muscles, lower leg muscles, and abdominal muscles, as well as the three individual muscles pectoralis, latissimus, and rhomboideus. Analysis was performed using a multi-atlas, calibrated water-fat separated quantification method. Liver-fat was measured as average proton density fat-fraction (PDFF) of three regions-of-interest. Precision was determined with Bland-Altman analysis, repeatability, and coefficient of variation. Results All of the 36 included women were successfully scanned and analysed. The coefficient of variation was 1.1% to 1.5% for abdominal fat compartments (visceral and subcutaneous), 0.8% to 1.9% for volumes of muscle groups (thigh, lower leg, and abdomen), and 2.3% to 7.0% for individual muscle volumes (pectoralis, latissimus, and rhomboideus). Limits of agreement for MFI was within ± 2.06% for muscle groups and within ± 5.13% for individual muscles. The limits of agreement for liver PDFF was within ± 1.9%. Conclusion Whole-body Dixon MRI could characterize a range of different fat and muscle compartments with high precision, including individual muscles, in the study-group of postmenopausal women. The inclusion of individual muscles, calculated from the same scan, enables analysis for specific intervention programs and studies. PMID:29415060

  15. Nonflammable, Nonaqueous, Low Atmospheric Impact, High Performance Cleaning Solvents

    NASA Technical Reports Server (NTRS)

    Dhooge, P. M.; Glass, S. M.; Nimitz, J. S.

    2001-01-01

    For many years, chlorofluorocarbon (CFC) and chlorocarbon solvents have played an important part in aerospace operations. These solvents found extensive use as cleaning and analysis (EPA) solvents in precision and critical cleaning. However, CFCs and chlorocarbon solvents have deleterious effects on the ozone layer, are relatively strong greenhouse gases, and some are suspect or known carcinogens. Because of their ozone-depletion potential (ODP), the Montreal Protocol and its amendments, as well as other environmental regulations, have resulted in the phaseout of CFC-113 and 1,1,1-trichloroethane (TCA). Although alternatives have been recommended, they do not perform as well as the original solvents. In addition, some analyses, such as the infrared analysis of extracted hydrocarbons, cannot be performed with the substitute solvents that contain C-H bonds. CFC-113 solvent has been used for many critical aerospace applications. CFC-113, also known as Freon (registered) TF, has been used extensively in NASA's cleaning facilities for precision and critical cleaning, in particular the final rinsing in Class 100 areas, with gas chromatography analysis of rinse residue. While some cleaning can be accomplished by other processes, there are certain critical applications where CFC-113 or a similar solvent is highly cost-effective and ensures safety. Oxygen system components are one example where a solvent compatible with oxygen and capable of removing fluorocarbon grease is needed. Electronic components and precision mechanical components can also be damaged by aggressive cleaning solvents.

  16. Validation of an analytical method for simultaneous high-precision measurements of greenhouse gas emissions from wastewater treatment plants using a gas chromatography-barrier discharge detector system.

    PubMed

    Pascale, Raffaella; Caivano, Marianna; Buchicchio, Alessandro; Mancini, Ignazio M; Bianco, Giuliana; Caniani, Donatella

    2017-01-13

    Wastewater treatment plants (WWTPs) emit CO 2 and N 2 O, which may lead to climate change and global warming. Over the last few years, awareness of greenhouse gas (GHG) emissions from WWTPs has increased. Moreover, the development of valid, reliable, and high-throughput analytical methods for simultaneous gas analysis is an essential requirement for environmental applications. In the present study, an analytical method based on a gas chromatograph (GC) equipped with a barrier ionization discharge (BID) detector was developed for the first time. This new method simultaneously analyses CO 2 and N 2 O and has a precision, measured in terms of relative standard of variation RSD%, equal to or less than 6.6% and 5.1%, respectively. The method's detection limits are 5.3ppm v for CO 2 and 62.0ppb v for N 2 O. The method's selectivity, linearity, accuracy, repeatability, intermediate precision, limit of detection and limit of quantification were good at trace concentration levels. After validation, the method was applied to a real case of N 2 O and CO 2 emissions from a WWTP, confirming its suitability as a standard procedure for simultaneous GHG analysis in environmental samples containing CO 2 levels less than 12,000mg/L. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Effect of incubation temperature and time on the precision of data generated by antibiotic disc diffusion assays.

    PubMed

    Smith, P; Kronvall, G

    2015-07-01

    The influence on the precision of disc diffusion data of the conditions under which the tests were performed was examined by analysing multilaboratory data sets generated after incubation at 35 °C for 18 h, at 28 °C for 24 h and 22 °C for 24 h and 48 h. Analyses of these data sets demonstrated that precision was significantly and progressively decreased as the test temperature was reduced from 35 to 22 °C. Analysis of the data obtained at 22 °C also showed the precision was inversely related to the time of incubation. Temperature and time related decreases in precision were not related to differences in the mean zone sizes of the data sets obtained under these test conditions. Analysis of the zone data obtained at 28 and 22 °C as single laboratory sets demonstrated that reductions of incubation temperature resulted in significant increases in both intralaboratory and interlaboratory variation. Increases in incubation time at 22 °C were, however, associated with statistically significant increases in interlaboratory variation but not with any significant increase in intralaboratory variation. The significance of these observations for the establishment of the acceptable limits of precision of data sets that can be used for the setting of valid epidemiological cut-off values is discussed. © 2014 John Wiley & Sons Ltd.

  18. Combining FIA plot data with topographic variables: Are precise locations needed?

    Treesearch

    Stephen P. Prisley; Huei-Jin Wang; Philip J Radtke; John Coulston

    2009-01-01

    Plot data from the USFS FIA program could be combined with terrain variables to attempt to explain how terrain characteristics influence forest growth, species composition, productivity, fire behavior, wildlife habitat, and other phenomena. While some types of analyses using FIA data have been shown to be insensitive to precision of plot locations, it has been...

  19. Sample Size Calculations for Precise Interval Estimation of the Eta-Squared Effect Size

    ERIC Educational Resources Information Center

    Shieh, Gwowen

    2015-01-01

    Analysis of variance is one of the most frequently used statistical analyses in the behavioral, educational, and social sciences, and special attention has been paid to the selection and use of an appropriate effect size measure of association in analysis of variance. This article presents the sample size procedures for precise interval estimation…

  20. Targeted Quantitation of Proteins by Mass Spectrometry

    PubMed Central

    2013-01-01

    Quantitative measurement of proteins is one of the most fundamental analytical tasks in a biochemistry laboratory, but widely used immunochemical methods often have limited specificity and high measurement variation. In this review, we discuss applications of multiple-reaction monitoring (MRM) mass spectrometry, which allows sensitive, precise quantitative analyses of peptides and the proteins from which they are derived. Systematic development of MRM assays is permitted by databases of peptide mass spectra and sequences, software tools for analysis design and data analysis, and rapid evolution of tandem mass spectrometer technology. Key advantages of MRM assays are the ability to target specific peptide sequences, including variants and modified forms, and the capacity for multiplexing that allows analysis of dozens to hundreds of peptides. Different quantitative standardization methods provide options that balance precision, sensitivity, and assay cost. Targeted protein quantitation by MRM and related mass spectrometry methods can advance biochemistry by transforming approaches to protein measurement. PMID:23517332

  1. Analysing playing using the note-time playing path.

    PubMed

    de Graaff, Deborah L E; Schubert, Emery

    2011-03-01

    This article introduces a new method of data analysis that represents the playing of written music as a graph. The method, inspired by Miklaszewski, charts low-level note timings from a sound recording of a single-line instrument using high-precision audio-to-MIDI conversion software. Note onset times of pitch sequences are then plotted against the score-predicted timings to produce a Note-Time Playing Path (NTPP). The score-predicted onset time of each sequentially performed note (horizontal axis) unfolds in performed time down the page (vertical axis). NTPPs provide a visualisation that shows (1) tempo variations, (2) repetitive practice behaviours, (3) segmenting of material, (4) precise note time positions, and (5) time spent on playing or not playing. The NTPP can provide significant new insights into behaviour and cognition of music performance and may also be used to complement established traditional approaches such as think-alouds, interviews, and video coding.

  2. Targeted quantitation of proteins by mass spectrometry.

    PubMed

    Liebler, Daniel C; Zimmerman, Lisa J

    2013-06-04

    Quantitative measurement of proteins is one of the most fundamental analytical tasks in a biochemistry laboratory, but widely used immunochemical methods often have limited specificity and high measurement variation. In this review, we discuss applications of multiple-reaction monitoring (MRM) mass spectrometry, which allows sensitive, precise quantitative analyses of peptides and the proteins from which they are derived. Systematic development of MRM assays is permitted by databases of peptide mass spectra and sequences, software tools for analysis design and data analysis, and rapid evolution of tandem mass spectrometer technology. Key advantages of MRM assays are the ability to target specific peptide sequences, including variants and modified forms, and the capacity for multiplexing that allows analysis of dozens to hundreds of peptides. Different quantitative standardization methods provide options that balance precision, sensitivity, and assay cost. Targeted protein quantitation by MRM and related mass spectrometry methods can advance biochemistry by transforming approaches to protein measurement.

  3. The fault-tree compiler

    NASA Technical Reports Server (NTRS)

    Martensen, Anna L.; Butler, Ricky W.

    1987-01-01

    The Fault Tree Compiler Program is a new reliability tool used to predict the top event probability for a fault tree. Five different gate types are allowed in the fault tree: AND, OR, EXCLUSIVE OR, INVERT, and M OF N gates. The high level input language is easy to understand and use when describing the system tree. In addition, the use of the hierarchical fault tree capability can simplify the tree description and decrease program execution time. The current solution technique provides an answer precise (within the limits of double precision floating point arithmetic) to the five digits in the answer. The user may vary one failure rate or failure probability over a range of values and plot the results for sensitivity analyses. The solution technique is implemented in FORTRAN; the remaining program code is implemented in Pascal. The program is written to run on a Digital Corporation VAX with the VMS operation system.

  4. Simultaneous Determination of Piperine, Capsaicin, and Dihydrocapsaicin in Korean Instant-Noodle (Ramyun) Soup Base Using High-Performance Liquid Chromatography with Ultraviolet Detection.

    PubMed

    Shim, You-Shin; Kim, Jong-Chan; Jeong, Seung-Weon

    2016-01-01

    A simultaneous analytical method for piperine, capsaicin, and dihydrocapsaicin in Korean instant-noodle soup base using HPLC was validated in terms of precision, accuracy, sensitivity, and linearity. The HPLC separation was performed on a reversed-phase C18 column (5 μm particle size, 4.6 mm id, 250 mm length) using a UV detector fixed at 280 nm. The LOD and LOQ of the HPLC analyses ranged from 0.25 to 1.03 mg/kg. The intraday and interday precisions of the individual piperine, capsaicin, and dihydrocapsaicin were <10.55%, and the recovery values ranged from 85.43 to 94.68%. The calibration curves exhibited good linearity (r(2) = 0.999) within the tested ranges. These results suggest that the analytical method in this study can be used to classify Korean instant noodles based on their levels of spiciness.

  5. Precision Neutron Time-of-Flight Detectors Provide Insight into NIF Implosion Dynamics

    NASA Astrophysics Data System (ADS)

    Schlossberg, David; Eckart, M. J.; Grim, G. P.; Hartouni, E. P.; Hatarik, R.; Moore, A. S.; Waltz, C. S.

    2017-10-01

    During inertial confinement fusion, higher-order moments of neutron time-of-flight (nToF) spectra can provide essential information for optimizing implosions. The nToF diagnostic suite at the National Ignition Facility (NIF) was recently upgraded to include novel, quartz Cherenkov detectors. These detectors exploit the rapid Cherenkov radiation process, in contrast with conventional scintillator decay times, to provide high temporal-precision measurements that support higher-order moment analyses. Preliminary measurements have been made on the NIF during several implosions and initial results are presented here. Measured line-of-sight asymmetries, for example in ion temperatures, will be discussed. Finally, advanced detector optimization is shown to advance accessible physics, with possibilities for energy discrimination, gamma source identification, and further reduction in quartz response times. Work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344.

  6. CRISPR/Cas9 Editing of the Bacillus subtilis Genome

    PubMed Central

    Burby, Peter E.; Simmons, Lyle A.

    2017-01-01

    A fundamental procedure for most modern biologists is the genetic manipulation of the organism under study. Although many different methods for editing bacterial genomes have been used in laboratories for decades, the adaptation of CRISPR/Cas9 technology to bacterial genetics has allowed researchers to manipulate bacterial genomes with unparalleled facility. CRISPR/Cas9 has allowed for genome edits to be more precise, while also increasing the efficiency of transferring mutations into a variety of genetic backgrounds. As a result, the advantages are realized in tractable organisms and organisms that have been refractory to genetic manipulation. Here, we describe our method for editing the genome of the bacterium Bacillus subtilis. Our method is highly efficient, resulting in precise, markerless mutations. Further, after generating the editing plasmid, the mutation can be quickly introduced into several genetic backgrounds, greatly increasing the speed with which genetic analyses may be performed. PMID:28706963

  7. The Fault Tree Compiler (FTC): Program and mathematics

    NASA Technical Reports Server (NTRS)

    Butler, Ricky W.; Martensen, Anna L.

    1989-01-01

    The Fault Tree Compiler Program is a new reliability tool used to predict the top-event probability for a fault tree. Five different gate types are allowed in the fault tree: AND, OR, EXCLUSIVE OR, INVERT, AND m OF n gates. The high-level input language is easy to understand and use when describing the system tree. In addition, the use of the hierarchical fault tree capability can simplify the tree description and decrease program execution time. The current solution technique provides an answer precisely (within the limits of double precision floating point arithmetic) within a user specified number of digits accuracy. The user may vary one failure rate or failure probability over a range of values and plot the results for sensitivity analyses. The solution technique is implemented in FORTRAN; the remaining program code is implemented in Pascal. The program is written to run on a Digital Equipment Corporation (DEC) VAX computer with the VMS operation system.

  8. Individual Biomarkers Using Molecular Personalized Medicine Approaches.

    PubMed

    Zenner, Hans P

    2017-01-01

    Molecular personalized medicine tries to generate individual predictive biomarkers to assist doctors in their decision making. These are thought to improve the efficacy and lower the toxicity of a treatment. The molecular basis of the desired high-precision prediction is modern "omex" technologies providing high-throughput bioanalytical methods. These include genomics and epigenomics, transcriptomics, proteomics, metabolomics, microbiomics, imaging, and functional analyses. In most cases, producing big data also requires a complex biomathematical analysis. Using molecular personalized medicine, the conventional physician's check of biomarker results may no longer be sufficient. By contrast, the physician may need to cooperate with the biomathematician to achieve the desired prediction on the basis of the analysis of individual big data typically produced by omex technologies. Identification of individual biomarkers using molecular personalized medicine approaches is thought to allow a decision-making for the precise use of a targeted therapy, selecting the successful therapeutic tool from a panel of preexisting drugs or medical products. This should avoid the treatment of nonresponders and responders that produces intolerable unwanted effects. © 2017 S. Karger AG, Basel.

  9. Machine learning for the meta-analyses of microbial pathogens' volatile signatures.

    PubMed

    Palma, Susana I C J; Traguedo, Ana P; Porteira, Ana R; Frias, Maria J; Gamboa, Hugo; Roque, Ana C A

    2018-02-20

    Non-invasive and fast diagnostic tools based on volatolomics hold great promise in the control of infectious diseases. However, the tools to identify microbial volatile organic compounds (VOCs) discriminating between human pathogens are still missing. Artificial intelligence is increasingly recognised as an essential tool in health sciences. Machine learning algorithms based in support vector machines and features selection tools were here applied to find sets of microbial VOCs with pathogen-discrimination power. Studies reporting VOCs emitted by human microbial pathogens published between 1977 and 2016 were used as source data. A set of 18 VOCs is sufficient to predict the identity of 11 microbial pathogens with high accuracy (77%), and precision (62-100%). There is one set of VOCs associated with each of the 11 pathogens which can predict the presence of that pathogen in a sample with high accuracy and precision (86-90%). The implemented pathogen classification methodology supports future database updates to include new pathogen-VOC data, which will enrich the classifiers. The sets of VOCs identified potentiate the improvement of the selectivity of non-invasive infection diagnostics using artificial olfaction devices.

  10. Retrieval of tropospheric carbon monoxide for the MOPITT experiment

    NASA Astrophysics Data System (ADS)

    Pan, Liwen; Gille, John C.; Edwards, David P.; Bailey, Paul L.; Rodgers, Clive D.

    1998-12-01

    A retrieval method for deriving the tropospheric carbon monoxide (CO) profile and column amount under clear sky conditions has been developed for the Measurements of Pollution In The Troposphere (MOPITT) instrument, scheduled for launch in 1998 onboard the EOS-AM1 satellite. This paper presents a description of the method along with analyses of retrieval information content. These analyses characterize the forward measurement sensitivity, the contribution of a priori information, and the retrieval vertical resolution. Ensembles of tropospheric CO profiles were compiled both from aircraft in situ measurements and from chemical model results and were used in retrieval experiments to characterize the method and to study the sensitivity to different parameters. Linear error analyses were carried out in parallel with the ensemble experiments. Results of these experiments and analyses indicate that MOPITT CO column measurements will have better than 10% precision, and CO profile measurement will have approximately three pieces of independent information that will resolve 3-5 tropospheric layers to approximately 10% precision. These analyses are important for understanding MOPITT data, both for application of data in tropospheric chemistry studies and for comparison with in situ measurements.

  11. Mitigation of formalin-induced RNA damage to advance whole transcriptomic analyses of archival tissues

    EPA Science Inventory

    Leveraging the use of biorepository samples for genomic analyses holds huge implications for human health, including applications in pathway identification, biomarker discovery, and tumor profiling for precision medicine. However, there is a need for better ways to reduce nucleic...

  12. Application of Raytracing Through the High Resolution Numerical Weather Model HIRLAM for the Analysis of European VLBI

    NASA Technical Reports Server (NTRS)

    Garcia-Espada, Susana; Haas, Rudiger; Colomer, Francisco

    2010-01-01

    An important limitation for the precision in the results obtained by space geodetic techniques like VLBI and GPS are tropospheric delays caused by the neutral atmosphere, see e.g. [1]. In recent years numerical weather models (NWM) have been applied to improve mapping functions which are used for tropospheric delay modeling in VLBI and GPS data analyses. In this manuscript we use raytracing to calculate slant delays and apply these to the analysis of Europe VLBI data. The raytracing is performed through the limited area numerical weather prediction (NWP) model HIRLAM. The advantages of this model are high spatial (0.2 deg. x 0.2 deg.) and high temporal resolution (in prediction mode three hours).

  13. Precise estimation of tropospheric path delays with GPS techniques

    NASA Technical Reports Server (NTRS)

    Lichten, S. M.

    1990-01-01

    Tropospheric path delays are a major source of error in deep space tracking. However, the tropospheric-induced delay at tracking sites can be calibrated using measurements of Global Positioning System (GPS) satellites. A series of experiments has demonstrated the high sensitivity of GPS to tropospheric delays. A variety of tests and comparisons indicates that current accuracy of the GPS zenith tropospheric delay estimates is better than 1-cm root-mean-square over many hours, sampled continuously at intervals of six minutes. These results are consistent with expectations from covariance analyses. The covariance analyses also indicate that by the mid-1990s, when the GPS constellation is complete and the Deep Space Network is equipped with advanced GPS receivers, zenith tropospheric delay accuracy with GPS will improve further to 0.5 cm or better.

  14. High precision time calibration of the Permian-Triassic boundary mass extinction event in a deep marine context

    NASA Astrophysics Data System (ADS)

    Baresel, Björn; Bucher, Hugo; Brosse, Morgane; Bagherpour, Borhan; Schaltegger, Urs

    2015-04-01

    To construct a revised and high resolution calibrated time scale for the Permian-Triassic boundary (PTB) we use (1) high-precision U-Pb zircon age determinations of a unique succession of volcanic ash layers interbedded with deep water fossiliferous sediments in the Nanpanjiang Basin (South China) combined with (2) accurate quantitative biochronology based on ammonoids, conodonts, radiolarians, and foraminifera and (3) tracers of marine bioproductivity (carbon isotopes) across the PTB. The unprecedented precision of the single grain chemical abrasion isotope-dilution thermal ionization mass spectrometry (CA-ID-TIMS) dating technique at sub-per mil level (radio-isotopic calibration of the PTB at the <100 ka level) now allows calibrating magmatic and biological timescales at resolution adequate for both groups of processes. Using these alignments allows (1) positioning the PTB in different depositional setting and (2) solving the age contradictions generated by the misleading use of the first occurrence (FO) of the conodont Hindeodus parvus, whose diachronous first occurrences are arbitrarily used for placing the base of the Triassic. This new age framework provides the basis for a combined calibration of chemostratigraphic records with high-resolution biochronozones of the Late Permian and Early Triassic. Here, we present new single grain U-Pb zircon data of volcanic ash layers from two deep marine sections (Dongpan and Penglaitan) revealing stratigraphic consistent dates over several volcanic ash layers bracketing the PTB. These analyses define weighted mean 206Pb/238U ages of 251.956±0.033 Ma (Dongpan) and 252.062±0.043 Ma (Penglaitan) for the last Permian ash bed. By calibration with detailed litho- and biostratigraphy new U-Pb ages of 251.953±0.038 Ma (Dongpan) and 251.907±0.033 Ma (Penglaitan) are established for the onset of the Triassic.

  15. Gravity Compensation Using EGM2008 for High-Precision Long-Term Inertial Navigation Systems

    PubMed Central

    Wu, Ruonan; Wu, Qiuping; Han, Fengtian; Liu, Tianyi; Hu, Peida; Li, Haixia

    2016-01-01

    The gravity disturbance vector is one of the major error sources in high-precision and long-term inertial navigation applications. Specific to the inertial navigation systems (INSs) with high-order horizontal damping networks, analyses of the error propagation show that the gravity-induced errors exist almost exclusively in the horizontal channels and are mostly caused by deflections of the vertical (DOV). Low-frequency components of the DOV propagate into the latitude and longitude errors at a ratio of 1:1 and time-varying fluctuations in the DOV excite Schuler oscillation. This paper presents two gravity compensation methods using the Earth Gravitational Model 2008 (EGM2008), namely, interpolation from the off-line database and computing gravity vectors directly using the spherical harmonic model. Particular attention is given to the error contribution of the gravity update interval and computing time delay. It is recommended for the marine navigation that a gravity vector should be calculated within 1 s and updated every 100 s at most. To meet this demand, the time duration of calculating the current gravity vector using EGM2008 has been reduced to less than 1 s by optimizing the calculation procedure. A few off-line experiments were conducted using the data of a shipborne INS collected during an actual sea test. With the aid of EGM2008, most of the low-frequency components of the position errors caused by the gravity disturbance vector have been removed and the Schuler oscillation has been attenuated effectively. In the rugged terrain, the horizontal position error could be reduced at best 48.85% of its regional maximum. The experimental results match with the theoretical analysis and indicate that EGM2008 is suitable for gravity compensation of the high-precision and long-term INSs. PMID:27999351

  16. Gravity Compensation Using EGM2008 for High-Precision Long-Term Inertial Navigation Systems.

    PubMed

    Wu, Ruonan; Wu, Qiuping; Han, Fengtian; Liu, Tianyi; Hu, Peida; Li, Haixia

    2016-12-18

    The gravity disturbance vector is one of the major error sources in high-precision and long-term inertial navigation applications. Specific to the inertial navigation systems (INSs) with high-order horizontal damping networks, analyses of the error propagation show that the gravity-induced errors exist almost exclusively in the horizontal channels and are mostly caused by deflections of the vertical (DOV). Low-frequency components of the DOV propagate into the latitude and longitude errors at a ratio of 1:1 and time-varying fluctuations in the DOV excite Schuler oscillation. This paper presents two gravity compensation methods using the Earth Gravitational Model 2008 (EGM2008), namely, interpolation from the off-line database and computing gravity vectors directly using the spherical harmonic model. Particular attention is given to the error contribution of the gravity update interval and computing time delay. It is recommended for the marine navigation that a gravity vector should be calculated within 1 s and updated every 100 s at most. To meet this demand, the time duration of calculating the current gravity vector using EGM2008 has been reduced to less than 1 s by optimizing the calculation procedure. A few off-line experiments were conducted using the data of a shipborne INS collected during an actual sea test. With the aid of EGM2008, most of the low-frequency components of the position errors caused by the gravity disturbance vector have been removed and the Schuler oscillation has been attenuated effectively. In the rugged terrain, the horizontal position error could be reduced at best 48.85% of its regional maximum. The experimental results match with the theoretical analysis and indicate that EGM2008 is suitable for gravity compensation of the high-precision and long-term INSs.

  17. Reliable landmarks for precise topographical analyses of pathological structural changes of the ovine tibial plateau in 2-D and 3-D subspaces.

    PubMed

    Oláh, Tamás; Reinhard, Jan; Gao, Liang; Goebel, Lars K H; Madry, Henning

    2018-01-08

    Selecting identical topographical locations to analyse pathological structural changes of the osteochondral unit in translational models remains difficult. The specific aim of the study was to provide objectively defined reference points on the ovine tibial plateau based on 2-D sections of micro-CT images useful for reproducible sample harvesting and as standardized landmarks for landmark-based 3-D image registration. We propose 5 reference points, 11 reference lines and 12 subregions that are detectable macroscopically and on 2-D micro-CT sections. Their value was confirmed applying landmark-based rigid and affine 3-D registration methods. Intra- and interobserver comparison showed high reliabilities, and constant positions (standard errors < 1%). Spatial patterns of the thicknesses of the articular cartilage and subchondral bone plate were revealed by measurements in 96 individual points of the tibial plateau. As a case study, pathological phenomena 6 months following OA induction in vivo such as osteophytes and areas of OA development were mapped to the individual subregions. These new reference points and subregions are directly identifiable on tibial plateau specimens or macroscopic images, enabling a precise topographical location of pathological structural changes of the osteochondral unit in both 2-D and 3-D subspaces in a region-appropriate fashion relevant for translational investigations.

  18. Sources of variability and comparability between salmonid stomach contents and isotopic analyses: study design lessons and recommendations

    USGS Publications Warehouse

    Vinson, M.R.; Budy, P.

    2011-01-01

    We compared sources of variability and cost in paired stomach content and stable isotope samples from three salmonid species collected in September 2001–2005 and describe the relative information provided by each method in terms of measuring diet overlap and food web study design. Based on diet analyses, diet overlap among brown trout, rainbow trout, and mountain whitefish was high, and we observed little variation in diets among years. In contrast, for sample sizes n ≥ 25, 95% confidence interval (CI) around mean δ15Ν and δ13C for the three target species did not overlap, and species, year, and fish size effects were significantly different, implying that these species likely consumed similar prey but in different proportions. Stable isotope processing costs were US$12 per sample, while stomach content analysis costs averaged US$25.49 ± $2.91 (95% CI) and ranged from US$1.50 for an empty stomach to US$291.50 for a sample with 2330 items. Precision in both δ15Ν and δ13C and mean diet overlap values based on stomach contents increased considerably up to a sample size of n = 10 and plateaued around n = 25, with little further increase in precision.

  19. Automated brain volumetrics in multiple sclerosis: a step closer to clinical application

    PubMed Central

    Beadnall, H N; Hatton, S N; Bader, G; Tomic, D; Silva, D G

    2016-01-01

    Background Whole brain volume (WBV) estimates in patients with multiple sclerosis (MS) correlate more robustly with clinical disability than traditional, lesion-based metrics. Numerous algorithms to measure WBV have been developed over the past two decades. We compare Structural Image Evaluation using Normalisation of Atrophy-Cross-sectional (SIENAX) to NeuroQuant and MSmetrix, for assessment of cross-sectional WBV in patients with MS. Methods MRIs from 61 patients with relapsing-remitting MS and 2 patients with clinically isolated syndrome were analysed. WBV measurements were calculated using SIENAX, NeuroQuant and MSmetrix. Statistical agreement between the methods was evaluated using linear regression and Bland-Altman plots. Precision and accuracy of WBV measurement was calculated for (1) NeuroQuant versus SIENAX and (2) MSmetrix versus SIENAX. Results Precision (Pearson's r) of WBV estimation for NeuroQuant and MSmetrix versus SIENAX was 0.983 and 0.992, respectively. Accuracy (Cb) was 0.871 and 0.994, respectively. NeuroQuant and MSmetrix showed a 5.5% and 1.0% volume difference compared with SIENAX, respectively, that was consistent across low and high values. Conclusions In the analysed population, NeuroQuant and MSmetrix both quantified cross-sectional WBV with comparable statistical agreement to SIENAX, a well-validated cross-sectional tool that has been used extensively in MS clinical studies. PMID:27071647

  20. BioImageXD: an open, general-purpose and high-throughput image-processing platform.

    PubMed

    Kankaanpää, Pasi; Paavolainen, Lassi; Tiitta, Silja; Karjalainen, Mikko; Päivärinne, Joacim; Nieminen, Jonna; Marjomäki, Varpu; Heino, Jyrki; White, Daniel J

    2012-06-28

    BioImageXD puts open-source computer science tools for three-dimensional visualization and analysis into the hands of all researchers, through a user-friendly graphical interface tuned to the needs of biologists. BioImageXD has no restrictive licenses or undisclosed algorithms and enables publication of precise, reproducible and modifiable workflows. It allows simple construction of processing pipelines and should enable biologists to perform challenging analyses of complex processes. We demonstrate its performance in a study of integrin clustering in response to selected inhibitors.

  1. A classification model of Hyperion image base on SAM combined decision tree

    NASA Astrophysics Data System (ADS)

    Wang, Zhenghai; Hu, Guangdao; Zhou, YongZhang; Liu, Xin

    2009-10-01

    Monitoring the Earth using imaging spectrometers has necessitated more accurate analyses and new applications to remote sensing. A very high dimensional input space requires an exponentially large amount of data to adequately and reliably represent the classes in that space. On the other hand, with increase in the input dimensionality the hypothesis space grows exponentially, which makes the classification performance highly unreliable. Traditional classification algorithms Classification of hyperspectral images is challenging. New algorithms have to be developed for hyperspectral data classification. The Spectral Angle Mapper (SAM) is a physically-based spectral classification that uses an ndimensional angle to match pixels to reference spectra. The algorithm determines the spectral similarity between two spectra by calculating the angle between the spectra, treating them as vectors in a space with dimensionality equal to the number of bands. The key and difficulty is that we should artificial defining the threshold of SAM. The classification precision depends on the rationality of the threshold of SAM. In order to resolve this problem, this paper proposes a new automatic classification model of remote sensing image using SAM combined with decision tree. It can automatic choose the appropriate threshold of SAM and improve the classify precision of SAM base on the analyze of field spectrum. The test area located in Heqing Yunnan was imaged by EO_1 Hyperion imaging spectrometer using 224 bands in visual and near infrared. The area included limestone areas, rock fields, soil and forests. The area was classified into four different vegetation and soil types. The results show that this method choose the appropriate threshold of SAM and eliminates the disturbance and influence of unwanted objects effectively, so as to improve the classification precision. Compared with the likelihood classification by field survey data, the classification precision of this model heightens 9.9%.

  2. Impact of orbit modeling on DORIS station position and Earth rotation estimates

    NASA Astrophysics Data System (ADS)

    Štěpánek, Petr; Rodriguez-Solano, Carlos Javier; Hugentobler, Urs; Filler, Vratislav

    2014-04-01

    The high precision of estimated station coordinates and Earth rotation parameters (ERP) obtained from satellite geodetic techniques is based on the precise determination of the satellite orbit. This paper focuses on the analysis of the impact of different orbit parameterizations on the accuracy of station coordinates and the ERPs derived from DORIS observations. In a series of experiments the DORIS data from the complete year 2011 were processed with different orbit model settings. First, the impact of precise modeling of the non-conservative forces on geodetic parameters was compared with results obtained with an empirical-stochastic modeling approach. Second, the temporal spacing of drag scaling parameters was tested. Third, the impact of estimating once-per-revolution harmonic accelerations in cross-track direction was analyzed. And fourth, two different approaches for solar radiation pressure (SRP) handling were compared, namely adjusting SRP scaling parameter or fixing it on pre-defined values. Our analyses confirm that the empirical-stochastic orbit modeling approach, which does not require satellite attitude information and macro models, results for most of the monitored station parameters in comparable accuracy as the dynamical model that employs precise non-conservative force modeling. However, the dynamical orbit model leads to a reduction of the RMS values for the estimated rotation pole coordinates by 17% for x-pole and 12% for y-pole. The experiments show that adjusting atmospheric drag scaling parameters each 30 min is appropriate for DORIS solutions. Moreover, it was shown that the adjustment of cross-track once-per-revolution empirical parameter increases the RMS of the estimated Earth rotation pole coordinates. With recent data it was however not possible to confirm the previously known high annual variation in the estimated geocenter z-translation series as well as its mitigation by fixing the SRP parameters on pre-defined values.

  3. The impact history of the Moon: implications of new high-resolution U-Pb analyses of Apollo impact breccias

    NASA Astrophysics Data System (ADS)

    Snape, Joshua F.; Nemchin, Alexander A.; Thiessen, Fiona; Bellucci, Jeremy J.; Whitehouse, Martin J.

    2015-04-01

    Constraining the impact history of the Moon is a key priority, both for lunar science [1] and also for our understanding of how this fundamental geologic processes [2] has affected the evolution of planets in the inner solar system. The Apollo impact breccia samples provide the most direct way of dating impact events on the Moon. Numerous studies have dated samples from the Apollo landing sites by multiple different methods with varying degrees of precision [3]. This has led to an ongoing debates regarding the presence of a period of intense meteoritic bombardment (e.g. [4-8]). In this study we present high precision U-Pb analyses of Ca-phosphates in a variety of Apollo impact breccias. These data allow us to resolve the signatures of multiple different impact events in samples collected by the Apollo 12, 14 and 17 missions. In particular, the potential identification of three significant impact events between the period of ~3915-3940 Ma, is indicative of a high rate of meteorite impacts at this point in lunar history. A more fundamental problem with interpretations of Apollo breccia ages is that the samples originate from the lunar regolith and do not represent samples of actual bedrock exposures. As such, although improvements in analytical precision may allow us to continue identifying new impact signatures, the proposed links between these signatures and particular impact features remain highly speculative. This is a problem that will only be truly addressed with a more focused campaign of lunar exploration. Most importantly, this would include the acquisition of samples from below the lunar regolith, which could be confidently attributed to particular bedrock formations and provide a degree of geologic context that has been largely absent from studies of lunar geology to date. References: [1] National Research Council (2007) The scientific context for exploration of the Moon, National Academies Press. [2] Melosh H. J. (1989) Impact Cratering: A Geologic Process, Oxford University Press. [3] Stöffler D. et al. (2006) Rev. Min. Geochem., 60, 519-596. [4] Tera F. et al. (1974) EPSL, 22, 1-22. [5] Wetherill G. W. (1981) Multi-ring basins: Formation and evolution, 1-18, Pergamon Press. [6] Ryder G. (1990) Am. Geophy. Union, 71, 313-323. [7] Cohen B. A. et al. (2000) Science, 290, 1754-1756. [8] Baldwin R. B. (2006) Icarus, 184, 308-318.

  4. Creating a Computer Adaptive Test Version of the Late-Life Function & Disability Instrument

    PubMed Central

    Jette, Alan M.; Haley, Stephen M.; Ni, Pengsheng; Olarsch, Sippy; Moed, Richard

    2009-01-01

    Background This study applied Item Response Theory (IRT) and Computer Adaptive Test (CAT) methodologies to develop a prototype function and disability assessment instrument for use in aging research. Herein, we report on the development of the CAT version of the Late-Life Function & Disability instrument (Late-Life FDI) and evaluate its psychometric properties. Methods We employed confirmatory factor analysis, IRT methods, validation, and computer simulation analyses of data collected from 671 older adults residing in residential care facilities. We compared accuracy, precision, and sensitivity to change of scores from CAT versions of two Late-Life FDI scales with scores from the fixed-form instrument. Score estimates from the prototype CAT versus the original instrument were compared in a sample of 40 older adults. Results Distinct function and disability domains were identified within the Late-Life FDI item bank and used to construct two prototype CAT scales. Using retrospective data, scores from computer simulations of the prototype CAT scales were highly correlated with scores from the original instrument. The results of computer simulation, accuracy, precision, and sensitivity to change of the CATs closely approximated those of the fixed-form scales, especially for the 10- or 15-item CAT versions. In the prospective study each CAT was administered in less than 3 minutes and CAT scores were highly correlated with scores generated from the original instrument. Conclusions CAT scores of the Late-Life FDI were highly comparable to those obtained from the full-length instrument with a small loss in accuracy, precision, and sensitivity to change. PMID:19038841

  5. Quantitative Analyses of Core Promoters Enable Precise Engineering of Regulated Gene Expression in Mammalian Cells.

    PubMed

    Ede, Christopher; Chen, Ximin; Lin, Meng-Yin; Chen, Yvonne Y

    2016-05-20

    Inducible transcription systems play a crucial role in a wide array of synthetic biology circuits. However, the majority of inducible promoters are constructed from a limited set of tried-and-true promoter parts, which are susceptible to common shortcomings such as high basal expression levels (i.e., leakiness). To expand the toolbox for regulated mammalian gene expression and facilitate the construction of mammalian genetic circuits with precise functionality, we quantitatively characterized a panel of eight core promoters, including sequences with mammalian, viral, and synthetic origins. We demonstrate that this selection of core promoters can provide a wide range of basal gene expression levels and achieve a gradient of fold-inductions spanning 2 orders of magnitude. Furthermore, commonly used parts such as minimal CMV and minimal SV40 promoters were shown to achieve robust gene expression upon induction, but also suffer from high levels of leakiness. In contrast, a synthetic promoter, YB_TATA, was shown to combine low basal expression with high transcription rate in the induced state to achieve significantly higher fold-induction ratios compared to all other promoters tested. These behaviors remain consistent when the promoters are coupled to different genetic outputs and different response elements, as well as across different host-cell types and DNA copy numbers. We apply this quantitative understanding of core promoter properties to the successful engineering of human T cells that respond to antigen stimulation via chimeric antigen receptor signaling specifically under hypoxic environments. Results presented in this study can facilitate the design and calibration of future mammalian synthetic biology systems capable of precisely programmed functionality.

  6. Effect of Transcutaneous Electrode Temperature on Accuracy and Precision of Carbon Dioxide and Oxygen Measurements in the Preterm Infants.

    PubMed

    Jakubowicz, Jessica F; Bai, Shasha; Matlock, David N; Jones, Michelle L; Hu, Zhuopei; Proffitt, Betty; Courtney, Sherry E

    2018-05-01

    High electrode temperature during transcutaneous monitoring is associated with skin burns in extremely premature infants. We evaluated the accuracy and precision of CO 2 and O 2 measurements using lower transcutaneous electrode temperatures below 42°C. We enrolled 20 neonates. Two transcutaneous monitors were placed simultaneously on each neonate, with one electrode maintained at 42°C and the other randomized to temperatures of 38, 39, 40, 41, and 42°C. Arterial blood was collected twice at each temperature. At the time of arterial blood sampling, values for transcutaneously measured partial pressure of CO 2 (P tcCO 2 ) were not significantly different among test temperatures. There was no evidence of skin burning at any temperature. For P tcCO 2 , Bland-Altman analyses of all test temperatures versus 42°C showed good precision and low bias. Transcutaneously measured partial pressure of O 2 (P tcO 2 ) values trended arterial values but had large negative bias. Transcutaneous electrode temperatures as low as 38°C allow an assessment of P tcCO 2 as accurate as that with electrodes at 42°C. Copyright © 2018 by Daedalus Enterprises.

  7. A comprehensive molecular cytogenetic analysis of chromosome rearrangements in gibbons

    PubMed Central

    Capozzi, Oronzo; Carbone, Lucia; Stanyon, Roscoe R.; Marra, Annamaria; Yang, Fengtang; Whelan, Christopher W.; de Jong, Pieter J.; Rocchi, Mariano; Archidiacono, Nicoletta

    2012-01-01

    Chromosome rearrangements in small apes are up to 20 times more frequent than in most mammals. Because of their complexity, the full extent of chromosome evolution in these hominoids is not yet fully documented. However, previous work with array painting, BAC-FISH, and selective sequencing in two of the four karyomorphs has shown that high-resolution methods can precisely define chromosome breakpoints and map the complex flow of evolutionary chromosome rearrangements. Here we use these tools to precisely define the rearrangements that have occurred in the remaining two karyomorphs, genera Symphalangus (2n = 50) and Hoolock (2n = 38). This research provides the most comprehensive insight into the evolutionary origins of chromosome rearrangements involved in transforming small apes genome. Bioinformatics analyses of the human–gibbon synteny breakpoints revealed association with transposable elements and segmental duplications, providing some insight into the mechanisms that might have promoted rearrangements in small apes. In the near future, the comparison of gibbon genome sequences will provide novel insights to test hypotheses concerning the mechanisms of chromosome evolution. The precise definition of synteny block boundaries and orientation, chromosomal fusions, and centromere repositioning events presented here will facilitate genome sequence assembly for these close relatives of humans. PMID:22892276

  8. CaloGAN: Simulating 3D high energy particle showers in multilayer electromagnetic calorimeters with generative adversarial networks

    NASA Astrophysics Data System (ADS)

    Paganini, Michela; de Oliveira, Luke; Nachman, Benjamin

    2018-01-01

    The precise modeling of subatomic particle interactions and propagation through matter is paramount for the advancement of nuclear and particle physics searches and precision measurements. The most computationally expensive step in the simulation pipeline of a typical experiment at the Large Hadron Collider (LHC) is the detailed modeling of the full complexity of physics processes that govern the motion and evolution of particle showers inside calorimeters. We introduce CaloGAN, a new fast simulation technique based on generative adversarial networks (GANs). We apply these neural networks to the modeling of electromagnetic showers in a longitudinally segmented calorimeter and achieve speedup factors comparable to or better than existing full simulation techniques on CPU (100 ×-1000 × ) and even faster on GPU (up to ˜105× ). There are still challenges for achieving precision across the entire phase space, but our solution can reproduce a variety of geometric shower shape properties of photons, positrons, and charged pions. This represents a significant stepping stone toward a full neural network-based detector simulation that could save significant computing time and enable many analyses now and in the future.

  9. Carbon isotope analysis of dissolved organic carbon in fresh and saline (NaCl) water via continuous flow cavity ring-down spectroscopy following wet chemical oxidation

    USGS Publications Warehouse

    Conaway, Christopher; Thomas, Randal B.; Saad, Nabil; Thordsen, James J.; Kharaka, Yousif K.

    2015-01-01

    This work examines the performance and limitations of a wet chemical oxidation carbon analyser interfaced with a cavity ring-down spectrometer (WCO-CRDS) in a continuous flow (CF) configuration for measuring δ13C of dissolved organic carbon (δ13C-DOC) in natural water samples. Low-chloride matrix (<5 g Cl/L) DOC solutions were analysed with as little as 2.5 mg C/L in a 9 mL aliquot with a precision of 0.5 ‰. In high-chloride matrix (10–100 g Cl/L) DOC solutions, bias towards lighter δ13C-DOC was observed because of incomplete oxidation despite using high-concentration oxidant, extended reaction time, or post-wet chemical oxidation gas-phase combustion. However, through a combination of dilution, chloride removal, and increasing the oxidant:sample ratio, high-salinity samples with sufficient DOC (>22.5 µg C/aliquot) may be analysed. The WCO-CRDS approach requires more total carbon (µg C/aliquot) than conventional CF-isotope ratio mass spectrometer, but is nonetheless applicable to a wide range of DOC concentration and water types, including brackish water, produced water, and basinal brines.

  10. In situ observations of the isotopic composition of methane at the Cabauw tall tower site

    NASA Astrophysics Data System (ADS)

    Röckmann, Thomas; Eyer, Simon; van der Veen, Carina; Popa, Maria E.; Tuzson, Béla; Monteil, Guillaume; Houweling, Sander; Harris, Eliza; Brunner, Dominik; Fischer, Hubertus; Zazzeri, Giulia; Lowry, David; Nisbet, Euan G.; Brand, Willi A.; Necki, Jaroslav M.; Emmenegger, Lukas; Mohn, Joachim

    2016-08-01

    High-precision analyses of the isotopic composition of methane in ambient air can potentially be used to discriminate between different source categories. Due to the complexity of isotope ratio measurements, such analyses have generally been performed in the laboratory on air samples collected in the field. This poses a limitation on the temporal resolution at which the isotopic composition can be monitored with reasonable logistical effort. Here we present the performance of a dual isotope ratio mass spectrometric system (IRMS) and a quantum cascade laser absorption spectroscopy (QCLAS)-based technique for in situ analysis of the isotopic composition of methane under field conditions. Both systems were deployed at the Cabauw Experimental Site for Atmospheric Research (CESAR) in the Netherlands and performed in situ, high-frequency (approx. hourly) measurements for a period of more than 5 months. The IRMS and QCLAS instruments were in excellent agreement with a slight systematic offset of (+0.25 ± 0.04) ‰ for δ13C and (-4.3 ± 0.4) ‰ for δD. This was corrected for, yielding a combined dataset with more than 2500 measurements of both δ13C and δD. The high-precision and high-temporal-resolution dataset not only reveals the overwhelming contribution of isotopically depleted agricultural CH4 emissions from ruminants at the Cabauw site but also allows the identification of specific events with elevated contributions from more enriched sources such as natural gas and landfills. The final dataset was compared to model calculations using the global model TM5 and the mesoscale model FLEXPART-COSMO. The results of both models agree better with the measurements when the TNO-MACC emission inventory is used in the models than when the EDGAR inventory is used. This suggests that high-resolution isotope measurements have the potential to further constrain the methane budget when they are performed at multiple sites that are representative for the entire European domain.

  11. Bias, precision and statistical power of analysis of covariance in the analysis of randomized trials with baseline imbalance: a simulation study.

    PubMed

    Egbewale, Bolaji E; Lewis, Martyn; Sim, Julius

    2014-04-09

    Analysis of variance (ANOVA), change-score analysis (CSA) and analysis of covariance (ANCOVA) respond differently to baseline imbalance in randomized controlled trials. However, no empirical studies appear to have quantified the differential bias and precision of estimates derived from these methods of analysis, and their relative statistical power, in relation to combinations of levels of key trial characteristics. This simulation study therefore examined the relative bias, precision and statistical power of these three analyses using simulated trial data. 126 hypothetical trial scenarios were evaluated (126,000 datasets), each with continuous data simulated by using a combination of levels of: treatment effect; pretest-posttest correlation; direction and magnitude of baseline imbalance. The bias, precision and power of each method of analysis were calculated for each scenario. Compared to the unbiased estimates produced by ANCOVA, both ANOVA and CSA are subject to bias, in relation to pretest-posttest correlation and the direction of baseline imbalance. Additionally, ANOVA and CSA are less precise than ANCOVA, especially when pretest-posttest correlation ≥ 0.3. When groups are balanced at baseline, ANCOVA is at least as powerful as the other analyses. Apparently greater power of ANOVA and CSA at certain imbalances is achieved in respect of a biased treatment effect. Across a range of correlations between pre- and post-treatment scores and at varying levels and direction of baseline imbalance, ANCOVA remains the optimum statistical method for the analysis of continuous outcomes in RCTs, in terms of bias, precision and statistical power.

  12. The reliability, precision and clinically meaningful change of walking assessments in multiple sclerosis.

    PubMed

    Learmonth, Yvonne C; Dlugonski, Deirdre D; Pilutti, Lara A; Sandroff, Brian M; Motl, Robert W

    2013-11-01

    Assessing walking impairment in those with multiple sclerosis (MS) is common, however little is known about the reliability, precision and clinically important change of walking outcomes. The purpose of this study was to determine the reliability, precision and clinically important change of the Timed 25-Foot Walk (T25FW), Six-Minute Walk (6MW), Multiple Sclerosis Walking Scale-12 (MSWS-12) and accelerometry. Data were collected from 82 persons with MS at two time points, six months apart. Analyses were undertaken for the whole sample and stratified based on disability level and usage of walking aids. Intraclass correlation coefficient (ICC) analyses established reliability: standard error of measurement (SEM) and coefficient of variation (CV) determined precision; and minimal detectable change (MDC) defined clinically important change. All outcome measures were reliable with precision and MDC varying between measures in the whole sample: T25FW: ICC=0.991; SEM=1 s; CV=6.2%; MDC=2.7 s (36%), 6MW: ICC=0.959; SEM=32 m; CV=6.2%; MDC=88 m (20%), MSWS-12: ICC=0.927; SEM=8; CV=27%; MDC=22 (53%), accelerometry counts/day: ICC=0.883; SEM=28450; CV=17%; MDC=78860 (52%), accelerometry steps/day: ICC=0.907; SEM=726; CV=16%; MDC=2011 (45%). Variation in these estimates was seen based on disability level and walking aid. The reliability of these outcomes is good and falls within acceptable ranges. Precision and clinically important change estimates provide guidelines for interpreting these outcomes in clinical and research settings.

  13. Bias, precision and statistical power of analysis of covariance in the analysis of randomized trials with baseline imbalance: a simulation study

    PubMed Central

    2014-01-01

    Background Analysis of variance (ANOVA), change-score analysis (CSA) and analysis of covariance (ANCOVA) respond differently to baseline imbalance in randomized controlled trials. However, no empirical studies appear to have quantified the differential bias and precision of estimates derived from these methods of analysis, and their relative statistical power, in relation to combinations of levels of key trial characteristics. This simulation study therefore examined the relative bias, precision and statistical power of these three analyses using simulated trial data. Methods 126 hypothetical trial scenarios were evaluated (126 000 datasets), each with continuous data simulated by using a combination of levels of: treatment effect; pretest-posttest correlation; direction and magnitude of baseline imbalance. The bias, precision and power of each method of analysis were calculated for each scenario. Results Compared to the unbiased estimates produced by ANCOVA, both ANOVA and CSA are subject to bias, in relation to pretest-posttest correlation and the direction of baseline imbalance. Additionally, ANOVA and CSA are less precise than ANCOVA, especially when pretest-posttest correlation ≥ 0.3. When groups are balanced at baseline, ANCOVA is at least as powerful as the other analyses. Apparently greater power of ANOVA and CSA at certain imbalances is achieved in respect of a biased treatment effect. Conclusions Across a range of correlations between pre- and post-treatment scores and at varying levels and direction of baseline imbalance, ANCOVA remains the optimum statistical method for the analysis of continuous outcomes in RCTs, in terms of bias, precision and statistical power. PMID:24712304

  14. Data precision of X-ray fluorescence (XRF) scanning of discrete samples with the ITRAX XRF core-scanner exemplified on loess-paleosol samples

    NASA Astrophysics Data System (ADS)

    Profe, Jörn; Ohlendorf, Christian

    2017-04-01

    XRF-scanning is the state-of-the-art technique for geochemical analyses in marine and lacustrine sedimentology for more than a decade. However, little attention has been paid to data precision and technical limitations so far. Using homogenized, dried and powdered samples (certified geochemical reference standards and samples from a lithologically-contrasting loess-paleosol sequence) minimizes many adverse effects that influence the XRF-signal when analyzing wet sediment cores. This allows the investigation of data precision under ideal conditions and documents a new application of the XRF core-scanner technology at the same time. Reliable interpretations of XRF results require data precision evaluation of single elements as a function of X-ray tube, measurement time, sample compaction and quality of peak fitting. Ten-fold measurement of each sample constitutes data precision. Data precision of XRF measurements theoretically obeys Poisson statistics. Fe and Ca exhibit largest deviations from Poisson statistics. The same elements show the least mean relative standard deviations in the range from 0.5% to 1%. This represents the technical limit of data precision achievable by the installed detector. Measurement times ≥ 30 s reveal mean relative standard deviations below 4% for most elements. The quality of peak fitting is only relevant for elements with overlapping fluorescence lines such as Ba, Ti and Mn or for elements with low concentrations such as Y, for example. Differences in sample compaction are marginal and do not change mean relative standard deviation considerably. Data precision is in the range reported for geochemical reference standards measured by conventional techniques. Therefore, XRF scanning of discrete samples provide a cost- and time-efficient alternative to conventional multi-element analyses. As best trade-off between economical operation and data quality, we recommend a measurement time of 30 s resulting in a total scan time of 30 minutes for 30 samples.

  15. Sustained modelling ability of artificial neural networks in the analysis of two pharmaceuticals (dextropropoxyphene and dipyrone) present in unequal concentrations.

    PubMed

    Cámara, María S; Ferroni, Félix M; De Zan, Mercedes; Goicoechea, Héctor C

    2003-07-01

    An improvement is presented on the simultaneous determination of two active ingredients present in unequal concentrations in injections. The analysis was carried out with spectrophotometric data and non-linear multivariate calibration methods, in particular artificial neural networks (ANNs). The presence of non-linearities caused by the major analyte concentrations which deviate from Beer's law was confirmed by plotting actual vs. predicted concentrations, and observing curvatures in the residuals for the estimated concentrations with linear methods. Mixtures of dextropropoxyphene and dipyrone have been analysed by using linear and non-linear partial least-squares (PLS and NPLSs) and ANNs. Notwithstanding the high degree of spectral overlap and the occurrence of non-linearities, rapid and simultaneous analysis has been achieved, with reasonably good accuracy and precision. A commercial sample was analysed by using the present methodology, and the obtained results show reasonably good agreement with those obtained by using high-performance liquid chromatography (HPLC) and a UV-spectrophotometric comparative methods.

  16. Research on the tool holder mode in high speed machining

    NASA Astrophysics Data System (ADS)

    Zhenyu, Zhao; Yongquan, Zhou; Houming, Zhou; Xiaomei, Xu; Haibin, Xiao

    2018-03-01

    High speed machining technology can improve the processing efficiency and precision, but also reduce the processing cost. Therefore, the technology is widely regarded in the industry. With the extensive application of high-speed machining technology, high-speed tool system has higher and higher requirements on the tool chuck. At present, in high speed precision machining, several new kinds of clip heads are as long as there are heat shrinkage tool-holder, high-precision spring chuck, hydraulic tool-holder, and the three-rib deformation chuck. Among them, the heat shrinkage tool-holder has the advantages of high precision, high clamping force, high bending rigidity and dynamic balance, etc., which are widely used. Therefore, it is of great significance to research the new requirements of the machining tool system. In order to adapt to the requirement of high speed machining precision machining technology, this paper expounds the common tool holder technology of high precision machining, and proposes how to select correctly tool clamping system in practice. The characteristics and existing problems are analyzed in the tool clamping system.

  17. Capabilities of unmanned aircraft vehicles for low altitude weed detection

    NASA Astrophysics Data System (ADS)

    Pflanz, Michael; Nordmeyer, Henning

    2014-05-01

    Sustainable crop production and food security require a consumer and environmental safe plant protection. It is recently known, that precise weed monitoring approaches could help apply pesticides corresponding to field variability. In this regard the site-specific weed management may contribute to an application of herbicides with higher ecologically aware and economical savings. First attempts of precision agriculture date back to the 1980's. Since that time, remote sensing from satellites or manned aircrafts have been investigated and used in agricultural practice, but are currently inadequate for the separation of weeds in an early growth stage from cultivated plants. In contrast, low-cost image capturing at low altitude from unmanned aircraft vehicles (UAV) provides higher spatial resolution and almost real-time processing. Particularly, rotary-wing aircrafts are suitable for precise path or stationary flight. This minimises motion blur and provides better image overlapping for stitching and mapping procedures. Through improved image analyses and the recent increase in the availability of microcontrollers and powerful batteries for UAVs, it can be expected that the spatial mapping of weeds will be enhanced in the future. A six rotors microcopter was equipped with a modified RGB camera taking images from agricultural fields. The hexacopter operates within predefined pathways at adjusted altitudes (from 5 to 10 m) by using GPS navigation. Different scenarios of optical weed detection have been carried out regarding to variable altitude, image resolution, weed and crop growth stages. Our experiences showed high capabilities for site-specific weed control. Image analyses with regard to recognition of weed patches can be used to adapt herbicide application to varying weed occurrence across a field.

  18. A novel methylation derivatization method for δ(18)O analysis of individual carbohydrates by gas chromatography/pyrolysis-isotope ratio mass spectrometry.

    PubMed

    Lehmann, Marco M; Fischer, Maria; Blees, Jan; Zech, Michael; Siegwolf, Rolf T W; Saurer, Matthias

    2016-01-15

    The oxygen isotope ratio (δ(18)O) of carbohydrates derived from animals, plants, sediments, and soils provides important information about biochemical and physiological processes, past environmental conditions, and geographical origins, which are otherwise not available. Nowadays, δ(18)O analyses are often performed on carbohydrate bulk material, while compound-specific δ(18)O analyses remain challenging and methods for a wide range of individual carbohydrates are rare. To improve the δ(18)O analysis of individual carbohydrates by gas chromatography/pyrolysis-isotope ratio mass spectrometry (GC/Pyr-IRMS) we developed a new methylation derivatization method. Carbohydrates were fully methylated within 24 h in an easy-to-handle one-pot reaction in acetonitrile, using silver oxide as proton acceptor, methyl iodide as methyl group carrier, and dimethyl sulfide as catalyst. The precision of the method ranged between 0.12 and 1.09‰ for the δ(18)O values of various individual carbohydrates of different classes (mono-, di-, and trisaccharides, alditols), with an accuracy of a similar order of magnitude, despite high variation in peak areas. Based on the δ(18)O values of the main isomers, important monosaccharides such as glucose and fructose could also be precisely analyzed for the first time. We tested the method on standard mixtures, honey samples, and leaf carbohydrates extracted from Pinus sylvestris, showing that the method is also applicable to different carbohydrate mixtures. The new methylation method shows unrivalled accuracy and precision for δ(18)O analysis of various individual carbohydrates; it is fast and easy-to-handle, and may therefore find wide-spread application. Copyright © 2015 John Wiley & Sons, Ltd.

  19. Causal diagrams and multivariate analysis II: precision work.

    PubMed

    Jupiter, Daniel C

    2014-01-01

    In this Investigators' Corner, I continue my discussion of when and why we researchers should include variables in multivariate regression. My examination focuses on studies comparing treatment groups and situations for which we can either exclude variables from multivariate analyses or include them for reasons of precision. Copyright © 2014 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  20. Screening by imaging: scaling up single-DNA-molecule analysis with a novel parabolic VA-TIRF reflector and noise-reduction techniques.

    PubMed

    van 't Hoff, Marcel; Reuter, Marcel; Dryden, David T F; Oheim, Martin

    2009-09-21

    Bacteriophage lambda-DNA molecules are frequently used as a scaffold to characterize the action of single proteins unwinding, translocating, digesting or repairing DNA. However, scaling up such single-DNA-molecule experiments under identical conditions to attain statistically relevant sample sizes remains challenging. Additionally the movies obtained are frequently noisy and difficult to analyse with any precision. We address these two problems here using, firstly, a novel variable-angle total internal reflection fluorescence (VA-TIRF) reflector composed of a minimal set of optical reflective elements, and secondly, using single value decomposition (SVD) to improve the signal-to-noise ratio prior to analysing time-lapse image stacks. As an example, we visualize under identical optical conditions hundreds of surface-tethered single lambda-DNA molecules, stained with the intercalating dye YOYO-1 iodide, and stretched out in a microcapillary flow. Another novelty of our approach is that we arrange on a mechanically driven stage several capillaries containing saline, calibration buffer and lambda-DNA, respectively, thus extending the approach to high-content, high-throughput screening of single molecules. Our length measurements of individual DNA molecules from noise-reduced kymograph images using SVD display a 6-fold enhanced precision compared to raw-data analysis, reaching approximately 1 kbp resolution. Combining these two methods, our approach provides a straightforward yet powerful way of collecting statistically relevant amounts of data in a semi-automated manner. We believe that our conceptually simple technique should be of interest for a broader range of single-molecule studies, well beyond the specific example of lambda-DNA shown here.

  1. A Rhizobium radiobacter Histidine Kinase Can Employ Both Boolean AND and OR Logic Gates to Initiate Pathogenesis.

    PubMed

    Fang, Fang; Lin, Yi-Han; Pierce, B Daniel; Lynn, David G

    2015-10-12

    The molecular logic gates that regulate gene circuits are necessarily intricate and highly regulated, particularly in the critical commitments necessary for pathogenesis. We now report simple AND and OR logic gates to be accessible within a single protein receptor. Pathogenesis by the bacterium Rhizobium radiobacter is mediated by a single histidine kinase, VirA, which processes multiple small molecule host signals (phenol and sugar). Mutagenesis analyses converged on a single signal integration node, and finer functional analyses revealed that a single residue could switch VirA from a functional AND logic gate to an OR gate where each of two signals activate independently. Host range preferences among natural strains of R. radiobacter correlate with these gate logic strategies. Although the precise mechanism for the signal integration node requires further analyses, long-range signal transmission through this histidine kinase can now be exploited for synthetic signaling circuits. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Study of a newly developed high-performance liquid chromatography analyser for glycosylated haemoglobin measurements in blood containing haemoglobin variants in the Japanese population.

    PubMed

    Miyashita, Tetsuo; Sugiyama, Takahiro; Yamadate, Shuukoh; Nagashima, Masaaki; Satomura, Atsushi; Nakayama, Tomohiro

    2014-09-01

    This study examined the new high-performance liquid chromatography analyser HLC-723GX (GX) and investigated its ability to both measure glycosylated haemoglobin (HbA1c) values and determine whether haemoglobin variants could cause interference with these measurements in the Japanese population. For the basic GX examination, the within- and between-run precision, linearity of measurements, correlation of HbA1c values with current systems and the interference of chemically modified haemoglobin were determined. GX interference caused by the haemoglobin variant was examined by analysing 39 clinical laboratory samples that contained haemoglobin variants. Good within- and between-run precision were found, with the coefficients of variation at ≤1.0%. A wide range of HbA1c measurement values were confirmed, with the HbA1c values strongly correlated with the results of the currently used HLC-723G8 system. Chemically modified haemoglobins were prepared by adding glucose, sodium cyanate, acetaldehyde or acetylsalicylic acid to normal blood samples. None of these samples had any influence on the HbA1c values determined by GX. GX analysis showed haemoglobin variants that eluted after HbA0 and were similar to HbD, or HbS had HbA1c values that were close to those measured by boronate affinity chromatography and immunoassay. GX found lower HbA1c values in blood that contained HbE or haemoglobin variants, which elute before or at nearly the same time as HbA0. GX is useful for the analysis of HbA1c samples that contain HbD, HbS, HbC and haemoglobin variants, even though the elution times are similar. However, a countermeasure is needed in order to avoid overlooking other haemoglobin variants in Japan. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  3. Comprehensive benchmarking of SNV callers for highly admixed tumor data

    PubMed Central

    Bohnert, Regina; Vivas, Sonia

    2017-01-01

    Precision medicine attempts to individualize cancer therapy by matching tumor-specific genetic changes with effective targeted therapies. A crucial first step in this process is the reliable identification of cancer-relevant variants, which is considerably complicated by the impurity and heterogeneity of clinical tumor samples. We compared the impact of admixture of non-cancerous cells and low somatic allele frequencies on the sensitivity and precision of 19 state-of-the-art SNV callers. We studied both whole exome and targeted gene panel data and up to 13 distinct parameter configurations for each tool. We found vast differences among callers. Based on our comprehensive analyses we recommend joint tumor-normal calling with MuTect, EBCall or Strelka for whole exome somatic variant calling, and HaplotypeCaller or FreeBayes for whole exome germline calling. For targeted gene panel data on a single tumor sample, LoFreqStar performed best. We further found that tumor impurity and admixture had a negative impact on precision, and in particular, sensitivity in whole exome experiments. At admixture levels of 60% to 90% sometimes seen in pathological biopsies, sensitivity dropped significantly, even when variants were originally present in the tumor at 100% allele frequency. Sensitivity to low-frequency SNVs improved with targeted panel data, but whole exome data allowed more efficient identification of germline variants. Effective somatic variant calling requires high-quality pathological samples with minimal admixture, a consciously selected sequencing strategy, and the appropriate variant calling tool with settings optimized for the chosen type of data. PMID:29020110

  4. Modified ion exchange separation for tungsten isotopic measurements from kimberlite samples using multi-collector inductively coupled plasma mass spectrometry.

    PubMed

    Sahoo, Yu Vin; Nakai, Shun'ichi; Ali, Arshad

    2006-03-01

    Tungsten isotope composition of a sample of deep-seated rock can record the influence of core-mantle interaction of the parent magma. Samples of kimberlite, which is known as a carrier of diamond, from the deep mantle might exhibit effects of core-mantle interaction. Although tungsten isotope anomaly was reported for kimberlites from South Africa, a subsequent investigation did not verify the anomaly. The magnesium-rich and calcium-rich chemical composition of kimberlite might engender difficulty during chemical separation of tungsten for isotope analyses. This paper presents a simple, one-step anion exchange technique for precise and accurate determination of tungsten isotopes in kimberlites using multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS). Large quantities of Ca and Mg in kimberlite samples were precipitated and removed with aqueous H(2)SO(4). Highly pure fractions of tungsten for isotopic measurements were obtained following an anion exchange chromatographic procedure involving mixed acids. That procedure enabled efficient removal of high field strength elements (HFSE), such as Hf, Zr and Ti, which are small ions that carry strong charges and develop intense electrostatic fields. The tungsten yields were 85%-95%. Advantages of this system include less time and less use of reagents. Precise and accurate isotopic measurements are possible using fractions of tungsten that are obtained using this method. The accuracy and precision of these measurements were confirmed using various silicate standard rock samples, JB-2, JB-3 and AGV-1.

  5. Development and Preliminary Testing of a High Precision Long Stroke Slit Change Mechanism for the SPICE Instrument

    NASA Technical Reports Server (NTRS)

    Paciotti, Gabriel; Humphries, Martin; Rottmeier, Fabrice; Blecha, Luc

    2014-01-01

    In the frame of ESA's Solar Orbiter scientific mission, Almatech has been selected to design, develop and test the Slit Change Mechanism of the SPICE (SPectral Imaging of the Coronal Environment) instrument. In order to guaranty optical cleanliness level while fulfilling stringent positioning accuracies and repeatability requirements for slit positioning in the optical path of the instrument, a linear guiding system based on a double flexible blade arrangement has been selected. The four different slits to be used for the SPICE instrument resulted in a total stroke of 16.5 mm in this linear slit changer arrangement. The combination of long stroke and high precision positioning requirements has been identified as the main design challenge to be validated through breadboard models testing. This paper presents the development of SPICE's Slit Change Mechanism (SCM) and the two-step validation tests successfully performed on breadboard models of its flexible blade support system. The validation test results have demonstrated the full adequacy of the flexible blade guiding system implemented in SPICE's Slit Change Mechanism in a stand-alone configuration. Further breadboard test results, studying the influence of the compliant connection to the SCM linear actuator on an enhanced flexible guiding system design have shown significant enhancements in the positioning accuracy and repeatability of the selected flexible guiding system. Preliminary evaluation of the linear actuator design, including a detailed tolerance analyses, has shown the suitability of this satellite roller screw based mechanism for the actuation of the tested flexible guiding system and compliant connection. The presented development and preliminary testing of the high-precision long-stroke Slit Change Mechanism for the SPICE Instrument are considered fully successful such that future tests considering the full Slit Change Mechanism can be performed, with the gained confidence, directly on a Qualification Model. The selected linear Slit Change Mechanism design concept, consisting of a flexible guiding system driven by a hermetically sealed linear drive mechanism, is considered validated for the specific application of the SPICE instrument, with great potential for other special applications where contamination and high precision positioning are dominant design drivers.

  6. Precision of Multiple Reaction Monitoring Mass Spectrometry Analysis of Formalin-Fixed, Paraffin-Embedded Tissue

    PubMed Central

    2012-01-01

    We compared the reproducibility of multiple reaction monitoring (MRM) mass spectrometry-based peptide quantitation in tryptic digests from formalin-fixed, paraffin-embedded (FFPE) and frozen clear cell renal cell carcinoma tissues. The analyses targeted a candidate set of 114 peptides previously identified in shotgun proteomic analyses, of which 104 were detectable in FFPE and frozen tissue. Although signal intensities for MRM of peptides from FFPE tissue were on average 66% of those in frozen tissue, median coefficients of variation (CV) for measurements in FFPE and frozen tissues were nearly identical (18–20%). Measurements of lysine C-terminal peptides and arginine C-terminal peptides from FFPE tissue were similarly reproducible (19.5% and 18.3% median CV, respectively). We further evaluated the precision of MRM-based quantitation by analysis of peptides from the Her2 receptor in FFPE and frozen tissues from a Her2 overexpressing mouse xenograft model of breast cancer and in human FFPE breast cancer specimens. We obtained equivalent MRM measurements of HER2 receptor levels in FFPE and frozen mouse xenografts derived from HER2-overexpressing BT474 cells and HER2-negative Sum159 cells. MRM analyses of 5 HER2-positive and 5 HER-negative human FFPE breast tumors confirmed the results of immunohistochemical analyses, thus demonstrating the feasibility of HER2 protein quantification in FFPE tissue specimens. The data demonstrate that MRM analyses can be performed with equal precision on FFPE and frozen tissues and that lysine-containing peptides can be selected for quantitative comparisons, despite the greater impact of formalin fixation on lysine residues. The data further illustrate the feasibility of applying MRM to quantify clinically important tissue biomarkers in FFPE specimens. PMID:22530795

  7. Correction algorithm for online continuous flow δ13C and δ18O carbonate and cellulose stable isotope analyses

    NASA Astrophysics Data System (ADS)

    Evans, M. N.; Selmer, K. J.; Breeden, B. T.; Lopatka, A. S.; Plummer, R. E.

    2016-09-01

    We describe an algorithm to correct for scale compression, runtime drift, and amplitude effects in carbonate and cellulose oxygen and carbon isotopic analyses made on two online continuous flow isotope ratio mass spectrometry (CF-IRMS) systems using gas chromatographic (GC) separation. We validate the algorithm by correcting measurements of samples of known isotopic composition which are not used to estimate the corrections. For carbonate δ13C (δ18O) data, median precision of validation estimates for two reference materials and two calibrated working standards is 0.05‰ (0.07‰); median bias is 0.04‰ (0.02‰) over a range of 49.2‰ (24.3‰). For α-cellulose δ13C (δ18O) data, median precision of validation estimates for one reference material and five working standards is 0.11‰ (0.27‰); median bias is 0.13‰ (-0.10‰) over a range of 16.1‰ (19.1‰). These results are within the 5th-95th percentile range of subsequent routine runtime validation exercises in which one working standard is used to calibrate the other. Analysis of the relative importance of correction steps suggests that drift and scale-compression corrections are most reliable and valuable. If validation precisions are not already small, routine cross-validated precision estimates are improved by up to 50% (80%). The results suggest that correction for systematic error may enable these particular CF-IRMS systems to produce δ13C and δ18O carbonate and cellulose isotopic analyses with higher validated precision, accuracy, and throughput than is typically reported for these systems. The correction scheme may be used in support of replication-intensive research projects in paleoclimatology and other data-intensive applications within the geosciences.

  8. Balancing precision and risk: should multiple detection methods be analyzed separately in N-mixture models?

    USGS Publications Warehouse

    Graves, Tabitha A.; Royle, J. Andrew; Kendall, Katherine C.; Beier, Paul; Stetz, Jeffrey B.; Macleod, Amy C.

    2012-01-01

    Using multiple detection methods can increase the number, kind, and distribution of individuals sampled, which may increase accuracy and precision and reduce cost of population abundance estimates. However, when variables influencing abundance are of interest, if individuals detected via different methods are influenced by the landscape differently, separate analysis of multiple detection methods may be more appropriate. We evaluated the effects of combining two detection methods on the identification of variables important to local abundance using detections of grizzly bears with hair traps (systematic) and bear rubs (opportunistic). We used hierarchical abundance models (N-mixture models) with separate model components for each detection method. If both methods sample the same population, the use of either data set alone should (1) lead to the selection of the same variables as important and (2) provide similar estimates of relative local abundance. We hypothesized that the inclusion of 2 detection methods versus either method alone should (3) yield more support for variables identified in single method analyses (i.e. fewer variables and models with greater weight), and (4) improve precision of covariate estimates for variables selected in both separate and combined analyses because sample size is larger. As expected, joint analysis of both methods increased precision as well as certainty in variable and model selection. However, the single-method analyses identified different variables and the resulting predicted abundances had different spatial distributions. We recommend comparing single-method and jointly modeled results to identify the presence of individual heterogeneity between detection methods in N-mixture models, along with consideration of detection probabilities, correlations among variables, and tolerance to risk of failing to identify variables important to a subset of the population. The benefits of increased precision should be weighed against those risks. The analysis framework presented here will be useful for other species exhibiting heterogeneity by detection method.

  9. Error analysis of high-rate GNSS precise point positioning for seismic wave measurement

    NASA Astrophysics Data System (ADS)

    Shu, Yuanming; Shi, Yun; Xu, Peiliang; Niu, Xiaoji; Liu, Jingnan

    2017-06-01

    High-rate GNSS precise point positioning (PPP) has been playing a more and more important role in providing precise positioning information in fast time-varying environments. Although kinematic PPP is commonly known to have a precision of a few centimeters, the precision of high-rate PPP within a short period of time has been reported recently with experiments to reach a few millimeters in the horizontal components and sub-centimeters in the vertical component to measure seismic motion, which is several times better than the conventional kinematic PPP practice. To fully understand the mechanism of mystified excellent performance of high-rate PPP within a short period of time, we have carried out a theoretical error analysis of PPP and conducted the corresponding simulations within a short period of time. The theoretical analysis has clearly indicated that the high-rate PPP errors consist of two types: the residual systematic errors at the starting epoch, which affect high-rate PPP through the change of satellite geometry, and the time-varying systematic errors between the starting epoch and the current epoch. Both the theoretical error analysis and simulated results are fully consistent with and thus have unambiguously confirmed the reported high precision of high-rate PPP, which has been further affirmed here by the real data experiments, indicating that high-rate PPP can indeed achieve the millimeter level of precision in the horizontal components and the sub-centimeter level of precision in the vertical component to measure motion within a short period of time. The simulation results have clearly shown that the random noise of carrier phases and higher order ionospheric errors are two major factors to affect the precision of high-rate PPP within a short period of time. The experiments with real data have also indicated that the precision of PPP solutions can degrade to the cm level in both the horizontal and vertical components, if the geometry of satellites is rather poor with a large DOP value.

  10. Note: High precision measurements using high frequency gigahertz signals

    NASA Astrophysics Data System (ADS)

    Jin, Aohan; Fu, Siyuan; Sakurai, Atsunori; Liu, Liang; Edman, Fredrik; Pullerits, Tõnu; Öwall, Viktor; Karki, Khadga Jung

    2014-12-01

    Generalized lock-in amplifiers use digital cavities with Q-factors as high as 5 × 108 to measure signals with very high precision. In this Note, we show that generalized lock-in amplifiers can be used to analyze microwave (giga-hertz) signals with a precision of few tens of hertz. We propose that the physical changes in the medium of propagation can be measured precisely by the ultra-high precision measurement of the signal. We provide evidence to our proposition by verifying the Newton's law of cooling by measuring the effect of change in temperature on the phase and amplitude of the signals propagating through two calibrated cables. The technique could be used to precisely measure different physical properties of the propagation medium, for example, the change in length, resistance, etc. Real time implementation of the technique can open up new methodologies of in situ virtual metrology in material design.

  11. Uncertainty in Operational Atmospheric Analyses and Re-Analyses

    NASA Astrophysics Data System (ADS)

    Langland, R.; Maue, R. N.

    2016-12-01

    This talk will describe uncertainty in atmospheric analyses of wind and temperature produced by operational forecast models and in re-analysis products. Because the "true" atmospheric state cannot be precisely quantified, there is necessarily error in every atmospheric analysis, and this error can be estimated by computing differences ( variance and bias) between analysis products produced at various centers (e.g., ECMWF, NCEP, U.S Navy, etc.) that use independent data assimilation procedures, somewhat different sets of atmospheric observations and forecast models with different resolutions, dynamical equations, and physical parameterizations. These estimates of analysis uncertainty provide a useful proxy to actual analysis error. For this study, we use a unique multi-year and multi-model data archive developed at NRL-Monterey. It will be shown that current uncertainty in atmospheric analyses is closely correlated with the geographic distribution of assimilated in-situ atmospheric observations, especially those provided by high-accuracy radiosonde and commercial aircraft observations. The lowest atmospheric analysis uncertainty is found over North America, Europe and Eastern Asia, which have the largest numbers of radiosonde and commercial aircraft observations. Analysis uncertainty is substantially larger (by factors of two to three times) in most of the Southern hemisphere, the North Pacific ocean, and under-developed nations of Africa and South America where there are few radiosonde or commercial aircraft data. It appears that in regions where atmospheric analyses depend primarily on satellite radiance observations, analysis uncertainty of both temperature and wind remains relatively high compared to values found over North America and Europe.

  12. VALVES FOR THE HIGH PRESSURE-HIGH TEMPERATURE (HP-HT) FLUORINATION SYSTEM. (Engineering Materials)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1963-10-31

    This package contains two drawings of valves which eliminate errors in the gravimetric oxide dilution procedure of U/sup 235/ measurement. Isotopic contaminatioNonen in the high pressure fluorination reactor was corrected by changing the manner in which the Cu tubing joins the valve and by modification of the bellows. The compact inlet system was modified to improve the precision of the spectrometer analyses. Changes were raade in the basic leak and the air operator, which is a diaphragm-type valve, so that the setting of the flow level is controlled by the closure spring adjustment screw. This capillary-type leak has increased controlmore » range and sraooth control characteristics. It is simple to construct, is remotely operated and is free from corrosion failure. (F.S.)« less

  13. Quantitative high-resolution genomic analysis of single cancer cells.

    PubMed

    Hannemann, Juliane; Meyer-Staeckling, Sönke; Kemming, Dirk; Alpers, Iris; Joosse, Simon A; Pospisil, Heike; Kurtz, Stefan; Görndt, Jennifer; Püschel, Klaus; Riethdorf, Sabine; Pantel, Klaus; Brandt, Burkhard

    2011-01-01

    During cancer progression, specific genomic aberrations arise that can determine the scope of the disease and can be used as predictive or prognostic markers. The detection of specific gene amplifications or deletions in single blood-borne or disseminated tumour cells that may give rise to the development of metastases is of great clinical interest but technically challenging. In this study, we present a method for quantitative high-resolution genomic analysis of single cells. Cells were isolated under permanent microscopic control followed by high-fidelity whole genome amplification and subsequent analyses by fine tiling array-CGH and qPCR. The assay was applied to single breast cancer cells to analyze the chromosomal region centred by the therapeutical relevant EGFR gene. This method allows precise quantitative analysis of copy number variations in single cell diagnostics.

  14. In-situ observations of the isotopic composition of methane at the Cabauw tall tower site

    NASA Astrophysics Data System (ADS)

    Röckmann, Thomas; Eyer, Simon; van der Veen, Carina; E Popa, Maria; Tuzson, Béla; Monteil, Guillaume; Houweling, Sander; Harris, Eliza; Brunner, Dominik; Fischer, Hubertus; Zazzeri, Giulia; Lowry, David; Nisbet, Euan G.; Brand, Willi A.; Necki, Jaroslav M.; Emmenegger, Lukas; Mohn, Joachim

    2017-04-01

    High precision analyses of the isotopic composition of methane in ambient air can potentially be used to discriminate between different source categories. Due to the complexity of isotope ratio measurements, such analyses have generally been performed in the laboratory on air samples collected in the field. This poses a limitation on the temporal resolution at which the isotopic composition can be monitored with reasonable logistical effort. Here we present the performance of a dual isotope ratio mass spectrometric system (IRMS) and a quantum cascade laser absorption spectroscopy (QCLAS) based technique for in-situ analysis of the isotopic composition of methane under field conditions. Both systems were deployed at the Cabauw experimental site for atmospheric research (CESAR) in the Netherlands and performed in-situ, high-frequency (approx. hourly) measurements for a period of more than 5 months. The IRMS and QCLAS instruments were in excellent agreement with a slight systematic offset of +0.05 ± 0.03 ‰ for δ13C-CH4 and -3.6 ± 0.4 ‰ for δD-CH4. This was corrected for, yielding a combined dataset with more than 2500 measurements of both δ13C and δD. The high precision and temporal resolution dataset does not only reveal the overwhelming contribution of isotopically depleted agricultural CH4 emissions from ruminants at the Cabauw site, but also allows the identification of specific events with elevated contributions from more enriched sources such as natural gas and landfills. The final dataset was compared to model calculations using the global model TM5 and the mesoscale model FLEXPART-COSMO. The results of both models agree better with the measurements when the TNO-MACC emission inventory is used in the models than when the EDGAR inventory is used. This suggests that high-resolution isotope measurements have the potential to further constrain the methane budget, when they are performed at multiple sites that are representative for the entire European domain.

  15. Numerical Simulation Analysis of High-precision Dispensing Needles for Solid-liquid Two-phase Grinding

    NASA Astrophysics Data System (ADS)

    Li, Junye; Hu, Jinglei; Wang, Binyu; Sheng, Liang; Zhang, Xinming

    2018-03-01

    In order to investigate the effect of abrasive flow polishing surface variable diameter pipe parts, with high precision dispensing needles as the research object, the numerical simulation of the process of polishing high precision dispensing needle was carried out. Analysis of different volume fraction conditions, the distribution of the dynamic pressure and the turbulence viscosity of the abrasive flow field in the high precision dispensing needle, through comparative analysis, the effectiveness of the abrasive grain polishing high precision dispensing needle was studied, controlling the volume fraction of silicon carbide can change the viscosity characteristics of the abrasive flow during the polishing process, so that the polishing quality of the abrasive grains can be controlled.

  16. MultiGeMS: detection of SNVs from multiple samples using model selection on high-throughput sequencing data.

    PubMed

    Murillo, Gabriel H; You, Na; Su, Xiaoquan; Cui, Wei; Reilly, Muredach P; Li, Mingyao; Ning, Kang; Cui, Xinping

    2016-05-15

    Single nucleotide variant (SNV) detection procedures are being utilized as never before to analyze the recent abundance of high-throughput DNA sequencing data, both on single and multiple sample datasets. Building on previously published work with the single sample SNV caller genotype model selection (GeMS), a multiple sample version of GeMS (MultiGeMS) is introduced. Unlike other popular multiple sample SNV callers, the MultiGeMS statistical model accounts for enzymatic substitution sequencing errors. It also addresses the multiple testing problem endemic to multiple sample SNV calling and utilizes high performance computing (HPC) techniques. A simulation study demonstrates that MultiGeMS ranks highest in precision among a selection of popular multiple sample SNV callers, while showing exceptional recall in calling common SNVs. Further, both simulation studies and real data analyses indicate that MultiGeMS is robust to low-quality data. We also demonstrate that accounting for enzymatic substitution sequencing errors not only improves SNV call precision at low mapping quality regions, but also improves recall at reference allele-dominated sites with high mapping quality. The MultiGeMS package can be downloaded from https://github.com/cui-lab/multigems xinping.cui@ucr.edu Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  17. Development of a Field-Deployable Methane Carbon Isotope Analyzer

    NASA Astrophysics Data System (ADS)

    Dong, Feng; Baer, Douglas

    2010-05-01

    Methane is a potent greenhouse gas, whose atmospheric surface mixing ratio has almost doubled compared with preindustrial values. Methane can be produced by biogenic processes, thermogenic processes or biomass, with different isotopic signatures. As a key molecule involved in the radiative forcing in the atmosphere, methane is thus one of the most important molecules linking the biosphere and atmosphere. Therefore precise measurements of mixing ratios and isotopic compositions will help scientists to better understand methane sources and sinks. To date, high precision isotope measurements have been exclusively performed with conventional isotope ratio mass spectrometry, which involves intensive labor and is not readily field deployable. Optical studies using infrared laser spectroscopy have also been reported to measure the isotopic ratios. However, the precision of optical-based analyses, to date, is typically unsatisfactory without pre-concentration procedures. We present characterization of the performance of a portable Methane Carbon Isotope Analyzer (MCIA), based on cavity enhanced laser absorption spectroscopy technique, that provides in-situ measurements of the carbon isotope ratio (13C/12C or del_13C) and methane mixing ratio (CH4). The sample is introduced to the analyzer directly without any requirement for pretreatment or preconcentration. A typical precision of less than 1 per mill (< 0.1%) with a 10-ppm methane sample can be achieved in a measurement time of less than 100 seconds. The MCIA can report carbon isotope ratio and concentration measurements over a very wide range of methane concentrations. Results of laboratory tests and field measurements will be presented.

  18. Determination of illegal adulteration of dietary supplements with synthetic hair-growth compounds by UPLC and LC-Q-TOF/MS.

    PubMed

    Lee, Ji Hyun; Kang, Gihaeng; Park, Han Na; Kim, Jihee; Kim, Nam Sook; Park, Seongsoo; Park, Sung-Kwan; Baek, Sun Young; Kang, Hoil

    2018-02-01

    In this study, we developed a UPLC-PDA and LC-Q-TOF/MS method to identify and measure the following prohibited substances that may be found in dietary supplements:triaminodil, minoxidil, bimatoprost, alimemazine, diphenylcyclopropenone, α-tradiol, finasteride, methyltestosterone, spironolatone, flutamide, cyproterone, dutasteride, and testosterone 17-propionate.The method was validated according to International Conference on Harmonization guidelines in terms of specificity, linearity, accuracy, precision, LOD, LOQ, recovery, and stability. The method was completely validated showing satisfactory data for all method validation parameters. The linearity was good (R 2  > 0.999) with intra- and inter-day precision values of 0.2-3.4% and 0.3-2.9%, respectively. Moreover, the intra- and inter-day accuracies were 87-102% and 86-103%, respectively, and the precision was better than 9.4% (relative standard deviation).Hence, the proposed method is precise and has high quality,and can be utilised to comprehensively and continually monitor illegal drug adulteration in various forms of dietary supplements. Furthermore, to evaluate the applicability of the proposed method, we analysed 13 hair-growth compounds in 78 samples including food and dietary supplements. Minoxidil and triaminodil were detected in capsules at concentrations of 4.69 mg/g and 6.54 mg/g. In addition, finasteride was detected in a tablet at 13.45 mg/g. In addition, the major characteristic fragment ions were confirmed once again using LC-Q-TOF/MS for higher accuracy.

  19. High-precision Ru isotopic measurements by multi-collector ICP-MS.

    PubMed

    Becker, Harry; Dalpe, Claude; Walker, Richard J

    2002-06-01

    Ruthenium isotopic data for a pure Aldrich ruthenium nitrate solution obtained using a Nu Plasma multi collector inductively coupled plasma-mass spectrometer (MC-ICP-MS) shows excellent agreement (better than 1 epsilon unit = 1 part in 10(4)) with data obtained by other techniques for the mass range between 96 and 101 amu. External precisions are at the 0.5-1.7 epsilon level (2sigma). Higher sensitivity for MC ICP-MS compared to negative thermal ionization mass spectrometry (N-TIMS) is offset by the uncertainties introduced by relatively large mass discrimination and instabilities in the plasma source-ion extraction region that affect the long-term reproducibility. Large mass bias correction in ICP mass spectrometry demands particular attention to be paid to the choice of normalizing isotopes. Because of its position in the mass spectrum and the large mass bias correction, obtaining precise and accurate abundance data for 104Ru by MC-ICP-MS remains difficult. Internal and external mass bias correction schemes in this mass range may show similar shortcomings if the isotope of interest does not lie within the mass range covered by the masses used for normalization. Analyses of meteorite samples show that if isobaric interferences from Mo are sufficiently large (Ru/Mo < 10(4)), uncertainties on the Mo interference correction propagate through the mass bias correction and yield inaccurate results for Ru isotopic compositions. Second-order linear corrections may be used to correct for these inaccuracies, but such results are generally less precise than N-TIMS data.

  20. High-Precision U-Pb Geochronology of Ice River Perovskite: A Possible Interlaboratory and Intertechnique EARTHTIME Standard

    NASA Astrophysics Data System (ADS)

    Burgess, S. D.; Bowring, S. A.; Heaman, L. M.

    2012-12-01

    Accurate and precise U-Pb geochronology of accessory phases other than zircon are required for dating some LIP basalts or determining the temporal patterns of kimberlite pipes, for example. Advances in precision and accuracy lead directly to an increase in the complexity of questions that can be posed. U-Pb geochronology of perovskite (CaTiO3) has been applied to silica-undersaturated basalts, carbonatites, alkaline igneous rocks, and kimberlites. Most published IDTIMS perovskite dates have 2-sigma precisions at the ~0.2% level for weighted mean 206Pb/238U dates, much less than possible with IDTIMS analyses of zircons, which limits the applicability of perovskite in high-precision applications. Precision on perovskite dates is lower than zircon because of common Pb, which in some cases can be up to 50% of the total Pb and must be corrected for and accurately partitioned between blank and initial. Relatively small changes in the composition of common Pb can result in inaccurate but precise dates. In many cases minerals with significant common Pb are corrected using Stacey and Kramers (1975) two stage Pb evolution model. This can be done without serious consequence to the final date for minerals with high U/Pb ratios. In the more common case where U/Pb ratios are relatively low and the proportion of common Pb is large, applying a model-derived Pb isotopic composition rather than measuring it directly can introduce percent-level inaccuracy to dates calculated with precisely known U/Pb ratios. Direct measurement of the common Pb composition can be done on a U-poor mineral that co-crystallized with perovskite; feldspar and clinopyroxene are commonly used. Clinopyroxene can contain significant in-grown radiogenic Pb and our experiments indicate that it is not eliminated by aggressive step-wise leaching. The U/Pb ratio in clinopyroxene is generally low (20 < mu < 50) but significant. Other workers (e.g. Kamo et al., 2003; Corfu and Dahlgren, 2008), have used two methods to determine the amount of ingrown Pb. First, by measuring the U/Pb ratio in clinopyroxene and assuming a crystallization age the amount of ingrown Pb can be calculated. Second, by assuming that perovskite and clinopyroxene (± other phases) are isochronous, the initial Pb isotopic composition can be calculated using the y-intercept on 206Pb/238U, 207Pb/235U, and 3-D isochron diagrams. To further develop a perovskite mineral standard for use in high-precision dating applications, we have focused on single grains/fragments of perovskite and multi-grain clinopyroxene fractions from a melteigite sample (IR90.3) within the Ice River complex, a zoned alkaline-ultramafic intrusion in southeastern British Columbia. Perovskite from this sample has variable measured 206Pb/204Pb (22-263), making this an ideal sample on which to test the sensitivity of the date on grains with variable amounts of radiogenic Pb to changes in common Pb composition. Using co-existing clinopyroxene for the initial common Pb composition by both direct measurement and by the isochron method allows us to calculate an accurate weighted-mean 206Pb/238U date on perovskite at the < 0.1% level, which overlaps within uncertainty for the two different methods. We recommend the Ice River 90.3 perovskite as a suitable EARTHTIME standard for interlaboratory and intertechnique comparison.

  1. Multivariate analyses of Erzgebirge granite and rhyolite composition: Implications for classification of granites and their genetic relations

    USGS Publications Warehouse

    Forster, H.-J.; Davis, J.C.; Tischendorf, G.; Seltmann, R.

    1999-01-01

    High-precision major, minor and trace element analyses for 44 elements have been made of 329 Late Variscan granitic and rhyolitic rocks from the Erzgebirge metallogenic province of Germany. The intrusive histories of some of these granites are not completely understood and exposures of rock are not adequate to resolve relationships between what apparently are different plutons. Therefore, it is necessary to turn to chemical analyses to decipher the evolution of the plutons and their relationships. A new classification of Erzgebirge plutons into five major groups of granites, based on petrologic interpretations of geochemical and mineralogical relationships (low-F biotite granites; low-F two-mica granites; high-F, high-P2O5 Li-mica granites; high-F, low-P2O5 Li-mica granites; high-F, low-P2O5 biotite granites) was tested by multivariate techniques. Canonical analyses of major elements, minor elements, trace elements and ratio variables all distinguish the groups with differing amounts of success. Univariate ANOVA's, in combination with forward-stepwise and backward-elimination canonical analyses, were used to select ten variables which were most effective in distinguishing groups. In a biplot, groups form distinct clusters roughly arranged along a quadratic path. Within groups, individual plutons tend to be arranged in patterns possibly reflecting granitic evolution. Canonical functions were used to classify samples of rhyolites of unknown association into the five groups. Another canonical analysis was based on ten elements traditionally used in petrology and which were important in the new classification of granites. Their biplot pattern is similar to that from statistically chosen variables but less effective at distinguishing the five groups of granites. This study shows that multivariate statistical techniques can provide significant insight into problems of granitic petrogenesis and may be superior to conventional procedures for petrological interpretation.

  2. Autonomous Precision Landing and Hazard Avoidance Technology (ALHAT) Project Status as of May 2010

    NASA Technical Reports Server (NTRS)

    Striepe, Scott A.; Epp, Chirold D.; Robertson, Edward A.

    2010-01-01

    This paper includes the current status of NASA s Autonomous precision Landing and Hazard Avoidance Technology (ALHAT) Project. The ALHAT team has completed several flight tests and two major design analysis cycles. These tests and analyses examine terrain relative navigation sensors, hazard detection and avoidance sensors and algorithms, and hazard relative navigation algorithms, and the guidance and navigation system using these ALHAT functions. The next flight test is scheduled for July 2010. The paper contains results from completed flight tests and analysis cycles. ALHAT system status, upcoming tests and analyses is also addressed. The current ALHAT plans as of May 2010 are discussed. Application of the ALHAT system to landing on bodies other than the Moon is included

  3. Determination of plutonium in spent nuclear fuel using high resolution X-ray

    DOE PAGES

    McIntosh, Kathryn G.; Reilly, Sean D.; Havrilla, George J.

    2015-05-30

    Characterization of Pu is an essential aspect of safeguards operations at nuclear fuel reprocessing facilities. A novel analysis technique called hiRX (high resolution X-ray) has been developed for the direct measurement of Pu in spent nuclear fuel dissolver solutions. hiRX is based on monochromatic wavelength dispersive X-ray fluorescence (MWDXRF), which provides enhanced sensitivity and specificity compared with conventional XRF techniques. A breadboard setup of the hiRX instrument was calibrated using spiked surrogate spent fuel (SSF) standards prepared as dried residues. Samples of actual spent fuel were utilized to evaluate the performance of the hiRX. The direct detection of just 39more » ng of Pu is demonstrated. Initial quantitative results, with error of 4–27% and precision of 2% relative standard deviation (RSD), were obtained for spent fuel samples. The limit of detection for Pu (100 s) within an excitation spot of 200 μm diameter was 375 pg. This study demonstrates the potential for the hiRX technique to be utilized for the rapid, accurate, and precise determination of Pu. Moreover, the results highlight the analytical capability of hiRX for other applications requiring sensitive and selective nondestructive analyses.« less

  4. Animal research as a basis for clinical trials.

    PubMed

    Faggion, Clovis M

    2015-04-01

    Animal experiments are critical for the development of new human therapeutics because they provide mechanistic information, as well as important information on efficacy and safety. Some evidence suggests that authors of animal research in dentistry do not observe important methodological issues when planning animal experiments, for example sample-size calculation. Low-quality animal research directly interferes with development of the research process in which multiple levels of research are interconnected. For example, high-quality animal experiments generate sound information for the further planning and development of randomized controlled trials in humans. These randomized controlled trials are the main source for the development of systematic reviews and meta-analyses, which will generate the best evidence for the development of clinical guidelines. Therefore, adequate planning of animal research is a sine qua non condition for increasing efficacy and efficiency in research. Ethical concerns arise when animal research is not performed with high standards. This Focus article presents the latest information on the standards of animal research in dentistry, more precisely in the field of implant dentistry. Issues on precision and risk of bias are discussed, and strategies to reduce risk of bias in animal research are reported. © 2015 Eur J Oral Sci.

  5. Method for ultra-trace cesium isotope ratio measurements from environmental samples using thermal ionization mass spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snow, Mathew S.; Snyder, Darin C.; Mann, Nick R.

    2015-05-01

    135Cs/ 137Cs isotope ratios can provide the age, origin and history of environmental Cs contamination. Relatively high precision 135Cs/ 137Cs isotope ratio measurements from samples containing femtogram quantities of 137Cs are needed to accurately track contamination resuspension and redistribution following environmental 137Cs releases; however, mass spectrometric analyses of environmental samples are limited by the large quantities of ionization inhibitors and isobaric interferences which are present at relatively high concentrations in the environment. We report a new approach for Cs purification from environmental samples. An initial ammonium molybdophosphate-polyacrylonitrile (AMP-PAN) column provides a robust method for extracting Cs under a wide varietymore » of sample matrices and mass loads. Cation exchange separations using a second AMP-PAN column result in more than two orders of magnitude greater Cs/Rb separation factors than commercially available strong cation exchangers. Coupling an AMP-PAN cation exchanging step to a microcation column (AG50W resin) enables consistent 2-4% (2σ) measurement errors for samples containing 3-6,000 fg 137Cs, representing the highest precision 135Cs/ 137Cs ratio measurements currently reported for soil samples at the femtogram level.« less

  6. Precise method for the measurement of catalase activity in honey.

    PubMed

    Huidobro, José F; Sánchez, M Pilar; Muniategui, Soledad; Sancho, M Teresa

    2005-01-01

    An improved method is reported for the determination of catalase activity in honey. We tested different dialysis membranes, dialysis fluid compositions and amounts, dialysis temperatures, sample amounts, and dialysis times. The best results were obtained by dialysis of 7.50 g sample in a cellulose dialysis sack, using two 3 L portions of 0.015 M sodium phosphate buffer (pH 7.0) as the dialysis fluid at 4 degrees C for 22 h. As in previous methods, catalase activity was determined on the basis of the rate of disappearance of the substrate, H202, with the H202 determined spectrophotometrically at 400 nm in an assay system containing o-dianisidine and peroxidase. Trials indicated that the best solvent for the o-dianisidine was 0.2 M sodium phosphate buffer, pH 6.1; the best starting H202 concentration was 3 mM; the best HCl concentration for stopping the reaction was 6 N; and the best sample volume for catalase measurement was 7.0 mL. Precision values (relative standard deviations for analyses of 10 subsamples of each of 3 samples) were high, ranging from 0.48% for samples with high catalase activity to 1.98% for samples with low catalase activity.

  7. High-precision Pb isotopic measurements of teeth and environmental samples from Sofia (Bulgaria): insights for regional lead sources and possible pathways to the human body

    NASA Astrophysics Data System (ADS)

    Kamenov, George D.

    2008-08-01

    High-precision Pb isotopic measurements on teeth and possible sources in a given area can provide important insights for the lead (Pb) sources and pathways in the human body. Pb isotopic analyses on soils from the area of Sofia, Bulgaria show that Pb is contributed by three end-members represented by two natural sources and leaded gasoline. Sequential leaching experiments reveal that the alumosilicate fraction of the soils is mainly controlled by natural Pb derived from two mountain massifs bordering the city. Around 1/3 to a half of the Pb in the soil leachates, however, can be explained by contamination from leaded gasoline. Contemporary teeth from Sofia residents show very similar Pb isotopic compositions to the soil leachates, also indicating that around 1/3 to a half of the Pb can be explained by derivation from leaded gasoline. The remarkable isotopic similarities between the teeth and the most labile fractions of the local soils suggest that the lead can be derived from the latter. Pb incorporation in the human body via soil-plant-human or soil-plant-animal-human chains is unlikely due to the fact that no significant farming occurs in the city area. The isotopic compositions of the local soil labile fractions can be used as approximation of the bioaccessible lead for humans. Considering all possible scenarios it appears that soil and/or soil-born dust inhalation and/or ingestion is the most probable pathway for incorporation of local soil lead in the local population. The high-precision Pb isotope data presented in this work indicate that apparently the local soil is what plays major role in the human Pb exposure.

  8. Prototypic Development and Evaluation of a Medium Format Metric Camera

    NASA Astrophysics Data System (ADS)

    Hastedt, H.; Rofallski, R.; Luhmann, T.; Rosenbauer, R.; Ochsner, D.; Rieke-Zapp, D.

    2018-05-01

    Engineering applications require high-precision 3D measurement techniques for object sizes that vary between small volumes (2-3 m in each direction) and large volumes (around 20 x 20 x 1-10 m). The requested precision in object space (1σ RMS) is defined to be within 0.1-0.2 mm for large volumes and less than 0.01 mm for small volumes. In particular, focussing large volume applications the availability of a metric camera would have different advantages for several reasons: 1) high-quality optical components and stabilisations allow for a stable interior geometry of the camera itself, 2) a stable geometry leads to a stable interior orientation that enables for an a priori camera calibration, 3) a higher resulting precision can be expected. With this article the development and accuracy evaluation of a new metric camera, the ALPA 12 FPS add|metric will be presented. Its general accuracy potential is tested against calibrated lengths in a small volume test environment based on the German Guideline VDI/VDE 2634.1 (2002). Maximum length measurement errors of less than 0.025 mm are achieved with different scenarios having been tested. The accuracy potential for large volumes is estimated within a feasibility study on the application of photogrammetric measurements for the deformation estimation on a large wooden shipwreck in the German Maritime Museum. An accuracy of 0.2 mm-0.4 mm is reached for a length of 28 m (given by a distance from a lasertracker network measurement). All analyses have proven high stabilities of the interior orientation of the camera and indicate the applicability for a priori camera calibration for subsequent 3D measurements.

  9. Use of single-representative reverse-engineered surface-models for RSA does not affect measurement accuracy and precision.

    PubMed

    Seehaus, Frank; Schwarze, Michael; Flörkemeier, Thilo; von Lewinski, Gabriela; Kaptein, Bart L; Jakubowitz, Eike; Hurschler, Christof

    2016-05-01

    Implant migration can be accurately quantified by model-based Roentgen stereophotogrammetric analysis (RSA), using an implant surface model to locate the implant relative to the bone. In a clinical situation, a single reverse engineering (RE) model for each implant type and size is used. It is unclear to what extent the accuracy and precision of migration measurement is affected by implant manufacturing variability unaccounted for by a single representative model. Individual RE models were generated for five short-stem hip implants of the same type and size. Two phantom analyses and one clinical analysis were performed: "Accuracy-matched models": one stem was assessed, and the results from the original RE model were compared with randomly selected models. "Accuracy-random model": each of the five stems was assessed and analyzed using one randomly selected RE model. "Precision-clinical setting": implant migration was calculated for eight patients, and all five available RE models were applied to each case. For the two phantom experiments, the 95%CI of the bias ranged from -0.28 mm to 0.30 mm for translation and -2.3° to 2.5° for rotation. In the clinical setting, precision is less than 0.5 mm and 1.2° for translation and rotation, respectively, except for rotations about the proximodistal axis (<4.1°). High accuracy and precision of model-based RSA can be achieved and are not biased by using a single representative RE model. At least for implants similar in shape to the investigated short-stem, individual models are not necessary. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:903-910, 2016. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  10. Methods for applying accurate digital PCR analysis on low copy DNA samples.

    PubMed

    Whale, Alexandra S; Cowen, Simon; Foy, Carole A; Huggett, Jim F

    2013-01-01

    Digital PCR (dPCR) is a highly accurate molecular approach, capable of precise measurements, offering a number of unique opportunities. However, in its current format dPCR can be limited by the amount of sample that can be analysed and consequently additional considerations such as performing multiplex reactions or pre-amplification can be considered. This study investigated the impact of duplexing and pre-amplification on dPCR analysis by using three different assays targeting a model template (a portion of the Arabidopsis thaliana alcohol dehydrogenase gene). We also investigated the impact of different template types (linearised plasmid clone and more complex genomic DNA) on measurement precision using dPCR. We were able to demonstrate that duplex dPCR can provide a more precise measurement than uniplex dPCR, while applying pre-amplification or varying template type can significantly decrease the precision of dPCR. Furthermore, we also demonstrate that the pre-amplification step can introduce measurement bias that is not consistent between experiments for a sample or assay and so could not be compensated for during the analysis of this data set. We also describe a model for estimating the prevalence of molecular dropout and identify this as a source of dPCR imprecision. Our data have demonstrated that the precision afforded by dPCR at low sample concentration can exceed that of the same template post pre-amplification thereby negating the need for this additional step. Our findings also highlight the technical differences between different templates types containing the same sequence that must be considered if plasmid DNA is to be used to assess or control for more complex templates like genomic DNA.

  11. Methods for Applying Accurate Digital PCR Analysis on Low Copy DNA Samples

    PubMed Central

    Whale, Alexandra S.; Cowen, Simon; Foy, Carole A.; Huggett, Jim F.

    2013-01-01

    Digital PCR (dPCR) is a highly accurate molecular approach, capable of precise measurements, offering a number of unique opportunities. However, in its current format dPCR can be limited by the amount of sample that can be analysed and consequently additional considerations such as performing multiplex reactions or pre-amplification can be considered. This study investigated the impact of duplexing and pre-amplification on dPCR analysis by using three different assays targeting a model template (a portion of the Arabidopsis thaliana alcohol dehydrogenase gene). We also investigated the impact of different template types (linearised plasmid clone and more complex genomic DNA) on measurement precision using dPCR. We were able to demonstrate that duplex dPCR can provide a more precise measurement than uniplex dPCR, while applying pre-amplification or varying template type can significantly decrease the precision of dPCR. Furthermore, we also demonstrate that the pre-amplification step can introduce measurement bias that is not consistent between experiments for a sample or assay and so could not be compensated for during the analysis of this data set. We also describe a model for estimating the prevalence of molecular dropout and identify this as a source of dPCR imprecision. Our data have demonstrated that the precision afforded by dPCR at low sample concentration can exceed that of the same template post pre-amplification thereby negating the need for this additional step. Our findings also highlight the technical differences between different templates types containing the same sequence that must be considered if plasmid DNA is to be used to assess or control for more complex templates like genomic DNA. PMID:23472156

  12. Advanced structural design for precision radial velocity instruments

    NASA Astrophysics Data System (ADS)

    Baldwin, Dan; Szentgyorgyi, Andrew; Barnes, Stuart; Bean, Jacob; Ben-Ami, Sagi; Brennan, Patricia; Budynkiewicz, Jamie; Chun, Moo-Young; Conroy, Charlie; Crane, Jeffrey D.; Epps, Harland; Evans, Ian; Evans, Janet; Foster, Jeff; Frebel, Anna; Gauron, Thomas; Guzman, Dani; Hare, Tyson; Jang, Bi-Ho; Jang, Jeong-Gyun; Jordan, Andres; Kim, Jihun; Kim, Kang-Min; Mendes de Oliveira, Claudia; Lopez-Morales, Mercedes; McCracken, Kenneth; McMuldroch, Stuart; Miller, Joseph; Mueller, Mark; Oh, Jae Sok; Ordway, Mark; Park, Byeong-Gon; Park, Chan; Park, Sung-Joon; Paxson, Charles; Phillips, David; Plummer, David; Podgorski, William; Seifahrt, Andreas; Stark, Daniel; Steiner, Joao; Uomoto, Alan; Walsworth, Ronald; Yu, Young-Sam

    2016-07-01

    The GMT-Consortium Large Earth Finder (G-CLEF) is an echelle spectrograph with precision radial velocity (PRV) capability that will be a first light instrument for the Giant Magellan Telescope (GMT). G-CLEF has a PRV precision goal of 40 cm/sec (10 cm/s for multiple measurements) to enable detection of Earth-like exoplanets in the habitable zones of sun-like stars1. This precision is a primary driver of G-CLEF's structural design. Extreme stability is necessary to minimize image motions at the CCD detectors. Minute changes in temperature, pressure, and acceleration environments cause structural deformations, inducing image motions which degrade PRV precision. The instrument's structural design will ensure that the PRV goal is achieved under the environments G-CLEF will be subjected to as installed on the GMT azimuth platform, including: Millikelvin (0.001 °K) thermal soaks and gradients 10 millibar changes in ambient pressure Changes in acceleration due to instrument tip/tilt and telescope slewing Carbon fiber/cyanate composite was selected for the optical bench structure in order to meet performance goals. Low coefficient of thermal expansion (CTE) and high stiffness-to-weight are key features of the composite optical bench design. Manufacturability and serviceability of the instrument are also drivers of the design. In this paper, we discuss analyses leading to technical choices made to minimize G-CLEF's sensitivity to changing environments. Finite element analysis (FEA) and image motion sensitivity studies were conducted to determine PRV performance under operational environments. We discuss the design of the optical bench structure to optimize stiffness-to-weight and minimize deformations due to inertial and pressure effects. We also discuss quasi-kinematic mounting of optical elements and assemblies, and optimization of these to ensure minimal image motion under thermal, pressure, and inertial loads expected during PRV observations.

  13. Numerical and experimental analyses of lighting columns in terms of passive safety

    NASA Astrophysics Data System (ADS)

    Jedliński, Tomasz Ireneusz; Buśkiewicz, Jacek

    2018-01-01

    Modern lighting columns have a very beneficial influence on road safety. Currently, the columns are being designed to keep the driver safe in the event of a car collision. The following work compares experimental results of vehicle impact on a lighting column with FEM simulations performed using the Ansys LS-DYNA program. Due to high costs of experiments and time-consuming research process, the computer software seems to be very useful utility in the development of pole structures, which are to absorb kinetic energy of the vehicle in a precisely prescribed way.

  14. High-Precision Registration of Point Clouds Based on Sphere Feature Constraints.

    PubMed

    Huang, Junhui; Wang, Zhao; Gao, Jianmin; Huang, Youping; Towers, David Peter

    2016-12-30

    Point cloud registration is a key process in multi-view 3D measurements. Its precision affects the measurement precision directly. However, in the case of the point clouds with non-overlapping areas or curvature invariant surface, it is difficult to achieve a high precision. A high precision registration method based on sphere feature constraint is presented to overcome the difficulty in the paper. Some known sphere features with constraints are used to construct virtual overlapping areas. The virtual overlapping areas provide more accurate corresponding point pairs and reduce the influence of noise. Then the transformation parameters between the registered point clouds are solved by an optimization method with weight function. In that case, the impact of large noise in point clouds can be reduced and a high precision registration is achieved. Simulation and experiments validate the proposed method.

  15. High-Precision Registration of Point Clouds Based on Sphere Feature Constraints

    PubMed Central

    Huang, Junhui; Wang, Zhao; Gao, Jianmin; Huang, Youping; Towers, David Peter

    2016-01-01

    Point cloud registration is a key process in multi-view 3D measurements. Its precision affects the measurement precision directly. However, in the case of the point clouds with non-overlapping areas or curvature invariant surface, it is difficult to achieve a high precision. A high precision registration method based on sphere feature constraint is presented to overcome the difficulty in the paper. Some known sphere features with constraints are used to construct virtual overlapping areas. The virtual overlapping areas provide more accurate corresponding point pairs and reduce the influence of noise. Then the transformation parameters between the registered point clouds are solved by an optimization method with weight function. In that case, the impact of large noise in point clouds can be reduced and a high precision registration is achieved. Simulation and experiments validate the proposed method. PMID:28042846

  16. High statistical heterogeneity is more frequent in meta-analysis of continuous than binary outcomes.

    PubMed

    Alba, Ana C; Alexander, Paul E; Chang, Joanne; MacIsaac, John; DeFry, Samantha; Guyatt, Gordon H

    2016-02-01

    We compared the distribution of heterogeneity in meta-analyses of binary and continuous outcomes. We searched citations in MEDLINE and Cochrane databases for meta-analyses of randomized trials published in 2012 that reported a measure of heterogeneity of either binary or continuous outcomes. Two reviewers independently performed eligibility screening and data abstraction. We evaluated the distribution of I(2) in meta-analyses of binary and continuous outcomes and explored hypotheses explaining the difference in distributions. After full-text screening, we selected 671 meta-analyses evaluating 557 binary and 352 continuous outcomes. Heterogeneity as assessed by I(2) proved higher in continuous than in binary outcomes: the proportion of continuous and binary outcomes reporting an I(2) of 0% was 34% vs. 52%, respectively, and reporting an I(2) of 60-100% was 39% vs. 14%. In continuous but not binary outcomes, I(2) increased with larger number of studies included in a meta-analysis. Increased precision and sample size do not explain the larger I(2) found in meta-analyses of continuous outcomes with a larger number of studies. Meta-analyses evaluating continuous outcomes showed substantially higher I(2) than meta-analyses of binary outcomes. Results suggest differing standards for interpreting I(2) in continuous vs. binary outcomes may be appropriate. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Percent-level-precision physics at the Tevatron: next-to-next-to-leading order QCD corrections to qq¯→tt¯+X.

    PubMed

    Bärnreuther, Peter; Czakon, Michał; Mitov, Alexander

    2012-09-28

    We compute the next-to-next-to-leading order QCD corrections to the partonic reaction that dominates top-pair production at the Tevatron. This is the first ever next-to-next-to-leading order calculation of an observable with more than two colored partons and/or massive fermions at hadron colliders. Augmenting our fixed order calculation with soft-gluon resummation through next-to-next-to-leading logarithmic accuracy, we observe that the predicted total inclusive cross section exhibits a very small perturbative uncertainty, estimated at ±2.7%. We expect that once all subdominant partonic reactions are accounted for, and work in this direction is ongoing, the perturbative theoretical uncertainty for this observable could drop below ±2%. Our calculation demonstrates the power of our computational approach and proves it can be successfully applied to all processes at hadron colliders for which high-precision analyses are needed.

  18. Variability Analysis: Detection and Classification

    NASA Astrophysics Data System (ADS)

    Eyer, L.

    2005-01-01

    The Gaia mission will offer an exceptional opportunity to perform variability studies. The data homogeneity, its optimised photometric systems, composed of 11 medium and 4-5 broad bands, the high photometric precision in G band of one milli-mag for V = 13-15, the radial velocity measurements and the exquisite astrometric precision for one billion stars will permit a detailed description of variable objects like stars, quasars and asteroids. However the time sampling and the total number of measurements change from one object to another because of the satellite scanning law. The data analysis is a challenge because of the huge amount of data, the complexity of the observed objects and the peculiarities of the satellite, and needs thorough preparation. Experience can be gained by the study of past and present survey analyses and results, and Gaia should be put in perspective with the future large scale surveys, like PanSTARRS or LSST. We present the activities of the Variable Star Working Group and a general plan to digest this unprecedented data set, focusing here on the photometry.

  19. Percent-Level-Precision Physics at the Tevatron: Next-to-Next-to-Leading Order QCD Corrections to qq¯→tt¯+X

    NASA Astrophysics Data System (ADS)

    Bärnreuther, Peter; Czakon, Michał; Mitov, Alexander

    2012-09-01

    We compute the next-to-next-to-leading order QCD corrections to the partonic reaction that dominates top-pair production at the Tevatron. This is the first ever next-to-next-to-leading order calculation of an observable with more than two colored partons and/or massive fermions at hadron colliders. Augmenting our fixed order calculation with soft-gluon resummation through next-to-next-to-leading logarithmic accuracy, we observe that the predicted total inclusive cross section exhibits a very small perturbative uncertainty, estimated at ±2.7%. We expect that once all subdominant partonic reactions are accounted for, and work in this direction is ongoing, the perturbative theoretical uncertainty for this observable could drop below ±2%. Our calculation demonstrates the power of our computational approach and proves it can be successfully applied to all processes at hadron colliders for which high-precision analyses are needed.

  20. Astrometry with A-Track Using Gaia DR1 Catalogue

    NASA Astrophysics Data System (ADS)

    Kılıç, Yücel; Erece, Orhan; Kaplan, Murat

    2018-04-01

    In this work, we built all sky index files from Gaia DR1 catalogue for the high-precision astrometric field solution and the precise WCS coordinates of the moving objects. For this, we used build-astrometry-index program as a part of astrometry.net code suit. Additionally, we added astrometry.net's WCS solution tool to our previously developed software which is a fast and robust pipeline for detecting moving objects such as asteroids and comets in sequential FITS images, called A-Track. Moreover, MPC module was added to A-Track. This module is linked to an asteroid database to name the found objects and prepare the MPC file to report the results. After these innovations, we tested a new version of the A-Track code on photometrical data taken by the SI-1100 CCD with 1-meter telescope at TÜBİTAK National Observatory, Antalya. The pipeline can be used to analyse large data archives or daily sequential data. The code is hosted on GitHub under the GNU GPL v3 license.

  1. Rapid method for the determination of 14 isoflavones in food using UHPLC coupled to photo diode array detection.

    PubMed

    Shim, You-Shin; Yoon, Won-Jin; Hwang, Jin-Bong; Park, Hyun-Jin; Seo, Dongwon; Ha, Jaeho

    2015-11-15

    A rapid method for the determination of 14 types of isoflavones in food using ultra-high performance liquid chromatography (UHPLC) was validated in terms of precision, accuracy, sensitivity and linearity. The UHPLC separation was performed on a reverse-phase C18 column (particle size 2 μm, i.d. 2 mm, length 100 mm) using a photo diode array detector that was fixed to 260 nm. The limits of detection and quantification of the UHPLC analyses ranged from 0.03 to 0.33 mg kg(-1). The intra-day and inter-day precision of the individual isoflavones were less than 11.77% and calibration curves exhibited good linearity (r(2) = 0.99) within the tested ranges. These results suggest that the rapid method used in this study could be available to determine of 14 types of isoflavones in a variety of food such as soy bean, black bean, red bean and soybean paste. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. High Precision Thermal, Structural and Optical Analysis of an External Occulter Using a Common Model and the General Purpose Multi-Physics Analysis Tool Cielo

    NASA Technical Reports Server (NTRS)

    Hoff, Claus; Cady, Eric; Chainyk, Mike; Kissil, Andrew; Levine, Marie; Moore, Greg

    2011-01-01

    The efficient simulation of multidisciplinary thermo-opto-mechanical effects in precision deployable systems has for years been limited by numerical toolsets that do not necessarily share the same finite element basis, level of mesh discretization, data formats, or compute platforms. Cielo, a general purpose integrated modeling tool funded by the Jet Propulsion Laboratory and the Exoplanet Exploration Program, addresses shortcomings in the current state of the art via features that enable the use of a single, common model for thermal, structural and optical aberration analysis, producing results of greater accuracy, without the need for results interpolation or mapping. This paper will highlight some of these advances, and will demonstrate them within the context of detailed external occulter analyses, focusing on in-plane deformations of the petal edges for both steady-state and transient conditions, with subsequent optical performance metrics including intensity distributions at the pupil and image plane.

  3. Monthly Strontium/Calcium oscillations in symbiotic coral aragonite: Biological effects limiting the precision of the paleotemperature proxy

    USGS Publications Warehouse

    Meibom, A.; Stage, M.; Wooden, J.; Constantz, B.R.; Dunbar, R.B.; Owen, A.; Grumet, N.; Bacon, C.R.; Chamberlain, C.P.

    2003-01-01

    In thermodynamic equilibrium with sea water the Sr/Ca ratio of aragonite varies predictably with temperature and the Sr/Ca ratio in coral have thus become a frequently used proxy for past Sea Surface Temperature (SST). However, biological effects can offset the Sr/Ca ratio from its equilibrium value. We report high spatial resolution ion microprobe analyses of well defined skeletal elements in the reef-building coral Porites lutea that reveal distinct monthly oscillations in the Sr/Ca ratio, with an amplitude in excess of ten percent. The extreme Sr/Ca variations, which we propose result from metabolic changes synchronous with the lunar cycle, introduce variability in Sr/Ca measurements based on conventional sampling techniques well beyond the analytical precision. These variations can limit the accuracy of Sr/Ca paleothermometry by conventional sampling techniques to about 2??C. Our results may help explain the notorious difficulties involved in obtaining an accurate and consistent calibration of the Sr/Ca vs. SST relationship.

  4. Integrative methods for analyzing big data in precision medicine.

    PubMed

    Gligorijević, Vladimir; Malod-Dognin, Noël; Pržulj, Nataša

    2016-03-01

    We provide an overview of recent developments in big data analyses in the context of precision medicine and health informatics. With the advance in technologies capturing molecular and medical data, we entered the area of "Big Data" in biology and medicine. These data offer many opportunities to advance precision medicine. We outline key challenges in precision medicine and present recent advances in data integration-based methods to uncover personalized information from big data produced by various omics studies. We survey recent integrative methods for disease subtyping, biomarkers discovery, and drug repurposing, and list the tools that are available to domain scientists. Given the ever-growing nature of these big data, we highlight key issues that big data integration methods will face. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Dental impression technique using optoelectronic devices

    NASA Astrophysics Data System (ADS)

    Sinescu, Cosmin; Barua, Souman; Topala, Florin Ionel; Negrutiu, Meda Lavinia; Duma, Virgil-Florin; Gabor, Alin Gabriel; Zaharia, Cristian; Bradu, Adrian; Podoleanu, Adrian G.

    2018-03-01

    INTRODUCTION: The use of Optical Coherence Tomography (OCT) as a non-invasive and high precision quantitative information providing tool has been well established by researches within the last decade. The marginal discrepancy values can be scrutinized in optical biopsy made in three dimensional (3D) micro millimetre scale and reveal detailed qualitative and quantitative information of soft and hard tissues. OCT-based high resolution 3D images can provide a significant impact on finding recurrent caries, restorative failure, analysing the precision of crown preparation, and prosthetic elements marginal adaptation error with the gingiva and dental hard tissues. During the CAD/CAM process of prosthodontic restorations, the circumvent of any error is important for the practitioner and the technician to reduce waste of time and material. Additionally, OCT images help to achieve a new or semi-skilled practitioner to analyse their crown preparation works and help to develop their skills faster than in a conventional way. The aim of this study is to highlight the advantages of OCT in high precision prosthodontic restorations. MATERIALS AND METHODS: 25 preparations of frontal and lateral teeth were performed for 7 different patients. The impressions of the prosthetic fields were obtained both using a conventional optoelectronic system (Apolo Di, Syrona) and a Spectral Domain using OCT (Dental prototype, working at 860 nm). For the conventional impression technique the preparation margins were been prelevated by gingival impregnated cords. No specific treatments were performed by the OCT impression technique. RESULTS: The scanning performed by conventional optoelectronic system proved to be quick and accurate in terms of impression technology. The results were represented by 3D virtual models obtained after the scanning procedure was completed. In order to obtain a good optical impression a gingival retraction cord was inserted between the prepared tooth and the gingival tissue for a better elevation of the tooth cervical margin preparation. Spectral OCT was enforced in order to observe the quality but also the advantages coming from this technology. No special preparation was performed for this operation. CONCLUSION: Considering these aspects, OCT could be used as a valuable tool for dental impression technology, being non-invasive but also non-destructive on the marginal gingival tissue, in comparison with conventional optoelectronic technology where the gingival retraction cord is still mandatory.

  6. High-precision isotopic characterization of USGS reference materials by TIMS and MC-ICP-MS

    NASA Astrophysics Data System (ADS)

    Weis, Dominique; Kieffer, Bruno; Maerschalk, Claude; Barling, Jane; de Jong, Jeroen; Williams, Gwen A.; Hanano, Diane; Pretorius, Wilma; Mattielli, Nadine; Scoates, James S.; Goolaerts, Arnaud; Friedman, Richard M.; Mahoney, J. Brian

    2006-08-01

    The Pacific Centre for Isotopic and Geochemical Research (PCIGR) at the University of British Columbia has undertaken a systematic analysis of the isotopic (Sr, Nd, and Pb) compositions and concentrations of a broad compositional range of U.S. Geological Survey (USGS) reference materials, including basalt (BCR-1, 2; BHVO-1, 2), andesite (AGV-1, 2), rhyolite (RGM-1, 2), syenite (STM-1, 2), granodiorite (GSP-2), and granite (G-2, 3). USGS rock reference materials are geochemically well characterized, but there is neither a systematic methodology nor a database for radiogenic isotopic compositions, even for the widely used BCR-1. This investigation represents the first comprehensive, systematic analysis of the isotopic composition and concentration of USGS reference materials and provides an important database for the isotopic community. In addition, the range of equipment at the PCIGR, including a Nu Instruments Plasma MC-ICP-MS, a Thermo Finnigan Triton TIMS, and a Thermo Finnigan Element2 HR-ICP-MS, permits an assessment and comparison of the precision and accuracy of isotopic analyses determined by both the TIMS and MC-ICP-MS methods (e.g., Nd isotopic compositions). For each of the reference materials, 5 to 10 complete replicate analyses provide coherent isotopic results, all with external precision below 30 ppm (2 SD) for Sr and Nd isotopic compositions (27 and 24 ppm for TIMS and MC-ICP-MS, respectively). Our results also show that the first- and second-generation USGS reference materials have homogeneous Sr and Nd isotopic compositions. Nd isotopic compositions by MC-ICP-MS and TIMS agree to within 15 ppm for all reference materials. Interlaboratory MC-ICP-MS comparisons show excellent agreement for Pb isotopic compositions; however, the reproducibility is not as good as for Sr and Nd. A careful, sequential leaching experiment of three first- and second-generation reference materials (BCR, BHVO, AGV) indicates that the heterogeneity in Pb isotopic compositions, and concentrations, could be directly related to contamination by the steel (mortar/pestle) used to process the materials. Contamination also accounts for the high concentrations of certain other trace elements (e.g., Li, Mo, Cd, Sn, Sb, W) in various USGS reference materials.

  7. Rhizoslides: paper-based growth system for non-destructive, high throughput phenotyping of root development by means of image analysis.

    PubMed

    Le Marié, Chantal; Kirchgessner, Norbert; Marschall, Daniela; Walter, Achim; Hund, Andreas

    2014-01-01

    A quantitative characterization of root system architecture is currently being attempted for various reasons. Non-destructive, rapid analyses of root system architecture are difficult to perform due to the hidden nature of the root. Hence, improved methods to measure root architecture are necessary to support knowledge-based plant breeding and to analyse root growth responses to environmental changes. Here, we report on the development of a novel method to reveal growth and architecture of maize root systems. The method is based on the cultivation of different root types within several layers of two-dimensional, large (50 × 60 cm) plates (rhizoslides). A central plexiglass screen stabilizes the system and is covered on both sides with germination paper providing water and nutrients for the developing root, followed by a transparent cover foil to prevent the roots from falling dry and to stabilize the system. The embryonic roots grow hidden between a Plexiglas surface and paper, whereas crown roots grow visible between paper and the transparent cover. Long cultivation with good image quality up to 20 days (four fully developed leaves) was enhanced by suppressing fungi with a fungicide. Based on hyperspectral microscopy imaging, the quality of different germination papers was tested and three provided sufficient contrast to distinguish between roots and background (segmentation). Illumination, image acquisition and segmentation were optimised to facilitate efficient root image analysis. Several software packages were evaluated with regard to their precision and the time investment needed to measure root system architecture. The software 'Smart Root' allowed precise evaluation of root development but needed substantial user interference. 'GiaRoots' provided the best segmentation method for batch processing in combination with a good analysis of global root characteristics but overestimated root length due to thinning artefacts. 'WhinRhizo' offered the most rapid and precise evaluation of root lengths in diameter classes, but had weaknesses with respect to image segmentation and analysis of root system architecture. A new technique has been established for non-destructive root growth studies and quantification of architectural traits beyond seedlings stages. However, automation of the scanning process and appropriate software remains the bottleneck for high throughput analysis.

  8. Magnetic N-doped carbon nanotubes: A versatile and efficient material for the determination of polycyclic aromatic hydrocarbons in environmental water samples.

    PubMed

    Menezes, Helvécio Costa; de Barcelos, Stella Maris Resende; Macedo, Damiana Freire Dias; Purceno, Aluir Dias; Machado, Bruno Fernades; Teixeira, Ana Paula Carvalho; Lago, Rochel Monteiro; Serp, Philippe; Cardeal, Zenilda Lourdes

    2015-05-11

    This paper describes a new, efficient and versatile method for the sampling and preconcentration of PAH in environmental water matrices using special hybrid magnetic carbon nanotubes. These N-doped amphiphilic CNT can be easily dispersed in any aqueous matrix due to the N containing hydrophilic part and at the same time show high efficiency for the adsorption of different PAH contaminants due to the very hydrophobic surface. After adsorption, the CNT can be easily removed from the medium by a simple magnetic separation. GC/MS analyses showed that the CNT method is more efficient than the use of polydimethylsiloxane (PDMS) with much lower solvent consumption, technical simplicity and time, showing good linearity (range 0.18-80.00 μg L(-1)) and determination coefficient (R(2) > 0.9810). The limit of detection ranged from 0.05 to 0.42 μg L(-1) with limit of quantification from 0.18 to 1.40 μg L(-1). Recovery (n=9) ranged from 80.50 ± 10 to 105.40 ± 12%. Intraday precision (RSD, n=9) ranged from 1.91 to 9.01%, whereas inter day precision (RSD, n=9) ranged from 7.02 to 17.94%. The method was applied to the analyses of PAH in four lake water samples collected in Belo Horizonte City, Brazil. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Measurement of the W boson polarisation in [Formula: see text] events from pp collisions at [Formula: see text] = 8 TeV in the lepton + jets channel with ATLAS.

    PubMed

    Aaboud, M; Aad, G; Abbott, B; Abdallah, J; Abdinov, O; Abeloos, B; AbouZeid, O S; Abraham, N L; Abramowicz, H; Abreu, H; Abreu, R; Abulaiti, Y; Acharya, B S; Adachi, S; Adamczyk, L; Adams, D L; Adelman, J; Adomeit, S; Adye, T; Affolder, A A; Agatonovic-Jovin, T; Aguilar-Saavedra, J A; Ahlen, S P; Ahmadov, F; Aielli, G; Akerstedt, H; Åkesson, T P A; Akimov, A V; Alberghi, G L; Albert, J; Albrand, S; Alconada Verzini, M J; Aleksa, M; Aleksandrov, I N; Alexa, C; Alexander, G; Alexopoulos, T; Alhroob, M; Ali, B; Aliev, M; Alimonti, G; Alison, J; Alkire, S P; Allbrooke, B M M; Allen, B W; Allport, P P; Aloisio, A; Alonso, A; Alonso, F; Alpigiani, C; Alshehri, A A; Alstaty, M; Alvarez Gonzalez, B; Álvarez Piqueras, D; Alviggi, M G; Amadio, B T; Amaral Coutinho, Y; Amelung, C; Amidei, D; Amor Dos Santos, S P; Amorim, A; Amoroso, S; Amundsen, G; Anastopoulos, C; Ancu, L S; Andari, N; Andeen, T; Anders, C F; Anders, J K; Anderson, K J; Andreazza, A; Andrei, V; Angelidakis, S; Angelozzi, I; Angerami, A; Anghinolfi, F; Anisenkov, A V; Anjos, N; Annovi, A; Antel, C; Antonelli, M; Antonov, A; Antrim, D J; Anulli, F; Aoki, M; Aperio Bella, L; Arabidze, G; Arai, Y; Araque, J P; Araujo Ferraz, V; Arce, A T H; Arduh, F A; Arguin, J-F; Argyropoulos, S; Arik, M; Armbruster, A J; Armitage, L J; Arnaez, O; Arnold, H; Arratia, M; Arslan, O; Artamonov, A; Artoni, G; Artz, S; Asai, S; Asbah, N; Ashkenazi, A; Åsman, B; Asquith, L; Assamagan, K; Astalos, R; Atkinson, M; Atlay, N B; Augsten, K; Avolio, G; Axen, B; Ayoub, M K; Azuelos, G; Baak, M A; Baas, A E; Baca, M J; Bachacou, H; Bachas, K; Backes, M; Backhaus, M; Bagiacchi, P; Bagnaia, P; Bai, Y; Baines, J T; Bajic, M; Baker, O K; Baldin, E M; Balek, P; Balestri, T; Balli, F; Balunas, W K; Banas, E; Banerjee, Sw; Bannoura, A A E; Barak, L; Barberio, E L; Barberis, D; Barbero, M; Barillari, T; Barisits, M-S; Barklow, T; Barlow, N; Barnes, S L; Barnett, B M; Barnett, R M; Barnovska-Blenessy, Z; Baroncelli, A; Barone, G; Barr, A J; Barranco Navarro, L; Barreiro, F; Barreiro Guimarães da Costa, J; Bartoldus, R; Barton, A E; Bartos, P; Basalaev, A; Bassalat, A; Bates, R L; Batista, S J; Batley, J R; Battaglia, M; Bauce, M; Bauer, F; Bawa, H S; Beacham, J B; Beattie, M D; Beau, T; Beauchemin, P H; Bechtle, P; Beck, H P; Becker, K; Becker, M; Beckingham, M; Becot, C; Beddall, A J; Beddall, A; Bednyakov, V A; Bedognetti, M; Bee, C P; Beemster, L J; Beermann, T A; Begel, M; Behr, J K; Bell, A S; Bella, G; Bellagamba, L; Bellerive, A; Bellomo, M; Belotskiy, K; Beltramello, O; Belyaev, N L; Benary, O; Benchekroun, D; Bender, M; Bendtz, K; Benekos, N; Benhammou, Y; Benhar Noccioli, E; Benitez, J; Benjamin, D P; Bensinger, J R; Bentvelsen, S; Beresford, L; Beretta, M; Berge, D; Bergeaas Kuutmann, E; Berger, N; Beringer, J; Berlendis, S; Bernard, N R; Bernius, C; Bernlochner, F U; Berry, T; Berta, P; Bertella, C; Bertoli, G; Bertolucci, F; Bertram, I A; Bertsche, C; Bertsche, D; Besjes, G J; Bessidskaia Bylund, O; Bessner, M; Besson, N; Betancourt, C; Bethani, A; Bethke, S; Bevan, A J; Bianchi, R M; Bianco, M; Biebel, O; Biedermann, D; Bielski, R; Biesuz, N V; Biglietti, M; Bilbao De Mendizabal, J; Billoud, T R V; Bilokon, H; Bindi, M; Bingul, A; Bini, C; Biondi, S; Bisanz, T; Bjergaard, D M; Black, C W; Black, J E; Black, K M; Blackburn, D; Blair, R E; Blazek, T; Bloch, I; Blocker, C; Blue, A; Blum, W; Blumenschein, U; Blunier, S; Bobbink, G J; Bobrovnikov, V S; Bocchetta, S S; Bocci, A; Bock, C; Boehler, M; Boerner, D; Bogaerts, J A; Bogavac, D; Bogdanchikov, A G; Bohm, C; Boisvert, V; Bokan, P; Bold, T; Boldyrev, A S; Bomben, M; Bona, M; Boonekamp, M; Borisov, A; Borissov, G; Bortfeldt, J; Bortoletto, D; Bortolotto, V; Bos, K; Boscherini, D; Bosman, M; Bossio Sola, J D; Boudreau, J; Bouffard, J; Bouhova-Thacker, E V; Boumediene, D; Bourdarios, C; Boutle, S K; Boveia, A; Boyd, J; Boyko, I R; Bracinik, J; Brandt, A; Brandt, G; Brandt, O; Bratzler, U; Brau, B; Brau, J E; Breaden Madden, W D; Brendlinger, K; Brennan, A J; Brenner, L; Brenner, R; Bressler, S; Bristow, T M; Britton, D; Britzger, D; Brochu, F M; Brock, I; Brock, R; Brooijmans, G; Brooks, T; Brooks, W K; Brosamer, J; Brost, E; Broughton, J H; Bruckman de Renstrom, P A; Bruncko, D; Bruneliere, R; Bruni, A; Bruni, G; Bruni, L S; Brunt, B H; Bruschi, M; Bruscino, N; Bryant, P; Bryngemark, L; Buanes, T; Buat, Q; Buchholz, P; Buckley, A G; Budagov, I A; Buehrer, F; Bugge, M K; Bulekov, O; Bullock, D; Burckhart, H; Burdin, S; Burgard, C D; Burger, A M; Burghgrave, B; Burka, K; Burke, S; Burmeister, I; Burr, J T P; Busato, E; Büscher, D; Büscher, V; Bussey, P; Butler, J M; Buttar, C M; Butterworth, J M; Butti, P; Buttinger, W; Buzatu, A; Buzykaev, A R; Cabrera Urbán, S; Caforio, D; Cairo, V M; Cakir, O; Calace, N; Calafiura, P; Calandri, A; Calderini, G; Calfayan, P; Callea, G; Caloba, L P; Calvente Lopez, S; Calvet, D; Calvet, S; Calvet, T P; Camacho Toro, R; Camarda, S; Camarri, P; Cameron, D; Caminal Armadans, R; Camincher, C; Campana, S; Campanelli, M; Camplani, A; Campoverde, A; Canale, V; Canepa, A; Cano Bret, M; Cantero, J; Cao, T; Capeans Garrido, M D M; Caprini, I; Caprini, M; Capua, M; Carbone, R M; Cardarelli, R; Cardillo, F; Carli, I; Carli, T; Carlino, G; Carlson, B T; Carminati, L; Carney, R M D; Caron, S; Carquin, E; Carrillo-Montoya, G D; Carter, J R; Carvalho, J; Casadei, D; Casado, M P; Casolino, M; Casper, D W; Castaneda-Miranda, E; Castelijn, R; Castelli, A; Castillo Gimenez, V; Castro, N F; Catinaccio, A; Catmore, J R; Cattai, A; Caudron, J; Cavaliere, V; Cavallaro, E; Cavalli, D; Cavalli-Sforza, M; Cavasinni, V; Ceradini, F; Cerda Alberich, L; Cerqueira, A S; Cerri, A; Cerrito, L; Cerutti, F; Cervelli, A; Cetin, S A; Chafaq, A; Chakraborty, D; Chan, S K; Chan, Y L; Chang, P; Chapman, J D; Charlton, D G; Chatterjee, A; Chau, C C; Chavez Barajas, C A; Che, S; Cheatham, S; Chegwidden, A; Chekanov, S; Chekulaev, S V; Chelkov, G A; Chelstowska, M A; Chen, C; Chen, H; Chen, S; Chen, S; Chen, X; Chen, Y; Cheng, H C; Cheng, H J; Cheng, Y; Cheplakov, A; Cheremushkina, E; Cherkaoui El Moursli, R; Chernyatin, V; Cheu, E; Chevalier, L; Chiarella, V; Chiarelli, G; Chiodini, G; Chisholm, A S; Chitan, A; Chizhov, M V; Choi, K; Chomont, A R; Chouridou, S; Chow, B K B; Christodoulou, V; Chromek-Burckhart, D; Chudoba, J; Chuinard, A J; Chwastowski, J J; Chytka, L; Ciftci, A K; Cinca, D; Cindro, V; Cioara, I A; Ciocca, C; Ciocio, A; Cirotto, F; Citron, Z H; Citterio, M; Ciubancan, M; Clark, A; Clark, B L; Clark, M R; Clark, P J; Clarke, R N; Clement, C; Coadou, Y; Cobal, M; Coccaro, A; Cochran, J; Colasurdo, L; Cole, B; Colijn, A P; Collot, J; Colombo, T; Conde Muiño, P; Coniavitis, E; Connell, S H; Connelly, I A; Consorti, V; Constantinescu, S; Conti, G; Conventi, F; Cooke, M; Cooper, B D; Cooper-Sarkar, A M; Cormier, F; Cormier, K J R; Cornelissen, T; Corradi, M; Corriveau, F; Cortes-Gonzalez, A; Cortiana, G; Costa, G; Costa, M J; Costanzo, D; Cottin, G; Cowan, G; Cox, B E; Cranmer, K; Crawley, S J; Cree, G; Crépé-Renaudin, S; Crescioli, F; Cribbs, W A; Crispin Ortuzar, M; Cristinziani, M; Croft, V; Crosetti, G; Cueto, A; Cuhadar Donszelmann, T; Cummings, J; Curatolo, M; Cúth, J; Czirr, H; Czodrowski, P; D'amen, G; D'Auria, S; D'Onofrio, M; Da Cunha Sargedas De Sousa, M J; Da Via, C; Dabrowski, W; Dado, T; Dai, T; Dale, O; Dallaire, F; Dallapiccola, C; Dam, M; Dandoy, J R; Dang, N P; Daniells, A C; Dann, N S; Danninger, M; Dano Hoffmann, M; Dao, V; Darbo, G; Darmora, S; Dassoulas, J; Dattagupta, A; Davey, W; David, C; Davidek, T; Davies, M; Davison, P; Dawe, E; Dawson, I; De, K; de Asmundis, R; De Benedetti, A; De Castro, S; De Cecco, S; De Groot, N; de Jong, P; De la Torre, H; De Lorenzi, F; De Maria, A; De Pedis, D; De Salvo, A; De Sanctis, U; De Santo, A; De Vivie De Regie, J B; Dearnaley, W J; Debbe, R; Debenedetti, C; Dedovich, D V; Dehghanian, N; Deigaard, I; Del Gaudio, M; Del Peso, J; Del Prete, T; Delgove, D; Deliot, F; Delitzsch, C M; Dell'Acqua, A; Dell'Asta, L; Dell'Orso, M; Della Pietra, M; Della Volpe, D; Delmastro, M; Delsart, P A; DeMarco, D A; Demers, S; Demichev, M; Demilly, A; Denisov, S P; Denysiuk, D; Derendarz, D; Derkaoui, J E; Derue, F; Dervan, P; Desch, K; Deterre, C; Dette, K; Deviveiros, P O; Dewhurst, A; Dhaliwal, S; Di Ciaccio, A; Di Ciaccio, L; Di Clemente, W K; Di Donato, C; Di Girolamo, A; Di Girolamo, B; Di Micco, B; Di Nardo, R; Di Petrillo, K F; Di Simone, A; Di Sipio, R; Di Valentino, D; Diaconu, C; Diamond, M; Dias, F A; Diaz, M A; Diehl, E B; Dietrich, J; Cornell, S Díez; Dimitrievska, A; Dingfelder, J; Dita, P; Dita, S; Dittus, F; Djama, F; Djobava, T; Djuvsland, J I; do Vale, M A B; Dobos, D; Dobre, M; Doglioni, C; Dolejsi, J; Dolezal, Z; Donadelli, M; Donati, S; Dondero, P; Donini, J; Dopke, J; Doria, A; Dova, M T; Doyle, A T; Drechsler, E; Dris, M; Du, Y; Duarte-Campderros, J; Duchovni, E; Duckeck, G; Ducu, O A; Duda, D; Dudarev, A; Dudder, A Chr; Duffield, E M; Duflot, L; Dührssen, M; Dumancic, M; Duncan, A K; Dunford, M; Duran Yildiz, H; Düren, M; Durglishvili, A; Duschinger, D; Dutta, B; Dyndal, M; Eckardt, C; Ecker, K M; Edgar, R C; Edwards, N C; Eifert, T; Eigen, G; Einsweiler, K; Ekelof, T; El Kacimi, M; Ellajosyula, V; Ellert, M; Elles, S; Ellinghaus, F; Elliot, A A; Ellis, N; Elmsheuser, J; Elsing, M; Emeliyanov, D; Enari, Y; Endner, O C; Ennis, J S; Erdmann, J; Ereditato, A; Ernis, G; Ernst, J; Ernst, M; Errede, S; Ertel, E; Escalier, M; Esch, H; Escobar, C; Esposito, B; Etienvre, A I; Etzion, E; Evans, H; Ezhilov, A; Ezzi, M; Fabbri, F; Fabbri, L; Facini, G; Fakhrutdinov, R M; Falciano, S; Falla, R J; Faltova, J; Fang, Y; Fanti, M; Farbin, A; Farilla, A; Farina, C; Farina, E M; Farooque, T; Farrell, S; Farrington, S M; Farthouat, P; Fassi, F; Fassnacht, P; Fassouliotis, D; Faucci Giannelli, M; Favareto, A; Fawcett, W J; Fayard, L; Fedin, O L; Fedorko, W; Feigl, S; Feligioni, L; Feng, C; Feng, E J; Feng, H; Fenyuk, A B; Feremenga, L; Fernandez Martinez, P; Fernandez Perez, S; Ferrando, J; Ferrari, A; Ferrari, P; Ferrari, R; Ferreira de Lima, D E; Ferrer, A; Ferrere, D; Ferretti, C; Fiedler, F; Filipčič, A; Filipuzzi, M; Filthaut, F; Fincke-Keeler, M; Finelli, K D; Fiolhais, M C N; Fiorini, L; Fischer, A; Fischer, C; Fischer, J; Fisher, W C; Flaschel, N; Fleck, I; Fleischmann, P; Fletcher, G T; Fletcher, R R M; Flick, T; Flierl, B M; Flores Castillo, L R; Flowerdew, M J; Forcolin, G T; Formica, A; Forti, A; Foster, A G; Fournier, D; Fox, H; Fracchia, S; Francavilla, P; Franchini, M; Francis, D; Franconi, L; Franklin, M; Frate, M; Fraternali, M; Freeborn, D; Fressard-Batraneanu, S M; Friedrich, F; Froidevaux, D; Frost, J A; Fukunaga, C; Fullana Torregrosa, E; Fusayasu, T; Fuster, J; Gabaldon, C; Gabizon, O; Gabrielli, A; Gabrielli, A; Gach, G P; Gadatsch, S; Gagliardi, G; Gagnon, L G; Gagnon, P; Galea, C; Galhardo, B; Gallas, E J; Gallop, B J; Gallus, P; Galster, G; Gan, K K; Ganguly, S; Gao, J; Gao, Y; Gao, Y S; Garay Walls, F M; García, C; García Navarro, J E; Garcia-Sciveres, M; Gardner, R W; Garelli, N; Garonne, V; Gascon Bravo, A; Gasnikova, K; Gatti, C; Gaudiello, A; Gaudio, G; Gauthier, L; Gavrilenko, I L; Gay, C; Gaycken, G; Gazis, E N; Gecse, Z; Gee, C N P; Geich-Gimbel, Ch; Geisen, M; Geisler, M P; Gellerstedt, K; Gemme, C; Genest, M H; Geng, C; Gentile, S; Gentsos, C; George, S; Gerbaudo, D; Gershon, A; Ghasemi, S; Ghneimat, M; Giacobbe, B; Giagu, S; Giannetti, P; Gibson, S M; Gignac, M; Gilchriese, M; Gillam, T P S; Gillberg, D; Gilles, G; Gingrich, D M; Giokaris, N; Giordani, M P; Giorgi, F M; Giraud, P F; Giromini, P; Giugni, D; Giuli, F; Giuliani, C; Giulini, M; Gjelsten, B K; Gkaitatzis, S; Gkialas, I; Gkougkousis, E L; Gladilin, L K; Glasman, C; Glatzer, J; Glaysher, P C F; Glazov, A; Goblirsch-Kolb, M; Godlewski, J; Goldfarb, S; Golling, T; Golubkov, D; Gomes, A; Gonçalo, R; Goncalves Gama, R; Goncalves Pinto Firmino Da Costa, J; Gonella, G; Gonella, L; Gongadze, A; González de la Hoz, S; Gonzalez-Sevilla, S; Goossens, L; Gorbounov, P A; Gordon, H A; Gorelov, I; Gorini, B; Gorini, E; Gorišek, A; Goshaw, A T; Gössling, C; Gostkin, M I; Goudet, C R; Goujdami, D; Goussiou, A G; Govender, N; Gozani, E; Graber, L; Grabowska-Bold, I; Gradin, P O J; Grafström, P; Gramling, J; Gramstad, E; Grancagnolo, S; Gratchev, V; Gravila, P M; Gray, H M; Graziani, E; Greenwood, Z D; Grefe, C; Gregersen, K; Gregor, I M; Grenier, P; Grevtsov, K; Griffiths, J; Grillo, A A; Grimm, K; Grinstein, S; Gris, Ph; Grivaz, J-F; Groh, S; Gross, E; Grosse-Knetter, J; Grossi, G C; Grout, Z J; Guan, L; Guan, W; Guenther, J; Guescini, F; Guest, D; Gueta, O; Gui, B; Guido, E; Guillemin, T; Guindon, S; Gul, U; Gumpert, C; Guo, J; Guo, W; Guo, Y; Gupta, R; Gupta, S; Gustavino, G; Gutierrez, P; Gutierrez Ortiz, N G; Gutschow, C; Guyot, C; Gwenlan, C; Gwilliam, C B; Haas, A; Haber, C; Hadavand, H K; Haddad, N; Hadef, A; Hageböck, S; Hagihara, M; Hakobyan, H; Haleem, M; Haley, J; Halladjian, G; Hallewell, G D; Hamacher, K; Hamal, P; Hamano, K; Hamilton, A; Hamity, G N; Hamnett, P G; Han, L; Han, S; Hanagaki, K; Hanawa, K; Hance, M; Haney, B; Hanke, P; Hanna, R; Hansen, J B; Hansen, J D; Hansen, M C; Hansen, P H; Hara, K; Hard, A S; Harenberg, T; Hariri, F; Harkusha, S; Harrington, R D; Harrison, P F; Hartjes, F; Hartmann, N M; Hasegawa, M; Hasegawa, Y; Hasib, A; Hassani, S; Haug, S; Hauser, R; Hauswald, L; Havranek, M; Hawkes, C M; Hawkings, R J; Hayakawa, D; Hayden, D; Hays, C P; Hays, J M; Hayward, H S; Haywood, S J; Head, S J; Heck, T; Hedberg, V; Heelan, L; Heim, S; Heim, T; Heinemann, B; Heinrich, J J; Heinrich, L; Heinz, C; Hejbal, J; Helary, L; Hellman, S; Helsens, C; Henderson, J; Henderson, R C W; Heng, Y; Henkelmann, S; Henriques Correia, A M; Henrot-Versille, S; Herbert, G H; Herde, H; Herget, V; Hernández Jiménez, Y; Herten, G; Hertenberger, R; Hervas, L; Hesketh, G G; Hessey, N P; Hetherly, J W; Higón-Rodriguez, E; Hill, E; Hill, J C; Hiller, K H; Hillier, S J; Hinchliffe, I; Hines, E; Hirose, M; Hirschbuehl, D; Hladik, O; Hoad, X; Hobbs, J; Hod, N; Hodgkinson, M C; Hodgson, P; Hoecker, A; Hoeferkamp, M R; Hoenig, F; Hohn, D; Holmes, T R; Homann, M; Honda, S; Honda, T; Hong, T M; Hooberman, B H; Hopkins, W H; Horii, Y; Horton, A J; Hostachy, J-Y; Hou, S; Hoummada, A; Howarth, J; Hoya, J; Hrabovsky, M; Hristova, I; Hrivnac, J; Hryn'ova, T; Hrynevich, A; Hsu, P J; Hsu, S-C; Hu, Q; Hu, S; Huang, Y; Hubacek, Z; Hubaut, F; Huegging, F; Huffman, T B; Hughes, E W; Hughes, G; Huhtinen, M; Huo, P; Huseynov, N; Huston, J; Huth, J; Iacobucci, G; Iakovidis, G; Ibragimov, I; Iconomidou-Fayard, L; Ideal, E; Idrissi, Z; Iengo, P; Igonkina, O; Iizawa, T; Ikegami, Y; Ikeno, M; Ilchenko, Y; Iliadis, D; Ilic, N; Introzzi, G; Ioannou, P; Iodice, M; Iordanidou, K; Ippolito, V; Ishijima, N; Ishino, M; Ishitsuka, M; Issever, C; Istin, S; Ito, F; Iturbe Ponce, J M; Iuppa, R; Iwasaki, H; Izen, J M; Izzo, V; Jabbar, S; Jackson, B; Jackson, P; Jain, V; Jakobi, K B; Jakobs, K; Jakobsen, S; Jakoubek, T; Jamin, D O; Jana, D K; Jansky, R; Janssen, J; Janus, M; Janus, P A; Jarlskog, G; Javadov, N; Javůrek, T; Jeanneau, F; Jeanty, L; Jejelava, J; Jeng, G-Y; Jenni, P; Jeske, C; Jézéquel, S; Ji, H; Jia, J; Jiang, H; Jiang, Y; Jiang, Z; Jiggins, S; Jimenez Pena, J; Jin, S; Jinaru, A; Jinnouchi, O; Jivan, H; Johansson, P; Johns, K A; Johnson, C A; Johnson, W J; Jon-And, K; Jones, G; Jones, R W L; Jones, S; Jones, T J; Jongmanns, J; Jorge, P M; Jovicevic, J; Ju, X; Juste Rozas, A; Köhler, M K; Kaczmarska, A; Kado, M; Kagan, H; Kagan, M; Kahn, S J; Kaji, T; Kajomovitz, E; Kalderon, C W; Kaluza, A; Kama, S; Kamenshchikov, A; Kanaya, N; Kaneti, S; Kanjir, L; Kantserov, V A; Kanzaki, J; Kaplan, B; Kaplan, L S; Kapliy, A; Kar, D; Karakostas, K; Karamaoun, A; Karastathis, N; Kareem, M J; Karentzos, E; Karpov, S N; Karpova, Z M; Karthik, K; Kartvelishvili, V; Karyukhin, A N; Kasahara, K; Kashif, L; Kass, R D; Kastanas, A; Kataoka, Y; Kato, C; Katre, A; Katzy, J; Kawade, K; Kawagoe, K; Kawamoto, T; Kawamura, G; Kazanin, V F; Keeler, R; Kehoe, R; Keller, J S; Kempster, J J; Keoshkerian, H; Kepka, O; Kerševan, B P; Kersten, S; Keyes, R A; Khader, M; Khalil-Zada, F; Khanov, A; Kharlamov, A G; Kharlamova, T; Khoo, T J; Khovanskiy, V; Khramov, E; Khubua, J; Kido, S; Kilby, C R; Kim, H Y; Kim, S H; Kim, Y K; Kimura, N; Kind, O M; King, B T; King, M; Kirk, J; Kiryunin, A E; Kishimoto, T; Kisielewska, D; Kiss, F; Kiuchi, K; Kivernyk, O; Kladiva, E; Klapdor-Kleingrothaus, T; Klein, M H; Klein, M; Klein, U; Kleinknecht, K; Klimek, P; Klimentov, A; Klingenberg, R; Klioutchnikova, T; Kluge, E-E; Kluit, P; Kluth, S; Knapik, J; Kneringer, E; Knoops, E B F G; Knue, A; Kobayashi, A; Kobayashi, D; Kobayashi, T; Kobel, M; Kocian, M; Kodys, P; Koffas, T; Koffeman, E; Köhler, N M; Koi, T; Kolanoski, H; Kolb, M; Koletsou, I; Komar, A A; Komori, Y; Kondo, T; Kondrashova, N; Köneke, K; König, A C; Kono, T; Konoplich, R; Konstantinidis, N; Kopeliansky, R; Koperny, S; Kopp, A K; Korcyl, K; Kordas, K; Korn, A; Korol, A A; Korolkov, I; Korolkova, E V; Kortner, O; Kortner, S; Kosek, T; Kostyukhin, V V; Kotwal, A; Koulouris, A; Kourkoumeli-Charalampidi, A; Kourkoumelis, C; Kouskoura, V; Kowalewska, A B; Kowalewski, R; Kowalski, T Z; Kozakai, C; Kozanecki, W; Kozhin, A S; Kramarenko, V A; Kramberger, G; Krasnopevtsev, D; Krasny, M W; Krasznahorkay, A; Kravchenko, A; Kretz, M; Kretzschmar, J; Kreutzfeldt, K; Krieger, P; Krizka, K; Kroeninger, K; Kroha, H; Kroll, J; Kroseberg, J; Krstic, J; Kruchonak, U; Krüger, H; Krumnack, N; Kruse, M C; Kruskal, M; Kubota, T; Kucuk, H; Kuday, S; Kuechler, J T; Kuehn, S; Kugel, A; Kuger, F; Kuhl, T; Kukhtin, V; Kukla, R; Kulchitsky, Y; Kuleshov, S; Kuna, M; Kunigo, T; Kupco, A; Kuprash, O; Kurashige, H; Kurchaninov, L L; Kurochkin, Y A; Kurth, M G; Kus, V; Kuwertz, E S; Kuze, M; Kvita, J; Kwan, T; Kyriazopoulos, D; Rosa, A La; La Rosa Navarro, J L; Rotonda, L La; Lacasta, C; Lacava, F; Lacey, J; Lacker, H; Lacour, D; Ladygin, E; Lafaye, R; Laforge, B; Lagouri, T; Lai, S; Lammers, S; Lampl, W; Lançon, E; Landgraf, U; Landon, M P J; Lanfermann, M C; Lang, V S; Lange, J C; Lankford, A J; Lanni, F; Lantzsch, K; Lanza, A; Laplace, S; Lapoire, C; Laporte, J F; Lari, T; Lasagni Manghi, F; Lassnig, M; Laurelli, P; Lavrijsen, W; Law, A T; Laycock, P; Lazovich, T; Lazzaroni, M; Le, B; Dortz, O Le; Guirriec, E Le; Quilleuc, E P Le; LeBlanc, M; LeCompte, T; Ledroit-Guillon, F; Lee, C A; Lee, S C; Lee, L; Lefebvre, B; Lefebvre, G; Lefebvre, M; Legger, F; Leggett, C; Lehan, A; Lehmann Miotto, G; Lei, X; Leight, W A; Leister, A G; Leite, M A L; Leitner, R; Lellouch, D; Lemmer, B; Leney, K J C; Lenz, T; Lenzi, B; Leone, R; Leone, S; Leonidopoulos, C; Leontsinis, S; Lerner, G; Leroy, C; Lesage, A A J; Lester, C G; Levchenko, M; Levêque, J; Levin, D; Levinson, L J; Levy, M; Lewis, D; Leyton, M; Li, B; Li, C; Li, H; Li, L; Li, L; Li, Q; Li, S; Li, X; Li, Y; Liang, Z; Liberti, B; Liblong, A; Lichard, P; Lie, K; Liebal, J; Liebig, W; Limosani, A; Lin, S C; Lin, T H; Lindquist, B E; Lionti, A E; Lipeles, E; Lipniacka, A; Lisovyi, M; Liss, T M; Lister, A; Litke, A M; Liu, B; Liu, D; Liu, H; Liu, H; Liu, J; Liu, J B; Liu, K; Liu, L; Liu, M; Liu, Y L; Liu, Y; Livan, M; Lleres, A; Llorente Merino, J; Lloyd, S L; Sterzo, F Lo; Lobodzinska, E M; Loch, P; Loebinger, F K; Loew, K M; Loginov, A; Lohse, T; Lohwasser, K; Lokajicek, M; Long, B A; Long, J D; Long, R E; Longo, L; Looper, K A; Lopez Lopez, J A; Lopez Mateos, D; Lopez Paredes, B; Lopez Paz, I; Lopez Solis, A; Lorenz, J; Lorenzo Martinez, N; Losada, M; Lösel, P J; Lou, X; Lounis, A; Love, J; Love, P A; Lu, H; Lu, N; Lubatti, H J; Luci, C; Lucotte, A; Luedtke, C; Luehring, F; Lukas, W; Luminari, L; Lundberg, O; Lund-Jensen, B; Luzi, P M; Lynn, D; Lysak, R; Lytken, E; Lyubushkin, V; Ma, H; Ma, L L; Ma, Y; Maccarrone, G; Macchiolo, A; Macdonald, C M; Maček, B; Machado Miguens, J; Madaffari, D; Madar, R; Maddocks, H J; Mader, W F; Madsen, A; Maeda, J; Maeland, S; Maeno, T; Maevskiy, A; Magradze, E; Mahlstedt, J; Maiani, C; Maidantchik, C; Maier, A A; Maier, T; Maio, A; Majewski, S; Makida, Y; Makovec, N; Malaescu, B; Malecki, Pa; Maleev, V P; Malek, F; Mallik, U; Malon, D; Malone, C; Maltezos, S; Malyukov, S; Mamuzic, J; Mancini, G; Mandelli, L; Mandić, I; Maneira, J; Manhaes de Andrade Filho, L; Manjarres Ramos, J; Mann, A; Manousos, A; Mansoulie, B; Mansour, J D; Mantifel, R; Mantoani, M; Manzoni, S; Mapelli, L; Marceca, G; March, L; Marchiori, G; Marcisovsky, M; Marjanovic, M; Marley, D E; Marroquim, F; Marsden, S P; Marshall, Z; Marti-Garcia, S; Martin, B; Martin, T A; Martin, V J; Martin Dit Latour, B; Martinez, M; Martinez Outschoorn, V I; Martin-Haugh, S; Martoiu, V S; Martyniuk, A C; Marzin, A; Masetti, L; Mashimo, T; Mashinistov, R; Masik, J; Maslennikov, A L; Massa, I; Massa, L; Mastrandrea, P; Mastroberardino, A; Masubuchi, T; Mättig, P; Mattmann, J; Maurer, J; Maxfield, S J; Maximov, D A; Mazini, R; Maznas, I; Mazza, S M; Mc Fadden, N C; Mc Goldrick, G; Mc Kee, S P; McCarn, A; McCarthy, R L; McCarthy, T G; McClymont, L I; McDonald, E F; Mcfayden, J A; Mchedlidze, G; McMahon, S J; McPherson, R A; Medinnis, M; Meehan, S; Mehlhase, S; Mehta, A; Meier, K; Meineck, C; Meirose, B; Melini, D; Mellado Garcia, B R; Melo, M; Meloni, F; Menary, S B; Meng, L; Meng, X T; Mengarelli, A; Menke, S; Meoni, E; Mergelmeyer, S; Mermod, P; Merola, L; Meroni, C; Merritt, F S; Messina, A; Metcalfe, J; Mete, A S; Meyer, C; Meyer, C; Meyer, J-P; Meyer, J; Meyer Zu Theenhausen, H; Miano, F; Middleton, R P; Miglioranzi, S; Mijović, L; Mikenberg, G; Mikestikova, M; Mikuž, M; Milesi, M; Milic, A; Miller, D W; Mills, C; Milov, A; Milstead, D A; Minaenko, A A; Minami, Y; Minashvili, I A; Mincer, A I; Mindur, B; Mineev, M; Minegishi, Y; Ming, Y; Mir, L M; Mistry, K P; Mitani, T; Mitrevski, J; Mitsou, V A; Miucci, A; Miyagawa, P S; Mizukami, A; Mjörnmark, J U; Mlynarikova, M; Moa, T; Mochizuki, K; Mogg, P; Mohapatra, S; Molander, S; Moles-Valls, R; Monden, R; Mondragon, M C; Mönig, K; Monk, J; Monnier, E; Montalbano, A; Montejo Berlingen, J; Monticelli, F; Monzani, S; Moore, R W; Morange, N; Moreno, D; Moreno Llácer, M; Morettini, P; Morgenstern, S; Mori, D; Mori, T; Morii, M; Morinaga, M; Morisbak, V; Moritz, S; Morley, A K; Mornacchi, G; Morris, J D; Mortensen, S S; Morvaj, L; Moschovakos, P; Mosidze, M; Moss, H J; Moss, J; Motohashi, K; Mount, R; Mountricha, E; Moyse, E J W; Muanza, S; Mudd, R D; Mueller, F; Mueller, J; Mueller, R S P; Mueller, T; Muenstermann, D; Mullen, P; Mullier, G A; Munoz Sanchez, F J; Murillo Quijada, J A; Murray, W J; Musheghyan, H; Muškinja, M; Myagkov, A G; Myska, M; Nachman, B P; Nackenhorst, O; Nagai, K; Nagai, R; Nagano, K; Nagasaka, Y; Nagata, K; Nagel, M; Nagy, E; Nairz, A M; Nakahama, Y; Nakamura, K; Nakamura, T; Nakano, I; Naranjo Garcia, R F; Narayan, R; Narrias Villar, D I; Naryshkin, I; Naumann, T; Navarro, G; Nayyar, R; Neal, H A; Nechaeva, P Yu; Neep, T J; Negri, A; Negrini, M; Nektarijevic, S; Nellist, C; Nelson, A; Nemecek, S; Nemethy, P; Nepomuceno, A A; Nessi, M; Neubauer, M S; Neumann, M; Neves, R M; Nevski, P; Newman, P R; Manh, T Nguyen; Nickerson, R B; Nicolaidou, R; Nielsen, J; Nikolaenko, V; Nikolic-Audit, I; Nikolopoulos, K; Nilsen, J K; Nilsson, P; Ninomiya, Y; Nisati, A; Nisius, R; Nobe, T; Nomachi, M; Nomidis, I; Nooney, T; Norberg, S; Nordberg, M; Norjoharuddeen, N; Novgorodova, O; Nowak, S; Nozaki, M; Nozka, L; Ntekas, K; Nurse, E; Nuti, F; O'Neil, D C; O'Rourke, A A; O'Shea, V; Oakham, F G; Oberlack, H; Obermann, T; Ocariz, J; Ochi, A; Ochoa, I; Ochoa-Ricoux, J P; Oda, S; Odaka, S; Ogren, H; Oh, A; Oh, S H; Ohm, C C; Ohman, H; Oide, H; Okawa, H; Okumura, Y; Okuyama, T; Olariu, A; Oleiro Seabra, L F; Olivares Pino, S A; Oliveira Damazio, D; Olszewski, A; Olszowska, J; Onofre, A; Onogi, K; Onyisi, P U E; Oreglia, M J; Oren, Y; Orestano, D; Orlando, N; Orr, R S; Osculati, B; Ospanov, R; Otero Y Garzon, G; Otono, H; Ouchrif, M; Ould-Saada, F; Ouraou, A; Oussoren, K P; Ouyang, Q; Owen, M; Owen, R E; Ozcan, V E; Ozturk, N; Pachal, K; Pacheco Pages, A; Pacheco Rodriguez, L; Padilla Aranda, C; Pagáčová, M; Pagan Griso, S; Paganini, M; Paige, F; Pais, P; Pajchel, K; Palacino, G; Palazzo, S; Palestini, S; Palka, M; Pallin, D; Panagiotopoulou, E St; Pandini, C E; Panduro Vazquez, J G; Pani, P; Panitkin, S; Pantea, D; Paolozzi, L; Papadopoulou, Th D; Papageorgiou, K; Paramonov, A; Paredes Hernandez, D; Parker, A J; Parker, M A; Parker, K A; Parodi, F; Parsons, J A; Parzefall, U; Pascuzzi, V R; Pasqualucci, E; Passaggio, S; Pastore, Fr; Pásztor, G; Pataraia, S; Pater, J R; Pauly, T; Pearce, J; Pearson, B; Pedersen, L E; Pedersen, M; Pedraza Lopez, S; Pedro, R; Peleganchuk, S V; Penc, O; Peng, C; Peng, H; Penwell, J; Peralva, B S; Perego, M M; Perepelitsa, D V; Perez Codina, E; Perini, L; Pernegger, H; Perrella, S; Peschke, R; Peshekhonov, V D; Peters, K; Peters, R F Y; Petersen, B A; Petersen, T C; Petit, E; Petridis, A; Petridou, C; Petroff, P; Petrolo, E; Petrov, M; Petrucci, F; Pettersson, N E; Peyaud, A; Pezoa, R; Phillips, P W; Piacquadio, G; Pianori, E; Picazio, A; Piccaro, E; Piccinini, M; Pickering, M A; Piegaia, R; Pilcher, J E; Pilkington, A D; Pin, A W J; Pinamonti, M; Pinfold, J L; Pingel, A; Pires, S; Pirumov, H; Pitt, M; Plazak, L; Pleier, M-A; Pleskot, V; Plotnikova, E; Pluth, D; Poettgen, R; Poggioli, L; Pohl, D; Polesello, G; Poley, A; Policicchio, A; Polifka, R; Polini, A; Pollard, C S; Polychronakos, V; Pommès, K; Pontecorvo, L; Pope, B G; Popeneciu, G A; Poppleton, A; Pospisil, S; Potamianos, K; Potrap, I N; Potter, C J; Potter, C T; Poulard, G; Poveda, J; Pozdnyakov, V; Pozo Astigarraga, M E; Pralavorio, P; Pranko, A; Prell, S; Price, D; Price, L E; Primavera, M; Prince, S; Prokofiev, K; Prokoshin, F; Protopopescu, S; Proudfoot, J; Przybycien, M; Puddu, D; Purohit, M; Puzo, P; Qian, J; Qin, G; Qin, Y; Quadt, A; Quayle, W B; Queitsch-Maitland, M; Quilty, D; Raddum, S; Radeka, V; Radescu, V; Radhakrishnan, S K; Radloff, P; Rados, P; Ragusa, F; Rahal, G; Raine, J A; Rajagopalan, S; Rammensee, M; Rangel-Smith, C; Ratti, M G; Rauch, D M; Rauscher, F; Rave, S; Ravenscroft, T; Ravinovich, I; Raymond, M; Read, A L; Readioff, N P; Reale, M; Rebuzzi, D M; Redelbach, A; Redlinger, G; Reece, R; Reed, R G; Reeves, K; Rehnisch, L; Reichert, J; Reiss, A; Rembser, C; Ren, H; Rescigno, M; Resconi, S; Resseguie, E D; Rezanova, O L; Reznicek, P; Rezvani, R; Richter, R; Richter, S; Richter-Was, E; Ricken, O; Ridel, M; Rieck, P; Riegel, C J; Rieger, J; Rifki, O; Rijssenbeek, M; Rimoldi, A; Rimoldi, M; Rinaldi, L; Ristić, B; Ritsch, E; Riu, I; Rizatdinova, F; Rizvi, E; Rizzi, C; Roberts, R T; Robertson, S H; Robichaud-Veronneau, A; Robinson, D; Robinson, J E M; Robson, A; Roda, C; Rodina, Y; Rodriguez Perez, A; Rodriguez Rodriguez, D; Roe, S; Rogan, C S; Røhne, O; Roloff, J; Romaniouk, A; Romano, M; Romano Saez, S M; Romero Adam, E; Rompotis, N; Ronzani, M; Roos, L; Ros, E; Rosati, S; Rosbach, K; Rose, P; Rosien, N-A; Rossetti, V; Rossi, E; Rossi, L P; Rosten, J H N; Rosten, R; Rotaru, M; Roth, I; Rothberg, J; Rousseau, D; Rozanov, A; Rozen, Y; Ruan, X; Rubbo, F; Rudolph, M S; Rühr, F; Ruiz-Martinez, A; Rurikova, Z; Rusakovich, N A; Ruschke, A; Russell, H L; Rutherfoord, J P; Ruthmann, N; Ryabov, Y F; Rybar, M; Rybkin, G; Ryu, S; Ryzhov, A; Rzehorz, G F; Saavedra, A F; Sabato, G; Sacerdoti, S; Sadrozinski, H F-W; Sadykov, R; Safai Tehrani, F; Saha, P; Sahinsoy, M; Saimpert, M; Saito, T; Sakamoto, H; Sakurai, Y; Salamanna, G; Salamon, A; Salazar Loyola, J E; Salek, D; Sales De Bruin, P H; Salihagic, D; Salnikov, A; Salt, J; Salvatore, D; Salvatore, F; Salvucci, A; Salzburger, A; Sammel, D; Sampsonidis, D; Sánchez, J; Sanchez Martinez, V; Sanchez Pineda, A; Sandaker, H; Sandbach, R L; Sandhoff, M; Sandoval, C; Sankey, D P C; Sannino, M; Sansoni, A; Santoni, C; Santonico, R; Santos, H; Santoyo Castillo, I; Sapp, K; Sapronov, A; Saraiva, J G; Sarrazin, B; Sasaki, O; Sato, K; Sauvan, E; Savage, G; Savard, P; Savic, N; Sawyer, C; Sawyer, L; Saxon, J; Sbarra, C; Sbrizzi, A; Scanlon, T; Scannicchio, D A; Scarcella, M; Scarfone, V; Schaarschmidt, J; Schacht, P; Schachtner, B M; Schaefer, D; Schaefer, L; Schaefer, R; Schaeffer, J; Schaepe, S; Schaetzel, S; Schäfer, U; Schaffer, A C; Schaile, D; Schamberger, R D; Scharf, V; Schegelsky, V A; Scheirich, D; Schernau, M; Schiavi, C; Schier, S; Schillo, C; Schioppa, M; Schlenker, S; Schmidt-Sommerfeld, K R; Schmieden, K; Schmitt, C; Schmitt, S; Schmitz, S; Schneider, B; Schnoor, U; Schoeffel, L; Schoening, A; Schoenrock, B D; Schopf, E; Schott, M; Schouwenberg, J F P; Schovancova, J; Schramm, S; Schreyer, M; Schuh, N; Schulte, A; Schultens, M J; Schultz-Coulon, H-C; Schulz, H; Schumacher, M; Schumm, B A; Schune, Ph; Schwartzman, A; Schwarz, T A; Schweiger, H; Schwemling, Ph; Schwienhorst, R; Schwindling, J; Schwindt, T; Sciolla, G; Scuri, F; Scutti, F; Searcy, J; Seema, P; Seidel, S C; Seiden, A; Seifert, F; Seixas, J M; Sekhniaidze, G; Sekhon, K; Sekula, S J; Semprini-Cesari, N; Serfon, C; Serin, L; Serkin, L; Sessa, M; Seuster, R; Severini, H; Sfiligoj, T; Sforza, F; Sfyrla, A; Shabalina, E; Shaikh, N W; Shan, L Y; Shang, R; Shank, J T; Shapiro, M; Shatalov, P B; Shaw, K; Shaw, S M; Shcherbakova, A; Shehu, C Y; Sherwood, P; Shi, L; Shimizu, S; Shimmin, C O; Shimojima, M; Shirabe, S; Shiyakova, M; Shmeleva, A; Shoaleh Saadi, D; Shochet, M J; Shojaii, S; Shope, D R; Shrestha, S; Shulga, E; Shupe, M A; Sicho, P; Sickles, A M; Sidebo, P E; Sideras Haddad, E; Sidiropoulou, O; Sidorov, D; Sidoti, A; Siegert, F; Sijacki, Dj; Silva, J; Silverstein, S B; Simak, V; Simic, Lj; Simion, S; Simioni, E; Simmons, B; Simon, D; Simon, M; Sinervo, P; Sinev, N B; Sioli, M; Siragusa, G; Siral, I; Sivoklokov, S Yu; Sjölin, J; Skinner, M B; Skottowe, H P; Skubic, P; Slater, M; Slavicek, T; Slawinska, M; Sliwa, K; Slovak, R; Smakhtin, V; Smart, B H; Smestad, L; Smiesko, J; Smirnov, S Yu; Smirnov, Y; Smirnova, L N; Smirnova, O; Smith, J W; Smith, M N K; Smith, R W; Smizanska, M; Smolek, K; Snesarev, A A; Snyder, I M; Snyder, S; Sobie, R; Socher, F; Soffer, A; Soh, D A; Sokhrannyi, G; Solans Sanchez, C A; Solar, M; Soldatov, E Yu; Soldevila, U; Solodkov, A A; Soloshenko, A; Solovyanov, O V; Solovyev, V; Sommer, P; Son, H; Song, H Y; Sood, A; Sopczak, A; Sopko, V; Sorin, V; Sosa, D; Sotiropoulou, C L; Soualah, R; Soukharev, A M; South, D; Sowden, B C; Spagnolo, S; Spalla, M; Spangenberg, M; Spanò, F; Sperlich, D; Spettel, F; Spighi, R; Spigo, G; Spiller, L A; Spousta, M; St Denis, R D; Stabile, A; Stamen, R; Stamm, S; Stanecka, E; Stanek, R W; Stanescu, C; Stanescu-Bellu, M; Stanitzki, M M; Stapnes, S; Starchenko, E A; Stark, G H; Stark, J; Staroba, P; Starovoitov, P; Stärz, S; Staszewski, R; Steinberg, P; Stelzer, B; Stelzer, H J; Stelzer-Chilton, O; Stenzel, H; Stewart, G A; Stillings, J A; Stockton, M C; Stoebe, M; Stoicea, G; Stolte, P; Stonjek, S; Stradling, A R; Straessner, A; Stramaglia, M E; Strandberg, J; Strandberg, S; Strandlie, A; Strauss, M; Strizenec, P; Ströhmer, R; Strom, D M; Stroynowski, R; Strubig, A; Stucci, S A; Stugu, B; Styles, N A; Su, D; Su, J; Suchek, S; Sugaya, Y; Suk, M; Sulin, V V; Sultansoy, S; Sumida, T; Sun, S; Sun, X; Sundermann, J E; Suruliz, K; Suster, C J E; Sutton, M R; Suzuki, S; Svatos, M; Swiatlowski, M; Swift, S P; Sykora, I; Sykora, T; Ta, D; Tackmann, K; Taenzer, J; Taffard, A; Tafirout, R; Taiblum, N; Takai, H; Takashima, R; Takeshita, T; Takubo, Y; Talby, M; Talyshev, A A; Tanaka, J; Tanaka, M; Tanaka, R; Tanaka, S; Tanioka, R; Tannenwald, B B; Tapia Araya, S; Tapprogge, S; Tarem, S; Tartarelli, G F; Tas, P; Tasevsky, M; Tashiro, T; Tassi, E; Tavares Delgado, A; Tayalati, Y; Taylor, A C; Taylor, G N; Taylor, P T E; Taylor, W; Teischinger, F A; Teixeira-Dias, P; Temming, K K; Temple, D; Ten Kate, H; Teng, P K; Teoh, J J; Tepel, F; Terada, S; Terashi, K; Terron, J; Terzo, S; Testa, M; Teuscher, R J; Theveneaux-Pelzer, T; Thomas, J P; Thomas-Wilsker, J; Thompson, P D; Thompson, A S; Thomsen, L A; Thomson, E; Tibbetts, M J; Ticse Torres, R E; Tikhomirov, V O; Tikhonov, Yu A; Timoshenko, S; Tipton, P; Tisserant, S; Todome, K; Todorov, T; Todorova-Nova, S; Tojo, J; Tokár, S; Tokushuku, K; Tolley, E; Tomlinson, L; Tomoto, M; Tompkins, L; Toms, K; Tong, B; Tornambe, P; Torrence, E; Torres, H; Torró Pastor, E; Toth, J; Touchard, F; Tovey, D R; Trefzger, T; Tricoli, A; Trigger, I M; Trincaz-Duvoid, S; Tripiana, M F; Trischuk, W; Trocmé, B; Trofymov, A; Troncon, C; Trottier-McDonald, M; Trovatelli, M; Truong, L; Trzebinski, M; Trzupek, A; Tseng, J C-L; Tsiareshka, P V; Tsipolitis, G; Tsirintanis, N; Tsiskaridze, S; Tsiskaridze, V; Tskhadadze, E G; Tsui, K M; Tsukerman, I I; Tsulaia, V; Tsuno, S; Tsybychev, D; Tu, Y; Tudorache, A; Tudorache, V; Tulbure, T T; Tuna, A N; Tupputi, S A; Turchikhin, S; Turgeman, D; Turk Cakir, I; Turra, R; Tuts, P M; Ucchielli, G; Ueda, I; Ughetto, M; Ukegawa, F; Unal, G; Undrus, A; Unel, G; Ungaro, F C; Unno, Y; Unverdorben, C; Urban, J; Urquijo, P; Urrejola, P; Usai, G; Usui, J; Vacavant, L; Vacek, V; Vachon, B; Valderanis, C; Valdes Santurio, E; Valencic, N; Valentinetti, S; Valero, A; Valery, L; Valkar, S; Valls Ferrer, J A; Van Den Wollenberg, W; Van Der Deijl, P C; van der Graaf, H; van Eldik, N; van Gemmeren, P; Van Nieuwkoop, J; van Vulpen, I; van Woerden, M C; Vanadia, M; Vandelli, W; Vanguri, R; Vaniachine, A; Vankov, P; Vardanyan, G; Vari, R; Varnes, E W; Varol, T; Varouchas, D; Vartapetian, A; Varvell, K E; Vasquez, J G; Vasquez, G A; Vazeille, F; Vazquez Schroeder, T; Veatch, J; Veeraraghavan, V; Veloce, L M; Veloso, F; Veneziano, S; Ventura, A; Venturi, M; Venturi, N; Venturini, A; Vercesi, V; Verducci, M; Verkerke, W; Vermeulen, J C; Vest, A; Vetterli, M C; Viazlo, O; Vichou, I; Vickey, T; Vickey Boeriu, O E; Viehhauser, G H A; Viel, S; Vigani, L; Villa, M; Villaplana Perez, M; Vilucchi, E; Vincter, M G; Vinogradov, V B; Vishwakarma, A; Vittori, C; Vivarelli, I; Vlachos, S; Vlasak, M; Vogel, M; Vokac, P; Volpi, G; Volpi, M; von der Schmitt, H; von Toerne, E; Vorobel, V; Vorobev, K; Vos, M; Voss, R; Vossebeld, J H; Vranjes, N; Vranjes Milosavljevic, M; Vrba, V; Vreeswijk, M; Vuillermet, R; Vukotic, I; Wagner, P; Wagner, W; Wahlberg, H; Wahrmund, S; Wakabayashi, J; Walder, J; Walker, R; Walkowiak, W; Wallangen, V; Wang, C; Wang, C; Wang, F; Wang, H; Wang, H; Wang, J; Wang, J; Wang, K; Wang, Q; Wang, R; Wang, S M; Wang, T; Wang, W; Wanotayaroj, C; Warburton, A; Ward, C P; Wardrope, D R; Washbrook, A; Watkins, P M; Watson, A T; Watson, M F; Watts, G; Watts, S; Waugh, B M; Webb, S; Weber, M S; Weber, S W; Weber, S A; Webster, J S; Weidberg, A R; Weinert, B; Weingarten, J; Weiser, C; Weits, H; Wells, P S; Wenaus, T; Wengler, T; Wenig, S; Wermes, N; Werner, M D; Werner, P; Wessels, M; Wetter, J; Whalen, K; Whallon, N L; Wharton, A M; White, A; White, M J; White, R; Whiteson, D; Wickens, F J; Wiedenmann, W; Wielers, M; Wiglesworth, C; Wiik-Fuchs, L A M; Wildauer, A; Wilk, F; Wilkens, H G; Williams, H H; Williams, S; Willis, C; Willocq, S; Wilson, J A; Wingerter-Seez, I; Winklmeier, F; Winston, O J; Winter, B T; Wittgen, M; Wobisch, M; Wolf, T M H; Wolff, R; Wolter, M W; Wolters, H; Worm, S D; Wosiek, B K; Wotschack, J; Woudstra, M J; Wozniak, K W; Wu, M; Wu, M; Wu, S L; Wu, X; Wu, Y; Wyatt, T R; Wynne, B M; Xella, S; Xi, Z; Xu, D; Xu, L; Yabsley, B; Yacoob, S; Yamaguchi, D; Yamaguchi, Y; Yamamoto, A; Yamamoto, S; Yamanaka, T; Yamauchi, K; Yamazaki, Y; Yan, Z; Yang, H; Yang, H; Yang, Y; Yang, Z; Yao, W-M; Yap, Y C; Yasu, Y; Yatsenko, E; Yau Wong, K H; Ye, J; Ye, S; Yeletskikh, I; Yildirim, E; Yorita, K; Yoshida, R; Yoshihara, K; Young, C; Young, C J S; Youssef, S; Yu, D R; Yu, J; Yu, J M; Yu, J; Yuan, L; Yuen, S P Y; Yusuff, I; Zabinski, B; Zaidan, R; Zaitsev, A M; Zakharchuk, N; Zalieckas, J; Zaman, A; Zambito, S; Zanzi, D; Zeitnitz, C; Zeman, M; Zemla, A; Zeng, J C; Zeng, Q; Zenin, O; Ženiš, T; Zerwas, D; Zhang, D; Zhang, F; Zhang, G; Zhang, H; Zhang, J; Zhang, L; Zhang, L; Zhang, M; Zhang, R; Zhang, R; Zhang, X; Zhang, Z; Zhao, X; Zhao, Y; Zhao, Z; Zhemchugov, A; Zhong, J; Zhou, B; Zhou, C; Zhou, L; Zhou, L; Zhou, M; Zhou, M; Zhou, N; Zhu, C G; Zhu, H; Zhu, J; Zhu, Y; Zhuang, X; Zhukov, K; Zibell, A; Zieminska, D; Zimine, N I; Zimmermann, C; Zimmermann, S; Zinonos, Z; Zinser, M; Ziolkowski, M; Živković, L; Zobernig, G; Zoccoli, A; Zur Nedden, M; Zwalinski, L

    2017-01-01

    This paper presents a measurement of the polarisation of W bosons from [Formula: see text] decays, reconstructed in events with one high-[Formula: see text] lepton and at least four jets. Data from pp collisions at the LHC were collected at [Formula: see text] = 8 TeV and correspond to an integrated luminosity of 20.2 fb[Formula: see text]. The angle [Formula: see text] between the b -quark from the top quark decay and a direct W boson decay product in the W boson rest frame is sensitive to the W boson polarisation. Two different W decay products are used as polarisation analysers: the charged lepton and the down-type quark for the leptonically and hadronically decaying W boson, respectively. The most precise measurement of the W boson polarisation via the distribution of [Formula: see text] is obtained using the leptonic analyser and events in which at least two of the jets are tagged as b -quark jets. The fitted fractions of longitudinal, left- and right-handed polarisation states are [Formula: see text], [Formula: see text] and [Formula: see text], and are the most precisely measured W boson polarisation fractions to date. Limits on anomalous couplings of the Wtb vertex are set.

  10. A Computer-Adaptive Disability Instrument for Lower Extremity Osteoarthritis Research Demonstrated Promising Breadth, Precision and Reliability

    PubMed Central

    Jette, Alan M.; McDonough, Christine M.; Haley, Stephen M.; Ni, Pengsheng; Olarsch, Sippy; Latham, Nancy; Hambleton, Ronald K.; Felson, David; Kim, Young-jo; Hunter, David

    2012-01-01

    Objective To develop and evaluate a prototype measure (OA-DISABILITY-CAT) for osteoarthritis research using Item Response Theory (IRT) and Computer Adaptive Test (CAT) methodologies. Study Design and Setting We constructed an item bank consisting of 33 activities commonly affected by lower extremity (LE) osteoarthritis. A sample of 323 adults with LE osteoarthritis reported their degree of limitation in performing everyday activities and completed the Health Assessment Questionnaire-II (HAQ-II). We used confirmatory factor analyses to assess scale unidimensionality and IRT methods to calibrate the items and examine the fit of the data. Using CAT simulation analyses, we examined the performance of OA-DISABILITY-CATs of different lengths compared to the full item bank and the HAQ-II. Results One distinct disability domain was identified. The 10-item OA-DISABILITY-CAT demonstrated a high degree of accuracy compared with the full item bank (r=0.99). The item bank and the HAQ-II scales covered a similar estimated scoring range. In terms of reliability, 95% of OA-DISABILITY reliability estimates were over 0.83 versus 0.60 for the HAQ-II. Except at the highest scores the 10-item OA-DISABILITY-CAT demonstrated superior precision to the HAQ-II. Conclusion The prototype OA-DISABILITY-CAT demonstrated promising measurement properties compared to the HAQ-II, and is recommended for use in LE osteoarthritis research. PMID:19216052

  11. Accuracy assessment of Precise Point Positioning with multi-constellation GNSS data under ionospheric scintillation effects

    NASA Astrophysics Data System (ADS)

    Marques, Haroldo Antonio; Marques, Heloísa Alves Silva; Aquino, Marcio; Veettil, Sreeja Vadakke; Monico, João Francisco Galera

    2018-02-01

    GPS and GLONASS are currently the Global Navigation Satellite Systems (GNSS) with full operational capacity. The integration of GPS, GLONASS and future GNSS constellations can provide better accuracy and more reliability in geodetic positioning, in particular for kinematic Precise Point Positioning (PPP), where the satellite geometry is considered a limiting factor to achieve centimeter accuracy. The satellite geometry can change suddenly in kinematic positioning in urban areas or under conditions of strong atmospheric effects such as for instance ionospheric scintillation that may degrade satellite signal quality, causing cycle slips and even loss of lock. Scintillation is caused by small scale irregularities in the ionosphere and is characterized by rapid changes in amplitude and phase of the signal, which are more severe in equatorial and high latitudes geomagnetic regions. In this work, geodetic positioning through the PPP method was evaluated with integrated GPS and GLONASS data collected in the equatorial region under varied scintillation conditions. The GNSS data were processed in kinematic PPP mode and the analyses show accuracy improvements of up to 60% under conditions of strong scintillation when using multi-constellation data instead of GPS data alone. The concepts and analyses related to the ionospheric scintillation effects, the mathematical model involved in PPP with GPS and GLONASS data integration as well as accuracy assessment with data collected under ionospheric scintillation effects are presented.

  12. Measurement of the W boson polarisation in $$t\\bar{t}$$ events from pp collisions at $$\\sqrt{s} = 8$$ TeV in the lepton + jets channel with ATLAS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aaboud, M.; Aad, G.; Abbott, B.

    This paper presents a measurement of the polarisation of W bosons from tt¯ decays, reconstructed in events with one high-p T lepton and at least four jets. Data from pp collisions at the LHC were collected at √s = 8 TeV and correspond to an integrated luminosity of 20.2 fb –1. The angle θ* between the b-quark from the top quark decay and a direct W boson decay product in the W boson rest frame is sensitive to the W boson polarisation. Two different W decay products are used as polarisation analysers: the charged lepton and the down-type quark formore » the leptonically and hadronically decaying W boson, respectively. The most precise measurement of the W boson polarisation via the distribution of cosθ* is obtained using the leptonic analyser and events in which at least two of the jets are tagged as b-quark jets. The fitted fractions of longitudinal, left- and right-handed polarisation states are F 0 = 0.709 ± 0.019, F L = 0.299 ± 0.015 and F R = –0.008 ± 0.014, and are the most precisely measured W boson polarisation fractions to date. Limits on anomalous couplings of the Wtb vertex are set.« less

  13. Measurement of the W boson polarisation in $$t\\bar{t}$$ events from pp collisions at $$\\sqrt{s} = 8$$ TeV in the lepton + jets channel with ATLAS

    DOE PAGES

    Aaboud, M.; Aad, G.; Abbott, B.; ...

    2017-04-26

    This paper presents a measurement of the polarisation of W bosons from tt¯ decays, reconstructed in events with one high-p T lepton and at least four jets. Data from pp collisions at the LHC were collected at √s = 8 TeV and correspond to an integrated luminosity of 20.2 fb –1. The angle θ* between the b-quark from the top quark decay and a direct W boson decay product in the W boson rest frame is sensitive to the W boson polarisation. Two different W decay products are used as polarisation analysers: the charged lepton and the down-type quark formore » the leptonically and hadronically decaying W boson, respectively. The most precise measurement of the W boson polarisation via the distribution of cosθ* is obtained using the leptonic analyser and events in which at least two of the jets are tagged as b-quark jets. The fitted fractions of longitudinal, left- and right-handed polarisation states are F 0 = 0.709 ± 0.019, F L = 0.299 ± 0.015 and F R = –0.008 ± 0.014, and are the most precisely measured W boson polarisation fractions to date. Limits on anomalous couplings of the Wtb vertex are set.« less

  14. Assessment of the quality of reporting in abstracts of systematic reviews with meta-analyses in periodontology and implant dentistry.

    PubMed

    Faggion, C M; Liu, J; Huda, F; Atieh, M

    2014-04-01

    Proper scientific reporting is necessary to ensure the correct interpretation of study results by readers. The main objective of this study was to assess the quality of reporting in abstracts of systematic reviews (SRs) with meta-analyses in periodontology and implant dentistry. Differences in reporting of abstracts in Cochrane and paper-based reviews were also assessed. The PubMed electronic database and the Cochrane database for SRs were searched on November 11, 2012, independently and in duplicate, for SRs with meta-analyses related to interventions in periodontology and implant dentistry. Assessment of the quality of reporting was performed independently and in duplicate, taking into account items related to the effect direction, numerical estimates of effect size, measures of precision, probability and consistency. We initially screened 433 papers and included 146 (127 paper-based and 19 Cochrane reviews, respectively). The direction of evidence was reported in two-thirds of the abstracts while strength of evidence and measure of precision (i.e., confidence interval) were reported in less than half the selected abstracts. Measures of consistency such as I(2) statistics were reported in only 5% of the selected sample of abstracts. Cochrane abstracts reported the limitations of evidence and precision better than paper-based ones. Two items ("meta-analysis" in title and abstract, respectively), were nevertheless better reported in paper-based abstracts. Abstracts of SRs with meta-analyses in periodontology and implant dentistry currently have no uniform standard of reporting, which may hinder readers' understanding of study outcomes. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Blue light-mediated transcriptional activation and repression of gene expression in bacteria

    PubMed Central

    Jayaraman, Premkumar; Devarajan, Kavya; Chua, Tze Kwang; Zhang, Hanzhong; Gunawan, Erry; Poh, Chueh Loo

    2016-01-01

    Light-regulated modules offer unprecedented new ways to control cellular behavior in precise spatial and temporal resolution. The availability of such tools may dramatically accelerate the progression of synthetic biology applications. Nonetheless, current optogenetic toolbox of prokaryotes has potential issues such as lack of rapid and switchable control, less portable, low dynamic expression and limited parts. To address these shortcomings, we have engineered a novel bidirectional promoter system for Escherichia coli that can be induced or repressed rapidly and reversibly using the blue light dependent DNA-binding protein EL222. We demonstrated that by modulating the dosage of light pulses or intensity we could control the level of gene expression precisely. We show that both light-inducible and repressible system can function in parallel with high spatial precision in a single cell and can be switched stably between ON- and OFF-states by repetitive pulses of blue light. In addition, the light-inducible and repressible expression kinetics were quantitatively analysed using a mathematical model. We further apply the system, for the first time, to optogenetically synchronize two receiver cells performing different logic behaviors over time using blue light as a molecular clock signal. Overall, our modular approach layers a transformative platform for next-generation light-controllable synthetic biology systems in prokaryotes. PMID:27353329

  16. Precise predictions for V+jets dark matter backgrounds

    NASA Astrophysics Data System (ADS)

    Lindert, J. M.; Pozzorini, S.; Boughezal, R.; Campbell, J. M.; Denner, A.; Dittmaier, S.; Gehrmann-De Ridder, A.; Gehrmann, T.; Glover, N.; Huss, A.; Kallweit, S.; Maierhöfer, P.; Mangano, M. L.; Morgan, T. A.; Mück, A.; Petriello, F.; Salam, G. P.; Schönherr, M.; Williams, C.

    2017-12-01

    High-energy jets recoiling against missing transverse energy (MET) are powerful probes of dark matter at the LHC. Searches based on large MET signatures require a precise control of the Z(ν {\\bar{ν }})+ jet background in the signal region. This can be achieved by taking accurate data in control regions dominated by Z(ℓ ^+ℓ ^-)+ jet, W(ℓ ν )+ jet and γ + jet production, and extrapolating to the Z(ν {\\bar{ν }})+ jet background by means of precise theoretical predictions. In this context, recent advances in perturbative calculations open the door to significant sensitivity improvements in dark matter searches. In this spirit, we present a combination of state-of-the-art calculations for all relevant V+ jets processes, including throughout NNLO QCD corrections and NLO electroweak corrections supplemented by Sudakov logarithms at two loops. Predictions at parton level are provided together with detailed recommendations for their usage in experimental analyses based on the reweighting of Monte Carlo samples. Particular attention is devoted to the estimate of theoretical uncertainties in the framework of dark matter searches, where subtle aspects such as correlations across different V+ jet processes play a key role. The anticipated theoretical uncertainty in the Z(ν {\\bar{ν }})+ jet background is at the few percent level up to the TeV range.

  17. A novel algorithm for a precise analysis of subchondral bone alterations

    PubMed Central

    Gao, Liang; Orth, Patrick; Goebel, Lars K. H.; Cucchiarini, Magali; Madry, Henning

    2016-01-01

    Subchondral bone alterations are emerging as considerable clinical problems associated with articular cartilage repair. Their analysis exposes a pattern of variable changes, including intra-lesional osteophytes, residual microfracture holes, peri-hole bone resorption, and subchondral bone cysts. A precise distinction between them is becoming increasingly important. Here, we present a tailored algorithm based on continuous data to analyse subchondral bone changes using micro-CT images, allowing for a clear definition of each entity. We evaluated this algorithm using data sets originating from two large animal models of osteochondral repair. Intra-lesional osteophytes were detected in 3 of 10 defects in the minipig and in 4 of 5 defects in the sheep model. Peri-hole bone resorption was found in 22 of 30 microfracture holes in the minipig and in 17 of 30 microfracture holes in the sheep model. Subchondral bone cysts appeared in 1 microfracture hole in the minipig and in 5 microfracture holes in the sheep model (n = 30 holes each). Calculation of inter-rater agreement (90% agreement) and Cohen’s kappa (kappa = 0.874) revealed that the novel algorithm is highly reliable, reproducible, and valid. Comparison analysis with the best existing semi-quantitative evaluation method was also performed, supporting the enhanced precision of this algorithm. PMID:27596562

  18. In situ Pb-Pb dating of rutile from slowly cooled granulites by LA-MC-ICP-MS: confirmation of the high closure temperature (>=600°C) for Pb diffusion in rutile

    NASA Astrophysics Data System (ADS)

    Vry, J.; Baker, J.; Waight, T.

    2003-04-01

    We have analysed Pb isotopes in natural rutile crystals by laser ablation MC-ICP-MS to assess the potential of rapid Pb-Pb dating of rutile with this method. The rutile samples are from granulite-facies Mg- and Al-rich rocks from the Reynolds Range, Northern Territory, Australia. This metamorphic terrane has a well-constrained high-T cooling history (ca. 3^oC/Myr) defined by previous U-Pb dating of monazite and zircon (peak metamorphism at 1584 Ma), which we have supplemented with additional Rb-Sr dates of phlogopite, biotite and muscovite. The dated rutiles vary in size from 3 to 0.05 mm, have Pb concentrations of ca. 20 ppm, and were analysed with a 266 nm laser coupled to an AXIOM MC-ICP-MS (spot size of 200-50 μm). Individual larger crystals (>= 200 μm) exhibit sufficient Pb isotopic heterogeneity (206Pb/204Pb = 10000-80000) to perform isochron calculations on several short analyses of a single grain (30-60 s). The largest rutiles yielded Pb-Pb isochron ages of 1540-1555 Ma with typical uncertainties of ± 1 to 10 Ma. 207Pb/206Pb ages are typically within 1% of the Pb-Pb isochron ages testifying to the radiogenic nature of Pb in the rutile. A mean age for all the analysed rutiles was 1548.4 ± 9.1 Ma (n = 33). Comparable 207Pb/206Pb ages were also obtained from individual smaller crystals (50 μm) where the 204Pb ion beam could not be measured precisely. The results demonstrate that even small rutile crystals are extremely resistant to isotopic resetting, and that this mineral is a high-T chronometer. Phlogopite and muscovite Rb-Sr ages are <1454 and 1400-1480 Ma, respectively, with some of the phlogopite and biotite micas having been partially reset by later thermal events younger than 400 Ma. All the mica ages are considerably younger (100-70 My) than the rutile ages, which approach U-Pb ages for monazite and zircon overgrowths, even though the mica closure temperatures (350-500^oC) are comparable or slightly higher than earlier geological estimates [1] of the rutile closure temperature. Thus, our results confirm a recent experimental study [2] that suggested the closure temperature for Pb diffusion in rutile (e.g. 100 μm) is much higher (200^oC) than previously thought [1]. [1] Mezger et al., 1989. High precision U-Pb ages of metamorphic rutile: applications to the cooling history of high-grade terranes. EPSL 96, 106-118. [2] Cherniak, 2000. Pb diffusion in rutile. Contrib. Mineral. Petrol., 139, 198-207.

  19. High precision mass measurements for wine metabolomics

    PubMed Central

    Roullier-Gall, Chloé; Witting, Michael; Gougeon, Régis D.; Schmitt-Kopplin, Philippe

    2014-01-01

    An overview of the critical steps for the non-targeted Ultra-High Performance Liquid Chromatography coupled with Quadrupole Time-of-Flight Mass Spectrometry (UPLC-Q-ToF-MS) analysis of wine chemistry is given, ranging from the study design, data preprocessing and statistical analyses, to markers identification. UPLC-Q-ToF-MS data was enhanced by the alignment of exact mass data from FTICR-MS, and marker peaks were identified using UPLC-Q-ToF-MS2. In combination with multivariate statistical tools and the annotation of peaks with metabolites from relevant databases, this analytical process provides a fine description of the chemical complexity of wines, as exemplified in the case of red (Pinot noir) and white (Chardonnay) wines from various geographic origins in Burgundy. PMID:25431760

  20. High precision mass measurements for wine metabolomics

    NASA Astrophysics Data System (ADS)

    Roullier-Gall, Chloé; Witting, Michael; Gougeon, Régis; Schmitt-Kopplin, Philippe

    2014-11-01

    An overview of the critical steps for the non-targeted Ultra-High Performance Liquid Chromatography coupled with Quadrupole Time-of-Flight Mass Spectrometry (UPLC-Q-ToF-MS) analysis of wine chemistry is given, ranging from the study design, data preprocessing and statistical analyses, to markers identification. UPLC-Q-ToF-MS data was enhanced by the alignment of exact mass data from FTICR-MS, and marker peaks were identified using UPLC-Q-ToF-MS². In combination with multivariate statistical tools and the annotation of peaks with metabolites from relevant databases, this analytical process provides a fine description of the chemical complexity of wines, as exemplified in the case of red (Pinot noir) and white (Chardonnay) wines from various geographic origins in Burgundy.

  1. High performance liquid chromatographic hydrocarbon group-type analyses of mid-distillates employing fuel-derived fractions as standards

    NASA Technical Reports Server (NTRS)

    Seng, G. T.; Otterson, D. A.

    1983-01-01

    Two high performance liquid chromatographic (HPLC) methods have been developed for the determination of saturates, olefins and aromatics in petroleum and shale derived mid-distillate fuels. In one method the fuel to be analyzed is reacted with sulfuric acid, to remove a substantial portion of the aromatics, which provides a reacted fuel fraction for use in group type quantitation. The second involves the removal of a substantial portion of the saturates fraction from the HPLC system to permit the determination of olefin concentrations as low as 0.3 volume percent, and to improve the accuracy and precision of olefins determinations. Each method was evaluated using model compound mixtures and real fuel samples.

  2. Students Left Behind: Measuring 10th to 12th Grade Student Persistence Rates in Texas High Schools

    PubMed Central

    Domina, Thurston; Ghosh-Dastidar, Bonnie; Tienda, Marta

    2012-01-01

    The No Child Left Behind Act requires states to publish high school graduation rates for public schools and the U.S. Department of Education is currently considering a mandate to standardize high school graduation rate reporting. However, no consensus exists among researchers or policy-makers about how to measure high school graduation rates. In this paper, we use longitudinal data tracking a cohort of students at 82 Texas public high schools to assess the accuracy and precision of three widely-used high school graduation rate measures: Texas’s official graduation rates, and two competing estimates based on publicly available enrollment data from the Common Core of Data. Our analyses show that these widely-used approaches yield inaccurate and highly imprecise estimates of high school graduation and persistence rates. We propose several guidelines for using existing graduation and persistence rate data and argue that a national effort to track students as they progress through high school is essential to reconcile conflicting estimates. PMID:23077375

  3. Students Left Behind: Measuring 10(th) to 12(th) Grade Student Persistence Rates in Texas High Schools.

    PubMed

    Domina, Thurston; Ghosh-Dastidar, Bonnie; Tienda, Marta

    2010-06-01

    The No Child Left Behind Act requires states to publish high school graduation rates for public schools and the U.S. Department of Education is currently considering a mandate to standardize high school graduation rate reporting. However, no consensus exists among researchers or policy-makers about how to measure high school graduation rates. In this paper, we use longitudinal data tracking a cohort of students at 82 Texas public high schools to assess the accuracy and precision of three widely-used high school graduation rate measures: Texas's official graduation rates, and two competing estimates based on publicly available enrollment data from the Common Core of Data. Our analyses show that these widely-used approaches yield inaccurate and highly imprecise estimates of high school graduation and persistence rates. We propose several guidelines for using existing graduation and persistence rate data and argue that a national effort to track students as they progress through high school is essential to reconcile conflicting estimates.

  4. Quantitative analysis of drugs in hair by UHPLC high resolution mass spectrometry.

    PubMed

    Kronstrand, Robert; Forsman, Malin; Roman, Markus

    2018-02-01

    Liquid chromatographic methods coupled to high resolution mass spectrometry are increasingly used to identify compounds in various matrices including hair but there are few recommendations regarding the parameters and their criteria to identify a compound. In this study we present a method for the identification and quantification of a range of drugs and discuss the parameters used to identify a compound with high resolution mass spectrometry. Drugs were extracted from hair by incubation in a buffer:solvent mixture at 37°C during 18h. Analysis was performed on a chromatographic system comprised of an Agilent 6550 QTOF coupled to a 1290 Infinity UHPLC system. High resolution accurate mass data were acquired in the All Ions mode and exported into Mass Hunter Quantitative software for quantitation and identification using qualifier fragment ions. Validation included selectivity, matrix effects, calibration range, within day and between day precision and accuracy. The analytes were 7-amino-flunitrazepam, 7-amino-clonazepam, 7-amino-nitrazepam, acetylmorphine, alimemazine, alprazolam, amphetamine, benzoylecgonine, buprenorphine, diazepam, ethylmorphine, fentanyl, hydroxyzine, ketobemidone, codeine, cocaine, MDMA, methadone, methamphetamine, morphine, oxycodone, promethazine, propiomazine, propoxyphene, tramadol, zaleplone, zolpidem, and zopiclone. As proof of concept, hair from 29 authentic post mortem cases were analysed. The calibration range was established between 0.05ng/mg to 5.0ng/mg for all analytes except fentanyl (0.02-2.0), buprenorphine (0.04-2.0), and ketobemidone (0.05-4.0) as well as for alimemazine, amphetamine, cocaine, methadone, and promethazine (0.10-5.0). For all analytes, the accuracy of the fortified pooled hair matrix was 84-108% at the low level and 89-106% at the high level. The within series precisions were between 1.4 and 6.7% and the between series precisions were between 1.4 and 10.1%. From the 29 autopsy cases, 121 positive findings were encountered from 23 of the analytes in concentrations similar to those previously published. We conclude that the developed method proved precise and accurate and that it had sufficient performance for the purpose of detecting regular use of drugs or treatment with prescription drugs. To identify a compound we recommend the use of ion ratios as a complement to instrument software "matching scores". Copyright © 2018 Elsevier B.V. All rights reserved.

  5. High precision locating control system based on VCM for Talbot lithography

    NASA Astrophysics Data System (ADS)

    Yao, Jingwei; Zhao, Lixin; Deng, Qian; Hu, Song

    2016-10-01

    Aiming at the high precision and efficiency requirements of Z-direction locating in Talbot lithography, a control system based on Voice Coil Motor (VCM) was designed. In this paper, we built a math model of VCM and its moving characteristic was analyzed. A double-closed loop control strategy including position loop and current loop were accomplished. The current loop was implemented by driver, in order to achieve the rapid follow of the system current. The position loop was completed by the digital signal processor (DSP) and the position feedback was achieved by high precision linear scales. Feed forward control and position feedback Proportion Integration Differentiation (PID) control were applied in order to compensate for dynamic lag and improve the response speed of the system. And the high precision and efficiency of the system were verified by simulation and experiments. The results demonstrated that the performance of Z-direction gantry was obviously improved, having high precision, quick responses, strong real-time and easily to expend for higher precision.

  6. A matter of months: High precision migration chronology of a Bronze Age female

    PubMed Central

    Villa, Chiara; Jørkov, Marie Louise; Allentoft, Morten E.; Kaul, Flemming; Ethelberg, Per; Reiter, Samantha S.; Wilson, Andrew S.; Taube, Michelle; Olsen, Jesper; Lynnerup, Niels; Willerslev, Eske; Kristiansen, Kristian; Frei, Robert

    2017-01-01

    Establishing the age at which prehistoric individuals move away from their childhood residential location holds crucial information about the socio dynamics and mobility patterns in ancient societies. We present a novel combination of strontium isotope analyses performed on the over 3000 year old “Skrydstrup Woman” from Denmark, for whom we compiled a highly detailed month-scale model of her migration timeline. When combined with physical anthropological analyses this timeline can be related to the chronological age at which the residential location changed. We conducted a series of high-resolution strontium isotope analyses of hard and soft human tissues and combined these with anthropological investigations including CT-scanning and 3D visualizations. The Skrydstrup Woman lived during a pan-European period characterized by technical innovation and great social transformations stimulated by long-distance connections; consequently she represents an important part of both Danish and European prehistory. Our multidisciplinary study involves complementary biochemical, biomolecular and microscopy analyses of her scalp hair. Our results reveal that the Skrydstrup Woman was between 17–18 years old when she died, and that she moved from her place of origin -outside present day Denmark- to the Skrydstrup area in Denmark 47 to 42 months before she died. Hence, she was between 13 to 14 years old when she migrated to and resided in the area around Skrydstrup for the rest of her life. From an archaeological standpoint, this one-time and one-way movement of an elite female during the possible “age of marriageability” might suggest that she migrated with the aim of establishing an alliance between chiefdoms. Consequently, this detailed multidisciplinary investigation provides a novel tool to reconstruct high resolution chronology of individual mobility with the perspective of studying complex patterns of social and economic interaction in prehistory. PMID:28582402

  7. A matter of months: High precision migration chronology of a Bronze Age female.

    PubMed

    Frei, Karin Margarita; Villa, Chiara; Jørkov, Marie Louise; Allentoft, Morten E; Kaul, Flemming; Ethelberg, Per; Reiter, Samantha S; Wilson, Andrew S; Taube, Michelle; Olsen, Jesper; Lynnerup, Niels; Willerslev, Eske; Kristiansen, Kristian; Frei, Robert

    2017-01-01

    Establishing the age at which prehistoric individuals move away from their childhood residential location holds crucial information about the socio dynamics and mobility patterns in ancient societies. We present a novel combination of strontium isotope analyses performed on the over 3000 year old "Skrydstrup Woman" from Denmark, for whom we compiled a highly detailed month-scale model of her migration timeline. When combined with physical anthropological analyses this timeline can be related to the chronological age at which the residential location changed. We conducted a series of high-resolution strontium isotope analyses of hard and soft human tissues and combined these with anthropological investigations including CT-scanning and 3D visualizations. The Skrydstrup Woman lived during a pan-European period characterized by technical innovation and great social transformations stimulated by long-distance connections; consequently she represents an important part of both Danish and European prehistory. Our multidisciplinary study involves complementary biochemical, biomolecular and microscopy analyses of her scalp hair. Our results reveal that the Skrydstrup Woman was between 17-18 years old when she died, and that she moved from her place of origin -outside present day Denmark- to the Skrydstrup area in Denmark 47 to 42 months before she died. Hence, she was between 13 to 14 years old when she migrated to and resided in the area around Skrydstrup for the rest of her life. From an archaeological standpoint, this one-time and one-way movement of an elite female during the possible "age of marriageability" might suggest that she migrated with the aim of establishing an alliance between chiefdoms. Consequently, this detailed multidisciplinary investigation provides a novel tool to reconstruct high resolution chronology of individual mobility with the perspective of studying complex patterns of social and economic interaction in prehistory.

  8. Optimetrics for Precise Navigation

    NASA Technical Reports Server (NTRS)

    Yang, Guangning; Heckler, Gregory; Gramling, Cheryl

    2017-01-01

    Optimetrics for Precise Navigation will be implemented on existing optical communication links. The ranging and Doppler measurements are conducted over communication data frame and clock. The measurement accuracy is two orders of magnitude better than TDRSS. It also has other advantages of: The high optical carrier frequency enables: (1) Immunity from ionosphere and interplanetary Plasma noise floor, which is a performance limitation for RF tracking; and (2) High antenna gain reduces terminal size and volume, enables high precision tracking in Cubesat, and in deep space smallsat. High Optical Pointing Precision provides: (a) spacecraft orientation, (b) Minimal additional hardware to implement Precise Optimetrics over optical comm link; and (c) Continuous optical carrier phase measurement will enable the system presented here to accept future optical frequency standard with much higher clock accuracy.

  9. Search Strategy to Identify Dental Survival Analysis Articles Indexed in MEDLINE.

    PubMed

    Layton, Danielle M; Clarke, Michael

    2016-01-01

    Articles reporting survival outcomes (time-to-event outcomes) in patients over time are challenging to identify in the literature. Research shows the words authors use to describe their dental survival analyses vary, and that allocation of medical subject headings by MEDLINE indexers is inconsistent. Together, this undermines accurate article identification. The present study aims to develop and validate a search strategy to identify dental survival analyses indexed in MEDLINE (Ovid). A gold standard cohort of articles was identified to derive the search terms, and an independent gold standard cohort of articles was identified to test and validate the proposed search strategies. The first cohort included all 6,955 articles published in the 50 dental journals with the highest impact factors in 2008, of which 95 articles were dental survival articles. The second cohort included all 6,514 articles published in the 50 dental journals with the highest impact factors for 2012, of which 148 were dental survival articles. Each cohort was identified by a systematic hand search. Performance parameters of sensitivity, precision, and number needed to read (NNR) for the search strategies were calculated. Sensitive, precise, and optimized search strategies were developed and validated. The performances of the search strategy maximizing sensitivity were 92% sensitivity, 14% precision, and 7.11 NNR; the performances of the strategy maximizing precision were 93% precision, 10% sensitivity, and 1.07 NNR; and the performances of the strategy optimizing the balance between sensitivity and precision were 83% sensitivity, 24% precision, and 4.13 NNR. The methods used to identify search terms were objective, not subjective. The search strategies were validated in an independent group of articles that included different journals and different publication years. Across the three search strategies, dental survival articles can be identified with sensitivity up to 92%, precision up to 93%, and NNR of less than two articles to identify relevant records. This research has highlighted the impact that variation in reporting and indexing has on article identification and has improved researchers' ability to identify dental survival articles.

  10. Renormalization group evolution of the universal theories EFT

    DOE PAGES

    Wells, James D.; Zhang, Zhengkang

    2016-06-21

    The conventional oblique parameters analyses of precision electroweak data can be consistently cast in the modern framework of the Standard Model effective field theory (SMEFT) when restrictions are imposed on the SMEFT parameter space so that it describes universal theories. However, the usefulness of such analyses is challenged by the fact that universal theories at the scale of new physics, where they are matched onto the SMEFT, can flow to nonuniversal theories with renormalization group (RG) evolution down to the electroweak scale, where precision observables are measured. The departure from universal theories at the electroweak scale is not arbitrary, butmore » dictated by the universal parameters at the matching scale. But to define oblique parameters, and more generally universal parameters at the electroweak scale that directly map onto observables, additional prescriptions are needed for the treatment of RG-induced nonuniversal effects. Finally, we perform a RG analysis of the SMEFT description of universal theories, and discuss the impact of RG on simplified, universal-theories-motivated approaches to fitting precision electroweak and Higgs data.« less

  11. Renormalization group evolution of the universal theories EFT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wells, James D.; Zhang, Zhengkang

    The conventional oblique parameters analyses of precision electroweak data can be consistently cast in the modern framework of the Standard Model effective field theory (SMEFT) when restrictions are imposed on the SMEFT parameter space so that it describes universal theories. However, the usefulness of such analyses is challenged by the fact that universal theories at the scale of new physics, where they are matched onto the SMEFT, can flow to nonuniversal theories with renormalization group (RG) evolution down to the electroweak scale, where precision observables are measured. The departure from universal theories at the electroweak scale is not arbitrary, butmore » dictated by the universal parameters at the matching scale. But to define oblique parameters, and more generally universal parameters at the electroweak scale that directly map onto observables, additional prescriptions are needed for the treatment of RG-induced nonuniversal effects. Finally, we perform a RG analysis of the SMEFT description of universal theories, and discuss the impact of RG on simplified, universal-theories-motivated approaches to fitting precision electroweak and Higgs data.« less

  12. Therapeutic patient education in heart failure: do studies provide sufficient information about the educational programme?

    PubMed

    Albano, Maria Grazia; Jourdain, Patrick; De Andrade, Vincent; Domenke, Aukse; Desnos, Michel; d'Ivernois, Jean-François

    2014-05-01

    Therapeutic patient education programmes on heart failure have been widely proposed for many years for heart failure patients, but their efficiency remains questionable, partly because most articles lack a precise programme description, which makes comparative analysis of the studies difficult. To analyse the degree of precision in describing therapeutic patient education programmes in recent randomized controlled trials. Three major recent recommendations on therapeutic patient education in heart failure inspired us to compile a list of 23 relevant items that an 'ideal' description of a therapeutic patient education programme should contain. To discover the extent to which recent studies into therapeutic patient education in heart failure included these items, we analysed 19 randomized controlled trials among 448 articles published in this field from 2005 to 2012. The major elements required to describe a therapeutic patient education programme were present, but some other very important pieces of information were missing in most of the studies we analysed: the patient's educational needs, health literacy, projects, expectations regarding therapeutic patient education and psychosocial status; the educational methodology used; outcomes evaluation; and follow-up strategies. Research into how therapeutic patient education can help heart failure patients will be improved if more precise descriptions of patients, educational methodology and evaluation protocols are given by authors, ideally in a standardized format. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  13. Study on manufacturing method of optical surface with high precision in angle and surface

    NASA Astrophysics Data System (ADS)

    Yu, Xin; Li, Xin; Yu, Ze; Zhao, Bin; Zhang, Xuebin; Sun, Lipeng; Tong, Yi

    2016-10-01

    This paper studied a manufacturing processing of optical surface with high precision in angel and surface. By theoretical analysis of the relationships between the angel precision and surface, the measurement conversion of the technical indicators, optical-cement method application, the optical-cement tooling design, the experiment has been finished successfully, the processing method has been verified, which can be also used in the manufacturing of the optical surface with similar high precision in angle and surface.

  14. Method of high precision interval measurement in pulse laser ranging system

    NASA Astrophysics Data System (ADS)

    Wang, Zhen; Lv, Xin-yuan; Mao, Jin-jin; Liu, Wei; Yang, Dong

    2013-09-01

    Laser ranging is suitable for laser system, for it has the advantage of high measuring precision, fast measuring speed,no cooperative targets and strong resistance to electromagnetic interference,the measuremen of laser ranging is the key paremeters affecting the performance of the whole system.The precision of the pulsed laser ranging system was decided by the precision of the time interval measurement, the principle structure of laser ranging system was introduced, and a method of high precision time interval measurement in pulse laser ranging system was established in this paper.Based on the analysis of the factors which affected the precision of range measure,the pulse rising edges discriminator was adopted to produce timing mark for the start-stop time discrimination,and the TDC-GP2 high precision interval measurement system based on TMS320F2812 DSP was designed to improve the measurement precision.Experimental results indicate that the time interval measurement method in this paper can obtain higher range accuracy. Compared with the traditional time interval measurement system,the method simplifies the system design and reduce the influence of bad weather conditions,furthermore,it satisfies the requirements of low costs and miniaturization.

  15. Precision mechatronics based on high-precision measuring and positioning systems and machines

    NASA Astrophysics Data System (ADS)

    Jäger, Gerd; Manske, Eberhard; Hausotte, Tino; Mastylo, Rostyslav; Dorozhovets, Natalja; Hofmann, Norbert

    2007-06-01

    Precision mechatronics is defined in the paper as the science and engineering of a new generation of high precision systems and machines. Nanomeasuring and nanopositioning engineering represents important fields of precision mechatronics. The nanometrology is described as the today's limit of the precision engineering. The problem, how to design nanopositioning machines with uncertainties as small as possible will be discussed. The integration of several optical and tactile nanoprobes makes the 3D-nanopositioning machine suitable for various tasks, such as long range scanning probe microscopy, mask and wafer inspection, nanotribology, nanoindentation, free form surface measurement as well as measurement of microoptics, precision molds, microgears, ring gauges and small holes.

  16. Classification of LIDAR Data for Generating a High-Precision Roadway Map

    NASA Astrophysics Data System (ADS)

    Jeong, J.; Lee, I.

    2016-06-01

    Generating of a highly precise map grows up with development of autonomous driving vehicles. The highly precise map includes a precision of centimetres level unlike an existing commercial map with the precision of meters level. It is important to understand road environments and make a decision for autonomous driving since a robust localization is one of the critical challenges for the autonomous driving car. The one of source data is from a Lidar because it provides highly dense point cloud data with three dimensional position, intensities and ranges from the sensor to target. In this paper, we focus on how to segment point cloud data from a Lidar on a vehicle and classify objects on the road for the highly precise map. In particular, we propose the combination with a feature descriptor and a classification algorithm in machine learning. Objects can be distinguish by geometrical features based on a surface normal of each point. To achieve correct classification using limited point cloud data sets, a Support Vector Machine algorithm in machine learning are used. Final step is to evaluate accuracies of obtained results by comparing them to reference data The results show sufficient accuracy and it will be utilized to generate a highly precise road map.

  17. New Ca-Tims and La-Icp Analyses of GJ-1, Plesovice, and FC1 Reference Materials

    NASA Astrophysics Data System (ADS)

    Feldman, J. D.; Möller, A.; Walker, J. D.

    2014-12-01

    Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) U-Pb zircon geochronology relies on external reference standards to monitor and correct for different mass fractionation effects and instrument drift. Common zircon reference materials used within the community, including the KU Isotope Geochemistry Laboratory, are GJ-1 (207Pb/206Pb age: 608.53 +/- 0.37Ma; Jackson et al., 2004), Plesovice (337.13 +/- 0.37 Ma; Slama et al., 2008), and FC-1 (1099.0 +/-0.6 Ma; Paces and Miller, 1993). The age distribution of zircon reference material varies slightly from sample fraction to sample fraction, and the published results for GJ-1 are slightly discordant. As a result, using the published data for the distributed standard splits can lead to small systematic variations when comparing datasets from different labs, and more high precision data are needed to evaluate potential inhomogeneity of sample splits used in different laboratories. Here we characterize these reference materials with cathodoluminescence, LA-ICP-MS traverses across grains, and high precision CA-TIMS to better constrain the ages and assess zoning of these standards, and present the data for comparison with other laboratories. Reducing systematic error by dating our own reference material lends confidence to our analyses and allows for inter-laboratory age reproducibility of unknowns. Additionally, the reduction in propagated uncertainties (especially in GJ-1, for which both the red and yellow variety will be analyzed) will be used to improve long-term reproducibility, comparisons between samples of similar age, detrital populations and composite pluton zircons. Jackson, S.E., et al., 2004, Chemical Geology, v. 211, p. 47-69. Paces, J.B. & Miller, J.D., 1993, Journal of Geophysical Research, v. 80, p. 13997-14013. Slama, J., et al., 2008, Chemical Geology, v. 249. p. 1-35.

  18. Measurement of theta13 in the double Chooz experiment

    NASA Astrophysics Data System (ADS)

    Yang, Guang

    Neutrino oscillation has been established for over a decade. The mixing angle theta13 is one of the parameters that is most difficult to measure due to its small value. Currently, reactor antineutrino experiments provide the best knowledge of theta13, using the electron antineutrino disappearance phenomenon. The most compelling advantage is the high intensity of the reactor antineutrino rate. The Double Chooz experiment, located on the border of France and Belgium, is such an experiment, which aims to have one of the most precise theta 13 measurements in the world. Double Chooz has a single-detector phase and a double-detector phase. For the single-detector phase, the limit of the theta 13 sensitivity comes mostly from the reactor flux. However, the uncertainty on the reactor flux is highly suppressed in the double-detector phase. Oscillation analyses for the two phases have different strategies but need similar inputs, including background estimation, detection systematics evaluation, energy reconstruction and so on. The Double Chooz detectors are filled with gadolinium (Gd) doped liquid scintillator and use the inverse beta decay (IBD) signal so that for each phase, there are two independent theta13 measurements based on different neutron capturer (Gd or hydrogen). Multiple oscillation analyses are performed to provide the best 13 results. In addition to the 13 measurement, Double Chooz is also an excellent \\playground" to do diverse physics research. For example, a 252Cf calibration source study has been done to understand the spontaneous decay of this radioactive source. Further, Double Chooz also has the ability to do a sterile neutrino search in a certain mass region. Moreover, some new physics ideas can be tested in Double Chooz. In this thesis, the detailed methods to provide precise theta13 measurement will be described and the other physics topics will be introduced.

  19. High-precision 87Sr/86Sr analyses in wines and their use as a geological fingerprint for tracing geographic provenance.

    PubMed

    Marchionni, Sara; Braschi, Eleonora; Tommasini, Simone; Bollati, Andrea; Cifelli, Francesca; Mulinacci, Nadia; Mattei, Massimo; Conticelli, Sandro

    2013-07-17

    The radiogenic isotopic compositions of inorganic heavy elements such as Sr, Nd, and Pb of the food chain may constitute a reliable geographic fingerprint, their isotopic ratios being inherited by the geological substratum of the territory of production. The Sr isotope composition of geomaterials (i.e., rocks and soils) is largely variable, and it depends upon the age of the rocks and their nature (e.g., genesis, composition). In this study we developed a high-precision analytical procedure for determining Sr isotopes in wines at comparable uncertainty levels of geological data. With the aim of verifying the possibility of using Sr isotope in wine as a reliable tracer for geographic provenance, we performed Sr isotope analyses of 45 bottled wines from four different geographical localities of the Italian peninsula. Their Sr isotope composition has been compared with that of rocks from the substrata (i.e., rocks) of their vineyards. In addition wines from the same winemaker but different vintage years have been analyzed to verify the constancy with time of the (87)Sr/(86)Sr. Sr isotope compositions have been determined by solid source thermal ionization mass spectrometry following purification of Sr in a clean laboratory. (87)Sr/(86)Sr of the analyzed wines is correlated with the isotopic values of the geological substratum of the vineyards, showing little or no variation within the same vineyard and among different vintages. Large (87)Sr/(86)Sr variation is observed among wines from the different geographical areas, reinforcing the link with the geological substratum of the production territory. This makes Sr isotopes a robust geochemical tool for tracing the geographic authenticity and provenance of wine.

  20. Nanoplasmonic biochips for rapid label-free detection of imidacloprid pesticides with a smartphone.

    PubMed

    Lee, Kuang-Li; You, Meng-Lin; Tsai, Chia-Hsin; Lin, En-Hung; Hsieh, Shu-Yi; Ho, Ming-Hsun; Hsu, Ju-Chun; Wei, Pei-Kuen

    2016-01-15

    The widespread and intensive use of neonicotinoid insecticides induces negative cascading effects on ecosystems. It is desirable to develop a portable sensitive sensing platform for on-site screening of high-risk pesticides. We combined an indirect competitive immunoassay, highly sensitive surface plasmon resonance (SPR) biochip and a simple portable imaging setup for label-free detection of imidacloprid pesticides. The SPR biochip consists of several capped nanoslit arrays with different periods which form a spectral image on the chip. The qualitative and semiquantitative analyses of pesticides can be directly observed from the spot shift on the chip. The precise semiquantitative analyses can be further completed by using image processing in a smartphone. We demonstrate simultaneous detection of four different concentrations of imidacloprid pesticides. The visual detection limit is about 1ppb, which is well below the maximum residue concentration permitted by law (20ppb). Compared to the one-step strip assay, the proposed chip is capable of performing semiquantitative analyses and multiple detection. Compared to the enzyme-linked immunosorbent assay, our method is label-free and requires simple washing steps and short reaction time. In addition, the label-free chip has a comparable sensitivity but wider working range than those labeling techniques. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Uncertainty of Videogrammetric Techniques used for Aerodynamic Testing

    NASA Technical Reports Server (NTRS)

    Burner, A. W.; Liu, Tianshu; DeLoach, Richard

    2002-01-01

    The uncertainty of videogrammetric techniques used for the measurement of static aeroelastic wind tunnel model deformation and wind tunnel model pitch angle is discussed. Sensitivity analyses and geometrical considerations of uncertainty are augmented by analyses of experimental data in which videogrammetric angle measurements were taken simultaneously with precision servo accelerometers corrected for dynamics. An analysis of variance (ANOVA) to examine error dependence on angle of attack, sensor used (inertial or optical). and on tunnel state variables such as Mach number is presented. Experimental comparisons with a high-accuracy indexing table are presented. Small roll angles are found to introduce a zero-shift in the measured angles. It is shown experimentally that. provided the proper constraints necessary for a solution are met, a single- camera solution can he comparable to a 2-camera intersection result. The relative immunity of optical techniques to dynamics is illustrated.

  2. TRACE ELEMENT ANALYSES OF URANIUM MATERIALS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beals, D; Charles Shick, C

    The Savannah River National Laboratory (SRNL) has developed an analytical method to measure many trace elements in a variety of uranium materials at the high part-per-billion (ppb) to low part-per-million (ppm) levels using matrix removal and analysis by quadrapole ICP-MS. Over 35 elements were measured in uranium oxides, acetate, ore and metal. Replicate analyses of samples did provide precise results however none of the materials was certified for trace element content thus no measure of the accuracy could be made. The DOE New Brunswick Laboratory (NBL) does provide a Certified Reference Material (CRM) that has provisional values for a seriesmore » of trace elements. The NBL CRM were purchased and analyzed to determine the accuracy of the method for the analysis of trace elements in uranium oxide. These results are presented and discussed in the following paper.« less

  3. RegPrecise 3.0--a resource for genome-scale exploration of transcriptional regulation in bacteria.

    PubMed

    Novichkov, Pavel S; Kazakov, Alexey E; Ravcheev, Dmitry A; Leyn, Semen A; Kovaleva, Galina Y; Sutormin, Roman A; Kazanov, Marat D; Riehl, William; Arkin, Adam P; Dubchak, Inna; Rodionov, Dmitry A

    2013-11-01

    Genome-scale prediction of gene regulation and reconstruction of transcriptional regulatory networks in prokaryotes is one of the critical tasks of modern genomics. Bacteria from different taxonomic groups, whose lifestyles and natural environments are substantially different, possess highly diverged transcriptional regulatory networks. The comparative genomics approaches are useful for in silico reconstruction of bacterial regulons and networks operated by both transcription factors (TFs) and RNA regulatory elements (riboswitches). RegPrecise (http://regprecise.lbl.gov) is a web resource for collection, visualization and analysis of transcriptional regulons reconstructed by comparative genomics. We significantly expanded a reference collection of manually curated regulons we introduced earlier. RegPrecise 3.0 provides access to inferred regulatory interactions organized by phylogenetic, structural and functional properties. Taxonomy-specific collections include 781 TF regulogs inferred in more than 160 genomes representing 14 taxonomic groups of Bacteria. TF-specific collections include regulogs for a selected subset of 40 TFs reconstructed across more than 30 taxonomic lineages. Novel collections of regulons operated by RNA regulatory elements (riboswitches) include near 400 regulogs inferred in 24 bacterial lineages. RegPrecise 3.0 provides four classifications of the reference regulons implemented as controlled vocabularies: 55 TF protein families; 43 RNA motif families; ~150 biological processes or metabolic pathways; and ~200 effectors or environmental signals. Genome-wide visualization of regulatory networks and metabolic pathways covered by the reference regulons are available for all studied genomes. A separate section of RegPrecise 3.0 contains draft regulatory networks in 640 genomes obtained by an conservative propagation of the reference regulons to closely related genomes. RegPrecise 3.0 gives access to the transcriptional regulons reconstructed in bacterial genomes. Analytical capabilities include exploration of: regulon content, structure and function; TF binding site motifs; conservation and variations in genome-wide regulatory networks across all taxonomic groups of Bacteria. RegPrecise 3.0 was selected as a core resource on transcriptional regulation of the Department of Energy Systems Biology Knowledgebase, an emerging software and data environment designed to enable researchers to collaboratively generate, test and share new hypotheses about gene and protein functions, perform large-scale analyses, and model interactions in microbes, plants, and their communities.

  4. Quantitative High-Resolution Genomic Analysis of Single Cancer Cells

    PubMed Central

    Hannemann, Juliane; Meyer-Staeckling, Sönke; Kemming, Dirk; Alpers, Iris; Joosse, Simon A.; Pospisil, Heike; Kurtz, Stefan; Görndt, Jennifer; Püschel, Klaus; Riethdorf, Sabine; Pantel, Klaus; Brandt, Burkhard

    2011-01-01

    During cancer progression, specific genomic aberrations arise that can determine the scope of the disease and can be used as predictive or prognostic markers. The detection of specific gene amplifications or deletions in single blood-borne or disseminated tumour cells that may give rise to the development of metastases is of great clinical interest but technically challenging. In this study, we present a method for quantitative high-resolution genomic analysis of single cells. Cells were isolated under permanent microscopic control followed by high-fidelity whole genome amplification and subsequent analyses by fine tiling array-CGH and qPCR. The assay was applied to single breast cancer cells to analyze the chromosomal region centred by the therapeutical relevant EGFR gene. This method allows precise quantitative analysis of copy number variations in single cell diagnostics. PMID:22140428

  5. Combining novel monitoring tools and precision application technologies for integrated high-tech crop protection in the future (a discussion document).

    PubMed

    Zijlstra, Carolien; Lund, Ivar; Justesen, Annemarie F; Nicolaisen, Mogens; Jensen, Peter Kryger; Bianciotto, Valeria; Posta, Katalin; Balestrini, Raffaella; Przetakiewicz, Anna; Czembor, Elzbieta; van de Zande, Jan

    2011-06-01

    The possibility of combining novel monitoring techniques and precision spraying for crop protection in the future is discussed. A generic model for an innovative crop protection system has been used as a framework. This system will be able to monitor the entire cropping system and identify the presence of relevant pests, diseases and weeds online, and will be location specific. The system will offer prevention, monitoring, interpretation and action which will be performed in a continuous way. The monitoring is divided into several parts. Planting material, seeds and soil should be monitored for prevention purposes before the growing period to avoid, for example, the introduction of disease into the field and to ensure optimal growth conditions. Data from previous growing seasons, such as the location of weeds and previous diseases, should also be included. During the growing season, the crop will be monitored at a macroscale level until a location that needs special attention is identified. If relevant, this area will be monitored more intensively at a microscale level. A decision engine will analyse the data and offer advice on how to control the detected diseases, pests and weeds, using precision spray techniques or alternative measures. The goal is to provide tools that are able to produce high-quality products with the minimal use of conventional plant protection products. This review describes the technologies that can be used or that need further development in order to achieve this goal. Copyright © 2011 Society of Chemical Industry.

  6. Physics with e{sup +}e{sup -} Linear Colliders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barklow, Timothy L

    2003-05-05

    We describe the physics potential of e{sup +}e{sup -} linear colliders in this report. These machines are planned to operate in the first phase at a center-of-mass energy of 500 GeV, before being scaled up to about 1 TeV. In the second phase of the operation, a final energy of about 2 TeV is expected. The machines will allow us to perform precision tests of the heavy particles in the Standard Model, the top quark and the electroweak bosons. They are ideal facilities for exploring the properties of Higgs particles, in particular in the intermediate mass range. New vector bosonsmore » and novel matter particles in extended gauge theories can be searched for and studied thoroughly. The machines provide unique opportunities for the discovery of particles in supersymmetric extensions of the Standard Model, the spectrum of Higgs particles, the supersymmetric partners of the electroweak gauge and Higgs bosons, and of the matter particles. High precision analyses of their properties and interactions will allow for extrapolations to energy scales close to the Planck scale where gravity becomes significant. In alternative scenarios, like compositeness models, novel matter particles and interactions can be discovered and investigated in the energy range above the existing colliders up to the TeV scale. Whatever scenario is realized in Nature, the discovery potential of e{sup +}e{sup -} linear colliders and the high-precision with which the properties of particles and their interactions can be analyzed, define an exciting physics programme complementary to hadron machines.« less

  7. The theory precision analyse of RFM localization of satellite remote sensing imagery

    NASA Astrophysics Data System (ADS)

    Zhang, Jianqing; Xv, Biao

    2009-11-01

    The tradition method of detecting precision of Rational Function Model(RFM) is to make use of a great deal check points, and it calculates mean square error through comparing calculational coordinate with known coordinate. This method is from theory of probability, through a large number of samples to statistic estimate value of mean square error, we can think its estimate value approaches in its true when samples are well enough. This paper is from angle of survey adjustment, take law of propagation of error as the theory basis, and it calculates theory precision of RFM localization. Then take the SPOT5 three array imagery as experiment data, and the result of traditional method and narrated method in the paper are compared, while has confirmed tradition method feasible, and answered its theory precision question from the angle of survey adjustment.

  8. Precision of DVC approaches for strain analysis in bone imaged with μCT at different dimensional levels.

    NASA Astrophysics Data System (ADS)

    Dall'Ara, Enrico; Peña-Fernández, Marta; Palanca, Marco; Giorgi, Mario; Cristofolini, Luca; Tozzi, Gianluca

    2017-11-01

    Accurate measurement of local strain in heterogeneous and anisotropic bone tissue is fundamental to understand the pathophysiology of musculoskeletal diseases, to evaluate the effect of interventions from preclinical studies, and to optimize the design and delivery of biomaterials. Digital volume correlation (DVC) can be used to measure the three-dimensional displacement and strain fields from micro-Computed Tomography (µCT) images of loaded specimens. However, this approach is affected by the quality of the input images, by the morphology and density of the tissue under investigation, by the correlation scheme, and by the operational parameters used in the computation. Therefore, for each application the precision of the method should be evaluated. In this paper we present the results collected from datasets analyzed in previous studies as well as new data from a recent experimental campaign for characterizing the relationship between the precision of two different DVC approaches and the spatial resolution of the outputs. Different bone structures scanned with laboratory source µCT or Synchrotron light µCT (SRµCT) were processed in zero-strain tests to evaluate the precision of the DVC methods as a function of the subvolume size that ranged from 8 to 2500 micrometers. The results confirmed that for every microstructure the precision of DVC improves for larger subvolume size, following power laws. However, for the first time large differences in the precision of both local and global DVC approaches have been highlighted when SRµCT or in vivo µCT images were used instead of conventional ex vivo µCT. These findings suggest that in situ mechanical testing protocols applied in SRµCT facilities should be optimized in order to allow DVC analyses of localized strain measurements. Moreover, for in vivo µCT applications DVC analyses should be performed only with relatively course spatial resolution for achieving a reasonable precision of the method. In conclusion, we have extensively shown that the precision of both tested DVC approaches is affected by different bone structures, different input image resolution and different subvolume sizes. Before each specific application DVC users should always apply a similar approach to find the best compromise between precision and spatial resolution of the measurements.

  9. Communication: Analysing kinetic transition networks for rare events.

    PubMed

    Stevenson, Jacob D; Wales, David J

    2014-07-28

    The graph transformation approach is a recently proposed method for computing mean first passage times, rates, and committor probabilities for kinetic transition networks. Here we compare the performance to existing linear algebra methods, focusing on large, sparse networks. We show that graph transformation provides a much more robust framework, succeeding when numerical precision issues cause the other methods to fail completely. These are precisely the situations that correspond to rare event dynamics for which the graph transformation was introduced.

  10. STOP using just GO: a multi-ontology hypothesis generation tool for high throughput experimentation

    PubMed Central

    2013-01-01

    Background Gene Ontology (GO) enrichment analysis remains one of the most common methods for hypothesis generation from high throughput datasets. However, we believe that researchers strive to test other hypotheses that fall outside of GO. Here, we developed and evaluated a tool for hypothesis generation from gene or protein lists using ontological concepts present in manually curated text that describes those genes and proteins. Results As a consequence we have developed the method Statistical Tracking of Ontological Phrases (STOP) that expands the realm of testable hypotheses in gene set enrichment analyses by integrating automated annotations of genes to terms from over 200 biomedical ontologies. While not as precise as manually curated terms, we find that the additional enriched concepts have value when coupled with traditional enrichment analyses using curated terms. Conclusion Multiple ontologies have been developed for gene and protein annotation, by using a dataset of both manually curated GO terms and automatically recognized concepts from curated text we can expand the realm of hypotheses that can be discovered. The web application STOP is available at http://mooneygroup.org/stop/. PMID:23409969

  11. Using Public Data for Comparative Proteome Analysis in Precision Medicine Programs.

    PubMed

    Hughes, Christopher S; Morin, Gregg B

    2018-03-01

    Maximizing the clinical utility of information obtained in longitudinal precision medicine programs would benefit from robust comparative analyses to known information to assess biological features of patient material toward identifying the underlying features driving their disease phenotype. Herein, the potential for utilizing publically deposited mass-spectrometry-based proteomics data to perform inter-study comparisons of cell-line or tumor-tissue materials is investigated. To investigate the robustness of comparison between MS-based proteomics studies carried out with different methodologies, deposited data representative of label-free (MS1) and isobaric tagging (MS2 and MS3 quantification) are utilized. In-depth quantitative proteomics data acquired from analysis of ovarian cancer cell lines revealed the robust recapitulation of observable gene expression dynamics between individual studies carried out using significantly different methodologies. The observed signatures enable robust inter-study clustering of cell line samples. In addition, the ability to classify and cluster tumor samples based on observed gene expression trends when using a single patient sample is established. With this analysis, relevant gene expression dynamics are obtained from a single patient tumor, in the context of a precision medicine analysis, by leveraging a large cohort of repository data as a comparator. Together, these data establish the potential for state-of-the-art MS-based proteomics data to serve as resources for robust comparative analyses in precision medicine applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. The neglected tool in the Bayesian ecologist's shed: a case study testing informative priors' effect on model accuracy

    PubMed Central

    Morris, William K; Vesk, Peter A; McCarthy, Michael A; Bunyavejchewin, Sarayudh; Baker, Patrick J

    2015-01-01

    Despite benefits for precision, ecologists rarely use informative priors. One reason that ecologists may prefer vague priors is the perception that informative priors reduce accuracy. To date, no ecological study has empirically evaluated data-derived informative priors' effects on precision and accuracy. To determine the impacts of priors, we evaluated mortality models for tree species using data from a forest dynamics plot in Thailand. Half the models used vague priors, and the remaining half had informative priors. We found precision was greater when using informative priors, but effects on accuracy were more variable. In some cases, prior information improved accuracy, while in others, it was reduced. On average, models with informative priors were no more or less accurate than models without. Our analyses provide a detailed case study on the simultaneous effect of prior information on precision and accuracy and demonstrate that when priors are specified appropriately, they lead to greater precision without systematically reducing model accuracy. PMID:25628867

  13. The neglected tool in the Bayesian ecologist's shed: a case study testing informative priors' effect on model accuracy.

    PubMed

    Morris, William K; Vesk, Peter A; McCarthy, Michael A; Bunyavejchewin, Sarayudh; Baker, Patrick J

    2015-01-01

    Despite benefits for precision, ecologists rarely use informative priors. One reason that ecologists may prefer vague priors is the perception that informative priors reduce accuracy. To date, no ecological study has empirically evaluated data-derived informative priors' effects on precision and accuracy. To determine the impacts of priors, we evaluated mortality models for tree species using data from a forest dynamics plot in Thailand. Half the models used vague priors, and the remaining half had informative priors. We found precision was greater when using informative priors, but effects on accuracy were more variable. In some cases, prior information improved accuracy, while in others, it was reduced. On average, models with informative priors were no more or less accurate than models without. Our analyses provide a detailed case study on the simultaneous effect of prior information on precision and accuracy and demonstrate that when priors are specified appropriately, they lead to greater precision without systematically reducing model accuracy.

  14. Neutron activation analyses and half-life measurements at the usgs triga reactor

    NASA Astrophysics Data System (ADS)

    Larson, Robert E.

    Neutron activation of materials followed by gamma spectroscopy using high-purity germanium detectors is an effective method for making measurements of nuclear beta decay half-lives and for detecting trace amounts of elements present in materials. This research explores applications of neutron activation analysis (NAA) in two parts. Part 1. High Precision Methods for Measuring Decay Half-Lives, Chapters 1 through 8 Part one develops research methods and data analysis techniques for making high precision measurements of nuclear beta decay half-lives. The change in the electron capture half-life of 51Cr in pure chromium versus chromium mixed in a gold lattice structure is explored, and the 97Ru electron capture decay half-life are compared for ruthenium in a pure crystal versus ruthenium in a rutile oxide state, RuO2. In addition, the beta-minus decay half-life of 71mZn is measured and compared with new high precision findings. Density Functional Theory is used to explain the measured magnitude of changes in electron capture half-life from changes in the surrounding lattice electron configuration. Part 2. Debris Collection Nuclear Diagnostic at the National Ignition Facility, Chapters 9 through 11 Part two explores the design and development of a solid debris collector for use as a diagnostic tool at the National Ignition Facility (NIF). NAA measurements are performed on NIF post-shot debris collected on witness plates in the NIF chamber. In this application NAA is used to detect and quantify the amount of trace amounts of gold from the hohlraum and germanium from the pellet present in the debris collected after a NIF shot. The design of a solid debris collector based on material x-ray ablation properties is given, and calculations are done to predict performance and results for the collection and measurements of trace amounts of gold and germanium from dissociated hohlraum debris.

  15. Automatic identification of high impact articles in PubMed to support clinical decision making.

    PubMed

    Bian, Jiantao; Morid, Mohammad Amin; Jonnalagadda, Siddhartha; Luo, Gang; Del Fiol, Guilherme

    2017-09-01

    The practice of evidence-based medicine involves integrating the latest best available evidence into patient care decisions. Yet, critical barriers exist for clinicians' retrieval of evidence that is relevant for a particular patient from primary sources such as randomized controlled trials and meta-analyses. To help address those barriers, we investigated machine learning algorithms that find clinical studies with high clinical impact from PubMed®. Our machine learning algorithms use a variety of features including bibliometric features (e.g., citation count), social media attention, journal impact factors, and citation metadata. The algorithms were developed and evaluated with a gold standard composed of 502 high impact clinical studies that are referenced in 11 clinical evidence-based guidelines on the treatment of various diseases. We tested the following hypotheses: (1) our high impact classifier outperforms a state-of-the-art classifier based on citation metadata and citation terms, and PubMed's® relevance sort algorithm; and (2) the performance of our high impact classifier does not decrease significantly after removing proprietary features such as citation count. The mean top 20 precision of our high impact classifier was 34% versus 11% for the state-of-the-art classifier and 4% for PubMed's® relevance sort (p=0.009); and the performance of our high impact classifier did not decrease significantly after removing proprietary features (mean top 20 precision=34% vs. 36%; p=0.085). The high impact classifier, using features such as bibliometrics, social media attention and MEDLINE® metadata, outperformed previous approaches and is a promising alternative to identifying high impact studies for clinical decision support. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. High precision spectroscopy and imaging in THz frequency range

    NASA Astrophysics Data System (ADS)

    Vaks, Vladimir L.

    2014-03-01

    Application of microwave methods for development of the THz frequency range has resulted in elaboration of high precision THz spectrometers based on nonstationary effects. The spectrometers characteristics (spectral resolution and sensitivity) meet the requirements for high precision analysis. The gas analyzers, based on the high precision spectrometers, have been successfully applied for analytical investigations of gas impurities in high pure substances. These investigations can be carried out both in absorption cell and in reactor. The devices can be used for ecological monitoring, detecting the components of chemical weapons and explosive in the atmosphere. The great field of THz investigations is the medicine application. Using the THz spectrometers developed one can detect markers for some diseases in exhaled air.

  17. Evaluation of a High Throughput Starch Analysis Optimised for Wood

    PubMed Central

    Bellasio, Chandra; Fini, Alessio; Ferrini, Francesco

    2014-01-01

    Starch is the most important long-term reserve in trees, and the analysis of starch is therefore useful source of physiological information. Currently published protocols for wood starch analysis impose several limitations, such as long procedures and a neutralization step. The high-throughput standard protocols for starch analysis in food and feed represent a valuable alternative. However, they have not been optimised or tested with woody samples. These have particular chemical and structural characteristics, including the presence of interfering secondary metabolites, low reactivity of starch, and low starch content. In this study, a standard method for starch analysis used for food and feed (AOAC standard method 996.11) was optimised to improve precision and accuracy for the analysis of starch in wood. Key modifications were introduced in the digestion conditions and in the glucose assay. The optimised protocol was then evaluated through 430 starch analyses of standards at known starch content, matrix polysaccharides, and wood collected from three organs (roots, twigs, mature wood) of four species (coniferous and flowering plants). The optimised protocol proved to be remarkably precise and accurate (3%), suitable for a high throughput routine analysis (35 samples a day) of specimens with a starch content between 40 mg and 21 µg. Samples may include lignified organs of coniferous and flowering plants and non-lignified organs, such as leaves, fruits and rhizomes. PMID:24523863

  18. High-Precision Studies of Compact Variable Stars

    NASA Astrophysics Data System (ADS)

    Bloemen, Steven

    2014-10-01

    This book, which is a reworked and updated version of Steven Bloemen's original PhD thesis, reports on several high-precision studies of compact variable stars. Its strength lies in the large variety of observational, theoretical and instrumentation techniques that are presented and used and paves the way towards new and detailed asteroseismic applications of single and binary subdwarf stars. Close binary stars are studied using high cadence spectroscopic datasets collected with state of the art electron multiplying CCDs and analysed using Doppler tomography visualization techniques. The work touches upon instrumentation, presenting the calibration of a new fast, multi-colour camera installed at the Mercator Telescope on La Palma. The thesis also includes theoretical work on the computation of the temperature range in which stellar oscillations can be driven in subdwarf B-stars. Finally, the highlight of the thesis is the measurement of velocities of stars using only photometric data from NASA's Kepler satellite. Doppler beaming causes stars to appear slightly brighter when they move towards us in their orbits, and this subtle effect can be seen in Kepler's brightness measurements. The thesis presents the first validation of such velocity measurements using independent spectroscopic measurements. Since the detection and validation of this Doppler beaming effect, it has been used in tens of studies to detect and characterize binary star systems, which are key calibrators in stellar astronomy.

  19. A study of the Ljubljansko polje aquifer system behaviour and its simulations using multi-tools

    NASA Astrophysics Data System (ADS)

    Vrzel, J.; Ludwig, R.; Vižintin, G.; Ogrinc, N.

    2017-12-01

    Our study of comprehensive hydrological system behaviour, where understanding of the interfaces between groundwater and surface water is crucial, includes geochemical analyses for identification of groundwater sources (δ18O and δ2H) and estimation of groundwater mean residence time (3H, 3H/3He). The results of the geochemical analyses were compared with long-term data on precipitation, river discharge, hydraulic head, and groundwater pumping rate. The study is representative for the Ljubljansko polje in Slovenia, which belongs to the Sava River basin. The results show that the Sava River water and local precipitation are the main groundwater sources in this alluvial aquifer with high system sensitivity to both sources, which ranged from a day to a month. For a simulation of such a sensitive system different tools describing water cycle were coupled: simulation of the percolation of the local precipitation was done with the WaSiM-ETH, while the river and groundwater dynamics were performed with the MIKE 11 and FEFLOW, respectively. The WaSiM-ETH and MIKE 11 results were later employed as the upper boundary conditions in the FEFLOW model. The models have high spatial and daily temporal resolutions. A good agreement between geochemical data and modeling results was observed with two main highlights: (1) groundwater sources are in accordance with hydraulic heads and the Sava River water level/precipitation; (2) responsiveness of the aquifer on the high water level in the Sava River and on precipitation events is also synchronic with the mean groundwater residence time. The study shows that links between MIKE 11-FEFLOW-WaSiM-ETH tools is a great solution for a precise groundwater flow simulation, since all the tools are compatible and at the moment there is no routine approach for a precise parallel simulation of groundwater and surface water dynamics. The Project was financially supported by the the EU 7th Research Project - GLOBAQUA.

  20. Advances in laser ablation MC-ICPMS isotopic analysis of rock materials

    NASA Astrophysics Data System (ADS)

    Young, E. D.

    2007-12-01

    Laser ablation multiple-collector inductively coupled plasma-source mass spectrometry (LA-MC-ICPMS) is a rapid method for obtaining high-precision isotope ratio measurements in geological samples. The method has been used with success for measuring isotope ratios of numerous elements, including Pb, Hf, Mg, Si, and Fe in terrestrial and extraterrestrial samples. It fills the gap between the highest precision obtainable with acid digestion together with MC-ICPMS and thermal ionization mass spectrometry (TIMS) and the maximum spatial resolution afforded by secondary ion mass spectrometry (SIMS). Matrix effects have been shown to be negligible for Pb isotopic analysis by LA-MC-ICPMS (Simon et al., 2007). Glass standards NBS 610, 612, and 614 have Pb/matrix ratios spanning two orders of magnitude. Our sample-standard bracketing laser ablation technique gives accurate and precise 208Pb/206Pb and 207Pb/206Pb for these glasses. The accuracy is superior to that obtained when using Tl to correct for mass fractionation. Accuracy and precision (± 0.2 ‰) for Pb in feldspars is comparable to that for double-spike TIMS. Data like these have been used to distinguish distinct sources of magmas in the Long Valley silicic magma system. LA-MC-ICPMS analyses of Mg isotope ratios in calcium-aluminum-rich inclusions (CAIs) from carbonaceous chondrite meteorites have revealed a wealth of new information about the history of these objects. A byproduct of this work has been recognition of the importance of different mass fractionation laws among three isotopes of a given element. Kinetic and equilibrium processes define distinct fractionation laws. Reservoir effects can further modify these laws. The result is that the linear coefficient β that relates the logarithms of the ratios n2/n1 and n3/n1 (ni refers to the number of atoms of isotope i) of isotopes with masses m3 > m2 > m1 is not unique. Rather, it is process dependent. In the case of Mg, this coefficient ranges from 0.521 for single-step equilibrium processes to 0.510 or even lower for kinetic processes. Rayleigh fractionation involving a kinetic process with a single-step β of 0.510 produces an effective β of 0.512. Such differences in fractionation laws can be crucial for determining excesses or deficits in isotopes relative to mass fractionation. Contrary to some assertions, Si isotope ratios can be measured with high accuracy and precision using 193 nm excimer lasers with nanosecond pulse widths (Shahar and Young, 2007). Silicon isotope ratios in CAIs measured by 193 nm LA-MC-ICPMS have been combined with Mg isotope ratios to constrain the astrophysical environments in which these oldest solar system materials formed. Accuracy of the measurements was determined using gravimetric standards of various matrix compositions. The results establish that matrix effects for Si are below detection at the ± 0.2 ‰ precision of the laser ablation technique. High mass resolving power (m/Δ m ~ 9000) is necessary to obtain accurate Si isotope ratios by laser ablation. High-precision LA-MC-ICPMS measurements of 176Hf/177Hf in zircons can be obtained by normalizing to 179Hf/177Hf assuming an exponential fractionation law and no mass-dependent Hf, Lu, or Yb stable isotope fractionation. With corrections for interfering 176Lu and 176Yb precision for this method can be on the order of 0.3 epsilon (0.03 ‰). The approach has been used to infer the existence of continental crust on Earth 4.4 billion years before present (Harrison et al., 2005).

  1. Reliability of the Lactate Scout point-of-care instrument for the determination of blood L-lactate concentration in sheep.

    PubMed

    Kaynar, Ozgur; Karapinar, Tolga; Hayirli, Armagan; Baydar, Ersoy

    2015-12-01

    Data on accuracy and precision of the Lactate Scout point-of-care (POC) analyzer in ovine medicine are lacking. The purpose of the study was to assess the reliability of the Lactate Scout in sheep. Fifty-seven sheep at varying ages with various diseases were included. Blood lactate concentration in samples collected from the jugular vein was measured immediately on the Lactate Scout. Plasma L-lactate concentration was measured by the Cobas autoanalyzer as the reference method. Data were subjected to Student's t-test, Passing-Bablok regression, and Bland-Altman plot analyses for comparison and assessment of accuracy, precision, and reliability. Plasma l-lactate concentration was consistently lower than blood L-lactate concentration (3.06 ± 0.24 vs 3.3 ± 0.3 mmol/L, P < .0001). There was a positive correlation between plasma and blood L-lactate concentrations (r = .98, P < .0001). The Lactate Scout had 99% accuracy and 98% precision with the reference method. Blood (Y) and plasma (X) L-lactate concentrations were fitted to Y = 0.28 + 1.00 · X, with a residual standard deviation of 0.31 and a negligible deviation from the identity line (P = .93). The bias was fitted to Y = 0.10 + 0.05 · X, with Sy.x of 0.44 (P < .07). The Lactate Scout has high accuracy and precision, with a negligible bias. It is a reliable POC analyzer to assess L-lactate concentration in ovine medicine. © 2015 American Society for Veterinary Clinical Pathology.

  2. Sampling animal sign in heterogeneous environments: how much is enough?

    USGS Publications Warehouse

    Holbrook, Joseph D.; Arkle, Robert S.; Rachlow, Janet L.; Vierling, Kerri T.; Pilliod, David S.

    2015-01-01

    Animal ecologists often use animal sign as a surrogate for direct observation of organisms, especially when species are secretive or difficult to observe. Spatial heterogeneity in arid environments makes it challenging to consistently detect and precisely characterize animal sign, which can bias estimates of animal abundance or habitat use. Piute ground squirrels (Urocitellus mollis) and Owyhee harvester ants (Pogonomyrmex salinus) live in arid environments and are fossorial, which can make them difficult to observe directly. Their relative abundance can be assessed using sign (i.e., burrows and nests). We implemented an over-sampling framework (i.e., recorded an excessive amount of information) with two observers to 1) identify a sampling intensity that balanced precision with our resource constraints, and 2) assess classification and detection of squirrel burrows and ant nests across vegetation conditions. We sampled 20 1-ha plots for ground squirrel burrows and ant nests using six 4 m × 100 m belt transects. Analyses of precision and sampling effort indicated that three belt transects covering 1200 m2 per ha provided sufficient precision, while minimizing effort. Regardless of vegetation conditions, counts by two observers were strongly correlated for ground squirrel burrows (r = 0.99, P < 0.001, df = 18; slope = 0.92) and harvester ant nests (r = 0.99, P < 0.001, df = 18; slope = 1.01) indicating observer consistency and perhaps high detection probability. These findings illustrate an approach for evaluating sampling designs in many ecological contexts.

  3. Precision measurement of electric organ discharge timing from freely moving weakly electric fish.

    PubMed

    Jun, James J; Longtin, André; Maler, Leonard

    2012-04-01

    Physiological measurements from an unrestrained, untethered, and freely moving animal permit analyses of neural states correlated to naturalistic behaviors of interest. Precise and reliable remote measurements remain technically challenging due to animal movement, which perturbs the relative geometries between the animal and sensors. Pulse-type electric fish generate a train of discrete and stereotyped electric organ discharges (EOD) to sense their surroundings actively, and rapid modulation of the discharge rate occurs while free swimming in Gymnotus sp. The modulation of EOD rates is a useful indicator of the fish's central state such as resting, alertness, and learning associated with exploration. However, the EOD pulse waveforms remotely observed at a pair of dipole electrodes continuously vary as the fish swims relative to the electrodes, which biases the judgment of the actual pulse timing. To measure the EOD pulse timing more accurately, reliably, and noninvasively from a free-swimming fish, we propose a novel method based on the principles of waveform reshaping and spatial averaging. Our method is implemented using envelope extraction and multichannel summation, which is more precise and reliable compared with other widely used threshold- or peak-based methods according to the tests performed under various source-detector geometries. Using the same method, we constructed a real-time electronic pulse detector performing an additional online pulse discrimination routine to enhance further the detection reliability. Our stand-alone pulse detector performed with high temporal precision (<10 μs) and reliability (error <1 per 10(6) pulses) and permits longer recording duration by storing only event time stamps (4 bytes/pulse).

  4. Attaining the Photometric Precision Required by Future Dark Energy Projects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stubbs, Christopher

    2013-01-21

    This report outlines our progress towards achieving the high-precision astronomical measurements needed to derive improved constraints on the nature of the Dark Energy. Our approach to obtaining higher precision flux measurements has two basic components: 1) determination of the optical transmission of the atmosphere, and 2) mapping out the instrumental photon sensitivity function vs. wavelength, calibrated by referencing the measurements to the known sensitivity curve of a high precision silicon photodiode, and 3) using the self-consistency of the spectrum of stars to achieve precise color calibrations.

  5. Sensitivity, accuracy, and precision issues in opto-electronic holography based on fiber optics and high-spatial- and high-digitial-resolution cameras

    NASA Astrophysics Data System (ADS)

    Furlong, Cosme; Yokum, Jeffrey S.; Pryputniewicz, Ryszard J.

    2002-06-01

    Sensitivity, accuracy, and precision characteristics in quantitative optical metrology techniques, and specifically in optoelectronic holography based on fiber optics and high-spatial and high-digital resolution cameras, are discussed in this paper. It is shown that sensitivity, accuracy, and precision dependent on both, the effective determination of optical phase and the effective characterization of the illumination-observation conditions. Sensitivity, accuracy, and precision are investigated with the aid of National Institute of Standards and Technology (NIST) traceable gages, demonstrating the applicability of quantitative optical metrology techniques to satisfy constantly increasing needs for the study and development of emerging technologies.

  6. High-precision processing and detection of the high-caliber off-axis aspheric mirror

    NASA Astrophysics Data System (ADS)

    Dai, Chen; Li, Ang; Xu, Lingdi; Zhang, Yingjie

    2017-10-01

    To achieve the efficient, controllable, digital processing and high-precision detection of the high-caliber off-axis aspheric mirror, meeting the high-level development needs of the modern high-resolution, large field of space optical remote sensing camera, we carried out the research on high precision machining and testing technology of off-axis aspheric mirror. First, we forming the off-axis aspheric sample with diameter of 574mm × 302mm by milling it with milling machine, and then the intelligent robot equipment was used for off-axis aspheric high precision polishing. Surface detection of the sample will be proceed with the off-axis aspheric contact contour detection technology and offaxis non-spherical surface interference detection technology after its fine polishing using ion beam equipment. The final surface accuracy RMS is 12nm.

  7. Evaluating the potential of the MegaSIMS for nuclear forensics

    NASA Astrophysics Data System (ADS)

    Boehnke, P.; McKeegan, K. D.; Coath, C. D.; Hutcheon, I. D.; Steele, R. C.; Harrison, M.

    2013-12-01

    Nuclear forensics investigates the illicit movement of nuclear materials. Measurements of uranium isotopic compositions are an important key as they permit provenance tracing and determination of intended use. Traditional secondary ion mass spectrometers (SIMS) are incapable of resolving 235UH from 236U due to the high mass resolving power (MRP ~38,000) needed, significantly limiting their ability to accurately measure 236U/235U, particularly for highly enriched uranium. This limitation can significantly inhibit the ability to establish details about enrichment processes. The MegaSIMS is a unique combination of SIMS and accelerator mass spectrometry (AMS) and allows for molecular interference free measurements, while retaining the spatial resolution and ease of sample preparation common in SIMS analyses. The instrument was primarily designed to measure the oxygen isotope composition of the solar wind [1] and its capability for measuring high mass elements has not been evaluated previously. We evaluated the potential of the MegaSIMS by measuring 236U/235U without hydride interference. While preliminary results show abundance sensitivity of ~E-9 and an MRP of ~1,200 at the high mass side of 238 amu, precision is limited by the detector geometry and slow magnet switching. Future work will include developing electrostatic peak switching as well as refining the measurement precision and abundance sensitivity of the MegaSIMS for nuclear forensics. [1] McKeegan, Kallio, Heber, Jarzebinski, Mao, Coath, Kunihiro, Wiens, Nordholt, Moses Jr., Reisenfeld, Jurewicz, and Burnett, 2011. Science. 332, 1528-1532.

  8. Precise Detection of IDH1/2 and BRAF Hotspot Mutations in Clinical Glioma Tissues by a Differential Calculus Analysis of High-Resolution Melting Data

    PubMed Central

    Hatae, Ryusuke; Yoshimoto, Koji; Kuga, Daisuke; Akagi, Yojiro; Murata, Hideki; Suzuki, Satoshi O.; Mizoguchi, Masahiro; Iihara, Koji

    2016-01-01

    High resolution melting (HRM) is a simple and rapid method for screening mutations. It offers various advantages for clinical diagnostic applications. Conventional HRM analysis often yields equivocal results, especially for surgically obtained tissues. We attempted to improve HRM analyses for more effective applications to clinical diagnostics. HRM analyses were performed for IDH1R132 and IDH2R172 mutations in 192 clinical glioma samples in duplicate and these results were compared with sequencing results. BRAFV600E mutations were analyzed in 52 additional brain tumor samples. The melting profiles were used for differential calculus analyses. Negative second derivative plots revealed additional peaks derived from heteroduplexes in PCR products that contained mutations; this enabled unequivocal visual discrimination of the mutations. We further developed a numerical expression, the HRM-mutation index (MI), to quantify the heteroduplex-derived peak of the mutational curves. Using this expression, all IDH1 mutation statuses matched those ascertained by sequencing, with the exception of three samples. These discordant results were all derived from the misinterpretation of sequencing data. The effectiveness of our approach was further validated by analyses of IDH2R172 and BRAFV600E mutations. The present analytical method enabled an unequivocal and objective HRM analysis and is suitable for reliable mutation scanning in surgically obtained glioma tissues. This approach could facilitate molecular diagnostics in clinical environments. PMID:27529619

  9. Long-term impact of precision agriculture on a farmer’s field

    USDA-ARS?s Scientific Manuscript database

    Targeting management practices and inputs with precision agriculture has high potential to meet some of the grand challenges of sustainability in the coming century. Although potential is high, few studies have documented long-term effects of precision agriculture on crop production and environmenta...

  10. Oxygen isotope variation in stony-iron meteorites.

    PubMed

    Greenwood, R C; Franchi, I A; Jambon, A; Barrat, J A; Burbine, T H

    2006-09-22

    Asteroidal material, delivered to Earth as meteorites, preserves a record of the earliest stages of planetary formation. High-precision oxygen isotope analyses for the two major groups of stony-iron meteorites (main-group pallasites and mesosiderites) demonstrate that each group is from a distinct asteroidal source. Mesosiderites are isotopically identical to the howardite-eucrite-diogenite clan and, like them, are probably derived from the asteroid 4 Vesta. Main-group pallasites represent intermixed core-mantle material from a single disrupted asteroid and have no known equivalents among the basaltic meteorites. The stony-iron meteorites demonstrate that intense asteroidal deformation accompanied planetary accretion in the early Solar System.

  11. Differential cross sections for the reactions γ p → p η and γ p → p η '

    DOE PAGES

    Williams, M.; Krahn, Z.; Applegate, D.; ...

    2009-10-29

    In high-statistics differential cross sections for the reactions γ p -> p η and γ p -> p η' the CLAS at Jefferson Lab was used to measure the center-of-mass energies from near threshold up to 2.84 GeV. The eta-prime results are the most precise to date and provide the largest energy and angular coverage. The eta measurements extend the energy range of the world's large-angle results by approximately 300 MeV. These new data, in particular the η' measurements, are likely to help constrain the analyses being performed to search for new baryon resonance states.

  12. Magnetic testing for inter-granular crack defect of tubing coupling

    NASA Astrophysics Data System (ADS)

    Hu, Bo; Yu, Runqiao

    2018-04-01

    This study focused on the inter-granular crack defects of tubing coupling wherein a non-destructive magnetic testing technique was proposed to determine the magnetic flux leakage features on coupling surface in the geomagnetic field using a high-precision magnetic sensor. The abnormal magnetic signatures of defects were analysed, and the principle of the magnetic test was explained based on the differences in the relative permeability of defects and coupling materials. Abnormal fluctuations of the magnetic signal were observed at the locations of the inter-granular crack defects. Imaging showed the approximate position of defects. The test results were proven by metallographic phase.

  13. ERTS data user investigation to develop a multistage forest sampling inventory system

    NASA Technical Reports Server (NTRS)

    Langley, P. G.; Vanroessel, J. W. (Principal Investigator); Wert, S. L.

    1973-01-01

    The author has identified the following significant results. A system to provide precision annotation of predetermined forest inventory sampling units on the ERTS-1 MSS images was developed. In addition, an annotation system for high altitude U2 photographs was completed. MSS bulk image accuracy is good enough to allow the use of one square mile sampling units. IMANCO image analyzer interpretation work for small scale images demonstrated the need for much additional analyses. Continuing image interpretation work for the next reporting period is concentrated on manual image interpretation work as well as digital interpretation system development using the computer compatible tapes.

  14. New high resolution Random Telegraph Noise (RTN) characterization method for resistive RAM

    NASA Astrophysics Data System (ADS)

    Maestro, M.; Diaz, J.; Crespo-Yepes, A.; Gonzalez, M. B.; Martin-Martinez, J.; Rodriguez, R.; Nafria, M.; Campabadal, F.; Aymerich, X.

    2016-01-01

    Random Telegraph Noise (RTN) is one of the main reliability problems of resistive switching-based memories. To understand the physics behind RTN, a complete and accurate RTN characterization is required. The standard equipment used to analyse RTN has a typical time resolution of ∼2 ms which prevents evaluating fast phenomena. In this work, a new RTN measurement procedure, which increases the measurement time resolution to 2 μs, is proposed. The experimental set-up, together with the recently proposed Weighted Time Lag (W-LT) method for the analysis of RTN signals, allows obtaining a more detailed and precise information about the RTN phenomenon.

  15. On the extraction of P 11 resonances from πN data

    DOE PAGES

    Hiroyuki Kamano; Nakamura, Satoshi X.; Lee, Tsung -Shung; ...

    2010-06-22

    With the accuracy of the available P 11 amplitudes of πΔ scattering, we show that two resonance poles near the pi Delta threshold, obtained in several analyses, are stable against large variations of parameters within a dynamical coupled-channels analysis. The number of poles in the 1.5 GeV < W < 2 GeV region could be more than one, depending on how the structure of the single-energy solution of SAID is fitted. Lastly, our results indicate the need of more accurate πN scattering data in the W > 1.6 GeV region for high precision resonance extractions.

  16. Isotope Analysis of Uranium by Optical Spectroscopy; ANALYSE ISOTOPIQUE DE L'URANIUM PAR SPECTROSCOPIE OPTIQUE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerstenkorn, S.

    1958-06-01

    Isotopic analysis of urarium is made by means of hollow cathode lamp and a Fabry-Perot photoelectric spectrometer. The line U/sup 235/, 5027 A is used. This method allows a deterraination of the isotopic concentrations in U /sup 235/ down to 0.1%. The relative precision is about 2% for amounts of U/sup 235/ over 1%. For weaker amounts this line allows relative measurements of better precision when using standard mixtures. (auth)

  17. Electrostatic accelerators with high energy resolution

    NASA Astrophysics Data System (ADS)

    Uchiyama, T.; Agawa, Y.; Nishihashi, T.; Takagi, K.; Yamakawa, H.; Isoya, A.; Takai, M.; Namba, S.

    1991-05-01

    Several models of electrostatic accelerators based on rotating disks (Disktron) have been manufactured for various ion beam applications like surface analyses and implantation. The high voltage terminal of the Disktron with a terminal voltage of up to 500 kV is open in air, while the generator part is enclosed in FRP (fiber reinforced plastics) or a ceramic vessel filled with sf 6 gas. The 1 MV model is completely enclosed in a steel vessel. A compact tandem accelerator of the pellet chain type with a terminal voltage of 1.5 MV has also been manufactured. The good energy stability of these accelerators, typically in the range of 10 -4, has proved to be quite favorable for applications in precise studies of material surfaces, including the use of microbeam techniques.

  18. VizieR Online Data Catalog: 231 transiting planets eccentricity and mass (Bonomo+, 2017)

    NASA Astrophysics Data System (ADS)

    Bonomo, A. S.; Desidera, S.; Benatti, S.; Borsa, F.; Crespi, S.; Damasso, M.; Lanza, A. F.; Sozzetti, A.; Lodato, G.; Marzari, F.; Boccato, C.; Claudi, R. U.; Cosentino, R.; Covino, E.; Gratton, R.; Maggio, A.; Micela, G.; Molinari, E.; Pagano, I.; Piotto, G.; Poretti, E.; Smareglia, R.; Affer, L.; Biazzo, K.; Bignamini, A.; Esposito, M.; Giacobbe, P.; Hebrard, G.; Malavolta, L.; Maldonado, J.; Mancini, L.; Martinez Fiorenzano, A.; Masiero, S.; Nascimbeni, V.; Pedani, M.; Rainer, M.; Scandariato, G.

    2017-04-01

    We carried out a homogeneous determination of the orbital parameters of 231 TGPs by analysing with our Bayesian DEMCMC tool both the literature RVs and the new high-accuracy and high-precision HARPS-N data we acquired for 45 TGPs orbiting relatively bright stars over ~3 years. We thus produced the largest uniform catalogue of giant planet orbital and physical parameters. For several systems we combined for the first time RV datasets collected with different spectrographs by different groups thus improving the orbital solution. In general, we fitted a separate jitter term for each dataset by allowing for different values of extra noise caused by instrumental effects and/or changing levels of stellar activity in different observing seasons. This way, we uniformly derived the orbital eccentricities of (8 data files).

  19. Molecular epidemiology of Plum pox virus in Japan.

    PubMed

    Maejima, Kensaku; Himeno, Misako; Komatsu, Ken; Takinami, Yusuke; Hashimoto, Masayoshi; Takahashi, Shuichiro; Yamaji, Yasuyuki; Oshima, Kenro; Namba, Shigetou

    2011-05-01

    For a molecular epidemiological study based on complete genome sequences, 37 Plum pox virus (PPV) isolates were collected from the Kanto region in Japan. Pair-wise analyses revealed that all 37 Japanese isolates belong to the PPV-D strain, with low genetic diversity (less than 0.8%). In phylogenetic analysis of the PPV-D strain based on complete nucleotide sequences, the relationships of the PPV-D strain were reconstructed with high resolution: at the global level, the American, Canadian, and Japanese isolates formed their own distinct monophyletic clusters, suggesting that the routes of viral entry into these countries were independent; at the local level, the actual transmission histories of PPV were precisely reconstructed with high bootstrap support. This is the first description of the molecular epidemiology of PPV based on complete genome sequences.

  20. Identification of an Extremely 180-Rich Presolar Silicate Grain in Acfer 094

    NASA Technical Reports Server (NTRS)

    Nguyen, A. N.; Messenger, S.

    2009-01-01

    Presolar silicate grains have been abundantly identified since their first discovery less than a decade ago [1,2,3]. The O isotopic compositions of both silicate and oxide stardust indicate the vast majority (>90%) condensed around Orich asymptotic giant branch (AGB) stars. Though both presolar phases have average sizes of 300 nm, grains larger than 1 m are extremely uncommon for presolar silicates. Thus, while numerous isotopic systems have been measured in presolar oxide grains [4], very few isotopic analyses for presolar silicates exist outside of O and Si [2,5]. And still, these measurements suffer from isotopic dilution with surrounding matrix material [6]. We conduct a search for presolar silicates in the primitive carbonaceous chondrite Acfer 094 and in some cases obtain high spatial resolution, high precision isotopic ratios.

  1. Design and algorithm research of high precision airborne infrared touch screen

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao-Bing; Wang, Shuang-Jie; Fu, Yan; Chen, Zhao-Quan

    2016-10-01

    There are shortcomings of low precision, touch shaking, and sharp decrease of touch precision when emitting and receiving tubes are failure in the infrared touch screen. A high precision positioning algorithm based on extended axis is proposed to solve these problems. First, the unimpeded state of the beam between emitting and receiving tubes is recorded as 0, while the impeded state is recorded as 1. Then, the method of oblique scan is used, in which the light of one emitting tube is used for five receiving tubes. The impeded information of all emitting and receiving tubes is collected as matrix. Finally, according to the method of arithmetic average, the position of the touch object is calculated. The extended axis positioning algorithm is characteristic of high precision in case of failure of individual infrared tube and affects slightly the precision. The experimental result shows that the 90% display area of the touch error is less than 0.25D, where D is the distance between adjacent emitting tubes. The conclusion is gained that the algorithm based on extended axis has advantages of high precision, little impact when individual infrared tube is failure, and using easily.

  2. A Lane-Level LBS System for Vehicle Network with High-Precision BDS/GPS Positioning

    PubMed Central

    Guo, Chi; Guo, Wenfei; Cao, Guangyi; Dong, Hongbo

    2015-01-01

    In recent years, research on vehicle network location service has begun to focus on its intelligence and precision. The accuracy of space-time information has become a core factor for vehicle network systems in a mobile environment. However, difficulties persist in vehicle satellite positioning since deficiencies in the provision of high-quality space-time references greatly limit the development and application of vehicle networks. In this paper, we propose a high-precision-based vehicle network location service to solve this problem. The major components of this study include the following: (1) application of wide-area precise positioning technology to the vehicle network system. An adaptive correction message broadcast protocol is designed to satisfy the requirements for large-scale target precise positioning in the mobile Internet environment; (2) development of a concurrence service system with a flexible virtual expansion architecture to guarantee reliable data interaction between vehicles and the background; (3) verification of the positioning precision and service quality in the urban environment. Based on this high-precision positioning service platform, a lane-level location service is designed to solve a typical traffic safety problem. PMID:25755665

  3. Accuracy and Precision of Silicon Based Impression Media for Quantitative Areal Texture Analysis

    PubMed Central

    Goodall, Robert H.; Darras, Laurent P.; Purnell, Mark A.

    2015-01-01

    Areal surface texture analysis is becoming widespread across a diverse range of applications, from engineering to ecology. In many studies silicon based impression media are used to replicate surfaces, and the fidelity of replication defines the quality of data collected. However, while different investigators have used different impression media, the fidelity of surface replication has not been subjected to quantitative analysis based on areal texture data. Here we present the results of an analysis of the accuracy and precision with which different silicon based impression media of varying composition and viscosity replicate rough and smooth surfaces. Both accuracy and precision vary greatly between different media. High viscosity media tested show very low accuracy and precision, and most other compounds showed either the same pattern, or low accuracy and high precision, or low precision and high accuracy. Of the media tested, mid viscosity President Jet Regular Body and low viscosity President Jet Light Body (Coltène Whaledent) are the only compounds to show high levels of accuracy and precision on both surface types. Our results show that data acquired from different impression media are not comparable, supporting calls for greater standardisation of methods in areal texture analysis. PMID:25991505

  4. Hypothesis testing for band size detection of high-dimensional banded precision matrices.

    PubMed

    An, Baiguo; Guo, Jianhua; Liu, Yufeng

    2014-06-01

    Many statistical analysis procedures require a good estimator for a high-dimensional covariance matrix or its inverse, the precision matrix. When the precision matrix is banded, the Cholesky-based method often yields a good estimator of the precision matrix. One important aspect of this method is determination of the band size of the precision matrix. In practice, crossvalidation is commonly used; however, we show that crossvalidation not only is computationally intensive but can be very unstable. In this paper, we propose a new hypothesis testing procedure to determine the band size in high dimensions. Our proposed test statistic is shown to be asymptotically normal under the null hypothesis, and its theoretical power is studied. Numerical examples demonstrate the effectiveness of our testing procedure.

  5. Precision Crystal Calorimeters in High Energy Physics

    ScienceCinema

    Ren-Yuan Zhu

    2017-12-09

    Precision crystal calorimeters traditionally play an important role in high energy physics experiments. In the last two decades, it faces a challenge to maintain its precision in a hostile radiation environment. This paper reviews the performance of crystal calorimeters constructed for high energy physics experiments and the progress achieved in understanding crystal’s radiation damage as well as in developing high quality scintillating crystals for particle physics. Potential applications of new generation scintillating crystals of high density and high light yield, such as LSO and LYSO, in particle physics experiments is also discussed.

  6. Spatial Distribution of Phlebotomine Sand Fly Species (Diptera: Psychodidae) in Qom Province, Central Iran.

    PubMed

    Saghafipour, Abedin; Vatandoost, Hassan; Zahraei-Ramazani, Ali Reza; Yaghoobi-Ershadi, Mohammad Reza; Rassi, Yavar; Shirzadi, Mohammad Reza; Akhavan, Amir Ahmad

    2017-01-01

    Zoonotic cutaneous leishmaniasis (ZCL) is transmitted to humans by phlebotomine sand fly bites. ZCL is a major health problem in Iran, where basic knowledge gaps about sand fly species diversity persist in some ZCL-endemic areas. This paper describes the richness and spatial distribution of sand fly species, collected with sticky traps, in Qom province, a ZCL-endemic area in central Iran, where sand fly fauna has been poorly studied. Collected species were mapped on urban and rural digital maps based on a scale of 1/50,000. All analyses were undertaken with rural- and urban-level precision, i.e., rural and urban levels were our basic units of analysis. After identifying the sand flies, high-risk foci were determined. For spatial analysis of vector species population, the entomological sampling sites were geo-referenced using GPS. Arc GIS 9.3 software was used to determine the foci with leishmaniasis vector species. Following the analyses, two genera (Phlebotomus and Sergentomyia) and 14 species were identified. Based on the mapping and sand fly dispersion analysis, the rural districts were categorized into three groups-infection reported, without infection, and no report. Based on Geographical Information System analyses, Kahak and Markazi districts were identified as high-risk foci with leishmaniasis vector species. These findings can act as a help guide to direct active control measures to the identified high-risk foci and, eventually, lead to reduction in incidence of the disease. © Crown copyright 2016.

  7. Evaluation of an in-practice wet-chemistry analyzer using canine and feline serum samples.

    PubMed

    Irvine, Katherine L; Burt, Kay; Papasouliotis, Kostas

    2016-01-01

    A wet-chemistry biochemical analyzer was assessed for in-practice veterinary use. Its small size may mean a cost-effective method for low-throughput in-house biochemical analyses for first-opinion practice. The objectives of our study were to determine imprecision, total observed error, and acceptability of the analyzer for measurement of common canine and feline serum analytes, and to compare clinical sample results to those from a commercial reference analyzer. Imprecision was determined by within- and between-run repeatability for canine and feline pooled samples, and manufacturer-supplied quality control material (QCM). Total observed error (TEobs) was determined for pooled samples and QCM. Performance was assessed for canine and feline pooled samples by sigma metric determination. Agreement and errors between the in-practice and reference analyzers were determined for canine and feline clinical samples by Bland-Altman and Deming regression analyses. Within- and between-run precision was high for most analytes, and TEobs(%) was mostly lower than total allowable error. Performance based on sigma metrics was good (σ > 4) for many analytes and marginal (σ > 3) for most of the remainder. Correlation between the analyzers was very high for most canine analytes and high for most feline analytes. Between-analyzer bias was generally attributed to high constant error. The in-practice analyzer showed good overall performance, with only calcium and phosphate analyses identified as significantly problematic. Agreement for most analytes was insufficient for transposition of reference intervals, and we recommend that in-practice-specific reference intervals be established in the laboratory. © 2015 The Author(s).

  8. High-precision photometry by telescope defocussing - VIII. WASP-22, WASP-41, WASP-42 and WASP-55

    NASA Astrophysics Data System (ADS)

    Southworth, John; Tregloan-Reed, J.; Andersen, M. I.; Calchi Novati, S.; Ciceri, S.; Colque, J. P.; D'Ago, G.; Dominik, M.; Evans, D. F.; Gu, S.-H.; Herrera-Cordova, A.; Hinse, T. C.; Jørgensen, U. G.; Juncher, D.; Kuffmeier, M.; Mancini, L.; Peixinho, N.; Popovas, A.; Rabus, M.; Skottfelt, J.; Tronsgaard, R.; Unda-Sanzana, E.; Wang, X.-B.; Wertz, O.; Alsubai, K. A.; Andersen, J. M.; Bozza, V.; Bramich, D. M.; Burgdorf, M.; Damerdji, Y.; Diehl, C.; Elyiv, A.; Figuera Jaimes, R.; Haugbølle, T.; Hundertmark, M.; Kains, N.; Kerins, E.; Korhonen, H.; Liebig, C.; Mathiasen, M.; Penny, M. T.; Rahvar, S.; Scarpetta, G.; Schmidt, R. W.; Snodgrass, C.; Starkey, D.; Surdej, J.; Vilela, C.; von Essen, C.; Wang, Y.

    2016-04-01

    We present 13 high-precision and four additional light curves of four bright southern-hemisphere transiting planetary systems: WASP-22, WASP-41, WASP-42 and WASP-55. In the cases of WASP-42 and WASP-55, these are the first follow-up observations since their discovery papers. We present refined measurements of the physical properties and orbital ephemerides of all four systems. No indications of transit timing variations were seen. All four planets have radii inflated above those expected from theoretical models of gas-giant planets; WASP-55 b is the most discrepant with a mass of 0.63 MJup and a radius of 1.34 RJup. WASP-41 shows brightness anomalies during transit due to the planet occulting spots on the stellar surface. Two anomalies observed 3.1 d apart are very likely due to the same spot. We measure its change in position and determine a rotation period for the host star of 18.6 ± 1.5 d, in good agreement with a published measurement from spot-induced brightness modulation, and a sky-projected orbital obliquity of λ = 6 ± 11°. We conclude with a compilation of obliquity measurements from spot-tracking analyses and a discussion of this technique in the study of the orbital configurations of hot Jupiters.

  9. Additive Manufacturing for Cost Efficient Production of Compact Ceramic Heat Exchangers and Recuperators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shulman, Holly; Ross, Nicole

    2015-10-30

    An additive manufacture technique known as laminated object manufacturing (LOM) was used to fabricate compact ceramic heat exchanger prototypes. LOM uses precision CO2 laser cutting of ceramic green tapes, which are then precision stacked to build a 3D object with fine internal features. Modeling was used to develop prototype designs and predict the thermal response, stress, and efficiency in the ceramic heat exchangers. Build testing and materials analyses were used to provide feedback for the design selection. During this development process, laminated object manufacturing protocols were established. This included laser optimization, strategies for fine feature integrity, lamination fluid control, greenmore » handling, and firing profile. Three full size prototypes were fabricated using two different designs. One prototype was selected for performance testing. During testing, cross talk leakage prevented the application of a high pressure differential, however, the prototype was successful at withstanding the high temperature operating conditions (1300 °F). In addition, analysis showed that the bulk of the part did not have cracks or leakage issues. This led to the development of a module method for next generation LOM heat exchangers. A scale-up cost analysis showed that given a purpose built LOM system, these ceramic heat exchangers would be affordable for the applications.« less

  10. Accuracy of Cycling Power Meters against a Mathematical Model of Treadmill Cycling.

    PubMed

    Maier, Thomas; Schmid, Lucas; Müller, Beat; Steiner, Thomas; Wehrlin, Jon Peter

    2017-06-01

    The aim of this study was to compare the accuracy among a high number of current mobile cycling power meters used by elite and recreational cyclists against a first principle-based mathematical model of treadmill cycling. 54 power meters from 9 manufacturers used by 32 cyclists were calibrated. While the cyclist coasted downhill on a motorised treadmill, a back-pulling system was adjusted to counter the downhill force. The system was then loaded 3 times with 4 different masses while the cyclist pedalled to keep his position. The mean deviation (trueness) to the model and coefficient of variation (precision) were analysed. The mean deviations of the power meters were -0.9±3.2% (mean±SD) with 6 power meters deviating by more than±5%. The coefficients of variation of the power meters were 1.2±0.9% (mean±SD), with Stages varying more than SRM (p<0.001) and PowerTap (p<0.001). In conclusion, current power meters used by elite and recreational cyclists vary considerably in their trueness; precision is generally high but differs between manufacturers. Calibrating and adjusting the trueness of every power meter against a first principle-based reference is advised for accurate measurements. © Georg Thieme Verlag KG Stuttgart · New York.

  11. Quantifying the Precision of Single-Molecule Torque and Twist Measurements Using Allan Variance.

    PubMed

    van Oene, Maarten M; Ha, Seungkyu; Jager, Tessa; Lee, Mina; Pedaci, Francesco; Lipfert, Jan; Dekker, Nynke H

    2018-04-24

    Single-molecule manipulation techniques have provided unprecedented insights into the structure, function, interactions, and mechanical properties of biological macromolecules. Recently, the single-molecule toolbox has been expanded by techniques that enable measurements of rotation and torque, such as the optical torque wrench (OTW) and several different implementations of magnetic (torque) tweezers. Although systematic analyses of the position and force precision of single-molecule techniques have attracted considerable attention, their angle and torque precision have been treated in much less detail. Here, we propose Allan deviation as a tool to systematically quantitate angle and torque precision in single-molecule measurements. We apply the Allan variance method to experimental data from our implementations of (electro)magnetic torque tweezers and an OTW and find that both approaches can achieve a torque precision better than 1 pN · nm. The OTW, capable of measuring torque on (sub)millisecond timescales, provides the best torque precision for measurement times ≲10 s, after which drift becomes a limiting factor. For longer measurement times, magnetic torque tweezers with their superior stability provide the best torque precision. Use of the Allan deviation enables critical assessments of the torque precision as a function of measurement time across different measurement modalities and provides a tool to optimize measurement protocols for a given instrument and application. Copyright © 2018 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  12. In pursuit of precision: the calibration of minds and machines in late nineteenth-century psychology.

    PubMed

    Benschop, R; Draaisma, D

    2000-01-01

    A prominent feature of late nineteenth-century psychology was its intense preoccupation with precision. Precision was at once an ideal and an argument: the quest for precision helped psychology to establish its status as a mature science, sharing a characteristic concern with the natural sciences. We will analyse how psychologists set out to produce precision in 'mental chronometry', the measurement of the duration of psychological processes. In his Leipzig laboratory, Wundt inaugurated an elaborate research programme on mental chronometry. We will look at the problem of calibration of experimental apparatus and will describe the intricate material, literary, and social technologies involved in the manufacture of precision. First, we shall discuss some of the technical problems involved in the measurement of ever shorter time-spans. Next, the Cattell-Berger experiments will help us to argue against the received view that all the precision went into the hardware, and practically none into the social organization of experimentation. Experimenters made deliberate efforts to bring themselves and their subjects under a regime of control and calibration similar to that which reigned over the experimental machinery. In Leipzig psychology, the particular blend of material and social technology resulted in a specific object of study: the generalized mind. We will then show that the distribution of precision in experimental psychology outside Leipzig demanded a concerted effort of instruments, texts, and people. It will appear that the forceful attempts to produce precision and uniformity had some rather paradoxical consequences.

  13. Problems, challenges and promises: perspectives on precision medicine.

    PubMed

    Duffy, David J

    2016-05-01

    The 'precision medicine (systems medicine)' concept promises to achieve a shift to future healthcare systems with a more proactive and predictive approach to medicine, where the emphasis is on disease prevention rather than the treatment of symptoms. The individualization of treatment for each patient will be at the centre of this approach, with all of a patient's medical data being computationally integrated and accessible. Precision medicine is being rapidly embraced by biomedical researchers, pioneering clinicians and scientific funding programmes in both the European Union (EU) and USA. Precision medicine is a key component of both Horizon 2020 (the EU Framework Programme for Research and Innovation) and the White House's Precision Medicine Initiative. Precision medicine promises to revolutionize patient care and treatment decisions. However, the participants in precision medicine are faced with a considerable central challenge. Greater volumes of data from a wider variety of sources are being generated and analysed than ever before; yet, this heterogeneous information must be integrated and incorporated into personalized predictive models, the output of which must be intelligible to non-computationally trained clinicians. Drawing primarily from the field of 'oncology', this article will introduce key concepts and challenges of precision medicine and some of the approaches currently being implemented to overcome these challenges. Finally, this article also covers the criticisms of precision medicine overpromising on its potential to transform patient care. © The Author 2015. Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  14. Evidence for an All-Or-None Perceptual Response: Single-Trial Analyses of Magnetoencephalography Signals Indicate an Abrupt Transition Between Visual Perception and Its Absence

    PubMed Central

    Sekar, Krithiga; Findley, William M.; Llinás, Rodolfo R.

    2014-01-01

    Whether consciousness is an all-or-none or graded phenomenon is an area of inquiry that has received considerable interest in neuroscience and is as of yet, still debated. In this magnetoencephalography (MEG) study we used a single stimulus paradigm with sub-threshold, threshold and supra-threshold duration inputs to assess whether stimulus perception is continuous with or abruptly differentiated from unconscious stimulus processing in the brain. By grouping epochs according to stimulus identification accuracy and exposure duration, we were able to investigate whether a high-amplitude perception-related cortical event was (1) only evoked for conditions where perception was most probable (2) had invariant amplitude once evoked and (3) was largely absent for conditions where perception was least probable (criteria satisfying an all-on-none hypothesis). We found that averaged evoked responses showed a gradual increase in amplitude with increasing perceptual strength. However, single trial analyses demonstrated that stimulus perception was correlated with an all-or-none response, the temporal precision of which increased systematically as perception transitioned from ambiguous to robust states. Due to poor signal-to-noise resolution of single trial data, whether perception-related responses, whenever present, were invariant in amplitude could not be unambiguously demonstrated. However, our findings strongly suggest that visual perception of simple stimuli is associated with an all-or-none cortical evoked response the temporal precision of which varies as a function of perceptual strength. PMID:22020091

  15. Development and psychometric evaluation of the PROMIS Pediatric Life Satisfaction item banks, child-report, and parent-proxy editions.

    PubMed

    Forrest, Christopher B; Devine, Janine; Bevans, Katherine B; Becker, Brandon D; Carle, Adam C; Teneralli, Rachel E; Moon, JeanHee; Tucker, Carole A; Ravens-Sieberer, Ulrike

    2018-01-01

    To describe the psychometric evaluation and item response theory calibration of the PROMIS Pediatric Life Satisfaction item banks, child-report, and parent-proxy editions. A pool of 55 life satisfaction items was administered to 1992 children 8-17 years old and 964 parents of children 5-17 years old. Analyses included descriptive statistics, reliability, factor analysis, differential item functioning, and assessment of construct validity. Thirteen items were deleted because of poor psychometric performance. An 8-item short form was administered to a national sample of 996 children 8-17 years old, and 1294 parents of children 5-17 years old. The combined sample (2988 children and 2258 parents) was used in item response theory (IRT) calibration analyses. The final item banks were unidimensional, the items were locally independent, and the items were free from impactful differential item functioning. The 8-item and 4-item short form scales showed excellent reliability, convergent validity, and discriminant validity. Life satisfaction decreased with declining socio-economic status, presence of a special health care need, and increasing age for girls, but not boys. After IRT calibration, we found that 4- and 8-item short forms had a high degree of precision (reliability) across a wide range (>4 SD units) of the latent variable. The PROMIS Pediatric Life Satisfaction item banks and their short forms provide efficient, precise, and valid assessments of life satisfaction in children and youth.

  16. Development and Evaluation of the PROMIS® Pediatric Positive Affect Item Bank, Child-Report and Parent-Proxy Editions.

    PubMed

    Forrest, Christopher B; Ravens-Sieberer, Ulrike; Devine, Janine; Becker, Brandon D; Teneralli, Rachel; Moon, JeanHee; Carle, Adam; Tucker, Carole A; Bevans, Katherine B

    2018-03-01

    The purpose of this study is to describe the psychometric evaluation and item response theory calibration of the PROMIS Pediatric Positive Affect item bank, child-report and parent-proxy editions. The initial item pool comprising 53 items, previously developed using qualitative methods, was administered to 1,874 children 8-17 years old and 909 parents of children 5-17 years old. Analyses included descriptive statistics, reliability, factor analysis, differential item functioning, and construct validity. A total of 14 items were deleted, because of poor psychometric performance, and an 8-item short form constructed from the remaining 39 items was administered to a national sample of 1,004 children 8-17 years old, and 1,306 parents of children 5-17 years old. The combined sample was used in item response theory (IRT) calibration analyses. The final item bank appeared unidimensional, the items appeared locally independent, and the items were free from differential item functioning. The scales showed excellent reliability and convergent and discriminant validity. Positive affect decreased with children's age and was lower for those with a special health care need. After IRT calibration, we found that 4 and 8 item short forms had a high degree of precision (reliability) across a wide range of the latent trait (>4 SD units). The PROMIS Pediatric Positive Affect item bank and its short forms provide an efficient, precise, and valid assessment of positive affect in children and youth.

  17. Automated brain volumetrics in multiple sclerosis: a step closer to clinical application.

    PubMed

    Wang, C; Beadnall, H N; Hatton, S N; Bader, G; Tomic, D; Silva, D G; Barnett, M H

    2016-07-01

    Whole brain volume (WBV) estimates in patients with multiple sclerosis (MS) correlate more robustly with clinical disability than traditional, lesion-based metrics. Numerous algorithms to measure WBV have been developed over the past two decades. We compare Structural Image Evaluation using Normalisation of Atrophy-Cross-sectional (SIENAX) to NeuroQuant and MSmetrix, for assessment of cross-sectional WBV in patients with MS. MRIs from 61 patients with relapsing-remitting MS and 2 patients with clinically isolated syndrome were analysed. WBV measurements were calculated using SIENAX, NeuroQuant and MSmetrix. Statistical agreement between the methods was evaluated using linear regression and Bland-Altman plots. Precision and accuracy of WBV measurement was calculated for (1) NeuroQuant versus SIENAX and (2) MSmetrix versus SIENAX. Precision (Pearson's r) of WBV estimation for NeuroQuant and MSmetrix versus SIENAX was 0.983 and 0.992, respectively. Accuracy (Cb) was 0.871 and 0.994, respectively. NeuroQuant and MSmetrix showed a 5.5% and 1.0% volume difference compared with SIENAX, respectively, that was consistent across low and high values. In the analysed population, NeuroQuant and MSmetrix both quantified cross-sectional WBV with comparable statistical agreement to SIENAX, a well-validated cross-sectional tool that has been used extensively in MS clinical studies. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  18. High-Precision Half-Life Measurements for the Superallowed Fermi β+ Emitters 14O and 18Ne

    NASA Astrophysics Data System (ADS)

    Laffoley, A. T.; Andreoiu, C.; Austin, R. A. E.; Ball, G. C.; Bender, P. C.; Bidaman, H.; Bildstein, V.; Blank, B.; Bouzomita, H.; Cross, D. S.; Deng, G.; Diaz Varela, A.; Dunlop, M. R.; Dunlop, R.; Finlay, P.; Garnsworthy, A. B.; Garrett, P.; Giovinazzo, J.; Grinyer, G. F.; Grinyer, J.; Hadinia, B.; Jamieson, D. S.; Jigmeddorj, B.; Ketelhut, S.; Kisliuk, D.; Leach, K. G.; Leslie, J. R.; MacLean, A.; Miller, D.; Mills, B.; Moukaddam, M.; Radich, A. J.; Rajabali, M. M.; Rand, E. T.; Svensson, C. E.; Tardiff, E.; Thomas, J. C.; Turko, J.; Voss, P.; Unsworth, C.

    High-precision half-life measurements, at the level of ±0.04%, for the superallowed Fermi emitters 14O and 18Ne have been performed at TRIUMF's Isotope Separator and Accelerator facility. Using 3 independent detector systems, a gas-proportional counter, a fast plastic scintillator, and a high-purity germanium array, a series of direct β and γ counting measurements were performed for each of the isotopes. In the case of 14O, these measurements were made to help resolve an existing discrepancy between detection methods, whereas for 18Ne the half-life precision has been improved in anticipation of forthcoming high-precision branching ratio measurements.

  19. Precision injection molding of freeform optics

    NASA Astrophysics Data System (ADS)

    Fang, Fengzhou; Zhang, Nan; Zhang, Xiaodong

    2016-08-01

    Precision injection molding is the most efficient mass production technology for manufacturing plastic optics. Applications of plastic optics in field of imaging, illumination, and concentration demonstrate a variety of complex surface forms, developing from conventional plano and spherical surfaces to aspheric and freeform surfaces. It requires high optical quality with high form accuracy and lower residual stresses, which challenges both optical tool inserts machining and precision injection molding process. The present paper reviews recent progress in mold tool machining and precision injection molding, with more emphasis on precision injection molding. The challenges and future development trend are also discussed.

  20. An Improved Method of AGM for High Precision Geolocation of SAR Images

    NASA Astrophysics Data System (ADS)

    Zhou, G.; He, C.; Yue, T.; Huang, W.; Huang, Y.; Li, X.; Chen, Y.

    2018-05-01

    In order to take full advantage of SAR images, it is necessary to obtain the high precision location of the image. During the geometric correction process of images, to ensure the accuracy of image geometric correction and extract the effective mapping information from the images, precise image geolocation is important. This paper presents an improved analytical geolocation method (IAGM) that determine the high precision geolocation of each pixel in a digital SAR image. This method is based on analytical geolocation method (AGM) proposed by X. K. Yuan aiming at realizing the solution of RD model. Tests will be conducted using RADARSAT-2 SAR image. Comparing the predicted feature geolocation with the position as determined by high precision orthophoto, results indicate an accuracy of 50m is attainable with this method. Error sources will be analyzed and some recommendations about improving image location accuracy in future spaceborne SAR's will be given.

  1. High-precision R-branch transition frequencies in the ν2 fundamental band of H 3+ %A Perry, Adam J.; Hodges, James N.; Markus, Charles R.; Kocheril, G. Stephen; McCall, Benjamin J.

    NASA Astrophysics Data System (ADS)

    Perry, Adam J.; Hodges, James N.; Markus, Charles R.; Kocheril, G. Stephen; McCall, Benjamin J.

    2015-11-01

    The H3+ molecular ion has served as a long-standing benchmark for state-of-the-art ab initio calculations of molecular potentials and variational calculations of rovibrational energy levels. However, the accuracy of such calculations would not have been confirmed if not for the wealth of spectroscopic data that has been made available for this molecule. Recently, a new high-precision ion spectroscopy technique was demonstrated by Hodges et al., which led to the first highly accurate and precise (∼MHz) H3+ transition frequencies. As an extension of this work, we present ten additional R-branch transitions measured to similar precision as a next step toward the ultimate goal of producing a comprehensive high-precision survey of this molecule, from which rovibrational energy levels can be calculated.

  2. Pico-CSIA: Picomolar Scale Compound-Specific Isotope Analyses

    NASA Astrophysics Data System (ADS)

    Baczynski, A. A.; Polissar, P. J.; Juchelka, D.; Schwieters, J. B.; Hilkert, A.; Freeman, K. H.

    2016-12-01

    The basic approach to analyzing molecular isotopes has remained largely unchanged since the late 1990s. Conventional compound-specific isotope analyses (CSIA) are conducted using capillary gas chromatography (GC), a combustion interface, and an isotope-ratio mass spectrometer (IRMS). Commercially available GC-IRMS systems are comprised of components with inner diameters ≥0.25 mm and employ helium flow rates of 1-4 mL/min. These flow rates are an order of magnitude larger than what the IRMS can accept. Consequently, ≥90% of the sample is lost through the open split, and 1-10s of nanomoles of carbon are required for analysis. These sample requirements are prohibitive for many biomarkers, which are often present in picomolar concentrations. We utilize the resolving power and low flows of narrow-bore capillary GC to improve the sensitivity of CSIA. Narrow bore capillary columns (<0.25 mm ID) allow low helium flow rates of ≤0.5mL/min for more efficient sample transfer to the ion source of the IRMS while maintaining the high linear flow rates necessary to preserve narrow peak widths ( 250 ms). The IRMS has been fitted with collector amplifiers configured to 25 ms response times for rapid data acquisition across narrow peaks. Previous authors (e.g., Sacks et al., 2007) successfully demonstrated improved sensitivity afforded by narrow-bore GC columns. They reported an accuracy and precision of 1.4‰ for peaks with an average width at half maximum of 720 ms for 100 picomoles of carbon on column. Our method builds on their advances and further reduces peak widths ( 600 ms) and the amount of sample lost prior to isotopic analysis. Preliminary experiments with 100 picomoles of carbon on column show an accuracy and standard deviation <1‰. With further improvement, we hope to demonstrate robust isotopic analysis of 10s of picomoles of carbon, more than 2 orders of magnitude lower than commercial systems. The pico-CSIA method affords high-precision isotopic analyses for picomoles of carbon in organic biomarkers, which significantly lowers sample size requirements and broadens analytical windows in paleoclimate, astrobiological, and biogeochemical research.

  3. BD-22deg3467, a DAO-type Star Exciting the Nebula Abell 35

    NASA Technical Reports Server (NTRS)

    Ziegler, M.; Rauch, T.; Werner, K.; Koppen, J.; Kruk, J. W.

    2013-01-01

    Spectral analyses of hot, compact stars with non-local thermodynamical equilibrium (NLTE) model-atmosphere techniques allow the precise determination of photospheric parameters such as the effective temperature (T(sub eff)), the surface gravity (log g), and the chemical composition. The derived photospheric metal abundances are crucial constraints for stellar evolutionary theory. Aims. Previous spectral analyses of the exciting star of the nebula A35, BD-22deg3467, were based on He+C+N+O+Si+Fe models only. For our analysis, we use state-of-the-art fully metal-line blanketed NLTE model atmospheres that consider opacities of 23 elements from hydrogen to nickel. We aim to identify all observed lines in the ultraviolet (UV) spectrum of BD-22deg3467 and to determine the abundances of the respective species precisely. Methods. For the analysis of high-resolution and high signal-to-noise ratio (S/N) far-ultraviolet (FUSE) and UV (HST/STIS) observations, we combined stellar-atmosphere models and interstellar line-absorption models to fully reproduce the entire observed UV spectrum. Results. The best agreement with the UV observation of BD-22deg3467 is achieved at T(sub eff) = 80 +/- 10 kK and log g = 7.2 +/- 0.3. While T(sub eff) of previous analyses is verified, log g is significantly lower. We re-analyzed lines of silicon and iron (1/100 and about solar abundances, respectively) and for the first time in this star identified argon, chromium, manganese, cobalt, and nickel and determined abundances of 12, 70, 35, 150, and 5 times solar, respectively. Our results partially agree with predictions of diffusion models for DA-type white dwarfs. A combination of photospheric and interstellar line-absorption models reproduces more than 90% of the observed absorption features. The stellar mass is M approx. 0.48 Solar Mass. Conclusions. BD.22.3467 may not have been massive enough to ascend the asymptotic giant branch and may have evolved directly from the extended horizontal branch to the white dwarf state. This would explain why it is not surrounded by a planetary nebula. However, the star, ionizes the ambient interstellar matter, mimicking a planetary nebula.

  4. Origins and evolution of rhyolitic magmas in the central Snake River Plain: insights from coupled high-precision geochronology, oxygen isotope, and hafnium isotope analyses of zircon

    NASA Astrophysics Data System (ADS)

    Colón, Dylan P.; Bindeman, Ilya N.; Wotzlaw, Jörn-Frederik; Christiansen, Eric H.; Stern, Richard A.

    2018-02-01

    We present new high-precision CA-ID-TIMS and in situ U-Pb ages together with Hf and O isotopic analyses (analyses performed all on the same grains) from four tuffs from the 15-10 Ma Bruneau-Jarbidge center of the Snake River Plain and from three rhyolitic units from the Kimberly borehole in the neighboring 10-6 Ma Twin Falls volcanic center. We find significant intrasample diversity in zircon ages (ranges of up to 3 Myr) and in δ18O (ranges of up to 6‰) and ɛHf (ranges of up to 24 ɛ units) values. Zircon rims are also more homogeneous than the associated cores, and we show that zircon rim growth occurs faster than the resolution of in situ dating techniques. CA-ID-TIMS dating of a subset of zircon grains from the Twin Falls samples reveals complex crystallization histories spanning 104-106 years prior to some eruptions, suggesting that magma genesis was characterized by the cyclic remelting of buried volcanic rocks and intrusions associated with previous magmatic episodes. Age-dependent trends in zircon isotopic compositions show that rhyolite production in the Yellowstone hotspot track is driven by the mixing of mantle-derived melts (normal δ18O and ɛHf) and a combination of Precambrian basement rock (normal δ18O and ɛHf down to - 60) and shallow Mesozoic and Cenozoic age rocks, some of which are hydrothermally altered (to low δ18O values) by earlier stages of Snake River Plain magmatism. These crustal melts hybridize with juvenile basalts and rhyolites to produce the erupted rhyolites. We also observe that the Precambrian basement rock is only an important component in the erupted magmas in the first eruption at each caldera center, suggesting that the accumulation of new intrusions quickly builds an upper crustal intrusive body which is isolated from the Precambrian basement and evolves towards more isotopically juvenile and lower-δ18O compositions over time.

  5. Dock and Pak regulate olfactory axon pathfinding in Drosophila.

    PubMed

    Ang, Lay-Hong; Kim, Jenny; Stepensky, Vitaly; Hing, Huey

    2003-04-01

    The convergence of olfactory axons expressing particular odorant receptor (Or) genes on spatially invariant glomeruli in the brain is one of the most dramatic examples of precise axon targeting in developmental neurobiology. The cellular and molecular mechanisms by which olfactory axons pathfind to their targets are poorly understood. We report here that the SH2/SH3 adapter Dock and the serine/threonine kinase Pak are necessary for the precise guidance of olfactory axons. Using antibody localization, mosaic analyses and cell-type specific rescue, we observed that Dock and Pak are expressed in olfactory axons and function autonomously in olfactory neurons to regulate the precise wiring of the olfactory map. Detailed analyses of the mutant phenotypes in whole mutants and in small multicellular clones indicate that Dock and Pak do not control olfactory neuron (ON) differentiation, but specifically regulate multiple aspects of axon trajectories to guide them to their cognate glomeruli. Structure/function studies show that Dock and Pak form a signaling pathway that mediates the response of olfactory axons to guidance cues in the developing antennal lobe (AL). Our findings therefore identify a central signaling module that is used by ONs to project to their cognate glomeruli.

  6. Accuracy and precision of a custom camera-based system for 2D and 3D motion tracking during speech and nonspeech motor tasks

    PubMed Central

    Feng, Yongqiang; Max, Ludo

    2014-01-01

    Purpose Studying normal or disordered motor control requires accurate motion tracking of the effectors (e.g., orofacial structures). The cost of electromagnetic, optoelectronic, and ultrasound systems is prohibitive for many laboratories, and limits clinical applications. For external movements (lips, jaw), video-based systems may be a viable alternative, provided that they offer high temporal resolution and sub-millimeter accuracy. Method We examined the accuracy and precision of 2D and 3D data recorded with a system that combines consumer-grade digital cameras capturing 60, 120, or 240 frames per second (fps), retro-reflective markers, commercially-available computer software (APAS, Ariel Dynamics), and a custom calibration device. Results Overall mean error (RMSE) across tests was 0.15 mm for static tracking and 0.26 mm for dynamic tracking, with corresponding precision (SD) values of 0.11 and 0.19 mm, respectively. The effect of frame rate varied across conditions, but, generally, accuracy was reduced at 240 fps. The effect of marker size (3 vs. 6 mm diameter) was negligible at all frame rates for both 2D and 3D data. Conclusion Motion tracking with consumer-grade digital cameras and the APAS software can achieve sub-millimeter accuracy at frame rates that are appropriate for kinematic analyses of lip/jaw movements for both research and clinical purposes. PMID:24686484

  7. The effect of photometric redshift uncertainties on galaxy clustering and baryonic acoustic oscillations

    NASA Astrophysics Data System (ADS)

    Chaves-Montero, Jonás; Angulo, Raúl E.; Hernández-Monteagudo, Carlos

    2018-07-01

    In the upcoming era of high-precision galaxy surveys, it becomes necessary to understand the impact of redshift uncertainties on cosmological observables. In this paper we explore the effect of sub-percent photometric redshift errors (photo-z errors) on galaxy clustering and baryonic acoustic oscillations (BAOs). Using analytic expressions and results from 1000 N-body simulations, we show how photo-z errors modify the amplitude of moments of the 2D power spectrum, their variances, the amplitude of BAOs, and the cosmological information in them. We find that (a) photo-z errors suppress the clustering on small scales, increasing the relative importance of shot noise, and thus reducing the interval of scales available for BAO analyses; (b) photo-z errors decrease the smearing of BAOs due to non-linear redshift-space distortions (RSDs) by giving less weight to line-of-sight modes; and (c) photo-z errors (and small-scale RSD) induce a scale dependence on the information encoded in the BAO scale, and that reduces the constraining power on the Hubble parameter. Using these findings, we propose a template that extracts unbiased cosmological information from samples with photo-z errors with respect to cases without them. Finally, we provide analytic expressions to forecast the precision in measuring the BAO scale, showing that spectro-photometric surveys will measure the expansion history of the Universe with a precision competitive to that of spectroscopic surveys.

  8. Two-point T1 measurement: wide-coverage optimizations by stochastic simulations.

    PubMed

    Lin, M S; Fletcher, J W; Donati, R M

    1986-08-01

    Stochastic reliability of T1 measurement from image signal ratios is examined in the ideal case by stochastic simulations in the context of wide-coverage optimizations. Precise measurements prove to be accurate, and accurate ones precise. Sign-preserved inversion-recovery (IR)/non-IR techniques are the best ratio method, reciprocal non-IR/IR ones being equivalent, but inconvenient. Wide-coverage optima are relatively unsharp. Suggested guidelines for covering the 150- to 1500-ms T1 band are minimal relevant TE; TI about 400 ms; effective repetition times about in the ratio, TR2(IR)/TR1 (non-IR) = 2.5-3.0, and in a sum as long as possible up to about TR1 + TR2 = 3.5-4.0 s; signal-averaging after and only after TR1 + TR2 has been lengthened to the said region. Also suggested are different guidelines for covering T1 bands, 120-1200 and 200-1800 ms. Typically, precisions and accuracies improve linearly or faster with increasing S/N and (S/N)2, respectively. Unnecessarily high pixel resolutions or thin slicings exact great penalties in accuracies. Progressively shortening TR1 eventually transforms a wide coverage into a sharp targeting with small potential gains in a narrow T1 locality and large compromises almost everywhere else. The simulations yield an insight into applicabilities of standard error propagation analyses in two-point T1 measurement.

  9. Ambiguity and variability of database and software names in bioinformatics.

    PubMed

    Duck, Geraint; Kovacevic, Aleksandar; Robertson, David L; Stevens, Robert; Nenadic, Goran

    2015-01-01

    There are numerous options available to achieve various tasks in bioinformatics, but until recently, there were no tools that could systematically identify mentions of databases and tools within the literature. In this paper we explore the variability and ambiguity of database and software name mentions and compare dictionary and machine learning approaches to their identification. Through the development and analysis of a corpus of 60 full-text documents manually annotated at the mention level, we report high variability and ambiguity in database and software mentions. On a test set of 25 full-text documents, a baseline dictionary look-up achieved an F-score of 46 %, highlighting not only variability and ambiguity but also the extensive number of new resources introduced. A machine learning approach achieved an F-score of 63 % (with precision of 74 %) and 70 % (with precision of 83 %) for strict and lenient matching respectively. We characterise the issues with various mention types and propose potential ways of capturing additional database and software mentions in the literature. Our analyses show that identification of mentions of databases and tools is a challenging task that cannot be achieved by relying on current manually-curated resource repositories. Although machine learning shows improvement and promise (primarily in precision), more contextual information needs to be taken into account to achieve a good degree of accuracy.

  10. The effect of photometric redshift uncertainties on galaxy clustering and baryonic acoustic oscillations

    NASA Astrophysics Data System (ADS)

    Chaves-Montero, Jonás; Angulo, Raúl E.; Hernández-Monteagudo, Carlos

    2018-04-01

    In the upcoming era of high-precision galaxy surveys, it becomes necessary to understand the impact of redshift uncertainties on cosmological observables. In this paper we explore the effect of sub-percent photometric redshift errors (photo-z errors) on galaxy clustering and baryonic acoustic oscillations (BAO). Using analytic expressions and results from 1 000 N-body simulations, we show how photo-z errors modify the amplitude of moments of the 2D power spectrum, their variances, the amplitude of BAO, and the cosmological information in them. We find that: a) photo-z errors suppress the clustering on small scales, increasing the relative importance of shot noise, and thus reducing the interval of scales available for BAO analyses; b) photo-z errors decrease the smearing of BAO due to non-linear redshift-space distortions (RSD) by giving less weight to line-of-sight modes; and c) photo-z errors (and small-scale RSD) induce a scale dependence on the information encoded in the BAO scale, and that reduces the constraining power on the Hubble parameter. Using these findings, we propose a template that extracts unbiased cosmological information from samples with photo-z errors with respect to cases without them. Finally, we provide analytic expressions to forecast the precision in measuring the BAO scale, showing that spectro-photometric surveys will measure the expansion history of the Universe with a precision competitive to that of spectroscopic surveys.

  11. Early-Middle Cenozoic Andean mammal faunas: Integrated analyses of biochronology, geochronology, and paleoecology (Invited)

    NASA Astrophysics Data System (ADS)

    Flynn, J. J.

    2010-12-01

    For almost two centuries, understanding of the South American Cenozoic terrestrial biota was derived largely from the extensive but gap-riddled record from Patagonia and nearby lowland, high-latitude sites. But discoveries and analyses of Andean and tropical fossil mammal assemblages have increased substantially in recent years, and integrating these new paleontological data with those typically used in geochronologic and tectonic studies can yield new or deeper insights into the timing, origin, and magnitude of biotic responses to environmental, climatic and other physical changes, including the influences of regional (e.g., tectonism) versus global (e.g., climate change) events. More than two decades of collaborative research with R. Charrier (U. Chile), A. Wyss and P. Gans (UC-Santa Barbara), D. Croft (Case Western), the National Museum of Chile, and other investigators in the Main Range of the Chilean Andes is creating one of the premier archives of early-middle Cenozoic terrestrial mammal fossils. The active margin setting and thick volcaniclastic sequences accumulating in Andean extensional basins foster preservation of a unique record of mammalian evolution, and development of a more precise and reliable terrestrial geochronology integrating biochronology, magnetostratigraphy and high-precision radioisotopic dating, including the first calibration for some South American Land Mammal “Ages” (SALMAs). Intensive work within the Andes of Chile (particularly the Abanico Fm. and its equivalents, from 33°-38°30’S) has yielded more than 3,000 specimens from > 2 dozen sets of localities, spanning some 30° of latitude and ranging in age from at least 40 to 10 Ma (late Eocene to late Miocene). Exemplar “case-studies” illustrate how these new fossils and dates provide key data for understanding mammalian evolution and paleoecology, documenting faunal change through time (during periods of profound environmental and biotic restructuring), assessing environmental transformations and responses to climate change, and elucidating the timing of Cenozoic Andean tectonic events. In broad terms, South American environments were largely forested across the continent in the early Cenozoic, with a phase of widespread and relatively rapid habitat change beginning during the E/O boundary interval, likely in response to more global rather than regional causes. For example, the well-dated Tinguiririca Fauna (31.5-32 Ma) documents a new earliest Oligocene SALMA, and suggests some faunal provinciality by the Oligocene or earlier. Paleoecological analyses provide compelling indications that relatively dry, open habitat, grassland/woodland environments flourished 15-20 million years earlier in South America than on other continents, likely related to the climatic “deterioration” and associated paleoenvironmental events across the E/O boundary interval. Fossils from the Laguna del Laja region farther south span 5-6 SALMAs, are associated with a series of high-precision 40Ar/39Ar ages, and document pronounced local endemism, perhaps in response to global climate changes and regional tectonic events following the Paleogene-Neogene transition.

  12. Alcohol intake and gastric cancer: Meta-analyses of published data versus individual participant data pooled analyses (StoP Project).

    PubMed

    Ferro, Ana; Morais, Samantha; Rota, Matteo; Pelucchi, Claudio; Bertuccio, Paola; Bonzi, Rossella; Galeone, Carlotta; Zhang, Zuo-Feng; Matsuo, Keitaro; Ito, Hidemi; Hu, Jinfu; Johnson, Kenneth C; Yu, Guo-Pei; Palli, Domenico; Ferraroni, Monica; Muscat, Joshua; Malekzadeh, Reza; Ye, Weimin; Song, Huan; Zaridze, David; Maximovitch, Dmitry; Fernández de Larrea, Nerea; Kogevinas, Manolis; Vioque, Jesus; Navarrete-Muñoz, Eva M; Pakseresht, Mohammadreza; Pourfarzi, Farhad; Wolk, Alicja; Orsini, Nicola; Bellavia, Andrea; Håkansson, Niclas; Mu, Lina; Pastorino, Roberta; Kurtz, Robert C; Derakhshan, Mohammad H; Lagiou, Areti; Lagiou, Pagona; Boffetta, Paolo; Boccia, Stefania; Negri, Eva; La Vecchia, Carlo; Peleteiro, Bárbara; Lunet, Nuno

    2018-05-01

    Individual participant data pooled analyses allow access to non-published data and statistical reanalyses based on more homogeneous criteria than meta-analyses based on systematic reviews. We quantified the impact of publication-related biases and heterogeneity in data analysis and presentation in summary estimates of the association between alcohol drinking and gastric cancer. We compared estimates obtained from conventional meta-analyses, using only data available in published reports from studies that take part in the Stomach Cancer Pooling (StoP) Project, with individual participant data pooled analyses including the same studies. A total of 22 studies from the StoP Project assessed the relation between alcohol intake and gastric cancer, 19 had specific data for levels of consumption and 18 according to cancer location; published reports addressing these associations were available from 18, 5 and 5 studies, respectively. The summary odds ratios [OR, (95%CI)] estimate obtained with published data for drinkers vs. non-drinkers was 10% higher than the one obtained with individual StoP data [18 vs. 22 studies: 1.21 (1.07-1.36) vs. 1.10 (0.99-1.23)] and more heterogeneous (I 2 : 63.6% vs 54.4%). In general, published data yielded less precise summary estimates (standard errors up to 2.6 times higher). Funnel plot analysis suggested publication bias. Meta-analyses of the association between alcohol drinking and gastric cancer tended to overestimate the magnitude of the effects, possibly due to publication bias. Additionally, individual participant data pooled analyses yielded more precise estimates for different levels of exposure or cancer subtypes. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Automated Axon Counting in Rodent Optic Nerve Sections with AxonJ.

    PubMed

    Zarei, Kasra; Scheetz, Todd E; Christopher, Mark; Miller, Kathy; Hedberg-Buenz, Adam; Tandon, Anamika; Anderson, Michael G; Fingert, John H; Abràmoff, Michael David

    2016-05-26

    We have developed a publicly available tool, AxonJ, which quantifies the axons in optic nerve sections of rodents stained with paraphenylenediamine (PPD). In this study, we compare AxonJ's performance to human experts on 100x and 40x images of optic nerve sections obtained from multiple strains of mice, including mice with defects relevant to glaucoma. AxonJ produced reliable axon counts with high sensitivity of 0.959 and high precision of 0.907, high repeatability of 0.95 when compared to a gold-standard of manual assessments and high correlation of 0.882 to the glaucoma damage staging of a previously published dataset. AxonJ allows analyses that are quantitative, consistent, fully-automated, parameter-free, and rapid on whole optic nerve sections at 40x. As a freely available ImageJ plugin that requires no highly specialized equipment to utilize, AxonJ represents a powerful new community resource augmenting studies of the optic nerve using mice.

  14. Applications of Quantum Cascade Laser Spectroscopy in the Analysis of Pharmaceutical Formulations.

    PubMed

    Galán-Freyle, Nataly J; Pacheco-Londoño, Leonardo C; Román-Ospino, Andrés D; Hernandez-Rivera, Samuel P

    2016-09-01

    Quantum cascade laser spectroscopy was used to quantify active pharmaceutical ingredient content in a model formulation. The analyses were conducted in non-contact mode by mid-infrared diffuse reflectance. Measurements were carried out at a distance of 15 cm, covering the spectral range 1000-1600 cm(-1) Calibrations were generated by applying multivariate analysis using partial least squares models. Among the figures of merit of the proposed methodology are the high analytical sensitivity equivalent to 0.05% active pharmaceutical ingredient in the formulation, high repeatability (2.7%), high reproducibility (5.4%), and low limit of detection (1%). The relatively high power of the quantum-cascade-laser-based spectroscopic system resulted in the design of detection and quantification methodologies for pharmaceutical applications with high accuracy and precision that are comparable to those of methodologies based on near-infrared spectroscopy, attenuated total reflection mid-infrared Fourier transform infrared spectroscopy, and Raman spectroscopy. © The Author(s) 2016.

  15. Automated Axon Counting in Rodent Optic Nerve Sections with AxonJ

    NASA Astrophysics Data System (ADS)

    Zarei, Kasra; Scheetz, Todd E.; Christopher, Mark; Miller, Kathy; Hedberg-Buenz, Adam; Tandon, Anamika; Anderson, Michael G.; Fingert, John H.; Abràmoff, Michael David

    2016-05-01

    We have developed a publicly available tool, AxonJ, which quantifies the axons in optic nerve sections of rodents stained with paraphenylenediamine (PPD). In this study, we compare AxonJ’s performance to human experts on 100x and 40x images of optic nerve sections obtained from multiple strains of mice, including mice with defects relevant to glaucoma. AxonJ produced reliable axon counts with high sensitivity of 0.959 and high precision of 0.907, high repeatability of 0.95 when compared to a gold-standard of manual assessments and high correlation of 0.882 to the glaucoma damage staging of a previously published dataset. AxonJ allows analyses that are quantitative, consistent, fully-automated, parameter-free, and rapid on whole optic nerve sections at 40x. As a freely available ImageJ plugin that requires no highly specialized equipment to utilize, AxonJ represents a powerful new community resource augmenting studies of the optic nerve using mice.

  16. Use of Terrestrial Laser Scanning Technology for Long Term High Precision Deformation Monitoring

    PubMed Central

    Vezočnik, Rok; Ambrožič, Tomaž; Sterle, Oskar; Bilban, Gregor; Pfeifer, Norbert; Stopar, Bojan

    2009-01-01

    The paper presents a new methodology for high precision monitoring of deformations with a long term perspective using terrestrial laser scanning technology. In order to solve the problem of a stable reference system and to assure the high quality of possible position changes of point clouds, scanning is integrated with two complementary surveying techniques, i.e., high quality static GNSS positioning and precise tacheometry. The case study object where the proposed methodology was tested is a high pressure underground pipeline situated in an area which is geologically unstable. PMID:22303152

  17. Microbiological assay for the determination of meropenem in pharmaceutical dosage form.

    PubMed

    Mendez, Andreas S L; Weisheimer, Vanessa; Oppe, Tércio P; Steppe, Martin; Schapoval, Elfrides E S

    2005-04-01

    Meropenem is a highly active carbapenem antibiotic used in the treatment of a wide range of serious infections. The present work reports a microbiological assay, applying the cylinder-plate method, for the determination of meropenem in powder for injection. The validation method yielded good results and included linearity, precision, accuracy and specificity. The assay is based on the inhibitory effect of meropenem upon the strain of Micrococcus luteus ATCC 9341 used as the test microorganism. The results of assay were treated statistically by analysis of variance (ANOVA) and were found to be linear (r=0.9999) in the range of 1.5-6.0 microg ml(-1), precise (intra-assay: R.S.D.=0.29; inter-assay: R.S.D.=0.94) and accurate. A preliminary stability study of meropenem was performed to show that the microbiological assay is specific for the determination of meropenem in the presence of its degradation products. The degraded samples were also analysed by the HPLC method. The proposed method allows the quantitation of meropenem in pharmaceutical dosage form and can be used for the drug analysis in routine quality control.

  18. [Comparison of 2 lacrimal punctal occlusion methods].

    PubMed

    Shalaby, O; Rivas, L; Rivas, A I; Oroza, M A; Murube, J

    2001-09-01

    To study and compare two methods for canalicular occlusion: Cautery and Punctal Patch. The study included fourty patients divided in two groups of 20 patients. The end point was 4 occluded puncti. The first group underwent deep cauterization resulting in occlusion of the full vertical aspect of the canaliculus. The second group underwent punctal patch technique for canalicular occlusion. Differential parameters were the following: time of intervention, ease of use, risks and precision. In the post operatory, discomfort, subjective and objective improvement in ocular surface as well as long term result of each technique was analysed. Time of intervention was longer for punctal patch compared to cautery. Both methods exhibited similar ease of use and improvement in ocular surface. Precision was high in punctal patch technique showing complete and final occlusion and no punctum needed reopening, while cautery technique presented 20% rate of reopening intervention. Postoperatory discomfort and irritation were remarkably evident with punctal technique, while minimal in cautery technique. Survival analysis after one year follow up, showed a higher rate of advantages for punctal patch technique over cautery technique.

  19. Isotope-ratio-monitoring gas chromatography-mass spectrometry: methods for isotopic calibration

    NASA Technical Reports Server (NTRS)

    Merritt, D. A.; Brand, W. A.; Hayes, J. M.

    1994-01-01

    In trial analyses of a series of n-alkanes, precise determinations of 13C contents were based on isotopic standards introduced by five different techniques and results were compared. Specifically, organic-compound standards were coinjected with the analytes and carried through chromatography and combustion with them; or CO2 was supplied from a conventional inlet and mixed with the analyte in the ion source, or CO2 was supplied from an auxiliary mixing volume and transmitted to the source without interruption of the analyte stream. Additionally, two techniques were investigated in which the analyte stream was diverted and CO2 standards were placed on a near-zero background. All methods provided accurate results. Where applicable, methods not involving interruption of the analyte stream provided the highest performance (sigma = 0.00006 at.% 13C or 0.06% for 250 pmol C as CO2 reaching the ion source), but great care was required. Techniques involving diversion of the analyte stream were immune to interference from coeluting sample components and still provided high precision (0.0001 < or = sigma < or = 0.0002 at.% or 0.1 < or = sigma < or = 0.2%).

  20. Precise quantitation of 136 urinary proteins by LC/MRM-MS using stable isotope labeled peptides as internal standards for biomarker discovery and/or verification studies.

    PubMed

    Percy, Andrew J; Yang, Juncong; Hardie, Darryl B; Chambers, Andrew G; Tamura-Wells, Jessica; Borchers, Christoph H

    2015-06-15

    Spurred on by the growing demand for panels of validated disease biomarkers, increasing efforts have focused on advancing qualitative and quantitative tools for more highly multiplexed and sensitive analyses of a multitude of analytes in various human biofluids. In quantitative proteomics, evolving strategies involve the use of the targeted multiple reaction monitoring (MRM) mode of mass spectrometry (MS) with stable isotope-labeled standards (SIS) used for internal normalization. Using that preferred approach with non-invasive urine samples, we have systematically advanced and rigorously assessed the methodology toward the precise quantitation of the largest, multiplexed panel of candidate protein biomarkers in human urine to date. The concentrations of the 136 proteins span >5 orders of magnitude (from 8.6 μg/mL to 25 pg/mL), with average CVs of 8.6% over process triplicate. Detailed here is our quantitative method, the analysis strategy, a feasibility application to prostate cancer samples, and a discussion of the utility of this method in translational studies. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. High-Precision Half-Life Measurement for the Superallowed β+ Emitter Alm26

    NASA Astrophysics Data System (ADS)

    Finlay, P.; Ettenauer, S.; Ball, G. C.; Leslie, J. R.; Svensson, C. E.; Andreoiu, C.; Austin, R. A. E.; Bandyopadhyay, D.; Cross, D. S.; Demand, G.; Djongolov, M.; Garrett, P. E.; Green, K. L.; Grinyer, G. F.; Hackman, G.; Leach, K. G.; Pearson, C. J.; Phillips, A. A.; Sumithrarachchi, C. S.; Triambak, S.; Williams, S. J.

    2011-01-01

    A high-precision half-life measurement for the superallowed β+ emitter Alm26 was performed at the TRIUMF-ISAC radioactive ion beam facility yielding T1/2=6346.54±0.46stat±0.60systms, consistent with, but 2.5 times more precise than, the previous world average. The Alm26 half-life and ft value, 3037.53(61) s, are now the most precisely determined for any superallowed β decay. Combined with recent theoretical corrections for isospin-symmetry-breaking and radiative effects, the corrected Ft value for Alm26, 3073.0(12) s, sets a new benchmark for the high-precision superallowed Fermi β-decay studies used to test the conserved vector current hypothesis and determine the Vud element of the Cabibbo-Kobayashi-Maskawa quark mixing matrix.

  2. An approach for filtering hyperbolically positioned underwater acoustic telemetry data with position precision estimates

    USGS Publications Warehouse

    Meckley, Trevor D.; Holbrook, Christopher M.; Wagner, C. Michael; Binder, Thomas R.

    2014-01-01

    The use of position precision estimates that reflect the confidence in the positioning process should be considered prior to the use of biological filters that rely on a priori expectations of the subject’s movement capacities and tendencies. Position confidence goals should be determined based upon the needs of the research questions and analysis requirements versus arbitrary selection, in which filters of previous studies are adopted. Data filtering with this approach ensures that data quality is sufficient for the selected analyses and presents the opportunity to adjust or identify a different analysis in the event that the requisite precision was not attained. Ignoring these steps puts a practitioner at risk of reporting errant findings.

  3. Accuracy and Precision of a Veterinary Neuronavigation System for Radiation Oncology Positioning

    PubMed Central

    Ballegeer, Elizabeth A.; Frey, Stephen; Sieffert, Rob

    2018-01-01

    Conformal radiation treatment plans such as IMRT and other radiosurgery techniques require very precise patient positioning, typically within a millimeter of error for best results. CT cone beam, real-time navigation, and infrared position sensors are potential options for success but rarely present in veterinary radiation centers. A neuronavigation system (Brainsight Vet, Rogue Research) was tested 22 times on a skull for positioning accuracy and precision analysis. The first 6 manipulations allowed the authors to become familiar with the system but were still included in the analyses. Overall, the targeting mean error in 3D was 1.437 mm with SD 1.242 mm. This system could be used for positioning for radiation therapy or radiosurgery. PMID:29666822

  4. Direct lead isotope analysis in Hg-rich sulfides by LA-MC-ICP-MS with a gas exchange device and matrix-matched calibration.

    PubMed

    Zhang, Wen; Hu, Zhaochu; Günther, Detlef; Liu, Yongsheng; Ling, Wenli; Zong, Keqing; Chen, Haihong; Gao, Shan

    2016-12-15

    In situ Pb isotope data of sulfide samples measured by LA-MC-ICP-MS provide valuable geochemical information for studies of the origin and evolution of ore deposits. However, the severe isobaric interference of 204 Hg on 204 Pb and the lack of matrix-matched sulfide reference materials limit the precision of Pb isotopic analyses for Hg-rich sulfides. In this study, we observe that Hg forms vapor and can be completely removed from sample aerosol particles produced by laser ablation using a gas exchange device. Additionally, this device does not influence the signal intensities of Pb isotopes. The within-run precision, the external reproducibility and the analytical accuracy are significantly improved for the Hg-rich sulfide samples using this mercury-vapor-removing device. Matrix effects are observed when using silicate glass reference materials as the external standards to assess the relationship of mass fractionation factors between Tl and Pb in sulfide samples, resulting in a maximum deviation of ∼0.20% for 20x Pb/ 204 Pb. Matrix-matched reference materials are therefore required for the highly precise and accurate Pb isotope analyses of sulfide samples. We investigated two sulfide samples, MASS-1 (the Unites States Geological Survey reference materials) and Sph-HYLM (a natural sphalerite), as potential candidates. Repeated analyses of the two proposed sulfide reference materials by LA-MC-ICP-MS yield good external reproducibility of <0.04% (RSD, k = 2) for 20x Pb/ 206 Pb and <0.06% (RSD, k = 2) for 20x Pb/ 204 Pb with the exception of 20x Pb/ 204 Pb in MASS-1, which provided an external reproducibility of 0.24% (RSD, k = 2). Because the concentration of Pb in MASS-1 (76 μg g -1 ) is ∼5.2 times lower than that in Sph-HYLM (394 ± 264 μg g -1 ). The in situ analytical results of MASS-1 and Sph-HYLM are consistent with the values obtained by solution MC-ICP-MS, demonstrating the reliability and robustness of our analytical protocol. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Developing methods for assessing abundance and distribution of European oysters (Ostrea edulis) using towed video.

    PubMed

    Thorngren, Linnea; Dunér Holthuis, Thomas; Lindegarth, Susanne; Lindegarth, Mats

    2017-01-01

    Due to large-scale habitat losses and increasing pressures, benthic habitats in general, and perhaps oyster beds in particular, are commonly in decline and severely threatened on regional and global scales. Appropriate and cost-efficient methods for mapping and monitoring of the distribution, abundance and quality of remaining oyster populations are fundamental for sustainable management and conservation of these habitats and their associated values. Towed video has emerged as a promising method for surveying benthic communities in a both non-destructive and cost-efficient way. Here we examine its use as a tool for quantification and monitoring of oyster populations by (i) analysing how well abundances can be estimated and how living Ostrea edulis individuals can be distinguished from dead ones, (ii) estimating the variability within and among observers as well as the spatial variability at a number of scales, and finally (iii) evaluating the precision of estimated abundances under different scenarios for monitoring. Overall, the results show that the can be used to quantify abundance and occurrence of Ostrea edulis in heterogeneous environments. There was a strong correlation between abundances determined in the field and abundances estimated by video-analyses (r2 = 0.93), even though video analyses underestimated the total abundance of living oysters by 20%. Additionally, the method was largely repeatable within and among observers and revealed no evident bias in identification of living and dead oysters. We also concluded that the spatial variability was an order of magnitude larger than that due to observer errors. Subsequent modelling of precision showed that the total area sampled was the main determinant of precision and provided general method for determining precision. This study provides a thorough validation of the application of towed video on quantitative estimations of live oysters. The results suggest that the method can indeed be very useful for this purpose and we therefor recommend it for future monitoring of oysters and other threatened habitats and species.

  6. Developing methods for assessing abundance and distribution of European oysters (Ostrea edulis) using towed video

    PubMed Central

    Dunér Holthuis, Thomas; Lindegarth, Susanne; Lindegarth, Mats

    2017-01-01

    Due to large-scale habitat losses and increasing pressures, benthic habitats in general, and perhaps oyster beds in particular, are commonly in decline and severely threatened on regional and global scales. Appropriate and cost-efficient methods for mapping and monitoring of the distribution, abundance and quality of remaining oyster populations are fundamental for sustainable management and conservation of these habitats and their associated values. Towed video has emerged as a promising method for surveying benthic communities in a both non-destructive and cost-efficient way. Here we examine its use as a tool for quantification and monitoring of oyster populations by (i) analysing how well abundances can be estimated and how living Ostrea edulis individuals can be distinguished from dead ones, (ii) estimating the variability within and among observers as well as the spatial variability at a number of scales, and finally (iii) evaluating the precision of estimated abundances under different scenarios for monitoring. Overall, the results show that the can be used to quantify abundance and occurrence of Ostrea edulis in heterogeneous environments. There was a strong correlation between abundances determined in the field and abundances estimated by video-analyses (r2 = 0.93), even though video analyses underestimated the total abundance of living oysters by 20%. Additionally, the method was largely repeatable within and among observers and revealed no evident bias in identification of living and dead oysters. We also concluded that the spatial variability was an order of magnitude larger than that due to observer errors. Subsequent modelling of precision showed that the total area sampled was the main determinant of precision and provided general method for determining precision. This study provides a thorough validation of the application of towed video on quantitative estimations of live oysters. The results suggest that the method can indeed be very useful for this purpose and we therefor recommend it for future monitoring of oysters and other threatened habitats and species. PMID:29141028

  7. Investigation of magnesium isotope fractionation during basalt differentiation: Implications for a chondritic composition of the terrestrial mantle

    USGS Publications Warehouse

    Teng, F.-Z.; Wadhwa, M.; Helz, R.T.

    2007-01-01

    To investigate whether magnesium isotopes are fractionated during basalt differentiation, we have performed high-precision Mg isotopic analyses by multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS) on a set of well-characterized samples from Kilauea Iki lava lake, Hawaii, USA. Samples from the Kilauea Iki lava lake, produced by closed-system crystal-melt fractionation, range from olivine-rich cumulates to highly differentiated basalts with MgO content ranging from 2.37 to 26.87??wt.%. Our results demonstrate that although these basalts have diverse chemical compositions, mineralogies, crystallization temperatures and degrees of differentiation, their Mg isotopic compositions display no measurable variation within the limits of our external precision (average ??26Mg = - 0.36 ?? 0.10 and ??25Mg = - 0.20 ?? 0.07; uncertainties are 2SD). This indicates that Mg isotopic fractionation during crystal-melt fractionation at temperatures of ??? 1055????C is undetectable at the level of precision of the current investigation. Calculations based on our data suggest that at near-magmatic temperatures the maximum fractionation in the 26Mg/24Mg ratio between olivine and melt is 0.07???. Two additional oceanic basalts, two continental basalts (BCR-1 and BCR-2), and two primitive carbonaceous chondrites (Allende and Murchison) analyzed in this study have Mg isotopic compositions similar to the Kilauea Iki lava lake samples. In contrast to a recent report [U. Wiechert, A.N. Halliday, Non-chondritic magnesium and the origins of the inner terrestrial planets, Earth and Planetary Science Letters 256 (2007) 360-371], the results presented here suggest that the Bulk Silicate Earth has a chondritic Mg isotopic composition. ?? 2007.

  8. Non-contact measurement of linear external dimensions of the mouse eye

    PubMed Central

    Wisard, Jeffrey; Chrenek, Micah A.; Wright, Charles; Dalal, Nupur; Pardue, Machelle T.; Boatright, Jeffrey H.; Nickerson, John M.

    2010-01-01

    Biometric analyses of quantitative traits in eyes of mice can reveal abnormalities related to refractive or ocular development. Due to the small size of the mouse eye, highly accurate and precise measurements are needed to detect meaningful differences. We sought a non-contact measuring technique to obtain highly accurate and precise linear dimensions of the mouse eye. Laser micrometry was validated with gauge block standards. Simple procedures to measure eye dimensions on three axes were devised. Mouse eyes from C57BL/6J and rd10 on a C57BL/6J background were dissected and extraocular muscle and fat removed. External eye dimensions of axial length (anterior-posterior (A-P) axis) and equatorial diameter (superior-inferior (S-I) and nasal-temporal (N-T) axes) were obtained with a laser micrometer. Several approaches to prevent or ameliorate evaporation due to room air were employed. The resolution of the laser micrometer was less than 0.77 microns, and it provided accurate and precise non-contact measurements of eye dimensions on three axes. External dimensions of the eye strongly correlated with eye weight. The N-T and S-I dimensions of the eye correlated with each other most closely from among the 28 pair-wise combinations of the several parameters that were collected. The equatorial axis measurements correlated well from the right and left eye of each mouse. The A-P measurements did not correlate or correlated poorly in each pair of eyes. The instrument is well suited for the measurement of enucleated eyes and other structures from most commonly used species in experimental vision research and ophthalmology. PMID:20067806

  9. Matrix effects of calcium on high-precision sulfur isotope measurement by multiple-collector inductively coupled plasma mass spectrometry.

    PubMed

    Liu, Chenhui; Bian, Xiao-Peng; Yang, Tao; Lin, An-Jun; Jiang, Shao-Yong

    2016-05-01

    Multiple-collector inductively coupled plasma mass spectrometry (MC-ICP-MS) has been successfully applied in the rapid and high-precision measurement for sulfur isotope ratios in recent years. During the measurement, the presence of matrix elements would affect the instrumental mass bias for sulfur and these matrix-induced effects have aroused a lot of researchers' interest. However, these studies have placed more weight on highlighting the necessity for their proposed correction protocols (e.g., chemical purification and matrix-matching) while less attention on the key property of the matrix element gives rise to the matrix effects. In this study, four groups of sulfate solutions, which have different concentrations of sulfur (0.05-0.60mM) but a constant sequence of atomic calcium/sulfur ratios (0.1-50), are investigated under wet (solution) and dry (desolvation) plasma conditions to make a detailed evaluation on the matrix effects from calcium on sulfur isotope measurement. Based on a series of comparative analyses, we indicated that, the matrix effects of calcium on both measured sulfur isotope ratios and detected (32)S signal intensities are dependent mainly on the absolute calcium concentration rather than its relative concentration ratio to sulfur (i.e., atomic calcium/sulfur ratio). Also, for the same group of samples, the matrix effects of calcium under dry plasma condition are much more significant than that of wet plasma. This research affords the opportunity to realize direct and relatively precise sulfur isotope measurement for evaporite gypsum, and further provides some suggestions with regard to sulfur isotope analytical protocols for sedimentary pore water. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Near-critical density filling of the SF6 fluid cell for the ALI-R-DECLIC experiment in weightlessness

    NASA Astrophysics Data System (ADS)

    Lecoutre, C.; Marre, S.; Garrabos, Y.; Beysens, D.; Hahn, I.

    2018-05-01

    Analyses of ground-based experiments on near-critical fluids to precisely determine their density can be hampered by several effects, especially the density stratification of the sample, the liquid wetting behavior at the cell walls, and a possible singular curvature of the "rectilinear" diameter of the density coexisting curve. For the latter effect, theoretical efforts have been made to understand the amplitude and shape of the critical hook of the density diameter, which depart from predictions from the so-called ideal lattice-gas model of the uniaxial 3D-Ising universality class. In order to optimize the observation of these subtle effects on the position and shape of the liquid-vapor meniscus in the particular case of SF6, we have designed and filled a cell that is highly symmetrized with respect to any median plane of the total fluid volume. In such a viewed quasi-perfect symmetrical fluid volume, the precise detection of the meniscus position and shape for different orientations of the cell with respect to the Earth's gravity acceleration field becomes a sensitive probe to estimate the cell mean density filling and to test the singular diameter effects. After integration of this cell in the ALI-R insert, we take benefit of the high optical and thermal performances of the DECLIC Engineering Model. Here we present the sensitive imaging method providing the precise ground-based SF6 benchmark data. From these data analysis it is found that the temperature dependence of the meniscus position does not reflect the expected critical hook in the rectilinear density diameter. Therefore the off-density criticality of the cell is accurately estimated, before near future experiments using the same ALI-R insert in the DECLIC facility already on-board the International Space Station.

  11. Non-contact measurement of linear external dimensions of the mouse eye.

    PubMed

    Wisard, Jeffrey; Chrenek, Micah A; Wright, Charles; Dalal, Nupur; Pardue, Machelle T; Boatright, Jeffrey H; Nickerson, John M

    2010-03-30

    Biometric analyses of quantitative traits in eyes of mice can reveal abnormalities related to refractive or ocular development. Due to the small size of the mouse eye, highly accurate and precise measurements are needed to detect meaningful differences. We sought a non-contact measuring technique to obtain highly accurate and precise linear dimensions of the mouse eye. Laser micrometry was validated with gauge block standards. Simple procedures to measure eye dimensions on three axes were devised. Mouse eyes from C57BL/6J and rd10 on a C57BL/6J background were dissected and extraocular muscle and fat removed. External eye dimensions of axial length (anterior-posterior (A-P) axis) and equatorial diameter (superior-inferior (S-I) and nasal-temporal (N-T) axes) were obtained with a laser micrometer. Several approaches to prevent or ameliorate evaporation due to room air were employed. The resolution of the laser micrometer was less than 0.77 microm, and it provided accurate and precise non-contact measurements of eye dimensions on three axes. External dimensions of the eye strongly correlated with eye weight. The N-T and S-I dimensions of the eye correlated with each other most closely from among the 28 pair-wise combinations of the several parameters that were collected. The equatorial axis measurements correlated well from the right and left eye of each mouse. The A-P measurements did not correlate or correlated poorly in each pair of eyes. The instrument is well suited for the measurement of enucleated eyes and other structures from most commonly used species in experimental vision research and ophthalmology. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  12. D and 18O enrichment measurements in biological fluids in a continuous-flow elemental analyser with an isotope-ratio mass spectrometer using two configurations.

    PubMed

    Ripoche, N; Ferchaud-Roucher, V; Krempf, M; Ritz, P

    2006-09-01

    In doubly labelled water studies, biological sample enrichments are mainly measured using off-line techniques (equilibration followed by dual-inlet introduction) or high-temperature elemental analysis (HT-EA), coupled with an isotope-ratio mass spectrometer (IRMS). Here another continuous-flow method, (CF-EA/IRMS), initially dedicated to water, is tested for plasma and urine analyses. The elemental analyser configuration is adapted for each stable isotope: chromium tube for deuterium reduction and glassy carbon reactor for 18O pyrolysis. Before on-line conversion of water into gas, each matrix is submitted to a short and easy treatment, which is the same for the analysis of the two isotopes. Plasma is passed through centrifugal filters. Urine is cleaned with black carbon and filtered (0.45 microm diameter). Tested between 150 and 300 ppm in these fluids, the D/H ratio response is linear with good repeatability (SD<0.2 ppm) and reproducibility (SD<0.5 ppm). For 18O/16O ratios (from 2000 to 2200 ppm), the same repeatability is obtained with a between-day precision lower than 1.4 ppm. The accuracy on biological samples is validated by comparison to classical dual-inlet methods: 18O analyses give more accurate results. The data show that enriched physiological fluids can be successfully analysed in CF-EA/IRMS. Copyright (c) 2006 John Wiley & Sons, Ltd.

  13. Are there local-scale effects of altitude, slope and aspect on temporal trends in a spatially high-resolved plant phenological network in the Swiss Alps 1971-2000?

    NASA Astrophysics Data System (ADS)

    Jeanneret, François; Rutishauser, This; Kottmann, Silvan; Brügger, Robert

    2010-05-01

    Shifts in phenology of plants and animals have been widely observed as consequence of climate change impacts and temperature increase. Species-specific data are often assigned to limited and generalized site information on the precise location of the observation. However, as much meta-information as possible on the individual plant under observations is necessary to assess the impacts of changing weather patterns at the local scale that are related to changes in radiation, fog, frost and dominating circulation. Here we used plant phenological data of the BERNCLIM network that collects data in the Canton of Bern (Switzerland) and adjacent areas covering a total area of 7,000 km2 since 1970. The number of observation sites reached up to 600 observation sites with detailed meta-information of several locations within each site. The precision of coordinates for each location is generally less than one hectare. This information allows to differentiate several terrain-types, based on altitude, slope and aspect. We used original observations and two interpolated data sets based of the blooming of hazel (Corylus avellana L.) for early spring, dandelion (Taraxacum officinale aggr.) for mid spring, and apple trees (Malus domestica Borkh.) for late spring. In addition we used interpolated data by using averaged maximum differences between several locations of a site and an algorithm based on constant spatial patterns in the 1971-1974 period. Phenological maps were created using multiple linear regression models with longitude, latitude, altitude, slope and aspect as independent variables and phenological date of each phase as dependent variable models in a Geographical Information System (GIS). For this contribution we analysed the impact of local terrain differences on phenological trends of three plant species. Specifically, we addressed the question whether differences in altitude, slope and aspect lead to systematic differences in temporal trends for the 1971-2000 period. Whereas altitude shows generally high correlations with phenology, we aimed at quantifying additional impacts on phenological trends such as microclimate and local adaptation of individual plants. We present results from an ongoing analysis and discuss the impact and additional uncertainties of local parameters on phenological observations and trends. Strongest variations between locations are expected for Corylus and Malus whereas Taraxacum is most strongly influenced by temperature along altitudinal gradients. This information derived from a regional observations network with long-term observations and high precision meta-information can be useful for detailed analyses of large data sets that stored in a number of European databases.

  14. Laser-Induced Focused Ultrasound for Cavitation Treatment: Toward High-Precision Invisible Sonic Scalpel.

    PubMed

    Lee, Taehwa; Luo, Wei; Li, Qiaochu; Demirci, Hakan; Guo, L Jay

    2017-10-01

    Beyond the implementation of the photoacoustic effect to photoacoustic imaging and laser ultrasonics, this study demonstrates a novel application of the photoacoustic effect for high-precision cavitation treatment of tissue using laser-induced focused ultrasound. The focused ultrasound is generated by pulsed optical excitation of an efficient photoacoustic film coated on a concave surface, and its amplitude is high enough to produce controllable microcavitation within the focal region (lateral focus <100 µm). Such microcavitation is used to cut or ablate soft tissue in a highly precise manner. This work demonstrates precise cutting of tissue-mimicking gels as well as accurate ablation of gels and animal eye tissues. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Adjoint-Based Implicit Uncertainty Analysis for Figures of Merit in a Laser Inertial Fusion Engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seifried, J E; Fratoni, M; Kramer, K J

    A primary purpose of computational models is to inform design decisions and, in order to make those decisions reliably, the confidence in the results of such models must be estimated. Monte Carlo neutron transport models are common tools for reactor designers. These types of models contain several sources of uncertainty that propagate onto the model predictions. Two uncertainties worthy of note are (1) experimental and evaluation uncertainties of nuclear data that inform all neutron transport models and (2) statistical counting precision, which all results of a Monte Carlo codes contain. Adjoint-based implicit uncertainty analyses allow for the consideration of anymore » number of uncertain input quantities and their effects upon the confidence of figures of merit with only a handful of forward and adjoint transport calculations. When considering a rich set of uncertain inputs, adjoint-based methods remain hundreds of times more computationally efficient than Direct Monte-Carlo methods. The LIFE (Laser Inertial Fusion Energy) engine is a concept being developed at Lawrence Livermore National Laboratory. Various options exist for the LIFE blanket, depending on the mission of the design. The depleted uranium hybrid LIFE blanket design strives to close the fission fuel cycle without enrichment or reprocessing, while simultaneously achieving high discharge burnups with reduced proliferation concerns. Neutron transport results that are central to the operation of the design are tritium production for fusion fuel, fission of fissile isotopes for energy multiplication, and production of fissile isotopes for sustained power. In previous work, explicit cross-sectional uncertainty analyses were performed for reaction rates related to the figures of merit for the depleted uranium hybrid LIFE blanket. Counting precision was also quantified for both the figures of merit themselves and the cross-sectional uncertainty estimates to gauge the validity of the analysis. All cross-sectional uncertainties were small (0.1-0.8%), bounded counting uncertainties, and were precise with regard to counting precision. Adjoint/importance distributions were generated for the same reaction rates. The current work leverages those adjoint distributions to transition from explicit sensitivities, in which the neutron flux is constrained, to implicit sensitivities, in which the neutron flux responds to input perturbations. This treatment vastly expands the set of data that contribute to uncertainties to produce larger, more physically accurate uncertainty estimates.« less

  16. High precision applications of the global positioning system

    NASA Technical Reports Server (NTRS)

    Lichten, Stephen M.

    1991-01-01

    The Global Positioning System (GPS) is a constellation of U.S. defense navigation satellites which can be used for military and civilian positioning applications. A wide variety of GPS scientific applications were identified and precise positioning capabilities with GPS were already demonstrated with data available from the present partial satellite constellation. Expected applications include: measurements of Earth crustal motion, particularly in seismically active regions; measurements of the Earth's rotation rate and pole orientation; high-precision Earth orbiter tracking; surveying; measurements of media propagation delays for calibration of deep space radiometric data in support of NASA planetary missions; determination of precise ground station coordinates; and precise time transfer worldwide.

  17. Genome-wide signatures of flowering adaptation to climate temperature: Regional analyses in a highly diverse native range of Arabidopsis thaliana.

    PubMed

    Tabas-Madrid, Daniel; Méndez-Vigo, Belén; Arteaga, Noelia; Marcer, Arnald; Pascual-Montano, Alberto; Weigel, Detlef; Xavier Picó, F; Alonso-Blanco, Carlos

    2018-03-08

    Current global change is fueling an interest to understand the genetic and molecular mechanisms of plant adaptation to climate. In particular, altered flowering time is a common strategy for escape from unfavourable climate temperature. In order to determine the genomic bases underlying flowering time adaptation to this climatic factor, we have systematically analysed a collection of 174 highly diverse Arabidopsis thaliana accessions from the Iberian Peninsula. Analyses of 1.88 million single nucleotide polymorphisms provide evidence for a spatially heterogeneous contribution of demographic and adaptive processes to geographic patterns of genetic variation. Mountains appear to be allele dispersal barriers, whereas the relationship between flowering time and temperature depended on the precise temperature range. Environmental genome-wide associations supported an overall genome adaptation to temperature, with 9.4% of the genes showing significant associations. Furthermore, phenotypic genome-wide associations provided a catalogue of candidate genes underlying flowering time variation. Finally, comparison of environmental and phenotypic genome-wide associations identified known (Twin Sister of FT, FRIGIDA-like 1, and Casein Kinase II Beta chain 1) and new (Epithiospecifer Modifier 1 and Voltage-Dependent Anion Channel 5) genes as candidates for adaptation to climate temperature by altered flowering time. Thus, this regional collection provides an excellent resource to address the spatial complexity of climate adaptation in annual plants. © 2018 John Wiley & Sons Ltd.

  18. Elucidating the significance of spatial memory on movement decisions by African savannah elephants using state–space models

    PubMed Central

    Polansky, Leo; Kilian, Werner; Wittemyer, George

    2015-01-01

    Spatial memory facilitates resource acquisition where resources are patchy, but how it influences movement behaviour of wide-ranging species remains to be resolved. We examined African elephant spatial memory reflected in movement decisions regarding access to perennial waterholes. State–space models of movement data revealed a rapid, highly directional movement behaviour almost exclusively associated with visiting perennial water. Behavioural change point (BCP) analyses demonstrated that these goal-oriented movements were initiated on average 4.59 km, and up to 49.97 km, from the visited waterhole, with the closest waterhole accessed 90% of the time. Distances of decision points increased when switching to different waterholes, during the dry season, or for female groups relative to males, while selection of the closest waterhole decreased when switching. Overall, our analyses indicated detailed spatial knowledge over large scales, enabling elephants to minimize travel distance through highly directional movement when accessing water. We discuss the likely cognitive and socioecological mechanisms driving these spatially precise movements that are most consistent with our findings. By applying modern analytic techniques to high-resolution movement data, this study illustrates emerging approaches for studying how cognition structures animal movement behaviour in different ecological and social contexts. PMID:25808888

  19. A 67-Item Stress Resilience item bank showing high content validity was developed in a psychosomatic sample.

    PubMed

    Obbarius, Nina; Fischer, Felix; Obbarius, Alexander; Nolte, Sandra; Liegl, Gregor; Rose, Matthias

    2018-04-10

    To develop the first item bank to measure Stress Resilience (SR) in clinical populations. Qualitative item development resulted in an initial pool of 131 items covering a broad theoretical SR concept. These items were tested in n=521 patients at a psychosomatic outpatient clinic. Exploratory and Confirmatory Factor Analysis (CFA), as well as other state-of-the-art item analyses and IRT were used for item evaluation and calibration of the final item bank. Out of the initial item pool of 131 items, we excluded 64 items (54 factor loading <.5, 4 residual correlations >.3, 2 non-discriminative Item Response Curves, 4 Differential Item Functioning). The final set of 67 items indicated sufficient model fit in CFA and IRT analyses. Additionally, a 10-item short form with high measurement precision (SE≤.32 in a theta range between -1.8 and +1.5) was derived. Both the SR item bank and the SR short form were highly correlated with an existing static legacy tool (Connor-Davidson Resilience Scale). The final SR item bank and 10-item short form showed good psychometric properties. When further validated, they will be ready to be used within a framework of Computer-Adaptive Tests for a comprehensive assessment of the Stress-Construct. Copyright © 2018. Published by Elsevier Inc.

  20. Precision optical slit for high heat load or ultra high vacuum

    DOEpatents

    Andresen, N.C.; DiGennaro, R.S.; Swain, T.L.

    1995-01-24

    This invention relates generally to slits used in optics that must be precisely aligned and adjusted. The optical slits of the present invention are useful in x-ray optics, x-ray beam lines, optical systems in which the entrance slit is critical for high wavelength resolution. The invention is particularly useful in ultra high vacuum systems where lubricants are difficult to use and designs which avoid the movement of metal parts against one another are important, such as monochromators for high wavelength resolution with ultra high vacuum systems. The invention further relates to optical systems in which temperature characteristics of the slit materials is important. The present invention yet additionally relates to precision slits wherein the opposing edges of the slit must be precisely moved relative to a center line between the edges with each edge retaining its parallel orientation with respect to the other edge and/or the center line. 21 figures.

  1. Precision optical slit for high heat load or ultra high vacuum

    DOEpatents

    Andresen, Nord C.; DiGennaro, Richard S.; Swain, Thomas L.

    1995-01-01

    This invention relates generally to slits used in optics that must be precisely aligned and adjusted. The optical slits of the present invention are useful in x-ray optics, x-ray beam lines, optical systems in which the entrance slit is critical for high wavelength resolution. The invention is particularly useful in ultra high vacuum systems where lubricants are difficult to use and designs which avoid the movement of metal parts against one another are important, such as monochrometers for high wavelength resolution with ultra high vacuum systems. The invention further relates to optical systems in which temperature characteristics of the slit materials is important. The present invention yet additionally relates to precision slits wherein the opposing edges of the slit must be precisely moved relative to a center line between the edges with each edge retaining its parallel orientation with respect to the other edge and/or the center line.

  2. Operations research applications in nuclear energy

    NASA Astrophysics Data System (ADS)

    Johnson, Benjamin Lloyd

    This dissertation consists of three papers; the first is published in Annals of Operations Research, the second is nearing submission to INFORMS Journal on Computing, and the third is the predecessor of a paper nearing submission to Progress in Nuclear Energy. We apply operations research techniques to nuclear waste disposal and nuclear safeguards. Although these fields are different, they allow us to showcase some benefits of using operations research techniques to enhance nuclear energy applications. The first paper, "Optimizing High-Level Nuclear Waste Disposal within a Deep Geologic Repository," presents a mixed-integer programming model that determines where to place high-level nuclear waste packages in a deep geologic repository to minimize heat load concentration. We develop a heuristic that increases the size of solvable model instances. The second paper, "Optimally Configuring a Measurement System to Detect Diversions from a Nuclear Fuel Cycle," introduces a simulation-optimization algorithm and an integer-programming model to find the best, or near-best, resource-limited nuclear fuel cycle measurement system with a high degree of confidence. Given location-dependent measurement method precisions, we (i) optimize the configuration of n methods at n locations of a hypothetical nuclear fuel cycle facility, (ii) find the most important location at which to improve method precision, and (iii) determine the effect of measurement frequency on near-optimal configurations and objective values. Our results correspond to existing outcomes but we obtain them at least an order of magnitude faster. The third paper, "Optimizing Nuclear Material Control and Accountability Measurement Systems," extends the integer program from the second paper to locate measurement methods in a larger, hypothetical nuclear fuel cycle scenario given fixed purchase and utilization budgets. This paper also presents two mixed-integer quadratic programming models to increase the precision of existing methods given a fixed improvement budget and to reduce the measurement uncertainty in the system while limiting improvement costs. We quickly obtain similar or better solutions compared to several intuitive analyses that take much longer to perform.

  3. "Center punch" and "whole spot" bioanalysis of apixaban in human dried blood spot samples by UHPLC-MS/MS.

    PubMed

    Zheng, Naiyu; Yuan, Long; Ji, Qin C; Mangus, Heidi; Song, Yan; Frost, Charles; Zeng, Jianing; Aubry, Anne-Françoise; Arnold, Mark E

    2015-04-15

    Apixaban (Eliquis™) was developed by Bristol-Myers Squibb (BMS) and Pfizer to use as an antithrombotic/anticoagulant agent and has been recently approved for the prevention of stroke and systemic embolism in patients with nonvalvular atrial fibrillation. A clinical study of apixaban, sponsored by BMS and Pfizer, included a pilot exploratory portion to evaluate the potential for future drug concentration monitoring using dried blood spot (DBS) sample collection. For DBS sample collection, a fixed blood volume was dispensed onto a DBS card by either regular volumetric pipette (venous blood collection) or capillary dispenser (finger prick blood collection). A 96-well semi-automated liquid-liquid extraction sample preparation procedure was developed to provide clean extracts for UHPLC-MS/MS quantitation. Assays using both partial-spot center punch and whole spot punch were developed and validated. The linear dynamic ranges for all the analyses were from 0.5 to 500 ng/mL. The coefficient of determination (r(2)) values was >0.9944 for all the validation runs. For the center punch approach, the intra-assay precision (%CV) was within 4.4% and inter-assay precision was within 2.6%. The assay accuracy, expressed as %Dev., was within ± 5.4% of the nominal concentrations. One accuracy and precision run was performed using the whole spot approach, the intra-assay precision (%CV) was within 7.1% and the accuracy was within ± 8.0% of the nominal concentrations. In contrast to the center punch approach, the whole spot approach eliminated the effect of hematocrit and high lipids on the analysis of apixaban in human DBS when an accurate sample blood volume was collected on DBS cards. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Design and control of the precise tracking bed based on complex electromechanical design theory

    NASA Astrophysics Data System (ADS)

    Ren, Changzhi; Liu, Zhao; Wu, Liao; Chen, Ken

    2010-05-01

    The precise tracking technology is wide used in astronomical instruments, satellite tracking and aeronautic test bed. However, the precise ultra low speed tracking drive system is one high integrated electromechanical system, which one complexly electromechanical design method is adopted to improve the efficiency, reliability and quality of the system during the design and manufacture circle. The precise Tracking Bed is one ultra-exact, ultra-low speed, high precision and huge inertial instrument, which some kind of mechanism and environment of the ultra low speed is different from general technology. This paper explores the design process based on complex electromechanical optimizing design theory, one non-PID with a CMAC forward feedback control method is used in the servo system of the precise tracking bed and some simulation results are discussed.

  5. Video-rate or high-precision: a flexible range imaging camera

    NASA Astrophysics Data System (ADS)

    Dorrington, Adrian A.; Cree, Michael J.; Carnegie, Dale A.; Payne, Andrew D.; Conroy, Richard M.; Godbaz, John P.; Jongenelen, Adrian P. P.

    2008-02-01

    A range imaging camera produces an output similar to a digital photograph, but every pixel in the image contains distance information as well as intensity. This is useful for measuring the shape, size and location of objects in a scene, hence is well suited to certain machine vision applications. Previously we demonstrated a heterodyne range imaging system operating in a relatively high resolution (512-by-512) pixels and high precision (0.4 mm best case) configuration, but with a slow measurement rate (one every 10 s). Although this high precision range imaging is useful for some applications, the low acquisition speed is limiting in many situations. The system's frame rate and length of acquisition is fully configurable in software, which means the measurement rate can be increased by compromising precision and image resolution. In this paper we demonstrate the flexibility of our range imaging system by showing examples of high precision ranging at slow acquisition speeds and video-rate ranging with reduced ranging precision and image resolution. We also show that the heterodyne approach and the use of more than four samples per beat cycle provides better linearity than the traditional homodyne quadrature detection approach. Finally, we comment on practical issues of frame rate and beat signal frequency selection.

  6. System and method for high precision isotope ratio destructive analysis

    DOEpatents

    Bushaw, Bruce A; Anheier, Norman C; Phillips, Jon R

    2013-07-02

    A system and process are disclosed that provide high accuracy and high precision destructive analysis measurements for isotope ratio determination of relative isotope abundance distributions in liquids, solids, and particulate samples. The invention utilizes a collinear probe beam to interrogate a laser ablated plume. This invention provides enhanced single-shot detection sensitivity approaching the femtogram range, and isotope ratios that can be determined at approximately 1% or better precision and accuracy (relative standard deviation).

  7. Mechanical design of a precision linear flexural stage for 3D x-ray diffraction microscope at the Advanced Photon Source

    NASA Astrophysics Data System (ADS)

    Shu, D.; Liu, W.; Kearney, S.; Anton, J.; Tischler, J. Z.

    2015-09-01

    The 3-D X-ray diffraction microscope is a new nondestructive tool for the three-dimensional characterization of mesoscopic materials structure. A flexural-pivot-based precision linear stage has been designed to perform a wire scan as a differential aperture for the 3-D diffraction microscope at the Advanced Photon Source, Argonne National Laboratory. The mechanical design and finite element analyses of the flexural stage, as well as its initial mechanical test results with laser interferometer are described in this paper.

  8. High-precision relative position and attitude measurement for on-orbit maintenance of spacecraft

    NASA Astrophysics Data System (ADS)

    Zhu, Bing; Chen, Feng; Li, Dongdong; Wang, Ying

    2018-02-01

    In order to realize long-term on-orbit running of satellites, space stations, etc spacecrafts, in addition to the long life design of devices, The life of the spacecraft can also be extended by the on-orbit servicing and maintenance. Therefore, it is necessary to keep precise and detailed maintenance of key components. In this paper, a high-precision relative position and attitude measurement method used in the maintenance of key components is given. This method mainly considers the design of the passive cooperative marker, light-emitting device and high resolution camera in the presence of spatial stray light and noise. By using a series of algorithms, such as background elimination, feature extraction, position and attitude calculation, and so on, the high precision relative pose parameters as the input to the control system between key operation parts and maintenance equipment are obtained. The simulation results show that the algorithm is accurate and effective, satisfying the requirements of the precision operation technique.

  9. Influence of mechanical noise inside a scanning electron microscope.

    PubMed

    de Faria, Marcelo Gaudenzi; Haddab, Yassine; Le Gorrec, Yann; Lutz, Philippe

    2015-04-01

    The scanning electron microscope is becoming a popular tool to perform tasks that require positioning, manipulation, characterization, and assembly of micro-components. However, some of these applications require a higher level of performance with respect to dynamics and precision of positioning. One limiting factor is the presence of unidentified noises and disturbances. This work aims to study the influence of mechanical disturbances generated by the environment and by the microscope, identifying how these can affect elements in the vacuum chamber. To achieve this objective, a dedicated setup, including a high-resolution vibrometer, was built inside the microscope. This work led to the identification and quantification of main disturbances and noise sources acting on a scanning electron microscope. Furthermore, the effects of external acoustic excitations were analysed. Potential applications of these results include noise compensation and real-time control for high accuracy tasks.

  10. Innovative Tools and Technology for Analysis of Single Cells and Cell-Cell Interaction.

    PubMed

    Konry, Tania; Sarkar, Saheli; Sabhachandani, Pooja; Cohen, Noa

    2016-07-11

    Heterogeneity in single-cell responses and intercellular interactions results from complex regulation of cell-intrinsic and environmental factors. Single-cell analysis allows not only detection of individual cellular characteristics but also correlation of genetic content with phenotypic traits in the same cell. Technological advances in micro- and nanofabrication have benefited single-cell analysis by allowing precise control of the localized microenvironment, cell manipulation, and sensitive detection capabilities. Additionally, microscale techniques permit rapid, high-throughput, multiparametric screening that has become essential for -omics research. This review highlights innovative applications of microscale platforms in genetic, proteomic, and metabolic detection in single cells; cell sorting strategies; and heterotypic cell-cell interaction. We discuss key design aspects of single-cell localization and isolation in microfluidic systems, dynamic and endpoint analyses, and approaches that integrate highly multiplexed detection of various intracellular species.

  11. (F)UV Spectral Analysis of Hot, Hydrogen-Rich Central Stars of Planetary Nebulae

    NASA Astrophysics Data System (ADS)

    Ziegler, M.; Rauch, T.; Werner, K.; Kruk, J. W.

    2010-11-01

    Metal abundances of CSPNe are not well known although they provide important constraints on AGB nucleosynthesis. We aim to determine metal abundances of two hot, hydrogen-rich CSPNe (namely of A35 and NGC3587, the latter also known as M97 or the Owl Nebula) and to derive Teff and log g precisely from high-resolution, high-S/N (far-) ultraviolet observations obtained with FUSE and HST/STIS. For this purpose, we utilize NLTE model atmospheres calculated with TMAP, the Tübingen Model Atmosphere Package. Due to strong line absorption of the ISM, simultaneous modeling of interstellar features has become a standard tool in our analyses. We present preliminary results, demonstrating the importance of combining stellar and interstellar models, in order to clearly identify and measure the strengths of strategic photospheric lines.

  12. High-cadence spectroscopy of M-dwarfs - II. Searching for stellar pulsations with HARPS

    NASA Astrophysics Data System (ADS)

    Berdiñas, Z. M.; Rodríguez-López, C.; Amado, P. J.; Anglada-Escudé, G.; Barnes, J. R.; MacDonald, J.; Zechmeister, M.; Sarmiento, L. F.

    2017-08-01

    Stellar oscillations appear all across the Hertzsprung-Russell diagram. Recent theoretical studies support their existence also in the atmosphere of M dwarfs. These studies predict for them short periodicities ranging from 20 min to 3 h. Our Cool Tiny Beats (CTB) programme aims at finding these oscillations for the very first time. With this goal, CTB explores the short time domain of M dwarfs using radial velocity data from the High Accuracy Radial velocity Planet Searcher (HARPS)-European Southern Observatory and HARPS-N high-precision spectrographs. Here we present the results for the two most long-term stable targets observed to date with CTB, GJ 588 and GJ 699 (I.e. Barnard's star). In the first part of this work we detail the correction of several instrumental effects. These corrections are especially relevant when searching for subnight signals. Results show no significant signals in the range where M dwarfs pulsations were predicted. However, we estimate that stellar pulsations with amplitudes larger than ˜0.5 m s-1 can be detected with a 90 per cent completeness with our observations. This result, along with the excess of power regions detected in the periodograms, opens the possibility of non-resolved very low amplitude pulsation signals. Next generation more precise instrumentation would be required to detect such oscillations. However, the possibility of detecting pulsating M-dwarf stars with larger amplitudes is feasible due to the short size of the analysed sample. This motivates the need for completeness of the CTB survey.

  13. Radio-Frequency Illuminated Superconductive Disks: Reverse Josephson Effects and Implications for Precise Measuring of Proposed Gravity Effects

    NASA Technical Reports Server (NTRS)

    Noever, David A.; Koczor, Ronald J.

    1998-01-01

    We have previously reported results using a high precision gravimeter to probe local gravity changes in the neighborhood of large bulk-processed high-temperature superconductors. It have been indicated three essential components to achieve anomalous gravity effects, namely large, two-layer high-temperature YBCO superconductors, magnetic levitation and AC input in the form of radio-frequency (RF) electromagnetic fields. We report experiments on RF-illuminated (1-15 MHz) superconducting disks with corresponding gravity readings indicating an apparent increase in observed gravity of approximately 3-5 x l0(exp -5)cm/sq s, above and to the side of the superconductor. In this preliminary study, RF- illumination is achieved using a series of large radius (15 cm) spiral antenna with RF power inputs equal to or greater than 90 W. The observed gravitational modification range is significantly lower than the 2.1% gravity modification. The error analyses of thermal and electromagnetic interference in a magnetically shielded gravimeter with vacuum enclosures, Faraday cages and shielded instrument leads, are outlined both experimentally and theoretically. The nearly exact correspondence between the peak gravity effects reported and the well-known peak in AC resistance in superconductors (2-7 MHz, owing to reverse Josephson quantum effects) suggests that electrical resistance will arise in this frequency range and subsequently any trapped magnetic fields in the superconductor may disperse partially into the measuring instrument's local environment. Implications for propulsion initiatives and RF-heating in superconductors will be discussed.

  14. Measuring slip in paleoearthquakes using high-resolution aerial lidar data: Combined analysis of the Wairau, Awatere, Clarence, and Hope faults, South Island, New Zealand

    NASA Astrophysics Data System (ADS)

    Zinke, R. W.; Dolan, J. F.; Hatem, A. E.; Van Dissen, R. J.; Langridge, R.; Grenader, J.; McGuire, C. P.; Rhodes, E. J.; Nicol, A., , Prof

    2016-12-01

    Analysis of a large new high-resolution aerial lidar microtopographic data set provides > 500 measured fault offsets from sections of the four primary right-lateral strike-slip faults of the Marlborough Fault System (MFS), in northern South Island, New Zealand. With a shot density of >12 shots/m2 (and locally up to 18 shots/m2) these high-quality data allow us to resolve topographically defined geomorphic offsets with decimeter precision along 250 km of combined fault length. The measured offsets range in size from 2 m to > 100 m, and allow us to constrain displacements in the past one to several surface ruptures along stretches of the Wairau, Awatere, Clarence, and Hope faults. Our results reveal a number of important details of the rupture history of these faults, including: (1) the amount of slip and spatial variability (along and across strike) of strain released in the most recent event along sections of each of the four faults; (2) the consistency of slip throughout the past several ruptures on specific faults; and (3) suggestions of potential linkages and segment boundaries along each fault. The lidar data also facilitate precise measurements of larger offsets that, when combined with age data collected as part of our broader collaborative analyses of incremental fault slip rates and paleoearthquake ages, help to constrain the broader spatial and temporal patterns of strain release across the MFS during Holocene and latest Pleistocene time.

  15. LA-ICP-MS as Tool for Provenance Analyses in Arctic Marine Sediments

    NASA Astrophysics Data System (ADS)

    Wildau, Antje; Garbe-Schönberg, Dieter

    2015-04-01

    The hydraulic transport of sediments is a major geological process in terrestrial and marine systems and is responsible for the loss, redistribution and accumulation of minerals. Provenance analyses are a powerful tool for assessing the origin and dispersion of material in ancient and modern fluvial and marine sediments. Provenance-specific heavy minerals (e.g., zircon, rutile, tourmaline) can therefore be used to provide valuable information on the formation of ore deposits (placer deposits), and the reconstruction of paleogeography, hydrology, climate conditions and developments. The application of provenances analyses for the latter reason is of specific interest, since there is need for research on the progressing climate change, and heavy minerals represent good proxies for the evaluation of recent and past changes in the climate. The study of these fine particles provides information about potential regional or long distance transport paths, glacial / ice drift and current flows, freezing and melting events as well as depositional centers for the released sediments. Classic methods applied for provenance analyses are mapping of the presence / absence of diagnostic minerals, their grain size distribution, modal mineralogy and the analysis of variations in ratio of two or more heavy minerals. Electron microprobe has been established to discover changes in mineral chemistry of individual mineral phases, which can indicate fluctuations or differences in the provenance. All these methods bear the potential of high errors that lower the validity of the provenance analyses. These are for example the misclassification of mineral species due to undistinguishable optical properties or the limitations in the detection / variations of trace elements using the election microprobe. For this case study, marine sediments from the Arctic Ocean have been selected to test if LA-ICP-MS can be established as a key technique for precise and reliable provenance analyses. The Laptev Sea is known to be a "sea ice formation factory" and represents a perfect source area with numerous sediment loaded rivers draining into the Arctic Ocean. Mineral grains become trapped in the sea ice, which is transported to the Fram Strait, the outflow area of the Transpolar Drift System. Thus, minerals in the Fram Strait and in the Laptev Sea should have the same provenance. In both areas zircon, garnet, ilmenite, magnetite, tourmaline, pyroxene and amphibole were identified (amongst others). The vast majority of potential source areas and the widespread occurrence of these accessory and rock forming minerals result in the absolute need for a highly sensitive and precise method such as LA-ICP-MS. We report new data on the eligibility of selected heavy minerals for provenance analyses in the Arctic Ocean. Based on the individual trace element composition, REE-pattern and isotopic ratios, reflecting the conditions during formation, we report individual fingerprints for single mineral species. This enables us to allocate specific minerals from Fram Strait and from Laptev Sea to one provenance. Furthermore we evaluate the eligibility of different heavy minerals as a geochemical proxy in Arctic sediments for provenance analyses using LA-ICP-MS.

  16. Precision blackbody sources for radiometric standards.

    PubMed

    Sapritsky, V I; Khlevnoy, B B; Khromchenko, V B; Lisiansky, B E; Mekhontsev, S N; Melenevsky, U A; Morozova, S P; Prokhorov, A V; Samoilov, L N; Shapoval, V I; Sudarev, K A; Zelener, M F

    1997-08-01

    The precision blackbody sources developed at the All-Russian Institute for Optical and Physical Measurements (Moscow, Russia) and their characteristics are analyzed. The precision high-temperature graphite blackbody BB22p, large-area high-temperature pyrolytic graphite blackbody BB3200pg, middle-temperature graphite blackbody BB2000, low-temperature blackbody BB300, and gallium fixed-point blackbody BB29gl and their characteristics are described.

  17. To See a World in a Grain of Sand: Insights into Solar System Formation and Evolution from Isotopic Analyses of Planetary Materials

    NASA Astrophysics Data System (ADS)

    Wadhwa, M.

    2016-12-01

    The last few decades have seen revolutionary advances in the planetary sciences through remote observations (by spacecraft and Earth-based observatories) of many Solar System destinations and, in more recent years, even exoplanets around other stars. In parallel with this, ground-breaking developments in analytical capabilities and access to a greater variety of Solar System materials (through systematic and sustained meteorite collection programs as well as sample return missions) have led to significant insights that are complementary to those from remote observations and measurements. I will discuss two examples where the combination of remote observations and sample analyses has the potential to provide a more holistic picture of Solar System formation and evolution: 1) High-precision analyses of radiogenic isotopes in primitive and differentiated meteoritic materials, which are yielding a detailed high-resolution chronology of the first 10 million years of Solar System history. Such investigations are providing the chronological framework for the formation and evolution of small bodies (including comets, asteroids and Kuiper Belt Objects) in our Solar System that are the targets of recent spacecraft missions such as NASA's Dawn and New Horizons missions and ESA's Rosetta mission. 2) In-situ analyses of hydrogen isotope compositions and H2O abundances in meteorites from Mars and Vesta, which are giving constraints on the inventory and source of water and other volatiles in these planetary bodies. These studies are providing insights complementary to those about Mars from NASA's Mars Science Laboratory and Mars Atmosphere and Volatile Evolution (MAVEN) missions, and about Vesta from NASA's Dawn mission.

  18. A comparison of Boolean-based retrieval to the WAIS system for retrieval of aeronautical information

    NASA Technical Reports Server (NTRS)

    Marchionini, Gary; Barlow, Diane

    1994-01-01

    An evaluation of an information retrieval system using a Boolean-based retrieval engine and inverted file architecture and WAIS, which uses a vector-based engine, was conducted. Four research questions in aeronautical engineering were used to retrieve sets of citations from the NASA Aerospace Database which was mounted on a WAIS server and available through Dialog File 108 which served as the Boolean-based system (BBS). High recall and high precision searches were done in the BBS and terse and verbose queries were used in the WAIS condition. Precision values for the WAIS searches were consistently above the precision values for high recall BBS searches and consistently below the precision values for high precision BBS searches. Terse WAIS queries gave somewhat better precision performance than verbose WAIS queries. In every case, a small number of relevant documents retrieved by one system were not retrieved by the other, indicating the incomplete nature of the results from either retrieval system. Relevant documents in the WAIS searches were found to be randomly distributed in the retrieved sets rather than distributed by ranks. Advantages and limitations of both types of systems are discussed.

  19. High precision measurement of the proton charge radius: The PRad experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meziane, Mehdi

    2013-11-01

    The recent high precision measurements of the proton charge radius performed at PSI from muonic hydrogen Lamb shift puzzled the hadronic physics community. A value of 0.8418 {+-} 0.0007 fm was extracted which is 7{sigma} smaller than the previous determinations obtained from electron-proton scattering experiments and based on precision spectroscopy of electronic hydrogen. An additional extraction of the proton charge radius from electron scattering at Mainz is also in good agreement with these "electronic" determinations. An independent measurement of the proton charge radius from unpolarized elastic ep scattering using a magnetic spectrometer free method was proposed and fully approved atmore » Jefferson Laboratory in June 2012. This novel technique uses the high precision calorimeter HyCal and a windowless hydrogen gas target which makes possible the extraction of the charge radius at very forward angles and thus very low momentum transfer Q{sup 2} up to 10{sup -4} (GeV/c){sup 2} with an unprecedented sub-percent precision for this type of experiment. In this paper, after a review of the recent progress on the proton charge radius extraction and the new high precision experiment PRad will be presented.« less

  20. Field performance of a nephelometer in rural kitchens: effects of high humidity excursions and correlations to gravimetric analyses.

    PubMed

    Fischer, Susan L; Koshland, Catherine P

    2007-03-01

    Rural kitchens of solid-fuel burning households constitute the microenvironment responsible for the majority of human exposures to health-damaging air pollutants, particularly respirable particles and carbon monoxide. Portable nephelometers facilitate cheaper, more precise, time-resolved characterization of particles in rural homes than are attainable by gravitational methods alone. However, field performance of nephelometers must contend with aerosols that are highly variable in terms of chemical content, size, and relative humidity. Previous field validations of nephelometer performance in residential settings explore relatively low particle concentrations, with the vast majority of 24-h average gravitational PM2.5 concentrations falling below 40 microg/m3. We investigate relationships between 24-h gravitational particle measurements and nephelometric data logged by the personal DataRAM (pDR) in highly polluted rural Chinese kitchens, where gravitationally determined 24-h average respirable particle concentrations were as high as 700 microg/m3. We find that where relative humidity remained below 95%, nephelometric response was strongly linear despite complex mixtures of aerosols and variable ambient conditions. Where 95% relative humidity was exceeded for even a brief duration, nephelometrically determined 24-h mean particle concentrations were nonsystematically distorted relative to gravitational data, and neither concurrent relative humidity measurements nor use of robust statistical measures of central tendency offered means of correction. This nonsystematic distortion is particularly problematic for rural exposure assessment studies, which emphasize upper quantiles of time-resolved particle measurements within 24-h samples. Precise, accurate interpretation of nephelometrically resolved short-term particle concentrations requires calibration based on short-term gravitational sampling.

  1. Evaluation of a new automated microscopy urine sediment analyser - sediMAX conTRUST®.

    PubMed

    Bogaert, Laura; Peeters, Bart; Billen, Jaak

    2017-04-01

    This study evaluated the performance of the stand-alone sediMAX conTRUST (77Elektronika, Budapest, Hungary) analyser as an alternative to microscopic analysis of urine. The validation included a precision, carry-over, categorical correlation and diagnostic performance study with manual phase-contrast microscopy as reference method. A total of 260 routine urine samples were assessed. The within-run precision was much better at higher concentrations than at very low concentrations. The precision met our predefined limits for all the elements at the different concentrations, with the exception of the lowest RBC, the WBC, pathological casts and crystals count. There was no sample carry-over. The analyser showed good categorical agreement with manual microscopy for RBC and WBC counts, moderate agreement for yeast cells, crystals and squamous epithelial cells and bad agreement for non-squamous epithelial cells, bacteria and casts. Diagnostic performance was satisfying only for RBC, WBC and yeast cells. The number of false negative results was acceptable (≤4%) for all elements after connecting the sediMAX conTRUST with an automatic strip reader (AutionMAX) and after implementation of review rules. We conclude that the sediMAX conTRUST should be used as a screening tool in combination with an automatic strip reader, for the identification of normal samples. Therefore, adequate review rules should be defined. Manual microscopy is still required in 'flagged' pathological samples. Despite the poor analytical performance on pathological samples, the images on the screen can be used for interpretation without the microscope and can be stored as PDF-documents for archiving the results.

  2. Neuroanatomical Correlates of Intelligence

    PubMed Central

    Luders, Eileen; Narr, Katherine L.; Thompson, Paul M.; Toga, Arthur W.

    2009-01-01

    With the advancement of image acquisition and analysis methods in recent decades, unique opportunities have emerged to study the neuroanatomical correlates of intelligence. Traditional approaches examining global measures have been complemented by insights from more regional analyses based on pre-defined areas. Newer state-of-the-art approaches have further enhanced our ability to localize the presence of correlations between cerebral characteristics and intelligence with high anatomic precision. These in vivo assessments have confirmed mainly positive correlations, suggesting that optimally increased brain regions are associated with better cognitive performance. Findings further suggest that the models proposed to explain the anatomical substrates of intelligence should address contributions from not only (pre)frontal regions, but also widely distributed networks throughout the whole brain. PMID:20160919

  3. Influences of the manufacturing process chain design on the near surface condition and the resulting fatigue behaviour of quenched and tempered SAE 4140

    NASA Astrophysics Data System (ADS)

    Klein, M.; Eifler, D.

    2010-07-01

    To analyse interactions between single steps of process chains, variations in material properties, especially the microstructure and the resulting mechanical properties, specimens with tension screw geometry were manufactured with five process chains. The different process chains as well as their parameters influence the near surface condition and consequently the fatigue behaviour in a characteristic manner. The cyclic deformation behaviour of these specimens can be benchmarked equivalently with conventional strain measurements as well as with high-precision temperature and electrical resistance measurements. The development of temperature-values provides substantial information on cyclic load dependent changes in the microstructure.

  4. Analysis of China department water consumption efficiency

    NASA Astrophysics Data System (ADS)

    Li, Wei; Wang, Xi-Feng; Liu, Jia-Hong

    2018-03-01

    The water comparable non-competitive input-out model of China in 2002, 2007 and 2012 is established to calculate the department water consumption efficiency. The water direct and complete consumption coefficients of 38 departments are analysed. Agriculture and Electricity and steam supply have the highest water consumption coefficients and utilize water resource mainly by the direct way. Manufacture of food products and tobacco products, Manufacture of textiles, Manufacture of wearing apparel and leather products and Information service activities have high water complete consumption coefficients and affect water consumption mainly by the indirect way. Water complete consumption efficiency measures the efficiency from the view of final product, which reflected the department water use driving force more precisely.

  5. A miniature laser ablation mass spectrometer for quantitative in situ chemical composition investigation of lunar surface

    NASA Astrophysics Data System (ADS)

    Brigitte Neuland, Maike; Grimaudo, Valentine; Mezger, Klaus; Moreno-García, Pavel; Riedo, Andreas; Tulej, Marek; Wurz, Peter

    2016-04-01

    The chemical composition of planetary bodies, moons, comets and asteroids is a key to understand their origin and evolution [Wurz,2009]. Measurements of the elemental and isotopic composition of rocks yield information about the formation of the planetary body, its evolution and following processes shaping the planetary surface. From the elemental composition, conclusions about modal mineralogy and petrology can be drawn. Isotope ratios are a sensitive indicator for past events on the planetary body and yield information about origin and transformation of the matter, back to events that occurred in the early solar system. Finally, measurements of radiogenic isotopes make it possible to carry out dating analyses. All these topics, particularly in situ dating analyses, quantitative elemental and highly accurate isotopic composition measurements, are top priority scientific questions for future lunar missions. An instrument for precise measurements of chemical composition will be a key element in scientific payloads of future landers or rovers on lunar surface. We present a miniature laser ablation mass spectrometer (LMS) designed for in situ research in planetary and space science and optimised for measurements of the chemical composition of rocks and soils on a planetary surface. By means of measurements of standard reference materials we demonstrate that LMS is a suitable instrument for in situ measurements of elemental and isotopic composition with high precision and accuracy. Measurements of soil standards are used to confirm known sensitivity coefficients of the instrument and to prove the power of LMS for quantitative elemental analyses [Neuland,2016]. For demonstration of the capability of LMS to measure the chemical composition of extraterrestrial material we use a sample of Allende meteorite [Neuland,2014]. Investigations of layered samples confirm the high spatial resolution in vertical direction of LMS [Grimaudo,2015], which allows in situ studying of past surface processes on a planetary surface. Analyses of Pb isotopes show that the statistical uncertainty for the age determination by LMS is about ±100 Myrs, if abundance of 206Pb and 207Pb is 20ppm and 2ppm respectively [Riedo,2013]. These Pb isotopes have abundances of tens to hundreds of ppm in lunar KREEP [Nemchin,2008]. We demonstrate the measurement capabilities of LMS for petrographic and mineralogical analyses, for isotopic studies and dating analyses, which are key topics for future missions to the Moon. Having the LMS instrument installed on a lunar rover would allow measuring the chemical composition of many rock and soil samples, distributed over a certain area, inside the South Pole Aitken Basin for example. LMS measurements would yield valuable conclusions about age and mineralogy. References: [Wurz,2009]Wurz,P. et al. 2009, AIP Conf.Proc., CP1144:70-75. [Grimaudo,2015]Grimaudo, V. et al. 2015, Anal.Chem. 87: 2037-2041. [Neuland,2014]Neuland, M.B. et al. 2014, Planet.Space Sci.101:196-209. [Neuland,2016]Neuland M.B. et al. 2016, Meas. Sci. Technol.,submitted. [Riedo,2013]Riedo A. et al., 2013 Planet. Space Sci. 87: 1-13. [Nemchin,2008]Nemchin et al., 2008 Geochim. Cosmochim.Acta 72:668-689.

  6. Detection of bio-signature by microscopy and mass spectrometry

    NASA Astrophysics Data System (ADS)

    Tulej, M.; Wiesendanger, R.; Neuland, M., B.; Meyer, S.; Wurz, P.; Neubeck, A.; Ivarsson, M.; Riedo, V.; Moreno-Garcia, P.; Riedo, A.; Knopp, G.

    2017-09-01

    We demonstrate detection of micro-sized fossilized bacteria by means of microscopy and mass spectrometry. The characteristic structures of lifelike forms are visualized with a micrometre spatial resolution and mass spectrometric analyses deliver elemental and isotope composition of host and fossilized materials. Our studies show that high selectivity in isolation of fossilized material from host phase can be achieved while applying a microscope visualization (location), a laser ablation ion source with sufficiently small laser spot size and applying depth profiling method. Our investigations shows that fossilized features can be well isolated from host phase. The mass spectrometric measurements can be conducted with sufficiently high accuracy and precision yielding quantitative elemental and isotope composition of micro-sized objects. The current performance of the instrument allows the measurement of the isotope fractionation in per mill level and yield exclusively definition of the origin of the investigated species by combining optical visualization of investigated samples (morphology and texture), chemical characterization of host and embedded in the host micro-sized structure. Our isotope analyses involved bio-relevant B, C, S, and Ni isotopes which could be measured with sufficiently accuracy to conclude about the nature of the micro-sized objects.

  7. High-Precision Measurement of the Ne19 Half-Life and Implications for Right-Handed Weak Currents

    NASA Astrophysics Data System (ADS)

    Triambak, S.; Finlay, P.; Sumithrarachchi, C. S.; Hackman, G.; Ball, G. C.; Garrett, P. E.; Svensson, C. E.; Cross, D. S.; Garnsworthy, A. B.; Kshetri, R.; Orce, J. N.; Pearson, M. R.; Tardiff, E. R.; Al-Falou, H.; Austin, R. A. E.; Churchman, R.; Djongolov, M. K.; D'Entremont, R.; Kierans, C.; Milovanovic, L.; O'Hagan, S.; Reeve, S.; Sjue, S. K. L.; Williams, S. J.

    2012-07-01

    We report a precise determination of the Ne19 half-life to be T1/2=17.262±0.007s. This result disagrees with the most recent precision measurements and is important for placing bounds on predicted right-handed interactions that are absent in the current standard model. We are able to identify and disentangle two competing systematic effects that influence the accuracy of such measurements. Our findings prompt a reassessment of results from previous high-precision lifetime measurements that used similar equipment and methods.

  8. High-precision measurement of the 19Ne half-life and implications for right-handed weak currents.

    PubMed

    Triambak, S; Finlay, P; Sumithrarachchi, C S; Hackman, G; Ball, G C; Garrett, P E; Svensson, C E; Cross, D S; Garnsworthy, A B; Kshetri, R; Orce, J N; Pearson, M R; Tardiff, E R; Al-Falou, H; Austin, R A E; Churchman, R; Djongolov, M K; D'Entremont, R; Kierans, C; Milovanovic, L; O'Hagan, S; Reeve, S; Sjue, S K L; Williams, S J

    2012-07-27

    We report a precise determination of the (19)Ne half-life to be T(1/2)=17.262±0.007 s. This result disagrees with the most recent precision measurements and is important for placing bounds on predicted right-handed interactions that are absent in the current standard model. We are able to identify and disentangle two competing systematic effects that influence the accuracy of such measurements. Our findings prompt a reassessment of results from previous high-precision lifetime measurements that used similar equipment and methods.

  9. Evaluation of the platelet counting by Abbott CELL-DYN SAPPHIRE haematology analyser compared with flow cytometry.

    PubMed

    Grimaldi, E; Del Vecchio, L; Scopacasa, F; Lo Pardo, C; Capone, F; Pariante, S; Scalia, G; De Caterina, M

    2009-04-01

    The Abbot Cell-Dyn Sapphire is a new generation haematology analyser. The system uses optical/fluorescence flow cytometry in combination with electronic impedance to produce a full blood count. Optical and impedance are the default methods for platelet counting while automated CD61-immunoplatelet analysis can be run as selectable test. The aim of this study was to determine the platelet count performance of the three counting methods available on the instrument and to compare the results with those provided by Becton Dickinson FACSCalibur flow cytometer used as reference method. A lipid interference experiment was also performed. Linearity, carryover and precision were good, and satisfactory agreement with reference method was found for the impedance, optical and CD61-immunoplatelet analysis, although this latter provided the closest results in comparison with flow cytometry. In the lipid interference experiment, a moderate inaccuracy of optical and immunoplatelet counts was observed starting from a very high lipid value.

  10. Study on Electricity Business Expansion and Electricity Sales Based on Seasonal Adjustment

    NASA Astrophysics Data System (ADS)

    Zhang, Yumin; Han, Xueshan; Wang, Yong; Zhang, Li; Yang, Guangsen; Sun, Donglei; Wang, Bolun

    2017-05-01

    [1] proposed a novel analysis and forecast method of electricity business expansion based on Seasonal Adjustment, we extend this work to include the effect the micro and macro aspects, respectively. From micro aspect, we introduce the concept of load factor to forecast the stable value of electricity consumption of single new consumer after the installation of new capacity of the high-voltage transformer. From macro aspects, considering the growth of business expanding is also stimulated by the growth of electricity sales, it is necessary to analyse the antecedent relationship between business expanding and electricity sales. First, forecast electricity consumption of customer group and release rules of expanding capacity, respectively. Second, contrast the degree of fitting and prediction accuracy to find out the antecedence relationship and analyse the reason. Also, it can be used as a contrast to observe the influence of customer group in different ranges on the prediction precision. Finally, Simulation results indicate that the proposed method is accurate to help determine the value of expanding capacity and electricity consumption.

  11. Chromatographic Separation of Cd from Plants via Anion-Exchange Resin for an Isotope Determination by Multiple Collector ICP-MS.

    PubMed

    Wei, Rongfei; Guo, Qingjun; Wen, Hanjie; Peters, Marc; Yang, Junxing; Tian, Liyan; Han, Xiaokun

    2017-01-01

    In this study, key factors affecting the chromatographic separation of Cd from plants, such as the resin column, digestion and purification procedures, were experimentally investigated. A technique for separating Cd from plant samples based on single ion-exchange chromatography has been developed, which is suitable for the high-precision analysis of Cd isotopes by multiple-collector inductively coupled plasma mass spectrometry (MC-ICP-MS). The robustness of the technique was assessed by replicate analyses of Cd standard solutions and plant samples. The Cd yields of the whole separation process were higher than 95%, and the 114/110 Cd values of three Cd second standard solutions (Münster Cd, Spex Cd, Spex-1 Cd solutions) relative to the NIST SRM 3108 were measured accurately, which enabled the comparisons of Cd isotope results obtained in other laboratories. Hence, stable Cd isotope analyses represent a powerful tool for fingerprinting specific Cd sources and/or examining biogeochemical reactions in ecological and environmental systems.

  12. Mid-Miocene cooling and the extinction of tundra in continental Antarctica

    PubMed Central

    Lewis, Adam R.; Marchant, David R.; Ashworth, Allan C.; Hedenäs, Lars; Hemming, Sidney R.; Johnson, Jesse V.; Leng, Melanie J.; Machlus, Malka L.; Newton, Angela E.; Raine, J. Ian; Willenbring, Jane K.; Williams, Mark; Wolfe, Alexander P.

    2008-01-01

    A major obstacle in understanding the evolution of Cenozoic climate has been the lack of well dated terrestrial evidence from high-latitude, glaciated regions. Here, we report the discovery of exceptionally well preserved fossils of lacustrine and terrestrial organisms from the McMurdo Dry Valleys sector of the Transantarctic Mountains for which we have established a precise radiometric chronology. The fossils, which include diatoms, palynomorphs, mosses, ostracodes, and insects, represent the last vestige of a tundra community that inhabited the mountains before stepped cooling that first brought a full polar climate to Antarctica. Paleoecological analyses, 40Ar/39Ar analyses of associated ash fall, and climate inferences from glaciological modeling together suggest that mean summer temperatures in the region cooled by at least 8°C between 14.07 ± 0.05 Ma and 13.85 ± 0.03 Ma. These results provide novel constraints for the timing and amplitude of middle-Miocene cooling in Antarctica and reveal the ecological legacy of this global climate transition. PMID:18678903

  13. Sliding mode control of magnetic suspensions for precision pointing and tracking applications

    NASA Technical Reports Server (NTRS)

    Misovec, Kathleen M.; Flynn, Frederick J.; Johnson, Bruce G.; Hedrick, J. Karl

    1991-01-01

    A recently developed nonlinear control method, sliding mode control, is examined as a means of advancing the achievable performance of space-based precision pointing and tracking systems that use nonlinear magnetic actuators. Analytic results indicate that sliding mode control improves performance compared to linear control approaches. In order to realize these performance improvements, precise knowledge of the plant is required. Additionally, the interaction of an estimating scheme and the sliding mode controller has not been fully examined in the literature. Estimation schemes were designed for use with this sliding mode controller that do not seriously degrade system performance. The authors designed and built a laboratory testbed to determine the feasibility of utilizing sliding mode control in these types of applications. Using this testbed, experimental verification of the authors' analyses is ongoing.

  14. Research on the high-precision non-contact optical detection technology for banknotes

    NASA Astrophysics Data System (ADS)

    Jin, Xiaofeng; Liang, Tiancai; Luo, Pengfeng; Sun, Jianfeng

    2015-09-01

    The technology of high-precision laser interferometry was introduced for optical measurement of the banknotes in this paper. Taking advantage of laser short wavelength and high sensitivity, information of adhesive tape and cavity about the banknotes could be checked efficiently. Compared with current measurement devices, including mechanical wheel measurement device, Infrared measurement device, ultrasonic measurement device, the laser interferometry measurement has higher precision and reliability. This will improve the ability of banknotes feature information in financial electronic equipment.

  15. Precision Cleaning Verification of Nonvolatile Residues by Using Water, Ultrasonics, and Turbidity Analyses

    NASA Technical Reports Server (NTRS)

    Skinner, S. Ballou

    1991-01-01

    Chlorofluorocarbons (CFC's) in the atmosphere are believed to present a major environmental problem because they are able to interact with and deplete the ozone layer. NASA has been mandated to replace chlorinated solvents in precision cleaning, cleanliness verification, and degreasing of aerospace fluid systems hardware and ground support equipment. KSC has a CFC phase-out plan which provides for the elimination of over 90 percent of the CFC and halon use by 1995. The Materials Science Laboratory and KSC is evaluating four analytical methods for the determination of nonvolatile residues removal by water: (1) infrared analyses using an attenuated total reflectance; (2) surface tension analyses, (3) total organic content analyses, and (4) turbidity analyses. This research project examined the ultrasonic-turbidity responses for 22 hydrocarbons in an effect to determine: (1) if ultrasonics in heated water (70 C) will clean hydrocarbons (oils, greases, gels, and fluids) from aerospace hardware; (2) if the cleaning process by ultrasonics will simultaneously emulsify the removed hydrocarbons in the water; and (3) if a turbidimeter can be used successfully as an analytical instrument for quantifying the removal of hydrocarbons. Sixteen of the 22 hydrocarbons tested showed that ultrasonics would remove it at least 90 percent of the contaminated hydrocarbon from the hardware in 10 minutes or less giving a good ultrasonic-turbidity response. Six hydrocarbons had a lower percentage removal, a slower removal rate, and a marginal ultrasonic-turbidity response.

  16. High-Precision Half-Life and Branching Ratio Measurements for the Superallowed β+ Emitter 26Alm

    NASA Astrophysics Data System (ADS)

    Finlay, P.; Svensson, C. E.; Demand, G. A.; Garrett, P. E.; Green, K. L.; Leach, K. G.; Phillips, A. A.; Rand, E. T.; Ball, G.; Bandyopadhyay, D.; Djongolov, M.; Ettenauer, S.; Hackman, G.; Pearson, C. J.; Leslie, J. R.; Andreoiu, C.; Cross, D.; Austin, R. A. E.; Grinyer, G. F.; Sumithrarachchi, C. S.; Williams, S. J.; Triambak, S.

    2013-03-01

    High-precision half-life and branching-ratio measurements for the superallowed β+ emitter 26Alm were performed at the TRIUMF-ISAC radioactive ion beam facility. An upper limit of ≤ 15 ppm at 90% C.L. was determined for the sum of all possible non-analogue β+/EC decay branches of 26Alm, yielding a superallowed branching ratio of 100.0000+0-0.0015%. A value of T1/2 = 6:34654(76) s was determined for the 26Alm half-life which is consistent with, but 2.5 times more precise than, the previous world average. Combining these results with world-average measurements yields an ft value of 3037.58(60) s, the most precisely determined for any superallowed emitting nucleus to date. This high-precision ft value for 26Alm provides a new benchmark to refine theoretical models of isospin-symmetry-breaking effects in superallowed β decays.

  17. Temporally precise single-cell resolution optogenetics

    PubMed Central

    Shemesh, Or A.; Tanese, Dimitrii; Zampini, Valeria; Linghu, Changyang; Piatkevich, Kiryl; Ronzitti, Emiliano; Papagiakoumou, Eirini; Boyden, Edward S.; Emiliani, Valentina

    2017-01-01

    Optogenetic control of individual neurons with high temporal precision, within intact mammalian brain circuitry, would enable powerful explorations of how neural circuits operate. Two-photon computer generated holography enables precise sculpting of light, and could in principle enable simultaneous illumination of many neurons in a network, with the requisite temporal precision to simulate accurate neural codes. We designed a high efficacy soma-targeted opsin, finding that fusing the N-terminal 150 residues of kainate receptor subunit 2 (KA2) to the recently discovered high-photocurrent channelrhodopsin CoChR restricted expression of this opsin primarily to the cell body of mammalian cortical neurons. In combination with two-photon holographic stimulation, we found that this somatic CoChR (soCoChR) enabled photostimulation of individual cells in intact cortical circuits with single cell resolution and <1 millisecond temporal precision, and use soCoChR to perform connectivity mapping on intact cortical circuits. PMID:29184208

  18. High-Precision Half-Life Measurement for the Superallowed {beta}{sup +} Emitter {sup 26}Al{sup m}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finlay, P.; Svensson, C. E.; Green, K. L.

    2011-01-21

    A high-precision half-life measurement for the superallowed {beta}{sup +} emitter {sup 26}Al{sup m} was performed at the TRIUMF-ISAC radioactive ion beam facility yielding T{sub 1/2}=6346.54{+-}0.46{sub stat{+-}}0.60{sub syst} ms, consistent with, but 2.5 times more precise than, the previous world average. The {sup 26}Al{sup m} half-life and ft value, 3037.53(61) s, are now the most precisely determined for any superallowed {beta} decay. Combined with recent theoretical corrections for isospin-symmetry-breaking and radiative effects, the corrected Ft value for {sup 26}Al{sup m}, 3073.0(12) s, sets a new benchmark for the high-precision superallowed Fermi {beta}-decay studies used to test the conserved vector current hypothesismore » and determine the V{sub ud} element of the Cabibbo-Kobayashi-Maskawa quark mixing matrix.« less

  19. Highly precise stabilization of intracavity prism-based Er:fiber frequency comb using optical-microwave phase detector.

    PubMed

    Zhang, Shuangyou; Wu, Jiutao; Leng, Jianxiao; Lai, Shunnan; Zhao, Jianye

    2014-11-15

    In this Letter, we demonstrate a fully stabilized Er:fiber frequency comb by using a fiber-based, high-precision optical-microwave phase detector. To achieve high-precision and long-term phase locking of the repetition rate to a microwave reference, frequency control techniques (tuning pump power and cavity length) are combined together as its feedback. Since the pump power has been used for stabilization of the repetition rate, we introduce a pair of intracavity prisms as a regulator for carrier-envelope offset frequency, thereby phase locking one mode of the comb to the rubidium saturated absorption transition line. The stabilized comb performs the same high stability as the reference for the repetition rate and provides a residual frequency instability of 3.6×10(-13) for each comb mode. The demonstrated stabilization scheme could provide a high-precision comb for optical communication, direct frequency comb spectroscopy.

  20. Resolution, the key to unlocking granite petrogenesis using zircon U-Pb - Lu-Hf studies

    NASA Astrophysics Data System (ADS)

    Tapster, Simon; Horstwood, Matthew; Roberts, Nick M. W.; Deady, Eimear; Shail, Robin

    2017-04-01

    Coarse-scale understanding of crustal evolution and source contributions to igneous systems has been drastically enhanced by coupled zircon U-Pb and Lu-Hf data sets. These are now common place and potentially offer advantages over whole-rock analyses by resolving heterogeneous source components in the complex crystal cargos of single hand-samples. However, the application of coupled zircon U-Pb and Lu-Hf studies to address detailed petrogenetic questions faces a crisis of resolution - On the one hand, micro-beam analytical techniques have high spatial resolution, capable of interrogating crystals with complex growth histories. Yet, the >1-2% temporal resolution of these techniques places a fundamental limitation on their utility for developing petrogenetic models. This limitation in data interpretation arises from timescales of crystal recycling or changes in source evolution that are often shorter than the U-Pb analytical precision. Conversely, high-precision CA-ID-TIMS U-Pb analysis of single whole zircons and solution MC-ICP-MS Lu-Hf isotopes of column washes (Hf masses equating to ca. 10-50 ng) have much greater temporal resolution (<0.1%), yet lack the spatial resolution to deal with complex crystal growth. Analyses homogenize any heterogeneity within the zircon and convolute the petrogenetic model. A balance must be struck between spatial and temporal resolution to address petrogenetic issues. Here, we demonstrate that micro-sampling of complex xenocryst-rich zircon crystals (e.g. <40 µm zircon tips) from the granitic post-Variscan Cornubian Batholith (SW England), in tandem with low-common Pb blank CA-ID-TIMS U-Pb chemistry, permits the analysis of zircon volumes that approach those of LA-ICPMS analyses, whilst simultaneously retaining the majority of the temporal resolution associated with the CA-ID-TIMS U-Pb technique. The low volume of zircon within these analyses may only provide <5 ng Hf, and therefore gaining useful precision from Lu-Hf isotopes is beyond the scope of typical solution MC-ICP-MS techniques. However, we demonstrate that an uncertainty level of ca. 1 ɛHf can be achieved with as little as 0.4 ng Hf through the use of low-volume solution introduction methods - thus bridging the gap in resolving power between in-situ and isotope dilution coupled zircon U-Pb - Lu-Hf studies. We demonstrate the potential of this approach to unravel intra- and inter-sample heterogeneity and address models for granite genesis using a new regional data set for 21 samples encompassing all major granite types within the Early Permian Cornubian Batholith (SW England). The data provide a refined chronological framework for magma source evolution over 20 Myrs of crust-mantle melt extraction and upper crustal batholith construction. The resulting petrogenetic model will also be evaluated through the lens of low- temporal resolution commonly employed in granitic zircon U-Pb - Lu-Hf studies in order to highlight the enhanced insights into geological processes gained though our approach. The current limitations to data interpretation and directions of future research will be discussed.

  1. Search for Organic Matter on Mars: Complementarity of In Situ Analyses and Laboratory Analyses of Martian Samples

    NASA Astrophysics Data System (ADS)

    Brack, A.; Commeyras, A.; Derenne, S.; Despois, D.; Dhamelincourt, P.; Dobrijevic, M.; Engrand, C.; Geffard, M.; Grenier-Loustalot, M. F.; Largeau, C.

    2000-07-01

    On Earth, the molecules which participated in the emergence of life about 4 Ga ago have been erased by plate tectonics, the permanent presence of running water, unshielded solar ultraviolet radiation and by oxygen produced by life. Since the environment of the early Mars about 3.5-4 Ga ago was probably very close to that of the early Earth, life might have emerged on Mars as well and might give us some insight into the prebiotic chemistry that took place on Earth about 4 Ga ago. Furthermore, there is a possibility that life still exists on Mars, protected from the harsh environment in some specific locales. In order to search for life on Mars, one should look for potential biogenic markers such as organic matter and inorganic signatures (microfossils, biominerals, biogenic etching, isotopic fingerprints...) which have different degrees of resistance to the Martian environment. As biomarkers could be organic or inorganic in nature, complete organic and mineral analyses should therefore be conducted in parallel on the same sets of samples, going from the least destructive to the most destructive technique of micro-analysis. Furthermore, in situ analyses should be complemented by high precision and high sensitivity laboratory measurements of returned Martian samples. Due to the very oxidized Martian environment, organic molecules should be searched for in protected sites, either surface boulders or near sub-surface, in layers deep enough for avoiding the oxidizing effect of the atmosphere. Molecules that should be looked for include low and high molecular weight organics (like alkanoic acids, peroxiacids, PAHs and amino acids, respectively), and macromolecular com-pounds like kerogens or kerogen-like materials. Previous in situ analyses were performed using pyrolysis systems which allow to detect organic compounds but do not always permit the identification of individual molecules. New possible analytical solutions could include gas chromatography-based techniques coupled with a mass spectrometer using multi GC columns systems, including columns able to separate enantiomers, chemical derivatization cells (using new derivatization schemes in particular for amino acid analysis), high performance liquid chromatography and supercritical fluid chromatography.

  2. EDTA analysis on the Roche MODULAR analyser.

    PubMed

    Davidson, D F

    2007-05-01

    Patient specimens can be subject to subtle interference from cross contamination by liquid-based, potassium-containing EDTA anticoagulant, leading to misinterpretation of results. A rapid method for EDTA analysis to detect such contamination is described. An in-house EDTA assay on the Roche MODULAR analyser was assessed for accuracy and precision by comparison with an adjusted calcium difference measurement (atomic absorption and o-cresolphthalein complexone colorimetry). EDTA method versus adjusted calcium difference showed: slope = 1.038 (95% confidence interval [CI] 0.949-1.131); intercept = 0.073 (95% CI 0.018-0.132) mmol/L; r = 0.914; n = 94. However, inter-assay precision of the calcium difference method was estimated to be poorer (coefficient of variation 24.8% versus 3.4% for the automated colorimetric method at an EDTA concentration of 0.25 mmol/L). Unequivocal contamination was observed at an EDTA concentration of > or =0.2 mmol/L. The automated method showed positive interference from haemolysis and negative interference from oxalate. The method was unaffected by lipaemia (triglycerides <20 mmol/L), icterus (bilirubin <500 micromol/L), glucose (<100 mmol/L), iron (<100 micromol/L), and citrate, phosphate or fluoride (all <2.5 mmol/L). The automated colorimetric assay described is an accurate, precise and rapid (3 min) means of detecting EDTA contamination of unhaemolysed biochemistry specimens.

  3. Leadership = Communication? The Relations of Leaders' Communication Styles with Leadership Styles, Knowledge Sharing and Leadership Outcomes.

    PubMed

    de Vries, Reinout E; Bakker-Pieper, Angelique; Oostenveld, Wyneke

    2010-09-01

    PURPOSE: The purpose of this study was to investigate the relations between leaders' communication styles and charismatic leadership, human-oriented leadership (leader's consideration), task-oriented leadership (leader's initiating structure), and leadership outcomes. METHODOLOGY: A survey was conducted among 279 employees of a governmental organization. The following six main communication styles were operationalized: verbal aggressiveness, expressiveness, preciseness, assuredness, supportiveness, and argumentativeness. Regression analyses were employed to test three main hypotheses. FINDINGS: In line with expectations, the study showed that charismatic and human-oriented leadership are mainly communicative, while task-oriented leadership is significantly less communicative. The communication styles were strongly and differentially related to knowledge sharing behaviors, perceived leader performance, satisfaction with the leader, and subordinate's team commitment. Multiple regression analyses showed that the leadership styles mediated the relations between the communication styles and leadership outcomes. However, leader's preciseness explained variance in perceived leader performance and satisfaction with the leader above and beyond the leadership style variables. IMPLICATIONS: This study offers potentially invaluable input for leadership training programs by showing the importance of leader's supportiveness, assuredness, and preciseness when communicating with subordinates. ORIGINALITY/VALUE: Although one of the core elements of leadership is interpersonal communication, this study is one of the first to use a comprehensive communication styles instrument in the study of leadership.

  4. High-resolution myocardial T1 mapping using single-shot inversion recovery fast low-angle shot MRI with radial undersampling and iterative reconstruction

    PubMed Central

    Joseph, Arun A; Kalentev, Oleksandr; Merboldt, Klaus-Dietmar; Voit, Dirk; Roeloffs, Volkert B; van Zalk, Maaike; Frahm, Jens

    2016-01-01

    Objective: To develop a novel method for rapid myocardial T1 mapping at high spatial resolution. Methods: The proposed strategy represents a single-shot inversion recovery experiment triggered to early diastole during a brief breath-hold. The measurement combines an adiabatic inversion pulse with a real-time readout by highly undersampled radial FLASH, iterative image reconstruction and T1 fitting with automatic deletion of systolic frames. The method was implemented on a 3-T MRI system using a graphics processing unit-equipped bypass computer for online application. Validations employed a T1 reference phantom including analyses at simulated heart rates from 40 to 100 beats per minute. In vivo applications involved myocardial T1 mapping in short-axis views of healthy young volunteers. Results: At 1-mm in-plane resolution and 6-mm section thickness, the inversion recovery measurement could be shortened to 3 s without compromising T1 quantitation. Phantom studies demonstrated T1 accuracy and high precision for values ranging from 300 to 1500 ms and up to a heart rate of 100 beats per minute. Similar results were obtained in vivo yielding septal T1 values of 1246 ± 24 ms (base), 1256 ± 33 ms (mid-ventricular) and 1288 ± 30 ms (apex), respectively (mean ± standard deviation, n = 6). Conclusion: Diastolic myocardial T1 mapping with use of single-shot inversion recovery FLASH offers high spatial resolution, T1 accuracy and precision, and practical robustness and speed. Advances in knowledge: The proposed method will be beneficial for clinical applications relying on native and post-contrast T1 quantitation. PMID:27759423

  5. Clinical Pharmacology Quality Assurance (CPQA) Program: Models for Longitudinal Analysis of Antiretroviral (ARV) Proficiency Testing for International Laboratories

    PubMed Central

    DiFrancesco, Robin; Rosenkranz, Susan L.; Taylor, Charlene R.; Pande, Poonam G.; Siminski, Suzanne M.; Jenny, Richard W.; Morse, Gene D.

    2013-01-01

    Among National Institutes of Health (NIH) HIV Research Networks conducting multicenter trials, samples from protocols that span several years are analyzed at multiple clinical pharmacology laboratories (CPLs) for multiple antiretrovirals (ARV). Drug assay data are, in turn, entered into study-specific datasets that are used for pharmacokinetic analyses, merged to conduct cross-protocol pharmacokinetic analysis and integrated with pharmacogenomics research to investigate pharmacokinetic-pharmacogenetic associations. The CPLs participate in a semi-annual proficiency testing (PT) program implemented by the Clinical Pharmacology Quality Assurance (CPQA) program. Using results from multiple PT rounds, longitudinal analyses of recovery are reflective of accuracy and precision within/across laboratories. The objectives of this longitudinal analysis of PT across multiple CPLs were to develop and test statistical models that longitudinally: (1)assess the precision and accuracy of concentrations reported by individual CPLs; (2)determine factors associated with round-specific and long-term assay accuracy, precision and bias using a new regression model. A measure of absolute recovery is explored as a simultaneous measure of accuracy and precision. Overall, the analysis outcomes assured 97% accuracy (±20% of the final target concentration of all (21)drug concentration results reported for clinical trial samples by multiple CPLs).Using the CLIA acceptance of meeting criteria for ≥2/3 consecutive rounds, all ten laboratories that participated in three or more rounds per analyte maintained CLIA proficiency. Significant associations were present between magnitude of error and CPL (Kruskal Wallis [KW]p<0.001), and ARV (KW p<0.001). PMID:24052065

  6. Clinical pharmacology quality assurance program: models for longitudinal analysis of antiretroviral proficiency testing for international laboratories.

    PubMed

    DiFrancesco, Robin; Rosenkranz, Susan L; Taylor, Charlene R; Pande, Poonam G; Siminski, Suzanne M; Jenny, Richard W; Morse, Gene D

    2013-10-01

    Among National Institutes of Health HIV Research Networks conducting multicenter trials, samples from protocols that span several years are analyzed at multiple clinical pharmacology laboratories (CPLs) for multiple antiretrovirals. Drug assay data are, in turn, entered into study-specific data sets that are used for pharmacokinetic analyses, merged to conduct cross-protocol pharmacokinetic analysis, and integrated with pharmacogenomics research to investigate pharmacokinetic-pharmacogenetic associations. The CPLs participate in a semiannual proficiency testing (PT) program implemented by the Clinical Pharmacology Quality Assurance program. Using results from multiple PT rounds, longitudinal analyses of recovery are reflective of accuracy and precision within/across laboratories. The objectives of this longitudinal analysis of PT across multiple CPLs were to develop and test statistical models that longitudinally: (1) assess the precision and accuracy of concentrations reported by individual CPLs and (2) determine factors associated with round-specific and long-term assay accuracy, precision, and bias using a new regression model. A measure of absolute recovery is explored as a simultaneous measure of accuracy and precision. Overall, the analysis outcomes assured 97% accuracy (±20% of the final target concentration of all (21) drug concentration results reported for clinical trial samples by multiple CPLs). Using the Clinical Laboratory Improvement Act acceptance of meeting criteria for ≥2/3 consecutive rounds, all 10 laboratories that participated in 3 or more rounds per analyte maintained Clinical Laboratory Improvement Act proficiency. Significant associations were present between magnitude of error and CPL (Kruskal-Wallis P < 0.001) and antiretroviral (Kruskal-Wallis P < 0.001).

  7. Partial Ambiguity Resolution for Ground and Space-Based Applications in a GPS+Galileo scenario: A simulation study

    NASA Astrophysics Data System (ADS)

    Nardo, A.; Li, B.; Teunissen, P. J. G.

    2016-01-01

    Integer Ambiguity Resolution (IAR) is the key to fast and precise GNSS positioning. The proper diagnostic metric for successful IAR is provided by the ambiguity success rate being the probability of correct integer estimation. In this contribution we analyse the performance of different GPS+Galileo models in terms of number of epochs needed to reach a pre-determined success rate, for various ground and space-based applications. The simulation-based controlled model environment enables us to gain insight into the factors contributing to the ambiguity resolution strength of the different GPS+Galileo models. Different scenarios of modernized GPS+Galileo are studied, encompassing the long baseline ground case as well as the medium dynamics case (airplane) and the space-based Low Earth Orbiter (LEO) case. In our analyses of these models the capabilities of partial ambiguity resolution (PAR) are demonstrated and compared to the limitations of full ambiguity resolution (FAR). The results show that PAR is generally a more efficient way than FAR to reduce the time needed to achieve centimetre-level positioning precision. For long single baselines, PAR can achieve time reductions of fifty percent to achieve such precision levels, while for multiple baselines it even becomes more effective, reaching reductions up to eighty percent for four station networks. For a LEO, the rapidly changing observation geometry does not even allow FAR, while PAR is then still possible for both dual- and triple-frequency scenarios. With the triple-frequency GPS+Galileo model the availability of precise positioning improves by fifteen percent with respect to the dual-frequency scenario.

  8. High-resolution characterization of individual flood deposits

    NASA Astrophysics Data System (ADS)

    Støren, Eivind; Paasche, Øyvind; Hirt, Ann

    2014-05-01

    In most fluvial landscapes rivers transport sediments within and across catchments throughout the year. During flood events the capacity and competence of the river manifolds, and consequently more sediment are eroded and transported within the catchment. Whenever such sediment-laden rivers reach lakes, sediments are deposited at rate much faster than background sedimentation. For this reason alone, lakes can provide exceptionally rich archives of paleofloods. Flood sediments carry information not only about frequency variability through time, but also about source area(s), the time of the deposit (on a seasonal scale), as well as the evolution of the flood. In order to scrutinize the information that can be extracted from such pristine lake records we have developed an approach where high-resolution data are compared to high-precision measurements of selected samples. More specifically, data from high-resolution X-ray fluorescence (XRF) scanning (Itrax) and magnetic susceptibility (Bartington MS2 point sensor) can potentially provide information on annual to decadal resolution. These fast and effective surface scanning methods are subjected to well-known uncertainties, which can impact the interpretation of individual layers. To overcome this challenge - and obtain the highest possible precision and resolution - precise quantitative analysis of discrete flood layers using magnetic hysteresis measurements and First-order reversal curves (FORCs) as well as conventional X-ray fluorescence spectrometer (Philips PW1404) have been conducted. FORCs are obtained with an Alternating Gradient Force Magnetometer and have exceptional high sensitivity (1 x 10-11 A m2) that allows samples smaller than 200 milligrams to be measured. This means that sediments representing a band of less than a couple of millimeters in the lake sediment cores can be sampled without notable contamination from adjacent non-flood sediments, and analyzed with a high degree of precision (analytical error ±2%). Analyses are carried out on a well-documented lake sediment flood-archive from Meringsdalsvatnet in Southern Norway, which is proven to contain the sedimentary imprint of over hundred floods during the last ca. 10 000 years, including well-known historical events. Preliminary results indicate only minor changes in magnetic mineralogy throughout the record, but notable changes are seen in saturation magnetization, which reflects variations in concentration of the ferromagnetic mineralogy. When these results are compared to corresponding concentration of iron (Fe) and rubidium (Rb) it becomes evident that the core contains two statistical populations, which may indicate two contrasting flood systems. There are at least three potential explanations for this pattern: (1) a dual source area; (2) different mechanisms that trigger floods (spring snowmelting versus intense summer rainstorms); (3) the magnitude of the floods, which influences the sedimentary composition; or 4) a combination of the above.

  9. Rigorous high-precision enclosures of fixed points and their invariant manifolds

    NASA Astrophysics Data System (ADS)

    Wittig, Alexander N.

    The well established concept of Taylor Models is introduced, which offer highly accurate C0 enclosures of functional dependencies, combining high-order polynomial approximation of functions and rigorous estimates of the truncation error, performed using verified arithmetic. The focus of this work is on the application of Taylor Models in algorithms for strongly non-linear dynamical systems. A method is proposed to extend the existing implementation of Taylor Models in COSY INFINITY from double precision coefficients to arbitrary precision coefficients. Great care is taken to maintain the highest efficiency possible by adaptively adjusting the precision of higher order coefficients in the polynomial expansion. High precision operations are based on clever combinations of elementary floating point operations yielding exact values for round-off errors. An experimental high precision interval data type is developed and implemented. Algorithms for the verified computation of intrinsic functions based on the High Precision Interval datatype are developed and described in detail. The application of these operations in the implementation of High Precision Taylor Models is discussed. An application of Taylor Model methods to the verification of fixed points is presented by verifying the existence of a period 15 fixed point in a near standard Henon map. Verification is performed using different verified methods such as double precision Taylor Models, High Precision intervals and High Precision Taylor Models. Results and performance of each method are compared. An automated rigorous fixed point finder is implemented, allowing the fully automated search for all fixed points of a function within a given domain. It returns a list of verified enclosures of each fixed point, optionally verifying uniqueness within these enclosures. An application of the fixed point finder to the rigorous analysis of beam transfer maps in accelerator physics is presented. Previous work done by Johannes Grote is extended to compute very accurate polynomial approximations to invariant manifolds of discrete maps of arbitrary dimension around hyperbolic fixed points. The algorithm presented allows for automatic removal of resonances occurring during construction. A method for the rigorous enclosure of invariant manifolds of continuous systems is introduced. Using methods developed for discrete maps, polynomial approximations of invariant manifolds of hyperbolic fixed points of ODEs are obtained. These approximations are outfit with a sharp error bound which is verified to rigorously contain the manifolds. While we focus on the three dimensional case, verification in higher dimensions is possible using similar techniques. Integrating the resulting enclosures using the verified COSY VI integrator, the initial manifold enclosures are expanded to yield sharp enclosures of large parts of the stable and unstable manifolds. To demonstrate the effectiveness of this method, we construct enclosures of the invariant manifolds of the Lorenz system and show pictures of the resulting manifold enclosures. To the best of our knowledge, these enclosures are the largest verified enclosures of manifolds in the Lorenz system in existence.

  10. Preferential flow pathways revealed by field based stable isotope analysis of CO2 by mid-infrared laser spectroscopy

    NASA Astrophysics Data System (ADS)

    van Geldern, Robert; Nowak, Martin; Zimmer, Martin; Szizybalski, Alexandra; Myrttinen, Anssi; Barth, Johannes A. C.; Jost, Hj

    2016-04-01

    A newly developed and commercially available isotope ratio laser spectrometer for CO2 analyses has been tested during a 10-day field monitoring campaign at the Ketzin pilot site for CO2 storage in northern Germany. The laser instrument is based on tunable laser direct absorption in the mid-infrared. The instrument recorded a continuous 10-day carbon stable isotope data set with 30 minutes resolution directly on-site in a field-based laboratory container during a tracer experiment. To test the instruments performance and accuracy the monitoring campaign was accompanied by daily CO2 sampling for laboratory analyses with isotope ratio mass spectrometry (IRMS). The carbon stable isotope ratios measured by conventional IRMS technique and by the new mid-infrared laser spectrometer agree remarkably well within 2σ analytical precision (<0.3 ‰). This proves the capability of the new mid-infrared direct absorption technique to measure high precision and accurate real-time table isotope data directly in the field. The injected CO2 tracer had a distinct δ13C value that was largely different from the reservoir background value. The laser spectroscopy data revealed a prior to this study unknown, intensive dynamic with fast changing δ13C values. The arrival pattern of the tracer suggest that the observed fluctuations were probably caused by migration along separate and distinct preferential flow paths between injection well and observation well. The new technique might contribute to a better tracing of the migration of the underground CO2 plume and help to ensure the long-term integrity of the reservoir.

  11. Traceable Calibration, Performance Metrics, and Uncertainty Estimates of Minirhizotron Digital Imagery for Fine-Root Measurements

    PubMed Central

    Roberti, Joshua A.; SanClements, Michael D.; Loescher, Henry W.; Ayres, Edward

    2014-01-01

    Even though fine-root turnover is a highly studied topic, it is often poorly understood as a result of uncertainties inherent in its sampling, e.g., quantifying spatial and temporal variability. While many methods exist to quantify fine-root turnover, use of minirhizotrons has increased over the last two decades, making sensor errors another source of uncertainty. Currently, no standardized methodology exists to test and compare minirhizotron camera capability, imagery, and performance. This paper presents a reproducible, laboratory-based method by which minirhizotron cameras can be tested and validated in a traceable manner. The performance of camera characteristics was identified and test criteria were developed: we quantified the precision of camera location for successive images, estimated the trueness and precision of each camera's ability to quantify root diameter and root color, and also assessed the influence of heat dissipation introduced by the minirhizotron cameras and electrical components. We report detailed and defensible metrology analyses that examine the performance of two commercially available minirhizotron cameras. These cameras performed differently with regard to the various test criteria and uncertainty analyses. We recommend a defensible metrology approach to quantify the performance of minirhizotron camera characteristics and determine sensor-related measurement uncertainties prior to field use. This approach is also extensible to other digital imagery technologies. In turn, these approaches facilitate a greater understanding of measurement uncertainties (signal-to-noise ratio) inherent in the camera performance and allow such uncertainties to be quantified and mitigated so that estimates of fine-root turnover can be more confidently quantified. PMID:25391023

  12. High-performance liquid chromatography-tandem mass spectrometry method for the determination of perampanel, a novel α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor antagonist in human plasma.

    PubMed

    Mano, Yuji; Takenaka, Osamu; Kusano, Kazutomi

    2015-03-25

    Perampanel (Fycompa(®)) is a novel α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor antagonist registered for the adjunctive treatment of patients (≥12 years) with refractory partial onset seizures. In order to support clinical trials, as well as therapeutic drug monitoring, a sensitive bioanalytical method for the determination of perampanel concentrations in human plasma was established and validated using liquid chromatography with tandem mass spectrometry. Perampanel and an internal standard were extracted from human plasma (100 μL) by liquid extraction using methyl t-butyl ether, then evaporated and reconstituted. The chromatographic separation was conducted on a C8 column with isocratic elution at a flow rate of 0.2 mL/min. The established method showed linearity in the range 0.25-200 ng/mL with correlation coefficients of >0.99 that could be extended 10-fold as validated by dilution integrity analyses. No significant endogenous peaks were detected in the elution of analytes in blank human plasma and no significant matrix effect was observed. The intra- and inter-batch reproducibility analyses demonstrated accuracy and precision within the acceptance criteria. To check the impact of anti-epileptic drugs on the perampanel assay, accuracy, precision, and specificity were assessed in the presence of 14 anti-epileptic drugs. No anti-epileptic drugs at clinically relevant levels showed a significant impact on the perampanel assay. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Evaluation of the pepsin digestibility assay for predicting amino acid digestibility of meat and bone meals.

    PubMed

    Davis, T M; Parsons, C M; Utterback, P L; Kirstein, D

    2015-05-01

    Sixteen meat and bone meal (MBM) samples were obtained and selected from various company plants to provide a wide range in pepsin nitrogen digestibility values. Pepsin digestibility was determined using either 0.02 or 0.002% pepsin. Amino acid (AA) digestibility of the 16 MBM samples was then determined using a precision-fed cecectomized rooster assay. The 0.02% pepsin digestibility values were numerically higher than the 0.002% pepsin values. The values varied from 77 to 93% for 0.02% pepsin and from 67 to 91% for 0.002% pepsin. The rooster AA digestibility results showed a wide range of values among MBM samples mostly due to the 4 samples having lowest and highest AA digestibility. A precision-fed broiler chick ileal AA digestibility assay confirmed that there were large differences in AA digestibility among the MBM samples having the lowest and highest rooster digestibility values. Correlation analyses between pepsin and AA digestibility values showed that the correlation values (r) were highly significant (P < 0.0001) for all AA when all 16 MBM samples were included in the analysis. However, when the MBM samples with the 2 lowest and the 2 highest rooster digestibility values were not included in the correlation analyses, the correlation coefficient values (r) were generally very low and not significant (P > 0.05). The results indicated that the pepsin nitrogen digestibility assay is only useful for detecting large differences in AA digestibility among MBM. There also was no advantage for using 0.02 versus 0.002% pepsin. © 2015 Poultry Science Association Inc.

  14. Precision forging technology for aluminum alloy

    NASA Astrophysics Data System (ADS)

    Deng, Lei; Wang, Xinyun; Jin, Junsong; Xia, Juchen

    2018-03-01

    Aluminum alloy is a preferred metal material for lightweight part manufacturing in aerospace, automobile, and weapon industries due to its good physical properties, such as low density, high specific strength, and good corrosion resistance. However, during forging processes, underfilling, folding, broken streamline, crack, coarse grain, and other macro- or microdefects are easily generated because of the deformation characteristics of aluminum alloys, including narrow forgeable temperature region, fast heat dissipation to dies, strong adhesion, high strain rate sensitivity, and large flow resistance. Thus, it is seriously restricted for the forged part to obtain precision shape and enhanced property. In this paper, progresses in precision forging technologies of aluminum alloy parts were reviewed. Several advanced precision forging technologies have been developed, including closed die forging, isothermal die forging, local loading forging, metal flow forging with relief cavity, auxiliary force or vibration loading, casting-forging hybrid forming, and stamping-forging hybrid forming. High-precision aluminum alloy parts can be realized by controlling the forging processes and parameters or combining precision forging technologies with other forming technologies. The development of these technologies is beneficial to promote the application of aluminum alloys in manufacturing of lightweight parts.

  15. Analysis of Method TO-14 target analytes using a cryofocusing high-speed gas chromatograph interfaced to a high-speed time-of-flight mass spectrometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berkley, R.E.; Gardner, B.D.; Holland, J.F.

    1997-12-31

    A high-speed gas chromatograph coupled with a high-speed time-of-flight mass spectrometer was used to gain a six-fold increase in overall rate of analytical throughput for analysis of EPA Method TO-14 target compounds. Duration of chromatograms was 180 seconds. One hundred mass spectra per second, ranging from 35 to 270 mass units, were collected. Single ion chromatograms were searched at appropriate retention times for chromatographic peaks, which were integrated. Thirty-eight of the forty-one TO-14 target compounds were calibrated using standards at five concentrations from 2.5 to 40 ppb. Four grab samples of ambient air were collected at four different locations atmore » an automobile repair facility, and two grab samples were collected less than one minute apart at a site near a chemical plant, just before and just after passage of three large diesel trucks. All samples were analyzed on the same day they were collected. Most of the duplicate analyses were in close agreement. Ability of the high-speed TOF/GC/MS system to perform analyses of TO-14 target compounds rapidly and precisely was demonstrated. This paper has been reviewed according to US Environmental Protection Agency peer and administrative review policies and approved for presentation and publication. Mention of trade names or commercial products does not constitute endorsement or recommendation for use.« less

  16. The Science of and Advanced Technology for Cost-Effective Manufacture of High Precision Engineering Products. Volume 5. Automatic Generation of Process Outlines of Forming and Machining Processes.

    DTIC Science & Technology

    1986-08-01

    THE SCIENCE OF AND ADVANCED TECHNOLOGY FOR COST-EFFECTIVE MANUFACTURE Lfl OF HIGH PRECISION ENGINEERING PRODUCTS N iA6/*N ONR Contract No. 83K0385...ADVANCED TECHNOLOGY FOR1 COST-EFFECTIVE MANUFACTURE OF1’ HIGH PRECISION ENGINEERING PRODUCTS ONR Contract No. 83K0385 Final Report Vol. 5 AUTOMATIC...Ck 53N Drawing #: 03116-6233 Raw Material: Iiz’ 500mm diameter and 3000mm length Ma, rial Alloy steel. high carbon content, quenched to Min 45Rc

  17. Design of a self-calibration high precision micro-angle deformation optical monitoring scheme

    NASA Astrophysics Data System (ADS)

    Gu, Yingying; Wang, Li; Guo, Shaogang; Wu, Yun; Liu, Da

    2018-03-01

    In order to meet the requirement of high precision and micro-angle measurement on orbit, a self-calibrated optical non-contact real-time monitoring device is designed. Within three meters, the micro-angle variable of target relative to measuring basis can be measured in real-time. The range of angle measurement is +/-50'', the angle measurement accuracy is less than 2''. The equipment can realize high precision real-time monitoring the micro-angle deformation, which caused by high strength vibration and shock of rock launching, sun radiation and heat conduction on orbit and so on.

  18. Isotopic Investigations of Nebular and Parent Body Processes with a High Sensitivity Ion Microprobe

    NASA Technical Reports Server (NTRS)

    McKeegan, Kevin D.

    2005-01-01

    NASA supported the development of the CAMECA ims 1270 ion microprobe at UCLA for applications in cosmochemistry. The primary investigations centered on measuring the microscopic distributions of key isotopic abundances in primitive meteoritic materials as a means of constraining the nature of important thermal and chemical processes in the solar nebula and the timescales associated with those processes. Our prior work on oxygen isotope anomalies in a wide variety of meteoritic materials had led us to a view of a spatially heterogeneous nebula, and in particular, a restricted region for CAI formation that is characterized by O-16-rich gas. Because of its production of CAIs in the energetic local environment near the protosun, the existence of a natural transport mechanism via bipolar outflows, and a general astrophysical plausibility, we were attracted to the fluctuating X-wind model which had been put forward by Frank Shu, Typhoon Lee, and colleagues. With our collaborators, we undertook a series of investigations to test the viability of this hypothesis; this work led directly to the discovery of live Be in CAIs and a clear demonstration of the existence of 160-rich condensates, which necessarily implies an O-16-rich gaseous reservoir in the nebula. Both of these observations fit well within the context of X-wind type models, i.e. formation of CAIs (or condensation of their precursors) in the reconnection ring sunward of the inner edge of the accretion disk, however much work remains to be done to test whether the physical parameters of the model can quantitatively predict not only the thermal histories of CAIs but also their radioactivity. The issue of spatial heterogeneity in the nebula, central to the X-wind model, is also at the heart of any chronology based on short-lived radioisotopes. In this work, we followed up on strong hints for presence of exireme:j: (53 day) short-lived Be-7, and have prepared a manuscript (in revision). We also measured A1-Mg systematics by a combined approach of high-precision multiple-collector SIMS analyses, traditional analyses on the UCLA ims 1270, and high-spatial resolution analyses using a NanoSIMS instrument. The data help to deconvolve effects due to partial resetting of the A1-Mg system by multiple thermal events. Finally, we initiated investigations related to nebular heterogeneity with a new initiative of in situ high-precision sulfur isotope analyses of sulfides from a wide variety of components of chondrites. The ultimate goal of all this work is to help develop a better understanding of the relationships between CAIs and chondrules, the astrophysical environments in which they formed, and the timescales of nebular processes. As detailed in Table 1, for the project period, 14 manuscripts were published and 17 abstracts were presented describing the work.

  19. Measurement Equivalence of the Patient Reported Outcomes Measurement Information System® (PROMIS®) Applied Cognition – General Concerns, Short Forms in Ethnically Diverse Groups

    PubMed Central

    Fieo, Robert; Ocepek-Welikson, Katja; Kleinman, Marjorie; Eimicke, Joseph P.; Crane, Paul K.; Cella, David; Teresi, Jeanne A.

    2017-01-01

    Aims The goals of these analyses were to examine the psychometric properties and measurement equivalence of a self-reported cognition measure, the Patient Reported Outcome Measurement Information System® (PROMIS®) Applied Cognition – General Concerns short form. These items are also found in the PROMIS Cognitive Function (version 2) item bank. This scale consists of eight items related to subjective cognitive concerns. Differential item functioning (DIF) analyses of gender, education, race, age, and (Spanish) language were performed using an ethnically diverse sample (n = 5,477) of individuals with cancer. This is the first analysis examining DIF in this item set across ethnic and racial groups. Methods DIF hypotheses were derived by asking content experts to indicate whether they posited DIF for each item and to specify the direction. The principal DIF analytic model was item response theory (IRT) using the graded response model for polytomous data, with accompanying Wald tests and measures of magnitude. Sensitivity analyses were conducted using ordinal logistic regression (OLR) with a latent conditioning variable. IRT-based reliability, precision and information indices were estimated. Results DIF was identified consistently only for the item, brain not working as well as usual. After correction for multiple comparisons, this item showed significant DIF for both the primary and sensitivity analyses. Black respondents and Hispanics in comparison to White non-Hispanic respondents evidenced a lower conditional probability of endorsing the item, brain not working as well as usual. The same pattern was observed for the education grouping variable: as compared to those with a graduate degree, conditioning on overall level of subjective cognitive concerns, those with less than high school education also had a lower probability of endorsing this item. DIF was also observed for age for two items after correction for multiple comparisons for both the IRT and OLR-based models: “I have had to work really hard to pay attention or I would make a mistake” and “I have had trouble shifting back and forth between different activities that require thinking”. For both items, conditional on cognitive complaints, older respondents had a higher likelihood than younger respondents of endorsing the item in the cognitive complaints direction. The magnitude and impact of DIF was minimal. The scale showed high precision along much of the subjective cognitive concerns continuum; the overall IRT-based reliability estimate for the total sample was 0.88 and the estimates for subgroups ranged from 0.87 to 0.92. Conclusion Little DIF of high magnitude or impact was observed in the PROMIS Applied Cognition – General Concerns short form item set. One item, “It has seemed like my brain was not working as well as usual” might be singled out for further study. However, in general the short form item set was highly reliable, informative, and invariant across differing race/ethnic, educational, age, gender, and language groups. PMID:28523238

  20. Measurement Equivalence of the Patient Reported Outcomes Measurement Information System® (PROMIS®) Applied Cognition - General Concerns, Short Forms in Ethnically Diverse Groups.

    PubMed

    Fieo, Robert; Ocepek-Welikson, Katja; Kleinman, Marjorie; Eimicke, Joseph P; Crane, Paul K; Cella, David; Teresi, Jeanne A

    2016-01-01

    The goals of these analyses were to examine the psychometric properties and measurement equivalence of a self-reported cognition measure, the Patient Reported Outcome Measurement Information System ® (PROMIS ® ) Applied Cognition - General Concerns short form. These items are also found in the PROMIS Cognitive Function (version 2) item bank. This scale consists of eight items related to subjective cognitive concerns. Differential item functioning (DIF) analyses of gender, education, race, age, and (Spanish) language were performed using an ethnically diverse sample ( n = 5,477) of individuals with cancer. This is the first analysis examining DIF in this item set across ethnic and racial groups. DIF hypotheses were derived by asking content experts to indicate whether they posited DIF for each item and to specify the direction. The principal DIF analytic model was item response theory (IRT) using the graded response model for polytomous data, with accompanying Wald tests and measures of magnitude. Sensitivity analyses were conducted using ordinal logistic regression (OLR) with a latent conditioning variable. IRT-based reliability, precision and information indices were estimated. DIF was identified consistently only for the item, brain not working as well as usual. After correction for multiple comparisons, this item showed significant DIF for both the primary and sensitivity analyses. Black respondents and Hispanics in comparison to White non-Hispanic respondents evidenced a lower conditional probability of endorsing the item, brain not working as well as usual. The same pattern was observed for the education grouping variable: as compared to those with a graduate degree, conditioning on overall level of subjective cognitive concerns, those with less than high school education also had a lower probability of endorsing this item. DIF was also observed for age for two items after correction for multiple comparisons for both the IRT and OLR-based models: "I have had to work really hard to pay attention or I would make a mistake" and "I have had trouble shifting back and forth between different activities that require thinking". For both items, conditional on cognitive complaints, older respondents had a higher likelihood than younger respondents of endorsing the item in the cognitive complaints direction. The magnitude and impact of DIF was minimal. The scale showed high precision along much of the subjective cognitive concerns continuum; the overall IRT-based reliability estimate for the total sample was 0.88 and the estimates for subgroups ranged from 0.87 to 0.92. Little DIF of high magnitude or impact was observed in the PROMIS Applied Cognition - General Concerns short form item set. One item, "It has seemed like my brain was not working as well as usual" might be singled out for further study. However, in general the short form item set was highly reliable, informative, and invariant across differing race/ethnic, educational, age, gender, and language groups.

  1. Incorporating uncertainty of management costs in sensitivity analyses of matrix population models.

    PubMed

    Salomon, Yacov; McCarthy, Michael A; Taylor, Peter; Wintle, Brendan A

    2013-02-01

    The importance of accounting for economic costs when making environmental-management decisions subject to resource constraints has been increasingly recognized in recent years. In contrast, uncertainty associated with such costs has often been ignored. We developed a method, on the basis of economic theory, that accounts for the uncertainty in population-management decisions. We considered the case where, rather than taking fixed values, model parameters are random variables that represent the situation when parameters are not precisely known. Hence, the outcome is not precisely known either. Instead of maximizing the expected outcome, we maximized the probability of obtaining an outcome above a threshold of acceptability. We derived explicit analytical expressions for the optimal allocation and its associated probability, as a function of the threshold of acceptability, where the model parameters were distributed according to normal and uniform distributions. To illustrate our approach we revisited a previous study that incorporated cost-efficiency analyses in management decisions that were based on perturbation analyses of matrix population models. Incorporating derivations from this study into our framework, we extended the model to address potential uncertainties. We then applied these results to 2 case studies: management of a Koala (Phascolarctos cinereus) population and conservation of an olive ridley sea turtle (Lepidochelys olivacea) population. For low aspirations, that is, when the threshold of acceptability is relatively low, the optimal strategy was obtained by diversifying the allocation of funds. Conversely, for high aspirations, the budget was directed toward management actions with the highest potential effect on the population. The exact optimal allocation was sensitive to the choice of uncertainty model. Our results highlight the importance of accounting for uncertainty when making decisions and suggest that more effort should be placed on understanding the distributional characteristics of such uncertainty. Our approach provides a tool to improve decision making. © 2013 Society for Conservation Biology.

  2. Triple oxygen isotopes in biogenic and sedimentary carbonates

    NASA Astrophysics Data System (ADS)

    Passey, Benjamin H.; Hu, Huanting; Ji, Haoyuan; Montanari, Shaena; Li, Shuning; Henkes, Gregory A.; Levin, Naomi E.

    2014-09-01

    The 17O anomaly (Δ17O) of natural waters has been shown to be sensitive to evaporation in a way analogous to deuterium excess, with evaporated bodies of water (e.g., leaf waters, lake waters, animal body waters) tending to have lower Δ17O than primary meteoric waters. In animal body water, Δ17O relates to the intake of evaporated waters, evaporative effluxes of water, and the Δ17O value of atmospheric O2, which itself carries signatures of global carbon cycling and photochemical reactions in the stratosphere. Carbonates have the potential to record the triple oxygen isotope compositions of parent waters, allowing reconstruction of past water compositions, but such investigations have awaited development of methods for high-precision measurement of Δ17O of carbonate. We describe optimized methods based on a sequential acid digestion/reduction/fluorination approach that yield Δ17O data with the high precision (∼0.010‰, 1σ) needed to resolve subtle environmental signals. We report the first high-precision Δ17O dataset for terrestrial carbonates, focusing on vertebrate biogenic carbonates and soil carbonates, but also including marine invertebrates and high-temperature carbonates. We determine apparent three-isotope fractionation factors between the O2 analyte derived from carbonate and the parent waters of the carbonate. These in combination with appropriate temperature estimates (from clumped isotope thermometry, or known or estimated body temperatures) are used to calculate the δ18O and Δ17O of parent waters. The clearest pattern to emerge is the strong 17O-depletion in avian, dinosaurian, and mammalian body water (from analyses of eggshell and tooth enamel) relative to meteoric waters, following expected influences of evaporated water (e.g., leaf water) and atmospheric O2 on vertebrate body water. Parent waters of the soil carbonates studied here have Δ17O values that are similar to or slightly lower than global precipitation. Our results suggest that Δ17O will have useful application to paleoenvironmental studies of continental environments where the effects of evaporation are important, and where vertebrate body water may record an isotopic signal of evaporated water sources and atmospheric oxygen.

  3. Novel HPLC Analysis of Hydrocortisone in Conventional and Controlled-Release Pharmaceutical Preparations.

    PubMed

    Adi-Dako, Ofosua; Oppong Bekoe, Samuel; Ofori-Kwakye, Kwabena; Appiah, Enoch; Peprah, Paul

    2017-01-01

    An isocratic sensitive and precise reverse phase high-performance liquid chromatography (RP-HPLC) method was developed and validated for the determination and quantification of hydrocortisone in controlled-release and conventional (tablets and injections) pharmaceutical preparations. Chromatographic separation was achieved on an ODS (C18), 5  μ m, 4.6 × 150 mm, with an isocratic elution using a freshly prepared mobile phase of composition methanol : water : acetic acid (60 : 30 : 10, v/v/v) at a flow rate of 1.0 ml/min. The detection of the drug was successfully achieved at a wavelength of 254 nm. The retention time obtained for the drug was 2.26 min. The proposed method produced linear detectable responses in the concentration range of 0.02 to 0.4 mg/ml of hydrocortisone. High recoveries of 98-101% were attained at concentration levels of 80%, 100%, and 120%. The intraday and interday precision (RSD) were 0.19-0.55% and 0.33-0.71%, respectively. A comparison of hydrocortisone analyses data from the developed method and the official USP method showed no significant difference ( p > 0.05) at a 95% confidence interval. The method was successfully applied to the determination and quantification of hydrocortisone in six controlled-release and fifteen conventional release pharmaceutical preparations.

  4. Novel HPLC Analysis of Hydrocortisone in Conventional and Controlled-Release Pharmaceutical Preparations

    PubMed Central

    Oppong Bekoe, Samuel; Appiah, Enoch; Peprah, Paul

    2017-01-01

    An isocratic sensitive and precise reverse phase high-performance liquid chromatography (RP-HPLC) method was developed and validated for the determination and quantification of hydrocortisone in controlled-release and conventional (tablets and injections) pharmaceutical preparations. Chromatographic separation was achieved on an ODS (C18), 5 μm, 4.6 × 150 mm, with an isocratic elution using a freshly prepared mobile phase of composition methanol : water : acetic acid (60 : 30 : 10, v/v/v) at a flow rate of 1.0 ml/min. The detection of the drug was successfully achieved at a wavelength of 254 nm. The retention time obtained for the drug was 2.26 min. The proposed method produced linear detectable responses in the concentration range of 0.02 to 0.4 mg/ml of hydrocortisone. High recoveries of 98–101% were attained at concentration levels of 80%, 100%, and 120%. The intraday and interday precision (RSD) were 0.19–0.55% and 0.33–0.71%, respectively. A comparison of hydrocortisone analyses data from the developed method and the official USP method showed no significant difference (p > 0.05) at a 95% confidence interval. The method was successfully applied to the determination and quantification of hydrocortisone in six controlled-release and fifteen conventional release pharmaceutical preparations. PMID:28660092

  5. Can the envisaged reductions of fossil fuel CO2 emissions be detected by atmospheric observations?

    PubMed

    Levin, Ingeborg; Rödenbeck, Christian

    2008-03-01

    The lower troposphere is an excellent receptacle, which integrates anthropogenic greenhouse gases emissions over large areas. Therefore, atmospheric concentration observations over populated regions would provide the ultimate proof if sustained emissions changes have occurred. The most important anthropogenic greenhouse gas, carbon dioxide (CO(2)), also shows large natural concentration variations, which need to be disentangled from anthropogenic signals to assess changes in associated emissions. This is in principle possible for the fossil fuel CO(2) component (FFCO(2)) by high-precision radiocarbon ((14)C) analyses because FFCO(2) is free of radiocarbon. Long-term observations of (14)CO(2) conducted at two sites in south-western Germany do not yet reveal any significant trends in the regional fossil fuel CO(2) component. We rather observe strong inter-annual variations, which are largely imprinted by changes of atmospheric transport as supported by dedicated transport model simulations of fossil fuel CO(2). In this paper, we show that, depending on the remoteness of the site, changes of about 7-26% in fossil fuel emissions in respective catchment areas could be detected with confidence by high-precision atmospheric (14)CO(2) measurements when comparing 5-year averages if these inter-annual variations were taken into account. This perspective constitutes the urgently needed tool for validation of fossil fuel CO(2) emissions changes in the framework of the Kyoto protocol and successive climate initiatives.

  6. Genesis Solar Wind Interstream, Coronal Hole and Coronal Mass Ejection Samples: Update on Availability and Condition

    NASA Technical Reports Server (NTRS)

    Allton, J. H.; Gonzalez, C. P.; Allums, K. K.

    2017-01-01

    Recent refinement of analysis of ACE/SWICS data (Advanced Composition Explorer/Solar Wind Ion Composition Spectrometer) and of onboard data for Genesis Discovery Mission of 3 regimes of solar wind at Earth-Sun L1 make it an appropriate time to update the availability and condition of Genesis samples specifically collected in these three regimes and currently curated at Johnson Space Center. ACE/SWICS spacecraft data indicate that solar wind flow types emanating from the interstream regions, from coronal holes and from coronal mass ejections are elementally and isotopically fractionated in different ways from the solar photosphere, and that correction of solar wind values to photosphere values is non-trivial. Returned Genesis solar wind samples captured very different kinds of information about these three regimes than spacecraft data. Samples were collected from 11/30/2001 to 4/1/2004 on the declining phase of solar cycle 23. Meshik, et al is an example of precision attainable. Earlier high precision laboratory analyses of noble gases collected in the interstream, coronal hole and coronal mass ejection regimes speak to degree of fractionation in solar wind formation and models that laboratory data support. The current availability and condition of samples captured on collector plates during interstream slow solar wind, coronal hole high speed solar wind and coronal mass ejections are de-scribed here for potential users of these samples.

  7. The influence of room temperature on Mg isotope measurements by MC-ICP-MS.

    PubMed

    Zhang, Xing-Chao; Zhang, An-Yu; Zhang, Zhao-Feng; Huang, Fang; Yu, Hui-Min

    2018-03-24

    We observed that the accuracy and precision of magnesium (Mg) isotope analyses could be affected if the room temperature oscillated during measurements. To achieve high quality Mg isotopic data, it is critical to evaluate how the unstable room temperature affects Mg isotope measurements by multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS). We measured the Mg isotopes for the reference material DSM-3 using MC-ICP-MS under oscillating room temperatures in spring. For a comparison, we also measured the Mg isotopes under stable room temperatures, which was achieved by the installation of an improved temperature control system in the laboratory. The δ 26 Mg values measured under oscillating room temperatures have a larger deviation (δ 26 Mg from -0.09 to 0.08‰, with average δ 26 Mg = 0.00 ± 0.08 ‰) than those measured under a stable room temperature (δ 26 Mg from -0.03 to 0.03‰, with average δ 26 Mg = 0.00 ± 0.02 ‰) using the same MC-ICP-MS system. The room temperature variation can influence the stability of MC-ICP-MS. Therefore, it is critical to keep the room temperature stable to acquire high precise and accurate isotopic data when using MC-ICP-MS, especially when using the sample-standard bracketing (SSB) correction method. This article is protected by copyright. All rights reserved.

  8. Online Compound-Specific δ13C and δD Determinations Using Laser Spectroscopy

    NASA Astrophysics Data System (ADS)

    Saad, N.; Hoffnagle, J.

    2012-04-01

    A unique laser spectroscopic approach for making online high-precision compound-specific isotope analysis (CSIA) of both δ13C and δD of the CO2 and H2O organic combustion products is described. The system consists of a gas chromatograph (GC) for the separation of an organic mixture coupled to a novel micro-fabricated microreactor (MFMR) for the complete combustion of each organic compound into CO2 and H2O and the precise measurements of δ13C in the CO2 gas and δ2H in the H2O vapor from the well established infrared spectrum of both gases, using an isotopic CO2 Cavity Ring-Down Spectroscopy (CRDS) analyzer and an isotopic H2O vapor CRDS analyzer, respectively. Light hydrocarbons are used as our test compounds in this study. The analyses of CH4, C2H6 and C3H8 for δ13C and δ2H values resulted in precisions of SD(δ13C)<1‰ and SD(δ2H)<2‰, respectively. These results were further compared to the gold standard method using Dual Inlet IRMS (DI-IRMS) and showed excellent agreements in isotopic measurements. The preliminary results presented here pave the way for a single CRDS analyzer-based system that simultaneously measures δ13C and δD, is field-deployable, less costly and necessitates less operator expertise than IRMS-based systems.

  9. Analyzing Water's Optical Absorption

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A cooperative agreement between World Precision Instruments (WPI), Inc., and Stennis Space Center has led the UltraPath(TM) device, which provides a more efficient method for analyzing the optical absorption of water samples at sea. UltraPath is a unique, high-performance absorbance spectrophotometer with user-selectable light path lengths. It is an ideal tool for any study requiring precise and highly sensitive spectroscopic determination of analytes, either in the laboratory or the field. As a low-cost, rugged, and portable system capable of high- sensitivity measurements in widely divergent waters, UltraPath will help scientists examine the role that coastal ocean environments play in the global carbon cycle. UltraPath(TM) is a trademark of World Precision Instruments, Inc. LWCC(TM) is a trademark of World Precision Instruments, Inc.

  10. SPM interferometer with large range for mirco-vibration measurement

    NASA Astrophysics Data System (ADS)

    Fu, Mingyi; Tang, Chaowei; He, Guotian; Hu, Jun; Wang, Li

    2007-12-01

    The measuring range and precision are two inconsistent parameters of traditional optical interferometry. In this paper, the interferometer measuring vibration with high precision and large range is proposed and its measuring principle is analyzed in detail. The interferometer obtains phase information by processing interference signals with two real-time phase discriminator and the vibration displacement could be gotten by expanding this phase. The measuring range was enlarged from half wavelength to millimeter. Meanwhile, the measuring precision was independent of external disturbance and vibration displacement measurement with high precision was realized. The measuring range of vibration displacement for 6000.5nm and the repeatable measuring precision was 5.72nm from experiment. The feasibility of the measuring method was validated by experiments.

  11. Micro-optical fabrication by ultraprecision diamond machining and precision molding

    NASA Astrophysics Data System (ADS)

    Li, Hui; Li, Likai; Naples, Neil J.; Roblee, Jeffrey W.; Yi, Allen Y.

    2017-06-01

    Ultraprecision diamond machining and high volume molding for affordable high precision high performance optical elements are becoming a viable process in optical industry for low cost high quality microoptical component manufacturing. In this process, first high precision microoptical molds are fabricated using ultraprecision single point diamond machining followed by high volume production methods such as compression or injection molding. In the last two decades, there have been steady improvements in ultraprecision machine design and performance, particularly with the introduction of both slow tool and fast tool servo. Today optical molds, including freeform surfaces and microlens arrays, are routinely diamond machined to final finish without post machining polishing. For consumers, compression molding or injection molding provide efficient and high quality optics at extremely low cost. In this paper, first ultraprecision machine design and machining processes such as slow tool and fast too servo are described then both compression molding and injection molding of polymer optics are discussed. To implement precision optical manufacturing by molding, numerical modeling can be included in the future as a critical part of the manufacturing process to ensure high product quality.

  12. The plutonic-volcanic connection in porphyry copper deposits: Evidence from zircon geochemistry and high-precision CA-ID-TIMS geochronology

    NASA Astrophysics Data System (ADS)

    Buret, Y.; Von Quadt, A.; Wotzlaw, J. F.; Heinrich, C. A.

    2016-12-01

    Porphyry Cu deposits represent the interface between plutonic and volcanic domains of upper crustal magmatic systems. These deposits are typically composed of multiple porphyritic intrusions which constrain the duration of ore formation to a maximum of several 104 years [1] and are commonly intruded into the base of volcanoes. The relationship between volcanic activity and porphyry stocks is often difficult to establish, as they are rarely exposed together unless later faulting and/or tilting occurred [2]. In order to investigate the relationships between extrusive magmatism and porphyry Cu formation we compare zircon petrochronology from late stage volcanic units with the nearby world class Bajo de la Alumbrera porphyry Cu deposit, from the Late Miocene Farallón Negro Volcanic Complex (FNVC) in Northwest Argentina. In this study we texturally characterise zircon crystals by CL-imaging prior to obtaining in-situ geochemical and geochronological information by LA-ICP-MS. Analysed zircon grains were then extracted and analysed by high precision CA-ID-TIMS. This approach has the two-fold benefit of screening for inherited cores, and obtaining texturally defined geochemical information, prior to dissolution of the zircon crystal for CA-ID-TIMS analysis. We use this information to establish temporal and geochemical links between studied volcanic and porphyry units in the FNVC. The results of this study suggest a close temporal and genetic link between the Bajo de la Alumbrera porphyry Cu deposit and the late stage volcanism at the FNVC. Voluminous explosive volcanism immediately following porphyry formation has important implications for the thermal and rheological state of the magma that is parental to the porphyries and fed the eruption. Further work investigating the geochemistry of other accessory and major minerals could shed further light on the evolution of the magmatic body prior to eruption/ emplacement. References: [1] Buret et al. (2016) EPSL 450:120-131; [2] Dilles (1987) Econ Geol 82:1750-1789.

  13. Exploring structures of the Rochefort Cave (Belgium) with 3D models from LIDAR scans and UAV photoscans.

    NASA Astrophysics Data System (ADS)

    Watlet, A.; Triantafyllou, A.; Kaufmann, O.; Le Mouelic, S.

    2016-12-01

    Amongst today's techniques that are able to produce 3D point clouds, LIDAR and UAV (Unmanned Aerial Vehicle) photogrammetry are probably the most commonly used. Both methods have their own advantages and limitations. LIDAR scans create high resolution and high precision 3D point clouds, but such methods are generally costly, especially for sporadic surveys. Compared to LIDAR, UAV (e.g. drones) are cheap and flexible to use in different types of environments. Moreover, the photogrammetric processing workflow of digital images taken with UAV becomes easier with the rise of many affordable software packages (e.g., Agisoft PhotoScan, MicMac, VisualSFM). In this canvas, we present a challenging study made at the Rochefort Cave Laboratory (South Belgium) comprising surface and underground surveys. The main chamber of the cave ( 10000 m³) was the principal target of the study. A LIDAR scan and an UAV photoscan were acquired underground, producing respective 3D models. An additional 3D photoscan was performed at the surface, in the sinkhole in direct connection with the main chamber. The main goal of the project is to combine this different datasets for quantifying the orientation of inaccessible geological structures (e.g. faults, tectonic and gravitational joints, and sediments bedding), and for comparing them to structural data surveyed on the field. To go through structural interpretations, we used a subsampling method merging neighboured model polygons that have similar orientations, allowing statistical analyses of polygons spatial distribution. The benefit of this method is to verify the spatial continuity of in-situ structural measurements to larger scale. Roughness and colorimetric/spectral analyses may also be of great interest for several geosciences purposes by discriminating different facies among the geological beddings. Amongst others, this study was helpful to precise the local petrophysical properties associated with particular geological layers, what improved interpreting results from an ERT monitoring of the karst hydrological processes in terms of groundwater content.

  14. A new derivatization method for δ18O analysis of individual carbohydrates with GC-Pyrolysis-IRMS

    NASA Astrophysics Data System (ADS)

    Lehmann, M. M.; Siegwolf, R. T.; Saurer, M.; Blees, J.; Fischer, M.; Zech, M.

    2015-12-01

    Compound specific isotope analysis (CSIA) with gas chromatography coupled to an isotope ratio mass spectrometer (GC-Pyr-IRMS) is nowadays a powerful tool that is widely used by a broad spectrum of research fields to investigate the isotopic signature of diverse metabolites. While many CSIA methods for carbon, hydrogen, and nitrogen isotopes are known, CSIA methods for the analysis of oxygen isotopes (δ18O) are still not widely established. Especially, reliable and precise methods for the δ18O analyses of individual carbohydrates are scarce, which is caused by the highly sensitive nature of the sugars. However, carbohydrates are important components of living organisms, source for many biochemical reactions, and can be found in all organisms, in soils, sediments, and in air. Thus, a method, allowing the investigation of the 18O/16O ratio in carbohydrates will enhance the scope of research using isotopes. We developed a new and easy to handle derivatization method to determine δ18O in carbohydrates with GC-Pyr-IRMS that consists of a catalyzed one-pot reaction in acetonitrile, resulting in complete methylation of all sugar hydroxyl groups within 24 hours, with silver oxide as the proton acceptor and methyl iodide as the methyl group carrier. Results derived from standard material show unrivalled δ18O precision ranging from about 0.2 to 1.1 ‰ for different individual carbohydrates of different classes and a generally very good accuracy, with a narrow range of 0.2 ‰ around the reference value, despite of high area variations. We applied this method on real samples, demonstrating that the method can commonly be used for analyzing honey samples, and for the analyses of more complex carbohydrate mixtures from plant leaves, including glucose, fructose, pinitol, and sucrose. Our new method may be used for food, beverage, and medical applications, as well as for biogeochemical and paleoclimatic sciences.

  15. Atomically precise organomimetic cluster nanomolecules assembled via perfluoroaryl-thiol SNAr chemistry

    NASA Astrophysics Data System (ADS)

    Qian, Elaine A.; Wixtrom, Alex I.; Axtell, Jonathan C.; Saebi, Azin; Jung, Dahee; Rehak, Pavel; Han, Yanxiao; Moully, Elamar Hakim; Mosallaei, Daniel; Chow, Sylvia; Messina, Marco S.; Wang, Jing Yang; Royappa, A. Timothy; Rheingold, Arnold L.; Maynard, Heather D.; Král, Petr; Spokoyny, Alexander M.

    2017-04-01

    The majority of biomolecules are intrinsically atomically precise, an important characteristic that enables rational engineering of their recognition and binding properties. However, imparting a similar precision to hybrid nanoparticles has been challenging because of the inherent limitations of existing chemical methods and building blocks. Here we report a new approach to form atomically precise and highly tunable hybrid nanomolecules with well-defined three-dimensionality. Perfunctionalization of atomically precise clusters with pentafluoroaryl-terminated linkers produces size-tunable rigid cluster nanomolecules. These species are amenable to facile modification with a variety of thiol-containing molecules and macromolecules. Assembly proceeds at room temperature within hours under mild conditions, and the resulting nanomolecules exhibit high stabilities because of their full covalency. We further demonstrate how these nanomolecules grafted with saccharides can exhibit dramatically improved binding affinity towards a protein. Ultimately, the developed strategy allows the rapid generation of precise molecular assemblies to investigate multivalent interactions.

  16. Development of the One Centimeter Accuracy Geoid Model of Latvia for GNSS Measurements

    NASA Astrophysics Data System (ADS)

    Balodis, J.; Silabriedis, G.; Haritonova, D.; Kaļinka, M.; Janpaule, I.; Morozova, K.; Jumāre, I.; Mitrofanovs, I.; Zvirgzds, J.; Kaminskis, J.; Liepiņš, I.

    2015-11-01

    There is an urgent necessity for a highly accurate and reliable geoid model to enable prompt determination of normal height with the use of GNSS coordinate determination due to the high precision requirements in geodesy, building and high precision road construction development. Additionally, the Latvian height system is in the process of transition from BAS- 77 (Baltic Height System) to EVRS2007 system. The accuracy of the geoid model must approach the precision of about ∼1 cm looking forward to the Baltic Rail and other big projects. The use of all the available and verified data sources is planned, including the use of enlarged set of GNSS/levelling data, gravimetric measurement data and, additionally, the vertical deflection measurements over the territory of Latvia. The work is going ahead stepwise. Just the issue of GNSS reference network stability is discussed. In order to achieve the ∼1 cm precision geoid, it is required to have a homogeneous high precision GNSS network as a basis for ellipsoidal height determination for GNSS/levelling points. Both the LatPos and EUPOS® - Riga network have been examined in this article.

  17. High precision during food recruitment of experienced (reactivated) foragers in the stingless bee Scaptotrigona mexicana (Apidae, Meliponini)

    NASA Astrophysics Data System (ADS)

    Sánchez, Daniel; Nieh, James C.; Hénaut, Yann; Cruz, Leopoldo; Vandame, Rémy

    Several studies have examined the existence of recruitment communication mechanisms in stingless bees. However, the spatial accuracy of location-specific recruitment has not been examined. Moreover, the location-specific recruitment of reactivated foragers, i.e., foragers that have previously experienced the same food source at a different location and time, has not been explicitly examined. However, such foragers may also play a significant role in colony foraging, particularly in small colonies. Here we report that reactivated Scaptotrigona mexicana foragers can recruit with high precision to a specific food location. The recruitment precision of reactivated foragers was evaluated by placing control feeders to the left and the right of the training feeder (direction-precision tests) and between the nest and the training feeder and beyond it (distance-precision tests). Reactivated foragers arrived at the correct location with high precision: 98.44% arrived at the training feeder in the direction trials (five-feeder fan-shaped array, accuracy of at least +/-6° of azimuth at 50 m from the nest), and 88.62% arrived at the training feeder in the distance trials (five-feeder linear array, accuracy of at least +/-5 m or +/-10% at 50 m from the nest). Thus, S. mexicana reactivated foragers can find the indicated food source at a specific distance and direction with high precision, higher than that shown by honeybees, Apis mellifera, which do not communicate food location at such close distances to the nest.

  18. The Effect of Size Fraction in Analyses of Benthic Foraminifera Assemblages: A Case Study Comparing Assemblages from the >125 μm and >150 μm Size Fractions

    NASA Astrophysics Data System (ADS)

    Weinkauf, Manuel F. G.; Milker, Yvonne

    2018-05-01

    Benthic Foraminifera assemblages are employed for past environmental reconstructions, as well as for biomonitoring studies in recent environments. Despite their established status for such applications, and existing protocols for sample treatment, not all studies using benthic Foraminifera employ the same methodology. For instance, there is no broad practical consensus whether to use the >125 µm or >150 µm size fraction for benthic foraminiferal assemblage analyses. Here, we use early Pleistocene material from the Pefka E section on the Island of Rhodes (Greece), which has been counted in both size fractions, to investigate whether a 25 µm difference in the counted fraction is already sufficient to have an impact on ecological studies. We analysed the influence of the difference in size fraction on studies of biodiversity as well as multivariate assemblage analyses of the sample material. We found that for both types of studies, the general trends remain the same regardless of the chosen size fraction, but in detail significant differences emerge which are not consistently distributed between samples. Studies which require a high degree of precision can thus not compare results from analyses that used different size fractions, and the inconsistent distribution of differences makes it impossible to develop corrections for this issue. We therefore advocate the consistent use of the >125 µm size fraction for benthic foraminiferal studies in the future.

  19. High precision NC lathe feeding system rigid-flexible coupling model reduction technology

    NASA Astrophysics Data System (ADS)

    Xuan, He; Hua, Qingsong; Cheng, Lianjun; Zhang, Hongxin; Zhao, Qinghai; Mao, Xinkai

    2017-08-01

    This paper proposes the use of dynamic substructure method of reduction of order to achieve effective reduction of feed system for high precision NC lathe feeding system rigid-flexible coupling model, namely the use of ADAMS to establish the rigid flexible coupling simulation model of high precision NC lathe, and then the vibration simulation of the period by using the FD 3D damper is very effective for feed system of bolt connection reduction of multi degree of freedom model. The vibration simulation calculation is more accurate, more quickly.

  20. Effect of Risk of Bias on the Effect Size of Meta-Analytic Estimates in Randomized Controlled Trials in Periodontology and Implant Dentistry.

    PubMed

    Faggion, Clovis Mariano; Wu, Yun-Chun; Scheidgen, Moritz; Tu, Yu-Kang

    2015-01-01

    Risk of bias (ROB) may threaten the internal validity of a clinical trial by distorting the magnitude of treatment effect estimates, although some conflicting information on this assumption exists. The objective of this study was evaluate the effect of ROB on the magnitude of treatment effect estimates in randomized controlled trials (RCTs) in periodontology and implant dentistry. A search for Cochrane systematic reviews (SRs), including meta-analyses of RCTs published in periodontology and implant dentistry fields, was performed in the Cochrane Library in September 2014. Random-effect meta-analyses were performed by grouping RCTs with different levels of ROBs in three domains (sequence generation, allocation concealment, and blinding of outcome assessment). To increase power and precision, only SRs with meta-analyses including at least 10 RCTs were included. Meta-regression was performed to investigate the association between ROB characteristics and the magnitudes of intervention effects in the meta-analyses. Of the 24 initially screened SRs, 21 SRs were excluded because they did not include at least 10 RCTs in the meta-analyses. Three SRs (two from periodontology field) generated information for conducting 27 meta-analyses. Meta-regression did not reveal significant differences in the relationship of the ROB level with the size of treatment effect estimates, although a trend for inflated estimates was observed in domains with unclear ROBs. In this sample of RCTs, high and (mainly) unclear risks of selection and detection biases did not seem to influence the size of treatment effect estimates, although several confounders might have influenced the strength of the association.

  1. Development and modulation of intrinsic membrane properties control the temporal precision of auditory brain stem neurons.

    PubMed

    Franzen, Delwen L; Gleiss, Sarah A; Berger, Christina; Kümpfbeck, Franziska S; Ammer, Julian J; Felmy, Felix

    2015-01-15

    Passive and active membrane properties determine the voltage responses of neurons. Within the auditory brain stem, refinements in these intrinsic properties during late postnatal development usually generate short integration times and precise action-potential generation. This developmentally acquired temporal precision is crucial for auditory signal processing. How the interactions of these intrinsic properties develop in concert to enable auditory neurons to transfer information with high temporal precision has not yet been elucidated in detail. Here, we show how the developmental interaction of intrinsic membrane parameters generates high firing precision. We performed in vitro recordings from neurons of postnatal days 9-28 in the ventral nucleus of the lateral lemniscus of Mongolian gerbils, an auditory brain stem structure that converts excitatory to inhibitory information with high temporal precision. During this developmental period, the input resistance and capacitance decrease, and action potentials acquire faster kinetics and enhanced precision. Depending on the stimulation time course, the input resistance and capacitance contribute differentially to action-potential thresholds. The decrease in input resistance, however, is sufficient to explain the enhanced action-potential precision. Alterations in passive membrane properties also interact with a developmental change in potassium currents to generate the emergence of the mature firing pattern, characteristic of coincidence-detector neurons. Cholinergic receptor-mediated depolarizations further modulate this intrinsic excitability profile by eliciting changes in the threshold and firing pattern, irrespective of the developmental stage. Thus our findings reveal how intrinsic membrane properties interact developmentally to promote temporally precise information processing. Copyright © 2015 the American Physiological Society.

  2. Optical elements design of optical pick-up with characteristics of read-out spot for high density optical storage

    NASA Astrophysics Data System (ADS)

    Li, Lihua; Ma, Jianshe; Liu, Lin; Pan, Longfa; Zhang, Jianyong; Lu, Junhui

    2005-09-01

    It is well known that the optical pick-up (OPU) plays a very important role in optical storage system. And the quality of OPU can be measured by the characteristics of OPU read-out spot for high density optical storage. Therefore this paper mainly designs an OPU model for high density optical storage to study the characteristics of OPU read-out spot. Firstly it analyses the optical read-out principle in OPU and contrives an optical read-out system based on the hereinbefore theory. In this step it chiefly designs the grating, splitter, collimator lens and objective lens. Secondly based on the aberrations analysis and theory involved by the splitter, the collimator lens and the optical lens, the paper uses the software CODE V to calculate the aberrations and to optimize the optical read-out system. Then the author can receive an ideal OPU read-out spot for high density optical storage and obtain the characteristics of the ideal OPU read-out spot. At the same time this paper analyses some influence factors which can directly affect the characteristics of the OPU read-out spot. Thirdly according to the up data the author practically manufactures a real optical pick-up to validate the hereinbefore designed optical read-out system. And it uses the Optical Spot Analyzer to get the image of the read-out spot. Comparing the ideal image to the actual image of the designed optical read-out system, the author finds out that the upwards analyses and design is suitable for high density storage and can be used in the actual production. And the author also receives the conclusion that the mostly influences on characteristics of OPU read-out spot for high density optical storage factors is not only the process of designing the grating, splitter, collimator lens and objective lens, but also the assembling work precision

  3. Planetary Surface Instruments Workshop

    NASA Technical Reports Server (NTRS)

    Meyer, Charles (Editor); Treiman, Allan H. (Editor); Kostiuk, Theodor (Editor)

    1996-01-01

    This report on planetary surface investigations and planetary landers covers: (1) the precise chemical analysis of solids; (2) isotopes and evolved gas analyses; (3) planetary interiors; planetary atmospheres from within as measured by landers; (4) mineralogical examination of extraterrestrial bodies; (5) regoliths; and (6) field geology/processes.

  4. Lunar Cordierite-Spinel Troctolite: Igneous History, and Volatiles

    NASA Astrophysics Data System (ADS)

    Treiman, A. H.; Gross, J.

    2012-03-01

    Apollo sample 15295,101 contains a cordierite spinel troctolite (Marvin et al., 1989). The cordierite is volatile-free, at least by EMP — more precise analyses are in progress. The troctolite may be a partial melt of a spinel-rich igneous cumulate.

  5. Interlaboratory comparison of chemical analysis of uranium mononitride

    NASA Technical Reports Server (NTRS)

    Merkle, E. J.; Davis, W. F.; Halloran, J. T.; Graab, J. W.

    1974-01-01

    Analytical methods were established in which the critical variables were controlled, with the result that acceptable interlaboratory agreement was demonstrated for the chemical analysis of uranium mononitride. This was accomplished by using equipment readily available to laboratories performing metallurgical analyses. Agreement among three laboratories was shown to be very good for uranium and nitrogen. Interlaboratory precision of + or - 0.04 percent was achieved for both of these elements. Oxygen was determined to + or - 15 parts per million (ppm) at the 170-ppm level. The carbon determination gave an interlaboratory precision of + or - 46 ppm at the 320-ppm level.

  6. EOS-AM precision pointing verification

    NASA Technical Reports Server (NTRS)

    Throckmorton, A.; Braknis, E.; Bolek, J.

    1993-01-01

    The Earth Observing System (EOS) AM mission requires tight pointing knowledge to meet scientific objectives, in a spacecraft with low frequency flexible appendage modes. As the spacecraft controller reacts to various disturbance sources and as the inherent appendage modes are excited by this control action, verification of precision pointing knowledge becomes particularly challenging for the EOS-AM mission. As presently conceived, this verification includes a complementary set of multi-disciplinary analyses, hardware tests and real-time computer in the loop simulations, followed by collection and analysis of hardware test and flight data and supported by a comprehensive data base repository for validated program values.

  7. PV cells electrical parameters measurement

    NASA Astrophysics Data System (ADS)

    Cibira, Gabriel

    2017-12-01

    When measuring optical parameters of a photovoltaic silicon cell, precise results bring good electrical parameters estimation, applying well-known physical-mathematical models. Nevertheless, considerable re-combination phenomena might occur in both surface and intrinsic thin layers within novel materials. Moreover, rear contact surface parameters may influence close-area re-combination phenomena, too. Therefore, the only precise electrical measurement approach is to prove assumed cell electrical parameters. Based on theoretical approach with respect to experiments, this paper analyses problems within measurement procedures and equipment used for electrical parameters acquisition within a photovoltaic silicon cell, as a case study. Statistical appraisal quality is contributed.

  8. Precision Medicine: Functional Advancements.

    PubMed

    Caskey, Thomas

    2018-01-29

    Precision medicine was conceptualized on the strength of genomic sequence analysis. High-throughput functional metrics have enhanced sequence interpretation and clinical precision. These technologies include metabolomics, magnetic resonance imaging, and I rhythm (cardiac monitoring), among others. These technologies are discussed and placed in clinical context for the medical specialties of internal medicine, pediatrics, obstetrics, and gynecology. Publications in these fields support the concept of a higher level of precision in identifying disease risk. Precise disease risk identification has the potential to enable intervention with greater specificity, resulting in disease prevention-an important goal of precision medicine.

  9. Last Glacial Maximum Salinity Reconstruction

    NASA Astrophysics Data System (ADS)

    Homola, K.; Spivack, A. J.

    2016-12-01

    It has been previously demonstrated that salinity can be reconstructed from sediment porewater. The goal of our study is to reconstruct high precision salinity during the Last Glacial Maximum (LGM). Salinity is usually determined at high precision via conductivity, which requires a larger volume of water than can be extracted from a sediment core, or via chloride titration, which yields lower than ideal precision. It has been demonstrated for water column samples that high precision density measurements can be used to determine salinity at the precision of a conductivity measurement using the equation of state of seawater. However, water column seawater has a relatively constant composition, in contrast to porewater, where variations from standard seawater composition occur. These deviations, which affect the equation of state, must be corrected for through precise measurements of each ion's concentration and knowledge of apparent partial molar density in seawater. We have developed a density-based method for determining porewater salinity that requires only 5 mL of sample, achieving density precisions of 10-6 g/mL. We have applied this method to porewater samples extracted from long cores collected along a N-S transect across the western North Atlantic (R/V Knorr cruise KN223). Density was determined to a precision of 2.3x10-6 g/mL, which translates to salinity uncertainty of 0.002 gms/kg if the effect of differences in composition is well constrained. Concentrations of anions (Cl-, and SO4-2) and cations (Na+, Mg+, Ca+2, and K+) were measured. To correct salinities at the precision required to unravel LGM Meridional Overturning Circulation, our ion precisions must be better than 0.1% for SO4-/Cl- and Mg+/Na+, and 0.4% for Ca+/Na+, and K+/Na+. Alkalinity, pH and Dissolved Inorganic Carbon of the porewater were determined to precisions better than 4% when ratioed to Cl-, and used to calculate HCO3-, and CO3-2. Apparent partial molar densities in seawater were determined experimentally. We compare the high precision salinity profiles determined using our new method to profiles determined from the traditional chloride titrations of parallel samples. Our technique provides a more accurate reconstruction of past salinity, informing questions of water mass composition and distribution during the LGM.

  10. Composite adaptive control of belt polishing force for aero-engine blade

    NASA Astrophysics Data System (ADS)

    Zhsao, Pengbing; Shi, Yaoyao

    2013-09-01

    The existing methods for blade polishing mainly focus on robot polishing and manual grinding. Due to the difficulty in high-precision control of the polishing force, the blade surface precision is very low in robot polishing, in particular, quality of the inlet and exhaust edges can not satisfy the processing requirements. Manual grinding has low efficiency, high labor intensity and unstable processing quality, moreover, the polished surface is vulnerable to burn, and the surface precision and integrity are difficult to ensure. In order to further improve the profile accuracy and surface quality, a pneumatic flexible polishing force-exerting mechanism is designed and a dual-mode switching composite adaptive control(DSCAC) strategy is proposed, which combines Bang-Bang control and model reference adaptive control based on fuzzy neural network(MRACFNN) together. By the mode decision-making mechanism, Bang-Bang control is used to track the control command signal quickly when the actual polishing force is far away from the target value, and MRACFNN is utilized in smaller error ranges to improve the system robustness and control precision. Based on the mathematical model of the force-exerting mechanism, simulation analysis is implemented on DSCAC. Simulation results show that the output polishing force can better track the given signal. Finally, the blade polishing experiments are carried out on the designed polishing equipment. Experimental results show that DSCAC can effectively mitigate the influence of gas compressibility, valve dead-time effect, valve nonlinear flow, cylinder friction, measurement noise and other interference on the control precision of polishing force, which has high control precision, strong robustness, strong anti-interference ability and other advantages compared with MRACFNN. The proposed research achieves high-precision control of the polishing force, effectively improves the blade machining precision and surface consistency, and significantly reduces the surface roughness.

  11. Precision of FLEET Velocimetry Using High-speed CMOS Camera Systems

    NASA Technical Reports Server (NTRS)

    Peters, Christopher J.; Danehy, Paul M.; Bathel, Brett F.; Jiang, Naibo; Calvert, Nathan D.; Miles, Richard B.

    2015-01-01

    Femtosecond laser electronic excitation tagging (FLEET) is an optical measurement technique that permits quantitative velocimetry of unseeded air or nitrogen using a single laser and a single camera. In this paper, we seek to determine the fundamental precision of the FLEET technique using high-speed complementary metal-oxide semiconductor (CMOS) cameras. Also, we compare the performance of several different high-speed CMOS camera systems for acquiring FLEET velocimetry data in air and nitrogen free-jet flows. The precision was defined as the standard deviation of a set of several hundred single-shot velocity measurements. Methods of enhancing the precision of the measurement were explored such as digital binning (similar in concept to on-sensor binning, but done in post-processing), row-wise digital binning of the signal in adjacent pixels and increasing the time delay between successive exposures. These techniques generally improved precision; however, binning provided the greatest improvement to the un-intensified camera systems which had low signal-to-noise ratio. When binning row-wise by 8 pixels (about the thickness of the tagged region) and using an inter-frame delay of 65 micro sec, precisions of 0.5 m/s in air and 0.2 m/s in nitrogen were achieved. The camera comparison included a pco.dimax HD, a LaVision Imager scientific CMOS (sCMOS) and a Photron FASTCAM SA-X2, along with a two-stage LaVision High Speed IRO intensifier. Excluding the LaVision Imager sCMOS, the cameras were tested with and without intensification and with both short and long inter-frame delays. Use of intensification and longer inter-frame delay generally improved precision. Overall, the Photron FASTCAM SA-X2 exhibited the best performance in terms of greatest precision and highest signal-to-noise ratio primarily because it had the largest pixels.

  12. The Dharma Planet Survey (DPS), a Robotic, High Cadence and High Doppler Precision Survey of Habitable Rocky Planets around Nearby Stars

    NASA Astrophysics Data System (ADS)

    Ge, Jian; Ma, Bo; Muterspaugh, Matthew W.; Singer, Michael; Varosi, Frank; Powell, Scott; Williamson, Michael W.; Sithajan, Sirinrat; Grieves, Nolan; Zhao, Bo; Schofield, Sidney; Liu, Jian; Cassette, Anthony; Carlson, Kevin; Klanot, Khaya; Jeram, Sarik; Barnes, Rory

    2016-01-01

    The Dharma Planet Survey (DPS) is to monitor ~100 nearby very bright FGKM dwarfs (most of them brighter than V=8) during 2014-2018 using the TOU optical very high resolution spectrograph (R~100,000, 380-900nm) at the 2m Automatic Spectroscopy Telescope at Fairborn Observatory initially (2014-2015) and at the dedicated 50-inch Robotic Telescope (2016-2018) on Mt. Lemmon after the telescope is installed in the fall of 2015. Operated in high vacuum (<0.01mTorr) with precisely controlled temperature (~1-2 mK), TOU has delivered ~ 1 m/s (RMS) instrument stability after the hardware upgrade in September 2015. DPS aims at reaching better than 0.5 m/s Doppler measurement precision for bright survey targets after the instrument tiny drift is carefully calibrated with Thorium-Argon and Sine reference sources. With very high RV precision and high cadence (~100 observations per target randomly spread over 450 days), a large number of rocky planets, including possible habitable ones, are expected to be detected. The survey also provides the largest single homogenous high precision RV sample of nearby stars for studying low mass planet populations and constraining various planet formation models. Early scientific results from the DPS pilot survey of 25 FGKM dwarfs will be presented.

  13. Single-atom Catalysis Using Pt/Graphene Achieved through Atomic Layer Deposition

    NASA Astrophysics Data System (ADS)

    Sun, Shuhui; Zhang, Gaixia; Gauquelin, Nicolas; Chen, Ning; Zhou, Jigang; Yang, Songlan; Chen, Weifeng; Meng, Xiangbo; Geng, Dongsheng; Banis, Mohammad N.; Li, Ruying; Ye, Siyu; Knights, Shanna; Botton, Gianluigi A.; Sham, Tsun-Kong; Sun, Xueliang

    2013-05-01

    Platinum-nanoparticle-based catalysts are widely used in many important chemical processes and automobile industries. Downsizing catalyst nanoparticles to single atoms is highly desirable to maximize their use efficiency, however, very challenging. Here we report a practical synthesis for isolated single Pt atoms anchored to graphene nanosheet using the atomic layer deposition (ALD) technique. ALD offers the capability of precise control of catalyst size span from single atom, subnanometer cluster to nanoparticle. The single-atom catalysts exhibit significantly improved catalytic activity (up to 10 times) over that of the state-of-the-art commercial Pt/C catalyst. X-ray absorption fine structure (XAFS) analyses reveal that the low-coordination and partially unoccupied densities of states of 5d orbital of Pt atoms are responsible for the excellent performance. This work is anticipated to form the basis for the exploration of a next generation of highly efficient single-atom catalysts for various applications.

  14. Measurement of energy transitions for the decay radiations of 75Ge and 69Ge in a high purity germanium detector

    NASA Astrophysics Data System (ADS)

    Aydın, Güral; Usta, Metin; Oktay, Adem

    2018-06-01

    Photoactivation experiments have a wide range of application areas in nuclear, particle physics, and medical physics such as measuring energy levels and half-lifes of nuclei, experiments for understanding imaging methods in medicine, isotope production for patient treatment, radiation security and transportation, radiation therapy, and astrophysics processes. In this study, some energy transition values of the decay radiations of 75Ge and 69Ge, which are the products of photonuclear reactions (γ, n) with germanium isotopes (75Ge and 69Ge), were measured. The gamma spectrum as a result of atomic transitions were analysed by using a high purity semiconductor germanium detector and the energy transition values which are presented here were compared with the ones which are the best in literature. It was observed that the results presented are in agreement with literature in error range and some results have better precisions.

  15. Influence of mechanical noise inside a scanning electron microscope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaudenzi de Faria, Marcelo; Haddab, Yassine, E-mail: yassine.haddab@femto-st.fr; Le Gorrec, Yann

    The scanning electron microscope is becoming a popular tool to perform tasks that require positioning, manipulation, characterization, and assembly of micro-components. However, some of these applications require a higher level of performance with respect to dynamics and precision of positioning. One limiting factor is the presence of unidentified noises and disturbances. This work aims to study the influence of mechanical disturbances generated by the environment and by the microscope, identifying how these can affect elements in the vacuum chamber. To achieve this objective, a dedicated setup, including a high-resolution vibrometer, was built inside the microscope. This work led to themore » identification and quantification of main disturbances and noise sources acting on a scanning electron microscope. Furthermore, the effects of external acoustic excitations were analysed. Potential applications of these results include noise compensation and real-time control for high accuracy tasks.« less

  16. Single-atom Catalysis Using Pt/Graphene Achieved through Atomic Layer Deposition

    PubMed Central

    Sun, Shuhui; Zhang, Gaixia; Gauquelin, Nicolas; Chen, Ning; Zhou, Jigang; Yang, Songlan; Chen, Weifeng; Meng, Xiangbo; Geng, Dongsheng; Banis, Mohammad N.; Li, Ruying; Ye, Siyu; Knights, Shanna; Botton, Gianluigi A.; Sham, Tsun-Kong; Sun, Xueliang

    2013-01-01

    Platinum-nanoparticle-based catalysts are widely used in many important chemical processes and automobile industries. Downsizing catalyst nanoparticles to single atoms is highly desirable to maximize their use efficiency, however, very challenging. Here we report a practical synthesis for isolated single Pt atoms anchored to graphene nanosheet using the atomic layer deposition (ALD) technique. ALD offers the capability of precise control of catalyst size span from single atom, subnanometer cluster to nanoparticle. The single-atom catalysts exhibit significantly improved catalytic activity (up to 10 times) over that of the state-of-the-art commercial Pt/C catalyst. X-ray absorption fine structure (XAFS) analyses reveal that the low-coordination and partially unoccupied densities of states of 5d orbital of Pt atoms are responsible for the excellent performance. This work is anticipated to form the basis for the exploration of a next generation of highly efficient single-atom catalysts for various applications.

  17. External quality-assurance results for the National Atmospheric Deposition Program and the National Trends Network during 1986

    USGS Publications Warehouse

    See, Randolph B.; Schroder, LeRoy J.; Willoughby, Timothy C.

    1988-01-01

    During 1986, the U.S. Geological Survey operated three programs to provide external quality-assurance monitoring of the National Atmospheric Deposition Program and National Trends Network. An intersite-comparison program was used to assess the accuracy of onsite pH and specific-conductance determinations at quarterly intervals. The blind-audit program was used to assess the effect of routine sample handling on the precision and bias of program and network wet-deposition data. Analytical results from four laboratories, which routinely analyze wet-deposition samples, were examined to determine if differences existed between laboratory analytical results and to provide estimates of the analytical precision of each laboratory. An average of 78 and 89 percent of the site operators participating in the intersite-comparison met the network goals for pH and specific conductance. A comparison of analytical values versus actual values for samples submitted as part of the blind-audit program indicated that analytical values were slightly but significantly (a = 0.01) larger than actual values for pH, magnesium, sodium, and sulfate; analytical values for specific conductance were slightly less than actual values. The decreased precision in the analyses of blind-audit samples when compared to interlaboratory studies indicates that a large amount of uncertainty in network deposition data may be a result of routine field operations. The results of the interlaboratory comparison study indicated that the magnitude of the difference between laboratory analyses was small for all analytes. Analyses of deionized, distilled water blanks by participating laboratories indicated that the laboratories had difficulty measuring analyte concentrations near their reported detection limits. (USGS)

  18. A comparative study between xerographic, computer-assisted overlay generation and animated-superimposition methods in bite mark analyses.

    PubMed

    Tai, Meng Wei; Chong, Zhen Feng; Asif, Muhammad Khan; Rahmat, Rabiah A; Nambiar, Phrabhakaran

    2016-09-01

    This study was to compare the suitability and precision of xerographic and computer-assisted methods for bite mark investigations. Eleven subjects were asked to bite on their forearm and the bite marks were photographically recorded. Alginate impressions of the subjects' dentition were taken and their casts were made using dental stone. The overlays generated by xerographic method were obtained by photocopying the subjects' casts and the incisal edge outlines were then transferred on a transparent sheet. The bite mark images were imported into Adobe Photoshop® software and printed to life-size. The bite mark analyses using xerographically generated overlays were done by comparing an overlay to the corresponding printed bite mark images manually. In computer-assisted method, the subjects' casts were scanned into Adobe Photoshop®. The bite mark analyses using computer-assisted overlay generation were done by matching an overlay and the corresponding bite mark images digitally using Adobe Photoshop®. Another comparison method was superimposing the cast images with corresponding bite mark images employing the Adobe Photoshop® CS6 and GIF-Animator©. A score with a range of 0-3 was given during analysis to each precision-determining criterion and the score was increased with better matching. The Kruskal Wallis H test showed significant difference between the three sets of data (H=18.761, p<0.05). In conclusion, bite mark analysis using the computer-assisted animated-superimposition method was the most accurate, followed by the computer-assisted overlay generation and lastly the xerographic method. The superior precision contributed by digital method is discernible despite the human skin being a poor recording medium of bite marks. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  19. Analog synthetic biology.

    PubMed

    Sarpeshkar, R

    2014-03-28

    We analyse the pros and cons of analog versus digital computation in living cells. Our analysis is based on fundamental laws of noise in gene and protein expression, which set limits on the energy, time, space, molecular count and part-count resources needed to compute at a given level of precision. We conclude that analog computation is significantly more efficient in its use of resources than deterministic digital computation even at relatively high levels of precision in the cell. Based on this analysis, we conclude that synthetic biology must use analog, collective analog, probabilistic and hybrid analog-digital computational approaches; otherwise, even relatively simple synthetic computations in cells such as addition will exceed energy and molecular-count budgets. We present schematics for efficiently representing analog DNA-protein computation in cells. Analog electronic flow in subthreshold transistors and analog molecular flux in chemical reactions obey Boltzmann exponential laws of thermodynamics and are described by astoundingly similar logarithmic electrochemical potentials. Therefore, cytomorphic circuits can help to map circuit designs between electronic and biochemical domains. We review recent work that uses positive-feedback linearization circuits to architect wide-dynamic-range logarithmic analog computation in Escherichia coli using three transcription factors, nearly two orders of magnitude more efficient in parts than prior digital implementations.

  20. Analog synthetic biology

    PubMed Central

    Sarpeshkar, R.

    2014-01-01

    We analyse the pros and cons of analog versus digital computation in living cells. Our analysis is based on fundamental laws of noise in gene and protein expression, which set limits on the energy, time, space, molecular count and part-count resources needed to compute at a given level of precision. We conclude that analog computation is significantly more efficient in its use of resources than deterministic digital computation even at relatively high levels of precision in the cell. Based on this analysis, we conclude that synthetic biology must use analog, collective analog, probabilistic and hybrid analog–digital computational approaches; otherwise, even relatively simple synthetic computations in cells such as addition will exceed energy and molecular-count budgets. We present schematics for efficiently representing analog DNA–protein computation in cells. Analog electronic flow in subthreshold transistors and analog molecular flux in chemical reactions obey Boltzmann exponential laws of thermodynamics and are described by astoundingly similar logarithmic electrochemical potentials. Therefore, cytomorphic circuits can help to map circuit designs between electronic and biochemical domains. We review recent work that uses positive-feedback linearization circuits to architect wide-dynamic-range logarithmic analog computation in Escherichia coli using three transcription factors, nearly two orders of magnitude more efficient in parts than prior digital implementations. PMID:24567476

  1. A simple procedure for γ- γ lifetime measurements using multi-element fast-timing arrays

    NASA Astrophysics Data System (ADS)

    Régis, J.-M.; Dannhoff, M.; Jolie, J.

    2018-07-01

    The lifetimes of nuclear excited states are important observables in nuclear physics. Their precise measurement is of key importance for developing and testing nuclear models as they are directly linked with the quantum nature of the nuclear system. The γ- γ timing technique represents a direct lifetime determination by means of time-difference measurements between the γ rays which directly feed and decay from a nuclear excited state. Using arrays of very-fast scintillator detectors, picosecond-sensitive time-difference measurements can be performed. We propose to construct a symmetric energy-energy-time cube as is usually done to perform γ- γ coincidence analyses and lifetime determination with high-resolution germanium detectors. By construction, a symmetric mean time-walk characteristics is obtained, that can be precisely determined and used as a single time correction for all the data independently of the detectors. We present the results of timing characteristics measurements of an array with six LaBr3(Ce) detectors, as obtained using a 152Eu point γ-ray source. Compared with a single detector pair, the time resolution of the symmetrised time-difference spectra of the array is nearly unaffected.

  2. Systematic Molecular Phenotyping: A Path Toward Precision Emergency Medicine?

    PubMed

    Limkakeng, Alexander T; Monte, Andrew A; Kabrhel, Christopher; Puskarich, Michael; Heitsch, Laura; Tsalik, Ephraim L; Shapiro, Nathan I

    2016-10-01

    Precision medicine is an emerging approach to disease treatment and prevention that considers variability in patient genes, environment, and lifestyle. However, little has been written about how such research impacts emergency care. Recent advances in analytical techniques have made it possible to characterize patients in a more comprehensive and sophisticated fashion at the molecular level, promising highly individualized diagnosis and treatment. Among these techniques are various systematic molecular phenotyping analyses (e.g., genomics, transcriptomics, proteomics, and metabolomics). Although a number of emergency physicians use such techniques in their research, widespread discussion of these approaches has been lacking in the emergency care literature and many emergency physicians may be unfamiliar with them. In this article, we briefly review the underpinnings of such studies, note how they already impact acute care, discuss areas in which they might soon be applied, and identify challenges in translation to the emergency department (ED). While such techniques hold much promise, it is unclear whether the obstacles to translating their findings to the ED will be overcome in the near future. Such obstacles include validation, cost, turnaround time, user interface, decision support, standardization, and adoption by end-users. © 2016 by the Society for Academic Emergency Medicine.

  3. Precise timing of the last interglacial period from mass spectrometric determination of thorium-230 in corals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edwards, R.L.; Chen, J.H.; Ku, T.L.

    1987-06-19

    The development of mass spectrometric techniques for determination of STTh abundance has made it possible to reduce analytical errors in STYU-STUU-STTh dating of corals even with very small samples. Samples of 6 x 10Y atoms of STTh can be measured to an accuracy of +/- 3% (2sigma) and 3 x 10 atoms of STTh can be measured to an accuracy of +/- 0.2%. The time range over which useful age data on corals can be obtained now ranges from about 50 to about 500,000 years. For young corals, this approach may be preferable to UC dating. The precision should makemore » it possible to critically test the Milankovitch hypothesis concerning Pleistocene climate fluctuations. Analyses of a number of corals that grew during the last interglacial period yield ages of 122,000 to 130,000 years. The ages coincide with, or slightly postdate, the summer solar insolation high at 65N latitude which occurred 128,000 years ago. This supports the idea that changes in Pleistocene climate can be the result of variations in the distribution of solar insolation caused by changes in the geometry of the earth's orbit and rotation axis.« less

  4. A routine high-precision method for Lu-Hf isotope geochemistry and chronology

    USGS Publications Warehouse

    Patchett, P.J.; Tatsumoto, M.

    1981-01-01

    A method for chemical separation of Lu and Hf from rock, meteorite and mineral samples is described, together with a much improved mass spectrometric running technique for Hf. This allows (i) geo- and cosmochronology using the176Lu???176Hf+??- decay scheme, and (ii) geochemical studies of planetary processes in the earth and moon. Chemical yields for the three-stage ion-exchange column procedure average 90% for Hf. Chemical blanks are <0.2 ng for Lu and Hf. From 1 ??g of Hf, a total ion current of 0.5??10-11 Ampere can be maintained for 3-5 h, yielding 0.01-0.03% precision on the ratio176Hf/177Hf. Normalisation to179Hf/177Hf=0.7325 is used. Extensive results for the Johnson Matthey Hf standard JMC 475 are presented, and this sample is urged as an international mass spectrometric standard; suitable aliquots, prepared from a single batch of JMC 475, are available from Denver. Lu-Hf analyses of the standard rocks BCR-1 and JB-1 are given. The potential of the Lu-Hf method in isotope geochemistry is assessed. ?? 1980 Springer-Verlag.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    McIntosh, Kathryn G.; Reilly, Sean D.; Havrilla, George J.

    Characterization of Pu is an essential aspect of safeguards operations at nuclear fuel reprocessing facilities. A novel analysis technique called hiRX (high resolution X-ray) has been developed for the direct measurement of Pu in spent nuclear fuel dissolver solutions. hiRX is based on monochromatic wavelength dispersive X-ray fluorescence (MWDXRF), which provides enhanced sensitivity and specificity compared with conventional XRF techniques. A breadboard setup of the hiRX instrument was calibrated using spiked surrogate spent fuel (SSF) standards prepared as dried residues. Samples of actual spent fuel were utilized to evaluate the performance of the hiRX. The direct detection of just 39more » ng of Pu is demonstrated. Initial quantitative results, with error of 4–27% and precision of 2% relative standard deviation (RSD), were obtained for spent fuel samples. The limit of detection for Pu (100 s) within an excitation spot of 200 μm diameter was 375 pg. This study demonstrates the potential for the hiRX technique to be utilized for the rapid, accurate, and precise determination of Pu. Moreover, the results highlight the analytical capability of hiRX for other applications requiring sensitive and selective nondestructive analyses.« less

  6. Simultaneous quantitative determination of paracetamol and tramadol in tablet formulation using UV spectrophotometry and chemometric methods

    NASA Astrophysics Data System (ADS)

    Glavanović, Siniša; Glavanović, Marija; Tomišić, Vladislav

    2016-03-01

    The UV spectrophotometric methods for simultaneous quantitative determination of paracetamol and tramadol in paracetamol-tramadol tablets were developed. The spectrophotometric data obtained were processed by means of partial least squares (PLS) and genetic algorithm coupled with PLS (GA-PLS) methods in order to determine the content of active substances in the tablets. The results gained by chemometric processing of the spectroscopic data were statistically compared with those obtained by means of validated ultra-high performance liquid chromatographic (UHPLC) method. The accuracy and precision of data obtained by the developed chemometric models were verified by analysing the synthetic mixture of drugs, and by calculating recovery as well as relative standard error (RSE). A statistically good agreement was found between the amounts of paracetamol determined using PLS and GA-PLS algorithms, and that obtained by UHPLC analysis, whereas for tramadol GA-PLS results were proven to be more reliable compared to those of PLS. The simplest and the most accurate and precise models were constructed by using the PLS method for paracetamol (mean recovery 99.5%, RSE 0.89%) and the GA-PLS method for tramadol (mean recovery 99.4%, RSE 1.69%).

  7. Systematic Molecular Phenotyping: A Path Towards Precision Emergency Medicine?

    PubMed Central

    Limkakeng, Alexander T.; Monte, Andrew; Kabrhel, Christopher; Puskarich, Michael; Heitsch, Laura; Tsalik, Ephraim L.; Shapiro, Nathan I.

    2016-01-01

    Precision medicine is an emerging approach to disease treatment and prevention that considers variability in patient genes, environment, and lifestyle. However, little has been written about how such research impacts emergency care. Recent advances in analytical techniques have made it possible to characterize patients in a more comprehensive and sophisticated fashion at the molecular level, promising highly individualized diagnosis and treatment. Among these techniques are various systematic molecular phenotyping analyses (e.g., genomics, transcriptomics, proteomics, and metabolomics). Although a number of emergency physicians use such techniques in their research, widespread discussion of these approaches has been lacking in the emergency care literature and many emergency physicians may be unfamiliar with them. In this article, we briefly review the underpinnings of such studies, note how they already impact acute care, discuss areas in which they might soon be applied, and identify challenges in translation to the emergency department. While such techniques hold much promise, it is unclear whether the obstacles to translating their findings to the emergency department will be overcome in the near future. Such obstacles include validation, cost, turnaround time, user interface, decision support, standardization, and adoption by end users. PMID:27288269

  8. Accuracy of a new partial coherence interferometry analyser for biometric measurements.

    PubMed

    Holzer, M P; Mamusa, M; Auffarth, G U

    2009-06-01

    Precise biometry is an essential preoperative measurement for refractive surgery as well as cataract surgery. A new device based on partial coherence interferometry technology was tested and evaluated for accuracy of measurements. In a prospective study 200 eyes of 100 healthy phakic volunteers were examined with a functional prototype of the new ALLEGRO BioGraph (Wavelight AG)/LENSTAR LS 900 (Haag Streit AG) biometer and with the IOLMaster V.5 (Carl Zeiss Meditec AG). As recommended by the manufacturers, repeated measurements were performed with both devices and the results compared using Spearman correlation calculations (WinSTAT). Spearman correlation showed high correlations for axial length and keratometry measurements between the two devices tested. Anterior chamber depth, however, had a lower correlation between the two biometry devices. In addition, the mean values of the anterior chamber depth differed (IOLMaster 3.48 (SD 0.42) mm versus BioGraph/LENSTAR 3.64 (SD 0.26) mm); however, this difference was not statistically different (p>0.05, t test). The new biometer provided results that correlated very well with those of the IOLMaster. The ALLEGRO BioGraph/LENSTAR LS 900 is a precise device containing additional features that will be helpful tools for any cataract or refractive surgeon.

  9. Nanophotonic Trapping for Precise Manipulation of Biomolecular Arrays

    PubMed Central

    Soltani, Mohammad; Lin, Jun; Forties, Robert A.; Inman, James T.; Saraf, Summer N.; Fulbright, Robert M.; Lipson, Michal; Wang, Michelle D.

    2014-01-01

    Optical trapping is a powerful manipulation and measurement technique widely employed in the biological and materials sciences1–8. Miniaturizing optical trap instruments onto optofluidic platforms holds promise for high throughput lab-on-chip applications9–16. However, a persistent challenge with existing optofluidic devices has been controlled and precise manipulation of trapped particles. Here we report a new class of on-chip optical trapping devices. Using photonic interference functionalities, an array of stable, three-dimensional on-chip optical traps is formed at the antinodes of a standing-wave evanescent field on a nanophotonic waveguide. By employing the thermo-optic effect via integrated electric microheaters, the traps can be repositioned at high speed (~ 30 kHz) with nanometer precision. We demonstrate sorting and manipulation of individual DNA molecules. In conjunction with laminar flows and fluorescence, we also show precise control of the chemical environment of a sample with simultaneous monitoring. Such a controllable trapping device has the potential for high-throughput precision measurements on chip. PMID:24776649

  10. Nanophotonic trapping for precise manipulation of biomolecular arrays.

    PubMed

    Soltani, Mohammad; Lin, Jun; Forties, Robert A; Inman, James T; Saraf, Summer N; Fulbright, Robert M; Lipson, Michal; Wang, Michelle D

    2014-06-01

    Optical trapping is a powerful manipulation and measurement technique widely used in the biological and materials sciences. Miniaturizing optical trap instruments onto optofluidic platforms holds promise for high-throughput lab-on-a-chip applications. However, a persistent challenge with existing optofluidic devices has been achieving controlled and precise manipulation of trapped particles. Here, we report a new class of on-chip optical trapping devices. Using photonic interference functionalities, an array of stable, three-dimensional on-chip optical traps is formed at the antinodes of a standing-wave evanescent field on a nanophotonic waveguide. By employing the thermo-optic effect via integrated electric microheaters, the traps can be repositioned at high speed (∼30 kHz) with nanometre precision. We demonstrate sorting and manipulation of individual DNA molecules. In conjunction with laminar flows and fluorescence, we also show precise control of the chemical environment of a sample with simultaneous monitoring. Such a controllable trapping device has the potential to achieve high-throughput precision measurements on chip.

  11. High-precision radius automatic measurement using laser differential confocal technology

    NASA Astrophysics Data System (ADS)

    Jiang, Hongwei; Zhao, Weiqian; Yang, Jiamiao; Guo, Yongkui; Xiao, Yang

    2015-02-01

    A high precision radius automatic measurement method using laser differential confocal technology is proposed. Based on the property of an axial intensity curve that the null point precisely corresponds to the focus of the objective and the bipolar property, the method uses the composite PID (proportional-integral-derivative) control to ensure the steady movement of the motor for process of quick-trigger scanning, and uses least-squares linear fitting to obtain the position of the cat-eye and confocal positions, then calculates the radius of curvature of lens. By setting the number of measure times, precision auto-repeat measurement of the radius of curvature is achieved. The experiment indicates that the method has the measurement accuracy of better than 2 ppm, and the measuring repeatability is better than 0.05 μm. In comparison with the existing manual-single measurement, this method has a high measurement precision, a strong environment anti-interference capability, a better measuring repeatability which is only tenth of former's.

  12. Precise measurement of a magnetic field generated by the electromagnetic flux compression technique.

    PubMed

    Nakamura, D; Sawabe, H; Matsuda, Y H; Takeyama, S

    2013-04-01

    The precision of the values of a magnetic field generated by electromagnetic flux compression was investigated in ultra-high magnetic fields of up to 700 T. In an attempt to calibrate the magnetic field measured by pickup coils, precise Faraday rotation (FR) measurements were conducted on optical (quartz and crown) glasses. A discernible "turn-around" phenomenon was observed in the FR signal as well as the pickup coils before the end of a liner implosion. We found that the magnetic field measured by pickup coils should be corrected by taking into account the high-frequency response of the signal transmission line. Near the peak magnetic field, however, the pickup coils failed to provide reliable values, leaving the FR measurement as the only method to precisely measure extremely high magnetic fields.

  13. Study of nanometer-level precise phase-shift system used in electronic speckle shearography and phase-shift pattern interferometry

    NASA Astrophysics Data System (ADS)

    Jing, Chao; Liu, Zhongling; Zhou, Ge; Zhang, Yimo

    2011-11-01

    The nanometer-level precise phase-shift system is designed to realize the phase-shift interferometry in electronic speckle shearography pattern interferometry. The PZT is used as driving component of phase-shift system and translation component of flexure hinge is developed to realize micro displacement of non-friction and non-clearance. Closed-loop control system is designed for high-precision micro displacement, in which embedded digital control system is developed for completing control algorithm and capacitive sensor is used as feedback part for measuring micro displacement in real time. Dynamic model and control model of the nanometer-level precise phase-shift system is analyzed, and high-precision micro displacement is realized with digital PID control algorithm on this basis. It is proved with experiments that the location precision of the precise phase-shift system to step signal of displacement is less than 2nm and the location precision to continuous signal of displacement is less than 5nm, which is satisfied with the request of the electronic speckle shearography and phase-shift pattern interferometry. The stripe images of four-step phase-shift interferometry and the final phase distributed image correlated with distortion of objects are listed in this paper to prove the validity of nanometer-level precise phase-shift system.

  14. LYSO based precision timing calorimeters

    NASA Astrophysics Data System (ADS)

    Bornheim, A.; Apresyan, A.; Ronzhin, A.; Xie, S.; Duarte, J.; Spiropulu, M.; Trevor, J.; Anderson, D.; Pena, C.; Hassanshahi, M. H.

    2017-11-01

    In this report we outline the study of the development of calorimeter detectors using bright scintillating crystals. We discuss how timing information with a precision of a few tens of pico seconds and below can significantly improve the reconstruction of the physics events under challenging high pileup conditions to be faced at the High-Luminosity LHC or a future hadron collider. The particular challenge in measuring the time of arrival of a high energy photon lies in the stochastic component of the distance of initial conversion and the size of the electromagnetic shower. We present studies and measurements from test beams for calorimeter based timing measurements to explore the ultimate timing precision achievable for high energy photons of 10 GeV and above. We focus on techniques to measure the timing with a high precision in association with the energy of the photon. We present test-beam studies and results on the timing performance and characterization of the time resolution of LYSO-based calorimeters. We demonstrate time resolution of 30 ps is achievable for a particular design.

  15. High Precision Spectroscopy of CH_5^+ Using Nice-Ohvms

    NASA Astrophysics Data System (ADS)

    Hodges, James N.; Perry, Adam J.; McCall, Benjamin J.

    2013-06-01

    The elusive methonium ion, CH_5^+, is of great interest due to its highly fluxional nature. The only published high-resolution infrared spectrum remains completely unassigned to this date. The primary challenge in understanding the CH_5^+ spectrum is that traditional spectroscopic approaches rely on a molecule having only small (or even large) amplitude motions about a well-defined reference geometry, and this is not the case with CH_5^+. We are in the process of re-scanning Oka's spectrum, in the original Black Widow discharge cell, using the new technique of Noise Immune Cavity Enhanced Optical Heterodyne Velocity Modulation Spectroscopy (NICE-OHVMS). The high precision afforded by optical saturation in conjunction with a frequency comb allows transition line centers to be determined with sub-MHz accuracy and precision -- a substantial improvement over the 90 MHz precision of Oka's work. With a high-precision linelist in hand, we plan to search for four line combination differences to directly determine the spacings between rotational energy levels. Such a search is currently infeasible due to the large number of false positives resulting from the relatively low precision and high spectral density of Oka's spectrum. The resulting combination differences, in conjunction with state-of-the-art theoretical calculations from Tucker Carrington, may provide the first insight into the rotational structure of this unique molecular system. E. T. White, J. Tang, T. Oka, Science (1999) 284, 135--137. B. M. Siller, et al. Opt. Express (2011), 19, 24822--24827. K. N. Crabtree, et al. Chem. Phys. Lett. (2012), 551, 1--6. X. Wang, T. Carrington, J. Chem. Phys., (2008), 129, 234102.

  16. Toward hybrid Au nanorods @ M (Au, Ag, Pd and Pt) core-shell heterostructures for ultrasensitive SERS probes

    NASA Astrophysics Data System (ADS)

    Xie, Xiaobin; Gao, Guanhui; Kang, Shendong; Lei, Yanhua; Pan, Zhengyin; Shibayama, Tamaki; Cai, Lintao

    2017-06-01

    Being able to precisely control the morphologies of noble metallic nanostructures is of essential significance for promoting the surface-enhanced Raman scattering (SERS) effect. Herein, we demonstrate an overgrowth strategy for synthesizing Au @ M (M = Au, Ag, Pd, Pt) core-shell heterogeneous nanocrystals with an orientated structural evolution and highly improved properties by using Au nanorods as seeds. With the same reaction condition system applied, we obtain four well-designed heterostructures with diverse shapes, including Au concave nanocuboids (Au CNs), Au @ Ag crystalizing face central cube nanopeanuts, Au @ Pd porous nanocuboids and Au @ Pt nanotrepangs. Subsequently, the exact overgrowth mechanism of the above heterostructural building blocks is further analysed via the systematic optimiziation of a series of fabrications. Remarkably, the well-defined Au CNs and Au @ Ag nanopeanuts both exhibit highly promoted SERS activity. We expect to be able to supply a facile strategy for the fabrication of multimetallic heterogeneous nanostructures, exploring the high SERS effect and catalytic activities.

  17. Rapid estimation of concentration of aromatic classes in middistillate fuels by high-performance liquid chromatography

    NASA Technical Reports Server (NTRS)

    Otterson, D. A.; Seng, G. T.

    1985-01-01

    An high performance liquid chromatography (HPLC) method to estimate four aromatic classes in middistillate fuels is presented. Average refractive indices are used in a correlation to obtain the concentrations of each of the aromatic classes from HPLC data. The aromatic class concentrations can be obtained in about 15 min when the concentration of the aromatic group is known. Seven fuels with a wide range of compositions were used to test the method. Relative errors in the concentration of the two major aromatic classes were not over 10 percent. Absolute errors of the minor classes were all less than 0.3 percent. The data show that errors in group-type analyses using sulfuric acid derived standards are greater for fuels containing high concentrations of polycyclic aromatics. Corrections are based on the change in refractive index of the aromatic fraction which can occur when sulfuric acid and the fuel react. These corrections improved both the precision and the accuracy of the group-type results.

  18. Anatomy of a Nanoscale Conduction Channel Reveals the Mechanism of a High-Performance Memristor

    NASA Astrophysics Data System (ADS)

    Miao, Feng; Strachan, John Paul; Yang, J. Joshua; Yi, Wei; Goldfarb, Ilan; Zhang, M.-X.; Torrezan, Antonio C.; Eschbach, Peter; Kelley, Ronald D.; Medeiros-Ribeiro, Gilberto; Williams, R. Stanley

    2012-02-01

    Two major challenges for resistance memory devices (memristors) based on conductivity changes in oxide materials are better performance and understanding of the microscopic picture of the switching. After researchers' relentless pursuit for years, tantalum oxide-based memristors have rapidly risen to be the top candidate, showing fast speed, high endurance and excellent scalability. While the microscopic picture of these devices remains obscure, by employing a precise method for locating and directly visualizing the conduction channel, here we observed a nanoscale channel consisting of an amorphous Ta(O) solid solution surrounded by crystalline Ta2O5. Structural and chemical analyses of the channel combined with temperature dependent transport measurements revealed a unique resistance switching mechanism: the modulation of the channel elemental composition, and thus the conductivity, by the cooperative influence of drift, diffusion and thermophoresis, which seem to enable the high switching performance observed. (Miao*, Strachan*, Yang* et al., Advanced Materials. DOI: 10.1002/adma201103379 (2011))

  19. Atomic Physics with the Goddard High Resolution Spectrograph on the Hubble Space Telescope. III; Oscillator Strengths for Neutral Carbon

    NASA Technical Reports Server (NTRS)

    Zsargo, J.; Federman, S. R.; Cardelli, Jason A.

    1997-01-01

    High quality spectra of interstellar absorption from C I toward beta(sup 1) S(sub co), rho O(sub ph) A, and chi O(sub ph) were obtained with the Goddard High Resolution Spectrograph on HST. Many weak lines were detected within the observed wavelength intervals: 1150-1200 A for beta(sup 1) S(sub co) and 1250-1290 A for rho O(sub ph) A and chi O(sub ph). Curve-of-growth analyses were performed in order to extract accurate column densities and Doppler parameters from lines with precise laboratory-based f-values. These column densities and b-values were used to obtain a self-consistent set of f-values for all the observed C I lines. A particularly important constraint was the need to reproduce data for more than one line of sight. For about 50% of the lines, the derived f-values differ appreciably from the values quoted by Morton.

  20. Achieving High Resolution Timer Events in Virtualized Environment.

    PubMed

    Adamczyk, Blazej; Chydzinski, Andrzej

    2015-01-01

    Virtual Machine Monitors (VMM) have become popular in different application areas. Some applications may require to generate the timer events with high resolution and precision. This however may be challenging due to the complexity of VMMs. In this paper we focus on the timer functionality provided by five different VMMs-Xen, KVM, Qemu, VirtualBox and VMWare. Firstly, we evaluate resolutions and precisions of their timer events. Apparently, provided resolutions and precisions are far too low for some applications (e.g. networking applications with the quality of service). Then, using Xen virtualization we demonstrate the improved timer design that greatly enhances both the resolution and precision of achieved timer events.

Top